Cosmological Structure Formation: From Dawn till Dusk
DEFF Research Database (Denmark)
Heneka, Caroline Samantha
Cosmology has entered an era where a plethora data is available on structure formation to constrain astrophysics and underlying cosmology. This thesis strives to both investigate new observables and modeling of the Epoch of Reionization, as well as to constrain dark energy phenomenology with mass......Cosmology has entered an era where a plethora data is available on structure formation to constrain astrophysics and underlying cosmology. This thesis strives to both investigate new observables and modeling of the Epoch of Reionization, as well as to constrain dark energy phenomenology...... with massive galaxy clusters, traveling from the dawn of structure formation, when the first galaxies appear, to its dusk, when a representative part of the mass in the Universe is settled in massive structures. This hunt for accurate constraints on cosmology is complemented with the demonstration of novel...... Bayesian statistical tools and kinematical constraints on dark energy. Starting at the dawn of structure formation, we study emission line fluctuations, employing semi-numerical simulations of cosmological volumes of their line emission, in order to cross-correlate fluctuations in brightness. This cross...
Small scale structure formation in chameleon cosmology
International Nuclear Information System (INIS)
Brax, Ph.; Bruck, C. van de; Davis, A.C.; Green, A.M.
2006-01-01
Chameleon fields are scalar fields whose mass depends on the ambient matter density. We investigate the effects of these fields on the growth of density perturbations on sub-galactic scales and the formation of the first dark matter halos. Density perturbations on comoving scales R<1 pc go non-linear and collapse to form structure much earlier than in standard ΛCDM cosmology. The resulting mini-halos are hence more dense and resilient to disruption. We therefore expect (provided that the density perturbations on these scales have not been erased by damping processes) that the dark matter distribution on small scales would be more clumpy in chameleon cosmology than in the ΛCDM model
Simulations of structure formation in interacting dark energy cosmologies
International Nuclear Information System (INIS)
Baldi, M.
2009-01-01
The evidence in favor of a dark energy component dominating the Universe, and driving its presently accelerated expansion, has progressively grown during the last decade of cosmological observations. If this dark energy is given by a dynamic scalar field, it may also have a direct interaction with other matter fields in the Universe, in particular with cold dark matter. Such interaction would imprint new features on the cosmological background evolution as well as on the growth of cosmic structure, like an additional long-range fifth-force between massive particles, or a variation in time of the dark matter particle mass. We present here the implementation of these new physical effects in the N-body code GADGET-2, and we discuss the outcomes of a series of high-resolution N-body simulations for a selected family of interacting dark energy models. We interestingly find, in contrast with previous claims, that the inner overdensity of dark matter halos decreases in these models with respect to ΛCDM, and consistently halo concentrations show a progressive reduction for increasing couplings. Furthermore, the coupling induces a bias in the overdensities of cold dark matter and baryons that determines a decrease of the halo baryon fraction below its cosmological value. These results go in the direction of alleviating tensions between astrophysical observations and the predictions of the ΛCDM model on small scales, thereby opening new room for coupled dark energy models as an alternative to the cosmological constant.
Simulating nonlinear cosmological structure formation with massive neutrinos
Energy Technology Data Exchange (ETDEWEB)
Banerjee, Arka; Dalal, Neal, E-mail: abanerj6@illinois.edu, E-mail: dalaln@illinois.edu [Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, IL 61801-3080 (United States)
2016-11-01
We present a new method for simulating cosmologies that contain massive particles with thermal free streaming motion, such as massive neutrinos or warm/hot dark matter. This method combines particle and fluid descriptions of the thermal species to eliminate the shot noise known to plague conventional N-body simulations. We describe this method in detail, along with results for a number of test cases to validate our method, and check its range of applicability. Using this method, we demonstrate that massive neutrinos can produce a significant scale-dependence in the large-scale biasing of deep voids in the matter field. We show that this scale-dependence may be quantitatively understood using an extremely simple spherical expansion model which reproduces the behavior of the void bias for different neutrino parameters.
Simulating nonlinear cosmological structure formation with massive neutrinos
International Nuclear Information System (INIS)
Banerjee, Arka; Dalal, Neal
2016-01-01
We present a new method for simulating cosmologies that contain massive particles with thermal free streaming motion, such as massive neutrinos or warm/hot dark matter. This method combines particle and fluid descriptions of the thermal species to eliminate the shot noise known to plague conventional N-body simulations. We describe this method in detail, along with results for a number of test cases to validate our method, and check its range of applicability. Using this method, we demonstrate that massive neutrinos can produce a significant scale-dependence in the large-scale biasing of deep voids in the matter field. We show that this scale-dependence may be quantitatively understood using an extremely simple spherical expansion model which reproduces the behavior of the void bias for different neutrino parameters.
Dutta, Jibitesh; Khyllep, Wompherdeiki; Tamanini, Nicola
2018-01-01
We consider scalar field models of dark energy interacting with dark matter through a coupling proportional to the contraction of the four-derivative of the scalar field with the four-velocity of the dark matter fluid. The coupling is realized at the Lagrangian level employing the formalism of Scalar-Fluid theories, which use a consistent Lagrangian approach for relativistic fluid to describe dark matter. This framework produces fully covariant field equations, from which we can derive unequivocal cosmological equations at both background and linear perturbations levels. The background evolution is analyzed in detail applying dynamical systems techniques, which allow us to find the complete asymptotic behavior of the universe given any set of model parameters and initial conditions. Furthermore we study linear cosmological perturbations investigating the growth of cosmic structures within the quasi-static approximation. We find that these interacting dark energy models give rise to interesting phenomenological dynamics, including late-time transitions from dark matter to dark energy domination, matter and accelerated scaling solutions and dynamical crossing of the phantom barrier. Moreover we obtain possible deviations from standard ΛCDM behavior at the linear perturbations level, which have an impact on the dynamics of structure formation and might provide characteristic observational signatures.
Energy Technology Data Exchange (ETDEWEB)
Ahn, Kyungjin, E-mail: kjahn@chosun.ac.kr [Department of Earth Sciences, Chosun University, Gwangju 61452 (Korea, Republic of)
2016-10-20
We study the dynamical effect of the relative velocity between dark matter and baryonic fluids, which remained supersonic after the epoch of recombination. The impact of this supersonic motion on the formation of cosmological structures was first formulated by Tseliakhovich and Hirata, in terms of the linear theory of small-scale fluctuations coupled to large-scale, relative velocities in mean-density regions. In their formalism, they limited the large-scale density environment to be that of the global mean density. We improve on their formulation by allowing variation in the density environment as well as the relative velocities. This leads to a new type of coupling between large-scale and small-scale modes. We find that the small-scale fluctuation grows in a biased way: faster in the overdense environment and slower in the underdense environment. We also find that the net effect on the global power spectrum of the density fluctuation is to boost its overall amplitude from the prediction by Tseliakhovich and Hirata. Correspondingly, the conditional mass function of cosmological halos and the halo bias parameter are both affected in a similar way. The discrepancy between our prediction and that of Tseliakhovich and Hirata is significant, and therefore, the related cosmology and high-redshift astrophysics should be revisited. The mathematical formalism of this study can be used for generating cosmological initial conditions of small-scale perturbations in generic, overdense (underdense) background patches.
Cosmology and galaxy formation
International Nuclear Information System (INIS)
Rees, M.J.
1977-01-01
Implications of the massive halos and ''missing mass'' for galaxy formation are addressed; it is suggested that this mass consists of ''Population III'' stars that formed before the galaxies did. 19 references
García-Bellido, J
2015-01-01
In these lectures I review the present status of the so-called Standard Cosmological Model, based on the hot Big Bang Theory and the Inflationary Paradigm. I will make special emphasis on the recent developments in observational cosmology, mainly the acceleration of the universe, the precise measurements of the microwave background anisotropies, and the formation of structure like galaxies and clusters of galaxies from tiny primordial fluctuations generated during inflation.
International Nuclear Information System (INIS)
Novikov, I.D.
1979-01-01
Progress made by this Commission over the period 1976-1978 is reviewed. Topics include the Hubble constant, deceleration parameter, large-scale distribution of matter in the universe, radio astronomy and cosmology, space astronomy and cosmology, formation of galaxies, physics near the cosmological singularity, and unconventional cosmological models. (C.F.)
Protogalaxy formation from inhomogeneities in cosmological models
International Nuclear Information System (INIS)
Rankin, J.R.
1977-01-01
Equations governing the growth of protogalaxies in general homogeneous cosmological models were derived. Both non-relativistic Newtonian theory and general relativistic theory were covered. For the Newtonian case, by means of the concept of comoving Fourier analysis, the perturbation equations became coupled first order ordinary differential equations and were then further simplified. Bonnor's equation of galaxy formation in isotropic Newtonian cosmologies was generalized to anisotropic cases. The growth equations were solved for various background Newtonian models and gravitationally unstable solutions were found. By an approach analogous to Bonnor's non-relativistic approach, a relativistic version of the galaxy growth equation for the homogeneous isotropic cosmologies was derived. Galaxy growth in the anisotropic homogeneous Bianchi type I cosmologies was also considered. The full set of Einstein equations in synchronous coordinates was perturbed then simplified. The resulting equation was discussed in special cases of dust, axial symmetry and Kasner backgrounds. Finally the tetrad equations for perturbations in steady state cosmologies was set up with a view to considering the effect of rotation
Galaxy formation: internal mechanisms and cosmological processes
International Nuclear Information System (INIS)
Martig, Marie
2010-01-01
This thesis is devoted to galaxy formation and evolution in a cosmological context. Cosmological simulations have unveiled two main modes of galaxy growth: hierarchical growth by mergers and accretion of cold gas from cosmic filaments. However, these simulations rarely take into account small scale mechanisms, that govern internal evolution and that are a key ingredient to understand galaxy formation and evolution. Thanks to a new simulation technique that I have developed, I first studied the colors of galaxies, and in particular the reddening of elliptical galaxies. I showed that the gas disk in an elliptical galaxy could be stabilized against star formation because of the galaxy's stellar component being within a spheroid instead of a disk. This mechanism can explain the red colors of some elliptical galaxies that contain a gas disk. I also studied the formation of spiral galaxies: most cosmological simulations cannot explain the formation of Milky Way-like galaxies, i.e. with a large disk and a small bulge. I showed that this issue could be partly solved by taking into account in the simulations the mass loss from evolved stars through stellar winds, planetary nebulae and supernovae explosions. (author) [fr
Cosmological simulation with dust formation and destruction
Aoyama, Shohei; Hou, Kuan-Chou; Hirashita, Hiroyuki; Nagamine, Kentaro; Shimizu, Ikkoh
2018-06-01
To investigate the evolution of dust in a cosmological volume, we perform hydrodynamic simulations, in which the enrichment of metals and dust is treated self-consistently with star formation and stellar feedback. We consider dust evolution driven by dust production in stellar ejecta, dust destruction by sputtering, grain growth by accretion and coagulation, and grain disruption by shattering, and treat small and large grains separately to trace the grain size distribution. After confirming that our model nicely reproduces the observed relation between dust-to-gas ratio and metallicity for nearby galaxies, we concentrate on the dust abundance over the cosmological volume in this paper. The comoving dust mass density has a peak at redshift z ˜ 1-2, coincident with the observationally suggested dustiest epoch in the Universe. In the local Universe, roughly 10 per cent of the dust is contained in the intergalactic medium (IGM), where only 1/3-1/4 of the dust survives against dust destruction by sputtering. We also show that the dust mass function is roughly reproduced at ≲ 108 M⊙, while the massive end still has a discrepancy, which indicates the necessity of stronger feedback in massive galaxies. In addition, our model broadly reproduces the observed radial profile of dust surface density in the circum-galactic medium (CGM). While our model satisfies the observational constraints for the dust extinction on cosmological scales, it predicts that the dust in the CGM and IGM is dominated by large (>0.03 μm) grains, which is in tension with the steep reddening curves observed in the CGM.
Observable cosmology and cosmological models
International Nuclear Information System (INIS)
Kardashev, N.S.; Lukash, V.N.; Novikov, I.D.
1987-01-01
Modern state of observation cosmology is briefly discussed. Among other things, a problem, related to Hibble constant and slowdown constant determining is considered. Within ''pancake'' theory hot (neutrino) cosmological model explains well the large-scale structure of the Universe, but does not explain the galaxy formation. A cold cosmological model explains well light object formation, but contradicts data on large-scale structure
Barnes, Luke A.; Elahi, Pascal J.; Salcido, Jaime; Bower, Richard G.; Lewis, Geraint F.; Theuns, Tom; Schaller, Matthieu; Crain, Robert A.; Schaye, Joop
2018-04-01
Models of the very early universe, including inflationary models, are argued to produce varying universe domains with different values of fundamental constants and cosmic parameters. Using the cosmological hydrodynamical simulation code from the EAGLE collaboration, we investigate the effect of the cosmological constant on the formation of galaxies and stars. We simulate universes with values of the cosmological constant ranging from Λ = 0 to Λ0 × 300, where Λ0 is the value of the cosmological constant in our Universe. Because the global star formation rate in our Universe peaks at t = 3.5 Gyr, before the onset of accelerating expansion, increases in Λ of even an order of magnitude have only a small effect on the star formation history and efficiency of the universe. We use our simulations to predict the observed value of the cosmological constant, given a measure of the multiverse. Whether the cosmological constant is successfully predicted depends crucially on the measure. The impact of the cosmological constant on the formation of structure in the universe does not seem to be a sharp enough function of Λ to explain its observed value alone.
Cosmology and the origin of structure
Kolb, Edward W; CERN. Geneva. Audiovisual Unit
2002-01-01
There is now strong evidence that the rich and varied structure we see in the universe today in the form of stars, galaxies, galaxy clusters, and even larger structures, grew from small primordial 'seeds' that were planted in the first second in the history of the universe. The last decade has seen remarkable advances in observational cosmology, highlighted by the observations of galaxies in the deep universe and the observation of primordial fluctuations in the microwave background. With the increasing accuracy and sophistication of astronomical observations, the details of our theory for the growth of structure will be tested. These lectures will serve as an introduction to the generation and growth of structure in the universe. The series of four lectures will follow the program: Lecture 1: The observed universe Lecture 2: The growth of cosmological structure Lecture 3: Inflation and the origin of perturbations Lecture 4: Dark matter and dark energy
Star Formation History of Dwarf Galaxies in Cosmological Hydrodynamic Simulations
Directory of Open Access Journals (Sweden)
Kentaro Nagamine
2010-01-01
Full Text Available We examine the past and current work on the star formation (SF histories of dwarf galaxies in cosmological hydrodynamic simulations. The results obtained from different numerical methods are still somewhat mixed, but the differences are understandable if we consider the numerical and resolution effects. It remains a challenge to simulate the episodic nature of SF history in dwarf galaxies at late times within the cosmological context of a cold dark matter model. More work is needed to solve the mysteries of SF history of dwarf galaxies employing large-scale hydrodynamic simulations on the next generation of supercomputers.
