WorldWideScience

Sample records for costal cartilage estudo

  1. Shear loading of costal cartilage

    CERN Document Server

    Subit, Damien

    2014-01-01

    A series of tests were performed on a single post-mortem human subject at various length scales. First, tabletop tests were performed. Next, the ribs and intercostal muscles were tested with the view to characterize the load transfer between the ribs. Finally, the costal cartilage was tested under shear loading, as it plays an important in the transfer of the load between the ribs and the sternum. This paper reports the results of dynamic shear loading tests performed on three samples of costal cartilage harvested from a single post-mortem human subject, as well as the quantification of the effective Young's modulus estimated from the amount of cartilage calcification.

  2. Thermogravimetry of irradiated human costal cartilage

    Energy Technology Data Exchange (ETDEWEB)

    Martinho Junior, Antonio C.; Machado, Luci D.B.; Dias, Djalma B.; Mathor, Monica B. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)]. E-mail: antonio_carlos_martinho@msn.com; lmachado@ipen.br; dbdias@ipen.br; mathor@ipen.br; Herson, Marisa R. [Universidade de Sao Paulo, SP (Brazil). Hospital das Clinicas. Banco de Tecidos do Instituto Central]. E-mail: marisah@vifm.org; Meumann, Nilton F.; Pasqualucci, Carlos Augusto G. [Universidade de Sao Paulo, SP (Brazil). Faculdade de Medicina. Servico de Verificacao de Obitos]. E-mail: svoc@usp.br

    2007-07-01

    Costal cartilage has been sterilized with gamma radiation using {sup 60}Co sources at two different doses, 25 kGy and 50 kGy, for storage in tissue banks. Samples of costal cartilage were deep-freezing as method of preservation. Thermogravimetry (Shimadzu TGA-50) was used to verify the water release of costal cartilage before and after irradiation. The TG tests were carried out at heating rate of 10 deg C/min from room temperature to 600 deg C under a flow rate of 50 mL/min of compressed air. Samples of costal cartilage were divided in 2 parts. One part of them was kept as reference material; the other part was irradiated. This procedure assures better homogeneity of the sample and reproducibility of the experimental results. The obtained data have shown that the TG curves have the same pattern, independently of the sample. Non-irradiated samples showed great variability of thermogravimetric curves among different donors and for the same donor. Further experimental work is being carried out on human cartilage preserved in glycerol in high concentration (> 98%) to compare with those deep freezing. (author)

  3. MULTIPLE OSSIFIED COSTAL CARTILAGES FOR 1ST RIB

    Directory of Open Access Journals (Sweden)

    Raghavendra D.R.

    2014-12-01

    Full Text Available Costal cartilages are flattened bars of hyaline cartilages. All ribs except the last two, join with the sternum through their respective costal cartilages directly or indirectly. During dissection for 1st MBBS students in the Department of Anatomy, JJMMC, Davangere, variation was found in a male cadaver aged 45 –50 years. Multiple ossified costal cartilages for 1st rib were present on left side. There were 3 costal cartilages connecting 1st rib to manubrium. There were two small intercostal spaces between them. The lower two small costal cartilages fused together to form a common segment which in turn fused with large upper costal cartilage. The large upper costal cartilage forms costochondral joint with 1st rib. All costal cartilages showed features of calcification. The present variation of multiple ossified costal cartilages are due to bifurcation of costal cartilage. It may cause musculoskeletal pain, intercostal nerve entrapment or vascular compression. Awareness of these anomalies are important for radiologists for diagnostic purpose and for surgeons for performing various clinical and surgical procedures.

  4. Irradiated homologous costal cartilage for augmentation rhinoplasty

    Energy Technology Data Exchange (ETDEWEB)

    Lefkovits, G. (Lenox Hill Hospital, New York, NY (USA))

    1990-10-01

    Although the ideal reconstructive material for augmentation rhinoplasty continues to challenge plastic surgeons, there exists no report in the literature that confines the use of irradiated homologous costal cartilage, first reported by Dingman and Grabb in 1961, to dorsal nasal augmentation. The purpose of this paper is to present a retrospective analysis of the author's experience using irradiated homologous costal cartilage in augmentation rhinoplasty. Twenty-seven dorsal nasal augmentations were performed in 24 patients between 16 and 49 years of age with a follow-up ranging from 1 to 27 months. Good-to-excellent results were achieved in 83.3% (20 of 24). Poor results requiring revision were found in 16.7% (4 of 24). Complication rates included 7.4% infection (2 of 27) and 14.8% warping (4 of 27). The resorption rate was zero. These results compare favorably with other forms of nasal augmentation. Advantages and disadvantages of irradiated homologous costal cartilage are discussed.

  5. Harvesting split thickness costal cartilage graft

    Directory of Open Access Journals (Sweden)

    Sunil Gaba

    2017-01-01

    Full Text Available Aim: There are few complications associated with harvesting of full thickness coastal cartilage grafts i.e., pneumothorax (0.9%, contour deformities and prolonged post-operative pain. To address these issues, authors devised special scalpel to harvest split-thickness costal cartilage grafts. Materials and Methods: Standard inframammary incision was used for harvesting rib. Incision was made directly over the desired rib. Specially designed scalpel was used to cut through the rib cartilage to the half of the thickness. The study was conducted in two parts – cadaveric and clinical. Results: There was significantly less pain and no pneumothorax in the patients in whom the split thickness graft was harvested. Wounds healed without any complication. Discussion: Thus, newly devised angulated scalpel used in the current study, showed the potential to supply the reconstructive surgeon with split thickness rib graft without risk of complications such as pneumothorax or warping contour deformities and post-operative pain.

  6. Study of physical, chemical and structural effects caused by ionizing radiation and preservation on human costal cartilage; Estudo dos efeitos fisicos, quimicos e estruturais ocasionados pela radiacao ionizante e preservacao em cartilagem costal humana

    Energy Technology Data Exchange (ETDEWEB)

    Martinho Junior, Antonio Carlos

    2008-07-01

    Tissue Banks around the world have stored human cartilages obtained from cadaver donors for use in several kinds of reconstructive surgeries. To ensure that such tissues are not contaminated, they have been sterilized with ionizing radiation. However, high doses of gamma radiation may cause undesirable changes in the tissues, decreasing the mechanical properties of the grafts. In this work, we evaluate physical/chemical and structural changes in deep-frozen (-70 deg C) or high concentration of glycerol (> 98%) preserved costal cartilage, before and after sterilization by ionizing radiation at 3 different doses (15, 25 and 50 kGy). Samples of human costal cartilage were obtained from 20 cadaver donors ranging between 18 and 55 years old. A {sup 60}Co irradiator was used as irradiation source. Thermogravimetry (TG), Optical Coherence Tomography (OCT) and mechanical tension and compression tests were carried out to evaluate the changes in the cartilage. Regarding the thermogravimetric results, the obtained data has shown that the TG curves have the same pattern independently of the sample irradiated or not. On the other hand, non-irradiated samples showed great variability of thermogravimetric curves among different donors and for the same donor. Concerning the mechanical tests, when cartilages were irradiated with 15 kGy, their mechanical strength to tension was increased about 24%, in both deep-froze and preserved in glycerol samples. Samples deep-frozen, when irradiated with 25 and 50 kGy, presented a decrease of their mechanical behavior smaller than those preserved in high concentrations of glycerol and irradiated with the same dose. Therefore, deep-frozen cartilages can be sterilized with doses until 50 kGy and cartilages preserved in high concentrations of glycerol can be sterilized with doses until 25 kGy without significant changes in their bio-mechanical properties.(author)

  7. Costal cartilage fractures and disruptions in a rugby football player.

    Science.gov (United States)

    Lopez, Victor; Ma, Richard; Li, Xinning; Steele, John; Allen, Answorth A

    2013-05-01

    Costal cartilage fracture of the rib cage, or costochondral, is a rare sporting injury. For contact athletes, the instability of the rib cage may lead to potential serious complications, similar to rib fractures or thorax disruption. Most authors recommend initial conservative treatment with surgery reserved for only recalcitrant cases. We report a case of an amateur American male rugby football player who sustained a costal cartilage fracture and disruption involving the anterior left fifth and sixth rib costal cartilages. The case highlights the difficulty in establishing the diagnosis based on clinical examination and standard radiographs alone. Computed tomography was used to assist in diagnosing this destabilizing injury to the rib cage. Costal cartilage fractures and disruptions in athletes are rarely reported in the literature and can have serious implications for the athlete's ability to return to play if the rib cage is destabilized.

  8. Biochemical effects on long-term frozen human costal cartilage

    Energy Technology Data Exchange (ETDEWEB)

    Santin, Stefany P.; Martinho Junior, Antonio C.; Yoshito, Daniele; Soares, Fernando A.N.; Mathor, Monica B., E-mail: mathor@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    Currently, the progresses on treatment of musculoskeletal diseases with the evolving of artificial implants and the success of tissue transplantation between genetically different individuals have conducted to an increase in radiosterilization. Regarding to tissue transplantation, it is essential to have sterile tissue and many tissue banks use radiosterilization as an effective method to sterilize these tissues. However, high doses of ionizing radiation and the preservation method may induce structural modifications in the tissues, as degradation of structural scaffold, decreasing its mechanical properties. Particularly, cartilage have been preserved in high concentrations of glycerol or deep-frozen at -70 degree C for storage after radiosterilization. Therefore, it is important to study the modifications induced in cartilage by preservation methods and by radiosterilization to determine the appropriated parameters for high quality of human allografts. Costal cartilages were obtained from cadaveric donors and were frozen at -20 degree C for 2 years long in order to compare with previous studies for fresh, deep-frozen and glycerolised cartilages. The mechanical tests were carried out in a universal testing machine until sample failure. According our results, there is no significant statistical difference between stress at break of fresh, long-term - 20 degree C frozen cartilages and deep-frozen cartilage. This early result suggests, regarding to tensile property, that long-term - 20 degree C frozen cartilages corresponds to glycerolised costal cartilages irradiated with 25 kGy or deep-frozen cartilages irradiated with 25 and 50 kGy. Thus, this long-term frozen cartilages may be used for tissue banks, but more studies about effects of ionizing radiation are necessary. (author)

  9. The effect of calcification on the structural mechanics of the costal cartilage.

    Science.gov (United States)

    Forman, Jason L; Kent, Richard W

    2014-01-01

    The costal cartilage often undergoes progressive calcification with age. This study sought to investigate the effects of calcification on the structural mechanics of whole costal cartilage segments. Models were developed for five costal cartilage specimens, including representations of the cartilage, the perichondrium, calcification, and segments of the rib and sternum. The material properties of the cartilage were determined through indentation testing; the properties of the perichondrium were determined through optimisation against structural experiments. The calcified regions were then expanded or shrunk to develop five different sensitivity analysis models for each. Increasing the relative volume of calcification from 0% to 24% of the cartilage volume increased the stiffness of the costal cartilage segments by a factor of 2.3-3.8. These results suggest that calcification may have a substantial effect on the stiffness of the costal cartilage which should be considered when modelling the chest, especially if age is a factor.

  10. Study of ionizing radiation effects in human costal cartilage by thermogravimetry and optical coherence tomography; Estudo dos efeitos da radiacao ionizante em cartilagem costal humana por meio de termogravimetria e tomografia por coerencia optica

    Energy Technology Data Exchange (ETDEWEB)

    Martinho Junior, Antonio Carlos

    2012-07-01

    Tissue Banks around the world have stored human cartilages obtained from post mortem donors for use in several kinds of reconstructive surgeries. To ensure that such tissues are not contaminated, they have been sterilized with ionizing radiation. However, high doses of gamma radiation may cause undesirable changes in the tissues. In this work, we evaluated the possibility of use Optical Coherence Tomography (OCT) and Thermogravimetric Analysis (TGA) to identify possible structural modifications caused by both preservation methods of cartilage and gamma irradiation doses. Cartilages were obtained from cadaveric donors and were frozen at -70 deg C or preserved in glycerol. Irradiation was performed by {sup 60}Co source with doses of 15, 25 and 50 kGy. Our TGA results showed that glycerolized cartilages irradiated with different doses of radiation does not presented statistical differences when compared to the control group for the dehydration rate. However, the same was not observed for deep-frozen cartilages irradiated with 15 kGy. The results of OCT associated to total optical attenuation coefficient showed that doses of 15 kGy promote cross-link between collagen fibrils, corroborating the results obtained from TGA. Moreover, total optical attenuation coefficient values are proportional to stress at break of cartilages, what will be very useful in a near future to predict the quality of the allografts, without unnecessary loss of biological tissue, once OCT is a nondestructive technique. By PS-OCT images, we found that high doses of ionizing radiation does not promote sufficient impairments to promote complete loss of tissue birefringence. Thus, TGA and OCT are techniques that can be used for tissue banks to verify tissue quality before its transplant. (author)

  11. [Relationship between PMI and ATR-FTIR Spectral Changes in Swine Costal Cartilages and Ribs].

    Science.gov (United States)

    Yao, Yao; Wang, Qi; Jing, Xiao-li; Li, Bing; Zhang, Yin-ming; Wang, Zhi-jun; Li, Cheng-zhi; Lin, Han-cheng; Zhang, Ji; Huang, Ping; Wang, Zhen-yuan

    2016-02-01

    To analyze postmortem chemical changes in Landrace costal cartilages and ribs using attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy, and to provide a novel technique for estimation of postmortem interval (PMI). The swines were sacrificed by hemorrhage and their costal cartilages and ribs were kept in 20 degrees C. The chemical analysis of the costal cartilages and ribs were performed using ATR-FTIR every 72 h. The correlation between the certain spectral parameters and PMI was also analyzed. The time-dependent changes of costal cartilages were more significant than ribs. There were no obvious changes for the main absorbance bands position, and some absorbance band ratios showed time-dependent changes and significant correlations with the PMI. ATR-FTIR has the ability to analyze postmortem chemical changes of the swine costal cartilages and ribs, and it can be a new method to estimate PMI based on spectroscopy.

  12. Vascular-pedicled costal cartilage graft for the treatment of subglottic and upper tracheal stenosis.

    Science.gov (United States)

    Hashizume, K; Kanamori, Y; Sugiyama, M; Tomonaga, T; Nakanishi, H

    2004-12-01

    Free costal cartilage graft for the treatment of subglottic and tracheal stenosis is widely used, but postoperative granulation formation is a problem. To reduce the risk of granulation formation after free costal graft, a new operation of costal cartilage graft with vascular pedicle was introduced. A vascular pedicled fifth costal cartilage graft is prepared using internal thoracic artery and vein and intercostal artery and vein as a vascular pedicle. The prepared graft is brought to the upper trachea. The anterior wall of cricoid is split, and the costal cartilage graft is implanted to the split part and tracheostomy. Extubation on the next day is possible if the general condition of the patient permits. In 3 cases of subglottic or upper tracheal stenosis, this operation was performed. All the patients had tracheostomy made during early infancy. The postoperative course was uneventful, and all the patients were extubated soon after the operation. No granulation tissue was observed by postoperative bronchoscopic examinations. Costal cartilage graft with vascular pedicle is a safe and useful new operation for the treatment of subglottic and upper tracheal stenosis. There also is a possibility of using this procedure for the treatment of long segment tracheal stenosis.

  13. Quantitative geometric analysis of rib, costal cartilage and sternum from childhood to teenagehood.

    Science.gov (United States)

    Sandoz, Baptiste; Badina, Alina; Laporte, Sébastien; Lambot, Karene; Mitton, David; Skalli, Wafa

    2013-09-01

    Better understanding of the effects of growth on children's bones and cartilage is necessary for clinical and biomechanical purposes. The aim of this study is to define the 3D geometry of children's rib cages: including sternum, ribs and costal cartilage. Three-dimensional reconstructions of 960 ribs, 518 costal cartilages and 113 sternebrae were performed on thoracic CT scans of 48 children, aged 4 months to 15 years. The geometry of the sternum was detailed and nine parameters were used to describe the ribs and rib cages. A "costal index" was defined as the ratio between cartilage length and whole rib length to evaluate the cartilage ratio for each rib level. For all children, the costal index decreased from rib level 1 to 3 and increased from level 3 to 7. For all levels, the cartilage accounted for 45-60 % of the rib length, and was longer for the first years of life. The mean costal index decreased by 21 % for subjects over 3-year old compared to those under three (p < 10(-4)). The volume of the sternebrae was found to be highly age dependent. Such data could be useful to define the standard geometry of the pediatric thorax and help to detect clinical abnormalities.

  14. Estimation of eighth costal cartilage in surgical timing of microtia reconstruction.

    Science.gov (United States)

    Moon, Il Yung; Oh, Kap Sung; Lim, So Young; Pyon, Jai-Kyong; Mun, Goo-Hyun; Bang, Sa-Ik

    2015-01-01

    There is controversy over the optimal timing of microtia reconstruction. The eighth costal cartilage, which is used to shape the helix framework, can be one of the key factors determining surgical timing of microtia reconstruction. Nevertheless, it is difficult to predict the length of the eighth costal cartilage preoperatively. The aim of the present study was to suggest clinical predictors of the length of the eighth cartilage by assessing the correlation between the actual length of the eighth cartilage and preoperative measurements of the cartilage length using three-dimensional rib-cage computed tomography (3D rib-cage CT). A retrospective analysis was performed on a total of 97 patients who underwent preoperative 3D rib-cage CT and auricular reconstruction using a rib cartilage graft between January 2010 and February 2013. The length of the eighth costal cartilage on 3D rib-cage CT was measured preoperatively, and the length of the harvested eighth rib cartilage was measured intraoperatively. We analyzed the association between the preoperative and intraoperative measured length of the eighth rib, with patient age, height, weight, and body mass index. Preoperative measurement using 3D rib-cage CT showed a high correlation with actual cartilage length. Height and weight correlated more strongly with length than with age. This study describes the usefulness of 3D rib-cage CT for preoperative measurement of the length of the eighth costal cartilage. The measurement of the eighth rib cartilage on 3D rib-cage CT could be a useful aid for reconstructive surgeons in planning microtia reconstruction.

  15. The rectus abdominis myocutaneous flap combined with vascularized costal cartilages in reconstructive craniofacial surgery.

    Science.gov (United States)

    Yamamoto, Y; Minakawa, H; Kokubu, I; Kawashima, K; Sugihara, T; Satoh, N; Fukuda, S

    1997-08-01

    The efficacy of osteocutaneous or vascularized bone flaps for reconstruction of massive skeletal and soft-tissue defects has been supported by recent descriptions in the literature. In this article we presented an alternative technique, which is the rectus abdominis myocutaneous flap combined with vascularized eighth and ninth costal cartilages, for reconstruction of midfacial composite defects. The vascular pedicle of the composite flap is the deep inferior epigastric artery and vein. The costal cartilages are supplied by the perichondrial vascular network through the anterior intercostal vessels connecting with the deep epigastric vascular system. Vascularized costal cartilages are considered to reduce the incidence of postoperative complications and resorption of this material. This technique is a useful tool for restoration of craniofacial contour in reconstructive head and neck surgery.

  16. Precision carving of costal cartilage graft for contour fill in aesthetic and reconstructive rhinoplasty

    Directory of Open Access Journals (Sweden)

    Uday Bhat

    2014-01-01

    Full Text Available Background: Autogenous costal cartilage is a good option for large volume requirements in rhinoplasty, when septal or conchal cartilages do not suffice. Reluctance to use costal cartilage is due to apprehension of warping. However, warping can be avoided if we follow the principle of balanced section as advocated by Gibson and Davis. "Warping" can also be utilized to change the curvature of the graft. Materials and Methods: We have used 69 costal cartilage grafts as a solid piece for contour fill in rhinoplasty in 31 patients over the last 10 years. Principle of balanced section as advocated by Gibson and Davis was adhered to while carving the grafts, however some grafts were allowed to warp to get different sizes and shapes. Results: All the procedures were uneventful. Aesthetic appearance of all patients was satisfactory and acceptable to all the patients. In two cases, the dorsal graft minimally shifted to one side, but remained straight. In one patient, there was late appearance of distortion. Conclusion: The mode of cartilage warping is predictable and it can be used to advantage. Apprehension to use costal cartilage graft is unjustified, as with precision carving a desired shape can be obtained.

  17. Semi-automatic 3D segmentation of costal cartilage in CT data from Pectus Excavatum patients

    Science.gov (United States)

    Barbosa, Daniel; Queirós, Sandro; Rodrigues, Nuno; Correia-Pinto, Jorge; Vilaça, J.

    2015-03-01

    One of the current frontiers in the clinical management of Pectus Excavatum (PE) patients is the prediction of the surgical outcome prior to the intervention. This can be done through computerized simulation of the Nuss procedure, which requires an anatomically correct representation of the costal cartilage. To this end, we take advantage of the costal cartilage tubular structure to detect it through multi-scale vesselness filtering. This information is then used in an interactive 2D initialization procedure which uses anatomical maximum intensity projections of 3D vesselness feature images to efficiently initialize the 3D segmentation process. We identify the cartilage tissue centerlines in these projected 2D images using a livewire approach. We finally refine the 3D cartilage surface through region-based sparse field level-sets. We have tested the proposed algorithm in 6 noncontrast CT datasets from PE patients. A good segmentation performance was found against reference manual contouring, with an average Dice coefficient of 0.75±0.04 and an average mean surface distance of 1.69+/-0.30mm. The proposed method requires roughly 1 minute for the interactive initialization step, which can positively contribute to an extended use of this tool in clinical practice, since current manual delineation of the costal cartilage can take up to an hour.

  18. Anteroposterior cricoid split interposition costal cartilage grafts for laryngotracheal stenosis in children

    Institute of Scientific and Technical Information of China (English)

    RUAN Yan-yan; CHEN Wen-xian; CUI Peng-cheng; GAO Peng-fei

    2007-01-01

    Objective: To investigate the effects of anteroposterior cricoid spliting interposition costal grafting for moderate and severe laryngotracheal stenosis in children. Methods: From 1995 to 2005, 87 children (aged 1.2 to 14 years) with moderate and severe glottic and subglottic stenosis were retrospectively studied. They were operated with cricoid spliting laryngotracheal reconstruction in our hospital. All of 87 patients were tracheostomy-dependent before surgery. Results: Eighty-five patients (95%) were successfully decannnulated and got an effective phonation. The follow-up time was more than 5 years. The effect of operation was satisfactory and the growth and development of children was normal. Conclusion: Anteroposterior cricoid split interposition costal cartilage graft is a safe and effective treatment method formoderate and severe glottic and subglottic stenosis in children.

  19. Modifying the collagen framework of costal cartilage under the impact of UV and a flavin mononucleotide

    Science.gov (United States)

    Ignat'eva, N. Yu.; Zakharkina, O. L.; Semchishen, V. A.; Molchanov, M. D.; Lunin, V. V.; Bagratashvili, V. N.

    2016-03-01

    Modifications of the matrix of the tissue of costal cartilage under the impact of UV (λ = 365 nm) and a flavin mononucleotide (FMN) is studied. The changes in the macroscopic properties of the tissue are detected by means of differential scanning calorimetry and under the conditions of uniaxial compression during mechanical testing. The endothermic effects of the denaturation of the collagen framework of the tissue and the Young's modulus are determined. It is shown that the presence of a flavin mononucleotide in the interstitial fluid leads lowers the temperature of collagen denaturation by 2.5°C and doubles the Young's modulus. It is found that the temperature of denaturation and the Young's modulus grow gradually after treating the tissue with the UV radiation, and their values ultimately exceed by far the corresponding values for intact samples. It is concluded that the obtained data indicate the possibility of stabilizing the framework of the matrix of costal cartilage under the impact of UV radiation and a flavin mononucleotide.

  20. Is the repair of articular cartilage lesion by costal chondrocyte transplantation donor age-dependent? An experimental study in rabbits.

    Directory of Open Access Journals (Sweden)

    Janusz Popko

    2006-09-01

    Full Text Available The repair of chondral injuries is a very important problem and a subject of many experimental and clinical studies. Different techniques to induce articular cartilage repair are under investigation. In the present study, we have investigated whether the repair of articular cartilage folowing costal chondrocyte transplantation is donor age-dependent. Transplantation of costal chondrocytes from 4- and 24-week old donors, with artificially induced femoral cartilage lesion, was performed on fourteen 20-week-old New Zealand White male rabbits. In the control group, the lesion was left without chondrocyte transplantation. The evaluation of the cartilage repair was performed after 12 weeks of transplantation. We analyzed the macroscopic and histological appearance of the newly formed tissue. Immunohistochemistry was also performed using monoclonal antibodies against rabbit collagen type II. The newly formed tissue had a hyaline-like appearance in most of the lesions after chondrocyte transplantation. Positive immunohistochemical reaction for collagen II was also observed in both groups with transplanted chondrocytes. Cartilage from adult donors required longer isolation time and induced slightly poorer repair. However, hyaline-like cartilage was observed in most specimens from this group, in contrast to the control group, where fibrous connective tissue filled the lesions. Rabbit costal chondrocytes seem to be a potentially useful material for inducing articular cartilage repair and, even more important, they can also be derived from adult, sexually mature animals.

  1. Additional circular intercostal space created by bifurcation of the left 3rd rib and its costal cartilage: a case report.

    Science.gov (United States)

    Kumar, Naveen; Guru, Anitha; Patil, Jyothsna; Ravindra, Swamy; Badagabettu, Satheesha Nayak

    2013-01-08

    In the thorax there are normally 11 pairs of intercostal spaces: the spaces between adjacent ribs. The intercostal spaces contain intercostal muscles, intercostal nerves and vessels. During a routine dissection for undergraduate medical students, we observed a variation involving the left 3rd rib and 3rd costal cartilage in the cadaver of a man of Indian ethnicity aged about 65 years. The left 3rd rib and its costal cartilage were bifurcated at their costochondral junction enclosing a small circular additional intercostal space. Muscle tissue covered by deep fascia was present in this circular intercostal space. The muscle in the circular intercostal space received its nerve supply from a branch of the 2nd intercostal nerve. Knowledge of such variations is helpful to surgeons operating on the anterior thoracic wall involving ribs and intercostal spaces. Knowing the possibility of the presence of an additional space between normal intercostal spaces can guide a surgeon through to a successful surgery.

  2. Imaging of irradiated human costal cartilage birefringence by PS-OCT

    Energy Technology Data Exchange (ETDEWEB)

    Martinho Junior, Antonio C.; Freitas, Anderson Z.; Santin, Stefany P.; Soares, Fernando A.N.; Mosca, Rodrigo C.; Bringel, Fabiana A.; Mathor, Monica B., E-mail: freitas.az@ipen.b, E-mail: rmosca@usp.b, E-mail: mathor@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    Sterilization by ionizing radiation is a technique used for tissue banks around the world to avoid transmission of infectious diseases by human allografts. However, high doses of ionizing radiation may cause undesirable changes in tissue structure, decreasing its mechanical properties, for example. Optical Coherence Tomography (OCT) is a non destructive, non ionizing and real time method to investigate biological tissues without promote any change in tissue structure. Polarization Sensitive Optical Coherence Tomography (PS-OCT) is an OCT technique that combines polarimetry with low coherence reflectometry to provide depth resolved measurements from birefringent structures as collagen. Costal cartilages from 15 cadaveric donors were preserved in high concentration glycerol and each individual sample was divided in 6 fragments. One of them was kept as a control group and the others were irradiated with gamma radiation from a Co-60 source with doses of 15, 25, 50, 75 and 100 kGy. OCT and PS-OCT images of the same region of the samples were obtained from a device OCS 1300 SS (Thorlabs, USA) with a coupling polarization module PSOCT 1300 (Thorlabs, USA). According with our results, birefringence may be visualized in all test groups as well in the control group, suggesting that sterilization by ionizing radiation does not affect the collagen structure significantly to cause total loss of birefringence, even if high doses as 75 and 100 kGy are used. The next step of our work is to develop a new method to quantify the birefringence using the optical properties of the tissue. (author)

  3. Preserved costal cartilage homograft application for the treatment of temporomandibular joint ankylosis.

    Science.gov (United States)

    Demir, Z; Velidedeoğlu, H; Sahin, U; Kurtay, A; Coşkunfirat, O K

    2001-07-01

    temporomandibular joint. In this article, a description of the surgical technique, a review of all cases, and recommendations for the use of this type of graft material are discussed. Our clinical experience over the past 4 years with the use of preserved homologous costal cartilage grafts as interpositional material has been encouraging.

  4. Maxillonasal dysplasia (Binder′s syndrome and its treatment with costal cartilage graft: A follow-up study

    Directory of Open Access Journals (Sweden)

    Bhatt Yogesh

    2008-01-01

    Full Text Available Maxillonasal dysplasia or Binder′s syndrome is an uncommon congenital condition characterized by a retruded mid-face with an extremely flat nose. We report here six patients with maxillonasal dysplasia whose noses were corrected with onlay costal cartilage grafts using a combined oral vestibular and external rhinoplasty approach for nasal dorsal augmentation, columellar lengthening, and premaxillary augmentation. The cartilage graft was dipped in a solution of 100 ml 0.9% NaCl and one vial (80mg gentamicin for 30 min to prevent warping. L struts made for nasal augmentation, columellar lengthening, and premaxillary augmentation were fixed to one another by slots made in the graft. This technique has been used in children, adults, and for secondary cases with promising results. All patients were of class I dental occlusion. The nasal and premaxillary augmentation which was monitored by serial photography was found to be stable over a follow-up period of three years

  5. Additional circular intercostal space created by bifurcation of the left 3rd rib and its costal cartilage: a case report

    Directory of Open Access Journals (Sweden)

    Kumar Naveen

    2013-01-01

    Full Text Available Abstract Introduction In the thorax there are normally 11 pairs of intercostal spaces: the spaces between adjacent ribs. The intercostal spaces contain intercostal muscles, intercostal nerves and vessels. Case presentation During a routine dissection for undergraduate medical students, we observed a variation involving the left 3rd rib and 3rd costal cartilage in the cadaver of a man of Indian ethnicity aged about 65 years. The left 3rd rib and its costal cartilage were bifurcated at their costochondral junction enclosing a small circular additional intercostal space. Muscle tissue covered by deep fascia was present in this circular intercostal space. The muscle in the circular intercostal space received its nerve supply from a branch of the 2nd intercostal nerve. Conclusions Knowledge of such variations is helpful to surgeons operating on the anterior thoracic wall involving ribs and intercostal spaces. Knowing the possibility of the presence of an additional space between normal intercostal spaces can guide a surgeon through to a successful surgery.

  6. The importance of costal cartilage framework stabilization in microtia reconstruction: anthropometric comparison based on 216 cases.

    Science.gov (United States)

    Xu, Zhicheng; Zhang, Ruhong; Zhang, Qun; Xu, Feng; Li, Datao

    2014-12-01

    This study explored anthropometric changes in the reconstructed auricle and the contralateral normal ear in a series of 216 microtia patients using different stabilization methods. Our main personal modifications concerning the preparation of the framework were the following: 1. The individualized framework grafting was based on patients with different ages and different degrees of the strength and thickness of the rib cartilage. 2. The framework was stabilized as a "C" shape by using a piece of cartilage or suture to reinforce the two end points of the "C". In group A (the thickness of cartilage was more than 5 mm), a block of residual cartilage fixed by wire was added between the tragus and the base frame of the inferior crus by the modified method but was not applied in the original method. In group B (the thickness of cartilage was less than 5 mm), a 4-0 braided suture was used to reinforce the two structures but was not used in the original method. No significant differences were found in the height or width measurements of the cartilage framework and the contralateral normal side in either group at the time of implantation. At the follow-up, the height and width measurements were obviously increased in both groups operated on by the original method compared with the initial implanted or contralateral normal measurements. There were no significant differences in the height or width measurements by the modified method in either group. The authors' techniques produced acceptable results and generated some useful parameters for the growth study of the reconstructed auricle and the contralateral normal ear. The modifications in framework stabilization allow a harmonious outline of the reconstructed auricle to be attained, which is almost symmetrical to the contralateral normal auricle.

  7. Reliability of cut mark analysis in human costal cartilage: the effects of blade penetration angle and intra- and inter-individual differences.

    Science.gov (United States)

    Puentes, K; Cardoso, H F V

    2013-09-10

    Identification of tool class characteristics from cut marks in either bone or cartilage is a valuable source of data for the forensic scientist. Various animal models have been used in experimental studies for the analysis of individual and class characteristics. However, human tissue has seldom been used and it is likely to differ from that of non-humans in key aspects. This study wishes to assess how the knife's blade angle, and both intra- and inter-individual variation in cartilage samples affect the ability of costal cartilage to retain the original class characteristics of the knife, as measured microscopically by the distance between consecutive striations. The 120 cartilaginous samples used in this study originated from the ribcage of 6 male cadavers which were submitted to autopsy at the North Branch of the National Institute of Legal Medicine, in Portugal. Three different serrated knives were purchased from a large department store, and were used in the experimental cuts. Samples of costal cartilage from 2 individuals were assigned to each knife. Each individual provided 20 cartilage samples. Cartilage samples were manually cut using each of the three knives, following two motions: one straight up-and-down cutting motion and parallel and one perpendicular to the blade's teeth long axis forward cutting motion. Casts of the samples were made with Mikrosil(®). Image capture and processing were performed with an Olympus stereomicroscope and its software. The blade's penetration angle and inter-individual variation were shown to affect the identification of the tool class characteristics from the striation pattern observed in a kerf wall, although this seems to be related only to the degree of calcification of the costal cartilage. Intra-individual variation does not seem to significantly affect the identification of the tool class characteristics from the striation pattern observed in a kerf wall, for the same knife following the same motion. Although this

  8. A case of the application of autogenous costal cartilage combined with polytetralfuoroethylene in treatment of Binder syndrome%自体肋软骨联合膨体聚四氟乙烯治疗Binder综合征一例

    Institute of Scientific and Technical Information of China (English)

    罗海; 王润芝; 单磊

    2016-01-01

    目的:探讨应用自体肋软骨联合膨体聚四氟乙烯矫正一例Binder综合征患者的面中部后缩及鼻畸形。方法:应用自体肋软骨矫正鼻畸形,膨体聚四氟乙烯填充梨状孔周围。结果:鼻畸形及面中部后缩得到显著改善,术后效果满意。结论:应用自体肋软骨联合膨体聚四氟乙烯可以显著改善Binder综合征鼻畸形和面中部后缩。%ObjectiveTo investigate the application of autologous costal cartilage combined with polytetralfuoroethylene in correction of nasal deformity and midfacial retrusion in one case with Binder syndrome.Methods Autogenous costal cartilage was used for correcting the nasal deformity, and polytetralfuoroethylene was iflled around the piriform aperture.ResultsThe patient achieved remarkable modiifcations in nasal deformity and midfacial retrusion, with satisfactory postoperative outcome. Conclusion The nasal deformity and midfacial retrusion of Binder syndrome can be greatly improved by the combined application of autogenous cartilage and polytetralfuoroethylene.

  9. An optimized DNA extraction method for costal cartilage by using protinase K and chelex-100%蛋白酶K-Chelex100法提取肋软骨DNA技术的优化

    Institute of Scientific and Technical Information of China (English)

    王会品; 王孝力; 杨巍; 谢云铁; 王晓伟; 谢波

    2012-01-01

    目的 优化蛋白酶K的用量和消化时间,用于提取肋软骨DNA.方法 30份肋软骨样本各取大小为0.2cm×0.3cm×0.4cm的软骨块5份,分别编为A~E组.采用不同蛋白酶K用量和消化时间的Chelexl00方法,提取5组各30份软骨块DNA,进行DNA定量、采用Sinofiler试剂盒扩增后进行电泳检测,采用非参数检验法比较检验成功率.结果 A~E组样本中采用加入2μL蛋白酶K并消化30min的D组方法成功率最高(96.7%),组间差异具有统计学意义.结论 采用蛋白酶K-Chelexl00方法,选择加入2μL蛋白酶K,消化30min可有效提高肋软骨DNA分型检验成功率.%Objective To establish an optimized DNA extraction method for costal cartilage by adjusting the volume of proteinase K and digestion time. Methods DNA was isolated from 30 costal cartilages (0.2cm x 0. 3cm ×0. 4cm) of each group (A ~ E) with different volume of proteinase K and sample digestion time. The extracted DNA was quantified, and then amplified with the Sinofiler kit followed by electrophorese. Statistical analysis was carried out for different extraction methods. Results Compared with other treatments, it showed the highest successful rate (96. 7% ) with 2μ,L proteinase K and 30 mins' digestion time at 56℃ (group D). Differences between different groups were significant. Conclusion Proteinase K DNA extraction protocol, with 2jjlL proteinase K and 30 mins' digestion time at 56℃, can isolate DNA from costal cartilage with higher efficiency.

  10. Transplante de cartilagem costal autóloga no reparo de desvio do pavilhão auricular de cães: estudo experimental Autologus costicartilage graft to repair external ear deviation of dogs: an experimental study

    Directory of Open Access Journals (Sweden)

    Duvaldo Eurides

    1996-04-01

    Full Text Available Neste experimento, 12 cães com idade entre 7 e 12 meses foram submetidos a técnica cirúrgica com objetivo de apresentar novo método para reparo de desvio lateral da orelha externa, mediante transplante autólogo de cartilagem costal. Verificou-se que as orelhas apresentaram postura ereta, movimentos aparentemente normais e ausência de desvio. Macroscopicamente o enxerto encontrava-se firmemente aderido a cartilagem auricular e a pele. Pela microscopia óptica observou-se em torno da cartilagem costal presença de tecido conjuntivo fibroso. A técnica cirúrgica avaliada poderá ser utilizada para correção de desvio lateral da orelha de cães.To perform the research twelve dogs between 7 and 12 months old were submitted to a surgical technique in order to test new method to repair lateral external ear deviation with an autologus costicartilage implant. The ears presented erect posture, normal appearance, movement and no deviations. Macroscopic examination showed that the implant was firmly attached to the auricular cartilage and skin. Around the costicartilage fibrous connective tissue was observed by optical microscopy. This surgical technique can be used to correct lateral deviations of dogs ears.

  11. 鼻整形术中微创小切口自体肋软骨切取术%Self Costal Cartilage for Surgery with Minimal Invasive Minimal Cutting in Rhinoplasty

    Institute of Scientific and Technical Information of China (English)

    刘玉丽; 王廷金

    2013-01-01

    Objective To explore the minimal cutting,the minimal and injury,and get costicartilage farthest without the influence of thorax shape and significant scar,etc. Methods 60 cases with corrective rhinoplasty of cutting costal cartilage from 2010 to 2013 were selected with 15 male cases and 45 female cases,and from eighteen-years old to thirty-two years old. 40 cases got successful operation for the first time,and 20 cases had repair. Costicartilage cutting places were all on the right side. Costicartilage was got through the seventh costicartilage photography incision,with 1.5~3cm incision cut. Operational part can be removed through drag hook removing up and down,with 7cm as the longest distance. During the operation,the released cartilage debris left by carving cartilage was transplanted back into perichondrium. Perichondrium was sutured firmly,and organizations were sutured hierarchically. Reliable fixation was used. Result 60 cases had the primary healing cutting with no complication of hematoma. In six month and one year’s flow- up,there were no visible scars,and no visible trasformation of the struction. Conclusion Self costal cartilage for surgery with minimal invasive minimal cutting in rhinoplasty is worthy of promotion with less pain,no obvious scar and no influence of thorax shape.%目的:探索一种尽可能小的切口,尽可能小的损伤,最大限度获取肋软骨,且不影响胸廓形状,不遗留明显瘢痕等并发症的方法。方法:选择2010年7月~2013年7月行鼻整形术供区肋软骨切取患者共60例,男性15列,女性45例;年龄18~32岁;初次手术者40例,二次修复者20例。肋软骨切取均为右侧。取肋软骨取平行于第七肋软骨体表投影切口,切口长度在1.5~3cm之间.借助于拉钩上下移动暴露手术野,最长可获得长达7cm的软骨量。术中将雕刻软骨剩余的软骨碎片回植到封闭的软骨膜内,坚实缝合软骨膜,分层缝合组织。并

  12. Spondylo-costal dysplasia

    Energy Technology Data Exchange (ETDEWEB)

    Kozlowski, K.

    1984-02-01

    Fourteen patients with spondylo-costal dysplasia were analysed. 3 of them presented without obvious associated anomalies ''pure'' spondylo-costal dysplasias; 2 had several components consistent with Vater (Vacterl)-Association; 2 showed malformations which are often encountered in Vater (Vacterl)-Association; 4 presented with minor malformations; 3 had major associated malformations rarely seen in Vater (Vacterl)-Association. Thoracic spine and costal malsegmentation can be sporadically observed in other ''errors in septation complex'' (axial mesodermal dysplasia) including severe myelomeningocoele and diastematomyelia.

  13. Investigation of Engineered Cartilage Formed from Coculture of Costal Chondrocytes and Dental Pulp Cells:a Preliminary Study%牙髓细胞和肋软骨细胞共培养形成组织工程软骨的胶原类型分析

    Institute of Scientific and Technical Information of China (English)

    殷鹏; 袁冬

    2016-01-01

    目的:研究牙髓细胞和肋软骨细胞共培养形成的组织工程软骨的胶原类型。方法:人肋软骨细胞和牙髓细胞按1∶1的比例用微团法共培养来促进其向软骨细胞分化。应用苦味酸天狼猩红染色,偏正光检测法研究形成的组织工程软骨胶原类型,并与颅颌面区域软骨进行比较。结果:肋软骨细胞和牙髓细胞微团法共培养形成的组织工程软骨中以I型胶原为主,同时包括II和III 型胶原纤维,其纤维结构组成与肋软骨、髁突软骨增殖层及颞下颌关节盘的纤维结构相似。结论:肋软骨细胞和牙髓细胞共培养可形成的组织工程软骨,其组织结构与纤维软骨相似。%Objective:This preliminary study aimed to explore the collagen types of engineered cartilage formed from co-culturing costal chondrocytes (CCs) and dental pulp cells (DPCs). Methods: Human CCs and human DPCs were mixed at a ratio of 1∶1 to form pellets, and were co-cultured in chondrogenic medium to promote chondrogenic differentiation of DPCs. Then the picric acid/sirius red staining and polarization microscopy were used to explore the collagen types of the engineered cartilage. Results: The formed engineered cartilage was mainly composed of type I collagen, simultaneously including type II and type III collagen. The histological structure of engineered cartilage was similar to that of costal cartilage, temporomandibular joint disc cartilage, and the proliferation layer of condylar cartilage. Conclusion: The engineered cartilage formed from co-culturing CCs and DPCs was similar with fibrous cartilage.

  14. 漏斗胸肋软骨基质的形态学与组织化学研究%The morphological and histochemical properties of costal cartilage matrix in children with pectus excavatum

    Institute of Scientific and Technical Information of China (English)

    冯杰雄; 胡廷泽; 刘文英

    2001-01-01

    目的了解漏斗胸肋软骨基质形态学与组织化学特征。方法对19例漏斗胸和14例同年龄儿童肋软骨基质的胶原进行电镜观察并对II型胶原进行免疫组化染色,对基质中蛋白多糖进行PAS和Safranin-O染色。将所有染色结果进行图像分析。结果与对照组相比,电镜下病变组肋软骨基质中胶原分布不均、排列紊乱;II型胶原免疫组化染色发现肋软骨深层II型胶原分布不均,但浅、深层II型胶原的染色强度没有明显改变;PAS和Safranin-O染色发现基质中蛋白多糖的含量与分布均无明显改变。结论漏斗胸肋软骨基质中蛋白多糖含量与分布及II型胶原的含量无明显改变,而基质中的胶原分布与排列异常,后者可能与漏斗胸肋软骨生物力学性能降低有关。%Objective: To evaluate the omrphological and histochemical properties of cartilage matrix of children with pectus excavatum(PE). Methods: The collagen of cartialge matrix of 19 PE and of 14 age-matched children was examined by transmission electron microscopy(TEM) and immunohistochemical staining examination. Meanwhile, the proteoglycan was studied by PAS and Safranin-O staining examination. All of the results of stanining were also analysed by the GT-2 model of image analysis software. Results: Compared with control group, although the intensity of type II collagen was intact, unequally distribution of collagen had been found by the TEM and immunohistochemical staining examination. The intensity and distribution of proteoglycan of PE group remained normal found by the PAS and Safranin-O staining examination. Conclusion: Although the intensity and distribution of proteoglycan was intact, as well as intensity of collagen, the distribution of collagen in PE was abnormal, and this change may possibly be related to the defectiveness of costal cartialge of PE.

  15. The junction between hyaline cartilage and engineered cartilage in rabbits.

    Science.gov (United States)

    Komura, Makoto; Komura, Hiroko; Otani, Yushi; Kanamori, Yutaka; Iwanaka, Tadashi; Hoshi, Kazuto; Tsuyoshi, Takato; Tabata, Yasuhiko

    2013-06-01

    Tracheoplasty using costal cartilage grafts to enlarge the tracheal lumen was performed to treat congenital tracheal stenosis. Fibrotic granulomatous tissue was observed at the edge of grafted costal cartilage. We investigated the junction between the native hyaline cartilage and the engineered cartilage plates that were generated by auricular chondrocytes for fabricating the airway. Controlled, prospecive study. In group 1, costal cartilage from New Zealand white rabbits was collected and implanted into a space created in the cervical trachea. In group 2, chondrocytes from auricular cartilages were seeded on absorbable scaffolds. These constructs were implanted in the subcutaneous space. Engineered cartilage plates were then implanted into the trachea after 3 weeks of implantation of the constructs. The grafts in group 1 and 2 were retrieved after 4 weeks. In group 1, histological studies of the junction between the native hyaline cartilage and the implanted costal cartilage demonstrated chondrogenic tissue in four anastomoses sides out of the 10 examined. In group 2, the junction between the native trachea and the engineered cartilage showed neocartilage tissue in nine anastomoses sides out of 10. Engineered cartilage may be beneficial for engineered airways, based on the findings of the junction between the native and engineered grafts. Copyright © 2012 The American Laryngological, Rhinological and Otological Society, Inc.

  16. Treatment of flaring of the costal arch after the minimally invasive pectus excavatum repair (Nuss procedure) in children.

    NARCIS (Netherlands)

    Bosgraaf, R.P.; Aronson, D.C.

    2010-01-01

    Flaring of the costal arch may be part of the pectus excavatum deformity. This aspect will in rare cases be even worsen after the Nuss repair. This remaining deformity can be treated with a minimal subperichondral partial resection of the costal arch cartilage. In 5 patients, this additional techniq

  17. The effect of diode laser treatment for hair removal of post-auricular reconstruction with autologous costal cartilage grafts and delaying postauricular skin flap%半导体激光治疗耳后延迟皮瓣加自体肋软骨立体支架法耳再造术后耳廓多毛疗效观察

    Institute of Scientific and Technical Information of China (English)

    吴子涵; 李高峰; 谭军; 丁卫; 张帆

    2015-01-01

    目的:观察半导体激光对耳后延迟皮瓣加自体肋软骨立体支架法耳再造术后耳廓多毛的治疗效果。方法:使用美国科医人(Lumenis)公司Lightsheer 800 nm半导体激光进行治疗。耳后延迟皮瓣加自体肋软骨立体支架法耳再造术III期手术后1~3个月开始行激光脱毛治疗。结果:19例患者通过1~7次的脱毛治疗,均取得了良好的效果,治疗期间无严重的不良反应。结论:Lightsheer 800 nm半导体激光对耳后延迟皮瓣加自体肋软骨立体支架法耳再造术后耳廓多毛的治疗效果良好,使再造耳的形态更美观。%Objective To observe the effect of diode laser treatment for hair removal of post-auricular reconstruction with autologous costal cartilage grafts and delaying postauricular skin flap. Methods To use Lightsheer,800nm diode laser to perform the treatment.Hair removal treatment was performed after the third phase operation of auricular reconstruction with autologous costal cartilage grafts and delaying postauricular skin flap. Results All of 19 patients got good result after hair removal treatment after 1 to 7 times.No serious complications occur during treatment. Conclusion Lightsheer,800nm diode laser is a safe and effective treatment of hair removal after auricular reconstruction with autologous costal cartilage grafts and delaying postauricular skin flap. That makes the shape of reconstructive ear preferable.

  18. Multiple Division of Costal Cartilages and Steel Strut Internal Fixation in the Treatment of Congenital Pectus Excavatum%肋软骨多段切断、钢支撑架固定术治疗先天性漏斗胸

    Institute of Scientific and Technical Information of China (English)

    范铮

    1989-01-01

    我院自1986年11月~1988年5月用自制不锈钢支撑架做钢支撑架固定术治疗先天性漏斗胸12例,取得较好的疗效.本法手术操作简便,对小儿打击小,出血很少,手术时间短,安全,无1例反常呼吸,也无胸骨感染等合并症.本文着重介绍手术方法,并结合文献对漏斗胸的手术方法进行探讨.%Twelve cases of congenital pectus excava rum were trcated by means of multiple division of costal cartilages and internal fixation using a self-made stainless steel strut in 1986.11-1988.5.The operative Procedure is simple and easy.Its advantages are time-saving,less bleeding,least traumatic striking and rarely demaging the pleura.Postoperative complications,such as,paradoxical respiration,sternal infection and necrosis,or sternomalasia never octurred,and patients never needed intensive care.A comparative study of various operations for congenital pectus excavatum is discussed in this paper.

  19. Management of chest deformity caused by microtia reconstruction: Comparison of autogenous diced cartilage versus cadaver cartilage graft partial filling techniques.

    Science.gov (United States)

    Go, Ju Young; Kang, Bo Young; Hwang, Jin Hee; Oh, Kap Sung

    2017-01-01

    Efforts to prevent chest wall deformity after costal cartilage graft are ongoing. In this study, we introduce a new method to prevent donor site deformation using irradiated cadaver cartilage (ICC) and compare this method to the autogenous diced cartilage (ADC) technique. Forty-two pediatric patients comprised the ADC group (n = 24) and the ICC group (n = 18). After harvesting costal cartilage, the empty perichondrial space was filled with autologous diced cartilage in the ADC group and cadaver cartilage in the ICC group. Digital photographs and rib cartilage three-dimensional computed tomography (CT) data were analyzed to compare the preventive effect of donor site deformity. We compared the pre- and postoperative costal cartilage volumes using 3D-CT and graded the volumes (grade I: 0%-25%, grade II: 25%-50%, grade III: 50%-75%, and grade IV: 75%-100%). The average follow-up period was 20 and 24 months in the ADC and ICC groups, respectively. Grade IV maintenance of previous costal cartilage volume was evident postoperatively in 22% of patients in the ADC group and 82% of patients in the ICC group. Intercostal space narrowing and chest wall depression were less in the ICC group. There were no complications or severe resorption of cadaver cartilage. ICC support transected costal ring and prevented stability loss by acting as a spacer. The ICC technique is more effective in preventing intercostal space narrowing and chest wall depression than the ADC technique. Samsung Medical Center Institution Review Board, Unique protocol ID: 2009-10-006-008. This study is also registered on PRS (ClinicalTrials.gov Record 2009-10-006). Copyright © 2016 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  20. Modified technique to increase nostril cross-sectional area after using rib and septal cartilage graft over alar nasal cartilages.

    Science.gov (United States)

    Wulkan, Marcelo; Sá, Alvaro Julio de Andrade; Alonso, Nivaldo

    2012-10-01

    Describe a modified technique to increase nostril cross-sectional area using rib and septal cartilage graft over alar nasal cartilages. A modified surgical technique was used to obtain, carve and insert cartilage grafts over alar nasal cartilages. This study used standardized pictures and measured 90 cadaveric nostril cross-sectional area using Autocad(®); 30 were taken before any procedure and 60 were taken after grafts over lateral crura (30 using costal cartilage and 30 using septal cartilage). Statistical analysis were assessed using a model for repeated measures and ANOVA (Analysis of Variance) for the variable "area". There's statistical evidence that rib cartilage graft is more effective than septal cartilage graft. The mean area after the insertion of septal cartilage graft is smaller than the mean area under rib graft treatment (no confidence interval for mean difference contains the zero value and all P-values are below the significance level of 5%). The technique presented is applicable to increase nostril cross section area in cadavers. This modified technique revealed to enhance more nostril cross section area with costal cartilage graft over lateral crura rather than by septal graft.

  1. Techniques for diced cartilage with deep temporalis fascia graft.

    Science.gov (United States)

    Calvert, Jay; Kwon, Edwin

    2015-02-01

    Diced cartilage with deep temporalis fascia (DC-F) graft has become a popular technique for reconstruction of the nasal dorsum. Cartilage can be obtained from the septum, ear, or costal cartilage when employing the DC-F technique. The complications seen with DC-F grafts tend to occur early in the surgeon's implementation of this technique. Management of the complications varies depending on the severity of the problem. This article gives an overview of both the technique and the complications commonly encountered.

  2. [Osteomuscular serrato-costal free flap: application to mandibular reconstruction].

    Science.gov (United States)

    Breton, P; Henry, J F; Crezoit, E; Souchere, B; Freidel, M

    1992-06-01

    The serrato-costal free flap provides a large costal flap vascularized by a digitation of the serratus anterior muscle supplied by the dorsal thoracic artery. The flap is easy and rapid to raise with low morbidity. The repair obtained is functionally very satisfactory, but does not allow insertion of an implant. Six cases are reported. The indications of this technique of mandibular reconstruction are discussed.

  3. Engineering Cartilage

    Science.gov (United States)

    ... Research Matters NIH Research Matters March 3, 2014 Engineering Cartilage Artistic rendering of human stem cells on ... situations has been a major goal in tissue engineering. Cartilage contains water, collagen, proteoglycans, and chondrocytes. Collagens ...

  4. CLASSIFICATION OF TOURIST SEASON IN COSTAL TOURISM

    Directory of Open Access Journals (Sweden)

    Goran Corluka

    2016-06-01

    Full Text Available Tourism seasonality is the major characteristic of tourism industry, a well know but less understood phenomenon. Seasonal fluctuations of tourism demand are implying numerous negative implications affecting tourist destination, tourist operators and tourist demand. Almost every tourist destination is facing seasonality, but the most pronounced seasonal concentration of tourist activities have costal destinations which attract tourist demand motivated primary by the 3S – sun, sand and sea concept. Seasonality in business operation is the most challenging in tourist companies with a large share of fixed capacity, as the hotel accommodating sector. Former research of causes of seasonality, implications of seasonality and potential strategies to combat seasonality had methodological flaw. Tourism product, as a product with seasonal characteristic, requires analysis of performance by season. The objective of this paper is to classify tourist season in coastal tourist destinations regarding hotel occupancy rates. This is the first attempt to empirically classify tourist season. Sample surveys are 218 hotels located in Dalmatia, Croatia. Cluster analysis on hotel occupancy rate date was conducted, whereby the statistical significance between seasons were testes by Friedman test and the statistical significance between destinations were tested by F-test and ANOVA. Further, factor analysis was conducted to test the achieved results. Regarding the research result tourist season can be divided into three seasons: low, medium and high. Low season as the longest consisting of five months: January, February, March, November and December, middle season as the shortest consisting of three months: April, May and October and high season consisting of four months: June, July, August and September. Research findings are a significant contribution to tourism theory and practice.

  5. Semiquantitative correction of posttraumatic enophthalmos with sliced cartilage grafts.

    Science.gov (United States)

    Matsuo, K; Hirose, T; Furuta, S; Hayashi, M; Watanabe, T

    1989-03-01

    A simple surgical technique for correcting posttraumatic enophthalmos is described. The steps are as follows: (1) a plaster mold is obtained of the patient's face, (2) wax is added to the enophthalmic eye of the plaster mold until it becomes symmetrical, (3) the quantity of wax is measured, and (4) the same amount of sliced costal cartilage is implanted beneath the periosteum of the extended orbital wall behind the vertical axis of the globe. Using this technique, we have successfully treated six patients with traumatic orbital floor defects without complication. This approach is useful for decreasing the orbital volume using a semiquantitative procedure to estimate the amount of graft material required. In this respect, costal cartilage demonstrates a marked advantage, with stability and cosmetic appearance verified over 12 months of follow-up.

  6. Diced Cartilage Grafts Wrapped in Rectus Abdominis Fascia for Nasal Dorsum Augmentation.

    Science.gov (United States)

    Cerkes, Nazim; Basaran, Karaca

    2016-01-01

    Dorsum augmentation is one of the most delicate components of rhinoplasty. Although various solid grafts have been used in the past for this purpose, diced cartilage grafts wrapped in fascia have become popular in recent decades. In this study, the authors analyze and discuss the results of using diced cartilage grafts wrapped in rectus abdominis muscle fascia for dorsal augmentation. Nasal dorsum augmentation using the diced cartilage wrapped in rectus abdominis fascia technique was performed on 109 patients between 2008 and 2014. Six patients were primary cases, 69 patients were secondary, and 18 were tertiary. Sixteen patients had previously undergone more than three operations. In all patients, the rectus abdominis fascia was harvested with the described technique and wrapped around the diced cartilages obtained from the costal cartilage. The average follow-up period was 19.6 months (range, 6 to 47 months). Satisfactory results were obtained with acceptable complications and revision rates. Three patients underwent reoperation because of overcorrection. Insufficient augmentation was seen in five patients. In four patients, infection developed after postoperative day 5. One patient complained of a hypertrophic scar on the donor site. None of the patients showed any symptoms indicating an abdominal hernia. Techniques using diced cartilage grafts wrapped in fascia have now become the gold standard for dorsal augmentations. When it is considered that secondary cases requiring dorsal augmentation are usually those also needing costal cartilage grafts, rectus abdominis fascia becomes a useful carrier for diced cartilages, which is in the same donor area. Therapeutic, IV.

  7. Fracturas costales múltiples asociadas a tos

    Directory of Open Access Journals (Sweden)

    Martín Bosio

    2008-10-01

    Full Text Available La tos es un frecuente motivo de consulta en la práctica ambulatoria. Aunque generalmente es autolimitada, cuando es crónica e intensa puede ser causa de complicaciones como síncope, neumotórax o más raramente fracturas costales. Presentamos un paciente con fracturas costales múltiples inducidas por la tos. El diagnóstico fue confirmado por un centellograma solicitado luego de la sospecha clínica debida a la intensidad y persistencia del dolor y a pesar de no mostrar alteraciones en las radiografías convencionales. Un centellograma de control a los 5 meses mostró desaparición de los focos hipercaptantes. Las fracturas costales múltiples son una complicación infrecuente de la tos que debería considerarse cuando el dolor torácico es intenso y persistente aun con radiografía de tórax o parrilla costal normal.Multiple rib fractures associated with cough

  8. Estudo Morfológico do desenvolvimento da cartilagem quadrangular do nariz e implicações nas cirurgias septoplásticas Morphologic study of the development of the human nose quadrilateral cartilage and implications in the septoplastic surgery

    Directory of Open Access Journals (Sweden)

    Paulo S. G. Pereira

    2002-03-01

    Full Text Available Introdução: Este trabalho é um estudo morfológico do desenvolvimento da cartilagem quadrangular humana ao longo da vida. Para tal retiramos cartilagens quadrangulares em bloco com as demais cartilagens do nariz, utilizando a técnica de rinoplastia aberta, em cadáveres autopsiados no Serviço de Patologia do Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto - USP e no serviço de verificação de óbitos do interior, em Ribeirão Preto. Forma de estudo: Experimental. Métodos: As peças anatômicas foram cortadas em dois pontos dividindo-as em três partes, com relação ao eixo caudo-cefálico correspondendo à borda livre da cartilagem, terço caudal (posição 1, médio (posição 2 e cefálico (posição 3. Tem relação com a placa perpendicular do etmóide e volmer. As amostras foram fixadas em formol a 10% e incluídas em parafina. Foram examinados cortes histológicos de 7 µm de espessura e corados por hematoxilina e eosina (HE e Alcian Blue. Em cada posição, três diferentes locais, em relação ao eixo ântero-posterior do nariz: Terço superior (local 1, terço médio (local 2 e terço inferior (local 3 foram estudados sobre Microscopia Óptica, com métodos fotométricos, histológicos e morfométricos. Resultado: Mostra que o tecido cartilaginoso apresenta maior velocidade de crescimento até cinco anos de idade. A menor velocidade de crescimento ocorre a partir dos oito anos de idade. Não ocorreu diferença de atividade metabólica entre as diversas regiões estudadas. Conclusões: As intervenções cirúrgicas no septo cartilaginoso podem ser realizadas após os cinco anos de idade. A idade inicial mais adequada para as cirurgias do septo nasal ocorreria aos oito anos.Introduction: The present paper is a morphological study of human quadrilateral cartilage including 0 to 66 years old subjects. The quadrilateral cartilage was removed in block with the others nasal cartilages. The open rhinoplasty was the

  9. Analysis of transient saltwater intrusion in costal aquifers

    Science.gov (United States)

    Chang, Y.; Yeh, H.

    2009-12-01

    In a costal aquifer, the seawater intrusion is a classic environmental and economical problem in groundwater hydrology. For modeling this phenomenon, the Henry’s formulation was usually adopted to describe the coupled system of flow and transport equations with variable density. However, it is an arduous task to solve such a problem due to the complexity of the coupled governing equations. For practical applicability, the mixed boundary condition which differs from the Dirichlet boundary condition at the coastal side in Henry’s problem is considered in this study. A depth of interface between freshwater and seawater is specified at the coast boundary and the Neumann and Dirichlet conditions are used, respectively, to describe the costal boundary. The perturbation method with a small parameter is used to decouple the groundwater flow and transport equations and derive the solution for the transient saltwater intrusion model. The model will be compared with some results obtained from finite element simulations.

  10. Shark cartilage

    Science.gov (United States)

    ... sarcoma, that is more common in people with HIV infection. Shark cartilage is also used for arthritis, psoriasis, ... Neovastat) by mouth seems to increase survival in patients with advanced kidney cancer (renal cell carcinoma). This product has FDA “Orphan Drug ...

  11. Setup of Columellar Height with Costal Cartilage Graft Modification in a Patient with Binder Syndrome

    Directory of Open Access Journals (Sweden)

    Şafak Uygur

    2016-03-01

    Full Text Available Binder syndrome is an uncommon disorder of unknown etiology. It is characterized by hypoplasia of the nose and maxilla and altered morphology of the associated soft tissue. We present a surgical technique for setting up the columellar height in a patient with Binder syndrome.

  12. Long-term use and follow-up of autologous and homologous cartilage graft in rhinoplasty

    Directory of Open Access Journals (Sweden)

    Ghasemali Khorasani

    2016-05-01

    Full Text Available Background: Cartilage grafting is used in rhinoplasty and reconstructive surgeries. Autologous rib and nasal septum cartilage (auto graft is the preferred source of graft material in rhinoplasty, however, homologous cartilage (allograft has been extensively used to correct the nasal framework in nasal deformities. Autologous cartilage graft usage is restricted with complication of operation and limiting availability of tissue for extensive deformities. Alternatively, preserved costal cartilage allograft represents a readily available and easily contoured material. The current study was a formal systematic review of complications associated with autologous versus homologous cartilage grafting in rhinoplasty patients. Methods: In this cohort retrospective study, a total of 124 patients undergone primary or revision rhinoplasty using homologous or autologus grafts with postoperative follow-up ranging from 6 to 60 months were studied. The types of grafts and complications related to the grafts were evaluated. This included evaluation for warping, infection, resorption, mobility and fracture. Results: The total complications related to the cartilage grafts were 7 cases, which included 1 warped in auto graft group, three cases of graft displacement (two in allograft group and one in auto graft group and three fractures in allograft group. No infection and resorption was recorded. Complication rate (confidence interval 0.95 in autologous and homologous group were 1.25(0.4-3.88 and 2.08(0.78-5.55 in 1000 months follow up. There was no statistically significant difference between autologous and homologous group complications. Onset of complication in autologous and homologous group were 51.23(49.27-53.19 and 58.7(54.51-62.91 month respectively (P=0.81. Conclusion: The allograft cartilage has the advantage of avoiding donor-site scar. Moreover, it provides the same benefits as autologous costal cartilage with comparable complication rate. Therefore, it

  13. Transplantation of rib cartilage reshaped with 1.56 μm laser radiation in rabbits

    Science.gov (United States)

    Sobol, E.; Baum, O.; Alexandrovskaya, Yu.; Shekhter, A.; Selezneva, L.; Svistuskin, V.

    2017-02-01

    As cartilage is an ideal natural material for transplantation, its use in the ENT surgery is limited by a difficulty to get proper shape of cartilage implants. Aim of the work is to make ring-shaped cartilage implants, to check their stability after laser reshaping and to perform transplantation into rabbits in vivo. We experimented with costal cartilages of 1-2 mm in thickness obtained from 3rd and 4rd ribs of a rabbit. 1.56 μm laser (Arcuo Medical Inc.) was used for cartilage reshaping. The laser settings were established taking into account anisotropy of cartilage structure for different orientation of the implants. The reshaped cartilage implants were surgically sewn to rib cartilages of the other rabbits. The rabbits were slaughtered in 3.5-4 months after surgery. The results have shown that (1) all reshaped implants kept circular form, and (2) the implants were adhered to the native rabbit cartilage sites (3) pronounced signs of regeneration in the intermediate zones were observed. The prospects of the cartilage implants use in larynx stenosis surgery are discussed.

  14. Distribution and ultrastructure of the stomata connecting the pleural cavity with lymphatics in the rat costal pleura.

    Science.gov (United States)

    Wang, Q X; Ohtani, O; Saitoh, M; Ohtani, Y

    1997-01-01

    We investigated the detailed distribution and ultrastructure of the stomata connecting the pleural cavity and the lymphatics in the rat costal pleura by scanning electron, transmission electron and light microscopy. The mesothelial cells lining the costal pleura appeared as both flattened and thick cell bodies. The thick cells possessed more rough endoplasmic reticula, Golgi complexes, mitochondria, and free ribosomes than the flattened cells. The thick cells were distributed in the intercostal regions each cephalic to the junction of the costal cartilage and bone, and in the band-like regions along the cephalic and caudal sides of each rib in the lateral and dorsal thoracic walls. In the regions lined with thick cells, there were stomata [12.9 +/- 10.3 microns2 (mean +/- SD) in area] consisting of prolongations of thick mesothelial cells and funnel-like projections of lymphatic endothelial cells that came up along the rims of the pores (5.9 +/- 3.2 microns2 in average area) in the submesothelial collagen fiber network. At the stomata, the basal lamina of the mesothelium was continuous with that of the endothelium. The mesothelial cells forming the stomata were mostly in close contact with the endothelial cells, but some gaps also existed between them. Valve-like endothelial flaps were frequently observed wherever endothelial cells constituting the stomata merged into the submesothelial lymphatics. Also present were lymphatic bulges that were either in close contact with the base of the thick mesothelial cells or exposed through the mesothelial pores. The lymphatic network was especially well developed in the submesothelial layer at and around the thick-cell regions. The initial lymphatics drained into the intercostal collecting lymphatics, which in turn led into either the parasternal or paravertebral lymphatic trunk. Our results suggest that the stomata play a major role in absorbing fluids and particulates in the pleural cavity. The thick mesothelial cells

  15. Estudo experimental comparativo entre o butil-2-cianoacrilato, a mistura gelatina-resorcina-formaldeído e sutura na estabilização de enxertos de cartilagem em coelhos Comparison of butyl-2-cyanocrylate, gelatin-resorcin-formaldehyde (GRF compound and suture in stabilization of cartilage grafts in rabbits

    Directory of Open Access Journals (Sweden)

    Heloisa Juliana Zabeu Rossi Costa

    2006-02-01

    Full Text Available Os enxertos de cartilagem constituem-se em boa opção técnica para aprimoramento das rinoplastias. Procura-se um material para sua fixação que seja de simples manuseio, e que provoque mínima reação tecidual. OBJETIVO: Comparar o uso do butil-2-cianoacrilato, mistura gelatina-resorcina-formaldeído (GRF e sutura na estabilização de enxertos de cartilagem em coelhos. FORMA DE ESTUDO: Experimental. MATERIAL E MÉTODO: Utilizaram-se 15 coelhos adultos da raça Nova Zelândia machos, de cujas orelhas foram ressecados 6 enxertos de cartilagem, fixados no periósteo da calvária e unidos dois a dois com sutura, GRF e cianoacrilato. Após 2, 6 e 12 semanas, grupos de 5 coelhos foram sacrificados e realizou-se avaliação da distância de deslocamento do enxerto e análise histológica do processo inflamatório tecidual e da adesão/deformidade das cartilagens. RESULTADOS: Houve deslocamento menor nas fixadas com GRF do que com cianoacrilato e sutura. O processo inflamatório foi maior nos animais de 2 semanas, decaindo até restar pequeno grau de fibrose em 12 semanas, de modo semelhante nas 3 fixações. Não houve descolamento nem deformidade em nenhuma dupla de cartilagens fixada com sutura e o maior número de cartilagens descoladas e deformadas se deu com o cianoacrilato. O número de cartilagens deformadas foi diretamente proporcional ao número de descoladas. Os dados foram significativos estatisticamente (pCartilage grafting is an interesting option for rinoplasties refinements. AIM: to compare butyl-2-cyanocrylate, compound gelatin-resorcin-formaldeyide (GRF and suture control to determine the efficacy of these tissue glue preparations in securing grafted cartilage. STUDY DESIGN: Experimental. METHODS: Fifteen male adult New Zealand rabbits were submitted to a surgical procedure to harvest 6 auricular cartilage grafts from each animal. 2 of these grafts in each animal were glued together with butyl-2-cyanocrylate, 2 with compound

  16. Fijador externo para el tratamiento del Volet Costal

    Directory of Open Access Journals (Sweden)

    Miguel Navarro Milián

    1997-12-01

    Full Text Available Para el tratamiento definitivo del volet costal hemos realizado una innovación técnica para la confección de un fijador externo, a fin de lograr una estabilización torácica por tracción mediante apoyo externo. Para su construcción sólo se utilizan accesorios quirúrgicos baratos y elementos materiales fácilmente asequibles. En su colocación y retirada sólo es necesaria la realización de un procedimiento de penetración corporal de acceso mínimo. Son presentados 40 pacientes tratados con el dispositivo, y se obtuvo una tracción esquelética efectiva, bajo índice de complicaciones y una definitiva resolución del movimiento paradójico de la pared costal. Tubos plásticos multiperforados para el apoyo externo, alambres de Kirschner que penetran supraperiósticamente la pared torácica inestable, varillas de Steiman que mantienen la estabilidad estructural del conjunto, así como 50 cm de goma elástica tubular que garantiza una tracción ajustable accesoria, configuran un sencillo modelo biomecánico con el que se obtiene la fuerza de tracción deseadaFor the definitive treatment of flail chest we have introduced a technical innovation to make an external fixative aimed at attaining a thoracic stabilization by traction through external support. Only cheap surgical accesories and easily available materials are used for its construction. To place and withdraw it, it is only necessary a procedure of corporal penetration of minimun access. 40 patients treated with the device were presented. An effective skeletal traction, a low index of complications and a definitive resolution of the paradoxical movement of the costal wall were obtained. Multiperforated plastic tubes for external support, Kirschner's wires penetrating supraperiostically into the unstable thoracic wall, Steiman's pins maintaining the structural stability of aggregate, as well as 50 cm of tubular elastic gum guaranteeing an adjustable accesory traction, form a single

  17. [Autologous rib cartilage harvesting: operative procedure and postoperative pain reduction].

    Science.gov (United States)

    Rasp, G; Staudenmaier, R; Ledderose, H; Kastenbauer, E

    2000-03-01

    In reconstructive surgery there is a growing demand for cartilage grafts. For small amounts of autologous tissue, cartilage from the nasal septum or ear concha is a sufficient and reliable tissue, but in cases of extensive defects or higher mechanical load autologous rib cartilage is a commonly used transplant. Nevertheless, a serious donor-site morbidity, especially postoperative pain, has to be taken into consideration. We present a modified technique for harvesting rib cartilage with a consecutive local pain therapy. In contrast to the commonly used incision through all layers of tissue the described technique follows the anatomical structures of skin tension-lines, the fascial and muscle fibers and tissue sliding-planes. Starting with a transversal skin incisions 1.5 cm above the costal arch, longitudinal splitting of the rectus abdominis fascia and muscle, the rib cartilage of the ribs 6 to 8 can be exposed. Grafts in the size of at least 3 to 8 cm can be harvested under preservation of the perichondrium. This technique causes a high degree of stability and good function of the abdominal wall. POSTOPERATIVE PAIN THERAPY: After harvesting rib cartilage most patients complain about extensive postoperative pain. For adequate treatment the local application of a long-lasting anesthetic substance close to the intercostal nerves is helpful. The introduction of a peridural catheter opens the feasibility of continuously applying a local anesthetic for 3 to 4 days directly into the donor-site. This procedure reduces the need for general anesthetics dramatically and prevents further complications. This modified technique for harvesting rib cartilage diminishes the donor-site morbidity by reducing the risk of pneumothorax, hernias and functional deficits. Moreover, the local pain therapy assures postoperative wellness and mobility.

  18. Imaging of articular cartilage

    Directory of Open Access Journals (Sweden)

    Bhawan K Paunipagar

    2014-01-01

    Full Text Available We tried to review the role of magnetic resonance imaging (MRI in understanding microscopic and morphologic structure of the articular cartilage. The optimal protocols and available spin-echo sequences in present day practice are reviewed in context of common pathologies of articular cartilage. The future trends of articular cartilage imaging have been discussed with their appropriateness. In diarthrodial joints of the body, articular cartilage is functionally very important. It is frequently exposed to trauma, degeneration, and repetitive wear and tear. MRI has played a vital role in evaluation of articular cartilage. With the availability of advanced repair surgeries for cartilage lesions, there has been an increased demand for improved cartilage imaging techniques. Recent advances in imaging strategies for native and postoperative articular cartilage open up an entirely new approach in management of cartilage-related pathologies.

  19. PREVENTIVE EFFECT OF BORON ON DAMAGE TO CARTILAGE OF RATS WITH INTAKE EXCESSIVE FLUORIDE

    Institute of Scientific and Technical Information of China (English)

    Xu Peng; Guo Xiong; Cao Hui; Kang Longli; Du Xiaoyang; Zhang Zengtie; Geng Dong

    2005-01-01

    Objective To investigate and analyze the preventive effect of boron on the cartilage damage in rats with intake excessive fluoride. Methods Fifty-ix Sprague-Dawley rats were divided into the control group (C, intake distilled water), the excessive fluoride dose group (EF, intake distilled water with 100 ppm F-) and the boron prevention group (P, intake distilled water with 100 ppm F- as well as the supplemental boron dietary). 3 to 5 months later, fluorine contents in serum, RNA contents in costal cartilage were assayed. The morphological changes in tibia growth plate cartilage (GPC) in rats were observed. Results Although exposed to the same dose of fluoride, the fluorine contents in serum in rats of P group decreased notably compared with those of EF group, the damage of tibia GPC under optical and electron microscope lessened significantly, and RNA contents in costal cartilage increased obviously in the 3rd month. Conclusion Boron added could decrease the fluorine level in the body and relieve the toxic symptom of excess fluoride, and thus boron has a preventive effect on skeletal fluorosis.

