WorldWideScience

Sample records for cost coal gas

  1. Fuel prices, emission standards, and generation costs for coal vs natural gas power plants.

    Science.gov (United States)

    Pratson, Lincoln F; Haerer, Drew; Patiño-Echeverri, Dalia

    2013-05-07

    Low natural gas prices and stricter, federal emission regulations are promoting a shift away from coal power plants and toward natural gas plants as the lowest-cost means of generating electricity in the United States. By estimating the cost of electricity generation (COE) for 304 coal and 358 natural gas plants, we show that the economic viability of 9% of current coal capacity is challenged by low natural gas prices, while another 56% would be challenged by the stricter emission regulations. Under the current regulations, coal plants would again become the dominant least-cost generation option should the ratio of average natural gas to coal prices (NG2CP) rise to 1.8 (it was 1.42 in February 2012). If the more stringent emission standards are enforced, however, natural gas plants would remain cost competitive with a majority of coal plants for NG2CPs up to 4.3.

  2. Secured electrical supply at least cost: Coal, gas, nuclear, hydro

    Energy Technology Data Exchange (ETDEWEB)

    Gavor, J. [ENA Ltd., Prague (Czechoslovakia); Stary, O.; Vasicek, J. [Czech Technical Univ., Prague (Czechoslovakia)

    1995-12-01

    Electric power sector in East Central European countries finds in a difficult period. In the situation of demand stagnation, enormous investments must be realized in a very short time. Today`s decisions in the development strategy will influence the long term future of the industry. The optimal structure of the sources is one of the most important problem to be solved. Paper describes the current structure of the sources in electric power sector in the Czech Republic. The importance of coal, oil and gas, nuclear and hydro in electric power generation is compared. Taking into account the different position in the load coverage, economy of individual sources is evaluated and basic results of discounted cash flow calculations are presented. Information on specific investment programs and projects are included and further trends are estimated.

  3. Advanced gasifier and water gas shift technologies for low cost coal conversion to high hydrogen syngas

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, Andrew Kramer [Gas Technology Inst., Des Plaines, IL (United States)

    2016-09-30

    The Gas Technology Institute (GTI) and team members RTI International (RTI), Coanda Research and Development, and Nexant, are developing and maturing a portfolio of technologies to meet the United States Department of Energy (DOE) goals for lowering the cost of producing high hydrogen syngas from coal for use in carbon capture power and coal-to-liquids/chemicals. This project matured an advanced pilot-scale gasifier, with scalable and commercially traceable components, to readiness for use in a first-of-a-kind commercially-relevant demonstration plant on the scale of 500-1,000 tons per day (TPD). This was accomplished through cold flow simulation of the gasifier quench zone transition region at Coanda and through an extensive hotfire gasifier test program on highly reactive coal and high ash/high ash fusion temperature coals at GTI. RTI matured an advanced water gas shift process and catalyst to readiness for testing at pilot plant scale through catalyst development and testing, and development of a preliminary design basis for a pilot scale reactor demonstrating the catalyst. A techno-economic analysis was performed by Nexant to assess the potential benefits of the gasifier and catalyst technologies in the context of power production and methanol production. This analysis showed an 18%reduction in cost of power and a 19%reduction in cost of methanol relative to DOE reference baseline cases.

  4. Levelized Costs for Nuclear, Gas and Coal for Electricity, under the Mexican Scenario

    Energy Technology Data Exchange (ETDEWEB)

    Palacios, J.C.; Alonso, G.; Ramirez, R.; Gomez, A.; Ortiz, J.; Longoria, L.C.

    2004-10-06

    In the case of new nuclear power stations, it is necessary to pay special attention to the financial strategy that will be applied, time of construction, investment cost, and the discount and return rate. The levelized cost quantifies the unitary cost of the electricity (the kWh) generated during the lifetime of the nuclear power plant; and allows the immediate comparison with the cost of other alternative technologies. The present paper shows levelized cost for different nuclear technologies and it provides comparison among them as well as with gas and coal electricity plants. For the calculations we applied our own methodology to evaluate the levelized cost considering investment, fuel and operation and maintenance costs, making assumptions for the Mexican market, and taking into account the gas prices projections. The study also shows comparisons using different discount rates (5% and 10%), and some comparisons between our results and an OECD 1998 study. The results are i n good agreement and shows that nuclear option is cost competitive in Mexico on the basis of levelized costs.

  5. Coal to gas substitution using coal?!

    Science.gov (United States)

    Kempka, Thomas; Schlüter, Ralph

    2010-05-01

    Substitution of carbon-intensive coal with less carbon-intensive natural gas for energy production is discussed as one main pillar targeting reduction of antrophogenic greenhouse gas emissions by means of climate change mitigation. Other pillars are energy efficiency, renewable energies, carbon capture and storage as well as further development of nuclear energy. Taking into account innovative clean coal technologies such as UCG-CCS (underground coal gasification with carbon capture and storage), in which coal deposits are developed using directional drilling technologies and subsequently converted into a synthesis gas of high calorific value, the coupled conceptual approach can provide a synergetic technology for coal utilization and mitigation of carbon emissions. This study aims at the evaluation of UCǴ s carbon mitigation potentials and the review of the economical boundary conditions. The analytical models applied within this study are based on data available from world-wide UCG projects and extensive laboratory studies. In summary, scenarios considering costs and carbon storage potentials are economically feasible and thus competitive with less carbon-intensive energy generation technologies such as natural gas. Thus, coal to gas substitution can be one of the coal based options.

  6. Petrochemicals from oil, natural gas, coal and biomass: production costs in 2030–2050

    NARCIS (Netherlands)

    Ren, T.; Daniëls, B.; Patel, M.K.|info:eu-repo/dai/nl/18988097X; Blok, K.|info:eu-repo/dai/nl/07170275X

    2009-01-01

    Methane, coal and biomass are being considered as alternatives to crude oil for the production of basic petrochemicals, such as light olefins. This paper is a study on the production costs of 24 process routes utilizing these primary energy sources. A wide range of projected energy prices in

  7. Determination of leveled costs of electric generation for gas plants, coal and nuclear; Determinacion de costos nivelados de generacion electrica para plantas de gas, carbon y nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Alonso V, G.; Palacios H, J.C.; Ramirez S, J.R.; Gomez, A. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: galonso@nuclear.inin.mx

    2005-07-01

    The present work analyzes the leveled costs of electric generation for different types of nuclear reactors known as Generation III, these costs are compared with the leveled costs of electric generation of plants with the help of natural gas and coal. In the study several discount rates were used to determine their impact in the initial investment. The obtained results are comparable with similar studies and they show that it has more than enough the base of the leveled cost the nuclear option it is quite competitive in Mexico. Also in this study it is also thinks about the economic viability of a new nuclear power station in Mexico. (Author)

  8. Advanced coal-fueled gas turbine systems

    Energy Technology Data Exchange (ETDEWEB)

    Wenglarz, R.A.

    1994-08-01

    Several technology advances since the early coal-fueled turbine programs that address technical issues of coal as a turbine fuel have been developed in the early 1980s: Coal-water suspensions as fuel form, improved methods for removing ash and contaminants from coal, staged combustion for reducing NO{sub x} emissions from fuel-bound nitrogen, and greater understanding of deposition/erosion/corrosion and their control. Several Advanced Coal-Fueled Gas Turbine Systems programs were awarded to gas turbine manufacturers for for components development and proof of concept tests; one of these was Allison. Tests were conducted in a subscale coal combustion facility and a full-scale facility operating a coal combustor sized to the Allison Model 501-K industrial turbine. A rich-quench-lean (RQL), low nitrogen oxide combustor design incorporating hot gas cleanup was developed for coal fuels; this should also be applicable to biomass, etc. The combustor tests showed NO{sub x} and CO emissions {le} levels for turbines operating with natural gas. Water washing of vanes from the turbine removed the deposits. Systems and economic evaluations identified two possible applications for RQL turbines: Cogeneration plants based on Allison 501-K turbine (output 3.7 MW(e), 23,000 lbs/hr steam) and combined cycle power plants based on 50 MW or larger gas turbines. Coal-fueled cogeneration plant configurations were defined and evaluated for site specific factors. A coal-fueled turbine combined cycle plant design was identified which is simple, compact, and results in lower capital cost, with comparable efficiency and low emissions relative to other coal technologies (gasification, advanced PFBC).

  9. The external costs of electricity generation. A comparison of environmental damage of silicon photovoltaic electricity, produced with different electricity mixes, vs natural gas and coal

    Energy Technology Data Exchange (ETDEWEB)

    Olson, C.L.; Veltkamp, A.C.; Sinke, W.C. [ECN Solar Energy, Petten (Netherlands)

    2012-09-15

    In this paper the environmental damages of crystalline silicon photovoltaics are calculated, using the most recent photovoltaics data, and compared with those of the prevalent conventional energy technologies. A life cycle assessment of selected environmental impacts of 1kWh of electricity generated by various technologies was performed using Simapro software (version 7.2.4) in conjunction with the Ecoinvent database (version 2.2). The environmental impacts were assessed using the ReCiPe methodology. Because of the important role of coal and natural gas in the global electricity generation portfolio, special attention is given to the comparison of PV with those technologies. The environmental consequences of manufacturing PV modules with renewable, UCTE or 100% coal electricity mixes are explored. A brief update of the estimated monetarization of damages due to coal and climate change is included. A rough estimate of the true cost of coal and PV electricity is made in 2011.

  10. Coal beneficiation by gas agglomeration

    Science.gov (United States)

    Wheelock, Thomas D.; Meiyu, Shen

    2003-10-14

    Coal beneficiation is achieved by suspending coal fines in a colloidal suspension of microscopic gas bubbles in water under atmospheric conditions to form small agglomerates of the fines adhered by the gas bubbles. The agglomerates are separated, recovered and resuspended in water. Thereafter, the pressure on the suspension is increased above atmospheric to deagglomerate, since the gas bubbles are then re-dissolved in the water. During the deagglomeration step, the mineral matter is dispersed, and when the pressure is released, the coal portion of the deagglomerated gas-saturated water mixture reagglomerates, with the small bubbles now coming out of the solution. The reagglomerate can then be separated to provide purified coal fines without the mineral matter.

  11. Natural gas in coal beds

    Energy Technology Data Exchange (ETDEWEB)

    Kravtsov, A.I.; Voytov, G.I.

    1983-01-01

    The special importance is noted of the problem of computing and careful use of the energy raw material, coal, oil and natural gases. An examination is made of the mechanism for the formation of carboniferous gases in the beds with the use of the model of coal macromolecule. A schematic section is presented for the coal field and plan for vertical gas zonality. The change in chemical composition of the natural gases with depth is governed by the countermovement of the natural gases: from top to bottom the gases of the earth's atmosphere move, mainly oxygenand nitrogen, from bottom to top, the gases of metamorphic and deep origin. Constant isotope composition of the carbon in the fossil coals is noted. The distribution of the quanitity deltaC/sup 13/ of carbon in the fossil coals of the Donets basin is illustrated. The gas content of the coal beds and gas reserves are discussed. The flowsheet is shown for the unit for degasification of the coal bed before the cleaning face.

  12. Capital cost: low and high sulfur coal plants; 800 MWe

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-01-01

    This Commercial Electric Power Cost Study for 800-MWe (Nominal) low- and high-sulfur coal plants consists of three volumes. (This is the fourth subject in a series of eight performed in the Commercial Electric Power Cost Studies by the US NRC). The low-sulfur coal plant is described in Volumes I and II, while Volume III (this volume) describes the high sulfur coal plant. The design basis, drawings, and summary cost estimate for a 794-MWe high-sulfur coal plant are presented in this volume. This information was developed by redesigning the low-sulfur sub-bituminous coal plant for burning high-sulfur bituminous coal. The reference design includes a lime flue-gas-desulfurization system. These coal plants utilize a mechanical draft (wet) cooling tower system for condenser heat removal. Costs of alternate cooling systems are provided in Report No. 7 in this series of studies of costs of commercial electrical power plants.

  13. Development of standardized air-blown coal gasifier/gas turbine concepts for future electric power systems. Volume 5, Appendix D: Cost support information: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sadowski, R.S.; Brown, M.J.; Harriz, J.T.; Ostrowski, E.

    1991-01-01

    The cost estimate provided for the DOE sponsored study of Air Blown Coal Gasification was developed from vendor quotes obtained directly for the equipment needed in the 50 MW, 100 MW, and 200 MW sized plants and from quotes from other jobs that have been referenced to apply to the particular cycle. Quotes were generally obtained for the 100 MW cycle and a scale up/down factor was used to generate the cost estimates for the 200 MW and 50 MW cycles, respectively. Information from GTPro (property of Thermoflow, Inc.) was used to estimate the cost of the 200 MW and 50 MW gas turbine, HRSG, and steam turbines. To available the use of GTPro`s estimated values for this equipment, a comparison was made between the quotes obtained for the 100 MW cycle (ABB GT 11N combustion turbine and a HSRG) against the estimated values by GTPro.

  14. Lower cost gasification power cycles for Australian coals and conditions

    Energy Technology Data Exchange (ETDEWEB)

    Louis Wibberley; Doug Palfreyman; Peter Scaife

    2008-03-15

    The report gives an assessment of the thermal efficiency, water consumption, flexibility and comparative costs of several alternative IGCC concepts for a range of Australian coals. Other novel configurations are also considered, especially for smaller scale (<100 MW) plants. The premise for the study is that the best options for Australia may not be the same as for other regions, due to differences in coal properties, local availability of coal seam gas and coal mine waste coal, demographics, water resources, increasing peak demands, and the need for smaller efficient, efficient dry-cooled decentralised plants. 36 refs., 39 figs., 12 tabs.

  15. Conversion of Coal Mine Gas to LNG

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-02-05

    This project evolved from a 1995, DOE-NETL competitive solicitation for practical CMM capture and utilization concepts. Appalachian Pacific was one of three companies selected to proceed with the construction and operation of a cost-shared demonstration plant. In the course of trying to proceed with this demonstration plant, AP examined several liquefaction technologies, discussed obtaining rights to coal mine methane with a number of coal companies, explored marketing potential with a wide variety of customers in many sections of the United States, studied in great detail the impact of a carbon credit exchange, and developed a suite of analytical tools with which to evaluate possible project options. In the end, the newness of the product, reluctance on the part of the coal companies to venture away from time tested practices, difficulty with obtaining financing, the failure of a carbon credit market to develop and the emergence of shale derived gas production prevented a demonstration plant from being built.

  16. Capital cost: low and high sulfur coal plants; 800 MWe

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-01-01

    The Commercial Electric Power Cost Study for 800-MWe (Nominal) low- and high-sulfur coal plants consists of three volumes. (This the fourth subject in a series of eight performed in the Commercial Electric Power Cost Studies by the US NRC). The low-sulfur coal plant is described in Volumes I and II (this volume), while Volume III describes the high-sulfur coal plant. The design basis and cost estimate for the 801-MWe low-sulfur coal plant is presented in Volume I and the drawings, equipment list, and site description are contained in this document. The design basis, drawings, and summary cost estimate for a 794-MWe high-sulfur coal plant are presented in Volume III. This information was developed by redesigning the low-sulfur sub-bituminous coal plant for burning high-sulfur bituminous coal. The reference design includes a lime flue gas desulfurization system. These coal plants utilize a mechanical draft (wet) cooling tower system for condenser heat removal. Costs of alternate cooling systems are provided in Report No. 7 in this series of studies of costs of commercial electrical power plants.

  17. Capital cost: high and low sulfur coal plants-1200 MWe. [For low sulfur coal

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    This Commercial Electric Power Cost Study for 1200 MWe (Nominal) high and low sulfur coal plants consists of three volumes. The high sulfur coal plant is described in Volumes I and II, while Volume III describes the low sulfur coal plant. The design basis and cost estimate for the 1232 MWe high sulfur coal plant is presented in Volume I, and the drawings, equipment list and site description are contained in Volume II. The reference design includes a lime flue gas desulfurization system. A regenerative sulfur dioxide removal system using magnesium oxide is also presented as an alternate in Section 7 V olume II. The design basis, drawings and summary cost estimate for a 1243 MWe low sulfur coal plant are presented in Volume III. This information was developed by redesigning the high sulfur coal plant for burning low sulfur sub-bituminous coal. These coal plants utilize a mechanical draft (wet) cooling tower system for condenser heat removal. Costs of alternate cooling systems are provided in Report No. 7 in this series of studies of costs of commercial electrical power plants.

  18. Capital cost: high and low sulfur coal plants-1200 MWe. [High sulfur coal

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    This Commercial Electric Power Cost Study for 1200 MWe (Nominal) high and low sulfur coal plants consists of three volumes. The high sulfur coal plant is described in Volumes I and II, while Volume III describes the low sulfur coal plant. The design basis and cost estimate for the 1232 MWe high sulfur coal plant is presented in Volume I, and the drawings, equipment list and site description are contained in Volume II. The reference design includes a lime flue gas desulfurization system. A regenerative sulfur dioxide removal system using magnesium oxide is also presented as an alternate in Section 7 Volume II. The design basis, drawings and summary cost estimate for a 1243 MWe low sulfur coal plant are presented in Volume III. This information was developed by redesigning the high sulfur coal plant for burning low sulfur sub-bituminous coal. These coal plants utilize a mechanical draft (wet) cooling tower system for condenser heat removal. Costs of alternate cooling systems are provided in Report No. 7 in this series of studies of costs of commercial electrical power plants.

  19. Low-Cost Aqueous Coal Desulfurization

    Science.gov (United States)

    Kalvinskas, J. J.; Vasilakos, N.; Corcoran, W. H.; Grohmann, K.; Rohatgi, N. K.

    1982-01-01

    Water-based process for desulfurizing coal not only eliminates need for costly organic solvent but removes sulfur more effectively than an earlier solvent-based process. New process could provide low-cost commercial method for converting high-sulfur coal into environmentally acceptable fuel.

  20. Hydrogen from coal cost estimation guidebook

    Science.gov (United States)

    Billings, R. E.

    1981-01-01

    In an effort to establish baseline information whereby specific projects can be evaluated, a current set of parameters which are typical of coal gasification applications was developed. Using these parameters a computer model allows researchers to interrelate cost components in a sensitivity analysis. The results make possible an approximate estimation of hydrogen energy economics from coal, under a variety of circumstances.

  1. Gas to Coal Competition in the U.S. Power Sector

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-06-01

    With the newfound availability of natural gas due to the shale gas revolution in the United States, cheap gas now threatens coal’s longstanding position as the least costly fuel for generating electricity. But other factors besides cost come into play when deciding to switch from coal to gas. Electricity and gas transmission grid constraints, regulatory and contractual issues, as well as other factors determine the relative share of coal and gas in power generation. This paper analyzes competition between coal and gas for generating power in the United States and the factors explaining this dynamic. It also projects coal-to-gas switching in power generation for 18 states representing 75% of the surplus gas potential in the United States up to 2017, taking into consideration the impact of environmental legislation on retirement of coal-fired power plants.

  2. Cost-Benefit Analysis of Flexibility Retrofits for Coal and Gas-Fueled Power Plants: August 2012 - December 2013

    Energy Technology Data Exchange (ETDEWEB)

    Venkataraman, S. [GE Energy, Schenectady, NY (United States); Jordan, G. [GE Energy, Schenectady, NY (United States); O' Connor, M. [GE Energy, Schenectady, NY (United States); Kumar, N. [Intertek AIM, Sunnyvale, CA (United States); Lefton, S. [Intertek AIM, Sunnyvale, CA (United States); Lew, D. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Brinkman, G. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Palchak, D. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Cochran, J. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-12-01

    High penetrations of wind and solar power plants can induce on/off cycling and ramping of fossil-fueled generators. This can lead to wear-and-tear costs and changes in emissions for fossil-fueled generators. Phase 2 of the Western Wind and Solar Integration Study (WWSIS-2) determined these costs and emissions and simulated grid operations to investigate the full impact of wind and solar on the fossil-fueled fleet. This report studies the costs and benefits of retrofitting existing units for improved operational flexibility (i.e., capability to turndown lower, start and stop faster, and ramp faster between load set-points).

  3. Impacts of Coal Seam Gas (Coal Bed Methane) and Coal Mining on Water Resources in Australia

    Science.gov (United States)

    Post, D. A.

    2013-12-01

    Mining of coal bed methane deposits (termed ';coal seam gas' in Australia) is a rapidly growing source of natural gas in Australia. Indeed, expansion of the industry is occurring so quickly that in some cases, legislation is struggling to keep up with this expansion. Perhaps because of this, community concern about the impacts of coal seam gas development is very strong. Responding to these concerns, the Australian Government has recently established an Independent Expert Scientific Committee (IESC) to provide advice to the Commonwealth and state regulators on potential water-related impacts of coal seam gas and large coal mining developments. In order to provide the underlying science to the IESC, a program of ';bioregional assessments' has been implemented. One aim of these bioregional assessments is to improve our understanding of the connectivity between the impacts of coal seam gas extraction and groundwater aquifers, as well as their connection to surface water. A bioregional assessment can be defined as a scientific analysis of the ecology, hydrology, geology and hydrogeology of a bioregion, with explicit assessment of the potential direct, indirect and cumulative impacts of coal seam gas and large coal mining development on water resources. These bioregional assessments are now being carried out across large portions of eastern Australia which are underlain by coal reserves. This presentation will provide an overview of the issues related to the impacts of coal seam gas and coal mining on water resources in Australia. The methodology of undertaking bioregional assessments will be described, and the application of this methodology to six priority bioregions in eastern Australia will be detailed. Preliminary results of the program of research to date will be assessed in light of the requirements of the IESC to provide independent advice to the Commonwealth and State governments. Finally, parallels between the expansion of the industry in Australia with that

  4. Capital cost: low- and high-sulfur coal plants, 800 MWe

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    This Commercial Electric Power Cost Study for 800-MWe (Nominal) high- and low-sulfur coal plants consists of three volumes. The low-sulfur coal plant is described in Volumes I and II, while Volume III describes the high-sulfur coal plant. The design basis and cost estimate for the 801-MWe low sulfur coal plant is presented in Volume I, and the drawings, equimpment list, and site description are contained in Volume II. The design basis, drawings, and summary cost estimate for a 794-MWe high-sulfur coal plant are presented in Volume III. This information was developed by redesigning the low-sulfur sub-bituminous coal plant for burning high-sulfur bituminous coal. The reference design includes a lime flue-gas desulfurization system. These coal plants utilize a mechanical draft (wet) cooling tower system for condenser heat removal.

  5. Development of coal gasification and gas cleanup technologies in ICC, CAS[Institute of Coal Chemistry, Chinese Academy of Sciences

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yang; Zhang Jianmin; Huang Jiejie; Xu Yifeng; Chen Hanshi; Yang Jinquan; Cao Yan

    2000-07-01

    Coal is major energy resource in China. In 1997, about 75% of industrial and steam fuel, 65% of chemical feedstock raw material and 65% of the domestic fuel requirements came from coal. And according to the predictions, coal will continue to be the major energy source for the next 30{approximately}50 years. However, coal utilization has caused serious environmental problems, especially where the coal is directly burned. It was indicated from national statistics that in 1998, 70% of the total dust suspension, 80% of the SOx and 75% of the NOx in the air were originated from coal combustion. Today there is a need for China to consider how to meet its needs for increased coal utilization in the way that is cost effective, highly efficient and environmentally friendly. Coal gasification is one of the most efficient and clean coal technologies; it provides syngas for China's chemicals production, industrial fuel gas and town gas. However, the technologies used in China are rather out-of-date, although several units of modern entrained gasifiers are in operation for ammonia synthesis. Based on this situation and the process analysis, the Institute of Coal Chemistry, Chinese Academy of Sciences conducted the research and development of fluidized bed coal gasification technologies. And in order to meet the requirement of advanced power generation system, hot gas cleaning is also studied. This paper presents the status and further studies the planning.

  6. Copper-based sorbents for hot coal gas desulfurization systems

    Energy Technology Data Exchange (ETDEWEB)

    Abbasian, J.; Slimane, R.B.; Zarnegar, M.K. [Inst. of Gas Technology, Des Plaines, IL (United States)] [and others

    1997-07-01

    High-temperature coal gas desulfurization has been recognized as essential in the development of emerging power generation technologies such as the Integrated Gasification Combined Cycle (IGCC), aiming to improve both the efficiency and environmental performance of power generation from coal. Hot gas desulfurization may be accomplished by using regenerable mixed metal oxides sorbents which can reduce the H{sub 2}S content of the coal gas to a few ppmv over many sulfidation/regeneration cycles. The focus of much of the current research on hot gas desulfurization has been on the use of zinc-based sorbents. Although these sorbents have been the subject of extensive pilot-scale and process development work, zinc-based sorbents have been shown to suffer from sulfate formation and zinc volatilization, leading to sorbent degradation over multicycle use, increasing sorbent replacement costs and the overall cost of hot gas desulfurization processes. A novel copper-chromite sorbent has been developed at IGT for hot coal gas desulfurization under the sponsorship of the Illinois Clean Coal Institute (ICCI). Results obtained so far indicate that this sorbent, in granular form (i.e., CuCr-29), has a much higher attrition resistance compared to the commercial granular zinc titanate sorbent, as well as excellent desulfurization efficiency. Furthermore, unlike most zinc titanate sorbents, the reactivity of IGT`s CuCr-29 sorbent gradually and consistently improved during the 20 cycles tested. The sorbent preparation techniques developed at IGT have been applied to produce highly reactive and attrition resistant sorbent pellets for moving-bed applications.

  7. Coal fired flue gas mercury emission controls

    CERN Document Server

    Wu, Jiang; Pan, Weiguo; Pan, Weiping

    2015-01-01

    Mercury (Hg) is one of the most toxic heavy metals, harmful to both the environment and human health. Hg is released into the atmosphere from natural and anthropogenic sources and its emission control has caused much concern. This book introduces readers to Hg pollution from natural and anthropogenic sources and systematically describes coal-fired flue gas mercury emission control in industry, especially from coal-fired power stations. Mercury emission control theory and experimental research are demonstrated, including how elemental mercury is oxidized into oxidized mercury and the effect of

  8. Renewable vs. fossil electricity systems. A cost comparison. Power world 2050. Analysis of renewable, coal and gas-based electricity systems; Erneuerbare vs. fossile Stromsysteme. Ein Kostenvergleich. Stromwelten 2050. Analyse von Erneuerbaren, kohle- und gasbasierten Elektrizitaetssystemen

    Energy Technology Data Exchange (ETDEWEB)

    Graichen, Patrick; Kleiner, Mara Martha [Agora Energiewende, Berlin (Germany); Matthes, Felix Christian; Heinemann, Christoph [Oeko-Institut e.V. - Institut fuer Angewandte Oekologie, Berlin (Germany)

    2017-01-15

    The decarbonisation of the energy and, above all, the power system is the core component of any consistent climate protection strategy. For the electricity sector, this means, in the final analysis, the transition from a power supply based on lignite, hard coal, natural gas and other fossil fuels to one (almost) completely based on renewable energies by 2050. The fundamental technical feasibility of such a system, more than 90 percent of which would generate electricity from renewable energies, is no longer disputable today. The explanation for this is the partly rapid technological advances made in recent years, particularly those involving wind (on- and offshore) and solar energy, as well as the foreseeable further developments of central flexibility options (including flexible demand, battery storage and power-to-gas technologies). However, the question of the costs of this new electricity system has not yet been fully resolved. These cost calculations need to take into account, on the one hand, the total costs of an electricity system based on renewable energies and, on the other hand, the comparison to a power system that remains based on fossil fuels. Against this background, the present study provides a numerical analysis of the following questions: What are the technical and cost structures for a power system when 90 percent or more of the electricity is generated from renewable energies in 2050? How do the costs for different storage strategies (batteries vs. power-to-gas) differ? What technical, cost and emission structures result for a hypothetical fossil-based power system in 2050 if the further construction of electricity production plants based on wind and solar energy is immediately abandoned? How do the costs for various fossil-based power systems differ (conventional mix of lignite/hard coal/natural gas power plants vs. an electricity system based purely on natural gas)? For this purpose, a large number of model calculations with different

  9. Comparative cost estimates of five coal utilization processes

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    Detailed capital and operating cost estimates were prepared for the generation of electric power in a new, net 500 MW (e), coal-burning facility by five alternative processes: conventional boiler with no control of SO/sub 2/ emissions, atmospheric fluidized bed steam generator (AFB), conventional boiler equipped with a limestone FGD system, conventional boiler equipped with magnesia FGD system, and coal beneficiation followed by a conventional boiler quipped with limestone FGD for part of the flue gas stream. For a coal containing 3.5% sulfur, meeting SO/sub 2/ emission limits of 1.2 pounds per million Btu fired was most economical with the limestone FGD system. This result was unchanged for a coal containing 5% sulfur; however, for 2% sulfur, limestone FGD and AFB were competitive methods of controlling SO/sub 2/ emissions. Brief consideration of 90% reduction of SO/sub 2/ emissions led to the choice of limestone FGD as the most economical method. Byproduct credit for the sulfuric acid produced in regenerating the magnesia could make that system competitive with the limestone FGD system, depending upon local markets. The cost of sludge fixation and disposal would make limestone FGD noneconomic in many situations, if these steps are necessary.

  10. Fast and safe gas detection from underground coal fire by drone fly over.

    Science.gov (United States)

    Dunnington, Lucila; Nakagawa, Masami

    2017-10-01

    Underground coal fires start naturally or as a result of human activities. Besides burning away the important non-renewable energy resource and causing financial losses, burning coal seams emit carbon dioxide, carbon monoxide, sulfur oxide and methane, and is a leading cause of smog, acid rain, global warming, and air toxins. In the U.S. alone, the combined cost of coal-fire remediation projects that have been completed, budgeted, or projected by the U.S. Department of the Interior's Office of Surface Mining Remediation and Enforcement (OSM), exceeds $1 billion. It is estimated that these fires generate as much as 3% of the world's annual carbon dioxide emissions and consume as much as 5% of its minable coal. Considering the magnitude of environmental impact and economic loss caused by burning underground coal seams, we have developed a new, safe, reliable surface measurement of coal fire gases to assess the nature of underground coal fires. We use a drone mounted with gas sensors. Drone collected gas concentration data provides a safe alternative for evaluating the rank of a burning coal seam. In this study, a new method of determining coal rank by gas ratios is developed. Coal rank is valuable for defining parameters of a coal seam such as burn temperature, burn rate, and volume of burning seam. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Exploration drilling for pre-mining gas drainage in coal mines

    Science.gov (United States)

    Shubina, E. A.; Brylin, V. I.; Lukyanov, V. G.; Korotchenko, T. V.

    2015-02-01

    High natural gas content in coal seams and low gas drainage efficiency are the basic issues to be addressed in order to ensure coal mining safety. A great number of wells being drilled within various gas drainage techniques significantly increase the costs of coal mining and do not reduce the gas content levels within the coal beds up to the required parameters in a short period of time. The integrated approach toward exploration well spacing applied at the stage of project development could make it possible to consider coal seam data to provide more effective gas drainage not only ahead of mining but also during further gas content reduction and commercial production of methane. The comparative analysis of a closely spaced grid of exploration program compiled in accordance with the recommendations on applying mineral reserves classification and inferred resources of coal and shale coal deposits and currently effective stimulation radius proves the necessity and possibility to consider exploration well data for gas drainage. Pre-mining gas drainage could ensure the safety of mining operations.

  12. [Study on Microwave Co-Pyrolysis of Low Rank Coal and Circulating Coal Gas].

    Science.gov (United States)

    Zhou, Jun; Yang, Zhe; Liu, Xiao-feng; Wu, Lei; Tian, Yu-hong; Zhao, Xi-cheng

    2016-02-01

    The pyrolysis of low rank coal to produce bluecoke, coal tar and gas is considered to be the optimal method to realize its clean and efficient utilization. However, the current mainstream pyrolysis production technology generally has a certain particle size requirements for raw coal, resulting in lower yield and poorer quality of coal tar, lower content of effective components in coal gas such as H₂, CH₄, CO, etc. To further improve the yield of coal tar obtained from the pyrolysis of low rank coal and explore systematically the effect of microwave power, pyrolysis time and particle size of coal samples on the yield and composition of microwave pyrolysis products of low rank coal through the analysis and characterization of products with FTIR and GC-MS, introducing microwave pyrolysis of low rank coal into the microwave pyrolysis reactor circularly was suggested to carry out the co-pyrolysis experiment of the low rank coal and coal gas generated by the pyrolysis of low rank coal. The results indicated that the yield of the bluecoke and liquid products were up to 62.2% and 26.8% respectively when the optimal pyrolysis process conditions with the microwave power of 800W, pyrolysis time of 40 min, coal samples particle size of 5-10 mm and circulating coal gas flow rate of 0.4 L · min⁻¹ were selected. The infrared spectrogram of the bluecoke under different microwave power and pyrolysis time overlapped roughly. The content of functional groups with -OH, C==O, C==C and C−O from the bluecoke through the pyrolysis of particle size coal samples had a larger difference. To improve microwave power, prolonging pyrolysis time and reducing particle size of coal samples were conducive to converting heavy component to light one into coal tar.

  13. Future Impacts of Coal Distribution Constraints on Coal Cost

    OpenAIRE

    McCollum, David L

    2007-01-01

    After years of relatively slow growth, coal is undergoing a renaissance. Some 140 coal power plants are planned, and the Energy Information Administration (EIA) projects that the U.S. will consume almost 1,800 million tons of coal in 2030, up from about 1,150 million tons this year. In addition, while EIA’s estimates do not take coal-to-hydrogen production into consideration, several recent studies suggest that if the hydrogen economy ever comes to fruition coal could be a feedstock of choice...

  14. Advanced coal-fueled gas turbine systems

    Energy Technology Data Exchange (ETDEWEB)

    1991-09-01

    The combustion system discussed here incorporates a modular three- stage slagging combustor concept. Fuel-rich conditions inhibit NO{sub x} formation from fuel nitrogen in the first stage; also in the first stage, sulfur is captured with sorbent; coal ash and sulfated sorbent are removed from the combustion gases by inertial means in the second stage by the use of an impact separator and slagging cyclone separator in series. Final oxidation of the fuel-rich gases, and dilution to achieve the desired turbine inlet conditions are accomplished in the third stage, which is maintained sufficiently lean so that here, too, NO{sub x} formation is inhibited. The objective of this contract is to establish the technology required for subsequent commercial development and application by the private sector of utility-size direct coal-fueled gas turbines. Emissions from these units are to meet or be lower than the Environment Protection Agency's (EPA's) New Source Performance Standards (NSPS) for a pulverized coal-=fired steam turbine generator plant.

  15. Assessment of coal gasification/hot gas cleanup based advanced gas turbine systems

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-01

    The major objectives of the joint SCS/DOE study of air-blown gasification power plants with hot gas cleanup are to: (1) Evaluate various power plant configurations to determine if an air-blown gasification-based power plant with hot gas cleanup can compete against pulverized coal with flue gas desulfurization for baseload expansion at Georgia Power Company's Plant Wansley; (2) determine if air-blown gasification with hot gas cleanup is more cost effective than oxygen-blown IGCC with cold gas cleanup; (3) perform Second-Law/Thermoeconomic Analysis of air-blown IGCC with hot gas cleanup and oxygen-blown IGCC with cold gas cleanup; (4) compare cost, performance, and reliability of IGCC based on industrial gas turbines and ISTIG power island configurations based on aeroderivative gas turbines; (5) compare cost, performance, and reliability of large (400 MW) and small (100 to 200 MW) gasification power plants; and (6) compare cost, performance, and reliability of air-blown gasification power plants using fluidized-bed gasifiers to air-blown IGCC using transport gasification and pressurized combustion.

  16. Life-cycle greenhouse gas emissions of shale gas, natural gas, coal, and petroleum.

    Science.gov (United States)

    Burnham, Andrew; Han, Jeongwoo; Clark, Corrie E; Wang, Michael; Dunn, Jennifer B; Palou-Rivera, Ignasi

    2012-01-17

    The technologies and practices that have enabled the recent boom in shale gas production have also brought attention to the environmental impacts of its use. It has been debated whether the fugitive methane emissions during natural gas production and transmission outweigh the lower carbon dioxide emissions during combustion when compared to coal and petroleum. Using the current state of knowledge of methane emissions from shale gas, conventional natural gas, coal, and petroleum, we estimated up-to-date life-cycle greenhouse gas emissions. In addition, we developed distribution functions for key parameters in each pathway to examine uncertainty and identify data gaps such as methane emissions from shale gas well completions and conventional natural gas liquid unloadings that need to be further addressed. Our base case results show that shale gas life-cycle emissions are 6% lower than conventional natural gas, 23% lower than gasoline, and 33% lower than coal. However, the range in values for shale and conventional gas overlap, so there is a statistical uncertainty whether shale gas emissions are indeed lower than conventional gas. Moreover, this life-cycle analysis, among other work in this area, provides insight on critical stages that the natural gas industry and government agencies can work together on to reduce the greenhouse gas footprint of natural gas.

  17. The Clean Coal Technology Program 100 MWe demonstration of gas suspension absorption for flue gas desulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, F.E.; Hedenhag, J.G. [AirPol Inc., Teterboro, NJ (United States); Marchant, S.K.; Pukanic, G.W. [Dept. of Energy, Pittsburgh, PA (United States). Pittsburgh Energy Technology Center; Norwood, V.M.; Burnett, T.A. [Tennessee Valley Authority, Chattanooga, TN (United States)

    1997-12-31

    AirPol Inc., with the cooperation of the Tennessee Valley Authority (TVA) under a Cooperative Agreement with the United States Department of Energy, installed and tested a 10 MWe Gas Suspension Absorption (GSA) Demonstration system at TVA`s Shawnee Fossil Plant near Paducah, Kentucky. This low-cost retrofit project demonstrated that the GSA system can remove more than 90% of the sulfur dioxide from high-sulfur coal-fired flue gas, while achieving a relatively high utilization of reagent lime. This paper presents a detailed technical description of the Clean Coal Technology demonstration project. Test results and data analysis from the preliminary testing, factorial tests, air toxics texts, 28-day continuous demonstration run of GSA/electrostatic precipitator (ESP), and 14-day continuous demonstration run of GSA/pulse jet baghouse (PJBH) are also discussed within this paper.

  18. Impacts of Coal Seam Gas (Coal Bed Methane) Extraction on Water Resources in Australia

    Science.gov (United States)

    Post, David

    2014-05-01

    While extraction of methane from shale gas deposits has been the principal source of the recent expansion of the industry in the United States and potentially in Europe, extraction of methane from coal bed methane deposits (termed 'coal seam gas' in Australia) has been the focus in Australia. The two sources of methane share many of the same characteristics, with hydraulic fracturing generally (but not always) required to extract coal seam gas also. However, as coal seam gas deposits generally occur at shallower depths than shale gas, the potential impacts of extraction and hydraulic fracturing on surface and groundwater resources may be potentially of more concern for coal seam gas than for shale gas. To determine the potential for coal seam gas extraction (and coal mining more generally) to impact on water resources and water-related assets in Australia, the Commonwealth Government has recently established an Independent Expert Scientific Committee (the IESC) to provide advice to Commonwealth and State Government regulators on potential water-related impacts of coal seam gas and large coal mining developments. The IESC has in turn implemented a program of research termed 'bioregional assessments' to investigate these potential impacts. A bioregional assessment can be defined as a scientific analysis of the ecology, hydrology, geology and hydrogeology of a bioregion, with explicit assessment of the potential direct, indirect and cumulative impacts of coal seam gas and large coal mining development on water resources. These bioregional assessments are now being carried out across large portions of eastern Australia which are underlain by coal reserves. Further details of the program can be found at http://www.environment.gov.au/coal-seam-gas-mining/bioregional-assessments.html. This presentation will provide an overview of the issues related to the impacts of coal seam gas extraction on surface and groundwater resources and water-related assets in Australia. The

  19. Anode Interactions with Coal Gas Contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Marina, Olga A.; Coffey, Greg W.; Coyle, Christopher A.; Nguyen, Carolyn D.; Thomsen, Edwin C.; Pederson, Larry R.

    2008-08-13

    This report describes efforts to characterize the interactions nickel anodes with phosphorus in coal gas using three different button cell configurations to emphasize particular degradation modes. Important parameters addressed included contaminant concentration, temperature, reaction time, fuel utilization, and current density. In addition, coupon tests in flow-through and flow-by arrangements were conducted to complement cell tests. The studies have involved extensive electrochemical testing using both dc and ac methods. Post-test analyses to determine the composition and extent of nickel modification are particularly important to understanding reactions that have occurred. This report also provides a thermodynamic assessment of contaminant reactions with nickel in a coal gas environment with regard to alteration phase formation. Contaminants addressed were phosphorus, arsenic, sulfur, selenium, and antimony. Phosphorus was found to interact strongly with nickel and result in extensive alteration phase formation, consistent with expectations based on thermodynamic properties. Even in button cell tests where the fuel utilization was low, phosphorus was found to be nearly completely captured by the nickel anode. For anode-supported cells, an important degradation mode involved loss of electronic percolation, the result of nickel phosphide formation, grain growth, and inducement of micro-fractures within the anode support. Even with excessive anode support conversion, electrochemical degradation rates were often very low. This is attributed to a “shadowing effect,” whereby a dense structure such as current leads prevent phosphorus from reacting with the nickel directly underneath. This effect maintains an electrical pathway to the active interface, and allows the cell to operate with minimal degradation until the anode is essentially completely consumed. In a planar stack, ribs on the interconnect plate would be expected to provide this conductive pathway in the

  20. Evaluation of dense-phase ultrafine coal (DUC) as a fuel alternative for oil- and gas-designed boilers and heaters. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1986-12-01

    Utility and industrial firms currently using oil- and gas-fired boilers have an interest in substitution of coal for oil and gas as the primary boiler fuel. This interest stems from coal`s two main advantages over oil and gas-lower cost and security of supply. Recent efforts in the area of coal conversion have been directed to converting oil- and gas- fired boilers which were originally designed for coal-firing or were designed with some coal-firing capability. Boilers designed exclusively for oil- or gas-firing have not been considered viable candidates for coal conversion because they generally require a significant capacity derating and extensive and costly modifications. As a result, conversion of boilers in this class to coal-firing has generally been considered unattractive. Renewed interest in the prospects for converting boilers designed exclusively for oil- and gas-firing to coal firing has centered around the concept of using ``ultra fine`` coal as opposed to ``conventional grind`` pulverized coal. The main distinction being the finer particle size to which the former is ground. This fuel type may have characteristics which ameliorate many of the boiler problems normally associated with pulverized coal-firing. The overall concept for ultrafine coal utilization is based on a regional large preparation plant with distribution of a ready to fire fuel directly to many small users. This differs from normal practice in which final coal sizing is performed in pulverizers at the user`s site.

  1. Effects of Gas Pressure on the Failure Characteristics of Coal

    Science.gov (United States)

    Xie, Guangxiang; Yin, Zhiqiang; Wang, Lei; Hu, Zuxiang; Zhu, Chuanqi

    2017-07-01

    Several experiments were conducted using self-developed equipment for visual gas-solid coupling mechanics. The raw coal specimens were stored in a container filled with gas (99% CH4) under different initial gas pressure conditions (0.0, 0.5, 1.0, and 1.5 MPa) for 24 h prior to testing. Then, the specimens were tested in a rock-testing machine, and the mechanical properties, surface deformation and failure modes were recorded using strain gauges, an acoustic emission (AE) system and a camera. An analysis of the fractals of fragments and dissipated energy was performed to understand the changes observed in the stress-strain and crack propagation behaviour of the gas-containing coal specimens. The results demonstrate that increased gas pressure leads to a reduction in the uniaxial compression strength (UCS) of gas-containing coal and the critical dilatancy stress. The AE, surface deformation and fractal analysis results show that the failure mode changes during the gas state. Interestingly, a higher initial gas pressure will cause the damaged cracks and failure of the gas-containing coal samples to become severe. The dissipated energy characteristic in the failure process of a gas-containing coal sample is analysed using a combination of fractal theory and energy principles. Using the theory of fracture mechanics, based on theoretical analyses and calculations, the stress intensity factor of crack tips increases as the gas pressure increases, which is the main cause of the reduction in the UCS and critical dilatancy stress and explains the influence of gas in coal failure. More serious failure is created in gas-containing coal under a high gas pressure and low exterior load.

  2. Geological evaluation on productibility of coal seam gas; Coal seam gas no chishitsugakuteki shigen hyoka ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, K. [University of Shizuoka, Shizuoka (Japan). Faculty of Education

    1996-09-01

    Coal seam gas is also called coal bed methane gas, indicating the gas existing in coal beds. The gas is distinguished from the oil field based gas, and also called non-conventional type gas. Its confirmed reserve is estimated to be 24 trillion m {sup 3}, with the trend of its development seen worldwide as utilization of unused resource. For the necessity of cultivating relevant technologies in Japan, this paper considers processes of production, movement, stockpiling, and accumulation of the gas. Its productibility is controlled by thickness of a coal bed, degree of coalification, gas content, permeability, groundwater flow, and deposition structure. Gas generation potential is evaluated by existing conditions of coal and degree of coalification, and methane production by biological origin and thermal origin. Economically viable methane gas is mainly of the latter origin. Evaluating gas reserve potential requires identification of the whole mechanism of adsorption, accumulation and movement of methane gas. The gas is expected of effect on environmental aspects in addition to availability as utilization of unused energy. 5 figs.

  3. Nitrogen Injection To Flush Coal Seam Gas Out Of Coal: An Experimental Study

    Science.gov (United States)

    Zhang, Lei; Aziz, Naj; Ren, Ting; Nemcik, Jan; Tu, Shihao

    2015-12-01

    Several mines operating in the Bulli seam of the Sydney Basin in NSW, Australia are experiencing difficulties in reducing gas content within the available drainage lead time in various sections of the coal deposit. Increased density of drainage boreholes has proven to be ineffective, particularly in sections of the coal seam rich in CO2. Plus with the increasing worldwide concern on green house gas reduction and clean energy utilisation, significant attention is paid to develop a more practical and economical method of enhancing the gas recovery from coal seams. A technology based on N2 injection was proposed to flush the Coal Seam Gas (CSG) out of coal and enhance the gas drainage process. In this study, laboratory tests on CO2 and CH4 gas recovery from coal by N2 injection are described and results show that N2 flushing has a significant impact on the CO2 and CH4 desorption and removal from coal. During the flushing stage, it was found that N2 flushing plays a more effective role in reducing adsorbed CH4 than CO2. Comparatively, during the desorption stage, the study shows gas desorption after N2 flushing plays a more effective role in reducing adsorbed CO2 than CH4.

  4. Air extraction in gas turbines burning coal-derived gas

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Tah-teh; Agrawal, A.K.; Kapat, J.S.

    1993-11-01

    In the first phase of this contracted research, a comprehensive investigation was performed. Principally, the effort was directed to identify the technical barriers which might exist in integrating the air-blown coal gasification process with a hot gas cleanup scheme and the state-of-the-art, US made, heavy-frame gas turbine. The guiding rule of the integration is to keep the compressor and the expander unchanged if possible. Because of the low-heat content of coal gas and of the need to accommodate air extraction, the combustor and perhaps, the flow region between the compressor exit and the expander inlet might need to be modified. In selecting a compressed air extraction scheme, one must consider how the scheme affects the air supply to the hot section of the turbine and the total pressure loss in the flow region. Air extraction must preserve effective cooling of the hot components, such as the transition pieces. It must also ensure proper air/fuel mixing in the combustor, hence the combustor exit pattern factor. The overall thermal efficiency of the power plant can be increased by minimizing the total pressure loss in the diffusers associated with the air extraction. Therefore, a study of airflow in the pre- and dump-diffusers with and without air extraction would provide information crucial to attaining high-thermal efficiency and to preventing hot spots. The research group at Clemson University suggested using a Griffith diffuser for the prediffuser and extracting air from the diffuser inlet. The present research establishes that the analytically identified problems in the impingement cooling flow are factual. This phase of the contracted research substantiates experimentally the advantage of using the Griffith diffuser with air extraction at the diffuser inlet.

  5. Manometric determination of supercritical gas sorption in coal

    NARCIS (Netherlands)

    Van Hemert, P.

    2009-01-01

    The characteristics of the manometric method are investigated so that it can be used to obtain accurate data of sorption of supercritical gas in coal. Furthermore, data of the sorption of carbon dioxide, methane and nitrogen in coal at in situ conditions have been determined. Accurate data are

  6. Delivered costs of Western coal shipped on the Great Lakes versus Eastern coal for Eastern Great Lakes hinterland utility plants. With appendices on relative cost impacts of coal scrubbing and on other Western coal transport systems

    Energy Technology Data Exchange (ETDEWEB)

    Bertram, K.M.

    1979-02-01

    This report analyzes the present and projected delivered cost competitiveness of Great Lakes shipped, low sulfur Western coal with low and high sulfur Eastern coal at Eastern Great Lakes hinterland utility plants. Its findings are based upon detailed data acquired from appropriate transportation firms and four eastern utility companies which use or have studied using the appropriate coal types. Two appendices provide: (1) a tentative, preliminary analysis of this competition with additional costs required by likely EPA scrubbing (sulfur removal) requirements, and (2) background information on other Western coal transport systems. Briefly, the findings of this report are that if Western coal is shipped via the Great Lakes to utility plants in the eastern Great Lakes hinterlands (i.e., inland from ports up to 200 miles): currently, based upon delivered costs only, it cannot compete with any type of Eastern coal; by 1989, with favorable interim Western versus Eastern cost escalation rate advantages on minemouth coal and transportation costs, Western coal delivered costs can begin competing with those of Eastern low sulfur, but not high sulfur coal; by 1999, with favorable relative cost escalation rate advantages, Western coal's delivered costs can become substantially less expensive than Eastern low sulfur coal's, and just begin to be competitive with Eastern high sulfur coal's; extremely high Eastern rail costs due to port area system characteristics are the main cost factor driving Western coal delivered costs to uneconomic levels.

  7. Coal liquefaction and gas conversion: Proceedings. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-31

    Volume I contains papers presented at the following sessions: AR-Coal Liquefaction; Gas to Liquids; and Direct Liquefaction. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

  8. Full cost accounting for the life cycle of coal.

    Science.gov (United States)

    Epstein, Paul R; Buonocore, Jonathan J; Eckerle, Kevin; Hendryx, Michael; Stout Iii, Benjamin M; Heinberg, Richard; Clapp, Richard W; May, Beverly; Reinhart, Nancy L; Ahern, Melissa M; Doshi, Samir K; Glustrom, Leslie

    2011-02-01

    Each stage in the life cycle of coal-extraction, transport, processing, and combustion-generates a waste stream and carries multiple hazards for health and the environment. These costs are external to the coal industry and are thus often considered "externalities." We estimate that the life cycle effects of coal and the waste stream generated are costing the U.S. public a third to over one-half of a trillion dollars annually. Many of these so-called externalities are, moreover, cumulative. Accounting for the damages conservatively doubles to triples the price of electricity from coal per kWh generated, making wind, solar, and other forms of nonfossil fuel power generation, along with investments in efficiency and electricity conservation methods, economically competitive. We focus on Appalachia, though coal is mined in other regions of the United States and is burned throughout the world. © 2011 New York Academy of Sciences.

  9. Target costing as an element of the hard coal extraction cost planning process

    Directory of Open Access Journals (Sweden)

    Katarzyna Segeth-Boniecka

    2017-09-01

    Full Text Available Target costing as an element of the hard coal extraction cost planning process Striving for the efficiency of activities is of great significance in the management of hard coal extractive enterprises, which are constantly subjected to the process of restructuring. Effective cost management is an important condition of the increase in the efficiency of the researched business entities’ activity. One of the tools whose basic objective is conscious influencing cost levels is target costing. The aim of this article is to analyse the conditions of implementing target costing in the planning of hard coal extraction costs in hard coal mines in Poland. The subject area raises a topical and important problem of the scope of solutions concerning cost analysis in hard coal mines in Poland, which has not been thoroughly researched yet. To achieve the abovementioned aim, the theoretical works of the subject area have been referenced. The mine management process is difficult and requires the application of best suited and most modern tools, including those used in the planning process of hard coal extraction costs in order to support the economic efficiency of mining operations. The use of the target costing concept in the planning of hard coal mine operations aims to support the decision-making process, so as to achieve a specified level of economic efficiency of the operations carried out in a territorially designated site of hard coal extraction.

  10. A method of working a coal seam which has coal and gas outbursts

    Energy Technology Data Exchange (ETDEWEB)

    Batmanov, Y.K.; Bakhtin, A.F.; Mochseev, M.A.; Petukhov, I.M.; Saratikyants, S.A.; Voronin, V.A.

    1983-01-01

    The purpose of this invention is to reduce expenditures on the working of an outburst-prone formation. This is achieved by using the method of working a coal seam which is prone to coal and gas outbursts; this method involves local safety excavation in the protection formation and opening air passage and ventilation workings; the ventilation working proceeds through the formation which is prone to gas and coal outbursts, while the local protection excavation in the protection formation is performed on both sides of the air passage working simultaneously with the ventilation working which is connected occasionally to the air passage working by blind shafts.

  11. Advanced coal-fueled industrial cogeneration gas turbine system

    Energy Technology Data Exchange (ETDEWEB)

    LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; Wen, C.S.

    1991-07-01

    Advances in coal-fueled gas turbine technology over the past few years, together with recent DOE-METC sponsored studies, have served to provide new optimism that the problems demonstrated in the past can be economically resolved and that the coal-fueled gas turbine can ultimately be the preferred system in appropriate market application sectors. The objective of the Solar/METC program is to prove the technical, economic, and environmental feasibility of a coal-fired gas turbine for cogeneration applications through tests of a Centaur Type H engine system operated on coal fuel throughout the engine design operating range. The five-year program consists of three phases, namely: (1) system description; (2) component development; (3) prototype system verification. A successful conclusion to the program will initiate a continuation of the commercialization plan through extended field demonstration runs.

  12. Permeability changes in coal resulting from gas desorption

    Energy Technology Data Exchange (ETDEWEB)

    Levine, J.R.; Johnson, P.W.

    1992-11-30

    This report documents studies on the effects of gas sorption on coal, with the intent of eventually evaluating how sorption and strain affect permeability. These studies were, carried out at the University of Alabama during the period from 1989 through 1992. Two major experimental methods were developed and used. In the strain experiments, electronic strain gauges were attached to polished blocks of coal in order to measure linear and volumetric swelling due to gas sorption. The effects of bedding plane orientation, of gas type, and of coal type were investigated. In the gravimetric experiment the weight of small samples of coal was measured during exposure to high pressure gases. Sample measurements were corrected for buoyancy effects and for sample swelling, and the results were plotted in the form of Langmuir isotherms. Experiments were conducted to determine the effect of grain size, coal type, moisture, and of sorbant gas. The advantage of this method is that it can be applied to very small samples, and it enabled comparison liptinite versus vitrinite concentrates, and kerogen rich versus kerogen depleted oil shales. Also included is a detailed discussion of the makeup of coal and its effect on gas sorption behavior.

  13. Permeability changes in coal resulting from gas desorption. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Levine, J.R.; Johnson, P.W.

    1992-11-30

    This report documents studies on the effects of gas sorption on coal, with the intent of eventually evaluating how sorption and strain affect permeability. These studies were, carried out at the University of Alabama during the period from 1989 through 1992. Two major experimental methods were developed and used. In the strain experiments, electronic strain gauges were attached to polished blocks of coal in order to measure linear and volumetric swelling due to gas sorption. The effects of bedding plane orientation, of gas type, and of coal type were investigated. In the gravimetric experiment the weight of small samples of coal was measured during exposure to high pressure gases. Sample measurements were corrected for buoyancy effects and for sample swelling, and the results were plotted in the form of Langmuir isotherms. Experiments were conducted to determine the effect of grain size, coal type, moisture, and of sorbant gas. The advantage of this method is that it can be applied to very small samples, and it enabled comparison liptinite versus vitrinite concentrates, and kerogen rich versus kerogen depleted oil shales. Also included is a detailed discussion of the makeup of coal and its effect on gas sorption behavior.

  14. Externality costs of the coal-fuel cycle: The case of Kusile Power Station

    Directory of Open Access Journals (Sweden)

    Nonophile P. Nkambule

    2017-09-01

    Full Text Available Coal-based electricity is an integral part of daily life in South Africa and globally. However, the use of coal for electricity generation carries a heavy cost for social and ecological systems that goes far beyond the price we pay for electricity. We developed a model based on a system dynamics approach for understanding the measurable and quantifiable coal-fuel cycle burdens and externality costs, over the lifespan of a supercritical coal-fired power station that is fitted with a flue-gas desulfurisation device (i.e. Kusile Power Station. The total coal-fuel cycle externality cost on both the environment and humans over Kusile's lifespan was estimated at ZAR1 449.9 billion to ZAR3 279 billion or 91c/kWh to 205c/kWh sent out (baseline: ZAR2 172.7 billion or 136c/kWh. Accounting for the life-cycle burdens and damages of coal-derived electricity conservatively, doubles to quadruples the price of electricity, making renewable energy sources such as wind and solar attractive alternatives. Significance: The use of coal for electricity generation carries a heavy cost for social and ecological systems that goes far beyond the price we pay for electricity. The estimation of social costs is particularly important to the electric sector because of non-differentiation of electricity prices produced from a variety of sources with potentially very dissimilar environmental and human health costs. Because all electricity generation technologies are associated with undesirable side effects in their fuelcycle and lifespan, comprehensive comparative analyses of life-cycle costs of all power generation technologies is indispensable to guide the development of future energy policies in South Africa.

  15. Integrated coal preparation and CWF processing plant: Conceptual design and costing

    Energy Technology Data Exchange (ETDEWEB)

    McHale, E.T.; Paul, A.D.; Bartis, J.T. (Science Applications International Corp., McLean, VA (United States)); Korkmaz, M. (Roberts and Schaefer Co., Salt Lake City, UT (United States))

    1992-12-01

    At the request of the US Department of Energy (DOE), Pittsburgh Energy Technology Center, a study was conducted to provide DOE with a reliable, documented estimate of the cost of producing coal-water fuel (CWF). The approach to the project was to specify a plant capacity and location, identify and analyze a suitable coal, and develop a conceptual design for an integrated coal preparation and CWF processing plant. Using this information, a definitive costing study was then conducted, on the basis of which an economic and sensitivity analysis was performed utilizing a financial evaluation model to determine a price for CWF in 1992. The design output of the integrated plant is 200 tons of coal (dry basis) per hour. Operating at a capacity factor of 83 percent, the baseline design yields approximately 1.5 million tons per year of coal on a dry basis. This is approximately equivalent to the fuel required to continuously generate 500 MW of electric power. The CWF produced by the plant is intended as a replacement for heavy oil or gas in electric utility and large industrial boilers. The particle size distribution, particularly the top size, and the ash content of the coal in the CWF are specified at significantly lower levels than is commonly found in typical pulverized coal grinds. The particle top size is 125 microns (vs typically 300m[mu] for pulverized coal) and the coal ash content is 3.8 percent. The lower top size is intended to promote complete carbon burnout at less derating in boilers that are not designed for coal firing. The reduced mineral matter content will produce ash of very fine particle size during combustion, which leads to less impaction and reduced fouling of tubes in convective passages.

  16. Integrated coal preparation and CWF processing plant: Conceptual design and costing. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    McHale, E.T.; Paul, A.D.; Bartis, J.T. [Science Applications International Corp., McLean, VA (United States); Korkmaz, M. [Roberts and Schaefer Co., Salt Lake City, UT (United States)

    1992-12-01

    At the request of the US Department of Energy (DOE), Pittsburgh Energy Technology Center, a study was conducted to provide DOE with a reliable, documented estimate of the cost of producing coal-water fuel (CWF). The approach to the project was to specify a plant capacity and location, identify and analyze a suitable coal, and develop a conceptual design for an integrated coal preparation and CWF processing plant. Using this information, a definitive costing study was then conducted, on the basis of which an economic and sensitivity analysis was performed utilizing a financial evaluation model to determine a price for CWF in 1992. The design output of the integrated plant is 200 tons of coal (dry basis) per hour. Operating at a capacity factor of 83 percent, the baseline design yields approximately 1.5 million tons per year of coal on a dry basis. This is approximately equivalent to the fuel required to continuously generate 500 MW of electric power. The CWF produced by the plant is intended as a replacement for heavy oil or gas in electric utility and large industrial boilers. The particle size distribution, particularly the top size, and the ash content of the coal in the CWF are specified at significantly lower levels than is commonly found in typical pulverized coal grinds. The particle top size is 125 microns (vs typically 300m{mu} for pulverized coal) and the coal ash content is 3.8 percent. The lower top size is intended to promote complete carbon burnout at less derating in boilers that are not designed for coal firing. The reduced mineral matter content will produce ash of very fine particle size during combustion, which leads to less impaction and reduced fouling of tubes in convective passages.

  17. Analysis of CO2 Separation from Flue Gas, Pipeline Transportation, and Sequestration in Coal

    Energy Technology Data Exchange (ETDEWEB)

    Eric P. Robertson

    2007-09-01

    This report was written to satisfy a milestone of the Enhanced Coal Bed Methane Recovery and CO2 Sequestration task of the Big Sky Carbon Sequestration project. The report begins to assess the costs associated with separating the CO2 from flue gas and then injecting it into an unminable coal seam. The technical challenges and costs associated with CO2 separation from flue gas and transportation of the separated CO2 from the point source to an appropriate sequestration target was analyzed. The report includes the selection of a specific coal-fired power plant for the application of CO2 separation technology. An appropriate CO2 separation technology was identified from existing commercial technologies. The report also includes a process design for the chosen technology tailored to the selected power plant that used to obtain accurate costs of separating the CO2 from the flue gas. In addition, an analysis of the costs for compression and transportation of the CO2 from the point-source to an appropriate coal bed sequestration site was included in the report.

  18. Historical costs of coal-fired electricity and implications for the future

    OpenAIRE

    McNerney, James; Farmer, J. Doyne; Trancik, Jessika E.

    2010-01-01

    We study the costs of coal-fired electricity in the United States between 1882 and 2006 by decomposing it in terms of the price of coal, transportation costs, energy density, thermal efficiency, plant construction cost, interest rate, capacity factor, and operations and maintenance cost. The dominant determinants of costs have been the price of coal and plant construction cost. The price of coal appears to fluctuate more or less randomly while the construction cost follows long-term trends, d...

  19. Novel carbons from Illinois coal for natural gas storage. Technical report, March 1--May 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Rostam-Abadi, M.; Sun, Jian; Lizzio, A.A.

    1995-12-31

    Goal is to develop a technology for producing microengineered adsorbent carbons from Illinois coal and to evaluate their potential application for storing natural gas for use in emerging low pressure, natural gas vehicles (NGVs). Focus is to design and engineer adsorbents that meet or exceed performance and cost targets established for low-pressure natural gas storage materials. Potentially, about two million tons adsorbent could be consumed in NGVs by year 2000. If successful, the results could lead to use of Illinois coal in a market that could exceed 6 million tons per year. Activated carbon samples were prepared from IBC-106 coal by controlling both the preoxidation temperature and time, and the devolatilization temperature in order to eliminate coal caking. A 4.6 cc pressurized vessel was constructed to measure the Vm/Vs methane adsorption capacity (volume of stored methane at STP per volume storage container). Several IBC-106 derived activated carbons showed methane adsorption capacities comparable to that of a 1000 m{sup 2}/g commercial activated carbon. Results indicated that surface area and micropore volume of activated carbons are important for natural gas storage. Work is in progress to synthesize samples from IBC-106 coal with optimum pore diameter for methane adsorption.

  20. Impacts of Coal Seam Gas (Coal Bed Methane) Extraction on Water Resources in Australia

    Science.gov (United States)

    Post, David

    2017-04-01

    While extraction of methane from shale gas deposits has been the principal source of the recent expansion of the industry in the United States, in Australia extraction of methane from coal bed methane deposits (termed 'coal seam gas' in Australia) has been the focus to date. The two sources of methane share many of the same characteristics including the potential requirement for hydraulic fracturing. However, as coal seam gas deposits generally occur at shallower depths than shale gas, the potential impacts of extraction on surface and groundwater resources may be of even greater concern. In Australia, an Independent Expert Scientific Committee (IESC) has been established to provide scientific advice to federal and state government regulators on the impact that coal seam gas and large coal mining developments may have on water resources. This advice is provided to enable decisions to be informed by the best available science about the potential water-related impacts associated with these developments. To support this advice, the Australian Government Department of the Environment has implemented a programme of research termed 'bioregional assessments' to investigate these potential impacts. A bioregional assessment is defined as a scientific analysis of the ecology, hydrology, geology and hydrogeology of a bioregion with explicit assessment of the potential direct, indirect and cumulative impacts of coal seam gas and large coal mining development on water resources. These bioregional assessments are currently being carried out across large portions of eastern Australia underlain by coal reserves. Further details of the programme and results to date can be found at http://www.bioregionalassessments.gov.au. The bioregional assessment programme has modelled the impacts of coal seam gas development on surface and groundwater resources in three regions of eastern Australia, namely the Clarence-Moreton, Gloucester, and Namoi regions. This presentation will discuss the

  1. Solar coal gasification reactor with pyrolysis gas recycle

    Science.gov (United States)

    Aiman, William R.; Gregg, David W.

    1983-01-01

    Coal (or other carbonaceous matter, such as biomass) is converted into a duct gas that is substantially free from hydrocarbons. The coal is fed into a solar reactor (10), and solar energy (20) is directed into the reactor onto coal char, creating a gasification front (16) and a pyrolysis front (12). A gasification zone (32) is produced well above the coal level within the reactor. A pyrolysis zone (34) is produced immediately above the coal level. Steam (18), injected into the reactor adjacent to the gasification zone (32), reacts with char to generate product gases. Solar energy supplies the energy for the endothermic steam-char reaction. The hot product gases (38) flow from the gasification zone (32) to the pyrolysis zone (34) to generate hot char. Gases (38) are withdrawn from the pyrolysis zone (34) and reinjected into the region of the reactor adjacent the gasification zone (32). This eliminates hydrocarbons in the gas by steam reformation on the hot char. The product gas (14) is withdrawn from a region of the reactor between the gasification zone (32) and the pyrolysis zone (34). The product gas will be free of tar and other hydrocarbons, and thus be suitable for use in many processes.

  2. Evolution of temperature and gas composition in coal piles

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, J.L.; Romero, C.; Andres, J.M.; Schmal, D. [CSIC, Zaragoza (Spain). Instituto de Carboquimica

    1995-12-31

    The evolution of temperature and gas composition in coal piles was followed for eleven months at three different depths using special probes. For all the piles studied the slope exposed to the wind showed the most severe weathering. The kind of coal in the piles has a strong effect on the extent of the oxidation which can reach 300{degree}C. The analysis of gas evolution showed a strong correlation between oxygen and carbon monoxide concentrations, pointing to a combined pyrolysis-combustion process. 3 refs., 3 figs., 1 tab.