Fundamental Particle Structure in the Cosmological Dark Matter
Khlopov, Maxim
2013-11-01
The nonbaryonic dark matter of the universe is assumed to consist of new stable forms of matter. Their stability reflects symmetry of micro-world and mechanisms of its symmetry breaking. Particle candidates for cosmological dark matter are lightest particles that bear new conserved quantum numbers. Dark matter particles may represent ideal gas of noninteracting particles. Self-interacting dark matter weakly or superweakly coupled to ordinary matter is also possible, reflecting nontrivial pattern of particle symmetry in the hidden sector of particle theory. In the early universe the structure of particle symmetry breaking gives rise to cosmological phase transitions, from which macroscopic cosmological defects or primordial nonlinear structures can be originated. Primordial black holes (PBHs) can be not only a candidate for dark matter, but also represent a universal probe for superhigh energy physics in the early universe. Evaporating PBHs turn to be a source of even superweakly interacting particles, while clouds of massive PBHs can serve as nonlinear seeds for galaxy formation. The observed broken symmetry of the three known families may provide a simultaneous solution for the problems of the mass of neutrino and strong CP-violation in the unique framework of models of horizontal unification. Dark matter candidates can also appear in the new families of quarks and leptons and the existence of new stable charged leptons and quarks is possible, hidden in elusive "dark atoms." Such possibility, strongly restricted by the constraints on anomalous isotopes of light elements, is not excluded in scenarios that predict stable double charged particles. The excessive -2 charged particles are bound in these scenarios with primordial helium in O-helium "atoms," maintaining specific nuclear-interacting form of the dark matter, which may provide an interesting solution for the puzzles of the direct dark matter searches. In the context of cosmoparticle physics, studying
Narlikar, Jayant Vishnu
2002-01-01
The third edition of this successful textbook is fully updated and includes important recent developments in cosmology. It begins with an introduction to cosmology and general relativity, and goes on to cover the mathematical models of standard cosmology. The physical aspects of cosmology, including primordial nucleosynthesis, the astroparticle physics of inflation, and the current ideas on structure formation are discussed. Alternative models of cosmology are reviewed, including the model of Quasi-Steady State Cosmology, which has recently been proposed as an alternative to Big Bang Cosmology.
International Nuclear Information System (INIS)
Contopoulos, G.; Kotsakis, D.
1987-01-01
An extensive first part on a wealth of observational results relevant to cosmology lays the foundation for the second and central part of the book; the chapters on general relativity, the various cosmological theories, and the early universe. The authors present in a complete and almost non-mathematical way the ideas and theoretical concepts of modern cosmology including the exciting impact of high-energy particle physics, e.g. in the concept of the ''inflationary universe''. The final part addresses the deeper implications of cosmology, the arrow of time, the universality of physical laws, inflation and causality, and the anthropic principle
Cosmology and galaxy formation: An introduction to some recent ideas
International Nuclear Information System (INIS)
Jones, B.J.T.; Martinez, E.
1985-01-01
The aim of the present series of papers is to be unashamedly pedagogical and present, in simple terms, an overview of our current thinking about our universe and the way in which we believe galaxies have formed. There have in the past been a number of fine ''summer schools'', workshops and conferences on various aspects of cosmology and there is little point in re-iterating what has been said so well there. There have, however, been a number of recent developments in our thinking about cosmology which are worth putting in perspective. The most recent impetus to the subject has come from high energy physics. High energy physics has also introduced us to a remarkable zoo of exotic elementary particles, some of which may be of importance in understanding how the structure of our universe has evolved. These particles go by names such as ''axions'', ''paraphotons'', ''massive neutrinos'', ''gravitinos'', and ''photinos''. With the possible exception of the massive neutrino, we have no direct evidence for the existence of any of these particles and it may even be that cosmology provides the only laboratory in which the consequences of their existence may be observed
Directory of Open Access Journals (Sweden)
Greg L. Bryan
2002-01-01
Full Text Available As an entry for the 2001 Gordon Bell Award in the "special" category, we describe our 3-d, hybrid, adaptive mesh refinement (AMR code Enzo designed for high-resolution, multiphysics, cosmological structure formation simulations. Our parallel implementation places no limit on the depth or complexity of the adaptive grid hierarchy, allowing us to achieve unprecedented spatial and temporal dynamic range. We report on a simulation of primordial star formation which develops over 8000 subgrids at 34 levels of refinement to achieve a local refinement of a factor of 1012 in space and time. This allows us to resolve the properties of the first stars which form in the universe assuming standard physics and a standard cosmological model. Achieving extreme resolution requires the use of 128-bit extended precision arithmetic (EPA to accurately specify the subgrid positions. We describe our EPA AMR implementation on the IBM SP2 Blue Horizon system at the San Diego Supercomputer Center.
External versus internal triggers of bar formation in cosmological zoom-in simulations
Zana, Tommaso; Dotti, Massimo; Capelo, Pedro R.; Bonoli, Silvia; Haardt, Francesco; Mayer, Lucio; Spinoso, Daniele
2018-01-01
The emergence of a large-scale stellar bar is one of the most striking features in disc galaxies. By means of state-of-the-art cosmological zoom-in simulations, we study the formation and evolution of bars in Milky Way-like galaxies in a fully cosmological context, including the physics of gas dissipation, star formation and supernova feedback. Our goal is to characterize the actual trigger of the non-axisymmetric perturbation that leads to the strong bar observable in the simulations at z = 0, discriminating between an internal/secular and an external/tidal origin. To this aim, we run a suite of cosmological zoom-in simulations altering the original history of galaxy-satellite interactions at a time when the main galaxy, though already bar-unstable, does not feature any non-axisymmetric structure yet. We find that the main effect of a late minor merger and of a close fly-by is to delay the time of bar formation and those two dynamical events are not directly responsible for the development of the bar and do not alter significantly its global properties (e.g. its final extension). We conclude that, once the disc has grown to a mass large enough to sustain global non-axisymmetric modes, then bar formation is inevitable.
Particle physics and cosmology
International Nuclear Information System (INIS)
Turner, M.S.; Schramm, D.N.
1985-01-01
During the past year, the research of the members of our group has spanned virtually all the topics at the interface of cosmology and particle physics: inflationary Universe scenarios, astrophysical and cosmological constraints on particle properties, ultra-high energy cosmic ray physics, quantum field theory in curved space-time, cosmology with extra dimensions, superstring cosmology, neutrino astronomy with large, underground detectors, and the formation of structure in the Universe
Vittorio, Nicola
2018-01-01
Modern cosmology has changed significantly over the years, from the discovery to the precision measurement era. The data now available provide a wealth of information, mostly consistent with a model where dark matter and dark energy are in a rough proportion of 3:7. The time is right for a fresh new textbook which captures the state-of-the art in cosmology. Written by one of the world's leading cosmologists, this brand new, thoroughly class-tested textbook provides graduate and undergraduate students with coverage of the very latest developments and experimental results in the field. Prof. Nicola Vittorio shows what is meant by precision cosmology, from both theoretical and observational perspectives.
THE CHALLENGE OF THE LARGEST STRUCTURES IN THE UNIVERSE TO COSMOLOGY
International Nuclear Information System (INIS)
Park, Changbom; Choi, Yun-Young; Kim, Sungsoo S.; Kim, Kap-Sung; Kim, Juhan; Gott III, J. Richard
2012-01-01
Large galaxy redshift surveys have long been used to constrain cosmological models and structure formation scenarios. In particular, the largest structures discovered observationally are thought to carry critical information on the amplitude of large-scale density fluctuations or homogeneity of the universe, and have often challenged the standard cosmological framework. The Sloan Great Wall (SGW) recently found in the Sloan Digital Sky Survey (SDSS) region casts doubt on the concordance cosmological model with a cosmological constant (i.e., the flat ΛCDM model). Here we show that the existence of the SGW is perfectly consistent with the ΛCDM model, a result that only our very large cosmological N-body simulation (the Horizon Run 2, HR2) could supply. In addition, we report on the discovery of a void complex in the SDSS much larger than the SGW, and show that such size of the largest void is also predicted in the ΛCDM paradigm. Our results demonstrate that an initially homogeneous isotropic universe with primordial Gaussian random phase density fluctuations growing in accordance with the general relativity can explain the richness and size of the observed large-scale structures in the SDSS. Using the HR2 simulation we predict that a future galaxy redshift survey about four times deeper or with 3 mag fainter limit than the SDSS should reveal a largest structure of bright galaxies about twice as big as the SGW.
Chamcham, Khalil; Silk, Joseph; Barrow, John D.; Saunders, Simon
2017-04-01
Part I. Issues in the Philosophy of Cosmology: 1. Cosmology, cosmologia and the testing of cosmological theories George F. R. Ellis; 2. Black holes, cosmology and the passage of time: three problems at the limits of science Bernard Carr; 3. Moving boundaries? - comments on the relationship between philosophy and cosmology Claus Beisbart; 4. On the question why there exists something rather than nothing Roderich Tumulka; Part II. Structures in the Universe and the Structure of Modern Cosmology: 5. Some generalities about generality John D. Barrow; 6. Emergent structures of effective field theories Jean-Philippe Uzan; 7. Cosmological structure formation Joel R. Primack; 8. Formation of galaxies Joseph Silk; Part III. Foundations of Cosmology: Gravity and the Quantum: 9. The observer strikes back James Hartle and Thomas Hertog; 10. Testing inflation Chris Smeenk; 11. Why Boltzmann brains do not fluctuate into existence from the de Sitter vacuum Kimberly K. Boddy, Sean M. Carroll and Jason Pollack; 12. Holographic inflation revised Tom Banks; 13. Progress and gravity: overcoming divisions between general relativity and particle physics and between physics and HPS J. Brian Pitts; Part IV. Quantum Foundations and Quantum Gravity: 14. Is time's arrow perspectival? Carlo Rovelli; 15. Relational quantum cosmology Francesca Vidotto; 16. Cosmological ontology and epistemology Don N. Page; 17. Quantum origin of cosmological structure and dynamical reduction theories Daniel Sudarsky; 18. Towards a novel approach to semi-classical gravity Ward Struyve; Part V. Methodological and Philosophical Issues: 19. Limits of time in cosmology Svend E. Rugh and Henrik Zinkernagel; 20. Self-locating priors and cosmological measures Cian Dorr and Frank Arntzenius; 21. On probability and cosmology: inference beyond data? Martin Sahlén; 22. Testing the multiverse: Bayes, fine-tuning and typicality Luke A. Barnes; 23. A new perspective on Einstein's philosophy of cosmology Cormac O
Cosmological parameters from large scale structure - geometric versus shape information
Hamann, Jan; Lesgourgues, Julien; Rampf, Cornelius; Wong, Yvonne Y Y
2010-01-01
The matter power spectrum as derived from large scale structure (LSS) surveys contains two important and distinct pieces of information: an overall smooth shape and the imprint of baryon acoustic oscillations (BAO). We investigate the separate impact of these two types of information on cosmological parameter estimation, and show that for the simplest cosmological models, the broad-band shape information currently contained in the SDSS DR7 halo power spectrum (HPS) is by far superseded by geometric information derived from the baryonic features. An immediate corollary is that contrary to popular beliefs, the upper limit on the neutrino mass m_\
Investigating Student Ideas about Cosmology I: Distances and Structure
Coble, Kim; Camarillo, Carmen T.; Nickerson, Melissa D.; Trouille, Laura E.; Bailey, Janelle M.; Cochran, Geraldine L.; Cominsky, Lynn R.
2013-01-01
Recently, powerful new observations and advances in computation and visualization have led to a revolution in our understanding of the structure of the Universe. As the field of cosmology advances, it is of interest to study how student ideas relate to scientific understanding. In this paper, we examine in-depth undergraduate students' ideas on…
Complex-Dynamic Cosmology and Emergent World Structure
Kirilyuk, Andrei P.
2004-01-01
Universe structure emerges in the unreduced, complex-dynamic interaction process with the simplest initial configuration (two attracting homogeneous fields, quant-ph/9902015). The unreduced interaction analysis gives intrinsically creative cosmology, describing the real, explicitly emerging world structure with dynamic randomness on each scale. Without imposing any postulates or entities, we obtain physically real space, time, elementary particles with their detailed structure and intrinsic p...
Lesgourgues, Julien; Miele, Gennaro; Pastor, Sergio
2013-01-01
The role that neutrinos have played in the evolution of the Universe is the focus of one of the most fascinating research areas that has stemmed from the interplay between cosmology, astrophysics and particle physics. In this self-contained book, the authors bring together all aspects of the role of neutrinos in cosmology, spanning from leptogenesis to primordial nucleosynthesis, their role in CMB and structure formation, to the problem of their direct detection. The book starts by guiding the reader through aspects of fundamental neutrino physics, such as the standard cosmological model and the statistical mechanics in the expanding Universe, before discussing the history of neutrinos in chronological order from the very early stages until today. This timely book will interest graduate students and researchers in astrophysics, cosmology and particle physics, who work with either a theoretical or experimental focus.
Energy Technology Data Exchange (ETDEWEB)
Zhang Yuanzhong
2002-06-21
This book is one of a series in the areas of high-energy physics, cosmology and gravitation published by the Institute of Physics. It includes courses given at a doctoral school on 'Relativistic Cosmology: Theory and Observation' held in Spring 2000 at the Centre for Scientific Culture 'Alessandro Volta', Italy, sponsored by SIGRAV-Societa Italiana di Relativita e Gravitazione (Italian Society of Relativity and Gravitation) and the University of Insubria. This book collects 15 review reports given by a number of outstanding scientists. They touch upon the main aspects of modern cosmology from observational matters to theoretical models, such as cosmological models, the early universe, dark matter and dark energy, modern observational cosmology, cosmic microwave background, gravitational lensing, and numerical simulations in cosmology. In particular, the introduction to the basics of cosmology includes the basic equations, covariant and tetrad descriptions, Friedmann models, observation and horizons, etc. The chapters on the early universe involve inflationary theories, particle physics in the early universe, and the creation of matter in the universe. The chapters on dark matter (DM) deal with experimental evidence of DM, neutrino oscillations, DM candidates in supersymmetry models and supergravity, structure formation in the universe, dark-matter search with innovative techniques, and dark energy (cosmological constant), etc. The chapters about structure in the universe consist of the basis for structure formation, quantifying large-scale structure, cosmic background fluctuation, galaxy space distribution, and the clustering of galaxies. In the field of modern observational cosmology, galaxy surveys and cluster surveys are given. The chapter on gravitational lensing describes the lens basics and models, galactic microlensing and galaxy clusters as lenses. The last chapter, 'Numerical simulations in cosmology', deals with spatial and
International Nuclear Information System (INIS)
Raychaudhuri, A.K.