  20. KIF27 is one of orthologs for Drosophila Costal-2.

    Science.gov (United States)

    Katoh, Yuriko; Katoh, Masaru

    2004-12-01

    Signals of Hedgehog family proteins (SHH, IHH and DHH) are transduced through Patched family receptors (PTCH1 and PTCH2) and Smoothened (SMO) to GLI family transcription factors (GLI1, GLI2 and GLI3). SHH plays a key role in development and progression of pancreatic cancer, gastric cancer, basal cell carcinoma, and brain tumors. Drosophila Costal-2 (Cos2) is implicated in the Hedgehog pathway through the interaction with Smoothened (Smo), Cubitus interruptus (Ci), Fused (Fu), and microtubule; however, mammalian ortholog of Drosophila Cos2 remained to be identified. Here we identified and characterized human ortholog of Drosophila Cos2 by using bioinformatics. Full-length Drosophila Cos2 was most homologous to human KIF27, followed by mouse Kif7, and other KIF family members. KIF27 gene at human chromosome 9q22.1 and KIF7 gene at human chromosome 15q26.1 were paralogs within the human genome. Phylogenetic analysis revealed that KIF27, Kif7, KIF4A, KIF4B and KIF21A constitute the KIF27 subfamily among mammalian Kinesin family. Drosophila Cos2 protein consists of Kinesin motor (KISc) domain, Ci-binding domain, and Smo-binding domain. KIF27 itself shared the common domain structure with Drosophila Cos2, while other members of KIF27 subfamily shared partial domain structure with Drosophila Cos2. These facts indicate that KIF27 is one of mammalian orthologs for Drosophila Cos2.

  1. Investigating an approach to identifying the biomechanical differences between intercostal cartilage in subjects with pectus excavatum and normals in vivo: preliminary assessment of normal subjects

    Science.gov (United States)

    Rechowicz, Krzysztof; McKenzie, Frederic; Yan, Zhenzhen; Bawab, Sebastian; Ringleb, Stacie

    2009-02-01

    The cause of pectus excavatum (PE) is unknown and little research has been done to assess the material properties of the PE costal cartilage. One source reported, after studying ex vivo various properties of the costal cartilage in cases of PE that the biomechanical stability of PE cartilage is decreased when compared to that of normals. Building on this idea, it would be beneficial to measure the biomechanical properties of the costal cartilages in vivo to further determine the differences between PE subjects and normals. An approach to doing this would be to use a modified FARO arm, which can read applied loads and resulting deflections. These values can be used to establish a finite element model of the chest area of a person with PE. So far, a validated technique for the registration between a CT based 3D model of the ribcage and a skin surface scan in case of PE has been addressed. On the basis of the data gathered from 10 subjects with normal chests using a robot arm, stylus and 3D laser scanner, we tried to evaluate the influence of inter-measurement respiration of a subject on results accuracy and the possibility of using the stylus for deflection measurement. In addition, we established the best strategy for taking measurements.

  2. Study of physical, chemical and structural effects caused by ionizing radiation and preservation on human costal cartilage

    OpenAIRE

    MARTINHO JUNIOR, ANTONIO C.

    2014-01-01

    Bancos de Tecidos de diversas regiões do mundo têm estocado cartilagens humanas obtidas de doadores cadavéricos recentes para uso em diversos tipos de cirurgias reconstrutivas. Para garantir que tais tecidos não estejam contaminados, estes têm sido esterilizados com radiação ionizante. Entretanto, altas doses de radiação gama podem causar efeitos indesejáveis nos tecidos, diminuindo suas propriedades mecânicas. No presente trabalho, avaliamos as alterações físico/químicas e estruturais em car...

  3. MRI of the cartilage

    Energy Technology Data Exchange (ETDEWEB)

    Imhof, H.; Noebauer-Huhmann, I.-M.; Krestan, C.; Gahleitner, A.; Marlovits, S.; Trattnig, S. [Department of Osteology, Universitaetklinik fuer Radiodiagnostik, AKH-Vienna, Waehringer Guertel 18-20, 1090 Vienna (Austria); Sulzbacher, I. [Universitaetsklinik fuer Pathologie Vienna, Waehringer Guertel 18-20, 1090 Vienna (Austria)

    2002-11-01

    With the introduction of fat-suppressed gradient-echo and fast spin-echo (FSE) sequences in clinical routine MR visualization of the hyaline articular cartilage is routinely possible in the larger joints. While 3D gradient-echo with fat suppression allows exact depiction of the thickness and surface of cartilage, FSE outlines the normal and abnormal internal structures of the hyaline cartilage; therefore, both sequences seem to be necessary in a standard MRI protocol for cartilage visualization. In diagnostically ambiguous cases, in which important therapeutic decisions are required, direct MR arthrography is the established imaging standard as an add-on procedure. Despite the social impact and prevalence, until recent years there was a paucity of knowledge about the pathogenesis of cartilage damage. With the introduction of high-resolution MRI with powerful surface coils and fat-suppression techniques, visualization of the articular cartilage is now routinely possible in many joints. After a short summary of the anatomy and physiology of the hyaline cartilage, the different MR imaging methods are discussed and recommended standards are suggested. (orig.)

  4. Modified technique to increase nostril cross-sectional area after using rib and septal cartilage graft over alar nasal cartilages Técnica modificada para aumentar a área seccional externa da narina após o uso de enxerto cartilaginoso de costela e septo sob as cartilagens alares nasais

    Directory of Open Access Journals (Sweden)

    Marcelo Wulkan

    2012-10-01

    Full Text Available PURPOSE: Describe a modified technique to increase nostril cross-sectional area using rib and septal cartilage graft over alar nasal cartilages. METHODS: A modified surgical technique was used to obtain, carve and insert cartilage grafts over alar nasal cartilages. This study used standardized pictures and measured 90 cadaveric nostril cross-sectional area using Autocad®; 30 were taken before any procedure and 60 were taken after grafts over lateral crura (30 using costal cartilage and 30 using septal cartilage. Statistical analysis were assessed using a model for repeated measures and ANOVA (Analysis of Variance for the variable "area". RESULTS: There's statistical evidence that rib cartilage graft is more effective than septal cartilage graft. The mean area after the insertion of septal cartilage graft is smaller than the mean area under rib graft treatment (no confidence interval for mean difference contains the zero value and all P-values are below the significance level of 5%. CONCLUSIONS: The technique presented is applicable to increase nostril cross section area in cadavers. This modified technique revealed to enhance more nostril cross section area with costal cartilage graft over lateral crura rather than by septal graft.OBJETIVO: Descrever uma técnica modificada para se aumentar a área seccional externa da narina com cartilagem septal e costal acima das cartilagens alares nasais. MÉTODOS: Utilizou-se uma técnica cirúrgica modificada para obter, esculpir e inserir enxertos de cartilagem sobre as cartilagens alares. Realizou-se fotos padronizadas e mensuração de 90 áreas seccionais externas de narina em cadáveres com Autocad®; 30 antes sem procedimento; 60 após a inclusão de enxertos sob a cruz lateral (30 usando cartilagem costal e 30 usando cartilagem septal. A análise estatística foi feita com um modelo de medidas repetidas e ANOVA para a variável "área" RESULTADOS: Existe evidência estatística de que o enxerto de

  5. Statistical analysis of associated vertebra and costal anomalies in spina bifida patients

    Directory of Open Access Journals (Sweden)

    Alatas Ibrahim

    2016-06-01

    Full Text Available Objective: Spina bifida is one of the most severe birth defects and can happen as a result of disrupted primary neurulation. Congenital vertebra and costa anomalies are more frequently seen with spina bifida, and associated anomalies significantly affect the prognosis of affected children. In this study, we aimed to determine the incidence of scoliosis, costal anomalies, and vertebral deformations seen at the time of diagnosis and to statistically evaluate their concomitancies.

  6. Tractotomía pulmonar con ligadura vascular selectiva en un hemotórax masivo por fragmento costal libre Pulmonary tractotomy using selective vascular ligation in a massive hemothorax caused by free costal fragment

    Directory of Open Access Journals (Sweden)

    Orestes N Mederos Curbelo

    2006-03-01

    Full Text Available Se presenta un paciente con un trauma de tórax por fractura doble de un arco costal, que dejó libre un segmento costal que actúa como fragmento agresor y produce un hemotórax masivo del hemitórax afecto. El objetivo es presentar un caso interesante no solo por su solución quirúrgica, estandarizada, sino por las características particulares de la lesión. El paciente fue operado de urgencia por presentar un cuadro de shock hipovolémico severo secundario a un hemotórax traumático masivo, que fue resultado de la herida penetrante del parénquima pulmonar por un fragmento costal libre que se incrustó en la parte superior de la cara costal del lóbulo inferior derecho, y a la sección de los vasos intercostales del arco costal fracturado. El tratamiento quirúrgico consistió en una tractotomía pulmonar con ligadura individual de los vasos intraparenquimatosos heridos y de los vasos intercostales. El caso resulta interesante no solo por la gravedad y emergencia de su atención, sino por las características de la lesión. Esta demostró que la fractura doble de un arco costal puede dar lugar a un fragmento costal libre que puede actuar como instrumento agresor mortífero al penetrar en el parénquima pulmonar luego de desprenderse de sus elementos de fijación, y actuar como agente lesivo. Se muestra, además, un procedimiento quirúrgico útil, de uso infrecuente en nuestro medio (tractotomía pulmonar y que puede realizar todo cirujano entrenado

  7. Anti-cartilage antibody.

    Science.gov (United States)

    Greenbury, C L; Skingle, J

    1979-08-01

    Antibody to cartilage has been demonstrated by indirect immunofluorescence on rat trachea in the serum of about 3% of 1126 patients with rheumatoid arthritis. Titres ranged from 1:20 to 1:640. The antibody was not found in 284 patients with primary or secondary osteoarthritis or in 1825 blood donors, nor, with the exception of two weak reactors, in 1314 paraplegic patients. In most cases the antibody appears to be specific for native type II collagen. Using this as an antigen in a haemagglutination test 94% of anti-cartilage sera were positive, whereas among 100 rheumatoid control sera there were only three weak positives. More than 80% of patients with antibody had some erosion of articular cartilage, but there was no correlation with age, sex, duration of disease, nor any recognisable clinical event or change.

  8. Tuberculose cutânea disseminada com escrofuloderma associado à tuberculose de arco costal Disseminated cutaneous tuberculosis with scrofuloderma associated to costal arch tuberculosis

    Directory of Open Access Journals (Sweden)

    Elson Vidal Martins Junior

    2007-08-01

    Full Text Available Os autores relatam caso de tuberculose cutânea disseminada com escrofuloderma associado à tuberculose de arco costal. Paciente de 46 anos, do sexo feminino, há um ano com nódulos de um a 6cm em região cervical, dorso, axilas e regiões glúteas, que culminavam com fistulização e eliminação de secreção purulenta, associados a febre vespertina diária, sudorese noturna e emagrecimento de 10kg nos últimos três meses. A radiografia de tórax mostrou lesão lítica na terceira costela esquerda. A cultura de secreção do nódulo foi positiva para Mycobacterium tuberculosis. O tratamento para tuberculose resultou em melhora clínica e resolução das lesões cutâneas da paciente.The authors describe a case of disseminated cutaneous tuberculosis with scrofuloderma associated to tuberculosis in the costal arch. A 46-year-old, woman, was hospitalized with nodules measuring 1 to 6 cm in the cervical region, back, armpit and buttocks, which developed purulent discharge with elimination of caseous secretion, associated to episodes of daily evening fever, night sweats and weight loss of 10Kg over the previous three months. Thorax radiography showed an osteolytic lesion in the third left rib. Culture of the nodule secretion was positive for Mycobacterium tuberculosis. Treatment for tuberculosis resulted in pronounced clinical improvement and resolution of the patient's cutaneous lesions.

  9. Principles of cartilage repair

    CERN Document Server

    Erggelet, Christoph; Mandelbaum, Bert R

    2008-01-01

    Cartilage defects affect patients of all age groups. Surgeons, teamdoctors, general practitioners and physiotherapists alike are expected to provide adequate care. Only individual treatment plans combining a well balanced choice of various options will be successful. Background knowledge, operative and non-operative therapies are described in concise chapters: Articular cartilage biology - Diagnostics - Surgical techniques - Symptomatic and alternative medications - Physiotherapy. Diagnostic findings and surgical procedures are generously illustrated by aquarelles and colour photographs. Recommendations for additional reading, description of important clinical scoring systems and a listing of analytic tools are added for further information.

  10. An investigation of the fixation materials for cartilage frames in microtia.

    Science.gov (United States)

    Sakamoto, Aritaka; Kiyokawa, Kensuke; Rikimaru, Hideaki; Watanabe, Koichi; Nishi, Yukiko

    2012-05-01

    When performing auriculoplasty for microtia surgery, wires are typically used to fix the costal cartilage frames. However, cases in which such wires become exposed during a long-term follow-up were frequently observed at our facility. Hence, using various materials, we conducted an investigation of the materials most suitable for fixation. The subjects consisted of 122 cases in which auriculoplasty by costal cartilage graft surgery was performed and the postoperative course was traceable, within approximately 24 years from January 1984 to March 2007. Regarding the fixation materials used in the 84 cases in which wire was used, 5 cases used monofilament non-absorbable sutures (Nylon(®)), 5 cases used monofilament absorbable sutures (PDS(®)), and 28 cases used braided absorbable sutures(VICRYL(®)).Their postoperative course was investigated, and the presence of auricular deformities caused by a loosening of the fixation materials and the exposure of the fixation materials was examined. An exposure of the wire was observed in 19 cases (22.6%) of the 84 cases that used wires. An exposure of nylon was observed in 2 (40%) of 5 the cases that used nylon, and of those, a mild deformation was observed in the lower helix in one case that was suspected to have been caused by a loosening of the surgical suture. Regarding the 33 cases in which absorbable sutures were used (5 cases used monofilament absorbable sutures and 28 cases used braided absorbable sutures), neither any auricular deformities nor exposure of the fixation materials was observed in any of the cases. Whether using monofilament or braided sutures, absorbable sutures are therefore believed to be the most suitable material for the fixation of cartilage. Copyright © 2011 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  11. Conserving Cartilage In Microtia Repair: The Modular Component Assembly Approach To Rebuilding A Human Ear

    Science.gov (United States)

    Gandy, Jessica R.; Lemieux, Bryan; Foulad, Allen; Wong, Brian J.F.

    2016-01-01

    Objectives Current methods of microtia repair include carving an auricular framework from the costal synchondrosis. This requires considerable skill and may create a substantial donor site defect. Here, we present a modular component assembly (MCA) approach that minimizes the procedural difficulty and reduces the amount of cartilage to a single rib. Study Design Ex vivo study and survey Methods A single porcine rib was sectioned into multiple slices using a cartilage guillotine, cut into components outlined by 3D-printed templates, and assembled into an auricular scaffold. Electromechanical reshaping (EMR) was used to bend cartilage slices for creation of the helical rim. Chondrocyte viability was confirmed using confocal imaging. Ten surgeons reviewed the scaffold constructed with the MCA approach to evaluate aesthetics, relative stability, and clinical feasibility. Results An auricular framework with projection and curvature was fashioned from one rib. Surgeons found the MCA scaffold to meet minimal aesthetic and anatomic acceptability. When embedded under a covering, the region of the helix and anti-helix of the scaffold scored significantly higher on the assessment survey than that of an embedded alloplast implant (t-value=0.01). Otherwise, no difference was found between the embedded MCA and alloplast implants (t-value >0.05). EMR treated cartilage was found to be viable. Conclusion This study demonstrates that one rib can be used to create an aesthetic and durable framework for microtia repair. Precise assembly and the ability to obtain thin, uniform slices of cartilage were essential. This cartilage-sparing MCA approach may be an alternative to classic techniques. PMID:26720326

  12. 肺癌患者SPECT/CT同机融合显像肋骨单发病灶影像分析%SPECT/CT fusion imaging analysis of costal single hot spots in patients with lung cancer

    Institute of Scientific and Technical Information of China (English)

    包贺菊; 陈刚; 陈燕燕

    2014-01-01

    Objective To analyze the imaging features and clinical significance of solitary costal hot spots in patient with lung cancer on SPECT/CT fusion imaging and the value of low-dose CT for diagnosis.Methods SPECT/CT scan was performed on 68 patients with lung cancer and costal single hot spots using whole body bone imaging.The sites of lesions were classified into four types:junction between costal cartilage and rib,frontal rib,lateral rib,posterior rib.The shapes of lesions were classified into two forms:punctiform and strip shapes,and were analyzed and classified.The differences of the diagnosis of whole body bone imaging and SPECT/CT scan were analyzed.Results Punctiform spots were mainly due to costal fractures(36/68,52.94%).The majority of spots in strip shape were costal metastases (21/23,91.30%).The lesions of junction between costal cartilage and rib were punctiform shape and benign.Hot spots in posterior ribs were mainly costal metastases (18/22,81.82%).Sensitivity of diagnosis of the metastatic bone tumor with whole body bone imaging and SPECT/CT in single hot spot of spine and rib was 69.23% (18/26) and 92.31%(24/26),specificity 59.52%(25/42) and 85.71%(36/42),accuracy 63.24%(43/68) and 88.24% (60/68),positive predictive value 51.43% (18/35) and 80.00% (24/30),negative predictive value 75.76% (25/33) and 94.74% (36/38).SPECT/CT scan had differences with whole body bone imaging in sensitivity (P < 0.05),SPECT/CT scan had significant differences with whole body bone imaging in coincidence and specificity (P < 0.01).Conclusions Useful imaging features can be obtained from SPECT/CT fusion imaging with single costal hot spots,being helpful to differential diagnosis of benign and malignant lesions.SPECT/CT fusion imaging may improve the accuracy to diagnose the rib disease.%目的 分析肺癌患者SPECT/CT同机融合显像肋骨单发病灶的特征和临床诊断之间的相互关系,并评价定位CT在诊断中的作用.方法

  13. Empirical analysis on impact of FDI on the level of urbanization in costal areas

    Directory of Open Access Journals (Sweden)

    Cao Can-Ming

    2015-04-01

    Full Text Available Purpose: There is a close relationship between FDI and the level of urbanization. the objective of this research is to analyze the relationship between FDI and the level of urbanization in Jiangsu and Guangdong provinces in costal areas.Design/methodology/approach: The author uses the modern econometric methods by panel unit root test, cointegration test, random effects models and fixed effects models, and the data of FDI (2000-2012, urbanization rate, industrial structure and regional GDP of Nanjing, Xuzhou, Suzhou, Wuxi and other 13 cities in Jiangsu Province, Guangzhou, Shenzhen and other 19 cities in Guangdong province, researches the relationship between FDI and urbanization rate.Findings: Models show, FDI was closely correlated with urbanization rate in Jiangsu province and Guangdong province, the highly correlated with industrial structure, while it negatively correlated with the growth of GDP, and the degree of correlation is not high in Jiangsu province, but the high negative correlation in Guangdong province. The results shows the industrial structure and the urbanization rate mainly cause FDI growth.Research limitations/implications: There are many provinces in costal areas of China, this paper just research the relationship between FDI and the level of urbanization in Jiangsu province and Guangdong province, there are some limitations in the study areas and results.Originality/value: The study was the first to successfully apply on random effects model and fixed effects model to study the relationship between FDI and the level of urbanization in coastal areas by competitive analysis. Guangdong and Jiangsu province are the most developed regions, they are the most representative provinces in costal areas of China. Taking these two province as an example, we can analyze the relationship between FDI and the level of urbanization in central and western regions.

  14. Cartilage differentiation in cephalopod molluscs.

    Science.gov (United States)

    Cole, Alison G; Hall, Brian K

    2009-01-01

    Amongst the various metazoan lineages that possess cartilage, tissues most closely resembling vertebrate hyaline cartilage in histological section are those of cephalopod molluscs. Although elements of the adult skeleton have been described, the development of these cartilages has not. Using serial histology of sequential developmental stages of the European cuttlefish, Sepia officinalis, we investigate these skeletal elements and offer the first description of the formation of any cellular invertebrate cartilage. Our data reveal that cuttlefish cartilage most often differentiates from uncondensed mesenchymal cells near the end of embryonic development, but that the earliest-forming cartilages differentiate from a cellular condensation which goes through a protocartilage stage in a manner typical of vertebrate primary cartilage formation. We further investigate the distribution and degree of differentiation of cartilages at the time of hatching in an additional four cephalopod species. We find that the timing of cartilage development varies between elements within a single species, as well as between species. We identify a tendency towards cartilage differentiation from uncondensed connective tissue in elements that form at the end of embryogenesis or after hatching. These data suggest a form of metaplasia from connective tissue is the ancestral mode of cartilage formation in this lineage.

  15. INJURED ARTICULAR CARTILAGE REPAIR

    Directory of Open Access Journals (Sweden)

    Ariana Barlič

    2008-02-01

    Surveys show that the most frequently used surgical methods are mosaicplasty and bonemarrow stimulation with microfracturing. The efficacy of the autologous chondrocyte implantationmethod should be superior to microfracturing on a long run. Especially when(regeneration of the hyaline cartilage instead of fibrous tissue (fibrocartilage is concerned.However, it has not been scientifically proved yet

  16. Advances in cartilage tissue engineering : in vitro

    NARCIS (Netherlands)

    E.W. Mandl (Erik)

    2004-01-01

    textabstractWithin the body three subtypes of cartilage can be distinguished: hyaline cartilage, elastic cartilage and fibrocartilage. Hyaline cartilage is the predominant subtype and is mainly located in articular joints and in less extent in the nasal septum and cricoid. Elastic cartilage can be

  17. Lubrication of Articular Cartilage.

    Science.gov (United States)

    Jahn, Sabrina; Seror, Jasmine; Klein, Jacob

    2016-07-11

    The major synovial joints such as hips and knees are uniquely efficient tribological systems, able to articulate over a wide range of shear rates with a friction coefficient between the sliding cartilage surfaces as low as 0.001 up to pressures of more than 100 atm. No human-made material can match this. The means by which such surfaces maintain their very low friction has been intensively studied for decades and has been attributed to fluid-film and boundary lubrication. Here, we focus especially on the latter: the reduction of friction by molecular layers at the sliding cartilage surfaces. In particular, we discuss such lubrication in the light of very recent advances in our understanding of boundary effects in aqueous media based on the paradigms of hydration lubrication and of the synergism between different molecular components of the synovial joints (namely hyaluronan, lubricin, and phospholipids) in enabling this lubrication.

  18. Virtual casting of stab wounds in cartilage using micro-computed tomography.

    Science.gov (United States)

    Pounder, Derrick J; Sim, Louise J

    2011-06-01

    In homicidal stabbings using a serrated knife, stab wounds involving costal cartilage leave striations on the cut surface of the cartilage from the serration points on the blade edge. Class characteristics of the serrated blade can be determined from the striation marks, and individualizing characteristics may be seen also. The traditional method for recording the striation marks involves the pernickety technique of casting with dental impression material. We assessed the potential utility of micro-computed tomography scanning of the stab track as a technique for nondestructive recording of striation patterns and virtual casting of them. Stab tracks in porcine cartilage, produced with a coarsely serrated blade, were scanned with a bench-top micro-computed tomography scanner. The typical irregularly regular striation pattern could be demonstrated, and the images manipulated, using proprietary software to produce a virtual cast. Whether the technology will have sufficient resolution to image not only class characteristic tool marks but also the much finer individualizing tool marks remains to be evaluated, but the technology shows considerable promise.

  19. Adhesion and integration of tissue engineered cartilage to porous polyethylene for composite ear reconstruction.

    Science.gov (United States)

    O'Sullivan, Niamh A; Kobayashi, Shinji; Ranka, Mitun P; Zaleski, Katherine L; Yaremchuk, Michael J; Bonassar, Lawrence J; Randolph, Mark A

    2015-07-01

    The objective of this study was to assess the ability of tissue engineered cartilage to adhere to and integrate with porous polyethylene (PPE) in vivo and to evaluate the biomechanical integrity of the bond formed at the interface. Porcine auricular, articular, and costal chondrocytes were suspended in fibrin gel polymer and placed between discs of PPE to form tri-layer constructs. Controls consisted of fibroblasts suspended in gel or gel alone between the discs. Constructs were implanted into nude mice for 6, 12, and 18 weeks. Upon harvest, specimens were evaluated for neocartilage formation and integration into the PPE, using histological, dimensional (mass, thickness, diameter), and biomechanical (adhesion strength, interfacial stiffness, failure energy and failure strain) analyses. Neotissue was formed in all experimental constructs, consisting mostly of neocartilage integrating with discs of PPE. Control samples contained only fibrous tissue. Biomechanical analyses demonstrated that adhesion strength, interfacial stiffness, and failure energy were all significantly higher in the chondrocyte-seeded samples than in fibroblast-seeded controls, with the exception of costal constructs at 12 weeks, which were not significantly greater than controls. In general, failure strains did not vary between groups. In conclusion, porous polyethylene supported the growth of neocartilage that formed mechanically functional bonds with the PPE.

  20. Scaffolding Biomaterials for Cartilage Regeneration

    Directory of Open Access Journals (Sweden)

    Zhen Cao

    2014-01-01

    Full Text Available Completely repairing of damaged cartilage is a difficult procedure. In recent years, the use of tissue engineering approach in which scaffolds play a vital role to regenerate cartilage has become a new research field. Investigating the advances in biological cartilage scaffolds has been regarded as the main research direction and has great significance for the construction of artificial cartilage. Native biological materials and synthetic polymeric materials have their advantages and disadvantages. The disadvantages can be overcome through either physical modification or biochemical modification. Additionally, developing composite materials, biomimetic materials, and nanomaterials can make scaffolds acquire better biocompatibility and mechanical adaptability.

  1. Variation in number of trunk vertebrae and in count of costal grooves in salamanders of the family Hynobiidae

    NARCIS (Netherlands)

    Litvinchuk, S.N.; Borkin, L.J.

    2003-01-01

    Ten species from five genera of the family Hynobiidae were studied. The number of trunk vertebrae varied between 14 and 21, and the count of costal grooves ranged from 10 to 15. Both the within-species variation and the within-population variation were recorded in some species. In both kinds the val

  2. [The anatomical structure similarity research on auricular cartilage and nasal alar cartilage].

    Science.gov (United States)

    Chen, Changyong; Fan, Fei; Li, Wenzhi; Li, Binbin; You, Jianjun; Wang, Huan

    2015-09-01

    There are many scaffold materials of repairing nasal alar cartilage defects. Auricuiar cartilage was used extensively in terms of its abundant tissues, good elasticity, little donor-site malformation, good plasticity etc. The authors dissected auricular cartilage and nasal alar cartilage, measured cartilage's morphous data and found some similar territories with nasal alar cartilage in the structure of auricular cartilage. An anatomical study was performed using 10 adult cadavers acquired through Plastic Surgery Hospital, Peking Union Medical College, Beijing, China. Seven male and three female cadav-ers were included in the study. Harvest 20 auricular cartilage specimens and 20 nasal alar cartilage specimens. Then, Computed Tomography Scan on the auricular cartilage and nasal alar cartilage were performed. The datas were imported into mimics and three-dimensional reconstructions of the auricular cartilage and nasal alar cartilage were carried on. Parts of the auricular cartilage, such as conchal fossa, tragus, intertragic notch, and cymba of auricular concha, curs of helix and curs of helix, triangular fossa, are ana-tomically similar to nasal alar cartilage. This study reports the anatomy of auricular cartilage and nasal alar cartilage, found some territories in the auricular cartilage, such as conchal fossa, tragus, intertragic notch, and cymba of auricular concha, curs of helix and curs of helix, triangular fossa, are anatomically similar to nasal alar cartilage. This research provides the anatomical basis that auricular cartilage was used to repair the nasal cartilage defect.

  3. 13C NMR relaxation studies on cartilage and cartilage components.

    Science.gov (United States)

    Naji, L; Kaufmann, J; Huster, D; Schiller, J; Arnold, K

    2000-08-07

    We have investigated the molecular motions of polysaccharides of bovine nasal and pig articular cartilage by measuring the 13C NMR relaxation times (T1 and T2). Both types of cartilage differ significantly towards their collagen/glycosaminoglycan ratio, leading to different NMR spectra. As chondroitin sulfate is the main constituent of cartilage, aqueous solutions of related poly- and monosaccharides (N-acetylglucosamine and glucuronic acid) were also investigated. Although there are only slight differences in T1 relaxation of the mono- and the polysaccharides, T2 decreases about one order of magnitude, when glucuronic acid or N-acetylglucosamine and chondroitin sulfate are compared. It is concluded that the ring carbons are motion-restricted primarily by the embedment in the rigid pyranose structure and, thus, additional limitations of mobility do not more show a major effect. Significant differences were observed between bovine nasal and pig articular cartilage, resulting in a considerable line-broadening and a lower signal to noise ratio in the spectra of pig articular cartilage. This is most likely caused by the higher collagen content of articular cartilage in comparison to the polysaccharide-rich bovine nasal cartilage.

  4. Tensorial electrokinetics in articular cartilage.

    Science.gov (United States)

    Reynaud, Boris; Quinn, Thomas M

    2006-09-15

    Electrokinetic phenomena contribute to biomechanical functions of articular cartilage and underlie promising methods for early detection of osteoarthritic lesions. Although some transport properties, such as hydraulic permeability, are known to become anisotropic with compression, the direction-dependence of cartilage electrokinetic properties remains unknown. Electroosmosis experiments were therefore performed on adult bovine articular cartilage samples, whereby fluid flows were driven by electric currents in directions parallel and perpendicular to the articular surface of statically compressed explants. Magnitudes of electrokinetic coefficients decreased slightly with compression (from approximately -7.5 microL/As in the range of 0-20% compression to -6.0 microL/As in the 35-50% range) consistent with predictions of microstructure-based models of cartilage material properties. However, no significant dependence on direction of the electrokinetic coupling coefficient was detected, even for conditions where the hydraulic permeability tensor is known to be anisotropic. This contrast may also be interpreted using microstructure-based models, and provides insights into structure-function relationships in cartilage extracellular matrix and physical mediators of cell responses to tissue compression. Findings support the use of relatively simple isotropic modeling approaches for electrokinetic phenomena in cartilage and related materials, and indicate that measurement of electrokinetic properties may provide particularly robust means for clinical evaluation of cartilage matrix integrity.

  5. Biotribology :articular cartilage friction, wear, and lubrication

    OpenAIRE

    Schroeder, Matthew O

    1995-01-01

    This study developed, explored, and refined techniques for the in vitro study of cartilage-on-cartilage friction, deformation, and wear. Preliminary results of in vitro cartilage-on- cartilage experiments with emphasis on wear and biochemistry are presented. Cartilage-bone specimens were obtained from the stifle joints of steers from a separate controlled study. The load, sliding speed, and traverse of the lower specimens were held constant as lubricant and test length were varied. Lubric...

  6. Brief report: reconstruction of joint hyaline cartilage by autologous progenitor cells derived from ear elastic cartilage.

    Science.gov (United States)

    Mizuno, Mitsuru; Kobayashi, Shinji; Takebe, Takanori; Kan, Hiroomi; Yabuki, Yuichiro; Matsuzaki, Takahisa; Yoshikawa, Hiroshi Y; Nakabayashi, Seiichiro; Ik, Lee Jeong; Maegawa, Jiro; Taniguchi, Hideki

    2014-03-01

    In healthy joints, hyaline cartilage covering the joint surfaces of bones provides cushioning due to its unique mechanical properties. However, because of its limited regenerative capacity, age- and sports-related injuries to this tissue may lead to degenerative arthropathies, prompting researchers to investigate a variety of cell sources. We recently succeeded in isolating human cartilage progenitor cells from ear elastic cartilage. Human cartilage progenitor cells have high chondrogenic and proliferative potential to form elastic cartilage with long-term tissue maintenance. However, it is unknown whether ear-derived cartilage progenitor cells can be used to reconstruct hyaline cartilage, which has different mechanical and histological properties from elastic cartilage. In our efforts to develop foundational technologies for joint hyaline cartilage repair and reconstruction, we conducted this study to obtain an answer to this question. We created an experimental canine model of knee joint cartilage damage, transplanted ear-derived autologous cartilage progenitor cells. The reconstructed cartilage was rich in proteoglycans and showed unique histological characteristics similar to joint hyaline cartilage. In addition, mechanical properties of the reconstructed tissues were higher than those of ear cartilage and equal to those of joint hyaline cartilage. This study suggested that joint hyaline cartilage was reconstructed from ear-derived cartilage progenitor cells. It also demonstrated that ear-derived cartilage progenitor cells, which can be harvested by a minimally invasive method, would be useful for reconstructing joint hyaline cartilage in patients with degenerative arthropathies.

  7. The ontogeny of the shell in side-necked turtles, with emphasis on the homologies of costal and neural bones.

    Science.gov (United States)

    Scheyer, Torsten M; Brüllmann, Benjamin; Sánchez-Villagra, Marcelo R

    2008-08-01

    Although we are starting to understand the molecular basis of shell development based on the study of cryptodires, basic comparative ontogenetic data for the other major clade of living turtle, the pleurodires, are largely missing. Herein, the developmental and phylogenetic relation between the bony shell and endoskeleton of Pleurodira are examined by studying histological serial sections of nine specimens of three different species, including an ontogenetic series of Emydura subglobosa. Emphasis is given to the portion of the carapace in which ribs and vertebral spinous processes become part of the carapace. Central questions are how neurals and costals are formed in pleurodiran turtles, whether costals and neurals are of endoskeletal or exoskeletal origin, and what ontogenetic factors relate to neural reduction of some Pleurodira. The neurals and costals do not develop as independent ossification centers, but they are initial outgrowths of the periosteal collar of endoskeletal ribs and neural arches. Slightly later in development, the ossification of both shell elements continues without a distinct periosteum but by metaplastically ossifying precondensed soft-tissue integumentary structures. Through ontogeny, ribs of the turtles studied are closely associated with the hypaxial intercostalis musculature while epaxial interspinalis musculature connects the neural arches. We here propose an alternative structural hypothesis for the neural reduction and, ultimately, the complete loss of the neural series. The complete reduction of neurals in Emydura spp. may be linked to heterochrony, accompanied by a restricted influence of epaxial musculature and epidermal-dermal interaction in shell bone formation. (c) 2008 Wiley-Liss, Inc.

  8. Molecular epidemiology of Trypanosoma cruzi and Triatoma dimidiata in costal Ecuador.

    Science.gov (United States)

    Wong, Yim Yan; Sornosa Macias, Karen Jeniffer; Guale Martínez, Doris; Solorzano, Luis F; Ramirez-Sierra, Maria Jesus; Herrera, Claudia; Dumonteil, Eric

    2016-07-01

    Chagas disease is a neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi. In Ecuador, Triatoma dimidiata and Rhodnius ecuadoriensis are the main vector species, responsible for over half of the cases of T. cruzi infection in the country. T. dimidiata is believed to have been introduced in Ecuador during colonial times, and its elimination from the country is thus believed to be feasible. We investigated here the molecular ecology of T. dimidiata and T. cruzi in costal Ecuador to further guide control efforts. Analysis of the Internal Transcribed Spacer 2 (ITS-2) of 23 specimens from Progreso, Guayas, unambiguously supported the likely importation of T. dimidiata from Central America to Ecuador. The observation of a very high parasite infection rate (54%) and frequent feeding on humans (3/5) confirmed a continued risk of transmission to humans. All genotyped parasites corresponded to TcI DTU and Trypanosoma rangeli was not detected in T. dimidiata. TcI subgroups corresponded to TcIa (25%), and mixed infections with TcIa and TcId (75%). Further studies should help clarify T. cruzi genetic structure in the country, and the possible impact of the introduction of T. dimidiata on the circulating parasite strains. The elevated risk posed by this species warrants continuing efforts for its control, but its apparent mobility between peridomestic and domestic habitats may favor reinfestation following insecticide spraying.

  9. Rib cartilage graft for posttraumatic or degenerative arthritis at wrist level: 10-year results.

    Science.gov (United States)

    Obert, Laurent; Lepage, Daniel; Ferrier, Maxime; Tropet, Yves

    2013-08-01

    Background Posttraumatic arthritides of the radiocarpal joint, secondary to scaphoid nonunion advanced collapse (SNAC), scapholunate advanced collapse (SLAC), or Kienböck disease or in cases of intraarticularmalunion of the distal radius, are classically solved by some type of arthrodesis procedure. Osteochondral grafting provides a possible motion-sparing option that can diminish pain in the active patient. Description of Technique A chondrocostal graft harvested from the ninth rib was inserted and fixed with a plate in place of the articular defect in cases of a malunited intra-articular distal radius fracture (7 cases) or to replace the proximal pole of the scaphoid in cases of SNAC or SLAC (18 cases). In Kienböck disease, the graft was inserted as a free cartilage spacer (4 cases). Results Harvesting the graft from the ninth rib had minimal morbidity without pleural injury in the reported series. Graft union was achieved in all cases of fixation. No graft resorption or necrosis were observed on X-ray and magnetic resonance imaging (MRI) evaluation at the longest follow-up of 10 years. Histological analysis performed at the time of plate removal showed the vitality of the graft. Two thirds of the patients had excellent or good results using the Green and O'Brien score. Conclusions Reconstruction of a partially destroyed articular surface using a costal graft is reliable and provides an alternative option for resurfacing the articular surface with viable cartilage.

  10. Estudo do escápulo-coracóide e da cartilagem sinarcual cérvico-torácica de Rhinoptera brasiliensis Müller & Henle e Rhinoptera bonasus (Mitchill Elasmobranchii, Rhinopteridae Study of the scapulocoracoid and cervico-thoracic synarcual cartilage of Rhinoptera brasiliensis Müller & Henle and Rhinoptera bonasus (Mitchill (Elasmobranchii, Rhinopteridae

    Directory of Open Access Journals (Sweden)

    Andreia Francisco Afonso

    2001-06-01

    Full Text Available A comparative analysis of the scapulocoracoid and cervico-thoracic synarcual cartilage of juvenile specimens of Rhinoptera brasiliensis Müller & Henle, 1841 and R. bonasus (Mitchill, 1815 was accomplished, in order to identify specific, individual and ontogenetic differences. In the scapulocoracoid, the scapular foramen and the posterodorsal fenestra is larger in R. brasiliensis. The anterior fenestra bridge is thicker and the metacondyle is thinner and longer in R. bonasus. This species also possesses a larger re-entrance between the mesocondyle and the metacondyle, as well as in the fitting region of'the synarcual cartilage, placed close to the scapular process. The individual differences are: posteroventral fenestra with variable diameter independent of the size of the specimens; scapulocoracoids, in some specimens, are more fragile even if they have been kept in the same conservation conditions. In the cervico-thoracic synarcual cartilage, the lateral stay in R. brasiliensis encloses completely the superior portion of the anteroscapular bridge. There are three more prominent condyles beside the suprascapula in R. brasiliensis, R. bonasus, however, shows a protuberance close to the suprascapula, inconspicuous and more distant from the scapular lamina. Several specimens of different size of R. bonasus show a synarcual cartilage wider in ventral view and higher in lateral view. In the majority of specimens, the number of ventral spinal foramina is higher than the dorsal ones in both species. R. bonasus has only one pair of asymmetric basal foramina, whereas R. brasiliensis possesses three or four foramina. Regarding individual differences, at least one specimen of R. bonasus exhibits a single basal foramen.

  11. Transcriptomic signatures in cartilage ageing

    Science.gov (United States)

    2013-01-01

    Introduction Age is an important factor in the development of osteoarthritis. Microarray studies provide insight into cartilage aging but do not reveal the full transcriptomic phenotype of chondrocytes such as small noncoding RNAs, pseudogenes, and microRNAs. RNA-Seq is a powerful technique for the interrogation of large numbers of transcripts including nonprotein coding RNAs. The aim of the study was to characterise molecular mechanisms associated with age-related changes in gene signatures. Methods RNA for gene expression analysis using RNA-Seq and real-time PCR analysis was isolated from macroscopically normal cartilage of the metacarpophalangeal joints of eight horses; four young donors (4 years old) and four old donors (>15 years old). RNA sequence libraries were prepared following ribosomal RNA depletion and sequencing was undertaken using the Illumina HiSeq 2000 platform. Differentially expressed genes were defined using Benjamini-Hochberg false discovery rate correction with a generalised linear model likelihood ratio test (P ageing cartilage. Conclusion There was an age-related dysregulation of matrix, anabolic and catabolic cartilage factors. This study has increased our knowledge of transcriptional networks in cartilage ageing by providing a global view of the transcriptome. PMID:23971731

  12. El Rey Costales, personaje de la narrativa oral de Zumpahuacán

    Directory of Open Access Journals (Sweden)

    Urdapilleta Muñoz, Marco

    2012-12-01

    Full Text Available This paper studies the King of Sacks (Rey Costales, a mythical character in Zumpahuacan’s oral narrative. This so difficult to grasp character, and its protean condition, oriented the research into determining its identity. According the stories, King of Sacks is kind of a «spirit» or «Banshee », but its behavior is that of an «Air”, a Mesoamerican supernatural being. However, its high degree of individualization —as manifested in the consciousness of its pagan status as well as in the lack of links with the atmospheric phenomena affecting crops— required some clarifications. As expected, there is a conflict or symbolic-religious adjustment between Christian beliefs and vernacular beliefs, but above all, a larger cultural realignment revealing the process of looking for balance in collective imagination as a result of a community’s new circumstances, no longer mainly agrarian and indigenous. Beyond this adjustment, the narrative shows the creativity of Zumpahuacan’s inhabitants, projecting their ability to shape their experiences anchored in pre- Hispanic past, but in the light of present experiences and circumstances.

    El propósito de este artículo es el estudio del Rey Costales, un personaje mítico de la narrativa oral de Zumpahuacán. Su identidad múltiple, proteica, difícil de asir, orientó la investigación hacia el establecimiento de la identidad del personaje. En los relatos se le refiere como un «espíritu» o «alma en pena», pero su conducta permitió tipificarlo como «aire», un género de seres sobrenaturales mesoamericanos Sin embargo, su alto grado de individualización, manifiesto en la conciencia de su condición pagana, así como la falta de vínculos con los fenómenos atmosféricos que inciden en el cultivo hicieron necesarias algunas precisiones. Éstas mostraron que hay un conflicto o ajuste simbólico-religioso entre las creencias cristianas y las vernáculas, y ante todo un reacomodo

  13. Transcriptomic profiling of cartilage ageing

    Directory of Open Access Journals (Sweden)

    Mandy Jayne Peffers

    2014-12-01

    Full Text Available The musculoskeletal system is severely affected by the ageing process, with many tissues undergoing changes that lead to loss of function and frailty. Articular cartilage is susceptible to age related diseases, such as osteoarthritis. Applying RNA-Seq to young and old equine cartilage, we identified an over-representation of genes with reduced expression relating to extracellular matrix, degradative proteases, matrix synthetic enzymes, cytokines and growth factors in cartilage from older donors. Here we describe the contents and quality controls in detail for the gene expression and related results published by Peffers and colleagues in Arthritis Research and Therapy 2013 associated with the data uploaded to ArrayExpress (E-MTAB-1386.

  14. 先天性小耳畸形的肋软骨全耳廓再造术%Total auricular reconstruction with costal cartilage for congenital microtia

    Institute of Scientific and Technical Information of China (English)

    褚燕军; 杜晓杨; 王明刚

    2008-01-01

    目的 探讨先天性小耳畸形应用自体肋软骨分两期行全耳廓再造术的临床疗效.方法 对10例小耳畸形患者采用自体肋软骨分二期行全耳廓再造共11个,手术一期为耳解剖结构三维轮廓再造;二期为颅耳角再造.结果 9例手术顺利,效果满意;1例系双侧小耳,一期再造术后双侧皮瓣远端表皮坏死,自行脱痂痊愈.10例术后随访6~18个月,再造耳廓轮廓清晰,拥有良好的颅耳角.结论 应用自体肋软骨分两期行全耳廓再造,疗效满意,并发症少,是先天性小耳畸形理想的再造方法.

  15. Mechanical properties of costal cartilage of the children with pectus excavatum%漏斗胸肋软骨生物力学特性研究

    Institute of Scientific and Technical Information of China (English)

    冯杰雄; 胡廷泽; 陈锐; 唐耘熳; 刘文英; 蒋小平

    2001-01-01

    目的探讨漏斗胸肋软骨生物力学特性.方法 19例漏斗胸患儿肋软骨手术标本经处理后,用日本岛津AG-1000A电子式万能实验机行拉伸、压缩和弯曲试验,载荷精度0.25%,加载速度5 mm/min.取年龄相同死于非骨骼肌肉系统疾病的尸体标本作对照.记录应力-应变关系曲线或应力-时间关系曲线并根据该曲线计算平均最大压缩、拉伸、弯曲强度和平均最大应变.结果病变组拉伸强度、压缩强度、弯曲强度和平均最大应变均小于对照组.在相同的应力作用下,病变组的应变较大.病变组破坏应力也小于对照组.结论漏斗胸肋软骨生物力学性能有下降,这种改变可能与漏斗胸的形成有一定关系.

  16. PHOTOCROSSLINKABLE HYDROGELS FOR CARTILAGE TISSUE ENGINEERING

    NARCIS (Netherlands)

    Levett, Peter Andrew

    2015-01-01

    For millions of people, damaged cartilage is a major source of pain and disability. As those people often discover upon seeking medical treatment, once damaged, cartilage is very difficult to repair. Finding better clinical therapies for damaged cartilage has generated a huge amount of research inte

  17. Biomaterial and Cell Based Cartilage Repair

    NARCIS (Netherlands)

    Zhao, X

    2015-01-01

    Injuries to human native cartilage tissue are particularly troublesome because cartilage has little ability to heal or regenerate itself. The reconstruction, repair, and regeneration of cartilage tissue continue to be one of the greatest clinical challenges, especially in orthopaedic and plastic sur

  18. Biomaterial and Cell Based Cartilage Repair

    NARCIS (Netherlands)

    Zhao, X

    2015-01-01

    Injuries to human native cartilage tissue are particularly troublesome because cartilage has little ability to heal or regenerate itself. The reconstruction, repair, and regeneration of cartilage tissue continue to be one of the greatest clinical challenges, especially in orthopaedic and plastic

  19. Strategies for Stratified Cartilage Bioprinting

    NARCIS (Netherlands)

    Schuurman, W.

    2012-01-01

    Multiple materials, cells and growth factors can be combined into one construct by the use of a state–of-the-art bioprinter. This technique may in the future make the fabrication of complete tissues or organs possible. In this thesis the feasibility of the bioprinting of cartilage and the difference

  20. Postnatal development of articular cartilage

    NARCIS (Netherlands)

    Turnhout, van M.C.

    2010-01-01

    Articular cartilage (AC) is the thin layer of tissue that covers the ends of the bones in the synovial joints in mammals. Functional adult AC has depth-dependent mechanical properties that are not yet present at birth. These depth-dependent mechanical properties in adult life are the result of a

  1. Postnatal development of articular cartilage

    NARCIS (Netherlands)

    Turnhout, van M.C.

    2010-01-01

    Articular cartilage (AC) is the thin layer of tissue that covers the ends of the bones in the synovial joints in mammals. Functional adult AC has depth-dependent mechanical properties that are not yet present at birth. These depth-dependent mechanical properties in adult life are the result of a dep

  2. Hydrodynamic influences of tidal fluctuations and beach slopes on benzene transport in unconfined, sandy costal aquifers

    Science.gov (United States)

    Ni, C.-F.; Wei, Y.-M.

    2012-04-01

    Oil spills in oceans have led to severe environment and ecosystem problems due to high toxicity substances, large spatial extents, and long temporal durations. The BTEX compounds are key indexes generally used for identifications of such contamination events and also for quantifications of residual substances after remediations. Benzene is one of the BTEX compounds, which is recognized to be high toxicity and may threat near-shore ecosystem and human safety. Therefore, the understanding of benzene transport in costal aquifers is critical for predictions of contaminated zones and managements and organizations of remediation plans. In this study a numerical investigation was conducted to quantify the influence of tidal fluctuations and beach slopes on benzene transport in an unconfined coastal aquifer. More specifically, three different tidal amplitudes and three beach slopes were considered in the two-dimensional HYDROGEOCHEM model to characterize the spatial and temporal behavior of the benzene transport. Simulation results show that tidal fluctuations will lead to shallow seawater circulations near the ground surface where the high tides can reach periodically. Such local circulation flows will trap benzene plume and the plume may migrate to the deeper aquifer, depending on the amplitudes of tides and the surface slopes of the coastal lines. The sine curve tides with 0.5 m amplitudes will create circulation plume sizes of about 50m in length and 20m in depth, while the circulation plume sizes for tides with 1.0 m amplitudes will significantly increase to approximately 150 m in length and 60 m in depth. Additionally, double the beach slopes and keep the same tidal amplitude will lead to 40 m plume movement toward the land. The amplitude of tidal fluctuation is the key factor to decide when and where a benzene plume reaches a largest depth. In general, the plume with tidal amplitude of 0.5 m requires 50 days to reach 90% of the largest depth. However, the plume with

  3. Cartilage-selective genes identified in genome-scale analysis of non-cartilage and cartilage gene expression

    Directory of Open Access Journals (Sweden)

    Cohn Zachary A

    2007-06-01

    Full Text Available Abstract Background Cartilage plays a fundamental role in the development of the human skeleton. Early in embryogenesis, mesenchymal cells condense and differentiate into chondrocytes to shape the early skeleton. Subsequently, the cartilage anlagen differentiate to form the growth plates, which are responsible for linear bone growth, and the articular chondrocytes, which facilitate joint function. However, despite the multiplicity of roles of cartilage during human fetal life, surprisingly little is known about its transcriptome. To address this, a whole genome microarray expression profile was generated using RNA isolated from 18–22 week human distal femur fetal cartilage and compared with a database of control normal human tissues aggregated at UCLA, termed Celsius. Results 161 cartilage-selective genes were identified, defined as genes significantly expressed in cartilage with low expression and little variation across a panel of 34 non-cartilage tissues. Among these 161 genes were cartilage-specific genes such as cartilage collagen genes and 25 genes which have been associated with skeletal phenotypes in humans and/or mice. Many of the other cartilage-selective genes do not have established roles in cartilage or are novel, unannotated genes. Quantitative RT-PCR confirmed the unique pattern of gene expression observed by microarray analysis. Conclusion Defining the gene expression pattern for cartilage has identified new genes that may contribute to human skeletogenesis as well as provided further candidate genes for skeletal dysplasias. The data suggest that fetal cartilage is a complex and transcriptionally active tissue and demonstrate that the set of genes selectively expressed in the tissue has been greatly underestimated.

  4. Mechanobiology and Cartilage Tissue Engineering

    Institute of Scientific and Technical Information of China (English)

    Céline; HUSELSTEIN; Natalia; de; ISLA; Sylvaine; MULLER; Jean-Franois; STOLTZ

    2005-01-01

    1 IntroductionThe cartilage is a hydrated connective tissue in joints that withstands and distributes mechanical forces. Chondrocytes utilize mechanical signals to maintain tissue homeostasis. They regulate their metabolic activity through complex biological and biophysical interactions with the extracellular matrix (ECM). Although some of the mechanisms of mechanotransduction are known today, there are certainly many others left unrevealed. Different topics of chondrocytes mechanobiology have led to the de...

  5. Dorsal Augmentation with Septal Cartilage

    OpenAIRE

    Murrell, George L.

    2008-01-01

    Deficiency of nasal dorsal projection may be inherent or acquired. Repair is most commonly performed with an onlay graft. When nasal septal cartilage is available, it is the author's preferred source for graft material. It is important to realize that dorsal augmentation is an operation performed for aesthetic not functional reasons. As such, patients understandably scrutinize their postoperative result, and attention to detail in all aspects of the surgery is critical in achieving a favorabl...

  6. Resident mesenchymal progenitors of articular cartilage.

    Science.gov (United States)

    Candela, Maria Elena; Yasuhara, Rika; Iwamoto, Masahiro; Enomoto-Iwamoto, Motomi

    2014-10-01

    Articular cartilage has poor capacity of self-renewal and repair. Insufficient number and activity of resident mesenchymal (connective tissue) progenitors is likely one of the underlying reasons. Chondroprogenitors reside not only in the superficial zone of articular cartilage but also in other zones of articular cartilage and in the neighboring tissues, including perichondrium (groove of Ranvier), synovium and fat pad. These cells may respond to injury and contribute to articular cartilage healing. In addition, marrow stromal cells can migrate through subchondral bone when articular cartilage is damaged. We should develop drugs and methods that correctly stimulate resident progenitors for improvement of repair and inhibition of degenerative changes in articular cartilage. Copyright © 2014. Published by Elsevier B.V.

  7. Diode laser (980nm) cartilage reshaping

    Science.gov (United States)

    El Kharbotly, A.; El Tayeb, T.; Mostafa, Y.; Hesham, I.

    2011-03-01

    Loss of facial or ear cartilage due to trauma or surgery is a major challenge to the otolaryngologists and plastic surgeons as the complicated geometric contours are difficult to be animated. Diode laser (980 nm) has been proven effective in reshaping and maintaining the new geometric shape achieved by laser. This study focused on determining the optimum laser parameters needed for cartilage reshaping with a controlled water cooling system. Harvested animal cartilages were angulated with different degrees and irradiated with different diode laser powers (980nm, 4x8mm spot size). The cartilage specimens were maintained in a deformation angle for two hours after irradiation then released for another two hours. They were serially measured and photographed. High-power Diode laser irradiation with water cooling is a cheep and effective method for reshaping the cartilage needed for reconstruction of difficult situations in otorhinolaryngologic surgery. Key words: cartilage,diode laser (980nm), reshaping.

  8. Harnessing Biomechanics to Develop Cartilage Regeneration Strategies

    OpenAIRE

    Athanasiou, KA; Responte, DJ; Brown, WE; Hu, JC

    2015-01-01

    Copyright © 2015 by ASME. As this review was prepared specifically for the American Society of Mechanical Engineers H.R. Lissner Medal, it primarily discusses work toward cartilage regeneration performed in Dr. Kyriacos A. Athanasiou's laboratory over the past 25 years. The prevalence and severity of degeneration of articular cartilage, a tissue whose main function is largely biomechanical, have motivated the development of cartilage tissue engineering approaches informed by biomechanics. Thi...

  9. Studies on Colombian Cryptogams VII. Culture studies on the taxonomic relevance of costal anatomy in the Campylopus leucognodes-subconcolor complex and in Campylopus pittieri

    NARCIS (Netherlands)

    Florschütz-de Waard, J.; Worrell-Schets, M.

    1980-01-01

    Observations on costal anatomy in Colombian material of the Campylopus leucognodessubconcolor complex revealed a correlation between habitat humidity and degree of cell wall thickness. Cultivation experiments confirmed the assumption that the presence or absence of pseudostereids in this group is en

  10. Anisothecium staphylinum (Whitehouse) Sipman, Rubers & Riemann comb. nov. found in Belgium, Denmark and the Netherlands, with a remark on its costal anatomy

    NARCIS (Netherlands)

    Sipman, H.; Rubers, W.V.; Riemann, B.

    1972-01-01

    Dicranella staphylina Whitehouse, a species recently described from Great Britain, is now recorded from Belgium, Denmark and The Netherlands. A new combination, Anisothecium staphylinum (Whitehouse) Sipman, Rubers & Riemann, is proposed. A study of the costal anatomy revealed that A. staphylinum in

  11. Can Glucosamine Supplements Protect My Knee Cartilage from Osteoarthritis?

    Science.gov (United States)

    ... Can glucosamine supplements protect my knee cartilage from osteoarthritis? Answers from Brent A. Bauer, M.D. Study results on this question have ... build cartilage. The most common type of arthritis, osteoarthritis wears away the slick cartilage that covers the ...

  12. Optical properties of nasal septum cartilage

    Science.gov (United States)

    Bagratashvili, Nodar V.; Sviridov, Alexander P.; Sobol, Emil N.; Kitai, Moishe S.

    1998-05-01

    Optical parameters (scattering coefficient s, absorption coefficient k and scattering anisotropy coefficient g) of hyaline cartilage were studied for the first time. Optical properties of human and pig nasal septum cartilage, and of bovine ear cartilage were examined using a spectrophotometer with an integrating sphere, and an Optical Multi-Channel Analyser. We measured total transmission Tt, total reflection Rt, and on-axis transmission Ta for light propagating through cartilage sample, over the visible spectral range (14000 - 28000 cm-1). It is shown that transmission and reflection spectra of human, pig and bovine cartilage are rather similar. It allows us to conclude that the pig cartilage can be used for in-vivo studies instead of human cartilage. The data obtained were treated by means of the one-dimensional diffusion approximation solution of the optical transport equation. We have found scattering coefficient s, absorption coefficient k and scattering anisotropy coefficient g by the iterative comparison of measured and calculated Tt, Rt and Ta values for human and pig cartilage. We found, in particular, that for 500 nm irradiation s equals 37,6 plus or minus 3.5 cm-1, g equals 0,56 plus or minus 0.05, k approximately equals 0,5 plus or minus 0.3 cm-1. The above data were used in Monte Carlo simulation for spatial intensity profile of light scattered by a cartilage sample. The computed profile was very similar to the profile measured using an Optical Multi-Channel Analyzer (OMA).

  13. Stereomicroscopic evaluation of the joint cartilage and bone tissue in osteoporosis

    Science.gov (United States)

    Vasile, Liliana; Torok, Rodica; Deleanu, Bogdan; Marchese, Cristian; Valeanu, Adina; Bodea, Rodica

    2012-06-01

    Aim of the study. Assessment by stereomicroscopy of the severity of lesions in osteoporotic bone at both sexes and to correlate micro-and macro-bone fracture due to low bone density values with the disease evolution. Material and method: The study material consists of fragments of bone from the femoral head, vertebral bone, costal and iliac crest biopsy obtained from patients aged over 70 years, female and male, treated in the County Hospital of Timisoara, Department of Orthopedics. For the purpose of studying the samples in stereomicroscopy and trough polarized light it has been used the Olympus Microscope SZ ×7 and an Olympus camera with 2,5 × digital zoom and a 3× optical zoom in the Vest Politechnic Univesity. Results and discussions: Subchondral bone presents osteolysis associated with a osteoporotic bone transformation. Pseudocystic chondrolisis was noted in the osteoarticular cartilage, in addition with areas of hemorrhagic postfractural necrosis. The osteoporotic bone exhibits ischemic necrosis and focal hemorrhagic necrosis adjacent fracture. Microporosity pattern of the bone observed by stereomicroscopy correspond to the spongy bone osteoporosis images. Morphometry of the bone spiculi reveals length of 154.88 and 498.32 μ. In men we found a greater thickness of bone trabeculi compared with bone texture porosity in women. The subchondral bone supports and fulfills an important role in transmitting forces from the overlying articular cartilage inducing the bone resorbtion. The femoral head fracture may be the final event of many accumulated bone microcracks. Conclusions: Bone fragility depends not only of the spongy bone but also of the cortical bone properties. Osteolysis produced by loss of balance in the process of remodeling in favor of bone resorption leads to the thinning of the subchondral bone at both sexes.

  14. Which cartilage is regenerated, hyaline cartilage or fibrocartilage? Non-invasive ultrasonic evaluation of tissue-engineered cartilage.

    Science.gov (United States)

    Hattori, K; Takakura, Y; Ohgushi, H; Habata, T; Uematsu, K; Takenaka, M; Ikeuchi, K

    2004-09-01

    To investigate ultrasonic evaluation methods for detecting whether the repair tissue is hyaline cartilage or fibrocartilage in new cartilage regeneration therapy. We examined four experimental rabbit models: a spontaneous repair model (group S), a large cartilage defect model (group L), a periosteal graft model (group P) and a tissue-engineered cartilage regeneration model (group T). From the resulting ultrasonic evaluation, we used %MM (the maximum magnitude of the measurement area divided by that of the intact cartilage) as a quantitative index of cartilage regeneration. The results of the ultrasonic evaluation were compared with the histological findings and histological score. The %MM values were 61.1 +/- 16.5% in group S, 29.8 +/- 15.1% in group L, 36.3 +/- 18.3% in group P and 76.5 +/- 18.7% in group T. The results showed a strong similarity to the histological scoring. The ultrasonic examination showed that all the hyaline-like cartilage in groups S and T had a high %MM (more than 60%). Therefore, we could define the borderline between the two types of regenerated cartilage by the %MM.

  15. Articular Cartilage Changes in Maturing Athletes

    Science.gov (United States)

    Luria, Ayala; Chu, Constance R.

    2014-01-01

    Context: Articular cartilage has a unique functional architecture capable of providing a lifetime of pain-free joint motion. This tissue, however, undergoes substantial age-related physiologic, mechanical, biochemical, and functional changes that reduce its ability to overcome the effects of mechanical stress and injury. Many factors affect joint function in the maturing athlete—from chondrocyte survival and metabolism to structural composition and genetic/epigenetic factors governing cartilage and synovium. An evaluation of age-related changes for joint homeostasis and risk for osteoarthritis is important to the development of new strategies to rejuvenate aging joints. Objective: This review summarizes the current literature on the biochemical, cellular, and physiologic changes occurring in aging articular cartilage. Data Sources: PubMed (1969-2013) and published books in sports health, cartilage biology, and aging. Study Selection: Keywords included aging, athlete, articular cartilage, epigenetics, and functional performance with age. Study Design: Systematic review. Level of Evidence: Level 3. Data Extraction: To be included, research questions addressed the effect of age-related changes on performance, articular cartilage biology, molecular mechanism, and morphology. Results: The mature athlete faces challenges in maintaining cartilage health and joint function due to age-related changes to articular cartilage biology, morphology, and physiology. These changes include chondrocyte loss and a decline in metabolic response, alterations to matrix and synovial tissue composition, and dysregulation of reparative responses. Conclusion: Although physical decline has been regarded as a normal part of aging, many individuals maintain overall fitness and enjoy targeted improvement to their athletic capacity throughout life. Healthy articular cartilage and joints are needed to maintain athletic performance and general activities. Genetic and potentially reversible

  16. Anatomical study of nasal cartilage in buffalo (Bubalus bubulus

    Directory of Open Access Journals (Sweden)

    Mahdi Yeganehzad

    2011-07-01

    Full Text Available This study used ten heads of adult buffalo taken from slaughterhouse. After transferring the samples to the anatomy hall, a split was carefully created on skin of muzzle and the skin was slowly separated from muscles and hypodermal connective tissue. Place of connection of cartilages to bone, cartilages to each other and shape of the cartilages were specified. In buffalo, nose apex has two nostrils fixed by bone and cartilage. After identifying and separating the cartilages, it was found that nasal cartilages in buffalo consisted of: 1 septum nasal located between two nostrils and reinforces it from inside. 2 dorso-lateral nasal cartilage constituting dorsal and lateral parts of the nostril. 3 ventro-lateral nasal cartilage constituting ventral and lateral parts of the nostril. 4 lateral accessory cartilage constituting lateral and ventral parts of the nostril. 5 medial accessory nasal cartilage located at Alar fold and connected to ventro-lateral nasal cartilage.

  17. Strategies for Zonal Cartilage Repair using Hydrogels

    NARCIS (Netherlands)

    Klein, Travis J.; Rizzi, Simone C.; Reichert, Johannes C.; Georgi, Nicole; Malda, Jos; Schuurman, Wouter; Crawford, Ross W.; Hutmacher, Dietmar W.

    2009-01-01

    Articular cartilage is a highly hydrated tissue with depth-dependent cellular and matrix properties that provide low-friction load bearing in joints. However, the structure and function are frequently lost and there is insufficient repair response to regenerate high-quality cartilage. Several hydrog

  18. Hyaline cartilage degenerates after autologous osteochondral transplantation.

    Science.gov (United States)

    Tibesku, C O; Szuwart, T; Kleffner, T O; Schlegel, P M; Jahn, U R; Van Aken, H; Fuchs, S

    2004-11-01

    Autologous osteochondral grafting is a well-established clinical procedure to treat focal cartilage defects in patients, although basic research on this topic remains sparse. The aim of the current study was to evaluate (1) histological changes of transplanted hyaline cartilage of osteochondral grafts and (2) the tissue that connects the transplanted cartilage with the adjacent cartilage in a sheep model. Both knee joints of four sheep were opened surgically and osteochondral grafts were harvested and simultaneously transplanted to the contralateral femoral condyle. The animals were sacrificed after three months and the received knee joints were evaluated histologically. Histological evaluation showed a complete ingrowth of the osseous part of the osteochondral grafts. A healing or ingrowth at the level of the cartilage could not be observed. Histological evaluation of the transplanted grafts according to Mankin revealed significantly more and more severe signs of degeneration than the adjacent cartilage, such as cloning of chondrocytes and irregularities of the articular surface. We found no connecting tissue between the transplanted and the adjacent cartilage and histological signs of degeneration of the transplanted hyaline cartilage. In the light of these findings, long-term results of autologous osteochondral grafts in human beings have to be followed critically.

  19. Magnetic Resonance Imaging of Cartilage Repair

    Science.gov (United States)

    Trattnig, Siegfried; Winalski, Carl S.; Marlovits, Stephan; Jurvelin, Jukka S.; Welsch, Goetz H.; Potter, Hollis G.

    2011-01-01

    Articular cartilage lesions are a common pathology of the knee joint, and many patients may benefit from cartilage repair surgeries that offer the chance to avoid the development of osteoarthritis or delay its progression. Cartilage repair surgery, no matter the technique, requires a noninvasive, standardized, and high-quality longitudinal method to assess the structure of the repair tissue. This goal is best fulfilled by magnetic resonance imaging (MRI). The present article provides an overview of the current state of the art of MRI of cartilage repair. In the first 2 sections, preclinical and clinical MRI of cartilage repair tissue are described with a focus on morphological depiction of cartilage and the use of functional (biochemical) MR methodologies for the visualization of the ultrastructure of cartilage repair. In the third section, a short overview is provided on the regulatory issues of the United States Food and Drug Administration (FDA) and the European Medicines Agency (EMEA) regarding MR follow-up studies of patients after cartilage repair surgeries. PMID:26069565

  20. Elastic cartilage reconstruction by transplantation of cultured hyaline cartilage-derived chondrocytes.

    Science.gov (United States)

    Mizuno, M; Takebe, T; Kobayashi, S; Kimura, S; Masutani, M; Lee, S; Jo, Y H; Lee, J I; Taniguchi, H

    2014-05-01

    Current surgical intervention of craniofacial defects caused by injuries or abnormalities uses reconstructive materials, such as autologous cartilage grafts. Transplantation of autologous tissues, however, places a significant invasiveness on patients, and many efforts have been made for establishing an alternative graft. Recently, we and others have shown the potential use of reconstructed elastic cartilage from ear-derived chondrocytes or progenitors with the unique elastic properties. Here, we examined the differentiation potential of canine joint cartilage-derived chondrocytes into elastic cartilage for expanding the cell sources, such as hyaline cartilage. Articular chondrocytes are isolated from canine joint, cultivated, and compared regarding characteristic differences with auricular chondrocytes, including proliferation rates, gene expression, extracellular matrix production, and cartilage reconstruction capability after transplantation. Canine articular chondrocytes proliferated less robustly than auricular chondrocytes, but there was no significant difference in the amount of sulfated glycosaminoglycan produced from redifferentiated chondrocytes. Furthermore, in vitro expanded and redifferentiated articular chondrocytes have been shown to reconstruct elastic cartilage on transplantation that has histologic characteristics distinct from hyaline cartilage. Taken together, cultured hyaline cartilage-derived chondrocytes are a possible cell source for elastic cartilage reconstruction. Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.

  1. Knee cartilage extraction and bone-cartilage interface analysis from 3D MRI data sets

    Science.gov (United States)

    Tamez-Pena, Jose G.; Barbu-McInnis, Monica; Totterman, Saara

    2004-05-01

    This works presents a robust methodology for the analysis of the knee joint cartilage and the knee bone-cartilage interface from fused MRI sets. The proposed approach starts by fusing a set of two 3D MR images the knee. Although the proposed method is not pulse sequence dependent, the first sequence should be programmed to achieve good contrast between bone and cartilage. The recommended second pulse sequence is one that maximizes the contrast between cartilage and surrounding soft tissues. Once both pulse sequences are fused, the proposed bone-cartilage analysis is done in four major steps. First, an unsupervised segmentation algorithm is used to extract the femur, the tibia, and the patella. Second, a knowledge based feature extraction algorithm is used to extract the femoral, tibia and patellar cartilages. Third, a trained user corrects cartilage miss-classifications done by the automated extracted cartilage. Finally, the final segmentation is the revisited using an unsupervised MAP voxel relaxation algorithm. This final segmentation has the property that includes the extracted bone tissue as well as all the cartilage tissue. This is an improvement over previous approaches where only the cartilage was segmented. Furthermore, this approach yields very reproducible segmentation results in a set of scan-rescan experiments. When these segmentations were coupled with a partial volume compensated surface extraction algorithm the volume, area, thickness measurements shows precisions around 2.6%

  2. Hyaline cartilage cells outperform mandibular condylar cartilage cells in a TMJ fibrocartilage tissue engineering application.

    Science.gov (United States)

    Wang, L; Lazebnik, M; Detamore, M S

    2009-03-01

    To compare temporomandibular joint (TMJ) condylar cartilage cells in vitro to hyaline cartilage cells cultured in a three-dimensional (3D) environment for tissue engineering of mandibular condylar cartilage. Mandibular condylar cartilage and hyaline cartilage cells were harvested from pigs and cultured for 6 weeks in polyglycolic acid (PGA) scaffolds. Both types of cells were treated with glucosamine sulfate (0.4 mM), insulin-like growth factor-I (IGF-I) (100 ng/ml) and their combination. At weeks 0 and 6, cell number, glycosaminoglycan (GAG) and collagen content were determined, types I and II collagen were visualized by immunohistochemistry and GAGs were visualized by histology. Hyaline cartilage cells produced from half an order to a full order of magnitude more GAGs and collagen than mandibular condylar cartilage cells in 3D culture. IGF-I was a highly effective signal for biosynthesis with hyaline cartilage cells, while glucosamine sulfate decreased cell proliferation and biosynthesis with both types of cells. In vitro culture of TMJ condylar cartilage cells produced a fibrous tissue with predominantly type I collagen, while hyaline cartilage cells formed a fibrocartilage-like tissue with types I and II collagen. The combination of IGF and glucosamine had a synergistic effect on maintaining the phenotype of TMJ condylar cells to generate both types I and II collagen. Given the superior biosynthetic activity by hyaline cartilage cells and the practical surgical limitations of harvesting cells from the TMJ of a patient requiring TMJ reconstruction, cartilage cells from elsewhere in the body may be a potentially better alternative to cells harvested from the TMJ for TMJ tissue engineering. This finding may also apply to other fibrocartilages such as the intervertebral disc and knee meniscus in applications where a mature cartilage cell source is desired.

  3. Cartilage T2 assessment: differentiation of normal hyaline cartilage and reparative tissue after arthroscopic cartilage repair in equine subjects.

    Science.gov (United States)

    White, Lawrence M; Sussman, Marshall S; Hurtig, Mark; Probyn, Linda; Tomlinson, George; Kandel, Rita

    2006-11-01

    To prospectively assess T2 mapping characteristics of normal articular cartilage and of cartilage at sites of arthroscopic repair, including comparison with histologic results and collagen organization assessed at polarized light microscopy (PLM). Study protocol was compliant with the Canadian Council on Animal Care Guidelines and approved by the institutional animal care committee. Arthroscopic osteochondral autograft transplantation (OAT) and microfracture arthroplasty (MFx) were performed in knees of 10 equine subjects (seven female, three male; age range, 3-5 years). A site of arthroscopically normal cartilage was documented in each joint as a control site. Joints were harvested at 12 (n = 5) and 24 (n = 5) weeks postoperatively and were imaged at 1.5-T magnetic resonance (MR) with a 10-echo sagittal fast spin-echo acquisition. T2 maps of each site (21 OAT harvest, 10 MFx, 12 OAT plug, and 10 control sites) were calculated with linear least-squares curve fitting. Cartilage T2 maps were qualitatively graded as "organized" (normal transition of low-to-high T2 signal from deep to superficial cartilage zones) or "disorganized." Quantitative mean T2 values were calculated for deep, middle, and superficial cartilage at each location. Results were compared with histologic and PLM assessments by using kappa analysis. T2 maps were qualitatively graded as organized at 20 of 53 sites and as disorganized at 33 sites. Perfect agreement was seen between organized T2 and histologic findings of hyaline cartilage and between disorganized T2 and histologic findings of fibrous reparative tissue (kappa = 1.0). Strong agreement was seen between organized T2 and normal PLM findings and between disorganized T2 and abnormal PLM findings (kappa = .92). Quantitative assessment of the deep, middle, and superficial cartilage, respectively, showed mean T2 values of 53.3, 58.6, and 54.9 msec at reparative fibrous tissue sites and 40.7, 53.6, and 61.6 msec at hyaline cartilage sites. A

  4. A cartilage-inspired lubrication system.

    Science.gov (United States)

    Greene, George W; Olszewska, Anna; Osterberg, Monika; Zhu, Haijin; Horn, Roger

    2014-01-14

    Articular cartilage is an example of a highly efficacious water-based, natural lubrication system that is optimized to provide low friction and wear protection at both low and high loads and sliding velocities. One of the secrets of cartilage's superior tribology comes from a unique, multimodal lubrication strategy consisting of both a fluid pressurization mediated lubrication mechanism and a boundary lubrication mechanism supported by surface bound macromolecules. Using a reconstituted network of highly interconnected cellulose fibers and simple modification through the immobilization of polyelectrolytes, we have recreated many of the mechanical and chemical properties of cartilage and the cartilage lubrication system to produce a purely synthetic material system that exhibits some of the same lubrication mechanisms, time dependent friction response, and high wear resistance as natural cartilage tissue. Friction and wear studies demonstrate how the properties of the cellulose fiber network can be used to control and optimize the lubrication and wear resistance of the material surfaces and highlight what key features of cartilage should be duplicated in order to produce a cartilage-mimetic lubrication system.