  3. Coal supply and cost under technological and environmental uncertainty

    Science.gov (United States)

    Chan, Melissa

    This thesis estimates available coal resources, recoverability, mining costs, environmental impacts, and environmental control costs for the United States under technological and environmental uncertainty. It argues for a comprehensive, well-planned research program that will resolve resource uncertainty, and innovate new technologies to improve recovery and environmental performance. A stochastic process and cost (constant 2005) model for longwall, continuous, and surface mines based on current technology and mining practice data was constructed. It estimates production and cost ranges within 5-11 percent of 2006 prices and production rates. The model was applied to the National Coal Resource Assessment. Assuming the cheapest mining method is chosen to extract coal, 250-320 billion tons are recoverable. Two-thirds to all coal resource can be mined at a cost less than 4/mmBTU. If U.S. coal demand substantially increases, as projected by alternate Energy Information Administration (EIA), resources might not last more than 100 years. By scheduling cost to meet EIA projected demand, estimated cost uncertainty increases over time. It costs less than 15/ton to mine in the first 10 years of a 100 year time period, 10-30/ton in the following 50 years, and 15-$90/ton thereafter. Environmental impacts assessed are subsidence from underground mines, surface mine pit area, erosion, acid mine drainage, air pollutant and methane emissions. The analysis reveals that environmental impacts are significant and increasing as coal demand increases. Control technologies recommended to reduce these impacts are backfilling underground mines, surface pit reclamation, substitution of robotic underground mining systems for surface pit mining, soil replacement for erosion, placing barriers between exposed coal and the elements to avoid acid formation, and coalbed methane development to avoid methane emissions during mining. The costs to apply these technologies to meet more stringent

  4. Small, modular, low-cost coal-fired power plants for the international market

    Energy Technology Data Exchange (ETDEWEB)

    Zauderer, B.; Frain, B.; Borck, B. [Coal Tech Corp., Merion Station, PA (United States); Baldwin, A.L. [Dept. of Energy, Pittsburgh, PA (United States). Pittsburgh Energy Technology Center

    1997-12-31

    This paper presents recent operating results of Coal Tech`s second generation, air cooled, slagging coal combustor, and its application to power plants in the 1 to 20 MW range. This 20 MMBtu/hour combustor was installed in a new demonstration plant in Philadelphia, PA in 1995. It contains the combustion components of a 1 MWe coal fired power plant, a 17,500 lb/hour steam boiler, coal storage and feed components, and stack gas cleanup components. The plant`s design incorporates improvements resulting from 2,000 hours of testing between 1987 and 1993 on a first generation, commercial scale, air cooled combustor of equal thermal rating. Since operations began in early 1996, a total of 51 days of testing have been successfully completed. Major results include durability of the combustor`s refractory wall, excellent combustion with high ash concentration in the fuel, removal of 95% to 100% of the slag in the combustor, very little ash deposition in the boiler, major reduction of in-plant parasitic power, and simplified power system control through the use of modular designs of sub-systems and computer control. Rapid fuel switching between oil, gas, and coal and turndown of up to a factor of three was accomplished. All these features have been incorporated in advanced coal fired plant designs in the 1 to 20 MWe range. Incremental capital costs are only $100 to $200/kW higher than comparable rated gas or oil fired steam generating systems. Most of its components and subsystems can be factory assembled for very rapid field installation. The low capital, low operating costs, fuel flexibility, and compatibility with very high ash fuels, make this power system very attractive in regions of the world having domestic supplies of these fuels.

  5. Enhanced recovery of unconventional gas. Volume II. The program. [Tight gas basins; Devonian shale; coal seams; geopressured aquifers

    Energy Technology Data Exchange (ETDEWEB)

    Kuuskraa, V.A.; Brashear, J.P.; Doscher, T.M.; Elkins, L.E.

    1978-10-01

    This study was conducted to assist public decision-makers in selecting among many choices to obtain new gas supplies by addressing 2 questions: 1) how severe is the need for additional future supplies of natural gas, and what is the economic potential of providing part of future supply through enhanced recovery from unconventional natural gas resources. The study also serves to assist the DOE in designing a cost-effective R and D program to stimulate industry to recover this unconventional gas and to produce it sooner. Tight gas basins, Devonian shale, methane from coal seams, and methane from geopressured aquifers are considered. It is concluded that unconventional sources, already providing about 1 Tcf per year, could provide from 3 to 4 Tcf in 1985 and from 6 to 8 Tcf in 1990 (at $1.75 and $3.00 per Mcf, respectively). However, even with these additions to supply, gas supply is projected to remain below 1977 usage levels. (DLC)

  6. Underground Coal Gasification: Rates of Post Processing Gas Transport

    Czech Academy of Sciences Publication Activity Database

    Soukup, Karel; Hejtmánek, Vladimír; Stanczyk, K.; Šolcová, Olga

    2014-01-01

    Roč. 68, č. 12 (2014), s. 1707-1715 ISSN 0366-6352 R&D Projects: GA MŠk 7C12017 Grant - others:RFCS(XE) RFCR-CT-2011-00002 Institutional support: RVO:67985858 Keywords : underground coal gasification * gas transport * textural properties Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.468, year: 2014

  7. Update on the REIPPPP, clean coal, nuclear, natural gas

    CSIR Research Space (South Africa)

    Milazi, Dominic

    2015-12-01

    Full Text Available text setting out South Africa’s electricity plan over the next 20 years. The document indicates timelines on the roll out of key supply side options such as renewable energy, the nuclear, natural gas and coal build programmes, as well as peaking...

  8. Coal liquefaction and gas conversion contractors review conference: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    This volume contains 55 papers presented at the conference. They are divided into the following topical sections: Direct liquefaction; Indirect liquefaction; Gas conversion (methane conversion); and Advanced research liquefaction. Papers in this last section deal mostly with coprocessing of coal with petroleum, plastics, and waste tires, and catalyst studies. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  9. Damage cost of the Dan River coal ash spill

    Science.gov (United States)

    A. Dennis Lemly

    2015-01-01

    The recent coal ash spill on the Dan River in North Carolina, USA has caused several negative effects on the environment and the public. In this analysis, I report a monetized value for these effects after the first 6 months following the spill. The combined cost of ecological damage, recreational impacts, effects on human health and consumptive use, and esthetic value...

  10. Acid-gas removal systems in coal gasification

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, D.K.

    1979-01-01

    A large number of acid-gas removal systems exist or are under development for the removal of H/sub 2/S and CO/sub 2/ from process gas streams. A few systems have been applied to coal conversion processes; others will require extrapolation of presently-proved commercial operation. The feed to the acid-gas removal system for the generic coal-to-ammonia facility is not well-defined; particularly for minor and trace constituents. This is particularly true in the case of newer gasification processes that may have significant economic advantages in the overall process when evaluated on a total systems analysis approach. A number of species that could be present in the gas fed to the acid-gas removal system are discussed; the design of that subprocess should consider the fate of these species from both an environmental and an economic standpoint. In an overall evaluation, it appears that acid-gas removal systems can be successfully applied in coal conversion; no technical obstacle has yet been discovered to restrict their application.

  11. How Much Leakage Renders the Greenhouse Gas Footprint of Natural Gas Equivalent to Coal?

    Science.gov (United States)

    Sanchez, N., II; Mays, D. C.

    2015-12-01

    Under ideal circumstances, generating electricity from natural gas releases approximately half the carbon dioxide-equivalent emissions of coal. However, because the primary component of natural gas (i.e., methane) is a potent greenhouse gas, accounting for leakage is crucial when considering natural gas as a bridge fuel. This presentation answers the question: How much leakage renders the greenhouse gas (GHG) footprint of natural gas equivalent to coal? To answer this question, we present a simple model that assumes the GHG footprint for each fuel is the sum of emissions from (1) electricity generation and (2) natural gas leakage. Emissions resulting from electricity generation are taken from published life-cycle assessments (LCAs). Emissions from natural gas leakage are estimated assuming that natural gas is 80% methane, which is converted to carbon dioxide-equivalent emissions using the Intergovernmental Panel on Climate Change's (IPCC's) global warming potential (GWP). One complication in using the GWP is its dependence on time horizon, where shorter time horizons penalize methane emissions more, and longer time horizons less. Specifically, the IPCC considers time horizons of 20, 100 and 500 years for comparison between the differing greenhouse gases. To explicitly account for the effect of time horizon, the results presented here are shown on a straightforward plot of GHG footprint versus time horizon for natural gas leakage rates of 0, 1, 2, 4, and 8%. This plot shows that natural gas leakage of 2.0% or 4.8% eliminates half of natural gas's GHG footprint advantage over coal at 20- or 100-year time horizons, respectively. Leakage of 3.9% or 9.1% completely eliminates the GHG footprint advantage over coal at 20- and 100-year time horizons, respectively. Results indicate that leakage control is essential for the electricity generated from the combustion of natural gas to create a smaller GHG footprint than the electricity generated from the combustion of coal.

  12. Environmental impacts of energy facilities: fuel cell technology compared with coal and conventional gas technology

    Science.gov (United States)

    Seip, Knut L.; Thorstensen, Bernt; Wang, Hagbarth

    We compare the environmental side effects of power plants based on fuel cell technology with the side effects of conventional electric power plants based on coal and natural gas. The environmental impact of a solid oxide fuel cell (SOFC) plant is very much less than that of a coal-fired plant (a factor of {1}/{300} for air pollution and a factor of {1}/{5} for water pollution). Compared with a conventional gas plant, impact is reduced by between 50 and 98%. Damage to cultural monuments and buildings is negligible from a fuel cell plant. Socioeconomic negative impacts are reduced by about 30% relative to conventional gas plants (aesthetics and noise) whereas employment is unaltered. Impact on health and safety is greatly reduced compared with that from coal-fired plants and is about 70% of that from conventional gas plants. Preliminary results suggest that society's willingness to pay (WTP) for clean air, and thereby better health, matches the cost of installing emission-reducing equipment on conventional power plants. There is probably an additional WTP for other benefits (e.g., decreased risk of global warming). Thus, the utility of very small emissions, lower CO 2 discharges, and other benefits from SOFC generators may compensate for the increased cost incurred in producing electricity by SOFC generators.

  13. Survey of stranded gas and delivered costs to Europe of selected gas resources

    Science.gov (United States)

    Attanasi, E.D.; Freeman, P.A.

    2011-01-01

    Two important trends affecting the expected growth of global gas markets are (1) the shift by many industrialized countries from coal-fired electricity generation to the use of natural gas to generate electricity and (2) the industrialization of the heavily populated Asian countries of India and China. This paper surveys discovered gas in stranded conventional gas accumulations and presents estimates of the cost of developing and producing stranded gas in selected countries. Stranded gas is natural gas in discovered or identified fields that is not currently commercially producible for either physical or economic reasons. Published reserves of gas at the global level do not distinguish between volumes of gas in producing fields and volumes in nonproducing fields. Data on stranded gas reported here-that is the volumes, geographical distribution, and size distributions of stranded gas fields at the country and regional level-are based on the examination of individual-field data and represent a significant improvement in information available to industry and government decision makers. Globally, stranded gas is pervasive, but large volumes in large accumulations are concentrated in only a few areas. The cost component of the paper focuses on stranded conventional gas accumulations in Africa and South America that have the potential to augment supplies to Europe. The methods described for the computation of extraction and transport costs are innovative in that they use information on the sizes and geographical distribution of the identified stranded gas fields. The costs are based on industry data specific to the country and geologic basin where the stranded gas is located. Gas supplies to Europe can be increased significantly at competitive costs by the development of stranded gas. Net extraction costs of producing the identified gas depend critically on the natural-gas-liquids (NGLs) content, the prevailing prices of liquids, the size of the gas accumulation, and the

  14. Study on gas permeability coefficient measurement of coal seam by radial flow method

    Science.gov (United States)

    Zhang, Shuchuan

    2017-08-01

    For the accurate measurement of the coal seam permeability coefficient, the application range of the coal seam permeability coefficient was studied under various gas flow conditions with the guidance of the coal seam gas flow theory. Adopting the radial flow method, the measurement and calculation of the permeability coefficient of the coal seam C13-1 in Xinji No.1 Coal Mine shows that the permeability coefficient of the original coal seam C13-1 is less than 0.1, and the coal seam is difficult to extract.

  15. Evaluation of catalytic combustion of actual coal-derived gas

    Science.gov (United States)

    Blanton, J. C.; Shisler, R. A.

    1982-01-01

    The combustion characteristics of a Pt-Pl catalytic reactor burning coal-derived, low-Btu gas were investigated. A large matrix of test conditions was explored involving variations in fuel/air inlet temperature and velocity, reactor pressure, and combustor exit temperature. Other data recorded included fuel gas composition, reactor temperatures, and exhaust emissions. Operating experience with the reactor was satisfactory. Combustion efficiencies were quite high (over 95 percent) over most of the operating range. Emissions of NOx were quite high (up to 500 ppm V and greater), owing to the high ammonia content of the fuel gas.

  16. Thermodynamic Changes in the Coal Matrix - Gas - Moisture System Under Pressure Release and Phase Transformations of Gas Hydrates

    Science.gov (United States)

    Dyrdin, V. V.; Smirnov, V. G.; Kim, T. L.; Manakov, A. Yu.; Fofanov, A. A.; Kartopolova, I. S.

    2017-06-01

    The physical processes occurring in the coal - natural gas system under the gas pressure release were studied experimentally. The possibility of gas hydrates presence in the inner space of natural coal was shown, which decomposition leads to an increase in the amount of gas passing into the free state. The decomposition of gas hydrates can be caused either by the seam temperature increase or the pressure decrease to lower than the gas hydrates equilibrium curve. The contribution of methane released during gas hydrates decomposition should be taken into account in the design of safe mining technologies for coal seams prone to gas dynamic phenomena.

  17. An intelligent emissions controller for fuel lean gas reburn in coal-fired power plants.

    Science.gov (United States)

    Reifman, J; Feldman, E E; Wei, T Y; Glickert, R W

    2000-02-01

    The application of artificial intelligence techniques for performance optimization of the fuel lean gas reburn (FLGR) system is investigated. A multilayer, feedforward artificial neural network is applied to model static nonlinear relationships between the distribution of injected natural gas into the upper region of the furnace of a coal-fired boiler and the corresponding oxides of nitrogen (NOx) emissions exiting the furnace. Based on this model, optimal distributions of injected gas are determined such that the largest NOx reduction is achieved for each value of total injected gas. This optimization is accomplished through the development of a new optimization method based on neural networks. This new optimal control algorithm, which can be used as an alternative generic tool for solving multidimensional nonlinear constrained optimization problems, is described and its results are successfully validated against an off-the-shelf tool for solving mathematical programming problems. Encouraging results obtained using plant data from one of Commonwealth Edison's coal-fired electric power plants demonstrate the feasibility of the overall approach. Preliminary results show that the use of this intelligent controller will also enable the determination of the most cost-effective operating conditions of the FLGR system by considering, along with the optimal distribution of the injected gas, the cost differential between natural gas and coal and the open-market price of NOx emission credits. Further study, however, is necessary, including the construction of a more comprehensive database, needed to develop high-fidelity process models and to add carbon monoxide (CO) emissions to the model of the gas reburn system.

  18. An analysis of cost effective incentives for initial commercial deployment of advanced clean coal technologies

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, D.F. [SIMTECHE, Half Moon Bay, CA (United States)

    1997-12-31

    This analysis evaluates the incentives necessary to introduce commercial scale Advanced Clean Coal Technologies, specifically Integrated Coal Gasification Combined Cycle (ICGCC) and Pressurized Fluidized Bed Combustion (PFBC) powerplants. The incentives required to support the initial introduction of these systems are based on competitive busbar electricity costs with natural gas fired combined cycle powerplants, in baseload service. A federal government price guarantee program for up to 10 Advanced Clean Coal Technology powerplants, 5 each ICGCC and PFBC systems is recommended in order to establish the commercial viability of these systems by 2010. By utilizing a decreasing incentives approach as the technologies mature (plants 1--5 of each type), and considering the additional federal government benefits of these plants versus natural gas fired combined cycle powerplants, federal government net financial exposure is minimized. Annual net incentive outlays of approximately 150 million annually over a 20 year period could be necessary. Based on increased demand for Advanced Clean Coal Technologies beyond 2010, the federal government would be revenue neutral within 10 years of the incentives program completion.

  19. Bioconversion of coal-derived synthesis gas to liquid fuels. [Butyribacterium methylotrophicum

    Energy Technology Data Exchange (ETDEWEB)

    Jain, M.K.

    1991-01-01

    The use of coal-derived synthesis gas as an industrial feedstock for production of fuels and chemicals has become an increasingly attractive alternative to present petroleum-based chemicals production. However, one of the major limitations in developing such a process is the required removal of catalyst poisons such as hydrogen sulfide (H{sub 2}S), carbonyl sulfide (COS), and other trace contaminants from the synthesis gas. Purification steps necessary to remove these are energy intensive and add significantly to the production cost, particularly for coals having a high sulfur content such as Illinois coal. A two-stage, anaerobic bioconversion process requiring little or no sulfur removal is proposed, where in the first stage the carbon monoxide (CO) gas is converted to butyric and acetic acids by the CO strain of Butyribacterium methylotrophicum. In the second stage, these acids along with the hydrogen (H{sub 2}) gas are converted to butanol, ethanol, and acetone by an acid utilizing mutant of Clostridium acetobutylicum. 18 figs., 18 tabs.

  20. Ni/YSZ Anode Interactions with Impurities in Coal Gas

    Energy Technology Data Exchange (ETDEWEB)

    Marina, Olga A.; Pederson, Larry R.; Coyle, Christopher A.; Thomsen, Edwin C.; Coffey, Greg W.

    2009-10-16

    Performance of solid oxide fuel cell (SOFC) with nickel/zirconia anodes on synthetic coal gas in the presence of low levels of phosphorus, arsenic, selenium, sulfur, hydrogen chloride, and antimony impurities were evaluated. The presence of phosphorus and arsenic led to the slow and irreversible SOFC degradation due to the formation of secondary phases with nickel, particularly close to the gas inlet. Phosphorus and antimony surface adsorption layers were identified as well. Hydrogen chloride and sulfur interactions with the nickel were limited to the surface adsorption only, whereas selenium exposure also led to the formation of nickel selenide for highly polarized cells.

  1. Membrane Process to Capture CO{sub 2} from Coal-Fired Power Plant Flue Gas

    Energy Technology Data Exchange (ETDEWEB)

    Merkel, Tim; Wei, Xiaotong; Firat, Bilgen; He, Jenny; Amo, Karl; Pande, Saurabh; Baker, Richard; Wijmans, Hans; Bhown, Abhoyjit

    2012-03-31

    This final report describes work conducted for the U.S. Department of Energy National Energy Technology Laboratory (DOE NETL) on development of an efficient membrane process to capture carbon dioxide (CO{sub 2}) from power plant flue gas (award number DE-NT0005312). The primary goal of this research program was to demonstrate, in a field test, the ability of a membrane process to capture up to 90% of CO{sub 2} in coal-fired flue gas, and to evaluate the potential of a full-scale version of the process to perform this separation with less than a 35% increase in the levelized cost of electricity (LCOE). Membrane Technology and Research (MTR) conducted this project in collaboration with Arizona Public Services (APS), who hosted a membrane field test at their Cholla coal-fired power plant, and the Electric Power Research Institute (EPRI) and WorleyParsons (WP), who performed a comparative cost analysis of the proposed membrane CO{sub 2} capture process. The work conducted for this project included membrane and module development, slipstream testing of commercial-sized modules with natural gas and coal-fired flue gas, process design optimization, and a detailed systems and cost analysis of a membrane retrofit to a commercial power plant. The Polaris? membrane developed over a number of years by MTR represents a step-change improvement in CO{sub 2} permeance compared to previous commercial CO{sub 2}-selective membranes. During this project, membrane optimization work resulted in a further doubling of the CO{sub 2} permeance of Polaris membrane while maintaining the CO{sub 2}/N{sub 2} selectivity. This is an important accomplishment because increased CO{sub 2} permeance directly impacts the membrane skid cost and footprint: a doubling of CO{sub 2} permeance halves the skid cost and footprint. In addition to providing high CO{sub 2} permeance, flue gas CO{sub 2} capture membranes must be stable in the presence of contaminants including SO{sub 2}. Laboratory tests showed no

  2. Energy, exergy and environmental quality of hard coal and natural gas in whole life cycle concerning home heating

    Directory of Open Access Journals (Sweden)

    Pikon Krzysztof

    2016-01-01

    Full Text Available The use of coal is suspected to have high environmental impact. Natural gas is treated as more environmentally friendly with high methane content and lower emission factors. In order to calculate the environmental impact in the whole life cycle associated with combustion of coal and natural gas all stages from “cradle to grave” should be taken into account. In particular, the transportation stage, especially in the case of life cycle analysis of gas, seems to be crucial. The distance of transmission of gas from gas fields, for instance located in Siberia, could be mainly associated with high diffuse emission of methane. The comparison of environmental impact assessment of coal and natural gas utilization for heating purposes is presented in the paper. The additional factor taken into account is localisation of boilers. In the analysis the coal is sombusted in combined heat and power plants equipped with flue gas treatment units is that released emissions are relatively remote from an urban area. In contrast, the natural gas is burned in small domestic installations with no additional FGT systems. The results of the analysis are given in 6 major impact categories. Moreover, the results of the life cycle analysis were brought into comprehensive thermo-ecological cost index, which is a cumulated exergy consumption of non-renewable resources. The results presented in the paper refer to the contemporary problem of the choice of energy sources in the context of its overall environmental efficiency.

  3. Biomass gasification chars for mercury capture from a simulated flue gas of coal combustion.

    Science.gov (United States)

    Fuente-Cuesta, A; Diaz-Somoano, M; Lopez-Anton, M A; Cieplik, M; Fierro, J L G; Martínez-Tarazona, M R

    2012-05-15

    The combustion of coal can result in trace elements, such as mercury, being released from power stations with potentially harmful effects for both human health and the environment. Research is ongoing to develop cost-effective and efficient control technologies for mercury removal from coal-fired power plants, the largest source of anthropogenic mercury emissions. A number of activated carbon sorbents have been demonstrated to be effective for mercury retention in coal combustion power plants. However, more economic alternatives need to be developed. Raw biomass gasification chars could serve as low-cost sorbents for capturing mercury since they are sub-products generated during a thermal conversion process. The aim of this study was to evaluate different biomass gasification chars as mercury sorbents in a simulated coal combustion flue gas. The results were compared with those obtained using a commercial activated carbon. Chars from a mixture of paper and plastic waste showed the highest retention capacity. It was found that not only a high carbon content and a well developed microporosity but also a high chlorine content and a high aluminium content improved the mercury retention capacity of biomass gasification chars. No relationship could be inferred between the surface oxygen functional groups and mercury retention in the char samples evaluated. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Novel carbons from Illinois coal for natural gas storage. Quarterly report, 1 December 1994--28 February 1995

    Energy Technology Data Exchange (ETDEWEB)

    Rostam-Abadi, M.; Sun, Jian; Lizzio, A.A. [Illinois State Geological Survey, Urbana, IL (United States); Fatemi, M. [Sperry Univac, St. Paul, MN (United States)

    1995-12-31

    The goal of this project is to develop a technology for producing microengineered adsorbent carbons from Illinois coal and to evaluate the potential application of these novel materials for storing natural gas for use in emerging low pressure, natural gas vehicles (NGV). The focus of the project is to design and engineer adsorbents that meet or exceed the performance and cost targets established for low-pressure natural gas storage materials. Potentially, about two million tons of adsorbent could be consumed in natural gas vehicles by year 2000. If successful, the results obtained in this project could lead to the use of Illinois coal in a sowing and profitable market that could exceed 6 million tons per year. During this reporting period, a series of experiments were made to evaluate the effect of coal pre-oxidation, coal pyrolysis, and char activation on the surface area development and methane adsorption capacity of activated carbons/chars made from IBC-102. The optimum production conditions were determined to be: coal oxidation in air at 225C, oxicoal (oxidized coal); devolatilization in nitrogen at 400C; and char gasification in 50% steam in nitrogen at 850C. Nitrogen BET surface areas of the carbon products ranged from 800--1100 m{sup 2}/g. Methane adsorption capacity of several Illinois coal derived chars and a 883 m{sup 2}/g commercial activated carbon were measured using a pressurized thermogaravimetric analyzer at pressures up to 500 psig. Methane adsorption capacity (g/g) of the chars were comparable to that of the commercial activated carbon manufactured by Calgon Carbon. It was determined that the pre-oxidation is a key processing step for producing activated char/carbon with high surface area and high methane adsorption capacity. The results to date are encouraging and warrant further research and development in tailored activated char from Illinois coal for natural gas storage.

  5. Coal/Biomass cogasification and high temperature gas cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Kiel, J.H.A.; Bos, A.; Den Uil, H.; Plaum, J.M.

    1995-08-01

    This paper reports on the cogasification of coal and biomass in a downdraught fixed-bed gasifier and on the high temperature removal of halides from the fuel gas produced. Air-blown downdraught gasifiers are considered as an interesting option especially for small and intermediate scale on-site fuel gas generation using high volatile feedstocks. The current test programme conducted with a 300 kW{sub th} downdraught gasifier at the Netherlands Energy Research Foundation (ECN) was focused on the effect of the partial replacement of the coal feedstock by two different biomass feedstocks, viz. Meranti wood waste and straw pellets (Danish winter wheat), on gasifier operability and fuel gas composition. For dry halide removal, several sorbents were evaluated based on literature data, thermodynamic calculations, and on laboratory and bench-scale experiments at atmospheric pressure. The evaluation was mainly focused on dry halide removal at a temperature level of 350-400C in a separate process located upstream of the desulphurisation process in an integrated system for high temperature gas cleaning. 8 figs., 11 tabs., 11 refs.

  6. Adsorption-induced coal swelling and stress: Implications for methane production and acid gas sequestration into coal seams

    Science.gov (United States)

    Cui, Xiaojun; Bustin, R. Marc; Chikatamarla, Laxmi

    2007-10-01

    Sequestration of CO2 and H2S into deep unminable coal seams is an attractive option to reduce their emission into atmosphere and at the same time displace preadsorbed CH4 which is a clean energy resource. High coal seam permeability is required for efficient and practical sequestration of CO2 and H2S and recovery of CH4. However, adsorption of CO2 and H2S into coals induces strong swelling of the coal matrix (volumetric strain) and thus reduces significantly coal permeability by narrowing and even closing fracture apertures. Our experimental data on three western Canadian coals show that the adsorption-induced volumetric strain is approximately linearly proportional to the volume of adsorbed gas, and for the same gas, different coals have very similar volumetric strain coefficient. Impacts of adsorption-induced swelling on stress and permeability around wellbores were analytically investigated using our developed stress and permeability models. Our model results indicate that adsorption-induced volumetric strain has significant controls on stress and permeability of producing and sequestrating coal seams and consequently the potential of acid gas sequestration. Coal seams may undergo >10 times enhancement of permeability around CH4-producing wellbores due to a reduction in effective stress as a result of coal shrinking caused by methane desorption accompanying a reduction in reservoir pressure. Injection of H2S and CO2 on the other hand results in strong sorption-induced swelling and a marked increase in effective stress which in turn leads to a reduction of coal seam permeability of up to several orders of magnitude. Injection of mixtures of N2 and CO2 such as found in flue gas results in weaker swelling, the amount of which varies with gas composition, and provides the greatest opportunity of sequestering CO2 and secondary recovery of CH4 for most coals. Because of the marked swelling of coal in the presence of H2S, even minor amounts of H2S result in a marked

  7. Next Generation Pressurized Oxy-Coal Combustion: High Efficiency and No Flue Gas Recirculation

    Energy Technology Data Exchange (ETDEWEB)

    Rue, David

    2013-09-30

    The Gas Technology Institute (GTI) has developed a pressurized oxy-coal fired molten bed boiler (MBB) concept, in which coal and oxygen are fired directly into a bed of molten coal slag through burners located on the bottom of the boiler and fired upward. Circulation of heat by the molten slag eliminates the need for a flue gas recirculation loop and provides excellent heat transfer to steam tubes in the boiler walls. Advantages of the MBB technology over other boilers include higher efficiency (from eliminating flue gas recirculation), a smaller and less expensive boiler, modular design leading to direct scalability, decreased fines carryover and handling costs, smaller exhaust duct size, and smaller emissions control equipment sizes. The objective of this project was to conduct techno-economic analyses and an engineering design of the MBB project and to support this work with thermodynamic analyses and oxy-coal burner testing. Techno-economic analyses of GTI’s pressurized oxy-coal fired MBB technology found that the overall plant with compressed CO2 has an efficiency of 31.6%. This is a significant increase over calculated 29.2% efficiency of first generation oxy-coal plants. Cost of electricity (COE) for the pressurized MBB supercritical steam power plant with CO2 capture and compression was calculated to be 134% of the COE for an air-coal supercritical steam power plant with no CO2 capture. This compares positively with a calculated COE for first generation oxy-coal supercritical steam power plants with CO2 capture and compression of 164%. The COE for the MBB power plant is found to meet the U.S. Department of Energy (DOE) target of 135%, before any plant optimization. The MBB power plant was also determined to be simpler than other oxy-coal power plants with a 17% lower capital cost. No other known combustion technology can produce higher efficiencies or lower COE when CO2 capture and compression are included. A thermodynamic enthalpy and exergy analysis

  8. Greenhouse gas emissions from shale gas and coal for electricity generation in South Africa

    Directory of Open Access Journals (Sweden)

    Brett Cohen

    2014-03-01

    Full Text Available There is increased interest, both in South Africa and globally, in the use of shale gas for electricity and energy supply. The exploitation of shale gas is, however, not without controversy, because of the reported environmental impacts associated with its extraction. The focus of this article is on the greenhouse gas footprint of shale gas, which some literature suggests may be higher than what would have been expected as a consequence of the contribution of fugitive emissions during extraction, processing and transport. Based on some studies, it has been suggested that life-cycle emissions may be higher than those from coal-fired power. Here we review a number of studies and analyse the data to provide a view of the likely greenhouse gas emissions from producing electricity from shale gas, and compare these emissions to those of coal-fired power in South Africa. Consideration was given to critical assumptions that determine the relative performance of the two sources of feedstock for generating electricity � that is the global warming potential of methane and the extent of fugitive emissions. The present analysis suggests that a 100-year time horizon is appropriate in analysis related to climate change, over which period the relative contribution is lower than for shorter periods. The purpose is to limit temperature increase in the long term and the choice of metric should be appropriate. The analysis indicates that, regardless of the assumptions about fugitive emissions and the period over which global warming potential is assessed, shale gas has lower greenhouse gas emissions per MWh of electricity generated than coal. Depending on various factors, electricity from shale gas would have a specific emissions intensity between 0.3 tCO2/MWh and 0.6 tCO2/MWh, compared with about 1 tCO2/MWh for coal-fired electricity in South Africa.

  9. Coal-Packed Methane Biofilter for Mitigation of Green House Gas Emissions from Coal Mine Ventilation Air

    Science.gov (United States)

    Limbri, Hendy; Gunawan, Cindy; Thomas, Torsten; Smith, Andrew; Scott, Jason; Rosche, Bettina

    2014-01-01

    Methane emitted by coal mine ventilation air (MVA) is a significant greenhouse gas. A mitigation strategy is the oxidation of methane to carbon dioxide, which is approximately twenty-one times less effective at global warming than methane on a mass-basis. The low non-combustible methane concentrations at high MVA flow rates call for a catalytic strategy of oxidation. A laboratory-scale coal-packed biofilter was designed and partially removed methane from humidified air at flow rates between 0.2 and 2.4 L min−1 at 30°C with nutrient solution added every three days. Methane oxidation was catalysed by a complex community of naturally-occurring microorganisms, with the most abundant member being identified by 16S rRNA gene sequence as belonging to the methanotrophic genus Methylocystis. Additional inoculation with a laboratory-grown culture of Methylosinus sporium, as investigated in a parallel run, only enhanced methane consumption during the initial 12 weeks. The greatest level of methane removal of 27.2±0.66 g methane m−3 empty bed h−1 was attained for the non-inoculated system, which was equivalent to removing 19.7±2.9% methane from an inlet concentration of 1% v/v at an inlet gas flow rate of 1.6 L min−1 (2.4 min empty bed residence time). These results show that low-cost coal packing holds promising potential as a suitable growth surface and contains methanotrophic microorganisms for the catalytic oxidative removal of methane. PMID:24743729

  10. Coal and the Present Energy Situation: Abundant coal reserves can be used to alleviate the oil and gas shortage.

    Science.gov (United States)

    Osborn, E F

    1974-02-08

    To summarize, we must make greater use of coal, an energy resource that the nation has in great abundance, if we are to approach our former position of self-sufficiency in energy production. The first step is to move immediately to replace the oil and gas used in electric generating plants with coal and to require that coal be used in fossil fuel electric plants planned or under construction in the next few years. The technology to remove sulfur and particulates from the stack gases is at hand, and therefore environmental regulations can be met. Producing and transporting the required increased tonnages of coal are problems that can be met with appropriate incentives to the coal and transportation industries. Improved mining technology would be helpful but is not a requiremlent. Oil and gas from coal should be in significant commercial production in about a decade. Underground, or in situ, gasification of coal, now in field tests, looks promising as a practical process for recovering the energy from coal, especially in deep or thick beds that cannot be mined efficiently. Recoverable methane occurs in coal beds in the United States in an amount approximately equal to the total reserves of natural gas-about 260 trillion cubic feet. This large reserve of natural gas should be exploited as quickly as possible. Only minor investments in exploration and modest advances in technology are required. Finally, as coal production is expanded. adequate planning and the most modern technology should be used to ensure that coal is extracted with maximum recovery and with minimum damage to the environment.

  11. Elusive prize: enormous coal gas potential awaits production technology breakthrough

    Energy Technology Data Exchange (ETDEWEB)

    Collison, M.

    2002-01-07

    The expanded gas pipeline grid has excess capacity, and gas resources are declining. There is increasing interest in development of Canada's resources of coalbed methane (CBM). The chairman of the Canadian Coalbed Methane Forum estimates that Canada has more than 3,000 trillion ft{sup 3} of gas awaiting suitable technology. PanCanadian and MGV Energy conducted a CBM exploration and pilot study on the Palliser spread in southern Alberta. Results from 23 of 75 wells are encouraging. The study is being accelerated and expanded to include an additional 50 wells elsewhere in Alberta. Some scientists anticipate commercial CBM production within two years. Problems facing developers include the large land holdings necessary for economic CBM production and the disposal of coal formation water. It is anticipated that U.S. technology will be modified and used. The potential for CBM development at Pictou in Nova Scotia and in British Columbia in the foothills is considered. 3 figs.

  12. Investigating the effect of fractures on unusual gas emission in coal mines; case study of Parvadeh coal mine, Iran

    Directory of Open Access Journals (Sweden)

    Ehsan Farahbakhsh

    2016-12-01

    Full Text Available In the present study, an investigation was carried out on Parvadeh coal mine in Tabas, Iran, to survey the effect of fractures on unusual methane gas emission in coal mines. This coal mine was chosen for investigating because of its high methane gas content in the coal body and available data from sensors in desired locations. Gas concentration monitoring programs were carried out at the mine site and a large amount of data were collected and analyzed. It is revealed that there is a good correlation between excavating fracture-bearing faces and high methane gas emission events at the mine site. High gas emissions have been observed before, during, or after excavating fracture-bearing faces. When gas content is high and all boundary conditions are met, rockbursts, faults movement and also mining activities can trigger unusual gas emission, and sometimes the gas gushes are violent enough to fit into the category of gas outbursts. Since the fracture generation is happening before the increase of gas concentration in the air, a sensitive and highly accurate microseismic monitoring system can be used to detect locations of rock fracturing, thus provide an effective means to issue warnings of high gas emission in the working area.

  13. Using gas chromatography to characterize a direct coal liquefaction naphtha.

    Science.gov (United States)

    Omais, Badaoui; Courtiade, Marion; Charon, Nadège; Roullet, Christophe; Ponthus, Jérémie; Thiébaut, Didier

    2012-02-24

    Speciation of oxygenated compounds in direct coal liquefaction naphthas is essential considering their important roles in coal conversion reactions. This study attempts to characterize them as fully as possible using gas chromatographic systems. Firstly, GC-MS was deployed allowing the identification of a few ketones, alcohols, and phenols. This conventional analysis was complemented by the application of GC-GC-FID aiming to overcome the coelutions highlighted when using one-dimensional gas chromatography. Heart-cutting and comprehensive two-dimensional gas chromatography were used and the comprehensive system led to better performances as expected considering the complexity of the matrix. In fact, it allowed the identification of more than a hundred of oxygenated compounds belonging to five chemical families: alcohols, ketones, furans, acids and phenols. Average response factors of each of these families were determined by GC×GC-FID using calibration curves and vary from 1 (hydrocarbons) to 2.50 (carboxylic acids). Thanks to a breakthrough columns set involving a trifluoropropyl stationary phase, alcohols and phenols which represent around 14% of the sample were fully identified. A detailed quantification of these species was carried out for the first time in such matrices using the determined response factors. It was concluded that 90% (w/w) of the alcohols are aromatic (phenols), 5% (w/w) are cyclic and 5% (w/w) are linear. A quantification of hydrocarbon families was also achieved and shows that the matrix is mostly naphthenic (56%, w/w), but also contains aromatics (22%, w/w) and paraffins (8%, w/w). This detailed characterization leads to a better understanding of coal conversion processes and is essential to convert them into synthetic fuels. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Degradation Mechanisms of SOFC Anodes in Coal Gas Containing Phosphorus

    Energy Technology Data Exchange (ETDEWEB)

    Marina, Olga A.; Coyle, Christopher A.; Thomsen, Edwin C.; Edwards, Danny J.; Coffey, Greg W.; Pederson, Larry R.

    2010-01-22

    The interaction of phosphorus in synthetic coal gas with the nickel-based anode of solid oxide fuel cells has been investigated. Tests with both anode-supported and electrolyte-supported button cells were performed at 700 to 800oC in synthetic coal gas containing 0.5 to 10 ppm phosphorus, introduced as phosphine. Two primary modes of degradation were observed. The most obvious was the formation of a series of bulk nickel phosphide phases, of which Ni3P, Ni5P2, Ni12P5 and Ni2P were identified. Phosphorus was essentially completely captured by the anode, forming a sharp boundary between converted and unconverted anode portions. These products partially coalesced into large grains, which eventually affected electronic percolation through the anode support. Thermodynamic calculations predict that formation of the first binary nickel phosphide phase is possible at sub-parts per billion concentrations in coal gas at temperatures relevant to fuel cell operation. A second mode of degradation is attributed to surface diffusion of phosphorus to the active anode/electrolyte interface to form an adsorption layer. Direct evidence for the presence of such an adsorption layer on nickel was obtained by surface spectroscopies on fracture surfaces. Further, cell performance losses were observed well before the entire anode was converted to bulk nickel phosphide. Impedance spectroscopy revealed that these losses were primarily due to growth in electrodic resistance, whereas large ohmic increases were visible when the entire anode was converted to nickel phosphide phases. The rate of resistance growth for anode-supported cells showed a very low dependence on phosphorus concentration, attributed to phosphorus activity control within the anode by bulk nickel phosphide products.

  15. Failure Mode Analysis and Dynamic Response of a Coal Mine Refuge Chamber with a Gas Explosion

    National Research Council Canada - National Science Library

    Boyi Zhang; Dongxian Zhai; Wei Wang

    2016-01-01

      A gas and coal dust explosion is potential hazard in majority coal mines. A coal mine mobile refuge chamber is a new class of device for miners those who are unable to escape after an accident which can provide basic survival conditions...

  16. Gas Hydrates of Coal Layers as a Methane Source in the Atmosphere and Mine Working

    Directory of Open Access Journals (Sweden)

    Dyrdin Valery

    2017-01-01

    Full Text Available Living conditions of gas hydrates of a methane in a coal matrix as one of possible forms of finding of molecules of a methane in coal layers are considered. However, gas hydrates are formed not in all mineral coals even under the thermobaric conditions corresponding to their equilibrium state as the minimum humidity and the corresponding pore width are necessary for each brand of coal for formation of gas hydrate. It is shown that it depends on electric electrical dipole moment of a macromolecule of coal. Coals of brands K, D, Zh were considered. The electric field created by the surface of coal does not allow molecules of water to carry out threedimensional driving, and they keep on an internal surface of a time. By means of theoretical model operation a dipole - dipole interaction of molecules of water with the steam surface of coal values of energy of fiber interaction for various functional groups located in coal “fringe” which size for the first and second layers does not allow molecules of water to participate in formation of gas hydrates are received. For coals of brands K, Zh, D, considering distribution of a time on radiuses, the percent of moisture, which cannot share in education solid coal of gas solutions, is calculated.

  17. Gas Hydrates of Coal Layers as a Methane Source in the Atmosphere and Mine Working

    Science.gov (United States)

    Dyrdin, Valery; Shepeleva, Sofya; Kim, Tatiana

    2017-11-01

    Living conditions of gas hydrates of a methane in a coal matrix as one of possible forms of finding of molecules of a methane in coal layers are considered. However, gas hydrates are formed not in all mineral coals even under the thermobaric conditions corresponding to their equilibrium state as the minimum humidity and the corresponding pore width are necessary for each brand of coal for formation of gas hydrate. It is shown that it depends on electric electrical dipole moment of a macromolecule of coal. Coals of brands K, D, Zh were considered. The electric field created by the surface of coal does not allow molecules of water to carry out threedimensional driving, and they keep on an internal surface of a time. By means of theoretical model operation a dipole - dipole interaction of molecules of water with the steam surface of coal values of energy of fiber interaction for various functional groups located in coal "fringe" which size for the first and second layers does not allow molecules of water to participate in formation of gas hydrates are received. For coals of brands K, Zh, D, considering distribution of a time on radiuses, the percent of moisture, which cannot share in education solid coal of gas solutions, is calculated.

  18. Sorption characteristic of coal as regards of gas mixtures emitted in the process of the self-heating of coal

    Directory of Open Access Journals (Sweden)

    Wojtacha-Rychter Karolina

    2017-01-01

    Full Text Available One of the most challenging tasks in the coal mining sector is the detection of endogenous fire risks. Under field conditions, the distance between the points where samples for the analyses are collected and the actual place where coal self-heating takes place may be quite remote. Coal is a natural sorbent with a diverse character of pore structures which are surrounded by fractures and cleavage planes constituting ideal spaces for the flow and adsorption of gases. The gases (methane, ethane, ethylene, propane, propylene, acetylene, carbon dioxide, carbon monoxide, hydrogen released from the source of fire migrate through the seam and may be subject to adsorption, or they may cause the desorption of gases accumulated in coal. Therefore, the values of reference sample concentrations may be overstated or understated, respectively. The objective of this experimental study was to investigate the adsorption phenomena accompanying the flow of a multi-component gas mixture through a coal bed which may occur in situ. The research was conducted by means of a method based on a series of calorimetric/chromatographic measurements taken to determine the amount of gases released during coal heating at various temperatures under laboratory conditions. Based on the results obtained in the course of the experiments, it was concluded that the amount of gas adsorbed in the seam depends on the type of coal and the gas. Within the multi-component gas mixture, hydrocarbons demonstrated the largest sorption capacity, especially as concerns propylene.

  19. The effect of coal rank on the wettability behavior of wet coal system with injection of carbon dioxide and flue gas

    NARCIS (Netherlands)

    Shojaikaveh, N.; Rudolph, E.S.J.; Wolf, K.H.A.A.; Ashrafizadeh, S.N.

    2012-01-01

    The injection of carbon dioxide (CO2) or flue gas into coal layers enhances the coal bed methane production (ECBM) and is also an option for CO2-storage. The success of this combined process depends strongly on the wetting behavior of the coal, which is a function of coal rank, ash content,

  20. Critical evaluation of high-temperature gas-cooled reactors applicable to coal conversion

    Energy Technology Data Exchange (ETDEWEB)

    Spiewak, I.; Jones, J.E. Jr.; Rittenhouse, P.L.; DeStefano, J.R.; Delene, J.G.

    1975-12-01

    A critical review is presented of the technology and costs of very high-temperature gas-cooled reactors (VHTRs) applicable to nuclear coal conversion. Coal conversion processes suitable for coupling to reactors are described. Vendor concepts of the VHTR are summarized. The materials requirements as a function of process temperature in the range 1400 to 2000/sup 0/F are analyzed. Components, environmental and safety factors, economics and nuclear fuel cycles are reviewed. It is concluded that process heat supply in the range 1400 to 1500/sup 0/F could be developed with a high degree of assurance. Process heat at 1600/sup 0/F would require considerably more materials development. While temperatures up to 2000/sup 0/F appear to be attainable, considerably more research and risk were involved. A demonstration plant would be required as a step in the commercialization of the VHTR.

  1. Advanced coal-fueled industrial cogeneration gas turbine system

    Energy Technology Data Exchange (ETDEWEB)

    LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; When, C.S.

    1992-06-01

    This report covers the activity during the period from 2 June 1991 to 1 June 1992. The major areas of work include: the combustor sub-scale and full size testing, cleanup, coal fuel specification and processing, the Hot End Simulation rig and design of the engine parts required for use with the coal-fueled combustor island. To date Solar has demonstrated: Stable and efficient combustion burning coal-water mixtures using the Two Stage Slagging Combustor; Molten slag removal of over 97% using the slagging primary and the particulate removal impact separator; and on-site preparation of CWM is feasible. During the past year the following tasks were completed: The feasibility of on-site CWM preparation was demonstrated on the subscale TSSC. A water-cooled impactor was evaluated on the subscale TSSC; three tests were completed on the full size TSSC, the last one incorporating the PRIS; a total of 27 hours of operation on CWM at design temperature were accumulated using candle filters supplied by Refraction through Industrial Pump Filter; a target fuel specification was established and a fuel cost model developed which can identify sensitivities of specification parameters; analyses of the effects of slag on refractory materials were conducted; and modifications continued on the Hot End Simulation Rig to allow extended test times.

  2. Effects of Loading Rate on Gas Seepage and Temperature in Coal and Its Potential for Coal-Gas Disaster Early-Warning

    Directory of Open Access Journals (Sweden)

    Chong Zhang

    2017-08-01

    Full Text Available The seepage velocity and temperature externally manifest the changing structure, gas desorption and energy release that occurs in coal containing gas failure under loading. By using the system of coal containing gas failure under loading, this paper studies the law of seepage velocity and temperature under different loading rates and at 1.0 MPa confining pressure and 0.5 MPa gas pressure, and combined the on-site results of gas pressure and temperature. The results show that the stress directly affects the seepage velocity and temperature of coal containing gas, and the pressure and content of gas have the most sensitivity to mining stress. Although the temperature is not sensitive to mining stress, it has great correlation with mining stress. Seepage velocity has the characteristic of critically slowing down under loading. This is demonstrated by the variance increasing before the main failure of the samples. Therefore, the variance of seepage velocity with time and temperature can provide an early warning for coal containing gas failing and gas disasters in a coal mine.

  3. Advanced Acid Gas Separation Technology for the Utilization of Low Rank Coals

    Energy Technology Data Exchange (ETDEWEB)

    Kloosterman, Jeff

    2012-12-31

    Air Products has developed a potentially ground-breaking technology – Sour Pressure Swing Adsorption (PSA) – to replace the solvent-based acid gas removal (AGR) systems currently employed to separate sulfur containing species, along with CO{sub 2} and other impurities, from gasifier syngas streams. The Sour PSA technology is based on adsorption processes that utilize pressure swing or temperature swing regeneration methods. Sour PSA technology has already been shown with higher rank coals to provide a significant reduction in the cost of CO{sub 2} capture for power generation, which should translate to a reduction in cost of electricity (COE), compared to baseline CO{sub 2} capture plant design. The objective of this project is to test the performance and capability of the adsorbents in handling tar and other impurities using a gaseous mixture generated from the gasification of lower rank, lignite coal. The results of this testing are used to generate a high-level pilot process design, and to prepare a techno-economic assessment evaluating the applicability of the technology to plants utilizing these coals.

  4. An analysis of the coal-seam gas resource of the Piceance Basin, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    McFall, K.S.; Wicks, D.E.; Kelso, B.S.; Brandenburg, C.F.

    1988-06-01

    A detailed geologic analysis of the Piceance basin in northwestern Colorado shows that nearly 84 Tcf (2.4 x 10/sup 12/ m/sup 3/) of coal-seam gas is in place in three target coal groups. The Cameo coal group contains the most coalbed methane with 65 Tcf (1.8 x 10/sup 12/ m/sup 3/). The more areally limited Coal Ridge and Black Diamond coal groups contain significantly less gas, 10 and 9 Tcf (280 x 10/sup 9/ and 255 x 10/sup 9/ m/sup 3/), respectively. The areas of highest methane concentration are in the east-central portion of the Piceance basin. These areas coincide with thick deposits of high-rank coal at significant depths and their associated higher gas contents. Also, these areas appear to have been structurally (tectonically) altered, leading to enhanced permeability to gas and water. Thus, the east-central basin area appears favorable for coalbed methane production. This study relied on extensive well data to correlate and map the subsurface extent of the Cretaceous coals of the Piceance basin. Newly derived correlations of coal-rank/depth with gas content were used along with estimates of coal volume to determine gas in place.

  5. Water Extraction from Coal-Fired Power Plant Flue Gas

    Energy Technology Data Exchange (ETDEWEB)

    Bruce C. Folkedahl; Greg F. Weber; Michael E. Collings

    2006-06-30

    The overall objective of this program was to develop a liquid disiccant-based flue gas dehydration process technology to reduce water consumption in coal-fired power plants. The specific objective of the program was to generate sufficient subscale test data and conceptual commercial power plant evaluations to assess process feasibility and merits for commercialization. Currently, coal-fired power plants require access to water sources outside the power plant for several aspects of their operation in addition to steam cycle condensation and process cooling needs. At the present time, there is no practiced method of extracting the usually abundant water found in the power plant stack gas. This project demonstrated the feasibility and merits of a liquid desiccant-based process that can efficiently and economically remove water vapor from the flue gas of fossil fuel-fired power plants to be recycled for in-plant use or exported for clean water conservation. After an extensive literature review, a survey of the available physical and chemical property information on desiccants in conjunction with a weighting scheme developed for this application, three desiccants were selected and tested in a bench-scale system at the Energy and Environmental Research Center (EERC). System performance at the bench scale aided in determining which desiccant was best suited for further evaluation. The results of the bench-scale tests along with further review of the available property data for each of the desiccants resulted in the selection of calcium chloride as the desiccant for testing at the pilot-scale level. Two weeks of testing utilizing natural gas in Test Series I and coal in Test Series II for production of flue gas was conducted with the liquid desiccant dehumidification system (LDDS) designed and built for this study. In general, it was found that the LDDS operated well and could be placed in an automode in which the process would operate with no operator intervention or

  6. A LOW COST AND HIGH QUALITY SOLID FUEL FROM BIOMASS AND COAL FINES

    Energy Technology Data Exchange (ETDEWEB)

    John T. Kelly; George Miller; Mehdi Namazian

    2001-07-01

    Use of biomass wastes as fuels in existing boilers would reduce greenhouse gas emissions, SO2 and NOx emissions, while beneficially utilizing wastes. However, the use of biomass has been limited by its low energy content and density, high moisture content, inconsistent configuration and decay characteristics. If biomass is upgraded by conventional methods, the cost of the fuel becomes prohibitive. Altex has identified a process, called the Altex Fuel Pellet (AFP) process, that utilizes a mixture of biomass wastes, including municipal biosolids, and some coal fines, to produce a strong, high energy content, good burning and weather resistant fuel pellet, that is lower in cost than coal. This cost benefit is primarily derived from fees that are collected for accepting municipal biosolids. Besides low cost, the process is also flexible and can incorporate several biomass materials of interest The work reported on herein showed the technical and economic feasibility of the AFP process. Low-cost sawdust wood waste and light fractions of municipal wastes were selected as key biomass wastes to be combined with biosolids and coal fines to produce AFP pellets. The process combines steps of dewatering, pellet extrusion, drying and weatherizing. Prior to pilot-scale tests, bench-scale test equipment was used to produce limited quantities of pellets for characterization. These tests showed which pellet formulations had a high potential. Pilot-scale tests then showed that extremely robust pellets could be produced that have high energy content, good density and adequate weatherability. It was concluded that these pellets could be handled, stored and transported using equipment similar to that used for coal. Tests showed that AFP pellets have a high combustion rate when burned in a stoker type systems. While NOx emissions under stoker type firing conditions was high, a simple air staging approach reduced emissions to below that for coal. In pulverized-fuel-fired tests it was

  7. Effect of coal quality on maintenance costs at utility plants. Final report. [Effect of ash and sulfur content of coal

    Energy Technology Data Exchange (ETDEWEB)

    Holt, E.C. Jr.

    1980-06-01

    In an attempt to determine if correlation exists between coal quality, as measured by its ash and sulfur contents, and the maintenance cost at utility plants, an examination was made of the actual maintenance cost experience of selected portions of five TVA coal-fired power plants as a function of the fuel quality consumed during an extended period of time. The results indicate that, according to our decision rules developed in compliance with accepted statistical practices, correlation does exist in many portions of the coal-fired plants for which sufficient maintenance cost records were available. The degree of correlation varies significantly among the individual portions of a particular plant as well as among the various plants. However, the indicators are sufficient to confirm that a change (within the design constraints of the unit) in the ash and/or sulfur content of the coal being consumed by a utility boiler will have a proportionate effect on the maintenance cost at the plant. In the cases examined, each percent variation in ash content could have a monetary effect of from $0.05 to $0.10 per ton of coal consumed. Similarly, each percent variation in sulfur content could influence maintenance costs from $0.30 to $0.50 per ton of coal. Since these values are based on preliminary analysis of limited data, they must be approached with caution and not removed from the context in which they are presented. However, if borne out by further study, the potential magnitude of such savings may be sufficient to justify the acquisition of superior coal supplies, either by changing the source and/or using preparation to obtain a lower ash and sulfur fuel.

  8. Stress and Damage Induced Gas Flow Pattern and Permeability Variation of Coal from Songzao Coalfield in Southwest China

    Directory of Open Access Journals (Sweden)

    Minghui Li

    2016-05-01

    Full Text Available The permeability of coal is a critical parameter in estimating the performance of coal reservoirs. Darcy’s law describes the flow pattern that the permeability has a linear relationship with the flow velocity. However, the stress induced deformation and damage can significantly influence the gas flow pattern and permeability of coal. Coals from Songzao coalfield in Chongqing, southwest China were collected for the study. The gas flow velocities under different injection gas pressures and effective stresses in the intact coal and damaged coal were tested using helium, incorporating the role of gas flow pattern on the permeability of coal. The relationships between the flow velocity and square of gas pressure gradient were discussed, which can help us to investigate the transformation conditions of gas linear flow and gas nonlinear flow in the coal. The results showed that the gas flow in the intact coal existed pseudo-initial flow rate under low effective stress. The low-velocity non-Darcy gas flow gradually occurred and the start-up pressure gradient increased in the coal as the effective stress increased. The gas flow rate in the damaged coal increased nonlinearly as the square of pressure gradient increased under low effective stress. The instability of gas flow caused by high ratio of injection gas pressure over effective stress in the damaged coal contributed to the increase of the gas flow rate. As the effective stress increased, the increase of gas flow rate in coal turned to be linear. The mechanisms of the phenomena were explored according to the experimental results. The permeability of coal was corrected based on the relationships between the flow velocity and square of gas pressure gradient, which showed advantages in accurately estimating the performance of coal reservoirs.

  9. The economic production of alcohol fuels from coal-derived synthesis gas

    Energy Technology Data Exchange (ETDEWEB)

    Kugler, E.L.; Dadyburjor, D.B.; Yang, R.Y.K. [West Virginia Univ., Morgantown, WV (United States)] [and others

    1995-12-31

    The objectives of this project are to discover, (1) study and evaluate novel heterogeneous catalytic systems for the production of oxygenated fuel enhancers from synthesis gas. Specifically, alternative methods of preparing catalysts are to be investigated, and novel catalysts, including sulfur-tolerant ones, are to be pursued. (Task 1); (2) explore, analytically and on the bench scale, novel reactor and process concepts for use in converting syngas to liquid fuel products. (Task 1); (3) simulate by computer the most energy efficient and economically efficient process for converting coal to energy, with primary focus on converting syngas to fuel alcohols. (Task 2); (4) develop on the bench scale the best holistic combination of chemistry, catalyst, reactor and total process configuration integrated with the overall coal conversion process to achieve economic optimization for the conversion of syngas to liquid products within the framework of achieving the maximum cost effective transformation of coal to energy equivalents. (Tasks 1 and 2); and (5) evaluate the combustion, emission and performance characteristics of fuel alcohols and blends of alcohols with petroleum-based fuels. (Task 2)

  10. Low-Btu coal-gasification-process design report for Combustion Engineering/Gulf States Utilities coal-gasification demonstration plant. [Natural gas or No. 2 fuel oil to natural gas or No. 2 fuel oil or low Btu gas

    Energy Technology Data Exchange (ETDEWEB)

    Andrus, H E; Rebula, E; Thibeault, P R; Koucky, R W

    1982-06-01

    This report describes a coal gasification demonstration plant that was designed to retrofit an existing steam boiler. The design uses Combustion Engineering's air blown, atmospheric pressure, entrained flow coal gasification process to produce low-Btu gas and steam for Gulf States Utilities Nelson No. 3 boiler which is rated at a nominal 150 MW of electrical power. Following the retrofit, the boiler, originally designed to fire natural gas or No. 2 oil, will be able to achieve full load power output on natural gas, No. 2 oil, or low-Btu gas. The gasifier and the boiler are integrated, in that the steam generated in the gasifier is combined with steam from the boiler to produce full load. The original contract called for a complete process and mechanical design of the gasification plant. However, the contract was curtailed after the process design was completed, but before the mechanical design was started. Based on the well defined process, but limited mechanical design, a preliminary cost estimate for the installation was completed.

  11. Gas Concentration Prediction Based on the Measured Data of a Coal Mine Rescue Robot

    Directory of Open Access Journals (Sweden)

    Xiliang Ma

    2016-01-01

    Full Text Available The coal mine environment is complex and dangerous after gas accident; then a timely and effective rescue and relief work is necessary. Hence prediction of gas concentration in front of coal mine rescue robot is an important significance to ensure that the coal mine rescue robot carries out the exploration and search and rescue mission. In this paper, a gray neural network is proposed to predict the gas concentration 10 meters in front of the coal mine rescue robot based on the gas concentration, temperature, and wind speed of the current position and 1 meter in front. Subsequently the quantum genetic algorithm optimization gray neural network parameters of the gas concentration prediction method are proposed to get more accurate prediction of the gas concentration in the roadway. Experimental results show that a gray neural network optimized by the quantum genetic algorithm is more accurate for predicting the gas concentration. The overall prediction error is 9.12%, and the largest forecasting error is 11.36%; compared with gray neural network, the gas concentration prediction error increases by 55.23%. This means that the proposed method can better allow the coal mine rescue robot to accurately predict the gas concentration in the coal mine roadway.

  12. Bioconversion of coal derived synthesis gas to liquid fuels

    Science.gov (United States)

    Jain, M. K.; Worden, R. M.; Grethlein, A.

    1994-07-01

    The overall objective of the project is to develop an integrated two-stage fermentation process for conversion of coal-derived synthesis gas to a mixture of alcohols. This is achieved in two steps. In the first step, Butyribacterium methylotrophicum converts carbon monoxide (CO) to butyric and acetic acids. Subsequent fermentation of the acids by Clostridium acetobutylicum leads to the production of butanol and ethanol. The tasks for this quarter were: development/isolation of superior strains for fermentation of syngas; evaluation of bioreactor configuration for improved mass transfer of syngas; recovery of carbon and electrons from H2-CO2; initiation of pervaporation for recovery of solvents; and selection of solid support material for trickle-bed fermentation. Technical progress included the following: butyrate production was enhanced during H2/CO2 (50/50) batch fermentation; isolation of CO-utilizing anaerobic strains is in progress; pressure (15 psig) fermentation was evaluated as a means of increasing CO availability; polyurethane foam packing material was selected for trickle bed solid support; cell recycle fermentation on syngas operated for 3 months. Acetate was the primary product at pH 6.8; trickle bed and gas lift fermentor designs were modified after initial water testing; and pervaporation system was constructed (No alcohol selectivity was shown with the existing membranes during initial start-up).

  13. The mechanism of coal gas desulfurization by iron oxide sorbents.

    Science.gov (United States)

    Lin, Yi-Hsing; Chen, Yen-Chiao; Chu, Hsin

    2015-02-01

    This study aims to understand the roles of hydrogen and carbon monoxide during the desulfurization process in a coal gasification system that H2S of the syngas was removed by Fe2O3/SiO2 sorbents. The Fe2O3/SiO2 sorbents were prepared by incipient wetness impregnation. Through the breakthrough experiments and Fourier transform infrared spectroscopy analyses, the overall desulfurization mechanism of the Fe2O3/SiO2 sorbents was proposed in this study. The results show that the major reaction route is that Fe2O3 reacts with H2S to form FeS, and the existence of CO and H2 in the simulated gas significantly affects equilibrium concentrations of H2S and COS. The formation of COS occurs when the feeding gas is blended with CO and H2S, or CO2 and H2S. The pathways in the formation of products from the desulfurization process by the reaction of Fe2O3 with H2S have been successfully established. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Development of standards and a cost model for coal agglomeration and related studies

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, S.G.; Kuby, O.A.; Korosi, F.A.; Paulin, M.O.

    1982-02-26

    Several topics concerning coal agglomeration and fixed-bed coal gasification, as they relate to an agglomeration-process development program presently being performed for the Department of Energy, are discussed in this report. Specific topics include an examination of the performance of coals in fixed-bed gasifiers, the development of properties' standards by which agglomerates produced in the program may be compared, the development of a cost model to judge the economic feasibility of coal agglomeration for potential users and the maximum binder levels to be considered in the program, the definition of a suitable briquette size for coal gasification, and a study of upgrading methods at the mines to improve agglomeration. Extensive property data and the results of a number of special tests on six coals (Pittsburgh No. 8 bituminous coal, Illinois No. 6 bituminous coal, Wyoming Bighorn subbituminous coal, Montana Rosebud No. 14 subbituminous coal, North Dakota Indian Head lignite and Pennsylvania Nanoth anthracite coal) and on FMC formcoke and Simplex briquettes are reported.

  15. Costs of abandoned coal mine reclamation and associated recreation benefits in Ohio.

    Science.gov (United States)

    Mishra, Shruti K; Hitzhusen, Frederick J; Sohngen, Brent L; Guldmann, Jean-Michel

    2012-06-15

    Two hundred years of coal mining in Ohio have degraded land and water resources, imposing social costs on its citizens. An interdisciplinary approach employing hydrology, geographic information systems, and a recreation visitation function model, is used to estimate the damages from upstream coal mining to lakes in Ohio. The estimated recreational damages to five of the coal-mining-impacted lakes, using dissolved sulfate as coal-mining-impact indicator, amount to $21 Million per year. Post-reclamation recreational benefits from reducing sulfate concentrations by 6.5% and 15% in the five impacted lakes were estimated to range from $1.89 to $4.92 Million per year, with a net present value ranging from $14.56 Million to $37.79 Million. A benefit costs analysis (BCA) of recreational benefits and coal mine reclamation costs provides some evidence for potential Pareto improvement by investing limited resources in reclamation projects. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Upper Paleozoic coal measures and unconventional natural gas systems of the Ordos Basin, China

    Directory of Open Access Journals (Sweden)

    Xuan Tang

    2012-11-01

    Full Text Available Upper Paleozoic coal measures in the Ordos Basin consist of dark mudstone and coal beds and are important source rocks for gas generation. Gas accumulations include coal-bed methane (CBM, tight gas and conventional gas in different structural areas. CBM accumulations are mainly distributed in the marginal area of the Ordos Basin, and are estimated at 3.5 × 1012 m3. Tight gas accumulations exist in the middle part of the Yishan Slope area, previously regarded as the basin-centered gas system and now considered as stratigraphic lithologic gas reservoirs. This paper reviews the characteristics of tight gas accumulations: poor physical properties (porosity < 8%, permeability < 0.85 × 10−3 μm2, abnormal pressure and the absence of well-defined gas water contacts. CBM is a self-generation and self-reservoir, while gas derived from coal measures migrates only for a short distance to accumulate in a tight reservoir and is termed near-generation and near-reservoir. Both CBM and tight gas systems require source rocks with a strong gas generation ability that extends together over wide area. However, the producing area of the two systems may be significantly different.

  17. Maximizing the resources by managing the risks among oil, gas and coal production

    Energy Technology Data Exchange (ETDEWEB)

    Nofti, Bakhtiar; Imantyoko, Agung; Adnan, Alkifli [Pertamina EP (Indonesia)

    2011-07-01

    Indonesia's fossil fuel reserves are quite large, in line with its high fossil energy consumption. Production of oil and gas usually takes place in different areas from those where coal is mined, but there is some overlap. The government's intention is to produce energy from all fossil fuels to sustain economic stability. This is a complex task because oil and gas and coal mining are two distinct sectors. There are various issues involved, such as mining zone restrictions, funding and health and safety. This paper presents the idea of maximizing resources by managing risks among oil, gas and coal production. Tapian is one the great success stories of how the government successfully undertook the exploration and production of oil, gas and coal simultaneously while managing and coordinating all the risks involved. The study demonstrates that it is possible to overlap land mines in a harmonious way and that the problems involved can be mitigated.

  18. Effects of coal storage in air on physical and chemical properties of coal and on gas adsorption

    Science.gov (United States)

    Mastalerz, Maria; Solano-Acosta, W.; Schimmelmann, A.; Drobniak, A.

    2009-01-01

    This paper investigates changes in the high-volatile bituminous Lower Block Coal Member from Indiana owing to moisture availability and oxidation in air at ambient pressure and temperature over storage time. Specifically, it investigates changes in chemistry, in surface area, and pore structure, as well as changes in methane and carbon dioxide adsorption capacities. Our results document that the methane adsorption capacity increased by 40%, whereas CO2 adsorption capacity increased by 18% during a 13-month time period. These changes in adsorption are accompanied by changes in chemistry and surface area of the coal. The observed changes in adsorption capacity indicate that special care must be taken when collecting samples and preserving coals until adsorption characteristics are measured in the laboratory. High-pressure isotherms from partially dried coal samples would likely cause overestimation of gas adsorption capacities, lead to a miscalculation of coal-bed methane prospects, and provide deceptively optimistic prognoses for recovery of coal-bed methane or capture of anthropogenic CO2. ?? 2009 Elsevier B.V. All rights reserved.

  19. ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS

    Energy Technology Data Exchange (ETDEWEB)

    C. Jean Bustard; Kenneth E. Baldrey; Richard Schlager

    2000-04-01

    The U.S. Department of Energy and ADA Environmental Solutions has begun a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the flyash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. Preliminary testing has identified a class of common deliquescent salts that effectively control flyash resistivity on a variety of coals. A method to evaluate cohesive properties of flyash in the laboratory has been selected and construction of an electrostatic tensiometer test fixture is underway. Preliminary selection of a variety of chemicals that will be screened for effect on flyash cohesion has been completed.

  20. Enhancing the Use of Coals by Gas Reburning - Sorbent Injection - Volume 5 - Guideline Manual

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    1998-09-01

    The purpose of the Guideline Manual is to provide recommendations for the application of combined gas reburning-sorbent injection (GR-SI) technologies to pre-NSPS boilers. The manual includes design recommendations, performance predictions, economic projections and comparisons with competing technologies. The report also includes an assessment of boiler impacts. Two full-scale demonstrations of gas reburning-sorbent injection form the basis of the Guideline Manual. Under the U.S. Department of Energy's Clean Coal Technology Program (Round 1), a project was completed to demonstrate control of boiler emissions that comprise acid rain precursors, specifically oxides of nitrogen (NOx) and sulfur dioxide (SO2). Other project sponsors were the Gas Research Institute and the Illinois State Department of Commerce and Community Affairs. The project involved demonstrating the combined use of Gas Reburning and Sorbent Injection (GR-SI) to assess the air emissions reduction potential of these technologies.. Three potential coal-fired utility boiler host sites were evaluated: Illinois Power's tangentially-fired 71 MWe (net) Hennepin Unit #1, City Water Light and Power's cyclone- fired 33 MWe (gross) Lakeside Unit #7, and Central Illinois Light Company's wall-fired 117 MWe (net) Edwards Unit #1. Commercial demonstrations were completed on the Hennepin and Lakeside Units. The Edwards Unit was removed from consideration for a site demonstration due to retrofit cost considerations. Gas Reburning (GR) controls air emissions of NOx. Natural gas is introduced into the furnace hot flue gas creating a reducing reburning zone to convert NOx to diatomic nitrogen (N2). Overfire air is injected into the furnace above the reburning zone to complete the combustion of the reducing (fuel) gases created in the reburning zone. Sorbent Injection (SI) consists of the injection of dry, calcium-based sorbents into furnace hot

  1. Enhancing the Use of Coals by Gas Reburning - Sorbent Injection Volume 5 - Guideline Manual

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-06-01

    The purpose of the Guideline Manual is to provide recommendations for the application of combined gas reburning-sorbent injection (GR-SI) technologies to pre-NSPS boilers. The manual includes design recommendations, performance predictions, economic projections and comparisons with competing technologies. The report also includes an assessment of boiler impacts. Two full-scale demonstrations of gas reburning-sorbent injection form the basis of the Guideline Manual. Under the U.S. Department of Energy's Clean Coal Technology Program (Round 1), a project was completed to demonstrate control of boiler emissions that comprise acid rain precursors, specifically oxides of nitrogen (NOX) and sulfur dioxide (S02). Other project sponsors were the Gas Research Institute and the Illinois State Department of Commerce and Community Affairs. The project involved d,emonstrating the combined use of Gas Reburning and Sorbent Injection (GR-SI) to assess the air emissions reduction potential of these technologies.. Three potential coal-fired utility boiler host sites were evaluated: Illinois Power's tangentially-fired 71 MWe (net) Hennepin Unit #1, City Water Light and Power's cyclone- fired 33 MWe (gross) Lakeside Unit #7, and Central Illinois Light Company's wall-fired 117 MWe (net) Edwards Unit #1. Commercial demonstrations were completed on the Hennepin and Lakeside Units. The Edwards Unit was removed from consideration for a site demonstration due to retrofit cost considerations. Gas Reburning (GR) controls air emissions of NOX. Natural gas is introduced into the furnace hot flue gas creating a reducing reburning zone to convert NOX to diatomic nitrogen (N,). Overfire air is injected into the furnace above the reburning zone to complete the combustion of the reducing (fuel) gases created in the reburning zone. Sorbent Injection (S1) consists of the injection of dry, calcium-based sorbents into furnace hot flue gas to achieve S02 capture. `At each site where

  2. Reducing fuel-energy cost and materials consumption in coal preparation

    Energy Technology Data Exchange (ETDEWEB)

    Neskoromnykh, V.M.; Grishchenko, O.V.