1979-01-01
The subject is covered in chapters, entitled; introduction; Newtonian gravitation and cosmology; general relativity and relativistic cosmology; analysis of observational data; relativistic models not obeying the cosmological principle; microwave radiation background; thermal history of the universe and nucleosynthesis; singularity of cosmological models; gravitational constant as a field variable; cosmological models based on Einstein-Cartan theory; cosmological singularity in two recent theories; fate of perturbations of isotropic universes; formation of galaxies; baryon symmetric cosmology; assorted topics (including extragalactic radio sources; Mach principle). (U.K.)
Structural stability properties of Friedman cosmology
International Nuclear Information System (INIS)
Szydlowski, M.; Heller, M.; Pontificial Academy of Cracow, Krakow; Golda, Z.
1984-01-01
A dynamical system with Robertson-Walker symmetries and the equation of the state p = γepsilon, O <= γ <= 1, considered both as a conservative and nonconservative system, is studied with respect to its structural properties. Different cases are shown and analyzed on the phase space (x = Rsup(D), γ = (dx/dt)). (author)
Global structure of Deffayet (Dvali-Gabadadze-Porrati) cosmologies
International Nuclear Information System (INIS)
Lue, Arthur
2003-01-01
We detail the global structure of the five-dimensional bulk for the cosmological evolution of Dvali-Gabadadze-Porrati brane worlds. The picture articulated here provides a framework and intuition for understanding how metric perturbations leave (and possibly reenter) the brane universe. A bulk observer sees the brane world as a relativistically expanding bubble, viewed either from the interior (in the case of the Friedmann-Lemaitre-Robertson-Walker phase) or the exterior (the self-accelerating phase). Shortcuts through the bulk in the first phase can lead to an apparent brane causality violation and provide an opportunity for the evasion of the horizon problem found in conventional four-dimensional cosmologies. Features of the global geometry in the latter phase anticipate a depletion of power for linear metric perturbations on large scales
Multiscale cosmology and structure-emerging dark energy: A plausibility analysis
International Nuclear Information System (INIS)
Wiegand, Alexander; Buchert, Thomas
2010-01-01
Cosmological backreaction suggests a link between structure formation and the expansion history of the Universe. In order to quantitatively examine this connection, we dynamically investigate a volume partition of the Universe into over- and underdense regions. This allows us to trace structure formation using the volume fraction of the overdense regions λ M as its characterizing parameter. Employing results from cosmological perturbation theory and extrapolating the leading mode into the nonlinear regime, we construct a three-parameter model for the effective cosmic expansion history, involving λ M 0 , the matter density Ω m D 0 , and the Hubble rate H D 0 of today's Universe. Taking standard values for Ω m D 0 and H D 0 as well as a reasonable value for λ M 0 , that we derive from N-body simulations, we determine the corresponding amounts of backreaction and spatial curvature. We find that the obtained values that are sufficient to generate today's structure also lead to a ΛCDM-like behavior of the scale factor, parametrized by the same parameters Ω m D 0 and H D 0 , but without a cosmological constant. However, the temporal behavior of λ M does not faithfully reproduce the structure formation history. Surprisingly, however, the model matches with structure formation with the assumption of a low matter content, Ω m D 0 ≅3%, a result that hints to a different interpretation of part of the backreaction effect as kinematical dark matter. A complementary investigation assumes the ΛCDM fit-model for the evolution of the global scale factor by imposing a global replacement of the cosmological constant through backreaction, and also supposes that a Newtonian simulation of structure formation provides the correct volume partition into over- and underdense regions. From these assumptions we derive the corresponding evolution laws for backreaction and spatial curvature on the partitioned domains. We find the correct scaling limit predicted by perturbation
Formation of a ''child'' universe in an inflationary cosmological model
International Nuclear Information System (INIS)
Holcomb, K.A.; Park, S.J.; Vishniac, E.T.
1989-01-01
The evolution of a flat, spherically symmetric cosmological model, containing radiation and an inhomogeneous scalar field, is simulated numerically to determine whether the inhomogeneity could cause a ''child'' universe, connected by a wormhole to the external universe, to form. The gravitational and field quantities were computed self-consistently by means of the techniques of numerical relativity. Although we were unable to follow the process to its completion, preliminary indications are that the ''budding'' phenomenon could occur under very general initial conditions, as long as the scalar field is sufficiently inhomogeneous that the wormhole forms before the inflation is damped by the expansion of the background spacetime
The possible role of dissipative structures in gravitation and cosmology
International Nuclear Information System (INIS)
Pessa, E.
1987-01-01
One of the outstanding problems of Gravitation theory and Cosmology is that of the birth of nonhomogeneous large-scale organized structures (e.g. galactic clusters, galaxies) from an initially homogeneous state of the Universe. The author suggests that this could also be viewed as a self-organization process similar to those which happen in other areas (e.g. chemical reactions, neural networks, population dynamics, laser theory), leading, under the control of a suitable bifurcation parameter. Here he presents only two simple toy models, with the aim of showing the effective possibility of construction of models of this type in General Relativity and of stimulating further research in this direction
Energy Technology Data Exchange (ETDEWEB)
Villani, Mattia, E-mail: villani@fi.infn.it [Sezione INFN di Firenze, Polo Scientifico Via Sansone 1, 50019, Sesto Fiorentino (Italy)
2014-06-01
We consider the Goode-Wainwright representation of the Szekeres cosmological models and calculate the Taylor expansion of the luminosity distance in order to study the effects of the inhomogeneities on cosmographic parameters. Without making a particular choice for the arbitrary functions defining the metric, we Taylor expand up to the second order in redshift for Family I and up to the third order for Family II Szekeres metrics under the hypotesis, based on observation, that local structure formation is over. In a conservative fashion, we also allow for the existence of a non null cosmological constant.
The effective field theory of cosmological large scale structures
Energy Technology Data Exchange (ETDEWEB)
Carrasco, John Joseph M. [Stanford Univ., Stanford, CA (United States); Hertzberg, Mark P. [Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States); Senatore, Leonardo [Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)
2012-09-20
Large scale structure surveys will likely become the next leading cosmological probe. In our universe, matter perturbations are large on short distances and small at long scales, i.e. strongly coupled in the UV and weakly coupled in the IR. To make precise analytical predictions on large scales, we develop an effective field theory formulated in terms of an IR effective fluid characterized by several parameters, such as speed of sound and viscosity. These parameters, determined by the UV physics described by the Boltzmann equation, are measured from N-body simulations. We find that the speed of sound of the effective fluid is c^{2}_{s} ≈ 10^{–6}c^{2} and that the viscosity contributions are of the same order. The fluid describes all the relevant physics at long scales k and permits a manifestly convergent perturbative expansion in the size of the matter perturbations δ(k) for all the observables. As an example, we calculate the correction to the power spectrum at order δ(k)^{4}. As a result, the predictions of the effective field theory are found to be in much better agreement with observation than standard cosmological perturbation theory, already reaching percent precision at this order up to a relatively short scale k ≃ 0.24h Mpc^{–1}.
Formation of structures in the very early universe
International Nuclear Information System (INIS)
Bertolami Neto, O.; Marques, G.C.; Ventura, I.
1984-01-01
An alternative picture of cosmological phase transition is sketched and its implications to the formation of structures in the very early Universe is studied. It is shown that the condensation of walls at high temperatures leads to fluctuations which are in accordance to all necessary conditions to the formation of structures in the Universe. Furthermore the number of aglutination centers is roughly equal to the numbers of great structures observed in the Universe today. (Author) [pt
Reionization and Galaxy Formation in Warm Dark Matter Cosmologies
Dayal, Pratika; Choudhury, Tirthankar Roy; Bromm, Volker; Pacucci, F.
2017-01-01
We compare model results from a semi-analytic (merger-tree based) framework for high-redshift (z ' 5 − 20) galaxy formation against reionization indicators, including the Planck electron scattering optical depth (τes) and the ionizing photon emissivity ( ˙nion), to shed light on the reionization
Clustering of cosmological defects at the time of formation
International Nuclear Information System (INIS)
Leese, R.; Prokopec, T.
1991-01-01
A simple model for the formation of global monopoles is considered. It is shown that they naturally form in clusters, with monopoles adjacent to antimonopoles, and vice-versa. The strong attraction between pole and antipole causes the clusters to collapse very rapidly, leading to the annihilation of most (62% in our model) of the original defects within a time τ, where τ is of the order of the correlation length. (orig.)
Cosmological special relativity the large scale structure of space, time and velocity
Carmeli, Moshe
1997-01-01
This book deals with special relativity theory and its application to cosmology. It presents Einstein's theory of space and time in detail, and describes the large scale structure of space, time and velocity as a new cosmological special relativity. A cosmological Lorentz-like transformation, which relates events at different cosmic times, is derived and applied. A new law of addition of cosmic times is obtained, and the inflation of the space at the early universe is derived, both from the cosmological transformation. The book will be of interest to cosmologists, astrophysicists, theoretical
Cosmological special relativity the large scale structure of space, time and velocity
Carmeli, Moshe
2002-01-01
This book presents Einstein's theory of space and time in detail, and describes the large-scale structure of space, time and velocity as a new cosmological special relativity. A cosmological Lorentz-like transformation, which relates events at different cosmic times, is derived and applied. A new law of addition of cosmic times is obtained, and the inflation of the space at the early universe is derived, both from the cosmological transformation. The relationship between cosmic velocity, acceleration and distances is given. In the appendices gravitation is added in the form of a cosmological g
Neutrino physics and precision cosmology
DEFF Research Database (Denmark)
Hannestad, Steen
2016-01-01
I review the current status of structure formation bounds on neutrino properties such as mass and energy density. I also discuss future cosmological bounds as well as a variety of different scenarios for reconciling cosmology with the presence of light sterile neutrinos....
Beyond the Cosmological: Numerical Scenarios underneath Ancient Annular Architectural Structures
Ranieri, M.
2009-08-01
``Cecì est la regle du carré et du cercle. Pour toutes choses, la circonférence (tcheou) est en usage, et les figures circulaire et carrée sont employées. L'officier dit ta-tsiang (grand charpentier, titre du Tcheou-li) prend ses mesures. Le compass et le règle sont apprêtés. Tantot on rompt le carré et on fait un cercle. Tantot on brise le cercle et on fait un carré. Au milieu d'un carré, quand on fait un cercle, on appelle cette figure cercle-carré. Au milieu d'un cercle, quand on fait un carré, on appelle cette figure carré-cercle.'' (Tcheou-Pei-Souan-King, book one, trad. E.Biot, Journal Asiatique, Juin 1841 p. 614 Circles and squares, as geometrical representations of the cosmos, are frequent in ancient cultures, mainly with the earth represented by the square and the sky by the circle. Quite many are the circular or circle-and-square architectures of the past that are to be interpreted as related to the cosmologies of the cultures to which they belong. In this paper we focus on those relevant annular geometries (CQC) where the square inscribable into the external circumference in turn perfectly circumscribes the internal one. Beyond the possible cosmological significances, a CQC geometry bears underneath a strict numerical structure that can be put in relation to the length-units used by the builders. Results are presented of CAD (Computer Aided Drawing) analyses performed on the plans of ancient structures where the CQC geometry was suspected to exist. A large repertory of such structures has been found, from Nuragic Sardinia to Mesoamerica including Minoans, Greeks, Romans and others. In many cases the found length-units coincide with known ancient units. The large variety presented at CAC 2000 cannot be shown in this paper for reasons of space and only a smaller but significant selection is presented.
Cosmology the homogeneous universe and the evolution of structures
CERN. Geneva. Audiovisual Unit
2003-01-01
In my course I will first give and introduction to standard cosmology. I discuss the equations of the homogeneous and isotropic universe and I'll briefly summarize its thermal history. After that I want to concentrate on the fluctuations in the universe. We will study anisotropies in the cosmic microwave background, fluctuations of the matter density and the velocity field and weak lensing. I want to explain especially new cosmological data which are coming up right now and their implication for the cosmological model. N.B. This lecture series will be held in the Auditorium, bldg. 500 on 27, 28, 30, 31 January and in the Council room on 29 January.
On the origin of large-scale cosmological structure
International Nuclear Information System (INIS)
Fry, J.N.
1987-01-01
It should be emphasized that the authors do not know at this point with any certainty what is the ultimate origin of cosmological structure. There is a collection of assumptions that make up a more or less standard model, wherein a broad spectrum of quantum fluctuations from an early epoch, modulated by physical effects that depend on the nature of the dominant component of the mass of the universe, provide the seeds that are amplified by gravitational attraction into the structures that they see today. This at least allows some statement on what this origin is not. Although all of the individual choices involved are relatively plausible, there are many steps along the way, and the resulting construct should by no means be taken to be the only possible version of the truth. The author summarizes the more commonly held beliefs and outlines what has come to be the standard model. This paper outlines main points, with most details left to the references (which also contains some visual representations of the results of numerical simulations
Cosmology and particle physics
International Nuclear Information System (INIS)
Turner, M.S.
1986-01-01
Progress in cosmology has become linked to progress in elementary particle physics. In these six lectures, the author illustrates the two-way nature of the interplay between these fields by focusing on a few selected topics. In the next section the author reviews the standard cosmology, especially concentrating on primordial nucleosynthesis and discusses how the standard cosmology has been used to place constraints on the properties of various particles. Grand Unification makes two striking predictions: (i) B non-conservation; (ii) the existence of stable, superheavy magnetic monopoles. Both have had great cosmological impact. In the following section the author discusses baryogenesis, the very attractive scenario in which the B,C,CP violating interactions in GUTs provide a dynamical explanation for the predominance of matter over antimatter and the present baryon-to-photon ratio. Monopoles are a cosmological disaster and an astrophysicist's delight. In Section 4 discusses monopoles, cosmology, and astrophysics. In the fourth lecture the author discusses how a very early (t≤10/sup -34/ sec) phase transition associated with spontaneous symmetry breaking (SSB) has the potential to explain a handful of very fundamental cosmological facts, facts which can be accommodated by the standard cosmology, but which are not ''explained'' by it. The fifth lecture is devoted to a discussion of structure formation in the universe
Simulating the formation of cosmic structure.
Frenk, C S
2002-06-15
A timely combination of new theoretical ideas and observational discoveries has brought about significant advances in our understanding of cosmic evolution. Computer simulations have played a key role in these developments by providing the means to interpret astronomical data in the context of physical and cosmological theory. In the current paradigm, our Universe has a flat geometry, is undergoing accelerated expansion and is gravitationally dominated by elementary particles that make up cold dark matter. Within this framework, it is possible to simulate in a computer the emergence of galaxies and other structures from small quantum fluctuations imprinted during an epoch of inflationary expansion shortly after the Big Bang. The simulations must take into account the evolution of the dark matter as well as the gaseous processes involved in the formation of stars and other visible components. Although many unresolved questions remain, a coherent picture for the formation of cosmic structure is now beginning to emerge.