  5. Regulatory Challenges for Cartilage Repair Technologies.

    Science.gov (United States)

    McGowan, Kevin B; Stiegman, Glenn

    2013-01-01

    In the United States, few Food and Drug Administration (FDA)-approved options exist for the treatment of focal cartilage and osteochondral lesions. Developers of products for cartilage repair face many challenges to obtain marketing approval from the FDA. The objective of this review is to discuss the necessary steps for FDA application and approval for a new cartilage repair product. FDA Guidance Documents, FDA Panel Meetings, scientific organization recommendations, and clinicaltrials.gov were reviewed to demonstrate the current thinking of FDA and the scientific community on the regulatory process for cartilage repair therapies. Cartilage repair therapies can receive market approval from FDA as medical devices, drugs, or biologics, and the specific classification of product can affect the nonclinical, clinical, and regulatory strategy to bring the product to market. Recent FDA guidance gives an outline of the required elements to bring a cartilage repair product to market, although these standards are often very general. As a result, companies have to carefully craft their study patient population, comparator group, and clinical endpoint to best showcase their product's attributes. In addition, regulatory strategy and manufacturing process validation need to be considered early in the clinical study process to allow for timely product approval following the completion of clinical study. Although the path to regulatory approval for a cartilage repair therapy is challenging and time-consuming, proper clinical trial planning and attention to the details can eventually save companies time and money by bringing a product to the market in the most expeditious process possible.

  6. NMR Studies of Cartilage Dynamics, Diffusion, Degradation

    Science.gov (United States)

    Huster, Daniel; Schiller, Jurgen; Naji, Lama; Kaufmann Jorn; Arnold, Klaus

    An increasing number of people is suffering from rheumatic diseases, and, therefore, methods of early diagnosis of joint degeneration are urgently required. For their establishment, however, an improved knowledge about the molecular organisation of cartilage would be helpful. Cartilage consists of three main components: Water, collagen and chondroitin sulfate (CS) that is (together with further polysaccharides and proteins) a major constituent of the proteoglycans of cartilage. 1H and 13C MAS (magic-angle spinning) NMR (nuclear magnetic resonance) opened new perspectives for the study of the macromolecular components in cartilage. We have primarily studied the mobilities of CS and collagen in bovine nasal and pig articular cartilage (that differ significantly in their collagen/polysaccharide content) by measuring 13C NMR relaxation times as well as the corresponding 13C CP (cross polarisation) MAS NMR spectra. These data clearly indicate that the mobility of cartilage macromolecules is broadly distributed from almost completely rigid (collagen) to highly mobile (polysaccharides), which lends cartilage its mechanical strength and shock-absorbing properties.

  7. Does intraarticular inflammation predict biomechanical cartilage properties?

    Science.gov (United States)

    Waldstein, Wenzel; Perino, Giorgio; Jawetz, Shari T; Gilbert, Susannah L; Boettner, Friedrich

    2014-07-01

    Intact cartilage in the lateral compartment is an important requirement for medial unicompartmental knee arthroplasty (UKA). Progression of cartilage degeneration in the lateral compartment is a common failure mode of medial UKA. Little is known about factors that influence the mechanical properties of lateral compartment cartilage. The purposes of this study were to answer the following questions: (1) Does the synovial fluid white blood cell count predict the biomechanical properties of macroscopically intact cartilage of the distal lateral femur? (2) Is there a correlation between MRI grading of synovitis and the biomechanical properties of macroscopically intact cartilage? (3) Is there a correlation between the histopathologic assessment of the synovium and the biomechanical properties of macroscopically intact cartilage? The study included 84 patients (100 knees) undergoing primary TKA for varus osteoarthritis between May 2010 and January 2012. All patients underwent preoperative MRI to assess the degree of synovitis. During surgery, the cartilage of the distal lateral femur was assessed macroscopically using the Outerbridge grading scale. In knees with an Outerbridge grade of 0 or 1, osteochondral plugs were harvested from the distal lateral femur for biomechanical and histologic assessment. The synovial fluid was collected to determine the white blood cell count. Synovial tissue was taken for histologic evaluation of the degree of synovitis. The mean aggregate modulus and the mean dynamic modulus were significantly greater in knees with 150 or less white blood cells/mL synovial fluid compared with knees with greater than 150 white blood cells/mL synovial fluid. There was no correlation among MRI synovitis grades, histopathologic synovitis grades, and biomechanical cartilage properties. The study suggests that lateral compartment cartilage in patients with elevated synovial fluid white blood cell counts has a reduced ability to withstand compressive loads

  8. Fracaso del cartílago costal en el tratamiento de defectos óseos experimentales: Estudio histológico y radiológico

    OpenAIRE

    2003-01-01

    Se realiza un estudio experimental para demostrar la utilidad del cartílago costal, fresco o criopreservado (autólogo y homólogo), en el tratamiento de defectos óseos cavitarios de huesos largos y observar si la radiología simple es fiable para la valoración de su incorporación. Para ello se implanta cartílago costal, sin pericondrio, en un defecto óseo cavitario de la metáfisis distal del fémur de conejo. Se utilizan dos tipos de injerto según su procedencia (antólogo y homólogo) y el proced...

  9. The costal remains of the El Sidrón Neanderthal site (Asturias, northern Spain) and their importance for understanding Neanderthal thorax morphology.

    Science.gov (United States)

    García-Martínez, Daniel; Bastir, Markus; Huguet, Rosa; Estalrrich, Almudena; García-Tabernero, Antonio; Ríos, Luis; Cunha, Eugenia; Rasilla, Marco de la; Rosas, Antonio

    2017-10-01

    The study of the Neanderthal thorax has attracted the attention of the scientific community for more than a century. It is agreed that Neanderthals have a more capacious thorax than modern humans, but whether this was caused by a medio-lateral or an antero-posterior expansion of the thorax is still debated, and is key to understanding breathing biomechanics and body shape in Neanderthals. The fragile nature of ribs, the metameric structure of the thorax and difficulties in quantifying thorax morphology all contribute to uncertainty regarding precise aspects of Neanderthal thoracic shape. The El Sidrón site has yielded costal remains from the upper to the lower thorax, as well as several proximal rib ends (frequently missing in the Neanderthal record), which help to shed light on Neanderthal thorax shape. We compared the El Sidrón costal elements with ribs from recent modern humans as well as with fossil modern humans and other Neanderthals through traditional morphometric methods and 3D geometric morphometrics, combined with missing data estimation and virtual reconstruction (at the 1st, 5th and 11th costal levels). Our results show that Neanderthals have larger rib heads and articular tubercles than their modern human counterparts. Neanderthal 1st ribs are smaller than in modern humans, whereas 5th and 11th ribs are considerably larger. When we articulated mean ribs (size and shape) with their corresponding vertebral elements, we observed that compared to modern humans the Neanderthal thorax is medio-laterally expanded at every level, especially at T5 and T11. Therefore, in the light of evidence from the El Sidrón costal remains, we hypothesize that the volumetric expansion of the Neanderthal thorax proposed by previous authors would mainly be produced by a medio-lateral expansion of the thorax. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. First and second order stereology of hyaline cartilage: Application on mice femoral cartilage.

    Science.gov (United States)

    Noorafshan, Ali; Niazi, Behnam; Mohamadpour, Masoomeh; Hoseini, Leila; Hoseini, Najmeh; Owji, Ali Akbar; Rafati, Ali; Sadeghi, Yasaman; Karbalay-Doust, Saied

    2016-11-01

    Stereological techniques could be considered in research on cartilage to obtain quantitative data. The present study aimed to explain application of the first- and second-order stereological methods on articular cartilage of mice and the methods applied on the mice exposed to cadmium (Cd). The distal femoral articular cartilage of BALB/c mice (control and Cd-treated) was removed. Then, volume and surface area of the cartilage and number of chondrocytes were estimated using Cavalieri and optical dissector techniques on isotropic uniform random sections. Pair-correlation function [g(r)] and cross-correlation function were calculated to express the spatial arrangement of chondrocytes-chondrocytes and chondrocytes-matrix (chondrocyte clustering/dispersing), respectively. The mean±standard deviation of the cartilage volume, surface area, and thickness were 1.4±0.1mm(3), 26.2±5.4mm(2), and 52.8±6.7μm, respectively. Besides, the mean number of chondrocytes was 680±200 (×10(3)). The cartilage volume, cartilage surface area, and number of chondrocytes were respectively reduced by 25%, 27%, and 27% in the Cd-treated mice in comparison to the control animals (pcartilage components carried potential advantages for investigating the cartilage in different joint conditions. Chondrocyte clustering/dispersing and cellularity can be evaluated in cartilage assessment in normal or abnormal situations. Copyright © 2016 Elsevier GmbH. All rights reserved.

  11. A history of the understanding of cartilage.

    Science.gov (United States)

    Benedek, T G

    2006-03-01

    To review the historic development of the understanding of articular cartilage from the earliest comment in the fourth century BCE until about 2000. The history up to 1900 is told chronologically, divided into (1) recognition of the tissue, (2) structure, and (3) chemistry. The twentieth century is sketched with a timeline of discoveries that at the time were important and a bibliography of journal review articles. By 1900 the avascular, aneural state and fibrillar composition have been accepted. The nutrition of articular cartilage remained in dispute. The composition of the binding substance and its relation to collagen remained unknown. Research in the first half of the twentieth century continued to be impeded by lack of technology. The advent of electron microscopy, isotopic tracer technics and enzymology rapidly accelerated the understanding of hyaline cartilage beginning in the 1950s. The history of research on hyaline cartilage illustrates the dependence of scientific progress on technologic innovation.

  12. The minor collagens in articular cartilage

    DEFF Research Database (Denmark)

    Luo, Yunyun

    2017-01-01

    Articular cartilage is a connective tissue consisting of a specialized extracellular matrix (ECM) that dominates the bulk of its wet and dry weight. Type II collagen and aggrecan are the main ECM proteins in cartilage. However, little attention has been paid to less abundant molecular components......, especially minor collagens, including type IV, VI, IX, X, XI, XII, XIII, and XIV, etc. Although accounting for only a small fraction of the mature matrix, these minor collagens not only play essential structural roles in the mechanical properties, organization, and shape of articular cartilage, but also...... fulfil specific biological functions. Genetic studies of these minor collagens have revealed that they are associated with multiple connective tissue diseases, especially degenerative joint disease. The progressive destruction of cartilage involves the degradation of matrix constituents including...

  13. Materials science: Like cartilage, but simpler

    DEFF Research Database (Denmark)

    Skov, Anne Ladegaard

    2015-01-01

    The properties of articular cartilage, which lines bones in joints, depend partlyon repulsion between components of the material. A new synthetic gel that mimics this feature has rare, direction-dependent properties.......The properties of articular cartilage, which lines bones in joints, depend partlyon repulsion between components of the material. A new synthetic gel that mimics this feature has rare, direction-dependent properties....

  14. The structure and function of cartilage proteoglycans

    Directory of Open Access Journals (Sweden)

    P J Roughley

    2006-11-01

    Full Text Available Cartilage contains a variety of proteoglycans that are essential for its normal function. These include aggrecan, decorin, biglycan, fibromodulin and lumican. Each proteoglycan serves several functions that are determined by both its core protein and its glycosaminoglycan chains. This review discusses the structure/function relationships of the cartilage proteoglycans, and the manner in which perturbations in proteoglycan structure or abundance can adversely affect tissue function.

  15. Cartilage proteoglycans inhibit fibronectin-mediated adhesion

    Science.gov (United States)

    Rich, A. M.; Pearlstein, E.; Weissmann, G.; Hoffstein, S. T.

    1981-09-01

    Normal tissues and organs show, on histological examination, a pattern of cellular and acellular zones that is characteristic and unique for each organ or tissue. This pattern is maintained in health but is sometimes destroyed by disease. For example, in mobile joints, the articular surfaces consist of relatively acellular hyaline cartilage, and the joint space is enclosed by a capsule of loose connective tissue with a lining of fibroblasts and macrophages. In the normal joint these cells are confined to the synovial lining and the articular surface remains acellular. In in vitro culture, macrophages and their precursor monocytes are very adhesive, and fibroblasts can migrate and overgrow surfaces such as collagen or plastic used for tissue culture. The fibroblasts adhere to collagen by means of fibronectin, which they synthesize and secrete1. Because the collagen of cartilage is capable of binding serum fibronectin2 and fibronectin is present in cartilage during its development3, these cells should, in theory, slowly migrate from the synovial lining to the articular surface. It is their absence from the articular cartilage in normal circumstances, and then presence in such pathological states as rheumatoid arthritis, that is striking. We therefore set out to determine whether a component of cartilage could prevent fibroblast adherence in a defined adhesion assay. As normal cartilage is composed of 50% proteoglycans and 50% collagen by dry weight4, we tested the possibility that the proteoglycans in cartilage inhibit fibroblast adhesion to collagen. We present here evidence that fibroblast spreading and adhesion to collagenous substrates is inhibited by cartilage proteoglycans.

  16. Precision of hyaline cartilage thickness measurements

    Energy Technology Data Exchange (ETDEWEB)

    Jonsson, K.; Buckwalter, K.; Helvie, M.; Niklason, L.; Martel, W. (Univ. of Michigan Hospitals, Ann Arbor, MI (United States). Dept. of Radiology)

    1992-05-01

    Measurement of cartilage thickness in vivo is an important indicator of the status of a joint as the various degenerative and inflammatory arthritides directly affect the condition of the cartilage. In order to assess the precision of thickness measurements of hyaline articular cartilage, we undertook a pilot study using MR imaging, plain radiography, and ultrasonography (US). We measured the cartilage of the hip and knee joints in 10 persons (4 healthy volunteers and 6 patients). The joints in each patient were examined on two separate occasions using each modality. In the hips a swell as the knee joints, the most precise measuring method was plain film radiography. For radiographs of the knees obtained in the standing position, the coefficient of variation was 6.5%; in the hips this figure was 6.34%. US of the knees and MR imaging of the hips were the second best modalities in the measurement of cartilage thickness. In addition, MR imaging enabled the most complete visualization of the joint cartilage. (orig.).

  17. Improved cartilage integration and interfacial strength after enzymatic treatment in a cartilage transplantation model

    NARCIS (Netherlands)

    J. van de Breevaart Bravenboer; C.D. in der Maur; L. Feenstra (Louw); J.A.N. Verhaar (Jan); H.H. Weinans (Harrie); G.J.V.M. van Osch (Gerjo); P.K. Bos (Koen)

    2004-01-01

    textabstractThe objective of the present study was to investigate whether treatment of articular cartilage with hyaluronidase and collagenase enhances histological and mechanical integration of a cartilage graft into a defect. Discs of 3 mm diameter were taken from 8-mm diameter bo

  18. Cartilage repair surgery: outcome evaluation by using noninvasive cartilage biomarkers based on quantitative MRI techniques?

    Science.gov (United States)

    Jungmann, Pia M; Baum, Thomas; Bauer, Jan S; Karampinos, Dimitrios C; Erdle, Benjamin; Link, Thomas M; Li, Xiaojuan; Trattnig, Siegfried; Rummeny, Ernst J; Woertler, Klaus; Welsch, Goetz H

    2014-01-01

    New quantitative magnetic resonance imaging (MRI) techniques are increasingly applied as outcome measures after cartilage repair. To review the current literature on the use of quantitative MRI biomarkers for evaluation of cartilage repair at the knee and ankle. Using PubMed literature research, studies on biochemical, quantitative MR imaging of cartilage repair were identified and reviewed. Quantitative MR biomarkers detect early degeneration of articular cartilage, mainly represented by an increasing water content, collagen disruption, and proteoglycan loss. Recently, feasibility of biochemical MR imaging of cartilage repair tissue and surrounding cartilage was demonstrated. Ultrastructural properties of the tissue after different repair procedures resulted in differences in imaging characteristics. T2 mapping, T1rho mapping, delayed gadolinium-enhanced MRI of cartilage (dGEMRIC), and diffusion weighted imaging (DWI) are applicable on most clinical 1.5 T and 3 T MR scanners. Currently, a standard of reference is difficult to define and knowledge is limited concerning correlation of clinical and MR findings. The lack of histological correlations complicates the identification of the exact tissue composition. A multimodal approach combining several quantitative MRI techniques in addition to morphological and clinical evaluation might be promising. Further investigations are required to demonstrate the potential for outcome evaluation after cartilage repair.

  19. Cartilage Repair Surgery: Outcome Evaluation by Using Noninvasive Cartilage Biomarkers Based on Quantitative MRI Techniques?

    Directory of Open Access Journals (Sweden)

    Pia M. Jungmann

    2014-01-01

    Full Text Available Background. New quantitative magnetic resonance imaging (MRI techniques are increasingly applied as outcome measures after cartilage repair. Objective. To review the current literature on the use of quantitative MRI biomarkers for evaluation of cartilage repair at the knee and ankle. Methods. Using PubMed literature research, studies on biochemical, quantitative MR imaging of cartilage repair were identified and reviewed. Results. Quantitative MR biomarkers detect early degeneration of articular cartilage, mainly represented by an increasing water content, collagen disruption, and proteoglycan loss. Recently, feasibility of biochemical MR imaging of cartilage repair tissue and surrounding cartilage was demonstrated. Ultrastructural properties of the tissue after different repair procedures resulted in differences in imaging characteristics. T2 mapping, T1rho mapping, delayed gadolinium-enhanced MRI of cartilage (dGEMRIC, and diffusion weighted imaging (DWI are applicable on most clinical 1.5 T and 3 T MR scanners. Currently, a standard of reference is difficult to define and knowledge is limited concerning correlation of clinical and MR findings. The lack of histological correlations complicates the identification of the exact tissue composition. Conclusions. A multimodal approach combining several quantitative MRI techniques in addition to morphological and clinical evaluation might be promising. Further investigations are required to demonstrate the potential for outcome evaluation after cartilage repair.

  20. Limited integrative repair capacity of native cartilage autografts within cartilage defects in a sheep model.

    Science.gov (United States)

    Gelse, Kolja; Riedel, Dominic; Pachowsky, Milena; Hennig, Friedrich F; Trattnig, Siegfried; Welsch, Götz H

    2015-03-01

    The purpose of this study was to investigate integration and cellular outgrowth of native cartilage autografts transplanted into articular cartilage defects. Native cartilage autografts were applied into chondral defects in the femoral condyle of adult sheep. Within the defects, the calcified cartilage layer was either left intact or perforated to induce bone marrow stimulation. Empty defects served as controls. The joints were analyzed after 6 and 26 weeks by macroscopic and histological analysis using the ICRS II Score and Modified O'Driscoll Scores. Non-treated defects did not show any endogenous regenerative response and bone marrow stimulation induced fibrous repair tissue. Transplanted native cartilage grafts only insufficiently integrated with the defect borders. Cell death and loss of proteoglycans were present at the margins of the grafts at 6 weeks, which was only partially restored at 26 weeks. Significant cellular outgrowth from the grafts or defect borders could not be observed. Bonding of the grafts could be improved by additional bone marrow stimulation providing ingrowing cells that formed a fibrous interface predominantly composed of type I collagen. Transplanted native cartilage grafts remain as inert structures within cartilage defects and fail to induce integrative cartilage repair which rather demands additional cells provided by additional bone marrow stimulation. © 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  1. Tissue engineering strategies to study cartilage development, degeneration and regeneration.

    Science.gov (United States)

    Bhattacharjee, Maumita; Coburn, Jeannine; Centola, Matteo; Murab, Sumit; Barbero, Andrea; Kaplan, David L; Martin, Ivan; Ghosh, Sourabh

    2015-04-01

    Cartilage tissue engineering has primarily focused on the generation of grafts to repair cartilage defects due to traumatic injury and disease. However engineered cartilage tissues have also a strong scientific value as advanced 3D culture models. Here we first describe key aspects of embryonic chondrogenesis and possible cell sources/culture systems for in vitro cartilage generation. We then review how a tissue engineering approach has been and could be further exploited to investigate different aspects of cartilage development and degeneration. The generated knowledge is expected to inform new cartilage regeneration strategies, beyond a classical tissue engineering paradigm.

  2. Enhanced cartilage repair in 'healer' mice-New leads in the search for better clinical options for cartilage repair.

    Science.gov (United States)

    Fitzgerald, Jamie

    2017-02-01

    Adult articular cartilage has a poor capacity to undergo intrinsic repair. Current strategies for the repair of large cartilage defects are generally unsatisfactory because the restored cartilage does not have the same resistance to biomechanical loading as authentic articular cartilage and degrades over time. Recently, an exciting new research direction, focused on intrinsic cartilage regeneration rather than fibrous repair by external means, has emerged. This review explores the new findings in this rapidly moving field as they relate to the clinical goal of restoration of structurally robust, stable and non-fibrous articular cartilage following injury.

  3. um estudo de caso

    OpenAIRE

    Costa, Cátia Filipa Pereira da

    2011-01-01

    Dissertação apresentada à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de Mestre em Psicologia Jurídica As situações de abuso sexual de crianças nas quais o perpetrador pertence ao sexo feminino obtiveram ao longo dos últimos anos um acrescido reconhecimento por parte da comunidade científica, evidenciado pelo significativo incremento das investigações no âmbito desta temática consistindo na sua maioria estudos de caso. Um conjunto de particularidades encont...

  4. Human stem cells and articular cartilage regeneration.

    Science.gov (United States)

    Inui, Atsuyuki; Iwakura, Takashi; Reddi, A Hari

    2012-11-05

    The regeneration of articular cartilage damaged due to trauma and posttraumatic osteoarthritis is an unmet medical need. Current approaches to regeneration and tissue engineering of articular cartilage include the use of chondrocytes, stem cells, scaffolds and signals, including morphogens and growth factors. Stem cells, as a source of cells for articular cartilage regeneration, are a critical factor for articular cartilage regeneration. This is because articular cartilage tissue has a low cell turnover and does not heal spontaneously. Adult stem cells have been isolated from various tissues, such as bone marrow, adipose, synovial tissue, muscle and periosteum. Signals of the transforming growth factor beta superfamily play critical roles in chondrogenesis. However, adult stem cells derived from various tissues tend to differ in their chondrogenic potential. Pluripotent stem cells have unlimited proliferative capacity compared to adult stem cells. Chondrogenesis from embryonic stem (ES) cells has been studied for more than a decade. However, establishment of ES cells requires embryos and leads to ethical issues for clinical applications. Induced pluripotent stem (iPS) cells are generated by cellular reprogramming of adult cells by transcription factors. Although iPS cells have chondrogenic potential, optimization, generation and differentiation toward articular chondrocytes are currently under intense investigation.

  5. Human Stem Cells and Articular Cartilage Regeneration

    Directory of Open Access Journals (Sweden)

    A. Hari Reddi

    2012-11-01

    Full Text Available  The regeneration of articular cartilage damaged due to trauma and posttraumatic osteoarthritis is an unmet medical need. Current approaches to regeneration and tissue engineering of articular cartilage include the use of chondrocytes, stem cells, scaffolds and signals, including morphogens and growth factors. Stem cells, as a source of cells for articular cartilage regeneration, are a critical factor for articular cartilage regeneration. This is because articular cartilage tissue has a low cell turnover and does not heal spontaneously. Adult stem cells have been isolated from various tissues, such as bone marrow, adipose, synovial tissue, muscle and periosteum. Signals of the transforming growth factor beta superfamily play critical roles in chondrogenesis. However, adult stem cells derived from various tissues tend to differ in their chondrogenic potential. Pluripotent stem cells have unlimited proliferative capacity compared to adult stem cells. Chondrogenesis from embryonic stem (ES cells has been studied for more than a decade. However, establishment of ES cells requires embryos and leads to ethical issues for clinical applications. Induced pluripotent stem (iPS cells are generated by cellular reprogramming of adult cells by transcription factors. Although iPS cells have chondrogenic potential, optimization, generation and differentiation toward articular chondrocytes are currently under intense investigation.

  6. Repair of osteochondral defects in rabbits with ectopically produced cartilage

    NARCIS (Netherlands)

    Emans, PJ; Hulsbosch, M; Wetzels, GMR; Bulstra, SK; Kuijer, R

    2005-01-01

    Cartilage has poor regenerative capacity. Donor site morbidity and interference with joint homeostasis should be considered when applying the autologous chondrocyte transplantation technique. The use of ectopically produced cartilage, derived from periosteum, might be a novel method to heal

  7. Purification of matrix Gla protein from a marine teleost fish, Argyrosomus regius: calcified cartilage and not bone as the primary site of MGP accumulation in fish.

    Science.gov (United States)

    Simes, D C; Williamson, M K; Ortiz-Delgado, J B; Viegas, C S B; Price, P A; Cancela, M L

    2003-02-01

    Matrix Gla protein (MGP) belongs to the family of vitamin K-dependent, Gla-containing proteins, and in mammals, birds, and Xenopus, its mRNA was previously detected in extracts of bone, cartilage, and soft tissues (mainly heart and kidney), whereas the protein was found to accumulate mainly in bone. However, at that time, it was not evaluated if this accumulation originated from protein synthesized in cartilage or in bone cells because both coexist in skeletal structures of higher vertebrates and Xenopus. Later reports showed that MGP also accumulated in costal calcified cartilage as well as at sites of heart valves and arterial calcification. Interestingly, MGP was also found to accumulate in vertebra of shark, a cartilaginous fish. However, to date, no information is available on sites of MGP expression or accumulation in teleost fishes, the ancestors of terrestrial vertebrates, who have in their skeleton mineralized structures with both bone and calcified cartilage. To analyze MGP structure and function in bony fish, MGP was acid-extracted from the mineralized matrix of either bone tissue (vertebra) or calcified cartilage (branchial arches) from the bony fish, Argyrosomus regius, separated from the mineral phase by dialysis, and purified by Sephacryl S-100 chromatography. No MGP was recovered from bone tissue, whereas a protein peak corresponding to the MGP position in this type of gel filtration was obtained from an extract of branchial arches, rich in calcified cartilage. MGP was identified by N-terminal amino acid sequence analysis, and the resulting protein sequence was used to design specific oligonucleotides suitable to amplify the corresponding DNA by a mixture of reverse transcription-polymerase chain reaction (RT-PCR) and 5'rapid amplification of cDNA (RACE)-PCR. In parallel, ArBGP (bone Gla protein, osteocalcin) was also identified in the same fish, and its complementary DNA cloned by an identical procedure. Tissue distribution/accumulation was

  8. Cartilage Integration: Evaluation of the reasons for failure of integration during cartilage repair. A review

    Directory of Open Access Journals (Sweden)

    IM Khan

    2008-09-01

    Full Text Available Articular cartilage is a challenging tissue to reconstruct or replace principally because of its avascular nature; large chondral lesions in the tissue do not spontaneously heal. Where lesions do penetrate the bony subchondral plate, formation of hematomas and the migration of mesenchymal stem cells provide an inferior and transient fibrocartilagenous replacement for hyaline cartilage. To circumvent the poor intrinsic reparative response of articular cartilage several surgical techniques based on tissue transplantation have emerged. One characteristic shared by intrinsic reparative processes and the new surgical therapies is an apparent lack of lateral integration of repair or graft tissue with the host cartilage that can lead to poor prognosis. Many factors have been cited as impeding cartilage:cartilage integration including; chondrocyte cell death, chondrocyte dedifferentiation, the nature of the collagenous and proteoglycan networks that constitute the extracellular matrix, the type of biomaterial scaffold employed in repair and the origin of the cells used to repopulate the defect or lesion. This review addresses the principal intrinsic and extrinsic factors that impede integration and describe how manipulation of these factors using a host of strategies can positively influence cartilage integration.

  9. Development of artificial articular cartilage

    Indian Academy of Sciences (India)

    Biswajit Bera

    2009-10-01

    The present study describes the development of artificial articular cartilage on the basis of mimicking structural gel properties and mechanical gel properties of natural articular cartilage. It is synthesized from PVA/Si nanocomposite containing 20% Tetra ethoxy silane (TEOS) by sol–gel method. Mechanical strength of Poly(vinyl alcohol), PVA is improved up to 35 MPa. Manufacturing method is adopted considering colloidal stability of nano silica particle in PVA sol at specific pH = 1. An adhesive is also prepared from PVA/Si nanocomposite containing 40% TEOS for firm attachment of artificial articular cartilage on underlying bone with high bond strength.

  10. Tissue engineering of cartilages using biomatrices

    DEFF Research Database (Denmark)

    Melrose, J.; Chuang, C.; Whitelock, J.

    2008-01-01

    Tissue engineering is an exciting new cross-disciplinary methodology which applies the principles of engineering and structure-function relationships between normal and pathological tissues to develop biological substitute to restore, maintain or improve tissue function. Tissue engineering...... therefore involves a melange of approaches encompassing developmental biology, tissue mechanics, medicine, cell differentiation and survival biology, mechanostransduction and nano-fabrication technology. The central tissue of interest in this review is cartilage. Traumatic injuries, congenital abnormalities...... and age-related degenerative diseases can all lead to cartilage loss; however, the low cell density and very limited self-renewal capacity of cartilage necessitate the development of effective therapeutic repair strategies for this tissue. The ontogeny of the chondrocyte, which is the cell that provides...

  11. Joint homeostasis in tissue engineering for cartilage repair

    NARCIS (Netherlands)

    Saris, D.B.F.

    2002-01-01

    Traumatic joint damage, articular cartilage and the research into methods of restoring the articulation are not new topics of interest. For centuries, clinicians have recognized the importance of cartilage damage and sought ways of learning about the normal form and function of hyaline cartilage as

  12. Preparation of Articular Cartilage Specimens for Scanning Electron Microscopy.

    Science.gov (United States)

    Stupina, T A

    2016-08-01

    We developed and adapted a technology for preparation of articular cartilage specimens for scanning electron microscopy. The method includes prefixation processing, fixation, washing, and dehydration of articular cartilage specimens with subsequent treatment in camphene and air-drying. The technological result consists in prevention of deformation of the articular cartilage structures. The method is simpler and cheaper than the known technologies.

  13. Spectrocolorimetric evaluation of repaired articular cartilage after a microfracture

    Directory of Open Access Journals (Sweden)

    Dohi Yoshihiro

    2008-09-01

    Full Text Available Abstract Background In clinical practice, surgeons differentiate color changes in repaired cartilage compared with surrounding intact cartilage, but cannot quantify these color changes. Objective assessments are required. A spectrocolorimeter was used to evaluate whether intact and repaired cartilage can be quantified. Findings We investigated the use of a spectrocolorimeter and the application of two color models (L* a* b* colorimetric system and spectral reflectance distribution to describe and quantify articular cartilage. In this study, we measured the colors of intact and repaired cartilage after a microfracture. Histologically, the repaired cartilage was a mixture of fibrocartilage and hyaline cartilage. In the L* a* b* colorimetric system, the L* and a* values recovered to close to the values of intact cartilage, whereas the b* value decreased over time after the operation. Regarding the spectral reflectance distribution at 12 weeks after the operation, the repaired cartilage had a higher spectral reflectance ratio than intact cartilage between wavelengths of 400 to 470 nm. Conclusion This study reports the first results regarding the relationship between spectrocolorimetric evaluation and the histological findings of repair cartilage after a microfracture. Our findings demonstrate the ability of spectrocolorimetric measurement to judge the repair cartilage after treatment on the basis of objective data such as the L*, a* and b* values and the SRP as a coincidence index of the spectral reflectance curve.

  14. Repairing articular cartilage defects with tissue-engineering cartilage in rabbits

    Institute of Scientific and Technical Information of China (English)

    SONG Hong-xing; LI Fo-bao; SHEN Hui-liang; LIAO Wei-ming; LIU Miao; WANG Min; CAO Jun-ling

    2006-01-01

    Objective: To investigate the effect of cancellous bone matrix gelatin (BMG) engineered with allogeneic chondrocytes in repairing articular cartilage defects in rabbits.Methods: Chondrocytes were seeded onto three-dimensional cancellous BMG and cultured in vitro for 12 days to prepare BMG-chondrocyte complexes. Under anesthesia with 2.5% pentobarbital sodium (1 ml/kg body weight), articular cartilage defects were made on the right knee joints of 38 healthy New Zealand white rabbits (regardless of sex, aged 4-5 months and weighing 2.5-3 kg) and the defects were then treated with 2.5 % trypsin.Then BMG-chondrocyte complex (Group A, n=18 ),BMG ( Group B, n=10), and nothing ( Group C, n=10)were implanted into the cartilage defects, respectively. The repairing effects were assessed by macroscopic, histologic,transmission electron microscopic (TEM) observation,immunohistochemical examination and in situ hybridization detection, respectively, at 2, 4, 8, 12 and 24 weeks after operation.Results: Cancellous BMG was degraded within 8 weeks after operation. In Group A, lymphocyte infiltration was observed around the graft. At 24 weeks after operation, the cartilage defects were repaired by cartilage tissues and the articular cartilage and subchondral bone were soundly healed. Proteoglycan and type Ⅱ collagen were detected in the matrix of the repaired tissues by Safranin-O staining and immunohistochemical staining,respectively. In situ hybridization proved gene expression of type Ⅱ collagen in the cytoplasm of chondrocytes in the repaired tissues. TEM observation showed that chondrocytes and cartilage matrix in repaired tissues were almost same as those in the normal articular cartilage. In Group B, the defects were repaired by cartilage-fibrous tissues. In Group C, the defects were repaired only by fibrous tissues.Conclusions : Cancellous BMG can be regarded as the natural cell scaffolds for cartilage tissue engineering.Articular cartilage defects can be repaired by

  15. Semi-automatic knee cartilage segmentation

    Science.gov (United States)

    Dam, Erik B.; Folkesson, Jenny; Pettersen, Paola C.; Christiansen, Claus

    2006-03-01

    Osteo-Arthritis (OA) is a very common age-related cause of pain and reduced range of motion. A central effect of OA is wear-down of the articular cartilage that otherwise ensures smooth joint motion. Quantification of the cartilage breakdown is central in monitoring disease progression and therefore cartilage segmentation is required. Recent advances allow automatic cartilage segmentation with high accuracy in most cases. However, the automatic methods still fail in some problematic cases. For clinical studies, even if a few failing cases will be averaged out in the overall results, this reduces the mean accuracy and precision and thereby necessitates larger/longer studies. Since the severe OA cases are often most problematic for the automatic methods, there is even a risk that the quantification will introduce a bias in the results. Therefore, interactive inspection and correction of these problematic cases is desirable. For diagnosis on individuals, this is even more crucial since the diagnosis will otherwise simply fail. We introduce and evaluate a semi-automatic cartilage segmentation method combining an automatic pre-segmentation with an interactive step that allows inspection and correction. The automatic step consists of voxel classification based on supervised learning. The interactive step combines a watershed transformation of the original scan with the posterior probability map from the classification step at sub-voxel precision. We evaluate the method for the task of segmenting the tibial cartilage sheet from low-field magnetic resonance imaging (MRI) of knees. The evaluation shows that the combined method allows accurate and highly reproducible correction of the segmentation of even the worst cases in approximately ten minutes of interaction.

  16. Rhinoplasty: congenital deficiencies of the alar cartilage.

    Science.gov (United States)

    Kosins, Aaron M; Daniel, Rollin K; Sajjadian, Ali; Helms, Jill

    2013-08-01

    Congenital deficiencies of the alar cartilages are rare and often visible at birth but can occasionally present later. The authors review the anatomical development and discuss the incidence and treatment of congenital defects within the alar cartilages seen in rhinoplasty cases. The charts of 869 consecutive patients who underwent open rhinoplasty were retrospectively reviewed, and 8 cases of congenital defects of the alar cartilage within the middle crura were identified. Intraoperative photographs were taken of the alar deformities, and each patient underwent surgical correction. To simplify analysis, a classification of the defects was developed. A division was a cleft in the continuity of the alar cartilage with the 2 ends separate. A gap was a true absence of cartilage ranging from 1 to 4 mm, which can be accurately assessed in unilateral cases. A segmental loss was a defect greater than 4 mm. The 8 cases of deformity could be classified as 4 divisions, 3 gaps, and 1 segmental loss. None of the patients had a history of prior nasal trauma or nasal surgery. Six patients were women and 2 patients were men. In all cases, adequate projection and stability were achieved with a columellar strut. Asymmetry was minimized through concealer or tip grafts. There were no complications. Surgeons performing rhinoplasty surgery will encounter and should be prepared to deal with unexpected congenital defects of the alar cartilage. These defects within the middle crura will require stabilization with a columellar strut and, often, coverage with a concealer tip graft. We speculate that the cause of these defects is a disruption of the hedgehog signals that may arrest the condensation or block the differentiation of the underlying neural crest cells.

  17. [Chondrocyte mecanobiology. Application in cartilage tissue engineering].

    Science.gov (United States)

    Stoltz, Jean François; Netter, Patrick; Huselstein, Céline; de Isla, Natalia; Wei Yang, Jing; Muller, Sylvaine

    2005-11-01

    Cartilage is a hydrated connective tissue that withstands and distributes mechanical forces within joints. Chondrocytes utilize mechanical signals to maintain cartilaginous tissue homeostasis. They regulate their metabolic activity through complex biological and biophysical interactions with the extracellular matrix (ECM). Some mechanotransduction mechanisms are known, while many others no doubt remain to be discovered. Various aspects of chondrocyte mechanobiology have been applied to tissue engineering, with the creation of replacement tissue in vitro from bioresorbable or non-bioresorbable scaffolds and harvested cells. The tissues are maintained in a near-physiologic mechanical and biochemical environment. This paper is an overview of both chondrocyte mechanobiology and cartilage tissue engineering

  18. Body weight independently affects articular cartilage catabolism.

    Science.gov (United States)

    Denning, W Matt; Winward, Jason G; Pardo, Michael Becker; Hopkins, J Ty; Seeley, Matthew K

    2015-06-01

    Although obesity is associated with osteoarthritis, it is unclear whether body weight (BW) independently affects articular cartilage catabolism (i.e., independent from physiological factors that also accompany obesity). The primary purpose of this study was to evaluate the independent effect of BW on articular cartilage catabolism associated with walking. A secondary purpose was to determine how decreased BW influenced cardiovascular response due to walking. Twelve able-bodied subjects walked for 30 minutes on a lower-body positive pressure treadmill during three sessions: control (unadjusted BW), +40%BW, and -40%BW. Serum cartilage oligomeric matrix protein (COMP) was measured immediately before (baseline) and after, and 15 and 30 minutes after the walk. Heart rate (HR) and rate of perceived exertion (RPE) were measured every three minutes during the walk. Relative to baseline, average serum COMP concentration was 13% and 5% greater immediately after and 15 minutes after the walk. Immediately after the walk, serum COMP concentration was 14% greater for the +40%BW session than for the -40%BW session. HR and RPE were greater for the +40%BW session than for the other two sessions, but did not differ between the control and -40%BW sessions. BW independently influences acute articular cartilage catabolism and cardiovascular response due to walking: as BW increases, so does acute articular cartilage catabolism and cardiovascular response. These results indicate that lower-body positive pressure walking may benefit certain individuals by reducing acute articular cartilage catabolism, due to walking, while maintaining cardiovascular response. Key pointsWalking for 30 minutes with adjustments in body weight (normal body weight, +40% and -40% body weight) significantly influences articular cartilage catabolism, measured via serum COMP concentration.Compared to baseline levels, walking with +40% body weight and normal body weight both elicited significant increases in

  19. Overexpression of hsa-miR-148a promotes cartilage production and inhibits cartilage degradation by osteoarthritic chondrocytes

    NARCIS (Netherlands)

    Vonk, Lucienne A.; Kragten, Angela H.M.; Dhert, Wouter J.; Saris, Daniël B.F.; Creemers, Laura B.

    2014-01-01

    Objective Hsa-miR-148a expression is decreased in OA cartilage, but its functional role in cartilage has never been studied. Therefore, our aim was to investigate the effects of overexpressing hsa-miR-148a on cartilage metabolism of OA chondrocytes. Design OA chondrocytes were transfected with a

  20. Overexpression of hsa-miR-148a promotes cartilage production and inhibits cartilage degradation by osteoarthritic chondrocytes

    NARCIS (Netherlands)

    Vonk, L A; Kragten, A H M; Dhert, W J A|info:eu-repo/dai/nl/10261847X; Saris, D B F; Creemers, L B

    OBJECTIVE: Hsa-miR-148a expression is decreased in Osteoarthritis (OA) cartilage, but its functional role in cartilage has never been studied. Therefore, our aim was to investigate the effects of overexpressing hsa-miR-148a on cartilage metabolism of OA chondrocytes. DESIGN: OA chondrocytes were

  1. Abordagem ortopédica das deformidades pectus: 32 anos de estudos Orthopaedic approach to pectus deformities: 32 years of studies

    Directory of Open Access Journals (Sweden)

    Sydney Abrão Haje

    2009-06-01

    of anterior chest wall bones and cartilages were detected in imaging studies. Heredity, and biomechanical factors, like respiratory disturbances and scoliosis were noticed in more than 40% of the patients. The method of dynamic remodeling of the thorax - compressive orthoses simultaneously to exercises practice - was indicated in 2453 patients. Concomitant treatment with bending brace was provided in patients with 20º to 52º scoliosis. Of pectus patients with treatment indication, 1717 returned for re-evaluation: 1632 children and adolescents and 85 adults. Good results were seen in 60.6% of children and adolescents and in 27% of adults treated. No scoliosis patient presented curve worsening, and a case of 52º presented an improvement of 20º in the scoliosis with the treatment. Disturbances in the growth of the sternum and costal arches, as well as biomechanical factors related to the pathogenesis of pectus deformities, demonstrate how these deformities are correlated to orthopaedics. Appropriate evaluation of the anterior chest wall and concomitant treatment with bending brace are recommended in the presence of scoliosis. The dynamic remodeling method of the thorax requires a protocol of medical actions for a successful treatment.

  2. Advances and Prospects in Stem Cells for Cartilage Regeneration

    Directory of Open Access Journals (Sweden)

    Mingjie Wang

    2017-01-01

    Full Text Available The histological features of cartilage call attention to the fact that cartilage has a little capacity to repair itself owing to the lack of a blood supply, nerves, or lymphangion. Stem cells have emerged as a promising option in the field of cartilage tissue engineering and regenerative medicine and could lead to cartilage repair. Much research has examined cartilage regeneration utilizing stem cells. However, both the potential and the limitations of this procedure remain controversial. This review presents a summary of emerging trends with regard to using stem cells in cartilage tissue engineering and regenerative medicine. In particular, it focuses on the characterization of cartilage stem cells, the chondrogenic differentiation of stem cells, and the various strategies and approaches involving stem cells that have been used in cartilage repair and clinical studies. Based on the research into chondrocyte and stem cell technologies, this review discusses the damage and repair of cartilage and the clinical application of stem cells, with a view to increasing our systematic understanding of the application of stem cells in cartilage regeneration; additionally, several advanced strategies for cartilage repair are discussed.

  3. Generating cartilage repair from pluripotent stem cells.

    Science.gov (United States)

    Cheng, Aixin; Hardingham, Timothy E; Kimber, Susan J

    2014-08-01

    The treatment of degeneration and injury of articular cartilage has been very challenging for scientists and surgeons. As an avascular and hypocellular tissue, cartilage has a very limited capacity for self-repair. Chondrocytes are the only cell type in cartilage, in which they are surrounded by the extracellular matrix that they secrete and assemble. Autologous chondrocyte implantation for cartilage defects has achieved good results, but the limited resources and complexity of the procedure have hindered wider application. Stem cells form an alternative to chondrocytes as a source of chondrogenic cells due to their ability to proliferate extensively while retaining the potential for differentiation. Adult stem cells such as mesenchymal stem cells have been differentiated into chondrocytes, but the limitations in their proliferative ability and the heterogeneous cell population hinder their adoption as a prime alternative source for generating chondrocytes. Human embryonic stem cells (hESCs) are attractive as candidates for cell replacement therapy because of their unlimited self-renewal and ability for differentiation into mesodermal derivatives as well as other lineages. In this review, we focus on current protocols for chondrogenic differentiation of ESCs, in particular the chemically defined culture system developed in our lab that could potentially be adapted for clinical application.

  4. PRP and Articular Cartilage: A Clinical Update

    Science.gov (United States)

    Rossi, Roberto; Castoldi, Filippo; Michielon, Gianni

    2015-01-01

    The convincing background of the recent studies, investigating the different potentials of platelet-rich plasma, offers the clinician an appealing alternative for the treatment of cartilage lesions and osteoarthritis. Recent evidences in literature have shown that PRP may be helpful both as an adjuvant for surgical treatment of cartilage defects and as a therapeutic tool by intra-articular injection in patients affected by osteoarthritis. In this review, the authors introduce the trophic and anti-inflammatory properties of PRP and the different products of the available platelet concentrates. Then, in a complex scenario made of a great number of clinical variables, they resume the current literature on the PRP applications in cartilage surgery as well as the use of intra-articular PRP injections for the conservative treatment of cartilage degenerative lesions and osteoarthritis in humans, available as both case series and comparative studies. The result of this review confirms the fascinating biological role of PRP, although many aspects yet remain to be clarified and the use of PRP in a clinical setting has to be considered still exploratory. PMID:26075244

  5. Oxygen, nitric oxide and articular cartilage

    Directory of Open Access Journals (Sweden)

    B Fermor

    2007-04-01

    Full Text Available Molecular oxygen is required for the production of nitric oxide (NO, a pro-inflammatory mediator that is associated with osteoarthritis and rheumatoid arthritis. To date there has been little consideration of the role of oxygen tension in the regulation of nitric oxide production associated with arthritis. Oxygen tension may be particularly relevant to articular cartilage since it is avascular and therefore exists at a reduced oxygen tension. The superficial zone exists at approximately 6% O2, while the deep zone exists at less than 1% O2. Furthermore, oxygen tension can alter matrix synthesis, and the material properties of articular cartilage in vitro.The increase in nitric oxide associated with arthritis can be caused by pro-inflammatory cytokines and mechanical stress. Oxygen tension significantly alters endogenous NO production in articular cartilage, as well as the stimulation of NO in response to both mechanical loading and pro-inflammatory cytokines. Mechanical loading and pro-inflammatory cytokines also increase the production of prostaglandin E2 (PGE2. There is a complex interaction between NO and PGE2, and oxygen tension can alter this interaction. These findings suggest that the relatively low levels of oxygen within the joint may have significant influences on the metabolic activity, and inflammatory response of cartilage as compared to ambient levels. A better understanding of the role of oxygen in the production of inflammatory mediators in response to mechanical loading, or pro-inflammatory cytokines, may aid in the development of strategies for therapeutic intervention in arthritis.

  6. Fetal jaw movement affects condylar cartilage development.

    Science.gov (United States)

    Habib, H; Hatta, T; Udagawa, J; Zhang, L; Yoshimura, Y; Otani, H

    2005-05-01

    Using a mouse exo utero system to examine the effects of fetal jaw movement on the development of condylar cartilage, we assessed the effects of restraint of the animals' mouths from opening, by suture, at embryonic day (E)15.5. We hypothesized that pre-natal jaw movement is an important mechanical factor in endochondral bone formation of the mandibular condyle. Condylar cartilage was reduced in size, and the bone-cartilage margin was ill-defined in the sutured group at E18.5. Volume, total number of cells, and number of 5-bromo-2'-deoxyuridine-positive cells in the mesenchymal zone were lower in the sutured group than in the non-sutured group at E16.5 and E18.5. Hypertrophic chondrocytes were larger, whereas fewer apoptotic chondrocytes and osteoclasts were observed in the hypertrophic zone in the sutured group at E18.5. Analysis of our data revealed that restricted fetal TMJ movement influences the process of endochondral bone formation of condylar cartilage.

  7. Cartilage repair: Generations of autologous chondrocyte transplantation

    Energy Technology Data Exchange (ETDEWEB)

    Marlovits, Stefan [Department of Traumatology, Center for Joint and Cartilage, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria)]. E-mail: stefan.marlovits@meduniwien.ac.at; Zeller, Philip [Department of Traumatology, Center for Joint and Cartilage, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Singer, Philipp [Department of Traumatology, Center for Joint and Cartilage, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Resinger, Christoph [Department of Traumatology, Center for Joint and Cartilage, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Vecsei, Vilmos [Department of Traumatology, Center for Joint and Cartilage, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria)

    2006-01-15

    Articular cartilage in adults has a limited capacity for self-repair after a substantial injury. Surgical therapeutic efforts to treat cartilage defects have focused on delivering new cells capable of chondrogenesis into the lesions. Autologous chondrocyte transplantation (ACT) is an advanced cell-based orthobiologic technology used for the treatment of chondral defects of the knee that has been in clinical use since 1987 and has been performed on 12,000 patients internationally. With ACT, good to excellent clinical results are seen in isolated post-traumatic lesions of the knee joint in the younger patient, with the formation of hyaline or hyaline-like repair tissue. In the classic ACT technique, chondrocytes are isolated from small slices of cartilage harvested arthroscopically from a minor weight-bearing area of the injured knee. The extracellular matrix is removed by enzymatic digestion, and the cells are then expanded in monolayer culture. Once a sufficient number of cells has been obtained, the chondrocytes are implanted into the cartilage defect, using a periosteal patch over the defect as a method of cell containment. The major complications are periosteal hypertrophy, delamination of the transplant, arthrofibrosis and transplant failure. Further improvements in tissue engineering have contributed to the next generation of ACT techniques, where cells are combined with resorbable biomaterials, as in matrix-associated autologous chondrocyte transplantation (MACT). These biomaterials secure the cells in the defect area and enhance their proliferation and differentiation.

  8. In vivo generation of cartilage from periosteum

    NARCIS (Netherlands)

    Emans, PJ; Surtel, DAM; Frings, EJJ; Bulstra, SK; Kuijer, R

    Periosteum has chondrogenic and osteogenic potential and plays an important role in fracture healing. The purpose of this study was to evaluate the reactive tissue formed after damaging the periosteum. Damaging the periosteum may be a way to generate ectopic cartilage or bone, which may be useful

  9. Advanced Strategies for Articular Cartilage Defect Repair

    Directory of Open Access Journals (Sweden)

    Fergal J. O'Brien

    2013-02-01

    Full Text Available Articular cartilage is a unique tissue owing to its ability to withstand repetitive compressive stress throughout an individual’s lifetime. However, its major limitation is the inability to heal even the most minor injuries. There still remains an inherent lack of strategies that stimulate hyaline-like articular cartilage growth with appropriate functional properties. Recent scientific advances in tissue engineering have made significant steps towards development of constructs for articular cartilage repair. In particular, research has shown the potential of biomaterial physico-chemical properties significantly influencing the proliferation, differentiation and matrix deposition by progenitor cells. Accordingly, this highlights the potential of using such properties to direct the lineage towards which such cells follow. Moreover, the use of soluble growth factors to enhance the bioactivity and regenerative capacity of biomaterials has recently been adopted by researchers in the field of tissue engineering. In addition, gene therapy is a growing area that has found noteworthy use in tissue engineering partly due to the potential to overcome some drawbacks associated with current growth factor delivery systems. In this context, such advanced strategies in biomaterial science, cell-based and growth factor-based therapies that have been employed in the restoration and repair of damaged articular cartilage will be the focus of this review article.

  10. PRP and Articular Cartilage: A Clinical Update

    Directory of Open Access Journals (Sweden)

    Antonio Marmotti

    2015-01-01

    Full Text Available The convincing background of the recent studies, investigating the different potentials of platelet-rich plasma, offers the clinician an appealing alternative for the treatment of cartilage lesions and osteoarthritis. Recent evidences in literature have shown that PRP may be helpful both as an adjuvant for surgical treatment of cartilage defects and as a therapeutic tool by intra-articular injection in patients affected by osteoarthritis. In this review, the authors introduce the trophic and anti-inflammatory properties of PRP and the different products of the available platelet concentrates. Then, in a complex scenario made of a great number of clinical variables, they resume the current literature on the PRP applications in cartilage surgery as well as the use of intra-articular PRP injections for the conservative treatment of cartilage degenerative lesions and osteoarthritis in humans, available as both case series and comparative studies. The result of this review confirms the fascinating biological role of PRP, although many aspects yet remain to be clarified and the use of PRP in a clinical setting has to be considered still exploratory.

  11. Nonspecific otalgia: Indication for cartilage tympanoplasty

    Directory of Open Access Journals (Sweden)

    Rauf Ahmad

    2015-01-01

    Full Text Available Introduction: Myringoplasty and tympanoplasty are commonly performed otologic surgical procedures. The aim of this study was to analyze the influence of nonspecific otalgia on the successful autologous conchal cartilage and temporalis fascia graft take up in type-1 tympanoplasty. Materials and Methods: A total of 250 adult patients who met the inclusion criteria were enrolled for this study. Patients were placed in two groups (otalgia and nonotalgia group depending upon the history of otalgia. Patients in both groups were operated (type-1 tympanoplasty using randomly either temporalis fascia or conchal cartilage as the graft material. Follow-up of patients was done after 3 weeks, 6 weeks, and 3 months of surgery to check the status of graft take up. Result: Our study shows that patients in otalgia group in which autologous temporalis fascia was used as the graft material, the majority of patients had graft necrosis by 3 months after surgery (9.6% success only. Whereas patients of the same group in which autologous conchal cartilage was used as the graft material, successful graft take up was in 93.5% patients after 3 months of surgery. Our study shows that there was not much difference in using autologous temporalis fascia or autologous conchal cartilage on successful graft take up in nonotolgia group of patients, with success rate of 97.89% and 97.84%, respectively.

  12. Spatially resolved elemental distributions in articular cartilage

    Science.gov (United States)

    Reinert, T.; Reibetanz, U.; Vogt, J.; Butz, T.; Werner, A.; Gründer, W.

    2001-07-01

    In this study, the nuclear microprobe technique is employed to analyse the chemistry of joint cartilage in order to correlate internal structures of the collagen network with the elemental distribution. The samples were taken from pig's knee joint. 30 μm thick coronar cross-sections were prepared by means of cryosectioning and freeze-drying. We performed simultaneously particle induced X-ray emission (PIXE), Rutherford backscattering spectrometry (RBS) and elastic recoil detection analysis (ERDA). Thus we obtained spatially resolved distributions of the elements H, C, N, O, P, S, Cl, K and Ca. The main components of the organic matrix are H, C, N and O. It was shown that their relations vary with the cartilage structures. It could be shown that zones with aligned collagen fibrils contain less sulphur and potassium but more chlorine. The higher chlorine concentration is remarkable because newest biochemical studies found that hypochloric acid is involved in cartilage degradation. Furthermore, the calcium distribution is still of great interest. Its correlation to structural changes inside the cartilage is still being discussed. It could be disproved that zones of higher calcium concentration are related to the aligned structures of the collagen network.

  13. Zn deposition at the bone-cartilage interface in equine articular cartilage

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, D.A. [Department of Physics, University of Surrey, Guildford, GU2 7XH (United Kingdom)], E-mail: D.A.Bradley@surrey.ac.uk; Moger, C.J.; Winlove, C.P. [School of Physics, University of Exeter, Exeter, EX4 4QL (United Kingdom)

    2007-09-21

    In articular cartilage metalloproteinases, a family of enzymes whose function relies on the presence of divalent cations such as Zn and Ca plays a central role in the normal processes of growth and remodelling and in the degenerative and inflammatory processes of arthritis. Another important enzyme, alkaline phosphatase, involved in cartilage mineralisation also relies on metallic cofactors. The local concentration of divalent cations is therefore of considerable interest in cartilage pathophysiology and several authors have used synchrotron X-ray fluorescence (XRF) to map metal ion distributions in bone and cartilage. We report use of a bench-top XRF analytical microscope, providing spatial resolution of 10 {mu}m and applicable to histological sections, facilitating correlation of the distribution with structural features. The study seeks to establish the elemental distribution in normal tissue as a precursor to investigation of changes in disease. For six samples prepared from equine metacarpophalangeal joint, we observed increased concentration of Zn and Sr ions around the tidemark between normal and mineralised cartilage. This is believed to be an active site of remodelling but its composition has hitherto lacked detailed characterization. We also report preliminary results on two of the samples using Proton-Induced X-ray Emission (PIXE). This confirms our previous observations using synchrotron-based XRF of enhanced deposition of Sr and Zn at the surface of the subchondral bone and in articular cartilage.

  14. Recent developments in scaffold-guided cartilage tissue regeneration.

    Science.gov (United States)

    Liao, Jinfeng; Shi, Kun; Ding, Qiuxia; Qu, Ying; Luo, Feng; Qian, Zhiyong

    2014-10-01

    Articular cartilage repair is one of the most challenging problems in biomedical engineering because the regenerative capacity of cartilage is intrinsically poor. The lack of efficient treatment modalities motivates researches into cartilage tissue engineering such as combing cells, scaffolds and growth factors. In this review we summarize the current developments on scaffold systems available for cartilage tissue engineering. The factors that are critical to successfully design an ideal scaffold for cartilage regeneration were discussed. Then we present examples of selected material types (natural polymers and synthetic polymers) and fabricated forms of the scaffolds (three-dimensional scaffolds, micro- or nanoparticles, and their composites). In the end of review, we conclude with an overview of the ways in which biomedical nanotechnology is widely applied in cartilage tissue engineering, especially in the design of composite scaffolds. This review attempts to provide recommendations on the combination of qualities that would produce the ideal scaffold system for cartilage tissue engineering.

  15. Repair of articular cartilage defects in rabbits through tissue-engineered cartilage constructed with chitosan hydrogel and chondrocytes%新型壳聚糖水凝胶结合软骨细胞修复兔关节软骨缺损的实验研究

    Institute of Scientific and Technical Information of China (English)

    Ming ZHAO; Zhu CHEN; Kang LIU; Yu-qing WAN; Xu-dong LI; Xu-wei LUO; Yi-guang BAI; Ze-long YANG; Gang FENG

    2015-01-01

    Objective: In our previous work, we prepared a type of chitosan hydrogel with excelent biocompatibility. In this study, tissue-engineered cartilage constructed with this chitosan hydrogel and costal chondrocytes was used to repair the articular cartilage defects. Methods: Chitosan hydrogels were prepared with a crosslinker formed by com-bining 1,6-disocyanatohexane and polyethylene glycol. Chitosan hydrogel scaffold was seeded with rabbit chondro-cytes that had been cultured for one weekin vitro to form the preliminary tissue-engineered cartilage. This preliminary tissue-engineered cartilage was then transplanted into the defective rabbit articular cartilage. There were three treatment groups: the experimental group received preliminary tissue-engineered cartilage; the blank group received pure chitosan hydrogels; and, the control group had received no implantation. The knee joints were harvested at predetermined time. The repaired cartilage was analyzed through gross morphology, histologicaly and immuno-histochemicaly. The repairs were scored according to the international cartilage repair society (ICRS) standard. Results: The gross morphology results suggested that the defects were repaired completely in the experimental group after twelve weeks. The regenerated tissue connected closely with subchondral bone and the boundary with normal tissue was fuzzy. The cartilage lacuna in the regenerated tissue was similar to normal cartilage lacuna. The results of ICRS gross and histological grading showed that there were significant differences among the three groups (P  创新点:利用自主研发的具有良好生物相容性和稳定性的壳聚糖水凝胶与软骨细胞,在体外初步构建组织工程软骨,并尝试利用其修复缺损的关节软骨,从而为关节软骨缺损的修复提供了一种新的治疗方法。  方法:取兔肋软骨体外培养扩增,获得P2代软骨细胞,将其种植到冻干的壳聚糖水凝胶上,体

  16. Facilitating cartilage volume measurement using MRI

    Energy Technology Data Exchange (ETDEWEB)

    Maataoui, Adel, E-mail: adel.maataoui@gmx.d [Institute for Diagnostic and Interventional Radiology, Johann Wolfgang Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main (Germany); Gurung, Jessen, E-mail: jessen.gurung@gmx.d [Institute for Diagnostic and Interventional Radiology, Johann Wolfgang Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main (Germany); Ackermann, Hanns, E-mail: h.ackermann@add.uni-frankfurt.d [Institute for Epidemiology and Medical Statistics, Johann Wolfgang Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main (Germany); Abolmaali, Nasreddin [Biological and Molecular Imaging, ZIK OncoRay - Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307 Dresden (Germany); Kafchitsas, Konstantinos [Department of Orthopedics and Orthopedic Surgery, Johannes Gutenberg University, Langenbeckstrasse 1, 55131 Mainz (Germany); Vogl, Thomas J., E-mail: t.vogl@em.uni-frankfurt.d [Institute for Diagnostic and Interventional Radiology, Johann Wolfgang Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main (Germany); Khan, M. Fawad, E-mail: fawad@gmx.d [Institute for Diagnostic and Interventional Radiology, Johann Wolfgang Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main (Germany)

    2010-08-15

    Purpose: To compare quantitative cartilage volume measurement (CVM) using different slice thicknesses. Materials and methods: Ten knees were scanned with a 1.5 T MRI (Sonata, Siemens, Erlangen, Germany) using a 3D gradient echo sequence (FLASH, fast low-angle shot). Cartilage volume of the medial and lateral tibial plateau was measured by two independent readers in 1.5 mm, 3.0 mm and 5.0 mm slices using the Argus software application. Accuracy and time effectiveness served as control parameters. Results: Determining cartilage volume, time for calculation diminished for the lateral tibial plateau from 384.6 {+-} 127.7 s and 379.1 {+-} 117.6 s to 214.9 {+-} 109.9 s and 213.9 {+-} 102.2 s to 122.1 {+-} 60.1 s and 126.8 {+-} 56.2 s and for the medial tibial plateau from 465.0 {+-} 147.7 s and 461.8 {+-} 142.7 s to 214.0 {+-} 67.9 s and 208.9 {+-} 66.2 s to 132.6 {+-} 41.5 s and 130.6 {+-} 42.0 s measuring 1.5 mm, 3 mm and 5 mm slices, respectively. No statistically significant difference between cartilage volume measurements was observed (p > 0.05) while very good inter-reader correlation was evaluated. Conclusion: CVM using 1.5 mm slices provides no higher accuracy than cartilage volume measurement in 5 mm slices while an overall time saving up to 70% is possible.

  17. Accuracy of 3D cartilage models generated from MR images is dependent on cartilage thickness: laser scanner based validation of in vivo cartilage.

    Science.gov (United States)

    Koo, Seungbum; Giori, Nicholas J; Gold, Garry E; Dyrby, Chris O; Andriacchi, Thomas P

    2009-12-01

    Cartilage morphology change is an important biomarker for the progression of osteoarthritis. The purpose of this study was to assess the accuracy of in vivo cartilage thickness measurements from MR image-based 3D cartilage models using a laser scanning method and to test if the accuracy changes with cartilage thickness. Three-dimensional tibial cartilage models were created from MR images (in-plane resolution of 0.55 mm and thickness of 1.5 mm) of osteoarthritic knees of ten patients prior to total knee replacement surgery using a semi-automated B-spline segmentation algorithm. Following surgery, the resected tibial plateaus were laser scanned and made into 3D models. The MR image and laser-scan based models were registered to each other using a shape matching technique. The thicknesses were compared point wise for the overall surface. The linear mixed-effects model was used for statistical test. On average, taking account of individual variations, the thickness measurements in MRI were overestimated in thinner (<2.5 mm) regions. The cartilage thicker than 2.5 mm was accurately predicted in MRI, though the thick cartilage in the central regions was underestimated. The accuracy of thickness measurements in the MRI-derived cartilage models systemically varied according to native cartilage thickness.

  18. Hydrogels as a Replacement Material for Damaged Articular Hyaline Cartilage

    Directory of Open Access Journals (Sweden)

    Charlotte M. Beddoes

    2016-06-01

    Full Text Available Hyaline cartilage is a strong durable material that lubricates joint movement. Due to its avascular structure, cartilage has a poor self-healing ability, thus, a challenge in joint recovery. When severely damaged, cartilage may need to be replaced. However, currently we are unable to replicate the hyaline cartilage, and as such, alternative materials with considerably different properties are used. This results in undesirable side effects, including inadequate lubrication, wear debris, wear of the opposing articular cartilage, and weakening of the surrounding tissue. With the number of surgeries for cartilage repair increasing, a need for materials that can better mimic cartilage, and support the surrounding material in its typical function, is becoming evident. Here, we present a brief overview of the structure and properties of the hyaline cartilage and the current methods for cartilage repair. We then highlight some of the alternative materials under development as potential methods of repair; this is followed by an overview of the development of tough hydrogels. In particular, double network (DN hydrogels are a promising replacement material, with continually improving physical properties. These hydrogels are coming closer to replicating the strength and toughness of the hyaline cartilage, while offering excellent lubrication. We conclude by highlighting several different methods of integrating replacement materials with the native joint to ensure stability and optimal behaviour.

  19. NONLINEAR SPECTRAL IMAGING OF ELASTIC CARTILAGE IN RABBIT EARS

    Directory of Open Access Journals (Sweden)

    JING CHEN

    2013-07-01

    Full Text Available Elastic cartilage in the rabbit external ear is an important animal model with attractive potential value for researching the physiological and pathological states of cartilages especially during wound healing. In this work, nonlinear optical microscopy based on two-photon excited fluorescence and second harmonic generation were employed for imaging and quantifying the intact elastic cartilage. The morphology and distribution of main components in elastic cartilage including cartilage cells, collagen and elastic fibers were clearly observed from the high-resolution two-dimensional nonlinear optical images. The areas of cell nuclei, a parameter related to the pathological changes of normal or abnormal elastic cartilage, can be easily quantified. Moreover, the three-dimensional structure of chondrocytes and matrix were displayed by constructing three-dimensional image of cartilage tissue. At last, the emission spectra from cartilage were obtained and analyzed. We found that the different ratio of collagen over elastic fibers can be used to locate the observed position in the elastic cartilage. The redox ratio based on the ratio of nicotinamide adenine dinucleotide (NADH over flavin adenine dinucleotide (FAD fluorescence can also be calculated to analyze the metabolic state of chondrocytes in different regions. Our results demonstrated that this technique has the potential to provide more accurate and comprehensive information for the physiological states of elastic cartilage.

  20. Mechanical properties of hyaline and repair cartilage studied by nanoindentation.

    Science.gov (United States)

    Franke, O; Durst, K; Maier, V; Göken, M; Birkholz, T; Schneider, H; Hennig, F; Gelse, K

    2007-11-01

    Articular cartilage is a highly organized tissue that is well adapted to the functional demands in joints but difficult to replicate via tissue engineering or regeneration. Its viscoelastic properties allow cartilage to adapt to both slow and rapid mechanical loading. Several cartilage repair strategies that aim to restore tissue and protect it from further degeneration have been introduced. The key to their success is the quality of the newly formed tissue. In this study, periosteal cells loaded on a scaffold were used to repair large partial-thickness cartilage defects in the knee joint of miniature pigs. The repair cartilage was analyzed 26 weeks after surgery and compared both morphologically and mechanically with healthy hyaline cartilage. Contact stiffness, reduced modulus and hardness as key mechanical properties were examined in vitro by nanoindentation in phosphate-buffered saline at room temperature. In addition, the influence of tissue fixation with paraformaldehyde on the biomechanical properties was investigated. Although the repair process resulted in the formation of a stable fibrocartilaginous tissue, its contact stiffness was lower than that of hyaline cartilage by a factor of 10. Fixation with paraformaldehyde significantly increased the stiffness of cartilaginous tissue by one order of magnitude, and therefore, should not be used when studying biomechanical properties of cartilage. Our study suggests a sensitive method for measuring the contact stiffness of articular cartilage and demonstrates the importance of mechanical analysis for proper evaluation of the success of cartilage repair strategies.

  1. Cartilage issues in football—today's problems and tomorrow's solutions

    Science.gov (United States)

    Mithoefer, Kai; Peterson, Lars; Zenobi-Wong, Marcy; Mandelbaum, Bert R

    2015-01-01

    Articular cartilage injury is prevalent in football players and results from chronic joint stress or acute traumatic injuries. Articular cartilage injury can often result in progressive painful impairment of joint function and limit sports participation. Management of articular cartilage injury in athletes aims to return the player to competition, and requires effective and durable joint surface restoration that resembles normal hyaline articular cartilage that can withstand the high joint stresses of football. Existing articular cartilage repair techniques can return the athlete with articular cartilage injury to high-impact sports, but treatment does not produce normal articular cartilage, and this limits the success rate and durability of current cartilage repair in athletes. Novel scientific concepts and treatment techniques that apply modern tissue engineering technologies promise further advancement in the treatment of these challenging injuries in the high demand athletic population. We review the current knowledge of cartilage injury pathophysiology, epidemiology and aetiology, and outline existing management algorithms, developing treatment options and future strategies to manage articular cartilage injuries in football players. PMID:25878075

  2. Cartilage damage involving extrusion of mineralisable matrix from the articular calcified cartilage and subchondral bone

    Directory of Open Access Journals (Sweden)

    A Boyde

    2011-05-01

    Full Text Available Arthropathy of the distal articular surfaces of the third metacarpal (Mc3 and metatarsal (Mt3 bones in the Thoroughbred racehorse (Tb is a natural model of repetitive overload arthrosis. We describe a novel pathology that affects the articular calcified cartilage (ACC and subchondral bone (SCB and which is associated with hyaline articular cartilage degeneration.Parasagittal slices cut from the palmar quadrant of the distal condyles of the left Mc3/Mt3 of 39 trained Tbs euthanased for welfare reasons were imaged by point projection microradiography, and backscattered electron (BSE scanning electron microscopy (SEM, light microscopy, and confocal scanning light microscopy. Mechanical properties were studied by nanoindentation. Data on the horses' training and racing career were also collected.Highly mineralised projections were observed extending from cracks in the ACC mineralising front into the hyaline articular cartilage (HAC up to two-thirds the thickness of the HAC, and were associated with focal HAC surface fibrillation directly overlying their site. Nanoindentation identified this extruded matrix to be stiffer than any other mineralised phase in the specimen by a factor of two. The presence of projections was associated with a higher cartilage Mankin histology score (P < 0.02 and increased amounts of gross cartilage loss pathologically on the condyle (P < 0.02. Presence of projections was not significantly associated with: total number of racing seasons, age of horse, amount of earnings, number of days in training, total distance galloped in career, or presence of wear lines.

  3. Articular cartilage collagen: an irreplaceable framework?

    Directory of Open Access Journals (Sweden)

    D R Eyre

    2006-11-01

    Full Text Available Adult articular cartilage by dry weight is two-thirds collagen. The collagen has a unique molecular phenotype. The nascent type II collagen fibril is a heteropolymer, with collagen IX molecules covalently linked to the surface and collagen XI forming the filamentous template of the fibril as a whole. The functions of collagens IX and XI in the heteropolymer are far from clear but, evidently, they are critically important since mutations in COLIX and COLXI genes can result in chondrodysplasia syndromes. Here we review what is known of the collagen assembly and present new evidence that collagen type III becomes covalently added to the polymeric fabric of adult human articular cartilage, perhaps as part of a matrix repair or remodelling process.

  4. Cartilage stem cells: regulation of differentiation.

    Science.gov (United States)

    Solursh, M

    1989-01-01

    The developing limb bud is a useful source of cartilage stem cells for studies on the regulation of chondrogenesis. In high density cultures these cells can progress through all stages of chondrogenesis to produce mineralized hypertrophic cartilage. If the cells are maintained in a spherical shape, single stem cells can progress through a similar sequence. The actin cytoskeleton is implicated in the regulation of chondrogenesis since conditions that favor its disruption promote chondrogenesis and conditions that favor actin assembly inhibit chondrogenesis. Since a number of extracellular matrix receptors mediate effects of the extracellular matrix on cytoskeletal organization and some of these receptors are developmentally regulated, it is proposed that matrix receptor expression plays a central role in the divergence of connective tissue cells during development.

  5. An amidated carboxymethylcellulose hydrogel for cartilage regeneration.

    Science.gov (United States)

    Leone, Gemma; Fini, Milena; Torricelli, Paola; Giardino, Roberto; Barbucci, Rolando

    2008-08-01

    An amidic derivative of carboxymethylcellulose was synthesized (CMCA). The new polysaccharide was obtained by converting a large percentage of carboxylic groups ( approximately 50%) of carboxymethylcellulose into amidic groups rendering the macromolecule quite similar to hyaluronan. Then, the polysaccharide (CMCA) was crosslinked. The behavior of CMCA hydrogel towards normal human articular chondrocytes (NHAC) was in vitro studied monitoring the cell proliferation and synthesis of extra cellular matrix (ECM) components and compared with a hyaluronan based hydrogel (Hyal). An extracellular matrix rich in cartilage-specific collagen and proteoglycans was secreted in the presence of hydrogels. The injectability of the new hydrogels was also analysed. An experimental in vivo model was realized to study the effect of CMCA and Hyal hydrogels in the treatment of surgically created partial thickness chondral defects in the rabbit knee. The preliminary results pointed out that CMCA hydrogel could be considered as a potential compound for cartilage regeneration.

  6. Inflammatory pseudotumoural endotracheal mucormycosis with cartilage damage

    Directory of Open Access Journals (Sweden)

    L-C. Luo

    2009-09-01

    Full Text Available Mucormycosis is a rare opportunistic infection usually associated with immunosuppression, diabetes mellitus or haematological malignancy. Herein, we report an unusual case of mucormycosis in a 46-yr-old male patient with diabetes presenting with an endotracheal mass obstructing the trachea and cartilage damage. Histological examination of the bronchoscopy biopsy specimens revealed invasive mucormycosis. The patient was treated with intravenous amphotericin B followed by removal of the lesion via bronchoscopy.

  7. Lipid Transport and Metabolism in Healthy and Osteoarthritic Cartilage

    Directory of Open Access Journals (Sweden)

    Gabriel Herrero-Beaumont

    2013-10-01

    Full Text Available Cartilage is an avascular tissue and cartilage metabolism depends on molecule diffusion from synovial fluid and subchondral bone. Thus, nutrient availability is limited by matrix permeability according to the size and charge of the molecules. Matrix composition limits the access of molecules to chondrocytes, determining cell metabolism and cartilage maintenance. Lipids are important nutrients in chondrocyte metabolism and are available for these cells through de novo synthesis but also through diffusion from surrounding tissues. Cartilage status and osteoarthritis development depend on lipid availability. This paper reviews lipid transport and metabolism in cartilage. We also analyze signalling pathways directly mediated by lipids and those that involve mTOR pathways, both in normal and osteoarthritic cartilage.