    1986-05-01

    Analyzes cost of coal preparation in the USSR from 1965 to 1985. The analysis concentrates on consumption of fuel, energy and materials. From 1965 to 1985 the average ash content in run-of-mine coal supplied to the preparation plants increased from 24.1% to 38.6%. The average moisture content and content of fines increased. Structure of coal preparation cost in 1965 is analyzed: 91.82% of cost fell on materials and energy (88.8% of cost fell on raw materials, 1.0% on auxiliary materials, 0.3% on fuel and 0.6% on electric energy). By 1984 proportion of materials and energy in coal preparation cost had increased 3.3% to 94.5% (91.6% raw materials, 0.8% auxiliary materials, 0.6% fuel and 0.6% electric energy). Methods for reducing consumption of materials and energy in coal preparation plants in the USSR are discussed: development of more efficient separation equipment, new preparation technologies, use of automatic control systems, etc. Economic effects of research programs of Ukniiugleobogashchenie on conservation of fuel, energy and materials in coal preparation are analyzed: from 1981 to 1985 the research programs enabled 2,451 t of metal, 23.2 million kWh and 0.790 Mt of coal to be economized.

  3. As, Hg, and Se flue gas sampling in a coal-fired power plant and their fate during coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Jose R. Otero-Rey; Jose M. Lopez-Vilarino; Jorge Moreda-Pineiro; Elia Alonso-Rodriguez; Soledad Muniategui-Lorenzo; Purificacion Lopez-Mahia; Dario Prada-Rodriguez [University of A Coruna, A Coruna (Spain). Department of Analytical Chemistry, Faculty of Sciences

    2003-11-15

    As, Hg, and Se are the most volatile elements in the flue gas from a coal-fired power plant. Significant amounts of these elements cause an undesired direct gaseous emission, which leads to a serious environmental health risk. The main focus of this study is to evaluate the possibility of simultaneous sampling of these volatile elements using an accurate official method for Hg (the most volatile element). A study of As, Hg, and Se emissions from a 1400 MW coal-fired power plant equipped with electrostatic precipitators (ESPs) was carried out for the combustion of a mixture of two types of coal. Simultaneous sampling of coal, bottom ash, fly ash, flue gas, and particles associated with the gas phase has been performed. Flue gas has been sampled by the Ontario Hydro Method Sampling Train, an ASTM method for Hg speciation. This sampling method was tested for As and Se sampling. As and Se determinations have been performed by HG-AAS, and Hg has been determined by CV-AAS. The results were used to examine the following: overall mass balances, relative distribution of these elements in the coal-fired power plant; As, Hg, and Se concentrations in coal and combustion residues; and predominant oxidation state for Hg in flue gas. The mass balances obtained for As, Hg, and Se were satisfactory in all cases; nevertheless, relative enrichment values in fly ash for As and Se were low; therefore, we concluded that As sampling in flue gas can be conducted by application of the Ontario Hydro Method; nevertheless Se released in the gas phase is not completely collected by this sampling train. Application of this sampling method allowed for performance of Hg speciation. The results indicated that Hg(II) was the predominant species in flue gas. It has also been proved that 24%, more than 99.8%, and 90% for As, Hg, and Se in the stack emissions, respectively, were in the gaseous phase. 42 refs., 1 fig., 12 tabs.

  4. Permeability changes in coal resulting from gas desorption

    Energy Technology Data Exchange (ETDEWEB)

    Levine, J.R.; Johnson, P.M.

    1992-01-01

    During this quarter, work was continued on measuring the methane sorption capacity of dispersed organic matter in gas shales and maceral concentrates derived from a Kentucky coal. Although previous results have demonstrated that the microbalance technique is successful in generating sorption isotherm curves, the accuracy of the technique has not been well established. The only previous test that allowed a comparison between gravimetric data and volumetric data showed a significant discrepancy with the gravimetric data indicating a considerably greater sorption quantities than the volumetric data. During the present quarter we took advantage of an opportunity to join in a round-robin analysis of sorption capacity of carbonatious shales. A suite of four samples was sent to six laboratories with each lab measuring sorption capacity for methane and reporting the results to a central lab which would compile all of the data for comparitive purposes. Of course, none of the other laboratories were using the gravimetric approach for measuring methane sorption capacity. So this provides a unique opportunity to test the accuracy of our methods.

  5. Thermochemical Equilibrium Model of Synthetic Natural Gas Production from Coal Gasification Using Aspen Plus

    Directory of Open Access Journals (Sweden)

    Rolando Barrera

    2014-01-01

    Full Text Available The production of synthetic or substitute natural gas (SNG from coal is a process of interest in Colombia where the reserves-to-production ratio (R/P for natural gas is expected to be between 7 and 10 years, while the R/P for coal is forecasted to be around 90 years. In this work, the process to produce SNG by means of coal-entrained flow gasifiers is modeled under thermochemical equilibrium with the Gibbs free energy approach. The model was developed using a complete and comprehensive Aspen Plus model. Two typical technologies used in entrained flow gasifiers such as coal dry and coal slurry are modeled and simulated. Emphasis is put on interactions between the fuel feeding technology and selected energy output parameters of coal-SNG process, that is, energy efficiencies, power, and SNG quality. It was found that coal rank does not significantly affect energy indicators such as cold gas, process, and global efficiencies. However, feeding technology clearly has an effect on the process due to the gasifying agent. Simulations results are compared against available technical data with good accuracy. Thus, the proposed model is considered as a versatile and useful computational tool to study and optimize the coal to SNG process.

  6. Making the most of South Africa’s low-quality coal: Converting high-ash coal to fuel gas using bubbling fluidised bed gasifiers

    CSIR Research Space (South Africa)

    Engelbrecht, AD

    2010-08-31

    Full Text Available South Africa has abundant resources of high-ash and other low-quality coals. The aim of this work is to investigate the possibility of using fluidised bed gasification technology to convert these coals into clean fuel gas. The fuel gas can be used...

  7. Bioconversion of coal-derived synthesis gas to liquid fuels. Final technical report, September 1, 1990--August 31, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Jain, M.K.

    1991-12-31

    The use of coal-derived synthesis gas as an industrial feedstock for production of fuels and chemicals has become an increasingly attractive alternative to present petroleum-based chemicals production. However, one of the major limitations in developing such a process is the required removal of catalyst poisons such as hydrogen sulfide (H{sub 2}S), carbonyl sulfide (COS), and other trace contaminants from the synthesis gas. Purification steps necessary to remove these are energy intensive and add significantly to the production cost, particularly for coals having a high sulfur content such as Illinois coal. A two-stage, anaerobic bioconversion process requiring little or no sulfur removal is proposed, where in the first stage the carbon monoxide (CO) gas is converted to butyric and acetic acids by the CO strain of Butyribacterium methylotrophicum. In the second stage, these acids along with the hydrogen (H{sub 2}) gas are converted to butanol, ethanol, and acetone by an acid utilizing mutant of Clostridium acetobutylicum. 18 figs., 18 tabs.

  8. A New Tree-Type Fracturing Method for Stimulating Coal Seam Gas Reservoirs

    Directory of Open Access Journals (Sweden)

    Qian Li

    2017-09-01

    Full Text Available Hydraulic fracturing is used widely to stimulate coalbed methane production in coal mines. However, some factors associated with conventional hydraulic fracturing, such as the simple morphology of the fractures it generates and inhomogeneous stress relief, limit its scope of application in coal mines. These problems mean that gas extraction efficiency is low. Conventional fracturing may leave hidden pockets of gas, which will be safety hazards for subsequent coal mining operations. Based on a new drilling technique applicable to drilling boreholes in coal seams, this paper proposes a tree-type fracturing technique for stimulating reservoir volumes. Tree-type fracturing simulation experiments using a large-scale triaxial testing apparatus were conducted in the laboratory. In contrast to the single hole drilled for conventional hydraulic fracturing, the tree-type sub-boreholes induce radial and tangential fractures that form complex fracture networks. These fracture networks can eliminate the “blank area” that may host dangerous gas pockets. Gas seepage in tree-type fractures was analyzed, and gas seepage tests after tree-type fracturing showed that permeability was greatly enhanced. The equipment developed for tree-type fracturing was tested in the Fengchun underground coal mine in China. After implementing tree-type fracturing, the gas extraction rate was around 2.3 times greater than that for traditional fracturing, and the extraction rate remained high for a long time during a 30-day test. This shortened the gas drainage time and improved gas extraction efficiency.

  9. The Coal-Seq III Consortium. Advancing the Science of CO2 Sequestration in Coal Seam and Gas Shale Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Koperna, George [Advanced Resources International Inc., Arlington, VA (United States)

    2014-03-14

    The Coal-Seq consortium is a government-industry collaborative that was initially launched in 2000 as a U.S. Department of Energy sponsored investigation into CO2 sequestration in deep, unmineable coal seams. The consortium’s objective aimed to advancing industry’s understanding of complex coalbed methane and gas shale reservoir behavior in the presence of multi-component gases via laboratory experiments, theoretical model development and field validation studies. Research from this collaborative effort was utilized to produce modules to enhance reservoir simulation and modeling capabilities to assess the technical and economic potential for CO2 storage and enhanced coalbed methane recovery in coal basins. Coal-Seq Phase 3 expands upon the learnings garnered from Phase 1 & 2, which has led to further investigation into refined model development related to multicomponent equations-of-state, sorption and diffusion behavior, geomechanical and permeability studies, technical and economic feasibility studies for major international coal basins the extension of the work to gas shale reservoirs, and continued global technology exchange. The first research objective assesses changes in coal and shale properties with exposure to CO2 under field replicated conditions. Results indicate that no significant weakening occurs when coal and shale were exposed to CO2, therefore, there was no need to account for mechanical weakening of coal due to the injection of CO2 for modeling. The second major research objective evaluates cleat, Cp, and matrix, Cm, swelling/shrinkage compressibility under field replicated conditions. The experimental studies found that both Cp and Cm vary due to changes in reservoir pressure during injection and depletion under field replicated conditions. Using laboratory data from this study, a compressibility model was developed to predict the pore-volume compressibility, Cp, and the matrix compressibility, Cm, of coal and shale, which was applied to

  10. On the electrical nature of sudden outbursts of coal and gas

    Energy Technology Data Exchange (ETDEWEB)

    Finkel, V.M.; Klenov, E.N.; Losev, N.F.; Fomin, I.M.; Konkin, B.B. (Rostov Don Machinery Automation and Technology, Rostov na Donu (Russian Federation))

    1992-12-12

    Sudden outbursts of coal and gas are known to be a rapidly occurring process of fracturing of the coal mass, developing ahead of a mine working face and accompanied by a release of gas and finely fragmented coal. This process is responsible for numerous fatalities, and also gives rise to serious material damage. There is no convincing or adequate understanding of it. This work suggests a mechanism for the electrical provocation of an outburst. It is based on the following considerations. Firstly each mine roadway is a concentrator of the electrical currents in the Earth's crusts. Besides this, high rock pressure leads to the formation of systems of macro- and micro-cracks, in the cavities of which a serious electrical charge may accumulate. Finally, polarisation processes in dielectrics lead to the generation of high electrical potentials. It was found that passing on electric current through anthracite generated a release of gas. It is suggested that the heating of the coal when an electric current is passed through takes place unevenly over the mass of the coal, occurring primarily in micro- and macro-cracks, on the boundaries of coal blocks and monocrystals, in places where there is discontinuity, inclusions and so on. This leads to an avalanche-like rise in the gas release in an enclosed volume and a rise in pressure. Under conditionss of contact with heated coal, an explosion may occur. 9 refs.

  11. New integrated monitoring and control system for disaster gas application in coal mine

    Science.gov (United States)

    Zhao, Deng-yu; Lai, Xing-ping; Ji, Chang-fa; Xi, Hong-jun; Bo, Zhang; Liu, Chen

    2017-04-01

    This paper introduces the composition, working principle and characteristics of the new gas monitoring system, which are used to monitor the gas in the gob area and working face of the mine in real time. According to the oxygen concentration, the spontaneous combustion of gob area “three zones” was determined and divided. In order to carry out disaster early warning, the methane and carbon monoxide super gas concentration changes were studied and analyzed. And the variation law of gas concentration in gob area and coal face in coal mining was obtained. This study provides reference for the follow-up fire prevention and production.

  12. Development of coal-on-coal reburn-investigating the potential for reducing eliminating the use of recycled flue gas

    Energy Technology Data Exchange (ETDEWEB)

    Canning, P.J.; Mill, R.; Hesselmann, G.; Maloney, M.; Naja, T.A. [Powergen UK plc. (United Kingdom)

    2002-04-01

    Power Technology, Mitsui Babcock Energy Ltd and James Howden & Co Ltd have been part of a consortium (led by ENEL of Italy) which has demonstrated coal-on-coal reburn at Vado Ligure Unit 4, a 320 MWe coal-fired unit in Italy. This demonstration project received financial support from the EU under the Framework V programme and the full results have been published separately. The UK partners also received additional support from the UK Department of Trade and Industry (DTI). The contract between the DTI and the UK partners in this project included several deliverables outside the scope of the main project. These included a study of the applicability of coal reburn to UK coal fired plant and an investigation of the potential to reduce or eliminate the use of recycled fluegas in coal reburn systems as a means of improving the cost effectiveness of the technology. This report briefly summarises the results of the main project and details the outcome of the additional work undertaken with DTI support. 15 figs., 9 tabs.

  13. Optimized CO2-flue gas separation model for a coal fired power plant

    Energy Technology Data Exchange (ETDEWEB)

    Arachchige, Udara S.P.R. [Telemark University College, Porsgrunn (Norway); Mohsin, Muhammad [Telemark University College, Porsgrunn (Norway); Melaaen, Morten C. [Telemark University College, Porsgrunn (Norway); Tel-Tek, Porsgrunn (Norway)

    2013-07-01

    The detailed description of the CO2 removal process using mono-ethylamine (MEA) as a solvent for coal-fired power plant is present in this paper. The rate based Electrolyte NRTL activity coefficient model was used in the Aspen Plus. The complete removal process with re-circulating solvent back to the absorber was implemented with the sequential modular method in Aspen Plus. The most significant cost related to CO2 capture is the energy requirement for re-generating solvent, i.e. re-boiler duty. Parameters’ effects on re-boiler duty were studied, resulting decreased re-boiler duty with the packing height and absorber packing diameter, absorber pressure, solvent temperature, stripper packing height and diameter. On the other hand, with the flue gas temperature, re-boiler duty is increased. The temperature profiles and CO2 loading profiles were used to check the model behavior.

  14. Advanced coal-fueled industrial cogeneration gas turbine system. Annual report, June 1990--June 1991

    Energy Technology Data Exchange (ETDEWEB)

    LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; Wen, C.S.

    1991-07-01

    Advances in coal-fueled gas turbine technology over the past few years, together with recent DOE-METC sponsored studies, have served to provide new optimism that the problems demonstrated in the past can be economically resolved and that the coal-fueled gas turbine can ultimately be the preferred system in appropriate market application sectors. The objective of the Solar/METC program is to prove the technical, economic, and environmental feasibility of a coal-fired gas turbine for cogeneration applications through tests of a Centaur Type H engine system operated on coal fuel throughout the engine design operating range. The five-year program consists of three phases, namely: (1) system description; (2) component development; (3) prototype system verification. A successful conclusion to the program will initiate a continuation of the commercialization plan through extended field demonstration runs.

  15. The Efficiency Improvement by Combining HHO Gas, Coal and Oil in Boiler for Electricity Generation

    Directory of Open Access Journals (Sweden)

    Chia-Nan Wang

    2017-02-01

    Full Text Available Electricity is an essential energy that can benefit our daily lives. There are many sources available for electricity generation, such as coal, natural gas and nuclear. Among these sources, coal has been widely used in thermal power plants that account for about 41% of the worldwide electricity supply. However, these thermal power plants are also found to be a big pollution source to our environment. There is a need to explore alternative electricity sources and improve the efficiency of electricity generation. This research focuses on improving the efficiency of electricity generation through the use of hydrogen and oxygen mixture (HHO gas. In this research, experiments have been conducted to investigate the combined effects of HHO gas with other fuels, including coal and oil. The results show that the combinations of HHO with coal and oil can improve the efficiency of electricity generation while reducing the pollution to our environment.

  16. Study on Mechanism of gas explosion induced by Coal mine internal fire

    Science.gov (United States)

    Wei-dong, Lu; Bin, Yin

    2017-04-01

    The occurrence of mine gas explosion is mainly caused by internal fire. To explore the relationship of mechanism between gas explosion and coal mine internal fire. That of spontaneous combustion in coal mine goaf was set breakthrough point. According to different stages of coal spontaneous combustion, the calculation was going on by means of numerical simulation software, so the result of change were got about temperature, pressure, explosion time, free radical and critical reaction step in explosion process were got. Calculation results of comparative analysis showed that: the gas explosion was inhibited in the slow oxidation stage; the gas explosion was promoted in the accelerating oxidation stage; the gas explosion was slightly promoted in the violent oxidation stage.

  17. Can Switching from Coal to Shale Gas Bring Net Carbon Reductions to China?

    Science.gov (United States)

    Qin, Yue; Edwards, Ryan; Tong, Fan; Mauzerall, Denise L

    2017-03-07

    To increase energy security and reduce emissions of air pollutants and CO2 from coal use, China is attempting to duplicate the rapid development of shale gas that has taken place in the United States. This work builds a framework to estimate the lifecycle greenhouse gas (GHG) emissions from China's shale gas system and compares them with GHG emissions from coal used in the power, residential, and industrial sectors. We find the mean lifecycle carbon footprint of shale gas is about 30-50% lower than that of coal in all sectors under both 20 year and 100 year global warming potentials (GWP20 and GWP100). However, primarily due to large uncertainties in methane leakage, the upper bound estimate of the lifecycle carbon footprint of shale gas in China could be approximately 15-60% higher than that of coal across sectors under GWP20. To ensure net GHG emission reductions when switching from coal to shale gas, we estimate the breakeven methane leakage rates to be approximately 6.0%, 7.7%, and 4.2% in the power, residential, and industrial sectors, respectively, under GWP20. We find shale gas in China has a good chance of delivering air quality and climate cobenefits, particularly when used in the residential sector, with proper methane leakage control.

  18. The effect of a tectonic stress field on coal and gas outbursts.

    Science.gov (United States)

    An, Fenghua; Cheng, Yuanping

    2014-01-01

    Coal and gas outbursts have always been a serious threat to the safe and efficient mining of coal resources. Ground stress (especially the tectonic stress) has a notable effect on the occurrence and distribution of outbursts in the field practice. A numerical model considering the effect of coal gas was established to analyze the outburst danger from the perspective of stress conditions. To evaluate the outburst tendency, the potential energy of yielded coal mass accumulated during an outburst initiation was studied. The results showed that the gas pressure and the strength reduction from the adsorbed gas aggravated the coal mass failure and the ground stress altered by tectonics would affect the plastic zone distribution. To demonstrate the outburst tendency, the ratio of potential energy for the outburst initiation and the energy consumption was used. Increase of coal gas and tectonic stress could enhance the potential energy accumulation ratio, meaning larger outburst tendency. The component of potential energy for outburst initiation indicated that the proportion of elastic energy was increased due to tectonic stress. The elastic energy increase is deduced as the cause for a greater outburst danger in a tectonic area from the perspective of stress conditions.

  19. Development of coal gas production technology acceptable for fuel cells; Nenryo denchiyo sekitan gas seizo gijutsu ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, T. [Center for Coal Utilization, Japan, Tokyo (Japan); Kimura, N.; Omata, K. [Electric Power Development Co. Ltd., Tokyo (Japan)

    1996-09-01

    In utilizing coal for high-efficiency direct power generation using fuel cells, it is necessary that coal be fed into the fuel cells after having been made into ash-free gaseous fuel. Research and development works are being carried out with an objective to develop a coal gasification furnace most suitable for fuel cells and establish a system to refine coal up to the one that can be fed into fuel cells. Fiscal 1995 has conducted investigations on coal gasification technologies, air separation technologies, and gas refining technologies as the important element technologies, and a trial design on integrated coal gasification fuel cell (IGFC) systems. This paper reports from among the above items the result of the trial design on an IGFC system using molten carbonate fuel cells. The paper describes system comparison on paths of produced gases and anode waste gas, comparison on refining processes using a wet system and a dry system, and parameter studies on oxygen concentration in gasifying agents. It was made clear that the suitable furnace is an oxygen blown coal gasification furnace, and the power generation efficiency at the system terminal can be higher than 53%. 11 figs., 6 tabs.

  20. Integrated Warm Gas Multicontaminant Cleanup Technologies for Coal-Derived Syngas

    Energy Technology Data Exchange (ETDEWEB)

    Turk, Brian; Gupta, Raghubir; Sharma, Pradeepkumar; Albritton, Johnny; Jamal, Aqil

    2010-09-30

    One of the key obstacles for the introduction of commercial gasification technology for the production of power with Integrated Gasification Combined Cycle (IGCC) plants or the production of value added chemicals, transportation fuels, and hydrogen has been the cost of these systems. This situation is particularly challenging because the United States has ample coal resources available as raw materials and effective use of these raw materials could help us meet our energy and transportation fuel needs while significantly reducing our need to import oil. One component of the cost of these systems that faces strong challenges for continuous improvement is removing the undesirable components present in the syngas. The need to limit the increase in cost of electricity to < 35% for new coal-based power plants which include CO{sub 2} capture and sequestration addresses both the growing social concern for global climate change resulting from the emission of greenhouse gas and in particular CO{sub 2} and the need to control cost increases to power production necessary to meet this social objective. Similar improvements to technologies for trace contaminants are getting similar pressure to reduce environmental emissions and reduce production costs for the syngas to enable production of chemicals from coal that is cost competitive with oil and natural gas. RTI, with DOE/NETL support, has been developing sorbent technologies that enable capture of trace contaminants and CO{sub 2} at temperatures above 400 °F that achieve better capture performance, lower costs and higher thermal efficiency. This report describes the specific work of sorbent development for mercury (Hg), arsenic (As), selenium (Se), cadmium (Cd), and phosphorous (P) and CO{sub 2} removal. Because the typical concentrations of Hg, As, Se, Cd, and P are less than 10 ppmv, the focus has been on single-use sorbents with sufficient capacity to ensure replacement costs are cost effective. The research in this

  1. Production costs of auto gasoline and DHD feed from bituminous coal

    Energy Technology Data Exchange (ETDEWEB)

    1942-11-04

    This report consists of three tables. The first table shows data concerning the 700 atm liquid phase and a production capacity of 146,000 tons/yr of gasoline and middle oil. The cost is shown in Reichsmarks per ton of gasoline and middle oil for individual areas such as: 1.73 tons of hydrogenation coal, with 10% water and 4% ash as being 40 RM, 1900 m/sup 3/ H/sub 2/ being 83.50 RM, catalysts and chemicals being 2.40 RM, power being 32.0 RM, and wages, materials, operating materials and laboratory costs as being 19.6 RM. The total of all areas listed was 211.60 RM/ton of gasoline and middle oil. The second table is for the 300 atm vapor phase showing RM/ton of auto gasoline and RM/ton 170/sup 0/-endpoint gasoline based on the gasoline being free of C/sub 4/. This is given for liquid phase gasoline and middle oil, hydrogen, liquid petroleum gasoline credit, hydrogenation gas credit, catalyst and chemicals, power, wages, repairs, fire protection and taxes, amortization, general, 3% interest, and 5% interest. The same information given in the second chart is also given in the third chart except it was for a 700 atm vapor phase operation. The 300 atm-process seemed to have slightly higher cost than the 700 atm process, partly because of using more hydrogen and more expensive catalyst. 3 tables

  2. Prospects for application of robotic mechano-hydraulical excavation of gas-bearing coal layers at great depths

    Science.gov (United States)

    Fryanov, V. N.; Pavlova, L. D.

    2016-10-01

    In the paper the scientific basis for robotic technology of excavation prone to gas- dynamic phenomena of a coal layer with high gas-bearing capacity at great depths is developed. The constructive scheme of automated remote-controlled mining robot, that fractures coal by high-pressure hydraulic jets in the gas polluted environment, is proposed.

  3. Low cost hydrogen/novel membrane technology for hydrogen separation from synthesis gas

    Energy Technology Data Exchange (ETDEWEB)

    1986-02-01

    To make the coal-to-hydrogen route economically attractive, improvements are being sought in each step of the process: coal gasification, water-carbon monoxide shift reaction, and hydrogen separation. This report addresses the use of membranes in the hydrogen separation step. The separation of hydrogen from synthesis gas is a major cost element in the manufacture of hydrogen from coal. Separation by membranes is an attractive, new, and still largely unexplored approach to the problem. Membrane processes are inherently simple and efficient and often have lower capital and operating costs than conventional processes. In this report current ad future trends in hydrogen production and use are first summarized. Methods of producing hydrogen from coal are then discussed, with particular emphasis on the Texaco entrained flow gasifier and on current methods of separating hydrogen from this gas stream. The potential for membrane separations in the process is then examined. In particular, the use of membranes for H{sub 2}/CO{sub 2}, H{sub 2}/CO, and H{sub 2}/N{sub 2} separations is discussed. 43 refs., 14 figs., 6 tabs.

  4. Acoustic Emission Characteristics of Gas-Containing Coal during Loading Dilation Process

    Directory of Open Access Journals (Sweden)

    Z. Q. Yin

    2015-12-01

    Full Text Available Raw coal was used as the study object in this paper to identify the evolution characteristics of acoustic emission (AE during the dilation process of gas-containing coal. The coal specimens were stored in gas seal devices filled with gas at different pressures (0, 0.5, 1.0, and 1.5 MPa for 24 h prior to testing. Then, the specimens were tested in a rock-testing machine, and the deformation and crack fracture patterns were recorded by using strain gauges and an AE system. The axial and volumetric strains–stress curves were analyzed in relation to the AE and the failure mode. Results show that as gas pressure increases, the uniaxial compression strength and elasticity modulus of gas-containing coal decreases, whereas the Poisson’s ratio increases. In all the coal specimens, the dilation initiation stress decreases, and the dilation degree increases. During the dilation process, before the loaded coal specimens reach peak stress, and as the load increases, the changes in the specimens and in the AE energy parameter of specimens can be divided into four phases: crack closure deformation, elastic deformation, stable crack propagation, and unstable crack propagation (dilation process. Across the four phases, the AE energy increases evidently during crack closure and elastic deformation but decreases during stable crack propagation. As the gas pressure increases, the AE signal frequency increases from 4.5 KHz to 8.1 KHz during the dilation process. Thus, the gas presence in coal specimens exerts a significant influence on the closure of sample cracks and dilation damage.

  5. {open_quotes}Experimental investigation of brown coal combustion with siumlated gas Turbine Exhaust Gas in a combined cycle application

    Energy Technology Data Exchange (ETDEWEB)

    Kakaras, E.; Vourliotis, P.

    1995-12-31

    The main objective of this study is the experimental investigation of the brown coal combustion (brown coal with high sulphur content, e.g. {open_quotes}Megalopolis{close_quotes} lignite) in a lab-scale Atmospheric Fluidized Bed (AFB). The fluidizing gas and the oxidant medium is the Simulated gas Turbine Exhaust flue Gas - {open_quotes}Vitiated Air{close_quotes} (STEG - V.A.). The STEG simulates the exhaust flue gas from the turbine MS 9/1 (FA) produced by EGT - GEC Alsthom (/1/). According to the IFRF experiments, the lowest O{sub 2} level allowed for stable combustion is 10%, concentration which corresponds to 88.4 % burnout in the IFRF experimental furnace. For the improvement of the coal burnout the presence of an oxidation catalyst is considered necessary in order, first, to avoid the incomplete combustion of the coal and second, to decrease the CO and C{sub x}H{sub y} emissions. The catalysts, supplied by KAT-TEC (/4/), are perovskit-type with TiO{sub 2} and Pt as stabilisers. The purposes of the trials are: (1) To examine the possibility to achieve the combustion of low grade brown coal under these conditions. (2) The investigation of the burnout behaviour as well as the resulting O{sub 2} CO{sub 2}, CO, SO{sub 2}, N{sub 2}O, C{sub x}H{sub y} and NO{sub x} emissions.

  6. Radiating heat transfer in the power boiler downtake gas duct when firing high-ash coal

    Energy Technology Data Exchange (ETDEWEB)

    Sudarev, A.V.; Antonovsky, V.I.; Kiselev, O.V.; Sivchikov, S.B. (VTUS-Leningrad Metal Plant-LMZ, Leningrad (USSR))

    1990-01-01

    The experimental study of radiation heat transfer in the downtake gas duct of the pulverized-coal fired steam boiler for 500 MW power unit when firing high-ash (40% ash content) coal from Ekibastuz coal field was carried out by means of the radiometer probe with rotary optical axis. The local values of the combustion product temperature were measured simultaneously in the down-take and the operation parameters for boiler gas and steam ducts were registered. The dependence of the extinction coefficient of combustion products on the radiating layer thickness was obtained. The radiating power, generated in the gas space, remote from the steam superheater and reaching the super heater boundaries, was measured. The heat release coefficients from radiation and heat transfer coefficients, were determined for definite operation conditions of the superheater working. The contribution of the gas space outside the steam superheater into the radiating heat transfer negligible.

  7. Ancillary operation in coal preparation instrumentation: On-line low cost sulfur and ash analysis

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    Progress in reported on ancillary operations in coal preparation instrumentation, and on-line low cost sulfur and ash analysis of coal. This quarter's activities consisted of the following; the assembly of the sample preparation and delivery (SPAD) system was completed and laboratory pretesting performed; the entire system was assembled and debugged at C.Q. Inc.; field tests were executed according to the Field Test Plan with certain modifications necessitated by actual field conditions and C.Q. test schedule; coal slurry samples collected at C.Q. Inc. were either sent to the Homer City Coal Lab or brought back to B W for ICP analysis; and Homer City Coal Lab analysis of field collected slurry samples was completed and results reported to B W.

  8. Modelling and simulation of energy conversion in combined gas-steam power plant integrated with coal gasification

    Energy Technology Data Exchange (ETDEWEB)

    Zaporowski, B. [Poznan Univ. of Technology (Poland)

    1996-12-31

    The paper presents the modeling and simulation of energy conversion in technological systems of combined gas-steam power plants integrated with coal gasification. The energy analysis of technological systems of gas-steam power plants is connected with energy analysis of various technologies of coal gasification. The base of the performed energy analysis are the elaborate mathematical models of coal gasification process, and of energy processes proceeding in gas and in steam parts of power plants. The mathematical model of coal gasification process for gas-steam power plants allows them to calculate: the composition and physical properties, and energy parameters of gas produced in the process of coal gasification, the consumption and temperature of gasifying medium, and both the chemical and the energy efficiency of coal gasification. The mathematical models of energy conversion processes in the gas generator and in the gas cycle of gas-steam power plants are elaborated on the base of quantum statistical physics, and on the base of phenomenological thermodynamics for the steam cycle of these power plants. The mathematical models were the basis for computer programs for multivariant numerical simulation of energy conversion processes in gas-steam power plants. The results of numerical simulation are shown in the form of tables, presenting the influence of the methods of coal gasification process, and of the structure and of the energy parameters of technological systems of gas-steam power plants on the efficiency of electric energy generation in combined gas-steam power plants integrated with coal gasification.

  9. The potential of gas purging for the reduction of coal moisture

    Energy Technology Data Exchange (ETDEWEB)

    Veal, C.J.; Johnston, B.K. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), North Ryde, NSW (Australia). Div. of Coal and Energy Technology; Nicol, S.K. [Novatech Consulting Pty. Ltd., Newcastle, NSW (Australia)

    1995-12-31

    Because of the increasingly stringent nature of export coal contracts, much has been written in recent times on the subject of the economic penalties of moisture that are associated with the transportation, utilization and handling of coal. This paper describes work performed to explore the possibility of removing moisture from beds of coal by the use of gas purging. The concept that globules of water retained within the pores of the bed, led to the notion that significant moisture reduction could be achieved by passage of turbulent airflow through beds of coal. The general significance of this effect on the dewatering of coal is discussed as well as the application of these findings to the design of centrifuges and other dewatering equipment. (author). 2 tables. 16 figs., 5 refs.

  10. Environmental costs resulting from the use of hard coal to electricity generation in Poland

    Science.gov (United States)

    Stala-Szlugaj, Katarzyna; Grudziński, Zbigniew

    2017-10-01

    In the world's fuel mix used for generating electricity, the most common fossil fuel is coal. In the EU, coal combustion and electricity generation entail the need to purchase emission allowances (EUA) whose purchase costs affect the costs of electricity generation significantly. The research described in the article shows how current market conditions shape the profitability of generating electricity from coal and how Clean Dark Spread (CDS) changes as a function of changes in energy and coal prices at the assumed levels of emission and prices of EUA allowances. The article compares the results of CDS calculations in two variants. Areas have been highlighted where prices of both coal and EUA allowances cause CDS to assume values at which the prices of generated electricity do not cover the costs of fuel (i) and CO2 emission allowances, cover all costs (ii), or constitute positive prices (iii), but still do not cover all fixed costs. With higher power plant efficiency, CO2 emissions are lower (0.722 t/MWh). The costs of purchasing fuel required to generate 1 MWh of electricity are also lower. In such case—even with relatively high prices of coal—a power plant can achieve profitability of electricity generation.

  11. Evaluation of costs associated with atmospheric mercury emission reductions from coal combustion in China in 2010 and projections for 2020.

    Science.gov (United States)

    Zhang, Yue; Ye, Xuejie; Yang, Tianjun; Li, Jinling; Chen, Long; Zhang, Wei; Wang, Xuejun

    2018-01-01

    Coal combustion is the most significant anthropogenic mercury emission source in China. In 2013, China signed the Minamata Convention affirming that mercury emissions should be controlled more strictly. Therefore, an evaluation of the costs associated with atmospheric mercury emission reductions from China's coal combustion is essential. In this study, we estimated mercury abatement costs for coal combustion in China for 2010, based on a provincial technology-based mercury emission inventory. In addition, four scenarios were used to project abatement costs for 2020. Our results indicate that actual mercury emission related to coal combustion in 2010 was 300.8Mg, indicating a reduction amount of 174.7Mg. Under a policy-controlled scenario for 2020, approximately 49% of this mercury could be removed using air pollution control devices, making mercury emissions in 2020 equal to or lower than in 2010. The total abatement cost associated with mercury emissions in 2010 was 50.2×10(9) RMB. In contrast, the total abatement costs for 2020 under baseline versus policy-controlled scenarios, having high-energy and low-energy consumption, would be 32.0×10(9) versus 51.2×10(9), and 27.4×10(9) versus 43.9×10(9) RMB, respectively. The main expense is associated with flue gas desulfurization. The unit abatement cost of mercury emissions in 2010 was 288×10(3) RMB/(kgHg). The unit abatement costs projected for 2020 under a baseline, a policy-controlled, and an United Nations Environmental Programme scenario would be 143×10(3), 172×10(3) and 1066×10(3) RMB/(kgHg), respectively. These results are much lower than other international ones. However, the relative costs to China in terms of GPD are higher than in most developed countries. We calculated that abatement costs related to mercury emissions accounted for about 0.14% of the GDP of China in 2010, but would be between 0.03% and 0.06% in 2020. This decrease in abatement costs in terms of GDP suggests that various policy

  12. Microfine coal firing results from a retrofit gas/oil-designed industrial boiler

    Energy Technology Data Exchange (ETDEWEB)

    Patel, R.; Borio, R.W.; Liljedahl, G. [Combustion Engineering, Inc., Windsor, CT (United States). ABB Power Plant Labs.; Miller, B.G.; Scaroni, A.W. [Pennsylvania State Univ., University Park, PA (United States). Energy and Fuels Research Center; McGowan, J.G. [Univ. of Massachusetts, Amherst, MA (United States)

    1995-12-31

    The development of a High Efficiency Advanced Coal Combustor (HEACC) has been in progress since 1987 and the ABB Power Plant Laboratories. The initial work on this concept produced an advanced coal firing system that was capable of firing both water-based and dry pulverized coal in an industrial boiler environment. Economics may one day dictate that it makes sense to replace oil or natural gas with coal in boilers that were originally designed to burn these fuels. The objective of the current program is to demonstrate the technical and economic feasibility of retrofitting a gas/oil designed boiler to burn micronized coal. In support of this overall objective, the following specific areas were targeted: A coal handling/preparation system that can meet the technical requirements for retrofitting microfine coal on a boiler designed for burning oil or natural gas; Maintaining boiler thermal performance in accordance with specifications when burning oil or natural gas; Maintaining NOx emissions at or below 0.6 lb/MBtu; Achieving combustion efficiencies of 98% or higher; and Calculating economic payback periods as a function of key variables. The overall program has consisted of five major tasks: (1) A review of current state-of-the-art coal firing system components; (2) Design and experimental testing of a prototype HEACC burner; (3) Installation and testing of a HEACC system in a commercial retrofit application; (4) Economic evaluation of the HEACC concept for retrofit applications; and (5) Long term demonstration under commercial user demand conditions. This paper will summarize the latest key experimental results (Task 3) and the economic evaluation (Task 4) of the HEACC concept for retrofit applications. 28 figs., 6 tabs.

  13. Influence of geotechnical factors on gas flow experienced in a UK longwall coal mine panel

    Energy Technology Data Exchange (ETDEWEB)

    Whittles, D.N.; Lowndes, I.S.; Kingman, S.W.; Yates, C.; Jobling, S. [University of Nottingham, Nottingham (United Kingdom). Nottingham Mining & Minerals Centre

    2006-04-15

    Methane drainage has become an integral part of modern coal mining operations when gas emissions cannot be practically dealt with using conventional ventilation methods alone. Boreholes are often drilled above and below the caving zone and connected to a drainage range located along the return gate. This paper describes the construction and analysis of the results obtained from the two- and three-dimensional geomechanical and gas flow models experienced around an active deep UK longwall coal production panel. The models constructed using the commercial FLAC codes were undertaken to provide information to the ventilation engineers at the mine on the likely gas sources and gas flow paths into the face line areas and gate roads. This information allows for the correct design of the orientation, length and support of the boreholes to maximise gas capture. The paper describes the method adopted to derive the relevant rock mass parameters and the laboratory tests conducted to obtain the stress-dependent permeability of coal measure rock strata. A functional relationship is proposed whereby the intrinsic bulk permeability of a sheared coal measure rock may be predicted from the confining stress. A detailed discussion of the geomechanical modelling methodology and the derivation of the strata permeabilities and gas flow modelling adopted is presented. The output of the models is described and used to interpret the major potential gas sources and pathway into the workings.

  14. Understanding coal quality and its relationship to power plant performance and costs

    Energy Technology Data Exchange (ETDEWEB)

    Jennison, K.D.; Stallard, G.S. [Black & Veatch International, Overland Park, KS (United States)

    1995-12-01

    The availability of reliable, reasonably priced energy is a necessary cornerstone for established and emerging economies. In addition to addressing coal quality issues strictly at a plant level, it is now prudent to consider long-term performance and economics of particular fuel sources to be selected in the light of system economics and reliability. In order to evaluate coal quality issues in a more comprehensive manner, it is important to develop both an approach and a set of tools which can support the various phases of the planning/analysis processes. The processes must consider the following: (1) Cost/availability of other potential coal supplies, including {open_quotes}raw{close_quotes} domestic sources, {open_quotes}cleaned {close_quotes} domestic sources, and other internationally marketed coals. (2) Power plant performance issues as function of plant design and fuel properties. (3) System expansion plans, candidate technologies, and associated capital and operating costs. (4) Projected load demand, for system and for individual units within the system. (5) Legislative issues such as environmental pressures, power purchase agreements, etc. which could alter the solution. (6) Economics of potential plans/strategies based on overall cost-effectiveness of the utility system, not just individual units. (7) Anticipated unit configuration, including addition of environmental control equipment or other repowering options. The Coal Quality Impact Model (CQIM{trademark}) is a PC-based computer program capable of predicting coal-related cost and performance impacts at electric power generating sites. The CQIM was developed for EPRI by Black & Veatch and represents over a decade of effort geared toward developing an extensible state-of-the-art coal quality assessment tool. This paper will introduce CQIM, its capabilities, and its application to Eastern European coal quality assessment needs.

  15. An improved void-resistance model for abandoned coal mine gas reservoirs

    OpenAIRE

    Shi, JQ; Rubio, RM; Durucan, S.

    2016-01-01

    Previous studies have shown that the gas pressure behaviour of some abandoned coal mines may be described with the aid of a simple conceptual model, the so called void-resistance model. In this study, an improved void-resistance model has been developed and validated using previously collected data. Two model parameters, i.e. an apparent source/sink pressure and a time constant, which control the gas pressure behaviour during recharge and under certain gas production conditions, are defined. ...

  16. A new method for calculating gas content of coal reservoirs with consideration of a micro-pore overpressure environment

    Directory of Open Access Journals (Sweden)

    Jinxing Song

    2017-05-01

    Full Text Available When the gas content of a coal reservoir is calculated, the reservoir pressure measured by well logging and well testing is generally used for inversion calculation instead of gas pressure. However, the calculation result is not accurate because the reservoir pressure is not equal to the gas pressure in overpressure environments. In this paper, coal samples of different ranks in Shanxi and Henan are collected for testing the capillary pressure of coal pores. Based on the formation process of CBM reservoirs and the hydrocarbon generation and expulsion history of coal beds, the forming mechanisms of micro-pore overpressure environments in coal reservoirs were analyzed. Accordingly, a new method for calculating the gas content of coal reservoirs with consideration of a micro-pore overpressure environment was developed. And it was used to calculate the gas content of No. 1 coal bed of the 2nd member of Lower Permian Shanxi Fm in the Zhongmacun Coal Mine in Jiaozuo, Henan. It is indicated that during the formation and evolution of coals, some solid organic matters were converted into gas and water, and gas–water contact is surely formed in pores. In the end, capillary pressure is generated, so the gas pressure in micro-pores is much higher than the hydrostatic column pressure, which results in a micro-pore overpressure environment. Under such an environment, gas pressure is higher than reservoir pressure, so the gas content of coal reservoirs calculated previously based on the conventional reservoir pressure evaluation are usually underestimated. It is also found that the micro-pore overpressure environment exerts a dominating effect on the CBM content calculation of 3–100 nm pores, especially that of 3–10 nm pores, but a little effect on that of pores >100 nm. In conclusion, this new method clarifies the pressure environment of CBM gas reservoirs, thereby ensuring the calculation accuracy of gas content of coal reservoirs.

  17. Advanced coal fueled industrial cogeneration gas turbine system. Final report, June 1986--April 1994

    Energy Technology Data Exchange (ETDEWEB)

    LeCren, R.T.

    1994-05-01

    Demonstration of a direct coal-fueled gas turbine system that is environmentally, technically, and economically viable depends on the satisfactory resolution of several key issues. Solar Turbines, Incorporates technical approach to these issues was to advance a complete direct coal-fueled gas turbine system that incorporated near-term technology solutions to both historically demonstrated problem areas such as deposition, erosion, and hot end corrosion, and to the emergent environmental constraints based on NO{sub x}, SO{sub x}, and particulates. Solar`s program approach was keyed to the full commercialization of the coal-fueled cogeneration gas turbine which would occur after extended field verification demonstrations conducted by the private sector. The program was structured in three phases plus an optional fourth phase: Phase 1 -- system description; Phase 2 -- component development; Phase 3 -- prototype system verification; and Phase 4 -- field evaluation.

  18. Combustion of Illinois coals and chars with natural gas. Final technical report, September 1, 1991--August 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Buckius, R.O.; Peters, J.E.; Krier, H. [Illinois Univ., Urbana-Champaign, IL (United States)

    1992-12-31

    Combined combustion of coal and natural gas offers advantages compared to burning coal or natural gas alone. For example, low volatile coals (or chars) derived from treatment or gasification processes can be of limited use due to their poor flammability characteristics. However, the use of natural gas in conjunction with the solid fuel can provide the necessary ``volatiles`` to enhance the combustion. Also, natural gas provides a clean cofiring fuel source which can enhance the usefulness of coals with high sulfur content. Addition of natural gas may reduce SO{sub x} emissions through increased sulfur retention in the ash and reduce NO{sub x} emissions by varying local stoichiometry and temperature levels. This research program addresses the contributions and the mechanisms of cofiring natural gas with Illinois coal through studies of particle ignition, burning rates and ash characterization.

  19. Factors affecting dustcake drag in a hot-gas filter system collecting coal gasification ash

    Energy Technology Data Exchange (ETDEWEB)

    Dahlin, R.S.; Landham, E.C. [Power Systems Development Facility, Wilsonville, AL (United States)

    2008-01-15

    This paper discusses the use of laboratory drag measurements and filter operating data to analyze factors affecting dustcake flow resistance in a hot-gas filter at the Power Systems Development Facility (PSDF). The hot-gas filter is a Siemens-Westinghouse two-tier candle filter system that is collecting coal gasification ash from a KBR Transport Gasifier. Operating experience with this system has shown that the flow resistance of the dustcake is responsible for most of the pressure drop across the hot-gas filter, and the pressure drop varies substantially with the type of coal being gasified and the operating conditions of the gasifier and filter systems. To analyze factors affecting dustcake drag, samples of gasification ash from various coals and various operating conditions were resuspended in a laboratory test apparatus, and the drag was measured as the dust was collected on a sintered metal filter. The lab-measured drag values were compared to actual values of transient drag determined from the increase in pressure drop, the inlet dust loading, and the face velocity in the hot-gas filter. After correcting the lab drag data to hot-gas filter conditions, good agreement was achieved between the lab measurements and the hot-gas filter transient drag values. Both types of measurements showed that drag was strongly influenced by coal type and carbon content.

  20. Impact of Contaminants Present in Coal-Biomass Derived Synthesis Gas on Water-gas Shift and Fischer-Tropsch Synthesis Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Alptekin, Gokhan [TDA Research, Inc., Wheat Ridge, CO (United States)

    2013-02-15

    Co-gasification of biomass and coal in large-scale, Integrated Gasification Combined Cycle (IGCC) plants increases the efficiency and reduces the environmental impact of making synthesis gas ("syngas") that can be used in Coal-Biomass-to-Liquids (CBTL) processes for producing transportation fuels. However, the water-gas shift (WGS) and Fischer-Tropsch synthesis (FTS) catalysts used in these processes may be poisoned by multiple contaminants found in coal-biomass derived syngas; sulfur species, trace toxic metals, halides, nitrogen species, the vapors of alkali metals and their salts (e.g., KCl and NaCl), ammonia, and phosphorous. Thus, it is essential to develop a fundamental understanding of poisoning/inhibition mechanisms before investing in the development of any costly mitigation technologies. We therefore investigated the impact of potential contaminants (H2S, NH3, HCN, AsH3, PH3, HCl, NaCl, KCl, AS3, NH4NO3, NH4OH, KNO3, HBr, HF, and HNO3) on the performance and lifetime of commercially available and generic (prepared in-house) WGS and FT catalysts.

  1. Characterizing thermogenic coalbed gas from Polish coals of different ranks by hydrous pyrolysis

    Science.gov (United States)

    Kotarba, M.J.; Lewan, M.D.

    2004-01-01

    To provide a better characterization of origin and volume of thermogenic gas generation from coals, hydrous pyrolysis experiments were conducted at 360??C for 72 h on Polish coals ranging in rank from lignite (0.3% R r) to semi-anthracite (2.0% Rr). Under these conditions, the lignites attained a medium-volatile bituminous rank (1.5% Rr), high-volatile bituminous coals attained a low-volatile bituminous rank (1.7% Rr), and the semi-anthracite obtained an anthracite rank (4.0% R r). Hydrous pyrolysis of a coal, irrespective of rank, provides a diagnostic ??13C value for its thermogenic hydrocarbon gases. This value can be used quantitatively to interpret mixing of indigenous thermogenic gas with microbial methane or exogenous thermogenic gas from other sources. Thermogenic methane quantities range from 20 dm3/kg of lignite (0.3% Rr) to 0.35 dm3/kg of semi-anthracite (2.0% Rr). At a vitrinite reflectance of 1.7% Rr, approximately 75% of the maximum potential for a coal to generate thermogenic methane has been expended. At a vitrinite reflectance of 1.7% Rr, more than 90% of the maximum potential for a coal to generate CO2 has been expended. Assuming that these quantities of generated CO2 remain associated with a sourcing coal bed as uplift or erosion provide conditions conducive for microbial methanogenesis, the resulting quantities of microbial methane generated by complete CO2 reduction can exceed the quantities of thermogenic methane generated from the same coal bed by a factor of 2-5. ?? 2004 Elsevier Ltd. All rights reserved.

  2. Combustion of producer gas from gasification of south Sumatera lignite coal using CFD simulation

    Directory of Open Access Journals (Sweden)

    Vidian Fajri

    2017-01-01

    Full Text Available The production of gasses from lignite coal gasification is one of alternative fuel for the boiler or gas turbine. The prediction of temperature distribution inside the burner is important for the application and optimization of the producer gas. This research aims to provide the information about the influence of excess air on the temperature distribution and combustion product in the non-premixed burner. The process was carried out using producer gas from lignite coal gasification of BA 59 was produced by the updraft gasifier which is located on Energy Conversion Laboratory Mechanical Engineering Department Universitas Sriwijaya. The excess air used in the combustion process were respectively 10%, 30% and 50%. CFD Simulations was performed in this work using two-dimensional model of the burner. The result of the simulation showed an increase of excess air, a reduction in the gas burner temperature and the composition of gas (carbon dioxide, nitric oxide and water vapor.

  3. Report on Geothermal Power Plant Cost and Comparative Cost of Geothermal and Coal Fired Steam Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-07-01

    This report is to be used by Utah Power and Light Company (UP and L) in making studies of geothermal power plants. The dollars per kilowatt comparison between a geothermal plant and a UP and L coal-fired plant is to be developed. Geothermal gathering system costs and return to owner are to be developed for information.

  4. Gas emissions, minerals, and tars associated with three coal fires, Powder River Basin, USA.

    Science.gov (United States)

    Engle, Mark A; Radke, Lawrence F; Heffern, Edward L; O'Keefe, Jennifer M K; Hower, James C; Smeltzer, Charles D; Hower, Judith M; Olea, Ricardo A; Eatwell, Robert J; Blake, Donald R; Emsbo-Mattingly, Stephen D; Stout, Scott A; Queen, Gerald; Aggen, Kerry L; Kolker, Allan; Prakash, Anupma; Henke, Kevin R; Stracher, Glenn B; Schroeder, Paul A; Román-Colón, Yomayra; ter Schure, Arnout

    2012-03-15

    Ground-based surveys of three coal fires and airborne surveys of two of the fires were conducted near Sheridan, Wyoming. The fires occur in natural outcrops and in abandoned mines, all containing Paleocene-age subbituminous coals. Diffuse (carbon dioxide (CO(2)) only) and vent (CO(2), carbon monoxide (CO), methane, hydrogen sulfide (H(2)S), and elemental mercury) emission estimates were made for each of the fires. Additionally, gas samples were collected for volatile organic compound (VOC) analysis and showed a large range in variation between vents. The fires produce locally dangerous levels of CO, CO(2), H(2)S, and benzene, among other gases. At one fire in an abandoned coal mine, trends in gas and tar composition followed a change in topography. Total CO(2) fluxes for the fires from airborne, ground-based, and rate of fire advancement estimates ranged from 0.9 to 780mg/s/m(2) and are comparable to other coal fires worldwide. Samples of tar and coal-fire minerals collected from the mouth of vents provided insight into the behavior and formation of the coal fires. Published by Elsevier B.V.

  5. Environmental impact of coal mining and coal seam gas production on surface water quality in the Sydney basin, Australia.

    Science.gov (United States)

    Ali, A; Strezov, V; Davies, P; Wright, I

    2017-08-01

    The extraction of coal and coal seam gas (CSG) will generate produced water that, if not adequately treated, will pollute surface and groundwater systems. In Australia, the discharge of produced water from coal mining and related activities is regulated by the state environment agency through a pollution licence. This licence sets the discharge limits for a range of analytes to protect the environment into which the produced water is discharged. This study reports on the impact of produced water from coal mine activities located within or discharging into high conservation environments, such as National Parks, in the outer region of Sydney, Australia. The water samples upstream and downstream from the discharge points from six mines were taken, and 110 parameters were tested. The results were assessed against a water quality index (WQI) which accounts for pH, turbidity, dissolved oxygen, biochemical oxygen demand, total dissolved solids, total phosphorus, nitrate nitrogen and E .coli. The water quality assessment based on the trace metal contents against various national maximum admissible concentration (MAC) and their corresponding environmental impacts was also included in the study which also established a base value of water quality for further study. The study revealed that impacted water downstream of the mine discharge points contained higher metal content than the upstream reference locations. In many cases, the downstream water was above the Australia and New Zealand Environment Conservation Council and international water quality guidelines for freshwater stream. The major outliers to the guidelines were aluminium (Al), iron (Fe), manganese (Mn), nickel (Ni) and zinc (Zn). The WQI of surface water at and downstream of the discharge point was lower when compared to upstream or reference conditions in the majority of cases. Toxicology indices of metals present in industrial discharges were used as an additional tool to assess water quality, and the newly

  6. Development of standardized air-blown coal gasifier/gas turbine concepts for future electric power systems

    Energy Technology Data Exchange (ETDEWEB)

    Sadowski, R.S.; Brown, M.J.; Harriz, J.T.; Ostrowski, E.

    1991-01-01

    The cost estimate provided for the DOE sponsored study of Air Blown Coal Gasification was developed from vendor quotes obtained directly for the equipment needed in the 50 MW, 100 MW, and 200 MW sized plants and from quotes from other jobs that have been referenced to apply to the particular cycle. Quotes were generally obtained for the 100 MW cycle and a scale up/down factor was used to generate the cost estimates for the 200 MW and 50 MW cycles, respectively. Information from GTPro (property of Thermoflow, Inc.) was used to estimate the cost of the 200 MW and 50 MW gas turbine, HRSG, and steam turbines. To available the use of GTPro's estimated values for this equipment, a comparison was made between the quotes obtained for the 100 MW cycle (ABB GT 11N combustion turbine and a HSRG) against the estimated values by GTPro.

  7. Coal Combustion Behavior in New Ironmaking Process of Top Gas Recycling Oxygen Blast Furnace

    Science.gov (United States)

    Zhou, Zhenfeng; Xue, Qingguo; Tang, Huiqing; Wang, Guang; Wang, Jingsong

    2017-10-01

    The top gas recycling oxygen blast furnace (TGR-OBF) is a new ironmaking process which can significantly reduce the coke ratio and emissions of carbon dioxide. To better understand the coal combustion characteristics in the TGR-OBF, a three dimensional model was developed to simulate the lance-blowpipe-tuyere-raceway of a TGR-OBF. The combustion characteristics of pulverized coal in TGR-OBF were investigated. Furthermore, the effects of oxygen concentration and temperature were also analyzed. The simulation results show that the coal burnout increased by 16.23% compared to that of the TBF. The oxygen content has an obvious effect on the burnout. At 70% oxygen content, the coal burnout is only 21.64%, with a decrease of 50.14% compared to that of TBF. Moreover, the effect of oxygen temperature is also very obvious.

  8. Mathematical modelling of flue gas tempered flames produced from pulverised coal fired with oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Breussin, A.; Weber, R.; Kamp, W.L. van de

    1997-10-01

    The combustion of pulverised coal in conventional utility boilers contributes significantly to global CO{sub 2} emissions. Because atmospheric air is used as the combustion medium, the exhaust gases of conventional pulverised coal fired utility boilers contain approximately 15 % CO{sub 2}. This relatively low concentration makes separating and recovering CO{sub 2} a very energy-intensive process. This process can be simplified if N{sub 2} is eliminated from the comburent before combustion by firing the pulverised coal with pure oxygen. However, this concept will result in very high flames temperatures. Flue gas recirculation can be used to moderate the flame temperature, whilst generating a flue gas with a CO{sub 2} concentration of 95 %. In this presentation, both experimental and modelling work will be described. The former deals with identifying the issues related to the combustion of pulverised coal in simulated turbine exhaust gas, particularly with respect to stability, burnout and pollutant emissions. The second part of this presentation describes mathematical modelling of type 2 as well as type 1 swirling pulverised coal flames. Future work will concentrate on high CO{sub 2} levels environments. (orig.)

  9. Method of gas emission control for safe working of flat gassy coal seams

    Science.gov (United States)

    Vinogradov, E. A.; Yaroshenko, V. V.; Kislicyn, M. S.

    2017-10-01

    The main problems at intensive flat gassy coal seam longwall mining are considered. For example, mine Kotinskaja JSC “SUEK-Kuzbass” shows that when conducting the work on the gassy coal seams, methane emission control by means of ventilation, degassing and insulated drain of methane-air mixture is not effective and stable enough. It is not always possible to remove the coal production restrictions by the gas factor, which leads to financial losses because of incomplete using of longwall equipment and the reduction of the technical and economic indicators of mining. To solve the problems, the authors used a complex method that includes the compilation and analysis of the theory and practice of intensive flat gassy coal seam longwall mining. Based on the results of field and numerical researches, the effect of parameters of technological schemes on efficiency of methane emission control on longwall panels, the non-linear dependence of the permissible according to gas factor longwall productivity on parameters of technological schemes, ventilation and degassing during intensive mining flat gassy coal seams was established. The number of recommendations on the choice of the location and the size of the intermediate section of coal heading to control gassing in the mining extracted area, and guidelines for choosing the parameters of ventilation of extracted area with the help of two air supply entries and removal of isolated methane-air mixture are presented in the paper. The technological scheme, using intermediate entry for fresh air intake, ensuring effective management gassing and allowing one to refuse from drilling wells from the surface to the mined-out space for mining gas-bearing coal seams, was developed.

  10. Mercury removal from coal-fired flue gas

    Energy Technology Data Exchange (ETDEWEB)

    Du, Y. [Chongqing Univ., Chongqing (China). College of Resource and Environmental Engineering; Hong, Y.; Yang, X.; Hu, P. [CPI Yuanda Environmental-Protection Engineering Co. Ltd., Chongqing (China)

    2008-07-01

    China's effort to control air pollution from its coal-fired power plants to protect the environment was discussed. Mercury (Hg) is one of the most volatile elements of heavy metals in coal. Hg pollution and its impact on human health and the environment is of significant concern, due to the acute toxicity, bio-accumulation and persistency in the atmosphere. This paper presented the current state of mercury removal technologies for coal-fired power plant flue gases. The paper first discussed existing forms of mercury, followed by 3 pollution control technologies, notably the adsorbent method; chemical precipitation; and chemical oxidation. The adsorbent method is a common method to treat pollution by using a porous solid substance for sorption, which includes physical adsorption and chemical adsorption. Types of adsorbents that were presented included active carbon and fly ash. The chemical precipitation method makes chemical agents react with mercury to form precipitation, thus removing mercury. The primary methods presented in this paper were the potassium iodide solution washing method; the mercury removal by chlorination process; and the sodium sulfide method. Chemical oxidation and other methods were also defined and explained along with a discussion of technology prospects. 4 refs.

  11. Effect of Coal Gas Contaminants on Solid Oxide Fuel Cell Operation

    Energy Technology Data Exchange (ETDEWEB)

    Marina, Olga A.; Pederson, Larry R.; Edwards, Danny J.; Coyle, Christopher A.; Templeton, Jared W.; Engelhard, Mark H.; Zhu, Zihua

    2007-12-11

    The operation of solid oxide fuel cells (SOFC) was evaluated on simulated coal gas in the presence of several coal gas impurities that are expected to remain in low concentration after warm gas cleanup. Phosphorus, arsenic and sulfur were considered in this study. The presence of phosphorus and arsenic in low, 1-2 ppm, concentrations led to the slow and irreversible SOFC degradation due to the formation of the secondary phases with nickel in the upper part of the nickel-based anode close to the gas inlet. Sulfur interactions with the nickel were limited to the surface only. Cell performance losses due to sulfur exposure were reversible and independent of the presence of other impurities.

  12. System Study of Rich Catalytic/Lean burn (RCL) Catalytic Combustion for Natural Gas and Coal-Derived Syngas Combustion Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Shahrokh Etemad; Lance Smith; Kevin Burns

    2004-12-01

    Rich Catalytic/Lean burn (RCL{reg_sign}) technology has been successfully developed to provide improvement in Dry Low Emission gas turbine technology for coal derived syngas and natural gas delivering near zero NOx emissions, improved efficiency, extending component lifetime and the ability to have fuel flexibility. The present report shows substantial net cost saving using RCL{reg_sign} technology as compared to other technologies both for new and retrofit applications, thus eliminating the need for Selective Catalytic Reduction (SCR) in combined or simple cycle for Integrated Gasification Combined Cycle (IGCC) and natural gas fired combustion turbines.

  13. Forecast and Prevention of Coal and Gas Outbursts in the Case of Application of a New Mining Method - Drilling of a Coal Pillar

    Directory of Open Access Journals (Sweden)

    Vlastimil Hudeček

    2010-10-01

    Full Text Available Coal and gas outbursts are one of risk factors accompanying the mining of coal in low seams in the Ostrava-Karviná Coalfield.At the use of the method of longwall mining, all coal reserves have not been mined out owing to tectonic faults. For mining outthe residual reserves, the application of a new mining method - drilling of a coal pillar was proposed.The method of mining of a coal seam utilizing long large diameter boreholes is verified in the Paskov Mine (company OKD, JSC –Czech Republic under conditions of rock mass with hazard of rock and gas outbursts in localities of residual pillars left in seams afterfinishing the mining operations performed with using the classical method of longwall working along the strike. [5]Forecast and preventive measures applied to the verification of the new method were based on previous experience withthe mining of seams with hazard of coal and gas outbursts. They accepted fully valid legislation, i.e. Ordinance of Ostrava RegionalMining Authority No. 3895/2002 and supplementary materials (Instructions and Guidelines. The proposed measures respectedthe character of the method being verified. [4]For all areas being mined, projects containing also chapters specifying the problems of ensuring the safety of mining worksand operation under conditions of hazard of coal and gas outbursts were prepared.In the contributions, basic proposals for the principles of coal and gas outburst forecast and prevention when applying the newmining method – drilling of a coal pillar are presented

  14. The role of natural gas as a primary fuel in the near future, including comparisons of acquisition, transmission and waste handling costs of as with competitive alternatives

    Directory of Open Access Journals (Sweden)

    Liang Fang-Yu

    2012-04-01

    Full Text Available Abstract Natural gas comprises about a quarter of the United States’ energy use. It is more environmentally friendly than oil and coal due to lower carbon dioxide (CO2 emissions per unit, less costly per unit of energy and more readily available domestically in abundant supply. However, due to a number of barriers in the political, infrastructural, pricing and other arenas, the use of natural gas as a significant energy source in the United States has been limited. In our paper, we highlight the favorable qualities of natural gas and its benefits for the consumer, producer, and environment, having compared the costs of the various components of the natural gas business such as drilling and transport to that of coal and oil. Moreover, we touch upon the major issues that have prevented a more prevalent use of the gas, such as the fact that the infrastructure of natural gas is more costly since it is transported though pipelines whereas other energy sources such as oil and coal have flexible systems that use trains, trucks and ships. In addition, the powerful lobbies of the coal and oil businesses, along with the inertia in the congress to pass a national climate change bill further dampens incentives for these industries to invest in natural gas, despite its various attractive qualities. We also include discussions of policy proposals to incentive greater use of natural gas in the future.

  15. The role of natural gas as a primary fuel in the near future, including comparisons of acquisition, transmission and waste handling costs of as with competitive alternatives.

    Science.gov (United States)

    Liang, Fang-Yu; Ryvak, Marta; Sayeed, Sara; Zhao, Nick

    2012-04-23

    Natural gas comprises about a quarter of the United States' energy use. It is more environmentally friendly than oil and coal due to lower carbon dioxide (CO2) emissions per unit, less costly per unit of energy and more readily available domestically in abundant supply. However, due to a number of barriers in the political, infrastructural, pricing and other arenas, the use of natural gas as a significant energy source in the United States has been limited. In our paper, we highlight the favorable qualities of natural gas and its benefits for the consumer, producer, and environment, having compared the costs of the various components of the natural gas business such as drilling and transport to that of coal and oil. Moreover, we touch upon the major issues that have prevented a more prevalent use of the gas, such as the fact that the infrastructure of natural gas is more costly since it is transported though pipelines whereas other energy sources such as oil and coal have flexible systems that use trains, trucks and ships. In addition, the powerful lobbies of the coal and oil businesses, along with the inertia in the congress to pass a national climate change bill further dampens incentives for these industries to invest in natural gas, despite its various attractive qualities. We also include discussions of policy proposals to incentive greater use of natural gas in the future.

  16. System and method for producing substitute natural gas from coal

    Science.gov (United States)

    Hobbs, Raymond [Avondale, AZ

    2012-08-07

    The present invention provides a system and method for producing substitute natural gas and electricity, while mitigating production of any greenhouse gasses. The system includes a hydrogasification reactor, to form a gas stream including natural gas and a char stream, and an oxygen burner to combust the char material to form carbon oxides. The system also includes an algae farm to convert the carbon oxides to hydrocarbon material and oxygen.

  17. Solution of underground mine gas emissions on surface of abandoned mining sites where steep deposited coal seams have been exploited

    Energy Technology Data Exchange (ETDEWEB)

    Takla, G.; Froml, K. [OKD, DPB, Paskov (Czech Republic)

    2005-07-01

    The solution of uncontrolled gas emissions from abandoned underground coal mine sites in Ostrava-Karvina coal-field to surface ground in connection with old mine shafts and drifts and with old mining workings in horizontal and inclined coal seams has many forms. It varies according to geological and mining conditions and the disposition of the site surface. Since four years the gas emission risk has appeared in the area of former exploited vertical coal seams within the historical centre of Orlova town, which is protected by State Monument Protection office. A project based on such special nature of mining-geological and urban conditions was elaborated and already implemented. (authors)

  18. Managerial Accounting Principles and Cost Calculation Used by Economic Entities in the Coal Mining Industry

    OpenAIRE

    Boca (Rakos) Ileana – Sorina; Vatasoiu Cristian Ionel

    2011-01-01

    Considering the specialized work in managerial accounting, this paper aims to show which cost calculation principles are actually applied in the coal mining industry today. The methodology used in this scientific approach is of qualitative nature, using the following methods: direct observation and interview.

  19. Costs Associated With Compressed Natural Gas Vehicle Fueling Infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Smith, M.; Gonzales, J.

    2014-09-01

    This document is designed to help fleets understand the cost factors associated with fueling infrastructure for compressed natural gas (CNG) vehicles. It provides estimated cost ranges for various sizes and types of CNG fueling stations and an overview of factors that contribute to the total cost of an installed station. The information presented is based on input from professionals in the natural gas industry who design, sell equipment for, and/or own and operate CNG stations.