String cosmology modern string theory concepts from the cosmic structure
2009-01-01
The field of string cosmology has matured considerably over the past few years, attracting many new adherents to this multidisciplinary Field. This book fills a critical gap by bringing together strains of current research into one single volume. The resulting collection of selected articles presents the latest, ongoing results from renowned experts currently working in the field. This offers the possibility for practitioners to become conversant with many different aspects of string cosmology
Energy Technology Data Exchange (ETDEWEB)
Crosby, Brian D.; O' Shea, Brian W.; Smith, Britton D. [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Turk, Matthew J. [Department of Astronomy, Columbia University, New York, NY 10025 (United States); Hahn, Oliver, E-mail: crosbyb1@msu.edu [Institute for Astronomy, ETH Zurich, CH-8093 Zuerich (Switzerland)
2013-08-20
We present a semi-analytic, computationally inexpensive model to identify halos capable of forming a Population III star in cosmological simulations across a wide range of times and environments. This allows for a much more complete and representative set of Population III star forming halos to be constructed, which will lead to Population III star formation simulations that more accurately reflect the diversity of Population III stars, both in time and halo mass. This model shows that Population III and chemically enriched stars coexist beyond the formation of the first generation of stars in a cosmological simulation until at least z {approx} 10, and likely beyond, though Population III stars form at rates that are 4-6 orders of magnitude lower than chemically enriched stars by z = 10. A catalog of more than 40,000 candidate Population III forming halos were identified, with formation times temporally ranging from z = 30 to z = 10, and ranging in mass from 2.3 Multiplication-Sign 10{sup 5} M{sub Sun} to 1.2 Multiplication-Sign 10{sup 10} M{sub Sun }. At early times, the environment that Population III stars form in is very similar to that of halos hosting chemically enriched star formation. At later times Population III stars are found to form in low-density regions that are not yet chemically polluted due to a lack of previous star formation in the area. Population III star forming halos become increasingly spatially isolated from one another at later times, and are generally closer to halos hosting chemically enriched star formation than to another halo hosting Population III star formation by z {approx} 10.
Baseline metal enrichment from Population III star formation in cosmological volume simulations
Jaacks, Jason; Thompson, Robert; Finkelstein, Steven L.; Bromm, Volker
2018-04-01
We utilize the hydrodynamic and N-body code GIZMO coupled with our newly developed sub-grid Population III (Pop III) Legacy model, designed specifically for cosmological volume simulations, to study the baseline metal enrichment from Pop III star formation at z > 7. In this idealized numerical experiment, we only consider Pop III star formation. We find that our model Pop III star formation rate density (SFRD), which peaks at ˜ 10- 3 M⊙ yr- 1 Mpc- 1 near z ˜ 10, agrees well with previous numerical studies and is consistent with the observed estimates for Pop II SFRDs. The mean Pop III metallicity rises smoothly from z = 25 to 7, but does not reach the critical metallicity value, Zcrit = 10-4 Z⊙, required for the Pop III to Pop II transition in star formation mode until z ≃ 7. This suggests that, while individual haloes can suppress in situ Pop III star formation, the external enrichment is insufficient to globally terminate Pop III star formation. The maximum enrichment from Pop III star formation in star-forming dark matter haloes is Z ˜ 10-2 Z⊙, whereas the minimum found in externally enriched haloes is Z ≳ 10-7 Z⊙. Finally, mock observations of our simulated IGM enriched with Pop III metals produce equivalent widths similar to observations of an extremely metal-poor damped Lyman alpha system at z = 7.04, which is thought to be enriched by Pop III star formation only.
Star Cluster Structure from Hierarchical Star Formation
Grudic, Michael; Hopkins, Philip; Murray, Norman; Lamberts, Astrid; Guszejnov, David; Schmitz, Denise; Boylan-Kolchin, Michael
2018-01-01
Young massive star clusters (YMCs) spanning 104-108 M⊙ in mass generally have similar radial surface density profiles, with an outer power-law index typically between -2 and -3. This similarity suggests that they are shaped by scale-free physics at formation. Recent multi-physics MHD simulations of YMC formation have also produced populations of YMCs with this type of surface density profile, allowing us to narrow down the physics necessary to form a YMC with properties as observed. We show that the shallow density profiles of YMCs are a natural result of phase-space mixing that occurs as they assemble from the clumpy, hierarchically-clustered configuration imprinted by the star formation process. We develop physical intuition for this process via analytic arguments and collisionless N-body experiments, elucidating the connection between star formation physics and star cluster structure. This has implications for the early-time structure and evolution of proto-globular clusters, and prospects for simulating their formation in the FIRE cosmological zoom-in simulations.
Lachieze-Rey, Marc
This book delivers a quantitative account of the science of cosmology, designed for a non-specialist audience. The basic principles are outlined using simple maths and physics, while still providing rigorous models of the Universe. It offers an ideal introduction to the key ideas in cosmology, without going into technical details. The approach used is based on the fundamental ideas of general relativity such as the spacetime interval, comoving coordinates, and spacetime curvature. It provides an up-to-date and thoughtful discussion of the big bang, and the crucial questions of structure and galaxy formation. Questions of method and philosophical approaches in cosmology are also briefly discussed. Advanced undergraduates in either physics or mathematics would benefit greatly from use either as a course text or as a supplementary guide to cosmology courses.
Computational Cosmology: from the Early Universe to the Large Scale Structure
Directory of Open Access Journals (Sweden)
Peter Anninos
1998-09-01
Full Text Available In order to account for the observable Universe, any comprehensive theory or model of cosmology must draw from many disciplines of physics, including gauge theories of strong and weak interactions, the hydrodynamics and microphysics of baryonic matter, electromagnetic fields, and spacetime curvature, for example. Although it is difficult to incorporate all these physical elements into a single complete model of our Universe, advances in computing methods and technologies have contributed significantly towards our understanding of cosmological models, the Universe, and astrophysical processes within them. A sample of numerical calculations addressing specific issues in cosmology are reviewed in this article: from the Big Bang singularity dynamics to the fundamental interactions of gravitational waves; from the quark--hadron phase transition to the large scale structure of the Universe. The emphasis, although not exclusively, is on thosecalculations designed to test different models of cosmology against the observed Universe.
Computational Cosmology: from the Early Universe to the Large Scale Structure
Directory of Open Access Journals (Sweden)
Anninos Peter
2001-01-01
Full Text Available In order to account for the observable Universe, any comprehensive theory or model of cosmology must draw from many disciplines of physics, including gauge theories of strong and weak interactions, the hydrodynamics and microphysics of baryonic matter, electromagnetic fields, and spacetime curvature, for example. Although it is difficult to incorporate all these physical elements into a single complete model of our Universe, advances in computing methods and technologies have contributed significantly towards our understanding of cosmological models, the Universe, and astrophysical processes within them. A sample of numerical calculations (and numerical methods applied to specific issues in cosmology are reviewed in this article: from the Big Bang singularity dynamics to the fundamental interactions of gravitational waves; from the quark-hadron phase transition to the large scale structure of the Universe. The emphasis, although not exclusively, is on those calculations designed to test different models of cosmology against the observed Universe.
Computational Cosmology: From the Early Universe to the Large Scale Structure.
Anninos, Peter
2001-01-01
In order to account for the observable Universe, any comprehensive theory or model of cosmology must draw from many disciplines of physics, including gauge theories of strong and weak interactions, the hydrodynamics and microphysics of baryonic matter, electromagnetic fields, and spacetime curvature, for example. Although it is difficult to incorporate all these physical elements into a single complete model of our Universe, advances in computing methods and technologies have contributed significantly towards our understanding of cosmological models, the Universe, and astrophysical processes within them. A sample of numerical calculations (and numerical methods applied to specific issues in cosmology are reviewed in this article: from the Big Bang singularity dynamics to the fundamental interactions of gravitational waves; from the quark-hadron phase transition to the large scale structure of the Universe. The emphasis, although not exclusively, is on those calculations designed to test different models of cosmology against the observed Universe.
SPMHD simulations of structure formation
Barnes, David J.; On, Alvina Y. L.; Wu, Kinwah; Kawata, Daisuke
2018-05-01
The intracluster medium of galaxy clusters is permeated by μ {G} magnetic fields. Observations with current and future facilities have the potential to illuminate the role of these magnetic fields play in the astrophysical processes of galaxy clusters. To obtain a greater understanding of how the initial seed fields evolve to the magnetic fields in the intracluster medium requires magnetohydrodynamic simulations. We critically assess the current smoothed particle magnetohydrodynamic (SPMHD) schemes, especially highlighting the impact of a hyperbolic divergence cleaning scheme and artificial resistivity switch on the magnetic field evolution in cosmological simulations of the formation of a galaxy cluster using the N-body/SPMHD code GCMHD++. The impact and performance of the cleaning scheme and two different schemes for the artificial resistivity switch is demonstrated via idealized test cases and cosmological simulations. We demonstrate that the hyperbolic divergence cleaning scheme is effective at suppressing the growth of the numerical divergence error of the magnetic field and should be applied to any SPMHD simulation. Although the artificial resistivity is important in the strong field regime, it can suppress the growth of the magnetic field in the weak field regime, such as galaxy clusters. With sufficient resolution, simulations with divergence cleaning can reproduce observed magnetic fields. We conclude that the cleaning scheme alone is sufficient for galaxy cluster simulations, but our results indicate that the SPMHD scheme must be carefully chosen depending on the regime of the magnetic field.
Cosmology and the weak interaction
Energy Technology Data Exchange (ETDEWEB)
Schramm, D.N. (Fermi National Accelerator Lab., Batavia, IL (USA)):(Chicago Univ., IL (USA))
1989-12-01
The weak interaction plays a critical role in modern Big Bang cosmology. This review will emphasize two of its most publicized cosmological connections: Big Bang nucleosynthesis and Dark Matter. The first of these is connected to the cosmological prediction of Neutrino Flavours, N{sub {nu}} {approximately} 3 which is now being confirmed at SLC and LEP. The second is interrelated to the whole problem of galaxy and structure formation in the universe. This review will demonstrate the role of the weak interaction both for dark matter candidates and for the problem of generating seeds to form structure. 87 refs., 3 figs., 5 tabs.
Cosmology and the weak interaction
International Nuclear Information System (INIS)
Schramm, D.N.
1989-12-01
The weak interaction plays a critical role in modern Big Bang cosmology. This review will emphasize two of its most publicized cosmological connections: Big Bang nucleosynthesis and Dark Matter. The first of these is connected to the cosmological prediction of Neutrino Flavours, N ν ∼ 3 which is now being confirmed at SLC and LEP. The second is interrelated to the whole problem of galaxy and structure formation in the universe. This review will demonstrate the role of the weak interaction both for dark matter candidates and for the problem of generating seeds to form structure. 87 refs., 3 figs., 5 tabs
Forbes, Duncan A.; Bastian, Nate; Gieles, Mark; Crain, Robert A.; Kruijssen, J. M. Diederik; Larsen, Søren S.; Ploeckinger, Sylvia; Agertz, Oscar; Trenti, Michele; Ferguson, Annette M. N.; Pfeffer, Joel; Gnedin, Oleg Y.
2018-02-01
We discuss some of the key open questions regarding the formation and evolution of globular clusters (GCs) during galaxy formation and assembly within a cosmological framework. The current state of the art for both observations and simulations is described, and we briefly mention directions for future research. The oldest GCs have ages greater than or equal to 12.5 Gyr and formed around the time of reionization. Resolved colour-magnitude diagrams of Milky Way GCs and direct imaging of lensed proto-GCs at z˜6 with the James Webb Space Telescope (JWST) promise further insight. GCs are known to host multiple populations of stars with variations in their chemical abundances. Recently, such multiple populations have been detected in ˜2 Gyr old compact, massive star clusters. This suggests a common, single pathway for the formation of GCs at high and low redshift. The shape of the initial mass function for GCs remains unknown; however, for massive galaxies a power-law mass function is favoured. Significant progress has been made recently modelling GC formation in the context of galaxy formation, with success in reproducing many of the observed GC-galaxy scaling relations.
Particle physics and cosmology, Task C
International Nuclear Information System (INIS)
Turner, M.S.
1993-05-01
The research has spanned many topics at the boundary of particle physics and cosmology. The major focus has been in the general areas of inflationary cosmology, cosmological phase transitions, astrophysical constraints to particle physics theories, and dark matter/structure formation as it relates to particle physics. Some attention is given to axion physics. Narrative summaries of the research of the individual group members are given, followed by a list of publications
Cosmological Parameter Estimation with Large Scale Structure Observations
Di Dio, Enea; Durrer, Ruth; Lesgourgues, Julien
2014-01-01
We estimate the sensitivity of future galaxy surveys to cosmological parameters, using the redshift dependent angular power spectra of galaxy number counts, $C_\\ell(z_1,z_2)$, calculated with all relativistic corrections at first order in perturbation theory. We pay special attention to the redshift dependence of the non-linearity scale and present Fisher matrix forecasts for Euclid-like and DES-like galaxy surveys. We compare the standard $P(k)$ analysis with the new $C_\\ell(z_1,z_2)$ method. We show that for surveys with photometric redshifts the new analysis performs significantly better than the $P(k)$ analysis. For spectroscopic redshifts, however, the large number of redshift bins which would be needed to fully profit from the redshift information, is severely limited by shot noise. We also identify surveys which can measure the lensing contribution and we study the monopole, $C_0(z_1,z_2)$.
International Nuclear Information System (INIS)
Zeldovich, Y.B.
1983-01-01
This paper fives a general review of modern cosmology. The following subjects are discussed: hot big bang and periodization of the evolution; Hubble expansion; the structure of the universe (pancake theory); baryon asymmetry; inflatory universe. (Auth.)
A quasi-static approach to structure formation in black hole universes
Energy Technology Data Exchange (ETDEWEB)
Durk, Jessie; Clifton, Timothy, E-mail: j.durk@qmul.ac.uk, E-mail: t.clifton@qmul.ac.uk [School of Physics and Astronomy, Queen Mary University of London, Mile End Road, London (United Kingdom)
2017-10-01
Motivated by the existence of hierarchies of structure in the Universe, we present four new families of exact initial data for inhomogeneous cosmological models at their maximum of expansion. These data generalise existing black hole lattice models to situations that contain clusters of masses, and hence allow the consequences of cosmological structures to be considered in a well-defined and non-perturbative fashion. The degree of clustering is controlled by a parameter λ, in such a way that for λ ∼ 0 or 1 we have very tightly clustered masses, whilst for λ ∼ 0.5 all masses are separated by cosmological distance scales. We study the consequences of structure formation on the total net mass in each of our clusters, as well as calculating the cosmological consequences of the interaction energies both within and between clusters. The locations of the shared horizons that appear around groups of black holes, when they are brought sufficiently close together, are also identified and studied. We find that clustering can have surprisingly large effects on the scale of the cosmology, with models that contain thousands of black holes sometimes being as little as 30% of the size of comparable Friedmann models with the same total proper mass. This deficit is comparable to what might be expected to occur from neglecting gravitational interaction energies in Friedmann cosmology, and suggests that these quantities may have a significant influence on the properties of the large-scale cosmology.