  8. A PURE STRAIN OF CARTILAGE CELLS IN VITRO.

    Science.gov (United States)

    Fischer, A

    1922-09-30

    1. A strain of cartilage cells, obtained from the pars cartilago sclerae of the eye of chick embryos, has been cultivated for more than 3 months in vitro. 2. The initial growth of the cartilage was possible only on the free surface of the coagulum. 3. The hyaline substance disappeared during cultivation in vitro. The succeeding stages of a transformation from small, lymphocyte-like cells into large, spindle-shaped cells were observed. The cartilage cells were spindle-shaped and grew in close contact, forming thin membranes. In surface-grown cartilage cells, the nucleus, usually containing one large nucleolus, stained less deeply than the cytoplasm. 4. The rate of growth of cartilage was slower than that of fibroblasts and epithelium. After cultivation on the surface of the coagulum, the cartilage cells could multiply even when embedded in the coagulum. But their growth was less extensive and uniform.

  9. Technique and results of cartilage shield tympanoplasty

    Directory of Open Access Journals (Sweden)

    Sohil I Vadiya

    2014-01-01

    Full Text Available Aim: Use of cartilage for repair of tympanic membrane is recommended by many otologists. The current study aims at evaluating results of cartilage shield tympanoplasty in terms of graft take up and hearing outcomes. Material and Methods: In the current study, cartilage shield tympanoplasty(CST is used in ears with high risk perforations of the tympanic membrane. A total of 40 ears were selected where type I CST was done in 30 ears and type III CST was done in 10 ears. Results: An average of 37.08 dB air bone gap(ABG was present in pre operative time and an average of 19.15 dB of ABG was observed at 6 months after the surgery with hearing gain of 17.28 dB on average was observed. Graft take up rate of 97.5% was observed. The technique is modified to make it easier and to minimize chances of lateralization of graft. Conclusion: The hearing results of this technique are comparable to other methods of tympanic membrane repair.

  10. Cartilage Engineering from Mesenchymal Stem Cells

    Science.gov (United States)

    Goepfert, C.; Slobodianski, A.; Schilling, A. F.; Adamietz, P.; Pörtner, R.

    Mesenchymal progenitor cells known as multipotent mesenchymal stromal cells or mesenchymal stem cells (MSC) have been isolated from various tissues. Since they are able to differentiate along the mesenchymal lineages of cartilage and bone, they are regarded as promising sources for the treatment of skeletal defects. Tissue regeneration in the adult organism and in vitro engineering of tissues is hypothesized to follow the principles of embryogenesis. The embryonic development of the skeleton has been studied extensively with respect to the regulatory mechanisms governing morphogenesis, differentiation, and tissue formation. Various concepts have been designed for engineering tissues in vitro based on these developmental principles, most of them involving regulatory molecules such as growth factors or cytokines known to be the key regulators in developmental processes. Growth factors most commonly used for in vitro cultivation of cartilage tissue belong to the fibroblast growth factor (FGF) family, the transforming growth factor-beta (TGF-β) super-family, and the insulin-like growth factor (IGF) family. In this chapter, in vivo actions of members of these growth factors described in the literature are compared with in vitro concepts of cartilage engineering making use of these growth factors.

  11. Shock Wave-Stimulated Periosteum for Cartilage Repair

    Science.gov (United States)

    2015-03-01

    AD_________________ Award Number: W81XWH-10-1-0914 TITLE: Shock Wave-Stimulated Periosteum for Cartilage Repair PRINCIPAL INVESTIGATOR...30Sep2010 – 1Dec2014 4. TITLE AND SUBTITLE Shock Wave-Stimulated Periosteum for Cartilage Repair 5a. CONTRACT NUMBER W81XWH-10-1-0914 5b. GRANT NUMBER... shock wave (ESW)-stimulated periosteum improves cartilage repair when it is used as an autograft to fill a defect in the articular surface of goats. A

  12. Evaluation of early changes of cartilage biomarkers following arthroscopic meniscectomy in young Egyptian adults

    Directory of Open Access Journals (Sweden)

    Hamdy Khamis Koryem

    2015-09-01

    Conclusion: Cartilage volume loss by MRI combined with changes in cartilage matrix turnover detected by molecular biomarkers may reflect the initial changes associated with cartilage degeneration that account for early OA.

  13. Fascia versus cartilage graft in type I tympanoplasty: audiological outcome.

    Science.gov (United States)

    Kim, Joo Yeon; Oh, Jung Ho; Lee, Hwan Ho

    2012-11-01

    Various materials such as fascia, perichondrium, and cartilage have been used for reconstruction of the tympanic membrane in middle ear surgery. Because of its stiffness, cartilage is resistant to resorption and retraction. However, cartilage grafts result in increased acoustic impedance, the main limitation to their use. The aim of this study was to compare the hearing results after cartilage tympanoplasty versus fascia tympanoplasty. This study included 114 patients without postoperative tympanic membrane perforation who underwent tympanoplasty type I between 2007 and 2010, 31 with fascia and 83 with cartilage. Preoperative and 1 year postoperative air-bone gap (ABG) and postoperative gain in ABG at frequencies of 0.5, 1, 2, and 3 kHz were assessed. Both groups were statically similar in terms of the severity of middle ear pathology and the preoperative hearing levels. Overall, postoperative successful hearing results showed 77.4% of the fascia group and 77.1% of the cartilage group. Mean postoperative gains in ABG were 9.70 dB for the fascia group and 9.78 dB for the cartilage group. These results demonstrate that hearing after cartilage tympanoplasty is comparable to that after fascia tympanoplasty. Although cartilage is the ideal grafting material in problematic cases, it may be used in less severe cases, such as in type I tympanoplasty, without fear of impairing hearing.

  14. Sonographic evaluation of femoral articular cartilage in the knee

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sung Hwan [College of Medicine, Hallym University, Seoul (Korea, Republic of); Kong Keun Young; Chung, Hye Won; Choi, Young Ho; Song, Yeong Wook; Kang, Heung Sik [College of Medicine and the Institute of Radiation Medicine, Seoul National University, Seoul (Korea, Republic of)

    2000-06-01

    To investigate the usefulness of sonography for the evaluation of osteoarthritic articular cartilage. Ten asymptomatic volunteers and 20 patients with osteoarthritis of the knee underwent sonographic evaluation. For this, the knee was maintained of full flexion in order to expose the deep portion of femoral condylar cartilage. Both transverse and longitudinal scans were obtained in standardized planes. Sonographic images of the articular cartilages were analyzed in terms of surface sharpness, echogenicity and thickness, along with associated bone changes. Normal cartilages showed a clearly-defined surface, homogeneously low echogenicity and regular thickness. Among 20 patients, the findings for medial and lateral condyles, respectively, were as follows: poorly defined cartilage surface, 16 (80%) and ten (50%); increased echogenicity of cartilage, 17 (85%) and 16 (80%); cartilage thinning, 16 (80%) and 14 (70%) (two medial condyles demonstrated obvious cartilage thickening); the presence of thick subchondral hyperechoic bands, five (25%) and four (20%); the presence of osteophytes, 13 (65%) and 12 (60%). Sonography is a convenient and accurate modality for the evaluation of femoral articular cartilage. In particular, it can be useful for detecting early degenerative cartilaginous change and for studying such change during clinical follow-up. (author)

  15. Alteration of cartilage glycosaminoglycan protein acceptor by somatomedin and cortisol.

    Science.gov (United States)

    Kilgore, B S; McNatt, M L; Meador, S; Lee, J A; Hughes, E R; Elders, M J

    1979-02-01

    The effect of somatomedin and cortisol on embryonic chick cartilage in vitro indicates that somatomedin stimulates 35SO4 uptake while cortisol decreases it with no effect on glycosaminoglycan turnover. Xylosyltransferase activity is increased in crude fractions of somatomedin-treated cartilage but decreased in cortisol-treated cartilage. By using a Smith-degraded proteoglycan as an exogenous acceptor, xylosyltransferase activities from both treatments were equivalent, suggesting that the enzyme was not rate limiting. The results of xylosyltransferase assays conducted by mixing enzyme and endogenous acceptor from control, cortisol-treated and somatomedin-treated cartilage, suggest both effects to be at the level of the acceptor protein.

  16. Secondary cartilage revealed in a non-avian dinosaur embryo.

    Directory of Open Access Journals (Sweden)

    Alida M Bailleul

    Full Text Available The skull and jaws of extant birds possess secondary cartilage, a tissue that arises after bone formation during embryonic development at articulations, ligamentous and muscular insertions. Using histological analysis, we discovered secondary cartilage in a non-avian dinosaur embryo, Hypacrosaurus stebingeri (Ornithischia, Lambeosaurinae. This finding extends our previous report of secondary cartilage in post-hatching specimens of the same dinosaur species. It provides the first information on the ontogeny of avian and dinosaurian secondary cartilages, and further stresses their developmental similarities. Secondary cartilage was found in an embryonic dentary within a tooth socket where it is hypothesized to have arisen due to mechanical stresses generated during tooth formation. Two patterns were discerned: secondary cartilage is more restricted in location in this Hypacrosaurus embryo, than it is in Hypacrosaurus post-hatchlings; secondary cartilage occurs at far more sites in bird embryos and nestlings than in Hypacrosaurus. This suggests an increase in the number of sites of secondary cartilage during the evolution of birds. We hypothesize that secondary cartilage provided advantages in the fine manipulation of food and was selected over other types of tissues/articulations during the evolution of the highly specialized avian beak from the jaws of their dinosaurian ancestors.

  17. From gristle to chondrocyte transplantation: treatment of cartilage injuries

    Science.gov (United States)

    Lindahl, Anders

    2015-01-01

    This review addresses the progress in cartilage repair technology over the decades with an emphasis on cartilage regeneration with cell therapy. The most abundant cartilage is the hyaline cartilage that covers the surface of our joints and, due to avascularity, this tissue is unable to repair itself. The cartilage degeneration seen in osteoarthritis causes patient suffering and is a huge burden to society. The surgical approach to cartilage repair was non-existing until the 1950s when new surgical techniques emerged. The use of cultured cells for cell therapy started as experimental studies in the 1970s that developed over the years to a clinical application in 1994 with the introduction of the autologous chondrocyte transplantation technique (ACT). The technology is now spread worldwide and has been further refined by combining arthroscopic techniques with cells cultured on matrix (MACI technology). The non-regenerating hypothesis of cartilage has been revisited and we are now able to demonstrate cell divisions and presence of stem-cell niches in the joint. Furthermore, cartilage derived from human embryonic stem cells and induced pluripotent stem cells could be the base for new broader cell treatments for cartilage injuries and the future technology base for prevention and cure of osteoarthritis. PMID:26416680

  18. Cutaneous Squamous Cell Carcinoma with Invasion through Ear Cartilage

    Directory of Open Access Journals (Sweden)

    Julie Boisen

    2016-01-01

    Full Text Available Cutaneous squamous cell carcinoma of the ear represents a high-risk tumor location with an increased risk of metastasis and local tissue invasion. However, it is uncommon for these cancers to invade through nearby cartilage. Cartilage invasion is facilitated by matrix metalloproteases, specifically collagenase 3. We present the unusual case of a 76-year-old man with an auricular squamous cell carcinoma that exhibited full-thickness perforation of the scapha cartilage. Permanent sections through the eroded cartilage confirmed tumor invasion extending to the posterior ear skin.

  19. [Cartilage reshaping by laser in stomatology and maxillofacial surgery].

    Science.gov (United States)

    Mordon, S

    2004-02-01

    The restoration of congenital and traumatic malformations of the head and neck, together with the defects resulting from the trauma of ablative surgery, continue to pose significant problems to surgeons. The post-operative results are not always satisfactory because of the difficulty of shaping the cartilage and because of the tendency of cartilage to return to its original shape. Better understanding of laser-cartilage interaction and the development of a specific instrumentation Lasers (CO2, Nd: YAG, Ho: YAG) has enabled ex situ and in situ cartilage reshaping. A recent clinical study has demonstrated that nondestructive laser irradiation can reshape septal deviations

  20. Resultados de miringoplastia Inlay com cartilagem de tragus Inlay tragus cartilage miringoplasty results

    Directory of Open Access Journals (Sweden)

    I.G.F. Couto

    2004-08-01

    Full Text Available A utilização de cartilagem de tragus para o fechamento de perfurações de membrana timpânica (MT com acesso transcanal foi primeiramente descrito por Eavey em 1998 com excelentes resultados quanto à pega do enxerto e vantagens como facilidade técnica, rapidez e conforto pós-operatório ao paciente. OBJETIVO: Avaliar os resultados da miringoplastia inlay com cartilagem de tragus em pacientes operados no serviço de Otorrinolaringologia do Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo nos últimos três anos. FORMA DE ESTUDO: Clínico prospectivo. MATERIAL E MÉTODO: Foram utilizadas para esse estudo 32 cirurgias realizadas no serviço de Otorrinolaringologia do Hospital das Clínicas de Ribeirão Preto no período de 2000 a 2003 em pacientes com diagnóstico de otite média crônica simples com perfuração de membrana timpânica de até 5mm de diâmetro e sem contra-indicações para realização de procedimento transcanal. RESULTADOS: Foi observado fechamento completo das perfurações de MT em 28 cirurgias das 32 realizadas perfazendo 87,5% de sucesso. DISCUSSÃO: O presente estudo manteve o alto índice de sucesso no fechamento de perfurações de MT com os princípios da técnica de Eavey descrito em estudos anteriores, mesmo com algumas modificações em relação à técnica original. CONCLUSÃO: A miringoplastia inlay com cartilagem de tragus em forma de asa de borboleta tem alto índice de sucesso no fechamento das perfurações de MT de até 5mm de diâmetro em casos de otite média crônica simples com orelha média saudável. Promove, ainda, maior conforto e menor morbidade ao paciente.The use of tragus cartilage to close tympanic membrane (TM perforations with transcanal approach was first described by Eavey in 1998 with excellent results for graft "take-rate" and with advantages such as technique ease, rapidity and postoperative patient comfort. AIM: To evaluate the inlay

  1. A peek into the possible future of management of articular cartilage injuries: gene therapy and scaffolds for cartilage repair.

    Science.gov (United States)

    Kim, Hubert T; Zaffagnini, Stefano; Mizuno, Shuichi; Abelow, Stephen; Safran, Marc R

    2006-10-01

    Two rapidly progressing areas of research will likely contribute to cartilage repair procedures in the foreseeable future: gene therapy and synthetic scaffolds. Gene therapy refers to the transfer of new genetic information to cells that contribute to the cartilage repair process. This approach allows for manipulation of cartilage repair at the cellular and molecular level. Scaffolds are the core technology for the next generation of autologous cartilage implantation procedures in which synthetic matrices are used in conjunction with chondrocytes. This approach can be improved further using bioreactor technologies to enhance the production of extracellular matrix proteins by chondrocytes seeded onto a scaffold. The resulting "neo-cartilage implant" matures within the bioreactor, and can then be used to fill cartilage defects.

  2. In-vivo study and histological examination of laser reshaping of cartilage

    Science.gov (United States)

    Sviridov, Alexander P.; Sobol, Emil N.; Bagratashvili, Victor N.; Omelchenko, Alexander I.; Ovchinnikov, Yuriy M.; Shekhter, Anatoliy B.; Svistushkin, Valeriy M.; Shinaev, Andrei A.; Nikiforova, G.; Jones, Nicholas

    1999-06-01

    The results of recent study of cartilage reshaping in vivo are reported. The ear cartilage of piglets of 8-12 weeks old have been reshaped in vivo using the radiation of a holmium laser. The stability of the shape and possible side effects have been examined during four months. Histological investigation shown that the healing of irradiated are could accompany by the regeneration of ear cartilage. Finally, elastic type cartilage has been transformed into fibrous cartilage or cartilage of hyaline type.

  3. The identification of CD163 expressing phagocytic chondrocytes in joint cartilage and its novel scavenger role in cartilage degradation.

    Directory of Open Access Journals (Sweden)

    Kai Jiao

    Full Text Available BACKGROUND: Cartilage degradation is a typical characteristic of arthritis. This study examined whether there was a subset of phagocytic chondrocytes that expressed the specific macrophage marker, CD163, and investigated their role in cartilage degradation. METHODS: Cartilage from the knee and temporomandibular joints of Sprague-Dawley rats was harvested. Cartilage degradation was experimentally-induced in rat temporomandibular joints, using published biomechanical dental methods. The expression levels of CD163 and inflammatory factors within cartilage, and the ability of CD163(+ chondrocytes to conduct phagocytosis were investigated. Cartilage from the knees of patients with osteoarthritis and normal cartilage from knee amputations was also investigated. RESULTS: In the experimentally-induced degrading cartilage from temporomandibular joints, phagocytes were capable of engulfing neighboring apoptotic and necrotic cells, and the levels of CD163, TNF-α and MMPs were all increased (P0.05. CD163(+ chondrocytes were found in the cartilage mid-zone of temporomandibular joints and knee from healthy, three-week old rats. Furthermore, an increased number of CD163(+ chondrocytes with enhanced phagocytic activity were present in Col-II(+ chondrocytes isolated from the degraded cartilage of temporomandibular joints in the eight-week experimental group compared with their age-matched controls. Increased number with enhanced phagocytic activity of CD163(+ chondrocytes were also found in isolated Col-II(+ chondrocytes stimulated with TNF-α (P<0.05. Mid-zone distribution of CD163(+ cells accompanied with increased expression of CD163 and TNF-α were further confirmed in the isolated Col-II(+ chondrocytes from the knee cartilage of human patients with osteoarthritis, in contrast to the controls (both P<0.05. CONCLUSIONS: An increased number of CD163(+ chondrocytes with enhanced phagocytic activity were discovered within degraded joint cartilage, indicating a

  4. The identification of CD163 expressing phagocytic chondrocytes in joint cartilage and its novel scavenger role in cartilage degradation.

    Science.gov (United States)

    Jiao, Kai; Zhang, Jing; Zhang, Mian; Wei, Yuying; Wu, Yaoping; Qiu, Zhong Ying; He, Jianjun; Cao, Yunxin; Hu, Jintao; Zhu, Han; Niu, Li-Na; Cao, Xu; Yang, Kun; Wang, Mei-Qing

    2013-01-01

    Cartilage degradation is a typical characteristic of arthritis. This study examined whether there was a subset of phagocytic chondrocytes that expressed the specific macrophage marker, CD163, and investigated their role in cartilage degradation. Cartilage from the knee and temporomandibular joints of Sprague-Dawley rats was harvested. Cartilage degradation was experimentally-induced in rat temporomandibular joints, using published biomechanical dental methods. The expression levels of CD163 and inflammatory factors within cartilage, and the ability of CD163(+) chondrocytes to conduct phagocytosis were investigated. Cartilage from the knees of patients with osteoarthritis and normal cartilage from knee amputations was also investigated. In the experimentally-induced degrading cartilage from temporomandibular joints, phagocytes were capable of engulfing neighboring apoptotic and necrotic cells, and the levels of CD163, TNF-α and MMPs were all increased (P0.05). CD163(+) chondrocytes were found in the cartilage mid-zone of temporomandibular joints and knee from healthy, three-week old rats. Furthermore, an increased number of CD163(+) chondrocytes with enhanced phagocytic activity were present in Col-II(+) chondrocytes isolated from the degraded cartilage of temporomandibular joints in the eight-week experimental group compared with their age-matched controls. Increased number with enhanced phagocytic activity of CD163(+) chondrocytes were also found in isolated Col-II(+) chondrocytes stimulated with TNF-α (PCD163(+) cells accompanied with increased expression of CD163 and TNF-α were further confirmed in the isolated Col-II(+) chondrocytes from the knee cartilage of human patients with osteoarthritis, in contrast to the controls (both PCD163(+) chondrocytes with enhanced phagocytic activity were discovered within degraded joint cartilage, indicating a role in eliminating degraded tissues. Targeting these cells provides a new strategy for the treatment of arthritis.

  5. Effects of growth factors and glucosamine on porcine mandibular condylar cartilage cells and hyaline cartilage cells for tissue engineering applications.

    Science.gov (United States)

    Wang, Limin; Detamore, Michael S

    2009-01-01

    Temporomandibular joint (TMJ) condylar cartilage is a distinct cartilage that has both fibrocartilaginous and hyaline-like character, with a thin proliferative zone that separates the fibrocartilaginous fibrous zone at the surface from the hyaline-like mature and hypertrophic zones below. In this study, we compared the effects of insulin-like growth factor-I (IGF-I), basic fibroblast growth factor (bFGF), transforming growth factor beta1 (TGF-beta1), and glucosamine sulphate on porcine TMJ condylar cartilage and ankle cartilage cells in monolayer culture. In general, TMJ condylar cartilage cells proliferated faster than ankle cartilage cells, while ankle cells produced significantly greater amounts of glycosaminoglycans (GAGs) and collagen than TMJ condylar cartilage cells. IGF-I and bFGF were potent stimulators of TMJ cell proliferation, while no signals statistically outperformed controls for ankle cell proliferation. IGF-I was the most effective signal for GAG production with ankle cells, and the most potent upregulator of collagen synthesis for both cell types. Glucosamine sulphate promoted cell proliferation and biosynthesis at specific concentrations and outperformed growth factors in certain instances. In conclusion, hyaline cartilage cells had lower cell numbers and superior biosynthesis compared to TMJ condylar cartilage cells, and we have found IGF-I at 100 ng/mL and glucosamine sulphate at 100 microg/mL to be the most effective signals for these cells under the prescribed conditions.

  6. Cartilage Regeneration by Chondrogenic Induced Adult Stem Cells in Osteoarthritic Sheep Model: e98770

    National Research Council Canada - National Science Library

    Chinedu C Ude; Shamsul B Sulaiman; Ng Min-Hwei; Chen Hui-Cheng; Johan Ahmad; Norhamdan M Yahaya; Aminuddin B Saim; Ruszymah B H Idrus

    2014-01-01

    ...), multipotent adult cells with the potentials for cartilage regenerations were induced to chondrogenic lineage and used for cartilage regenerations in surgically induced osteoarthritis in sheep model...

  7. FT-IR Microspectroscopy of Rat Ear Cartilage.

    Directory of Open Access Journals (Sweden)

    Benedicto de Campos Vidal

    Full Text Available Rat ear cartilage was studied using Fourier transform-infrared (FT-IR microspectroscopy to expand the current knowledge which has been established for relatively more complex cartilage types. Comparison of the FT-IR spectra of the ear cartilage extracellular matrix (ECM with published data on articular cartilage, collagen II and 4-chondroitin-sulfate standards, as well as of collagen type I-containing dermal collagen bundles (CBs with collagen type II, was performed. Ear cartilage ECM glycosaminoglycans (GAGs were revealed histochemically and as a reduction in ECM FT-IR spectral band heights (1140-820 cm-1 after testicular hyaluronidase digestion. Although ear cartilage is less complex than articular cartilage, it contains ECM components with a macromolecular orientation as revealed using polarization microscopy. Collagen type II and GAGs, which play a structural role in the stereo-arrangement of the ear cartilage, contribute to its FT-IR spectrum. Similar to articular cartilage, ear cartilage showed that proteoglycans add a contribution to the collagen amide I spectral region, a finding that does not recommend this region for collagen type II quantification purposes. In contrast to articular cartilage, the symmetric stretching vibration of -SO3- groups at 1064 cm-1 appeared under-represented in the FT-IR spectral profile of ear cartilage. Because the band corresponding to the asymmetric stretching vibration of -SO3- groups (1236-1225 cm-1 overlapped with that of amide III bands, it is not recommended for evaluation of the -SO3- contribution to the FT-IR spectrum of the ear cartilage ECM. Instead, a peak (or shoulder at 1027-1016 cm-1 could be better considered for this intent. Amide I/amide II ratios as calculated here and data from the literature suggest that protein complexes of the ear cartilage ECM are arranged with a lower helical conformation compared to pure collagen II. The present results could motivate further studies on this tissue

  8. FT-IR Microspectroscopy of Rat Ear Cartilage.

    Science.gov (United States)

    Vidal, Benedicto de Campos; Mello, Maria Luiza S

    2016-01-01

    Rat ear cartilage was studied using Fourier transform-infrared (FT-IR) microspectroscopy to expand the current knowledge which has been established for relatively more complex cartilage types. Comparison of the FT-IR spectra of the ear cartilage extracellular matrix (ECM) with published data on articular cartilage, collagen II and 4-chondroitin-sulfate standards, as well as of collagen type I-containing dermal collagen bundles (CBs) with collagen type II, was performed. Ear cartilage ECM glycosaminoglycans (GAGs) were revealed histochemically and as a reduction in ECM FT-IR spectral band heights (1140-820 cm-1) after testicular hyaluronidase digestion. Although ear cartilage is less complex than articular cartilage, it contains ECM components with a macromolecular orientation as revealed using polarization microscopy. Collagen type II and GAGs, which play a structural role in the stereo-arrangement of the ear cartilage, contribute to its FT-IR spectrum. Similar to articular cartilage, ear cartilage showed that proteoglycans add a contribution to the collagen amide I spectral region, a finding that does not recommend this region for collagen type II quantification purposes. In contrast to articular cartilage, the symmetric stretching vibration of -SO3- groups at 1064 cm-1 appeared under-represented in the FT-IR spectral profile of ear cartilage. Because the band corresponding to the asymmetric stretching vibration of -SO3- groups (1236-1225 cm-1) overlapped with that of amide III bands, it is not recommended for evaluation of the -SO3- contribution to the FT-IR spectrum of the ear cartilage ECM. Instead, a peak (or shoulder) at 1027-1016 cm-1 could be better considered for this intent. Amide I/amide II ratios as calculated here and data from the literature suggest that protein complexes of the ear cartilage ECM are arranged with a lower helical conformation compared to pure collagen II. The present results could motivate further studies on this tissue under

  9. 先天性小耳畸形行自体肋软骨雕刻植入术的围术期护理%Perioperative nursing care for patients with congenital microtia treated with carved autogenous costal cartilage

    Institute of Scientific and Technical Information of China (English)

    杜文静; 谭君; 蔡敏

    2010-01-01

    对12例先天性小耳畸形患者应用自体肋软骨做耳支架及乳突区皮肤覆盖分二期行全耳廓再造.术后随访6~18个月,再造耳廓皮瓣色泽红润,移植软骨支架无软化、吸收、变形,再造耳廓位置、形态、大小和对侧相似;拥有良好的颅耳角,患者对再造耳满意.提出术前做好患者及家属的心理护理,术后加强生命体征和皮瓣的观察,对保障术耳外形满意有重要作用.

  10. THIONIN STAINING OF PARAFFIN AND PLASTIC EMBEDDED SECTIONS OF CARTILAGE

    NARCIS (Netherlands)

    BULSTRA, SK; DRUKKER, J; KUIJER, R; BUURMAN, WA; VANDERLINDEN, AJ

    1993-01-01

    The usefulness of thionin for staining cartilage sections embedded in glycol methacrylate (GMA) and the effect of decalcification on cartilage sections embedded in paraffin and GMA were assessed. Short decalcification periods using 5% formic acid or 10% EDTA did not influence the staining properties

  11. Magnetic Resonance Imaging of Cartilage Repair: A Review.

    Science.gov (United States)

    Trattnig, Siegfried; Winalski, Carl S; Marlovits, Stephan; Jurvelin, Jukka S; Welsch, Goetz H; Potter, Hollis G

    2011-01-01

    Articular cartilage lesions are a common pathology of the knee joint, and many patients may benefit from cartilage repair surgeries that offer the chance to avoid the development of osteoarthritis or delay its progression. Cartilage repair surgery, no matter the technique, requires a noninvasive, standardized, and high-quality longitudinal method to assess the structure of the repair tissue. This goal is best fulfilled by magnetic resonance imaging (MRI). The present article provides an overview of the current state of the art of MRI of cartilage repair. In the first 2 sections, preclinical and clinical MRI of cartilage repair tissue are described with a focus on morphological depiction of cartilage and the use of functional (biochemical) MR methodologies for the visualization of the ultrastructure of cartilage repair. In the third section, a short overview is provided on the regulatory issues of the United States Food and Drug Administration (FDA) and the European Medicines Agency (EMEA) regarding MR follow-up studies of patients after cartilage repair surgeries.

  12. The Application of Polysaccharide Biocomposites to Repair Cartilage Defects

    Directory of Open Access Journals (Sweden)

    Feng Zhao

    2014-01-01

    Full Text Available Owing to own nature of articular cartilage, it almost has no self-healing ability once damaged. Despite lots of restore technologies having been raised in the past decades, no repair technology has smoothly substituted for damaged cartilage using regenerated cartilage tissue. The approach of tissue engineering opens a door to successfully repairing articular cartilage defects. For instance, grafting of isolated chondrocytes has huge clinical potential for restoration of cartilage tissue and cure of chondral injury. In this paper, SD rats are used as subjects in the experiments, and they are classified into three groups: natural repair (group A, hyaluronic acid repair (group B, and polysaccharide biocomposites repair (hyaluronic acid hydrogel containing chondrocytes, group C. Through the observation of effects of repairing articular cartilage defects, we concluded that cartilage repair effect of polysaccharide biocomposites was the best at every time point, and then the second best was hyaluronic acid repair; both of them were better than natural repair. Polysaccharide biocomposites have good biodegradability and high histocompatibility and promote chondrocytes survival, reproduction, and spliting. Moreover, polysaccharide biocomposites could not only provide the porous network structure but also carry chondrocytes. Consequently hyaluronic acid-based polysaccharide biocomposites are considered to be an ideal biological material for repairing articular cartilage.

  13. THIONIN STAINING OF PARAFFIN AND PLASTIC EMBEDDED SECTIONS OF CARTILAGE

    NARCIS (Netherlands)

    BULSTRA, SK; DRUKKER, J; KUIJER, R; BUURMAN, WA; VANDERLINDEN, AJ

    The usefulness of thionin for staining cartilage sections embedded in glycol methacrylate (GMA) and the effect of decalcification on cartilage sections embedded in paraffin and GMA were assessed. Short decalcification periods using 5% formic acid or 10% EDTA did not influence the staining properties

  14. Particulate cartilage under bioreactor-induced compression and shear

    DEFF Research Database (Denmark)

    Wang, Ning; Grad, Sibylle; Stoddart, Martin J

    2014-01-01

    PURPOSE: Our aim was to explore the effect of varying in vitro culture conditions on general chondrogenesis of minced cartilage (MC) fragments. METHODS: Minced, fibrin-associated, bovine articular cartilage fragments were cultured in vitro within polyurethane scaffold rings. Constructs were...

  15. Repair of osteochondral defects with allogeneic tissue engineered cartilage implants.

    Science.gov (United States)

    Schreiber, R E; Ilten-Kirby, B M; Dunkelman, N S; Symons, K T; Rekettye, L M; Willoughby, J; Ratcliffe, A

    1999-10-01

    The objective of this study was to evaluate the effect of allogeneic tissue engineered cartilage implants on healing of osteochondral defects. Rabbit chondrocytes were cultured in monolayer, then seeded onto biodegradable, three-dimensional polyglycolic acid meshes. Cartilage constructs were cultured hydrodynamically to yield tissue with relatively more (mature) or less (immature) hyalinelike cartilage, as compared with adult rabbit articular cartilage. Osteochondral defects in the patellar grooves of both stifle joints either were left untreated or implanted with allogeneic tissue engineered cartilage. Histologic samples from in and around the defect sites were examined 3, 6, 9, and 12, and 24 months after surgery. By 9 months after surgery, defects sites treated with cartilage implants contained significantly greater amounts of hyalinelike cartilage with high levels of proteoglycan, and had a smooth, nonfibrillated articular surface as compared to untreated defects. In contrast, the repair tissue formed in untreated defects had fibrillated articular surfaces, significant amounts of fibrocartilage, and negligible proteoglycan. These differences between treated and untreated defects persisted through 24 months after surgery. The results of this study suggest that the treatment of osteochondral lesions with allogenic tissue engineered cartilage implants may lead to superior repair tissue than that found in untreated osteochondral lesions.

  16. Cartilage oligomeric matrix protein specific antibodies are pathogenic

    DEFF Research Database (Denmark)

    Geng, Hui; Nandakumar, Kutty Selva; Pramhed, Anna

    2012-01-01

    ABSTRACT: INTRODUCTION: Cartilage oligomeric matrix protein (COMP) is a major non-collagenous component of cartilage. Earlier, we developed a new mouse model for rheumatoid arthritis using COMP. This study was undertaken to investigate the epitope specificity and immunopathogenicity of COMP...

  17. A Novel Approach to Stimulate Cartilage Repair: Targeting Collagen Turnover

    NARCIS (Netherlands)

    Y.M. Bastiaansen-Jenniskens (Yvonne)

    2009-01-01

    textabstractOA is a complex disease of which the ethiopathology is not completely known and therapies to repair cartilage are still under investigation. The increase of collagen type II expression in osteoarthritic cartilage suggests an activated repair mechanism that is however ineffective in

  18. Combined role of type IX collagen and cartilage oligomeric matrix protein in cartilage matrix assembly: Cartilage oligomeric matrix protein counteracts type IX collagen-induced limitation of cartilage collagen fibril growth in mouse chondrocyte cultures

    NARCIS (Netherlands)

    Blumbach, K.; Bastiaansen-Jenniskens, Y.M.; Groot, J. de; Paulsson, M.; Osch, G.J.V.M. van; Zaucke, F.

    2009-01-01

    Objective. Defects in the assembly and composition of cartilage extracellular matrix are likely to result in impaired matrix integrity and increased susceptibility to cartilage degeneration. The aim of this study was to determine the functional interaction of the collagen fibril-associated proteins

  19. Growth factor releasing scaffolds for cartilage tissue engineering

    NARCIS (Netherlands)

    Sohier, Jerome

    2006-01-01

    Over the last century, life expectancy has increased at a rapid pace resulting in an increase of articular cartilage disorders. To solve this problem, extensive research is currently performed using tissue engineering approaches. Cartilage tissue engineering aims to reconstruct this tissue both stru

  20. Assessment of hyaline cartilage matrix composition using near infrared spectroscopy.

    Science.gov (United States)

    Palukuru, Uday P; McGoverin, Cushla M; Pleshko, Nancy

    2014-09-01

    Changes in the composition of the extracellular matrix (ECM) are characteristic of injury or disease in cartilage tissue. Various imaging modalities and biochemical techniques have been used to assess the changes in cartilage tissue but lack adequate sensitivity, or in the case of biochemical techniques, result in destruction of the sample. Fourier transform near infrared (FT-NIR) spectroscopy has shown promise for the study of cartilage composition. In the current study NIR spectroscopy was used to identify the contributions of individual components of cartilage in the NIR spectra by assessment of the major cartilage components, collagen and chondroitin sulfate, in pure component mixtures. The NIR spectra were obtained using homogenous pellets made by dilution with potassium bromide. A partial least squares (PLS) model was calculated to predict composition in bovine cartilage samples. Characteristic absorbance peaks between 4000 and 5000 cm(-1) could be attributed to components of cartilage, i.e. collagen and chondroitin sulfate. Prediction of the amount of collagen and chondroitin sulfate in tissues was possible within 8% (w/dw) of values obtained by gold standard biochemical assessment. These results support the use of NIR spectroscopy for in vitro and in vivo applications to assess matrix composition of cartilage tissues, especially when tissue destruction should be avoided. Copyright © 2014. Published by Elsevier B.V.

  1. Integrative studies on cartilage tissue engineering and joint homeostasis

    NARCIS (Netherlands)

    Rutgers, M.

    2014-01-01

    The impact of cartilage injury to the joint is often larger than the initial clinical symptoms suggest. Through an alteration in joint homeostasis and biomechanical loading, cartilage lesions may accelerate osteoarthritis onset. Although good clinical results are achieved in patients treated by the

  2. Autologous chondrocyte implantation: superior biologic properties of hyaline cartilage repairs.

    Science.gov (United States)

    Henderson, Ian; Lavigne, Patrick; Valenzuela, Herminio; Oakes, Barry

    2007-02-01

    Information regarding the quality of autologous chondrocyte implantation repair is needed to determine whether the current autologous chondrocyte implantation surgical technology and the subsequent biologic repair processes are capable of reliably forming durable hyaline or hyaline-like cartilage in vivo. We report and analyze the properties and qualities of autologous chondrocyte implantation repairs. We evaluated 66 autologous chondrocyte implantation repairs in 57 patients, 55 of whom had histology, indentometry, and International Cartilage Repair Society repair scoring at reoperation for mechanical symptoms or pain. International Knee Documentation Committee scores were used to address clinical outcome. Maximum stiffness, normalized stiffness, and International Cartilage Repair Society repair scoring were higher for hyaline articular cartilage repairs compared with fibrocartilage, with no difference in clinical outcome. Reoperations revealed 32 macroscopically abnormal repairs (Group B) and 23 knees with normal-looking repairs in which symptoms leading to arthroscopy were accounted for by other joint disorders (Group A). In Group A, 65% of repairs were either hyaline or hyaline-like cartilage compared with 28% in Group B. Autologous chondrocyte repairs composed of fibrocartilage showed more morphologic abnormalities and became symptomatic earlier than hyaline or hyaline-like cartilage repairs. The hyaline articular cartilage repairs had biomechanical properties comparable to surrounding cartilage and superior to those associated with fibrocartilage repairs.

  3. MORPHOMETRIC STUDY OF THYROID CARTILAGES IN WESTERN INDIA

    Directory of Open Access Journals (Sweden)

    Mohini M.Joshi

    2015-06-01

    Full Text Available Background: Morphometrical evaluation of the larynx has always been interesting for both morphologists and the physicians. A good understanding of the anatomy and the knowledge of variations in the laryngeal cartilages is important Objective: Objective of the present study was to collect exact and reliable morphometric data of thyroid cartilage in adult human larynx of regional population. Methods: The totals of 50 thyroid cartilage specimens were studied. The cartilages were preserved in 5% formalin. The measurements were taken with the help of Digital Vernier Caliper. The cartilages were weighed on Single pan electronic balance. For each of the parameters, the mean, standard deviation (S.D. and range was calculated. Results: Mean depth of superior thyroid notch was 9.7± 3.36 mm. Asymmetry between the length of superior horn of thyroid cartilages in left and right sides can be seen, but difference was not statistically significant (p>0.05. It is observed that inner thyroid angle varies from 55 to 1040 and outer thyroid angle varies from 53 to 990. In present study mean weight of thyroid cartilage was 6.70±1.55 grams. Conclusions: A fair amount of intersubject variability in the dimensions was observed. Bilateral asymmetry, though present in majority of specimens, was insignificant. Various dimensions of thyroid cartilages are smaller as compared to the western population.

  4. Combined role of type IX collagen and cartilage oligomeric matrix protein in cartilage matrix assembly: Cartilage oligomeric matrix protein counteracts type IX collagen-induced limitation of cartilage collagen fibril growth in mouse chondrocyte cultures

    NARCIS (Netherlands)

    Blumbach, K.; Bastiaansen-Jenniskens, Y.M.; Groot, J. de; Paulsson, M.; Osch, G.J.V.M. van; Zaucke, F.

    2009-01-01

    Objective. Defects in the assembly and composition of cartilage extracellular matrix are likely to result in impaired matrix integrity and increased susceptibility to cartilage degeneration. The aim of this study was to determine the functional interaction of the collagen fibril-associated proteins

  5. A Novel Approach to Stimulate Cartilage Repair: Targeting Collagen Turnover

    NARCIS (Netherlands)

    Y.M. Bastiaansen-Jenniskens (Yvonne)

    2009-01-01

    textabstractOA is a complex disease of which the ethiopathology is not completely known and therapies to repair cartilage are still under investigation. The increase of collagen type II expression in osteoarthritic cartilage suggests an activated repair mechanism that is however ineffective in repai

  6. Injectable hydrogels for cartilage and bone tissue engineering

    Science.gov (United States)

    Liu, Mei; Zeng, Xin; Ma, Chao; Yi, Huan; Ali, Zeeshan; Mou, Xianbo; Li, Song; Deng, Yan; He, Nongyue

    2017-01-01

    Tissue engineering has become a promising strategy for repairing damaged cartilage and bone tissue. Among the scaffolds for tissue-engineering applications, injectable hydrogels have demonstrated great potential for use as three-dimensional cell culture scaffolds in cartilage and bone tissue engineering, owing to their high water content, similarity to the natural extracellular matrix (ECM), porous framework for cell transplantation and proliferation, minimal invasive properties, and ability to match irregular defects. In this review, we describe the selection of appropriate biomaterials and fabrication methods to prepare novel injectable hydrogels for cartilage and bone tissue engineering. In addition, the biology of cartilage and the bony ECM is also summarized. Finally, future perspectives for injectable hydrogels in cartilage and bone tissue engineering are discussed. PMID:28584674

  7. A metrical study of laryngeal cartilages and their ossification.

    Science.gov (United States)

    Ajmani, M L; Jain, S P; Saxena, S K

    1980-01-01

    This study was carried out on the laryngeal cartilages of 150 postmortem/dissection room specimens of adult age groups, ranging from 16 to 55 years in both the sexes. The age, height, sex and profession (in known postmortem cases) were noted. Various measurements of the laryngeal cartilages were taken from the inner surface. From the present study we can conclude that the various measurements in the laryngeal cartilages were more marked in male than the female except of the thyroid angle and the length of the superior horn. The thyroid angle on an average in male was 78 degrees +/- 10 degrees and in female 106 degrees +/- 14 degrees. There was no correlation with total body height. The presence of cuneiform cartilage, cartilago-triticea and corniculate cartilage is not constant, they were seen more commonly in females than in males.

  8. REGENERATION OF ARTICULAR CARTILAGE UNDER THE IMPLANTATION OF BONE MATRIX

    Directory of Open Access Journals (Sweden)

    Yuri M. Iryanov, Nikolay A. Kiryanov, Olga V. Dyuriagina , Tatiana Yu. Karaseva, Evgenii A. Karasev

    2015-07-01

    Full Text Available Background: The damage or loss of articular cartilage is costly medical problem. The purpose of this work – morphological analysis of reparative chondrogenesis when implanted in the area of the knee joint cartilage of granulated mineralized bone matrix. Material and Methods: The characteristic features of the knee cartilage regeneration studied experimentally in pubertal Wistar rats after modeling a marginal perforated defect and implantation of granulated mineralized bone matrix obtained according to original technology without heat and demineralizing processing into the injury zone. Results: This biomaterial established to have pronounced chondro- and osteoinductive properties, and to provide prolonged activation of reparative process, accelerated organotypical remodeling and restoration of the articular cartilage injured. Conclusion: The data obtained demonstrate the efficacy of МВМ in clinical practice for the treatment of diseases and injuries of the articular cartilage.

  9. Epiphyseal and Physeal Cartilage: Normal Gadolinium-enhanced MR Imaging

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    To evaluate the normal appearance of epiphyseal and physeal cartilage on Gadolinium (Gd)-enhanced MR imaging. The appearance and enhancement ratios of 20 proximal and distal femoral epiphyses in 10 normal piglets were analyzed on Gd-enhanced MR images. The correlation of the MR imaging appearance with corresponding histological findings of immature epiphyses was examined. Our results showed that Gd-enhanced MRI could differentiate the differences in enhancement between physeal and epiphyseal cartilage and show vascular canals within the epiphyseal cartilage. Enhanced ratios in the physeal were greater than those in the epiphyseal cartilage (P<0.005). It is concluded that Gd-enhanced MR imaging reveals epiphyseal vascular canals and shows difference in enhancement of physeal and epiphyseal cartilage.

  10. Reconstituição experimental da parede torácica de gatos com implante heterógeno de cartilagem auricular conservada em glicerina a 98% Experimental reconstitution of the cat's thoracic wall with dog conchal cartilage implant preserved in 98% glycerin

    Directory of Open Access Journals (Sweden)

    Josaine Cristina da Silva Rappeti

    2003-12-01

    Full Text Available Com o objetivo de testar o implante de cartilagem auricular heteróloga conservada em glicerina a 98% como alternativa para reparar defeitos na parede torácica em felinos, foram estudados doze animais adultos, sendo distribuídos em dois grupos GI e GII, e avaliados após 60 dias de pós-operatório. Todos os animais foram submetidos à ressecção costal na porção média do tórax abrangendo a 7ª, 8ª e 9ª costelas e posterior implante de cartilagem conchal heteróloga conservada em glicerina a 98%. No GI, foi preservada a musculatura adjacente, já no GII, a musculatura foi retirada. Os animais foram avaliados clinicamente no pós-operatório e, ao final do período, submetidos à eutanásia e necropsia para avaliação macroscópica e microscópica da região do implante. Observou-se proliferação de tecido fibrovascular neovascularizado sobre o implante, com aderência pulmonar e diafragmática em algumas das unidades experimentais. O implante de cartilagem heteróloga conservado em glicerina a 98% pode ser utilizado para reconstrução de parede costal cujo defeito abranja o espaço de parte de três costelas. O implante em 60 dias é substituído por tecido cicatricial, sem apresentar sinais clínicos de rejeição.Twelve adult cats were divided in groups GI and GII with the objective of testing a dog auricular cartilage implant conserved in 98% glycerin as an alternative to repair thoracic wall defects. All animals were submitted to a resection of the medial portion of the thorax by removal of the 7th, 8th and 9th ribs and posterior cartilage implantation. GI had the adjacent musculature preserved and in GII cat's had it removed. The animals were clinically evaluated in the post operative period and after sixty days submitted to euthanasia for microscopic evaluation of the implanted local. Proliferation of granulation tissue and neomorph over the implant was observed in all animals and some had lung and diaphragm adherence. The

  11. Special pattern of endochondral ossification in human laryngeal cartilages: X-ray and light-microscopic studies on thyroid cartilage.

    Science.gov (United States)

    Claassen, Horst; Schicht, Martin; Sel, Saadettin; Paulsen, Friedrich

    2014-04-01

    Endochondral ossification is a process that also occurs in the skeleton of the larynx. Differences in the ossification mechanism in comparison to growth plates are not understood until now. To get deeper insights into this process, human thyroid cartilage was investigated by the use of X-rays and a series of light-microscopic stainings. A statistical analysis of mineralization was done by scanning areas of mineralized cartilage and of ossification. We detected a special mode of endochondral ossification which differs from the processes in growth plates. Thyroid cartilage ossifies very slowly and in a gender-specific manner. Compared with age-matched women, bone formation in thyroid cartilage of men is significantly higher in the age group 41-60 years. Endochondral ossification is prepared by internal changes of extracellular matrix leading to areas of asbestoid fibers with ingrowing cartilage canals. In contrast to growth plates, bone is deposited on large areas of mineralized cartilage, which appear at the rims of cartilage canals. Furthermore, primary parallel fibered bone was observed which was deposited on woven bone. The predominant bone type is cancellous bone with trabeculae, whereas compact bone with Haversian systems was seldom found. Trabeculae contain a great number of reversal and arresting lines meaning that the former were often reconstructed and that bone formation was arrested and resumed again with advancing age. It is hypothesized that throughout life trabeculae of ossified thyroid cartilage undergo adaptation to different loads due to the use of voice.

  12. Composite scaffolds for cartilage tissue engineering.

    Science.gov (United States)

    Moutos, Franklin T; Guilak, Farshid

    2008-01-01

    Tissue engineering remains a promising therapeutic strategy for the repair or regeneration of diseased or damaged tissues. Previous approaches have typically focused on combining cells and bioactive molecules (e.g., growth factors, cytokines and DNA fragments) with a biomaterial scaffold that functions as a template to control the geometry of the newly formed tissue, while facilitating the attachment, proliferation, and differentiation of embedded cells. Biomaterial scaffolds also play a crucial role in determining the functional properties of engineered tissues, including biomechanical characteristics such as inhomogeneity, anisotropy, nonlinearity or viscoelasticity. While single-phase, homogeneous materials have been used extensively to create numerous types of tissue constructs, there continue to be significant challenges in the development of scaffolds that can provide the functional properties of load-bearing tissues such as articular cartilage. In an attempt to create more complex scaffolds that promote the regeneration of functional engineered tissues, composite scaffolds comprising two or more distinct materials have been developed. This paper reviews various studies on the development and testing of composite scaffolds for the tissue engineering of articular cartilage, using techniques such as embedded fibers and textiles for reinforcement, embedded solid structures, multi-layered designs, or three-dimensionally woven composite materials. In many cases, the use of composite scaffolds can provide unique biomechanical and biological properties for the development of functional tissue engineering scaffolds.

  13. Deginerative changes of femoral articular cartilage in the knee : comparative study of specimen sonography and pathology

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ju Youn; Hong, Sung Hwan; Sohn, Jin Hee; Wee, Young Hoon; Chang, Jun Dong; Park, Hong Seok; Lee, Eil Seoung; Kang Ik Won [Hallym Univ. College of Medicine, Seoul (Korea, Republic of)

    2001-04-01

    To determine the sonographic findings of degenerative change in femoral articular cartilage of the knee by comparative study of specimen sonography and pathology. We obtained 40 specimens of cartilage of the femur (20 medial and 20 lateral condylar) from 20 patients with osteoarthritis of the knee who had undergone total knee replacement. The specimens were placed in a saline-filled container and sonography was performed using a 10-MHz linear transducer. Sonographic abnormalities were evaluated at the cartilage surface, within the cartilage, and at the bone-cartilage interface, and were compared with the corresponding pathologic findings. In addition, cartilage thickness was measured at a representative portion of each femoral cartilage specimen and was compared with the thickness determined by sonography. 'Dot' lesions, irregularity or loss of the hyperechoic line, were demonstrated by sonography at the saline-cartilage interface of 14 cartilages. Pathologic examination showed that these findings corresponded to cleft, detachment, erosion, and degeneration. Irregularities in the hyperechoic line at the bone-cartilage interface were revealed by sonography in eight cartilages and were related to irregularity or loss of tidemark, downward displacement of the cartilage, and subchondral callus formation. Dot lesions, corresponding to cleft and degeneration, were noted within one cartilage. Cartilage thickness measured on specimen and by sonography showed no significant difference (p=0.446). Specimen sonography suggested that articular cartilage underwent degenerative histopathological change. Cartilage thickness measured by sonography exactly reflected real thickness.

  14. Fine-tuning Cartilage Tissue Engineering by Applying Principles from Embryonic Development

    NARCIS (Netherlands)

    C.A. Hellingman (Catharine)

    2012-01-01

    textabstractCartilage has a very poor capacity for regeneration in vivo. In head and neck surgery cartilage defects are usually reconstructed with autologous cartilage from for instance the external ear or the ribs. Cartilage tissue engineering may be a promising alternative to supply tissue for

  15. Enhanced cartilage repair in ‘healer’ mice—New leads in the search for better clinical options for cartilage repair

    Science.gov (United States)

    Fitzgerald, Jamie

    2016-01-01

    Adult articular cartilage has a poor capacity to undergo intrinsic repair. Current strategies for the repair of large cartilage defects are generally unsatisfactory because the restored cartilage does not have the same resistance to biomechanical loading as authentic articular cartilage and degrades over time. Recently, an exciting new research direction, focused on intrinsic cartilage regeneration rather than fibrous repair by external means, has emerged. This review explores the new findings in this rapidly moving field as they relate to the clinical goal of restoration of structurally robust, stable and non-fibrous articular cartilage following injury. PMID:27130635

  16. Fijación quirúrgica de fracturas costales con placas de titanio: reporte de dos casos Surgical repair of rib fractures using titanium plates: Report of two cases

    Directory of Open Access Journals (Sweden)

    Mauricio Fica D

    2012-12-01

    Full Text Available Las fracturas costales son lesiones frecuentes en los traumatismos torácicos contusos. Sin contar aquellas lesiones asociadas con la alta absorción de energía, las fracturas costales causan característicamente dolor intenso, complicaciones respiratorias y ausentismo laboral significativo. Una de las estrategias terapéuticas es la estabilización quirúrgica del foco de fractura, la cual tiene múltiples ventajas teóricas como la disminución del dolor y la restauración de la función de la pared costal. Existen múltiples formas de fijación costal, pero su indicación, técnica quirúrgica y resultados son muy disímiles. Presentamos dos casos de reparación de pared torácica con material de osteosíntesis especialmente diseñado para este efecto (Synthes® MatrixRIB, Solothurn, Suiza, y se discuten sus alcances en las indicaciones y resultados clínicos.Rib fractures are common lesions in blunt chest trauma. Disregarding the severity of other high energy associated lesions, chest wall trauma characteristically causes intense pain, respiratory complications and long-term disability. Pain relief and chest wall function restoration are obtained by surgical stabilization of rib fractures. In nowdays still there is a considerable variability in surgical techniques and devices, as well as in their results and clinical indications. We report two cases of chest wall trauma and rib fractures repaired with osteosynthesis (Synthes® system MatrixRIB. Solothurn, Switzerland and we discuss their new clinical indications and results.

  17. The Functions of BMP3 in Rabbit Articular Cartilage Repair

    Directory of Open Access Journals (Sweden)

    Zhe Zhang

    2015-10-01

    Full Text Available Bone morphogenetic proteins (BMPs play important roles in skeletal development and repair. Previously, we found fibroblast growth factor 2 (FGF2 induced up-regulation of BMP2, 3, 4 in the process of rabbit articular cartilage repair, which resulted in satisfactory repair effects. As BMP2/4 show a clearly positive effect for cartilage repair, we investigated the functions of BMP3 in rabbit articular cartilage repair. In this paper, we find that BMP3 inhibits the repair of partial-thickness defect of articular cartilage in rabbit by inducing the degradation of extracellular matrix, interfering with the survival of chondrocytes surrounding the defect, and directly inhibiting the expression of BMP2 and BMP4. Meanwhile BMP3 suppress the repair of full-thickness cartilage defect by destroying the subchondral bone through modulating the proliferation and differentiation of bone marrow stem cells (BMSCs, and directly increasing the expression of BMP4. Although BMP3 has different functions in the repair of partial and full-thickness defects of articular cartilage in rabbit, the regulation of BMP expression is involved in both of them. Together with our previous findings, we suggest the regulation of the BMP signaling pathway by BMP3 is essential in articular cartilage repair.

  18. Multimodal nonlinear optical imaging of cartilage development in mouse model

    Science.gov (United States)

    He, Sicong; Xue, Wenqian; Sun, Qiqi; Li, Xuesong; Huang, Jiandong; Qu, Jianan Y.

    2017-02-01

    Kinesin-1 is a kind of motor protein responsible for intracellular transportation and has been studied in a variety of tissues. However, its roles in cartilage development are not clear. In this study, a kinesin-1 heavy chain (Kif5b) knockout mouse model is used to study the functions of kinesin-1 in the cartilage development. We developed a multimodal nonlinear optical (NLO) microscope system integrating stimulated Raman scattering (SRS), second harmonic generation (SHG) and two-photon excited fluorescence (TPEF) to investigate the morphological and biomedical characteristics of fresh tibial cartilage from normal and mutant mice at different developmental stages. The combined forward and backward SHG imaging resolved the fine structure of collagen fibrils in the extracellular matrix of cartilage. Meanwhile, the chondrocyte morphology in different zones of cartilage was visualized by label-free SRS and TPEF images. The results show that the fibrillar collagen in the superficial zone of cartilage in postnatal day 10 and 15 (P10 and P15) knockout mice was significantly less than that of control mice. Moreover, we observed distorted morphology and disorganization of columnar arrangement of chondrocytes in the growth plate cartilage of mutant mice. This study reveals the significant roles of kinesin-1 in collagen formation and chondrocyte morphogenesis.

  19. Shark cartilage, cancer and the growing threat of pseudoscience.

    Science.gov (United States)

    Ostrander, Gary K; Cheng, Keith C; Wolf, Jeffrey C; Wolfe, Marilyn J

    2004-12-01

    The promotion of crude shark cartilage extracts as a cure for cancer has contributed to at least two significant negative outcomes: a dramatic decline in shark populations and a diversion of patients from effective cancer treatments. An alleged lack of cancer in sharks constitutes a key justification for its use. Herein, both malignant and benign neoplasms of sharks and their relatives are described, including previously unreported cases from the Registry of Tumors in Lower Animals, and two sharks with two cancers each. Additional justifications for using shark cartilage are illogical extensions of the finding of antiangiogenic and anti-invasive substances in cartilage. Scientific evidence to date supports neither the efficacy of crude cartilage extracts nor the ability of effective components to reach and eradicate cancer cells. The fact that people think shark cartilage consumption can cure cancer illustrates the serious potential impacts of pseudoscience. Although components of shark cartilage may work as a cancer retardant, crude extracts are ineffective. Efficiencies of technology (e.g., fish harvesting), the power of mass media to reach the lay public, and the susceptibility of the public to pseudoscience amplifies the negative impacts of shark cartilage use. To facilitate the use of reason as the basis of public and private decision-making, the evidence-based mechanisms of evaluation used daily by the scientific community should be added to the training of media and governmental professionals. Increased use of logical, collaborative discussion will be necessary to ensure a sustainable future for man and the biosphere.

  20. Optical coherence tomography enables accurate measurement of equine cartilage thickness for determination of speed of sound.

    Science.gov (United States)

    Puhakka, Pia H; Te Moller, Nikae C R; Tanska, Petri; Saarakkala, Simo; Tiitu, Virpi; Korhonen, Rami K; Brommer, Harold; Virén, Tuomas; Jurvelin, Jukka S; Töyräs, Juha

    2016-08-01

    Background and purpose - Arthroscopic estimation of articular cartilage thickness is important for scoring of lesion severity, and measurement of cartilage speed of sound (SOS)-a sensitive index of changes in cartilage composition. We investigated the accuracy of optical coherence tomography (OCT) in measurements of cartilage thickness and determined SOS by combining OCT thickness and ultrasound (US) time-of-flight (TOF) measurements. Material and methods - Cartilage thickness measurements from OCT and microscopy images of 94 equine osteochondral samples were compared. Then, SOS in cartilage was determined using simultaneous OCT thickness and US TOF measurements. SOS was then compared with the compositional, structural, and mechanical properties of cartilage. Results - Measurements of non-calcified cartilage thickness using OCT and microscopy were significantly correlated (ρ = 0.92; p measurement of articular cartilage thickness. Although SOS measurements lacked accuracy in thin equine cartilage, the concept of SOS measurement using OCT appears promising.

  1. Simple Correction of Alar Retraction by Conchal Cartilage Extension Grafts

    Directory of Open Access Journals (Sweden)

    Yong Jun Jang

    2016-11-01

    Full Text Available BackgroundAlar retraction is a challenging condition in rhinoplasty marked by exaggerated nostril exposure and awkwardness. Although various methods for correcting alar retraction have been introduced, none is without drawbacks. Herein, we report a simple procedure that is both effective and safe for correcting alar retraction using only conchal cartilage grafting.MethodsBetween August 2007 and August 2009, 18 patients underwent conchal cartilage extension grafting to correct alar retraction. Conchal cartilage extension grafts were fixed to the caudal margins of the lateral crura and covered with vestibular skin advancement flaps. Preoperative and postoperative photographs were reviewed and analyzed. Patient satisfaction was surveyed and categorized into 4 groups (very satisfied, satisfied, moderate, or unsatisfied.ResultsAccording to the survey, 8 patients were very satisfied, 9 were satisfied, and 1 considered the outcome moderate, resulting in satisfaction for most patients. The average distance from the alar rim to the long axis of the nostril was reduced by 1.4 mm (3.6 to 2.2 mm. There were no complications, except in 2 cases with palpable cartilage step-off that resolved without any aesthetic problems.ConclusionsConchal cartilage alar extension graft is a simple, effective method of correcting alar retraction that can be combined with aesthetic rhinoplasty conveniently, utilizing conchal cartilage, which is the most similar cartilage to alar cartilage, and requiring a lesser volume of cartilage harvest compared to previously devised methods. However, the current procedure lacks efficacy for severe alar retraction and a longer follow-up period may be required to substantiate the enduring efficacy of the current procedure.

  2. Simple Correction of Alar Retraction by Conchal Cartilage Extension Grafts.

    Science.gov (United States)

    Jang, Yong Jun; Kim, Sung Min; Lew, Dae Hyun; Song, Seung Yong

    2016-11-01

    Alar retraction is a challenging condition in rhinoplasty marked by exaggerated nostril exposure and awkwardness. Although various methods for correcting alar retraction have been introduced, none is without drawbacks. Herein, we report a simple procedure that is both effective and safe for correcting alar retraction using only conchal cartilage grafting. Between August 2007 and August 2009, 18 patients underwent conchal cartilage extension grafting to correct alar retraction. Conchal cartilage extension grafts were fixed to the caudal margins of the lateral crura and covered with vestibular skin advancement flaps. Preoperative and postoperative photographs were reviewed and analyzed. Patient satisfaction was surveyed and categorized into 4 groups (very satisfied, satisfied, moderate, or unsatisfied). According to the survey, 8 patients were very satisfied, 9 were satisfied, and 1 considered the outcome moderate, resulting in satisfaction for most patients. The average distance from the alar rim to the long axis of the nostril was reduced by 1.4 mm (3.6 to 2.2 mm). There were no complications, except in 2 cases with palpable cartilage step-off that resolved without any aesthetic problems. Conchal cartilage alar extension graft is a simple, effective method of correcting alar retraction that can be combined with aesthetic rhinoplasty conveniently, utilizing conchal cartilage, which is the most similar cartilage to alar cartilage, and requiring a lesser volume of cartilage harvest compared to previously devised methods. However, the current procedure lacks efficacy for severe alar retraction and a longer follow-up period may be required to substantiate the enduring efficacy of the current procedure.

  3. Modifications in Autogenous Rib Cartilage Reconstruction of Microtia%改良法肋软骨全耳廓再造术

    Institute of Scientific and Technical Information of China (English)

    李意源; 张如鸿; 张群; 许志成; 许枫; 李大涛; 孙楠; 汪诚

    2014-01-01

    Objective To introduce the modifications in autogenous rib cartilage reconstruction of microtia, so as to present more natural and stable morphology of the reconstructed ear. Methods From 2009, 234 cases of microtia were received modified total ear reconstruction by autogenous costal cartilage. Modifications of the two-staged surgery were as follows: Decreasing the needed rib cartilage into 6~8 in donor site;Different cartilage framework in different patient;Designing a U shape cartilage block to support the complex of tragus and antitragus; The negative suction management in the second stage surgery;Using specific bone cement in the second stage surgery for ear elevation. Results All the patients were followed up for more than 6 months, most reconstructed ears were satisfiable in symmetry and stability of the three dimensional morphology and the cranio-auricular angle. Skin color and texture were favorable as well. The most common complication was reduction of the projection angle of the constructed ear caused by hypertrophic scars and severe scar contractures. Conclusion These modifications in autogenous rib cartilage reconstruction of microtia are effective and practical. So far the results of ear reconstruction are satisfactory but not in complete control.%目的:对二期法的肋软骨全耳廓再造术进行改进,以增强再造耳结构的自然性及稳定性。方法自2009起,对234例小耳畸形患者行全耳廓再造,并对肋软骨全耳廓再造法进行了系列改良,措施包括:①供区仅切取第6~8肋软骨;②根据肋软骨厚度不同,采取个性化雕刻;③耳屏对耳屏复合体下方以U型软骨块支撑;④Ⅰ期术后,对耳舟和耳甲腔进行负压管理;⑤Ⅱ期手术时使用特定形状的骨水泥支架进行支撑。结果术后患者均随访6个月以上,在耳廓的位置及三维形态、耳廓皮肤色泽、与健侧耳的对称性等方面多能达到满意效果,再造耳结构及颅

  4. Experimental articular cartilage repair in the Göttingen minipig

    DEFF Research Database (Denmark)

    Christensen, Bjørn Borsøe; Foldager, Casper Bindzus; Olesen, Morten Lykke;

    2015-01-01

    BACKGROUND: A gold standard treatment for articular cartilage injuries is yet to be found, and a cost-effective and predictable large animal model is needed to bridge the gap between in vitro studies and clinical studies. Ideally, the animal model should allow for testing of clinically relevant...... treatments and the biological response should be reproducible and comparable to humans. This allows for a reliable translation of results to clinical studies.This study aimed at verifying the Göttingen minipig as a pre-clinical model for articular cartilage repair by testing existing clinical cartilage...

  5. Prospective Clinical Trial for Septic Arthritis: Cartilage Degradation and Inflammation Are Associated with Upregulation of Cartilage Metabolites

    Directory of Open Access Journals (Sweden)

    Hagen Schmal

    2016-01-01

    Full Text Available Background. Intra-articular infections can rapidly lead to osteoarthritic degradation. The aim of this clinical biomarker analysis was to investigate the influence of inflammation on cartilage destruction and metabolism. Methods. Patients with acute joint infections were enrolled in a prospective clinical trial and the cytokine composition of effusions (n=76 was analyzed. Characteristics of epidemiology and disease severity were correlated with levels of cytokines with known roles in cartilage turnover and degradation. Results. Higher synovial IL-1β concentrations were associated with clinical parameters indicating a higher disease severity (p<0.03 excluding the incidence of sepsis. Additionally, intra-articular IL-1β levels correlated with inflammatory serum parameters as leucocyte counts (LC and C-reactive protein concentrations (p<0.05 but not with age or comorbidity. Both higher LC and synovial IL-1β levels were associated with increased intra-articular collagen type II cleavage products (C2C indicating cartilage degradation. Joints with preinfectious lesions had higher C2C levels. Intra-articular inflammation led to increased concentrations of typical cartilage metabolites as bFGF, BMP-2, and BMP-7. Infections with Staphylococcus species induced higher IL-1β expression but less cartilage destruction than other bacteria. Conclusion. Articular infections have bacteria-specific implications on cartilage metabolism. Collagen type II cleavage products reliably mark destruction, which is associated with upregulation of typical cartilage turnover cytokines. This trial is registered with DRKS00003536, MISSinG.

  6. Jellyfish collagen scaffolds for cartilage tissue engineering.

    Science.gov (United States)

    Hoyer, Birgit; Bernhardt, Anne; Lode, Anja; Heinemann, Sascha; Sewing, Judith; Klinger, Matthias; Notbohm, Holger; Gelinsky, Michael

    2014-02-01

    Porous scaffolds were engineered from refibrillized collagen of the jellyfish Rhopilema esculentum for potential application in cartilage regeneration. The influence of collagen concentration, salinity and temperature on fibril formation was evaluated by turbidity measurements and quantification of fibrillized collagen. The formation of collagen fibrils with a typical banding pattern was confirmed by atomic force microscopy and transmission electron microscopy analysis. Porous scaffolds from jellyfish collagen, refibrillized under optimized conditions, were fabricated by freeze-drying and subsequent chemical cross-linking. Scaffolds possessed an open porosity of 98.2%. The samples were stable under cyclic compression and displayed an elastic behavior. Cytotoxicity tests with human mesenchymal stem cells (hMSCs) did not reveal any cytotoxic effects of the material. Chondrogenic markers SOX9, collagen II and aggrecan were upregulated in direct cultures of hMSCs upon chondrogenic stimulation. The formation of typical extracellular matrix components was further confirmed by quantification of sulfated glycosaminoglycans.

  7. Tissue engineering of cartilages using biomatrices

    DEFF Research Database (Denmark)

    Melrose, J.; Chuang, C.; Whitelock, J.

    2008-01-01

    Tissue engineering is an exciting new cross-disciplinary methodology which applies the principles of engineering and structure-function relationships between normal and pathological tissues to develop biological substitute to restore, maintain or improve tissue function. Tissue engineering...... engineering approaches and many of these are discussed and their in vitro and in vivo applications covered in this review. Tissue engineering is entering an exciting era; significant advances have been made; however, many technical challenges remain to be solved before this technology becomes widely...... therefore involves a melange of approaches encompassing developmental biology, tissue mechanics, medicine, cell differentiation and survival biology, mechanostransduction and nano-fabrication technology. The central tissue of interest in this review is cartilage. Traumatic injuries, congenital abnormalities...

  8. MR imaging and histopathology of cartilage tumors

    Energy Technology Data Exchange (ETDEWEB)

    Mizutani, Hirokazu; Ohba, Satoru; Ohtsuka, Takanobu; Matui, Norio; Nakamura, Takaaki (Nagoya City Univ. (Japan). Faculty of Medicine)

    1994-05-01

    The MR imaging-pathologic correlation of cartilaginous bone tumors and the value of intravenously administered Gd-DTPA enhanced MR imaging was studied. The MR studies were retrospectively reviewed. Thirty-seven cases were examined with 0.5 T and 1.0 T scanner and all cases were pathologically proved. We discussed the following MR findings: signal intensities of tumors, Gd-DTPA features, morphological findings, and associated findings. Hyaline cartilage tumors showed low signal intensity on T[sub 1]-weighted images and very high signal intensity on T[sub 2]-weighted images. Lobulated marginal enhancements were recognized in chondrosarcomas. This may be an important finding to suspect chondrosarcoma. (author).

  9. The development of the collagen fibre network in tissue-engineered cartilage constructs in vivo. Engineered cartilage reorganises fibre network

    Directory of Open Access Journals (Sweden)

    H Paetzold

    2012-04-01

    Full Text Available For long term durability of tissue-engineered cartilage implanted in vivo, the development of the collagen fibre network orientation is essential as well as the distribution of collagen, since expanded chondrocytes are known to synthesise collagen type I. Typically, these properties differ strongly between native and tissue-engineered cartilage. Nonetheless, the clinical results of a pilot study with implanted tissue-engineered cartilage in pigs were surprisingly good. The purpose of this study was therefore to analyse if the structure and composition of the artificial cartilage tissue changes in the first 52 weeks after implantation. Thus, collagen network orientation and collagen type distribution in tissue-engineered cartilage-carrier-constructs implanted in the knee joints of Göttinger minipigs for 2, 26 or 52 weeks have been further investigated by processing digitised microscopy images of histological sections. The comparison to native cartilage demonstrated that fibre orientation over the cartilage depth has a clear tendency towards native cartilage with increasing time of implantation. After 2 weeks, the collagen fibres of the superficial zone were oriented parallel to the articular surface with little anisotropy present in the middle and deep zones. Overall, fibre orientation and collagen distribution within the implants were less homogenous than in native cartilage tissue. Despite a relatively low number of specimens, the consistent observation of a continuous approximation to native tissue is very promising and suggests that it may not be necessary to engineer the perfect tissue for implantation but rather to provide an intermediate solution to help the body to heal itself.

  10. Cartilage oligomeric matrix protein in patients with juvenile idiopathic arthritis

    DEFF Research Database (Denmark)

    Bjørnhart, Birgitte; Juul, Anders; Nielsen, Susan

    2009-01-01

    Cartilage oligomeric matrix protein (COMP) has been identified as a prognostic marker of progressive joint destruction in rheumatoid arthritis. In this population based study we evaluated associations between plasma concentrations of COMP, disease activity, and growth velocity in patients...

  11. Tailored PVA/ECM Scaffolds for Cartilage Regeneration

    Directory of Open Access Journals (Sweden)

    Elena Stocco

    2014-01-01

    Full Text Available Articular cartilage lesions are a particular challenge for regenerative medicine due to cartilage low self-ability repair in case of damage. Hence, a significant goal of musculoskeletal tissue engineering is the development of suitable structures in virtue of their matrix composition and biomechanical properties. The objective of our study was to design in vitro a supporting structure for autologous chondrocyte growth. We realized a biohybrid composite scaffold combining a novel and nonspecific extracellular matrix (ECM, which is decellularized Wharton’s jelly ECM, with the biomechanical properties of the synthetic hydrogel polyvinyl alcohol (PVA. Wharton’s jelly ECM was tested for its ability in promoting scaffold colonization by chondrocytes and compared with polyvinyl alcohol itself and the more specific decellularized cartilage matrix. Our preliminary evidences highlighted the chance of using Wharton’s jelly ECM in combination with PVA hydrogels as an innovative and easily available scaffold for cartilage restoration.

  12. Starch-modified magnetite nanoparticles for impregnation into cartilage

    Energy Technology Data Exchange (ETDEWEB)

    Soshnikova, Yulia M., E-mail: yuliasoshnikova@gmail.com [Russian Academy of Sciences, Institute on Laser and Information Technologies (Russian Federation); Roman, Svetlana G.; Chebotareva, Natalia A. [A.N. Bach Institute of Biochemistry (Russian Federation); Baum, Olga I. [Russian Academy of Sciences, Institute on Laser and Information Technologies (Russian Federation); Obrezkova, Mariya V. [Lomonosov Moscow State University, Department of Chemistry (Russian Federation); Gillis, Richard B.; Harding, Stephen E. [University of Nottingham, National Centre for Macromolecular Hydrodynamics (United Kingdom); Sobol, Emil N. [Russian Academy of Sciences, Institute on Laser and Information Technologies (Russian Federation); Lunin, Valeriy V. [Lomonosov Moscow State University, Department of Chemistry (Russian Federation)

    2013-11-15

    The paper presents preparation and characterization of starch-modified Fe{sub 3}O{sub 4} nanoparticles (NPs) in aqueous dispersion after impregnation into healthy and damaged types of cartilage. We show that starch-modified dispersion has a narrower size distribution than a non‐stabilized one. The average hydrodynamic radius of magnetite NPs in a dispersion used for impregnation into cartilage is (48 ± 1) nm with the width of the distribution from 5 to 200 nm. We investigate stability of aqueous magnetite NPs dispersions during storage and with increase in temperature (up to 70 °C). We find that polydisperse magnetite NPs can penetrate into cartilage and the size and concentration of impregnated particles depend on the organization of the tissue structure. The results confirm the possibility of application of magnetite NPs in diagnostics and laser treatment of degenerative cartilage deceases.

  13. Cartilage (Bovine and Shark) (PDQ®)—Health Professional Version

    Science.gov (United States)

    Expert-reviewed information summary about the use of bovine and shark cartilage as a treatment for people with cancer. Note: The information in this summary is no longer being updated and is provided for reference purposes only.

  14. Effects of mechanical stimuli on adaptive remodeling of condylar cartilage.

    Science.gov (United States)

    Sriram, D; Jones, A; Alatli-Burt, I; Darendeliler, M A

    2009-05-01

    Trabecular bone has been shown to be responsive to low-magnitude, high-frequency mechanical stimuli. This study aimed to assess the effects of these stimuli on condylar cartilage and its endochondral bone. Forty female 12-week-old C3H mice were divided into 3 groups: baseline control (killed at day 0), sham (killed at day 28 without exposure to mechanical stimuli), and experimental (killed following 28 days of exposure to mechanical stimuli). The experimental group was subjected to mechanical vibration of 30 Hz, for 20 minutes per day, 5 days per week, for 28 days. The specimens were analyzed by micro-computed tomography. The experimental group demonstrated a significant decrease in the volume of condylar cartilage and also a significant increase in bone histomorphometric parameters. The results suggest that the low-magnitude, high-frequency mechanical stimuli enhance adaptive remodeling of condylar cartilage, evidenced by the advent of endochondral bone replacing the hypertrophic cartilage.