  20. Low Cost, High Capacity Regenerable Sorbent for Carbon Dioxide Capture from Existing Coal-fired Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Alptekin, Gokhan [TDA Research, Inc., Wheat Ridge, CO (United States); Jayaraman, Ambalavanan [TDA Research, Inc., Wheat Ridge, CO (United States); Dietz, Steven [TDA Research, Inc., Wheat Ridge, CO (United States)

    2016-03-03

    In this project TDA Research, Inc (TDA) has developed a new post combustion carbon capture technology based on a vacuum swing adsorption system that uses a steam purge and demonstrated its technical feasibility and economic viability in laboratory-scale tests and tests in actual coal derived flue gas. TDA uses an advanced physical adsorbent to selectively remove CO2 from the flue gas. The sorbent exhibits a much higher affinity for CO2 than N2, H2O or O2, enabling effective CO2 separation from the flue gas. We also carried out a detailed process design and analysis of the new system as part of both sub-critical and super-critical pulverized coal fired power plants. The new technology uses a low cost, high capacity adsorbent that selectively removes CO2 in the presence of moisture at the flue gas temperature without a need for significant cooling of the flue gas or moisture removal. The sorbent is based on a TDA proprietary mesoporous carbon that consists of surface functionalized groups that remove CO2 via physical adsorption. The high surface area and favorable porosity of the sorbent also provides a unique platform to introduce additional functionality, such as active groups to remove trace metals (e.g., Hg, As). In collaboration with the Advanced Power and Energy Program of the University of California, Irvine (UCI), TDA developed system simulation models using Aspen PlusTM simulation software to assess the economic viability of TDA’s VSA-based post-combustion carbon capture technology. The levelized cost of electricity including the TS&M costs for CO2 is calculated as $116.71/MWh and $113.76/MWh for TDA system integrated with sub-critical and super-critical pulverized coal fired power plants; much lower than the $153.03/MWhand $147.44/MWh calculated for the corresponding amine based systems. The cost of CO2 captured for TDA’s VSA based system is $38

  1. The controlling factors of oil and gas generation from coal in the Kuqa Depression of Tarim Basin, China

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Shengfei; Dai, Jinxing [Research Institute of Petroleum Exploration and Development (RIPED), Petrochina, No.20 Xueyuan Road, P. O. Box 910, Beijing, 100083 (China); Liu, Xianwei [Daqing Oilfield Corp. Ltd., PetroChina, Daqing, Heilongjiang 163453 (China)

    2007-04-02

    The organic matter-rich rocks in the Kuqa Depression are mainly coal measures and therefore are gas prone. However, small amounts of oil also occur and appear to be derived from these coals and associated shales. The hydrocarbons have five different modes of occurrence: pure dry gas, wet gas, condensate, oil-gas mixtures and pure oil. The distribution of coal-related reservoired petroleum in the Kuqa Depression of the Tarim Basin indicates that the existence oil versus gas accumulations are largely influenced by geologic history and timing of generation. The oils and gases occur in various geological settings. The coal measures have mainly generated gas, but in different geological settings, different types of oil and gas accumulations occur. The traps containing dry gas in the Kuqa Depression formed late in the geological history, and therefore could only capture late gas generated by high maturity coaly source rocks. The traps which reservoir wet gas or condensates have a high integrity and formed when the coals had a lower maturity. The oil pools mainly occur in areas where seals are poor and in some cases fractured. The gas previously existing in these reservoirs was largely dissipated, but a small quantity of oil remained to form minor, residual oil or oil-gas occurrences. (author)

  2. Study on Resources Assessment of Coal Seams covered by Long-Distance Oil & Gas Pipelines

    Science.gov (United States)

    Han, Bing; Fu, Qiang; Pan, Wei; Hou, Hanfang

    2018-01-01

    The assessment of mineral resources covered by construction projects plays an important role in reducing the overlaying of important mineral resources and ensuring the smooth implementation of construction projects. To take a planned long-distance gas pipeline as an example, the assessment method and principles for coal resources covered by linear projects are introduced. The areas covered by multiple coal seams are determined according to the linear projection method, and the resources covered by pipelines directly and indirectly are estimated by using area segmentation method on the basis of original blocks. The research results can provide references for route optimization of projects and compensation for mining right..

  3. Coal sector profile

    Energy Technology Data Exchange (ETDEWEB)

    1990-06-05

    Coal is our largest domestic energy resource with recoverable reserves estimated at 268 billion short tons or 5.896 quads Btu equivalent. This is approximately 95 percent of US fossil energy resources. It is relatively inexpensive to mine, and on a per Btu basis it is generally much less costly to produce than other energy sources. Its chief drawbacks are the environmental, health and safety concerns that must be addressed in its production and consumption. Historically, coal has played a major role in US energy markets. Coal fueled the railroads, heated the homes, powered the factories. and provided the raw materials for steel-making. In 1920, coal supplied over three times the amount of energy of oil, gas, and hydro combined. From 1920 until the mid 1970s, coal production remained fairly constant at 400 to 600 million short tons a year. Rapid increases in overall energy demands, which began during and after World War II were mostly met by oil and gas. By the mid 1940s, coal represented only half of total energy consumption in the US. In fact, post-war coal production, which had risen in support of the war effort and the postwar Marshall plan, decreased approximately 25 percent between 1945 and 1960. Coal demand in the post-war era up until the 1970s was characterized by increasing coal use by the electric utilities but decreasing coal use in many other markets (e.g., rail transportation). The oil price shocks of the 1970s, combined with natural gas shortages and problems with nuclear power, returned coal to a position of prominence. The greatly expanded use of coal was seen as a key building block in US energy strategies of the 1970s. Coal production increased from 613 million short tons per year in 1970 to 950 million short tons in 1988, up over 50 percent.

  4. Feasibility and Costs of Natural Gas as a Bridge to Deep Decarbonization in the United States

    Science.gov (United States)

    Jones, A. D.; McJeon, H. C.; Muratori, M.; Shi, W.

    2015-12-01

    Achieving emissions reductions consistent with a 2 degree Celsius global warming target requires nearly complete replacement of traditional fossil fuel combustion with near-zero carbon energy technologies in the United States by 2050. There are multiple technological change pathways consistent with this deep decarbonization, including strategies that rely on renewable energy, nuclear, and carbon capture and storage (CCS) technologies. The replacement of coal-fired power plants with natural gas-fired power plants has also been suggested as a bridge strategy to achieve near-term emissions reduction targets. These gas plants, however, would need to be replaced by near-zero energy technologies or retrofitted with CCS by 2050 in order to achieve longer-term targets. Here we examine the costs and feasibility of a natural gas bridge strategy. Using the Global Change Assessment (GCAM) model, we develop multiple scenarios that each meet the recent US Intended Nationally Determined Contribution (INDC) to reduce GHG emissions by 26%-28% below its 2005 levels in 2025, as well as a deep decarbonization target of 80% emissions reductions below 1990 levels by 2050. We find that the gas bridge strategy requires that gas plants be retired on average 20 years earlier than their designed lifetime of 45 years, a potentially challenging outcome to achieve from a policy perspective. Using a more idealized model, we examine the net energy system costs of this gas bridge strategy compared to one in which near-zero energy technologies are deployed in the near tem. We explore the sensitivity of these cost results to four factors: the discount rate applied to future costs, the length (or start year) of the gas bridge, the relative capital cost of natural gas vs. near-zero energy technology, and the fuel price of natural gas. The discount rate and cost factors are found to be more important than the length of the bridge. However, we find an important interaction as well. At low discount rates

  5. Low cost hydrogen/novel membrane technology for hydrogen separation from synthesis gas

    Energy Technology Data Exchange (ETDEWEB)

    Baker, R.W.; Bell, C.M.; Chow, P.; Louie, J.; Mohr, J.M.; Peinemann, K.V.; Pinnau, I.; Wijmans, J.G.; Gottschlich, D.E.; Roberts, D.L.

    1990-10-01

    The production of hydrogen from synthesis gas made by gasification of coal is expensive. The separation of hydrogen from synthesis gas is a major cost element in the total process. In this report we describe the results of a program aimed at the development of membranes and membrane modules for the separation and purification of hydrogen from synthesis gas. The performance properties of the developed membranes were used in an economic evaluation of membrane gas separation systems in the coal gasification process. Membranes tested were polyetherimide and a polyamide copolymer. The work began with an examination of the chemical separations required to produce hydrogen from synthesis gas, identification of three specific separations where membranes might be applicable. A range of membrane fabrication techniques and module configurations were investigated to optimize the separation properties of the membrane materials. Parametric data obtained were used to develop the economic comparison of processes incorporating membranes with a base-case system without membranes. The computer calculations for the economic analysis were designed and executed. Finally, we briefly investigated alternative methods of performing the three separations in the production of hydrogen from synthesis gas. The three potential opportunities for membranes in the production of hydrogen from synthesis gas are: (1) separation of hydrogen from nitrogen as the final separation in a air-blown or oxygen-enriched air-blown gasification process, (2) separation of hydrogen from carbon dioxide and hydrogen sulfide to reduce or eliminate the conventional ethanolamine acid gas removal unit, and (3) separation of hydrogen and/or carbon dioxide form carbon monoxide prior to the shift reactor to influence the shift reaction. 28 refs., 54 figs., 40 tabs.

  6. Coal Mine Methane in Russia

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    This paper discusses coal mine methane emissions (CMM) in the Russian Federation and the potential for their productive utilisation. It highlights specific opportunities for cost-effective reductions of CMM from oil and natural gas facilities, coal mines and landfills, with the aim of improving knowledge about effective policy approaches.

  7. Analysis of Flue Gas Desulfurization (FGD) Processes for Potential Use on Army Coal-Fired Boilers

    Science.gov (United States)

    1980-09-01

    a 0.6 MW slipstream from coal-fired boiler; full- scale operation at oil refinery in Japan. Operated in France at gas30-MW level on flue gas...small alumina pellets which are held by wire screens in a specially designed fixed-bed reactor. As the flue gas passes through the acceptance reactors...Lithium Oxide (Uzfl) Sodium Oxide (HajO) Potassium Oxide — (K20) Magnesium Oxide ~(Mgo) Alumina Oxide " (A1203) Silica Oxide ’ (Si02

  8. Hydrothermal-mechanical dewatering of brown coal

    OpenAIRE

    Guo, Jian

    2017-01-01

    There are enormous reserves of brown coal in the world. In Australia, brown coal is used to generate most of electricity in the states of Victoria and South Australia. Brown coal is characterised by very high moisture content (around 60 wt% on a wet basis). Therefore, boilers used in the power station are very large and have low thermal efficiency, leading to high cost and large emissions of green house gas. High moisture content also makes brown coal uneconomical for transport...

  9. Status of METC investigations of coal gas desulfurization at high temperature. [Zinc ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Steinfeld, G.

    1984-03-01

    This report documents the continuing effort at the US Department of Energy/Morgantown Energy Technology Center (METC) to develop a hot-gas desulfurization process for coal-derived gas, primarily for application to molten carbonate fuel cells. Metal oxide sorbents were tested on lab-scale test equipment, and it was determined that scale-up of the process was warranted. A larger, skid-mounted test unit was therefore designed, constructed, and installed on a sidestream of the DOE/METC fixed-bed gasifier. A first series of tests was conducted during Gasifier Run 101. These tests served to shake down the test unit, and provide data on the performance of the test unit operating on coal-derived gas. Overall, the process operated well on fixed-bed, air-blown gasifier gas. Sulfur levels in exit dry gas were reduced to less than 10 ppM. Regeneration appears to restore the sulfur-removing capacity of the sorbent. Sorbent integrity was maintained during the test period, which incorporated three sulfidations. It is recommended that treatment of the regeneration offgas be investigated, and that testing and development of a system to reduce the sulfur in this gas to elemental sulfur be initiated. In addition, it is suggested that a multiple reactor system be planned for continuous operation, to allow for long-term tests of downstream users of desulfurized gas. 7 references, 18 figures, 9 tables.

  10. Capital cost: gas cooled fast reactor plant

    Energy Technology Data Exchange (ETDEWEB)

    1977-09-01

    The results of an investment cost study for a 900 MW(e) GCFR central station power plant are presented. The capital cost estimate arrived at is based on 1976 prices and a conceptual design only, not a mature reactor design.

  11. Interaction of coal-derived synthesis gas impurities with solid oxide fuel cell metallic components

    Energy Technology Data Exchange (ETDEWEB)

    Marina, Olga A.; Pederson, Larry R.; Coyle, Christopher A.; Edwards, Danny J.; Chou, Y. S.; Cramer, Carolyn N.

    2010-05-28

    Chromium-containing iron-based alloys Crofer22 APU and SS 441 and nickel-based alloy Inconel600, all commonly used in a solid oxide fuel cell (SOFC) stack as interconnect materials, heat exchanger and gas feeding pipes, were exposed at 700-850oC to a synthetic coal gas containing ≤2 ppm phosphine, arsine, sulfur and antimony. Samples were characterized by SEM/EDS and XRD to monitor the secondary phase formation. Exposure of ferritic stainless steels to P led to the formation of surface Cr-Mn-P-O and Fe-P-O compounds and increased temperatures accelerated the rate of interactions. Fewer interactions were observed after exposures to As and Sb. No sulfur containing compounds were found. Nickel-based alloy exhibited much stronger interactions with As and P in comparison with ferritic steels and the arsenic interactions were particularly strong. The difference between the iron- and nickel-based alloys is explained by the different chemistry and morphology of the scales grown on the alloy surfaces in coal gas. While P and As interactions with the metallic parts in the SOFC are likely to mitigate the nickel/zirconia anode poisoning, the other degradation mechanisms should be taken into consideration to avoid potential stack failures. Manganese spinels were found to be effective as phosphorus getters and could be used in coal gas cleanup.

  12. Copper slag as a catalyst for mercury oxidation in coal combustion flue gas.

    Science.gov (United States)

    Li, Hailong; Zhang, Weilin; Wang, Jun; Yang, Zequn; Li, Liqing; Shih, Kaimin

    2017-12-08

    Copper slag is a byproduct of the pyrometallurgical smelting of copper concentrate. It was used in this study to catalyze elemental mercury (Hg0) oxidation in simulated coal combustion flue gas. The copper slag exhibited excellent catalytic performance in Hg0 oxidation at temperatures between 200 °C and 300 °C. At the most optimal temperature of 250 °C, a Hg0 oxidation efficiency of 93.8% was achieved under simulated coal combustion flue gas with both a high Hg0 concentration and a high gas hourly space velocity of 128,000 h-1. Hydrogen chloride (HCl) was the flue gas component responsible for Hg0 oxidation over the copper slag. The transition metal oxides, including iron oxides and copper oxide in the copper slag, exhibited significant catalytic activities in the surface-mediated oxidation of Hg0 in the presence of HCl. It is proposed that the Hg0 oxidation over the copper slag followed the Langmuir-Hinshelwood mechanism whereby reactive chlorine species that originated from HCl reacted with the physically adsorbed Hg0 to form oxidized mercury. This study demonstrated the possibility of reusing copper slag as a catalyst for Hg0 oxidation and revealed the mechanisms involved in the process and the key factors in the performance. This knowledge has fundamental importance in simultaneously reducing industrial waste and controlling mercury emissions from coal-fired power plants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Full scale calcium bromide injection with subsequent mercury oxidation and removal within wet flue gas desulphurization system: Experience at a 700 MW coal-fired power facility

    Science.gov (United States)

    Berry, Mark Simpson

    The Environmental Protection Agency promulgated the Mercury and Air Toxics Standards rule, which requires that existing power plants reduce mercury emissions to meet an emission rate of 1.2 lb/TBtu on a 30-day rolling average and that new plants meet a 0.0002 lb/GWHr emission rate. This translates to mercury removals greater than 90% for existing units and greater than 99% for new units. Current state-of-the-art technology for the control of mercury emissions uses activated carbon injected upstream of a fabric filter, a costly proposition. For example, a fabric filter, if not already available, would require a 200M capital investment for a 700 MW size unit. A lower-cost option involves the injection of activated carbon into an existing cold-side electrostatic precipitator. Both options would incur the cost of activated carbon, upwards of 3M per year. The combination of selective catalytic reduction (SCR) reactors and wet flue gas desulphurization (wet FGD) systems have demonstrated the ability to substantially reduce mercury emissions, especially at units that burn coals containing sufficient halogens. Halogens are necessary for transforming elemental mercury to oxidized mercury, which is water-soluble. Plants burning halogen-deficient coals such as Power River Basin (PRB) coals currently have no alternative but to install activated carbon-based approaches to control mercury emissions. This research consisted of investigating calcium bromide addition onto PRB coal as a method of increasing flue gas halogen concentration. The treated coal was combusted in a 700 MW boiler and the subsequent treated flue gas was introduced into a wet FGD. Short-term parametric and an 83-day longer-term tests were completed to determine the ability of calcium bromine to oxidize mercury and to study the removal of the mercury in a wet FGD. The research goal was to show that calcium bromine addition to PRB coal was a viable approach for meeting the Mercury and Air Toxics Standards rule

  14. Durable zinc oxide-containing sorbents for coal gas desulfurization

    Science.gov (United States)

    Siriwardane, Ranjani V.

    1996-01-01

    Durable zinc-oxide containing sorbent pellets for removing hydrogen sulfide from a gas stream at an elevated temperature are made up to contain titania as a diluent, high-surface-area silica gel, and a binder. These materials are mixed, moistened, and formed into pellets, which are then dried and calcined. The resulting pellets undergo repeated cycles of sulfidation and regeneration without loss of reactivity and without mechanical degradation. Regeneration of the pellets is carried out by contacting the bed with an oxidizing gas mixture.

  15. High temperature alkali corrosion of ceramics in coal gas: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Pickrell, G.R.; Sun, T.; Brown, J.J. Jr.

    1994-12-31

    There are several ceramic materials which are currently being considered for use as structural elements in coal combustion and coal conversion systems because of their thermal and mechanical properties. These include alumina (refractories, membranes, heat engines); silicon carbide and silicon nitride (turbine engines, internal combustion engines, heat exchangers, particulate filters); zirconia (internal combustion engines, turbine engines, refractories); and mullite and cordierite (particulate filters, refractories, heat exchangers). High temperature alkali corrosion has been known to cause premature failure of ceramic components used in advanced high temperature coal combustion systems such as coal gasification and clean-up, coal fired gas turbines, and high efficiency heat engines. The objective of this research is to systematically evaluate the alkali corrosion resistance of the most commonly used structural ceramics including silicon carbide, silicon nitride, cordierite, mullite, alumina, aluminum titanate, and zirconia. The study consists of identification of the alkali reaction products and determination of the kinetics of the alkali reactions as a function of temperature and time. 145 refs., 29 figs., 12 tabs.

  16. Membrane gas transfer of methane and carbon dioxide in submerged coal deposits.

    Science.gov (United States)

    Cramer, T A; Johnson, D W; Urynowicz, A

    2009-01-01

    Membrane degassing technology may prove to be a viable alternative to current coal bed methane recovery. The proposed approach involves supplying a CO2 sweep gas to membrane fibres placed directly within a saturated coal seam to provide simultaneous CO2 sequestration and CH4 recovery. A system of ordinary differential equations derived from a mass balance on an infinitesimal fibre element enabled the calculation of lumen gas composition as a function of fibre length. The results were verified through the use of a bench-scale vessel. The model agreement appears reasonable for CH4 recovery; however, agreement for CO2 recovery declines as liquid flow decreases and lumen flow increases. To further evaluate the feasibility of the membrane degassing technology, model predictions were normalized to an average conventional CH4 recovery rate of 1.56 x 10(4) m3 d(-1). Assuming a hypothetical coal seam with a groundwater velocity of 100 cm d(-1), thickness of 36.6 m and an average depth of 107 m, 290,000 m2 or 7.73 km of fibre fabric is required, resulting in 4.11 x 10(5) m3 of CO2 transfer daily and an outlet gas composition of 95% CH4, 4.4% CO2 and 0.6% H2O vapour. Increasing groundwater velocities reduce the required membrane surface area with diminishing effect, stabilizing at 100 cm d(-1). Greater pore pressures also reduce required membrane areas, and predictions indicate that a deeper coal seam under 4.3 times greater pressure would require 98% fewer fibres as compared with the hypothetical coal seam and only 0.206 km of membrane fabric.

  17. Novel carbons from Illinois coal for natural gas storage. Technical report, September 1--November 30, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Rostam-Abadi, M.; Sun, J.; Lizzio, A.A. [Illinois State Geological Survey, Champaign, IL (United States); Fatemi, M. [Amoco Research Center, Naperville, IL (United States)

    1994-12-31

    The goal of this project is to develop a technology for producing microengineered adsorbent carbons from Illinois coal and to evaluate the potential application of these novel materials for storing natural gas for use in emerging low pressure, natural gas vehicles (NGV). Potentially, about two million tons of adsorbent could be consumed in natural gas vehicles by year 2000. If successful, the results obtained in this project could lead to the use of Illinois coal in a growing and profitable market that could exceed 6 million tons per year. During this reporting period, a pyrolysis-gasification reactor system was designed and assembled. Four carbon samples were produced from a {minus}20+100 mesh size fraction of an Illinois Basin Coal (IBC-106) using a three-step process. The three steps were: coal oxidation in air at 250 C, oxicoal (oxidized coal) devolatilization in nitrogen at 425 C and char gasification in 50% steam-50% nitrogen at 860 C. These initial tests were designed to evaluate the effects of pre-oxidation on the surface properties of carbon products, and to determine optimum reaction time and process conditions to produce an activated carbon with high surface area. Nitrogen-BET surface areas of the carbon products ranged from 700--800 m{sup 2}/g. Work is in progress to further optimize reaction conditions in order to produce carbons with higher surface areas. A few screening tests were made with a pressurized thermogravimetric (PTGA) to evaluate the suitability of this instrument for obtaining methane adsorption isotherms at ambient temperature and pressures ranging from one to 30 atmospheres. The preliminary results indicate that PTGA can be used for both the adsorption kinetic and equilibrium studies.

  18. Adsorbents for capturing mercury in coal-fired boiler flue gas.

    Science.gov (United States)

    Yang, Hongqun; Xu, Zhenghe; Fan, Maohong; Bland, Alan E; Judkins, Roddie R

    2007-07-19

    This paper reviews recent advances in the research and development of sorbents used to capture mercury from coal-fired utility boiler flue gas. Mercury emissions are the source of serious health concerns. Worldwide mercury emissions from human activities are estimated to be 1000 to 6000 t/annum. Mercury emissions from coal-fired power plants are believed to be the largest source of anthropogenic mercury emissions. Mercury emissions from coal-fired utility boilers vary in total amount and speciation, depending on coal types, boiler operating conditions, and configurations of air pollution control devices (APCDs). The APCDs, such as fabric filter (FF) bag house, electrostatic precipitator (ESP), and wet flue gas desulfurization (FGD), can remove some particulate-bound and oxidized forms of mercury. Elemental mercury often escapes from these devices. Activated carbon injection upstream of a particulate control device has been shown to have the best potential to remove both elemental and oxidized mercury from the flue gas. For this paper, NORIT FGD activated carbon was extensively studied for its mercury adsorption behavior. Results from bench-, pilot- and field-scale studies, mercury adsorption by coal chars, and a case of lignite-burned mercury control were reviewed. Studies of brominated carbon, sulfur-impregnated carbon and chloride-impregnated carbon were also reviewed. Carbon substitutes, such as calcium sorbents, petroleum coke, zeolites and fly ash were analyzed for their mercury-adsorption performance. At this time, brominated activated carbon appears to be the best-performing mercury sorbent. A non-injection regenerable sorbent technology is briefly introduced herein, and the issue of mercury leachability is briefly covered. Future research directions are suggested.

  19. Theoretical study on composition of gas produced by coal gasification; Sekitan gas ka de seiseisuru gas no sosei ni kansuru kosatsu (HYCOL data no doteki kaiseki)

    Energy Technology Data Exchange (ETDEWEB)

    Kaiho, M.; Yasuda, H.; Kobayashi, M.; Yamada, O.; Soneda, Y.; Makino, M. [National Institute for Resources and Environment, Tsukuba (Japan)

    1996-10-28

    In relation to considerations on composition of gas produced by coal gasification, the HYCOL hydrogen generation process data were analyzed. From the fact that CO concentration (Y) decreases linearly with CO2 concentration (X), element balance of gasification of reacted coal was used to introduce a reaction analysis equation. The equation includes a term of oxygen excess {Delta}(amount of oxygen consumed for combustion of CO and H2 in excess of the theoretical amount), derived by subtracting the stoichiometric oxygen amount used to gasify coal into CO and H2 from the consumed oxygen amount. The {Delta} can be used as a reference to oxygen utilization efficiency. An equation for the {Delta} was introduced. Also introduced was a term for steam decomposition amount derived by subtracting the generated steam from the supplied steam. These terms may be used as a clue to permeate into the gasifying reaction process. This suggestion was discussed by applying the terms to gas composition value during operation. According to the HYCOL analysis, when a gasification furnace is operated at higher than the reference oxygen amount, coal supply variation is directly reflected to the combustion reaction, making the {Delta} distribution larger. In an inverse case, unreacted carbon remains in the furnace due to oxygen shortage, and shift reaction may occur more easily even if oxygen/coal supply ratio varies. 6 figs., 1 ref.

  20. Cost analysis of a coal-fired power plant using the NPV method

    Science.gov (United States)

    Kumar, Ravinder; Sharma, Avdhesh Kr.; Tewari, P. C.

    2015-06-01

    The present study investigates the impact of various factors affecting coal-fired power plant economics of 210 MW subcritical unit situated in north India for electricity generation. In this paper, the cost data of various units of thermal power plant in terms of power output capacity have been fitted using power law with the help of the data collected from a literature search. To have a realistic estimate of primary components or equipment, it is necessary to include the latest cost of these components. The cost analysis of the plant was carried out on the basis of total capital investment, operating cost and revenue. The total capital investment includes the total direct plant cost and total indirect plant cost. Total direct plant cost involves the cost of equipment (i.e. boiler, steam turbine, condenser, generator and auxiliary equipment including condensate extraction pump, feed water pump, etc.) and other costs associated with piping, electrical, civil works, direct installation cost, auxiliary services, instrumentation and controls, and site preparation. The total indirect plant cost includes the cost of engineering and set-up. The net present value method was adopted for the present study. The work presented in this paper is an endeavour to study the influence of some of the important parameters on the lifetime costs of a coal-fired power plant. For this purpose, parametric study with and without escalation rates for a period of 35 years plant life was evaluated. The results predicted that plant life, interest rate and the escalation rate were observed to be very sensitive on plant economics in comparison to other factors under study.

  1. Core-in-shell sorbent for hot coal gas desulfurization

    Science.gov (United States)

    Wheelock, Thomas D.; Akiti, Jr., Tetteh T.

    2004-02-10

    A core-in-shell sorbent is described herein. The core is reactive to the compounds of interest, and is preferably calcium-based, such as limestone for hot gas desulfurization. The shell is a porous protective layer, preferably inert, which allows the reactive core to remove the desired compounds while maintaining the desired physical characteristics to withstand the conditions of use.

  2. Sorbent Injection for Small ESP Mercury Control in Low Sulfur Eastern Bituminous Coal Flue Gas

    Energy Technology Data Exchange (ETDEWEB)

    Carl Richardson; Katherine Dombrowski; Douglas Orr

    2006-12-31

    This project Final Report is submitted to the U.S. Department of Energy (DOE) as part of Cooperative Agreement DE-FC26-03NT41987, 'Sorbent Injection for Small ESP Mercury Control in Low Sulfur Eastern Bituminous Coal Flue Gas.' Sorbent injection technology is targeted as the primary mercury control process on plants burning low/medium sulfur bituminous coals equipped with ESP and ESP/FGD systems. About 70% of the ESPs used in the utility industry have SCAs less than 300 ft2/1000 acfm. Prior to this test program, previous sorbent injection tests had focused on large-SCA ESPs. This DOE-NETL program was designed to generate data to evaluate the performance and economic feasibility of sorbent injection for mercury control at power plants that fire bituminous coal and are configured with small-sized electrostatic precipitators and/or an ESP-flue gas desulfurization (FGD) configuration. EPRI and Southern Company were co-funders for the test program. Southern Company and Reliant Energy provided host sites for testing and technical input to the project. URS Group was the prime contractor to NETL. ADA-ES and Apogee Scientific Inc. were sub-contractors to URS and was responsible for all aspects of the sorbent injection systems design, installation and operation at the different host sites. Full-scale sorbent injection for mercury control was evaluated at three sites: Georgia Power's Plant Yates Units 1 and 2 [Georgia Power is a subsidiary of the Southern Company] and Reliant Energy's Shawville Unit 3. Georgia Power's Plant Yates Unit 1 has an existing small-SCA cold-side ESP followed by a Chiyoda CT-121 wet scrubber. Yates Unit 2 is also equipped with a small-SCA ESP and a dual flue gas conditioning system. Unit 2 has no SO2 control system. Shawville Unit 3 is equipped with two small-SCA cold-side ESPs operated in series. All ESP systems tested in this program had SCAs less than 250 ft2/1000 acfm. Short-term parametric tests were conducted on Yates

  3. Measurements of Gasification Characteristics of Coal and Char in CO2-Rich Gas Flow by TG-DTA

    Directory of Open Access Journals (Sweden)

    Zhigang Li

    2013-01-01

    Full Text Available Pyrolysis, combustion, and gasification properties of pulverized coal and char in CO2-rich gas flow were investigated by using gravimetric-differential thermal analysis (TG-DTA with changing O2%, heating temperature gradient, and flow rate of CO2-rich gases provided. Together with TG-DTA, flue gas generated from the heated coal, such as CO, CO2, and hydrocarbons (HCs, was analyzed simultaneously on the heating process. The optimum O2% in CO2-rich gas for combustion and gasification of coal or char was discussed by analyzing flue gas with changing O2 from 0 to 5%. The experimental results indicate that O2% has an especially large effect on carbon oxidation at temperature less than 1100°C, and lower O2 concentration promotes gasification reaction by producing CO gas over 1100°C in temperature. The TG-DTA results with gas analyses have presented basic reference data that show the effects of O2 concentration and heating rate on coal physical and chemical behaviors for the expected technologies on coal gasification in CO2-rich gas and oxygen combustion and underground coal gasification.

  4. FutureGen 2.0 Oxy-Coal Combustion Carbon Capture Plant Pre-FEED Design and Cost

    Energy Technology Data Exchange (ETDEWEB)

    Flanigan, Tom; Pybus, Craig; Roy, Sonya; Lockwood, Frederick; McDonald, Denny; Maclnnis, Jim

    2011-09-30

    This report summarizes the results of the Pre-Front End Engineering Design (pre-FEED) phase of a proposed advanced oxy-combustion power generation plant to repower the existing 200 MWe Unit 4 at Ameren Energy Resources’ (AER) Meredosia Power Plant. AER has formed an alliance with Air Liquide Process and Construction, Inc. (ALPC) and Babcock & Wilcox Power Generation Group (B&W PGG) for the design, construction, and testing of the facility, and has contracted with URS Corporation (URS) for preliminary design and Owner’s engineering services. The Project employs oxy-combustion technology – combustion of coal with nearly pure oxygen and recycled flue gas (instead of air) – to capture approximately 90% of the flue gas CO2 for transport and sequestration by another Project. Plant capacity and configuration has been developed based on the B&W PGG-ALPC cool recycle process firing high-sulfur bituminous coal fuel, assuming baseload plant operation to maximize existing steam turbine capability, with limited consideration for plant redundancy and performance optimization in order to keep plant costs as low as practical. Activities and preliminary results from the pre-FEED phase addressed in this report include the following: Overall plant thermal performance; Equipment sizing and system configuration; Plant operation and control philosophy; Plant emissions and effluents; CO2 production and recovery characteristics; Project cost estimate and economic evaluation; Integrated project engineering and construction schedule; Project risk and opportunity assessment; Development of Project permitting strategy and requirements During the Phase 2 of the Project, additional design details will be developed and the Phase 1 work products updated to support actual construction and operation of the facility in Phase 3. Additional information will be provided early in Phase 2 to support Ameren-Environmental in finalizing the appropriate permitting strategies and permit

  5. Concept of co-firing coal with biomass and natural gas: On track of sustainable solution for future thermal power plants

    National Research Council Canada - National Science Library

    Hodžić Nihad; Smajević Izet; Kazagić Anes

    2016-01-01

    This paper presents R&D project of multi fuel concept (MFC) for future coal-based power plants, demonstrated on example of cofiring Middle-Bosnia brown coal with waste woody biomass and natural gas...

  6. Effect of Colombian coal rank and its feeding technology on substitute natural gas production by entrained gasification

    Directory of Open Access Journals (Sweden)

    Juan Fernando Pérez-Bayer

    2016-01-01

    Full Text Available The effect of coal rank (from sub-bituminous to semi-anthracite and type of fuel feeding technology (slurry and dry on the production of substitute natural gas (SNG in entrained flow gasifiers is studied. Ten coals from important Colombian mines were selected. The process is modeled under thermochemical equilibrium using Aspen Plus, and its performance is evaluated in function of output parameters that include SNG heating value, Wobbe index, coal conversion efficiency, cold gas efficiency, process efficiency, global efficiency, and SNG production rate, among others. In descending order, the coal-to-SNG process improves energetically with the use of coals with: higher volatile-matter to fixed-carbon ratio, lower ash content, higher C+H/O ratio, and higher coal heating value. The overall energy efficiency of the slurry-feed technology (S-FT to produce SNG by gasification is 17% higher than the dry-feed technology (D-FT, possibly as a consequence of the higher CH4 concentration in the syngas (around 7 vol. % when the coal is fed as aqueous slurry. As the simulated SNG meets the natural gas (NG quality standards in Colombia, the substitute gaseous fuel could be directly transported through pipelines. Therefore, the coal-to-SNG process is a technically feasible and unconventional alternative for NG production.

  7. Evaluation of gasification and gas cleanup processes for use in molten carbonate fuel cell power plants. Final report. [Contains lists and evaluations of coal gasification and fuel gas desulfurization processes

    Energy Technology Data Exchange (ETDEWEB)

    Jablonski, G.; Hamm, J.R.; Alvin, M.A.; Wenglarz, R.A.; Patel, P.

    1982-01-01

    This report satisfies the requirements for DOE Contract AC21-81MC16220 to: List coal gasifiers and gas cleanup systems suitable for supplying fuel to molten carbonate fuel cells (MCFC) in industrial and utility power plants; extensively characterize those coal gas cleanup systems rejected by DOE's MCFC contractors for their power plant systems by virtue of the resources required for those systems to be commercially developed; develop an analytical model to predict MCFC tolerance for particulates on the anode (fuel gas) side of the MCFC; develop an analytical model to predict MCFC anode side tolerance for chemical species, including sulfides, halogens, and trace heavy metals; choose from the candidate gasifier/cleanup systems those most suitable for MCFC-based power plants; choose a reference wet cleanup system; provide parametric analyses of the coal gasifiers and gas cleanup systems when integrated into a power plant incorporating MCFC units with suitable gas expansion turbines, steam turbines, heat exchangers, and heat recovery steam generators, using the Westinghouse proprietary AHEAD computer model; provide efficiency, investment, cost of electricity, operability, and environmental effect rankings of the system; and provide a final report incorporating the results of all of the above tasks. Section 7 of this final report provides general conclusions.

  8. Low cost hydrogen/novel membrane technology for hydrogen separation from synthesis gas. Task 1, Literature survey

    Energy Technology Data Exchange (ETDEWEB)

    1986-02-01

    To make the coal-to-hydrogen route economically attractive, improvements are being sought in each step of the process: coal gasification, water-carbon monoxide shift reaction, and hydrogen separation. This report addresses the use of membranes in the hydrogen separation step. The separation of hydrogen from synthesis gas is a major cost element in the manufacture of hydrogen from coal. Separation by membranes is an attractive, new, and still largely unexplored approach to the problem. Membrane processes are inherently simple and efficient and often have lower capital and operating costs than conventional processes. In this report current ad future trends in hydrogen production and use are first summarized. Methods of producing hydrogen from coal are then discussed, with particular emphasis on the Texaco entrained flow gasifier and on current methods of separating hydrogen from this gas stream. The potential for membrane separations in the process is then examined. In particular, the use of membranes for H{sub 2}/CO{sub 2}, H{sub 2}/CO, and H{sub 2}/N{sub 2} separations is discussed. 43 refs., 14 figs., 6 tabs.

  9. Gas chromatographic study of the volatile products from co-pyrolysis of coal and polyethylene wastes.

    Science.gov (United States)

    Domínguez, A; Blanco, C G; Barriocanal, C; Alvarez, R; Díez, M A

    2001-05-18

    The aim of this study was to determine the volatile products distribution of co-processing of coal with two plastic wastes, low-density polyethylene from agriculture greenhouses and high-density polyethylene from domestic uses, in order to explain the observed decrease in coal fluidity caused by polyethylene waste addition. Polymeric materials, although they are not volatile themselves, may be analysed by gas chromatography through the use of pyrolysis experiments. In this way, a series of pyrolysis tests were performed at 400 and 500 degrees C in a Gray-King oven with each of the two plastic wastes, one high-volatile bituminous coal and blends made up of coal and plastic waste (9:1, w/w, ratio). The pyrolysis temperatures, 400 and 500 degrees C, were selected on the basis of the beginning and the end of the coal plastic stage. The organic products evolved from the oven were collected, dissolved in pyridine and analysed by capillary gas chromatography using a flame ionization detector. The analysis of the primary tars indicated that the amount of n-alkanes is always higher than that of n-alkenes and the formation of the alkenes is favoured by increasing the pyrolysis temperature. However, this effect may be influenced by the size of the hydrocarbon. Thus, the fraction C17-C31 showed a higher increase of n-alkenes/n-alkanes ratio than other fractions. On the other hand, the difference between the experimental and estimated values from tars produced from single components was positive for n-alkanes and n-alkenes, indicating that co-pyrolysis of the two materials enhanced the chemical reactivity during pyrolysis and produced a higher conversion than that from individual components.

  10. Geologic assessment of natural gas from coal seams in the Menefee Formation, San Juan Basin. Topical report, May 1988-May 1989. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Crist, T.E.; Kelso, B.S.; Boyer, C.M.

    1990-07-01

    The results of a regional geologic assessment of the San Juan Basin Menefee Formation include stratigraphic cross-section and overburden, net coal thickness, coal rank, and gas-in-place maps. A geologic investigation was conducted of two microstudy areas which further examine the site-specific characteristics of the coal seams. Natural gas-in-place estimates for the Menefee Formation coal seams range between 22.0 and 34.2 Tcf.

  11. More Gas, Less Coal, and Less CO2?

    DEFF Research Database (Denmark)

    Daubanes, Julien Xavier; Henriet, Fanny; Schubert, Katheline

    We examine an open economy’s strategy to reduce its carbon emissions by replacing its consumption of coal—very carbon intensive—with gas—less so. Unlike the standard analysis of carbon leakage, unilateral carbon-reduction policies with more than one carbon energy source may turn counter......-productive, ultimately increasing world emissions. Thus, we establish testable conditions as to whether a governmental emission-reduction commitment warrants the exploitation of gas, and whether such a strategy increases global emissions. We also characterize the extent to which this unilateral policy makes the rest...... of the world’s emission commitments more difficult to meet. Finally, we apply our results to the case of the US....

  12. A Novel Acoustic Liquid Level Determination Method for Coal Seam Gas Wells Based on Autocorrelation Analysis

    Directory of Open Access Journals (Sweden)

    Ximing Zhang

    2017-11-01

    Full Text Available In coal seam gas (CSG wells, water is periodically removed from the wellbore in order to keep the bottom-hole flowing pressure at low levels, facilitating the desorption of methane gas from the coal bed. In order to calculate gas flow rate and further optimize well performance, it is necessary to accurately monitor the liquid level in real-time. This paper presents a novel method based on autocorrelation function (ACF analysis for determining the liquid level in CSG wells under intense noise conditions. The method involves the calculation of the acoustic travel time in the annulus and processing the autocorrelation signal in order to extract the weak echo under high background noise. In contrast to previous works, the non-linear dependence of the acoustic velocity on temperature and pressure is taken into account. To locate the liquid level of a coal seam gas well the travel time is computed iteratively with the non-linear velocity model. Afterwards, the proposed method is validated using experimental laboratory investigations that have been developed for liquid level detection under two scenarios, representing the combination of low pressure, weak signal, and intense noise generated by gas flowing and leakage. By adopting an evaluation indicator called Crest Factor, the results have shown the superiority of the ACF-based method compared to Fourier filtering (FFT. In the two scenarios, the maximal measurement error from the proposed method was 0.34% and 0.50%, respectively. The latent periodic characteristic of the reflected signal can be extracted by the ACF-based method even when the noise is larger than 1.42 Pa, which is impossible for FFT-based de-noising. A case study focused on a specific CSG well is presented to illustrate the feasibility of the proposed approach, and also to demonstrate that signal processing with autocorrelation analysis can improve the sensitivity of the detection system.

  13. Supply-side-demand-side optimization and cost-environment trade offs for China`s coal and electricity system

    Energy Technology Data Exchange (ETDEWEB)

    Xie Zhijun; Kuby, M. [Boston University, Boston, MA (United States). Dept. of Geography, Center for Energy and Environmental Studies

    1997-02-01

    The authors simultaneously optimize supply-side and demand-size investments for satisfying China`s coal and electricity needs over a 15 year time horizon. The results are compared to equivalent results from a supply-side only optimization assuming a business-as-usual demand scenario. It is estimated that, by shifting investment from energy production and transportation to energy efficiency improvement, China could meet the same energy service demand in 2000 for 7% less cost and 120 million tons (mt) less coal. Alternatively, for greater environmental protection, China could satisfy the same demands at the same cost using 275 mt coal. 27 refs., 6 figs.

  14. A cost-effective and versatile xenon gas dispenser.

    Science.gov (United States)

    Hung, Joseph C; Lenz, Warren N; Reed, Terry L; McGough, Christopher G

    2005-04-01

    To modify a commercial xenon gas dispenser so that two xenon unit-dose vials could be combined with a modified dispenser to deliver a recommended dose. To maintain the same operating mechanism, changes were made only to the vial shield and the needle port of the original gas dispenser. The modified gas dispenser consisted of two puncture needles and two vial holders shielded with the same thickness of lead as the commercial dispenser. Our evaluation showed that the modified gas dispenser operated the same way as the commercial unit, and the average 133Xe residual activity in either one or two xenon unit-dose vials of the modified gas dispenser was not significantly different from that in one vial of the commercial xenon gas dispenser. The modified xenon gas dispenser allows the stock of xenon gas vials to be managed cost-effectively. The modified unit can be used to dispense two low-activity xenon gas vials to deliver a standard dose to a patient. Also, the modified gas dispenser can be used to combine different amounts of xenon activity in two unit-dose vials in order to customize the dose delivered to patients with special needs (e.g., obese patients). Our modified device can also function as a single-dose dispenser by placing an empty vial alongside the unit-dose vial of radioactive xenon gas.

  15. Mercury Speciation in Coal-Fired Power Plant Flue Gas-Experimental Studies and Model Development

    Energy Technology Data Exchange (ETDEWEB)

    Radisav Vidic; Joseph Flora; Eric Borguet

    2008-12-31

    The overall goal of the project was to obtain a fundamental understanding of the catalytic reactions that are promoted by solid surfaces present in coal combustion systems and develop a mathematical model that described key phenomena responsible for the fate of mercury in coal-combustion systems. This objective was achieved by carefully combining laboratory studies under realistic process conditions using simulated flue gas with mathematical modeling efforts. Laboratory-scale studies were performed to understand the fundamental aspects of chemical reactions between flue gas constituents and solid surfaces present in the fly ash and their impact on mercury speciation. Process models were developed to account for heterogeneous reactions because of the presence of fly ash as well as the deliberate addition of particles to promote Hg oxidation and adsorption. Quantum modeling was used to obtain estimates of the kinetics of heterogeneous reactions. Based on the initial findings of this study, additional work was performed to ascertain the potential of using inexpensive inorganic sorbents to control mercury emissions from coal-fired power plants without adverse impact on the salability fly ash, which is one of the major drawbacks of current control technologies based on activated carbon.

  16. Cost-effectiveness of in-situ coal conversion with connected CO{sub 2} storage; Wirtschaftlichkeit der in-situ Kohlenumwandlung mit angegliederter CO{sub 2}-Speicherung

    Energy Technology Data Exchange (ETDEWEB)

    Kempka, Thomas [Zentrum fuer CO2-Speicherung des Helmholtz-Zentrums Potsdam - Deutsches GeoForschungsZentrum (GFZ), Potsdam (Germany); Nakaten, Natalie [RWTH Aachen (Germany); Schlueter, Ralph [DMT GmbH und Co. KG, Essen (Germany). Geschaeftsfeld Exploration und Geosurvey; Azzam, Rafig [RWTH Aachen (Germany). Lehrstuhl fuer Ingenieurgeologie und Hydrogeologie

    2009-05-28

    Worldwide coal reserves with a supply potential of several hundred years can secure future energy supplies. Because of deep-lying thin seams or faulty geological conditions coal production in Germany is subject to increased cost pressure, so that the present dependence on imports for primary energy sources will continue to increase. Underground gasification (UG) can offer an economical and effective approach to deposit development and utilisation. The planned complete process is based on the development of the coal deposit with the aid of directional boreholes into seams and subsequent in-situ conversion of the coal into a synthesis gas. This synthesis gas is conveyed to the surface via a production borehole and converted into electricity in a gas and steam turbine process (GaS). Reduction of the CO2 emissions of the complete process is realised by CO2 separation connected to the power station and subsequent storage (CCS) in the already converted seams. An electricity generation cost model taking into account all relevant parameters from the partial processes was developed in this study for analysis of the cost-effectiveness of the coupled process (UG - GaS-CCS). Furthermore, the competitiveness of the UG-GaS-CCS process was compared with other energy generating technologies suitable for the base load supply in Europe. (orig.)

  17. Hydrogen-Rich Gas Production by Cogasification of Coal and Biomass in an Intermittent Fluidized Bed

    Directory of Open Access Journals (Sweden)

    Li-Qun Wang

    2013-01-01

    Full Text Available This paper presents the experimental results of cogasification of coal and biomass in an intermittent fluidized bed reactor, aiming to investigate the influences of operation parameters such as gasification temperature (T, steam to biomass mass ratio (SBMR, and biomass to coal mass ratio (BCMR on hydrogen-rich (H2-rich gas production. The results show that H2-rich gas free of N2 dilution is produced and the H2 yield is in the range of 18.25~68.13 g/kg. The increases of T, SBMR, and BCMR are all favorable for promoting the H2 production. Higher temperature contributes to higher CO and H2 contents, as well as H2 yield. The BCMR has a weak influence on gas composition, but the yield and content of H2 increase with BCMR, reaching a peak at the BCMR of 4. The H2 content and yield in the product gas increase with SBMR, whilst the content of CO increases first and then decreases correspondingly. At a typical case, the relative linear sensitivity coefficients of H2 production efficiency to T, SBMR, and BCMR were calculated. The results reveal that the order of the influence of the operation parameters on H2 production efficiency is T > SBMR > BCMR.

  18. Kinetic and hydrodynamic study of absorption of H{sub 2}S from coal gas with regenerable solid sorbent for advanced power generation systems

    Energy Technology Data Exchange (ETDEWEB)

    Perales, F.; Velo, E.; Puigianer, L. [Polytechnique Univ. of Catalunya, Barcelona (Spain). Dept. of Chemical Engineering

    2003-07-01

    Compared to conventional integrated gasification combined cycle (IGCC) systems used in thermal power plants, hot gas cleanup could increase the thermal efficiency of power generating systems while decreasing the capital cost. Hot gas cleanup also plays a significant role in advanced carbon dioxide control. In this study, absorbed hydrogen sulfide (H{sub 2}S) from coal gas, suitable for IGCC plants, was treated with a regenerable solid zinc titanate sorbent in a bubbling fluidized bed reactor. Reaction kinetics were determined in a previous study using thermogravimetric analysis. A mathematical model was developed to include heterogeneous gas-solid reactions, demonstrating the evolution of the zinc titanate structure. Zinc titanate reduced exhaust concentrations from the bubbling fluidized bed to levels that will be demanded by future regulations. It was concluded that 100 per cent elimination of pollutants requires low solid conversion operating conditions.

  19. Relative permeability of coal to gas (Helium, Methane and Carbon dioxide) and water - Results and experimental limitations

    Energy Technology Data Exchange (ETDEWEB)

    Ham, Y.S.; Kantzas, A. [University of Calgary (Canada)

    2011-07-01

    Coalbed methane reservoir exploitation is gaining more and more importance as an economically viable, yet unconventional, gas source. An important aspect of such exploitation is the possibility of assessing the production of a given reservoir; knowledge of coal's petrochemical properties is thus a crucial point in the development of the coalbed gas industry. This paper focuses on experimental procedures for determining the two-phase, gas-water relative permeability of coal, using 2 coal samples extracted from Canadian mines. The experiments were done using an unsteady-state relative permeability procedure, involving drainage and imbibition of coal samples by mixture of water and helium, methane and carbon dioxide. Derivations are also given to ascertain relative permeability from experimental data. Despite experimental difficulties regarding reproducibility, due to degradation of the coal samples, results showed that coal permeability depends strongly on the adsorption properties of gases, coal becoming more water-wet for adsorbable gases, methane and carbon dioxide, whereas influx of water in larger pores induced a lesser water saturation with helium.

  20. ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS

    Energy Technology Data Exchange (ETDEWEB)

    Kenneth E. Baldrey

    2003-07-30

    The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. This quarterly report summarizes project activity for the period April-June, 2003. In this period there was limited activity and no active field trials. Results of ash analysis from the AEP Conesville demonstration were received. In addition, a site visit was made to We Energies Presque Isle Power Plant and a proposal extended for a flue gas conditioning trial with the ADA-51 cohesivity additive. It is expected that this will be the final full-scale evaluation on the project.

  1. Clean Coal Technology III: 10 MW Demonstration of Gas Suspension Absorption final project performance and economics report

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, F.E.

    1995-08-01

    The 10 MW Demonstration of the Gas Suspension Absorption (GSA) program is a government and industry co-funded technology development. The objective of the project is to demonstrate the performance of the GSA system in treating a 10 MW slipstream of flue gas resulting from the combustion of a high sulfur coal. This project involves design, fabrication, construction and testing of the GSA system. The Project Performance and Economics Report provides the nonproprietary information for the ``10 MW Demonstration of the Gas Suspension Absorption (GSA) Project`` installed at Tennessee Valley Authority`s (TVA) Shawnee Power Station, Center for Emissions Research (CER) at Paducah, Kentucky. The program demonstrated that the GSA flue-gas-desulfurization (FGD) technology is capable of achieving high SO{sub 2} removal efficiencies (greater than 90%), while maintaining particulate emissions below the New Source Performance Standards (NSPS), without any negative environmental impact (section 6). A 28-day test demonstrated the reliability and operability of the GSA system during continuous operation. The test results and detailed discussions of the test data can be obtained from TVA`s Final Report (Appendix A). The Air Toxics Report (Appendix B), prepared by Energy and Environmental Research Corporation (EERC) characterizes air toxic emissions of selected hazardous air pollutants (HAP) from the GSA process. The results of this testing show that the GSA system can substantially reduce the emission of these HAP. With its lower capital costs and maintenance costs (section 7), as compared to conventional semi-dry scrubbers, the GSA technology commands a high potential for further commercialization in the United States. For detailed information refer to The Economic Evaluation Report (Appendix C) prepared by Raytheon Engineers and Constructors.

  2. Low cost electrochemical sensor module for measurement of gas concentration

    Science.gov (United States)

    Jasinski, Grzegorz; Strzelczyk, Anna; Koscinski, Piotr

    2016-01-01

    This paper describes a low cost electrochemical sensor module for gas concentration measurement. A module is universal and can be used for many types of electrochemical gas sensors. Device is based on AVR ATmega8 microcontroller. As signal processing circuit a specialized integrated circuit LMP91000 is used. The proposed equipment will be used as a component of electronic nose system employed for classifying and distinguishing different levels of air contamination.

  3. H/sub 2/S-removal processes for low-Btu coal gas

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, M. S.

    1979-01-01

    Process descriptions are provided for seven methods of removing H/sub 2/S from a low-Btu coal-derived gas. The processes include MDEA, Benfield, Selexol, Sulfinol, Stretford, MERC Iron Oxide, and Molecular Sieve. Each of these processes was selected as representing a particular category of gas treating (e.g., physical solvent systems). The open literature contains over 50 processes for H/sub 2/S removal, of which 35 were briefly characterized in the literature survey. Using a technical evaluation of these 35 processes, 21 were eliminated as unsuitable for the required application. The remaining 14 processes represent six categories of gas treating. A seventh category, low-temperature solid sorption, was subsequently added. The processes were qualitatively compared within their respective categories to select a representative process in each of the seven categories.

  4. STUDY OF THE EFFECT OF CHLORINE ADDITION ON MERCURY OXIDATION BY SCR CATALYST UNDER SIMULATED SUBBITUMINOUS COAL FLUE GAS

    Science.gov (United States)

    An entrained flow reactor is used to study the effect of addition of chlorine-containing species on the oxidation of elemental mercury (Hgo)by a selective catalytic reduction (SCR) catalyst in simulated subbituminous coal combustion flue gas. The combustion flue gas was doped wit...

  5. Flow resistance reduction of coal water slurry through gas phase addition

    Directory of Open Access Journals (Sweden)

    Robak Jolanta

    2016-01-01

    Full Text Available One of the main advantages of coal water slurry fuel (CWS is a physical form that allows, among others, their transfer by pipelines over long distances. For this form of transport actions towards reducing the flow resistance of the transmitted medium are important. One of the treatments leading to reduction in the flow resistance of suspensions is to introduce gas into the stream of flowing slurry. The goal of that action is to either loosen the structure of densely packed grains or increase the velocity of the suspension. The paper presents the flow resistance of CWS in a horizontal pipeline and the effect of addition of the gas phase on the resistance level. The investigation was carried out with the use of a research stand enabling to measure the flow resistance of the multiphase/multicomponent systems. The measured diameter and length of sections were respectively: 0.03 and 2 m. The coal-water slurries (based on steam coals with concentration of dry coal in the range of 51 do 60% obtained by wet milling in a drum mill were used. During the tests, the following parameters were measured: slurry flow rate, air flow rate, temperature and pressure difference in inlet and outlet of the measured section. The volume flow rate of slurry fuel was in the range of 30 to 110 dm3/min while the volume flow rate of air was from 0.15 to 4 m3/h. Based on the obtained results, the slurry flow resistance as a function of the flow rate and share of introduced air was evaluated. The performed research allowed for assessment of flow resistance reduction condition and to determine the pipe flow curves for different temperatures. It was found that the effect of reducing the flow resistance of the coal slurry by introducing gas into the flow tube depended on the volumetric flow rate, and thus the linear velocity of the slurry. Under the experimental condition, this effect only occurred at low flow rates (30 - 50 dm3/min and low temperature of the suspension. The

  6. Preparation of slightly hydrogenated coal

    Energy Technology Data Exchange (ETDEWEB)

    Rank, V.

    1943-05-03

    Processes serving as producers of slightly hydrogenated coal are discussed. It was established that the working process of an extracting hydrogenation from coal alone did not present optimal conditions for production of slightly hydrogenated coal, and therefore led to unfavorably high costs. More favorable operating costs were expected with the use of larger amounts of gas or with simultaneous production of asphalt-free oils in larger quantity. The addition of coal into the hydrogenation of low temperature carbonization tars made it possible to produce additional briquetting material (slightly hydrogenated coal) in the same reaction space without impairment of the tar hydrogenation. This was to lower the cost still more. For reasons of heat exchange, the process with a cold separator was unfavorable, and consideration of the residue quality made it necessary to investigate how high the separator temperature could be raised. 3 tables.

  7. Managing produced water from coal seam gas projects: implications for an emerging industry in Australia.

    Science.gov (United States)

    Davies, Peter J; Gore, Damian B; Khan, Stuart J

    2015-07-01

    This paper reviews the environmental problems, impacts and risks associated with the generation and disposal of produced water by the emerging coal seam gas (CSG) industry and how it may be relevant to Australia and similar physical settings. With only limited independent research on the potential environmental impacts of produced water, is it necessary for industry and government policy makers and regulators to draw upon the experiences of related endeavours such as mining and groundwater extraction accepting that the conclusions may not always be directly transferrable. CSG is widely touted in Australia as having the potential to provide significant economic and energy security benefits, yet the environmental and health policies and the planning and regulatory setting are yet to mature and are continuing to evolve amidst ongoing social and environmental concerns and political indecision. In this review, produced water has been defined as water that is brought to the land surface during the process of recovering methane gas from coal seams and includes water sourced from CSG wells as well as flowback water associated with drilling, hydraulic fracturing and gas extraction. A brief overview of produced water generation, its characteristics and environmental issues is provided. A review of past lessons and identification of potential risks, including disposal options, is included to assist in planning and management of this industry.

  8. Selection and adaptation of microalgae to growth in 100% unfiltered coal-fired flue gas.

    Science.gov (United States)

    Aslam, Ambreen; Thomas-Hall, Skye R; Mughal, Tahira Aziz; Schenk, Peer M

    2017-06-01

    Microalgae have been considered for biological carbon capture and sequestration to offset carbon emissions from fossil fuel combustion. This study shows that mixed biodiverse microalgal communities can be selected for and adapted to tolerate growth in 100% flue gas from an unfiltered coal-fired power plant that contained 11% CO2. The high SOx and NOx emissions required slow adaptation of microalgae over many months, with step-wise increases from 10% to 100% flue gas supplementation and phosphate buffering at higher concentrations. After a rapid decline in biodiversity over the first few months, community profiling revealed Desmodesmus spp. as the dominant microalgae. To the authors' knowledge this work is the first to demonstrate that up 100% unfiltered flue gas from coal-fired power generation can be used for algae cultivation. Implementation of serial passages over a range of photobioreactors may contribute towards the development of microalgal-mediated carbon capture and sequestration processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Interactions of nickel/zirconia solid oxide fuel cell anodes with coal gas containing arsenic

    Energy Technology Data Exchange (ETDEWEB)

    Coyle, Christopher A.; Marina, Olga A.; Thomsen, Edwin C.; Edwards, Danny J.; Cramer, Carolyn N.; Coffey, Greg W.; Pederson, Larry R.

    2009-04-01

    The performance of anode-supported and electrolyte-supported solid oxide fuel cells was investigated in synthetic coal gas containing 0 to 10 ppm arsenic introduced as arsine. Arsenic was found to interact strongly with nickel in the anode, resulting in the formation of nickel-arsenic solid solution, Ni5As2 and Ni11As8, depending on temperature, arsenic concentration, and reaction time. For anode-supported cells, loss of electrical connectivity in the anode support was the principal mode of degradation, as nickel was converted to nickel arsenide phases that migrated to the surface to form large grains. Cell failure occurred well before the entire anode was converted to nickel arsenide, and followed a reciprocal square root of arsenic partial pressure dependence consistent with a diffusion-based rate-limiting step. Failure occurred more quickly with electrolyte-supported cells, which have a substantially smaller nickel inventory. For these cells, time to failure varied linearly with the reciprocal arsenic concentration in coal gas, and occurred when arsenic reached the anode/electrolyte interface. Test performed with nickel/zirconia coupons showed that arsenic was essentially completely captured in a narrow band near the fuel gas inlet.

  10. Effects of Steam and CO2 in the Fluidizing Gas when Using Bituminous Coal in Chemical-Looping Combustion

    Science.gov (United States)

    Leion, H.; Lyngfelt, A.; Mattisson, T.

    Chemical-looping combustion (CLC) is a combustion technology where an oxygen carrier is used to transfer oxygen from the combustion air to the fuel in order to avoid direct contact between air and fuel. Thus, the CO2 is inherently separated from the flue gases with a potential for considerably lower energy penalty and cost compared to other techniques for CO2 separation. The oxygen carrier is circulated between two reactors, a fuel and an air reactor, where the flue gas from the air reactor contains oxygen depleted air and the flue gas from the fuel reactor contains mainly CO2 and H2O. The water can easily be condensed and the remaining CO2 can be transported for underground storage. Most of the prior work with CLC has focused on using natural gas and syngas as fuel and oxygen carrying material normally produced from pure chemicals. However, recent work on adapting the CLC process for solid fuels with ores and natural minerals as oxygen carrier shows promising results. This paper will present results from reactivity investigations in a laboratory fluidized-bed reactor system using previously investigated natural mineral ilmenite as oxygen carrier and a bituminous Colombian coal as fuel. Experiments were conducted at a temperature of 970°C with N2, steam, and/or CO2 in the fluidizing gas. Synergy effects between steam and CO2 on fuel conversion was noted. The results show that the fuel conversion was a roughly a factor 5 faster with steam as compared to CO2 in the fluidizing gas.

  11. Development of biological coal gasification (MicGAS process). Final report, May 1, 1990--May 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    ARCTECH has developed a novel process (MicGAS) for direct, anaerobic biomethanation of coals. Biomethanation potential of coals of different ranks (Anthracite, bitumious, sub-bitumious, and lignites of different types), by various microbial consortia, was investigated. Studies on biogasification of Texas Lignite (TxL) were conducted with a proprietary microbial consortium, Mic-1, isolated from hind guts of soil eating termites (Zootermopsis and Nasutitermes sp.) and further improved at ARCTECH. Various microbial populations of the Mic-1 consortium carry out the multi-step MicGAS Process. First, the primary coal degraders, or hydrolytic microbes, degrade the coal to high molecular weight (MW) compounds. Then acedogens ferment the high MW compounds to low MW volatile fatty acids. The volatile fatty acids are converted to acetate by acetogens, and the methanogens complete the biomethanation by converting acetate and CO{sub 2} to methane.

  12. Sustainable Transportation Fuels from Natural Gas (H{sub 2}), Coal and Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Huffman, Gerald

    2012-12-31

    This research program is focused primarily on the conversion of coal, natural gas (i.e., methane), and biomass to liquid fuels by Fischer-Tropsch synthesis (FTS), with minimum production of carbon dioxide. A complementary topic also under investigation is the development of novel processes for the production of hydrogen with very low to zero production of CO{sub 2}. This is in response to the nation's urgent need for a secure and environmentally friendly domestic source of liquid fuels. The carbon neutrality of biomass is beneficial in meeting this goal. Several additional novel approaches to limiting carbon dioxide emissions are also being explored.

  13. External cost of coal based electricity generation:A tale of Ahmedabad city

    DEFF Research Database (Denmark)

    Mahapatra, Diptiranjan; Shukla, Priyadarshi; Dhar, Subash

    2012-01-01

    Electricity production causes unintended impacts.Theire xclusion by the market leads to suboptimal resource allocations.Monetizing and internalizing of external costs, though challenging and debatable, leads to a better allocation of economic resources and welfare. In this paper, a life......–response functions, we make an attempt to estimate the damages to human health, crops, and building materials resulting from the operation of coal power plants and its associated mines. Further, we use geographic information system to account for spatially dependent data. Finally, monetary values have been assigned...

  14. Densified biomass can cost-effectively mitigate greenhouse gas emissions and address energy security in thermal applications.

    Science.gov (United States)

    Wilson, Thomas O; McNeal, Frederick M; Spatari, Sabrina; G Abler, David; Adler, Paul R

    2012-01-17

    Regional supplies of biomass are currently being evaluated as feedstocks in energy applications to meet renewable portfolio (RPS) and low carbon fuel standards. We investigate the life cycle greenhouse gas (GHG) emissions and associated abatement costs resulting from using densified switchgrass for thermal and electrical energy. In contrast to the large and positive abatement costs for using biomass in electricity generation ($149/Mg CO(2)e) due to the low cost of coal and high feedstock and power plant operation costs, abatement costs for replacing fuel oil with biomass in thermal applications are large and negative (-$52 to -$92/Mg CO(2)e), resulting in cost savings. Replacing fuel oil with biomass in thermal applications results in least cost reductions compared to replacing coal in electricity generation, an alternative that has gained attention due to RPS legislation and the centralized production model most often considered in U.S. policy. Our estimates indicate a more than doubling of liquid fuel displacement when switchgrass is substituted for fuel oil as opposed to gasoline, suggesting that, in certain U.S. locations, such as the northeast, densified biomass would help to significantly decarbonize energy supply with regionally sourced feedstock, while also reducing imported oil. On the basis of supply projections from the recently released Billion Ton Report, there will be enough sustainably harvested biomass available in the northeast by 2022 to offset the entirety of heating oil demand in the same region. This will save NE consumers between $2.3 and $3.9 billion annually. Diverting the same resource to electricity generation would cost the region $7.7 billion per year. While there is great need for finding low carbon substitutes for coal power and liquid transportation fuels in the U.S., we argue that in certain regions it makes cost- (and GHG mitigation-) effective sense to phase out liquid heating fuels with locally produced biomass first.

  15. Determination of polycyclic aromatic hydrocarbons in coal combustion gas using high performance liquid chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Katoh, N. [Ishikawajima Harima Heavy Industry Co Ltd, Tokyo (Japan). Research Institution

    2002-11-01

    The study describes a sampling and analysis procedure for polycyclic aromatic hydrocarbons (PAH) at high temperatures in flue gas. Particulate matter sampling was used in conjunction with gas phase sampling. Particulates were collected on quartz fiber filter heated at the same temperature as flue gas. Vaporous PAHs not retained by the filter were cooled at 55{sup o}C and trapped from the gas phase on Tenax-GC polymer beads of 10 g. The sample volume was about 1 m{sup 3}. Tenax-GC has demonstrated high collection efficiency for benzo(a)pyrene (B(a)P) generated at 375{sup o}C under a stream of nitrogen. PAH were extracted with n-pentane for 4 h by a continuous PAH extractor. It demonstrated 99% extraction efficiency for B(a)P spiked on the adsorbent and it was more effective than Soxhlet extraction. The extracts were concentrated to 1 ml of n-pentane in a Kuderna Danish evaporator. Qualitative and quantitative analysis of the extracts were performed by high performance liquid chromatograph (HPLC) with ultraviolet/fluorescence detection. Eight PAH (3,4,5,6-dibenzocarbazole, phenanthrene, anthracene, fluoranthene, pyrene, 2-methylanthracene, benz(a)anthracene, benzo(a)pyrene) were determined in coal combustion gas on reducing NOx procedures. It was demonstrated that the tendency to reduce NOx levels leads to an increase in the PAH present. Moreover total concentration of four PAH (phenanthrene, fluoranthene, pyrene, benzo(a)pyrene) in this study is satisfactory agreement with those measured in the emissions of coal-fired power stations in the literature.

  16. Advanced coal-fueled gas turbine systems. Annual report, July 1990--June 1991

    Energy Technology Data Exchange (ETDEWEB)

    1991-09-01

    The combustion system discussed here incorporates a modular three- stage slagging combustor concept. Fuel-rich conditions inhibit NO{sub x} formation from fuel nitrogen in the first stage; also in the first stage, sulfur is captured with sorbent; coal ash and sulfated sorbent are removed from the combustion gases by inertial means in the second stage by the use of an impact separator and slagging cyclone separator in series. Final oxidation of the fuel-rich gases, and dilution to achieve the desired turbine inlet conditions are accomplished in the third stage, which is maintained sufficiently lean so that here, too, NO{sub x} formation is inhibited. The objective of this contract is to establish the technology required for subsequent commercial development and application by the private sector of utility-size direct coal-fueled gas turbines. Emissions from these units are to meet or be lower than the Environment Protection Agency`s (EPA`s) New Source Performance Standards (NSPS) for a pulverized coal-=fired steam turbine generator plant.