A quasi-static approach to structure formation in black hole universes
International Nuclear Information System (INIS)
Durk, Jessie; Clifton, Timothy
2017-01-01
Motivated by the existence of hierarchies of structure in the Universe, we present four new families of exact initial data for inhomogeneous cosmological models at their maximum of expansion. These data generalise existing black hole lattice models to situations that contain clusters of masses, and hence allow the consequences of cosmological structures to be considered in a well-defined and non-perturbative fashion. The degree of clustering is controlled by a parameter λ, in such a way that for λ ∼ 0 or 1 we have very tightly clustered masses, whilst for λ ∼ 0.5 all masses are separated by cosmological distance scales. We study the consequences of structure formation on the total net mass in each of our clusters, as well as calculating the cosmological consequences of the interaction energies both within and between clusters. The locations of the shared horizons that appear around groups of black holes, when they are brought sufficiently close together, are also identified and studied. We find that clustering can have surprisingly large effects on the scale of the cosmology, with models that contain thousands of black holes sometimes being as little as 30% of the size of comparable Friedmann models with the same total proper mass. This deficit is comparable to what might be expected to occur from neglecting gravitational interaction energies in Friedmann cosmology, and suggests that these quantities may have a significant influence on the properties of the large-scale cosmology.
A quasi-static approach to structure formation in black hole universes
Durk, Jessie; Clifton, Timothy
2017-10-01
Motivated by the existence of hierarchies of structure in the Universe, we present four new families of exact initial data for inhomogeneous cosmological models at their maximum of expansion. These data generalise existing black hole lattice models to situations that contain clusters of masses, and hence allow the consequences of cosmological structures to be considered in a well-defined and non-perturbative fashion. The degree of clustering is controlled by a parameter λ, in such a way that for λ ~ 0 or 1 we have very tightly clustered masses, whilst for λ ~ 0.5 all masses are separated by cosmological distance scales. We study the consequences of structure formation on the total net mass in each of our clusters, as well as calculating the cosmological consequences of the interaction energies both within and between clusters. The locations of the shared horizons that appear around groups of black holes, when they are brought sufficiently close together, are also identified and studied. We find that clustering can have surprisingly large effects on the scale of the cosmology, with models that contain thousands of black holes sometimes being as little as 30% of the size of comparable Friedmann models with the same total proper mass. This deficit is comparable to what might be expected to occur from neglecting gravitational interaction energies in Friedmann cosmology, and suggests that these quantities may have a significant influence on the properties of the large-scale cosmology.
International Nuclear Information System (INIS)
Zeldovich, Ya.
1984-01-01
The knowledge is summed up of contemporary cosmology on the universe and its development resulting from a great number of highly sensitive observations and the application of contemporary physical theories to the entire universe. The questions are assessed of mass density in the universe, the structure and origin of the universe, its baryon asymmetry and the quantum explanation of the origin of the universe. Physical problems are presented which should be resolved for the future development of cosmology. (Ha)
Energy Technology Data Exchange (ETDEWEB)
Reddick, Rachel M.; Wechsler, Risa H.; Lu, Yu [Kavli Institute for Particle Astrophysics and Cosmology, Physics Department, Stanford University, Stanford, CA 94305 (United States); Tinker, Jeremy L., E-mail: rmredd@stanford.edu, E-mail: rwechsler@stanford.edu [Center for Cosmology and Particle Physics, Department of Physics, New York University, New York, NY 10003 (United States)
2014-03-10
Many approaches to obtaining cosmological constraints rely on the connection between galaxies and dark matter. However, the distribution of galaxies is dependent on their formation and evolution as well as on the cosmological model, and galaxy formation is still not a well-constrained process. Thus, methods that probe cosmology using galaxies as tracers for dark matter must be able to accurately estimate the cosmological parameters. This can be done without knowing details of galaxy formation a priori as long as the galaxies are well represented by a halo occupation distribution (HOD). We apply this reasoning to the method of obtaining Ω {sub m} and σ{sub 8} from galaxy clustering combined with the mass-to-number ratio of galaxy clusters. To test the sensitivity of this method to variations due to galaxy formation, we consider several different models applied to the same cosmological dark matter simulation. The cosmological parameters are then estimated using the observables in each model, marginalizing over the parameters of the HOD. We find that for models where the galaxies can be well represented by a parameterized HOD, this method can successfully extract the desired cosmological parameters for a wide range of galaxy formation prescriptions.
International Nuclear Information System (INIS)
Reddick, Rachel M.; Wechsler, Risa H.; Lu, Yu; Tinker, Jeremy L.
2014-01-01
Many approaches to obtaining cosmological constraints rely on the connection between galaxies and dark matter. However, the distribution of galaxies is dependent on their formation and evolution as well as on the cosmological model, and galaxy formation is still not a well-constrained process. Thus, methods that probe cosmology using galaxies as tracers for dark matter must be able to accurately estimate the cosmological parameters. This can be done without knowing details of galaxy formation a priori as long as the galaxies are well represented by a halo occupation distribution (HOD). We apply this reasoning to the method of obtaining Ω m and σ 8 from galaxy clustering combined with the mass-to-number ratio of galaxy clusters. To test the sensitivity of this method to variations due to galaxy formation, we consider several different models applied to the same cosmological dark matter simulation. The cosmological parameters are then estimated using the observables in each model, marginalizing over the parameters of the HOD. We find that for models where the galaxies can be well represented by a parameterized HOD, this method can successfully extract the desired cosmological parameters for a wide range of galaxy formation prescriptions.
Halo Models of Large Scale Structure and Reliability of Cosmological N-Body Simulations
Directory of Open Access Journals (Sweden)
José Gaite
2013-05-01
Full Text Available Halo models of the large scale structure of the Universe are critically examined, focusing on the definition of halos as smooth distributions of cold dark matter. This definition is essentially based on the results of cosmological N-body simulations. By a careful analysis of the standard assumptions of halo models and N-body simulations and by taking into account previous studies of self-similarity of the cosmic web structure, we conclude that N-body cosmological simulations are not fully reliable in the range of scales where halos appear. Therefore, to have a consistent definition of halos is necessary either to define them as entities of arbitrary size with a grainy rather than smooth structure or to define their size in terms of small-scale baryonic physics.
The Higgs boson and cosmology.
Shaposhnikov, Mikhail
2015-01-13
I will discuss how the Higgs field of the Standard Model may have played an important role in cosmology, leading to the homogeneity, isotropy and flatness of the Universe; producing the quantum fluctuations that seed structure formation; triggering the radiation-dominated era of the hot Big Bang; and contributing to the processes of baryogenesis and dark matter production.
Shaposhnikov, Mikhail
2015-01-01
I will discuss how the Higgs field of the Standard Model may have played an important role in cosmology, leading to the homogeneity, isotropy and flatness of the Universe; producing the quantum fluctuations that seed structure formation; triggering the radiation-dominated era of the hot Big Bang; and contributing to the processes of baryogenesis and dark matter production.
Renormalization-group flow of the effective action of cosmological large-scale structures
Floerchinger, Stefan
2017-01-01
Following an approach of Matarrese and Pietroni, we derive the functional renormalization group (RG) flow of the effective action of cosmological large-scale structures. Perturbative solutions of this RG flow equation are shown to be consistent with standard cosmological perturbation theory. Non-perturbative approximate solutions can be obtained by truncating the a priori infinite set of possible effective actions to a finite subspace. Using for the truncated effective action a form dictated by dissipative fluid dynamics, we derive RG flow equations for the scale dependence of the effective viscosity and sound velocity of non-interacting dark matter, and we solve them numerically. Physically, the effective viscosity and sound velocity account for the interactions of long-wavelength fluctuations with the spectrum of smaller-scale perturbations. We find that the RG flow exhibits an attractor behaviour in the IR that significantly reduces the dependence of the effective viscosity and sound velocity on the input ...
Hierarchical formation of large scale structures of the Universe: observations and models
International Nuclear Information System (INIS)
Maurogordato, Sophie
2003-01-01
In this report for an Accreditation to Supervise Research (HDR), the author proposes an overview of her research works in cosmology. These works notably addressed the large scale distribution of the Universe (with constraints on the scenario of formation, and on the bias relationship, and the structuring of clusters), the analysis of galaxy clusters during coalescence, mass distribution within relaxed clusters [fr
Inflation after COBE: Lectures on inflationary cosmology
International Nuclear Information System (INIS)
Turner, M.S.
1992-01-01
In these lectures I review the standard hot big-bang cosmology, emphasizing its successes, its shortcomings, and its major challenge-a detailed understanding of the formation of structure in the Universe. I then discuss the motivations for and the fundamentals of inflationary cosmology, particularly emphasizing the quantum origin of metric (density and gravity-wave) perturbations. Inflation addresses the shortcomings of the standard cosmology and provides the ''initial data'' for structure formation. I conclude by addressing the implications of inflation for structure formation, evaluating the various cold dark matter models in the light of the recent detection of temperature anisotropies in the cosmic background radiation by COBE. In the near term, the study of structure formation offers a powerful probe of inflation, as well as specific inflationary models
Inflation after COBE: Lectures on inflationary cosmology
Energy Technology Data Exchange (ETDEWEB)
Turner, M.S. [Chicago Univ., IL (United States). Enrico Fermi Inst.]|[Fermi National Accelerator Lab., Batavia, IL (United States)
1992-12-31
In these lectures I review the standard hot big-bang cosmology, emphasizing its successes, its shortcomings, and its major challenge-a detailed understanding of the formation of structure in the Universe. I then discuss the motivations for and the fundamentals of inflationary cosmology, particularly emphasizing the quantum origin of metric (density and gravity-wave) perturbations. Inflation addresses the shortcomings of the standard cosmology and provides the ``initial data`` for structure formation. I conclude by addressing the implications of inflation for structure formation, evaluating the various cold dark matter models in the light of the recent detection of temperature anisotropies in the cosmic background radiation by COBE. In the near term, the study of structure formation offers a powerful probe of inflation, as well as specific inflationary models.
Thermal Condensate Structure and Cosmological Energy Density of the Universe
Directory of Open Access Journals (Sweden)
Antonio Capolupo
2016-01-01
Full Text Available The aim of this paper is to study thermal vacuum condensate for scalar and fermion fields. We analyze the thermal states at the temperature of the cosmic microwave background (CMB and we show that the vacuum expectation value of the energy momentum tensor density of photon fields reproduces the energy density and pressure of the CMB. We perform the computations in the formal framework of the Thermo Field Dynamics. We also consider the case of neutrinos and thermal states at the temperature of the neutrino cosmic background. Consistency with the estimated lower bound of the sum of the active neutrino masses is verified. In the boson sector, nontrivial contribution to the energy of the universe is given by particles of masses of the order of 10−4 eV compatible with the ones of the axion-like particles. The fractal self-similar structure of the thermal radiation is also discussed and related to the coherent structure of the thermal vacuum.
Cosmological perturbations from quantum fluctuations to large scale structure
International Nuclear Information System (INIS)
Bardeen, J.M.
1988-01-01
Classical perturbation theory is developed from the 3 + 1 form of the Einstein equations. A somewhat unusual form of the perturbation equations in the synchronous gauge is recommended for carrying out computations, but interpretation is based on certain hypersurface-invariant combinations of the variables. The formalism is used to analyze the origin of density perturbations from quantum fluctuations during inflation, with particular emphasis on dealing with 'double inflation' and deviations from the Zel'dovich spectrum. The evolution of the density perturbation to the present gives the final density perturbation power spectrum, whose relationship to observed large scale structure is discussed in the context of simple cold-dark-matter biasing schemes. 86 refs
Kinetically guided colloidal structure formation
Hecht, Fabian M.; Bausch, Andreas R.
2016-01-01
The well-studied self-organization of colloidal particles is predicted to result in a variety of fascinating applications. Yet, whereas self-assembly techniques are extensively explored, designing and producing mesoscale-sized objects remains a major challenge, as equilibration times and thus structure formation timescales become prohibitively long. Asymmetric mesoscopic objects, without prior introduction of asymmetric particles with all its complications, are out of reach––due to the underl...
Fourier imaging of non-linear structure formation
International Nuclear Information System (INIS)
Brandbyge, Jacob; Hannestad, Steen
2017-01-01
We perform a Fourier space decomposition of the dynamics of non-linear cosmological structure formation in ΛCDM models. From N -body simulations involving only cold dark matter we calculate 3-dimensional non-linear density, velocity divergence and vorticity Fourier realizations, and use these to calculate the fully non-linear mode coupling integrals in the corresponding fluid equations. Our approach allows for a reconstruction of the amount of mode coupling between any two wavenumbers as a function of redshift. With our Fourier decomposition method we identify the transfer of power from larger to smaller scales, the stable clustering regime, the scale where vorticity becomes important, and the suppression of the non-linear divergence power spectrum as compared to linear theory. Our results can be used to improve and calibrate semi-analytical structure formation models.
Fourier imaging of non-linear structure formation
Energy Technology Data Exchange (ETDEWEB)
Brandbyge, Jacob; Hannestad, Steen, E-mail: jacobb@phys.au.dk, E-mail: sth@phys.au.dk [Department of Physics and Astronomy, University of Aarhus, Ny Munkegade 120, DK-8000 Aarhus C (Denmark)
2017-04-01
We perform a Fourier space decomposition of the dynamics of non-linear cosmological structure formation in ΛCDM models. From N -body simulations involving only cold dark matter we calculate 3-dimensional non-linear density, velocity divergence and vorticity Fourier realizations, and use these to calculate the fully non-linear mode coupling integrals in the corresponding fluid equations. Our approach allows for a reconstruction of the amount of mode coupling between any two wavenumbers as a function of redshift. With our Fourier decomposition method we identify the transfer of power from larger to smaller scales, the stable clustering regime, the scale where vorticity becomes important, and the suppression of the non-linear divergence power spectrum as compared to linear theory. Our results can be used to improve and calibrate semi-analytical structure formation models.
Ultracompact Minihalos as Probes of Inflationary Cosmology.
Aslanyan, Grigor; Price, Layne C; Adams, Jenni; Bringmann, Torsten; Clark, Hamish A; Easther, Richard; Lewis, Geraint F; Scott, Pat
2016-09-30
Cosmological inflation generates primordial density perturbations on all scales, including those far too small to contribute to the cosmic microwave background. At these scales, isolated ultracompact minihalos of dark matter can form well before standard structure formation, if the perturbations have sufficient amplitude. Minihalos affect pulsar timing data and are potentially bright sources of gamma rays. The resulting constraints significantly extend the observable window of inflation in the presence of cold dark matter, coupling two of the key problems in modern cosmology.
International Nuclear Information System (INIS)
Zel'dovich, Ya.B.