  15. Starch-modified magnetite nanoparticles for impregnation into cartilage

    Science.gov (United States)

    Soshnikova, Yulia M.; Roman, Svetlana G.; Chebotareva, Natalia A.; Baum, Olga I.; Obrezkova, Mariya V.; Gillis, Richard B.; Harding, Stephen E.; Sobol, Emil N.; Lunin, Valeriy V.

    2013-11-01

    The paper presents preparation and characterization of starch-modified Fe3O4 nanoparticles (NPs) in aqueous dispersion after impregnation into healthy and damaged types of cartilage. We show that starch-modified dispersion has a narrower size distribution than a non-stabilized one. The average hydrodynamic radius of magnetite NPs in a dispersion used for impregnation into cartilage is (48 ± 1) nm with the width of the distribution from 5 to 200 nm. We investigate stability of aqueous magnetite NPs dispersions during storage and with increase in temperature (up to 70 °C). We find that polydisperse magnetite NPs can penetrate into cartilage and the size and concentration of impregnated particles depend on the organization of the tissue structure. The results confirm the possibility of application of magnetite NPs in diagnostics and laser treatment of degenerative cartilage deceases.

  16. Surgical correction of joint deformities and hyaline cartilage regeneration

    National Research Council Canada - National Science Library

    Vinokurov, Vyacheslav Alexandrovich; Norkin, Igor Alekseevich

    2015-01-01

    Aim. To determine a method of extra-articular osteochondral fragment formation for the improvement of surgical correction results of joint deformities and optimization of regenerative conditions for hyaline cartilage...

  17. Endobronchial Cartilage Rupture: A Rare Cause of Lobar Collapse

    Science.gov (United States)

    Siddiqui, Nauman; Javaid, Toseef

    2016-01-01

    Endobronchial cartilage rupture is a rare clinical condition, which can present in patients with severe emphysema with sudden onset shortness of breath. We present a case of a 62-year-old male who presented to our emergency department with sudden onset shortness of breath. Chest X-ray showed lung hyperinflation and a right lung field vague small density. Chest Computed Tomography confirmed the presence of right middle lobe collapse. Bronchoscopy revealed partial right middle lobe atelectasis and an endobronchial cartilage rupture. Endobronchial cartilage rupture is a rare condition that can present as sudden onset shortness of breath due to lobar collapse in patients with emphysema and can be triggered by cough. Bronchoscopic findings include finding a collapsed lung lobe and a visible ruptured endobronchial cartilage. A high index of suspicion, chest imaging, and early bronchoscopy can aid in the diagnosis and help prevent complications. PMID:27525149

  18. Radiation-induced chrondrocalcinosis of the knee articular cartilage

    Energy Technology Data Exchange (ETDEWEB)

    Collis, C.H.; Dieppe, P.A.; Bullimore, J.A.

    1988-07-01

    A case of a middle-aged man with symptomatic, localised chondrocalcinosis of the knee following irradiation is described. Cartilage damage induced by radiotherapy should be added to the list of local factors which can predispose to chondrocalcinosis.

  19. Articular cartilage repair and the evolving role of regenerative medicine

    Directory of Open Access Journals (Sweden)

    Pieter K Bos

    2010-10-01

    Full Text Available Pieter K Bos1, Marloes L van Melle1, Gerjo JVM van Osch1,21Department of Orthopaedic Surgery, Erasmus MC, Rotterdam, the Netherlands; 2Department of Otorhinolaryngology, Erasmus MC, Rotterdam, the NetherlandsAbstract: Among the growing applications of regenerative medicine, clinical articular cartilage repair has now been used for 2 decades and forms a successful example of translational medicine. Cartilage is characterized by a limited intrinsic repair capacity following injury. Articular cartilage defects cause symptoms, are not spontaneously repaired, and are generally believed to result in early osteoarthritis. Marrow stimulation techniques, osteochondral transplantation, and cell-based therapies, such as autologous chondrocyte implantation (ACI and use of mesenchymal stem cells (MSCs, are used for tissue regeneration, symptom relief, and prevention of further joint degeneration. The exact incidence of cartilage defects and the natural outcome of joints with these lesions are unclear. Currently available cartilage repair techniques are designed for defect treatment in otherwise healthy joints and limbs, mostly in young adults. The natural history studies presented in this review estimated that the prevalence of cartilage lesions in this patient group ranges from 5% to 11%. The background and results from currently available randomized clinical trials of the three mostly used cartilage repair techniques are outlined in this review. Osteochondral transplantation, marrow stimulation, and ACI show improvement of symptoms with an advantage for cell-based techniques, but only a suggestion that risk for joint degeneration can be reduced. MSCs, characterized by their good proliferative capacity and the potential to differentiate into different mesenchymal lineages, form an attractive alternative cell source for cartilage regeneration. Moreover, MSCs provide a regenerative microenvironment by the secretion of bioactive factors. This trophic activity

  20. Post-traumatic glenohumeral cartilage lesions: a systematic review

    Directory of Open Access Journals (Sweden)

    Stussi Edgar

    2008-07-01

    Full Text Available Abstract Background Any cartilage damage to the glenohumeral joint should be avoided, as these damages may result in osteoarthritis of the shoulder. To understand the pathomechanism leading to shoulder cartilage damage, we conducted a systematic review on the subject of articular cartilage lesions caused by traumas where non impression fracture of the subchondral bone is present. Methods PubMed (MEDLINE, ScienceDirect (EMBASE, BIOBASE, BIOSIS Previews and the COCHRANE database of systematic reviews were systematically scanned using a defined search strategy to identify relevant articles in this field of research. First selection was done based on abstracts according to specific criteria, where the methodological quality in selected full text articles was assessed by two reviewers. Agreement between raters was investigated using percentage agreement and Cohen's Kappa statistic. The traumatic events were divided into two categories: 1 acute trauma which refers to any single impact situation which directly damages the articular cartilage, and 2 chronic trauma which means cartilage lesions due to overuse or disuse of the shoulder joint. Results The agreement on data quality between the two reviewers was 93% with a Kappa value of 0.79 indicating an agreement considered to be 'substantial'. It was found that acute trauma on the shoulder causes humeral articular cartilage to disrupt from the underlying bone. The pathomechanism is said to be due to compression or shearing, which can be caused by a sudden subluxation or dislocation. However, such impact lesions are rarely reported. In the case of chronic trauma glenohumeral cartilage degeneration is a result of overuse and is associated to other shoulder joint pathologies. In these latter cases it is the rotator cuff which is injured first. This can result in instability and consequent impingement which may progress to glenohumeral cartilage damage. Conclusion The great majority of glenohumeral cartilage

  1. The Frictional Coefficient of Bovine Knee Articular Cartilage

    Institute of Scientific and Technical Information of China (English)

    Qian Shan-hua; Ge Shi-rong; Wang Qing-liang

    2006-01-01

    The normal displacement of articular cartilage was measured under load and in sliding, and the coefficient of friction during sliding was measured using a UMT-2 Multi-Specimen Test System. The maximum normal displacement under load and the start-up frictional coefficient have similar tendency of variation with loading time. The sliding speed does not significantly influence the frictional coefficient of articular cartilage.

  2. Cartilage destruction in rheumatoid arthritis, its association with functional impairments

    Directory of Open Access Journals (Sweden)

    Natalia Vladimirovna Chichasova

    2014-12-01

    Full Text Available The paper discusses the mechanisms of destructive processes in rheumatoid arthritis (RA. At the present stage, in addition to suppress inflammation, the goals of treatment are to prevent cartilage and bone destruction in the affected joints. Prediction of destructive processes in RA plays an important role as the irreversibility of functional changes in RA directly correlates with the degree of joint injury. The paper discusses the mechanisms of articular cartilage and bone destruction and the significance of different biochemical markers for estimating the degree of injury and for predicting further destruction of small hand and foot joints. In RA, the investigators identify not only clinical (activity indicators, but also biological (bone, cartilage, and synovium damage markers predictors for joint injury: CТXII is a marker for cartilage degradation (collagen type II and CTXI is a marker for bone degradation (collagen type I and their trends over 4–12 or more weeks. Although the occurrence of erosions is considered to be a major manifestation of joint destruction progression in RA, the functional activity in its early stages is shown to depend on the estimate of joint space narrowing (cartilage degradation to a greater extent than on that of erosions when evaluating the destruction by the modified Sharp method. Several randomized placebocontrolled studies (RPCSs have assessed the association of patients' functional capacity with joint space narrowing or with the number of erosions. In RA, cartilage degradation has been demonstrated to play a larger role in irreversible function loss than bone destruction.The possibility of suppressing cartilage degradation, which is indicated in RPCSs of the efficacy of adalimumab, correlates with a better functional outcome in patients with RA. Serum markers for cartilage metabolism may be not only predictors for further radiographic progression, but also be used to evaluate therapeutic effectiveness.

  3. Comparative digital cartilage histology for human and common osteoarthritis models

    Directory of Open Access Journals (Sweden)

    Pedersen DR

    2013-02-01

    Full Text Available Douglas R Pedersen, Jessica E Goetz, Gail L Kurriger, James A MartinDepartment of Orthopaedics and Rehabilitation, University of Iowa, Iowa City, IA, USAPurpose: This study addresses the species-specific and site-specific details of weight-bearing articular cartilage zone depths and chondrocyte distributions among humans and common osteoarthritis (OA animal models using contemporary digital imaging tools. Histological analysis is the gold-standard research tool for evaluating cartilage health, OA severity, and treatment efficacy. Historically, evaluations were made by expert analysts. However, state-of-the-art tools have been developed that allow for digitization of entire histological sections for computer-aided analysis. Large volumes of common digital cartilage metrics directly complement elucidation of trends in OA inducement and concomitant potential treatments.Materials and methods: Sixteen fresh human knees, 26 adult New Zealand rabbit stifles, and 104 bovine lateral plateaus were measured for four cartilage zones and the cell densities within each zone. Each knee was divided into four weight-bearing sites: the medial and lateral plateaus and femoral condyles.Results: One-way analysis of variance followed by pairwise multiple comparisons (Holm–Sidak method at a significance of 0.05 clearly confirmed the variability between cartilage depths at each site, between sites in the same species, and between weight-bearing articular cartilage definitions in different species.Conclusion: The present study clearly demonstrates multisite, multispecies differences in normal weight-bearing articular cartilage, which can be objectively quantified by a common digital histology imaging technique. The clear site-specific differences in normal cartilage must be taken into consideration when characterizing the pathoetiology of OA models. Together, these provide a path to consistently analyze the volume and variety of histologic slides necessarily generated

  4. Blends and Nanocomposite Biomaterials for Articular Cartilage Tissue Engineering

    Science.gov (United States)

    Doulabi, Azadehsadat Hashemi; Mequanint, Kibret; Mohammadi, Hadi

    2014-01-01

    This review provides a comprehensive assessment on polymer blends and nanocomposite systems for articular cartilage tissue engineering applications. Classification of various types of blends including natural/natural, synthetic/synthetic systems, their combination and nanocomposite biomaterials are studied. Additionally, an inclusive study on their characteristics, cell responses ability to mimic tissue and regenerate damaged articular cartilage with respect to have functionality and composition needed for native tissue, are also provided. PMID:28788131

  5. Cartilage repair and joint preservation: medical and surgical treatment options.

    Science.gov (United States)

    Madry, Henning; Grün, Ulrich Wolfgang; Knutsen, Gunnar

    2011-10-01

    Articular cartilage defects are most often caused by trauma and osteoarthritis and less commonly by metabolic disorders of the subchondral bone, such as osteonecrosis and osteochondritis dissecans. Such defects do not heal spontaneously in adults and can lead to secondary osteoarthritis. Medications are indicated for symptomatic relief. Slow-acting drugs in osteoarthritis (SADOA), such as glucosamine and chondroitin, are thought to prevent cartilage degeneration. Reconstructive surgical treatment strategies aim to form a repair tissue or to unload compartments of the joint with articular cartilage damage. In this article, we selectively review the pertinent literature, focusing on original publications of the past 5 years and older standard texts. Particular attention is paid to guidelines and clinical studies with a high level of evidence, along with review articles, clinical trials, and book chapters. There have been only a few randomized trials of medical versus surgical treatments. Pharmacological therapies are now available that are intended to treat the cartilage defect per se, rather than the associated symptoms, yet none of them has yet been shown to slow or reverse the progression of cartilage destruction. Surgical débridement of cartilage does not prevent the progression of osteoarthritis and is thus not recommended as the sole treatment. Marrow-stimulating procedures and osteochondral grafts are indicated for small focal articular cartilage defects, while autologous chondrocyte implantationis mainly indicated for larger cartilage defects. These surgical reconstructive techniques play a lesser role in the treatment of osteoarthritis. Osteotomy near the knee joint is indicated for axial realignment when unilateral osteoarthritis of the knee causes axis deviation. Surgical reconstructive techniques can improve joint function and thereby postpone the need for replacement of the articular surface with an artificial joint.

  6. Cartilage change after arthroscopic repair for an isolated meniscal tear.

    Science.gov (United States)

    Soejima, Takashi; Murakami, Hidetaka; Inoue, Takashi; Kanazawa, Tomonoshin; Katouda, Michihiro; Nagata, Kensei

    2005-01-01

    To investigate the direct effect to the cartilage caused by the meniscal repair, we examined patients who underwent an isolated meniscal repair without any other abnormalities by arthroscopic examination. A total of 17 patients were examined by second-look arthroscopy after an average interval of 9 months from the meniscal repair, and have been evaluated the status of the repaired meniscus and of the relative femoral condylar cartilage. Changes in the severity of the cartilage lesion between at the time of meniscal repair and the time of the second-look arthroscopy were considered based on the status of the repaired meniscus. Regardless of the healing status of the repair site, it was possible to prevent degeneration in the cartilage in 9 of the 10 patients who demonstrated no degeneration in the meniscal body. Of the 7 patients who demonstrated degeneration in the meniscal body, progression in cartilage degeneration was noted as 1 grade in 2 patients and 2 grades in another 3 patients. Even in those in which stable fusion of the repair site was achieved, the condition of the inner meniscal body was not necessarily maintained favorably in all cases, indicating that degeneration in the meniscal body was a risk factor for cartilage degeneration. It was concluded that recovery could not be expected even at 9 months after the repair if the lesion had already demonstrated degeneration in the meniscal body at the time of repair.

  7. Quantitative imaging of excised osteoarthritic cartilage using spectral CT

    Energy Technology Data Exchange (ETDEWEB)

    Rajendran, Kishore; Bateman, Christopher J.; Younis, Raja Aamir; De Ruiter, Niels J.A.; Ramyar, Mohsen; Anderson, Nigel G. [University of Otago - Christchurch, Department of Radiology, Christchurch (New Zealand); Loebker, Caroline [University of Otago, Christchurch Regenerative Medicine and Tissue Engineering Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, Christchurch (New Zealand); University of Twente, Department of Developmental BioEngineering, Enschede (Netherlands); Schon, Benjamin S.; Hooper, Gary J.; Woodfield, Tim B.F. [University of Otago, Christchurch Regenerative Medicine and Tissue Engineering Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, Christchurch (New Zealand); Chernoglazov, Alex I. [University of Canterbury, Human Interface Technology Laboratory New Zealand, Christchurch (New Zealand); Butler, Anthony P.H. [University of Otago - Christchurch, Department of Radiology, Christchurch (New Zealand); European Organisation for Nuclear Research (CERN), Geneva (Switzerland); MARS Bioimaging, Christchurch (New Zealand)

    2017-01-15

    To quantify iodine uptake in articular cartilage as a marker of glycosaminoglycan (GAG) content using multi-energy spectral CT. We incubated a 25-mm strip of excised osteoarthritic human tibial plateau in 50 % ionic iodine contrast and imaged it using a small-animal spectral scanner with a cadmium telluride photon-processing detector to quantify the iodine through the thickness of the articular cartilage. We imaged both spectroscopic phantoms and osteoarthritic tibial plateau samples. The iodine distribution as an inverse marker of GAG content was presented in the form of 2D and 3D images after applying a basis material decomposition technique to separate iodine in cartilage from bone. We compared this result with a histological section stained for GAG. The iodine in cartilage could be distinguished from subchondral bone and quantified using multi-energy CT. The articular cartilage showed variation in iodine concentration throughout its thickness which appeared to be inversely related to GAG distribution observed in histological sections. Multi-energy CT can quantify ionic iodine contrast (as a marker of GAG content) within articular cartilage and distinguish it from bone by exploiting the energy-specific attenuation profiles of the associated materials. (orig.)

  8. Computational aspects in mechanical modeling of the articular cartilage tissue.

    Science.gov (United States)

    Mohammadi, Hadi; Mequanint, Kibret; Herzog, Walter

    2013-04-01

    This review focuses on the modeling of articular cartilage (at the tissue level), chondrocyte mechanobiology (at the cell level) and a combination of both in a multiscale computation scheme. The primary objective is to evaluate the advantages and disadvantages of conventional models implemented to study the mechanics of the articular cartilage tissue and chondrocytes. From monophasic material models as the simplest form to more complicated multiscale theories, these approaches have been frequently used to model articular cartilage and have contributed significantly to modeling joint mechanics, addressing and resolving numerous issues regarding cartilage mechanics and function. It should be noted that attentiveness is important when using different modeling approaches, as the choice of the model limits the applications available. In this review, we discuss the conventional models applicable to some of the mechanical aspects of articular cartilage such as lubrication, swelling pressure and chondrocyte mechanics and address some of the issues associated with the current modeling approaches. We then suggest future pathways for a more realistic modeling strategy as applied for the simulation of the mechanics of the cartilage tissue using multiscale and parallelized finite element method.

  9. Vitamin D and Its Effects on Articular Cartilage and Osteoarthritis.

    Science.gov (United States)

    Garfinkel, Rachel J; Dilisio, Matthew F; Agrawal, Devendra K

    2017-06-01

    Osteoarthritis (OA) currently affects 10% of the American population. There has been a recent push to determine exactly what causes OA and how it can be treated most effectively. Serum vitamin D levels have been associated with OA and may have an effect on articular cartilage remodeling. To critically review the published research on the effect of vitamin D on articular cartilage and the development of OA as well as on the mechanism behind cartilage regeneration and degeneration. Review. A systematic search of PubMed and the Web of Science was performed for relevant studies published in the English language through April 30, 2016, using the terms vitamin D, articular cartilage, and osteoarthritis. On a molecular level, 1α,25(OH)2D3, the activated form of vitamin D, plays a role in articular cartilage degeneration. Vitamin D binds to vitamin D receptors, triggering a signaling cascade that leads to chondrocyte hypertrophy. In clinical trials, vitamin D deficiency poses a risk factor for OA, and those with decreased cartilage thickness are more likely to be vitamin D-insufficient. The role of vitamin D supplementation in the treatment or prevention of OA remains uncertain. More research is needed to reconcile these conflicting findings.

  10. Specific premature epigenetic aging of cartilage in osteoarthritis

    Science.gov (United States)

    Vidal-Bralo, Laura; Lopez-Golan, Yolanda; Mera-Varela, Antonio; Rego-Perez, Ignacio; Horvath, Steve; Zhang, Yuhua; del Real, Álvaro; Zhai, Guangju; Blanco, Francisco J; Riancho, Jose A.; Gomez-Reino, Juan J; Gonzalez, Antonio

    2016-01-01

    Osteoarthritis (OA) is a disease affecting multiple tissues of the joints in the elderly, but most notably articular cartilage. Premature biological aging has been described in this tissue and in blood cells, suggesting a systemic component of premature aging in the pathogenesis of OA. Here, we have explored epigenetic aging in OA at the local (cartilage and bone) and systemic (blood) levels. Two DNA methylation age-measures (DmAM) were used: the multi-tissue age estimator for cartilage and bone; and a blood-specific biomarker for blood. Differences in DmAM between OA patients and controls showed an accelerated aging of 3.7 years in articular cartilage (95 % CI = 1.1 to 6.3, P = 0.008) of OA patients. By contrast, no difference in epigenetic aging was observed in bone (0.04 years; 95 % CI = −1.8 to 1.9, P = 0.3) and in blood (−0.6 years; 95 % CI = −1.5 to 0.3, P = 0.2) between OA patients and controls. Therefore, premature epigenetic aging according to DNA methylation changes was specific of OA cartilage, adding further evidence and insight on premature aging of cartilage as a component of OA pathogenesis that reflects damage and vulnerability. PMID:27689435

  11. Rapid isolation of intact, viable fetal cartilage models

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, R.R.; Chepenik, K.P.; Paynton, B.V.; Cotler, J.M.

    1982-04-01

    A rapid procedure is described for the isolation of viable, intact, femoral cartilage models (humeri and femora) obtained from pregnant rats on the 18th day of gestation. Viability of these models is demonstrated in an in vitro system where the incorporation of /sup 35/S-sulfate was linear with time of incubation and with numbers of cartilage models utilized. Treatment of cartilage models with ice-cold trichloroacetic acid and a boiling water bath prior to incubation with radiolabel, reduced the amount of radioactivity incorporated to 1.3% of that observed for models incubated by routine procedures. Furthermore, digestion of cartilage model homogenates with protease yielded a supernatant from which 51% to 57% of the radioactivity was precipitated as GAG. This method may also be used to isolate fetal cartilage models as early as the 16th day of gestation. with this system, specific biochemical parameters of mammalian fetal chondrogenesis may be surveyed in normally and abnormally developing fetal cartilage free of surrounding soft tissue.

  12. Quasi-static elastography comparison of hyaline cartilage structures

    Energy Technology Data Exchange (ETDEWEB)

    McCredie, A J; Stride, E; Saffari, N [Mechanical Engineering, University College London, Torrington Place, London, WC1E 7JE (United Kingdom)

    2009-11-01

    Joint cartilage, a load bearing structure in mammals, has only limited ability for regeneration after damage. For tissue engineers to design functional constructs, better understanding of the properties of healthy tissue is required. Joint cartilage is a specialised structure of hyaline cartilage; a poroviscoelastic solid containing fibril matrix reinforcements. Healthy joint cartilage is layered, which is thought to be important for correct tissue function. However, the behaviour of each layer during loading is poorly understood. Ultrasound elastography provides access to depth-dependent information in real-time for a sample during loading. A 15 MHz focussed transducer provided details from scatterers within a small fixed region in each sample. Quasi-static loading was applied to cartilage samples while ultrasonic signals before and during compressions were recorded. Ultrasonic signals were processed to provide time-shift profiles using a sum-squared difference method and cross-correlation. Two structures of hyaline cartilage have been tested ultrasonically and mechanically to determine method suitability for monitoring internal deformation differences under load and the effect of the layers on the global mechanical material behaviour. Results show differences in both the global mechanical properties and the ultrasonically tested strain distributions between the two structures tested. It was concluded that these differences are caused primarily by the fibril orientations.

  13. Changes in articular cartilage in experimentally induced patellar subluxation

    Science.gov (United States)

    Ryu, J.; Saito, S.; Yamamoto, K.

    1997-01-01

    OBJECTIVES—Patellar subluxation was experimentally induced in young rabbits and the resulting cartilaginous changes were observed over a prolonged period of time to determine histological changes in the subluxated patellar cartilage.
METHODS—The tibial tuberosity in 12 week old rabbits was laterally displaced and fixed to the tibia with wire to induce lateral patellar subluxation. Pathological changes in patellar cartilage were examined for 120 weeks after surgery using computed tomography and stereoscopic microscopy.
RESULTS—Eight weeks after surgery, changes in articular cartilage consisting of horizontal splitting of the matrix were observed in the intermediate zone and were presumed to have been caused by shearing stress applied to the patellar cartilage. The cartilaginous changes caused by patellar subluxation progressed very little over the 120 weeks. Very few rabbits presented with osteoarthritic changes in the patellofemoral joint, most probably because the stress resulting from the malalignment of the patellofemoral joint was mild enough to permit recovery.
CONCLUSION—The mild, non-progressive pathological changes, in particular, basal degeneration, induced in this experiment in patellar cartilage were quite similar to the changes in articular cartilage seen in human chondromalacia patellae.

 PMID:9462171

  14. Lineage plasticity and cell biology of fibrocartilage and hyaline cartilage: Its significance in cartilage repair and replacement

    Energy Technology Data Exchange (ETDEWEB)

    Freemont, Anthony J. [Regenerative Medicine Research Group, University of Manchester, England (United Kingdom)]. E-mail: Tony.freemont@man.ac.uk; Hoyland, Judith [Regenerative Medicine Research Group, University of Manchester, England (United Kingdom)

    2006-01-15

    Cartilage repair is a major goal of modern tissue engineering. To produce novel engineered implants requires a knowledge of the basic biology of the tissues that are to be replaced or reproduced. Hyaline articular cartilage and meniscal fibrocartilage are two tissues that have excited attention because of the frequency with which they are damaged. A basic strategy is to re-engineer these tissues ex vivo by stimulating stem cells to differentiate into the cells of the mature tissue capable of producing an intact functional matrix. In this brief review, the sources of cells for tissue engineering cartilage and the culture conditions that have promoted differentiation are discussed within the context of natural cartilage repair. In particular, the role of cell density, cytokines, load, matrices and oxygen tension are discussed.

  15. Hypotonic challenge modulates cell volumes differently in the superficial zone of intact articular cartilage and cartilage explant.

    Science.gov (United States)

    Turunen, Siru M; Lammi, Mikko J; Saarakkala, Simo; Koistinen, Arto; Korhonen, Rami K

    2012-05-01

    The objective of this study was to evaluate the effect of sample preparation on the biomechanical behaviour of chondrocytes. We compared the volumetric and dimensional changes of chondrocytes in the superficial zone (SZ) of intact articular cartilage and cartilage explant before and after a hypotonic challenge. Calcein-AM labelled SZ chondrocytes were imaged with confocal laser scanning microscopy through intact cartilage surfaces and through cut surfaces of cartilage explants. In order to clarify the effect of tissue composition on cell volume changes, Fourier Transform Infrared microspectroscopy was used for estimating the proteoglycan and collagen contents of the samples. In the isotonic medium (300 mOsm), there was a significant difference (p integrity of the mechanical environment of chondrocytes.

  16. Articular Cartilage Thickness Measured with US is Not as Easy as It Appears

    DEFF Research Database (Denmark)

    Torp-Pedersen, Søren; Bartels, E. M.; Wilhjelm, Jens E.

    2011-01-01

    over the last 10 years, evaluating articular cartilage thickness with US, underestimated the cartilage thickness by not including the leading interface as part of the cartilage. Since the cartilage is relatively thin, this error is substantial. Some investigators also overestimated cartilage thickness...... insonation. If US measurements are compared to measurements with other techniques, they should be corrected for the higher sound speed in cartilage. Purpose: To study whether investigators correctly identify the articular cartilage, whether they insonate orthogonally, and whether they correct for sound speed....... Materials and Methods: A literature search limited to the last 10 years of studies applying US to measure cartilage thickness. Results: 15 studies were identified and they referred to another 8 studies describing methods of thickness measurement. 11 of the 15 studies identified the superficial cartilage...

  17. Magnetic resonance imaging of hyaline cartilage regeneration in neocartilage graft implantation.

    Science.gov (United States)

    Tan, C F; Ng, K K; Ng, S H; Cheung, Y C

    2003-12-01

    The purpose of this study was to investigate the regenerative potential of hyaline cartilage in a neocartilage graft implant with the aid of MR cartilage imaging using a rabbit model. Surgical osteochondral defects were created in the femoral condyles of 30 mature New Zealand rabbits. The findings of neocartilage in autologous cartilage grafts packed into osteochondral defects were compared with control group of no implant to the osteochondral defect. The outcome of the implantations was correlated with histologic and MR cartilage imaging findings over a 3-month interval. Neocartilage grafts packed into osteochondral defects showed regeneration of hyaline cartilage at the outer layer of the implant using MR cartilage imaging. Fibrosis of fibrocartilage developed at the outer layer of the autologous cartilage graft together with an inflammatory reaction within the osteochondral defect. This animal study provides evidence of the regenerative ability of hyaline cartilage in neocartilage transplants to repair articular cartilage.

  18. Induced superficial chondrocyte death reduces catabolic cartilage damage in murine posttraumatic osteoarthritis.

    Science.gov (United States)

    Zhang, Minjie; Mani, Sriniwasan B; He, Yao; Hall, Amber M; Xu, Lin; Li, Yefu; Zurakowski, David; Jay, Gregory D; Warman, Matthew L

    2016-08-01

    Joints that have degenerated as a result of aging or injury contain dead chondrocytes and damaged cartilage. Some studies have suggested that chondrocyte death precedes cartilage damage, but how the loss of chondrocytes affects cartilage integrity is not clear. In this study, we examined whether chondrocyte death undermines cartilage integrity in aging and injury using a rapid 3D confocal cartilage imaging technique coupled with standard histology. We induced autonomous expression of diphtheria toxin to kill articular surface chondrocytes in mice and determined that chondrocyte death did not lead to cartilage damage. Moreover, cartilage damage after surgical destabilization of the medial meniscus of the knee was increased in mice with intact chondrocytes compared with animals whose chondrocytes had been killed, suggesting that chondrocyte death does not drive cartilage damage in response to injury. These data imply that chondrocyte catabolism, not death, contributes to articular cartilage damage following injury. Therefore, therapies targeted at reducing the catabolic phenotype may protect against degenerative joint disease.

  19. Vascular Canals in Permanent Hyaline Cartilage: Development, Corrosion of Nonmineralized Cartilage Matrix, and Removal of Matrix Degradation Products.

    Science.gov (United States)

    Gabner, Simone; Häusler, Gabriele; Böck, Peter

    2017-06-01

    Core areas in voluminous pieces of permanent cartilage are metabolically supplied via vascular canals (VCs). We studied cartilage corrosion and removal of matrix degradation products during the development of VCs in nose and rib cartilage of piglets. Conventional staining methods were used for glycosaminoglycans, immunohistochemistry was performed to demonstrate collagens types I and II, laminin, Ki-67, von Willebrand factor, VEGF, macrophage marker MAC387, S-100 protein, MMPs -2,-9,-13,-14, and their inhibitors TIMP1 and TIMP2. VCs derived from connective tissue buds that bulged into cartilage matrix ("perichondrial papillae", PPs). Matrix was corroded at the tips of PPs or resulting VCs. Connective tissue stromata in PPs and VCs comprised an axial afferent blood vessel, peripherally located wide capillaries, fibroblasts, newly synthesized matrix, and residues of corroded cartilage matrix (collagen type II, acidic proteoglycans). Multinucleated chondroclasts were absent, and monocytes/macrophages were not seen outside the blood vessels. Vanishing acidity characterized areas of extracellular matrix degradation ("preresorptive layers"), from where the dismantled matrix components diffused out. Leached-out material stained in an identical manner to intact cartilage matrix. It was detected in the stroma and inside capillaries and associated downstream veins. We conclude that the delicate VCs are excavated by endothelial sprouts and fibroblasts, whilst chondroclasts are specialized to remove high volumes of mineralized cartilage. VCs leading into permanent cartilage can be formed by corrosion or inclusion, but most VCs comprise segments that have developed in either of these ways. Anat Rec, 300:1067-1082, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  20. Estudo multicasos sobre atividades inovativas

    Directory of Open Access Journals (Sweden)

    Sonia Regina Hierro Parolin

    2013-09-01

    Full Text Available Em estudos sobre competitividade argumenta-se que as empresas necessitam de estratégias baseadas em inovações e de capacidades internas em constantes e intensas transformações, não somente nos padrões tecnológicos, mas também no encadeamento do processo de gestão das atividades inovativas, como processos dinâmicos, não lineares e diversificados, em função de múltiplos fatores dos ambientes interno e externo. Para contribuir com essas discussões, neste artigo apresenta-se um estudo multicasos em quatro indústrias de médio e grande portes, de segmentos, densidades tecnológicas e históricos com inovações diferentes entre si. Como principais resultados, salientam-se o encadeamento das atividades inovativas como parte de uma estratégia organizacional para obter resultados com inovação e a afluência de todas as pessoas, e não somente as alocadas em pesquisa e desenvolvimento, para o cumprimento dessa estratégia.

  1. Disostose espôndilo-costal associada a defeitos de fechamento do tubo neural Spondylocostal dysostosis associated with neural tube defects

    Directory of Open Access Journals (Sweden)

    Rafael Fabiano M. Rosa

    2009-09-01

    Full Text Available OBJETIVO: Salientar a relação dos defeitos de fechamento do tubo neural com a disostose espôndilo-costal (DEC por meio da descrição de três pacientes. DESCRIÇÃO DOS CASOS: Paciente 1: menina branca, 22 meses, nascida com mielomeningocele lombar. Na avaliação, apresentava hipotonia, baixa estatura, dolicocefalia, fendas palpebrais oblíquas para cima, pregas epicânticas e tronco curto com tórax assimétrico. A avaliação radiográfica revelou hemivértebras múltiplas, vértebras em borboleta e fusão e ausência de algumas costelas. Paciente 2: menina branca, 22 meses, com moderado atraso do desenvolvimento neuropsicomotor, baixa estatura, olhos profundos, pregas epicânticas, pescoço e tronco curtos com assimetria do tórax, abdome protruso, hemangioma plano na altura da transição lombossacra e fosseta sacral profunda no dorso. A avaliação radiográfica identificou hemivértebras, fusão incompleta de vértebras e vértebras em borboleta, malformações de costelas e espinha bífida oculta em L5/S1. Paciente 3: menina branca, 9 dias de vida, com fendas palpebrais oblíquas para cima, ponte nasal alargada, orelhas baixo implantadas e rotadas posteriormente, tronco curto, tórax assimétrico e meningocele tóraco-lombar. A avaliação radiográfica evidenciou hemivértebras, malformação e ausência de algumas costelas e agenesia diafragmática à esquerda. A tomografia computadorizada de encéfalo mostrou estenose de aqueduto. COMENTÁRIOS: Vários defeitos de fechamento do tubo neural, de espinha bífida oculta a grandes mielomeningoceles, são observados em pacientes com DEC, indicando que tais pacientes devem ser cuidadosamente avaliados quanto à possível presença desses defeitos.OBJECTIVE: To highlight the relationship between neural tube defects and spondylocostal dysostosis (SCD through the description of three patients. CASES DESCRIPTION: Patient 1: white girl, 22 months old, born with a lumbar meningomyelocele. At

  2. Fibrous cartilage of human menisci is less shock-absorbing and energy-dissipating than hyaline cartilage.

    Science.gov (United States)

    Gaugler, Mario; Wirz, Dieter; Ronken, Sarah; Hafner, Mirjam; Göpfert, Beat; Friederich, Niklaus F; Elke, Reinhard

    2015-04-01

    To test meniscal mechanical properties such as the dynamic modulus of elasticity E* and the loss angle δ at two loading frequencies ω at different locations of the menisci and compare it to E* and δ of hyaline cartilage in indentation mode with spherical indenters. On nine pairs of human menisci, the dynamic E*-modulus and loss angle δ (as a measure of the energy dissipation) were determined. The measurements were performed at two different strain rates (slow sinusoidal and fast single impact) to show the strain rate dependence of the material. The measurements were compared to previous similar measurements with the same equipment on human hyaline cartilage. The resultant E* at fast indentation (median 1.16 MPa) was significantly higher, and the loss angle was significantly lower (median 10.2°) compared to slow-loading mode's E* and δ (median 0.18 MPa and 16.9°, respectively). Further, significant differences for different locations are shown. On the medial meniscus, the anterior horn shows the highest resultant dynamic modulus. In dynamic measurements with a spherical indenter, the menisci are much softer and less energy-dissipating than hyaline cartilage. Further, the menisci are stiffer and less energy-dissipating in the middle, intermediate part compared to the meniscal base. In compression, the energy dissipation of meniscus cartilage plays a minor role compared to hyaline cartilage. At high impacts, energy dissipation is less than on low impacts, similar to cartilage.

  3. The effects of ascorbic acid on cartilage metabolism in guinea pig articular cartilage explants.

    Science.gov (United States)

    Clark, Amy G; Rohrbaugh, Amy L; Otterness, Ivan; Kraus, Virginia B

    2002-03-01

    Ascorbic acid has been associated with the slowing of osteoarthritis progression in guinea pig and man. The goal of this study was to evaluate transcriptional and translational regulation of cartilage matrix components by ascorbic acid. Guinea pig articular cartilage explants were grown in the presence of L-ascorbic acid (L-Asc), D-isoascorbic acid (D-Asc), sodium L-ascorbate (Na L-Asc), sodium D-isoascorbate (Na D-Asc), or ascorbyl-2-phosphate (A2P) to isolate and analyze the acidic and nutrient effects of ascorbic acid. Transcription of type II collagen, prolyl 4-hydroxylase (alpha subunit), and aggrecan increased in response to the antiscorbutic forms of ascorbic acid (L-Asc, Na L-Asc, and A2P) and was stereospecific to the L-forms. Collagen and aggrecan synthesis also increased in response to the antiscorbutic forms but only in the absence of acidity. All ascorbic acid forms tended to increase oxidative damage over control. This was especially true for the non-nutrient D-forms and the high dose L-Asc. Finally, we investigated the ability of chondrocytes to express the newly described sodium-dependent vitamin C transporters (SVCTs). We identified transcripts for SVCT2 but not SVCT1 in guinea pig cartilage explants. This represents the first characterization of SVCTs in chondrocytes. This study confirms that ascorbic acid stimulates collagen synthesis and in addition modestly stimulates aggrecan synthesis. These effects are exerted at both transcriptional and post-transcriptional levels. The stereospecificity of these effects is consistent with chondrocyte expression of SVCT2, shown previously to transport L-Asc more efficiently than D-Asc. Therefore, this transporter may be the primary mechanism by which the L-forms of ascorbic acid enter the chondrocyte to control matrix gene activity.

  4. Cartilage tissue engineering: recent advances and perspectives from gene regulation/therapy.

    Science.gov (United States)

    Li, Kuei-Chang; Hu, Yu-Chen

    2015-05-01

    Diseases in articular cartilages affect millions of people. Despite the relatively simple biochemical and cellular composition of articular cartilages, the self-repair ability of cartilage is limited. Successful cartilage tissue engineering requires intricately coordinated interactions between matrerials, cells, biological factors, and phycial/mechanical factors, and still faces a multitude of challenges. This article presents an overview of the cartilage biology, current treatments, recent advances in the materials, biological factors, and cells used in cartilage tissue engineering/regeneration, with strong emphasis on the perspectives of gene regulation (e.g., microRNA) and gene therapy.

  5. Optical and thermal properties of nasal septal cartilage.

    Science.gov (United States)

    Youn, J I; Telenkov, S A; Kim, E; Bhavaraju, N C; Wong, B J; Valvano, J W; Milner, T E

    2000-01-01

    The aim of the study was to measure the spectral dependence of optical absorption and reduced scattering coefficients and thermal conductivity and diffusivity of porcine nasal septal cartilage. Values of optical and thermal properties determined in this study may aid in determining laser dosimetry and allow selection of an optical source wavelength for noninvasive diagnostics for laser-assisted reshaping of cartilage. The diffuse reflectance and transmittance of ex vivo porcine nasal septal cartilage were measured in the 400- to 1,400-nm spectral range by using a spectrophotometer. The reflectance and transmittance data were analyzed by using an inverse adding-doubling algorithm to obtain the absorption (mu(a)) and reduced scattering (mu(a)') coefficients. A multichannel thermal probe controller system and infrared imaging radiometer methods were applied to measure the thermal properties of cartilage. The multichannel thermal probe controller system was used as an invasive technique to measure thermal conductivity and diffusivity of cartilage at three temperatures (27, 37, 50 degrees C). An infrared imaging radiometer was used as a noninvasive method to measure the thermal diffusivity of cartilage by using a CO(2) laser source (lambda = 10.6 microm) and an infrared focal plane array (IR-FPA) camera. The optical absorption peaks at 980 nm and 1,180 nm in cartilage were observed and corresponded to known absorption bands of water. The determined reduced scattering coefficient gradually decreased at longer wavelengths. The thermal conductivity values of cartilage measured by using an invasive probe at 27, 37, and 50 degrees C were 4.78, 5.18, and 5.76 mW/cm degrees C, respectively. The corresponding thermal diffusivity values were 1.28, 1.31, and 1.40x 10(-3) cm(2)/sec. Because no statistically significant difference in thermal diffusivity values with increasing temperature is found, the average thermal diffusivity is 1.32 x 10(-3) cm(2)/sec. The numerical estimate

  6. Nasal reconstruction with articulated irradiated rib cartilage

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, C.S.; Cook, T.A.; Guida, R.A. (Univ. of Washington School of Medicine, Seattle (USA))

    1991-03-01

    Nasal structural reconstruction is a formidable task in cases where there is loss of support to both the nasal dorsum and tip. A multitude of surgical approaches and materials have been used for the correction of the saddle-nose deformity with varying degrees of success. Articulated irradiated rib cartilage inserted through an external rhinoplasty approach was used to reconstruct nasal deformities in 18 patients over a 6-year period. Simultaneous use of a midline forehead flap to reconstruct the overlying soft tissue was required in four cases. Follow-up ranged from 1 to 6 years (mean, 2.8 years). Results were rewarding in most cases with marked improvement in nasal support and airway. Revision and/or replacement secondary to trauma or warping of the graft was required in four cases. None of the patients exhibited infection, extrusion, or noticeable resorption. A description of the surgical technique, review of all the cases, and recommendation for continued use of this graft material are discussed.

  7. Progression of articular cartilage degeneration after application of muscle stretch.

    Science.gov (United States)

    Dias, Carolina Náglio Kalil; Renner, Adriana Frias; dos Santos, Anderson Amaro; Vasilceac, Fernando Augusto; Mattiello, Stela Márcia

    2012-01-01

    The aim of study was to evaluate the progression of the ankle articular cartilage alterations after a post-immobilization muscle stretching. Twenty-nine Wistar rats were separated into five groups: C--control, S--stretched, SR--stretch recovery, IS--immobilized and stretched, and ISR--immobilized stretched recovery. The immobilization was maintained for 4 weeks and the left ankle was then stretched manually through a full dorsal flexion for 10 times for 60 s with a 30 s interval between each 60 s period, 7 days/week for 3 weeks. The recovery period was of 7 weeks. At the end of the experiment, the left ankles were removed, processed in paraffin, and stained in hematoxylin-eosin and safranin O. Two blinded observers evaluated the articular cartilage using the Mankin grading system (cellularity, chondrocyte cloning, and proteoglycan content) through light microscopy, and performed the morphometry (cellularity, total thickness, non-calcified thickness, and calcified thickness measures). Both the Mankin grading system and the morphometric analysis showed that the ISR group presented the most increased cellularity among the groups. The IS and SR groups showed the highest proteoglycan loss, and the ISR group showed the same content of proteoglycan observed in the C group. No significant differences were found in the chondrocyte cloning, the total cartilage thickness, the non-calcified cartilage thickness, and the calcified cartilage thickness among the groups. The results suggest that the cartilage can recover the proteoglycan loss caused by immobilization and stretching, probably because of the increased chondrocyte density. Therefore, the ankle articular cartilage responded as to repair the metabolic deficits.

  8. Biochemical composition of the superficial layer of articular cartilage.

    Science.gov (United States)

    Crockett, R; Grubelnik, A; Roos, S; Dora, C; Born, W; Troxler, H

    2007-09-15

    To gain more information on the mechanism of lubrication in articular joints, the superficial layer of bovine articular cartilage was mechanically removed in a sheet of ice that formed on freezing the cartilage. Freeze-dried samples contained low concentrations of chondroitin sulphate and protein. Analysis of the protein by SDS PAGE showed that the composition of the sample was comparable to that of synovial fluid (SF). Attenuated total reflection infrared (ATR-IR) spectroscopy of the dried residue indicated that the sample contained mostly hyaluronan. Moreover, ATR-IR spectroscopy of the upper layer of the superficial layer, adsorbed onto silicon, showed the presence of phospholipids. A gel could be formed by mixing hyaluronan and phosphatidylcholine in water with mechanical properties similar to those of the superficial layer on cartilage. Much like the superficial layer of natural cartilage, the surface of this gel became hydrophobic on drying out. Thus, it is proposed that the superficial layer forms from hyaluronan and phospholipids, which associate by hydrophobic interactions between the alkyl chains of the phospholipids and the hydrophobic faces of the disaccharide units in hyaluronan. This layer is permeable to material from the SF and the cartilage, as shown by the presence of SF proteins and chondroitin sulphate. As the cartilage dries out after removal from the joint, the phospholipids migrate towards the surface of the superficial layer to reduce the surface tension. It is also proposed that the highly efficient lubrication in articular joints can, at least in part, be attributed to the ability of the superficial layer to adsorb and hold water on the cartilage surface, thus creating a highly viscous boundary protection.

  9. Dynamic Response of Femoral Cartilage in Knees With Unicompartmental Osteoarthritis

    Directory of Open Access Journals (Sweden)

    A. Vidal-Lesso

    2011-08-01

    Full Text Available The objective of the present work was to determine the dynamic indentation response, stiffness and relaxation curvesfor the shear and the bulk modulus of femoral knee cartilage with no visual damage in cases under unicompartmentalosteoarthritis.A cyclic displacement of 0.5 mm in axial direction was applied with a 3 mm plane-ended cylindrical indenter at specificpoints in the femoral knee cartilage specimens of seven patients with unicompartmental osteoarthritis (UOA. Theindentation force over time was recorded and next the maximum stiffness in all cycles was obtained and compared.Also, the relaxation curves for the shear and the bulk modulus of cartilage were obtained in this work.A decrease in the maximum indentation force was observed comparing between indentation cycles; it was of 6.75 ±0.71% from cycle 1 to cycle 2 and 4.70 ± 0.31% for cycle 2 to cycle 3. Stiffness values changed with a mean of 3.35 ±0.39% from cycle 1 to cycle 2 and 1.40 ± 0.71% from cycle 2 to cycle 3. Moreover, relaxation curves for the shearmodulus and the bulk modulus showed the nonlinear behavior of articular cartilage with UOA.Our results showed that cartilage specimens with no visual damage in UOA preserve a nonlinear viscoelastic behaviorand its stiffness increases through the loading cycles. Our work provides experimental values for generating a morerealistic cartilage behavior than those currently used in computer cartilage models for the study of UOA.

  10. Morphometric study of cricoid cartilages in Western India

    Directory of Open Access Journals (Sweden)

    Mohini Joshi

    2011-10-01

    Full Text Available BackgroundIt is important to determine the size and proportion of thelarynx as such information is useful in procedures such asintubation, endoscopy and surgical manipulations. Recentinterest in the cases of subglottic stenosis and postintubationalstenosis of the lower respiratory tract has ledto renewed interest in ascertaining the measurements ofthe various laryngeal cartilages. The aim of the presentstudy was to collect morphometric data of cricoid cartilagefrom a regional population.MethodFifty laryngeal preparations from adult cadavers of WesternIndia were assessed. Sections were prepared via dissectionand the removed cricoid cartilages then measured andweighed.ResultsThe mean antero-posterior diameter (19.29±2.47 of thecricoid cartilage was greater than the average transversediameter (18.33±2.26. The height of arch of cricoidcartilage was 6.54±1.23mm and height of lamina was21.45±1.97mm. Mean weight of cricoid cartilage was4.53±1.27grams. The shape of the cricoid cartilage wasovoid in 46% of cases, oval in 38%, pear shaped in 12% andnarrow-oblong in 4% of cases.ConclusionInter-subject variability in the dimensions of cricoidcartilages was observed. The large difference in almost allsizes and shapes of the cricoid cartilage makes it difficult tostandardise the rigid stents used in these organs.Endotracheal tubes of the appropriate size should thereforebe based on the measurements of individual patients.Clinicians should therefore be aware of morphologicalvariations as they are of fundamental clinical importance.Key WordsCricoid cartilage, larynx, morphometry

  11. Evaluation of influence of proteoglycans on hydration of articular cartilage with the use of ultrasound

    Directory of Open Access Journals (Sweden)

    Yi-yi YANG

    2015-04-01

    Full Text Available Objective To monitor the changes in hydration behaviour of articular cartilage induced by degradation of proteoglycans, and to explore the effect of proteoglycans on hydration behaviour of articular cartilage by using high-frequency ultrasound. Methods Twelve porcine patellae with smooth cartilage surface were prepared and equally divided into two groups: normal group without any enzyme treatment, and trypsin group they were treated with 0.25% trypsin for 8h to digest proteoglycan in the cartilage. The hydration behaviour of the cartilage tissue was scanned by high-frequency ultrasound system with a central frequency of 25MHz. Parameters including cartilage hydration strain and cartilage thickness were measured. The histopathological changes in the articular cartilage were observed under a light microscope. Results It took approximately 20min to reach equilibrium during the hydration process in the normal cartilages, while proteoglycan-degraded cartilage took only about 5min to achieve equilibrium. The equilibrium strain of normal cartilage was 3.5%±0.5%. The degradation of proteoglycans induced a significant decrease in equilibrium strain (1.8%±0.2%, P0.05. Conclusion Proteoglycans play an important role in hydration behaviour of articular cartilage. The degradation of proteoglycans could induce degeneration of cartilage structure and decrease in hydration behaviour after dehydration. DOI: 10.11855/j.issn.0577-7402.2015.03.03

  12. Recapitulation of physiological spatiotemporal signals promotes in vitro formation of phenotypically stable human articular cartilage

    Science.gov (United States)

    Wei, Yiyong; Zhou, Bin; Bernhard, Jonathan; Robinson, Samuel; Burapachaisri, Aonnicha; Guo, X. Edward

    2017-01-01

    Standard isotropic culture fails to recapitulate the spatiotemporal gradients present during native development. Cartilage grown from human mesenchymal stem cells (hMSCs) is poorly organized and unstable in vivo. We report that human cartilage with physiologic organization and in vivo stability can be grown in vitro from self-assembling hMSCs by implementing spatiotemporal regulation during induction. Self-assembling hMSCs formed cartilage discs in Transwell inserts following isotropic chondrogenic induction with transforming growth factor β to set up a dual-compartment culture. Following a switch in the basal compartment to a hypertrophic regimen with thyroxine, the cartilage discs underwent progressive deep-zone hypertrophy and mineralization. Concurrent chondrogenic induction in the apical compartment enabled the maintenance of functional and hyaline cartilage. Cartilage homeostasis, chondrocyte maturation, and terminal differentiation markers were all up-regulated versus isotropic control groups. We assessed the in vivo stability of the cartilage formed under different induction regimens. Cartilage formed under spatiotemporal regulation in vitro resisted endochondral ossification, retained the expression of cartilage markers, and remained organized following s.c. implantation in immunocompromised mice. In contrast, the isotropic control groups underwent endochondral ossification. Cartilage formed from hMSCs remained stable and organized in vivo. Spatiotemporal regulation during induction in vitro recapitulated some aspects of native cartilage development, and potentiated the maturation of self-assembling hMSCs into stable and organized cartilage resembling the native articular cartilage. PMID:28228529

  13. Preliminary investigation of intrinsic UV fluorescence spectroscopic changes associated with proteolytic digestion of bovine articular cartilage

    Science.gov (United States)

    Lewis, William; Padilla-Martinez, Juan-Pablo; Ortega-Martinez, Antonio; Franco, Walfre

    2016-03-01

    Degradation and destruction of articular cartilage is the etiology of osteoarthritis (OA), an entity second only to cardiovascular disease as a cause of disability in the United States. Joint mechanics and cartilage biochemistry are believed to play a role in OA; an optical tool to detect structural and chemical changes in articular cartilage might offer benefit for its early detection and treatment. The objective of the present study was to identify the spectral changes in intrinsic ultraviolet (UV) fluorescence of cartilage that occur after proteolytic digestion of cartilage. Bovine articular cartilage samples were incubated in varying concentrations of collagenase ranging from 10ug/mL up to 5mg/mL for 18 hours at 37°C, a model of OA. Pre- and post-incubation measurements were taken of the UV excitation-emission spectrum of each cartilage sample. Mechanical tests were performed to determine the pre- and post-digestion force/displacement ratio associated with indentation of each sample. Spectral changes in intrinsic cartilage fluorescence and stiffness of the cartilage were associated with proteolytic digestion. In particular, changes in the relative intensity of fluorescence peaks associated with pentosidine crosslinks (330 nm excitation, 390 nm emission) and tryptophan (290 nm excitation, 340 nm emission) were found to correlate with different degrees of cartilage digestion and cartilage stiffness. In principle, it may be possible to use UV fluorescence spectral data for early detection of damage to articular cartilage, and as a surrogate measure for cartilage stiffness.

  14. Boundary mode lubrication of articular cartilage by recombinant human lubricin.

    Science.gov (United States)

    Gleghorn, Jason P; Jones, Aled R C; Flannery, Carl R; Bonassar, Lawrence J

    2009-06-01

    Lubrication of cartilage involves a variety of physical and chemical factors, including lubricin, a synovial glycoprotein that has been shown to be a boundary lubricant. It is unclear how lubricin boundary lubricates a wide range of bearings from tissue to artificial surfaces, and if the mechanism is the same for both soluble and bound lubricin. In the current study, experiments were conducted to investigate the hypothesis that recombinant human lubricin (rh-lubricin) lubricates cartilage in a dose-dependent manner and that soluble and bound fractions of rh-lubricin both contribute to the lubrication process. An rh-lubricin dose response was observed with maximal lubrication achieved at concentrations of rh-lubricin greater than 50 microg/mL. A concentration-response variable-slope model was fit to the data, and indicated that rh-lubricin binding to cartilage was not first order. The pattern of decrease in equilibrium friction coefficient indicated that aggregation of rh-lubricin or steric arrangement may regulate boundary lubrication. rh-lubricin localized at the cartilage surface was found to lubricate a cartilage-glass interface in boundary mode, as did soluble rh-lubricin at high concentrations (150 microg/mL); however, the most effective lubrication occurred when both soluble and bound rh-lubricin were present at the interface. These findings point to two distinct mechanisms by which rh-lubricin lubricates, one mechanism involving lubricin bound to the tissue surface and the other involving lubricin in solution.

  15. Deferasirox limits cartilage damage following haemarthrosis in haemophilic mice.

    Science.gov (United States)

    Nieuwenhuizen, Laurens; Roosendaal, Goris; Mastbergen, Simon C; Coeleveld, Katja; Biesma, Douwe H; Lafeber, Floris P J G; Schutgens, Roger E G

    2014-11-01

    Joint bleeds in haemophilia result in iron-mediated synovitis and cartilage damage. It was evaluated whether deferasirox, an iron chelator, was able to limit the development of haemophilic synovitis and cartilage damage. Haemophilic mice were randomly assigned to oral treatment with deferasirox (30 mg/kg) or its vehicle (control) (30 mg/kg). Eight weeks after start of treatment, haemarthrosis was induced. After another five weeks of treatment, blood-induced synovitis and cartilage damage were determined. Treatment with deferasirox resulted in a statistically significant (pdeferasirox group. However, deferasirox treatment resulted in a statistically significant (pdeferasirox group with the control group: score 2 (65.4 % vs 4.2 %), score 3 (26.9 % vs 4.2 %), score 4 (7.7 % vs 20.8 %), score 5 (0 % vs 54.2 %), and score 6 (0 % vs 16.7 %). Treatment with deferasirox limits cartilage damage following the induction of a haemarthrosis in haemophilic mice. This study demonstrates the role of iron in blood-induced cartilage damage. Moreover, these data indicate that iron chelation may be a potential prevention option to limit the development of haemophilic arthropathy.

  16. Matrilin-3 Role in Cartilage Development and Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Manjunatha S. Muttigi

    2016-04-01

    Full Text Available The extracellular matrix (ECM of cartilage performs essential functions in differentiation and chondroprogenitor cell maintenance during development and regeneration. Here, we discuss the vital role of matrilin-3, an ECM protein involved in cartilage development and potential osteoarthritis pathomechanisms. As an adaptor protein, matrilin-3 binds to collagen IX to form a filamentous network around cells. Matrilin-3 is an essential component during cartilage development and ossification. In addition, it interacts directly or indirectly with transforming growth factor β (TGF-β, and bone morphogenetic protein 2 (BMP2 eventually regulates chondrocyte proliferation and hypertrophic differentiation. Interestingly, matrilin-3 increases interleukin receptor antagonists (IL-Ra in chondrocytes, suggesting its role in the suppression of IL-1β-mediated inflammatory action. Matrilin-3 downregulates the expression of matrix-degrading enzymes, such as a disintegrin metalloproteinase with thrombospondin motifs 4 (ADAMTS4 and ADAMTS5, matrix metalloproteinase 13 (MMP13, and collagen X, a hypertrophy marker during development and inflammatory conditions. Matrilin-3 essentially enhances collagen II and aggrecan expression, which are required to maintain the tensile strength and elasticity of cartilage, respectively. Interestingly, despite these attributes, matrilin-3 induces osteoarthritis-associated markers in chondrocytes in a concentration-dependent manner. Existing data provide insights into the critical role of matrilin-3 in inflammation, matrix degradation, and matrix formation in cartilage development and osteoarthritis.

  17. The properties of bioengineered chondrocyte sheets for cartilage regeneration

    Directory of Open Access Journals (Sweden)

    Ota Naoshi

    2009-03-01

    Full Text Available Abstract Background Although the clinical results of autologous chondrocyte implantation for articular cartilage defects have recently improved as a result of advanced techniques based on tissue engineering procedures, problems with cell handling and scaffold imperfections remain to be solved. A new cell-sheet technique has been developed, and is potentially able to overcome these obstacles. Chondrocyte sheets applicable to cartilage regeneration can be prepared with this cell-sheet technique using temperature-responsive culture dishes. However, for clinical application, it is necessary to evaluate the characteristics of the cells in these sheets and to identify their similarities to naive cartilage. Results The expression of SOX 9, collagen type 2, 27, integrin α10, and fibronectin genes in triple-layered chondrocyte sheets was significantly increased in comparison to those in conventional monolayer culture and in a single chondrocyte sheet, implying a nature similar to ordinary cartilage. In addition, immunohistochemistry demonstrated that collagen type II, fibronectin, and integrin α10 were present in the triple-layered chondrocyte sheets. Conclusion The results of this study indicate that these chondrocyte sheets with a consistent cartilaginous phenotype and adhesive properties may lead to a new strategy for cartilage regeneration.

  18. ENDOSCOPIC TYMPANO PLASTY TEMPORALIS FASCIA VERSUS CARTILAGE : COMPARATIVE STUDY

    Directory of Open Access Journals (Sweden)

    Naveen Kumar

    2015-08-01

    Full Text Available OBJECTIVE: To compare the graft acceptance rates and auditory outcomes of endoscopic cartilage tympanoplasty operations with those of endoscopic primary tympanoplasty using temporalis fascia in a homogenous group of patients . MATERIAL AND METHODS : This prospective study was conducted on 64 patients between the ages of 15 to 50 years. All patients had a central tympanic membrane perforation without infection in middle ear or upper respiratory tract. RESULTS : Anatomical results in terms of graft uptake and intact tympanic membrane over a period of 2 years showed good results both in 26(92.85% cases in cartilage group and in 33(91.66% cases in temporalis fascia group. The average post - operative Air bone gap in endoscopic fascia tympanoplasty group was 14.61db and 15.65db in endoscopic cartilage tympanoplasty group . CONCLUSION: Endoscopic tympanoplasty is a minimally invasive, sutureless procedure with better patient compliance. Tympanoplasty with cartilage graft has a high degree of graft take up. Tympanoplasty with cartilage provides better results in terms of integrity and intactness of the graft and less percentage of postoperative discharge from the operated ear.

  19. A high throughput mechanical screening device for cartilage tissue engineering.

    Science.gov (United States)

    Mohanraj, Bhavana; Hou, Chieh; Meloni, Gregory R; Cosgrove, Brian D; Dodge, George R; Mauck, Robert L

    2014-06-27

    Articular cartilage enables efficient and near-frictionless load transmission, but suffers from poor inherent healing capacity. As such, cartilage tissue engineering strategies have focused on mimicking both compositional and mechanical properties of native tissue in order to provide effective repair materials for the treatment of damaged or degenerated joint surfaces. However, given the large number design parameters available (e.g. cell sources, scaffold designs, and growth factors), it is difficult to conduct combinatorial experiments of engineered cartilage. This is particularly exacerbated when mechanical properties are a primary outcome, given the long time required for testing of individual samples. High throughput screening is utilized widely in the pharmaceutical industry to rapidly and cost-effectively assess the effects of thousands of compounds for therapeutic discovery. Here we adapted this approach to develop a high throughput mechanical screening (HTMS) system capable of measuring the mechanical properties of up to 48 materials simultaneously. The HTMS device was validated by testing various biomaterials and engineered cartilage constructs and by comparing the HTMS results to those derived from conventional single sample compression tests. Further evaluation showed that the HTMS system was capable of distinguishing and identifying 'hits', or factors that influence the degree of tissue maturation. Future iterations of this device will focus on reducing data variability, increasing force sensitivity and range, as well as scaling-up to even larger (96-well) formats. This HTMS device provides a novel tool for cartilage tissue engineering, freeing experimental design from the limitations of mechanical testing throughput.

  20. Endoscopic laser reshaping of rabbit tracheal cartilage: preliminary investigations

    Science.gov (United States)

    Tsang, Walter; Lam, Anthony; Protsenko, Dmitry; Wong, Brian J.

    2005-04-01

    Background: Tracheal cartilage deformities due to trauma, prolonged endotracheal intubation or infection are difficult to correct. Current treatment options such as dilation, laser ablation, stent placement, and segmental resection are only temporary or carry significant risks. The objectives of this project were to design and test a laser activated endotracheal stent system that can actively modify the geometry of tracheal cartilage, leading to permanent retention of a new and desirable tracheal geometry. Methods: Ex vivo rabbit tracheal cartilage (simulating human neonate trachea) were irradiated with an Er: Glass laser, (λ= 1.54um, 0.5W-2.5W, 1 sec to 5 sec). Shape change and gross thermal injury were assessed visually to determine the best laser power parameters for reshaping. A rigid endoscopic telescope and hollow bronchoscope were used to record endoscopic images. The stent was constructed from nitinol wire, shaped into a zigzag configuration. An ex vivo testing apparatus was also constructed. Results: The best laser power parameter to produce shape change was 1 W for 6-7 seconds. At this setting, there was significant shape change with only minimal thermal injury to the tracheal mucosa, as assessed by visual inspection. The bronchoscopy system functioned adequately during testing in the ex vivo testing apparatus. Conclusion: We have successfully designed instrumentation and created the capability to endoscopically reshape tracheal cartilage in an ex vivo rabbit model. The results obtained in ex vivo tracheal cartilage indicated that reshaping using Er: Glass laser can be accomplished.

  1. The importance of cartilage to amphibian development and evolution.

    Science.gov (United States)

    Rose, Christopher S

    2014-01-01

    The duality of amphibians is epitomized by their pharyngeal arch skeletons, the larval and adult morphologies of which enable very different feeding and breathing behaviors in aquatic and terrestrial life. To accomplish this duality, amphibian pharyngeal arch skeletons undergo two periods of patterning: embryogenesis and metamorphosis, and two periods of growth: larval and postmetamorphic. Their extreme ontogenetic variation, however, is coupled with relatively limited phylogenetic variation. I propose that amphibians face an evolutionary tradeoff between their ontogenetic and phylogenetic diversification that stems from the need to grow and transform the pharyngeal arch skeleton in cartilage rather than bone. Cartilage differs fundamentally from bone in its histology, function, development and growth. Cartilage is also the first skeletal tissue to form embryonically and provides more cellular pathways for shape change than bone. This article combines morphological, histological and experimental perspectives to explore how pharyngeal arch cartilage shape is controlled in amphibian embryogenesis, growth and metamorphosis, and how amphibian skeletal ontogenies are impacted by using cartilage to evolve a complex life cycle and in evolving away from a complex life cycle.

  2. Enhanced cartilage regeneration in MIA/CD-RAP deficient mice.

    Science.gov (United States)

    Schmid, R; Schiffner, S; Opolka, A; Grässel, S; Schubert, T; Moser, M; Bosserhoff, A-K

    2010-11-11

    Melanoma inhibitory activity/cartilage-derived retinoic acid-sensitive protein (MIA/CD-RAP) is a small soluble protein secreted from chondrocytes. It was identified as the prototype of a family of extracellular proteins adopting an SH3 domain-like fold. In order to study the consequences of MIA/CD-RAP deficiency in detail we used mice with a targeted gene disruption of MIA/CD-RAP (MIA-/-) and analyzed cartilage organisation and differentiation in in vivo and in vitro models. Cartilage formation and regeneration was determined in models for osteoarthritis and fracture healing in vivo, in addition to in vitro studies using mesenchymal stem cells of MIA-/- mice. Interestingly, our data suggest enhanced chondrocytic regeneration in the MIA-/- mice, modulated by enhanced proliferation and delayed differentiation. Expression analysis of cartilage tissue derived from MIA-/- mice revealed strong downregulation of nuclear RNA-binding protein 54-kDa (p54(nrb)), a recently described modulator of Sox9 activity. In this study, we present p54(nrb) as a mediator of MIA/CD-RAP to promote chondrogenesis. Taken together, our data indicate that MIA/CD-RAP is required for differentiation in cartilage potentially by regulating signaling processes during differentiation.

  3. Cartilage formation in the CELLS 'double bubble' hardware

    Science.gov (United States)

    Duke, P. J.; Arizpe, Jorge; Montufar-Solis, Dina

    1991-01-01

    The CELLS experiment scheduled to be flown on the first International Microgravity Laboratory is designed to study the effect of microgravity on the cartilage formation, by measuring parameters of growth in a differentiating cartilage cell culture. This paper investigates the conditions for this experiment by studying cartilage differentiation in the 'bubble exchange' hardware with the 'double bubble' design in which the bubbles are joined by a flange which also overlays the gasket. Four types of double bubbles (or double gas permeable membranes) were tested: injection-molded bubbles 0.01- and 0.005-in. thick, and compression molded bubbles 0.015- and 0.01-in. thick. It was found that double bubble membranes of 0.005- and 0.010-in. thickness supported cartilage differentiation, while the 0.015-in. bubbles did not. It was also found that nodule count, used in this study as a parameter, is not the best measure of the amount of cartilage differentiation.

  4. Evidence for a negative Pasteur effect in articular cartilage.

    Science.gov (United States)

    Lee, R B; Urban, J P

    1997-01-01

    Uptake of external glucose and production of lactate were measured in freshly-excised bovine articular cartilage under O2 concentrations ranging from 21% (air) to zero (N2-bubbled). Anoxia (O2 concentration Pasteur effect in bovine articular cartilage. Anoxia also suppressed glycolysis in articular cartilage from horse, pig and sheep. Inhibitors acting on the glycolytic pathway (2-deoxy-D-glucose, iodoacetamide or fluoride) strongly decreased aerobic lactate production and ATP concentration, consistent with the belief that articular cartilage obtains its principal supply of ATP from substrate-level phosphorylation in glycolysis. Azide or cyanide lowered the ATP concentration in aerobic cartilage to approximately the same extent as did anoxia but, because glycolysis (lactate production) was also inhibited by these treatments, the importance of any mitochondrial ATP production could not be assessed. A negative Pasteur effect would make chondrocytes particularly liable to suffer a shortage of energy under anoxic conditions. Incorporation of [35S]sulphate into proteoglycan was severely curtailed by treatments, such as anoxia, which decreased the intracellular concentration of ATP.

  5. 肋骨促结缔组织增生性纤维瘤的临床病理观察%An Obersavation of the Clinical Pathology Features of Costal Desmoplastic Fibroma

    Institute of Scientific and Technical Information of China (English)

    殷刚; 常青

    2012-01-01

    目的 探讨肋骨促结缔组织增生性纤维瘤(DF)的临床病理特征.方法 回顾性分析1例肋骨DF的临床病理特征并进行文献复习.结果 肋骨DF影像学检查示:肋骨骨质呈丝瓜瓤样膨胀性改变,骨质密度明显增大,边缘清晰锐利,其内可见粗大骨脊样改变.光镜下肿瘤由梭形瘤细胞和大量胶原构成,胶原纤维密集而粗大伴玻璃样变,瘤细胞呈梭形、细长,未见核分裂像.免疫组化结果示:β-catenin和vim为阳性;ER、PR、CD117、SMA、desmin和CD34均为阴性.结论 肋骨DF是1种罕见的局部侵袭性肿瘤,病灶切除不彻底易复发,手术广泛全切是最佳治疗方法.%Objective To probe into the clinical pathology features of costal desmoplastic fibroma ( DF ). Methods Data of one case of costal desmoplastic fibroma ( DF ) were retrospectively analyzed, and the related literatures were reviewed. Results The costal desmoplastic fibroma ( DF ) patient in this case is a 28 years old female with a long course of disease, who has evident trauma history and recently suffers from increasing monopathic pain. Iconography shows that the costa sclerotin has swelled into a luffa-flesh-like state,the bone density has significantly increased,the edge has become sharp and clear,and inside are coarse bony ridges changes. Under light microscope, the tumor consists of spindle-shaped tumor cells and massive collagen. The collagenous fibers are dense and thick with hyalinization. The tumor cells are spindle-shaped,tenuous,in a mild form,and has no sign of caryocinesia. The immunohistochemistry shows that the tumor cells are positive of β-catenin and vim;negative of ER、 PR、CD117、SMA、desmin and CD34. Conclusion Costal desmoplastic fibroma ( DF ) is a rare kind of monopathic invasive tumor. If the focus of infection is not thoroughly removed, it probably will recur. Wide excision in operation is the best way to treat this disease.

  6. Evaluation of histological scoring systems for tissue-engineered, repaired and osteoarthritic cartilage

    NARCIS (Netherlands)

    Rutgers, M.; van Pelt, M.J.; Dhert, W.J.A.; Creemers, L.B.; Saris, D.B.F.

    2010-01-01

    Osteoarthritis and Cartilage Volume 18, Issue 1, January 2010, Pages 12-23 -------------------------------------------------------------------------------- Review Evaluation of histological scoring systems for tissue-engineered, repaired and osteoarthritic cartilage M. Rutgers†, M.J.P. van Pelt†, W.

  7. Evaluation of histological scoring systems for tissue-engineered, repaired and osteoarthritic cartilage

    NARCIS (Netherlands)

    Rutgers, M.; van Pelt, M.J.; Dhert, W.J.A.; Creemers, L.B.; Saris, D.B.F.

    2010-01-01

    Osteoarthritis and Cartilage Volume 18, Issue 1, January 2010, Pages 12-23 -------------------------------------------------------------------------------- Review Evaluation of histological scoring systems for tissue-engineered, repaired and osteoarthritic cartilage M. Rutgers†, M.J.P. van Pelt†,

  8. Physical mechanisms underlying the strain-rate-dependent mechanical behavior of kangaroo shoulder cartilage

    Science.gov (United States)

    Thibbotuwawa, Namal; Oloyede, Adekunle; Li, Tong; Singh, Sanjleena; Senadeera, Wijitha; Gu, YuanTong

    2015-09-01

    Due to anatomical and biomechanical similarities to human shoulder, kangaroo was chosen as a model to study shoulder cartilage. Comprehensive enzymatic degradation and indentation tests were applied on kangaroo shoulder cartilage to study mechanisms underlying its strain-rate-dependent mechanical behavior. We report that superficial collagen plays a more significant role than proteoglycans in facilitating strain-rate-dependent behavior of the kangaroo shoulder cartilage. By comparing the mechanical properties of degraded and normal cartilages, it was noted that proteoglycan and collagen degradation significantly compromised strain-rate-dependent mechanical behavior of the cartilage. Superficial collagen contributed equally to the tissue behavior at all strain-rates. This is different to the studies reported on knee cartilage and confirms the importance of superficial collagen on shoulder cartilage mechanical behavior. A porohyperelastic numerical model also indicated that collagen disruption would lead to faster damage of the shoulder cartilage than when proteoglycans are depleted.

  9. Induction of advanced glycation end products and alterations of the tensile properties of articular cartilage

    OpenAIRE

    Chen, A C; Temple, M.M.; Ng, D.M.; Verzijl, N; de Groot, J.; TeKoppele, J.M.; Sah, R.L.

    2002-01-01

    Objective. To determine whether increasing advanced glycation end products (AGEs) in bovine articular cartilage to levels present in aged human cartilage modulates the tensile biomechanical properties of the tissue. Methods. Adult bovine articular cartilage samples were incubated in a buffer solution with ribose to induce the formation of AGEs or in a control solution. Portions of cartilage samples were assayed for biochemical indices of AGEs and tested to assess their tensile biomechanical p...

  10. The amphoteric effect on friction between the bovine cartilage/cartilage surfaces under slightly sheared hydration lubrication mode.

    Science.gov (United States)

    Pawlak, Zenon; Gadomski, Adam; Sojka, Michal; Urbaniak, Wieslaw; Bełdowski, Piotr

    2016-10-01

    The amphoteric effect on the friction between the bovine cartilage/cartilage contacts has been found to be highly sensitive to the pH of an aqueous solution. The cartilage surface was characterized using a combination of the pH, wettability, as well as the interfacial energy and friction coefficient testing methods to support lamellar-repulsive mechanism of hydration lubrication. It has been confirmed experimentally that phospholipidic multi-bilayers are essentially described as lamellar frictionless lubricants protecting the surface of the joints against wear. At the hydrophilicity limit, the low friction would then be due to (a) lamellar slippage of bilayers and (b) a short-range (nanometer-scale) repulsion between the interfaces of negatively charged (PO4(-)) cartilage surfaces, and in addition, contribution of the extracellular matrix (ECM) collagen fibers, hyaluronate, proteoglycans aggregates (PGs), glycoprotein termed lubricin and finally, lamellar PLs phases. In this paper we demonstrate experimentally that the pH sensitivity of cartilage to friction provides a novel concept in joint lubrication on charged surfaces.

  11. Cartilage oligomeric matrix protein enhances the vascularization of acellular nerves

    Directory of Open Access Journals (Sweden)

    Wei-ling Cui

    2016-01-01

    Full Text Available Vascularization of acellular nerves has been shown to contribute to nerve bridging. In this study, we used a 10-mm sciatic nerve defect model in rats to determine whether cartilage oligomeric matrix protein enhances the vascularization of injured acellular nerves. The rat nerve defects were treated with acellular nerve grafting (control group alone or acellular nerve grafting combined with intraperitoneal injection of cartilage oligomeric matrix protein (experimental group. As shown through two-dimensional imaging, the vessels began to invade into the acellular nerve graft from both anastomotic ends at day 7 post-operation, and gradually covered the entire graft at day 21. The vascular density, vascular area, and the velocity of revascularization in the experimental group were all higher than those in the control group. These results indicate that cartilage oligomeric matrix protein enhances the vascularization of acellular nerves.