  17. Tunable Diode Laser Sensors to Monitor Temperature and Gas Composition in High-Temperature Coal Gasifiers

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, Ronald [Stanford Univ., CA (United States); Whitty, Kevin [Univ. of Utah, Salt Lake City, UT (United States)

    2014-12-01

    The integrated gasification combined cycle (IGCC) when combined with carbon capture and storage can be one of the cleanest methods of extracting energy from coal. Control of coal and biomass gasification processes to accommodate the changing character of input-fuel streams is required for practical implementation of integrated gasification combined-cycle (IGCC) technologies. Therefore a fast time-response sensor is needed for real-time monitoring of the composition and ideally the heating value of the synthesis gas (here called syngas) as it exits the gasifier. The goal of this project was the design, construction, and demonstration an in situ laserabsorption sensor to monitor multiple species in the syngas output from practical-scale coal gasifiers. This project investigated the hypothesis of using laser absorption sensing in particulateladen syngas. Absorption transitions were selected with design rules to optimize signal strength while minimizing interference from other species. Successful in situ measurements in the dusty, high-pressure syngas flow were enabled by Stanford’s normalized and scanned wavelength modulation strategy. A prototype sensor for CO, CH4, CO2, and H2O was refined with experiments conducted in the laboratory at Stanford University, a pilot-scale at the University of Utah, and an engineering-scale gasifier at DoE’s National Center for Carbon Capture with the demonstration of a prototype sensor with technical readiness level 6 in the 2014 measurement campaign.

  18. Fossil fuel-fired power generation. Case studies of recently constructed coal- and gas-fired plants

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, C. [IEA Clean Coal Centre, London (United Kingdom)

    2007-10-23

    To meet future energy demand growth and replace older or inefficient units, a large number of fossil fuel-fired plants will be required to be built worldwide in the next decade. Yet CO{sub 2} emissions from fossil-fired power generation are a major contributor to climate change. As a result, new plants must be designed and operated at highest efficiency both to reduce CO{sub 2} emissions and to facilitate deployment of CO{sub 2} capture and storage in the future. The series of case studies in this report, which respond to a request to the IEA from the G8 Summit in July 2005, were conducted to illustrate what efficiency is achieved now in modern plants in different parts of the world using different grades of fossil fuels. The plants were selected from different geographical areas, because local factors influence attainable efficiency. The case studies include pulverized coal combustion (PCC) with both subcritical and supercritical (very high pressure and temperature) steam turbine cycles, a review of current and future applications of coal-fuelled integrated gasification combined cycle plants (IGCC), and a case study of a natural gas fired combined cycle plant to facilitate comparisons. The results of these analyses show that the technologies for high efficiency (low CO{sub 2} emission) and very low conventional pollutant emissions (particulates, SO{sub 2}, NOx) from fossil fuel-fired power generation are available now through PCC, IGCC or NGCC at commercially acceptable cost. This report contains comprehensive technical and indicative cost information for modern fossil fuel-fired plants that was previously unavailable. It serves as a valuable sourcebook for policy makers and technical decision makers contemplating decisions to build new fossil fuel-fired power generation plants.

  19. Secondary gas emissions during coal desorption, Marathon Grassim Oskolkoff-1 Well, Cook Inlet Basin, Alaska: Implications for resource assessment

    Science.gov (United States)

    Barker, C.E.; Dallegge, T.

    2006-01-01

    Cuttings samples of sub-bituminous humic coals from the Oligocene to Pliocene Tyonek Formation, Cook Inlet Basin, Alaska show secondary gas emissions whose geochemistry is consistent with renewed microbial methanogenesis during canister desorption. The renewed methanogenesis was noted after initial desorption measurements had ceased and a canister had an air and desorbed gas mixture backflow into the canister during a measurement. About a week after this event, a secondary emission of gas began and continued for over two years. The desorbed gas volume reached a new maximum, increasing the total from 3.3 to 4.9 litres, some 48% above the pre-contamination total volume. The gases released during desorption show a shift in the isotopic signature over time of methane from ??13CCH4 of -53.60 ??? and ??DCH4 of -312.60 ??? at the first day to ??13CCH4 of -57.06 ??? and ??DCH4 of -375.80 ??? after 809 days, when the experiment was arbitrarily stopped and the canister opened to study the coal. These isotopic data, interpreted using a Bernard Diagram, indicate a shift from a mixed thermogenic and biogenic source typical of natural gases in the coals and conventional gas reservoirs of the Cook Inlet Basin to a likely biogenic acetate-fermentation methane source. However, the appearance of CO2 during the renewed gas emissions with a ??13CCO2 of +26.08 to +21.72 ???, interpreted using the carbon isotope fractions found for acetate fermentation and CO2 reduction between CO2 and CH4 by Jenden and Kaplan (1986), indicates a biogenic CO2-reduction pathway may also be operative during renewed gas emission. Adding nutrients to the coal cuttings and canister water and culturing the microbial consortia under anaerobic conditions led to additional methane-rich gas generation in the laboratory. After this anaerobic culturing, ultraviolet microscopy showed that canister water contained common, fluorescent, rod-like microbes comparable to Methanobacterium sp. Scanning electron microscope

  20. Advanced coal-fueled industrial cogeneration gas turbine system. Annual report, 2 June 1992--1 June 1993

    Energy Technology Data Exchange (ETDEWEB)

    LeCren, L.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; Wen, C.S.

    1993-06-01

    This program was initiated in June of 1986 because advances in coal-fueled gas turbine technology over the previous few years, together with DOE-METC sponsored studies, served to provide new optimism that the problems demonstrated in the past can be economically resolved and that the coal-fueled gas turbine could ultimately be the preferred system in appropriate market application sectors. In early 1991 it became evident that a combination of low natural gas prices, stringent emission limits of the Clean Air Act and concerns for CO{sub 2} emissions made the direct coal-fueled gas turbine less attractive. In late 1991 it was decided not to complete this program as planned. The objective of the Solar/METC program was to prove the technical, economic, and environmental feasibility of a coal-fired gas turbine for cogeneration applications through tests of a Centaur Type H engine system operated on coal fuel throughout the engine design operating range. Component development of the coal-fueled combustor island and cleanup system while not complete indicated that the planned engine test was feasible. Preliminary designs of the engine hardware and installation were partially completed. A successful conclusion to the program would have initiated a continuation of the commercialization plan through extended field demonstration runs. After notification of the intent not to complete the program a replan was carried out to finish the program in an orderly fashion within the framework of the contract. A contract modification added the first phase of the Advanced Turbine Study whose objective is to develop high efficiency, natural gas fueled gas turbine technology.

  1. Geologic assessment of natural gas from coal seams in the Fruitland Formation, San Juan Basin. Topical report, September 1986-September 1987

    Energy Technology Data Exchange (ETDEWEB)

    Kelso, B.S.; Wicks, D.E.; Kuuskraa, V.A.

    1988-03-01

    On the basis of geologic assessment, the natural gas in place in the Fruitland Formation coals of the San Juan Basin is estimated at 50 trillion cubic feet. The north-central portion of San Juan Basin contains the highest concentrations of coalbed methane for the Fruitland Formation coals. The area coincides with the thick deposits of high-rank coals. To provide a foundation for evaluating the coalbed methane in place on a township-by-township basis, the study delineates the subsurface geology of the Fruitland Formation coals. Four regional cross sections and detailed overburden, net coal isopach, and coal rank maps are included.

  2. Cost analysis of NOx control alternatives for stationary gas turbines

    Energy Technology Data Exchange (ETDEWEB)

    Bill Major

    1999-11-05

    The use of stationary gas turbines for power generation has been growing rapidly with continuing trends predicted well into the future. Factors that are contributing to this growth include advances in turbine technology, operating and siting flexibility and low capital cost. Restructuring of the electric utility industry will provide new opportunities for on-site generation. In a competitive market, it maybe more cost effective to install small distributed generation units (like gas turbines) within the grid rather than constructing large power plants in remote locations with extensive transmission and distribution systems. For the customer, on-site generation will provide added reliability and leverage over the cost of purchased power One of the key issues that is addressed in virtually every gas turbine application is emissions, particularly NO{sub x} emissions. Decades of research and development have significantly reduced the NO{sub x} levels emitted from gas turbines from uncontrolled levels. Emission control technologies are continuing to evolve with older technologies being gradually phased-out while new technologies are being developed and commercialized. The objective of this study is to determine and compare the cost of NO{sub x} control technologies for three size ranges of stationary gas turbines: 5 MW, 25 MW and 150 MW. The purpose of the comparison is to evaluate the cost effectiveness and impact of each control technology as a function of turbine size. The NO{sub x} control technologies evaluated in this study include: Lean premix combustion, also known as dry low NO{sub x} (DLN) combustion; Catalytic combustion; Water/steam injection; Selective catalytic reduction (SCR)--low temperature, conventional, high temperature; and SCONO{sub x}{trademark}.

  3. Stress Inversion of Coal with a Gas Drilling Borehole and the Law of Crack Propagation

    Directory of Open Access Journals (Sweden)

    Tianjun Zhang

    2017-10-01

    Full Text Available For studying the law of crack propagation around a gas drilling borehole, an experimental study about coal with a cavity under uniaxial compression was carried out, with the digital speckle correlation method capturing the images of coal failure. A sequence of coal failure images and the full-field strain of failure were obtained. The strain softening characteristic was shown by the curve. A method of curve dividing—named fitting-damaging—was proposed, combining the least square fitting residual norm and damage fraction. By this method, the five stages and four key points of a stress-strain curve were defined. Then, the full-field stress was inverted by means of the theory of elasticity and the adjacent element weight sharing model. The results show that σci was 30.28–41.71 percent of σf and σcd was 83.08–87.34 percent of σf, calculated by the fitting-damaging method, agreeing with former research. The results of stress inversion showed that under a low stress level (0.15 σf < σ < 0.5 σf, microdamage evolving into plastic failure later was formed around the cavity. Under a high stress level (0.5 σf < σ < 0.85 σf, the region of stress concentration suddenly crazed and formed a brittle crack. When σ ≥ 0.85 σf, the crack was developing, crack lines were connecting with each other, and the coal finally failed. The outcome of the stress inversion was completely concomitant with the images of crack propagation. Additionally, the stress around the cavity was able to be calculated accurately.

  4. Coal Mine Methane in Russia [Russian Version

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    This paper discusses coal mine methane emissions (CMM) in the Russian Federation and the potential for their productive utilisation. It highlights specific opportunities for cost-effective reductions of CMM from oil and natural gas facilities, coal mines and landfills, with the aim of improving knowledge about effective policy approaches.

  5. Environmental control implications of generating electric power from coal. 1977 technology status report. Appendix D. Assessment of NO/sub x/ control technology for coal fired utility boilers. [Low-excess-air, staged combustion, flu gas recirculation and burner design

    Energy Technology Data Exchange (ETDEWEB)

    1977-12-01

    An NOx control technology assessment study was conducted to examine the effectiveness of low-excess-air firing, staged combustion, flue gas recirculation, and current burner/boiler designs as applied to coal-fired utility boilers. Significant variations in NOx emissions exist with boiler type, firing method, and coal type, but a relative comparison of emissions control performance, cost, and operational considerations is presented for each method. The study emphasized the numerous operational factors that are of major importance to the user in selecting and implementing a combustion modification technique. Staged combustion and low-excess-air operation were identified as the most cost-effective methods for existing units. Close control of local air/fuel ratios and rigorous combustion equipment maintenance are essential to the success of both methods. Flue gas recirculation is relatively ineffective and has the added concern of tube erosion. More research is needed to resolve potential corrosion concerns with low-NOx operating modes. Low-NOx burners in conjunction with a compartmentalized windbox are capable of meeting a 0.6-lb/million Btu emission level on new units. Advanced burner designs are being developed to meet research emission goals of approximately 0.25 lb/MBtu.

  6. Monetization of External Costs Using Lifecycle Analysis—A Comparative Case Study of Coal-Fired and Biomass Power Plants in Northeast China

    OpenAIRE

    Lingling Wang; Tsunemi Watanabe; Zhiwei Xu

    2015-01-01

    In this study, the structures of external costs are built in line with coal-fired and biomass power plant life cycle activities in Northeast China. The external cost of coal-fired and biomass power plants was compared, using the lifecycle approach. In addition, the external costs of a biomass power plant are calculated for each stage for comparison with those of a coal-fired power plant. The results highlight that the external costs of a coal-fired plant are 0.072 US $/kWh, which are much hig...

  7. Reversible Poisoning of the Nickel/Zirconia Solid Oxide Fuel Cell Anodes by Hydrogen Chloride in Coal Gas

    Energy Technology Data Exchange (ETDEWEB)

    Marina, Olga A.; Pederson, Larry R.; Thomsen, Edwin C.; Coyle, Christopher A.; Yoon, Kyung J.

    2010-10-15

    The performance of anode-supported solid oxide fuel cells (SOFC) was evaluated in synthetic coal gas containing HCl in the temperature range 650 to 850oC. Exposure to up to 800 ppm HCl resulted in reversible poisoning of the Ni/zirconia anode by chlorine species adsorption, the magnitude of which decreased with increased temperature. Performance losses increased with the concentration of HCl to ~100 ppm, above which losses were insensitive to HCl concentration. Cell voltage had no effect on poisoning. No evidence was found for long-term degradation that can be attributed to HCl exposure. Similarly, no evidence of microstructural changes or formation of new solid phases as a result of HCl exposure was found. From thermodynamic calculations, solid nickel chloride phase formation was shown to be highly unlikely in coal gas. Further, the presence of HCl at even the highest anticipated concentrations in coal gas would minimally increase the volatility of nickel.

  8. Energy strategy 2050. From coal, oil and gas to green energy; Danish Government's energy policy; Energistrategi 2050 - fra kul, olie og gas til groen energi

    Energy Technology Data Exchange (ETDEWEB)

    2011-02-15

    The Danish Government's ''Energy strategy 2050'' describes how the country can achieve its independence from coal, oil and gas by the year 2050 and significantly reduce its greenhouse gas emissions. The strategy contains a raft of initiatives that will reduce the energy industry's use of fossil fuels by 33 % in 2020, compared with 2009. The reduction will put Denmark well on its way to complete independence of fossil fuels by 2050. The strategy calls for a significant increase in renewable energy obtained from wind, biomass and biogas which over the next decade will increase the share of renewable to 33 % of energy consumption, if the initiatives in the strategy are implemented. The strategy offers an economically responsible path to the conversion of the Danish energy supply, and includes specific initiatives, that are all fully financed and which will not damage the nation's competitiveness. Homeowners will experience moderate increases in the costs of heat and electricity, but will also be given opportunities to lower their energy expenses through greater efficiency. Companies can expect added expenses amounting to 0.1 % of the rise in their gross revenue growth by 2020. (ln)

  9. Advanced coal-fueled industrial cogeneration gas turbine system. Annual report, June 1991--June 1992

    Energy Technology Data Exchange (ETDEWEB)

    LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; When, C.S.

    1992-06-01

    This report covers the activity during the period from 2 June 1991 to 1 June 1992. The major areas of work include: the combustor sub-scale and full size testing, cleanup, coal fuel specification and processing, the Hot End Simulation rig and design of the engine parts required for use with the coal-fueled combustor island. To date Solar has demonstrated: Stable and efficient combustion burning coal-water mixtures using the Two Stage Slagging Combustor; Molten slag removal of over 97% using the slagging primary and the particulate removal impact separator; and on-site preparation of CWM is feasible. During the past year the following tasks were completed: The feasibility of on-site CWM preparation was demonstrated on the subscale TSSC. A water-cooled impactor was evaluated on the subscale TSSC; three tests were completed on the full size TSSC, the last one incorporating the PRIS; a total of 27 hours of operation on CWM at design temperature were accumulated using candle filters supplied by Refraction through Industrial Pump & Filter; a target fuel specification was established and a fuel cost model developed which can identify sensitivities of specification parameters; analyses of the effects of slag on refractory materials were conducted; and modifications continued on the Hot End Simulation Rig to allow extended test times.

  10. Fate of hazardous air pollutants in oxygen-fired coal combustion with different flue gas recycling.

    Science.gov (United States)

    Zhuang, Ye; Pavlish, John H

    2012-04-17

    Experiments were performed to characterize transformation and speciation of hazardous air pollutants (HAPs), including SO(2)/SO(3), NO(x), HCl, particulate matter, mercury, and other trace elements in oxygen-firing bituminous coal with recirculation flue gas (RFG) from 1) an electrostatic precipitator outlet or 2) a wet scrubber outlet. The experimental results showed that oxycombustion with RFG generated a flue gas with less volume and containing HAPs at higher levels, while the actual emissions of HAPs per unit of energy produced were much less than that of air-blown combustion. NO(x) reduction was achieved in oxycombustion because of the elimination of nitrogen and the destruction of NO in the RFG. The elevated SO(2)/SO(3) in flue gas improved sulfur self-retention. SO(3) vapor could reach its dew point in the flue gas with high moisture, which limits the amount of SO(3) vapor in flue gas and possibly induces material corrosion. Most nonvolatile trace elements were less enriched in fly ash in oxycombustion than air-firing because of lower oxycombustion temperatures occurring in the present study. Meanwhile, Hg and Se were found to be enriched on submicrometer fly ash at higher levels in oxy-firing than in air-blown combustion.

  11. Development of Superior Sorbents for Separation of CO2 from Flue Gas at a Wide Temperature range during Coal Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Panagiotis Smirniotis

    2002-09-17

    A number basic sorbents based on CaO were synthesized, characterized with novel techniques and tested for sorption of CO{sub 2} and selected gas mixtures simulating flue gas from coal fired boilers. Our studies resulted in highly promising sorbents which demonstrated zero affinity for N{sub 2}, O{sub 2}, SO{sub 2}, and NO very low affinity for water, ultrahigh CO{sub 2} sorption capacities, and rapid sorption characteristics, CO{sub 2} sorption at a very wide temperature range, durability, and low synthesis cost. One of the 'key' characteristics of the proposed materials is the fact that we can control very accurately their basicity (optimum number of basic sites of the appropriate strength) which allows for the selective chemisorption of CO{sub 2} at a wide range of temperatures. These unique characteristics of this family of sorbents offer high promise for development of advanced industrial sorbents for the effective CO{sub 2} removal.

  12. Recycling of coal seam gas-associated water using vacuum membrane distillation.

    Science.gov (United States)

    Heidarpour, Farideh; Shi, Jeffrey; Chae, So-Ryong

    2015-01-01

    Coal seam gas-associated water (CSGAW), which is a by-product of coal seam gas (CSG) production typically contains significant amounts of salts and has potential environmental issues. In this study, we optimized a bench-scale vacuum membrane distillation (VMD) process with flat-sheet hydrophobic polytetrafluoroethylene (PTFE) membranes for the treatment of synthetic CSGAW (conductivity = 15 mS/cm). To study performance of the VMD process, we explored the effects of feed temperature (T(f) = 60, 70, and 80°C), feed flow rate (V(f) = 60, 120, and 240 mL/min), and vacuum pressure (P(v) = 3, 6, and 9 kPa) on water permeability through the PTFE membrane in the VMD process. Under the optimum conditions (i.e. T(f) = 80°C, V(f) = 240 mL/min, P(v) = 3 kPa), water permeability and rejection efficiency of salts by the VMD process were found to be 5.5 L/m(2)/h (LMH) and 99.9%, respectively, after 2 h filtration. However, after 8 h operation, the water permeability decreased by 70% compared with the initial flux due to the formation of fouling layer of calcium, chloride, sodium, magnesium, and potassium on the membrane surface.

  13. Combustion of ultrafine coal/water mixtures and their application in gas turbines: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Toqan, M.A.; Srinivasachar, S.; Staudt, J.; Varela, F.; Beer, J.M.

    1987-10-01

    The feasibility of using coal-water fuels (CWF) in gas turbine combustors has been demonstrated in recent pilot plant experiments. The demands of burning coal-water fuels with high flame stability, complete combustion, low NO/sub x/ emission and a resulting fly ash particle size that will not erode turbine blades represent a significant challenge to combustion scientists and engineers. The satisfactory solution of these problems requires that the variation of the structure of CWF flames, i.e., the fields of flow, temperature and chemical species concentration in the flame, with operating conditions is known. Detailed in-flame measurements are difficult at elevated pressures and it has been proposed to carry out such experiments at atmospheric pressure and interpret the data by means of models for gas turbine combustor conditions. The research was carried out in five sequential tasks: cold flow studies; studies of conventional fine-grind CWF; combustion studies with ultrafine CWF fuel; reduction of NO/sub x/ emission by staged combustion; and data interpretation-ignition and radiation aspects. 37 refs., 61 figs., 9 tabs.

  14. Preliminary study of Low-Cost Micro Gas Turbine

    Science.gov (United States)

    Fikri, M.; Ridzuan, M.; Salleh, Hamidon

    2016-11-01

    The electricity consumption nowadays has increased due to the increasing development of portable electronic devices. The development of low cost micro gas turbine engine, which is designed for the purposes of new electrical generation Micro turbines are a relatively new distributed generation technology being used for stationary energy generation applications. They are a type of combustion turbine that produces both heat and electricity on a relatively small scaled.. This research are focusing of developing a low-cost micro gas turbine engine based on automotive turbocharger and to evaluation the performance of the developed micro gas turbine. The test rig engine basically was constructed using a Nissan 45V3 automotive turbocharger, containing compressor and turbine assemblies on a common shaft. The operating performance of developed micro gas turbine was analyzed experimentally with the increment of 5000 RPM on the compressor speed. The speed of the compressor was limited at 70000 RPM and only 1000 degree Celsius at maximum were allowed to operate the system in order to avoid any failure on the turbocharger bearing and the other components. Performance parameters such as inlet temperature, compressor temperature, exhaust gas temperature, and fuel and air flow rates were measured. The data was collected electronically by 74972A data acquisition and evaluated manually by calculation. From the independent test shows the result of the system, The speed of the LP turbine can be reached up to 35000 RPM and produced 18.5kw of mechanical power.

  15. FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING AND COST DATA FOR MERCURY CONTROL SYSTEMS ON NON-SCRUBBED COAL-FIRED BOILERS

    Energy Technology Data Exchange (ETDEWEB)

    Richard Schlager

    2002-04-19

    With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Mercury is known to have toxic effects on the nervous system of humans and wildlife. Although it exists only in trace amounts in coal, mercury is released when coal burns and can accumulate on land and in water. In water, bacteria transform the metal into methylmercury, the most hazardous form of the metal. Methylmercury can collect in fish and marine mammals in concentrations hundreds of thousands times higher than the levels in surrounding waters. One of the goals of DOE is to develop technologies by 2005 that will be capable of cutting mercury emissions 50 to 70 percent at well under one-half of today's costs. ADA Environmental Solutions (ADA-ES) is managing a project to test mercury control technologies at full scale at four different power plants from 2000--2003. The ADA-ES project is focused on those power plants that are not equipped with wet flue gas desulfurization systems. ADA-ES will develop a portable system that will be moved to four different utility power plants for field testing. Each of the plants is equipped with either electrostatic precipitators or fabric filters to remove solid particles from the plant's flue gas. ADA-ES's technology will inject a dry sorbent, such as fly ash or activated carbon, that removes the mercury and makes it more susceptible to capture by the particulate control devices. A fine water mist may be sprayed into the flue gas to cool its temperature to the range where the dry sorbent is most effective. PG&E National Energy Group is providing two test sites that fire bituminous coals and are both equipped with electrostatic precipitators and carbon/ash separation systems. Wisconsin Electric Power Company is providing a third test site that burns Powder

  16. FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING AND COST DATA FOR MERCURY CONTROL SYSTEMS ON NON-SCRUBBED COAL-FIRED BOILERS

    Energy Technology Data Exchange (ETDEWEB)

    C. Jean Bustard

    2001-07-06

    With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Mercury is known to have toxic effects on the nervous system of humans and wildlife. Although it exists only in trace amounts in coal, mercury is released when coal burns and can accumulate on land and in water. In water, bacteria transform the metal into methylmercury, the most hazardous form of the metal. Methylmercury can collect in fish and marine mammals in concentrations hundreds of thousands times higher than the levels in surrounding waters. One of the goals of DOE is to develop technologies by 2005 that will be capable of cutting mercury emissions 50 to 70 percent at well under one-half of today's costs. ADA Environmental Solutions (ADA-ES) is managing a project to test mercury control technologies at full scale at four different power plants from 2000--2003. The ADA-ES project is focused on those power plants that are not equipped with wet flue gas desulfurization systems. ADA-ES will develop a portable system that will be moved to four different utility power plants for field testing. Each of the plants is equipped with either electrostatic precipitators or fabric filters to remove solid particles from the plant's flue gas. ADA-ES's technology will inject a dry sorbent, such as fly ash or activated carbon, that removes the mercury and makes it more susceptible to capture by the particulate control devices. A fine water mist may be sprayed into the flue gas to cool its temperature to the range where the dry sorbent is most effective. PG and E National Energy Group is providing two test sites that fire bituminous coals and are both equipped with electrostatic precipitators and carbon/ash separation systems. Wisconsin Electric Power Company is providing a third test site that burns

  17. Thermal-maturity limit for primary thermogenic-gas generation from humic coals as determined by hydrous pyrolysis

    Science.gov (United States)

    Lewan, Michael; Kotarba, M.J.

    2014-01-01

    Hydrous-pyrolysis experiments at 360°C (680°F) for 72 h were conducted on 53 humic coals representing ranks from lignite through anthracite to determine the upper maturity limit for hydrocarbon-gas generation from their kerogen and associated bitumen (i.e., primary gas generation). These experimental conditions are below those needed for oil cracking to ensure that generated gas was not derived from the decomposition of expelled oil generated from some of the coals (i.e., secondary gas generation). Experimental results showed that generation of hydrocarbon gas ends before a vitrinite reflectance of 2.0%. This reflectance is equivalent to Rock-Eval maximum-yield temperature and hydrogen indices (HIs) of 555°C (1031°F) and 35 mg/g total organic carbon (TOC), respectively. At these maturity levels, essentially no soluble bitumen is present in the coals before or after hydrous pyrolysis. The equivalent kerogen atomic H/C ratio is 0.50 at the primary gas-generation limit and indicates that no alkyl moieties are remaining to source hydrocarbon gases. The convergence of atomic H/C ratios of type-II and -I kerogen to this same value at a reflectance of indicates that the primary gas-generation limits for humic coal and type-III kerogen also apply to oil-prone kerogen. Although gas generation from source rocks does not exceed vitrinite reflectance values greater than , trapped hydrocarbon gases can remain stable at higher reflectance values. Distinguishing trapped gas from generated gas in hydrous-pyrolysis experiments is readily determined by of the hydrocarbon gases when a -depleted water is used in the experiments. Water serves as a source of hydrogen in hydrous pyrolysis and, as a result, the use of -depleted water is reflected in the generated gases but not pre-existing trapped gases.

  18. Technical data. Final technical report, November 1980-May 1982. [Proposed WyCoalGas project, Converse County, Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-01-01

    This volume includes a description of the railway to transport the coal; possible unbalance in the electrical power supply is considered in detail, as well as communications, signalling, etc. The railway will also be used to transport ashes and sludges for waste disposal. Coal fines in the coal supply will be burned to generate power. A very brief description of the coal gasification plant and its components is accompanied by a printout of the dates final engineering is to be completed. Permit applications are listed and socio-economic factors are discussed. The financing plan is discussed in some detail: basically, a loan guarantee from the Synthetic Fuels Corporation; equity provided by investment tax credit, deferred taxes, AFUDC and the sponsors; price support; and gas purchase agreement (this whole section includes several legal details.). (LTN)

  19. Nuclear economics 2000: Deterministic and probabilistic projections of nuclear and coal electric power generation costs for the year 2000

    Energy Technology Data Exchange (ETDEWEB)

    Williams, K.A.; Delene, J.G.; Fuller, L.C.; Bowers, H.I.

    1987-06-01

    The total busbar electric generating costs were estimated for locations in ten regions of the United States for base-load nuclear and coal-fired power plants with a startup date of January 2000. For the Midwest region a complete data set that specifies each parameter used to obtain the comparative results is supplied. When based on the reference set of input variables, the comparison of power generation costs is found to favor nuclear in most regions of the country. Nuclear power is most favored in the northeast and western regions where coal must be transported over long distances; however, coal-fired generation is most competitive in the north central region where large reserves of cheaply mineable coal exist. In several regions small changes in the reference variables could cause either option to be preferred. The reference data set reflects the better of recent electric utility construction cost experience (BE) for nuclear plants. This study assumes as its reference case a stable regulatory environment and improved planning and construction practices, resulting in nuclear plants typically built at the present BE costs. Today's BE nuclear-plant capital investment cost model is then being used as a surrogate for projected costs for the next generation of light-water reactor plants. An alternative analysis based on today's median experience (ME) nuclear-plant construction cost experience is also included. In this case, coal is favored in all ten regions, implying that typical nuclear capital investment costs must improve for nuclear to be competitive.

  20. Requirements, techniques, and costs for contaminant removal from landfill gas.

    Science.gov (United States)

    Kuhn, John N; Elwell, Anthony C; Elsayed, Nada H; Joseph, Babu

    2017-05-01

    Waste-to-energy projects are an increasingly prominent component of future energy portfolios. Landfill gas (LFG)-to-energy (LFGTE) projects are particularly important as they address greenhouse gas emissions. Contaminants in LFG may hamper these projects both from environmental and economic standpoints. The purpose of this review is to highlight key aspects (LFG composition ranges, LFG flowrates, and allowable tolerances for LFGTE technologies, performance and costs for contaminant removal by adsorption). Removal of key contaminants, H2S and siloxanes, by adsorption are surveyed in terms of adsorption capacities and regeneration abilities. Based on the open literature, costing analyses are tabulated and discussed. The findings indicate economics of contaminant removal depend heavily on the feed concentrations of contaminants, allowable tolerances for the LFGTE technology, and the current market for the product. Key trends, identification of challenges, and general purification guidelines for purifying LFG for energy projects are also discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Changes in concentration, composition and source contribution of atmospheric organic aerosols by shifting coal to natural gas in Urumqi

    Science.gov (United States)

    Ren, Yanqin; Wang, Gehui; Wu, Can; Wang, Jiayuan; Li, Jianjun; Zhang, Lu; Han, Yanni; Liu, Lang; Cao, Cong; Cao, Junji; He, Qing; Liu, Xinchun

    2017-01-01

    Size-segregated aerosols were collected in Urumqi, a megacity in northwest China, during two heating seasons, i.e., before (heating season І: January-March 2012) and after (heating season II: January-March 2014) the project "shifting coal to natural gas", and determined for n-alkanes, PAHs and oxygenated PAHs to investigate the impact of replacement of coal by natural gas on organic aerosols in the urban atmosphere. Our results showed that compared to those in heating season I concentrations of n-alkanes, PAHs and OPAHs decreased by 74%, 74% and 82% in heating season II, respectively. Source apportionment analysis suggested that coal combustion, traffic emission and biomass burning are the major sources of the determined organics during the heating seasons in Urumqi. Traffic emission is the main source for n-alkanes in the city. Coal combustion is the dominant source of PAHs and OPAHs in heating season І, but traffic emission becomes their major source in heating season ІI. Relative contributions of coal combustion to n-alkanes, PAHs and OPAHs in Urumqi decreased from 21 to 75% in heating season I to 4.0-21% in heating season II due to the replacement of coal with natural gas for house heating. Health risk assessment further indicated that compared with that in heating season I the number of lung cancer related to PAHs exposure in Urumqi decreased by 73% during heating season II due to the project implementation. Our results suggest that replacing coal by clean energy sources for house heating will significantly mitigate air pollution and improve human health in China.

  2. Development of standardized air-blown coal gasifier/gas turbine concepts for future electric power systems

    Energy Technology Data Exchange (ETDEWEB)

    Blough, E.; Russell, W.; Leach, J.W.

    1990-08-01

    Computer models have been developed for evaluating conceptual designs of integrated coal gasification combined cycle power plants. An overall system model was developed for performing thermodynamic cycle analyses, and detailed models were developed for predicting performance characteristics of fixed bed coal gasifiers and hot gas clean up subsystem components. The overall system model performs mass and energy balances and does chemical equilibrium analyses to determine the effects of changes in operating conditions, or to evaluate proposed design changes. An existing plug flow model for fixed bed gasifiers known as the Wen II model was revised and updated. Also, a spread sheet model of zinc ferrite sulfur sorbent regeneration subsystem was developed. Parametric analyses were performed to determine how performance depends on variables in the system design. The work was done to support CRS Sirrine Incorporated in their study of standardized air blown coal gasifier gas turbine concepts.

  3. Regenerable Sorbent Development for Sulfur, Chloride and Ammonia Removal from Coal-Derived Synthesis Gas

    Energy Technology Data Exchange (ETDEWEB)

    Siriwardane, R.V.; Tian, H.; Simonyi, T.; Webster, T.

    2007-08-01

    A large number of components in coal form corrosive and toxic compounds during coal gasification processes. DOE’s NETL aims to reduce contaminants to parts per billion in order to utilize gasification gas streams in fuel cell applications. Even more stringent requirements are expected if the fuel is to be utilized in chemical production applications. Regenerable hydrogen sulfide removal sorbents have been developed at NETL. These sorbents can remove the hydrogen sulfide to ppb range at 316 °C and at 20 atmospheres. The sorbent can be regenerated with oxygen. Reactivity and physical durability of the sorbent did not change during the multi-cycle tests. The sorbent development work has been extended to include the removal of other major impurities, such as HCl and NH3. The sorbents for HCl removal that are available today are not regenerable. Regenerable HCl removal sorbents have been developed at NETL. These sorbents can remove HCl to ppb range at 300 °C to 500 °C. The sorbent can be regenerated with oxygen. Results of TGA and bench-scale flow reactor tests with both regenerable and non-regenerable HCl removal sorbents will be discussed in the paper. Bench-scale reactor tests were also conducted with NH3 removal sorbents. The results indicated that the sorbents have a high removal capacity and good regenerability during the multi-cycle tests. Future emphasis of the NETL coal gasification/cleanup program is to develop multi-functional sorbents to remove multiple impurities in order to minimize the steps involved in the cleanup systems. To accomplish this goal, a regenerable sorbent capable of removing both HCl and H2S was developed. The results of the TGA conducted with the sorbent to evaluate the feasibility of both H2S and HCl sorption will be discussed in this paper.

  4. The modernization potential of gas turbines in the coal-fired power industry thermal and economic effectiveness

    CERN Document Server

    Bartnik, Ryszard

    2013-01-01

    The opportunity of repowering the existing condensing power stations by means of  gas turbogenerators offers an important opportunity to considerably improvement of their energy efficiency. The Modernization Potential of Gas turbines in the Coal-Fired Power Industry presents the methodology, calculation procedures and tools used to support enterprise planning for adapting power stations to dual-fuel gas-steam combined-cycle technologies. Both the conceptual and practical aspects of the conversion of existing coal-fired power plants is covered. Discussions of the feasibility, advantages and disadvantages and possible methods are supported by chapters presenting equations of energy efficiency for the conditions of repowering a power unit by installing a gas turbogenerator in a parallel system and the results of technical calculations involving the selection heating structures of heat recovery steam generators. A methodology for analyzing thermodynamic and economic effectiveness for the selection of a structure...

  5. New particle formation in the fresh flue-gas plume from a coal-fired power plant: effect of flue-gas cleaning

    OpenAIRE

    Mylläri, Fanni; Asmi, Eija; Anttila, Tatu; Saukko, Erkka; Vakkari, Ville; Pirjola, Liisa; HILLAMO, RISTO; Laurila, Tuomas; Häyrinen, Anna; Rautiainen, Jani; Lihavainen, Heikki; O'Connor, Ewan; Niemelä, Ville; Keskinen, Jorma; Dal Maso, Miikka

    2016-01-01

    Atmospheric emissions, including particle number and size distribution, from a 726 MWth coal-fired power plant were studied experimentally from a power plant stack and flue-gas plume dispersing in the atmosphere. Experiments were conducted under two different flue-gas cleaning conditions. The results were utilized in a plume dispersion and dilution model taking into account particle formation precursor (H2SO4 resulted from the oxidation of emitted SO2) and assessment rela...

  6. Pd/activated carbon sorbents for mid-temperature capture of mercury from coal-derived fuel gas.

    Science.gov (United States)

    Li, Dekui; Han, Jieru; Han, Lina; Wang, Jiancheng; Chang, Liping

    2014-07-01

    Higher concentrations of Hg can be emitted from coal pyrolysis or gasification than from coal combustion, especially elemental Hg. Highly efficient Hg removal technology from coal-derived fuel gas is thus of great importance. Based on the very excellent Hg removal ability of Pd and the high adsorption abilities of activated carbon (AC) for H₂S and Hg, a series of Pd/AC sorbents was prepared by using pore volume impregnation, and their performance in capturing Hg and H₂S from coal-derived fuel gas was investigated using a laboratory-scale fixed-bed reactor. The effects of loading amount, reaction temperature and reaction atmosphere on Hg removal from coal-derived fuel gas were studied. The sorbents were characterized by N₂ adsorption, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The results indicated that the efficiency of Hg removal increased with the increasing of Pd loading amount, but the effective utilization rate of the active component Pd decreased significantly at the same time. High temperature had a negative influence on the Hg removal. The efficiency of Hg removal in the N₂-H₂S-H₂-CO-Hg atmosphere (simulated coal gas) was higher than that in N₂-H₂S-Hg and N₂-Hg atmospheres, which showed that H₂ and CO, with their reducing capacity, could benefit promote the removal of Hg. The XPS results suggested that there were two different ways of capturing Hg over sorbents in N₂-H₂S-Hg and N₂-Hg atmospheres. Copyright © 2014. Published by Elsevier B.V.

  7. Monetization of External Costs Using Lifecycle Analysis—A Comparative Case Study of Coal-Fired and Biomass Power Plants in Northeast China

    Directory of Open Access Journals (Sweden)

    Lingling Wang

    2015-02-01

    Full Text Available In this study, the structures of external costs are built in line with coal-fired and biomass power plant life cycle activities in Northeast China. The external cost of coal-fired and biomass power plants was compared, using the lifecycle approach. In addition, the external costs of a biomass power plant are calculated for each stage for comparison with those of a coal-fired power plant. The results highlight that the external costs of a coal-fired plant are 0.072 US $/kWh, which are much higher than that of a biomass power plant, 0.00012 US$/kWh. The external cost of coal-fired power generation is as much as 90% of the current price of electricity generated by coal, while the external cost of a biomass power plant is 1/1000 of the current price of electricity generated by biomass. In addition, for a biomass power plant, the external cost associated with SO2, NOX, and PM2.5 are particularly lower than those of a coal-fired power plant. The prospect of establishing precise estimations for external cost mechanisms and sustainable energy policies is discussed to show a possible direction for future energy schemes in China. The paper has significant value for supporting the biomass power industry and taxing or regulating coal-fired power industry to optimize the energy structure in China.

  8. Gasification of coal-derived chars in synthesis gas mixtures under intraparticle mass-transfer-controlled conditions

    NARCIS (Netherlands)

    Bliek, A.; Lont, J.C.; van Swaaij, Willibrordus Petrus Maria

    1986-01-01

    A model has been formulated to describe the quasi-steady-state gasification of coal-derived chars in gas mixtures where both the reactants carbon dioxide and steam, and the gasification products carbon monoxide and hydrogen are present. As such, these conditions reflect the situation found in most

  9. Sensitivity of detection of fugitive methane emissions from coal seam gas fields

    Science.gov (United States)

    Feitz, A. J.; Berko, H.; Wilson, P.; Jenkins, C.; Loh, Z. M.; Etheridge, D.

    2013-12-01

    There is increasing recognition that minimising methane emissions from the oil and gas sector is a key step in reducing global greenhouse gas emissions in the near term. Atmospheric monitoring techniques are likely to play an important future role in measuring the extent of existing emissions and verifying emission reductions. They can be very suitable for monitoring gas fields as they are continuous and integrate emissions from a number of potential point and diffuse sources that may vary in time. Geoscience Australia and CSIRO Marine & Atmospheric Research have collected three years of continuous methane and carbon dioxide measurements at their atmospheric composition monitoring station ('Arcturus') in the Bowen Basin, Australia. Methane signals in the Bowen Basin are likely to be influenced by cattle production, landfill, coal production, and conventional and coal seam gas (CSG) production. Australian CSG is typically 'dry' and is characterised by a mixed thermogenic-biogenic methane source with an absence of C3-C6+ alkanes. The range of δ13C isotopic signatures of the CSG is similar to methane from landfill gas and cattle emissions. The absence of standard in-situ tracers for CSG fugitive emissions suggests that having a comprehensive baseline will be critical for successful measurement of fugitive emissions using atmospheric techniques. In this paper we report on the sensitivity of atmospheric techniques for the detection of fugitive emissions from a simulated new CSG field against a three year baseline signal. Simulation of emissions was performed for a 1-year period using the coupled prognostic meteorological and air pollution model TAPM at different fugitive emission rates (i.e. estimates of <1% to up to 10% of production lost) and distances (i.e. 10 - 50 km) from the station. Emissions from the simulated CSG field are based on well density, production volumes, and field size typical of CSG fields in Australia. The distributions of the perturbed and

  10. Separation Process of Fine Coals by Ultrasonic Vibration Gas-Solid Fluidized Bed

    Directory of Open Access Journals (Sweden)

    Shuai Wang

    2017-01-01

    Full Text Available Ultrasonic vibration gas-solid fluidized bed was proposed and introduced to separate fine coals (0.5–0.125 mm fraction. Several technological methods such as XRF, XRD, XPS, and EPMA were used to study the composition of heavy products to evaluate the separation effect. Results show that the ultrasonic vibration force field strengthens the particle separation process based on density when the vibration frequency is 35 kHz and the fluidization number is 1.8. The ash difference between the light and heavy products and the recovery of combustible material obtain the maximum values of 47.30% and 89.59%, respectively. The sulfur content of the heavy product reaches the maximum value of 6.78%. Chemical state analysis of sulfur shows that organic sulfur (-C-S-, sulfate-sulfur (-SO4, and pyrite-sulfur (-S2 are confirmed in the original coal and heavy product. Organic sulfur (-C-S- is mainly concentrated in the light product, and pyrite-sulfur (-S2 is significantly enriched in the heavy product. The element composition, phase composition, backscatter imagery, and surface distribution of elements for heavy product show concentration of high-density minerals including pyrite, quartz, and kaolinite. Some harmful elements such as F, Pb, and As are also concentrated in the heavy product.

  11. The experimental modeling of gas percolation mechanisms in a coal-measure tight sandstone reservoir: A case study on the coal-measure tight sandstone gas in the Upper Triassic Xujiahe Formation, Sichuan Basin, China

    Directory of Open Access Journals (Sweden)

    Shizhen Tao

    2016-12-01

    Full Text Available Tight sandstone gas from coal-measure source rock is widespread in China, and it is represented by the Xujiahe Formation of the Sichuan Basin and the Upper Paleozoic of the Ordos Basin. It is affected by planar evaporative hydrocarbon expulsion of coal-measure source rock and the gentle structural background; hydrodynamics and buoyancy play a limited role in the gas migration-accumulation in tight sandstone. Under the conditions of low permeability and speed, non-Darcy flow is quite apparent, it gives rise to gas-water mixed gas zone. In the gas displacing water experiment, the shape of percolation flow curve is mainly influenced by core permeability. The lower the permeability, the higher the starting pressure gradient as well as the more evident the non-Darcy phenomenon will be. In the gas displacing water experiment of tight sandstone, the maximum gas saturation of the core is generally less than 50% (ranging from 30% to 40% and averaging at 38%; it is similar to the actual gas saturation of the gas zone in the subsurface core. The gas saturation and permeability of the core have a logarithm correlation with a correlation coefficient of 0.8915. In the single-phase flow of tight sandstone gas, low-velocity non-Darcy percolation is apparent; the initial flow velocity (Vd exists due to the slippage effect of gas flow. The shape of percolation flow curve of a single-phase gas is primarily controlled by core permeability and confining pressure; the lower the permeability or the higher the confining pressure, the higher the starting pressure (0.02–0.08 MPa/cm, whereas, the higher the quasi-initial flow speed, the longer the nonlinear section and the more obvious the non-Darcy flow will be. The tight sandstone gas seepage mechanism study shows that the lower the reservoir permeability, the higher the starting pressure and the slower the flow velocity will be, this results in the low efficiency of natural gas migration and accumulation as well as

  12. FIELD TEST PROGRAM FOR LONG-TERM OPERATION OF A COHPAC SYSTEM FOR REMOVING MERCURY FROM COAL-FIRED FLUE GAS

    Energy Technology Data Exchange (ETDEWEB)

    Jean Bustard; Charles Lindsey; Paul Brignac; Travis Starns; Sharon Sjostrom; Trent Taylor; Cindy Larson

    2003-10-31

    With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Sorbent injection technology represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. It involves injecting a solid material such as powdered activated carbon into the flue gas. The gas-phase mercury in the flue gas contacts the sorbent and attaches to its surface. The sorbent with the mercury attached is then collected by the existing particle control device along with the other solid material, primarily fly ash. During 2001, ADA Environmental Solutions (ADA-ES) conducted a full-scale demonstration of sorbent-based mercury control technology at the Alabama Power E.C. Gaston Station (Wilsonville, AL). This unit burns a low-sulfur bituminous coal and uses a hot-side electrostatic precipitator (ESP) in combination with a Compact Hybrid Particulate Collector (COHPAC{trademark}) baghouse to collect fly ash. The majority of the fly ash is collected in the ESP with the residual being collected in the COHPAC baghouse. Activated carbon was injected between the ESP and COHPAC units to collect the mercury. Short-term mercury removal levels in excess of 90% were achieved using the COHPAC unit. The test also showed that activated carbon was effective in removing both forms of mercury-elemental and oxidized. However, a great deal of additional testing is required to further characterize the capabilities and limitations of this technology relative to use with baghouse systems such as COHPAC. It is important to determine performance over an extended period of time to fully assess all operational parameters. The project described in this report focuses on fully demonstrating sorbent injection technology at a coal-fired power generating plant that is equipped with a

  13. Organic substances in produced and formation water from unconventional natural gas extraction in coal and shale

    Science.gov (United States)

    Orem, William H.; Tatu, Calin A.; Varonka, Matthew S.; Lerch, Harry E.; Bates, Anne L.; Engle, Mark A.; Crosby, Lynn M.; McIntosh, Jennifer

    2014-01-01

    Organic substances in produced and formation water from coalbed methane (CBM) and gas shale plays from across the USA were examined in this study. Disposal of produced waters from gas extraction in coal and shale is an important environmental issue because of the large volumes of water involved and the variable quality of this water. Organic substances in produced water may be environmentally relevant as pollutants, but have been little studied. Results from five CBM plays and two gas shale plays (including the Marcellus Shale) show a myriad of organic chemicals present in the produced and formation water. Organic compound classes present in produced and formation water in CBM plays include: polycyclic aromatic hydrocarbons (PAHs), heterocyclic compounds, alkyl phenols, aromatic amines, alkyl aromatics (alkyl benzenes, alkyl biphenyls), long-chain fatty acids, and aliphatic hydrocarbons. Concentrations of individual compounds range from exercised in the disposal and release of produced waters containing these organic substances into the environment because of the potential toxicity of many of these substances.

  14. GAS AND COAL EXTRACTIVE INDUSTRY DURING THE SOCIALIST INDUSTRIALIZATION PERIOD (1948-1989

    Directory of Open Access Journals (Sweden)

    MARIUS BULEARCA

    2015-12-01

    Full Text Available This article shows that since 1949 the extractive industry has undergone a strong process of restructuring when enterprises were nationalized and a strict control over all components of the economy was established. The new leadership of the country had the intention of developing the industrial sector as well, basically laying the foundations of the new Romanian economy where the industrial sector economy would bring considerable income. This program will lead to the development of the energy sector in Romania also, thus contributing to a great extent to the development and consolidation of coal and gas extraction. Despite of all the economic and social development achieved during the period 1950-1989, at the end of it, Romania ranked a marginal position in the European countries hierarchy since between its level of development and the market economy developed countries large gaps in respect to the main economic and social indicators occurred.

  15. Evaluating the costs and achievable benefits of extending technologies for uneconomical coal resources in South Africa: the case of underground coal gasification

    CSIR Research Space (South Africa)

    Zieleniewski, M

    2008-11-01

    Full Text Available possible gas calorific value, based on geological surveys and gasification agents for a predefined need; direct process-related costs that are derived from the expected capital and operational expenditures and compared to the value and volume of the gas...

  16. Comparison of carbon monoxide poisonings originated from coal stove and natural gas and the evaluation of Neutrophil/Lymphocyte ratio

    Directory of Open Access Journals (Sweden)

    Yahya Kemal Günaydın

    2015-09-01

    Full Text Available Objective: The aim of our study is to present the epidemiologic, clinical, laboratory and prognosis differences between the coal stove origin poisoning and natural gas leakages. We also aimed to investigate relationship between the severity of clinical picture, prognosis, complications develop in CO poisoning with neutrophil/lymphocyte ratio (NLR at the initial admission. Methods: All the acute carbon monoxide cases who applied to Ankara Training and Research Hospital Emergency Medicine Clinic between October 2009 and April 2010 were included to this prospective study. CO poisoning diagnosis was made by the history of CO poisoning with carboxyl hemoglobin (COHb concentration is over 10%. 100 patients were included to our study. Results: Of the patients, 55(55% were poisoned from the coal-stove and 45(45% from natural gas leakage. The mean COHb level of the natural gas group was significantly high (p=0.01. The mean value of GCS of the natural gas group was significantly lower (p=0.018. The number of patients with indication for HBO therapy were 17 and 6 in the natural gas group and coal-stove group, respectively, being significantly higher in the natural gas group(p=0.001. There was no statistically significant relationship between the value of NLR and values of COHb, troponin, and GCS (p=0.872, p=0.470, and p=0.896, respectively. Conclusions: Carbon monoxide poisoning from natural gas leakage is more toxic than that from the coal-stove. There is no relationship between NLR at the time of presentation and the severity of clinical findings, prognosis and complications.

  17. Economic effects of western Federal land-use restrictions on U.S. coal markets

    Science.gov (United States)

    Watson, William Downing; Medlin, A.L.; Krohn, K.K.; Brookshire, D.S.; Bernknopf, R.L.

    1991-01-01

    Current regulations on land use in the Western United States affect access to surface minable coal resources. This U.S. Geological Survey study analyzes the long-term effects of Federal land-use restrictions on the national cost of meeting future coal demands. The analysis covers 45 years. The U.S. Bureau of Land Management has determined the environmental, aesthetic, and economic values of western Federal coal lands and has set aside certain areas from surface coal mining to protect other valued land uses, including agricultural, environmental, and aesthetic uses. Although there are benefits to preserving natural areas and to developing areas for other land uses, these restrictions produce long-term national and regional costs that have not been estimated previously. The Dynamic Coal Allocation Model integrates coal supply (coal resource tonnage and coal quality by mining cost for 60 coal supply regions) with coal demand (in 243 regions) for the entire United States. The model makes it possible to evaluate the regional economic impacts of coal supply restrictions wherever they might occur in the national coal market. The main factors that the economic methodology considers are (1) coal mining costs, (2) coal transportation costs, (3) coal flue gas desulfurization costs, (4) coal demand, (5) regulations to control sulfur dioxide discharges, and (6) specific reductions in coal availability occurring as a result of land-use restrictions. The modeling system combines these economic factors with coal deposit quantity and quality information--which is derived from the U.S. Geological Survey's National Coal Resources Data System and the U.S. Department of Energy's Demonstrated Reserve Base--to determine a balance between supply and demand so that coal is delivered at minimum cost.

  18. Economy of bituminous coal hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    von Hochstetter, H.

    1944-05-11

    The influence of various factors on the production cost of (Janina) bituminous coal hydrogenation is analyzed briefly. The initial reckoning yielded a production cost of 188 marks per metric ton of gasoline and middle oils. The savings concomitant to changes of one percent in gasification, one percent in utilization of purified coal, one percent raising of space/time yield, one percent increase in throughput, one percent in coal concentration in the paste, and one percent in low temperature carbonization yield are listed. Factors affecting hydrogen consumption are listed in a table. Investigations showed the carbon-richest coal to produce a deviation in the effect of gasification upon the working costs by only 10 percent when compared with the Janina coal. Thus, the values listed were considered as guidelines for all kinds of bituminous coal. The calculations admitted the following conclusions: a maximum concentration of coal in the paste is desirable; one can assume a 2 percent reduction in the utilization with a 10 percent increase in throughput, as long as no changes in low temperature carbonization yield take place by changing the distribution in oil production; this configuration would change if the major concern were gas production instead of working costs, or if hydrogen production were the bottleneck. 1 table.

  19. Characterization of pyrolysates from maceral components of Tarim coals in closed system experiments and implications to natural gas generation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Q.Y.; Liu, W.H.; Dai, J.X. [PetroChina, Beijing (China)

    2007-07-01

    The macerals vitrinite, exinite, fusinite, and semi-fusinite from low-maturity coal (VR{sub r} = 0.40%) of the Manjiaer sag, Tarim Basin were isolated and subjected to isothermal pyrolysis in a sealed stainless steel reactor at temperatures ranging from 250 to 550{sup o}C in 50{sup o}C intervals for a duration of 72 h. Gas yields, chemical and isotopic compositions vary significantly for the different coal macerals. Total gas yields (predominantly CH4 and CO{sub 2}) from exinite and vitrinite are much higher than those from fusinite and semi-fusinite. Carbon dioxide generated from exinite is slightly enriched in {sup 13}C as compared to CO{sub 2} produced from vitrinite. Methane produced from exinite tends to be isotopically lighter than methane generated from inertinite. Interestingly, the {delta} {sup 13}C(CH4) values of all macerals show a similar evolution pattern with temperature - the initial gas is isotopically heavy, then becomes lighter at moderate temperatures, and finally becomes heavier again. This may be an indication of isotopic heterogeneity within the coal precursors. Hydrocarbon potential of coal closely depends on the maceral composition. Exinite shows the highest hydrocarbon generation potential followed by vitrinite, while inertinite has only a poor hydrocarbon potential. The Pr/Ph ratio varies irregularly through catagenesis.

  20. Modelling of Gas Flow in the Underground Coal Gasification Process and its Interactions with the Rock Environment

    Directory of Open Access Journals (Sweden)

    Tomasz Janoszek

    2013-01-01

    Full Text Available The main goal of this study was the analysis of gas flow in the underground coal gasification process and interactions with the surrounding rock mass. The article is a discussion of the assumptions for the geometric model and for the numerical method for its solution as well as assumptions for modelling the geochemical model of the interaction between gas-rock-water, in terms of equilibrium calculations, chemical and gas flow modelling in porous mediums. Ansys-Fluent software was used to describe the underground coal gasification process (UCG. The numerical solution was compared with experimental data. The PHREEQC program was used to describe the chemical reaction between the gaseous products of the UCG process and the rock strata in the presence of reservoir waters.

  1. DEVELOPMENT OF NOVEL CERAMIC NANOFILM-FIBER INTEGRATED OPTICAL SENSORS FOR RAPID DETECTION OF COAL DERIVED SYNTHESIS GAS

    Energy Technology Data Exchange (ETDEWEB)

    Junhang Dong; Hai Xiao; Xiling Tang; Hongmin Jiang; Kurtis Remmel; Amardeep Kaur

    2012-09-30

    The overall goal of this project is to conduct fundamental studies on advanced ceramic materials and fiber optic devices for developing new types of high temperature (>500{degree}C) fiber optic chemical sensors (FOCS) for monitoring fossil (mainly coal) and biomass derived gases in power plants. The primary technical objective is to investigate and demonstrate the nanocrystalline doped-ceramic thin film enabled FOCS that possess desired stability, sensitivity and selectivity for in-situ, rapid gas detection in the syngas streams from gasification and combustion flue gases. This report summarizes research works of two integrated parts: (1) development of metal oxide solid thin films as sensing materials for detection and measurement of important gas components relevant to the coal- and biomass-derived syngas and combustion gas streams at high temperatures; and (2) development of fiber optic devices that are potentially useful for constructing FOCS in combination with the solid oxide thin films identified in this program.

  2. Low-Cost Gas Heat Pump for Building Space Heating

    Energy Technology Data Exchange (ETDEWEB)

    Garrabrant, Michael [Stone Mountain Technologies, Inc., Johnson City, TN (United States); Keinath, Christopher [Stone Mountain Technologies, Inc., Johnson City, TN (United States)

    2016-10-11

    Gas-fired residential space heating in the U.S is predominantly supplied by furnaces and boilers. These technologies have been approaching their thermodynamic limit over the past 30 years and improvements for high efficiency units have approached a point of diminishing return. Electric heat pumps are growing in popularity but their heating performance at low ambient temperatures is poor. The development of a low-cost gas absorption heat pump would offer a significant improvement to current furnaces and boilers, and in heating dominated climate zones when compared to electric heat pumps. Gas absorption heat pumps (GAHP) exceed the traditional limit of thermal efficiency encountered by typical furnaces and boilers, and maintain high levels of performance at low ambient temperatures. The project team designed and demonstrated two low-cost packaged prototype GAHP space heating systems during the course of this investigation. Led by Stone Mountain Technologies Inc. (SMTI), with support from A.O. Smith, and the Gas Technology Institute (GTI), the cross-functional team completed research and development tasks including cycle modeling, 8× scaling of a compact solution pump, combustion system development, breadboard evaluation, fabrication of two packaged prototype units, third party testing of the first prototype, and the evaluation of cost and energy savings compared to high and minimum efficiency gas options. Over the course of the project and with the fabrication of two Alpha prototypes it was shown that this technology met or exceeded most of the stated project targets. At ambient temperatures of 47, 35, 17 and -13°F the prototypes achieved gas based coefficients of performance of 1.50, 1.44, 1.37, and 1.17, respectively. Both units operated with parasitic loads well below the 750 watt target with the second Alpha prototype operating 75-100 watts below the first Alpha prototype. Modulation of the units at 4:1 was achieved with the project goal of 2:1 modulation

  3. Co-gasification of different rank coals with biomass and petroleum coke in a high-pressure reactor for H(2)-rich gas production.

    Science.gov (United States)

    Fermoso, J; Arias, B; Gil, M V; Plaza, M G; Pevida, C; Pis, J J; Rubiera, F

    2010-05-01

    Four coals of different rank were gasified, using a steam/oxygen mixture as gasifying agent, at atmospheric and elevated pressure in a fixed bed reactor fitted with a solids feeding system in continuous mode. Independently of coal rank, an increase in gasification pressure led to a decrease in H(2) + CO production and carbon conversion. Gasification of the different rank coals revealed that the higher the carbon content and reactivity, the greater the hydrogen production. Co-gasification experiments of binary (coal-biomass) and ternary blends (coal-petcoke-biomass) were conducted at high pressure to study possible synergetic effects. Interactions between the blend components were found to modify the gas production. An improvement in hydrogen production and cold gas efficiency was achieved when the coal was gasified with biomass. Copyright 2009 Elsevier Ltd. All rights reserved.

  4. Thermochemical Equilibrium Model of Synthetic Natural Gas Production from Coal Gasification Using Aspen Plus

    National Research Council Canada - National Science Library

    Barrera, Rolando; Salazar, Carlos; Pérez, Juan F

    2014-01-01

    .... The model was developed using a complete and comprehensive Aspen Plus model. Two typical technologies used in entrained flow gasifiers such as coal dry and coal slurry are modeled and simulated...

  5. Wyoming coal-conversion project. Final technical report, November 1980-February 1982. [Proposed WyCoalGas project, Converse County, Wyoming; contains list of appendices with title and identification

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-01-01

    This final technical report describes what WyCoalGas, Inc. and its subcontractors accomplished in resolving issues related to the resource, technology, economic, environmental, socioeconomic, and governmental requirements affecting a project located near Douglas, Wyoming for producing 150 Billion Btu per day by gasifying sub-bituminous coal. The report summarizes the results of the work on each task and includes the deliverables that WyCoalGas, Inc. and the subcontractors prepared. The co-venturers withdrew from the project for two reasons: federal financial assistance to the project was seen to be highly uncertain; and funds were being expended at an unacceptably high rate.

  6. Interactions of nickel/zirconia solid oxide fuel cell anodes with coal gas containing arsenic

    Energy Technology Data Exchange (ETDEWEB)

    Coyle, C.A.; Marina, O.A.; Thomsen, E.C.; Edwards, D.J.; Cramer, C.D.; Coffey, G.W.; Pederson, L.R. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States)

    2009-09-05

    The performance of anode-supported and electrolyte-supported solid oxide fuel cells was investigated in synthetic coal gas containing 0-10 ppm arsenic at 700-800 C. Arsenic was found to interact strongly with nickel, resulting in the formation of nickel-arsenic solid solution, Ni{sub 5}As{sub 2} and Ni{sub 11}As{sub 8}, depending on temperature, arsenic concentration, and reaction time. For anode-supported cells, loss of electrical connectivity in the anode support was the principal mode of degradation, as nickel was converted to nickel arsenide phases that migrated to the surface to form large grains. Cell failure occurred well before the entire anode was converted to nickel arsenide, and followed a reciprocal square root of arsenic partial pressure dependence that is consistent with a diffusion-based rate-limiting step. Failure occurred more quickly with electrolyte-supported cells, which have a substantially smaller nickel inventory. For these cells, time to failure varied linearly with the reciprocal arsenic concentration. Failure occurred when arsenic reached the anode/electrolyte interface, though agglomeration of nickel reaction products may have also contributed. Test performed with nickel/zirconia coupons showed that arsenic was essentially completely captured in a narrow band near the fuel gas inlet. Arsenic concentrations of {proportional_to}10 ppb or less are estimated to result in acceptable rates of fuel cell degradation. (author)

  7. Prediction of Coal Face Gas Concentration by Multi-Scale Selective Ensemble Hybrid Modeling

    Directory of Open Access Journals (Sweden)

    WU Xiang

    2014-06-01

    Full Text Available A selective ensemble hybrid modeling prediction method based on wavelet transformation is proposed to improve the fitting and generalization capability of the existing prediction models of the coal face gas concentration, which has a strong stochastic volatility. Mallat algorithm was employed for the multi-scale decomposition and single-scale reconstruction of the gas concentration time series. Then, it predicted every subsequence by sparsely weighted multi unstable ELM(extreme learning machine predictor within method SERELM(sparse ensemble regressors of ELM. At last, it superimposed the predicted values of these models to obtain the predicted values of the original sequence. The proposed method takes advantage of characteristics of multi scale analysis of wavelet transformation, accuracy and fast characteristics of ELM prediction and the generalization ability of L1 regularized selective ensemble learning method. The results show that the forecast accuracy has large increase by using the proposed method. The average relative error is 0.65%, the maximum relative error is 4.16% and the probability of relative error less than 1% reaches 0.785.

  8. Microfine coal firing results from a retrofit gas/oil-designed industrial boiler

    Energy Technology Data Exchange (ETDEWEB)

    Patel, R.; Borio, R.W.; Liljedahl, G. [Combustion Engineering, Inc., Windsor, CT (United States)] [and others

    1995-11-01

    Under US Department of Energy, Pittsburgh Energy Technology Center (PETC) support, the development of a High Efficiency Advanced Coal Combustor (HEACC) has been in progress since 1987 at the ABB Power Plant Laboratories. The initial work on this concept produced an advanced coal firing system that was capable of firing both water-based and dry pulverized coal in an industrial boiler environment.

  9. THE INFLUENCE OF SPARE PARTS EXPENSES ON PRODUCTION COSTS WITH THE PREPARATION OF THE JIU VALLEY COAL

    Directory of Open Access Journals (Sweden)

    GIANINA BARSAN DUDUIALA

    2012-05-01

    Full Text Available The activity of supply and that of exploitation of the spare parts from the composition of the equipments that realize the preparation of the Jiu Valley coal influence its production costs. In this respect, this paper deals with, during some periods of time, initially determined, the specific costs of the spare parts for the sieves, pumps and pipes, equipments, and also auxiliary equipments that are part of the endowment of the Exploitation of the Jiu Valley coal preparation. The results got can be used to rank and determine the causes which determine the high expenses of some spare parts categories as well as the possibility to reduce the production costs within E.P.C.V.J.

  10. Transient Climate Impacts for Scenarios of Aerosol Emissions from Asia: A Story of Coal versus Gas

    Science.gov (United States)

    Grandey, B. S.; Cheng, H.; Wang, C.

    2014-12-01

    Projections of anthropogenic aerosol emissions are uncertain. In Asia, it is possible that emissions may increase if business continues as usual, with economic growth driving an increase in coal burning. But it is also possible that emissions may decrease rapidly due to the widespread adoption of cleaner technology or a shift towards non-coal fuels, such as natural gas. In this study, the transient climate impacts of three aerosol emissions scenarios are investigated: an RCP4.5 (Representative Concentration Pathway 4.5) control; a scenario with reduced Asian anthropogenic aerosol emissions; and a scenario with enhanced Asian anthropogenic aerosol emissions. A coupled atmosphere-ocean configuration of CESM (Community Earth System Model), including CAM5 (Community Atmosphere Model version 5), is used. Enhanced Asian aerosol emissions are found to delay global mean warming by one decade at the end of the century. Aerosol-induced suppression of the East Asian and South Asian summer monsoon precipitation occurs. The enhanced Asian aerosol emissions also remotely impact precipitation in other parts of the world: over the Sahel, West African monsoon precipitation is suppressed; and over Australia, austral summer monsoon precipitation is enhanced. These remote impacts on precipitation are associated with a southward shift of the ITCZ. The aerosol-induced sea surface temperature (SST) response appears to play an important role in the precipitation changes over South Asia and Australia, but not over East Asia. These results indicate that energy production in Asia, through the consequent aerosol emissions and associated radiative effects, might significantly influence future climate both locally and globally.

  11. Fiscal 1993 survey of the base arrangement promotion for foreign coal import. Supply to Japan of subbituminous coal of the west of the U.S. (survey of the cost and a potentiality of the cost); 1993 nendo kaigaitan yunyu kiban sokushin chosa. Beikoku seibu arekiseitan no tainichi kyokyu (cost to yunyu chosa)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-03-01

    Subbituminous coal of the Powder River coal field in the west of the U.S. is abundant, about 1/3 in the U.S. in reserve and about 1/4 in production. It is predicted that supply/demand of general coal will be tight from now up to the coming year of 2000 in the Pacific rim region including Japan as center, and therefore, if Japan imports in large quantity the subbituminous coal which exists abundantly and has a great potentiality of the expanding production quantity, Japan can contribute greatly to loosening the supply/demand of general coal in the Pacific rim region. However, there are some problems on the following: long inland transportation distance of more than 2000km, heavy burden of railroad fare, and coal quality, namely high water content, low calorific value, and low ash melting point of the coal being low in sulfur and ash. Accordingly, surveyed were on what level the cost of supply to Japan will be as compared with Australian coal, and whether there is a possibility of import of the subbituminous coal in large quantity at a competitive price. As to the potential import to Japan, the import of this coal will be 2.025 million tons/year at maximum in 2000 if the railroad price is reduced 20% and the blending of 30% at maximum can be realized at the Soma Kyodo Thermal Power Plant. 34 figs., 48 tabs.

  12. Modeling high-pressure adsorption of gas mixtures on activated carbon and coal using a simplified local-density model.

    Science.gov (United States)

    Fitzgerald, James E; Robinson, Robert L; Gasem, Khaled A M

    2006-11-07

    The simplified local-density (SLD) theory was investigated regarding its ability to provide accurate representations and predictions of high-pressure supercritical adsorption isotherms encountered in coalbed methane (CBM) recovery and CO2 sequestration. Attention was focused on the ability of the SLD theory to predict mixed-gas adsorption solely on the basis of information from pure gas isotherms using a modified Peng-Robinson (PR) equation of state (EOS). An extensive set of high-pressure adsorption measurements was used in this evaluation. These measurements included pure and binary mixture adsorption measurements for several gas compositions up to 14 MPa for Calgon F-400 activated carbon and three water-moistened coals. Also included were ternary measurements for the activated carbon and one coal. For the adsorption of methane, nitrogen, and CO2 on dry activated carbon, the SLD-PR can predict the component mixture adsorption within about 2.2 times the experimental uncertainty on average solely on the basis of pure-component adsorption isotherms. For the adsorption of methane, nitrogen, and CO2 on two of the three wet coals, the SLD-PR model can predict the component adsorption within the experimental uncertainties on average for all feed fractions (nominally molar compositions of 20/80, 40/60, 60/40, and 80/20) of the three binary gas mixture combinations, although predictions for some specific feed fractions are outside of their experimental uncertainties.