1983-01-01
The present state of the art in cosmology is under discussion. The general picture of the Universe evolution is presented, and its main stages are outlined. The prooess of formation of the large scale Universe structure is considered. The possibility of investigation into the ''inflation'' period of the ''very-very early Universe'' from the view point of theoretical physics is sown. It is noted that cosmology will become a complete science only when physics gives an exhaustive answer to all issues raised by cosmology
Cosmological dynamics of extended chameleons
International Nuclear Information System (INIS)
Tamanini, Nicola; Wright, Matthew
2016-01-01
We investigate the cosmological dynamics of the recently proposed extended chameleon models at both background and linear perturbation levels. Dynamical systems techniques are employed to fully characterize the evolution of the universe at the largest distances, while structure formation is analysed at sub-horizon scales within the quasi-static approximation. The late time dynamical transition from dark matter to dark energy domination can be well described by almost all extended chameleon models considered, with no deviations from ΛCDM results at both background and perturbation levels. The results obtained in this work confirm the cosmological viability of extended chameleons as alternative dark energy models.
Cosmological dynamics of extended chameleons
Energy Technology Data Exchange (ETDEWEB)
Tamanini, Nicola [Institut de Physique Théorique, CEA-Saclay, CNRS UMR 3681, Université Paris-Saclay, F-91191 Gif-sur-Yvette (France); Wright, Matthew, E-mail: nicola.tamanini@cea.fr, E-mail: matthew.wright.13@ucl.ac.uk [Department of Mathematics, University College London, Gower Street, London, WC1E 6BT (United Kingdom)
2016-04-01
We investigate the cosmological dynamics of the recently proposed extended chameleon models at both background and linear perturbation levels. Dynamical systems techniques are employed to fully characterize the evolution of the universe at the largest distances, while structure formation is analysed at sub-horizon scales within the quasi-static approximation. The late time dynamical transition from dark matter to dark energy domination can be well described by almost all extended chameleon models considered, with no deviations from ΛCDM results at both background and perturbation levels. The results obtained in this work confirm the cosmological viability of extended chameleons as alternative dark energy models.
Tweed, D. P.; Mamon, G. A.; Thuan, T. X.; Cattaneo, A.; Dekel, A.; Menci, N.; Calura, F.; Silk, J.
2018-06-01
In the local Universe, the existence of very young galaxies (VYGs), having formed at least half their stellar mass in the last 1 Gyr, is debated. We predict the present-day fraction of VYGs among central galaxies as a function of galaxy stellar mass. For this, we apply to high mass resolution Monte Carlo halo merger trees (MCHMTs) three (one) analytical models of galaxy formation, where the ratio of stellar to halo mass (mass growth rate) is a function of halo mass and redshift. Galaxy merging is delayed until orbital decay by dynamical friction. With starbursts associated with halo mergers, our models predict typically 1 per cent of VYGs up to galaxy masses of m = 1010 M⊙, falling rapidly at higher masses, and VYGs are usually associated with recent major mergers of their haloes. Without these starbursts, two of the models have VYG fractions reduced by 1 or 2 dex at low or intermediate stellar masses, and VYGs are rarely associated with major halo mergers. In comparison, the state-of-the-art semi-analytical model (SAM) of Henriques et al. produces only 0.01 per cent of VYGs at intermediate masses. Finally, the Menci et al. SAM run on MCHMTs with Warm Dark Matter cosmology generates 10 times more VYGs at m < 108 M⊙ than when run with Cold Dark Matter. The wide range in these VYG fractions illustrates the usefulness of VYGs to constrain both galaxy formation and cosmological models.
International Nuclear Information System (INIS)
Pfrommer, Christoph; Chang, Philip; Broderick, Avery E.
2012-01-01
A subset of blazars are powerful TeV emitters, dominating the extragalactic component of the very high energy gamma-ray universe (E ∼> 100 GeV). These TeV gamma rays generate ultrarelativistic electron-positron pairs via pair production with the extragalactic background light. While it has generally been assumed that the kinetic energy of these pairs cascades to GeV gamma rays via inverse Compton scattering, we have argued in Broderick et al. (Paper I in this series) that plasma beam instabilities are capable of dissipating the pairs' energy locally on timescales short in comparison to the inverse Compton cooling time, heating the intergalactic medium (IGM) with a rate that is independent of density. This dramatically increases the entropy of the IGM after redshift z ∼ 2, with a number of important implications for structure formation: (1) this suggests a scenario for the origin of the cool core (CC)/non-cool core (NCC) bimodality in galaxy clusters and groups. Early-forming galaxy groups are unaffected because they can efficiently radiate the additional entropy, developing a CC. However, late-forming groups do not have sufficient time to cool before the entropy is gravitationally reprocessed through successive mergers—counteracting cooling and potentially raising the core entropy further. This may result in a population of X-ray dim groups/clusters, consistent with X-ray stacking analyses of optically selected samples. Hence, blazar heating works differently than feedback by active galactic nuclei, which we show can balance radiative cooling but is unable to transform CC into NCC clusters on the buoyancy timescale due to the weak coupling between the mechanical energy to the cluster gas. (2) We predict a suppression of the Sunyaev-Zel'dovich (SZ) power spectrum template on angular scales smaller than 5' due to the globally reduced central pressure of groups and clusters forming after z ∼ 1. This allows for a larger rms amplitude of the density power
Cosmological constant--the weight of the vacuum
International Nuclear Information System (INIS)
Padmanabhan, T.
2003-01-01
Recent cosmological observations suggest the existence of a positive cosmological constant Λ with the magnitude Λ(Gℎ/c 3 )∼10 -123 . This review discusses several aspects of the cosmological constant both from the cosmological (Sections 1-6) and field theoretical (Sections 7-11) perspectives. After a brief introduction to the key issues related to cosmological constant and a historical overview, a summary of the kinematics and dynamics of the standard Friedmann model of the universe is provided. The observational evidence for cosmological constant, especially from the supernova results, and the constraints from the age of the universe, structure formation, Cosmic Microwave Background Radiation (CMBR) anisotropies and a few others are described in detail, followed by a discussion of the theoretical models (quintessence, tachyonic scalar field, ...) from different perspectives. The latter part of the review (Sections 7-11) concentrates on more conceptual and fundamental aspects of the cosmological constant like some alternative interpretations of the cosmological constant, relaxation mechanisms to reduce the cosmological constant to the currently observed value, the geometrical structure of the de Sitter spacetime, thermodynamics of the de Sitter universe and the role of string theory in the cosmological constant problem
Probing cosmology with the homogeneity scale of the Universe through large scale structure surveys
International Nuclear Information System (INIS)
Ntelis, Pierros
2017-01-01
. It is thus possible to reconstruct the distribution of matter in 3 dimensions in gigantic volumes. We can then extract various statistical observables to measure the BAO scale and the scale of homogeneity of the universe. Using Data Release 12 CMASS galaxy catalogs, we obtained precision on the homogeneity scale reduced by 5 times compared to Wiggle Z measurement. At large scales, the universe is remarkably well described in linear order by the ΛCDM-model, the standard model of cosmology. In general, it is not necessary to take into account the nonlinear effects which complicate the model at small scales. On the other hand, at large scales, the measurement of our observables becomes very sensitive to the systematic effects. This is particularly true for the analysis of cosmic homogeneity, which requires an observational method so as not to bias the measurement. In order to study the homogeneity principle in a model independent way, we explore a new way to infer distances using cosmic clocks and type Ia Supernovae. This establishes the Cosmological Principle using only a small number of a priori assumption, i.e. the theory of General Relativity and astrophysical assumptions that are independent from Friedmann Universes and in extend the homogeneity assumption. This manuscript is as follows. After a short presentation of the knowledge in cosmology necessary for the understanding of this manuscript, presented in Chapter 1, Chapter 2 will deal with the challenges of the Cosmological Principle as well as how to overcome those. In Chapter 3, we will discuss the technical characteristics of the large scale structure surveys, in particular focusing on BOSS and eBOSS galaxy surveys. Chapter 4 presents the detailed analysis of the measurement of cosmic homogeneity and the various systematic effects likely to impact our observables. Chapter 5 will discuss how to use the cosmic homogeneity as a standard ruler to constrain dark energy models from current and future surveys. In
A varying-α brane world cosmology
International Nuclear Information System (INIS)
Youm, Donam
2001-08-01
We study the brane world cosmology in the RS2 model where the electric charge varies with time in the manner described by the varying fine-structure constant theory of Bekenstein. We map such varying electric charge cosmology to the dual variable-speed-of-light cosmology by changing system of units. We comment on cosmological implications for such cosmological models. (author)
Kim, Ji-hoon; Ma, Xiangcheng; Grudić, Michael Y.; Hopkins, Philip F.; Hayward, Christopher C.; Wetzel, Andrew; Faucher-Giguère, Claude-André; Kereš, Dušan; Garrison-Kimmel, Shea; Murray, Norman
2018-03-01
Using a state-of-the-art cosmological simulation of merging proto-galaxies at high redshift from the FIRE project, with explicit treatments of star formation and stellar feedback in the interstellar medium, we investigate the formation of star clusters and examine one of the formation hypotheses of present-day metal-poor globular clusters. We find that frequent mergers in high-redshift proto-galaxies could provide a fertile environment to produce long-lasting bound star clusters. The violent merger event disturbs the gravitational potential and pushes a large gas mass of ≳ 105-6 M⊙ collectively to high density, at which point it rapidly turns into stars before stellar feedback can stop star formation. The high dynamic range of the reported simulation is critical in realizing such dense star-forming clouds with a small dynamical time-scale, tff ≲ 3 Myr, shorter than most stellar feedback time-scales. Our simulation then allows us to trace how clusters could become virialized and tightly bound to survive for up to ˜420 Myr till the end of the simulation. Because the cluster's tightly bound core was formed in one short burst, and the nearby older stars originally grouped with the cluster tend to be preferentially removed, at the end of the simulation the cluster has a small age spread.
Cosmological tests of modified gravity.
Koyama, Kazuya
2016-04-01
We review recent progress in the construction of modified gravity models as alternatives to dark energy as well as the development of cosmological tests of gravity. Einstein's theory of general relativity (GR) has been tested accurately within the local universe i.e. the Solar System, but this leaves the possibility open that it is not a good description of gravity at the largest scales in the Universe. This being said, the standard model of cosmology assumes GR on all scales. In 1998, astronomers made the surprising discovery that the expansion of the Universe is accelerating, not slowing down. This late-time acceleration of the Universe has become the most challenging problem in theoretical physics. Within the framework of GR, the acceleration would originate from an unknown dark energy. Alternatively, it could be that there is no dark energy and GR itself is in error on cosmological scales. In this review, we first give an overview of recent developments in modified gravity theories including f(R) gravity, braneworld gravity, Horndeski theory and massive/bigravity theory. We then focus on common properties these models share, such as screening mechanisms they use to evade the stringent Solar System tests. Once armed with a theoretical knowledge of modified gravity models, we move on to discuss how we can test modifications of gravity on cosmological scales. We present tests of gravity using linear cosmological perturbations and review the latest constraints on deviations from the standard [Formula: see text]CDM model. Since screening mechanisms leave distinct signatures in the non-linear structure formation, we also review novel astrophysical tests of gravity using clusters, dwarf galaxies and stars. The last decade has seen a number of new constraints placed on gravity from astrophysical to cosmological scales. Thanks to on-going and future surveys, cosmological tests of gravity will enjoy another, possibly even more, exciting ten years.
Dark Energy and Structure Formation
International Nuclear Information System (INIS)
Singh, Anupam
2010-01-01
We study the gravitational dynamics of dark energy configurations. We report on the time evolution of the dark energy field configurations as well as the time evolution of the energy density to demonstrate the gravitational collapse of dark energy field configurations. We live in a Universe which is dominated by Dark Energy. According to current estimates about 75% of the Energy Density is in the form of Dark Energy. Thus when we consider gravitational dynamics and Structure Formation we expect Dark Energy to play an important role. The most promising candidate for dark energy is the energy density of fields in curved space-time. It therefore become a pressing need to understand the gravitational dynamics of dark energy field configurations. We develop and describe the formalism to study the gravitational collapse of fields given any general potential for the fields. We apply this formalism to models of dark energy motivated by particle physics considerations. We solve the resulting evolution equations which determine the time evolution of field configurations as well as the dynamics of space-time. Our results show that gravitational collapse of dark energy field configurations occurs and must be considered in any complete picture of our universe.
International Nuclear Information System (INIS)
Gelmini, G.B.
1996-01-01
These lectures are devoted to elementary particle physicists and assume the reader has very little or no knowledge of cosmology and astrophysics. After a brief historical introduction to the development of modern cosmology and astro-particles in which the Hot Big Bang model is defined, the Robertson-Walker metric and the dynamics of the Friedmann-Robertson-Walker cosmology are discussed in section 2. In section 3 the main observational features of the Universe are reviewed, including a description of our neighborhood, homogeneity and isotropy, the cosmic background radiation, the expansion, the age and the matter content of the Universe. A brief account of the thermal history of the Universe follows in section 4, and relic abundances are discussed in section 5. Section 6 is devoted to primordial nucleosynthesis, section 7 to structure formation in the Universe and section 8 to the possibility of detection of the dark matter in the halo of our galaxy. In the relevant sections recent developments are included, such as several so called open-quote open-quote crisis close-quote close-quote (the age crisis, the cluster baryon crisis and the nucleosynthesis crisis), and the MACHO events that may constitute the first detection of dark matter in the halo of our galaxy. copyright 1996 American Institute of Physics
International Nuclear Information System (INIS)
Gelmini, Graciela B.
1996-01-01
These lectures are devoted to elementary particle physicists and assume the reader has very little or no knowledge of cosmology and astrophysics. After a brief historical introduction to the development of modern cosmology and astro-particles in which the Hot Big Bang model is defined, the Robertson-Walker metric and the dynamics of the Friedmann-Robertson-Walker cosmology are discussed in section 2. In section 3 the main observational features of the Universe are reviewed, including a description of our neighborhood, homogeneity and isotropy, the cosmic background radiation, the expansion, the age and the matter content of the Universe. A brief account of the thermal history of the Universe follows in section 4, and relic abundances are discussed in section 5. Section 6 is devoted to primordial nucleosynthesis, section 7 to structure formation in the Universe and section 8 to the possibility of detection of the dark matter in the halo of our galaxy. In the relevant sections recent developments are included, such as several so called ''crisis'' (the age crisis, the cluster baryon crisis and the nucleosynthesis crisis), and the MACHO events that may constitute the first detection of dark matter in the halo of our galaxy
Self-accelerating universe in Galileon cosmology
International Nuclear Information System (INIS)
Silva, Fabio P.; Koyama, Kazuya
2009-01-01
We present a cosmological model with a solution that self-accelerates at late times without signs of ghost instabilities on small scales. The model is a natural extension of the Brans-Dicke (BD) theory including a nonlinear derivative interaction, which appears in a theory with the Galilean shift symmetry. The existence of the self-accelerating universe requires a negative BD parameter but, thanks to the nonlinear term, small fluctuations around the solution are stable on small scales. General relativity is recovered at early times and on small scales by this nonlinear interaction via the Vainshtein mechanism. At late time, gravity is strongly modified and the background cosmology shows a phantomlike behavior and the growth rate of structure formation is enhanced. Thus this model leaves distinct signatures in cosmological observations and it can be distinguished from standard LCDM cosmology.