  12. Cartilage oligomeric matrix protein specific antibodies are pathogenic

    DEFF Research Database (Denmark)

    Geng, Hui; Nandakumar, Kutty Selva; Pramhed, Anna;

    2012-01-01

    ABSTRACT: INTRODUCTION: Cartilage oligomeric matrix protein (COMP) is a major non-collagenous component of cartilage. Earlier, we developed a new mouse model for rheumatoid arthritis using COMP. This study was undertaken to investigate the epitope specificity and immunopathogenicity of COMP...... and the pathogenicity of mAbs was investigated by passive transfer experiments. RESULTS: B cell immunodominant epitopes were localized within 4 antigenic domains of the COMP but with preferential response to the epidermal growth factor (EGF)-like domain. Some of our anti-COMP mAbs showed interactions with the native...... form of COMP, which is present in cartilage and synovium. Passive transfer of COMP-specific mAbs enhanced arthritis when co-administrated with a sub-arthritogenic dose of a mAb specific to collagen type II. Interestingly, we found that a combination of 5 COMP mAbs was capable of inducing arthritis...

  13. Chitosan: A promising polymer for cartilage repair and viscosupplementation.

    Science.gov (United States)

    Comblain, Fanny; Rocasalbas, Guillem; Gauthier, Sandrine; Henrotin, Yves

    2017-01-01

    Osteoarthritis (OA) is a painful, degenerative and inflammatory disease that affects the entire synovial joints. Nowadays, no cure exists, and the pharmacological treatments are limited to symptoms alleviation. There is a need for a new efficient and safe treatment. Viscosupplementation is a process that aims to restore the normal rheological properties of synovial fluid. For the past years, hyaluronic acid was usually used but this molecule has some limitations including the short residency time in joint cavity. Recently, in vitro studies have suggested that chitosan could promote the expression of cartilage matrix components and reduce inflammatory and catabolic mediator's production by chondrocytes. In vivo, chitosan prevented cartilage degradation and synovial membrane inflammation in OA induced rabbit model. Several studies have also shown that chitosan could induce chondrogenic differentiation of mesenchymal stem cells. Therefore, chitosan is an interesting polymer to design scaffold and hydrogel for cartilage lesion repair, cells transplantation, sustained drug release and viscosupplementation.

  14. Effects of Er:YAG laser irradiation on human cartilage

    Science.gov (United States)

    Glinkowski, Wojciech; Brzozowska, Malgorzata; Ciszek, Bogdan; Rowinski, Jan; Strek, Wieslaw

    1996-03-01

    Irradiation of the hyaline or fibrous cartilage excised from the body of a human cadaver with Er:YAG laser beam, single pulse with a dose of 1 J, produces a crater with a depth of approximately 500 micrometers and a diameter varying from 5 to 300 micrometers. Histological examination has revealed that the laser-made craters were surrounded by a thin rim (2-10 micrometer) of charred and coagulated tissue. No damage was observed in the cartilage surrounding the rim. The presence of sharp demarcation between the tissue areas ablated by laser energy and the undamaged areas argues for the potential usefulness of the Er:YAG laser in surgery of cartilages.

  15. 2-photon laser scanning microscopy on native human cartilage

    Science.gov (United States)

    Martini, Joerg; Toensing, Katja; Dickob, Michael; Anselmetti, Dario

    2005-08-01

    Native hyaline cartilage from a human knee joint was directly investigated with laser scanning microscopy via 2-photon autofluorescence excitation with no additional staining or labelling protocols in a nondestructive and sterile manner. Using a femtosecond, near-infrared (NIR) Ti:Sa laser for 2-photon excitation and a dedicated NIR long distance objective, autofluorescence imaging and measurements of the extracellular matrix (ECM) tissue with incorporated chondrocytes were possible with a penetration depth of up to 460 μm inside the sample. Via spectral autofluorescence separation these experiments allowed the discrimination of chondrocytes from the ECM and therefore an estimate of chondrocytic cell density within the cartilage tissue to approximately 0.2-2•107cm3. Furthermore, a comparison of the relative autofluorescence signals between nonarthritic and arthritic cartilage tissue exhibited distinct differences in tissue morphology. As these morphological findings are in keeping with the macroscopic diagnosis, our measurement has the potential of being used in future diagnostic applications.

  16. Gene Transfer Strategies to Promote Chondrogenesis and Cartilage Regeneration.

    Science.gov (United States)

    Im, Gun-Il

    2016-04-01

    Gene transfer has been used experimentally to promote chondrogenesis and cartilage regeneration. While it is controversial to apply gene therapy for nonlethal conditions such as cartilage defect, there is a possibility that the transfer of therapeutic transgenes may dramatically increase the effectiveness of cell therapy and reduce the quantity of cells that are needed to regenerate cartilage. Single or combination of growth factors and transcription factors has been transferred to mesenchymal stem cells or articular chondrocytes using both nonviral and viral approaches. The current challenge for the clinical applications of genetically modified cells is ensuring the safety of gene therapy while guaranteeing effectiveness. Viral gene delivery methods have been mainstays currently with enhanced safety features being recently refined. On the other hand, efficiency has been greatly improved in nonviral delivery. This review summarizes the history and recent update on the gene transfer to enhance chondrogenesis from stem cells or articular chondrocytes.

  17. Cartilage oligomeric matrix protein enhances the vascularization of acellular nerves

    Institute of Scientific and Technical Information of China (English)

    Wei-ling Cui; Long-hai Qiu; Jia-yan Lian; Jia-chun Li; Jun Hu; Xiao-lin Liu

    2016-01-01

    Vascularization of acellular nerves has been shown to contribute to nerve bridging. In this study, we used a 10-mm sciatic nerve defect model in rats to determine whether cartilage oligomeric matrix protein enhances the vascularization of injured acellular nerves. The rat nerve defects were treated with acellular nerve grafting (control group) alone or acellular nerve grafting combined with intraperitoneal injection of cartilage oligomeric matrix protein (experimental group). As shown through two-dimensional imaging, the vessels began to invade into the acellular nerve graft from both anastomotic ends at day 7 post-operation, and gradually covered the entire graft at day 21. The vascular density, vascular area, and the velocity of revascularization in the experimental group were all higher than those in the control group. These results indicate that cartilage oligomeric matrix protein enhances the vascularization of acellular nerves.

  18. Expression of NGF, Trka and p75 in human cartilage

    Directory of Open Access Journals (Sweden)

    A Gigante

    2009-06-01

    Full Text Available Nerve growth factor (NGF exerts its action through two types of receptor: high-affinity tyrosine kinase A receptor (trkA and low-affinity p75 receptor. NGF has a neurotrophic role in central and peripheral nervous system development, but there is also clear evidence of its involvement in the developing skeleton. The aim of the present immunohistochemical study was to investigate the expression and distribution of NGF, trkA, and p75 in normal cartilaginous tissues from adult subjects: articular and meniscal cartilage of the knee, cartilage from the epiglottis, and intervertebral disc tissue. Detection of NGF mRNA was also performed by in situ hybridization. Immunoreaction for NGF and the two receptors in articular chondrocytes, chondrocyte-like cells of meniscus and annulus fibrosus, and chondrocytes of the epiglottis demonstrated that they are all expressed in hyaline, fibrous and elastic cartilaginous tissues, suggesting that they could be involved in cartilage physio-pathology.

  19. [Structure of the articular cartilage in the middle aged].

    Science.gov (United States)

    Kop'eva, T N; Mul'diiarov, P Ia; Bel'skaia, O B; Pastel', V B

    1983-10-01

    In persons 17-83 years of age having no articular disorders 39 samples of the patellar articular cartilage, the articulated surface and the femoral head have been studied histochemically, histometrically and electron microscopically. Age involution of the articular cartilage is revealed after 40 years of age as a progressive decrease in chondrocytes density in the superficial and (to a less degree) in the intermediate zones. This is accompanied with a decreasing number of 3- and 4-cellular lacunae and with an increasing number of unicellular and hollow lacunae. In some chondrocytes certain distrophic and necrotic changes are revealed. In the articular matrix the zone with the minimal content of glycosaminoglycans becomes thicker and keratansulfate content in the territorial matrix of the cartilage deep zone grows large.

  20. Does Radio Frequency Ablation (RFA) Epiphysiodesis Affect Joint Cartilage?

    DEFF Research Database (Denmark)

    Shiguetomi Medina, Juan Manuel; Abood, Ahmed Abdul-Hussein; Rahbek, Ole;

    Background: Epiphysiodesis made with RFA has resulted, in animal models, an effective procedure that disrupts the growth plate and induces LLD. This procedure involves an increase of temperature (>92°C) of the targeted region causing thermal damage. To our knowledge, no study that investigates...... the effect of this procedure in the adjacent joint articular cartilage has been reported Purpose / Aim of Study: Proof of concept that epiphysiodesis made with RFA is a safe procedure that disrupts the growth plate without damaging the adjacent joint articular cartilage Materials and Methods: RFA...... articular joint cartilage. This study resembles possible results of RFA epiphysiodesis on humans. Previous studies suggest that an 8 min ablation is enough to disrupt the growth plate. This study shows that RFA can be done safely in the growing physis even on triple-long procedures. It is important...

  1. Articular cartilage thickness measured with US is not as easy as it appears

    DEFF Research Database (Denmark)

    Torp-Pedersen, S; Bartels, E M; Wilhjelm, Jens E.;

    2011-01-01

    Theoretically, the high spatial resolution of US makes it well suited to monitor the decrease in articular cartilage thickness in osteoarthritis. A requirement is, however, that the borders of the cartilage are correctly identified and that the cartilage is measured under orthogonal insonation. I...

  2. Degenerated and healthy cartilage are equally vulnerable to blood-induced damage

    NARCIS (Netherlands)

    Jansen, N.W.D.; Roosendaal, G.; Bijlsma, J.W.J.; Groot, J. de; Theobald, M.; Lafeber, F.P.J.G.

    2008-01-01

    Background: Joint bleeds have a direct adverse effect on joint cartilage, leading to joint deterioration and, ultimately, to disability. Objective: To examine the hypothesis that because degenerated cartilage has a limited repair capacity, it is more susceptible than healthy cartilage to blood-induc

  3. Contribution of collagen network features to functional properties of engineered cartilage

    NARCIS (Netherlands)

    Bastiaansen-Jenniskens, Y.M.; Koevoet, W.; Bart, A.C.W. de; Linden, J.C. van der; Zuurmond, A.M.; Weinans, H.; Verhaar, J.A.N.; Osch, G.J.V.M. van; Groot, J. de

    2008-01-01

    Background: Damage to articular cartilage is one of the features of osteoarthritis (OA). Cartilage damage is characterised by a net loss of collagen and proteoglycans. The collagen network is considered highly important for cartilage function but little is known about processes that control

  4. Cartilage repair by mesenchymal stem cells: Clinical trial update and perspectives

    Directory of Open Access Journals (Sweden)

    Wayne Yuk-wai Lee

    2017-04-01

    The translational potential of this article: This review summarises recent MSC-related clinical research that focuses on cartilage repair. We also propose a novel possible translational direction for hyaline cartilage formation and a new paradigm making use of extra-cellular signalling and epigenetic regulation in the application of MSCs for cartilage repair.

  5. Lubricin is expressed in chondrocytes derived from osteoarthritic cartilage encapsulated in poly (ethylene glycol) diacrylate scaffold.

    Science.gov (United States)

    Musumeci, G; Loreto, C; Carnazza, M L; Coppolino, F; Cardile, V; Leonardi, R

    2011-01-01

    Osteoarthritis (OA) is characterized by degenerative changes within joints that involved quantitative and/or qualitative alterations of cartilage and synovial fluid lubricin, a mucinous glycoprotein secreted by synovial fibroblasts and chondrocytes. Modern therapeutic methods, including tissue-engineering techniques, have been used to treat mechanical damage of the articular cartilage but to date there is no specific and effective treatment. This study aimed at investigating lubricin immunohistochemical expression in cartilage explant from normal and OA patients and in cartilage constructions formed by Poly (ethylene glycol) (PEG) based hydrogels (PEG-DA) encapsulated OA chondrocytes. The expression levels of lubricin were studied by immunohistochemistry: i) in tissue explanted from OA and normal human cartilage; ii) in chondrocytes encapsulated in hydrogel PEGDA from OA and normal human cartilage. Moreover, immunocytochemical and western blot analysis were performed in monolayer cells from OA and normal cartilage. The results showed an increased expression of lubricin in explanted tissue and in monolayer cells from normal cartilage, and a decreased expression of lubricin in OA cartilage. The chondrocytes from OA cartilage after 5 weeks of culture in hydrogels (PEGDA) showed an increased expression of lubricin compared with the control cartilage. The present study demonstrated that OA chondrocytes encapsulated in PEGDA, grown in the scaffold and were able to restore lubricin biosynthesis. Thus our results suggest the possibility of applying autologous cell transplantation in conjunction with scaffold materials for repairing cartilage lesions in patients with OA to reduce at least the progression of the disease.

  6. Ultrasonographic Measurement of the Femoral Cartilage Thickness in Hemiparetic Patients after Stroke

    Science.gov (United States)

    Tunc, Hakan; Oken, Oznur; Kara, Murat; Tiftik, Tulay; Dogu, Beril; Unlu, Zeliha; Ozcakar, Levent

    2012-01-01

    The aim of the study was to evaluate the femoral cartilage thicknesses of hemiparetic patients after stroke using musculoskeletal ultrasonography and to determine whether there is any correlation between cartilage thicknesses and the clinical characteristics of the patients. Femoral cartilage thicknesses of both knees were measured in 87 (33…

  7. Induction of advanced glycation end products and alterations of the tensile properties of articular cartilage

    NARCIS (Netherlands)

    Chen, A.C.; Temple, M.M.; Ng, D.M.; Verzijl, N.; Groot, J. de; TeKoppele, J.M.; Sah, R.L.

    2002-01-01

    Objective. To determine whether increasing advanced glycation end products (AGEs) in bovine articular cartilage to levels present in aged human cartilage modulates the tensile biomechanical properties of the tissue. Methods. Adult bovine articular cartilage samples were incubated in a buffer solutio

  8. Tibiofemoral cartilage contact biomechanics in patients after reconstruction of a ruptured anterior cruciate ligament.

    Science.gov (United States)

    Hosseini, Ali; Van de Velde, Samuel; Gill, Thomas J; Li, Guoan

    2012-11-01

    We investigated the in vivo cartilage contact biomechanics of the tibiofemoral joint in patients after reconstruction of a ruptured anterior cruciate ligament (ACL). A dual fluoroscopic and MR imaging technique was used to investigate the cartilage contact biomechanics of the tibiofemoral joint during in vivo weight-bearing flexion of the knee in eight patients 6 months following clinically successful reconstruction of an acute isolated ACL rupture. The location of tibiofemoral cartilage contact, size of the contact area, cartilage thickness at the contact area, and magnitude of the cartilage contact deformation of the ACL-reconstructed knees were compared with those previously measured in intact (contralateral) knees and ACL-deficient knees of the same subjects. Contact biomechanics of the tibiofemoral cartilage after ACL reconstruction were similar to those measured in intact knees. However, at lower flexion, the abnormal posterior and lateral shift of cartilage contact location to smaller regions of thinner tibial cartilage that has been described in ACL-deficient knees persisted in ACL-reconstructed knees, resulting in an increase of the magnitude of cartilage contact deformation at those flexion angles. Reconstruction of the ACL restored some of the in vivo cartilage contact biomechanics of the tibiofemoral joint to normal. Clinically, recovering anterior knee stability might be insufficient to prevent post-operative cartilage degeneration due to lack of restoration of in vivo cartilage contact biomechanics.

  9. In vitro and in vivo modulation of cartilage degradation by a standardized Centella asiatica fraction.

    NARCIS (Netherlands)

    Hartog, A.; Smit, H.F.; Kraan, P.M. van der; Hoijer, M.A.; Garssen, J.

    2009-01-01

    Osteoarthritis (OA) is a degenerative joint disease in which focal cartilage destruction is one of the primary features. The present study aims to evaluate the effect of a Centella asiatica fraction on in vitro and in vivo cartilage degradation. Bovine cartilage explants and bovine chondrocytes cult

  10. Contribution of collagen network features to functional properties of engineered cartilage

    NARCIS (Netherlands)

    Bastiaansen-Jenniskens, Y.M.; Koevoet, W.; Bart, A.C.W. de; Linden, J.C. van der; Zuurmond, A.M.; Weinans, H.; Verhaar, J.A.N.; Osch, G.J.V.M. van; Groot, J. de

    2008-01-01

    Background: Damage to articular cartilage is one of the features of osteoarthritis (OA). Cartilage damage is characterised by a net loss of collagen and proteoglycans. The collagen network is considered highly important for cartilage function but little is known about processes that control composit

  11. Bilateral same-day endoscopic transcanal cartilage tympanoplasty: initial results.

    Science.gov (United States)

    Daneshi, Ahmad; Jahandideh, Hesam; Daneshvar, Ali; Safdarian, Mahdi

    Same-day closure of bilateral tympanic membrane perforations is a quick and more comfortable procedure for the patients. However, conventional bilateral same-day tympanoplasty or myringoplasty has been rarely performed because of the theoretical risk of postoperative complications. To evaluate the advantages and outcomes of bilateral simultaneous endoscopic cartilage tympanoplasty in patients with bilateral tympanic membrane perforations. From February 2012 to March 2013, patients with bilateral dry tympanic membrane perforations who had some degree of hearing loss corresponding to the size and location of the perforation entered the study. There was no suspicion to disrupted ossicular chain, mastoid involvement or other middle or inner ear pathology. Endoscopic transcanal cartilage tympanoplasty was done using the underlay (medial) technique. The graft was harvested from cymba cartilage in just one ear with preservation of perichondrium in one side. A 1.5cm×1.5cm cartilage seemed to be enough for tympanoplasty in both sides. Nine patients (4 males and 5 females) with the mean age of 37.9 years underwent bilateral transcanal cartilage tympanoplasty in a same-day surgery. The mean duration of follow up was 15.8 months. There were detected no complications including hearing loss, otorrhea and wound complication with no retraction pocket or displaced graft during follow-up period. The grafts take rate was 94.44% (only one case of unilateral incomplete closure). The mean of air-bone gap overall improved from 13.88dB preoperatively to 9.16dB postoperatively (p<0.05). Bilateral endoscopic transcanal cartilage tympanoplasty can be considered as a safe minimally invasive procedure that can be performed in a same-day surgery. It reduces the costs and operation time and is practical with a low rate of postoperative complications. Copyright © 2017 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights

  12. [Conservative therapy of cartilage defects of the upper ankle joint].

    Science.gov (United States)

    Smolenski, U C; Best, N; Bocker, B

    2008-03-01

    Cartilage defects of the upper ankle joint reflect the problem that great force is transmitted and balanced out over a relatively small surface area. As a pathophysiological factor, cartilage-bone contusions play a significant role in the development of cartilage defects of the upper ankle joint. Physiotherapeutic procedures belong to the standard procedures of conservative therapy. The use and selection of the type of therapy is based on empirical considerations and experience and investigations on effectiveness of particular therapies are relatively rare. At present a symptom-oriented therapy of cartilage defects of the upper ankle joint seems to be the most sensible approach. It can be assumed that it makes sense that the symptomatic treatment of cartilage defects or initial stages of arthritis also includes the subsequent symptoms of pain, irritated condition and limited function. This leads to starting points for physiotherapy with respect to pain therapy, optimisation of pressure relationships, avoidance of pressure points, improvement of diffusion and pressure release. In addition to the differential physiotherapeutic findings, the determination of a curative, preventive or rehabilitative procedure is especially important. In physical therapy special importance is placed on a scheduled serial application corresponding to the findings, employing the necessary methods, such as physiotherapy, sport therapy, medical mechanics, manual therapy, massage, electrotherapy and warmth therapy. From this the findings-related therapy is proposed as a practical therapy concept: locomotive apparatus pain therapy, optimisation of pressure relationships, improvement of diffusion and decongestion therapy. Therapy options have been selected base on the current literature and are summarised in tabular form. The art of symptomatic therapy of cartilage defects of the upper ankle joint does not lie in the multitude of sometimes speculative procedures, but in the targeted selection

  13. Metabolism of Cartilage Proteoglycans in Health and Disease

    Directory of Open Access Journals (Sweden)

    Demitrios H. Vynios

    2014-01-01

    Full Text Available Cartilage proteoglycans are extracellular macromolecules with complex structure, composed of a core protein onto which a variable number of glycosaminoglycan chains are attached. Their biosynthesis at the glycosaminoglycan level involves a great number of sugar transferases well-orchestrated in Golgi apparatus. Similarly, their degradation, either extracellular or intracellular in lysosomes, involves a large number of hydrolases. A deficiency or malfunction of any of the enzymes participating in cartilage proteoglycan metabolism may lead to severe disease state. This review summarizes the findings regarding this topic.

  14. Magnetic resonance imaging of hip joint cartilage and labrum

    Directory of Open Access Journals (Sweden)

    Christoph Zilkens

    2011-09-01

    Full Text Available Hip joint instability and impingement are the most common biomechanical risk factors that put the hip joint at risk to develop premature osteoarthritis. Several surgical procedures like periacetabular osteotomy for hip dysplasia or hip arthroscopy or safe surgical hip dislocation for femoroacetabular impingement aim at restoring the hip anatomy. However, the success of joint preserving surgical procedures is limited by the amount of pre-existing cartilage damage. Biochemically sensitive MRI techniques like delayed Gadolinium Enhanced MRI of Cartilage (dGEMRIC might help to monitor the effect of surgical or non-surgical procedures in the effort to halt or even reverse joint damage.

  15. Comparison of biochemical cartilage imaging techniques at 3 T MRI.

    Science.gov (United States)

    Rehnitz, C; Kupfer, J; Streich, N A; Burkholder, I; Schmitt, B; Lauer, L; Kauczor, H-U; Weber, M-A

    2014-10-01

    To prospectively compare chemical-exchange saturation-transfer (CEST) with delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) and T2 mapping to assess the biochemical cartilage properties of the knee. Sixty-nine subjects were prospectively included (median age, 42 years; male/female = 32/37) in three cohorts: 10 healthy volunteers, 40 patients with clinically suspected cartilage lesions, and 19 patients about 1 year after microfracture therapy. T2 mapping, dGEMRIC, and CEST were performed at a 3 T MRI unit using a 15-channel knee coil. Parameter maps were evaluated using region-of-interest analysis of healthy cartilage, areas of chondromalacia and repair tissue. Differentiation of damaged from healthy cartilage was assessed using receiver-operating characteristic (ROC) analysis. Chondromalacia grade 2-3 had significantly higher CEST values (P = 0.001), lower dGEMRIC (T1-) values (P < 0.001) and higher T2 values (P < 0.001) when compared to the normal appearing cartilage. dGEMRIC and T2 mapping correlated moderately negative (Spearman coefficient r = -0.56, P = 0.0018) and T2 mapping and CEST moderately positive (r = 0.5, P = 0.007), while dGEMRIC and CEST did not significantly correlate (r = -0.311, P = 0.07). The repair tissue revealed lower dGEMRIC values (P < 0.001) and higher CEST values (P < 0.001) with a significant negative correlation (r = -0.589, P = 0.01), whereas T2 values were not different (P = 0.54). In healthy volunteers' cartilage, CEST and dGEMRIC showed moderate positive correlation (r = 0.56), however not reaching significance (P = 0.09). ROC-analysis demonstrated non-significant differences of T2 mapping vs CEST (P = 0.14), CEST vs dGEMRIC (P = 0.89), and T2 mapping vs dGEMRIC (P = 0.12). CEST is able to detect normal and damaged cartilage and is non-inferior in distinguishing both when compared to dGEMRIC and T2 mapping. Copyright © 2014 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  16. Cartilage turnover reflected by metabolic processing of type II collagen

    DEFF Research Database (Denmark)

    Gudmann, Karoline Natasja Stæhr; Wang, Jianxia; Hoielt, Sabine

    2014-01-01

    ). This is expected to originate primarily from remodeling of hyaline cartilage. A mouse monoclonal antibody (Mab) was raised in mouse, targeting specifically PIIBNP (QDVRQPG) and used in development of the assay. The specificity, sensitivity, 4-parameter fit and stability of the assay were tested. Levels of PIIBNP......The aim of this study was to enable measurement of cartilage formation by a novel biomarker of type II collagen formation. The competitive enzyme-linked immunosorbent assay (ELISA) Pro-C2 was developed and characterized for assessment of the beta splice variant of type II procollagen (PIIBNP...

  17. Quantitative bone marrow lesion size in osteoarthritic knees correlates with cartilage damage and predicts longitudinal cartilage loss

    Directory of Open Access Journals (Sweden)

    Price Lori

    2011-09-01

    Full Text Available Abstract Background Bone marrow lesions (BMLs, common osteoarthritis-related magnetic resonance imaging findings, are associated with osteoarthritis progression and pain. However, there are no articles describing the use of 3-dimensional quantitative assessments to explore the longitudinal relationship between BMLs and hyaline cartilage loss. The purpose of this study was to assess the cross-sectional and longitudinal descriptive characteristics of BMLs with a simple measurement of approximate BML volume, and describe the cross-sectional and longitudinal relationships between BML size and the extent of hyaline cartilage damage. Methods 107 participants with baseline and 24-month follow-up magnetic resonance images from a clinical trial were included with symptomatic knee osteoarthritis. An 'index' compartment was identified for each knee defined as the tibiofemoral compartment with greater disease severity. Subsequently, each knee was evaluated in four regions: index femur, index tibia, non-index femur, and non-index tibia. Approximate BML volume, the product of three linear measurements, was calculated for each BML within a region. Cartilage parameters in the index tibia and femur were measured based on manual segmentation. Results BML volume changes by region were: index femur (median [95% confidence interval of the median] 0.1 cm3 (-0.5 to 0.9 cm3, index tibia 0.5 cm3 (-0.3 to 1.7 cm3, non-index femur 0.4 cm3 (-0.2 to 1.6 cm3, and non-index tibia 0.2 cm3 (-0.1 to 1.2 cm3. Among 44 knees with full thickness cartilage loss, baseline tibia BML volume correlated with baseline tibia full thickness cartilage lesion area (r = 0.63, pr = 0.48 p Conclusions Many regions had no or small longitudinal changes in approximate BML volume but some knees experienced large changes. Baseline BML size was associated to longitudinal changes in area of full thickness cartilage loss.

  18. Knee Cartilage Thickness, T1ρ and T2 Relaxation Time Are Related to Articular Cartilage Loading in Healthy Adults

    Science.gov (United States)

    Van Rossom, Sam; Smith, Colin Robert; Zevenbergen, Lianne; Thelen, Darryl Gerard; Vanwanseele, Benedicte; Van Assche, Dieter; Jonkers, Ilse

    2017-01-01

    Cartilage is responsive to the loading imposed during cyclic routine activities. However, the local relation between cartilage in terms of thickness distribution and biochemical composition and the local contact pressure during walking has not been established. The objective of this study was to evaluate the relation between cartilage thickness, proteoglycan and collagen concentration in the knee joint and knee loading in terms of contact forces and pressure during walking. 3D gait analysis and MRI (3D-FSE, T1ρ relaxation time and T2 relaxation time sequence) of fifteen healthy subjects were acquired. Experimental gait data was processed using musculoskeletal modeling to calculate the contact forces, impulses and pressure distribution in the tibiofemoral joint. Correlates to local cartilage thickness and mean T1ρ and T2 relaxation times of the weight-bearing area of the femoral condyles were examined. Local thickness was significantly correlated with local pressure: medial thickness was correlated with medial condyle contact pressure and contact force, and lateral condyle thickness was correlated with lateral condyle contact pressure and contact force during stance. Furthermore, average T1ρ and T2 relaxation time correlated significantly with the peak contact forces and impulses. Increased T1ρ relaxation time correlated with increased shear loading, decreased T1ρ and T2 relaxation time correlated with increased compressive forces and pressures. Thicker cartilage was correlated with higher condylar loading during walking, suggesting that cartilage thickness is increased in those areas experiencing higher loading during a cyclic activity such as gait. Furthermore, the proteoglycan and collagen concentration and orientation derived from T1ρ and T2 relaxation measures were related to loading. PMID:28076431

  19. A new mechanistic scenario for the origin and evolution of vertebrate cartilage.

    Directory of Open Access Journals (Sweden)

    Maria Cattell

    Full Text Available The appearance of cellular cartilage was a defining event in vertebrate evolution because it made possible the physical expansion of the vertebrate "new head". Despite its central role in vertebrate evolution, the origin of cellular cartilage has been difficult to understand. This is largely due to a lack of informative evolutionary intermediates linking vertebrate cellular cartilage to the acellular cartilage of invertebrate chordates. The basal jawless vertebrate, lamprey, has long been considered key to understanding the evolution of vertebrate cartilage. However, histological analyses of the lamprey head skeleton suggest it is composed of modern cellular cartilage and a putatively unrelated connective tissue called mucocartilage, with no obvious transitional tissue. Here we take a molecular approach to better understand the evolutionary relationships between lamprey cellular cartilage, gnathostome cellular cartilage, and lamprey mucocartilage. We find that despite overt histological similarity, lamprey and gnathostome cellular cartilage utilize divergent gene regulatory networks (GRNs. While the gnathostome cellular cartilage GRN broadly incorporates Runx, Barx, and Alx transcription factors, lamprey cellular cartilage does not express Runx or Barx, and only deploys Alx genes in certain regions. Furthermore, we find that lamprey mucocartilage, despite its distinctive mesenchymal morphology, deploys every component of the gnathostome cartilage GRN, albeit in different domains. Based on these findings, and previous work, we propose a stepwise model for the evolution of vertebrate cellular cartilage in which the appearance of a generic neural crest-derived skeletal tissue was followed by a phase of skeletal tissue diversification in early agnathans. In the gnathostome lineage, a single type of rigid cellular cartilage became dominant, replacing other skeletal tissues and evolving via gene cooption to become the definitive cellular cartilage of

  20. A new mechanistic scenario for the origin and evolution of vertebrate cartilage.

    Science.gov (United States)

    Cattell, Maria; Lai, Su; Cerny, Robert; Medeiros, Daniel Meulemans

    2011-01-01

    The appearance of cellular cartilage was a defining event in vertebrate evolution because it made possible the physical expansion of the vertebrate "new head". Despite its central role in vertebrate evolution, the origin of cellular cartilage has been difficult to understand. This is largely due to a lack of informative evolutionary intermediates linking vertebrate cellular cartilage to the acellular cartilage of invertebrate chordates. The basal jawless vertebrate, lamprey, has long been considered key to understanding the evolution of vertebrate cartilage. However, histological analyses of the lamprey head skeleton suggest it is composed of modern cellular cartilage and a putatively unrelated connective tissue called mucocartilage, with no obvious transitional tissue. Here we take a molecular approach to better understand the evolutionary relationships between lamprey cellular cartilage, gnathostome cellular cartilage, and lamprey mucocartilage. We find that despite overt histological similarity, lamprey and gnathostome cellular cartilage utilize divergent gene regulatory networks (GRNs). While the gnathostome cellular cartilage GRN broadly incorporates Runx, Barx, and Alx transcription factors, lamprey cellular cartilage does not express Runx or Barx, and only deploys Alx genes in certain regions. Furthermore, we find that lamprey mucocartilage, despite its distinctive mesenchymal morphology, deploys every component of the gnathostome cartilage GRN, albeit in different domains. Based on these findings, and previous work, we propose a stepwise model for the evolution of vertebrate cellular cartilage in which the appearance of a generic neural crest-derived skeletal tissue was followed by a phase of skeletal tissue diversification in early agnathans. In the gnathostome lineage, a single type of rigid cellular cartilage became dominant, replacing other skeletal tissues and evolving via gene cooption to become the definitive cellular cartilage of modern jawed

  1. Similar hyaline-like cartilage repair of osteochondral defects in rabbits using isotropic and anisotropic collagen scaffolds

    NARCIS (Netherlands)

    Mulder, E.L.W. de; Hannink, G.J.; Kuppevelt, T.H. van; Daamen, W.F.; Buma, P.

    2014-01-01

    Lesions in knee joint articular cartilage (AC) have limited repair capacity. Many clinically available treatments induce a fibrous-like cartilage repair instead of hyaline cartilage. To induce hyaline cartilage repair, we hypothesized that type I collagen scaffolds with fibers aligned perpendicular

  2. Histological Analysis of Failed Cartilage Repair after Marrow Stimulation for the Treatment of Large Cartilage Defect in Medial Compartmental Osteoarthritis of the Knee

    Directory of Open Access Journals (Sweden)

    Sakata,Kenichiro

    2013-02-01

    Full Text Available Bone marrow-stimulating techniques such as microfracture and subchondral drilling are valuable treatments for full-thickness cartilage defects. However, marrow stimulation-derived reparative tissues are not histologically well-documented in human osteoarthritis. We retrospectively investigated cartilage repairs after marrow stimulation for the treatment of large cartilage defects in osteoarthritic knees. Tissues were obtained from patients who underwent total knee arthroplasty (TKA after arthroscopic marrow stimulation in medial compartmental osteoarthritis. Clinical findings and cartilage repair were assessed. Sections of medial femoral condyles were histologically investigated by safranin O staining and anti-type II collagen antibody. Marrow stimulation decreased the knee pain in the short term. However, varus leg alignment gradually progressed, and TKA conversions were required. The grade of cartilage repair was not improved. Marrow stimulations resulted in insufficient cartilage regeneration on medial femoral condyles. Safranin O-stained proteoglycans and type II collagen were observed in the deep zone of marrow-stimulated holes. This study demonstrated that marrow stimulation resulted in failed cartilage repair for the treatment of large cartilage defects in osteoarthritic knees. Our results suggest that arthroscopic marrow stimulation might not improve clinical symptoms for the long term in patients suffering large osteoarthritic cartilage defects.

  3. An in situ hybridization and histochemical study of development and postnatal changes of mouse mandibular angular cartilage compared with condylar cartilage.

    Science.gov (United States)

    Shibata, Shunichi; Fujimori, Tatsuya; Yamashita, Yasuo

    2006-03-01

    To investigate the origin and postnatal changes of mouse mandibular angular cartilage, in situ hybridization for cartilaginous marker proteins, histochemistry for alkaline phosphatase (ALP) and tartrate-resistant acid phosphatase (TRAP), and bromodeoxyuridine (BrDU) analyses were performed. Chondrocytes of the mandibular angular cartilage were derived from ALP-positive progenitor cells and first detected at embryonic day (E) 15.5. Newly formed chondrocytes rapidly differentiated into hypertrophic chondrocytes and hypertrophic cell zone rapidly extended in subsequent a few days. During this period, bone sialoprotein mRNA was more widely expressed than osteopontin mRNA in cartilage. Endochondral bone formation started at E 17.5 with the resorption of the bone collar by osteoclasts. These characteristics were consistent with those of the condylar cartilage, although developmental process was 0.5-1.5 day delayed relative to the condylar cartilage. During the postnatal period, contrast to the condylar cartilage, the angular cartilage constantly decreased in volume with advancing age. Reduction of proliferating activity estimated by BrDU incorporation accounts for this phenomenon. We demonstrate new structural features of the mandibular angular cartilage that may contribute to a coming research for the secondary cartilage.

  4. Disturbios da olfacao: estudo retrospectivo

    Directory of Open Access Journals (Sweden)

    Luciano Lobato Gregorio

    2014-01-01

    Full Text Available Introdução: O olfato, fenômeno subjetivo de grande importância, é pouco compreendido e estudado no ser humano. Médicos com maior conhecimento sobre os distúrbios desse sentido tendem a considerar a doença mais importante e manejar melhor o diagnóstico e o tratamento. Objetivo: Descrever a amostra dos pacientes com queixa principal de distúrbios do olfato e mostrar a experiência do serviço no manejo e tratamento. Delineamento: Estudo retrospectivo de coorte histórica com corte transversal. Materiais e métodos: Descrição da amostra e avaliação de resposta ao tratamento de pacientes com queixa principal de hiposmia ou anosmia atendidos no ambulatório de Rinologia no período de janeiro de 2005 a outubro de 2011. Resultados: Dos 38 pacientes com distúrbio da olfação, 68,4% dos pacientes apresentaram queixa de hiposmia e 31,5% de anosmia, com duração média de 30,8 meses. Os diagnósticos etiológicos principais foram idiopática (31,5%, rinopatia alérgica (28,9% e RSC com pólipos (10,5%. As respostas ao tratamento com corticosteroide tópico e ácido alfa-lipoico foram variáveis, assim como na literatura. Conclusão: Maior importância deve ser dada aos distúrbios do olfato na prática do otorrinolaringologista, uma vez que o diagnóstico diferencial é amplo e pode trazer grande morbidade ao paciente, com impacto na sua qualidade de vida.

  5. Label-free characterization of articular cartilage in osteoarthritis model mice by Raman spectroscopy

    Science.gov (United States)

    Oshima, Yusuke; Akehi, Mayu; Kiyomatsu, Hiroshi; Miura, Hiromasa

    2017-02-01

    Osteoarthritis (OA) is very common joint disease in the aging population. Main symptom of OA is accompanied by degenerative changes of articular cartilage. Cartilage contains mostly type II collagen and proteoglycans, so it is difficult to access the quality and morphology of cartilage tissue in situ by conventional diagnostic tools (X-ray, MRI and echography) directly or indirectly. Raman spectroscopy is a label-free technique which enables to analyze molecular composition in degenerative cartilage. In this study, we generated an animal OA model surgically induced by knee joint instability, and the femurs were harvested at two weeks after the surgery. We performed Raman spectroscopic analysis for the articular cartilage of distal femurs in OA side and unaffected side in each mouse. In the result, there is no gross findings in the surface of the articular cartilage in OA. On the other hand, Raman spectral data of the articular cartilage showed drastic changes in comparison between OA and control side. The major finding of this study is that the relative intensity of phosphate band (960 cm-1) increases in the degenerative cartilage. This may be the result of exposure of subchondral bone due to thinning of the cartilage layer. In conclusion, Raman spectroscopic technique is sufficient to characterize articular cartilage in OA as a pilot study for Raman application in cartilage degeneration and regeneration using animal models and human subjects.

  6. Correlation between apparent diffusion coefficient and viscoelasticity of articular cartilage in a porcine model.

    Science.gov (United States)

    Aoki, T; Watanabe, A; Nitta, N; Numano, T; Fukushi, M; Niitsu, M

    2012-09-01

    Quantitative MR imaging techniques of degenerative cartilage have been reported as useful indicators of degenerative changes in cartilage extracellular matrix, which consists of proteoglycans, collagen, non-collagenous proteins, and water. Apparent diffusion coefficient (ADC) mapping of cartilage has been shown to correlate mainly with the water content of the cartilage. As the water content of the cartilage in turn correlates with its viscoelasticity, which directly affects the mechanical strength of articular cartilage, ADC can serve as a potentially useful indicator of the mechanical strength of cartilage. The aim of this study was to investigate the correlation between ADC and viscoelasticity as measured by indentation testing. Fresh porcine knee joints (n = 20, age 6 months) were obtained from a local abattoir. ADC of porcine knee cartilage was measured using a 3-Tesla MRI. Indentation testing was performed on an electromechanical precision-controlled system, and viscosity coefficient and relaxation time were measured as additional indicators of the viscoelasticity of cartilage. The relationship between ADC and viscosity coefficient as well as that between ADC and relaxation time were assessed. ADC was correlated with relaxation time and viscosity coefficient (R(2) = 0.75 and 0.69, respectively, p correlation between ADC and viscoelasticity in the superficial articular cartilage. Both molecular diffusion and viscoelasticity were higher in weight bearing than non-weight-bearing articular cartilage areas.

  7. Quantitative ultrasound imaging detects degenerative changes in articular cartilage surface and subchondral bone

    Science.gov (United States)

    Saarakkala, Simo; Laasanen, Mikko S.; Jurvelin, Jukka S.; Töyräs, Juha

    2006-10-01

    Previous studies have suggested that quantitative ultrasound imaging could sensitively diagnose degeneration of the articular surface and changes in the subchondral bone during the development of osteoarthrosis (OA). We have recently introduced a new parameter, ultrasound roughness index (URI), for the quantification of cartilage surface roughness, and successfully tested it with normal and experimentally degraded articular surfaces. In this in vitro study, the applicability of URI was tested in bovine cartilage samples with spontaneously developed tissue degeneration. Simultaneously, we studied the sensitivity of quantitative ultrasound imaging to detect degenerative changes in the cartilage-bone interface. For reference, histological degenerative grade of the cartilage samples was determined. Mechanical reference measurements were also conducted. Cartilage surface roughness (URI) was significantly (p < 0.05) higher in histologically degenerated samples with inferior mechanical properties. Ultrasound reflection at the cartilage-bone interface was also significantly (p < 0.05) increased in degenerated samples. Furthermore, it was quantitatively confirmed that ultrasound attenuation in the overlying cartilage significantly affects the measured ultrasound reflection values from the cartilage-bone interface. To conclude, the combined ultrasound measurement of the cartilage surface roughness and ultrasound reflection at the cartilage-bone interface complement each other, and may together enable more sensitive and quantitative diagnosis of early OA or follow up after surgical cartilage repair.

  8. Quantitative ultrasound imaging detects degenerative changes in articular cartilage surface and subchondral bone

    Energy Technology Data Exchange (ETDEWEB)

    Saarakkala, Simo [Department of Nuclear Medicine, Etelae-Savo Hospital District, Mikkeli Central Hospital, Porrassalmenkatu 35-37, 50100 Mikkeli (Finland); Laasanen, Mikko S [Information Technology R and D Unit, Engineering Kuopio, Savonia Polytechnic, POB 1188, FIN-70211 Kuopio (Finland); Jurvelin, Jukka S [Department of Physics, University of Kuopio, POB 1627, FIN-70211 Kuopio (Finland); Toeyraes, Juha [Department of Clinical Neurophysiology, Kuopio University Hospital and University of Kuopio, POB 1777, FIN-70211 Kuopio (Finland)

    2006-10-21

    Previous studies have suggested that quantitative ultrasound imaging could sensitively diagnose degeneration of the articular surface and changes in the subchondral bone during the development of osteoarthrosis (OA). We have recently introduced a new parameter, ultrasound roughness index (URI), for the quantification of cartilage surface roughness, and successfully tested it with normal and experimentally degraded articular surfaces. In this in vitro study, the applicability of URI was tested in bovine cartilage samples with spontaneously developed tissue degeneration. Simultaneously, we studied the sensitivity of quantitative ultrasound imaging to detect degenerative changes in the cartilage-bone interface. For reference, histological degenerative grade of the cartilage samples was determined. Mechanical reference measurements were also conducted. Cartilage surface roughness (URI) was significantly (p < 0.05) higher in histologically degenerated samples with inferior mechanical properties. Ultrasound reflection at the cartilage-bone interface was also significantly (p < 0.05) increased in degenerated samples. Furthermore, it was quantitatively confirmed that ultrasound attenuation in the overlying cartilage significantly affects the measured ultrasound reflection values from the cartilage-bone interface. To conclude, the combined ultrasound measurement of the cartilage surface roughness and ultrasound reflection at the cartilage-bone interface complement each other, and may together enable more sensitive and quantitative diagnosis of early OA or follow up after surgical cartilage repair.

  9. Effects of Articular Cartilage Constituents on Phosphotungstic Acid Enhanced Micro-Computed Tomography

    Science.gov (United States)

    Karhula, Sakari S.; Finnilä, Mikko A.; Lammi, Mikko J.; Ylärinne, Janne H.; Kauppinen, Sami; Rieppo, Lassi; Pritzker, Kenneth P. H.; Nieminen, Heikki J.; Saarakkala, Simo

    2017-01-01

    Contrast-enhanced micro-computed tomography (CEμCT) with phosphotungstic acid (PTA) has shown potential for detecting collagen distribution of articular cartilage. However, the selectivity of the PTA staining to articular cartilage constituents remains to be elucidated. The aim of this study was to investigate the dependence of PTA for the collagen content in bovine articular cartilage. Adjacent bovine articular cartilage samples were treated with chondroitinase ABC and collagenase to degrade the proteoglycan and the collagen constituents in articular cartilage, respectively. Enzymatically degraded samples were compared to the untreated samples using CEμCT and reference methods, such as Fourier-transform infrared imaging. Decrease in the X-ray attenuation of PTA in articular cartilage and collagen content was observed in cartilage depth of 0–13% and deeper in tissue after collagen degradation. Increase in the X-ray attenuation of PTA was observed in the cartilage depth of 13–39% after proteoglycan degradation. The X-ray attenuation of PTA-labelled articular cartilage in CEμCT is associated mainly with collagen content but the proteoglycans have a minor effect on the X-ray attenuation of the PTA-labelled articular cartilage. In conclusion, the PTA labeling provides a feasible CEμCT method for 3D characterization of articular cartilage. PMID:28135331

  10. Effects of mechanical loading on human mesenchymal stem cells for cartilage tissue engineering.

    Science.gov (United States)

    Choi, Jane Ru; Yong, Kar Wey; Choi, Jean Yu

    2017-05-19

    Today, articular cartilage damage is a major health problem, affecting people of all ages. The existing conventional articular cartilage repair techniques, such as autologous chondrocyte implantation (ACI), microfracture, and mosaicplasty, have many shortcomings which negatively affect their clinical outcomes. Therefore, it is essential to develop an alternative and efficient articular repair technique that can address those shortcomings. Cartilage tissue engineering, which aims to create a tissue-engineered cartilage derived from human mesenchymal stem cells (MSCs), shows great promise for improving articular cartilage defect therapy. However, the use of tissue-engineered cartilage for the clinical therapy of articular cartilage defect still remains challenging. Despite the importance of mechanical loading to create a functional cartilage has been well demonstrated, the specific type of mechanical loading and its optimal loading regime is still under investigation. This review summarizes the most recent advances in the effects of mechanical loading on human MSCs. First, the existing conventional articular repair techniques and their shortcomings are highlighted. The important parameters for the evaluation of the tissue-engineered cartilage, including chondrogenic and hypertrophic differentiation of human MSCs are briefly discussed. The influence of mechanical loading on human MSCs is subsequently reviewed and the possible mechanotransduction signaling is highlighted. The development of non-hypertrophic chondrogenesis in response to the changing mechanical microenvironment will aid in the establishment of a tissue-engineered cartilage for efficient articular cartilage repair. © 2017 Wiley Periodicals, Inc.

  11. Study on the Microstructure of Human Articular Cartilage/Bone Interface

    Institute of Scientific and Technical Information of China (English)

    Yaxiong Liu; Qin Lian; Jiankang He; Jinna Zhao; Zhongmin Jin; Dichen Li

    2011-01-01

    For improving the theory of gradient microstructure of cartilage/bone interface, human distal femurs were studied. Scanning Electron Microscope (SEM), histological sections and MicroCT were used to observe, measure and model the microstructure of cartilage/bone interface. The results showed that the cartilage/bone interface is in a hierarchical structure which is composed of four different tissue layers. The interlocking of hyaline cartilage and calcified cartilage and that of calcified cartilage and subchondral bone are in the manner of"protrusion-pore" with average diameter of 17.0 μm and 34.1 μm respectively. In addition, the cancellous bone under the cartilage is also formed by four layer hierarchical structure, and the adjacent layers are connected by bone trabecula in the shape of H, I and Y, forming a complex interwoven network structure. Finally, the simplified structure model of the cartilage/bone interface was proposed according to the natural articular cartilage/bone interface. The simplified model is a 4-layer gradient biomimetic structure, which corresponds to four different tissues of natural cartilage/bone interface. The results of this work would be beneficial to the design of bionic scaffold for the tissue engineering of articular cartilage/bone.

  12. Development of hybrid scaffolds using ceramic and hydrogel for articular cartilage tissue regeneration.

    Science.gov (United States)

    Seol, Young-Joon; Park, Ju Young; Jeong, Wonju; Kim, Tae-Ho; Kim, Shin-Yoon; Cho, Dong-Woo

    2015-04-01

    The regeneration of articular cartilage consisting of hyaline cartilage and hydrogel scaffolds has been generally used in tissue engineering. However, success in in vivo studies has been rarely reported. The hydrogel scaffolds implanted into articular cartilage defects are mechanically unstable and it is difficult for them to integrate with the surrounding native cartilage tissue. Therefore, it is needed to regenerate cartilage and bone tissue simultaneously. We developed hybrid scaffolds with hydrogel scaffolds for cartilage tissue and with ceramic scaffolds for bone tissue. For in vivo study, hybrid scaffolds were press-fitted into osteochondral tissue defects in a rabbit knee joints and the cartilage tissue regeneration in blank, hydrogel scaffolds, and hybrid scaffolds was compared. In 12th week after implantation, the histological and immunohistochemical analyses were conducted to evaluate the cartilage tissue regeneration. In the blank and hydrogel scaffold groups, the defects were filled with fibrous tissues and the implanted hydrogel scaffolds could not maintain their initial position; in the hybrid scaffold group, newly generated cartilage tissues were morphologically similar to native cartilage tissues and were smoothly connected to the surrounding native tissues. This study demonstrates hybrid scaffolds containing hydrogel and ceramic scaffolds can provide mechanical stability to hydrogel scaffolds and enhance cartilage tissue regeneration at the defect site.

  13. The immunomodulatory effects of shark cartilage on the mouse and human immune system

    Directory of Open Access Journals (Sweden)

    ali Sheikhian

    2007-01-01

    Materials and methods: In an experimental study, the effects of different doses of shark cartilage on humoral (antibody titer immune response against sheep red blood cells (SRBC, were measured in mouse. In addition, we evaluated the modulatory effects of the shark cartilage on the natural killer (NK activity of the peritoneal cells of mouse against a tumor cell line called K562, according to the standard methods. The proliferative response of the human peripheral blood mononuclear cells was measured under the influence of shark cartilage. Results: Pure shark cartilage enhanced antibody response against SRBC in vivo. The hemagglutination titer which was 1/147 in the control group (injected with hen cartilage, increased to 1/1355 in the test group. The optimal dose was 100 mg/ml. both type of cartilage had blastogenic effect on peripheral blood mononuclear cells (the blastogenic index was 6.7 and 4.9 for impure shark cartilage and hen cartilage, respectively. NK activity was inhibited completely by pure shark cartilage (the amount of the killing activity of the effector peritoneal cells for the control and test groups against target cells was 25.9% and 5.5% respectively. Conclusion: Shark cartilage has a potent immunomodulatory effect on the specific immune mechanisms and some inhibitory effects on the innate immune mechanisms such as NC activity. Since the specific immunity has a more pivotal role against tumor formation, shark cartilage can be used as a cancer immunotherapeutic.

  14. Human Endogenous Retrovirus W Activity in Cartilage of Osteoarthritis Patients

    Directory of Open Access Journals (Sweden)

    Signy Bendiksen

    2014-01-01

    Full Text Available The etiology of viruses in osteoarthritis remains controversial because the prevalence of viral nucleic acid sequences in peripheral blood or synovial fluid from osteoarthritis patients and that in healthy control subjects are similar. Until now the presence of virus has not been analyzed in cartilage. We screened cartilage and chondrocytes from advanced and non-/early osteoarthritis patients for parvovirus B19, herpes simplex virus-1, Epstein Barr virus, cytomegalovirus, human herpes virus-6, hepatitis C virus, and human endogenous retroviruses transcripts. Endogenous retroviruses transcripts, but none of the other viruses, were detected in 15 out the 17 patients. Sequencing identified the virus as HERV-WE1 and E2. HERV-W activity was confirmed by high expression levels of syncytin, dsRNA, virus budding, and the presence of virus-like particles in all advanced osteoarthritis cartilages examined. Low levels of HERV-WE1, but not E2 envelope RNA, were observed in 3 out of 8 non-/early osteoarthritis patients, while only 3 out of 7 chondrocytes cultures displayed low levels of syncytin, and just one was positive for virus-like particles. This study demonstrates for the first time activation of HERV-W in cartilage of osteoarthritis patients; however, a causative role for HERV-W in development or deterioration of the disease remains to be proven.

  15. Healing Osteoarthritis: Engineered Proteins Created for Therapeutic Cartilage Regeneration

    Directory of Open Access Journals (Sweden)

    Kevin M. Cherry

    2012-01-01

    Full Text Available Millions of people worldwide are afflicted with painfulosteoarthritis, which is characterized by degradationof articular cartilage found in major joints such as thehip or knee. Symptoms include inflammation, pain,and decreased mobility. Because cartilage has a limitedability to self-heal, researchers have focused efforts onmethods that trigger cartilage regeneration. Our approachis to develop an injectable, protein-based hydrogel withmechanical properties analogous to healthy articularcartilage. The hydrogel provides an environment for cellgrowth and stimulates new tissue formation. We utilizedrecombinant DNA technology to create multifunctional,elastomeric proteins. The recombinant proteins weredesigned with biologically active domains to influence cellbehavior and resilin structural domains that mimic thestiffness of native cartilage. Resilin, a protein found in thewing and leg joints of mosquitoes, provided inspiration forthe mechanical domain in the recombinant protein. Thenew resilin-based protein was expressed in E. coli bacteria.Forming hydrogels requires a large quantity of engineeredprotein, so parameters such as bacterial host, incubationtemperature, expression time, and induction method wereoptimized to increase the protein yield. Using salt toprecipitate the protein and exploiting resilin’s heat stability,27 mg/L of recombinant protein was recovered at 95%purity. The protein expression and purification protocolswere established by analyzing experimental samples onSDS-PAGE gels and by Western blotting. The mechanicalproperties and interactions with stem cells are currentlybeing evaluated to assess the potential of the resilin-basedhydrogel as a treatment for osteoarthritis.

  16. Effects of Bone Morphogenic Proteins on Engineered Cartilage

    Science.gov (United States)

    Gooch, Keith, J.; Blunk, Torsten; Courter, Donald L.; Sieminski, Alisha; Vunjak-Novakovic, Gordana; Freed, Lisa E.

    2007-01-01

    A report describes experiments on the effects of bone morphogenic proteins (BMPs) on engineered cartilage grown in vitro. In the experiments, bovine calf articular chondrocytes were seeded onto biodegradable polyglycolic acid scaffolds and cultured in, variously, a control medium or a medium supplemented with BMP-2, BMP-12, or BMP-13 in various concentrations. Under all conditions investigated, cell-polymer constructs cultivated for 4 weeks macroscopically and histologically resembled native cartilage. At a concentration of 100 ng/mL, BMP-2, BMP-12, or BMP-13 caused (1) total masses of the constructs to exceed those of the controls by 121, 80, or 62 percent, respectively; (2) weight percentages of glycosaminoglycans in the constructs to increase by 27, 18, or 15, respectively; and (3) total collagen contents of the constructs to decrease to 63, 89, or 83 percent of the control values, respectively. BMP-2, but not BMP-12 or BMP-13, promoted chondrocyte hypertrophy. These observations were interpreted as suggesting that the three BMPs increase the growth rates and modulate the compositions of engineered cartilage. It was also concluded that in vitro engineered cartilage is a suitable system for studying effects of BMPs on chondrogenesis in a well-defined environment.

  17. The MAGIC syndrome (mouth and genital ulcers with inflamed cartilage).

    Science.gov (United States)

    Orme, R L; Nordlund, J J; Barich, L; Brown, T

    1990-07-01

    We describe a 42-year-old man with features of both Behçet's disease and relapsing polychondritis. The term MAGIC syndrome (mouth and genital ulcers with inflamed cartilage) has previously been used to describe similarly affected patients. We discuss the diagnostic criteria and pathogenetic mechanisms.

  18. Surgical correction of joint deformities and hyaline cartilage regeneration

    Directory of Open Access Journals (Sweden)

    Вячеслав Александрович Винокуров

    2015-12-01

    Full Text Available Aim. To determine a method of extra-articular osteochondral fragment formation for the improvement of surgical correction results of joint deformities and optimization of regenerative conditions for hyaline cartilage. Materials and Methods. The method of formation of an articular osteochondral fragment without penetration into the joint cavity was devised experimentally. More than 30 patients with joint deformities underwent the surgery. Results. During the experiments, we postulated that there may potentially be a complete recovery of joint defects because of hyaline cartilage regeneration. By destructing the osteochondral fragment and reforming it extra-articularally, joint defects were recovered in all patients. The results were evaluated as excellent and good in majority of the patients. Conclusion. These findings indicate a novel method in which the complete recovery of joint defects due to dysplastic genesis or osteochondral defects as a result of injuries can be obtained. The devised method can be used in future experiments for objectification and regenerative potential of hyaline cartilage (e.g., rate and volume of the reformed joints that regenerate, detection of cartilage elements, and the regeneration process.

  19. Calcineurin Inhibition at Physiological Osmolarity: Toward improving cartilage regeneration

    NARCIS (Netherlands)

    A.E. van der Windt (Anna)

    2017-01-01

    markdownabstractArticular hyaline cartilage is a white, smooth structure covering the ends of bones in synovial joints, like in the hip and knee. Because of its unique stiff yet flexible properties, it distributes the loads, as a consequence of weight bearing and locomotion, over the surface of the

  20. Near infrared spectroscopic evaluation of water in hyaline cartilage.

    Science.gov (United States)

    Padalkar, M V; Spencer, R G; Pleshko, N

    2013-11-01

    In diseased conditions of cartilage such as osteoarthritis, there is typically an increase in water content from the average normal of 60-85% to greater than 90%. As cartilage has very little capability for self-repair, methods of early detection of degeneration are required, and assessment of water could prove to be a useful diagnostic method. Current assessment methods are either destructive, time consuming, or have limited sensitivity. Here, we investigated the hypotheses that non-destructive near infrared spectroscopy (NIRS) of articular cartilage can be used to differentiate between free and bound water, and to quantitatively assess water content. The absorbances centered at 5200 and 6890 cm(-1) were attributed to a combination of free and bound water, and to free water only, respectively. The integrated areas of both absorbance bands were found to correlate linearly with the absolute water content (R = 0.87 and 0.86) and with percent water content (R = 0.97 and 0.96) of the tissue. Partial least square models were also successfully developed and were used to predict water content, and percent free water. These data demonstrate that NIRS can be utilized to quantitatively determine water content in articular cartilage, and may aid in early detection of degenerative tissue changes in a laboratory setting, and with additional validations, possibly in a clinical setting.

  1. Interleukin-29 Enhances Synovial Inflammation and Cartilage Degradation in Osteoarthritis.

    Science.gov (United States)

    Xu, Lingxiao; Peng, Qiuyue; Xuan, Wenhua; Feng, Xiaoke; Kong, Xiangqing; Zhang, Miaojia; Tan, Wenfeng; Xue, Meilang; Wang, Fang

    2016-01-01

    We have recently shown that IL-29 was an important proinflammatory cytokine in pathogenesis of rheumatoid arthritis (RA). Inflammation also contributes to the pathogenesis of osteoarthritis (OA). The aim of this study was to investigate the effect and mechanism of IL-29 on cytokine production and cartilage degradation in OA. The mRNA levels of IL-29 and its specific receptor IL-28Ra in peripheral blood mononuclear cells (PBMCs) were significantly increased in OA patients when compared to healthy controls (HC). In the serum, IL-29 protein levels were higher in OA patients than those in HC. Immunohistochemistry revealed that both IL-29 and IL-28Ra were dramatically elevated in OA synovium compared to HC; synovial fibroblasts (FLS) and macrophages were the main IL-29-producing cells in OA synovium. Furthermore, recombinant IL-29 augmented the mRNA expression of IL-1β, IL-6, IL-8, and matrix-metalloproteinase-3 (MMP-3) in OA FLS and increased cartilage degradation when ex vivo OA cartilage explant was coincubated with OA FLS. Finally, in OA FLS, IL-29 dominantly activated MAPK and nuclear factor-κB (NF-κB), but not Jak-STAT and AKT signaling pathway as examined by western blot. In conclusion, IL-29 stimulates inflammation and cartilage degradation by OA FLS, indicating that this cytokine is likely involved in the pathogenesis of OA.

  2. Evaluation of early changes of cartilage biomarkers following ...

    African Journals Online (AJOL)

    Hamdy Khamis Koryem

    2014-08-15

    Aug 15, 2014 ... cartilage changes and degeneration that may stay invisible for a long period of time before ... addition they allow classification of disease severity, risk of onset and ... Varicose veins of the lower limbs. ... A positioning device was used to ... ible as a light gray or white band between the dark1 subchondral ...

  3. Ectopic cartilage in subglottic stenosis: Hamartoma or reaction to trauma?

    NARCIS (Netherlands)

    F.C.P.M. Adriaansen; L.J. Hoeve (Hans); H.L. Verwoerd-Verhoef (Henriëtte); R.O. van der Heul (R.); C.D.A. Verwoerd (Carel)

    1992-01-01

    textabstractIn an experimental study in growing rabbits an endolaryngeal injury to the subglottis resulted in the development of a stenosis due to the formation of scar tissue containing ectopic cartilage. For comparison, biopsies taken from the subglottic stenosis in 8 children were studied

  4. Neurophysiological basis for neurogenic-mediated articular cartilage anabolism alteration.

    Science.gov (United States)

    Gouze-Decaris, E; Philippe, L; Minn, A; Haouzi, P; Gillet, P; Netter, P; Terlain, B

    2001-01-01

    This study was designed to investigate the pathways involved in neurogenic-mediated articular cartilage damage triggered by a nonsystemic distant subcutaneous or intra-articular inflammation. The cartilage damage was assessed 24 h after subcutaneous or intra-articular complete Freund's adjuvant (CFA) injection measuring patellar proteoglycan (PG) synthesis (ex vivo [Na(2)(35)SO(4)] incorporation) in 96 Wistar rats. Unilateral subcutaneous or intra-articular injection of CFA induced significant decrease (25-29%) in PG synthesis in both patellae. Chronic administration of capsaicin (50 mg. kg(-1). day(-1) during 4 days), which blunted the normal response of C fiber stimulation, prevented the bilateral significant decrease in cartilage synthesis. Similarly, intrathecal injection of MK-801 (10 nmol/day during 5 days), which blocked the glutamatergic synaptic transmission at the dorsal horn of signal originating in primary afferent C fibers, eliminated the CFA-induced PG synthesis decrease in both patellae. Chemical sympathectomy, induced by guanethidine (12.5 mg. kg(-1). day(-1) during 6 wk), also prevented PG synthesis alteration. Finally, compression of the spinal cord at the T3-T5 level had a similar protective effect on the reduction of [Na(2)(35)SO(4)] incorporation. It is concluded that the signal that triggers articular cartilage synthesis damage induced by a distant local inflammation 1) is transmitted through the afferent C fibers, 2) makes glutamatergic synaptic connections with the preganglionic neurons of the sympathetic system, and 3) involves spinal and supraspinal pathways.

  5. The biochemical content of articular cartilage: an original MRI approach.

    Science.gov (United States)

    Loeuille, Damien; Olivier, Pierre; Watrin, Astrid; Grossin, Laurent; Gonord, Patrick; Guillot, Geneviève; Etienne, Stéphanie; Blum, Alain; Netter, Patrick; Gillet, Pierre

    2002-01-01

    The MR aspect of articular cartilage, that reflects the interactions between protons and macromolecular constituents, is affected by the intrinsic tissue structure (water content, the content of matrix constituents, collagen network organization), imager characteristics, and acquisition parameters. On the T1-weighted sequences, the bovine articular cartilage appears as an homogeneous tissue in high signal intensity, whatever the age of animals considered, whereas on the T2-weighted sequences, the articular bovine cartilage presents variations of its imaging pattern (laminar appearance) well correlated to the variations of its histological and biochemical structure. The T2 relaxation time measurement (T2 mapping), which reflects quantitatively the signal intensity variations observed on T2 weighted sequences, is a way to evaluate more precisely the modifications of cartilage structure during the aging and maturation processes (rat's study). This technique so far confined to experimental micro-imagers is now developed on clinical imagers. Consequently, it may permit to depict the early stages of osteoarthritic disease (OA) or to evaluate the chondroprotective effect of drugs.

  6. Preparation and placement of cartilage island graft in tympanoplasty

    Directory of Open Access Journals (Sweden)

    Veysel Yurttas

    2014-12-01

    Full Text Available Introduction: Cartilage graft tympanoplasty has a better success rate in the treatment of chronic otitis media if regularly prepared and placed. Objective: To prepare cartilage island material and evaluate its effect on the success rate of tympanoplasty. Methods: The medical records of 87 patients (48 males and 39 females; mean age, 27.3 ±11.2 years; range, 14–43 years with chronic otitis media without cholesteatoma who underwent intact canal-wall-up tympanoplasty and revision surgery between December of 2007 and October of 2011 were retrospectively evaluated. Surgery was performed under general anesthesia via a retroauricular approach. Results: The overall success rate of this technique was 93% in terms of perforation closure. No graft lateralization or displacement into the middle ear occurred. The overall average preoperative air bone gap was 37.27 ± 12.35 dB, and the postoperative air bone gap was 27.58 ± 9.84 dB. The mean postoperative follow-up period was 15.3 months (range: 7–21 months. Conclusion: If cartilage graft is properly prepared and placed, cartilage graft tympanoplasty appears to provide better success rates and hearing results.

  7. Growth regulation of mandibular condylar cartilage in-vitro.

    NARCIS (Netherlands)

    Copray, Joseph Christofoor Vincentius Maria

    1984-01-01

    The significance of the mandibular condylar cartilage in the development of the orofacial complex, and particulary in the growth of the mandible has led to a considarable number of studies regarding its growth regulation. Especially clinicians concerned with craniofacial growth and development and t

  8. A study of crystalline biomaterials for articular cartilage bioengineering

    Energy Technology Data Exchange (ETDEWEB)

    Gross-Aviv, Talia [Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer Sheva, 84105 (Israel)], E-mail: taliag@bgu.ac.il; DiCarlo, Bryan B. [Department of Bioengineering, Rice University, Houston, TX 77003 (United States)], E-mail: bdicarlo@rice.edu; French, Margaret M. [Department of Bioengineering, Rice University, Houston, TX 77003 (United States)], E-mail: mmfrench@rice.edu; Athanasiou, Kyriacos A. [Department of Bioengineering, Rice University, Houston, TX 77003 (United States)], E-mail: athanasiou@rice.edu; Vago, Razi [Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer Sheva, 84105 (Israel)], E-mail: rvago@bgu.ac.il

    2008-12-01

    This study examines the suitability of marine origin coral species, Porites lutea (POR) and the hydrozoan Millepora dichotoma (MIL), for use as novel three dimensional growth matrices in the field of articular cartilage tissue engineering. Therefore, mesenchymal stem cells (MSCs) and chondrocytes were grown on the skeletal material obtained from each of these two organisms to investigate their potential use as three dimensional scaffolding for cartilage tissue growth. Chondrogenic induction of MSCs was achieved by addition of transforming growth factor-{beta}1 (TGF-{beta}1) and insulin growth factor-I (IGF-I). Cell adherence, proliferation, differentiation and tissue development were investigated through six weeks of culture. Cartilage tissue growth and chondrocytic phenotype maintenance of each cell type were examined by cell morphology, histochemical analyses, expression of collagen type II and quantitative measures of glycosaminoglycan (GAG) content. The MSCs and the chondrocytes were shown good adherence to the scaffolds and maintenance of the chondrocytic phenotype in the initial stages of culture. However after two weeks of culture on MIL and three weeks on POR these cultures began to exhibit signs of further differentiation and phenotypic loss. The shown results indicated that POR was a better substrate for chondrocytes phenotype maintenance than MIL. We believe that surface modification of POR combined with mechanical stimuli will provide a suitable environment for chondrogenic phenotype maintenance. Further investigation of POR and other novel coralline biomatrices is indicated and warranted in the field of cartilage tissue engineering applications.

  9. NONINVASIVE DETERMINATION OF KNEE CARTILAGE DEFORMATION DURING JUMPING

    Directory of Open Access Journals (Sweden)

    Djordje Kosanic

    2009-12-01

    Full Text Available The purpose of this investigation was to use a combination of image processing, force measurements and finite element modeling to calculate deformation of the knee cartilage during jumping. Professional athletes performed jumps analyzed using a force plate and high-speed video camera system. Image processing was performed on each frame of video using a color recognition algorithm. A simplified mass-spring-damper model was utilized for determination of global force and moment on the knee. Custom software for fitting the coupling characteristics was created. Simulated results were used as input data for the finite element calculation of cartilage deformation in the athlete's knee. Computer simulation data was compared with the average experimental ground reaction forces. The results show the three-dimensional mechanical deformation distribution inside the cartilage volume. A combination of the image recognition technology, force plate measurements and the finite element cartilage deformation in the knee may be used in the future as an effective noninvasive tool for prediction of injury during jumping

  10. Second harmonic generation imaging in tissue engineering and cartilage pathologies

    Science.gov (United States)

    Lilledahl, Magnus; Olderøy, Magnus; Finnøy, Andreas; Olstad, Kristin; Brinchman, Jan E.

    2015-03-01

    The second harmonic generation from collagen is highly sensitive to what extent collagen molecules are ordered into fibrils as the SHG signal is approximately proportional to the square of the fibril thickness. This can be problematic when interpreting SHG images as thick fibers are much brighter than thinner fibers such that quantification of the amount of collagen present is difficult. On the other hand SHG is therefore also a very sensitive probe to determine whether collagen have assembled into fibrils or are still dissolved as individual collagen molecules. This information is not available from standard histology or immunohistochemical techniques. The degree for fibrillation is an essential component for proper tissue function. We will present the usefulness of SHG imaging in tissue engineering of cartilage as well as cartilage related pathologies. When engineering cartilage it is essential to have the appropriate culturing conditions which cause the collagen molecules to assemble into fibrils. By employing SHG imaging we have studied how cell seeding densities affect the fibrillation of collagen molecules. Furthermore we have used SHG to study pathologies in developing cartilage in a porcine model. In both cases SHG reveals information which is not visible in conventional histology or immunohistochemistry

  11. Collagen hydrogel as an immunomodulatory scaffold in cartilage tissue engineering.

    Science.gov (United States)

    Yuan, Tun; Zhang, Li; Li, Kuifeng; Fan, Hongsong; Fan, Yujiang; Liang, Jie; Zhang, Xingdong

    2014-02-01

    A collagen type I hydrogel was constructed and used as the scaffold for cartilage tissue engineering. Neonatal rabbit chondrocytes were seeded into the hydrogel, and the constructs were cultured in vitro for 7, 14, and 28 days. The immunomodulatory effect of the hydrogel on seeded chondrocytes was carefully investigated. The expressions of major histocompatibility complex classes I and II of seeded chondrocytes increased with the time, which indicated that the immunogenicity also increased with the time. Meanwhile, the properly designed collagen type I hydrogel could prompt the chondrogenesis of engineered cartilage. The extracellular matrix (ECM) synthesis ability of seeded chondrocytes and the accumulated ECM in the constructs continuously increased with the culture time. Both the isolation and protection, which come from formed ECM and hydrogel scaffold, can effectively control the adverse immunogenicity of seeded chondrocytes and even help to lessen the immunogenicity of the whole engineered cartilage. As the result, the levels of mixed lymphocyte chondrocyte reactions of seed cells and the constructs decreased gradually. The stimulation on allogeneic lymphocytes of the whole constructs was obviously lower than that of the retrieved cells from the constructs. Therefore, properly designed collagen type I hydrogel can give certain immunogenicity-reducing effects on engineered cartilage based on chondrocytes, and it may be a potential immunomodulatory biomaterial in tissue engineering.

  12. Regulation of complement by cartilage oligomeric matrix protein allows for a novel molecular diagnostic principle in rheumatoid arthritis

    DEFF Research Database (Denmark)

    Happonen, Kaisa E; Saxne, Tore; Aspberg, Anders;

    2010-01-01

    Cartilage oligomeric matrix protein (COMP) is a structural component of cartilage, where it catalyzes collagen fibrillogenesis. Elevated amounts of COMP are found in serum during increased turnover of cartilage associated with active joint disease, such as rheumatoid arthritis (RA) and osteoarthr......Cartilage oligomeric matrix protein (COMP) is a structural component of cartilage, where it catalyzes collagen fibrillogenesis. Elevated amounts of COMP are found in serum during increased turnover of cartilage associated with active joint disease, such as rheumatoid arthritis (RA......) and osteoarthritis (OA). This study was undertaken to investigate the ability of COMP to regulate complement, a capacity that has previously been shown for some other cartilage proteins....

  13. Measurements of surface layer of the articular cartilage using microscopic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Ryniewicz, A. M; Ryniewicz, W. [Faculty of Mechanical Engineering and Robotics, University of Mining and Metallurgy, A. Mickiewicz Av. 30, 30-059 Cracow (Poland); Ryniewicz, A.; Gaska, A., E-mail: anna@ryniewicz.p, E-mail: andrzej@ryniewicz.p [Laboratory of Coordinate Metrology, Department of Mechanical Engineering, Cracow University of Technology, Jana Pawla II Av. 37, 31-864 Cracow (Poland)

    2010-07-01

    The articular cartilage is the structure that directly cooperates tribologically in biobearing. It belongs to the connective tissues and in the joints it assumes two basic forms: hyaline cartilage that builds joint surfaces and fibrocartilage which may create joint surfaces. From this fibrocartilage are built semilunar cartilage and joint disc are built as well. The research of articular cartilage have been done in macro, micro and nano scale. In all these measurement areas characteristic features occur which can identify biobearing tribology. The aim of the research was the identification of surface layer of articular cartilage by means of scanning electron microscopy (SEM) and atom force microscopy (AFM) and the analysis of topography of these layers. The material used in the research of surface layer was the animal articular cartilage: hyaline cartilage and fibrocartilage.

  14. Cartilage tissue engineering: Role of mesenchymal stem cells along with growth factors & scaffolds

    Directory of Open Access Journals (Sweden)

    M B Gugjoo

    2016-01-01

    Full Text Available Articular cartilage injury poses a major challenge for both the patient and orthopaedician. Articular cartilage defects once formed do not regenerate spontaneously, rather replaced by fibrocartilage which is weaker in mechanical competence than the normal hyaline cartilage. Mesenchymal stem cells (MSCs along with different growth factors and scaffolds are currently incorporated in tissue engineering to overcome the deficiencies associated with currently available surgical methods and to facilitate cartilage healing. MSCs, being readily available with a potential to differentiate into chondrocytes which are enhanced by the application of different growth factors, are considered for effective repair of articular cartilage after injury. However, therapeutic application of MSCs and growth factors for cartilage repair remains in its infancy, with no comparative clinical study to that of the other surgical techniques. The present review covers the role of MSCs, growth factors and scaffolds for the repair of articular cartilage injury.