  13. Assessment of an atmospheric fluidized-bed coal-combustion gas-turbine cogeneration system for industrial application

    Energy Technology Data Exchange (ETDEWEB)

    Graves, R. L.; Holcomb, R. S.; Tallackson, J. R.

    1979-10-01

    This study was initiated to provide information on the future potential industrial market for a cogeneration system consisting of a fluidized-bed coal combustor coupled to a gas-turbine (Brayton cycle) power system that uses air as the working fluid. In assessing the potential applications for the system, the process heat energy consumption by industry is identified, with special detail included on the six most energy-intensive industries. The potential impact on the nation's oil and natural gas consumption that would result from wide-spread utilization of coal for process heat is also estimated. The fraction of industrial process heat that the system could feasibly satisfy from a thermodynamic viewpoint is estimated, and the performance (potential fuel efficiency and heat/power ratio) of the atmospheric fluidized-bed gas-turbine system is calculated. Also treated are several specific case studies of industries in which the system could be incorporated. Major parameters are specified, and flow sheets are derived for systems that would satisfy the heat and power requirements of the process or industry. The overall fuel utilization efficiency, thermal power rating, and potential number of installations are specified for these case studies. The findings of the study indicate that there is a sizable potential market for the system, with over 1000 possible installations disclosed after reviewing only 8 specific industries from 6 major Standard Industrial Classification (SIC) groups. The potential displacement of oil and gas by coal in process heating is shown to be about 1.60 m/sup 3//sec (870,000 bbl/d) of oil and 4590 m/sup 3//sec (14.0 billion ft/sup 3//d) of natural gas for all industries combined. Continued development of the fluidized-bed coal combustor and power system is recommended so that this potential may be at least partially realized.

  14. Development of a Field Demonstration for Cost-Effective Low-Grade Heat Recovery and Use Technology Designed to Improve Efficiency and Reduce Water Usage Rates for a Coal-Fired Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Noble, Russell [Southern Company Services, Incorporated, Birmingham, AL (United States); Dombrowski, K. [AECOM Technical Services, Austin, TX (United States); Bernau, M. [AECOM Technical Services, Austin, TX (United States); Morett, D. [AECOM Technical Services, Austin, TX (United States); Maxson, A. [EPRI, Palo Alto, CA (United States); Hume, S. [EPRI, Palo Alto, CA (United States)

    2016-06-30

    Coal-based power generation systems provide reliable, low-cost power to the domestic energy sector. These systems consume large amounts of fuel and water to produce electricity and are the target of pending regulations that may require reductions in water use and improvements in thermal efficiency. While efficiency of coal-based generation has improved over time, coal power plants often do not utilize the low-grade heat contained in the flue gas and require large volumes of water for the steam cycle make-up, environmental controls, and for process cooling and heating. Low-grade heat recovery is particularly challenging for coal-fired applications, due in large part to the condensation of acid as the flue gas cools and the resulting potential corrosion of the heat recovery materials. Such systems have also not been of significant interest as recent investments on coal power plants have primarily been for environmental controls due to more stringent regulations. Also, in many regions, fuel cost is still a pass-through to the consumer, reducing the motivation for efficiency improvements. Therefore, a commercial system combining low-grade heat-recovery technologies and associated end uses to cost effectively improve efficiency and/or reduce water consumption has not yet been widely applied. However, pressures from potential new regulations and from water shortages may drive new interest, particularly in the U.S. In an effort to address this issue, the U.S. Department of Energy (DOE) has sought to identify and promote technologies to achieve this goal.

  15. Interaction of coal-derived synthesis gas impurities with solid oxide fuel cell metallic components

    Energy Technology Data Exchange (ETDEWEB)

    Marina, Olga A.; Coyle, Christopher A.; Edwards, Danny J.; Chou, Yeong-Shyung; Cramer, Carolyn N. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Pederson, Larry R. [North Dakota State University, Fargo, ND 58102 (United States)

    2011-01-15

    Oxidation-resistant alloys find use as interconnect materials, heat exchangers, and gas supply tubing in solid oxide fuel cell (SOFC) systems, especially when operated at temperatures below {proportional_to}800 C. If fueled with synthesis gas derived from coal or biomass, such metallic components could be exposed to impurities contained in those fuel sources. In this study, coupons of ferritic stainless steels Crofer 22 APU and SS 441, austenitic nickel-chromium superalloy Inconel 600, and an alumina-forming high nickel alloy alumel were exposed to synthesis gas containing {<=}2 ppm phosphorus, arsenic and antimony, and reaction products were tested. Crofer 22 APU coupons coated with a (Mn,Co){sub 3}O{sub 4} protective layer were also evaluated. Phosphorus was found to be the most reactive. On Crofer 22 APU, the (Mn,Cr){sub 3}O{sub 4} passivation layer reacted to form an Mn-P-O product, predicted to be manganese phosphate from thermochemical calculations, and Cr{sub 2}O{sub 3}. On SS 441, reaction of phosphorus with (Mn,Cr){sub 3}O{sub 4} led to the formation of manganese phosphate as well as an Fe-P product, predicted from thermochemical calculations to be Fe{sub 3}P. Minimal interactions with antimony or arsenic in synthesis gas were limited to Fe-Sb and Fe-As solid solution formation. Though not intended for use on the anode side, a (Mn,Co){sub 3}O{sub 4} spinel coating on Crofer 22 APU reacted with phosphorus in synthesis gas to produce products consistent with Mn{sub 3}(PO{sub 4}){sub 2} and Co{sub 2}P. A thin Cr{sub 2}O{sub 3} passivation layer on Inconel 600 did not prevent the formation of nickel phosphides and arsenides and of iron phosphides and arsenides, though no reaction with Cr{sub 2}O{sub 3} was apparent. On alumel, an Al{sub 2}O{sub 3} passivation layer rich in Ni did not prevent the formation of nickel phosphides, arsenides, and antimonides, though no reaction with Al{sub 2}O{sub 3} occurred. This work shows that unprotected metallic components of

  16. Energy, greenhouse gas, and cost reductions for municipal recycling systems.

    Science.gov (United States)

    Chester, Mikhail; Martin, Elliot; Sathaye, Nakul

    2008-03-15

    Curbside recycling programs can be more cost-effective than landfilling and lead to environmental benefits from the recovery of materials. Significant reductions in energy and emissions are derived from the decrease of energy-intensive production with virgin materials. In many cities, competing priorities can lead to limited consideration given to system optimal collection and processing strategies that can drive down costs and increase revenue while simultaneously reducing system energy consumption and greenhouse gas (GHG) emissions. We evaluate three alterations to a hypothetical California city's recycling network to discern the conditions under which the changes.constitute system improvements to cost, energy, and emissions. The system initially operates with a collection zoning scheme that does not mitigate the impact of seasonal variations in consumer tonnage. In addition, two collection organizations operate redundantly, collecting recyclables from different customer types on the same street network. Finally, the system is dual stream, meaning recyclables are separated at the curbside. In some scenarios, this practice can limit the consumer participation rate leading to lower collection quantities. First, we evaluate a "business as usual" (BAU) scenario and find that the system operates at a $1.7 M/yr loss but still avoids a net 18.7 GJ and 1700 kg of greenhouse gas equivalent (GGE) per ton of material recycled. Second, we apply an alternative zoning scheme for collection that creates a uniform daily pickup demand throughout the year reducing costs by $0.2 M/yr, energy by 30 MJ/ton, and GHG emissions by 2 kg GGE/ton. Next, the two collection organizations are consolidated into a single entity further reducing vehicle fleet size and weekly vehicle miles traveled resulting in savings from BAU of $0.3 M/yr, 100 MJ/ton, and 8 kg GGE/ton. Lastly, we evaluate a switch to a single-stream system (where recyclables are commingled). We showthat single-stream recycling

  17. FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING AND COST DATA FOR MERCURY CONTROL SYSTEMS ON NON-SCRUBBED COAL-FIRED BOILERS

    Energy Technology Data Exchange (ETDEWEB)

    Richard Schlager; Tom Millar

    2002-10-18

    With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Mercury is known to have toxic effects on the nervous system of humans and wildlife. Although it exists only in trace amounts in coal, mercury is released when coal burns and can accumulate on land and in water. In water, bacteria transform the metal into methylmercury, the most hazardous form of the metal. Methylmercury can collect in fish and marine mammals in concentrations hundreds of thousands times higher than the levels in surrounding waters. One of the goals of DOE is to develop technologies by 2005 that will be capable of cutting mercury emissions 50 to 70 percent at well under one-half of today's costs. ADA Environmental Solutions (ADA-ES) is managing a project to test mercury control technologies at full scale at four different power plants from 2000-2003. The ADA-ES project is focused on those power plants that are not equipped with wet flue gas desulfurization systems. ADA-ES has developed a portable system that will be tested at four different utility power plants. Each of the plants is equipped with either electrostatic precipitators or fabric filters to remove solid particles from the plant's flue gas. ADA-ES's technology will inject a dry sorbent, such as activated carbon, which removes the mercury and makes it more susceptible to capture by the particulate control devices. A fine water mist may be sprayed into the flue gas to cool its temperature to the range where the dry sorbent is most effective. PG&E National Energy Group is providing two test sites that fire bituminous coals and both are equipped with electrostatic precipitators and carbon/ash separation systems. Wisconsin Electric Power Company is providing a third test site that burns Powder River Basin (PRB) coal and

  18. Clean Coal and Gasification Technology: How it Works?

    Directory of Open Access Journals (Sweden)

    Marina Sidorová

    2006-10-01

    Full Text Available Gasification of coal is the oldest method for the production of hydrogen. Coal gasification is a process that converts coal from a solid to a gaseous state. The gas that is created is very similar to natural gas and can be used to produce chemicals, fertilizers, and/or the electric power [1]. Cleanest of all coal-based electric power technologies, gasification has significantly lower levels of air emissions (including volatile mercury, solid wastes, and wastewater.Due to its high efficiencies, gasification also uses less coal to produce the same amount of energy, resulting in lower carbon dioxide (CO2 emissions. Some scientists believe that CO2 in the atmosphere contributes to a "greenhouse effect" that will lead to the global warming. Coal gasification has a proven technology for capturing CO2 at a fraction of the cost required for coal combustion technologies.

  19. JV Task 5 - Evaluation of Residual Oil Fly Ash As A Mercury Sorbent For Coal Combustion Flue Gas

    Energy Technology Data Exchange (ETDEWEB)

    Robert Patton

    2006-12-31

    The mercury adsorption capacity of a residual oil fly ash (ROFA) sample collected form Florida Power and Light Company's Port Everglades Power Plant was evaluated using a bituminous coal combustion flue gas simulator and fixed-bed testing protocol. A size-segregated (>38 {micro}g) fraction of ROFA was ground to a fine powder and brominated to potentially enhance mercury capture. The ROFA and brominated-ROFA were ineffective in capturing or oxidizing the Hg{sup 0} present in a simulated bituminous coal combustion flue gas. In contrast, a commercially available DARCO{reg_sign} FGD initially adsorbed Hg{sup 0} for about an hour and then catalyzed Hg{sup 0} oxidation to produce Hg{sup 2+}. Apparently, the unburned carbon in ROFA needs to be more rigorously activated in order for it to effectively capture and/or oxidize Hg{sup 0}.

  20. Coal, gas, petroleum, assets and weaknesses: up to when?; Charbon, gaz, petrole, atouts et faiblesses: jusqu'a quand?

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-05-01

    The meeting on the perenniality of the coal, the gas and the petroleum, organized the 24 april 2003 at Bordeaux, took place around four topics: what about the fossil fuels reserves, how to conciliate the greenhouse effect, the air pollution and the energy consumption, the future energies as the carbon dioxide catchment and the hydrogen use, the fossil energies future in function of their use. The document presents the whole interventions and the opening allocution. (A.L.B.)

  1. Enhancing the use of coals by gas reburning-sorbent injection. Volume 3, Gas reburning-sorbent injection at Edwards Unit 1, Central Illinois Light Company

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-10-01

    Design work has been completed for a Gas Reburning-Sorbent Injection (GR-SI) system to reduce emissions of NO{sub x}, and SO{sub 2} from a wall fired unit. A GR-SI system was designed for Central Illinois Light Company`s Edwards Station Unit 1, located in Bartonville, Illinois. The unit is rated at 117 MW(e) (net) and is front wall fired with a pulverized bituminous coal blend. The goal of the project was to reduce emissions of NO{sub x} by 60%, from the ``as found`` baseline of 0.98 lb/MBtu (420 mg/MJ), and to reduce emissions of S0{sub 2} by 50%. Since the unit currently fires a blend of high sulfur Illinois coal and low sulfur Kentucky coal to meet an S0{sub 2} limit Of 1.8 lb/MBtu (770 mg/MJ), the goal at this site was amended to meeting this limit while increasing the fraction of high sulfur coal to 57% from the current 15% level. GR-SI requires injection of natural gas into the furnace at the level of the top burner row, creating a fuel-rich zone in which NO{sub x} formed in the coal zone is reduced to N{sub 2}. The design natural gas input corresponds to 18% of the total heat input. Burnout (overfire) air is injected at a higher elevation to burn out fuel combustible matter at a normal excess air level of 18%. Recycled flue gas is used to increase the reburning fuel jet momentum, resulting in enhanced mixing. Recycled flue gas is also used to cool the top row of burners which would not be in service during GR operation. Dry hydrated lime sorbent is injected into the upper furnace to react with S0{sub 2}, forming solid CaSO{sub 4} and CaSO{sub 3}, which are collected by the ESP. The SI system design was optimized with respect to gas temperature, injection air flow rate, and sorbent dispersion. Sorbent injection air flow is equal to 3% of the combustion air. The design includes modifications of the ESP, sootblowing, and ash handling systems.

  2. 78 FR 8389 - Natural Gas Pipelines; Project Cost and Annual Limits

    Science.gov (United States)

    2013-02-06

    ... Energy Regulatory Commission 18 CFR Part 157 Natural Gas Pipelines; Project Cost and Annual Limits AGENCY... publishes the project cost and annual limits for natural gas pipelines blanket construction certificates for... CFR Part 157 Administrative practice and procedure, Natural Gas, Reporting and recordkeeping...

  3. 77 FR 8724 - Natural Gas Pipelines; Project Cost and Annual Limits

    Science.gov (United States)

    2012-02-15

    ... Energy Regulatory Commission 18 CFR Part 157 Natural Gas Pipelines; Project Cost and Annual Limits... (OEP) computes and publishes the project cost and annual limits for natural gas pipelines blanket..., Natural gas, Reporting and recordkeeping requirements. Jeff C. Wright, Director, Office of Energy Projects...

  4. 76 FR 8293 - Natural Gas Pipelines; Project Cost and Annual Limits

    Science.gov (United States)

    2011-02-14

    ... Energy Regulatory Commission 18 CFR Part 157 Natural Gas Pipelines; Project Cost and Annual Limits...) computes and publishes the project cost and annual limits for natural gas pipelines blanket construction... practice and procedure, Natural Gas, Reporting and recordkeeping requirements. Jeff C. Wright, Director...

  5. 75 FR 8245 - Natural Gas Pipelines; Project Cost and Annual Limits

    Science.gov (United States)

    2010-02-24

    ... Energy Regulatory Commission 18 CFR Part 157 Natural Gas Pipelines; Project Cost and Annual Limits...) computes and publishes the project cost and annual limits for natural gas pipelines blanket construction... Part 157 Administrative practice and procedure, Natural gas, Reporting and recordkeeping requirements...

  6. Explosion characteristics of pulverised Colombian coal, pine wood and their mixtures

    OpenAIRE

    Andrews, GE; Huescar-Medina, C; Phylaktou, HN; Gibbs, BM; MacCoitir, B

    2014-01-01

    Co-firing of coal and biomass is a readily implementable, cost effective option of introducing biomass into the European power generation capability. Pulverised coal and biomass can be blended in various proportions and used as fuels in co-firing plants with a subsequent reduction in greenhouse gas emissions. Coal powders have well known explosion hazards and the explosion characteristics for many coals are available in the literature [1], however, data for biomass explosibility are scarcer d...

  7. Reducing the cost of post combustion capture technology for pulverized coal power plants by flexible operation

    NARCIS (Netherlands)

    Kler, R.C.F. de; Verbaan, M.; Goetheer, E.L.V.

    2013-01-01

    Currently the low carbon prices, low Spreads and regulatory uncertainties hampers the business cases for coal-fired power plants with post-combustion capture (PCC) in Europe. Improvement of the business case of coal-fired power plants with post combustion capture requires a different approach in

  8. Reducing the cost of Post Combustion Capture technology for Pulverized Coal Power Plants by flexible operation

    NARCIS (Netherlands)

    De Kler, R.C.F.; Verbaan, M.; Goetheer, E.L.V.

    2013-01-01

    Currently the low carbon prices, low Spreads and regulatory uncertainties hampers the business cases for coal-fired power plants with post-combustion capture (PCC) in Europe. Improvement of the business case of coal-fired power plants with post combustion capture requires a different approach in

  9. Comparing Statewide Economic Impacts of New Generation from Wind, Coal, and Natural Gas in Arizona, Colorado, and Michigan: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Tegen, S.

    2005-08-01

    With increasing concerns about energy independence, job outsourcing, and risks of global climate change, it is important for policy makers to understand all impacts from their decisions about energy resources. This paper assesses one aspect of the impacts: direct economic effects. The paper compares impacts to states from equivalent new electrical generation from wind, natural gas, and coal. Economic impacts include materials and labor for construction, operations, maintenance, fuel extraction, and fuel transport, as well as project financing, property tax, and landowner revenues. We examine spending on plant construction during construction years, in addition to all other operational expenditures over a 20-year span. Initial results indicate that adding new wind power can be more economically effective than adding new gas or coal power, and that a higher percentage of dollars spent on coal and gas will leave the state. For this report, we interviewed industry representatives and energy experts, in addition to consulting government documents, models, and existing literature. The methodology for this research can be adapted to other contexts for determining economic effects of new power generation in other states and regions.

  10. Comparing Statewide Economic Impacts of New Generation from Wind, Coal, and Natural Gas in Arizona, Colorado, and Michigan

    Energy Technology Data Exchange (ETDEWEB)

    Tegen, S.

    2006-05-01

    With increasing concerns about energy independence, job outsourcing, and risks of global climate change, it is important for policy makers to understand all impacts from their decisions about energy resources. This paper assesses one aspect of the impacts: direct economic effects. The paper compares impacts to states from equivalent new electrical generation from wind, natural gas, and coal. Economic impacts include materials and labor for construction, operations, maintenance, fuel extraction, and fuel transport, as well as project financing, property tax, and landowner revenues. We examine spending on plant construction during construction years, in addition to all other operational expenditures over a 20-year span. Initial results indicate that adding new wind power can be more economically effective than adding new gas or coal power and that a higher percentage of dollars spent on coal and gas will leave the state. For this report, we interviewed industry representatives and energy experts, in addition to consulting government documents, models, and existing literature. The methodology for this research can be adapted to other contexts for determining economic effects of new power generation in other states and regions.

  11. Reversible poisoning of nickel/zirconia solid oxide fuel cell anodes by hydrogen chloride in coal gas

    Energy Technology Data Exchange (ETDEWEB)

    Marina, O.A.; Thomsen, E.C.; Coyle, C.A.; Yoon, K.J. [Pacific Northwest National Laboratory, Richland, WA (United States); Pederson, L.R. [North Dakota State University, Fargo, ND (United States)

    2010-10-15

    The performance of anode-supported solid oxide fuel cells (SOFC) was evaluated in synthetic coal gas containing HCl in the temperature range 650-850 C. Exposure to up to 800 ppm HCl resulted in reversible poisoning of the Ni/zirconia anode by chlorine species adsorption, the magnitude of which decreased with increased temperature. Performance losses increased with the concentration of HCl to {proportional_to}100 ppm, above which losses were insensitive to HCl concentration. Neither cell potential, nor current density had any effect on the extent of poisoning. No evidence was found for long-term degradation that can be attributed to HCl exposure. Similarly, no evidence of microstructural changes or formation of new solid phases as a result of HCl exposure was found. From thermodynamic calculations, solid nickel chloride phase formation was shown to be highly unlikely in coal gas containing HCl. The presence of HCl at even the highest anticipated concentrations in coal gas would minimally increase the volatility of nickel. (author)

  12. Advanced coal-fueled industrial cogeneration gas turbine system -- combustion development

    Energy Technology Data Exchange (ETDEWEB)

    LeCren, R.T.

    1994-06-01

    This topical report summarizes the combustor development work accomplished under the subject contract. The objective was to develop a combustion system for the Solar 4MW Type H Centaur gas turbine generator set which was to be used to demonstrate the economic, technical and environmental feasibility of a direct coal-fueled gas turbine in a 100 hour proof-of-concept test. This program started with a design configuration derived during the CSC program. The design went through the following evolution: CSC design which had some known shortcomings, redesigned CSC now designated as the Two Stage Slagging Combustor (TSSC), improved TSSC with the PRIS evaluated in the IBSTF, and full scale design. Supporting and complimentary activities included computer modelling, flow visualization, slag removal, SO{sub x} removal, fuel injector development and fuel properties evaluation. Three combustor rigs were utilized: the TSSC, the IBSTF and the full scale rig at Peoria. The TSSC rig, which was 1/10th scale of the proposed system, consisted of a primary and secondary zone and was used to develop the primary zone performance and to evaluate SO{sub x} and slag removal and fuel properties variations. The IBSTF rig which included all the components of the proposed system was also 1/10th scale except for the particulate removal system which was about 1/30th scale. This rig was used to verify combustor performance data obtained on the TSSC and to develop the PRIS and the particulate removal system. The full scale rig initially included the primary and secondary zones and was later modified to incorporate the PRIS. The purpose of the full scale testing was to verify the scale up calculations and to provide a combustion system for the proof-of-concept engine test that was initially planned in the program.

  13. Demonstration of the Viability and Evaluation of Production Costs for Biomass-Infused Coal Briquettes

    Energy Technology Data Exchange (ETDEWEB)

    Kamshad, Kourosh [Coaltek Incorporated, Tucker, GA (United States)

    2014-04-01

    This project was split into four main areas, first to identify the best combination of coal and biomass, second, create and test lab quantity of preferred combinations, Third, create a sizeable quantity for larger scale handling and consuming analysis and fourth, to provide analysis for a commercial scale production capacity. Samples of coal and biomass were collected. Five coals, representing the three major coal ranks, were collected including one bituminous, two sub-bituminous, and two lignite samples. In addition, three square bales (~50 lbs/bale) each of corn Stover and switch grass were collected with one bale of each sample processed through a hammer mill to approximately -5 mesh. A third sample of sawdust was collected once experimentation began at the University of Kentucky. Multiple combinations of coal and biomass; coal, biomass, with biomass binder, were tested until a formulation was identified that could meet the requirement criteria. Based on the results of the binderless briquetting evaluations, the CS/Sub-bit combinations was selected for extended evaluation at a 10% biomass addition rate while the WS/Bitum combination was selected for extended evaluation at a 30% biomass-addition rate. With the final results of the selection process complete, the CoalTek continuous production pilot plant in Tucker GA was outfitted with the specialized blending equipment and two 1/4 ton production runs of biomass and binder subbituminous coal briquettes were completed. These briquettes were later used for a calorific test burn at the University of North Dakota. The first formulation included subbituminous coal, corn stover and a corn starch binder the second formulation included subbituminous coal, wheat stover and corn starch binder.

  14. Development of a Hydrogasification Process for Co-Production of Substitute Natural Gas (SNG) and Electric Power from Western Coals-Phase I

    Energy Technology Data Exchange (ETDEWEB)

    Raymond Hobbs

    2007-05-31

    The Advanced Hydrogasification Process (AHP)--conversion of coal to methane--is being developed through NETL with a DOE Grant and has successfully completed its first phase of development. The results so far are encouraging and have led to commitment by DOE/NETL to begin a second phase--bench scale reactor vessel testing, expanded engineering analysis and economic perspective review. During the next decade new means of generating electricity, and other forms of energy, will be introduced. The members of the AHP Team envision a need for expanded sources of natural gas or substitutes for natural gas, to fuel power generating plants. The initial work the team has completed on a process to use hydrogen to convert coal to methane (pipeline ready gas) shows promising potential. The Team has intentionally slanted its efforts toward the needs of US electric utilities, particularly on fuels that can be used near urban centers where the greatest need for new electric generation is found. The process, as it has evolved, would produce methane from coal by adding hydrogen. The process appears to be efficient using western coals for conversion to a highly sought after fuel with significantly reduced CO{sub 2} emissions. Utilities have a natural interest in the preservation of their industry, which will require a dramatic reduction in stack emissions and an increase in sustainable technologies. Utilities tend to rank long-term stable supplies of fuel higher than most industries and are willing to trade some ratio of cost for stability. The need for sustainability, stability and environmentally compatible production are key drivers in the formation and progression of the AHP development. In Phase II, the team will add a focus on water conservation to determine how the basic gasification process can be best integrated with all the plant components to minimize water consumption during SNG production. The process allows for several CO{sub 2} reduction options including consumption of

  15. Cogasification of coal and other domestic fuels

    Energy Technology Data Exchange (ETDEWEB)

    Green, A.; Mullin, J. [Univ. of Florida, Gainesville, FL (United States). Clean Combustion Technology Lab.; Zanardi, M.; Peres, S.

    1996-12-31

    Almost all new additions to electrical generation in the USA are natural gas combined cycle systems (NGCC) systems. This trend reflects the development of high efficiency gas turbines (GT), low capital, operation and maintenance of NGCC systems and optimism as to natural gas resources. With utility deregulation these developments will seriously restrict long term use of coal and other solid fuels unless a los cost integrated gasifier (IG) fed by low cost feedstocks can be coupled with a CC system. This study mainly considers on-site cogasification of coal with other domestic fuels in an indirectly heated gasifier as a long term strategy for lowering the effective costs of IGGT systems. The authors also consider cocombustion of coal with other low cost domestic fuels as a near term strategy for minimizing fuel costs for competitiveness under utility deregulation. These fuel blending approaches both make use of common fast copyrolysis processes. They examine fast copyrolysis from a molecular point of view searching for advantageous feedstock blends. The authors conclude that blending coal with complementary coals, biomass, MSW or natural gas would be useful in near term cocombustion systems and long term integrated cogasification combined cycle or cogeneration systems.

  16. Slipstream pilot-scale demonstration of a novel amine-based post-combustion technology for carbon dioxide capture from coal-fired power plant flue gas

    Energy Technology Data Exchange (ETDEWEB)

    Krishnamurthy, Krish R. [Linde LLC, Murray Hill, NJ (United States)

    2017-02-03

    Post-combustion CO2 capture (PCC) technology offers flexibility to treat the flue gas from both existing and new coal-fired power plants and can be applied to treat all or a portion of the flue gas. Solvent-based technologies are today the leading option for PCC from commercial coal-fired power plants as they have been applied in large-scale in other applications. Linde and BASF have been working together to develop and further improve a PCC process incorporating BASF’s novel aqueous amine-based solvent technology. This technology offers significant benefits compared to other solvent-based processes as it aims to reduce the regeneration energy requirements using novel solvents that are very stable under the coal-fired power plant feed gas conditions. BASF has developed the desired solvent based on the evaluation of a large number of candidates. In addition, long-term small pilot-scale testing of the BASF solvent has been performed on a lignite-fired flue gas. In coordination with BASF, Linde has evaluated a number of options for capital cost reduction in large engineered systems for solvent-based PCC technology. This report provides a summary of the work performed and results from a project supported by the US DOE (DE-FE0007453) for the pilot-scale demonstration of a Linde-BASF PCC technology using coal-fired power plant flue gas at a 1-1.5 MWe scale in Wilsonville, AL at the National Carbon Capture Center (NCCC). Following a project kick-off meeting in November 2011 and the conclusion of pilot plant design and engineering in February 2013, mechanical completion of the pilot plant was achieved in July 2014, and final commissioning activities were completed to enable start-up of operations in January 2015. Parametric tests were performed from January to December 2015 to determine optimal test conditions and evaluate process performance over a variety of operation parameters. A long-duration 1500-hour continuous test campaign was performed from May to

  17. Estimate of cost of plant producing 125,000 t/ann. DHD feed for 100,000 t/ann. high performance gasoline from bituminous coal, at Ludwigshafen-Oppau

    Energy Technology Data Exchange (ETDEWEB)

    1942-11-03

    The first table was a summary showing the costs in Reichsmarks as follows: (1) hydrogen production--RM 20,700,000; (2) hydrogenation proper--RM 40,000,000; (3) hygas cleaning--RM 1,400,000; (4) power production RM 7,000,000; (5) power distribution--RM 4,000,000; (6) auxiliary plants--RM 11,000,000; and (7) miscellaneous--5,500,000 RM. The total cost was given as RM 90,000,000. A table showing the cost of hydrogen production broken down into smaller units showed the water gas plant for 50,000 m/sup 3//hr of hydrogen at RM 6,500,000 as the major cost, followed closely by compression to 325 atm at RM 5,000,000. Catalytic hydrogen production at RM 2,300,000 and CO/sub 2/ cleaning at RM 2,000,000 were also major factors in the cost. The major cost for hydrogenation proper was the liquid phase costing RM 25,300,000, with the vapor phase costing RM 9,900,000 for 300 atm processing or RM 12,200,000 for 700 atm processing. In the liquid phase, two four-stage coal stalls cost RM 10,000,000, while the paste press division, coal preparation division, and circulating gas wash cost RM 2,400,000, RM 2,300,000, and RM 2,000,000 respectively. In the vapor phase, four stalls would cost RM 5,400,000 for 300 atm or RM 7,300,000 for 700 atm. Hydrogenation gas cleaning showed the Claus Plant, which appeared to be oxygen-burning, as the main cost at RM 600,000. The major cost of power production was shown by the expansion of the power plant by one boiler and one turbine with a cost of RM 5,000,000. The main cost for power distribution was electric power lines which cost RM 2,000,000. The major costs for auxiliary plants were in construction and the miscellaneous heading included such things as catalysts, design, and construction.

  18. Ancillary operations in coal preparation instrumentation on-line low cost sulfur and ash analyzer

    Energy Technology Data Exchange (ETDEWEB)

    Malito, M.L.

    1991-07-01

    The purpose of this document is to define the testing to be performed on field collected coal slurry samples by ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectroscopy). A total of 20 samples (8 from an Upper Freeport coal and 12 from an Oklahoma coal) are to be analyzed in triplicate for the elements S, Si, Al, Fe, Ca, and Mg. For each of the two coal slurry types (Upper Freeport and Oklahoma), a container of slurry labeled calibration'' has been prepared. These calibration slurries may be used to get the system tuned'' (note that the volume of the field collected slurries is relatively small and cannot be used to tune'' the system). The calibration slurries were made from the slurry collected from the drain from the second sampling stage during the field testing.

  19. Peculiarities of distribution of gas-dynamic manifestations in mines of the Kuznetsk coal basin by days of the weekly cycle

    Energy Technology Data Exchange (ETDEWEB)

    Oparin, V.N.; Ludzish, V.S.; Kulakov, G.I.; Rudakov, V.A. [Ecology & Industrial Safety Monitoring Center at Kuznetsk Basin, Kemerovo (Russian Federation)

    2005-04-01

    The peculiarities of the origin of gas-dynamic events (rock, coal, and gas outbursts, methane ignition) in the Kuznetsk Basin mines in 1988 - 2004 are analyzed. A review is presented for information on recent accident and injury rate caused by disastrous gas-dynamic manifestations. The effect of bimodal frequency distribution of gas-dynamic events generated by explosion and burning of methane is revealed within a generalized weekly cycle.

  20. Community perspectives of natural resource extraction: coal-seam gas mining and social identity in Eastern Australia

    Directory of Open Access Journals (Sweden)

    David Lloyd

    2013-01-01

    Full Text Available Using a recent case study of community reaction to proposed coal-seam gas mining in eastern Australia, we illustrate the role of community views in issues of natural resource use. Drawing on interviews, observations and workshops, the paper explores the anti-coal-seam gas social movement from its stages of infancy through to being a national debate linking community groups across and beyond Australia. Primary community concerns of inadequate community consultation translate into fears regarding potential impacts on farmland and cumulative impacts on aquifers and future water supply, and questions regarding economic, social and environmental benefits. Many of the community activists had not previously been involved in such social action. A recurring message from affected communities is concern around perceived insufficient research and legislation for such rapid industrial expansion. A common citizen demand is the cessation of the industry until there is better understanding of underground water system interconnectivity and the methane extraction and processing life cycle. Improved scientific knowledge of the industry and its potential impacts will, in the popular view, enable better comparison of power generation efficiency with coal and renewable energy sources and better comprehension of the industry as a transition energy industry. It will also enable elected representatives and policy makers to make more informed decisions while developing appropriate legislation to ensure a sustainable future.

  1. New particle formation in the fresh flue-gas plume from a coal-fired power plant: effect of flue-gas cleaning

    Directory of Open Access Journals (Sweden)

    F. Mylläri

    2016-06-01

    Full Text Available Atmospheric emissions, including particle number and size distribution, from a 726 MWth coal-fired power plant were studied experimentally from a power plant stack and flue-gas plume dispersing in the atmosphere. Experiments were conducted under two different flue-gas cleaning conditions. The results were utilized in a plume dispersion and dilution model taking into account particle formation precursor (H2SO4 resulted from the oxidation of emitted SO2 and assessment related to nucleation rates. The experiments showed that the primary emissions of particles and SO2 were effectively reduced by flue-gas desulfurization and fabric filters, especially the emissions of particles smaller than 200 nm in diameter. Primary pollutant concentrations reached background levels in 200–300 s. However, the atmospheric measurements indicated that new particles larger than 2.5 nm are formed in the flue-gas plume, even in the very early phases of atmospheric ageing. The effective number emission of nucleated particles were several orders of magnitude higher than the primary particle emission. Modelling studies indicate that regardless of continuing dilution of the flue gas, nucleation precursor (H2SO4 from SO2 oxidation concentrations remain relatively constant. In addition, results indicate that flue-gas nucleation is more efficient than predicted by atmospheric aerosol modelling. In particular, the observation of the new particle formation with rather low flue-gas SO2 concentrations changes the current understanding of the air quality effects of coal combustion. The results can be used to evaluate optimal ways to achieve better air quality, particularly in polluted areas like India and China.

  2. Purification processes for coal gasification

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, D.K.; Primack, H.S.

    1977-01-01

    It is apparent from the discussion that many routes can be taken to achieve acid-gas removal and sulfur recovery from coal gas. The selection of the optimum purification system is a major task. The type of coal, type of gasifier and the upstream processing all strongly influence the selection. Several generalizations can be made: (1) The cost of the purification sections of a high-Btu gas plant is significant--perhaps 10 to 30% of the capital cost of the coal conversion facility. (2) The cost of purifying gas produced from high-sulfur coal feed is more expensive than the cost for purifying gas produced from low-sulfur coal. (3) The choice of an acid-gas removal system will often be a function of system pressure. The economical choice will usually be: (a) amine-based systems at atmospheric pressure; (b) hot-carbonate systems at moderate pressure or (c) physical-solvent systems at higher pressure. (4) For a high-Btu, high-sulfur case: (a) A selective acid-gas removal system with a Claus plant is probably more economical than a non-selective acid-gas system with liquid oxidation of the H/sub 2/S in the regenerator off-gas. (b) Even moderately selective systems can produce an H/sub 2/S-rich gas suitable for a Claus plant. The CO/sub 2/-rich gas may or may not require further sulfur removal, depending on the selectivity. (5) For a high-Btu, low-sulfur case: (a) The hot carbonate and tertiary amine systems may not be sufficiently selective to produce a gas suitable for feed to a Claus process while a physical solvent system may be. Therefore, the physical solvent system may be expected to be more economical. (b) The regenerated gas from the bulk CO/sub 2/ removal system following a selective physical solvent system may require further sulfur removal, depending upon the sulfur level in the initial feedstock and the selectivity of the system selected.

  3. Coal reburning for cost-effective NO{sub x} compliance

    Energy Technology Data Exchange (ETDEWEB)

    Folsom, B.A.; Sommer, T.M.; Engelhardt, D.A.; Moyeda, D.K.; Rock, R.G.; O`Dea, D.T.; Hunsicker, S.; Watts, J.U.

    1997-12-31

    This paper presents the application of micronized coal reburning to a cyclone-fired boiler in order to meet RACT emissions requirements in New York State. Discussed in the paper are reburning technology, the use of a coal micronizer, and the application of the technology to an Eastman Kodak unit. The program is designed to demonstrate the economical reduction of NO{sub x} emissions without adverse impact to the boiler.

  4. SUBTASK 3.12 – GASIFICATION, WARM-GAS CLEANUP, AND LIQUID FUELS PRODUCTION WITH ILLINOIS COAL

    Energy Technology Data Exchange (ETDEWEB)

    Stanislowski, Joshua; Curran, Tyler; Henderson, Ann

    2014-06-30

    The goal of this project was to evaluate the performance of Illinois No. 6 coal blended with biomass in a small-scale entrained-flow gasifier and demonstrate the production of liquid fuels under three scenarios. The first scenario used traditional techniques for cleaning the syngas prior to Fischer–Tropsch (FT) synthesis, including gas sweetening with a physical solvent. In the second scenario, the CO2 was not removed from the gas stream prior to FT synthesis. In the third scenario, only warm-gas cleanup techniques were used, such that the feed gas to the FT unit contained both moisture and CO2. The results of the testing showed that the liquid fuels production from the FT catalyst was significantly hindered by the presence of moisture and CO2 in the syngas. Further testing would be needed to determine if this thermally efficient process is feasible with other FT catalysts. This subtask was funded through the EERC–U.S. Department of Energy (DOE) Joint Program on Research and Development for Fossil Energy-Related Resources Cooperative Agreement No. DE-FC26-08NT43291. Nonfederal funding was provided by the Illinois Clean Coal Institute.

  5. Improved heat recovery and high-temperature clean-up for coal-gas fired combustion turbines

    Energy Technology Data Exchange (ETDEWEB)

    Barthelemy, N.M.; Lynn, S.

    1991-07-01

    This study investigates the performance of an Improved Heat Recovery Method (IHRM) applied to a coal-gas fired power-generating system using a high-temperature clean-up. This heat recovery process has been described by Higdon and Lynn (1990). The IHRM is an integrated heat-recovery network that significantly increases the thermal efficiency of a gas turbine in the generation of electric power. Its main feature is to recover both low- and high-temperature heat reclaimed from various gas streams by means of evaporating heated water into combustion air in an air saturation unit. This unit is a packed column where compressed air flows countercurrently to the heated water prior to being sent to the combustor, where it is mixed with coal-gas and burned. The high water content of the air stream thus obtained reduces the amount of excess air required to control the firing temperature of the combustor, which in turn lowers the total work of compression and results in a high thermal efficiency. Three designs of the IHRM were developed to accommodate three different gasifying process. The performances of those designs were evaluated and compared using computer simulations. The efficiencies obtained with the IHRM are substantially higher those yielded by other heat-recovery technologies using the same gasifying processes. The study also revealed that the IHRM compares advantageously to most advanced power-generation technologies currently available or tested commercially. 13 refs., 34 figs., 10 tabs.

  6. Determining the hydraulic and fracture properties of the Coal Seam Gas well by numerical modelling and GLUE analysis

    Science.gov (United States)

    Askarimarnani, Sara; Willgoose, Garry; Fityus, Stephen

    2017-04-01

    Coal seam gas (CSG) is a form of natural gas that occurs in some coal seams. Coal seams have natural fractures with dual-porosity systems and low permeability. In the CSG industry, hydraulic fracturing is applied to increase the permeability and extract the gas more efficiently from the coal seam. The industry claims that it can design fracking patterns. Whether this is true or not, the public (and regulators) requires assurance that once a well has been fracked that the fracking has occurred according to plan and that the fracked well is safe. Thus defensible post-fracking testing methodologies for gas generating wells are required. In 2009 a fracked well HB02, owned by AGL, near Broke, NSW, Australia was subjected to "traditional" water pump-testing as part of this assurance process. Interpretation with well Type Curves and simple single phase (i.e. only water, no gas) highlighted deficiencies in traditional water well approaches with a systemic deviation from the qualitative characteristic of well drawdown curves (e.g. concavity versus convexity of drawdown with time). Accordingly a multiphase (i.e. water and methane) model of the well was developed and compared with the observed data. This paper will discuss the results of this multiphase testing using the TOUGH2 model and its EOS7C constitutive model. A key objective was to test a methodology, based on GLUE monte-carlo calibration technique, to calibrate the characteristics of the frack using the well test drawdown curve. GLUE involves a sensitivity analysis of how changes in the fracture properties change the well hydraulics through and analysis of the drawdown curve and changes in the cone of depression. This was undertaken by changing the native coal, fracture, and gas parameters to see how changing those parameters changed the match between simulations and the observed well drawdown. Results from the GLUE analysis show how much information is contained in the well drawdown curve for estimating field scale

  7. The chronic toxicity of sodium bicarbonate, a major component of coal bed natural gas produced waters

    Science.gov (United States)

    Farag, Aïda M.; Harper, David D.

    2014-01-01

    Sodium bicarbonate (NaHCO3) is the principal salt in coal bed natural gas produced water from the Powder River Structural Basin, Wyoming, USA, and concentrations of up to 3000 mg NaHCO3/L have been documented at some locations. No adequate studies have been performed to assess the chronic effects of NaHCO3 exposure. The present study was initiated to investigate the chronic toxicity and define sublethal effects at the individual organism level to explain the mechanisms of NaHCO3 toxicity. Three chronic experiments were completed with fathead minnows (Pimephales promelas), 1 with white suckers (Catostomus commersoni), 1 with Ceriodaphnia dubia, and 1 with a freshwater mussel, (Lampsilis siliquoidea). The data demonstrated that approximately 500 mg NaHCO3/L to 1000 mg NaHCO3/L affected all species of experimental aquatic animals in chronic exposure conditions. Freshwater mussels were the least sensitive to NaHCO3 exposure, with a 10-d inhibition concentration that affects 20% of the sample population (IC20) of 952 mg NaHCO3/L. The IC20 for C. dubia was the smallest, at 359 mg NaHCO3/L. A significant decrease in sodium–potassium adenosine triphosphatase (Na+/K+ ATPase) together with the lack of growth effects suggests that Na+/K+ ATPase activity was shut down before the onset of death. Several histological anomalies, including increased incidence of necrotic cells, suggested that fish were adversely affected as a result of exposure to >450 mg NaHCO3/L.

  8. Pilot Scale Water Gas Shift - Membrane Device for Hydrogen from Coal

    Energy Technology Data Exchange (ETDEWEB)

    Barton, Tom [Western Research Inst. (WRI), Laramie, WY (United States)

    2013-09-01

    The objectives of the project were to build pilot scale hydrogen separation systems for use in a gasification product stream. This device would demonstrate fabrication and manufacturing techniques for producing commercially ready facilities. The design was a 2 lb/day hydrogen device which included composite hydrogen separation membranes, a water gas shift monolith catalyst, and stainless steel structural components. Synkera Technologies was to prepare hydrogen separation membranes with metallic rims, and to adjust the alloy composition in their membranes to a palladium-gold composition which is sulfur resistant. Chart was to confirm their brazing technology for bonding the metallic rims of the composite membranes to their structural components and design and build the 2 lbs/day device incorporating membranes and catalysts. WRI prepared the catalysts and completed the testing of the membranes and devices on coal derived syngas. The reactor incorporated eighteen 2'' by 7'' composite palladium alloy membranes. These membranes were assembled with three stacks of three paired membranes. Initial vacuum testing and visual inspection indicated that some membranes were cracked, either in transportation or in testing. During replacement of the failed membranes, while pulling a vacuum on the back side of the membranes, folds were formed in the flexible composite membranes. In some instances these folds led to cracks, primarily at the interface between the alumina and the aluminum rim. The design of the 2 lb/day device was compromised by the lack of any membrane isolation. A leak in any membrane failed the entire device. A large number of tests were undertaken to bring the full 2 lb per day hydrogen capacity on line, but no single test lasted more than 48 hours. Subsequent tests to replace the mechanical seals with brazing have been promising, but the technology remains promising but not proven.

  9. Environmental control implications of generating electric power from coal. 1977 technology status report. Appendix F. Flue gas desulfurization in the United States, 1977. [108 references

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-12-01

    This report details the current status of flue gas desulfurization (FGD) in conventional coal-fired power plants in the U.S. Sepecifications and features are listed for all commercial FGD installations now in operation or being constructed in this country. The FGD operational experience in each plant is summarized and evaluations are made of process, equipment, and operational performance. FGD in other countries, mainly Japan and West Germany, is reviewed for applicability in the U.S. Federal and state air quality control standards are described and their prime influence on FGD development and plant installation is noted. The rising importance of coal is discussed and some limitations on low-sulfur coal are included. Other potential approaches to desulfurization, such as fluidized-bed combustion, are discussed as far as relevant to FGD. Limestone and lime slurry processes greatly predominate among existing and planned FGD installations in the U.S. However, soluble SO/sub 2/ sorbants are noted as entering use for both throwaway and recoverable SO/sub 2/ products. It is recognized that recovery processes offer attractive long-term prospects in terms of resources and of apparent cost of operation. However, they remain very limited, both in number of processes and in level of development. The report shows that sustained commercial FGD operation in the U.S. is very young, and that process and equipment experience only now is starting its second cycle. Additional progress can be expected as knowledge is derived from sound development programs and from operating experience at recent installations.

  10. COST EFFECTIVE REGULATORY APPROACHES TO ENHANCE DOMESTIC OIL & GAS PRODUCTION AND ENSURE THE PROTECTION OF THE ENVIRONMENT

    Energy Technology Data Exchange (ETDEWEB)

    Ben Grunewald; Paul Jehn; Tom Gillespie; Ben Binder

    2004-12-21

    The Environmental Information Management Suite/Risk Based Data Management System (EIMS/RBDMS) and Cost Effective Regulatory Approach (CERA) programs continue to be successful. All oil and gas state regulatory programs participate in these efforts. Significant accomplishments include: streamline regulatory approaches, enhancing environmental protection, and making oil and gas data available via the Internet. Oil and gas companies worldwide now have access to data on state web sites. This reduces the cost of exploration and enables companies to develop properties in areas that would have been cost prohibited for exploration. Early in project, GWPC and State Oil and Gas agencies developed the EIMS and CERA strategic plan to prioritize long term development and implementation. The planning process identifies electronic commerce and coal bed methane as high priorities. The group has involved strategic partners in industry and government to develop a common data exchange process. Technical assistance to Alaska continues to improve their program management capabilities. New initiatives in Alaska include the development of an electronic permit tracking system. This system allows managers to expedite the permitting process. Nationwide, the RBDMS system is largely completed with 22 states and one Indian Nation now using this nationally accepted data management system. Additional remaining tasks include routine maintenance and the installation of the program upon request for the remaining oil and gas states. The GWPC in working with the BLM and MMS to develop an XML schema to facilitate electronic permitting and reporting (Appendix A, B, and C). This is a significant effort and, in years to come, will increase access to federal lands by reducing regulatory barriers. The new initiatives are coal bed methane and e-commerce. The e-commerce program will provide industry and BLM/MMS access to the millions of data points housed in the RBDMS system. E-commerce will streamline

  11. Enrichment of radon and carbon dioxide in the open atmosphere of an Australian coal seam gas field.

    Science.gov (United States)

    Tait, Douglas R; Santos, Isaac R; Maher, Damien T; Cyronak, Tyler J; Davis, Rachael J

    2013-04-02

    Atmospheric radon ((222)Rn) and carbon dioxide (CO2) concentrations were used to gain insight into fugitive emissions in an Australian coal seam gas (CSG) field (Surat Basin, Tara region, Queensland). (222)Rn and CO2 concentrations were observed for 24 h within and outside the gas field. Both (222)Rn and CO2 concentrations followed a diurnal cycle with night time concentrations higher than day time concentrations. Average CO2 concentrations over the 24-h period ranged from ~390 ppm at the control site to ~467 ppm near the center of the gas field. A ~3 fold increase in maximum (222)Rn concentration was observed inside the gas field compared to outside of it. There was a significant relationship between maximum and average (222)Rn concentrations and the number of gas wells within a 3 km radius of the sampling sites (n = 5 stations; p gas field related to both point (well heads, pipelines, etc.) and diffuse soil sources. Radon may be useful in monitoring enhanced soil gas fluxes to the atmosphere due to changes in the geological structure associated with wells and hydraulic fracturing in CSG fields.

  12. Molecular analysis of sulphur-rich brown coals by flash pyrolysis-gas chromatography-mass spectrometry: The type III-S kerogen

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Las Heras, F.X.C. de; Leeuw, J.W. de

    1992-01-01

    The molecular composition of five brown coals from three different basins (Maestrazgo, Mequinenza and Rubielos) in Spain was investigated by flash pyrolysis-gas chromatography and flash pyrolysis-gas chromatography-mass spectrometry. In these techniques, the macromolecular material is thermally

  13. A Study on the gas productivity by using Experimental Results of Stress-induced Permeability Change in Coal Seam

    Science.gov (United States)

    Kang, I. O.; Kim, K. H.; Han, J. M.; Lee, S. M.

    2016-12-01

    Methane Production from coal has become one of the more interesting practices in recent years to produce hydrocarbons. In the United States in 2005, it is estimated that 11% of all gas produced is from coalbed. The permeability is a measure of the capability of a porous medium to transmit fluid thought a network of microscopic channels. The permeability in coal is a direct function of the cleat volume. Since the volume of cleat changes with effect on the effective stress and sorption characteristics for production duration, the permeability also produces the alteration. Thus, to definitely estimate the gas production ability of the coal, it is essential that we especially understand changing aspects of permeability for production duration. Many researchers suggested the empirical equation to describe the effect of matrix shrinkage and effective stress. However, the past research associated with permeability change in coal focused on experimental results at a certain temperature.In this study, we have investigated the change of the sorption-induced permeability in pressure change with depth, an experimental approach considering temperature influence at the certain depth may be followed. Based on the received core from CBM field, we conducted the experiment both sorption and permeability according to the various pressure and temperatures.Firstly, experiment of the CH4 sorption was performed in the temperature ranged from 59℉ to 113℉ in the pressure ranges from 14.7 psia to 1,299 psia. Ot was found that CH3 isotherms display a normal Langmuir-type behavior from experiment ranges. In order to understand the effect of adsorption of CH4 in the change of sorption-induced permeability, we measured the permeability at the various pressures. When the pressure was increased by 100 psia, the results showed that the permeability alteration rate was 9.7% in reduction. Meanwhile, the permeability change rate was higher for a better affinity gas at lower temperature. Based on

  14. Cofiring of rice straw and coal in a coal-fired utility boiler: thermodynamic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Miyake, Raphael Guardini; Bazzo, Edson [Federal University of Santa Catarina (UFSC), Florianopolis, SC (Brazil). Dept. of Mechanical Engineering], Emails: miyake@labcet.ufsc.br, ebazzo@emc.ufsc.br; Bzuneck, Marcelo [Tractebel Energia, Capivari de Baixo, SC (Brazil)], E-mail: marcelob@tractebelenergia.com.br

    2010-07-01

    Cofiring combustion of biomass and coal is a near-term, low cost alternative for reduction fossil greenhouse gas emissions in coal fired power plants. Recent reviews identified over 288 applications in over 16 countries with promising results for different coal and biomass combinations. In Brazil, there is no previous experience of cofiring biomass and coal, resulting in new challenges to fuel handling and boiler operation. A first experience is now proposed into an existing coal power plant, using rice straw as biomass fuel. A thermodynamic model was developed in order to predict operating and emissions data, which should be used in cofiring system design. For 10% of biomass input, the total CO{sub 2} emission is expected to slightly increase. However, considering only the coal CO{sub 2} emission, it is expected to decrease in about 10%. Also, the corresponding SO{sub 2} emission decreases in about 8%. (author)

  15. A Fisher’s Criterion-Based Linear Discriminant Analysis for Predicting the Critical Values of Coal and Gas Outbursts Using the Initial Gas Flow in a Borehole

    Directory of Open Access Journals (Sweden)

    Xiaowei Li

    2017-01-01

    Full Text Available The risk of coal and gas outbursts can be predicted using a method that is linear and continuous and based on the initial gas flow in the borehole (IGFB; this method is significantly superior to the traditional point prediction method. Acquiring accurate critical values is the key to ensuring accurate predictions. Based on ideal rock cross-cut coal uncovering model, the IGFB measurement device was developed. The present study measured the data of the initial gas flow over 3 min in a 1 m long borehole with a diameter of 42 mm in the laboratory. A total of 48 sets of data were obtained. These data were fuzzy and chaotic. Fisher’s discrimination method was able to transform these spatial data, which were multidimensional due to the factors influencing the IGFB, into a one-dimensional function and determine its critical value. Then, by processing the data into a normal distribution, the critical values of the outbursts were analyzed using linear discriminant analysis with Fisher’s criterion. The weak and strong outbursts had critical values of 36.63 L and 80.85 L, respectively, and the accuracy of the back-discriminant analysis for the weak and strong outbursts was 94.74% and 92.86%, respectively. Eight outburst tests were simulated in the laboratory, the reverse verification accuracy was 100%, and the accuracy of the critical value was verified.

  16. A Techno-Economic Assessment of Hybrid Cooling Systems for Coal- and Natural-Gas-Fired Power Plants with and without Carbon Capture and Storage.

    Science.gov (United States)

    Zhai, Haibo; Rubin, Edward S

    2016-04-05

    Advanced cooling systems can be deployed to enhance the resilience of thermoelectric power generation systems. This study developed and applied a new power plant modeling option for a hybrid cooling system at coal- or natural-gas-fired power plants with and without amine-based carbon capture and storage (CCS) systems. The results of the plant-level analyses show that the performance and cost of hybrid cooling systems are affected by a range of environmental, technical, and economic parameters. In general, when hot periods last the entire summer, the wet unit of a hybrid cooling system needs to share about 30% of the total plant cooling load in order to minimize the overall system cost. CCS deployment can lead to a significant increase in the water use of hybrid cooling systems, depending on the level of CO2 capture. Compared to wet cooling systems, widespread applications of hybrid cooling systems can substantially reduce water use in the electric power sector with only a moderate increase in the plant-level cost of electricity generation.

  17. JV Task 124 - Understanding Multi-Interactions of SO3, Mercury, Selenium, and Arsenic in Illinois Coal Flue Gas

    Energy Technology Data Exchange (ETDEWEB)

    Ye Zhuang; Christopher Martin; John Pavlish

    2009-03-31

    This project consisted of pilot-scale combustion testing with a representative Illinois basin coal to explore the multi-interactions of SO{sub 3}, mercury, selenium and arsenic. The parameters investigated for SO{sub 3} and mercury interactions included different flue gas conditions, i.e., temperature, moisture content, and particulate alkali content, both with and without activated carbon injection for mercury control. Measurements were also made to track the transformation of selenium and arsenic partitioning as a function of flue gas temperature through the system. The results from the mercury-SO{sub 3} testing support the concept that SO{sub 3} vapor is the predominant factor that impedes efficient mercury removal with activated carbon in an Illinois coal flue gas, while H{sub 2}SO{sub 4} aerosol has less impact on activated carbon injection performance. Injection of a suitably mobile and reactive additives such as sodium- or calcium-based sorbents was the most effective strategy tested to mitigate the effect of SO{sub 3}. Transformation measurements indicate a significant fraction of selenium was associated with the vapor phase at the electrostatic precipitator inlet temperature. Arsenic was primarily particulate-bound and should be captured effectively with existing particulate control technology.

  18. Declining price difference from gas to coal provides for a new situation in the electricity market; Sinkende Preisdifferenz von Gas zu Kohle sorgt fuer neue Lage am Strommarkt

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2017-01-15

    The price difference (spread) between power coal and natural gas has increased sharply since 1999. This gap reached its peak in 2013 with 171 Euro/t SKE. In many cases, higher CO{sub 2} prices were required to promote gas use in the electricity sector. However, it has now become clear that falling gas prices lead to a growing competitiveness of natural gas. Interventions in the EU-ETS or at the national level with the aim to promote gas use in the electricity sector do not make sense and would merely reduce the competitive pressure on the gas producers and lead them to become a monopoly rents. [German] Der Preisabstand (Spread) zwischen Kraftwerkskohle und Erdgas stieg seit 1999 stark an. Dieser Gap erreichte in 2013 mit 171 Euro/t SKE seinen Hoechststand. Vielfach wurden hoehere CO{sub 2}-Preise gefordert, um den Gaseinsatz im Stromsektor zu foerdern. Doch inzwischen zeigt sich, dass fallende Gaspreise zu einer wachsenden Wettbewerbsfaehigkeit von Erdgas fuehren. Interventionen in das EU-ETS oder auf nationaler Ebene mit dem Ziel, den Gaseinsatz im Stromsektor zu foerdern, machen daher keinen Sinn und wuerden lediglich den Wettbewerbsdruck auf die Gasproduzenten mindern sowie fuer diese zu einer Monopolrente fuehren.

  19. 17 CFR 229.1204 - (Item 1204) Oil and gas production, production prices and production costs.

    Science.gov (United States)

    2010-04-01

    ... price (including transfers) per unit of oil, gas and other products produced; and (2) The average... conversion to synthetic oil or gas, the product's production, transfer prices, and production costs should be disclosed separately from all other products. Instruction 4 to Item 1204: The transfer price of oil and gas...

  20. Development of a high-performance coal-fired power generating system with pyrolysis gas and char-fired high temperature furnace (HITAF). Volume 1, Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    A major objective of the coal-fired high performance power systems (HIPPS) program is to achieve significant increases in the thermodynamic efficiency of coal use for electric power generation. Through increased efficiency, all airborne emissions can be decreased, including emissions of carbon dioxide. High Performance power systems as defined for this program are coal-fired, high efficiency systems where the combustion products from coal do not contact the gas turbine. Typically, this type of a system will involve some indirect heating of gas turbine inlet air and then topping combustion with a cleaner fuel. The topping combustion fuel can be natural gas or another relatively clean fuel. Fuel gas derived from coal is an acceptable fuel for the topping combustion. The ultimate goal for HIPPS is to, have a system that has 95 percent of its heat input from coal. Interim systems that have at least 65 percent heat input from coal are acceptable, but these systems are required to have a clear development path to a system that is 95 percent coal-fired. A three phase program has been planned for the development of HIPPS. Phase 1, reported herein, includes the development of a conceptual design for a commercial plant. Technical and economic feasibility have been analysed for this plant. Preliminary R&D on some aspects of the system were also done in Phase 1, and a Research, Development and Test plan was developed for Phase 2. Work in Phase 2 include s the testing and analysis that is required to develop the technology base for a prototype plant. This work includes pilot plant testing at a scale of around 50 MMBtu/hr heat input. The culmination of the Phase 2 effort will be a site-specific design and test plan for a prototype plant. Phase 3 is the construction and testing of this plant.

  1. Comparative analysis of gas and coal-fired power generation in ultra-low emission condition using life cycle assessment (LCA)

    Science.gov (United States)

    Yin, Libao; Liao, Yanfen; Liu, Guicai; Liu, Zhichao; Yu, Zhaosheng; Guo, Shaode; Ma, Xiaoqian

    2017-05-01

    Energy consumption and pollutant emission of natural gas combined cycle power-generation (NGCC), liquefied natural gas combined cycle power-generation (LNGCC), natural gas combined heat and power generation (CHP) and ultra-supercritical power generation with ultra-low gas emission (USC) were analyzed using life cycle assessment method, pointing out the development opportunity and superiority of gas power generation in the period of coal-fired unit ultra-low emission transformation. The results show that CO2 emission followed the order: USC>LNGCC>NGCC>CHP the resource depletion coefficient of coal-fired power generation was lower than that of gas power generation, and the coal-fired power generation should be the main part of power generation in China; based on sensitivity analysis, improving the generating efficiency or shortening the transportation distance could effectively improve energy saving and emission reduction, especially for the coal-fired units, and improving the generating efficiency had a great significance for achieving the ultra-low gas emission.

  2. Simulation of Synthesis Gas Production from Steam Oxygen Gasification of Colombian Coal Using Aspen Plus®

    Directory of Open Access Journals (Sweden)

    Jorge E. Preciado

    2012-11-01

    Full Text Available A steady state simulation of syngas production from a Steam Oxygen Gasification process using commercial technologies was performed using Aspen Plus®. For the simulation, the average proximate and ultimate compositions of bituminous coal obtained from the Colombian Andean region were employed. The simulation was applied to conduct sensitivity analyses in the O2 to coal mass ratio, coal slurry concentration, WGS operating temperature and WGS steam to dry gas molar ratio (SDG over the key parameters: syngas molar composition, overall CO conversion in the WGS reactors, H2 rich-syngas lower heating value (LHV and thermal efficiency. The achieved information allows the selection of critical operating conditions leading to improve system efficiency and environmental performance. The results indicate that the oxygen to carbon ratio is a key variable as it affects significantly both the LHV and thermal efficiency. Nevertheless, the process becomes almost insensitive to SDG values higher than 2. Finally, a thermal efficiency of 62.6% can be reached. This result corresponds to a slurry solid concentration of 0.65, a WGS process SDG of 0.59, and a LTS reactor operating temperature of 473 K. With these fixed variables, a syngas with H2 molar composition of 92.2% and LHV of 12 MJ Nm−3 was attained.

  3. Characterization of phenolic compounds in coal tar by gas chromatography/negative-ion atmospheric pressure chemical ionization mass spectrometry.

    Science.gov (United States)

    Ma, Sutian; Ma, Chao; Qian, Kejun; Zhou, Yasong; Shi, Quan

    2016-08-15

    Phenolic compounds are commonly found in fossel fuels and bio-oils, and have a detrimental effect on the chemical stability of the fuels. A selective analytical method is needed to characterize the phenolic compounds in complex hydrocarbon mixtures. Gas chromatography/atmospheric pressure chemical ionization mass spectrometry (GC/APCI-MS) was used to characterize the phenolic compounds in a low-temperature coal tar and its narrow distillate fractions. Negative-ion APCI selectively ionized phenolic compounds in the coal tar. The [M-H](-) and [M-H + O](-) ions were derived from monohydric phenols, while [M-H](-) , [M-2H](-) , and [M-2H + O](-) were from benzenediols. Monohydric phenolic compounds with 1-4 aromatic rings and some dihydric phenolic compounds were identified. The results from GC/APCI-MS were validated by those from negative electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FTICRMS). Negative-ion GC/APCI-MS was proposed and successfully used to characterize phenolic compounds in coal tar samples. This technique can potentially be used for the characterization of phenolic compounds in other complex hydrocarbon systems. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  4. Dust removal in power plant. Practical experiences with textile filter media in the flue gas purification coal-fired plants; Entstaubung von Kraftwerken. Praxiserfahrungen mit textilen Filtermedien in der Rauchgasreinigung von kohlegefeuerten Anlagen

    Energy Technology Data Exchange (ETDEWEB)

    Binnig, Joachim [BWF Envirotec, Offingen (Germany)

    2009-10-15

    Beside carbon dioxide, coal-fired power plants also produce particle emissions which have to be removed by filtering units from the flue gas. In the Federal Republic of Germany, this is enabled by means of electrostatic filters. In South Africa, the bag filter is the preferential method of dust removal. In the People's Republic of China, already large power plants with bag filters are dedusted. With regard to the cost structure, no significant differences between bag filters and electrostatic filters appear. Suitable measures can prevent the destruction of bag filters by an excess temperature in the case of disturbances of operation. Bag filters offer a higher efficiency of separation with fine dust and very fine dust. Using a professional conception of a filter plant, an operation of bag filters for the dedusting of coal-fired power plants is possible without problems. A service life of several years can be achieved.

  5. Use of pyrolysis gas from coal as reburn fuel. Final report; Einsatz von kohlestaemmigem Pyrolysegas als Reduktionsbrennstoff. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Greul, U.; Magel, C.; Moersch, O.; Ruediger, H.; Storm, C.; Schnell, U.; Spliethoff, H.; Hein, K.R.G.

    1996-12-31

    The research project`s aim was to reduce nitrogen emissions from pulverized-coal furnaces by fuel staging with pyrolysis gas from coal. The test fuels were 6 German and Australian coals. The aim achieved has been the statement that the described method is an adequate means to attain to and remain below emission values of 200 mg/m{sup 3}. The method of fuel staging using coal-original gases was investigated with tests focussing the most important process parameters such as coal type, devolatilization ratio, temperature, residence time, and stoichiometry. The relevant features determined with an entrained flow reactor and with a fluidized-bed reactor were the impact of devolatilization temperatures on carbonized residue and pyrolysis products, the distribution of fuel nitrogen, and the quality of gas and tar, including the respective effects on NO{sub x} formation and reduction in staged combustion. The validation of the mathematical model was done with the experimentally obtained data. The criteria considered fundamental for achieving the NO{sub x} reduction level are temperature, air ratio, and residence time in the reduction zone of the furnace. The pyrolysis tests manifested the strong influence of the coal type and the devolatilization conditions on the composition of the gases and the attainable NO{sub x} reduction. The tars in the pyrolysis gases, with their nitrogen compounds, improve the reducing effect of available nitrogen oxides. By using pyrolysis gases from coal as reburning fuel, NO{sub x} emissions of less than 200 mg/m{sup 3} can be obtained at air ratios around 0.95. (orig./SR) [Deutsch] Das Forschungsprojekt verfolgte das Ziel mit 6 deutschen und australischen Kohlen die Stickoxidemissionen aus Kohlestaubfeuerungen durch Brennstoffstufung mit Pyrolysegas als Reduktionsbrennstoff zu verringern. Das erreichte Ziel war der Nachweis, dass mit dem beschriebenen Verfahren NO{sub x}-Emissionswerte von 200 mg/m{sup 3} erreicht und unterschritten werden

  6. Chemical process modelling of Underground Coal Gasification (UCG) and evaluation of produced gas quality for end use

    Science.gov (United States)

    Korre, Anna; Andrianopoulos, Nondas; Durucan, Sevket

    2015-04-01

    Underground Coal Gasification (UCG) is an unconventional method for recovering energy from coal resources through in-situ thermo-chemical conversion to gas. In the core of the UCG lays the coal gasification process which involves the engineered injection of a blend of gasification agents into the coal resource and propagating its gasification. Athough UCG technology has been known for some time and considered a promising method for unconventional fossil fuel resources exploitation, there are limited modelling studies which achieve the necessary accuracy and realistic simulation of the processes involved. This paper uses the existing knowledge for surface gasifiers and investigates process designs which could be adapted to model UCG. Steady state simulations of syngas production were developed using the Advanced System for Process ENgineering (Aspen) Plus software. The Gibbs free energy minimisation method was used to simulate the different chemical reactor blocks which were combined using a FORTRAN code written. This approach facilitated the realistic simulation of the gasification process. A number of model configurations were developed to simulate different subsurface gasifier layouts considered for the exploitation of underground coal seams. The two gasifier layouts considered here are the linked vertical boreholes and the controlled retractable injection point (CRIP) methods. Different stages of the UCG process (i.e. initialisation, intermediate, end-phase) as well as the temperature level of the syngas collection point in each layout were found to be the two most decisive and distinctive parameters during the design of the optimal model configuration for each layout. Sensitivity analyses were conducted to investigate the significance of the operational parameters and the performance indicators used to evaluate the results. The operational parameters considered were the type of reagents injected (i.e. O2, N2, CO2, H2O), the ratio between the injected reagents

  7. Technological Change and Its Labor Impact in Five Energy Industries. Coal Mining/Oil and Gas Extraction/Petroleum Refining/Petroleum Pipeline Transportation/Electric and Gas Utilities.

    Science.gov (United States)

    Bureau of Labor Statistics (DOL), Washington, DC.