Julien Lesgourgues presents his book "Neutrino Cosmology"
2013-01-01
The role that neutrinos have played in the evolution of the Universe is the focus of one of the most fascinating research areas that has stemmed from the interplay between cosmology, astrophysics and particle physics. In this self-contained book, the authors bring together all aspects of the role of neutrinos in cosmology, spanning from leptogenesis to primordial nucleosynthesis and from their role in CMB and structure formation, to the problem of their direct detection. The book starts by guiding the reader through aspects of fundamental neutrino physics, such as the standard cosmological model and statistical mechanics in the expanding Universe, before discussing the history of neutrinos chronologically from the very early stages until today. "Neutrino Cosmology" by Julien Lesgourgues, Gianpiero Mangano, Gennaro Miele, Sergio Pastor, Cambridge University Press, 2013, ISBN 9781107013957. Monday 22 April 2013 at 4 p.m. in the Library, 52-1-052. Tea and coffee will be served...
Observational constraints on undulant cosmologies
Energy Technology Data Exchange (ETDEWEB)
Barenboim, Gabriela; /Valencia U.; Mena Requejo, Olga; Quigg, Chris; /Fermilab
2005-10-01
In an undulant universe, cosmic expansion is characterized by alternating periods of acceleration and deceleration. We examine cosmologies in which the dark-energy equation of state varies periodically with the number of e-foldings of the scale factor of the universe, and use observations to constrain the frequency of oscillation. We find a tension between a forceful response to the cosmic coincidence problem and the standard treatment of structure formation.
International Nuclear Information System (INIS)
Wainwright, J.
1990-01-01
The workshop on mathematical cosmology was devoted to four topics of current interest. This report contains a brief discussion of the historical background of each topic and a concise summary of the content of each talk. The topics were; the observational cosmology program, the cosmological perturbation program, isotropic singularities, and the evolution of Bianchi cosmologies. (author)
Bubuianu, Laurenţiu; Vacaru, Sergiu I.
2018-05-01
We elaborate on the anholonomic frame deformation method, AFDM, for constructing exact solutions with quasiperiodic structure in modified gravity theories, MGTs, and general relativity, GR. Such solutions are described by generic off-diagonal metrics, nonlinear and linear connections and (effective) matter sources with coefficients depending on all spacetime coordinates via corresponding classes of generation and integration functions and (effective) matter sources. There are studied effective free energy functionals and nonlinear evolution equations for generating off-diagonal quasiperiodic deformations of black hole and/or homogeneous cosmological metrics. The physical data for such functionals are stated by different values of constants and prescribed symmetries for defining quasiperiodic structures at cosmological scales, or astrophysical objects in nontrivial gravitational backgrounds some similar forms as in condensed matter physics. It is shown how quasiperiodic structures determined by general nonlinear, or additive, functionals for generating functions and (effective) sources may transform black hole like configurations into cosmological metrics and inversely. We speculate on possible implications of quasiperiodic solutions in dark energy and dark matter physics. Finally, it is concluded that geometric methods for constructing exact solutions consist an important alternative tool to numerical relativity for investigating nonlinear effects in astrophysics and cosmology.
Constraints on vacuum energy from structure formation and Nucleosynthesis
Energy Technology Data Exchange (ETDEWEB)
Adams, Fred C.; Grohs, Evan [Physics Department, University of Michigan, 450 Church Street, Ann Arbor, MI, 48109 (United States); Alexander, Stephon [Physics Department, Brown University, 6127 Wilder Laboratory, Providence, RI, 02912 (United States); Mersini-Houghton, Laura, E-mail: fca@umich.edu, E-mail: stephon_alexander@brown.edu, E-mail: egrohs@umich.edu, E-mail: mersini@physics.unc.edu [Physics Department, University of North Carolina, 120 E. Cameron Avenue, Chapel Hill, NC, 27599 (United States)
2017-03-01
This paper derives an upper limit on the density ρ{sub Λ} of dark energy based on the requirement that cosmological structure forms before being frozen out by the eventual acceleration of the universe. By allowing for variations in both the cosmological parameters and the strength of gravity, the resulting constraint is a generalization of previous limits. The specific parameters under consideration include the amplitude Q of the primordial density fluctuations, the Planck mass M {sub pl}, the baryon-to-photon ratio η, and the density ratio Ω {sub M} /Ω {sub b} . In addition to structure formation, we use considerations from stellar structure and Big Bang Nucleosynthesis (BBN) to constrain these quantities. The resulting upper limit on the dimensionless density of dark energy becomes ρ{sub Λ}/ M {sub pl}{sup 4} < 10{sup −90}, which is ∼30 orders of magnitude larger than the value in our universe ρ{sub Λ}/ M {sub pl}4 ∼ 10{sup −120}. This new limit is much less restrictive than previous constraints because additional parameters are allowed to vary. With these generalizations, a much wider range of universes can develop cosmic structure and support observers. To constrain the constituent parameters, new BBN calculations are carried out in the regime where η and G = M {sub pl}{sup −2} are much larger than in our universe. If the BBN epoch were to process all of the protons into heavier elements, no hydrogen would be left behind to make water, and the universe would not be viable. However, our results show that some hydrogen is always left over, even under conditions of extremely large η and G , so that a wide range of alternate universes are potentially habitable.
Faint galaxies - Bounds on the epoch of galaxy formation and the cosmological deceleration parameter
International Nuclear Information System (INIS)
Yoshii, Yuzuru; Peterson, B.A.
1991-01-01
Models of galaxy luminosity evolution are used to interpret the observed color distributions, redshift distributions, and number counts of faint galaxies. It is found from the color distributions that the redshift corresponding to the epoch of galaxy formation must be greater than three, and that the number counts of faint galaxies, which are sensitive to the slope of the faint end of the luminosity function, are incompatible with q0 = 1/2 and indicate a smaller value. The models assume that the sequence of galaxy types is due to different star-formation rates, that the period of galaxy formation can be characterized by a single epoch, and that after formation, galaxies change in luminosity by star formation and stellar evolution, maintaining a constant comoving space density. 40 refs
Polarized Redundant-Baseline Calibration for 21 cm Cosmology Without Adding Spectral Structure
Dillon, Joshua S.; Kohn, Saul A.; Parsons, Aaron R.; Aguirre, James E.; Ali, Zaki S.; Bernardi, Gianni; Kern, Nicholas S.; Li, Wenyang; Liu, Adrian; Nunhokee, Chuneeta D.; Pober, Jonathan C.
2018-04-01
21 cm cosmology is a promising new probe of the evolution of visible matter in our universe, especially during the poorly-constrained Cosmic Dawn and Epoch of Reionization. However, in order to separate the 21 cm signal from bright astrophysical foregrounds, we need an exquisite understanding of our telescopes so as to avoid adding spectral structure to spectrally-smooth foregrounds. One powerful calibration method relies on repeated simultaneous measurements of the same interferometric baseline to solve for the sky signal and for instrumental parameters simultaneously. However, certain degrees of freedom are not constrained by asserting internal consistency between redundant measurements. In this paper, we review the origin of these degeneracies of redundant-baseline calibration and demonstrate how they can source unwanted spectral structure in our measurement and show how to eliminate that additional, artificial structure. We also generalize redundant calibration to dual-polarization instruments, derive the degeneracy structure, and explore the unique challenges to calibration and preserving spectral smoothness presented by a polarized measurement.
THE INNER STRUCTURE OF DWARF-SIZED HALOS IN WARM AND COLD DARK MATTER COSMOLOGIES
Energy Technology Data Exchange (ETDEWEB)
González-Samaniego, A.; Avila-Reese, V. [Instituto de Astronomía, Universidad Nacional Autónoma de México, A.P. 70-264, 04510, México, D.F., México (Mexico); Colín, P. [Instituto de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, A.P. 72-3 (Xangari), Morelia, Michoacán 58089, México (Mexico)
2016-03-10
By means of N-body + hydrodynamic zoom-in simulations we study the evolution of the inner dark matter and stellar mass distributions of central dwarf galaxies formed in halos of virial masses M{sub v} = (2–3) × 10{sup 10} h{sup −1} M{sub ⊙} at z = 0, both in a warm dark matter (WDM) and cold dark matter (CDM) cosmology. The half-mode mass in the WDM power spectrum of our simulations is M{sub f} = 2 × 10{sup 10} h{sup −1} M{sub ⊙}. In the dark matter (DM) only simulations halo density profiles are well described by the Navarro–Frenk–White parametric fit in both cosmologies, though the WDM halos have concentrations lower by factors of 1.5–2.0 than their CDM counterparts. In the hydrodynamic simulations, the effects of baryons significantly flatten the inner density, velocity dispersion, and pseudo phase space density profiles of the WDM halos but not of the CDM ones. The density slope, measured at ≈0.02R{sub v}, α{sub 0.02}, becomes shallow in periods of 2–5 Gyr in the WDM runs. We explore whether this flattening process correlates with the global star formation (SF), M{sub s}/M{sub v} ratio, gas outflow, and internal specific angular momentum histories. We do not find any clear trends, but when α{sub 0.02} is shallower than −0.5, M{sub s}/M{sub v} is always between 0.25% and 1%. We conclude that the main reason for the formation of the shallow core is the presence of strong gas mass fluctuations inside the inner halo, which are a consequence of the feedback driven by a very bursty and sustained SF history in shallow gravitational potentials. Our WDM halos, which assemble late and are less concentrated than the CDM ones, obey these conditions. There are also (rare) CDM systems with extended mass assembly histories that obey these conditions and form shallow cores. The dynamical heating and expansion processes behind the DM core flattening apply also to the stars in such a way that the stellar age and metallicity gradients of the
Cosmological perturbations beyond linear order
CERN. Geneva
2013-01-01
Cosmological perturbation theory is the standard tool to understand the formation of the large scale structure in the Universe. However, its degree of applicability is limited by the growth of the amplitude of the matter perturbations with time. This problem can be tackled with by using N-body simulations or analytical techniques that go beyond the linear calculation. In my talk, I'll summarise some recent efforts in the latter that ameliorate the bad convergence of the standard perturbative expansion. The new techniques allow better analytical control on observables (as the matter power spectrum) over scales very relevant to understand the expansion history and formation of structure in the Universe.
Statistical issues in galaxy cluster cosmology
DEFF Research Database (Denmark)
Mantz, Adam; Allen, Steven W.; Rapetti Serra, David Angelo
2013-01-01
The number and growth of massive galaxy clusters is a sensitive probe of cosmological structure formation and dark energy. Surveys at various wavelengths can detect clusters to high redshift, but the fact that cluster mass is not directly observable complicates matters, requiring us to simultaneo...
Structures in the Universe by Exact Methods: Formation, Evolution, Interactions
Bolejko, Krzysztof; Krasiński, Andrzej; Hellaby, Charles; Célérier, Marie-Noëlle
2009-10-01
As the structures in our Universe are mapped out on ever larger scales, and with increasing detail, the use of inhomogeneous models is becoming an essential tool for analyzing and understanding them. This book reviews a number of important developments in the application of inhomogeneous solutions of Einstein's field equations to cosmology. It shows how inhomogeneous models can be employed to study the evolution of structures such as galaxy clusters and galaxies with central black holes, and to account for cosmological observations like supernovae dimming, the cosmic microwave background, baryon acoustic oscillations or the dependence of the Hubble parameter on redshift within classical general relativity. Whatever 'dark matter' and 'dark energy' turn out to be, inhomogeneities exist on many scales and need to be investigated with all appropriate methods. This book is of great value to all astrophysicists and researchers working in cosmology, from graduate students to academic researchers. - Presents inhomogeneous cosmological models, allowing readers to familiarise themselves with basic properties of these models - Shows how inhomogeneous models can be used to analyse cosmological observations such as supernovae, cosmic microwave background, and baryon acoustic oscillations - Reviews important developments in the application of inhomogeneous solutions of Einstein's field equations to cosmology
van de Weygaert, Rien; van Albada, Tjeerd S.
1996-01-01
A detailed account of the ways in which a square kilometer array could further cosmological research. Observational and theoretical studies of the large scale structure and morphology of the local universe are reviewed against the potential capabilities of a new generation telescope. Cosmological
Bardeen, J. M.
The last several years have seen a tremendous ferment of activity in astrophysical cosmology. Much of the theoretical impetus has come from particle physics theories of the early universe and candidates for dark matter, but what promise to be even more significant are improved direct observations of high z galaxies and intergalactic matter, deeper and more comprehensive redshift surveys, and the increasing power of computer simulations of the dynamical evolution of large scale structure. Upper limits on the anisotropy of the microwave background radiation are gradually getting tighter and constraining more severely theoretical scenarios for the evolution of the universe.
International Nuclear Information System (INIS)
Bardeen, J.M.
1986-01-01
The last several years have seen a tremendous ferment of activity in astrophysical cosmology. Much of the theoretical impetus has come from particle physics theories of the early universe and candidates for dark matter, but what promise to be even more significant are improved direct observations of high z galaxies and intergalactic matter, deeper and more comprehensive redshift surveys, and the increasing power of computer simulations of the dynamical evolution of large scale structure. Upper limits on the anisotropy of the microwave background radiation are gradually getting tighter and constraining more severely theoretical scenarios for the evolution of the universe. 47 refs
Boeyens, Jan CA
2010-01-01
The composition of the most remote objects brought into view by the Hubble telescope can no longer be reconciled with the nucleogenesis of standard cosmology and the alternative explanation, in terms of the LAMBDA-Cold-Dark-Matter model, has no recognizable chemical basis. A more rational scheme, based on the chemistry and periodicity of atomic matter, opens up an exciting new interpretation of the cosmos in terms of projective geometry and general relativity. The response of atomic structure to environmental pressure predicts non-Doppler cosmical redshifts and equilibrium nucleogenesis by alp
Evaluating Galactic Habitability Using High Resolution Cosmological Simulations of Galaxy Formation
Forgan, Duncan; Dayal, Pratika; Cockell, Charles; Libeskind, Noam
2015-01-01
D. F. acknowledges support from STFC consolidated grant ST/J001422/1, and the ‘ECOGAL’ ERC Advanced Grant. P. D. acknowledges the support of the Addison Wheeler Fellowship awarded by the Institute of Advanced Study at Durham University. N. I. L. is supported by the Deutsche Forschungs Gemeinschaft (DFG). We present the first model that couples high-resolution simulations of the formation of local group galaxies with calculations of the galactic habitable zone (GHZ), a region of space which...