  15. The distribution of YKL-40 in osteoarthritic and normal human articular cartilage

    DEFF Research Database (Denmark)

    Volck, B; Ostergaard, K; Johansen, J S

    1999-01-01

    YKL-40, also called human cartilage glycoprotein-39, is a major secretory protein of human chondrocytes in cell culture. YKL-40 mRNA is expressed by cartilage from patients with rheumatoid arthritis, but is not detectable in normal human cartilage. The aim was to investigate the distribution of YKL......-40 in osteoarthritic (n=9) and macroscopically normal (n=5) human articular cartilage, collected from 12 pre-selected areas of the femoral head, to discover a potential role for YKL-40 in cartilage remodelling in osteoarthritis. Immunohistochemical analysis showed that YKL-40 staining was found...... staining for YKL-40 was in general low in normal cartilage. The present findings, together with previous observations, suggests that YKL-40 may be of importance in cartilage remodelling/degradation of osteoarthritic joints....

  16. Knee joint kinematics during walking influences the spatial cartilage thickness distribution in the knee.

    Science.gov (United States)

    Koo, Seungbum; Rylander, Jonathan H; Andriacchi, Thomas P

    2011-04-29

    The regional adaptation of knee cartilage morphology to the kinematics of walking has been suggested as an important factor in the evaluation of the consequences of alteration in normal gait leading to osteoarthritis. The purpose of this study was to investigate the association of spatial cartilage thickness distributions of the femur and tibia in the knee to the knee kinematics during walking. Gait data and knee MR images were obtained from 17 healthy volunteers (age 33.2 ± 9.8 years). Cartilage thickness maps were created for the femoral and tibial cartilage. Locations of thickest cartilage in the medial and lateral compartments in the femur and tibia were identified using a numerical method. The flexion-extension (FE) angle associated with the cartilage contact regions on the femur, and the anterior-posterior (AP) translation and internal-external (IE) rotation associated with the cartilage contact regions on the tibia at the heel strike of walking were tested for correlation with the locations of thickest cartilage. The locations of the thickest cartilage had relatively large variation (SD, 8.9°) and was significantly associated with the FE angle at heel strike only in the medial femoral condyle (R(2)=0.41, pknee kinematics and contact surface shapes seem to affect the functional adaptation of knee articular cartilage morphology. The sensitivity of cartilage morphology to kinematics at the knee during walking suggests that regional cartilage thickness variations are influenced by both loading and the number of loading cycles. Thus walking is an important consideration in the analysis of the morphological variations of articular cartilage, since it is the dominant cyclic activity of daily living. The sensitivity of cartilage morphology to gait kinematics is also important in understanding the etiology and pathomechanics of osteoarthritis.

  17. Lubrication mode analysis of articular cartilage using Stribeck surfaces.

    Science.gov (United States)

    Gleghorn, Jason P; Bonassar, Lawrence J

    2008-01-01

    Lubrication of articular cartilage occurs in distinct modes with various structural and biomolecular mechanisms contributing to the low-friction properties of natural joints. In order to elucidate relative contributions of these factors in normal and diseased tissues, determination and control of lubrication mode must occur. The objectives of these studies were (1) to develop an in vitro cartilage on glass test system to measure friction coefficient, mu; (2) to implement and extend a framework for the determination of cartilage lubrication modes; and (3) to determine the effects of synovial fluid on mu and lubrication mode transitions. Patellofemoral groove cartilage was linearly oscillated against glass under varying magnitudes of compressive strain utilizing phosphate buffered saline (PBS) and equine and bovine synovial fluid as lubricants. The time-dependent frictional properties were measured to determine the lubricant type and strain magnitude dependence for the initial friction coefficient (mu(0)=mu(t-->0)) and equilibrium friction coefficient (mu(eq)=mu(t-->infinity)). Parameters including tissue-glass co-planarity, normal strain, and surface speed were altered to determine the effect of the parameters on lubrication mode via a 'Stribeck surface'. Using this testing apparatus, cartilage exhibited biphasic lubrication with significant influence of strain magnitude on mu(0) and minimal influence on mu(eq), consistent with hydrostatic pressurization as reported by others. Lubrication analysis using 'Stribeck surfaces' demonstrated clear regions of boundary and mixed modes, but hydrodynamic or full film lubrication was not observed even at the highest speed (50mm/s) and lowest strain (5%).

  18. Binding and lubrication of biomimetic boundary lubricants on articular cartilage.

    Science.gov (United States)

    Samaroo, Kirk J; Tan, Mingchee; Putnam, David; Bonassar, Lawrence J

    2017-03-01

    The glycoprotein, lubricin, is the primary boundary lubricant of articular cartilage and has been shown to prevent cartilage damage after joint injury. In this study, a library of eight bottle-brush copolymers were synthesized to mimic the structure and function of lubricin. Polyethylene glycol (PEG) grafted onto a polyacrylic acid (pAA) core mimicked the hydrophilic mucin-like domain of lubricin, and a thiol terminus anchored the polymers to cartilage surfaces much like lubricin's C-terminus. These copolymers, abbreviated as pAA-g-PEG, rapidly bound to cartilage surfaces with binding time constants ranging from 20 to 39 min, and affected lubrication under boundary mode conditions with coefficients of friction ranging from 0.140 ± 0.024 to 0.248 ± 0.030. Binding and lubrication were highly correlated (r(2)  = 0.89-0.99), showing that boundary lubrication in this case strongly depends on the binding of the lubricant to the surface. Along with time-dependent and dose-dependent behavior, lubrication and binding of the lubricin-mimetics also depended on copolymer structural parameters including pAA backbone length, PEG side chain length, and PEG:AA brush density. Polymers with larger backbone sizes, brush sizes, or brush densities took longer to bind (p lubricate and protect cartilage in vivo. In copolymers with shorter pAA backbones, increasing hydrodynamic size inhibited lubrication (p lubricating efficacy as recombinant lubricins and as such have potential for in vivo treatment of post-traumatic osteoarthritis. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:548-557, 2017.

  19. Biostable scaffolds of polyacrylate polymers implanted in the articular cartilage induce hyaline-like cartilage regeneration in rabbits.

    Science.gov (United States)

    Sancho-Tello, María; Forriol, Francisco; Martín de Llano, José J; Antolinos-Turpin, Carmen; Gómez-Tejedor, José A; Gómez Ribelles, José L; Carda, Carmen

    2017-07-05

    To study the influence of scaffold properties on the organization of in vivo cartilage regeneration. Our hypothesis was that stress transmission to the cells seeded inside the pores of the scaffold or surrounding it, which is highly dependent on the scaffold properties, determines the differentiation of both mesenchymal cells and dedifferentiated autologous chondrocytes. 4 series of porous scaffolds made of different polyacrylate polymers, previously seeded with cultured rabbit chondrocytes or without cells, were implanted in cartilage defects in rabbits. Subchondral bone was injured during the surgery to allow blood to reach the implantation site and fill the scaffold pores. At 3 months after implantation, excellent tissue regeneration was obtained, with a well-organized layer of hyaline-like cartilage at the condylar surface in most cases of the hydrophobic or slightly hydrophilic series. The most hydrophilic material induced the poorest regeneration. However, no statistically significant difference was observed between preseeded and non-preseeded scaffolds. All of the materials used were biocompatible, biostable polymers, so, in contrast to some other studies, our results were not perturbed by possible effects attributable to material degradation products or to the loss of scaffold mechanical properties over time due to degradation. Cartilage regeneration depends mainly on the properties of the scaffold, such as stiffness and hydrophilicity, whereas little difference was observed between preseeded and non-preseeded scaffolds.

  20. Expression of caspase-3 and -9 relevant to cartilage destruction and chondrocyte apoptosis in human osteoarthritic cartilage.

    Directory of Open Access Journals (Sweden)

    Matsuo M

    2001-12-01

    Full Text Available To clarify the involvement of the caspase family in the pathway of NO-induced chondrocyte apoptosis, osteoarthritis (OA cartilage obtained from 8 patients undergoing total hip arthroplasty were used for histopathological study. Cartilage samples taken from non-fibrillated areas of femoral head resected during surgery for femoral neck fracture were used for comparison. DNA fragmentation of chondrocytes was detected by the nick end-labeling (TUNEL method. Apoptosis was further confirmed by transmission electron microscopy. The distributions of nitrotyrosine (NT, caspase-3, and -9 were examined immunohistochemically. The populations of apoptotic as well as NT-, caspase-3-, and -9-positive cells were quantified by counting the number of cells in the superficial, middle, and deep layers, respectively. The TUNEL-positive cells were observed primarily in superficial proliferating chondrocytes, clustering chondrocytes, and deep-layer chondrocytes of OA cartilage. Few positive cells were seen in the proliferating chondrocytes in the middle layer. Positive reactions for caspase-3 and -9 were observed in chondrocytes in similar areas. Histological OA grade showed significant correlations with the mean populations of apoptotic chondrocytes (% apoptosis over the 3 areas. The populations of NT-positive cells (% NT over the same areas also showed significant correlation with OA grade. Positivity for caspase-3 closely correlated with the OA grade, % apoptosis and %NT. It was concluded that caspase-3 and -9 could play a role in NO-induced chondrocyte apoptosis in OA cartilage.

  1. Modulation of cartilage differentiation by melanoma inhibiting activity/cartilage-derived retinoic acid-sensitive protein (MIA/CD-RAP).

    Science.gov (United States)

    Schubert, Thomas; Schlegel, Jacqueline; Schmid, Rainer; Opolka, Alfred; Grassel, Susanne; Humphries, Martin; Bosserhoff, Anja-Katrin

    2010-03-31

    Melanoma inhibiting activity/cartilage-derived retinoic acid-sensitive protein (MIA/CD-RAP) is a small soluble protein secreted from malignant melanoma cells and from chondrocytes. Recently, we revealed that MIA/CD-RAP can modulate bone morphogenetic protein (BMP)2-induced osteogenic differentiation into a chondrogenic direction. In the current study we aimed to find the molecular details of this MIA/CD-RAP function. Direct influence of MIA on BMP2 by protein-protein-interaction or modulating SMAD signaling was ruled out experimentally. Instead, we revealed inhibition of ERK signaling by MIA/CD-RAP. This inhibition is regulated via binding of MIA/CD-RAP to integrin alpha5 and abolishing its activity. Active ERK signaling is known to block chondrogenic differentiation and we revealed induction of aggrecan expression in chondrocytes by treatment with MIA/CD-RAP or PD098059, an ERK inhibitor. In in vivo models we could support the role of MIA/CD-RAP in influencing osteogenic differentiation negatively. Further, MIA/CD-RAP-deficient mice revealed an enhanced calcified cartilage layer of the articular cartilage of the knee joint and disordered arrangement of chondrocytes. Taken together, our data indicate that MIA/CD-RAP stabilizes cartilage differentiation and inhibits differentiation into bone potentially by regulating signaling processes during differentiation.

  2. Desempenho de um pulverizador pneumático costal motorizado sob diferentes condições Performance of the motorized knapsack mistblower under different operational conditions

    Directory of Open Access Journals (Sweden)

    Casimiro D. Gadanha Júnior

    2004-12-01

    Full Text Available O objetivo do trabalho foi avaliar a uniformidade de vazão de um pulverizador pneumático costal motorizado, utilizado no controle do mosquito vetor da dengue, sob várias condições operacionais de aplicação. O experimento foi planejado como um delineamento inteiramente casualizado, no esquema fatorial 2 x 7, com cinco repetições, sendo os fatores de variação dois diâmetros de orifício do disco dosador e sete ângulos de aplicação em relação ao plano horizontal. Foi avaliado também o efeito das pressões sobre a vazão por meio dos testes de Pearson. A interação dos fatores diâmetro do orifício do disco dosador e ângulo de aplicação foi significativa para a vazão. O disco dosador com diâmetro de 0,42 mm apresentou maior uniformidade entre as vazões médias, variando de 12,8 a 38,8 mL min-1, para o intervalo de inclinação do ducto aplicador de 60º a -60º e apresentou correlação linear em função do ângulo, com coeficiente de determinação igual a 0,9861. Houve uma expressiva correlação entre a vazão média e a pressão determinada no ponto P3, próximo ao bocal, com valores do coeficiente de correlação de 0,988 para o disco A e de 0,985 para o disco B. O disco de menor diâmetro deve ser utilizado. Na troca do disco, o operador deve ser orientado e treinado para corrigir o tempo de aplicação em função das diversas situações na área urbana.This study aims to evaluate the outflow uniformity of knapsack mist-blowers, powered by two stroke internal combustion engine for the control of the mosquito vector of dengue (Aedes aegypti under different operational conditions. The experiment was planned as a completely randomized factorial 2 x 7 with five repetitions being the variation factors two diameters of orifices of the disc dosimeter and seven application angles in relation to the horizontal plan. It was also evaluated the pressure effect on the flow rate through the Pearson tests. The results showed

  3. Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) of cadaveric shoulders: comparison of contrast dynamics in hyaline and fibrous cartilage after intraarticular gadolinium injection.

    Science.gov (United States)

    Wiener, E; Hodler, J; Pfirrmann, C W A

    2009-01-01

    Delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC) is a novel method to investigate cartilaginous and fibrocartilaginous structures. To investigate the contrast dynamics in hyaline and fibrous cartilage of the glenohumeral joint after intraarticular injection of gadopentetate dimeglumine. Transverse T(1) maps were acquired on a 1.5T scanner before and after intraarticular injection of 2.0 mmol/l gadopentetate dimeglumine in five cadaveric shoulders using a dual flip angle three-dimensional gradient echo (3D-GRE) sequence. The acquisition time for the T(1) maps was 5 min 5 s for the whole shoulder. Measurements were repeated every 15 min over 2.5 hours. Regions of interest (ROIs) covering the glenoid cartilage and the labrum were drawn to assess the temporal evolution of the relaxation parameters. T(1) of unenhanced hyaline cartilage of the glenoid was 568+/-34 ms. T(1) of unenhanced fibrous cartilage of the labrum was 552+/-38 ms. Significant differences (P=0.002 and 0.03) in the relaxation parameters were already measurable after 15 min. After 2 to 2.5 hours, hyaline and fibrous cartilage still demonstrated decreasing relaxation parameters, with a larger range of the T(1)(Gd) values in fibrous cartilage. T(1) and triangle Delta R(1) values of hyaline and fibrous cartilage after 2.5 hours were 351+/-16 ms and 1.1+/-0.09 s(-1), and 332+/-31 ms and 1.2+/-0.1 s(-1), respectively. A significant decrease in T(1)(Gd) was found 15 min after intraarticular contrast injection. Contrast accumulation was faster in hyaline than in fibrous cartilage. After 2.5 hours, contrast accumulation showed a higher rate of decrease in hyaline cartilage, but neither hyaline nor fibrous cartilage had reached equilibrium.

  4. Delayed Gadolinium-Enhanced MRI of Cartilage (dGEMRIC) of Cadaveric Shoulders: Comparison of Contrast Dynamics in Hyaline and Fibrous Cartilage after Intraarticular Gadolinium Injection

    Energy Technology Data Exchange (ETDEWEB)

    Wiener, E. (Dept. of Radiology, Charite Universitaetsmedizin Berlin (Germany)); Hodler, J.; Pfirrmann, C.W.A. (Dept. of Radiology, Orthopedic Univ. Hospital Balgrist, Zuerich (Switzerland))

    2009-01-15

    Background: Delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC) is a novel method to investigate cartilaginous and fibrocartilaginous structures. Purpose: To investigate the contrast dynamics in hyaline and fibrous cartilage of the glenohumeral joint after intraarticular injection of gadopentetate dimeglumine. Material and Methods: Transverse T1 maps were acquired on a 1.5T scanner before and after intraarticular injection of 2.0 mmol/l gadopentetate dimeglumine in five cadaveric shoulders using a dual flip angle three-dimensional gradient echo (3D-GRE) sequence. The acquisition time for the T1 maps was 5 min 5 s for the whole shoulder. Measurements were repeated every 15 min over 2.5 hours. Regions of interest (ROIs) covering the glenoid cartilage and the labrum were drawn to assess the temporal evolution of the relaxation parameters. Results: T1 of unenhanced hyaline cartilage of the glenoid was 568+-34 ms. T1 of unenhanced fibrous cartilage of the labrum was 552+-38 ms. Significant differences (P=0.002 and 0.03) in the relaxation parameters were already measurable after 15 min. After 2 to 2.5 hours, hyaline and fibrous cartilage still demonstrated decreasing relaxation parameters, with a larger range of the T1(Gd) values in fibrous cartilage. T1 and ?R1 values of hyaline and fibrous cartilage after 2.5 hours were 351+-16 ms and 1.1+-0.09/s, and 332+-31 ms and 1.2+-0.1/s, respectively. Conclusion: A significant decrease in T1(Gd) was found 15 min after intraarticular contrast injection. Contrast accumulation was faster in hyaline than in fibrous cartilage. After 2.5 hours, contrast accumulation showed a higher rate of decrease in hyaline cartilage, but neither hyaline nor fibrous cartilage had reached equilibrium

  5. The Effects of Smoking on Ultrasonographic Thickness and Elastosonographic Strain Ratio Measurements of Distal Femoral Cartilage.

    Science.gov (United States)

    Gungor, Harun R; Agladioglu, Kadir; Akkaya, Nuray; Akkaya, Semih; Ok, Nusret; Ozçakar, Levent

    2016-04-21

    Although adverse effects of smoking on bone health are all well known, data on how smoking interacts with cartilage structure in otherwise healthy individuals remains conflicting. Here, we ascertain the effects of cigarette smoking on sonoelastographic properties of distal femoral cartilage in asymptomatic adults. Demographic characteristics and smoking habits (packets/year) of healthy volunteers were recorded. Medial, intercondylar, and lateral distal femoral cartilage thicknesses and strain ratios on the dominant extremity were measured with ultrasonography (US) and real time US elastography. A total of 88 subjects (71 M, 17 F; aged 18-56 years, N = 43 smokers and N = 45 nonsmokers) were evaluated. Mean amount of cigarette smoking was 10.3 ± 8.9 (1-45) packets/year. Medial, intercondylar and lateral cartilage were thicker in smokers than nonsmokers (p = 0.002, p = 0.017, and p = 0.004, respectively). Medial distal femoral cartilage strain ratio was lower in smokers (p = 0.003). The amount of smoking was positively correlated with cartilage thicknesses and negatively correlated with medial cartilage strain ratios (p < 0.05). Femoral cartilage is thicker in smokers but has less strain ratio representing harder cartilage on the medial side. Future studies are needed to understand how these structural changes in the knee cartilage should be interpreted with regard to the development of knee osteoarthritis in smokers.

  6. Strain ratio measurement of femoral cartilage by real-time elastosonography: preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Ipek, Ali; Unal, Ozlem; Kartal, Merve Gulbiz; Arslan, Halil [Yildirim Beyazit University, Department of Radiology, Faculty of Medicine, Ataturk Training and Research Hospital, Ankara (Turkey); Isik, Cetin; Bozkurt, Murat [Yildirim Beyazit University, Department of Orthopedics, Faculty of Medicine, Ataturk Training and Research Hospital, Ankara (Turkey)

    2015-04-01

    The purpose of this study was to evaluate strain ratio measurement of femoral cartilage using real-time elastosonography. Twenty-five patients with femoral cartilage pathology on MRI (study group) were prospectively compared with 25 subjects with normal findings on MRI (control group) using real-time elastosonography. Strain ratio measurements of pathologic and normal cartilage were performed and compared, both within the study group and between the two groups. Elastosonography colour-scale coding showed a colour change from blue to red in pathologic cartilage and only blue colour-coding in normal cartilage. In the study group, the median strain ratio was higher in pathologic cartilage areas compared to normal areas (median, 1.49 [interquartile range, 0.80-2.53] vs. median, 0.01 [interquartile range, 0.01-0.01], p < 0.001, respectively). The median strain ratio of the control group was 0.01 (interquartile range, 0.01-0.01), and there was no significant difference compared to normal areas of the study group. There was, however, a significant difference between the control group cartilage and pathologic cartilage of the study group (p < 0.001). Elastosonography may be an effective, easily accessible, and relatively simple tool to demonstrate pathologic cartilage and to differentiate it from normal cartilage in the absence of advanced imaging facility such as MRI. (orig.)

  7. Multiparametric MRI of Epiphyseal Cartilage Necrosis (Osteochondrosis with Histological Validation in a Goat Model.

    Directory of Open Access Journals (Sweden)

    Luning Wang

    Full Text Available To evaluate multiple MRI parameters in a surgical model of osteochondrosis (OC in goats.Focal ischemic lesions of two different sizes were induced in the epiphyseal cartilage of the medial femoral condyles of goats at 4 days of age by surgical transection of cartilage canal blood vessels. Goats were euthanized and specimens harvested 3, 4, 5, 6, 9 and 10 weeks post-op. Ex vivo MRI scans were conducted at 9.4 Tesla for mapping the T1, T2, T1ρ, adiabatic T1ρ and TRAFF relaxation times of articular cartilage, unaffected epiphyseal cartilage, and epiphyseal cartilage within the area of the induced lesion. After MRI scans, safranin O staining was conducted to validate areas of ischemic necrosis induced in the medial femoral condyles of six goats, and to allow comparison of MRI findings with the semi-quantitative proteoglycan assessment in corresponding safranin O-stained histological sections.All relaxation time constants differentiated normal epiphyseal cartilage from lesions of ischemic cartilage necrosis, and the histological staining results confirmed the proteoglycan (PG loss in the areas of ischemia. In the scanned specimens, all of the measured relaxation time constants were higher in the articular than in the normal epiphyseal cartilage, consistently allowing differentiation between these two tissues.Multiparametric MRI provided a sensitive approach to discriminate between necrotic and viable epiphyseal cartilage and between articular and epiphyseal cartilage, which may be useful for diagnosing and monitoring OC lesions and, potentially, for assessing effectiveness of treatment interventions.

  8. Characterization of pediatric microtia cartilage: a reservoir of chondrocytes for auricular reconstruction using tissue engineering strategies.

    Science.gov (United States)

    Melgarejo-Ramírez, Y; Sánchez-Sánchez, R; García-López, J; Brena-Molina, A M; Gutiérrez-Gómez, C; Ibarra, C; Velasquillo, C

    2016-09-01

    The external ear is composed of elastic cartilage. Microtia is a congenital malformation of the external ear that involves a small reduction in size or a complete absence. The aim of tissue engineering is to regenerate tissues and organs clinically implantable based on the utilization of cells and biomaterials. Remnants from microtia represent a source of cells for auricular reconstruction using tissue engineering. To examine the macromolecular architecture of microtia cartilage and behavior of chondrocytes, in order to enrich the knowledge of this type of cartilage as a cell reservoir. Auricular cartilage remnants were obtained from pediatric patients with microtia undergoing reconstructive procedures. Extracellular matrix composition was characterized using immunofluorescence and histological staining methods. Chondrocytes were isolated and expanded in vitro using a mechanical-enzymatic protocol. Chondrocyte phenotype was analyzed using qualitative PCR. Microtia cartilage preserves structural organization similar to healthy elastic cartilage. Extracellular matrix is composed of typical cartilage proteins such as type II collagen, elastin and proteoglycans. Chondrocytes displayed morphological features similar to chondrocytes derived from healthy cartilage, expressing SOX9, COL2 and ELN, thus preserving chondral phenotype. Cell viability was 94.6 % during in vitro expansion. Elastic cartilage from microtia has similar characteristics, both architectural and biochemical to healthy cartilage. We confirmed the suitability of microtia remnant as a reservoir of chondrocytes with potential to be expanded in vitro, maintaining phenotypical features and viability. Microtia remnants are an accessible source of autologous cells for auricular reconstruction using tissue engineering strategies.

  9. Quantification of collagen distributions in rat hyaline and fibro cartilages based on second harmonic generation imaging

    Science.gov (United States)

    Zhu, Xiaoqin; Liao, Chenxi; Wang, Zhenyu; Zhuo, Shuangmu; Liu, Wenge; Chen, Jianxin

    2016-10-01

    Hyaline cartilage is a semitransparent tissue composed of proteoglycan and thicker type II collagen fibers, while fibro cartilage large bundles of type I collagen besides other territorial matrix and chondrocytes. It is reported that the meniscus (fibro cartilage) has a greater capacity to regenerate and close a wound compared to articular cartilage (hyaline cartilage). And fibro cartilage often replaces the type II collagen-rich hyaline following trauma, leading to scar tissue that is composed of rigid type I collagen. The visualization and quantification of the collagen fibrillar meshwork is important for understanding the role of fibril reorganization during the healing process and how different types of cartilage contribute to wound closure. In this study, second harmonic generation (SHG) microscope was applied to image the articular and meniscus cartilage, and textural analysis were developed to quantify the collagen distribution. High-resolution images were achieved based on the SHG signal from collagen within fresh specimens, and detailed observations of tissue morphology and microstructural distribution were obtained without shrinkage or distortion. Textural analysis of SHG images was performed to confirm that collagen in fibrocartilage showed significantly coarser compared to collagen in hyaline cartilage (p imaging degenerative tissues or assessing wound repair following cartilage injury.

  10. Investigations of micron and submicron wear features of diseased human cartilage surfaces.

    Science.gov (United States)

    Peng, Zhongxiao; Baena, Juan C; Wang, Meiling

    2015-02-01

    Osteoarthritis is a common disease. However, its causes and morphological features of diseased cartilage surfaces are not well understood. The purposes of this research were (a) to develop quantitative surface characterization techniques to study human cartilages at a micron and submicron scale and (b) to investigate distinctive changes in the surface morphologies and biomechanical properties of the cartilages in different osteoarthritis grades. Diseased cartilage samples collected from osteoarthritis patients were prepared for image acquisition using two different techniques, that is, laser scanning microscopy at a micrometer scale and atomic force microscopy at a nanometer scale. Three-dimensional, digital images of human cartilages were processed and analyzed quantitatively. This study has demonstrated that high-quality three-dimensional images of human cartilage surfaces could be obtained in a hydrated condition using laser scanning microscopy and atomic force microscopy. Based on the numerical data extracted from improved image quality and quantity, it has been found that osteoarthritis evolution can be identified by specific surface features at the micrometer scale, and these features are amplitude and functional property related. At the submicron level, the spatial features of the surfaces were revealed to differ between early and advanced osteoarthritis grades. The effective indentation moduli of human cartilages effectively revealed the cartilage deterioration. The imaging acquisition and numerical analysis methods established allow quantitative studies of distinctive changes in cartilage surface characteristics and better understanding of the cartilage degradation process.

  11. Co-culture systems-based strategies for articular cartilage tissue engineering.

    Science.gov (United States)

    Zhang, Yu; Liu, Shuyun; Guo, Weimin; Wang, Mingjie; Hao, Chunxiang; Gao, Shuang; Zhang, Xueliang; Li, Xu; Chen, Mingxue; Li, Penghao; Peng, Jiang; Lu, Shibi; Guo, Quanyi

    2017-05-26

    Cartilage engineering facilitates repair and regeneration of damaged cartilage using engineered tissue that restores the functional properties of the impaired joint. The seed cells used most frequently in tissue engineering, are chondrocytes and mesenchymal stem cells. Seed cells activity plays a key role in the regeneration of functional cartilage tissue. However, seed cells undergo undesirable changes after in vitro processing procedures, such as degeneration of cartilage cells and induced hypertrophy of mesenchymal stem cells, which hinder cartilage tissue engineering. Compared to monoculture, which does not mimic the in vivo cellular environment, co-culture technology provides a more realistic microenvironment in terms of various physical, chemical and biological factors. Co-culture technology is used in cartilage tissue engineering to overcome obstacles related to the degeneration of seed cells, and shows promise for cartilage regeneration and repair. In this review, we focus first on existing co-culture systems for cartilage tissue engineering and related fields, and discuss the conditions and mechanisms thereof. This is followed by methods for optimizing seed cell co-culture conditions to generate functional neo-cartilage tissue, which will lead to a new era in cartilage tissue engineering. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  12. Xiphoid Process-Derived Chondrocytes: A Novel Cell Source for Elastic Cartilage Regeneration

    Science.gov (United States)

    Nam, Seungwoo; Cho, Wheemoon; Cho, Hyunji; Lee, Jungsun

    2014-01-01

    Reconstruction of elastic cartilage requires a source of chondrocytes that display a reliable differentiation tendency. Predetermined tissue progenitor cells are ideal candidates for meeting this need; however, it is difficult to obtain donor elastic cartilage tissue because most elastic cartilage serves important functions or forms external structures, making these tissues indispensable. We found vestigial cartilage tissue in xiphoid processes and characterized it as hyaline cartilage in the proximal region and elastic cartilage in the distal region. Xiphoid process-derived chondrocytes (XCs) showed superb in vitro expansion ability based on colony-forming unit fibroblast assays, cell yield, and cumulative cell growth. On induction of differentiation into mesenchymal lineages, XCs showed a strong tendency toward chondrogenic differentiation. An examination of the tissue-specific regeneration capacity of XCs in a subcutaneous-transplantation model and autologous chondrocyte implantation model confirmed reliable regeneration of elastic cartilage regardless of the implantation environment. On the basis of these observations, we conclude that xiphoid process cartilage, the only elastic cartilage tissue source that can be obtained without destroying external shape or function, is a source of elastic chondrocytes that show superb in vitro expansion and reliable differentiation capacity. These findings indicate that XCs could be a valuable cell source for reconstruction of elastic cartilage. PMID:25205841

  13. [Influence of different surgeries on growth and development of alar cartilage in young-rabbit].

    Science.gov (United States)

    Jiang, Lian; Dong, Xiqian; Song, Qinggao; Chen, Shang; Zou, Sihai

    2011-01-01

    The purpose of this study is to observe the affection of different clinical surgeries on alar nasal cartilages' growth and development. The experimental results can provide some theory basis for clinical surgeries. Twenty-eight New Zealand immature rabbits were used in this study, and divided into normal control group, hidden dissection group and cutting off alar nasal cartilages group randomly, which included 4,12 and 12 rabbits, separately. Arc incision were made on the mucous membrane of nasal cavity,and then dissect the alar nasal cartilages hidden or cut off the alar nasal cartilages, separately. The growth and development of the alar cartilage were observed at different stages after the surgery using histological and immuno-histochemical methods. Four weeks, eight weeks, twelve weeks and sixteen weeks after surgery, there were no significant differences in the indexes of chondrocytes between hidden dissection group and control group. In cutting off alar nasal cartilages group, fiber tissue were observed in the vacancy left after being cut off cartilages, and even mucous membrane tissue could be seen in some slices. There is no adverse influence on the growth and development of the alar cartilage after being hidden dissected. Contrarily, the restoring capability of transparent cartilage cannot counteract the injury resulted form the surgery after the alar nasal cartilages being cut off.

  14. Mechanical testing of hydrogels in cartilage tissue engineering: beyond the compressive modulus.

    Science.gov (United States)

    Xiao, Yinghua; Friis, Elizabeth A; Gehrke, Stevin H; Detamore, Michael S

    2013-10-01

    Injuries to articular cartilage result in significant pain to patients and high medical costs. Unfortunately, cartilage repair strategies have been notoriously unreliable and/or complex. Biomaterial-based tissue-engineering strategies offer great promise, including the use of hydrogels to regenerate articular cartilage. Mechanical integrity is arguably the most important functional outcome of engineered cartilage, although mechanical testing of hydrogel-based constructs to date has focused primarily on deformation rather than failure properties. In addition to deformation testing, as the field of cartilage tissue engineering matures, this community will benefit from the addition of mechanical failure testing to outcome analyses, given the crucial clinical importance of the success of engineered constructs. However, there is a tremendous disparity in the methods used to evaluate mechanical failure of hydrogels and articular cartilage. In an effort to bridge the gap in mechanical testing methods of articular cartilage and hydrogels in cartilage regeneration, this review classifies the different toughness measurements for each. The urgency for identifying the common ground between these two disparate fields is high, as mechanical failure is ready to stand alongside stiffness as a functional design requirement. In comparing toughness measurement methods between hydrogels and cartilage, we recommend that the best option for evaluating mechanical failure of hydrogel-based constructs for cartilage tissue engineering may be tensile testing based on the single edge notch test, in part because specimen preparation is more straightforward and a related American Society for Testing and Materials (ASTM) standard can be adopted in a fracture mechanics context.

  15. New technique for preparing cartilage for intracordal injection: the freezing and grinding method.

    Science.gov (United States)

    Park, Young Min; Lee, Won Yong; Lim, Yun-Sung; Lee, Jin-Choon; Lee, Byung-Joo; Wang, Soo-Geun

    2014-07-01

    We developed a technique for preparing harvested cartilage that creates finer, more uniform pieces by freezing with liquid nitrogen and grinding with a mortar and pestle. Herein, we report the application of this new technique for intracordal cartilage injection. Experimental study. Human cartilage was obtained from surgical cases. In the standard method, harvested cartilage was prepared with scissors and a knife. In the experimental group, harvested cartilage was frozen with liquid nitrogen and ground with a mortar and pestle. It took an average of 60 minutes to manipulate cartilage using the standard technique, whereas it took an average of 10 minutes using the freezing and grinding method (P<0.001). The average size of cartilage flakes generated by the standard and new techniques were 727 and 48.6 μm, respectively. The cartilage flakes produced using scissors and a knife were able to pass through a 19-gauge needle, whereas those created using the freezing and grinding method were able to pass through a 24-gauge needle. Using the freezing and grinding method, cartilage was broken into fine, uniform pieces that could pass through a 24-gauge needle. This new technique will facilitate the production of commercial cartilage material for intracordal injection. Copyright © 2014 The Voice Foundation. All rights reserved.

  16. Incomplete restoration of immobilization induced softening of young beagle knee articular cartilage after 50-week remobilization.

    Science.gov (United States)

    Haapala, J; Arokoski, J; Pirttimäki, J; Lyyra, T; Jurvelin, J; Tammi, M; Helminen, H J; Kiviranta, I

    2000-01-01

    The aim of this study was to characterize the biomechanical and structural changes in canine knee cartilage after an initial 11-week immobilization and subsequent remobilization period of 50 weeks. Cartilage from the immobilized and remobilized knee was compared with the tissue from age-matched control animals. Compressive stiffness, in the form of instant shear modulus (ISM) and equilibrium shear modulus (ESM) of articular cartilage, was investigated using an in situ indentation creep technique. The local variations in cartilage of glycosaminoglycan (GAG) concentration were measured with a microspectrophotometer after safranin O staining of histological sections. Using a computer-based quantitative polarized light microscopy method, collagen-related optical retardation, gamma, of cartilage zones were performed to investigate the collagen network of cartilage. Macroscopically, cartilage surfaces of the knee joint remained intact both after immobilization and remobilization periods. Immobilization caused significant softening of the lateral femoral and tibial cartilages, as expressed by ESM (up to 30%, p test points. The changes of ESM were positively correlated with the alterations in GAG content of the superficial and deep zones after immobilization and remobilization. This confirms the key role of protoglycans in the regulation of the equilibrium stiffness of articular cartilage. As a conclusion, immobilization of the joint of a young individual may cause long-term, if not permanent, alterations of cartilage biomechanical properties. This may predispose joint to degenerative changes later in life.

  17. Comparison of bend angle measurements in fresh cryopreserved cartilage specimens after electromechanical reshaping

    Science.gov (United States)

    Karimi, Koohyar; Protsenko, Dimitry; Wu, Edward C.; Foulad, Allen; Manuel, Cyrus T.; Lim, Amanda; Wong, Brian J. F.

    2010-02-01

    Cryopreservation of cartilage has been investigated for decades and is currently an established protocol. However, the reliability and applicability of cartilage cryopreservation for the use in electromechanical reshaping (EMR) has not been studied exclusively. A system to cryopreserve large numbers of tissue specimens provides a steady source of cartilage of similar quality for experimentation at later dates. This will reduce error that may arise from different cartilage stock, and has the potential to maximize efficiency under time constraints. Our study utilizes a unique methodology to cryopreserve septal cartilage for use in EMR studies. Rabbit septal cartilage specimens were harvested and standardized to 20 x 8 x 1 mm, and placed in one of three solutions (normal saline, PBS, 10% DMSO in PBS) for four hours in a cold storage room at 4 degrees Celsius. Then, each cartilage specimen was vacuumed and sealed in an anti-frost plastic bag and stored in a freezer at -80 degrees Celsius for 1 to 3 weeks duration. EMR was performed using 2 and 6 volts for 2 minutes application time. Bend angle measurements of the cryopreserved cartilage specimens were compared to bend angles of fresh cartilage which underwent EMR using the same parameters. Results demonstrate that normal saline, phosphate buffered saline (PBS), and PBS with DMSO were effective in cryopreservation, and indicated no significant differences in bend angle measurements when compared to no cryopreservation. Our methodology to cryopreserve cartilage specimens provides a successful approach for use in conducting large-scale EMR studies.

  18. T2 star relaxation times for assessment of articular cartilage at 3 T: a feasibility study.

    Science.gov (United States)

    Mamisch, Tallal Charles; Hughes, Timothy; Mosher, Timothy J; Mueller, Christoph; Trattnig, Siegfried; Boesch, Chris; Welsch, Goetz Hannes

    2012-03-01

    T2 mapping techniques use the relaxation constant as an indirect marker of cartilage structure, and the relaxation constant has also been shown to be a sensitive parameter for cartilage evaluation. As a possible additional robust biomarker, T2* relaxation time is a potential, clinically feasible parameter for the biochemical evaluation of articular cartilage. The knees of 15 healthy volunteers and 15 patients after microfracture therapy (MFX) were evaluated with a multi-echo spin-echo T2 mapping technique and a multi-echo gradient-echo T2* mapping sequence at 3.0 Tesla MRI. Inline maps, using a log-linear least squares fitting method, were assessed with respect to the zonal dependency of T2 and T2* relaxation for the deep and superficial regions of healthy articular cartilage and cartilage repair tissue. There was a statistically significant correlation between T2 and T2* values. Both parameters demonstrated similar spatial dependency, with longer values measured toward the articular surface for healthy articular cartilage. No spatial variation was observed for cartilage repair tissue after MFX. Within this feasibility study, both T2 and T2* relaxation parameters demonstrated a similar response in the assessment of articular cartilage and cartilage repair tissue. The potential advantages of T2*-mapping of cartilage include faster imaging times and the opportunity for 3D acquisitions, thereby providing greater spatial resolution and complete coverage of the articular surface.

  19. T2 star relaxation times for assessment of articular cartilage at 3 T: a feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Mamisch, Tallal Charles [University Bern, Department of Orthopedic Surgery, Inselspital, Bern (Switzerland); University Bern, Magnetic Resonance Spectroscopy and Methodology, Department of Clinical Research, Bern (Switzerland); Hughes, Timothy [Siemens Medical Solutions, Erlangen (Germany); Mosher, Timothy J. [Penn State University College of Medicine, Musculoskeletal Imaging and MRI, Department of Radiology, Hershey, PA (United States); Mueller, Christoph [University of Erlangen, Department of Trauma Surgery, Erlangen (Germany); Trattnig, Siegfried [Medical University of Vienna, MR Center - High Field MR, Department of Radiology, Vienna (Austria); Boesch, Chris [University Bern, Magnetic Resonance Spectroscopy and Methodology, Department of Clinical Research, Bern (Switzerland); Welsch, Goetz Hannes [University of Erlangen, Department of Trauma Surgery, Erlangen (Germany); Medical University of Vienna, MR Center - High Field MR, Department of Radiology, Vienna (Austria)

    2012-03-15

    T2 mapping techniques use the relaxation constant as an indirect marker of cartilage structure, and the relaxation constant has also been shown to be a sensitive parameter for cartilage evaluation. As a possible additional robust biomarker, T2* relaxation time is a potential, clinically feasible parameter for the biochemical evaluation of articular cartilage. The knees of 15 healthy volunteers and 15 patients after microfracture therapy (MFX) were evaluated with a multi-echo spin-echo T2 mapping technique and a multi-echo gradient-echo T2* mapping sequence at 3.0 Tesla MRI. Inline maps, using a log-linear least squares fitting method, were assessed with respect to the zonal dependency of T2 and T2* relaxation for the deep and superficial regions of healthy articular cartilage and cartilage repair tissue. There was a statistically significant correlation between T2 and T2* values. Both parameters demonstrated similar spatial dependency, with longer values measured toward the articular surface for healthy articular cartilage. No spatial variation was observed for cartilage repair tissue after MFX. Within this feasibility study, both T2 and T2* relaxation parameters demonstrated a similar response in the assessment of articular cartilage and cartilage repair tissue. The potential advantages of T2*-mapping of cartilage include faster imaging times and the opportunity for 3D acquisitions, thereby providing greater spatial resolution and complete coverage of the articular surface. (orig.)

  20. Nanoparticles for diagnostics and laser medical treatment of cartilage in orthopaedics

    Science.gov (United States)

    Baum, O. I.; Soshnikova, Yu. M.; Omelchenko, A. I.; Sobol, Emil

    2013-02-01

    Laser reconstruction of intervertebral disc (LRD) is a new technique which uses local, non-destructive laser irradiation for the controlled activation of regenerative processes in a targeted zone of damaged disc cartilage. Despite pronounced advancements of LRD, existing treatments may be substantially improved if laser radiation is absorbed near diseased and/or damaged regions in cartilage so that required thermomechanical stress and strain at chondrocytes may be generated and non-specific injury reduced or eliminated. The aims of the work are to study possibility to use nanoparticles (NPs) to provide spatial specificity for laser regeneration of cartilage. Two types of porcine joint cartilage have been impregnated with magnetite NPs: 1) fresh cartilage; 2) mechanically damaged cartilage. NPs distribution was studied using transition electron microscopy, dynamic light scattering and analytical ultracentrifugation techniques. Laser radiation and magnetic field have been applied to accelerate NPs impregnation. It was shown that NPs penetrate by diffusion into the mechanically damaged cartilage, but do not infiltrate healthy cartilage. Temperature dynamics in cartilage impregnated with NPs have been theoretically calculated and measurements using an IR thermo vision system have been performed. Laser-induced alterations of cartilage structure and cellular surviving have been studied for cartilage impregnated with NPs using histological and histochemical techniques. Results of our study suggest that magnetite NPs might be used to provide spatial specificity of laser regeneration. When damaged, the regions of cartilage impreganted with NPs have higher absorption of laser radiation than that for healthy areas. Regions containing NPs form target sites that can be used to generate laser-induced thermo mechanical stress leading to regeneration of cartilage of hyaline type.

  1. Sliding alar cartilage (SAC) flap: a new technique for nasal tip surgery.

    Science.gov (United States)

    Ozmen, Selahattin; Eryilmaz, Tolga; Sencan, Ayse; Cukurluoglu, Onur; Uygur, Safak; Ayhan, Suhan; Atabay, Kenan

    2009-11-01

    Congenital anatomic deformities or acquired weakness of the lateral crura of the lower lateral cartilages after rhinoplasty could cause alar rim deformities. As lower lateral cartilages are the structural cornerstone of the ala and tip support, deformities and weakness of the alar cartilages might lead to both functional and esthetic problems. In this article, we are introducing sliding alar cartilage flap as a new technique to reshape and support nasal tip. One hundred sixty consecutive patients between 18 and 55 years of age (mean age: 27.51) were included in the study between January 2007 and May 2008. Of the total number of patients 60 were male and 100 of them were female. None of the patients had rhinoplasty procedure including lower lateral cartilage excision previously. Sliding alar cartilage technique was used in an open rhinoplasty approach to shape the nasal tip in all patients. This technique necessitates about 2 to 3 minutes for suturing and undermining the alar cartilages. The follow-up period was between 4 and 18 months. In no patients any revision related to the sliding alar cartilage technique was required. Revision was applied in 3 patients due to thick nasal tip skin and in one patient due to unpleasant columellar scar. In this article, we are presenting the "sliding alar cartilage flap" as a new technique for creating natural looking nasal tip. This technique shapes and supports nasal tip by spontaneous sliding of the cephalic portion of the lower lateral cartilage beneath the caudal alar cartilage, with minimal manipulation, without any cartilage resection, or cartilage grafting.

  2. Altered Knee Joint Mechanics in Simple Compression Associated with Early Cartilage Degeneration

    Directory of Open Access Journals (Sweden)

    Y. Dabiri

    2013-01-01

    Full Text Available The progression of osteoarthritis can be accompanied by depth-dependent changes in the properties of articular cartilage. The objective of the present study was to determine the subsequent alteration in the fluid pressurization in the human knee using a three-dimensional computer model. Only a small compression in the femur-tibia direction was applied to avoid numerical difficulties. The material model for articular cartilages and menisci included fluid, fibrillar and nonfibrillar matrices as distinct constituents. The knee model consisted of distal femur, femoral cartilage, menisci, tibial cartilage, and proximal tibia. Cartilage degeneration was modeled in the high load-bearing region of the medial condyle of the femur with reduced fibrillar and nonfibrillar elastic properties and increased hydraulic permeability. Three case studies were implemented to simulate (1 the onset of cartilage degeneration from the superficial zone, (2 the progression of cartilage degeneration to the middle zone, and (3 the progression of cartilage degeneration to the deep zone. As compared with a normal knee of the same compression, reduced fluid pressurization was observed in the degenerated knee. Furthermore, faster reduction in fluid pressure was observed with the onset of cartilage degeneration in the superficial zone and progression to the middle zone, as compared to progression to the deep zone. On the other hand, cartilage degeneration in any zone would reduce the fluid pressure in all three zones. The shear strains at the cartilage-bone interface were increased when cartilage degeneration was eventually advanced to the deep zone. The present study revealed, at the joint level, altered fluid pressurization and strains with the depth-wise cartilage degeneration. The results also indicated redistribution of stresses within the tissue and relocation of the loading between the tissue matrix and fluid pressure. These results may only be qualitatively interesting

  3. PREVALENCE OF LARYNGEAL CARTILAGE CALCIFICATIONS IN MANGALORE POPULATION; A RADIOGRAPHIC STUDY

    Directory of Open Access Journals (Sweden)

    Nandita Shenoy

    2014-10-01

    Full Text Available Soft tissue calcifications in the orofacial region are uncommon and are usually asymptomatic in nature. Some of the common calcifications found are Carotid artery calcifications (CAC, Triticeous cartilage, and Superior cornu of the thyroid cartilage, Tonsilloliths and lymph nodes calcifications. Disordered ossification or calcification of ligaments or cartilages may compress neurovascular structures, may be able to cause serious implications in any surgical intervention in the region, may lead to false neurological differential diagnosis or may be benign in nature without any clinical significance. Ossification and calcification of the laryngeal cartilages have been widely investigated since the original study by Chievitz in 1882 1 . The thyroid, cricoid, and greater part of the arytenoid cartilages consist of hyaline cartilage that undergoes calcification and ossification as part of the ageing process. The thyroid cartilage tends to be visible on the cephalometric and lateral neck radiograph when the ossification starts within the lamina or either of the cornua. The cricoids and arytenoid cartilages also become apparent when the ossification begins within their laminae. Radiographs of the head and neck are used to study the growth and development of skeletal structures can be used for identification of these calcifications 2 . A good understanding of the anatomy and the knowledge of variations in the laryngeal cartilage ossification is important for all clinicians especially while interpreting head and neck radiographs of patients who exhibit anatomical or functional deviations from the normal. The lateral cephalometric radiographs are advised more commonly by an orthodontist to look for occlusion and lateral profile of the patient pre and post orthodontic treatment. They also demonstrate the posterosuperior part of the lamina, and the superior cornu of the thyroid cartilage. Laryngeal and related cartilages like the cricoid and triticeal

  4. The development of hyaline-cell cartilage in the head of the black molly, Poecilia sphenops. Evidence for secondary cartilage in a teleost.

    Science.gov (United States)

    Benjamin, M

    1989-01-01

    The development of hyaline-cell cartilage attached to membrane (dentary, maxilla, nasal, lacrimal and cleithrum) and cartilage (basioccipital) bones has been studied in the viviparous black molly, Poecilia sphenops. Intramembranous ossification commences before the first appearance of hyaline cells. As hyaline-cell cartilage is densely cellular and as that attached to the dentary, maxilla and cleithrum develops from the periosteum of these membrane bones, it must be regarded as secondary cartilage according to current concepts. It is also argued that the hyaline-cell cartilage attached to the perichondral bone of the basioccipital (a cartilage bone), could also be viewed as secondary. The status of the cartilage on the nasal and lacrimal bones is less clear, for it develops, at least in part, from mucochondroid (mucous connective) tissue. This is the first definitive report of secondary cartilage in any lower vertebrate. The tissue is therefore not restricted to birds and mammals as hitherto believed, and a multipotential periosteum must have arisen early in vertebrate evolution. Images Fig. 1 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12 Fig. 13 Fig. 14 PMID:2481666

  5. Co-Expression and Co-Localization of Cartilage Glycoproteins CHI3L1 and Lubricin in Osteoarthritic Cartilage: Morphological, Immunohistochemical and Gene Expression Profiles.

    Science.gov (United States)

    Szychlinska, Marta Anna; Trovato, Francesca Maria; Di Rosa, Michelino; Malaguarnera, Lucia; Puzzo, Lidia; Leonardi, Rosy; Castrogiovanni, Paola; Musumeci, Giuseppe

    2016-01-01

    Osteoarthritis is the most common human arthritis characterized by degeneration of articular cartilage. Several studies reported that levels of human cartilage glycoprotein chitinase 3-like-1 (CHI3L1) are known as a potential marker for the activation of chondrocytes and the progression of Osteoarthritis (OA), whereas lubricin appears to be chondroprotective. The aim of this study was to investigate the co-expression and co-localization of CHI3L1 and lubricin in normal and osteoarthritic rat articular cartilage to correlate their modified expression to a specific grade of OA. Samples of normal and osteoarthritic rat articular cartilage were analyzed by the Kellgren-Lawrence OA severity scores, the Kraus' modified Mankin score and the Histopathology Osteoarthritis Research Society International (OARSI) system for histomorphometric evaluations, and through CHI3L1 and lubricin gene expression, immunohistochemistry and double immuno-staining analysis. The immunoexpression and the mRNA levels of lubricin increased in normal cartilage and decreased in OA cartilage (normal vs. OA, p < 0.01). By contrast, the immunoexpression and the mRNA levels of CHI3L1 increased in OA cartilage and decreased in normal cartilage (normal vs. OA, p < 0.01). Our findings are consistent with reports suggesting that these two glycoproteins are functionally associated with the development of OA and in particular with grade 2/3 of OA, suggesting that in the future they could be helpful to stage the severity and progression of the disease.

  6. Co-Expression and Co-Localization of Cartilage Glycoproteins CHI3L1 and Lubricin in Osteoarthritic Cartilage: Morphological, Immunohistochemical and Gene Expression Profiles

    Directory of Open Access Journals (Sweden)

    Marta Anna Szychlinska

    2016-03-01

    Full Text Available Osteoarthritis is the most common human arthritis characterized by degeneration of articular cartilage. Several studies reported that levels of human cartilage glycoprotein chitinase 3-like-1 (CHI3L1 are known as a potential marker for the activation of chondrocytes and the progression of Osteoarthritis (OA, whereas lubricin appears to be chondroprotective. The aim of this study was to investigate the co-expression and co-localization of CHI3L1 and lubricin in normal and osteoarthritic rat articular cartilage to correlate their modified expression to a specific grade of OA. Samples of normal and osteoarthritic rat articular cartilage were analyzed by the Kellgren–Lawrence OA severity scores, the Kraus’ modified Mankin score and the Histopathology Osteoarthritis Research Society International (OARSI system for histomorphometric evaluations, and through CHI3L1 and lubricin gene expression, immunohistochemistry and double immuno-staining analysis. The immunoexpression and the mRNA levels of lubricin increased in normal cartilage and decreased in OA cartilage (normal vs. OA, p < 0.01. By contrast, the immunoexpression and the mRNA levels of CHI3L1 increased in OA cartilage and decreased in normal cartilage (normal vs. OA, p < 0.01. Our findings are consistent with reports suggesting that these two glycoproteins are functionally associated with the development of OA and in particular with grade 2/3 of OA, suggesting that in the future they could be helpful to stage the severity and progression of the disease.

  7. Endogenous HLA-DR-restricted presentation of the cartilage antigens human cartilage gp-39 and melanoma inhibitory activity in the inflamed rheumatoid joint

    NARCIS (Netherlands)

    van Lierop, M. J. C.; den Hoed, L.; Houbiers, J.; Vencovsky, J.; Ruzickova, S.; Krystufkova, O.; van Schaardenburg, M.; van den Hoogen, F.; Vandooren, B.; Baeten, D.; De Keyser, F.; Sonderstrup, G.; Bos, E.; Boots, A. M.

    2007-01-01

    Objective. The cartilage proteins melanoma inhibitory activity (MIA) and human cartilage gp-39 (HC gp-39) are candidate autoantigens in rheumatoid arthritis (RA). The present study was undertaken to investigate the endogenous HLA-DR4-restricted presentation of these self proteins, in order to seek i

  8. A STUDY ON STRUCTURE AND THICKNESS OF ISTHMUS OF CARTILAG E OF PINNA

    Directory of Open Access Journals (Sweden)

    Satyanarayana

    2015-05-01

    Full Text Available INTRODUCTION: A variety of organic and inorganic materials is used as grafts in Ossiculoplasty and reconstruction of the outer attic wall and posterior wall of External Auditory Meatus. Tragal cartilage, Conchal cartilage and septal cartilages are frequently used as auto grafts during Tympanoplasty surgery for reconstruction of Ossicular chain. Cartilage grafts used for Ossicular replacement should be thick, sturdy, easily sculpted and without much elasticity. If the graft has elastic nature it tends to reduce the conduction of sound vibrations. Auricular cartilage is accessible through the same post aural incision used for the mastoid surgery. If the auricular cartilage is palpated for the thickness, one would find that the thickest part is the isthmus. It is felt below and posterior to the inter tragal sulcus. The present study is to measure the thickness of the isthmus part of the auricle cartilage. It also includes study of histology of the cartilage of isthmus to observe the stacks of cells present between the two layers of the perichondrium. MATERIALS AND METHODS: The cartilage of isthmus from 36 cadavers is dissected to measure its thickness and for histology study. Cartilage of isthmus from 36 patients undergoing Modified Radical Mastoidectomy is measured for their thickness and histology is studied. A sterile steel calipers is used to measure the thickness of the cartilage, after exposing the cartilage from posterior aspect during surgery. The tips of the calipers are kept touching the perichondrium on both sides. Thin histology sections are taken after embedding the cartilage in paraffin moulds. Hematoxyline and Eosin stain is used to study the histology. The thickest portion of the cartilage is sculpted to be used as a strut in Type III Tympanoplasty. OBSERVATIONS: The thickness of the cartilage varied from 2.1 to 3mm. The number of stacks of chondrocytes varied from 5 to 7. The physical nature of the cartilage is sturdy and easily

  9. Cartilage cell proliferation in degenerative TFCC wrist lesions.

    Science.gov (United States)

    Unglaub, Frank; Thomas, Susanne B; Wolf, Maya B; Dragu, Adrian; Kroeber, Markus W; Mittlmeier, Thomas; Horch, Raymund E

    2010-08-01

    The central zone of the triangular fibrocartilage complex (TFCC) of the wrist is thought to be avascular and is generally considered to lack any healing potential. The purpose of this study was to investigate, if cartilage cells of degenerative disc lesions possess any healing or proliferation potential and whether ulna length plays a significant role in the proliferation process. Cells positive for proliferating cell nuclear antigen (PCNA) were found in all specimens. Specimens of patients with ulna positive variance showed a decreased number of PCNA positive cells than specimens of patients with either negative or neutral ulna variance. We found that cartilage cells of Palmer type 2C lesions undergo mitotic cell division, thus exhibiting proliferation capability. It could not be shown that ulnar length is significantly correlated with the number of PCNA positive cells.

  10. Gene therapy for cartilage and bone tissue engineering

    CERN Document Server

    Hu, Yu-Chen

    2014-01-01

    "Gene Therapy for Cartilage and Bone Tissue Engineering" outlines the tissue engineering and possible applications of gene therapy in the field of biomedical engineering as well as basic principles of gene therapy, vectors and gene delivery, specifically for cartilage and bone engineering. It is intended for tissue engineers, cell therapists, regenerative medicine scientists and engineers, gene therapist and virologists. Dr. Yu-Chen Hu is a Distinguished Professor at the Department of Chemical Engineering, National Tsing Hua University and has received the Outstanding Research Award (National Science Council), Asia Research Award (Society of Chemical Engineers, Japan) and Professor Tsai-Teh Lai Award (Taiwan Institute of Chemical Engineers). He is also a fellow of the American Institute for Medical and Biological Engineering (AIMBE) and a member of the Tissue Engineering International & Regenerative Medicine Society (TERMIS)-Asia Pacific Council.

  11. Elemental and structural studies at the bone-cartilage interface

    Science.gov (United States)

    Bradley, D. A.; Kaabar, W.; Gundogdu, O.

    2012-02-01

    The techniques μProton-Induced X-and γ-ray Emission, μ-PIXE and μ-PIGE, were used to investigate trace and essential element distributions in sections of normal and osteoarthritic (OA) human femoral head. μ-PIGE yielded 2-D mappings of Na and F while Ca, Z, P and S were mapped by μ-PIXE. The concentration of chondroitin sulphate supporting functionality in healthy cartilage is significantly reduced in OA samples. Localised Zn points to osteoblastic/osteoclastic activity at the bone-cartilage interface. Small-angle X-ray scattering applied to decalcified OA-affected tissue showed spatial alterations of collagen fibres of decreased axial periodicity compared to normal collagen type I.

  12. Lessons from rare diseases of cartilage and bone.

    Science.gov (United States)

    Gallagher, James A; Ranganath, Lakshminarayan R; Boyde, Alan

    2015-06-01

    Studying severe phenotypes of rare syndromes can elucidate disease mechanisms of more common disorders and identify potential therapeutic targets. Lessons from rare bone diseases contributed to the development of the most successful class of bone active agents, the bisphosphonates. More recent research on rare bone diseases has helped elucidate key pathways and identify new targets in bone resorption and bone formation including cathepsin K and sclerostin, for which drugs are now in clinical trials. By contrast, there has been much less focus on rare cartilage diseases and osteoarthritis (OA) remains a common disease with no effective therapy. Investigation of rare cartilage syndromes is identifying new potential targets in OA including GDF5 and lubricin. Research on the arthropathy of the ultra-rare disease alkaptonuria has identified several new features of the OA phenotype, including high density mineralized protrusions (HDMPs) which constitute a newly identified mechanism of joint destruction.

  13. Isolation and Characterization of Chick Epiphyseal Cartilage Matrix Vesicle Proteolipid

    Science.gov (United States)

    1988-01-01

    associated with initial evidence of mineral formation in calcifying cartilage matrix. Under transmission electron microscopy these matrix vesicles...and Yamamoto, 1983; Morris et al., 1983); Anderson (1984) has NA 85 proposed a two stage theory for the mechanism of de novo mineral formation by...initial stages of mineral formation In the epiphyseal growth plate. Cell. Tissue Int., 217: 661-666. Bernard GW. 1972. Ultrastructural observations of

  14. Gellan gum : a new biomaterial for cartilage tissue engineering applications

    OpenAIRE

    2010-01-01

    Gellan gum is a polysaccharide manufactured by microbial fermentation of the Sphingomonas paucimobilis microorganism, being commonly used in the food and pharmaceutical industry. It can be dissolved in water, and when heated and mixed with mono or divalent cations, forms a gel upon lowering the temperature under mild conditions. In this work, gellan gum hydrogels were analyzed as cells supports in the context of cartilage regeneration. Gellan gum hydrogel discs were ch...

  15. Articular Cartilage Repair Through Muscle Cell-Based Tissue Engineering

    Science.gov (United States)

    2010-03-01

    fferentiation of s tem c ells is also an i mportant i ssue t o c onsider e specially f or t he persistence of the regenerate cartilage. Based on these...tap water for 10 minutes and counterstained with nuclear fast red. Differentiation of MDSCs into chondrocytes. Pellets in OCT blocks were sectioned and...into Alcian blue solution for 30 minutes. The slides were rinsed with running tap water for 10 minutes and counterstained with nuclear fast red

  16. Human sclera maintains common characteristics with cartilage throughout evolution.

    Directory of Open Access Journals (Sweden)

    Yuko Seko

    Full Text Available BACKGROUND: The sclera maintains and protects the eye ball, which receives visual inputs. Although the sclera does not contribute significantly to visual perception, scleral diseases such as refractory scleritis, scleral perforation and pathological myopia are considered incurable or difficult to cure. The aim of this study is to identify characteristics of the human sclera as one of the connective tissues derived from the neural crest and mesoderm. METHODOLOGY/PRINCIPAL FINDINGS: We have demonstrated microarray data of cultured human infant scleral cells. Hierarchical clustering was performed to group scleral cells and other mesenchymal cells into subcategories. Hierarchical clustering analysis showed similarity between scleral cells and auricular cartilage-derived cells. Cultured micromasses of scleral cells exposed to TGF-betas and BMP2 produced an abundant matrix. The expression of cartilage-associated genes, such as Indian hedge hog, type X collagen, and MMP13, was up-regulated within 3 weeks in vitro. These results suggest that human 'sclera'-derived cells can be considered chondrocytes when cultured ex vivo. CONCLUSIONS/SIGNIFICANCE: Our present study shows a chondrogenic potential of human sclera. Interestingly, the sclera of certain vertebrates, such as birds and fish, is composed of hyaline cartilage. Although the human sclera is not a cartilaginous tissue, the human sclera maintains chondrogenic potential throughout evolution. In addition, our findings directly explain an enigma that the sclera and the joint cartilage are common targets of inflammatory cells in rheumatic arthritis. The present global gene expression database will contribute to the clarification of the pathogenesis of developmental diseases such as high myopia.

  17. Formation of Hyaline Cartilage Tissue by Passaged Human Osteoarthritic Chondrocytes.

    Science.gov (United States)

    Bianchi, Vanessa J; Weber, Joanna F; Waldman, Stephen D; Backstein, David; Kandel, Rita A

    2017-02-01

    When serially passaged in standard monolayer culture to expand cell number, articular chondrocytes lose their phenotype. This results in the formation of fibrocartilage when they are used clinically, thus limiting their use for cartilage repair therapies. Identifying a way to redifferentiate these cells in vitro is critical if they are to be used successfully. Transforming growth factor beta (TGFβ) family members are known to be crucial for regulating differentiation of fetal limb mesenchymal cells and mesenchymal stromal cells to chondrocytes. As passaged chondrocytes acquire a progenitor-like phenotype, the hypothesis of this study was that TGFβ supplementation will stimulate chondrocyte redifferentiation in vitro in serum-free three-dimensional (3D) culture. Human articular chondrocytes were serially passaged twice (P2) in monolayer culture. P2 cells were then placed in high-density (3D) culture on top of membranes (Millipore) and cultured for up to 6 weeks in chemically defined serum-free redifferentiation media (SFRM) in the presence or absence of TGFβ. The tissues were evaluated histologically, biochemically, by immunohistochemical staining, and biomechanically. Passaged human chondrocytes cultured in SFRM supplemented with 10 ng/mL TGFβ3 consistently formed a continuous layer of articular-like cartilage tissue rich in collagen type 2 and aggrecan and lacking collagen type 1 and X in the absence of a scaffold. The tissue developed a superficial zone characterized by expression of lubricin and clusterin with horizontally aligned collagen fibers. This study suggests that passaged human chondrocytes can be used to bioengineer a continuous layer of articular cartilage-like tissue in vitro scaffold free. Further study is required to evaluate their ability to repair cartilage defects in vivo.

  18. Aging histological changes in the cartilages of the cricoarytenoid joint

    Directory of Open Access Journals (Sweden)

    Dedivitis Rogério Aparecido

    2004-01-01

    Full Text Available PURPOSE: Analysis of ossification, bone marrow formation, perichondrium thickness, muscle fibers, collagen fibers and elastic fibers quantities of cricoid and arytenoid cartilages. Design: Correlation morphologic study. METHODS: Twenty-four cricoarytenoid joints were obtained from Caucasian male fresh cadavers divided into three groups with eight specimens in each: group I - adolescents, from 15 to 20; group II - adults, from 25 to 35; and group III - elderly, from 60 to 75. The specimens were stained with H-E; trichrome; Picrosirius; and elastic stain. Histometry was performed for quantitative analysis. Bonferroni Test, Fisher Test and the Variance Analysis were used. RESULTS: At the microscopic analysis, the group I specimens presented typical hyaline cartilage, thin perichondrium, bulky muscle fibers and were surrounded by collagen fibers. In group II, there were ossification in small well defined central areas of four specimens, with lamellar bone tissue. In two of these cases there were central bone cavity full of fat tissue. The other parameters were similar to group I. In group III, most part of hyaline cartilage was replaced by typical lamellar bone tissue with poorly outlined haversian systems. Hematopoietic tissue was noted in six cases and fat tissue in the other two. Perichondrium was thicker. Small muscle fibers were smaller and surrounded by collagen in great quantity. Elastic fibers were present in small quantity in the outer portion of perichondrium in all the groups. CONCLUSIONS: In spite of its lack in adolescence, ossification occurs in cricoid and arytenoid cartilages during adulthood and intensifies with age; bone marrow is formed in ossification tissue with hematopoietic tissue in group III; perichondrium becomes thicker in group III; muscle tissue atrophies in group III and is replaced by collagen fibers; these fibers thicken with age; and elastic fibers is always present in the perichondrium in low quantity.

  19. Chondrocalcinosis of the hyaline cartilage of the knee: MRI manifestations

    Energy Technology Data Exchange (ETDEWEB)

    Beltran, J.; Marty-Delfaut, E.; Bencardino, J.; Rosenberg, Z.S. [Department of Radiology, Hospital for Joint Diseases, New York, NY (United States); Steiner, G. [Department of Pathology, Hospital for Joint Diseases, New York, NY (United States); Aparisi, F. [Department of Radiology, Residencia Sanitaria ``La Fe``, Valencia (Spain); Padron, M. [Clinica San Camilo, Madrid (Spain)

    1998-07-01

    Purpose. To determine the ability of MRI to detect the presence of crystals of calcium pyrophosphate in the articular cartilage of the knee. Design and patients. The MR studies of 12 knees (11 cases) were reviewed retrospectively and correlated with radiographs (12 cases) and the findings at arthroscopy (2 cases) and surgery (1 case). A total of 72 articular surfaces were evaluated. Radiographic, surgical or arthroscopic demonstration of chondrocalcinosis was used as the gold standard. Additionally, two fragments of the knee of a patient who underwent total knee replacement and demonstrated extensive chondrocalcinosis were studied with radiography and MRI using spin-echo T1-, T2- and proton-density-weighted images as well as two- and three-dimensional fat saturation (2D and 3D Fat Sat) gradient recalled echo (GRE) and STIR sequences. Results. MRI revealed multiple hypointense foci within the articular cartilage in 34 articular surfaces, better shown on 2D and 3D GRE sequences. Radiographs showed 12 articular surfaces with chondrocalcinosis. In three cases with arthroscopic or surgical correlation, MRI demonstrated more diffuse involvement of the articular cartilage than did the radiographs. The 3D Fat Sat GRE sequences were the best for demonstrating articular calcification in vitro. In no case was meniscal calcification identified with MRI. Hyperintense halos around some of the calcifications were seen on the MR images. Conclusion. MRI can depict articular cartilage calcification as hypointense foci using GRE techniques. Differential diagnosis includes loose bodies, post-surgical changes, marginal osteophytes and hemosiderin deposition. (orig.) With 4 figs., 14 refs.

  20. Striation patterns in serrated blade stabs to cartilage.

    Science.gov (United States)

    Pounder, Derrick J; Reeder, Francesca D

    2011-05-20

    Stab wounds were made in porcine cartilage with 13 serrated knives, amongst which 4 were drop-point and 9 straight-spine; 9 coarsely serrated, 3 finely serrated and 1 with mixed pattern serrations. The walls of the stab tracks were cast with dental impression material, and the casts photographed together with the knife blades for comparison. All 13 serrated blades produced an "irregularly regular" pattern of striations on cartilage in all stabbings. Unusual and distinctive blade serration patterns produced equally distinctive wound striation patterns. A reference collection of striation patterns and corresponding blades might prove useful for striation pattern analysis. Drop-point blades produced similar striations to straight-spine blades except that the striations were not parallel but rather fan-shaped, converging towards the wound exit. The fan-shaped striation pattern characteristic of drop-point blades is explained by the initial lateral movement of the blade through the cartilage imposed by the presence of the drop point shape. It appears that the greater the overall angle of the drop point, the shorter the blade length over which the drop point occurs, and the closer the first serration is to the knife tip, the more obvious is the fan-shaped pattern. We anticipate that micro-irregularities producing individualising characteristics in non-serrated drop point blades, provided they were located at the tip opposite the drop point, should also show a fan-shaped pattern indicative of a drop point blade. The examination of the walls of stab wounds to cartilage represents an under-utilised source of forensic information to assist in knife identification.

  1. Limitations and sources of bias in clinical knee cartilage research.

    Science.gov (United States)

    Worthen, Jamie; Waterman, Brian R; Davidson, Philip A; Lubowitz, James H

    2012-09-01

    The purpose of this study was to systematically review the limitations and biases inherent to surgical trials on the management of knee chondral defects. A literature search of PubMed/Medline, CINAHL (Cumulative Index to Nursing and Allied Health Literature), EMBASE, and the Cochrane Central Register of Controlled Trials was conducted in September 2010 and updated in August 2011 to identify all English-language, Level I evidence, prospective, randomized controlled trials published from 1996 to present. The keyword search included the following: "autologous chondrocyte," "cartilage graft," "cartilage repair," "chondroplasty," "microfracture," "mosaicplasty," and/or "osteochondral." Nonoperative studies, nonhuman studies, ex vivo studies, non-knee studies, and/or studies with follow-up of less than 1 year were excluded. A systematic review was performed on all included studies, and limitations and/or biases were identified and quantitated. Of 15,311 citations, 33 abstracts were reviewed and 11 prospective, randomized controlled trials were included. We identified 9 major limitations (subject age, subject prior surgery, subject duration of symptoms, lesion location, lesion size, lesion number, procedure selection, procedure standardization, and limited histologic analysis) and 7 common biases (selection, performance, transfer, nonresponder, detection, publication, and study design). Level I therapeutic studies investigating the surgical management of human knee cartilage defects have substantial identified biases and limitations. This review has limitations because other classifications of bias or limitation exist. Optimal management of cartilage defects is controversial, and future rigorous research methods could minimize common biases through strict study design and patient selection criteria, larger patient enrollment, more extended follow-up, and standardization of clinical treatment pathways. Level I, systematic review of Level I studies. Copyright © 2012

  2. Histological comparison of patellar cartilage degeneration between chondromalacia in youth and osteoarthritis in aging.

    Science.gov (United States)

    Mori, Y; Kubo, M; Okumo, H; Kuroki, Y

    1995-01-01

    The histological findings of the patellar cartilage were compared between cases of chondromalacia, which occurs predominantly in young persons (22 patients, average age 19.8 years) and cases of osteoarthritis, which is common among the elderly (21 patients, average age 65.4 years). The histological findings of cartilage in the chondromalacia were characterized by increased density and vigorous fibrous metaplasia of chondrocytes. These findings may be considered to represent a reactive change in the chondrocyte. Cartilage degeneration in osteoarthritis, by contrast, is regressive and presents a clearly different histological picture from that of chondromalacia patellae. We conclude that chondromalacia does not easily lead to osteoarthritis. On the other hand, the cartilage was characteristically softened, as observed by gross inspection, and showed rarefaction of the cartilage matrix. It should be noted that the change was not observed in aging, but showed a pattern of cartilage degeneration peculiar to young patients with chondromalacia patellae.

  3. Mechanical overloading causes mitochondrial superoxide and SOD2 imbalance in chondrocytes resulting in cartilage degeneration.

    Science.gov (United States)

    Koike, Masato; Nojiri, Hidetoshi; Ozawa, Yusuke; Watanabe, Kenji; Muramatsu, Yuta; Kaneko, Haruka; Morikawa, Daichi; Kobayashi, Keiji; Saita, Yoshitomo; Sasho, Takahisa; Shirasawa, Takuji; Yokote, Koutaro; Kaneko, Kazuo; Shimizu, Takahiko

    2015-06-25

    Mechanical stress and aging are major risk factors of cartilage degeneration. Human studies have previously reported that oxidative damage increased, while SOD2 protein was reciprocally downregulated in osteoarthritic degenerated cartilage. However, it remains unclear whether mitochondrial superoxide imbalance in chondrocytes causes cartilage degeneration. We herein demonstrate that mechanical loading promoted mitochondrial superoxide generation and selective Sod2 downregulation in chondrocytes in vivo and that mitochondrial superoxide inducer also downregulated Sod2 expression in chondrocytes in vitro. A genetically manipulated model revealed that Sod2 deficiency in chondrocytes also resulted in mitochondrial superoxide overproduction and dysfunction, thus leading to cartilage degeneration. Intra-articular injection of a permeable antioxidant effectively suppressed the mechanical loading-induced mitochondrial superoxide generation and cartilage degeneration in mice. Our findings demonstrate that mitochondrial superoxide plays a pivotal role in the development and progression of osteoarthritis, and the mitochondrial superoxide balance may therefore be a promising target for the treatment of cartilage degeneration.

  4. Age variations in the properties of human tibial trabecular bone and cartilage

    DEFF Research Database (Denmark)

    Ding, Ming

    2000-01-01

    ) to investigate the age-related and osteoarthrosis-related changes in the mechanical properties of the human tibial cartilage-bone complex; and 3) to evaluate mutual associations among various properties. Normal specimens from human autopsy proximal tibiae were used for investigation of age variations...... in the properties of trabecular bone and the cartilage-bone complex, and osteoarthrotic specimens were used for the investigation of changes in the mechanical properties of the cartilage-bone complex induced by this disease process. The mechanical properties and physical/compositional properties of trabecular bone...... is parallel to the longitudinal loading axis of the tibia. The mechanical properties of the normal cartilage and bone vary with age and respond simultaneously to mechanical loading. Both cartilage and bone in early-stage OA are mechanically inferior to normal, and OA cartilage and bone have lost their unit...

  5. [Current status of bone/cartilage tissue engineering towards clinical applications].