    This bulletin appraises major technological changes emerging in five American industries (coal mining, oil and gas extraction, petroleum refining, petroleum pipeline transportation, and electric and gas utilities) and discusses the impact of these changes on productivity and occupations over the next five to ten years. Its separate reports on each…

  8. Toxicity of sediments potentially contaminated by coal mining and natural gas extraction to unionid mussels and commonly tested benthic invertebrates

    Science.gov (United States)

    Wang, Ning; Ingersoll, Christopher G.; Kunz, James L.; Brumbaugh, William G.; Kane, Cindy M.; Evans, R. Brian; Alexander, Steven; Walker, Craig; Bakaletz, Steve

    2013-01-01

    Sediment toxicity tests were conducted to assess potential effects of contaminants associated with coal mining or natural gas extraction activities in the upper Tennessee River basin and eastern Cumberland River basin in the United States. Test species included two unionid mussels (rainbow mussel, Villosa iris, and wavy-rayed lampmussel, Lampsilis fasciola, 28-d exposures), and the commonly tested amphipod, Hyalella azteca (28-d exposure) and midge, Chironomus dilutus (10-d exposure). Sediments were collected from seven test sites with mussel communities classified as impacted and in proximity to coal mining or gas extraction activities, and from five reference sites with mussel communities classified as not impacted and no or limited coal mining or gas extraction activities. Additional samples were collected from six test sites potentially with high concentrations of polycyclic aromatic hydrocarbons (PAHs) and from a test site contaminated by a coal ash spill. Mean survival, length, or biomass of one or more test species was reduced in 10 of 14 test samples (71%) from impacted areas relative to the response of organisms in the five reference samples. A higher proportion of samples was classified as toxic to mussels (63% for rainbow mussels, 50% for wavy-rayed lampmussels) compared with amphipods (38%) or midge (38%). Concentrations of total recoverable metals and total PAHs in sediments did not exceed effects-based probable effect concentrations (PECs). However, the survival, length, or biomasses of the mussels were reduced significantly with increasing PEC quotients for metals and for total PAHs, or with increasing sum equilibrium-partitioning sediment benchmark toxic units for PAHs. The growth of the rainbow mussel also significantly decreased with increasing concentrations of a major anion (chloride) and major cations (calcium and magnesium) in sediment pore water. Results of the present study indicated that (1) the findings from laboratory tests were generally

  9. Safety provision during heating of coal downcast shafts with gas heat generators using degassed methane

    Directory of Open Access Journals (Sweden)

    В. Р. Алабьев

    2017-06-01

    Together with heat generators of mixed type the article also describes a working principle of heat generator of indirect action type, which to the fullest extent possible meets requirements of Russian Federation legislation and regulation for application of this heat generators in coal mines conditions. The article has a principal working scheme of heat unit layout using this type of generator. It is shown that after development of corresponding normative documents regulating processes of design, construction and operation of heating units using heaters of indirect action, their application in Russian coal mines will be possible without breaking Safety standards and rules.

  10. Biomass CFB gasifier connected to a 350 MW{sub t}h steam boiler fired with coal and natural gas - THERMIE demonstration project in Lahti in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Palonen, J. [Foster Wheeler Energia Oy, Varkaus (Finland). Varkaus Global New Products

    1997-12-31

    Laempoevoima Oy`s Kymijaervi power plant gasification project is to demonstrate the direct gasification of wet biofuel and the use of hot, raw and very low-calorific gas directly in the existing coal-fired boiler. The gasification of biofuels and co-combustion of gases in the existing coal-fired boiler offers many advantages such as: recycling of CO{sub 2}, decreased SO{sub 2} and NO{sub x} emissions, efficient way to utilize biofuels and recycled refuse fuels, low investment and operation costs, and utilization of the existing power plant capacity. Furthermore, only small modifications are required in the boiler, possible disturbances in the gasifier do not shut down the power plant. (author)

  11. A reactive transport modelling approach to assess the leaching potential of hydraulic fracturing fluids associated with coal seam gas extraction

    Science.gov (United States)

    Mallants, Dirk; Simunek, Jirka; Gerke, Kirill

    2015-04-01

    Coal Seam Gas production generates large volumes of "produced" water that may contain compounds originating from the use of hydraulic fracturing fluids. Such produced water also contains elevated concentrations of naturally occurring inorganic and organic compounds, and usually has a high salinity. Leaching of produced water from storage ponds may occur as a result of flooding or containment failure. Some produced water is used for irrigation of specific crops tolerant to elevated salt levels. These chemicals may potentially contaminate soil, shallow groundwater, and groundwater, as well as receiving surface waters. This paper presents an application of scenario modelling using the reactive transport model for variably-saturated media HP1 (coupled HYDRUS-1D and PHREEQC). We evaluate the fate of hydraulic fracturing chemicals and naturally occurring chemicals in soil as a result of unintentional release from storage ponds or when produced water from Coal Seam Gas operations is used in irrigation practices. We present a review of exposure pathways and relevant hydro-bio-geo-chemical processes, a collation of physico-chemical properties of organic/inorganic contaminants as input to a set of generic simulations of transport and attenuation in variably saturated soil profiles. We demonstrate the ability to model the coupled processes of flow and transport in soil of contaminants associated with hydraulic fracturing fluids and naturally occurring contaminants.

  12. Electrochemical, Structural and Surface Characterization of Nickel/Zirconia Solid Oxide Fuel Cell Anodes in Coal Gas Containing Antimony

    Energy Technology Data Exchange (ETDEWEB)

    Marina, Olga A.; Pederson, Larry R.; Coyle, Christopher A.; Thomsen, Edwin C.; Nachimuthu, Ponnusamy; Edwards, Danny J.

    2011-02-27

    The interaction of antimony with the nickel-zirconia solid oxide fuel cell (SOFC) anode has been investigated. Tests with both anode-supported and electrolyte-supported button cells were performed at 700 and 800oC in synthetic coal gas containing 10 ppb to 9 ppm antimony. Minor performance loss was observed immediately after Sb introduction to coal gas resulting in ca. 5 % power output drop. While no further degradation was observed during the following several hundred hours of testing, cells abruptly and irreversibly failed after 800-1500 hours depending on Sb concentration and test temperature. Antimony was found to interact strongly with nickel and result in extensive alteration phase formation, consistent with expectations based on thermodynamic properties. Nickel antimonide phases, NiSb and Ni5Sb2, were partially coalesced into large grains and eventually affected electronic percolation through the anode support. Initial degradation was attributed to diffusion of antimony to the active anode/electrolyte interface to form an adsorption layer.

  13. Survey of state regulatory activities on least cost planning for gas utilities

    Energy Technology Data Exchange (ETDEWEB)

    Goldman, C.A. (Lawrence Berkeley Lab., CA (United States) National Association of Regulatory Utility Commissioners, Washington, DC (United States)); Hopkins, M.E. (Fleming Group, Washington, DC (United States))

    1991-04-01

    Integrated resource planning involves the creation of a process in which supply-side and demand-side options are integrated to create a resource mix that reliably satisfies customers' short-term and long-term energy service needs at the lowest cost. Incorporating the concept of meeting customer energy service needs entails a recognition that customers' costs must be considered along with the utility's costs in the economic analysis of energy options. As applied to gas utilities, an integrated resource plan seeks to balance cost and reliability, and should not be interpreted simply as the search for lowest commodity costs. All state commissions were surveyed to assess the current status of gas planning and demand-side management and to identify significant regulatory issues faced by commissions during the next several years. The survey was to determine the extent to which they have undertaken least-cost planning for gas utilities. The survey included the following topics: (1) status of state PUC least-cost planning regulations and practices for gas utilities; (2) type and scope ofnatural gas DSM programs in effect, includeing fuel substitution; (3) economic tests and analysis methods used to evaluate DSM programs; (4) relationship between prudence reviews of gas utility purchasing practices and integrated resource planning; and (5) key regulatory issues facing gas utilities during the next five years. 34 refs., 6 figs., 10 tabs.

  14. Low Cost Sorbent for Capturing CO2 Emissions Generated by Existing Coal-fired Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Jeannine [TDA Research, Inc., Wheat Ridge, CO (United States)

    2013-08-31

    TDA Research, Inc. has developed a novel sorbent based post-combustion CO2 removal technology. This low cost sorbent can be regenerated with low-pressure (ca. 1 atm) superheated steam without temperature swing or pressure-swing. The isothermal and isobaric operation is a unique and advantageous feature of this process. The objective of this project was to demonstrate the technical and economic merit of this sorbent based CO2 capture approach. Through laboratory, bench-scale and field testing we demonstrated that this technology can effectively and efficiently capture CO2 produced at an existing pulverized coal power plants. TDA Research, Inc is developing both the solid sorbent and the process designed around that material. This project addresses the DOE Program Goal to develop a capture technology that can be added to an existing or new coal fired power plant, and can capture 90% of the CO2 produced with the lowest possible increase in the cost of energy. .

  15. DEVELOPMENT THE GENERAL BUDGET COSTS AT AN ENTERPRISE OF EXPLOITATION OF MINERAL RESOURCES IN THE COAL

    Directory of Open Access Journals (Sweden)

    DINA IONELA CLAUDIA

    2015-03-01

    Full Text Available Considering the fact that the goal of any enterprise, and those that operate in the field of extracting coal, mineral resources aims at maintaining balance relationship between revenue and expenditure, the problem faced by the management of the companies is finding those methods which allow the sizing and control of this type of relationship. For this purpose it shall draw up a document of financial forecasting, namely "the budget of revenue and expenditure", emerged as "an instrument of harmonization and improvement of the relationship between revenue and expenditure", which due to its mining over a specific period of time, usually one year and broken down by quarters, financial revenue and expenditure, thus ensuring steady financial relationship. In the present work we, as starting from general considerations realiarea the budget, to introduce a new model of its întrocmirea taking into account the secificitatea of coal mining of ore extraction.

  16. Basic petrochemicals from natural gas, coal and biomass: energy use and CO2 emissions

    NARCIS (Netherlands)

    Ren, T.; Patel, M.K.

    2009-01-01

    While high-value basic petrochemicals (HVCs) are mostly produced through conventional naphtha and ethane-based process routes, it is also possible to produce them through coal and biomass-based routes. In this paper, we compared these routes in terms of energy use and CO2 emissions per ton of HVCs.

  17. Greenhouse gas emissions reduction in China by cleaner coal technology towards 2020

    DEFF Research Database (Denmark)

    Zhao, Guangling; Chen, Sha

    2015-01-01

    generation technology, CO2 emissions reduction is 6.4% for super-C, 37.4% for USC and 61.5% for IGCC. Four coal power scenarios are developed based on the assumption of potential investment power for CCTs in 2020, which are super-C, USC, USC and old low efficiency generation substitution by USC, IGCC......The Chinese energy system, a major CO2 emitter, relies heavily on fossil fuels, especially coal. Coal will continue to play a major role in the new installed power generation capacity in the future, which will cause unavoidable environmental problems. Clean coal technologies (CCTs) are essential...... and carbon capture and storage (CCS). The CO2 emissions intensity is 1.93 kg/kWh for super-C, 1.69 kg/kWh for USC, 1.59 kg/kWh for USC + replacement and 1.29 kg/kWh for IGCC + CCS. The CO2 emissions intensity was 1.95 kg/kWh in 2010, which had decreased 5.5% compared with the level in 2005. The energy...

  18. Development of a Hydrogasification Process for Co-Production of Substitute Natural Gas (SNG) and Electric Power from Western Coals

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xiaolei [Arizona Public Service Company, Pheonix, AZ (United States); Rink, Nancy [Arizona Public Service Company, Pheonix, AZ (United States)

    2011-04-30

    This report presents the results of the research and development conducted on an Advanced Hydrogasification Process (AHP) conceived and developed by Arizona Public Service Company (APS) under U.S. Department of Energy (DOE) contract: DE-FC26-06NT42759 for Substitute Natural Gas (SNG) production from western coal. A double-wall (i.e., a hydrogasification contained within a pressure shell) down-flow hydrogasification reactor was designed, engineered, constructed, commissioned and operated by APS, Phoenix, AZ. The reactor is ASME-certified under Section VIII with a rating of 1150 pounds per square inch gage (psig) maximum allowable working pressure at 1950 degrees Fahrenheit (°F). The reaction zone had a 1.75 inch inner diameter and 13 feet length. The initial testing of a sub-bituminous coal demonstrated ~ 50% carbon conversion and ~10% methane yield in the product gas under 1625°F, 1000 psig pressure, with a 11 seconds (s) residence time, and 0.4 hydrogen-to-coal mass ratio. Liquid by-products mainly contained Benzene, Toluene, Xylene (BTX) and tar. Char collected from the bottom of the reactor had 9000-British thermal units per pound (Btu/lb) heating value. A three-dimensional (3D) computational fluid dynamic model simulation of the hydrodynamics around the reactor head was utilized to design the nozzles for injecting the hydrogen into the gasifier to optimize gas-solid mixing to achieve improved carbon conversion. The report also presents the evaluation of using algae for carbon dioxide (CO2) management and biofuel production. Nannochloropsis, Selenastrum and Scenedesmus were determined to be the best algae strains for the project purpose and were studied in an outdoor system which included a 6-meter (6M) radius cultivator with a total surface area of 113 square meters (m2) and a total culture volume between 10,000 to 15,000 liters (L); a CO2 on-demand feeding system; an on-line data collection system for temperature, p

  19. Greenhouse gas abatement cost curves of the residential heating market. A microeconomic approach

    Energy Technology Data Exchange (ETDEWEB)

    Dieckhoener, Caroline; Hecking, Harald

    2012-10-15

    In this paper, we develop a microeconomic approach to deduce greenhouse gas abatement cost curves of the residential heating sector. By accounting for household behavior, we find that welfare-based abatement costs are generally higher than pure technical equipment costs. Our results are based on a microsimulation of private households' investment decision for heating systems until 2030. The households' investment behavior in the simulation is derived from a discrete choice estimation which allows investigating the welfare costs of different abatement policies in terms of the compensating variation and the excess burden. We simulate greenhouse gas abatements and welfare costs of carbon taxes and subsidies on heating system investments until 2030 to deduce abatement curves. Given utility maximizing households, our results suggest a carbon tax to be the welfare efficient policy. Assuming behavioral misperceptions instead, a subsidy on investments might have lower marginal greenhouse gas abatement costs than a carbon tax.

  20. Assessment of Geogenic Contaminants in Water Co-Produced with Coal Seam Gas Extraction in Queensland, Australia: Implications for Human Health Risk

    Directory of Open Access Journals (Sweden)

    William Stearman

    2014-09-01

    Full Text Available Organic compounds in Australian coal seam gas produced water (CSG water are poorly understood despite their environmental contamination potential. In this study, the presence of some organic substances is identified from government-held CSG water-quality data from the Bowen and Surat Basins, Queensland. These records revealed the presence of polycyclic aromatic hydrocarbons (PAHs in 27% of samples of CSG water from the Walloon Coal Measures at concentrations <1 µg/L, and it is likely these compounds leached from in situ coals. PAHs identified from wells include naphthalene, phenanthrene, chrysene and dibenz[a,h]anthracene. In addition, the likelihood of coal-derived organic compounds leaching to groundwater is assessed by undertaking toxicity leaching experiments using coal rank and water chemistry as variables. These tests suggest higher molecular weight PAHs (including benzo[a]pyrene leach from higher rank coals, whereas lower molecular weight PAHs leach at greater concentrations from lower rank coal. Some of the identified organic compounds have carcinogenic or health risk potential, but they are unlikely to be acutely toxic at the observed concentrations which are almost negligible (largely due to the hydrophobicity of such compounds. Hence, this study will be useful to practitioners assessing CSG water related environmental and health risk.

  1. Natural gas cost for evaluating energy resource opportunities at Fort Stewart

    Energy Technology Data Exchange (ETDEWEB)

    Stucky, D.J.; Shankle, S.A.

    1993-01-01

    Ft. Stewart, a United States Army Forces Command (FORSCOM) installation located near Hinesville, Georgia, is currently undergoing an evaluation of its energy usage, which is being performed by Pacific Northwest Laboratory. In order to examine the energy resource opportunities (EROs) at Ft. Stewart, marginal fuel costs must be calculated. The marginal, or avoided, cost of gas service is used in conjunction with the estimated energy savings of an ERO to calculate the dollar value of those savings. In the case of natural gas, the costing becomes more complicated due to the installation of a propane-air mixing station. The propane-air station is being built under a shared energy savings (SES) contract. The building of a propane-air station allows Ft. Stewart to purchase natural gas from their local utility at an interruptible rate, which is lower than the rate for contracting natural gas on a firm basis. The propane-air station will also provide Ft. Stewart with fuel in the event that the natural gas supply is curtailed. While the propane-air station does not affect the actual cost of natural gas, it does affect the cost of services provided by gas. Because the propane-air station and the SES contract affect the cost of gas service, they must be included in the analysis. Our analysis indicates a marginal cost of gas service of 30.0 cents per therm, assuming a total propane usage by the mixing station of 42,278 gallons (38,600 therms) annually. Because the amount of propane that may be required in the event of a curtailment is small relative to the total service requirement, variations in the actual amount should not significantly affect the cost per therm.

  2. Economic assessment of coal-burning locomotives: Topical report

    Energy Technology Data Exchange (ETDEWEB)

    1986-02-01

    The General Electric Company embarked upon a study to evaluate various alternatives for the design and manufacture a coal fired locomotive considering various prime movers, but retaining the electric drive transmission. The initial study was supported by the Burlington-Northern and Norfolk-Southern railroads, and included the following alternatives: coal fired diesel locomotive; direct fired gas turbine locomotives; direct fired gas turbine locomotive with steam injection; raw coal gasifier gas turbine locomotive; and raw coal fluid bed steam turbine locomotive. All alternatives use the electric drive transmission and were selected for final evaluation. The first three would use a coal water slurry as a fuel, which must be produced by new processing plants. Therefore, use of a slurry would require a significant plant capital investment. The last two would use classified run-of-the-mine (ROM) coal with much less capital expenditure. Coal fueling stations would be required but are significantly lower in capital cost than a coal slurry plant. For any coal fired locomotive to be commercially viable, it must pass the following criteria: be technically feasible and environmentally acceptable; meet railroads' financial expectations; and offer an attractive return to the locomotive manufacturer. These three criteria are reviewed in the report.

  3. Integrating Waste Heat from CO2 Removal and Coal-Fired Flue Gas to Increase Plant Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Irvin, Nick [Southern Company Services, Inc., Birmingham, AL (United States); Kowalczyk, Joseph [Southern Company Services, Inc., Birmingham, AL (United States)

    2017-04-01

    In project DE-FE0007525, Southern Company Services demonstrated heat integration methods for the capture and sequestration of carbon dioxide produced from pulverized coal combustion. A waste heat recovery technology (termed High Efficiency System) from Mitsubishi Heavy Industries America was integrated into an existing 25-MW amine-based CO2 capture process (Kansai Mitsubishi Carbon Dioxide Recovery Process®1) at Southern Company’s Plant Barry to evaluate improvements in the energy performance of the pulverized coal plant and CO2 capture process. The heat integration system consists of two primary pieces of equipment: (1) the CO2 Cooler which uses product CO2 gas from the capture process to heat boiler condensate, and (2) the Flue Gas Cooler which uses air heater outlet flue gas to further heat boiler condensate. Both pieces of equipment were included in the pilot system. The pilot CO2 Cooler used waste heat from the 25-MW CO2 capture plant (but not always from product CO2 gas, as intended). The pilot Flue Gas Cooler used heat from a slipstream of flue gas taken from downstream of Plant Barry’s air heater. The pilot also included a 0.25-MW electrostatic precipitator. The 25-MW High Efficiency System operated for approximately six weeks over a four month time period in conjunction with the 25-MW CO2 capture facility at Plant Barry. Results from the program were used to evaluate the technical and economic feasibility of full-scale implementation of this technology. The test program quantified energy efficiency improvements to a host power plant that could be realized due to the High Efficiency System. Through the execution of this project, the team verified the integrated operation of the High Efficiency System and Kansai Mitsubishi Carbon Dioxide Recovery Process®. The ancillary benefits of the High Efficiency System were also quantified, including reduced water consumption

  4. Validation of the materials-process-product model (coal SNG). [Estimating method for comparing processes, changing assumptions and technology assessment

    Energy Technology Data Exchange (ETDEWEB)

    Albanese, A.; Bhagat, N.; Friend, L.; Lamontagne, J.; Pouder, R.; Vinjamuri, G.

    1980-03-01

    The use of coal as a source of high Btu gas is currently viewed as one possible means of supplementing dwindling natural gas supplies. While certain coal gasification processes have demonstrated technical feasibility, much uncertainty and inconsistency remains regarding the capital and operating costs of large scale coal conversion facilities; cost estimates may vary by as much as 50%. Studies conducted for the American Gas Association (AGA) and US Energy Research and Development Administration by C.F. Braun and Co. have defined technical specifications and cost guidelines for estimating costs of coal gasification technologies (AGA Guidelines). Based on the AGA Guidelines, Braun has also prepared cost estimates for selected coal gasification processes. Recent efforts by International Research and Technology Inc. (IR and T) have led to development of the Materials-Process-Product Model (MPPM), a comprehensive anaytic tool for evaluation of processes and costs for coal gasification and other coal conversion technologies. This validation of the MPPM presents a comparison of engineering and cost computation methodologies employed in the MPPM to those employed by Braun and comparison of MPPM results to Braun cost estimates. These comparisons indicate that the MPPM has the potential to be a valuable tool for assisting in the evaluation of coal gasification technologies.

  5. Preliminary assessment of coal-based industrial energy systems

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    This report presents the results of a study, performed by Mittelhauser Corp. and Resource Engineering, Inc. to identify the potential economic, environmental, and energy impacts of possible New Source Performance Standards for industrial steam generators on the use of coal and coal-derived fuels. A systems-level approach was used to take mine-mouth coal and produce a given quantity of heat input to a new boiler at an existing Chicago industrial-plant site. The technologies studied included post-combustion clean-up, atmospheric fluidized-bed combustion, solvent-refined coal liquids, substitute natural gas, and low-Btu gas. Capital and operating costs were prepared on a mid-1985 basis from a consistent set of economic guidelines. The cases studied were evaluated using three levels of air emission controls, two coals, two boiler sizes, and two operating factors. Only those combinations considered likely to make a significant impact on the 1985 boiler population were considered. The conclusions drawn in the report are that the most attractive applications of coal technology are atmospheric fluidized-bed combustion and post-combustion clean-up. Solvent-refined coal and probably substitute natural gas become competitive for the smaller boiler applications. Coal-derived low-Btu gas was found not to be a competitive boiler fuel at the sizes studied. It is recommended that more cases be studied to broaden the applicability of these results.

  6. The measurement of various molecules of pyrolysis gas of coal by using VUV-SPI-TOFMS

    Science.gov (United States)

    Tsuji, Norihiro; Nishifuji, Masayuki; Hayash, Shun-ichi

    2013-04-01

    We developed and tested a system that combines a vacuum ultraviolet single photon ionization time-of-flight mass spectrometer (VUV-SPI-TOFMS) with a Fourier transform-infrared (FT-IR) spectrometer and used it for the simultaneous detection of the various compounds generated during the pyrolysis of coal. We characterized the performance of the system, including its limits of detection and time resolution. We also determined the various compounds that could be detected using the system. The instrument exhibited a laboratory-determined detection limit that was in the parts per billion volume (ppbv) range and a detection time of 10 s for most of the aromatic compounds generated during the pyrolysis process. In addition, using this system, it was possible to determine the correlation between the pyrolysis temperature and the various compounds generated from different types of coals during the pyrolysis process.

  7. Coal desulfurization process

    Science.gov (United States)

    Hsu, G. C.; Gavalas, G. R.; Ganguli, P. S.; Kalfayan, S. H.

    1978-01-01

    A method for chlorinolysis of coal is an organic solvent at a moderate temperautre and atmospheric pressure has been proven to be effective in removing sulfur, particularly the organic sulfur, from coal. Chlorine gas is bubbled through a slurry of moist coal in chlorinated solvent. The chlorinated coal is separated, hydrolyzed and the dechlorinated. Preliminary results of treating a high sulfutr (4.77%S) bituminous coal show that up to 70% organic sulfur, 90% hyritic sulfur and 76% total sulfur can be removed. The treated coal is dechlorinated by heating at 500 C. The presence of moisture helps to remove organic sulfur.

  8. Concept of co-firing coal with biomass and natural gas: On track of sustainable solution for future thermal power plants

    Directory of Open Access Journals (Sweden)

    Hodžić Nihad

    2016-01-01

    Full Text Available This paper presents R&D project of multi fuel concept (MFC for future coal-based power plants, demonstrated on example of cofiring Middle-Bosnia brown coal with waste woody biomass and natural gas. Pulverised Combustion (PC lab-scale furnace has been used for the cofiring tests, varying up to 20%w portion of biomass and up to 10%th portion of natural gas in the fuel mix. Tests were purposed to optimize the combustion temperature, air distribution, including Over Fire Air System (OFAS, fuel combination and fuel distribution, including reburning concept, as function of emissions and combustion efficiency estimated through the ash deposits behaviours and unburnt. Considering application of proposed MFC in case of TPP Kakanj unit 6 (118 MWe set here as a referent power plant, temperature levels and fuel distributions for lowest emissions of CO2 and NOx were found during lab tests, provided that combustion efficiency is at an acceptable level. Derived research results yield input data for calculation sustainability indicators of MFC for the referent power plant, considering 6 fuel options - different combinations of coal, biomass and natural gas. Single criteria analysis and multicriteria sustainability assessment have been done, giving an advantage to the options of cofiring coal with woody biomass and natural gas in the case demonstrated.

  9. Production of gas from coal seams in the Upper Silesian Coal Basin in Poland in the post-injection period of an ECBM pilot site

    NARCIS (Netherlands)

    Bergen, F. van; Krzystolik, P.; Wageningen, N. van; Pagnier, H.; Jura, B.; Skiba, J.; Winthaegen, P.; Kobiela, Z.

    2009-01-01

    A pilot site for CO2 storage in coal seams was set-up in the Upper Silesian Coal Basin in Poland in the scope of the RECOPOL project, funded by the European Commission. About 760 tons CO2 were injected into the reservoir from August 2004 to June 2005. Breakthrough of the injected CO2 was

  10. Reduction in Fabrication Costs of Gas Diffusion Layers

    Energy Technology Data Exchange (ETDEWEB)

    Jason Morgan; Donald Connors; Michael Hickner

    2012-07-10

    Ballard Material Products (BMP) performed a pre-design technical and cost analysis of state of the art production technologies feasible for high volume GDL manufacturing. Based upon criteria that also included environmental health and safety, customer quality requirements, and future needs, BMP selected technologies that can be integrated into its current manufacturing process. These selections included Many-At-A-Time (MAAT) coating and continuous mixing technologies, as well as various on-line process control tools. These processes have allowed BMP to produce high performance GDLs at lower cost for near-term markets, as well as to define the inputs needed to develop a conceptual Greenfield facility to meet the cost targets for automotive volumes of 500,000 vehicles per year.

  11. Structures, performance, benefit, cost study. [gas turbine engines

    Science.gov (United States)

    Feder, E.

    1981-01-01

    Aircraft engine structures were studied to identify the advanced structural technologies that would provide the most benefits to future aircraft operations. A series of studies identified engine systems with the greatest potential for improvements. Based on these studies, six advanced generic structural concepts were selected and conceptually designed. The benefits of each concept were quantitatively assessed in terms of thrust specific fuel consumption, weight, cost, maintenance cost, fuel burned and direct operating cost plus interest. The probability of success of each concept was also determined. The concepts were ranked and the three most promising were selected for further study which consisted of identifying and comprehensively outlining the advanced technologies required to develop these concepts for aircraft engine application. Analytic, fabrication, and test technology developments are required. The technology programs outlined emphasize the need to provide basic, fundamental understanding of technology to obtain the benefit goals.

  12. Low/medium-Btu coal-gasification assessment program for specific sites of two New York utilities

    Energy Technology Data Exchange (ETDEWEB)

    1980-12-01

    The scope of this study is to investigate the technical and economic aspects of coal gasification to supply low- or medium-Btu gas to the two power plant boilers selected for study. This includes the following major studies (and others described in the text): investigate coals from different regions of the country, select a coal based on its availability, mode of transportation and delivered cost to each power plant site; investigate the effects of burning low- and medium-Btu gas in the selected power plant boilers based on efficiency, rating and cost of modifications and make recommendations for each; and review the technical feasibility of converting the power plant boilers to coal-derived gas. The following two coal gasification processes have been used as the basis for this Study: the Combustion Engineering coal gasification process produces a low-Btu gas at approximately 100 Btu/scf at near atmospheric pressure; and the Texaco coal gasification process produces a medium-Btu gas at 292 Btu/scf at 800 psig. The engineering design and economics of both plants are described. Both plants meet the federal, state, and local environmental requirements for air quality, wastewater, liquid disposal, and ground level disposal of byproduct solids. All of the synthetic gas alternatives result in bus bar cost savings on a yearly basis within a few years of start-up because the cost of gas is assumed to escalate at a lower rate than that of fuel oil, approximately 4 to 5%.

  13. Bioconversion of coal-derived synthesis gas to liquid fuels. Annual report, September 29, 1992--September 28, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Jain, M.K.; Worden, R.M.; Grethlein, H.E.

    1993-10-21

    The overall objective of the project is to develop and optimize a two-stage fermentation process for the conversion of coal derived synthesis gas in an mixture of alcohols. The goals include the development of superior strains with high product tolerance and productivity, optimization of process conditions for high volumetric productivity and product concentrations, integration and optimization of two stage syngas fermentation, evaluation of bioreactor configurations for enhanced mass transfer, evaluation of syngas conversion by a culture of Butyribacterium methyltrophicum and Clostridium acetobutylicum, development of a membrane based pervaporation system for in situ removal of alcohols, and development of a process for reduction of carbon and electron loss. The specific goals for year one (September 1992 - September 1993) were (1) development of a project work plan, (2) development of superior CO-utilizing strains, (3) optimization of process conditions for conversion of synthesis gas to a mixture of acids in a continuously stirred reactor (CSTR), (4) evaluation of different bioreactor configurations for maximization of mass transfer of synthesis gas, (5) development of a membrane based pervaporation system, and (6) reduction of carbon and electron loss via H{sub 2}CO{sub 2} fermentation. Experimentation and progress toward these goals are described in this report.

  14. Mixotrophic cultivation of oleaginous Chlorella sp. KR-1 mediated by actual coal-fired flue gas for biodiesel production.

    Science.gov (United States)

    Praveenkumar, Ramasamy; Kim, Bohwa; Choi, Eunji; Lee, Kyubock; Cho, Sunja; Hyun, Ju-Soo; Park, Ji-Yeon; Lee, Young-Chul; Lee, Hyun Uk; Lee, Jin-Suk; Oh, You-Kwan

    2014-10-01

    Flue gases mainly consist of CO2 that can be utilized to facilitate microalgal culture for bioenergy production. In the present study, to evaluate the feasibility of the utilization of flue gas from a coal-burning power plant, an indigenous and high-CO2-tolerant oleaginous microalga, Chlorella sp. KR-1, was cultivated under mixotrophic conditions, and the results were evaluated. When the culture was mediated by flue gas, highest biomass (0.8 g cells/L·d) and FAME (fatty acid methyl esters) productivity (121 mg/L·d) were achieved in the mixotrophic mode with 5 g/L glucose, 5 mM nitrate, and a flow rate of 0.2 vvm. By contrast, the photoautotrophic cultivation resulted in a lower biomass (0.45 g cells/L·d) and a lower FAME productivity (60.2 mg/L·d). In general, the fatty acid profiles of Chlorella sp. KR-1 revealed meaningful contents (>40 % of saturated and mono-unsaturated fatty acids) under the mixotrophic condition, which enables the obtainment of a better quality of biodiesel than is possible under the autotrophic condition. Conclusively then, it was established that a microalgal culture mediated by flue gas can be improved by adoption of mixotrophic cultivation systems.

  15. Basin-wide groundwater vulnerability assessment: a GIS based DRASTIC approach to the problem of coal seam gas extracted water

    Directory of Open Access Journals (Sweden)

    Maryam Navi

    2017-02-01

    Full Text Available Coal seam gas (CSG production requires the extraction of large volumes of water. Discharges of the extracted water into the environment occur via authorised temporary permits or through accidental releases. The purpose of this study is to assess the risk to shallow groundwater aquifers from potential CSG water releases in Queensland, Australia. A GIS based methodology was used to identify vulnerable shallow aquifers by overlaying a series of risk factors, which increase the likelihood of flow from the ground surface into aquifers below. We identified where the vulnerable aquifers are located and estimate that about 10,000 people live in these areas. The GIS based exposure mapping approach applied here provides a useful ‘first-pass’ assessment of areas with CSG activity. Areas identified as potentially high risk should be prioritised for further detailed investigation.

  16. COMPARISON OF WEST GERMAN AND U.S. FLUE GAS DESULFURIZATION AND SELECTIVE CATALYTIC REDUCTION COSTS

    Science.gov (United States)

    The report documents a comparison of the actual cost retrofitting flue gas desulfurization (FGD) and selective catalytic reduction (SCR) on Federal Republic of German (FRG) boilers to cost estimating procedures used in the U.S. to estimate the retrofit of these controls on U.S. b...

  17. Landfill Gas Energy Cost Model Version 3.0 (LFGcost-Web V3.0)

    Science.gov (United States)

    To help stakeholders estimate the costs of a landfill gas (LFG) energy project, in 2002, LMOP developed a cost tool (LFGcost). Since then, LMOP has routinely updated the tool to reflect changes in the LFG energy industry. Initially the model was designed for EPA to assist landfil...

  18. Reducing Energy Cost and Greenhouse Gas Emission in the Corporate Sector, a Delphi Study

    Science.gov (United States)

    Kramer, Maxim L.

    2013-01-01

    The study is titled "Reducing energy cost and GreenHouse Gas emission in the corporate sector, A Delphi Study". The study applied the Delphi methodology and focused on the Green IT solutions that can help the modern corporate organizations with less than 1000 employees to decrease their energy costs and GHG emissions. The study presents…

  19. Impact of the choice of emission metric on greenhouse gas abatement and costs

    NARCIS (Netherlands)

    Van Den Berg, Maarten; Hof, Andries; Van Vliet, Jasper; Van Vuuren, Detlef P.

    2015-01-01

    This paper analyses the effect of different emission metrics and metric values on timing and costs of greenhouse gas mitigation in least-cost emission pathways aimed at a forcing level of 3.5 W m-2 in 2100. Such an assessment is currently relevant in view of UNFCCC's decision to replace the values

  20. Production of "Green Natural Gas" Using Solid Oxide Electrolysis Cells (SOEC): Status of Technology and Costs

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg; Jensen, Søren Højgaard; Ebbesen, Sune Dalgaard

    2012-01-01

    This paper gives arguments in favour of using green natural gas (GNG) as storage media for the intermittent renewable energy sources. GNG is here defined as being CH4, i.e. methane, often called synthetic natural gas or substitute natural gas (SNG), produced using renewable or at least CO2 neutral...... energy sources only. Also dimethyl ether (DME = (CH3)2O), which might be called Liquefied Green Gas, LGG, in analogy to Liquefied Petroleum Gas, LPG, because DME has properties similar to LPG. It further gives a short review of the state of the art of electrolysis in general and SOEC in particular....... Production of synthesis gas (H2 + CO) from CO2 and H2O using SOEC technology is evaluated. GNG and LGG can be produced from synthesis gas (or short: syngas) by means of well established commercially available catalysis technology. Finally, estimations of costs and efficiencies are presented and the relative...

  1. Design of generic coal conversion facilities: Production of oxygenates from synthesis gas---A technology review

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-01

    This report concentrates on the production of oxygenates from coal via gasification and indirect liquefaction. At the present the majority of oxygenate synthesis programs are at laboratory scale. Exceptions include commercial and demonstration scale plants for methanol and higher alcohols production, and ethers such as MTBE. Research and development work has concentrated on elucidating the fundamental transport and kinetic limitations governing various reactor configurations. But of equal or greater importance has been investigations into the optimal catalyst composition and process conditions for the production of various oxygenates.

  2. Production Optimization for Plan of Gas Field Development Using Marginal Cost Analysis

    Directory of Open Access Journals (Sweden)

    Suprapto Soemardan

    2013-09-01

    Full Text Available Gas production rate is one of the most important variables affecting the feasibility plan of gas field development. It take into account reservoir characteristics, gas reserves, number of wells, production facilities, government take and market conditions. In this research, a mathematical  model of gas production optimization  has been developed using  marginal cost  analysis  in  determining  the  optimum  gas  production  rate  for  economic  profit,  by employing  the  case  study  of Matindok  Field.  The  results  show  that  the  optimum  gas  production  rate  is  mainly  affected  by  gas  price  duration  and time of gas delivery. When the price of gas  increases, the optimum  gas production rate  will increase, and then it  will become closer to the maximum production rate of the reservoir. Increasing the duration time of gas delivery will reduce the optimum gas production rate and increase maximum profit non-linearly.

  3. Commercialization of waste gob gas and methane produced in conjunction with coal mining operations. Final report, August 1992--December 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-01

    The primary objectives of the project were to identify and evaluate existing processes for (1) using gas as a feedstock for production of marketable, value-added commodities, and (2) enriching contaminated gas to pipeline quality. The following gas conversion technologies were evaluated: (1) transformation to liquid fuels, (2) manufacture of methanol, (3) synthesis of mixed alcohols, and (4) conversion to ammonia and urea. All of these involved synthesis gas production prior to conversion to the desired end products. Most of the conversion technologies evaluated were found to be mature processes operating at a large scale. A drawback in all of the processes was the need to have a relatively pure feedstock, thereby requiring gas clean-up prior to conversion. Despite this requirement, the conversion technologies were preliminarily found to be marginally economic. However, the prohibitively high investment for a combined gas clean-up/conversion facility required that REI refocus the project to investigation of gas enrichment alternatives. Enrichment of a gas stream with only one contaminant is a relatively straightforward process (depending on the contaminant) using available technology. However, gob gas has a unique nature, being typically composed of from constituents. These components are: methane, nitrogen, oxygen, carbon dioxide and water vapor. Each of the four contaminants may be separated from the methane using existing technologies that have varying degrees of complexity and compatibility. However, the operating and cost effectiveness of the combined system is dependent on careful integration of the clean-up processes. REI is pursuing Phase 2 of this project for demonstration of a waste gas enrichment facility using the approach described above. This is expected to result in the validation of the commercial and technical viability of the facility, and the refinement of design parameters.

  4. Near-Zero Emissions Oxy-Combustion Flue Gas Purification Task 2: SOx/Nox/Hg Removal for High Sulfur Coal

    Energy Technology Data Exchange (ETDEWEB)

    Nick Degenstein; Minish Shah; Doughlas Louie

    2012-05-01

    The goal of this project is to develop a near-zero emissions flue gas purification technology for existing PC (pulverized coal) power plants that are retrofitted with oxy-combustion technology. The objective of Task 2 of this project was to evaluate an alternative method of SOx, NOx and Hg removal from flue gas produced by burning high sulfur coal in oxy-combustion power plants. The goal of the program was not only to investigate a new method of flue gas purification but also to produce useful acid byproduct streams as an alternative to using a traditional FGD and SCR for flue gas processing. During the project two main constraints were identified that limit the ability of the process to achieve project goals. 1) Due to boiler island corrosion issues >60% of the sulfur must be removed in the boiler island with the use of an FGD. 2) A suitable method could not be found to remove NOx from the concentrated sulfuric acid product, which limits sale-ability of the acid, as well as the NOx removal efficiency of the process. Given the complexity and safety issues inherent in the cycle it is concluded that the acid product would not be directly saleable and, in this case, other flue gas purification schemes are better suited for SOx/NOx/Hg control when burning high sulfur coal, e.g. this project's Task 3 process or a traditional FGD and SCR.

  5. Comparing and assessing different measurement techniques for mercury in coal systhesis gas

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, D.P.; Richardson, C.F. [Radian Corporation, Austin, TX (United States)

    1995-11-01

    Three mercury measurement techniques were performed on synthesis gas streams before and after an amine-based sulfur removal system. The syngas was sampled using (1) gas impingers containing a nitric acid-hydrogen peroxide solution, (2) coconut-based charcoal sorbent, and (3) an on-line atomic absorption spectrophotometer equipped with a gold amalgamation trap and cold vapor cell. Various impinger solutions were applied upstream of the gold amalgamation trap to remove hydrogen sulfide and isolate oxidized and elemental species of mercury. The results from these three techniques are compared to provide an assessment of these measurement techniques in reducing gas atmospheres.

  6. Fuel Cells in the Coal Energy Industry

    Directory of Open Access Journals (Sweden)

    Kolat Peter

    1998-09-01

    Full Text Available In march 1998 at the conference „Coal Utilization & Fuel Systems“ in Clearwater, USA representatives of U.S. Department of Energy presented the vision 21 focused on the electricity generation from coal for 21st century. The goal is a powerplant with the ability to produce the electricity from coal with the efficiency approaching 60% (higher heating value and emission levels of one-tenth of today´s technologies, The CO2 capture and permanent sequestration at the cost of $15/ton of CO2, and a cost of electricity of 3 cents per kilowatt-hour. The goal is believed to be achievable by the first quarter of the next century. The vision 21 is presented with several possible concepts. One of them is based on coal gasification with following hydrogen separation. The obtained hydrogen is used as a fuel for the cogeneration unit with fuel cells. The remaining gas can be liquefied and utilised as a fuel in the automotive industry or further chemically processed. The concept has several important features. Firstly, a very clean low cost electricity production. Secondly, it is comprised of fuel processing section and power processing section. The two sections need not to be co-located. In the world of the deregulated electricity generation this offers a major advantage. The technologies of fuel processing section – coal gasification and hydrogen separation have been successfully developed in the last two decades. A specificity of the fuel processing section of this concept is to obtain hydrogen rich gas with very low concentrations of substances, as CO, which cause a poisoning of electrodes of fuel cells leading to the decreasing fuel cells efficiency. Fuel cells, specially highly efficient coal-gas SOFC and MCFC, are expected to be commercially available by 2020. The natural-gas MCFC and SOFC plants should enter the commercial marketplace by the year 2002.

  7. The indirect costs and benefits of greenhouse gas limitations

    Energy Technology Data Exchange (ETDEWEB)

    Markandya, A.

    1998-12-31

    The purpose of this report is to evaluate GHG limitation issues in a broader context. This includes the impacts of projects on vulnerable groups, the impacts on the environment more generally and the impacts on sustainability in a wider sense. It also offers some advice on how a decision-making framework can bring together these different dimensions. The structure of the guidelines is as follows. Section 2 introduces essential cost concepts and discusses the adjustments needed to the financial costs of different components, to arrive at the true economic costs. Section 3 looks at the macro-economic impacts of different GHG limitation project/policies. Section 4 discusses the way in which the sustainability concerns of such projects/policies can be monitored. Section 5 brings these different components together and looks at different methods of project selection. Section 6 provides a basic framework of impacts that are likely to arise in different GHG-related projects/policies, and what kind of method of estimation is available for these different impacts. Sections 7 to 9 go into greater depth on specific impacts. Sections 7 and 8 look at the employment and distributional effects respectively, and how they might be estimated. Section 9 evaluates the benefits in terms of changes in environmental damage resulting from GHG projects/policies. Section 10 provides three case studies in which the methods outlined in the report are applied. These case studies consider a biogas plant in Tanzania, a forestry project in the Russian Federation, and an energy efficiency project in Thailand. Section 11 concludes the report. (au) 59 refs.

  8. Landfill Gas Energy Cost Model Version 3.0 (LFGcost-Web V3 ...

    Science.gov (United States)

    To help stakeholders estimate the costs of a landfill gas (LFG) energy project, in 2002, LMOP developed a cost tool (LFGcost). Since then, LMOP has routinely updated the tool to reflect changes in the LFG energy industry. Initially the model was designed for EPA to assist landfills in evaluating the economic and financial feasibility of LFG energy project development. In 2014, LMOP developed a public version of the model, LFGcost-Web (Version 3.0), to allow landfill and industry stakeholders to evaluate project feasibility on their own. LFGcost-Web can analyze costs for 12 energy recovery project types. These project costs can be estimated with or without the costs of a gas collection and control system (GCCS). The EPA used select equations from LFGcost-Web to estimate costs of the regulatory options in the 2015 proposed revisions to the MSW Landfills Standards of Performance (also known as New Source Performance Standards) and the Emission Guidelines (herein thereafter referred to collectively as the Landfill Rules). More specifically, equations derived from LFGcost-Web were applied to each landfill expected to be impacted by the Landfill Rules to estimate annualized installed capital costs and annual O&M costs of a gas collection and control system. In addition, after applying the LFGcost-Web equations to the list of landfills expected to require a GCCS in year 2025 as a result of the proposed Landfill Rules, the regulatory analysis evaluated whether electr

  9. Advanced turbine design for coal-fueled engines. Phase 1, Erosion of turbine hot gas path blading: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, J.H.; Johnson, B.V.

    1993-04-01

    The investigators conclude that: (1) Turbine erosion resistance was shown to be improved by a factor of 5 by varying the turbine design. Increasing the number of stages and increasing the mean radius reduces the peak predicted erosion rates for 2-D flows on the blade airfoil from values which are 6 times those of the vane to values of erosion which are comparable to those of the vane airfoils. (2) Turbine erosion was a strong function of airfoil shape depending on particle diameter. Different airfoil shapes for the same turbine operating condition resulted in a factor of 7 change in airfoil erosion for the smallest particles studied (5 micron). (3) Predicted erosion for the various turbines analyzed was a strong function of particle diameter and weaker function of particle density. (4) Three dimensional secondary flows were shown to cause increases in peak and average erosion on the vane and blade airfoils. Additionally, the interblade secondary flows and stationary outer case caused unique erosion patterns which were not obtainable with 2-D analyses. (5) Analysis of the results indicate that hot gas cleanup systems are necessary to achieve acceptable turbine life in direct-fired, coal-fueled systems. In addition, serious consequences arise when hot gas filter systems fail for even short time periods. For a complete failure of the filter system, a 0.030 in. thick corrosion-resistant protective coating on a turbine blade would be eroded at some locations within eight minutes.

  10. Application of coal petrographic methods in petroleum and natural gas exploration. Anwendung kohlenpetrographischer Methoden bei der Erdoel- und Erdgasprospektion

    Energy Technology Data Exchange (ETDEWEB)

    Teichmueller, M.

    1971-02-15

    The relationship that exists between coalification and the formation of liquid petroleum and natural gas depends entirely upon the temperature in the earth's crust and the duration of heating. The degree of coalification can be determined by reflectivity measurements on very small vitrinitic (huminitic) inclusions in sedimentary rocks, because a satisfactory correlation has been established between mean reflectivity (R/sub m Oil/) and different parameters of chemical rank using 900 vitrites of different rank. This paper reports the considerable experience obtained with this method using cores and cuttings from boreholes of the German oil industry. Subsequently, examples from other countries are described which confirm the applicability of the method. Results obtained so far suggest that oil deposits may occur when the reflectivity (R/sub m Oil/) of the vitrinite lies between 0.3 and 1.0% (brown coal to high-volatile bituminous stage), whereas economic gas deposits may be found when R/sub m Oil/ extends from 0.7 to 2.0% (high-low volatile bituminous stage).

  11. Geologic assessment of natural gas from coal seams in the raton and vermejo formations, raton basin. Topical report, January 1991-June 1992

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, S.H.; Lombardi, T.E.; Kelso, B.S.; Coates, J.M.

    1992-06-01

    The coalbed methane resources of the Raton basin were assessed through an analysis of public and proprietary data sources covering stratigraphic, structural, hydrologic, coal rank, and gas content data. The total volume of methane contained in Raton and Vermejo Formation coal seams is estimated to range from 8.4 to 12.1 trillion cubic feet (Tcf), with a mean estimate of 10.2 Tcf. The highest coalbed methane resource concentration occurs in the deep trough around the town of La Veta. The second highest resource concentration occurs southeast of Vermejo Park. Successful development will need to consider favorable coal seam geometry, depth, and reservoir properties in addition to the in-place resource. The study recommends future research of complex parameters affecting coalbed methane producibility in the area.

  12. Synechococcus nidulans from a thermoelectric coal power plant as a potential CO2 mitigation in culture medium containing flue gas wastes.

    Science.gov (United States)

    Duarte, Jessica Hartwig; Costa, Jorge Alberto Vieira

    2017-10-01

    This study evaluated the intermittent addition of coal flue gas wastes (CO2, SO2, NO and ash) into a Synechococcus nidulans LEB 115 cultivation in terms of growth parameters, CO2 biofixation and biomass characterization. The microalga from a coal thermoelectric plant showed tolerance up to 200ppm SO2 and NO, with a maximum specific growth rate of 0.18±0.03d-1. The addition of thermal coal ash to the cultivation increased the Synechococcus nidulans LEB 115 maximum cell growth by approximately 1.3 times. The best CO2 biofixation efficiency was obtained with 10% CO2, 60ppm SO2, 100ppm NO and 40ppm ash (55.0±3.1%). The biomass compositions in the assays were similar, with approximately 9.8% carbohydrates, 13.5% lipids and 62.7% proteins. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Survey of industrial coal conversion equipment capabilities: high-temperature, high-pressure gas purification

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, J. P.; Edwards, M. S.

    1978-06-01

    In order to ensure optimum operating efficiencies for combined-cycle electric generating systems, it is necessary to provide gas treatment equipment capable of operating at high temperatures (>1000/sup 0/F) and high pressure (>10 atmospheres absolute). This equipment, when assembled in a process train, will be required to condition the inlet stream to a gas turbine to suitable levels of gas purity (removal of particulate matter, sulfur, nitrogen, and alkali metal compounds) so that it will be compatible with both environmental and machine constraints. In this work, a survey of the available and developmental equipment for the removal of particulate matter and sulfur compounds has been conducted. In addition, an analysis has been performed to evaluate the performance of a number of alternative process configurations in light of overall system needs. Results from this study indicate that commercially available, reliable, and economically competitive hot-gas cleanup equipment capable of conditioning raw product gas to the levels required for high-temperatue turbine operation will not be available for some time.

  14. DEVELOPMENT OF A LOW-COST INFERENTIAL NATURAL GAS ENERGY FLOW RATE PROTOTYPE RETROFIT MODULE

    Energy Technology Data Exchange (ETDEWEB)

    E. Kelner; T.E. Owen; D.L. George; A. Minachi; M.G. Nored; C.J. Schwartz

    2004-03-01

    In 1998, Southwest Research Institute{reg_sign} began a multi-year project co-funded by the Gas Research Institute (GRI) and the U.S. Department of Energy. The project goal is to develop a working prototype instrument module for natural gas energy measurement. The module will be used to retrofit a natural gas custody transfer flow meter for energy measurement, at a cost an order of magnitude lower than a gas chromatograph. Development and evaluation of the prototype retrofit natural gas energy flow meter in 2000-2001 included: (1) evaluation of the inferential gas energy analysis algorithm using supplemental gas databases and anticipated worst-case gas mixtures; (2) identification and feasibility review of potential sensing technologies for nitrogen diluent content; (3) experimental performance evaluation of infrared absorption sensors for carbon dioxide diluent content; and (4) procurement of a custom ultrasonic transducer and redesign of the ultrasonic pulse reflection correlation sensor for precision speed-of-sound measurements. A prototype energy meter module containing improved carbon dioxide and speed-of-sound sensors was constructed and tested in the GRI Metering Research Facility at SwRI. Performance of this module using transmission-quality natural gas and gas containing supplemental carbon dioxide up to 9 mol% resulted in gas energy determinations well within the inferential algorithm worst-case tolerance of {+-}2.4 Btu/scf (nitrogen diluent gas measured by gas chromatograph). A two-week field test was performed at a gas-fired power plant to evaluate the inferential algorithm and the data acquisition requirements needed to adapt the prototype energy meter module to practical field site conditions.

  15. 26 CFR 1.263(c)-1 - Intangible drilling and development costs in the case of oil and gas wells.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 3 2010-04-01 2010-04-01 false Intangible drilling and development costs in the... Intangible drilling and development costs in the case of oil and gas wells. For rules relating to the option to deduct as expenses intangible drilling and development costs in the case of oil and gas wells, see...

  16. Partitioning of mercury, arsenic, selenium, boron, and chloride in a full-scale coal combustion process equipped with selective catalytic reduction, electrostatic precipitation, and flue gas desulfurization systems

    Energy Technology Data Exchange (ETDEWEB)

    Chin-Min Cheng; Pauline Hack; Paul Chu; Yung-Nan Chang; Ting-Yu Lin; Chih-Sheng Ko; Po-Han Chiang; Cheng-Chun He; Yuan-Min Lai; Wei-Ping Pan [Western Kentucky University, Bowling Green, KY (United States). Institute for Combustion Science and Environmental Technology

    2009-09-15

    A full-scale field study was carried out at a 795 MWe coal-fired power plant equipped with selective catalytic reduction (SCR), an electrostatic precipitator (ESP), and wet flue gas desulfurization (FGD) systems to investigate the distribution of selected trace elements (i.e., mercury, arsenic, selenium, boron, and chloride) from coal, FGD reagent slurry, makeup water to flue gas, solid byproduct, and wastewater streams. Flue gases were collected from the SCR outlet, ESP inlet, FGD inlet, and stack. Concurrent with flue gas sampling, coal, bottom ash, economizer ash, and samples from the FGD process were also collected for elemental analysis. By combining plant operation parameters, the overall material balances of selected elements were established. The removal efficiencies of As, Se, Hg, and B by the ESP unit were 88, 56, 17, and 8%, respectively. Only about 2.5% of Cl was condensed and removed from flue gas by fly ash. The FGD process removed over 90% of Cl, 77% of B, 76% of Hg, 30% of Se, and 5% of As. About 90% and 99% of the FGD-removed Hg and Se were associated with gypsum. For B and Cl, over 99% were discharged from the coal combustion process with the wastewater. Mineral trona (trisodium hydrogendicarbonate dehydrate, Na{sub 3}H(CO{sub 3}){sub 2}.2H{sub 2}O) was injected before the ESP unit to control the emission of sulfur trioxide (SO{sub 3}). By comparing the trace elements compositions in the fly ash samples collected from the locations before and after the trona injection, the injection of trona did not show an observable effect on the partitioning behaviors of selenium and arsenic, but it significantly increased the adsorption of mercury onto fly ash. The stack emissions of mercury, boron, selenium, and chloride were for the most part in the gas phase. 47 refs., 3 figs., 11 tabs.

  17. Coal desulfurization by aqueous chlorination

    Science.gov (United States)

    Kalvinskas, J. J.; Vasilakos, N.; Corcoran, W. H.; Grohmann, K.; Rohatgi, N. K. (Inventor)

    1982-01-01

    A method of desulfurizing coal is described in which chlorine gas is bubbled through an aqueous slurry of coal at low temperature below 130 degrees C., and at ambient pressure. Chlorinolysis converts both inorganic and organic sulfur components of coal into water soluble compounds which enter the aqueous suspending media. The media is separated after chlorinolysis and the coal dechlorinated at a temperature of from 300 C to 500 C to form a non-caking, low-sulfur coal product.

  18. Determination of the Effect of Coal/Biomass-Derived Syngas Contaminants on the Performance of Fischer-Tropsch and Water-Gas-Shift Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Trembly, Jason; Cooper, Matthew; Farmer, Justin; Turk, Brian; Gupta, Raghubir

    2010-12-31

    Today, nearly all liquid fuels and commodity chemicals are produced from non-renewable resources such as crude oil and natural gas. Because of increasing scrutiny of carbon dioxide (CO{sub 2}) emissions produced using traditional fossil-fuel resources, the utilization of alternative feedstocks for the production of power, hydrogen, value-added chemicals, and high-quality hydrocarbon fuels such as diesel and substitute natural gas (SNG) is critical to meeting the rapidly growing energy needs of modern society. Coal and biomass are particularly attractive as alternative feedstocks because of the abundant reserves of these resources worldwide. The strategy of co-gasification of coal/biomass (CB) mixtures to produce syngas for synthesis of Fischer-Tropsch (FT) fuels offers distinct advantages over gasification of either coal or biomass alone. Co-feeding coal with biomass offers the opportunity to exploit economies of scale that are difficult to achieve in biomass gasification, while the addition of biomass to the coal gasifier feed leverages proven coal gasification technology and allows CO{sub 2} credit benefits. Syngas generated from CB mixtures will have a unique contaminant composition because coal and biomass possess different concentrations and types of contaminants, and the final syngas composition is also strongly influenced by the gasification technology used. Syngas cleanup for gasification of CB mixtures will need to address this unique contaminant composition to support downstream processing and equipment. To investigate the impact of CB gasification on the production of transportation fuels by FT synthesis, RTI International conducted thermodynamic studies to identify trace contaminants that will react with water-gas-shift and FT catalysts and built several automated microreactor systems to investigate the effect of single components and the synergistic effects of multiple contaminants on water-gas-shift and FT catalyst performance. The contaminants

  19. In-situ coal gasification as a progressive coal utilization method

    Energy Technology Data Exchange (ETDEWEB)

    Petrenko, E.V.; Saltykov, I.F.

    1988-02-01

    Describes the Podzemgaz coal gasification station at Angren that was put into operation in 1961. It exploits a 15 m thick and 120-250 m deep seam of brown coal. Technology of in-situ coal gasification is described and its results are compared in regard to cost and efficiency with the results of conventional surface mining. Air blowing is used for most in-situ coal gasification in USSR. Trials using air enriched in oxygen for this purpose were conducted in 1953 and 1957 but did not find wider application. A station using oxygen enrichment technology is planned for Angren at the Apartak section, as cheaper oxygen production methods have emerged. A new concept for in-situ coal gasification using membrane technology (molecular sieves) is set out. This technology assures total chemical and power utilization of coal, yielding not only coal gas but also liquid nitrogen, hydrogen, a mixture of both these gases for ammonia production, and carbonic acid. Prospective site selection for in-situ coal gasification stations is discussed and conditions required for the respective coalfields are outlined.

  20. CO2 Emission Factors for Coals

    Directory of Open Access Journals (Sweden)

    P. Orlović-Leko

    2015-03-01

    Full Text Available Emission factors are used in greenhouse gas inventories to estimate emissions from coal combustion. In the absence of direct measures, emissions factors are frequently used as a quick, low cost way to estimate emissions values. Coal combustion has been a major contributor to the CO2 flux into the atmosphere. Nearly all of the fuel carbon (99 % in coal is converted to CO2 during the combustion process. The carbon content is the most important coal parameter which is the measure of the degree of coalification (coal rank. Coalification is the alteration of vegetation to form peat, succeeded by the transformation of peat through lignite, sub-bituminous, bituminous to anthracite coal. During the geochemical or metamorphic stage, the progressive changes that occur within the coal are an increase in the carbon content and a decrease in the hydrogen and oxygen content resulting in a loss of volatiles. Heterogeneous composition of coal causes variation in CO2 emission from different coals. The IPCC (Intergovernmental Panel on Climate Change has produced guidelines on how to produce emission inventories which includes emission factors. Although 2006 IPCC Guidelines provided the default values specified according to the rank of the coal, the application of country-specific emission factors was recommended when estimating the national greenhouse gas emissions. This paper discusses the differences between country-specific emission factors and default IPCC CO2 emission factors, EF(CO2, for coals. Also, this study estimated EF(CO2 for two different types of coals and peat from B&H, on the basis fuel analyses. Carbon emission factors for coal mainly depend on the carbon content of the fuel and vary with both rank and geographic origin, which supports the idea of provincial variation of carbon emission factors. Also, various other factors, such as content of sulphur, minerals and macerals play an important role and influence EF(CO2 from coal. Carbonate minerals

  1. Thermodynamic and hydrochemical controls on CH4 in a coal seam gas and overlying alluvial aquifer: new insights into CH4 origins

    Science.gov (United States)

    Owen, D. Des. R.; Shouakar-Stash, O.; Morgenstern, U.; Aravena, R.

    2016-08-01

    Using a comprehensive data set (dissolved CH4, δ13C-CH4, δ2H-CH4, δ13C-DIC, δ37Cl, δ2H-H2O, δ18O-H2O, Na, K, Ca, Mg, HCO3, Cl, Br, SO4, NO3 and DO), in combination with a novel application of isometric log ratios, this study describes hydrochemical and thermodynamic controls on dissolved CH4 from a coal seam gas reservoir and an alluvial aquifer in the Condamine catchment, eastern Surat/north-western Clarence-Moreton basins, Australia. δ13C-CH4 data in the gas reservoir (-58‰ to -49‰) and shallow coal measures underlying the alluvium (-80‰ to -65‰) are distinct. CO2 reduction is the dominant methanogenic pathway in all aquifers, and it is controlled by SO4 concentrations and competition for reactants such as H2. At isolated, brackish sites in the shallow coal measures and alluvium, highly depleted δ2H-CH4 (coal measures (<200 m) or the alluvium was not observed. The study demonstrates the importance of understanding CH4 at different depth profiles within and between aquifers. Further research, including culturing studies of microbial consortia, will improve our understanding of the occurrence of CH4 within and between aquifers in these basins.

  2. A LOW-COST GPR GAS PIPE & LEAK DETECTOR

    Energy Technology Data Exchange (ETDEWEB)

    David Cist; Alan Schutz

    2005-03-30

    A light-weight, easy to use ground penetrating radar (GPR) system for tracking metal/non-metal pipes has been developed. A pre-production prototype instrument has been developed whose production cost and ease of use should fit important market niches. It is a portable tool which is swept back and forth like a metal detector and which indicates when it goes over a target (metal, plastic, concrete, etc.) and how deep it is. The innovation of real time target detection frees the user from having to interpret geophysical data and instead presents targets as dots on the screen. Target depth is also interpreted automatically, relieving the user of having to do migration analysis. In this way the user can simply walk around looking for targets and, by ''connecting the dots'' on the GPS screen, locate and follow pipes in real time. This is the first tool known to locate metal and non-metal pipes in real time and map their location. This prototype design is similar to a metal detector one might use at the beach since it involves sliding a lightweight antenna back and forth over the ground surface. The antenna is affixed to the end of an extension that is either clipped to or held by the user. This allows him to walk around in any direction, either looking for or following pipes with the antenna location being constantly recorded by the positioning system. Once a target appears on the screen, the user can locate by swinging the unit to align the cursor over the dot. Leak detection was also a central part of this project, and although much effort was invested into its development, conclusive results are not available at the time of the writing of this document. Details of the efforts that were made as a part of this cooperative agreement are presented.

  3. Trace elements in coal ash

    Science.gov (United States)

    Deonarine, Amrika; Kolker, Allan; Doughten, Michael W.

    2015-01-01

    Coal ash is a residual waste product primarily produced by coal combustion for electric power generation. Coal ash includes fly ash, bottom ash, and flue-gas desulfurization products (at powerplants equipped with flue-gas desulfurization systems). Fly ash, the most common form of coal ash, is used in a range of products, especially construction materials. A new Environmental Protection Agency ruling upholds designation of coal ash as a non-hazardous waste under Subtitle D of the Resource Conservation and Recovery Act, allowing for the continued beneficial use of coal ash and also designating procedures and requirements for its storage.

  4. DEVELOPMENT OF ANALYTICAL METHODS FOR THE QUANTIFICATION OF THE CHEMICAL FORMS OF MERCURY AND OTHER TARGET POLLUTANTS IN COAL-FIRED BOILER FLUE GAS

    Energy Technology Data Exchange (ETDEWEB)

    Terence J. McManus, Ph.D.

    1999-06-30

    Since approximately 55% of the electrical power produced in the U. S. is generated by coal-based power utility plants, there is serious concern about the massive amounts of coal combustion products emitted into the atmosphere annually. Furthermore, Title III of the 1990 Clean Air Act Amendments (CAAA) requires the measurement and inventory of a possible 189 hazardous air pollutants (HAPs) from any stationary source producing more than 10 tons per year of any one pollutant or more than 25 tons per year of total pollutants. Although power utilities are not presently included on the list of source categories, the CAAA requires the U. S. Environmental Protection Agency to carry out a study of emissions from electricity generation using fossil fuels. Since many of these HAPs are known to be present in coal derived flue gas, coal-fired electric power utilities may be subject to regulation following these studies if Congress considers it necessary. In a cooperative effort with the U. S. Environmental Protection Agency (EPA), the U. S. Department of Energy (DOE) through its Federal Energy Technology Center (FETC) initiated such a study in 1991. DOE-FETC commissioned five primary contractors to conduct emission studies at eight different coal-fired electric utilities. The eight sites represented a cross section of feed coal type, boiler designs, and particulate and gaseous pollutant control technologies. The major goal of these studies was to determine the sampling and analytical methodologies that could be used efficiently to perform these emission tests while producing representative and reliable emission data. The successful methodology could then be recommended to the EPA for use in compliance testing in the event the regulation of air toxic emissions from coal-fired power plants is implemented. A secondary purpose of the testing was to determine the effectiveness of the control technologies in reducing target hazardous air pollutants. Advanced Technology Systems, Inc

  5. Exploring the determinants of health and wellbeing in communities living in proximity to coal seam gas developments in regional Queensland

    Directory of Open Access Journals (Sweden)

    Fiona Mactaggart

    2017-08-01

    Full Text Available Abstract Background There is some concern that coal seam gas mining may affect health and wellbeing through changes in social determinants such as living and working conditions, local economy and the environment. The onward impact of these conditions on health and wellbeing is often not monitored to the same degree as direct environmental health impacts in the mining context, but merits attention. This study reports on the findings from a recurrent theme that emerged from analysis of the qualitative component of a comprehensive Health Needs Assessment (HNA conducted in regional Queensland: that health and wellbeing of communities was reportedly affected by nearby coal seam gas (CSG development beyond direct environmental impacts. Methods Qualitative analysis was initially completed using the Framework Method to explore key themes from 11 focus group discussions, 19 in-depth interviews, and 45 key informant interviews with health and wellbeing service providers and community members. A key theme emerged from the analysis that forms the basis of this paper. This study is part of a larger comprehensive HNA involving qualitative and quantitative data collection to explore the health and wellbeing needs of three communities living in proximity to CSG development in regional Queensland, Australia. Results Communities faced social, economic and environmental impacts from the rapid growth of CSG development, which were perceived to have direct and indirect effects on individual lifestyle factors such as alcohol and drug abuse, family relationships, social capital and mental health; and community-level factors including social connectedness, civic engagement and trust. Conclusions Outer regional communities discussed the effects of mining activity on the fabric of their town and community, whereas the inner regional community that had a longer history of industrial activity discussed the impacts on families and individual health and wellbeing. The

  6. Retrofitting of municipal coal fired heating plant with integrated biomass gasification gas turbine based cogeneration block

    Energy Technology Data Exchange (ETDEWEB)

    Kalina, Jacek [Silesian University of Technology, Institute of Thermal Technologies, Knarskiego 22, 44-100 Gliwice (Poland)

    2010-05-15

    Biomass has a significant potential for reduction of both CO{sub 2} emission and consumption of fossil fuels in energy production sector. On the other hand the successful implementation of biomass into regional energy systems is strongly influenced by many political, economic and technical factors. The best effects can be obtained if a proper choice of biomass plant technology has been made. The objective of this work is the analysis and discussion of technical and economic benefits of retrofitting an existing coal-fired municipal heating plant with integrated biomass gasification cogeneration block. The project leads to both local and global reduction of emission and fossil fuels consumption. An investment decision is however dependent on economic profitability, which is also examined in this work. Four design alternatives were proposed and modeled with using Cycle-Tempo simulation software. An annual mass and energy balance of the plant was calculated and economic analysis was performed. The results indicate a great energy and emission savings potential. An effective financial support, that results from local renewable energy promotion policy, can make an economic performance of the project attractive. The best technical solution for the retrofitting the analyzed heating plant was the combined cycle integrated with gasification of biomass with steam. (author)

  7. Novel catalytic process for flue gas conditioning in electrostatic precipitators of coal-fired power plants.

    Science.gov (United States)

    Zagoruiko, Andrey; Balzhinimaev, Bair; Vanag, Sergey; Goncharov, Vladimir; Lopatin, Sergey; Zykov, Alexander; Anichkov, Sergey; Zhukov, Yurii; Yankilevich, Vassily; Proskokov, Nikolay; Hutson, Nick

    2010-08-01

    One of the most important environmental protection problems for coal-fired power plants is prevention of atmospheric pollution of flying ash. The ash particles are typically removed from flue gases by means of electrostatic precipitators, for which the efficiency may be significantly increased by lowering the resistance of fly ash, which may be achieved by controlled addition of microamounts of sulfur trioxide (SO3) into the flue gases. This paper describes the novel technology for production of SO3 by sulfur dioxide (SO2) oxidation using the combined catalytic system consisting of conventional vanadium catalyst and novel platinum catalyst on the base of silicazirconia glass-fiber supports. This combination provides highly efficient SO, oxidation in a wide temperature range with achievement of high SO, conversion. The performed pilot tests have demonstrated reliable and stable operation, excellent resistance of the novel catalytic system to deactivation, and high overall efficiency of the proposed process. The scale of the plant was equivalent to the commercial prototype; therefore, no further scale-up of the oxidation process is required.

  8. Fuel Gas Demonstration Plant Program: Small-Scale Industrial Project. Commercial plant design and economic evaluation, Phase I. Interim report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-12-01

    This report contains the description of a proposed Commercial Coal Gasification Plant to be built for Erie Mining Company at Hoyt Lakes, Minnesota. It also contains a Capital Cost Estimate for the plant and examines the economics of the plant operations. A Commercial Plant to utilize Eastern coal can be built at a capital cost of $95.8 million based on 1978 costs. This plant, utilizing Eastern coal costing $40 per ton, must sell low Btu gas at $6.64 per million Btu to produce a 12% internal rate of return. A Commercial Plant to utilize Western coal can be built at a capital cost of $81.6 million based on 1978 costs. This plant, utilizing Western coal costing $31 per ton, must sell low Btu gas at $6.39 per million Btu to produce a 12% internal rate of return.

  9. Study on Gas Field Optimization Distribution with Parameters Adjustment of the Air Duct Outlet for Mechanized Heading Face in Coal Mine

    Science.gov (United States)

    Gong, Xiao-Yan; Zhang, Xin-Yi; Wu, Yue; Xia, Zhi-Xin; Li, Ying

    2017-12-01

    At present, as the increasingly drilling dimensions with cross-section expansion and distance prolong in coal mine, the situation of gas accumulation in mechanized heading face becomes severe. In this paper, optimization research of gas distribution was carried out by adjusting parameters of the air duct outlet, including angle, caliber and the front and rear distance of air duct outlet. Mechanized heading face of Ningtiaota coal mine was taken as the research object, simulated and analyzed the problems of original gas field, the reasonable parameters range of the air duct outlet was determined according to the allowable range of wind speed and the effect of gas dilution, the adjustment range of each parameter of the air duct outlet is preliminarily determined. Base on this, the distribution of gas field under different parameters adjustment of air duct outlet was simulated. The specific parameters under the different distance between the air duct outlet and the mechanized heading face were obtained, and a new method of optimizing the gas distribution by adjusting parameters of the air duct outlet was provided.

  10. System study on high temperature gas cleaning in Integrated Coal Gasification Combined Cycles (IGCC's). Systeemstudie hoge temperatuur gasreiniging bij KV-STEG-installaties; Bijlage

    Energy Technology Data Exchange (ETDEWEB)

    Alderliesten, P.T.; Jansen, D. (Netherlands Energy Research Foundation, Petten (Netherlands)); Brunia, A.; Melman, A.G.; Schmal, D.; Verschoor, M.J.E.; Woudstra, N. (Instituut voor Milieu- en Energietechnologie TNO, Apeldoorn (Netherlands)); Enoch, G.D.; Janssen, F.J.; Raas, J.L.; Tummers, J.F. (Keuring van Elektrotechnische Materialen, Arnhem (Netherlands)); Klein Teeselink, H. (Stork Ketels, Utrecht (N

    1990-11-01

    This volume is a supplement of the report with the same title, report number NOVEM--90-310. The complete input data and calculation results of the thermodynamic system calculations, as discussed in chapter 5 of the above-mentioned report, are presented. For each system calculation a process diagram, a list of the input data and a computer print of the calculation results are given for the following variants: SBAS, SBASa, S250, S350, S600, TBAS, TBASa, T250, T350, and T600. S stands for the Shell-coal-gasification process, and T for the Texaco-coal-gasification process. The BAS-variant is a low-temperature (40{sup o}C) gas cleaning process. The other variants are hot gas cleanup's (250, 350 and 600{sup o}C).

  11. Exergy costing analysis and performance evaluation of selected gas turbine power plants

    Directory of Open Access Journals (Sweden)

    S.O. Oyedepo

    2015-12-01

    Full Text Available In this study, exergy costing analysis and performance evaluation of selected gas turbine power plants in Nigeria are carried out. The results of exergy analysis confirmed that the combustion chamber is the most exergy destructive component compared to other cycle components. The exergetic efficiency of the plants was found to depend significantly on a change in gas turbine inlet temperature (GTIT. The increase in exergetic efficiency with the increase in turbine inlet temperature is limited by turbine material temperature limit. This was observed from the plant efficiency defect curve. As the turbine inlet temperature increases, the plant efficiency defect decreases to minimum value at certain GTIT (1,200 K, after which it increases with GTIT. This shows degradation in performance of gas turbine plant at high turbine inlet temperature. Exergy costing analysis shows that the combustion chamber has the greatest cost of exergy destruction compared to other components. Increasing the GTIT, both the exergy destruction and the cost of exergy destruction of this component are found to decrease. Also, from exergy costing analysis, the unit cost of electricity produced in the power plants varies from cents 1.99/kWh (N3.16/kWh to cents 5.65/kWh (N8.98/kWh.

  12. Coal; Le charbon

    Energy Technology Data Exchange (ETDEWEB)

    Teissie, J.; Bourgogne, D. de; Bautin, F. [TotalFinaElf, La Defense, 92 - Courbevoie (France)

    2001-12-15

    Coal world production represents 3.5 billions of tons, plus 900 millions of tons of lignite. 50% of coal is used for power generation, 16% by steel making industry, 5% by cement plants, and 29% for space heating and by other industries like carbo-chemistry. Coal reserves are enormous, about 1000 billions of tons (i.e. 250 years of consumption with the present day rate) but their exploitation will be in competition with less costly and less polluting energy sources. This documents treats of all aspects of coal: origin, composition, calorific value, classification, resources, reserves, production, international trade, sectoral consumption, cost, retail price, safety aspects of coal mining, environmental impacts (solid and gaseous effluents), different technologies of coal-fired power plants and their relative efficiency, alternative solutions for the recovery of coal energy (fuel cells, liquefaction). (J.S.)

  13. Preconversion processing of bituminous coals: New directions to improved direct catalytic coal liquefaction. Final report, September 20, 1991--September 19, 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    One of the main goals for competitive coal liquefaction is to decrease gas yields to reduce hydrogen consumption. Complexing this element as methane and ethane decreases process efficiently and is less cost effective. To decrease the gas yield and increase the liquid yield, an effective preconversion process has been explored on the basis of the physically associated molecular nature of coal. Activities have been focused on two issues: (1) maximizing the dissolution of associated coal and (2) defining the different reactivity associated with a wide molecular weight distribution. Two-step soaking at 350{degrees}C and 400{degrees}C in a recycle oil was found to be very effective for coal solubilization. No additional chemicals, catalysts, and hydrogen are required for this preconversion process. High-volatile bituminous coals tested before liquefaction showed 80--90% conversion with 50--55% oil yields. New preconversion steps suggested are as follows: (1) dissolution of coal with two-step high-temperature soaking, (2) separation into oil and heavy fractions of dissolved coal with vacuum distillation, and (3) selective liquefaction of the separated heavy fractions under relatively mild conditions. Laboratory scale tests of the proposed procedure mode using a small autoclave showed a 30% increase in the oil yield with a 15--20% decrease in the gas yield. This batch operation projects a substantial reduction in the ultimate cost of coal liquefaction.

  14. Demonstration of Advanced CO2 Capture Process Improvements for Coal-Fired Flue Gas

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, John [Southern Company Services, Inc., Wilsonville, AL (United States)

    2017-10-01

    This document summarizes the activities of Cooperative Agreement DE-FE0026590, “Demonstration of Advanced CO2 Capture Process Improvements for Coal-Fired Flue Gas” during the performance period of October 1, 2015 through May 31, 2017. This project was funded by the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL). Southern Company Services, Inc. (SCS) was the prime contractor and co-funder of the project. Mitsubishi Heavy Industries America (MHIA) and AECOM were project team members. The overall project objective was to improve costs, energy requirements, and performance of an existing amine-based CO2 capture process. This will occur via improvements in three areas: 1. Reboiler design – The first objective of the program was to demonstrate performance of an integrated stripper/reboiler (termed Built-in Reboiler, or BIR) to reduce footprint, capital costs, and integration issues of the current technology. 2. Particulate management – The second objective was to carry out a Particulate Matter Management (PMM) test. This has the potential to reduce operating costs and capital costs due to the reduced or eliminated need for mechanical filtration. 3. Solvent – The third objective was to carry out a new solvent test plan (referred to as NSL) to demonstrate a new solvent (termed New Solvent A), which is expected to reduce regeneration steam. The bulk price is also expected to be lower than KS-1, which is the current solvent used in this process. NSL testing would include baseline testing, optimization, long term testing, solvent reclamation testing, and final inspection. These combine to form the Advanced Carbon Capture (ACC) technology. Much of this work will be applicable to generic solvent processes, especially in regards to improved reboiler design, and focused to meet or exceed the DOE’s overall carbon capture performance goals of 90% CO2 capture rate with 95% CO2 purity at a cost of

  15. Preliminary draft industrial siting administration permit application: Socioeconomic factors technical report. Final technical report, November 1980-May 1982. [Proposed WyCoalGas project in Converse County, Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    Under the with-project scenario, WyCoalGas is projected to make a difference in the long-range future of Converse County. Because of the size of the proposed construction and operations work forces, the projected changes in employment, income, labor force, and population will alter Converse County's economic role in the region. Specifically, as growth occurs, Converse County will begin to satisfy a larger portion of its own higher-ordered demands, those that are currently being satisfied by the economy of Casper. Business-serving and household-serving activities, currently absent, will find the larger income and population base forecast to occur with the WyCoalGas project desirable. Converse County's economy will begin to mature, moving away from strict dependence on extractive industries to a more sophisticated structure that could eventually appeal to national, and certainly, regional markets. The technical demand of the WyCoalGas plant will mean a significant influx of varying occupations and skills. The creation of basic manufacturing, advanced trade and service sectors, and concomitant finance and transportation firms will make Converse County more economically autonomous. The county will also begin to serve market center functions for the smaller counties of eastern Wyoming that currently rely on Casper, Cheyenne or other distant market centers. The projected conditions expected to exist in the absence of the WyCoalGas project, the socioeconomic conditions that would accompany the project, and the differences between the two scenarios are considered. The analysis is keyed to the linkages between Converse County and Natrona County.

  16. Mercury transportation in soil via using gypsum from flue gas desulfurization unit in coal-fired power plant.

    Science.gov (United States)

    Wang, Kelin; Orndorff, William; Cao, Yan; Pan, Weiping

    2013-09-01

    The mercury flux in soils was investigated, which were amended by gypsums from flue gas desulphurization (FGD) units of coal-fired power plants. Studies have been carried out in confined greenhouses using FGD gypsum treated soils. Major research focus is uptakes of mercury by plants, and emission of mercury into the atmosphere under varying application rates of FGD gypsum, simulating rainfall irrigations, soils, and plants types. Higher FGD gypsum application rates generally led to higher mercury concentrations in the soils, the increased mercury emissions into the atmosphere, and the increased mercury contents in plants (especially in roots and leaves). Soil properties and plant species can play important roles in mercury transports. Some plants, such as tall fescue, were able to prevent mercury from atmospheric emission and infiltration in the soil. Mercury concentration in the stem of plants was found to be increased and then leveled off upon increasing FGD gypsum application. However, mercury in roots and leaves was generally increased upon increasing FGD gypsum application rates. Some mercury was likely absorbed by leaves of plants from emitted mercury in the atmosphere.

  17. High H2O-resistance CaO-MnOx/MSU-H sorbents for hot coal gas desulfurization.

    Science.gov (United States)

    Xia, Hong; Liu, Bingsi

    2017-02-15

    A series of xMnyCa/MSU-H sorbents with various Mn/Ca molar ratio were first designed and synthesized with a sol-gel method. The desulfurization performance of the new sorbent was investigated at 600-800°C in hot coal gas. 90Mn10Ca/MSU-H exhibited better desulfurization performance at 750°C with a breakthrough sulfur capacity (BSC) of 18.69g S/100g sorbent compared to other supported Mn-based sorbents (13.2g S/100g sorbent) in similar desulfurization condition, and strong durability in multiple sulfidation-regeneration cycles using oxidation/reduction regeneration method which resolved the scientific issue of that CaSO4 is hardly decomposed to CaO. The introduction of Ca species effectively promoted the dispersion of active constituents, which improved the desulfurization activity. More importantly, 90Mn10Ca/MSU-H showed excellent H2O-resistance ability due to the fact that CaO enhanced the sorption of H2O. Moreover, the utilization of MSU-H with large pore size and excellent thermal stability effectively assured fast mass-transfer and confined the migration of active particles, which led to long lifetime stability of sorbents. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Permeability changes in coal resulting from gas desorption. Twelfth quarterly report, June 1, 1992--August 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Levine, J.R.; Johnson, P.M.

    1992-12-31

    During this quarter, work was continued on measuring the methane sorption capacity of dispersed organic matter in gas shales and maceral concentrates derived from a Kentucky coal. Although previous results have demonstrated that the microbalance technique is successful in generating sorption isotherm curves, the accuracy of the technique has not been well established. The only previous test that allowed a comparison between gravimetric data and volumetric data showed a significant discrepancy with the gravimetric data indicating a considerably greater sorption quantities than the volumetric data. During the present quarter we took advantage of an opportunity to join in a round-robin analysis of sorption capacity of carbonatious shales. A suite of four samples was sent to six laboratories with each lab measuring sorption capacity for methane and reporting the results to a central lab which would compile all of the data for comparitive purposes. Of course, none of the other laboratories were using the gravimetric approach for measuring methane sorption capacity. So this provides a unique opportunity to test the accuracy of our methods.

  19. Infiltration from an impoundment for coal-bed natural gas, Powder River Basin, Wyoming: Evolution of water and sediment chemistry

    Science.gov (United States)

    Healy, R.W.; Rice, C.A.; Bartos, T.T.; McKinley, M.P.

    2008-01-01

    Development of coal-bed natural gas (CBNG) in the Powder River Basin, Wyoming, has increased substantially in recent years. Among environmental concerns associated with this development is the fate of groundwater removed with the gas. A preferred water-management option is storage in surface impoundments. As of January 2007, permits for more than 4000 impoundments had been issued within Wyoming. A study was conducted on changes in water and sediment chemistry as water from an impoundment infiltrated the subsurface. Sediment cores were collected prior to operation of the impoundment and after its closure and reclamation. Suction lysimeters were used to collect water samples from beneath the impoundment. Large amounts of chloride (12,300 kg) and nitrate (13,500 kg as N), most of which accumulated naturally in the sediments over thousands of years, were released into groundwater by infiltrating water. Nitrate was more readily flushed from the sediments than chloride. If sediments at other impoundment locations contain similar amounts of chloride and nitrate, impoundments already permitted could release over 48 x 106 kg of chloride and 52 x 106 kg of nitrate into groundwater in the basin. A solute plume with total dissolved solid (TDS) concentrations at times exceeding 100,000 mg/L was created in the subsurface. TDS concentrations in the plume were substantially greater than those in the CBNG water (about 2300 mg/L) and in the ambient shallow groundwater (about 8000 mg/L). Sulfate, sodium, and magnesium are the dominant ions in the plume. The elevated concentrations are attributed to cation-exchange-enhanced gypsum dissolution. As gypsum dissolves, calcium goes into solution and is exchanged for sodium and magnesium on clays. Removal of calcium from solution allows further gypsum dissolution.

  20. Integrated removal of NO and mercury from coal combustion flue gas using manganese oxides supported on TiO2.

    Science.gov (United States)

    Zhang, Shibo; Zhao, Yongchun; Wang, Zonghua; Zhang, Junying; Wang, Lulu; Zheng, Chuguang

    2017-03-01

    A catalyst composed of manganese oxides supported on titania (MnOx/TiO2) synthesized by a sol-gel method was selected to remove nitric oxide and mercury jointly at a relatively low temperature in simulated flue gas from coal-fired power plants. The physico-chemical characteristics of catalysts were investigated by X-ray fluorescence (XRF), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) analyses, etc. The effects of Mn loading, reaction temperature and individual flue gas components on denitration and Hg(0) removal were examined. The results indicated that the optimal Mn/Ti molar ratio was 0.8 and the best working temperature was 240°C for NO conversion. O2 and a proper ratio of [NH3]/[NO] are essential for the denitration reaction. Both NO conversion and Hg(0) removal efficiency could reach more than 80% when NO and Hg(0) were removed simultaneously using Mn0.8Ti at 240°C. Hg(0) removal efficiency slightly declined as the Mn content increased in the catalysts. The reaction temperature had no significant effect on Hg(0) removal efficiency. O2 and HCl had a promotional effect on Hg(0) removal. SO2 and NH3 were observed to weaken Hg(0) removal because of competitive adsorption. NO first facilitated Hg(0) removal and then had an inhibiting effect as NO concentration increased without O2, and it exhibited weak inhibition of Hg(0) removal efficiency in the presence of O2. The oxidation of Hg(0) on MnOx/TiO2 follows the Mars-Maessen and Langmuir-Hinshelwood mechanisms. Copyright © 2016. Published by Elsevier B.V.

  1. Costs and benefits of differences in the timing of greenhouse gas emission reductions

    NARCIS (Netherlands)

    Admiraal, Annemiek K.; Hof, Andries; Den Elzen, Michel G J; van Vuuren, Detlef P.

    2016-01-01

    Most modelling studies that explore long-term greenhouse gas mitigation scenarios focus on cost-efficient emission pathways towards a certain climate target, like the internationally agreed target to keep global temperature increase below 2 °C compared to pre-industrial levels (the 2 °C climate

  2. Linking gas turbine with lignite fired steam generators: alternatives, limitations, benefits and costs

    Energy Technology Data Exchange (ETDEWEB)

    Stamatelopoulos, G.N.; Leithner, R.; Karakas, E.; Papageorgiou, N. [Technische Universitaet Braunschweig, Braunschweig (Germany). Inst. fuer Waerme und Breunnstofftechnik

    1996-09-01

    In this paper the possibility of linking high efficiency gas turbines with lignite fired steam generators is examined. The possible combinations of gas and steam turbine and the experience gained from their practical application are presented. The technical limitations set by the existing boilers and steam turbines are discussed. For the efficiency and power output increase of the power plant Kardia in Northern Greece the following alternatives are suggested: supplementary firing of oil or natural gas together with lignite; topping of every steam generator with small gas turbines and installation of a gas turbine with turbine with heat recovery steam generator and water/steam side link with every steam generator. The possibility of using the exhaust gas from the gas turbine as the only oxygen carrier is also discussed. These alternatives are calculated with a process simulation program and are compared to each other with emphasis on the technical and the economical aspects. A sensitivity analysis concerning the natural gas price was carried out in order to evaluate its influence on the costs and the affectivity of the investment. 16 refs., 7 figs., 4 tabs.

  3. Partial Oxidation Gas Turbine for Power and Hydrogen Co-Production from Coal-Derived Fuel in Industrial Applications

    Energy Technology Data Exchange (ETDEWEB)

    Joseph Rabovitser

    2009-06-30

    , pressures, and volumetric flows practically identical. In POGT mode, the turbine specific power (turbine net power per lb mass flow from expander exhaust) is twice the value of the onventional turbine. POGT based IGCC plant conceptual design was developed and major components have been identified. Fuel flexible fluid bed gasifier, and novel POGT unit are the key components of the 100 MW IGCC plant for co producing electricity, hydrogen and/or yngas. Plant performances were calculated for bituminous coal and oxygen blown versions. Various POGT based, natural gas fueled systems for production of electricity only, coproduction of electricity and hydrogen, and co production of electricity and syngas for gas to liquid and hemical processes were developed and evaluated. Performance calculations for several versions of these systems were conducted. 64.6 % LHV efficiency for fuel to electricity in combined cycle was achieved. Such a high efficiency arise from using of syngas from POGT exhaust s a fuel that can provide required temperature level for superheated steam generation in HRSG, as well as combustion air preheating. Studies of POGT materials and combustion instabilities in POR were conducted and results reported. Preliminary market assessment was performed, and recommendations for POGT systems applications in oil industry were defined. POGT technology is ready to proceed to the engineering prototype stage, which is recommended.

  4. Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 2: Gas Cleanup Design and Cost Estimates -- Wood Feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Nexant Inc.

    2006-05-01

    As part of Task 2, Gas Cleanup and Cost Estimates, Nexant investigated the appropriate process scheme for treatment of wood-derived syngas for use in the synthesis of liquid fuels. Two different 2,000 metric tonne per day gasification schemes, a low-pressure, indirect system using the gasifier, and a high-pressure, direct system using gasification technology were evaluated. Initial syngas conditions from each of the gasifiers was provided to the team by the National Renewable Energy Laboratory. Nexant was the prime contractor and principal investigator during this task; technical assistance was provided by both GTI and Emery Energy.

  5. Financial and environmental costs of manual versus automated control of end-tidal gas concentrations.

    Science.gov (United States)

    Tay, S; Weinberg, L; Peyton, P; Story, D; Briedis, J

    2013-01-01

    Emerging technologies that reduce the economic and environmental costs of anaesthesia have had limited assessment. We hypothesised that automated control of end-tidal gases, a new feature in anaesthesia machines, will consistently reduce volatile agent consumption cost and greenhouse gas emissions. As part of the planned replacement of anaesthesia machines in a tertiary hospital, we performed a prospective before and after study comparing the cost and greenhouse gas emissions of isoflurane, sevoflurane and desflurane when using manual versus automated control of end-tidal gases. We analysed 3675 general anaesthesia cases with inhalational agents: 1865 using manual control and 1810 using automated control. Volatile agent cost was $18.87/hour using manual control and $13.82/hour using automated control: mean decrease $5.05/hour (95% confidence interval: $0.88-9.22/hour, P=0.0243). The 100-year global warming potential decreased from 23.2 kg/hour of carbon dioxide equivalents to 13.0 kg/hour: mean decrease 10.2 kg/hour (95% confidence interval: 2.7-17.7 kg/hour, P=0.0179). Automated control reduced costs by 27%. Greenhouse gas emissions decreased by 44%, a greater than expected decrease facilitated by a proportional reduction in desflurane use. Automated control of end-tidal gases increases participation in low flow anaesthesia with economic and environmental benefits.

  6. Studies of ignition and combustion of coals subjected to electrochemical activation

    Directory of Open Access Journals (Sweden)

    Kuznetsov Artem

    2017-01-01

    Full Text Available Coal is one of the most important energy sources in the world. According to forecasts, by 2020, the share of coal in the global energy sector will reach 50%, primarily due to the very likely reduction in oil and gas consumption, as well as the revision of the policy on the development of nuclear energy. For thermal power plants with pulverized-coal boilers, a problematic economic and technological issue is ignition and lighting, carried out with high-reaction fuel - gas, fuel oil, and diesel fuel. The cost of this fuel is much higher than the cost of coal itself, which means that the introduction of new technologies that allow excluding petroleum products from the energy processes that take place at the CHP plant is topical [1]. In this paper, the technology of electrochemical ignition, which is an alternative to gas and fuel oil ignition of power boilers, is studied.

  7. Green-House-Gas-Reduced Coal-and-Biomass-to-Liquid-Based Jet Fuel (GHGR-CBTL) Process - Final Technical report

    Energy Technology Data Exchange (ETDEWEB)

    Lux, Kenneth [Altex Technologies Corporation, Sunnyvale, CA (United States); Imam, Thamina [Altex Technologies Corporation, Sunnyvale, CA (United States); Chevanan, Nehru [Altex Technologies Corporation, Sunnyvale, CA (United States); Namazian, Mehdi [Altex Technologies Corporation, Sunnyvale, CA (United States); Wang, Xiaoxing [Pennsylvania State Univ., University Park, PA (United States); Song, Chunshan [Pennsylvania State Univ., University Park, PA (United States)

    2017-11-03

    This Final Technical Report describes the work and accomplishments of the project entitled, “Green-House-Gas-Reduced Coal-and-Biomass-to-Liquid-Based Jet Fuel (GHGR-CBTL) Process”. The main objective of the project was to raise the Technology Readiness Level (TRL) of the GHGR-CBTL fuel-production technology from TRL 4 to TRL 5 by producing a drop-in synthetic Jet Propellant 8 (JP-8) with a greenhouse-gas footprint less than or equal to petroleum-based JP-8 by utilizing mixtures of coal and biomass as the feedstock. The system utilizes the patented Altex fuel-production technology, which incorporates advanced catalysts developed by Pennsylvania State University. While the system was not fabricated and tested, major efforts were expended to design the 1-TPD and a full-scale plant. The system was designed, a Block-Flow Diagram (BFD), a Process-Flow Diagram (PFD), and Piping-and-Instrumentation Diagrams (P&IDs) were produced, a Bill of Materials (BOM) and associated spec sheets were produced, commercially available components were selected and procured, custom components were designed and fabricated, catalysts were developed and screened for performance, and permitting activities were conducted. Optimization tests for JP-8 production using C2 olefin as the feed were performed over a range of temperatures, pressures and WHSVs. Liquid yields of between 63 to 65% with 65% JP-8 fraction (41-42% JP-8 yield) at 50 psig were achieved. Life-Cycle Analysis (LCA) was performed by Argonne National Laboratory (ANL), and a GHGR-CBTL module was added to the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET®) model. Based upon the experimental results, the plant design was reconfigured for zero natural-gas imports and minimal electricity imports. The LCA analysis of the reconfigured process utilizing the GREET model showed that if the char from the process was utilized to produce combined heat and power (CHP) then a feed containing 23 wt% biomass and

  8. Addressing the Impact of Environmental Xenobiotics in Coal-Fired Flue Gas

    Directory of Open Access Journals (Sweden)

    Cornelia A. Bulucea

    2015-03-01

    Full Text Available Dangerous and unstable situations can result from the presence of environmental xenobiotics since their harmful effects on humans and ecosystems are often unpredictable, and building awareness of the environmental risk should be a main concern of humankind. The environmental xenobiotics in the flue gas from a fossil fuel-fired electrical generating station, such as particulate matter (PM, sulfur dioxide (SO2, nitrogen oxides (NOx, and carbon dioxide (CO2, are analyzed in this study, since these xenobiotics are persistent pollutants. Mathematical models of the environmental pollutant vector, estimating the emission factors specific to fossil fuel combustion, are applied to the operation of thermal units in the Turceni electrical generating station, each of which produces a net electrical power of 330 MW. For each stack gas component in the pollutant vector, emission factors and pollutant concentrations are determined. A pattern is also examined depicting the mathematically modelled processes of resonant absorption of an environmental xenobiotic harmonic oscillation by an organism modulated as an absorbing oscillator structure. The xenobiotic concentration degree is represented through a spatial concentration vector, which allows further modelling and simulation of the oscillating regime of environmental xenobiotic absorption.

  9. Automated on-line determination of PPB levels of sodium and potassium in low-Btu coal gas and fluidized bed combustor exhaust by atomic emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Haas, W.J. Jr.; Eckels, D.E.; Kniseley, R.N.; Fassel, V.A.

    1981-01-01

    The Morgantown Energy Technology Center (METC), US Department of Energy, is involved in the development of processes and equipment for production of low-Btu gas from coal and for fluidized bed combustion of coal. The ultimate objective is large scale production of electricity using high temperature gas turbines. Such turbines, however, are susceptible to accelerated corrosion and self-destruction when relatively low concentrations of sodium and potassium are present in the driving gas streams. Knowledge and control of the concentrations of those elements, at part per billion levels, are critical to the success of both the gas cleanup procedures that are being investigated and the overall energy conversion processes. This presentation describes instrumentation and procedures developed at the Ames Laboratory for application to the problems outlined above and results that have been obtained so far at METC. The first Ames instruments, which feature an automated, dual channel flame atomic emission spectrometer, perform the sodium and potassium determinations simultaneously, repetitively, and automatically every two to three minutes by atomizing and exciting a fraction of the subject gas sample stream in either an oxyhydrogen flame or a nitrous oxide-acetylene flame. The analytical results are printed and can be transmitted simultaneously to a process control center.

  10. COAL OF THE FUTURE (Supply Prospects for Thermal Coal by 2030-2050)

    OpenAIRE

    2007-01-01

    The report, produced by Messrs. Energy Edge Ltd. (the U.K.) for the JRC Institute for Energy, aims at making a techno-economic analysis of novel extraction technologies for coal and their potential contribution to the global coal supply. These novel extraction technologies include: advanced coal mapping techniques, improved underground coal mining, underground coal gasification and utilisation of coalmine methane gas.

  11. Study on the fuel cycle cost of gas turbine high temperature reactor (GTHTR300). Contract research

    Energy Technology Data Exchange (ETDEWEB)

    Takei, Masanobu; Katanishi, Shoji; Nakata, Tetsuo; Kunitomi, Kazuhiko [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Oda, Takefumi; Izumiya, Toru [Nuclear Fuel Industries, Ltd., Tokyo (Japan)

    2002-11-01

    In the basic design of gas turbine high temperature reactor (GTHTR300), reduction of the fuel cycle cost has a large benefit of improving overall plant economy. Then, fuel cycle cost was evaluated for GTHTR300. First, of fuel fabrication for high-temperature gas cooled reactor, since there was no actual experience with a commercial scale, a preliminary design for a fuel fabrication plant with annual processing of 7.7 ton-U sufficient four GTHTR300 was performed, and fuel fabrication cost was evaluated. Second, fuel cycle cost was evaluated based on the equilibrium cycle of GTHTR300. The factors which were considered in this cost evaluation include uranium price, conversion, enrichment, fabrication, storage of spent fuel, reprocessing, and waste disposal. The fuel cycle cost of GTHTR300 was estimated at about 1.07 yen/kWh. If the back-end cost of reprocessing and waste disposal is included and assumed to be nearly equivalent to LWR, the fuel cycle cost of GTHTR300 was estimated to be about 1.31 yen/kWh. Furthermore, the effects on fuel fabrication cost by such of fuel specification parameters as enrichment, the number of fuel types, and the layer thickness were considered. Even if the enrichment varies from 10 to 20%, the number of fuel types change from 1 to 4, the 1st layer thickness of fuel changes by 30 {mu}m, or the 2nd layer to the 4th layer thickness of fuel changes by 10 {mu}m, the impact on fuel fabrication cost was evaluated to be negligible. (author)

  12. Low-Btu coal gasification in the United States: company topical. [Brick producers

    Energy Technology Data Exchange (ETDEWEB)

    Boesch, L.P.; Hylton, B.G.; Bhatt, C.S.

    1983-07-01

    Hazelton and other brick producers have proved the reliability of the commercial size Wellman-Galusha gasifier. For this energy intensive business, gas cost is the major portion of the product cost. Costs required Webster/Hazelton to go back to the old, reliable alternative energy of low Btu gasification when the natural gas supply started to be curtailed and prices escalated. Although anthracite coal prices have skyrocketed from $34/ton (1979) to over $71.50/ton (1981) because of high demand (local as well as export) and rising labor costs, the delivered natural gas cost, which reached $3.90 to 4.20/million Btu in the Hazelton area during 1981, has allowed the producer gas from the gasifier at Webster Brick to remain competitive. The low Btu gas cost (at the escalated coal price) is estimated to be $4/million Btu. In addition to producing gas that is cost competitive with natural gas at the Webster Brick Hazelton plant, Webster has the security of knowing that its gas supply will be constant. Improvements in brick business and projected deregulation of the natural gas price may yield additional, attractive cost benefits to Webster Brick through the use of low Btu gas from these gasifiers. Also, use of hot raw gas (that requires no tar or sulfur removal) keeps the overall process efficiency high. 25 references, 47 figures, 14 tables.

  13. Mechanistic and kinetic studies of high-temperature coal gas desulfurization sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Lew, S.; Flytzani-Stephanopoulos, M.; Sarofim, A.F.

    1991-10-01

    The overall objective of this project was to investigate the properties of and evaluate mixed oxides of zinc and titanium for hot fuel gas desulfurization. Uncombined ZnO was also investigated as a base case. Detailed investigation of the reduction and sulfidation reactions of Zn-Ti-O sorbents was performed. The intrinsic kinetics and the product layer diffusion rates in reduction and sulfidation were determined. Kinetic experiments with sorbents containing various Zn/Ti atomic ratios were performed. Chemical phase and structural transformations were followed by various methods. The results were compared to similar experiments performed with ZnO. The purpose of these experiments was to determine how the presence of titanium dioxide affects the reduction and sulfidation of ZnO. This information would be used to identify and select the sorbent composition that gives the best combination of low reduction rate and acceptable sulfidation performance at temperatures exceeding 600{degree}C. (VC)

  14. Long-term experience with maleic acid in a hard coal-fired FGD unit

    Energy Technology Data Exchange (ETDEWEB)

    Knudsen, Niels Ole [Vattenfall A/S, Vodskov (Denmark). Chemistry and Materials

    2010-07-01

    The addition of adipic acid to increase the gas cleaning efficiency of lime water in brown coal power plants is the state-of-the-art approach. In hard coal power plants, functional considerations mean that adipic acid is used less frequently. In Block 3 of the Nordjyllandsvaerket hard coal power plant, maleic acid was used over an 8-year period with great success, improving the desulphurisation capacity and simultaneously reducing operating costs. The greatest advantage of maleic acid as opposed to adipic acid is its exceptional biological stability in the flue gas desulphurising plant. (orig.)

  15. Wood and coal cofiring in Alaska—operational considerations and combustion gas effects for a grate-fired power plant

    Science.gov (United States)

    David Nicholls; Zackery Wright; Daisy. Huang

    2018-01-01

    Coal is the primary fuel source for electrical power generation in interior Alaska, with more than 600,000 tons burned annually at five different power plants. Woody biomass could be used as part of this fuel mix, offering potential environmental and economic benefits. In this research, debarked chips were cofired with locally mined coal at the Aurora Power Plant...

  16. Production of Jet Fuels from Coal-Derived Liquids. Volume 12. Preliminary Process Design and Cost Estimate and Production Run Recommendation

    Science.gov (United States)

    1989-12-01

    Sulfolane Process licensed by Universal Oil Products. Referring to Drawings D5571-701A and B the flow is as follows: Stabilized Naphtha from the Naphtha...DTIC FILE COPY AD-A218 507 AFWAL-TR-87-2042 Volume XII PRODUCTION OF JET FUELS FROM COAL-DERIVED LIQUIDS VOL XII--PRELIMINARY PROCESS DESIGN AND COST...XII--Preliminary Process Design and Cost Estimate and Production Run Recommendation 12. PERSONAL AUTHOR(S) M. W. Furlong, J. D. Fox, J. G. Masin 13a

  17. Coal power and combustion. Quarterly report, January--March 1977

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-12-01

    ERDA's coal combustion and power program has focused on two major areas: Direct combustion of coal and advanced power systems. Efforts in the area of direct combustion are concentrated on: Development of atmospheric and pressurized systems capable of burning high-sulfur coal of all rank and quality in fluidized-bed combustors; development of advanced technology power systems to generate power more economically than present technology permits while using medium- and high-sulfur coal in an environmentally-acceptable manner; development of the technology enabling coal-oil slurries to be substituted as feedstock for gas or oil-fired combustors; and improvement of the efficiency of present boilers. Compared with conventional coal-fired systems, fluidized-bed combustion systems give higher power generation efficiencies and cleaner exhaust gases, even when burning high-sulfur coals. If the fluidized-bed system is pressurized, additional economies in capital and operating costs may be realized. The benefits from high-pressure combustion are a reduction of furnace size due to decreased gas volume and better sulfur removal. High-pressure combustion, however, requires the development of equipment to clean the hot combustion products to make them suitable for use in power generation turbines. The advanced power systems program is directed toward developing electric power systems capable of operating on coal or coal-derived fuels. These systems involve the use of high temperature gas turbines burning low-Btu gas and turbine systems using inert gases and alkali metal vapors. Some 25 projects in these areas are described, including a brief summary of progress during the quarter. (LTN)

  18. The costs of avoiding environmental impacts from shale-gas surface infrastructure.

    Science.gov (United States)

    Milt, Austin W; Gagnolet, Tamara D; Armsworth, Paul R

    2016-12-01

    Growing energy demand has increased the need to manage conflicts between energy production and the environment. As an example, shale-gas extraction requires substantial surface infrastructure, which fragments habitats, erodes soils, degrades freshwater systems, and displaces rare species. Strategic planning of shale-gas infrastructure can reduce trade-offs between economic and environmental objectives, but the specific nature of these trade-offs is not known. We estimated the cost of avoiding impacts from land-use change on forests, wetlands, rare species, and streams from shale-energy development within leaseholds. We created software for optimally siting shale-gas surface infrastructure to minimize its environmental impacts at reasonable construction cost. We visually assessed sites before infrastructure optimization to test whether such inspection could be used to predict whether impacts could be avoided at the site. On average, up to 38% of aggregate environmental impacts of infrastructure could be avoided for 20% greater development costs by spatially optimizing infrastructure. However, we found trade-offs between environmental impacts and costs among sites. In visual inspections, we often distinguished between sites that could be developed to avoid impacts at relatively low cost (29%) and those that could not (20%). Reductions in a metric of aggregate environmental impact could be largely attributed to potential displacement of rare species, sedimentation, and forest fragmentation. Planners and regulators can estimate and use heterogeneous trade-offs among development sites to create industry-wide improvements in environmental performance and do so at reasonable costs by, for example, leveraging low-cost avoidance of impacts at some sites to offset others. This could require substantial effort, but the results and software we provide can facilitate the process. © 2016 Society for Conservation Biology.

  19. Integrated cost-effectiveness analysis of greenhouse gas emission abatement. The case of Finland

    Energy Technology Data Exchange (ETDEWEB)

    Lehtilae, A.; Tuhkanen, S. [VTT Energy, Espoo (Finland). Energy Systems

    1999-11-01

    In Finland greenhouse gas emissions are expected to increase during the next decades due to economic growth, particularly in the energy intensive industrial sectors. The role of these industries is very central in the national economy. The emission control according to the Kyoto Protocol will therefore be quite difficult and costly. The study analyses the cost-effectiveness of different technical options for reducing the emissions of carbon dioxide, methane, and nitrous oxide in Finland. The analysis is performed with the help of a comprehensive energy system model for Finland, which has been extended to cover all major sources of methane and nitrous oxide emissions in the energy sector, industry, waste management and agriculture. The focus being on technical options, no consideration is given to possible policy measures, emission trading or joint implementation in the study. Under the boundary conditions given for the development of the Finnish energy economy, cost-effective technical measures in the energy system include increases in the use of wood biomass, natural gas and wind energy, increases in the contribution of CHP to the power supply, and intensified energy conservation in all end-use sectors. Additional cost-effective measures are landfill gas recovery, utilisation of the combustible fraction of waste and catalytic conversion of N{sub 2}O in nitric acid production. With baseline assumptions, the direct annual costs of emission abatement are calculated to be about 2000 MFIM (330 M{epsilon}) in 2010. The marginal costs are estimated to be about 230 FIM (40 {epsilon}) per tonne of CO{sub 2}-equivalent in 2010. The cost curie derived from the analysis could be used in further analyses concerning emissions trading. (orig.) 109 refs. SIHTI Research Programme

  20. Business venture-analysis case study relating to the manufacture of gas turbines for the generation of utility electric power. Volume II. Private sector and public sector venture studies. Final report. [Use of coal gasifier with combined gas and steam system

    Energy Technology Data Exchange (ETDEWEB)

    Davison, W.R.

    1978-05-05

    Increasing national attention is being directed toward the search for clean, efficient, and reliable energy-conversion systems, capable of using abundant indigenous fuels such as coal, for generation of utility electric power. A prime candidate in this area is the combined gas and steam (COGAS) system employing a high-temperature gas turbine with a steam-turbine bottoming cycle, fed by a coal gasifier. This program demonstrates the use of a logical and consistent venture-analysis methodology which could also be applied to investigate other high-technology, energy-conversion systems that have yet to reach a state of commercialization but which are of significant interest to the U.S. Government. The venture analysis was performed by using a computer to model the development, production, sales, and in-service development phases of programs necessary to introduce new gas turbines in COGAS systems. The simulations were produced in terms of estimated cash flows, rates of returns, and risks which a manufacturer would experience. Similar simulations were used to estimate public-sector benefits resulting from the lower cost of power and improved environment gained from the use of COGAS systems rather than conventional systems. The study shows that substantial social benefits could be realized and private investment would be made by the gas-turbine manufacturers if an infusion of external funds were made during key portions of the gas-turbine development program. It is shown that there is substantial precedent for such public assistance to make possible economic and environmental benefits that otherwise would not be possible. 42 references.

  1. Computer Aided Design of Advanced Turbine Airfoil Alloys for Industrial Gas Turbines in Coal Fired Environments

    Energy Technology Data Exchange (ETDEWEB)

    G.E. Fuchs

    2007-12-31

    Recent initiatives for fuel flexibility, increased efficiency and decreased emissions in power generating industrial gas turbines (IGT's), have highlighted the need for the development of techniques to produce large single crystal or columnar grained, directionally solidified Ni-base superalloy turbine blades and vanes. In order to address the technical difficulties of producing large single crystal components, a program has been initiated to, using computational materials science, better understand how alloy composition in potential IGT alloys and solidification conditions during processing, effect castability, defect formation and environmental resistance. This program will help to identify potential routes for the development of high strength, corrosion resistant airfoil/vane alloys, which would be a benefit to all IGT's, including small IGT's and even aerospace gas turbines. During the first year, collaboration with Siemens Power Corporation (SPC), Rolls-Royce, Howmet and Solar Turbines has identified and evaluated about 50 alloy compositions that are of interest for this potential application. In addition, alloy modifications to an existing alloy (CMSX-4) were also evaluated. Collaborating with SPC and using computational software at SPC to evaluate about 50 alloy compositions identified 5 candidate alloys for experimental evaluation. The results obtained from the experimentally determined phase transformation temperatures did not compare well to the calculated values in many cases. The effects of small additions of boundary strengtheners (i.e., C, B and N) to CMSX-4 were also examined. The calculated phase transformation temperatures were somewhat closer to the experimentally determined values than for the 5 candidate alloys, discussed above. The calculated partitioning coefficients were similar for all of the CMSX-4 alloys, similar to the experimentally determined segregation behavior. In general, it appears that computational materials

  2. Current developments on the coal and gas markets and their retroactive effects on the Merit Order; Aktuelle Entwicklungen auf den Kohle- und Gasmaerkten und ihre Rueckwirkungen auf die Merit Order

    Energy Technology Data Exchange (ETDEWEB)

    Hecking, Harald; Cam, Eren; Schoenfisch, Max; Schulte, Simon [ewi Energy Research and Scenarios gGmbH, Koeln (Germany)

    2017-06-15

    Coal and gas continue to play a significant role in the European power generation system, especially in Germany. According to the AG energy balances, the share of hard coal in German gross electricity generation in 2016 was 17.2% and natural gas 12.4%. In addition to the CO{sub 2} price, the prices for steam coal and natural gas are a key factor in determining which gas or coal power station is in Merit Order and whether it comes to a fuel switch. Declining gas prices have been rising sharply since the middle of 2016, and the volatile prices for steam coal have been rising. This article discusses the developments and factors responsible for these developments, which could be expected in the near future, and the implications for the gas-coal spread in the electricity market. [German] Kohle und Gas spielen weiterhin eine bedeutende Rolle im europaeischen Stromerzeugungssystem, insbesondere in Deutschland. Laut AG Energiebilanzen lag 2016 der Anteil der Steinkohle an der deutschen Bruttostromerzeugung bei 17,2 % und der von Erdgas bei 12,4 %. Neben dem CO{sub 2}-Preis sind die Preise fuer Kesselkohle und Erdgas massgeblich dafuer verantwortlich, welches Gas- bzw. Kohlekraftwerk welche Position in der Merit Order einnimmt und ob es zu einem Fuel Switch kommt. Sinkende Preise beim Gas stehen seit Mitte 2016 stark gestiegenen und volatilen Preisen fuer Kesselkohle gegenueber. Dieser Artikel diskutiert, welche Entwicklungen und Faktoren fuer diese Entwicklungen verantwortlich sind, womit in naher Zukunft zu rechnen sein koennte und welche Implikationen dies fuer den Gas-Kohle-Spread im Strommarkt hat.

  3. Natural gas and CO2price variation: impact on the relative cost-efficiency of LNG and pipelines.

    Science.gov (United States)

    Ulvestad, Marte; Overland, Indra

    2012-06-01

    THIS ARTICLE DEVELOPS A FORMAL MODEL FOR COMPARING THE COST STRUCTURE OF THE TWO MAIN TRANSPORT OPTIONS FOR NATURAL GAS: liquefied natural gas (LNG) and pipelines. In particular, it evaluates how variations in the prices of natural gas and greenhouse gas emissions affect the relative cost-efficiency of these two options. Natural gas is often promoted as the most environmentally friendly of all fossil fuels, and LNG as a modern and efficient way of transporting it. Some research has been carried out into the local environmental impact of LNG facilities, but almost none into aspects related to climate change. This paper concludes that at current price levels for natural gas and CO 2 emissions the distance from field to consumer and the volume of natural gas transported are the main determinants of transport costs. The pricing of natural gas and greenhouse emissions influence the relative cost-efficiency of LNG and pipeline transport, but only to a limited degree at current price levels. Because more energy is required for the LNG process (especially for fuelling the liquefaction process) than for pipelines at distances below 9100 km, LNG is more exposed to variability in the price of natural gas and greenhouse gas emissions up to this distance. If the prices of natural gas and/or greenhouse gas emission rise dramatically in the future, this will affect the choice between pipelines and LNG. Such a price increase will be favourable for pipelines relative to LNG.

  4. Cost-Effectiveness of Coal Workers' Pneumoconiosis Prevention Based on Its Predicted Incidence within the Datong Coal Mine Group in China.

    Directory of Open Access Journals (Sweden)

    Fuhai Shen

    Full Text Available We aimed to estimate the economic losses currently caused by coal workers' pneumoconiosis (CWP and, on the basis of these measurements, confirm the economic benefit of preventive measures. Our cohort study included 1,847 patients with CWP and 43,742 coal workers without CWP who were registered in the employment records of the Datong Coal Mine Group. We calculated the cumulative incidence rate of pneumoconiosis using the life-table method. We used the dose-response relationship between cumulative incidence density and cumulative dust exposure to predict the future trend in the incidence of CWP. We calculate the economic loss caused by CWP and economic effectiveness of CWP prevention by a step-wise model. The cumulative incidence rates of CWP in the tunneling, mining, combining, and helping cohorts were 58.7%, 28.1%, 21.7%, and 4.0%, respectively. The cumulative incidence rates increased gradually with increasing cumulative dust exposure (CDE. We predicted 4,300 new CWP cases, assuming the dust concentrations remained at the levels of 2011. If advanced dustproof equipment was adopted, 537 fewer people would be diagnosed with CWP. In all, losses of 1.207 billion Renminbi (RMB, official currency of China would be prevented and 4,698.8 healthy life years would be gained. Investments in advanced dustproof equipment would be total 843 million RMB, according to our study; the ratio of investment to restored economic losses was 1:1.43. Controlling workplace dust concentrations is critical to reduce the onset of pneumoconiosis and to achieve economic benefits.

  5. Cost-Effectiveness of Coal Workers' Pneumoconiosis Prevention Based on Its Predicted Incidence within the Datong Coal Mine Group in China

    Science.gov (United States)

    Yuan, Juxiang; Han, Bing; Cui, Kai; Ding, Yu; Fan, Xueyun; Cao, Hong; Yao, Sanqiao; Suo, Xia; Sun, Zhiqian; Yun, Xiang; Hua, Zhengbing; Chen, Jie

    2015-01-01

    We aimed to estimate the economic losses currently caused by coal workers’ pneumoconiosis (CWP) and, on the basis of these measurements, confirm the economic benefit of preventive measures. Our cohort study included 1,847 patients with CWP and 43,742 coal workers without CWP who were registered in the employment records of the Datong Coal Mine Group. We calculated the cumulative incidence rate of pneumoconiosis using the life-table method. We used the dose-response relationship between cumulative incidence density and cumulative dust exposure to predict the future trend in the incidence of CWP. We calculate the economic loss caused by CWP and economic effectiveness of CWP prevention by a step-wise model. The cumulative incidence rates of CWP in the tunneling, mining, combining, and helping cohorts were 58.7%, 28.1%, 21.7%, and 4.0%, respectively. The cumulative incidence rates increased gradually with increasing cumulative dust exposure (CDE). We predicted 4,300 new CWP cases, assuming the dust concentrations remained at the levels of 2011. If advanced dustproof equipment was adopted, 537 fewer people would be diagnosed with CWP. In all, losses of 1.207 billion Renminbi (RMB, official currency of China) would be prevented and 4,698.8 healthy life years would be gained. Investments in advanced dustproof equipment would be total 843 million RMB, according to our study; the ratio of investment to restored economic losses was 1:1.43. Controlling workplace dust concentrations is critical to reduce the onset of pneumoconiosis and to achieve economic benefits. PMID:26098706

  6. Development of a high-performance, coal-fired power generating system with a pyrolysis gas and char-fired high-temperature furnace

    Energy Technology Data Exchange (ETDEWEB)

    Shenker, J.

    1995-11-01

    A high-performance power system (HIPPS) is being developed. This system is a coal-fired, combined-cycle plant that will have an efficiency of at least 47 percent, based on the higher heating value of the fuel. The original emissions goal of the project was for NOx and SOx to each be below 0.15 lb/MMBtu. In the Phase 2 RFP this emissions goal was reduced to 0.06 lb/MMBtu. The ultimate goal of HIPPS is to have an all-coal-fueled system, but initial versions of the system are allowed up to 35 percent heat input from natural gas. Foster Wheeler Development Corporation is currently leading a team effort with AlliedSignal, Bechtel, Foster Wheeler Energy Corporation, Research-Cottrell, TRW and Westinghouse. Previous work on the project was also done by General Electric. The HIPPS plant will use a high-Temperature Advanced Furnace (HITAF) to achieve combined-cycle operation with coal as the primary fuel. The HITAF is an atmospheric-pressure, pulverized-fuel-fired boiler/air heater. The HITAF is used to heat air for the gas turbine and also to transfer heat to the steam cycle. its design and functions are very similar to conventional PC boilers. Some important differences, however, arise from the requirements of the combined cycle operation.

  7. Mechanism of the Two-Phase Flow Model for Water and Gas Based on Adsorption and Desorption in Fractured Coal and Rock

    Science.gov (United States)

    Chen, Shikuo; Yang, Tianhong; Ranjith, P. G.; Wei, Chenhui

    2017-03-01

    Coalbed methane (CBM) is an important high-efficiency, clean-energy raw material with immense potential for application; however, its occurrence in low-permeability reservoirs limits its application. Hydraulic fracturing has been used in low-permeability CBM exploration and as a new technique for preventing gas hazards in coal mines. Fractures are the main pathways of fluid accumulation and migration, and they exert some control over the stability of rock mass. However, the differences in progression between the original fractures of the coal mass and the new discrete fractures caused by hydraulic fracturing remain unclear, and the unsaturated seepage flows require further study. Therefore, a cross-scale hydraulic fractured rock mass numerical model was developed by using the 3D fractured extrusion coupling variables reconstruction technique. This paper uses fracture surface parameters combined with the fractal dimension and multi-medium theory to provide a high-precision characterization and interpretation of the fracture mechanics. The mechanism of the permeability evolution of fractured coal and rock under stress-releasing mining combined with water injection was studied by considering gas adsorption and desorption as well as the coupling characteristic of seepage-stress in fractured rock masses. Aperture, contact area ratio, and stress in permeability and fracture development have a strong influence on the permeability and seepage path, which in turn control the effective radius by absolute water injection. All of these factors should be considered when studying the structural characteristics of rock masses.

  8. Coal and clean coal technology: challenges and opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Minchener, Andrew [IEA Clean Coal Centre, London (United Kingdom)

    2013-07-01

    Globally, there is a growing concern about fuel diversity and security of supply, particularly with regard to oil and natural gas. In contrast, coal is available from a much wider range of sources and has greater price stability. Consequently, coal use is increasing rapidly, and by 2030 may well reach a level of more than 4,500 Mtoe, corresponding to close to a doubling of current levels. However, at the same time, tightening regulations will require better solutions for achieving environmental compliance, for which coal has a number of key issues to address. Most of the coal will be used in the power generation sector. Consequently, the key research challenges are to develop and deploy methods by which coal can be used cleanly, efficiently, and in a sustainable way. These include improvements to existing coal utilisation technologies, particularly to improve operational flexibility and availability, while reducing energy use through higher efficiencies. There is an increasing need to ensure improved emissions control, with the emphasis on achieving ever-lower emissions of particulates, SO{sub 2} and NO{sub x} while also introducing control of trace species, particularly mercury. Alongside this, a key challenge is the integration of techniques that can capture CO{sub 2} then transport and store it within secure geological formations, thereby resulting in near zero emissions of CO{sub 2}. From a power plant perspective, the need is to achieve such integration while minimising any adverse impact on power plant efficiency, performance of existing emissions control systems, operational flexibility and availability. At the same time, means to minimize the additional costs associated with such technology must be established.

  9. Development of a high-performance coal-fired power generating system with pyrolysis gas and char-fired high temperature furnace (HITAF)

    Energy Technology Data Exchange (ETDEWEB)

    1992-11-01

    A concept for an advanced coal-fired combined-cycle power generating system is currently being developed. The first phase of this three-phase program consists of conducting the necessary research and development to define the system, evaluate the economic and technical feasibility of the concept, and prepare an R D plan to develop the concept further. Foster Wheeler Development Corporation is leading a team ofcompanies involved in this effort. The system proposed to meet these goals is a combined-cycle system where air for a gas turbine is indirectly heated to approximately 1800[degrees]F in furnaces fired with cool-derived fuels and then directly heated in a natural-gas-fired combustor up to about 2400[degrees]F. The system is based on a pyrolyzing process that converts the coal into a low-Btu fuel gas and char. The fuelgas is a relatively clean fuel, and it is fired to heat tube surfaces that are susceptible to corrosion and problems from ash deposition. In particular, the high-temperature air heater tubes, which will need tobe a ceramic material, will be located in a separate furnace or region of a furnace that is exposed to combustion products from the low-Btu fuel gas only. A simplified process flow diagram is shown.

  10. Large-scale biodiesel production using flue gas from coal-fired power plants with Nannochloropsis microalgal biomass in open raceway ponds.

    Science.gov (United States)

    Zhu, Baohua; Sun, Faqiang; Yang, Miao; Lu, Lin; Yang, Guanpin; Pan, Kehou

    2014-12-01

    The potential use of microalgal biomass as a biofuel source has raised broad interest. Highly effective and economically feasible biomass generating techniques are essential to realize such potential. Flue gas from coal-fired power plants may serve as an inexpensive carbon source for microalgal culture, and it may also facilitate improvement of the environment once the gas is fixed in biomass. In this study, three strains of the genus Nannochloropsis (4-38, KA2 and 75B1) survived this type of culture and bloomed using flue gas from coal-fired power plants in 8000-L open raceway ponds. Lower temperatures and solar irradiation reduced the biomass yield and lipid productivities of these strains. Strain 4-38 performed better than the other two as it contained higher amounts of triacylglycerols and fatty acids, which are used for biodiesel production. Further optimization of the application of flue gas to microalgal culture should be undertaken. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. CeO2-TiO2 catalysts for catalytic oxidation of elemental mercury in low-rank coal combustion flue gas.

    Science.gov (United States)

    Li, Hailong; Wu, Chang-Yu; Li, Ying; Zhang, Junying

    2011-09-01

    CeO(2)-TiO(2) (CeTi) catalysts synthesized by an ultrasound-assisted impregnation method were employed to oxidize elemental mercury (Hg(0)) in simulated low-rank (sub-bituminous and lignite) coal combustion flue gas. The CeTi catalysts with a CeO(2)/TiO(2) weight ratio of 1-2 exhibited high Hg(0) oxidation activity from 150 to 250 °C. The high concentrations of surface cerium and oxygen were responsible for their superior performance. Hg(0) oxidation over CeTi catalysts was proposed to follow the Langmuir-Hinshelwood mechanism whereby reactive species from adsorbed flue gas components react with adjacently adsorbed Hg(0). In the presence of O(2), a promotional effect of HCl, NO, and SO(2) on Hg(0) oxidation was observed. Without O(2), HCl and NO still promoted Hg(0) oxidation due to the surface oxygen, while SO(2) inhibited Hg(0) adsorption and subsequent oxidation. Water vapor also inhibited Hg(0) oxidation. HCl was the most effective flue gas component responsible for Hg(0) oxidation. However, the combination of SO(2) and NO without HCl also resulted in high Hg(0) oxidation efficiency. This superior oxidation capability is advantageous to Hg(0) oxidation in low-rank coal combustion flue gas with low HCl concentration.

  12. Pilot-Scale Demonstration of a Novel, Low-Cost Oxygen Supply Process and its Integration with Oxy-Fuel Coal-Fired Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Krish Krishnamurthy; Divy Acharya; Frank Fitch

    2008-09-30

    In order to achieve DOE targets for carbon dioxide capture, it is crucial not only to develop process options that will generate and provide oxygen to the power cycle in a cost-effective manner compared to the conventional oxygen supply methods based on cryogenic air separation technology, but also to identify effective integration options for these new technologies into the power cycle with carbon dioxide capture. The Linde/BOC developed Ceramic Autothermal Recovery (CAR) process remains an interesting candidate to address both of these issues by the transfer of oxygen from the air to a recycled CO{sub 2} rich flue-gas stream in a cyclic process utilizing the high temperature sorption properties of perovskites. Good progress was made on this technology in this project, but significant challenges remain to be addressed before CAR oxygen production technology is ready for commercial exploitation. Phase 1 of the project was completed by the end of September 2008. The two-bed 0.7 tons/day O2 CAR process development unit (PDU) was installed adjacent to WRI's pilot scale coal combustion test facility (CTF). Start-up and operating sequences for the PDU were developed and cyclic operation of the CAR process demonstrated. Controlled low concentration methane addition allowed the beds to be heated up to operational temperature (800-900 C) and then held there during cyclic operation of the 2-bed CAR process, in this way overcoming unavoidable heat losses from the beds during steady state operation. The performance of the PDU was optimized as much as possible, but equipment limitations prevented the system from fully achieving its target performance. Design of the flue gas recirculation system to integrate CAR PDU with the CTF and the system was completed and integrated tests successfully performed at the end of the period. A detailed techno-economic analysis was made of the CAR process for supplying the oxygen in oxy-fuel combustion retrofit option using AEP's 450

  13. Cost Minimization Model of Gas Transmission Line for Indonesian SIJ Pipeline Network

    Directory of Open Access Journals (Sweden)

    Septoratno Siregar

    2003-05-01

    Full Text Available Optimization of Indonesian SIJ gas pipeline network is being discussed here. Optimum pipe diameters together with the corresponding pressure distribution are obtained from minimization of total cost function consisting of investment and operating costs and subjects to some physical (Panhandle A and Panhandle B equations constraints. Iteration technique based on Generalized Steepest-Descent and fourth order Runge-Kutta method are used here. The resulting diameters from this continuous optimization are then rounded to the closest available discrete sizes. We have also calculated toll fee along each segment and safety factor of the network by determining the pipe wall thickness, using ANSI B31.8 standard. Sensitivity analysis of toll fee for variation of flow rates is shown here. The result will gives the diameter and compressor size and compressor location that feasible to use for the SIJ pipeline project. The Result also indicates that the east route cost relatively less expensive than the west cost.

  14. CATALYTIC GASIFICATION OF COAL USING EUTECTIC SALT MIXTURES

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Yaw D. Yeboah; Dr. Yong Xu; Dr. Atul Sheth; Dr. Pradeep Agrawal

    2001-12-01

    The Gas Research Institute (GRI) estimates that by the year 2010, 40% or more of U.S. gas supply will be provided by supplements including substitute natural gas (SNG) from coal. These supplements must be cost competitive with other energy sources. The first generation technologies for coal gasification e.g. the Lurgi Pressure Gasification Process and the relatively newer technologies e.g. the KBW (Westinghouse) Ash Agglomerating Fluidized-Bed, U-Gas Ash Agglomerating Fluidized-Bed, British Gas Corporation/Lurgi Slagging Gasifier, Texaco Moving-Bed Gasifier, and Dow and Shell Gasification Processes, have several disadvantages. These disadvantages include high severities of gasification conditions, low methane production, high oxygen consumption, inability to handle caking coals, and unattractive economics. Another problem encountered in catalytic coal gasification is deactivation of hydroxide forms of alkali and alkaline earth metal catalysts by oxides of carbon (CO{sub x}). To seek solutions to these problems, a team consisting of Clark Atlanta University (CAU, a Historically Black College and University, HBCU), the University of Tennessee Space Institute (UTSI) and Georgia Institute of Technology (Georgia Tech) proposed to identify suitable low melting eutectic salt mixtures for improved coal gasification. The research objectives of this project were to: Identify appropriate eutectic salt mixture catalysts for coal gasification; Assess agglomeration tendency of catalyzed coal; Evaluate various catalyst impregnation techniques to improve initial catalyst dispersion; Determine catalyst dispersion at high carbon conversion levels; Evaluate effects of major process variables (such as temperature, system pressure, etc.) on coal gasification; Evaluate the recovery, regeneration and recycle of the spent catalysts; and Conduct an analysis and modeling of the gasification process to provide better understanding of the fundamental mechanisms and kinetics of the process.

  15. Coal catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Kroenig, W.

    1944-02-11

    Some considerations in the selection of a catalyst for the liquid phase of coal hydrogenation are discussed. Some of the previous history of such selections is mentioned. At one stage of the development, the principal catalyst had been iron sulfate (FeSO/sub 4/.7H/sub 2/O). Later, for reasons of cost and availability of large supplies, selections had turned to mixtures of iron sulfate and one or another of some iron oxide- and aluminum oxide-containing byproducts of aluminum manufacture, namely Bayermasse, Luxamsse, or Lautamasse. Much of the discussion centered on optimal proportions for such mixtures, particularly as related to pH values of resulting coal pastes. Upper Silesian coal was more alkaline than Ruhr coal, and Bayermasse, etc., were quite alkaline. Thus, since the iron sulfate served as a partial neutralizer for the coal as well as a catalyst, it seemed necessary to increase the proportions of iron sulfate in the catalyst mixture when processing coal of greater alkalinity. A further reason for a greater proportion of iron sulfate seemed to be that most of the catalytic activity of the iron came from the ferrous iron of iron sulfate rather than from the ferric iron of the other materials. Ferrous-ferric ratios also seemed to indicate that Luxmasse or Lautamasse might be better catalyst components than Bayermasse but their water content sometimes caused handling problems, so Bayermasse had been more widely used. Formation of deposits in the preheater was more likely due to the Bayermasse than to the iron sulfate; sodium sulfide could help to prevent them.

  16. Clean coal initiatives in Indiana

    Science.gov (United States)

    Bowen, B.H.; Irwin, M.W.; Sparrow, F.T.; Mastalerz, Maria; Yu, Z.; Kramer, R.A.

    2007-01-01

    Purpose - Indiana is listed among the top ten coal states in the USA and annually mines about 35 million short tons (million tons) of coal from the vast reserves of the US Midwest Illinois Coal Basin. The implementation and commercialization of clean coal technologies is important to the economy of the state and has a significant role in the state's energy plan for increasing the use of the state's natural resources. Coal is a substantial Indiana energy resource and also has stable and relatively low costs, compared with the increasing costs of other major fuels. This indigenous energy source enables the promotion of energy independence. The purpose of this paper is to outline the significance of clean coal projects for achieving this objective. Design/methodology/approach - The paper outlines the clean coal initiatives being taken in Indiana and the research carried out at the Indiana Center for Coal Technology Research. Findings - Clean coal power generation and coal for transportation fuels (coal-to-liquids - CTL) are two major topics being investigated in Indiana. Coking coal, data compilation of the bituminous coal qualities within the Indiana coal beds, reducing dependence on coal imports, and provision of an emissions free environment are important topics to state legislators. Originality/value - Lessons learnt from these projects will be of value to other states and countries.

  17. Application of the NOx Reaction Model for Development of Low-NOx Combustion Technology for Pulverized Coals by Using the Gas Phase Stoichiometric Ratio Index

    Directory of Open Access Journals (Sweden)

    Kenji Yamamoto

    2011-03-01

    Full Text Available We previously proposed the gas phase stoichiometric ratio (SRgas as an index to evaluate NOx concentration in fuel-rich flames. The SRgas index was defined as the amount of fuel required for stoichiometric combustion/amount of gasified fuel, where the amount of gasified fuel was the amount of fuel which had been released to the gas phase by pyrolysis, oxidation and gasification reactions. In the present study we found that SRgas was a good index to consider the gas phase reaction mechanism in fuel-rich pulverized coal flames. When SRgas < 1.0, NOx concentration was strongly influenced by the SRgas value. NOx concentration was also calculated by using a reaction model. The model was verified for various coals, particle diameters, reaction times, and initial oxygen concentrations. The most important reactions were gas phase NOx reduction reactions by hydrocarbons. The hydrocarbon concentration was estimated based on SRgas. We also investigated the ratio as an index to develop a new low-NOx combustion technology for pulverized coals. We examined the relation between local SRgas distribution in the fuel-rich region in the low-NOx flame and NOx emissions at the furnace exit, by varying burner structures. The relationship between local SRgas value and local NOx concentration was also examined. When a low-NOx type burner was used, the value of SRgas in the flame was readily decreased. When the local SRgas value was the same, it was difficult to influence the local NOx concentration by changing the burner structure. For staged combustion, the most important item was to design the burner structure and arrangement so that SRgas could be lowered as much as possible just before mixing with staged air.

  18. The impact of flue gas cleaning technologies in coal-fired power plants on the CCN distribution and cloud properties in Germany

    Science.gov (United States)

    Bangert, M.; Vogel, B.; Junkermann, W.; Brachert, L.; Schaber, K.

    2013-05-01

    Gas-cleaning technologies used in modern coal-fired power plants cause an unintended nucleation of H2SO4 aerosol droplets during the cleaning process. As a result, high concentrations of ultra-fine aerosol droplets are emitted into the atmosphere. In this study, the impact of these emissions on the atmospheric aerosol distribution, on the cloud condensation nuclei number concentration, and consequently on cloud properties is investigated. Therefore, a sophisticated modeling framework is used combining regional simulations of the atmospheric aerosol distribution and its impact on cloud properties with detailed process simulations of the nucleation during the cleaning process inside the power plant. Furthermore, the simulated aerosol size distributions downwind of the coal-fired power plants are compared with airborne aerosol measurements performed inside the plumes.

  19. Enhancing the use of coals by gas reburning-sorbent injection: Volume 4 -- Gas reburning-sorbent injection at Lakeside Unit 7, City Water, Light and Power, Springfield, Illinois. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    A demonstration of Gas Reburning-Sorbent Injection (GR-SI) has been completed at a cyclone-fired utility boiler. The Energy and Environmental Research Corporation (EER) has designed, retrofitted and tested a GR-SI system at City Water Light and Power`s 33 MWe Lakeside Station Unit 7. The program goals of 60% NO{sub x} emissions reduction and 50% SO{sub 2} emissions reduction were exceeded over the long-term testing period; the NO{sub x} reduction averaged 63% and the SO{sub 2} reduction averaged 58%. These were achieved with an average gas heat input of 22% and a calcium (sorbent) to sulfur (coal) molar ratio of 1.8. GR-SI resulted in a reduction in thermal efficiency of approximately 1% at full load due to firing natural gas which forms more moisture in flue gas than coal and also results in a slight increase in air heater exit gas temperature. Minor impacts on other areas of unit performance were measured and are detailed in this report. The project at Lakeside was carried out in three phases, in which EER designed the GR-SI system (Phase 1), completed construction and start-up activities (Phase 2), and evaluated its performance with both short parametric tests and a long-term demonstration (Phase 3). This report contains design and technical performance data; the economics data for all sites are presented in Volume 5.

  20. Low-cost multispectral vegetation imaging system for detecting leaking CO₂ gas.