    Science.gov (United States)

    Ohgushi, Hajime

    2014-10-01

    Osteo/chondrogenic differentiation capabilities are seen after in vivo implantation of mesenchymal stem cells (MSCs), which are currently used for the patients having bone/cartilage defects. Importantly, the differentiation capabilities are induced by culturing technology, resulting in in vitro bone/cartilage formation. Especially, the in vitro bone tissue is useful for bone tissue regeneration. For cartilage regeneration, culture expanded chondrocytes derived from patient's normal cartilage are also used for the patients having cartilage damages. Recently, the cultured chondrocytes embedded in atelocollagen gel are obtainable as tissue engineered products distributed by Japan Tissue Engineering Co. Ltd. The products are available in the well-regulated hospitals by qualified orthopedic surgeons. The criteria for these hospitals/surgeons have been established. This review paper focuses on current status of bone/cartilage tissue engineering towards clinical applications in Japan.

  6. Mechanobiology of cartilage: how do internal and external stresses affect mechanochemical transduction and elastic energy storage?

    Science.gov (United States)

    Silver, Frederick H; Bradica, Gino

    2002-12-01

    Articular cartilage is a multilayered structure that lines the surfaces of all articulating joints. It contains cells, collagen fibrils, and proteoglycans with compositions that vary from the surface layer to the layer in contact with bone. It is composed of several zones that vary in structure, composition, and mechanical properties. In this paper we analyze the structure of the extracellular matrix found in articular cartilage in an effort to relate it to the ability of cartilage to store, transmit, and dissipate mechanical energy during locomotion. Energy storage and dissipation is related to possible mechanisms of mechanochemical transduction and to changes in cartilage structure and function that occur in osteoarthritis. In addition, we analyze how passive and active internal stresses affect mechanochemical transduction in cartilage, and how this may affect cartilage behavior in health and disease.

  7. Effect of Water Content on Enthalpic Relaxations in Porcine Septal Cartilage.

    Science.gov (United States)

    Chae, Y; Protsenko, D; Lavernia, E J; Wong, B J F

    2009-03-01

    Cartilage thermoforming is an emerging surgical technology which uses heat to accelerate stress relaxation in mechanically deformed tissue specimens. Heat induced shape change in cartilage is associated with complex thermo mechanical behavior of which the mechanisms are still a subject of debate. Differential scanning calorimetry (DSC) was used to characterize the threshold temperatures and enthalpies in cartilage as a function of water content. The DSC identified two enthalpic events in porcine nasal septal cartilage, which depend on the water content. The change in the water content of cartilage impacts the interactions between matrix macromolecules and water molecules, which may be associated with a bound-free water transformation (reversible process) and a denaturation of cartilage (irreversible process).

  8. Mechanical properties of the normal human cartilage-bone complex in relation to age

    DEFF Research Database (Denmark)

    Ding, Ming; Dalstra, M; Linde, F

    1998-01-01

    OBJECTIVE: This study investigates the age-related variations in the mechanical properties of the normal human tibial cartilage-bone complex and the relationships between cartilage and bone. DESIGN: A novel technique was applied to assess the mechanical properties of the cartilage and bone by means...... normal donors aged 16-83 years were tested in compression. The deformation was measured simultaneously in bone and cartilage to obtain the mechanical properties of both tissues. RESULTS: The stiffnesses and elastic energies of both cartilage and bone showed an initial increase, with maxima at 40 years......, followed by a steady decline. The viscoelastic energy was maximal at younger ages (16-29 years), followed by a steady decline. The energy absorption capacity did not vary with age. Stiffnesses and elastic energies were correlated significantly between cartilage and bone. CONCLUSIONS: The present study...

  9. A decreased subchondral trabecular bone tissue elastic modulus is associated with pre-arthritic cartilage damage

    DEFF Research Database (Denmark)

    Day, J; Ding, Ming; van der Linden, JC

    2001-01-01

    In osteoarthritis, one postulate is that changes in the mechanical properties of the subchondral bone layer result in cartilage damage. The goal of this study was to examine changes in subchondral trabecular bone properties at the calcified tissue level in the early stages of cartilage damage....... Finite element models were constructed from microCT scans of trabectilar bone from the proximal tibia of donors with mild cartilage damage and from normal donors. In the donors with cartilage damage, macroscopic damage was present only in the medial compartment. The effective tissue elastic moduli were...... determined using a combination of finite element models and mechanical testing. The bone tissue modulus was reduced by 60% in the medial condyle of the cases with cartilage damage compared to the control specimens. Neither the presence of cartilage damage nor the anatomic site (medial vs. lateral) affected...

  10. Radiocarbon dating reveals minimal collagen turnover in both healthy and osteoarthritic human cartilage

    DEFF Research Database (Denmark)

    Heinemeier, Katja M.; Schjerling, Peter; Heinemeier, Jan

    2016-01-01

    The poor regenerative capacity of articular cartilage presents a major clinical challenge and may relate to a limited turnover of the cartilage collagen matrix. However, the collagen turnover rate during life is not clear, and it is debated whether osteoarthritis (OA) can influence it. Using...... the carbon-14 ((14)C) bomb-pulse method, life-long replacement rates of collagen were measured in tibial plateau cartilage from 23 persons born between 1935 and1997 (15 and 8 persons with OA and healthy cartilage, respectively). The (14)C levels observed in cartilage collagen showed that, virtually......, no replacement of the collagen matrix happened after skeletal maturity and that neither OA nor tissue damage, per se, influenced collagen turnover. Regional differences in (14)C content across the joint surface showed that cartilage collagen located centrally on the joint surface is formed several years earlier...

  11. Applications of Chondrocyte-Based Cartilage Engineering: An Overview

    Directory of Open Access Journals (Sweden)

    Abdul-Rehman Phull

    2016-01-01

    Full Text Available Chondrocytes are the exclusive cells residing in cartilage and maintain the functionality of cartilage tissue. Series of biocomponents such as different growth factors, cytokines, and transcriptional factors regulate the mesenchymal stem cells (MSCs differentiation to chondrocytes. The number of chondrocytes and dedifferentiation are the key limitations in subsequent clinical application of the chondrocytes. Different culture methods are being developed to overcome such issues. Using tissue engineering and cell based approaches, chondrocytes offer prominent therapeutic option specifically in orthopedics for cartilage repair and to treat ailments such as tracheal defects, facial reconstruction, and urinary incontinence. Matrix-assisted autologous chondrocyte transplantation/implantation is an improved version of traditional autologous chondrocyte transplantation (ACT method. An increasing number of studies show the clinical significance of this technique for the chondral lesions treatment. Literature survey was carried out to address clinical and functional findings by using various ACT procedures. The current study was conducted to study the pharmacological significance and biomedical application of chondrocytes. Furthermore, it is inferred from the present study that long term follow-up studies are required to evaluate the potential of these methods and specific positive outcomes.

  12. PTHrP regulates chondrocyte maturation in condylar cartilage.

    Science.gov (United States)

    Rabie, A B M; Tang, G H; Xiong, H; Hägg, U

    2003-08-01

    PTHrP is a key factor regulating the pace of endochondral ossification during skeletal development. Mandibular advancement solicits a cascade of molecular responses in condylar cartilage. However, the pace of cellular maturation and its effects on condylar growth are still unknown. The purpose of this study was to evaluate the pattern of expression of PTHrP and correlate it to cellular dynamics of chondrocytes in condylar cartilage during natural growth and mandibular advancement. We fitted 35-day-old Sprague-Dawley rats with functional appliances. Experimental animals with matched controls were labeled with bromodeoxyuridine 3 days before their death, so that mesenchymal cell differentiation could be traced. Mandibular advancement increased the number of differentiated chondroblasts and subsequently increased the cartilage volume. Higher levels of PTHrP expression in experimental animals coincided with the slowing of chondrocyte hypertrophy. Thus, mandibular advancement promoted mesenchymal cell differentiation and triggered PTHrP expression, which retarded their further maturation to allow for more growth.

  13. Applications of Chondrocyte-Based Cartilage Engineering: An Overview

    Science.gov (United States)

    Eo, Seong-Hui; Abbas, Qamar; Ahmed, Madiha

    2016-01-01

    Chondrocytes are the exclusive cells residing in cartilage and maintain the functionality of cartilage tissue. Series of biocomponents such as different growth factors, cytokines, and transcriptional factors regulate the mesenchymal stem cells (MSCs) differentiation to chondrocytes. The number of chondrocytes and dedifferentiation are the key limitations in subsequent clinical application of the chondrocytes. Different culture methods are being developed to overcome such issues. Using tissue engineering and cell based approaches, chondrocytes offer prominent therapeutic option specifically in orthopedics for cartilage repair and to treat ailments such as tracheal defects, facial reconstruction, and urinary incontinence. Matrix-assisted autologous chondrocyte transplantation/implantation is an improved version of traditional autologous chondrocyte transplantation (ACT) method. An increasing number of studies show the clinical significance of this technique for the chondral lesions treatment. Literature survey was carried out to address clinical and functional findings by using various ACT procedures. The current study was conducted to study the pharmacological significance and biomedical application of chondrocytes. Furthermore, it is inferred from the present study that long term follow-up studies are required to evaluate the potential of these methods and specific positive outcomes. PMID:27631002

  14. Cartilage-like electrostatic stiffening of responsive cryogel scaffolds

    Science.gov (United States)

    Offeddu, G. S.; Mela, I.; Jeggle, P.; Henderson, R. M.; Smoukov, S. K.; Oyen, M. L.

    2017-02-01

    Cartilage is a structural tissue with unique mechanical properties deriving from its electrically-charged porous structure. Traditional three-dimensional environments for the culture of cells fail to display the complex physical response displayed by the natural tissue. In this work, the reproduction of the charged environment found in cartilage is achieved using polyelectrolyte hydrogels based on polyvinyl alcohol and polyacrylic acid. The mechanical response and morphology of microporous physically-crosslinked cryogels are compared to those of heat-treated chemical gels made from the same polymers, as a result of pH-dependent swelling. In contrast to the heat-treated chemically-crosslinked gels, the elastic modulus of the physical cryogels was found to increase with charge activation and swelling, explained by the occurrence of electrostatic stiffening of the polymer chains at large charge densities. At the same time, the permeability of both materials to fluid flow was impaired by the presence of electric charges. This cartilage-like mechanical behavior displayed by responsive cryogels can be reproduced in other polyelectrolyte hydrogel systems to fabricate biomimetic cellular scaffolds for the repair of the tissue.

  15. 308-nm excimer laser ablation of human cartilage

    Science.gov (United States)

    Prodoehl, John A.; Rhodes, Anthony L.; Meller, Menachem M.; Sherk, Henry H.

    1993-07-01

    The XeCl excimer laser was investigated as an ablating tool for human fibrocartilage and hyaline cartilage. Quantitative measurements were made of tissue ablation rates as a function of fluence in meniscal fibrocartilage and articular hyaline cartilage. A force of 1.47 Newtons was applied to an 800 micrometers fiber with the laser delivering a range of fluences (40 to 190 mj/mm2) firing at a frequency of 5 Hz. To assess the effect of repetition rate on ablation rate, a set of measurements was made at a constant fluence of 60 mj/mm2, with the repetition rate varying from 10 to 40 Hz. Histologic and morphometric analysis was performed using light microscopy. The results of these studies revealed that the ablation rate was directly proportional to fluence over the range tested. Fibrocartilage was ablated at a rate 2.56 times faster than hyaline cartilage at the maximum fluence tested. Repetition rate had no effect on the penetration per pulse. Adjacent tissue damage was noted to be minimal (10 - 70 micrometers ).

  16. Insights from amphioxus into the evolution of vertebrate cartilage.

    Directory of Open Access Journals (Sweden)

    Daniel Meulemans

    Full Text Available Central to the story of vertebrate evolution is the origin of the vertebrate head, a problem difficult to approach using paleontology and comparative morphology due to a lack of unambiguous intermediate forms. Embryologically, much of the vertebrate head is derived from two ectodermal tissues, the neural crest and cranial placodes. Recent work in protochordates suggests the first chordates possessed migratory neural tube cells with some features of neural crest cells. However, it is unclear how and when these cells acquired the ability to form cellular cartilage, a cell type unique to vertebrates. It has been variously proposed that the neural crest acquired chondrogenic ability by recruiting proto-chondrogenic gene programs deployed in the neural tube, pharynx, and notochord. To test these hypotheses we examined the expression of 11 amphioxus orthologs of genes involved in neural crest chondrogenesis. Consistent with cellular cartilage as a vertebrate novelty, we find that no single amphioxus tissue co-expresses all or most of these genes. However, most are variously co-expressed in mesodermal derivatives. Our results suggest that neural crest-derived cartilage evolved by serial cooption of genes which functioned primitively in mesoderm.

  17. Biomechanical and biochemical characterization of porcine tracheal cartilage.

    Science.gov (United States)

    Hoffman, Benjamin; Martin, Matthew; Brown, Bryan N; Bonassar, Lawrence J; Cheetham, Jonathan

    2016-10-01

    The trachea is essential to respiratory function and is a mechanically and biochemically complex composite tissue. Tissue-engineering approaches to treat tracheal diseases require detailed knowledge of the native mechanical and biochemical properties of the trachea. Although the porcine trachea represents an excellent preclinical model, relevant mechanical and biochemical composition are incompletely characterized. Experimental. The mechanical and biochemical properties of 12 intact porcine tracheas were determined to characterize their compliance, as well as the aggregate modulus, bidirectional elastic modulus, hydraulic permeability, and biochemical characteristics of individual cartilage rings. Data demonstrate the glycosaminoglycan content of tracheal rings was (mean ± standard deviation) 190 ± 49 μg/mg. Hydroxyproline content was 8.2 ± 3.2 μg/mg, and DNA content was 1.3 ± 0.27 μg/mg, a four-fold difference between circumferential elastic modulus (5.6 ± 2.0 megapascal [MPa]) and longitudinal composite elastic modulus (1.1 ± 0.7 MPa, P biochemical and mechanical properties of porcine tracheal cartilage, which is considered an excellent candidate for xenogenic tracheal graft and a source for tissue-engineered tracheal reconstruction. The range of parameters characterized in this study agrees with those reported for hyaline cartilage of the airway in other species. These characteristics can be used as quantitative benchmarks for tissue-engineering approaches to treat tracheal disease. NA. Laryngoscope, 126:E325-E331, 2016. © 2015 The American Laryngological, Rhinological and Otological Society, Inc.

  18. Class characteristics of serrated knife stabs to cartilage.

    Science.gov (United States)

    Pounder, Derrick J; Cormack, Lesley; Broadbent, Elizabeth; Millar, John

    2011-06-01

    A total of 136 stab wounds were made in cartilage with 8 serrated knives and 72 stabs with 4 nonserrated knives. The walls of the stab track were documented by photography, cast with dental impression material, and the casts photographed. Staining the translucent cartilage surface with blue or green food dye improved photography. Serrated blades produced striations on cartilage in all stabbings. Patterns of blade serration beyond the broad categories of coarse and fine were recognizable. The overall pattern of striations was "irregularly regular." The distance between the blade-spine wound end and the first serration striation is a class characteristic of the knife which produced the defect, as are distances to the subsequent serration striations, which become ever close together and eventually merge near the blade-edge wound end. Serrated knives may be ground (scalloped) on either the left side or the right side of the blade and this class characteristic is identifiable from the walls of the wound track, on which the scalloped blade surface produces broad ridges and narrow striation valleys, with a reverse image on the opposing wound wall. A drop point serrated blade consistently produced an additional oblique mark angled from the blade-spine wound end, accurately reflecting the shape of the blade tip, and representing a chatter mark.

  19. Ultrasonic quantitation of superficial degradation of articular cartilage.

    Science.gov (United States)

    Saarakkala, Simo; Töyräs, Juha; Hirvonen, Jani; Laasanen, Mikko S; Lappalainen, Reijo; Jurvelin, Jukka S

    2004-06-01

    Ultrasound (US) has been suggested as a means for the quantitative detection of early osteoarthrotic changes in articular cartilage. In this study, the ability of quantitative US 2-D imaging (20 MHz) to reveal superficial changes in bovine articular cartilage after mechanical or enzymatic degradation was investigated in vitro. Mechanical degradation was induced by grinding samples against an emery paper with the grain size of 250 microm, 106 microm, 45 microm or 23 microm. For enzymatic degradation, samples were digested with collagenase, trypsin or chondroitinase ABC. Variations of the US reflection coefficient induced by the degradation were investigated. Furthermore, two novel parameters, the US roughness index (URI) and the spatial variation of the US reflection coefficient (SVR), were established to quantitate the integrity of the cartilage surface. Statistically significant decreases (p < 0.05) in US reflection coefficient were observed after mechanical degradations or enzymatic digestion with collagenase. Increases (p < 0.05) in URI were also revealed after these treatments. We conclude that quantitative US imaging may be used to detect collagen disruption and increased roughness in the articular surface. These structural damages are typical of early osteoarthrosis.

  20. Elemental and structural studies at the bone-cartilage interface

    Energy Technology Data Exchange (ETDEWEB)

    Kaabar, W., E-mail: w.kaabar@surrey.ac.uk [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); Daar, E. [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); Bunk, O. [Swiss Light Source, Paul Scherrer Institute, 5232 Villigen (Switzerland); Farquharson, M.J. [Department of Medical Physics and Applied Radiation Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1 (Canada); Laklouk, A. [Al-Fateh University, Tripoli (Libya); Bailey, M.; Jeynes, C. [Surrey Ion Beam Centre, University of Surrey, Guildford GU2 7XH (United Kingdom); Gundogdu, O. [Umuttepe Campus, University of Kocaeli, 41380 Kocaeli (Turkey); Bradley, D.A. [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom)

    2011-10-01

    Micro-Proton Induced X-ray Emission ({mu}-PIXE) and Proton Induced Gamma-ray Emission (PIGE) techniques were employed in the investigation of trace and essential elements distribution in normal and diseased human femoral head sections affected by osteoarthritis (OA). PIGE was exploited in the determination of elements of low atomic number z<15 such as Na and F whereas elements with z>15 viz Ca, Z, P and S were determined by PIXE. Accumulations of key elements in the bone and cartilage sections were observed, significant S and Na concentrations being found in the cartilage region particularly in normal tissues. Zn showed enhanced concentrations at the bone-cartilage interface. At a synchrotron facility, small angle X-ray scattering (SAXS) was utilized on a decalcified human femoral head section affected by OA, direct measurements being made of spatial alterations of collagen fibres. The SAXS results showed a slight decrease in the axial periodicity between normal collagen type I and that in diseased tissue in various sites, in contrast with the findings of others.

  1. Tribology approach to the engineering and study of articular cartilage.

    Science.gov (United States)

    Wimmer, Markus A; Grad, Sibylle; Kaup, Thomas; Hänni, Markus; Schneider, Erich; Gogolewski, Sylwester; Alini, Mauro

    2004-01-01

    This study has been based on the assumption that articular motion is an important aspect of mechanotransduction in synovial joints. For this reason a new bioreactor concept, able to reproduce joint kinematics more closely, has been designed. The prototype consists of a rotating scaffold and/or cartilage pin, which is pressed onto an orthogonally rotating ball. By oscillating pin and ball in phase difference, elliptical displacement trajectories are generated that are similar to the motion paths occurring in vivo. Simultaneously, dynamic compression may be applied with a linear actuator, while two-step-motors generate the rotation of pin and ball. The whole apparatus is placed in an incubator. The control station is located outside. Preliminary investigations at the gene expression level demonstrated promising results. Compared with free-swelling control and/or simply compression-loaded samples, chondrocyte-seeded scaffolds as well as nasal cartilage explants exposed to interface motion both showed elevated levels of cartilage oligomeric matrix protein mRNA. The final design of the bioreactor will include four individual stations in line, which will facilitate the investigation of motion-initiated effects at the contacting surfaces in more detail.

  2. Development of Atomic Force Microscope for Arthroscopic Knee Cartilage Inspection

    Science.gov (United States)

    Imer, Raphaël; Akiyama, Terunobu; de Rooij, Nicolaas F.; Stolz, Martin; Aebi, Ueli; Friederich, Niklaus F.; Koenig, Uwe; Wirz, Dieter; Daniels, A. U.; Staufer, Urs

    2006-03-01

    A recent study, based on ex vivo unconfined compression testing of normal, diseased, and enzymatically altered cartilage, revealed that a scanning force microscope (SFM), used as a nano-intender, is sensitive enough to enable measurement of alterations in the biomechanical properties of cartilage. Based on these ex vivo measurements, we have designed a quantitative diagnosis tool, the scanning force arthroscope (SFA), able to perform in vivo measurements during a standard arthroscopic procedure. For stabilizing and positioning the instrument relative to the surface under investigation, a pneumatic system has been developed. A segmented piezoelectric tube was used to perform the indentation displacement, and a pyramidal nanometer-scale silicon tip mounted on a cantilever with an integrated deflection sensor measured the biomechanical properties of cartilage. Mechanical means were designed to protect the fragile cantilever during the insertion of the instrument into the knee joint. The stability of the pneumatic stage was checked with a prototype SFA. In a series of tests, load-displacement curves were recorded in a knee phantom and, more recently, in a pig’s leg.

  3. Identification and clonal characterisation of a progenitor cell sub-population in normal human articular cartilage.

    Directory of Open Access Journals (Sweden)

    Rebecca Williams

    Full Text Available BACKGROUND: Articular cartilage displays a poor repair capacity. The aim of cell-based therapies for cartilage defects is to repair damaged joint surfaces with a functional replacement tissue. Currently, chondrocytes removed from a healthy region of the cartilage are used but they are unable to retain their phenotype in expanded culture. The resulting repair tissue is fibrocartilaginous rather than hyaline, potentially compromising long-term repair. Mesenchymal stem cells, particularly bone marrow stromal cells (BMSC, are of interest for cartilage repair due to their inherent replicative potential. However, chondrocyte differentiated BMSCs display an endochondral phenotype, that is, can terminally differentiate and form a calcified matrix, leading to failure in long-term defect repair. Here, we investigate the isolation and characterisation of a human cartilage progenitor population that is resident within permanent adult articular cartilage. METHODS AND FINDINGS: Human articular cartilage samples were digested and clonal populations isolated using a differential adhesion assay to fibronectin. Clonal cell lines were expanded in growth media to high population doublings and karyotype analysis performed. We present data to show that this cell population demonstrates a restricted differential potential during chondrogenic induction in a 3D pellet culture system. Furthermore, evidence of high telomerase activity and maintenance of telomere length, characteristic of a mesenchymal stem cell population, were observed in this clonal cell population. Lastly, as proof of principle, we carried out a pilot repair study in a goat in vivo model demonstrating the ability of goat cartilage progenitors to form a cartilage-like repair tissue in a chondral defect. CONCLUSIONS: In conclusion, we propose that we have identified and characterised a novel cartilage progenitor population resident in human articular cartilage which will greatly benefit future cell

  4. T(2) relaxation time of hyaline cartilage in presence of different gadolinium-based contrast agents.

    Science.gov (United States)

    Wiener, Edzard; Settles, Marcus; Diederichs, Gerd

    2010-01-01

    The transverse relaxation time, T(2), of native cartilage is used to quantify cartilage degradation. T(2) is frequently measured after contrast administration, assuming that the impact of gadolinium-based contrast agents on cartilage T(2) is negligible. To verify this assumption the depth-dependent variation of T(2) in the presence of gadopentetate dimeglumine, gadobenate dimeglumine and gadoteridol was investigated. Furthermore, the r(2)/r(1) relaxivity ratios were quantified in different cartilage layers to demonstrate differences between T(2) and T(1) relaxation effects. Transverse high-spatial-resolution T(1)- and T(2)-maps were simultaneously acquired on a 1.5 T MR scanner before and after contrast administration in nine bovine patellae using a turbo-mixed sequence. The r(2)/r(1) ratios were calculated for each contrast agent in cartilage. Profiles of T(1), T(2) and r(2)/r(1) across cartilage thickness were generated in the absence and presence of contrast agent. The mean values in different cartilage layers were compared for global variance using the Kruskal-Wallis test and pairwise using the Mann-Whitney U-test. T(2) of unenhanced cartilage was 98 +/- 5 ms at 1 mm and 65 +/- 4 ms at 3 mm depth. Eleven hours after contrast administration significant differences (p cartilage thickness were close to 1.0 (range 0.9-1.3). At 1.5 T, T(2) decreased significantly in the presence of contrast agents, more pronounced in superficial than in deep cartilage. The change in T(2) relaxation rate was similar to the change in T(1). Cartilage T(2) measurements after contrast administration will lead to systematic errors in the quantification of cartilage degradation. 2010 John Wiley & Sons, Ltd.

  5. In Vivo Dynamic Deformation of Articular Cartilage in Intact Joints Loaded by Controlled Muscular Contractions

    OpenAIRE

    2016-01-01

    When synovial joints are loaded, the articular cartilage and the cells residing in it deform. Cartilage deformation has been related to structural tissue damage, and cell deformation has been associated with cell signalling and corresponding anabolic and catabolic responses. Despite the acknowledged importance of cartilage and cell deformation, there are no dynamic data on these measures from joints of live animals using muscular load application. Research in this area has typically been done...

  6. Clinical Features and Management of Cartilage-Hair Hypoplasia: A Narrative Review

    OpenAIRE

    Kobra Shiasi Arani

    2015-01-01

    Context: Cartilage-hair hypoplasia is a rare hereditary cause of short stature. The aim of this study was to familiarize physicians with this rare but important disease. Evidence Acquisition: This article is a narrative review of the scientific literature to inform about clinical features and management of Cartilage-hair hypoplasia. A systematic search identified 127 papers include original and review articles and case reports. Results: Cartilage-Hair Hypoplasia characterized by short...

  7. [Biological Role of Oligomerny Matriksny of Protein of the Cartilage in Exchange Processes Connecting Tissue].

    Science.gov (United States)

    Belova, Yu S

    2015-01-01

    In the review the literary data on studying of biological role of a oligomerny matriksny of protein of the cartilage in exchange processes connecting tissue at people and animals are provided, and also results of own researches on definition of a oligomerny matriksny of protein of the cartilage as a modern marker of a metabolism of an articulate cartilage at children from undifferentiated displaziy conjunctive tissue are briefly described.

  8. The Effects of Extracellular Matrix on Tissue Engineering Construction of Cartilage in Vitro

    Institute of Scientific and Technical Information of China (English)

    YU Li; LI Fa-tao; TANG Ming-qiao; YAN Wei-qun

    2006-01-01

    The effects of various cartilage extracellular matrix on the construction of rabbit growth plate cartilage tissue in vitro were studied. The results show that collagen, proteoglycan and hyaluronic acid can promote the growth of cultured chondrocytes but the effects of various cartilage extracellular matrix(ECM)on chondrocyte differentiation are different. Collagen can promote the hypertrophy of chondrocytes while proteoglycan and hyaluronic acid inhibit the transition of mature chondrocytes into hypertrophied chondrocytes.

  9. A closed-form solution of the three-dimensional contact problem for biphasic cartilage layers

    CERN Document Server

    Argatov, I I

    2010-01-01

    A three-dimensional unilateral contact problem for articular cartilage layers is considered in the framework of the biphasic cartilage model. The articular cartilages bonded to subchondral bones are modeled as biphasic materials consisting of a solid phase and a fluid phase. It is assumed that the subchondral bones are rigid and shaped like elliptic paraboloids. The obtained analytical solution is valid over long time periods and can be used for increasing loading conditions.

  10. Evaluation of Constant Thickness Cartilage Models vs. Patient Specific Cartilage Models for an Optimized Computer-Assisted Planning of Periacetabular Osteotomy.

    Directory of Open Access Journals (Sweden)

    Li Liu

    Full Text Available Modern computerized planning tools for periacetabular osteotomy (PAO use either morphology-based or biomechanics-based methods. The latter relies on estimation of peak contact pressures and contact areas using either patient specific or constant thickness cartilage models. We performed a finite element analysis investigating the optimal reorientation of the acetabulum in PAO surgery based on simulated joint contact pressures and contact areas using patient specific cartilage model. Furthermore we investigated the influences of using patient specific cartilage model or constant thickness cartilage model on the biomechanical simulation results. Ten specimens with hip dysplasia were used in this study. Image data were available from CT arthrography studies. Bone models were reconstructed. Mesh models for the patient specific cartilage were defined and subsequently loaded under previously reported boundary and loading conditions. Peak contact pressures and contact areas were estimated in the original position. Afterwards we used a validated preoperative planning software to change the acetabular inclination by an increment of 5° and measured the lateral center edge angle (LCE at each reorientation position. The position with the largest contact area and the lowest peak contact pressure was defined as the optimal position. In order to investigate the influence of using patient specific cartilage model or constant thickness cartilage model on the biomechanical simulation results, the same procedure was repeated with the same bone models but with a cartilage mesh of constant thickness. Comparison of the peak contact pressures and the contact areas between these two different cartilage models showed that good correlation between these two cartilage models for peak contact pressures (r = 0.634 ∈ [0.6, 0.8], p 0.8, p < 0.001. For both cartilage models, the largest contact areas and the lowest peak pressures were found at the same position. Our study is

  11. Timpanoplastia com plugue de cartilagem na infância Plug cartilage tympanoplasty in children

    Directory of Open Access Journals (Sweden)

    José Arruda Mendes Neto

    2008-12-01

    Full Text Available O tratamento das perfurações da membrana timpânica na população pediátrica com seqüelas de Otite Média Crônica representa um desafio ao Otorrinolaringologista. OBJETIVO: Avaliar os resultados clínicos e audiométricos da técnica "inlay" com colocação de plugue de cartilagem do trago. MATERIAL E MÉTODOS: Foram analisados 23 pacientes (idade 1-15 anos submetidos à timpanoplastia com plugue. FORMA DE ESTUDO: Clínico retrospectivo. RESULTADOS: A taxa de sucesso de fechamento foi de 82,6%, com melhora dos parâmetros audiométricos em 87,5% dos pacientes. As complicações foram mínimas. CONCLUSÃO: Em face dos resultados obtidos, este método de timpanoplastia deve ser considerado uma boa opção para o tratamento das perfurações da membrana timpânica na infância.The treatment of tympanic membrane perforations in the pediatric population with sequelae of chronic otitis media represents a challenge to otolaryngologists. AIM: to assess the clinical and audiometric results of the inlay technique with a tragus cartilage plug. MATERIALS AND METHODS: we assessed 23 patients (ages between 1 and 15 years who underwent plug tympanoplasty. Study design: clinical retrospective. RESULTS: repair success rate was of 82.6%, with audiometric parameters improvement in 87.5% of the patients. Complications were minimum. CONCLUSION: considering the results attained, this method of tympanoplasty should be considered a good treatment option for tympanic membrane perforation in children.

  12. Nanoassemblies of Tissue-Reactive, Polyoxazoline Graft-Copolymers Restore the Lubrication Properties of Degraded Cartilage.

    Science.gov (United States)

    Morgese, Giulia; Cavalli, Emma; Müller, Mischa; Zenobi-Wong, Marcy; Benetti, Edmondo M

    2017-03-13

    Osteoarthritis leads to an alteration in the composition of the synovial fluid, which is associated with an increase in friction and the progressive and irreversible destruction of the articular cartilage. In order to tackle this degenerative disease, there has been a growing interest in the medical field to establish effective, long-term treatments to restore cartilage lubrication after damage. Here we develop a series of graft-copolymers capable of assembling selectively on the degraded cartilage, resurfacing it, and restoring the lubricating properties of the native tissue. These comprise a polyglutamic acid backbone (PGA) coupled to brush-forming, poly-2-methyl-2-oxazoline (PMOXA) side chains, which provide biopassivity and lubricity to the surface, and to aldehyde-bearing tissue-reactive groups, for the anchoring on the degenerated cartilage via Schiff bases. Optimization of the graft-copolymer architecture (i.e., density and length of side chains and amount of tissue-reactive functions) allowed a uniform passivation of the degraded cartilage surface. Graft-copolymer-treated cartilage showed very low coefficients of friction within synovial fluid, reestablishing and in some cases improving the lubricating properties of the natural cartilage. Due to these distinctive properties and their high biocompatibility and stability under physiological conditions, cartilage-reactive graft-copolymers emerge as promising injectable formulations to slow down the progression of cartilage degradation, which characterizes the early stages of osteoarthritis.

  13. A novel in vivo model for the study of cartilage degradation.

    Science.gov (United States)

    Bishop, J; Greenham, A K; Lewis, E J

    1993-09-01

    Methods of quantifying cartilage destruction are described using a sponge/cartilage implant model in the rat. A cylinder of bovine nasal cartilage was positioned in the center of a sponge which had been pretreated with an irritant. The sponge/cartilages were then implanted subcutaneously into the backs of rats for periods of up to 16 days. The implanted sponges were rapidly surrounded by granulation tissue, maximal on day 2, and infiltrated by inflammatory cells which reached peak levels on day 9. Analysis of the cartilage shows an initial increase in wet weight and rapid loss of glycosaminoglycans. These changes were later followed by loss of cartilage wet weight and significant loss of hydroxyproline content. In a separate study, the effects of Mycobacterium tuberculosis (Mtb), kaolin, and zymosan were compared (1 mg/sponge) and the results showed that only Mtb induced pronounced inflammation and degradation of cartilage. The cartilage degradation directly correlated with the granulation tissue weight, but not with cellular infiltration. We believe that this simple, reproducible in vivo model could be used to elucidate the mechanisms involved in the destructive process and evaluate the efficacy of inhibitors of cartilage degradation.

  14. Cartilage tissue engineering: From biomaterials and stem cells to osteoarthritis treatments.

    Science.gov (United States)

    Vinatier, C; Guicheux, J

    2016-06-01

    Articular cartilage is a non-vascularized and poorly cellularized connective tissue that is frequently damaged as a result of trauma and degenerative joint diseases such as osteoarthrtis. Because of the absence of vascularization, articular cartilage has low capacity for spontaneous repair. Today, and despite a large number of preclinical data, no therapy capable of restoring the healthy structure and function of damaged articular cartilage is clinically available. Tissue-engineering strategies involving the combination of cells, scaffolding biomaterials and bioactive agents have been of interest notably for the repair of damaged articular cartilage. During the last 30 years, cartilage tissue engineering has evolved from the treatment of focal lesions of articular cartilage to the development of strategies targeting the osteoarthritis process. In this review, we focus on the different aspects of tissue engineering applied to cartilage engineering. We first discuss cells, biomaterials and biological or environmental factors instrumental to the development of cartilage tissue engineering, then review the potential development of cartilage engineering strategies targeting new emerging pathogenic mechanisms of osteoarthritis.

  15. Monitoring of Biological Changes in Electromechanical Reshaping of Cartilage Using Imaging Modalities

    Directory of Open Access Journals (Sweden)

    Seok Jin Hong

    2016-01-01

    Full Text Available Electromechanical reshaping (EMR is a promising surgical technique used to reshape cartilage by direct current and mechanical deformation. It causes local stress relaxation and permanent alterations in the shape of cartilage. The major advantages of EMR are its minimally invasive nature and nonthermal electrochemical mechanism of action. The purpose of this study is to validate that EMR does not cause thermal damage and to observe structural changes in post-EMR cartilage using several imaging modalities. Three imaging modality metrics were used to validate the performance of EMR by identifying structural deformation during cartilage reshaping: infrared thermography was used to sense the temperature of the flat cartilages (16.7°C at 6 V, optical coherence tomography (OCT was used to examine the change in the cartilage by gauging deformation in the tissue matrix during EMR, and scanning electron microscopy (SEM was used to show that EMR-treated cartilage is irregularly arranged and the thickness of collagen fibers varies, which affects the change in shape of the cartilage. In conclusion, the three imaging modalities reveal the nonthermal and electromechanical mechanisms of EMR and demonstrate that use of an EMR device is feasible for reshaping cartilage in a minimally invasive manner.

  16. [Microdurimetric and biochemical study of human articular cartilage. Comparison of different joints].

    Science.gov (United States)

    Vignon, E; Arlot, M; Hartman, D; Noyer, D

    1980-12-01

    The micro-hardness and the density of fixed negative charges in cartilage of the shoulders, hips and knees of 6 subjects were studied. These two parameters were narrowly correlated. The resistance and proteoglycan concentration of the cartilage of the femoral head were greater than those of the knee and of the shoulder. They did not vary on each side. There is a significant correlation between the hardness of the cartilage of the femoral head and of the external femoral condyle. The histologically normal cartilage of the femoral head in arthrosis is at the lower limit of control values for hardness.

  17. Changes in the tangent modulus of rabbit septal and auricular cartilage following electromechanical reshaping.

    Science.gov (United States)

    Lim, Amanda; Protsenko, Dmitry E; Wong, Brian J F

    2011-09-01

    Transforming decades' old methodology, electromechanical reshaping (EMR) may someday replace traditionally destructive surgical techniques with a less invasive means of cartilage reshaping for reconstructive and esthetic facial surgery. Electromechanical reshaping is essentially accomplished through the application of voltage to a mechanically deformed cartilage specimen. While the capacity of the method for effective reshaping has been consistently shown, its associated effects on cartilage mechanical properties are not fully comprehended. To begin to explore the mechanical effect of EMR on cartilage, the tangent moduli of EMR-treated rabbit septal and auricular cartilage were calculated and compared to matched control values. Between the two main EMR parameters, voltage and application time, the former was varied from 2-8 V and the latter held constant at 2 min for septal cartilage, 3 min for auricular cartilage. Flat platinum electrodes were used to apply voltage, maintaining the flatness of the specimens for more precise mechanical testing through a uniaxial tension test of constant strain rate 0.01 mm/s. Above 2 V, both septal and auricular cartilage demonstrated a slight reduction in stiffness, quantified by the tangent modulus. A thermal effect was observed above 5 V, a newly identified EMR application threshold to avoid the dangers associated with thermoforming cartilage. Optimizing EMR application parameters and understanding various side effects bridge the gap between EMR laboratory research and clinical use, and the knowledge acquired through this mechanical study may be one additional support for that bridge.

  18. Development and characterization of decellularized human nasoseptal cartilage matrix for use in tissue engineering.

    Science.gov (United States)

    Graham, M Elise; Gratzer, Paul F; Bezuhly, Michael; Hong, Paul

    2016-10-01

    Reconstruction of cartilage defects in the head and neck can require harvesting of autologous cartilage grafts, which can be associated with donor site morbidity. To overcome this limitation, tissue-engineering approaches may be used to generate cartilage grafts. The objective of this study was to decellularize and characterize human nasoseptal cartilage with the aim of generating a biological scaffold for cartilage tissue engineering. Laboratory study using nasoseptal cartilage. Remnant human nasoseptal cartilage specimens were collected and subjected to a novel decellularization treatment. The decellularization process involved several cycles of enzymatic detergent treatments. For characterization, decellularized and fresh (control) specimens underwent histological, biochemical, and mechanical analyses. Scanning electron microscopy and biocompatibility assay were also performed. The decellularization process had minimal effect on glycosaminoglycan content of the cartilage extracellular matrix. Deoxyribonucleic acid (DNA) analysis revealed the near-complete removal of genomic DNA from decellularized tissues. The effectiveness of the decellularization process was also confirmed on histological and scanning electron microscopic analyses. Mechanical testing results showed that the structural integrity of the decellularized tissue was maintained, and biocompatibility was confirmed. Overall, the current decellularization treatment resulted in significant reduction of genetic/cellular material with preservation of the underlying extracellular matrix structure. This decellularized material may serve as a potential scaffold for cartilage tissue engineering. N/A. Laryngoscope, 126:2226-2231, 2016. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.

  19. Time-dependent processes in stem cell-based tissue engineering of articular cartilage

    Science.gov (United States)

    Gadjanski, Ivana; Spiller, Kara; Vunjak-Novakovic, Gordana

    2012-01-01

    Articular cartilage (AC), situated in diarthrodial joints at the end of the long bones, is composed of a single cell type (chondrocytes) embedded in dense extracellular matrix comprised of collagens and proteoglycans. AC is avascular and alymphatic and is not innervated. At first glance, such a seemingly simple tissue appears to be an easy target for the rapidly developing field of tissue engineering. However, cartilage engineering has proven to be very challenging. We focus on time-dependent processes associated with the development of native cartilage starting from stem cells, and the modalities for utilizing these processes for tissue engineering of articular cartilage. PMID:22016073

  20. Diagnosis of osteoarthritis by cartilage surface smoothness quantified automatically from knee MRI

    DEFF Research Database (Denmark)

    Tummala, Sudhakar; Bay-Jensen, Anne-Christine; Karsdal, Morten A.

    2011-01-01

    Objective: We investigated whether surface smoothness of articular cartilage in the medial tibiofemoral compartment quantified from magnetic resonance imaging (MRI) could be appropriate as a diagnostic marker of osteoarthritis (OA). Method: At baseline, 159 community-based subjects aged 21 to 81......, specifically cartilage volume from MRI, joint space width (JSW) from radiographs, and pain scores. Results: A total of 140 subjects concluded the 21-month study. Cartilage smoothness provided diagnostic ability in all compartments (P ... with pain severity (e.g., r = -0.32). The longitudinal change in smoothness was correlated with cartilage loss (r up to 0.60, P radiographic OA. Furthermore...

  1. Construction of tissue-engineered cartilage using human placenta-derived stem cells

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Human placenta-derived stem cells (hPDSCs) were isolated by trypsinization and further induced into cartilage cells in vitro.The engineered cartilage was constructed by combining hPDSCs with collagen sponge and the cartilage formation was observed by implantation into nude mice.Results showed that hPDSCs featured mesenchymal stem cells and maintained proliferation in vitro for over 30 passages while remaining undifferentiated.All results indicated that hPDSCs have the potential to differentiate into functional cartilage cells in vitro when combined with collagen sponge,which provided experimental evidence for prospective clinical application.

  2. MORPHOLOGY AND MORPHOMETRY OF ADULT HUMAN CRICOID CARTILAGE: A CADAVERIC STUDY IN NORTH INDIAN POPULATION

    Directory of Open Access Journals (Sweden)

    Rajan Kumar Singla

    2015-03-01

    Full Text Available Introduction: Out of different cartilages of larynx, cricoid is the strongest cartilage. It is the only cartilage which extends completely around the air passage. It is smaller but stronger and thicker than the thyroid cartilage. Though a lot of work has been done on thyroid cartilage it is not so for cricoid cartilage. This give us a impetus to design this study. Material and method: The material for present study comprised of 30 adult (M:F::25:5 apparently normal cadaveric larynges, obtained from the Anatomy Department of Govt. Medical College, Amritsar. Different morphometric diameters of the cricoid cartilage were measured with help of vernier caliper with least count 0.01 mm and these were noted on a predesigned proforma. All the data thus obtained was tabulated, analysed, scrutinized and compared with the earlier studies available in the literature. An attempt has been done to provide a base line data for this region. Result and Conclusion: Cricoid cartilage was oval in shape in all the specimens. Outer and inner transverse diameters and outer and inner anteroposterior diameters of cricoid cartilage were larger in males as compared to females. As we compare both diameters in males and females, outer transverse diameter was found to be larger than outer anteroposterior diameter, while inner anteroposterior diameter was larger than inner transverse diameter. Height and thickness of cricoid arch and lamina were observed to be larger in males as compared to females.

  3. Hypointense signal lesions of the articular cartilage: a review of current concepts.

    Science.gov (United States)

    Markhardt, B Keegan; Chang, Eric Y

    2014-01-01

    Discussion of articular cartilage disease detection by MRI usually focuses on the presence of bright signal on T2-weighted sequences, such as in Grade 1 chondromalacia and cartilage fissures containing fluid. Less emphasis has been placed on how cartilage disease may be manifested by dark signal on T2-weighted sequences. The appearance of the recently described "cartilage black line sign" of the femoral trochlea highlights these lesions and further raises the question of their etiology. We illustrate various hypointense signal lesions that are not restricted to the femoral trochlea of the knee joint and discuss the possible etiologies for these lesions. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Nanoscale Surface Modifications of Medical Implants for Cartilage Tissue Repair and Regeneration

    Science.gov (United States)

    Griffin, MF; Szarko, M; Seifailan, A; Butler, PE

    2016-01-01

    Background: Natural cartilage regeneration is limited after trauma or degenerative processes. Due to the clinical challenge of reconstruction of articular cartilage, research into developing biomaterials to support cartilage regeneration have evolved. The structural architecture of composition of the cartilage extracellular matrix (ECM) is vital in guiding cell adhesion, migration and formation of cartilage. Current technologies have tried to mimic the cell’s nanoscale microenvironment to improve implants to improve cartilage tissue repair. Methods: This review evaluates nanoscale techniques used to modify the implant surface for cartilage regeneration. Results: The surface of biomaterial is a vital parameter to guide cell adhesion and consequently allow for the formation of ECM and allow for tissue repair. By providing nanosized cues on the surface in the form of a nanotopography or nanosized molecules, allows for better control of cell behaviour and regeneration of cartilage. Chemical, physical and lithography techniques have all been explored for modifying the nanoscale surface of implants to promote chondrocyte adhesion and ECM formation. Conclusion: Future studies are needed to further establish the optimal nanoscale modification of implants for cartilage tissue regeneration. PMID:28217208

  5. Chondroblastoma arising in the triradiate cartilage. Report of two cases with review of the literature

    Energy Technology Data Exchange (ETDEWEB)

    Matsuno, Takeo; Hasegawa, Isao; Masuda, Takeshi

    1987-04-01

    Chondroblastoma is a relatively rare benign bone tumor of cartilage origin. Roentgenologically it presents usually as a region of lytic destruction of bone with a thin sclerotic rim in the epiphysis of long tubular bone. Less than 9% occur in the pelvic bones but show a tendency to arise from the triradiate cartilage. We present two cases of chondroblastoma originating in the triradiate cartilage, each showing extensive lytic bony destruction and an intrapelvic soft tissue mass. A review of the literature suggests that chondroblastoma of the triradiate cartilage shows an aggressive radiological appearance.

  6. Large, stratified, and mechanically functional human cartilage grown in vitro by mesenchymal condensation

    Science.gov (United States)

    Bhumiratana, Sarindr; Eton, Ryan E.; Oungoulian, Sevan R.; Wan, Leo Q.; Ateshian, Gerard A.; Vunjak-Novakovic, Gordana

    2014-01-01

    The efforts to grow mechanically functional cartilage from human mesenchymal stem cells have not been successful. We report that clinically sized pieces of human cartilage with physiologic stratification and biomechanics can be grown in vitro by recapitulating some aspects of the developmental process of mesenchymal condensation. By exposure to transforming growth factor-β, mesenchymal stem cells were induced to condense into cellular bodies, undergo chondrogenic differentiation, and form cartilagenous tissue, in a process designed to mimic mesenchymal condensation leading into chondrogenesis. We discovered that the condensed mesenchymal cell bodies (CMBs) formed in vitro set an outer boundary after 5 d of culture, as indicated by the expression of mesenchymal condensation genes and deposition of tenascin. Before setting of boundaries, the CMBs could be fused into homogenous cellular aggregates giving rise to well-differentiated and mechanically functional cartilage. We used the mesenchymal condensation and fusion of CMBs to grow centimeter-sized, anatomically shaped pieces of human articular cartilage over 5 wk of culture. For the first time to our knowledge biomechanical properties of cartilage derived from human mesenchymal cells were comparable to native cartilage, with the Young’s modulus of >800 kPa and equilibrium friction coeffcient of CMBs have capability to form mechanically strong cartilage–cartilage interface in an in vitro cartilage defect model. The CMBs, which acted as “lego-like” blocks of neocartilage, were capable of assembling into human cartilage with physiologic-like structure and mechanical properties. PMID:24778247

  7. In vivo quantification of intraarticular cytokines in knees during natural and surgically induced cartilage repair

    DEFF Research Database (Denmark)

    Schmal, Hagen; Mehlhorn, Alexander; Stoffel, Fabian;

    2009-01-01

    BACKGROUND AIMS: Cartilage defects are considered to be an initial event in the progress of osteoarthritis. Reliable data about in vivo regulation of cytokines in natural and surgically induced cartilage repair are still missing. METHODS: Knee lavage fluids of 47 patients were collected prospecti......BACKGROUND AIMS: Cartilage defects are considered to be an initial event in the progress of osteoarthritis. Reliable data about in vivo regulation of cytokines in natural and surgically induced cartilage repair are still missing. METHODS: Knee lavage fluids of 47 patients were collected...

  8. Comparison of temporalis fascia muscle and full-thickness cartilage grafts in type 1 pediatric tympanoplasties.

    Science.gov (United States)

    Yegin, Yakup; Çelik, Mustafa; Koç, Arzu Karaman; Küfeciler, Levent; Elbistanlı, Mustafa Suphi; Kayhan, Fatma Tülin

    Various graft materials have been used to close tympanic membrane perforations. In the literature, there are few studies in pediatric populations comparing different graft materials. To our knowledge, there is no reported study that measured the thickness of the tragal cartilage in pediatric tympanoplasties. The tragal cartilage is not of uniform thickness in every patient. To compare anatomical and functional outcomes of temporalis fascia muscle and full-thickness tragal cartilage in type 1 pediatric tympanoplasties. In total, 78 patients (38 males, 40 females; average age 10.02±1.98 years; range, 7-18 years) who underwent type 1 tympanoplasties in our clinic were included. Demographics, anatomical, and functional outcomes were collected. Temporalis fascia muscle and tragal cartilage were used as graft materials. Tragal cartilage was used without thinning, and the thickness of tragal cartilage was measured using a micrometer. Anatomical and functional outcomes of cartilage and fascia were compared. Audiometric results comparing the cartilage and fascia groups were conducted at 6 months, and we continued to follow the patients to 1 year after surgery. An intact graft and an air-bone gap≤20dB were regarded as a surgical success. Results with a p-valuefascia group. In the fascia group, the preoperative air-bone gap was 33.68±11.44 dB and postoperative air-bone gap was 24.25±12.68dB. In the cartilage group, the preoperative air-bone gap was 35.68±12.94dB and postoperative air-bone gap was 26.11±12.87dB. The anatomical success rate in the cartilage group was significantly better than that for the fascia group (pfascia and cartilage groups (p>0.05). The average thickness of tragal cartilage in the pediatric population was 0.693±0.094mm in males and 0.687±0.058 mm in females. Our data suggest that the anatomical success rate for a cartilage tympanoplasty was higher than for a fascia tympanoplasty. Functional results with cartilage were not different than with

  9. O desamparo aprendido revisitado: estudos com animais

    Directory of Open Access Journals (Sweden)

    Maria Helena Leite Hunziker

    Full Text Available O desamparo aprendido tem sido definido como a dificuldade de aprendizagem apresentada por indivíduos que tiveram experiência prévia com estímulos aversivos incontroláveis. O objetivo deste trabalho é fazer uma revisão crítica dos estudos sobre o desamparo aprendido, com animais. Nessa análise, são considerados aspectos conceituais e metodológicos dos estudos em questão e as interpretações teóricas sobre esse efeito comportamental. Aborda-se a evolução histórica desses estudos, bem como alguns aspectos controversos das publicações que se acumularam ao longo de quatro décadas de pesquisa. A associação do desamparo aprendido com a depressão clínica é analisada criticamente, destacando-se a necessidade de maior rigor metodológico e conceitual nos estudos da área.

  10. Human articular cartilage: in vitro correlation of MRI and histologic findings

    Energy Technology Data Exchange (ETDEWEB)

    Uhl, M.; Allmann, K.H.; Laubenberger, J.; Langer, M. [Department of Diagnostic Radiology, University Hospital of Freiburg (Germany); Ihling, C.; Tauer, U.; Adler, C.P. [Department of Pathology, University Hospital of Freiburg (Germany)

    1998-09-01

    The aim of our study was to correlate MRI with histologic findings in normal and degenerative cartilage. Twenty-two human knees derived from patients undergoing amputation were examined with 1.0- and 1.5-T MR imaging units. Firstly, we optimized two fat-suppressed 3D gradient-echo sequences. In this pilot study two knees were examined with fast imaging with steady precession (FISP) sequences and fast low-angle shot (FLASH, SPGR) sequence by varying the flip angles (40, 60, 90 ) and combining each flip angle with different echo time (7, 10 or 11, 20 ms). We chose the sequences with the best visual contrast between the cartilage layers and the best measured contrast-to-noise ratio between cartilage and bone marrow. Therefore, we used a 3D FLASH fat-saturated sequence (TR/TE/flip angle = 50/11 ms/40 ) and a 3D FISP fat-saturated sequence (TR/TE/flip angle = 40/10 ms/40 ) for cartilage imaging in 22 human knees. The images were obtained at various angles of the patellar cartilage in relation to the main magnetic field (0, 55, 90 ). The MR appearances were classified into five categories: normal, intracartilaginous signal changes, diffuse thinning (cartilage thickness < 3 mm), superficial erosions, and cartilage ulcers. After imaging, the knees were examined macroscopically and photographed. In addition, we performed histologic studies using light microscopy with several different stainings, polarization, and dark field microscopy as well as electron microscopy. The structural characteristics with the cartilage lesions were correlated with the MR findings. We identified a hyperintense superficial zone in the MR image which did not correlate to the histologically identifiable superficial zone. The second lamina was hypointense on MRI and correlated to the bulk of the radial zone. The third (or deep) cartilage lamina in the MR image seemed to represent the combination of the lowest portion of the radial zone and the calcified cartilage. The width of the hypointense second

  11. 3D Human cartilage surface characterization by optical coherence tomography

    Science.gov (United States)

    Brill, Nicolai; Riedel, Jörn; Schmitt, Robert; Tingart, Markus; Truhn, Daniel; Pufe, Thomas; Jahr, Holger; Nebelung, Sven

    2015-10-01

    Early diagnosis and treatment of cartilage degeneration is of high clinical interest. Loss of surface integrity is considered one of the earliest and most reliable signs of degeneration, but cannot currently be evaluated objectively. Optical Coherence Tomography (OCT) is an arthroscopically available light-based non-destructive real-time imaging technology that allows imaging at micrometre resolutions to millimetre depths. As OCT-based surface evaluation standards remain to be defined, the present study investigated the diagnostic potential of 3D surface profile parameters in the comprehensive evaluation of cartilage degeneration. To this end, 45 cartilage samples of different degenerative grades were obtained from total knee replacements (2 males, 10 females; mean age 63.8 years), cut to standard size and imaged using a spectral-domain OCT device (Thorlabs, Germany). 3D OCT datasets of 8  ×  8, 4  ×  4 and 1  ×  1 mm (width  ×  length) were obtained and pre-processed (image adjustments, morphological filtering). Subsequent automated surface identification algorithms were used to obtain the 3D primary profiles, which were then filtered and processed using established algorithms employing ISO standards. The 3D surface profile thus obtained was used to calculate a set of 21 3D surface profile parameters, i.e. height (e.g. Sa), functional (e.g. Sk), hybrid (e.g. Sdq) and segmentation-related parameters (e.g. Spd). Samples underwent reference histological assessment according to the Degenerative Joint Disease classification. Statistical analyses included calculation of Spearman’s rho and assessment of inter-group differences using the Kruskal Wallis test. Overall, the majority of 3D surface profile parameters revealed significant degeneration-dependent differences and correlations with the exception of severe end-stage degeneration and were of distinct diagnostic value in the assessment of surface integrity. None of the 3D

  12. Effect of exercise on thicknesses of mature hyaline cartilage, calcified cartilage, and subchondral bone of equine tarsi.

    Science.gov (United States)

    Tranquille, Carolyne A; Blunden, Antony S; Dyson, Sue J; Parkin, Tim D H; Goodship, Allen E; Murray, Rachel C

    2009-12-01

    OBJECTIVE-To investigate effects of exercise on hyaline cartilage (HC), calcified cartilage (CC), and subchondral bone (SCB) thickness patterns of equine tarsi. SAMPLE POPULATION-30 tarsi from cadavers of horses with known exercise history. PROCEDURES-Tarsi were assigned to 3 groups according to known exercise history as follows: pasture exercise only (PE tarsi), low-intensity general-purpose riding exercise (LE tarsi), and high-intensity elite competition riding exercise (EE tarsi). Osteochondral tissue from distal tarsal joints underwent histologic preparation. Hyaline cartilage, CC, and SCB thickness were measured at standard sites at medial, midline, and lateral locations across joints with a histomorphometric technique. RESULTS-HC, CC, and SCB thickness were significantly greater at all sites in EE tarsi, compared with PE tarsi; this was also true when LE tarsi were compared with PE tarsi. At specific sites, HC, CC, and SCB were significantly thicker in EE tarsi, compared with LE tarsi. Along the articular surface of the proximal aspect of the third metatarsal bone, SCB was thickest in EE tarsi and thinnest in LE tarsi; increases were greatest at sites previously reported to undergo peak strains and osteochondral damage. CONCLUSIONS AND CLINICAL RELEVANCE-Increased exercise was associated with increased HC, CC, and SCB thickness in mature horses. At sites that undergo high compressive strains, with a reported predisposition to osteoarthritic change, there was increased CC and SCB thickness. These results may provide insight into the interaction between adaptive response to exercise and pathological change.

  13. International Cartilage Repair Society (ICRS) Recommended Guidelines for Histological Endpoints for Cartilage Repair Studies in Animal Models and Clinical Trials.

    Science.gov (United States)

    Hoemann, Caroline; Kandel, Rita; Roberts, Sally; Saris, Daniel B F; Creemers, Laura; Mainil-Varlet, Pierre; Méthot, Stephane; Hollander, Anthony P; Buschmann, Michael D

    2011-04-01

    Cartilage repair strategies aim to resurface a lesion with osteochondral tissue resembling native cartilage, but a variety of repair tissues are usually observed. Histology is an important structural outcome that could serve as an interim measure of efficacy in randomized controlled clinical studies. The purpose of this article is to propose guidelines for standardized histoprocessing and unbiased evaluation of animal tissues and human biopsies. Methods were compiled from a literature review, and illustrative data were added. In animal models, treatments are usually administered to acute defects created in healthy tissues, and the entire joint can be analyzed at multiple postoperative time points. In human clinical therapy, treatments are applied to developed lesions, and biopsies are obtained, usually from a subset of patients, at a specific time point. In striving to standardize evaluation of structural endpoints in cartilage repair studies, 5 variables should be controlled: 1) location of biopsy/sample section, 2) timing of biopsy/sample recovery, 3) histoprocessing, 4) staining, and 5) blinded evaluation with a proper control group. Histological scores, quantitative histomorphometry of repair tissue thickness, percentage of tissue staining for collagens and glycosaminoglycan, polarized light microscopy for collagen fibril organization, and subchondral bone integration/structure are all relevant outcome measures that can be collected and used to assess the efficacy of novel therapeutics. Standardized histology methods could improve statistical analyses, help interpret and validate noninvasive imaging outcomes, and permit cross-comparison between studies. Currently, there are no suitable substitutes for histology in evaluating repair tissue quality and cartilaginous character.

  14. Delayed Gadolinium-Enhanced Magnetic Resonance Imaging (dGEMRIC) of Hip Joint Cartilage: Better Cartilage Delineation after Intra-Articular than Intravenous Gadolinium Injection

    Energy Technology Data Exchange (ETDEWEB)

    Boesen, M.; Jensen, K. E.; Qvistgaard, E.; Danneskiold-Samsoe, B.; Thomsen, C.; Oestergaard, M.; Bliddal, H. [Frederiksberg Hospital, Copenhagen (Denmark). Parker Inst.

    2006-07-15

    Purpose: To investigate and compare delayed gadolinium (Gd-DTPA)-enhanced magnetic resonance imaging (MRI) of cartilage (dGEMRIC) in the hip joint using intravenous (i.v.) or ultrasound-guided intra-articular (i.a.) Gd-DTPA injection. Material and Methods: In 10 patients (50% males, mean age 58 years) with clinical and radiographic hip osteoarthritis (OA; Kellgren score II-III), MRI of the hip was performed twice on a clinical 1.5T MR scanner: On day 1, before and 90-180 min after 0.3 mmol/kg body weight i.v. Gd-DTPA and, on day 8, 90-180 min after ultrasound-guided i.a. injection of a 4 mmol/l Gd-DTPA solution. Coronal STIR, coronal T1 fat-saturated spin-echo, and a cartilage-sensitive gradient-echo sequence (3D T1 SPGR) in the sagittal plane were applied. Results: Both the post-i.v. and post-i.a. Gd-DTPA images showed significantly higher signal-to-noise (SNR) and contrast-to-noise (CNR) in the joint cartilage compared to the non-enhanced images ( P <0.002). I.a. Gd-DTPA provided significantly higher SNR and CNR compared to i.v. Gd-DTPA ( P <0.01). Furthermore, a better delineation of the cartilage in the synovial/cartilage zone and of the chondral/subchondral border was observed. Conclusion: The dGEMRIC MRI method markedly improved delineation of hip joint cartilage compared to non-enhanced MRI. The i.a. Gd-DTPA provided the best cartilage delineation. dGEMRIC is a clinically applicable MRI method that may improve identification of early subtle cartilage damage and the accuracy of volume measurements of hip joint cartilage.

  15. Preliminary clinical research with rib cartilages anomalies in patients with microtia%小耳畸形患者肋软骨发育异常的临床初步研究

    Institute of Scientific and Technical Information of China (English)

    杨美蓉; 潘博; 蒋海越; 陈威威; 李青松; 张晔; 李川

    2016-01-01

    failing to attach to the sternum.The constituent ratio of rib cartilages anomalies in microtia Ⅰ,Ⅱ,and Ⅲ was 11.5% (3/26),32.8 % (58/177) and 51.9% (14/27),respectively.The patients with microtia Ⅲ were observed to have a higher ratio of rib cartilages anomalies than those with microtia Ⅱ.Similarly,patients with microtia Ⅱ were found to have a high er ratio of rib cartilages anomalies than those with microtia Ⅱ (P =0.007).Conclusions The constituent ratio of rib cartilages anomalies is high in patients with microtia.And the constituent ratio is varied with the grades of microtia.A higher ratio of costal cartilages anomalies is present in patients with a more serious grade of microtia.

  16. Fetal Cartilage-Derived Cells Have Stem Cell Properties and Are a Highly Potent Cell Source for Cartilage Regeneration.

    Science.gov (United States)

    Choi, Woo Hee; Kim, Hwal Ran; Lee, Su Jeong; Jeong, Nayoung; Park, So Ra; Choi, Byung Hyune; Min, Byoung-Hyun

    2016-01-01

    Current strategies for cartilage cell therapy are mostly based on the use of autologous chondrocytes or mesenchymal stem cells (MSCs). However, these cells have limitations of a small number of cells available and of low chondrogenic ability, respectively. Many studies now suggest that fetal stem cells are more plastic than adult stem cells and can therefore more efficiently differentiate into target tissues. However, the characteristics and the potential of progenitor cells from fetal tissue remain poorly defined. In this study, we examined cells from human fetal cartilage at 12 weeks after gestation in comparison with bone marrow-derived MSCs or cartilage chondrocytes from young donors (8-25 years old). The fetal cartilage-derived progenitor cells (FCPCs) showed higher yields by approximately 24 times than that of chondrocytes from young cartilage. The morphology of the FCPCs was polygonal at passage 0, being similar to that of the young chondrocytes, but it changed later at passage 5, assuming a fibroblastic shape more akin to that of MSCs. As the passages advanced, the FCPCs showed a much greater proliferation ability than the young chondrocytes and MSCs, with the doubling times ranging from 2∼4 days until passage 15. The surface marker profile of the FCPCs at passage 2 was quite similar to that of the MSCs, showing high expressions of CD29, CD90, CD105, and Stro-1. When compared to the young chondrocytes, the FCPCs showed much less staining of SA-β-gal, a senescence indicator, at passage 10 and no decrease in SOX9 expression until passage 5. They also showed a much greater chondrogenic potential than the young chondrocytes and the MSCs in a three-dimensional pellet culture in vitro and in polyglycolic acid (PGA) scaffolds in vivo. In addition, they could differentiate into adipogenic and osteogenic lineages as efficiently as MSCs in vitro. These results suggest that FCPCs have stem cell properties to some extent and that they are more active in terms of

  17. Advances in Application of Mechanical Stimuli in Bioreactors for Cartilage Tissue Engineering.

    Science.gov (United States)

    Li, Ke; Zhang, Chunqiu; Qiu, Lulu; Gao, Lilan; Zhang, Xizheng

    2017-08-01

    Articular cartilage (AC) is the weight-bearing tissue in diarthroses. It lacks the capacity for self-healing once there are injuries or diseases due to its avascularity. With the development of tissue engineering, repairing cartilage defects through transplantation of engineered cartilage that closely matches properties of native cartilage has become a new option for curing cartilage diseases. The main hurdle for clinical application of engineered cartilage is how to develop functional cartilage constructs for mass production in a credible way. Recently, impressive hyaline cartilage that may have the potential to provide capabilities for treating large cartilage lesions in the future has been produced in laboratories. The key to functional cartilage construction in vitro is to identify appropriate mechanical stimuli. First, they should ensure the function of metabolism because mechanical stimuli play the role of blood vessels in the metabolism of AC, for example, acquiring nutrition and removing wastes. Second, they should mimic the movement of synovial joints and produce phenotypically correct tissues to achieve the adaptive development between the micro- and macrostructure and function. In this article, we divide mechanical stimuli into three types according to forces transmitted by different media in bioreactors, namely forces transmitted through the liquid medium, solid medium, or other media, then we review and summarize the research status of bioreactors for cartilage tissue engineering (CTE), mainly focusing on the effects of diverse mechanical stimuli on engineered cartilage. Based on current researches, there are several motion patterns in knee joints; but compression, tension, shear, fluid shear, or hydrostatic pressure each only partially reflects the mechanical condition in vivo. In this study, we propose that rolling-sliding-compression load consists of various stimuli that will represent better mechanical environment in CTE. In addition, engineers

  18. Contrast Agent-Enhanced Computed Tomography of Articular Cartilage: Association with Tissue Composition and Properties

    Energy Technology Data Exchange (ETDEWEB)

    Silvast, T.S.; Jurvelin, J.S.; Aula, A.S.; Lammi, M.J.; Toeyraes, J. (Dept. of Clinical Neurophysiology, Kuopio Univ. Hospital, Kuopio (Finland))

    2009-01-15

    Background: Contrast agent-enhanced computed tomography may enable the noninvasive quantification of glycosaminoglycan (GAG) content of articular cartilage. It has been reported that penetration of the negatively charged contrast agent ioxaglate (Hexabrix) increases significantly after enzymatic degradation of GAGs. However, it is not known whether spontaneous degradation of articular cartilage can be quantitatively detected with this technique. Purpose: To investigate the diagnostic potential of contrast agent-enhanced cartilage tomography (CECT) in quantification of GAG concentration in normal and spontaneously degenerated articular cartilage by means of clinical peripheral quantitative computed tomography (pQCT). Material and Methods: In this in vitro study, normal and spontaneously degenerated adult bovine cartilage (n=32) was used. Bovine patellar cartilage samples were immersed in 21 mM contrast agent (Hexabrix) solution for 24 hours at room temperature. After immersion, the samples were scanned with a clinical pQCT instrument. From pQCT images, the contrast agent concentration in superficial as well as in full-thickness cartilage was calculated. Histological and functional integrity of the samples was quantified with histochemical and mechanical reference measurements extracted from our earlier study. Results: Full diffusion of contrast agent into the deep cartilage was found to take over 8 hours. As compared to normal cartilage, a significant increase (11%, P<0.05) in contrast agent concentration was seen in the superficial layer of spontaneously degenerated samples. Significant negative correlations were revealed between the contrast agent concentration and the superficial or full-thickness GAG content of tissue (|R|>0.5, P<0.01). Further, pQCT could be used to measure the thickness of patellar cartilage. Conclusion: The present results suggest that CECT can be used to diagnose proteoglycan depletion in spontaneously degenerated articular cartilage with a

  19. Mechanical and biochemical mapping of human auricular cartilage for reliable assessment of tissue-engineered constructs.

    Science.gov (United States)

    Nimeskern, Luc; Pleumeekers, Mieke M; Pawson, Duncan J; Koevoet, Wendy L M; Lehtoviita, Iina; Soyka, Michael B; Röösli, Christof; Holzmann, David; van Osch, Gerjo J V M; Müller, Ralph; Stok, Kathryn S

    2015-07-16

    It is key for successful auricular (AUR) cartilage tissue-engineering (TE) to ensure that the engineered cartilage mimics the mechanics of the native tissue. This study provides a spatial map of the mechanical and biochemical properties of human auricular cartilage, thus establishing a benchmark for the evaluation of functional competency in AUR cartilage TE. Stress-relaxation indentation (instantaneous modulus, Ein; maximum stress, σmax; equilibrium modulus, Eeq; relaxation half-life time, t1/2; thickness, h) and biochemical parameters (content of DNA; sulfated-glycosaminoglycan, sGAG; hydroxyproline, HYP; elastin, ELN) of fresh human AUR cartilage were evaluated. Samples were categorized into age groups and according to their harvesting region in the human auricle (for AUR cartilage only). AUR cartilage displayed significantly lower Ein, σmax, Eeq, sGAG content; and significantly higher t1/2, and DNA content than NAS cartilage. Large amounts of ELN were measured in AUR cartilage (>15% ELN content per sample wet mass). No effect of gender was observed for either auricular or nasoseptal samples. For auricular samples, significant differences between age groups for h, sGAG and HYP, and significant regional variations for Ein, σmax, Eeq, t1/2, h, DNA and sGAG were measured. However, only low correlations between mechanical and biochemical parameters were seen (Rbiochemical map of human auricular cartilage. Regional variations in mechanical and biochemical properties were demonstrated in the auricle. This finding highlights the importance of focusing future research on efforts to produce cartilage grafts with spatially tunable mechanics. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Articular cartilage changes in maturing athletes: new targets for joint rejuvenation.

    Science.gov (United States)

    Luria, Ayala; Chu, Constance R

    2014-01-01

    Articular cartilage has a unique functional architecture capable of providing a lifetime of pain-free joint motion. This tissue, however, undergoes substantial age-related physiologic, mechanical, biochemical, and functional changes that reduce its ability to overcome the effects of mechanical stress and injury. Many factors affect joint function in the maturing athlete-from chondrocyte survival and metabolism to structural composition and genetic/epigenetic factors governing cartilage and synovium. An evaluation of age-related changes for joint homeostasis and risk for osteoarthritis is important to the development of new strategies to rejuvenate aging joints. This review summarizes the current literature on the biochemical, cellular, and physiologic changes occurring in aging articular cartilage. PubMed (1969-2013) and published books in sports health, cartilage biology, and aging. Keywords included aging, athlete, articular cartilage, epigenetics, and functional performance with age. Systematic review. Level 3. To be included, research questions addressed the effect of age-related changes on performance, articular cartilage biology, molecular mechanism, and morphology. The mature athlete faces challenges in maintaining cartilage health and joint function due to age-related changes to articular cartilage biology, morphology, and physiology. These changes include chondrocyte loss and a decline in metabolic response, alterations to matrix and synovial tissue composition, and dysregulation of reparative responses. Although physical decline has been regarded as a normal part of aging, many individuals maintain overall fitness and enjoy targeted improvement to their athletic capacity throughout life. Healthy articular cartilage and joints are needed to maintain athletic performance and general activities. Genetic and potentially reversible epigenetic factors influence cartilage physiology and its response to mechanical and injurious stimuli. Improved understandings of

  1. Mechanical stimulation of mesenchymal stem cells: Implications for cartilage tissue engineering.

    Science.gov (United States)

    Fahy, Niamh; Alini, Mauro; Stoddart, Martin J

    2017-08-01

    Articular cartilage is a load-bearing tissue playing a crucial mechanical role in diarthrodial joints, facilitating joint articulation, and minimizing wear. The significance of biomechanical stimuli in the development of cartilage and maintenance of chondrocyte phenotype in adult tissues has been well documented. Furthermore, dysregulated loading is associated with cartilage pathology highlighting the importance of mechanical cues in cartilage homeostasis. The repair of damaged articular cartilage resulting from trauma or degenerative joint disease poses a major challenge due to a low intrinsic capacity of cartilage for self-renewal, attributable to its avascular nature. Bone marrow-derived mesenchymal stem cells (MSCs) are considered a promising cell type for cartilage replacement strategies due to their chondrogenic differentiation potential. Chondrogenesis of MSCs is influenced not only by biological factors but also by the environment itself, and various efforts to date have focused on harnessing biomechanics to enhance chondrogenic differentiation of MSCs. Furthermore, recapitulating mechanical cues associated with cartilage development and homeostasis in vivo, may facilitate the development of a cellular phenotype resembling native articular cartilage. The goal of this review is to summarize current literature examining the effect of mechanical cues on cartilage homeostasis, disease, and MSC chondrogenesis. The role of biological factors produced by MSCs in response to mechanical loading will also be examined. An in-depth understanding of the impact of mechanical stimulation on the chondrogenic differentiation of MSCs in terms of endogenous bioactive factor production and signaling pathways involved, may identify therapeutic targets and facilitate the development of more robust strategies for cartilage replacement using MSCs. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res. © 2017 Orthopaedic Research Society

  2. Optimized cartilage visualization using 7-T sodium ((23)Na) imaging after patella dislocation.

    Science.gov (United States)

    Widhalm, Harald K; Apprich, Sebastian; Welsch, Goetz H; Zbyn, Stefan; Sadoghi, Patrick; Vekszler, György; Hamböck, Martina; Weber, Michael; Hajdu, Stefan; Trattnig, Siegfried

    2016-05-01

    Retropatellar cartilage lesions often occur in the course of recurrent patella dislocation. Aim of this study was to develop a more detailed method for examining cartilage tissue, in order to reduce patient discomfort and time of care. For detailed diagnosing, a 7-T MRI of the knee joint and patella was performed in nine patients, with mean age of 26.4 years, after patella dislocation to measure the cartilage content in three different regions of interest of the patella. Axial sodium ((23)Na) images were derived from an optimized 3D GRE sequence on a 7-T MR scanner. Morphological cartilage grading was performed, and sodium signal-to-noise ratio (SNR) values were calculated. Mean global sodium values and SNR were compared between patients and volunteers. Two out of nine patients showed a maximum cartilage defect of International Cartilage Repair Society (ICRS) grade 3, three of grade 2, three of  grade 1, and one patient showed no cartilage defect. The mean SNR in sodium images for cartilage was 13.4 ± 2.5 in patients and 14.6 ± 3.7 in volunteers (n.s.). A significant negative correlation between age and global sodium SNR for cartilage was found in the medial facet (R = -0.512; R (2) = 0.26; p = 0.030). Mixed-model ANOVA yielded a marked decrease of the sodium SNR, with increasing grade of cartilage lesions (p < 0.001). Utilization of the (23)Na MR imaging will make earlier detection of alterations to the patella cartilage after dislocation possible and will help prevent subsequent disease due to start adequate therapy earlier in the rehabilitation process. II.