Grafting and Poisson Structure in (2+1)-Gravity with Vanishing Cosmological Constant
Meusburger, C.
2006-09-01
We relate the geometrical construction of (2+1)-spacetimes via grafting to phase space and Poisson structure in the Chern-Simons formulation of (2+1)-dimensional gravity with vanishing cosmological constant on manifolds of topology mathbb{R} × S_g, where S g is an orientable two-surface of genus g>1. We show how grafting along simple closed geodesics λ is implemented in the Chern-Simons formalism and derive explicit expressions for its action on the holonomies of general closed curves on S g .We prove that this action is generated via the Poisson bracket by a gauge invariant observable associated to the holonomy of λ. We deduce a symmetry relation between the Poisson brackets of observables associated to the Lorentz and translational components of the holonomies of general closed curves on S g and discuss its physical interpretation. Finally, we relate the action of grafting on the phase space to the action of Dehn twists and show that grafting can be viewed as a Dehn twist with a formal parameter θ satisfying θ2 = 0.
International Nuclear Information System (INIS)
Landsberg, P.T.; Evans, D.A.
1977-01-01
The subject is dealt with in chapters, entitled: cosmology -some fundamentals; Newtonian gravitation - some fundamentals; the cosmological differential equation - the particle model and the continuum model; some simple Friedmann models; the classification of the Friedmann models; the steady-state model; universe with pressure; optical effects of the expansion according to various theories of light; optical observations and cosmological models. (U.K.)
How self-interactions can reconcile sterile neutrinos with cosmology.
Hannestad, Steen; Hansen, Rasmus Sloth; Tram, Thomas
2014-01-24
Short baseline neutrino oscillation experiments have shown hints of the existence of additional sterile neutrinos in the eV mass range. However, such neutrinos seem incompatible with cosmology because they have too large of an impact on cosmic structure formation. Here we show that new interactions in the sterile neutrino sector can prevent their production in the early Universe and reconcile short baseline oscillation experiments with cosmology.
The Frontiers of Observational Cosmology and the Confrontation with Theory
International Nuclear Information System (INIS)
Longair, Malcolm
2011-01-01
The current state of observational cosmology and the confrontation with theory is presented. The review is divided into the following sections: - Basic observations on which the models are based. - Testing the basic assumptions made in the construction of the standard cosmological models. - Structure formation in the standard models; - Observational tests of the standard models - the confrontation with observation; - Basic problems and approaches to their solution; - Future challenges - the ESA EUCLID mission is given as an example.
Krioukov, Dmitri; Kitsak, Maksim; Sinkovits, Robert S; Rideout, David; Meyer, David; Boguñá, Marián
2012-01-01
Prediction and control of the dynamics of complex networks is a central problem in network science. Structural and dynamical similarities of different real networks suggest that some universal laws might accurately describe the dynamics of these networks, albeit the nature and common origin of such laws remain elusive. Here we show that the causal network representing the large-scale structure of spacetime in our accelerating universe is a power-law graph with strong clustering, similar to many complex networks such as the Internet, social, or biological networks. We prove that this structural similarity is a consequence of the asymptotic equivalence between the large-scale growth dynamics of complex networks and causal networks. This equivalence suggests that unexpectedly similar laws govern the dynamics of complex networks and spacetime in the universe, with implications to network science and cosmology.
Lesgourgues, Julien
2012-01-01
Neutrinos can play an important role in the evolution of the Universe, modifying some of the cosmological observables. In this contribution we summarize the main aspects of cosmological relic neutrinos and we describe how the precision of present cosmological data can be used to learn about neutrino properties, in particular their mass, providing complementary information to beta decay and neutrinoless double-beta decay experiments. We show how the analysis of current cosmological observations, such as the anisotropies of the cosmic microwave background or the distribution of large-scale structure, provides an upper bound on the sum of neutrino masses of order 1 eV or less, with very good perspectives from future cosmological measurements which are expected to be sensitive to neutrino masses well into the sub-eV range.
International Nuclear Information System (INIS)
Verde, L.
2011-01-01
This is the summary of two lectures that aim to give an overview of cosmology. I will not try to be toa rigorous in derivations, nor to give a full historical overview. The idea is to provide a 'taste' of cosmology and some of the interesting topics it covers. The standard cosmological model is presented and I highlight the successes of cosmology over the past decade or so. Keys to the development of the standard cosmological model are observations of the cosmic microwave background and of large-scale structure, which are introduced. Inflation and dark energy and the outlook for the future are also discussed. Slides from the lectures are available from the school web site: physicschool.web.cern.ch/PhysicSchool/CLASHEP/CLASHEP2011/. (author)
Verde, L.
2013-06-27
This is the summary of two lectures that aim to give an overview of cosmology. I will not try to be too rigorous in derivations, nor to give a full historical overview. The idea is to provide a "taste" of cosmology and some of the interesting topics it covers. The standard cosmological model is presented and I highlight the successes of cosmology over the past decade or so. Keys to the development of the standard cosmological model are observations of the cosmic microwave background and of large-scale structure, which are introduced. Inflation and dark energy and the outlook for the future are also discussed. Slides from the lectures are available from the school website: physicschool.web.cern.ch/PhysicSchool/CLASHEP/CLASHEP2011/.
Growth of matter perturbation in quintessence cosmology
Mulki, Fargiza A. M.; Wulandari, Hesti R. T.
2017-01-01
Big bang theory states that universe emerged from singularity with very high temperature and density, then expands homogeneously and isotropically. This theory gives rise standard cosmological principle which declares that universe is homogeneous and isotropic on large scales. However, universe is not perfectly homogeneous and isotropic on small scales. There exist structures starting from clusters, galaxies even to stars and planetary system scales. Cosmological perturbation theory is a fundamental theory that explains the origin of structures. According to this theory, the structures can be regarded as small perturbations in the early universe, which evolves as the universe expands. In addition to the problem of inhomogeneities of the universe, observations of supernovae Ia suggest that our universe is being accelerated. Various models of dark energy have been proposed to explain cosmic acceleration, one of them is cosmological constant. Because of several problems arise from cosmological constant, the alternative models have been proposed, one of these models is quintessence. We reconstruct growth of structure model following quintessence scenario at several epochs of the universe, which is specified by the effective equation of state parameters for each stage. Discussion begins with the dynamics of quintessence, in which exponential potential is analytically derived, which leads to various conditions of the universe. We then focus on scaling and quintessence dominated solutions. Subsequently, we review the basics of cosmological perturbation theory and derive formulas to investigate how matter perturbation evolves with time in subhorizon scales which leads to structure formation, and also analyze the influence of quintessence to the structure formation. From analytical exploration, we obtain the growth rate of matter perturbation and the existence of quintessence as a dark energy that slows down the growth of structure formation of the universe.
The Formation and Growth of Black Holes in the Universe: New cosmological clues
CERN. Geneva
2004-01-01
In the last few years a change of paradigm occurred in the field of black hole research. We now believe, that stellar mass black holes are created in powerful gamma ray bursts. Stellar remnants of the first generation of stars have very likely been the seeds of supermassive black holes, which we find dormant in the centers of most nearby galaxies - including our own Milky Way. A tight correlation between black hole mass and the global properties of their host galaxies indicates a co-formation and evolution of black holes and galaxies. The X-ray sky is dominated by a diffuse extragalactic background radiation, which our team, together with others, was able to resolve almost completely into discrete sources using the X-ray satellites ROSAT, Chandra and XMM-Newton. Optical and NIR follow-up identifications showed, that we observe the growth phase of the population of supermassive black holes throughout the history of the Universe. The accretion history derived from X-ray observations shows, that the black holes ...
The Formation and Growth of Black Holes in the Universe New cosmological clues
CERN. Geneva; Landua, Rolf
2004-01-01
In the last few years a change of paradigm occurred in the field of black hole research. We now believe, that stellar mass black holes are created in powerful gamma ray bursts. Stellar remnants of the first generation of stars have very likely been the seeds of supermassive black holes, which we find dormant in the centers of most nearby galaxies - including our own Milky Way. A tight correlation between black hole mass and the global properties of their host galaxies indicates a co-formation and evolution of black holes and galaxies. The X-ray sky is dominated by a diffuse extragalactic background radiation, which our team, together with others, was able to resolve almost completely into discrete sources using the X-ray satellites ROSAT, Chandra and XMM-Newton. Optical and NIR follow-up identifications showed, that we observe the growth phase of the population of supermassive black holes throughout the history of the Universe. The accretion history derived from X-ray observations shows, that the black holes ...
Dissipative N-body simulations of the formation of single galaxies in a cold dark-matter cosmology
International Nuclear Information System (INIS)
Ewell, M.W. Jr.
1988-01-01
The details of an N-body code designed specifically to study the collapse of a single protogalaxy are presented. This code uses a spherical harmonic expansion to model the gravity and a sticky-particle algorithm to model the gas physics. It includes external tides and cosmologically realistic boundary conditions. The results of twelve simulations using this code are given. The initial conditions for these runs use mean-density profiles and r.m.s. quadrupoles and tides taken from the CDM power spectrum. The simulations start when the center of the perturbation first goes nonlinear, and continue until a redshift Z ∼ 1-2. The resulting rotation curves are approximately flat out to 100 kpc, but do show some structure. The circular velocity is 200 km/sec around a 3σ peak. The final systems have λ approx-equal .03. The angular momentum per unit mass of the baryons implies disk scale lengths of 1-3 kpc. The tidal forces are strong enough to profoundly influence the collapse geometry. In particular, the usual assumption, that tidal torques produce a system approximately in solid-body rotation, is shown to be seriously in error
Zhang Yuan Zhong
2002-01-01
This book is one of a series in the areas of high-energy physics, cosmology and gravitation published by the Institute of Physics. It includes courses given at a doctoral school on 'Relativistic Cosmology: Theory and Observation' held in Spring 2000 at the Centre for Scientific Culture 'Alessandro Volta', Italy, sponsored by SIGRAV-Societa Italiana di Relativita e Gravitazione (Italian Society of Relativity and Gravitation) and the University of Insubria. This book collects 15 review reports given by a number of outstanding scientists. They touch upon the main aspects of modern cosmology from observational matters to theoretical models, such as cosmological models, the early universe, dark matter and dark energy, modern observational cosmology, cosmic microwave background, gravitational lensing, and numerical simulations in cosmology. In particular, the introduction to the basics of cosmology includes the basic equations, covariant and tetrad descriptions, Friedmann models, observation and horizons, etc. The ...
The IRX-β dust attenuation relation in cosmological galaxy formation simulations
Narayanan, Desika; Davé, Romeel; Johnson, Benjamin D.; Thompson, Robert; Conroy, Charlie; Geach, James
2018-02-01
We utilize a series of galaxy formation simulations to investigate the relationship between the ultraviolet (UV) slope, β, and the infrared excess (IRX) in the spectral energy distributions (SEDs) of galaxies. Our main goals are to understand the origin of and scatter in the IRX-β relation; to assess the efficacy of simplified stellar population synthesis screen models in capturing the essential physics in the IRX-β relation; and to understand systematic deviations from the canonical local IRX-β relations in particular populations of high-redshift galaxies. Our main results follow. Young galaxies with relatively cospatial UV and IR emitting regions and a Milky Way-like extinction curve fall on or near the standard Meurer relation. This behaviour is well captured by simplified screen models. Scatter in the IRX-β relation is dominated by three major effects: (i) older stellar populations drive galaxies below the relations defined for local starbursts due to a reddening of their intrinsic UV SEDs; (ii) complex geometries in high-z heavily star-forming galaxies drive galaxies towards blue UV slopes owing to optically thin UV sightlines; (iii) shallow extinction curves drive galaxies downwards in the IRX-β plane due to lowered near-ultraviolet/far-ultraviolet extinction ratios. We use these features of the UV slopes of galaxies to derive a fitting relation that reasonably collapses the scatter back towards the canonical local relation. Finally, we use these results to develop an understanding for the location of two particularly enigmatic populations of galaxies in the IRX-β plane: z ˜ 2-4 dusty star-forming galaxies and z > 5 star-forming galaxies.
The New Era of Precision Cosmology: Testing Gravity at Large Scales
Prescod-Weinstein, Chanda
2011-01-01
Cosmic acceleration may be the biggest phenomenological mystery in cosmology today. Various explanations for its cause have been proposed, including the cosmological constant, dark energy and modified gravities. Structure formation provides a strong test of any cosmic acceleration model because a successful dark energy model must not inhibit the development of observed large-scale structures. Traditional approaches to studies of structure formation in the presence of dark energy ore modified gravity implement the Press & Schechter formalism (PGF). However, does the PGF apply in all cosmologies? The search is on for a better understanding of universality in the PGF In this talk, I explore the potential for universality and talk about what dark matter haloes may be able to tell us about cosmology. I will also discuss the implications of this and new cosmological experiments for better understanding our theory of gravity.
International Nuclear Information System (INIS)
Buchert, Thomas
2006-01-01
In the framework of spatially averaged inhomogeneous cosmologies in classical general relativity, effective Einstein equations govern the regional and the global dynamics of averaged scalar variables of cosmological models. A particular solution may be characterized by a cosmic equation of state. In this paper, it is pointed out that a globally static averaged dust model is conceivable without employing a compensating cosmological constant. Much in the spirit of Einstein's original model we discuss consequences for the global, but also for the regional properties of this cosmology. We then consider the wider class of globally stationary cosmologies that are conceivable in the presented framework. All these models are based on exact solutions of the averaged Einstein equations and provide examples of cosmologies in an out-of-equilibrium state, which we characterize by an information-theoretical measure. It is shown that such cosmologies preserve high-magnitude kinematical fluctuations and so tend to maintain their global properties. The same is true for a Λ-driven cosmos in such a state despite exponential expansion. We outline relations to inflationary scenarios and put the dark energy problem into perspective. Here, it is argued, on the grounds of the discussed cosmologies, that a classical explanation of dark energy through backreaction effects is theoretically conceivable, if the matter-dominated universe emerged from a non-perturbative state in the vicinity of the stationary solution. We also discuss a number of caveats that furnish strong counter arguments in the framework of structure formation in a perturbed Friedmannian model
International Nuclear Information System (INIS)
Kehagias, A.; Riotto, A.
2016-01-01
Symmetries play an interesting role in cosmology. They are useful in characterizing the cosmological perturbations generated during inflation and lead to consistency relations involving the soft limit of the statistical correlators of large-scale structure dark matter and galaxies overdensities. On the other hand, in observational cosmology the carriers of the information about these large-scale statistical distributions are light rays traveling on null geodesics. Motivated by this simple consideration, we study the structure of null infinity and the associated BMS symmetry in a cosmological setting. For decelerating Friedmann-Robertson-Walker backgrounds, for which future null infinity exists, we find that the BMS transformations which leaves the asymptotic metric invariant to leading order. Contrary to the asymptotic flat case, the BMS transformations in cosmology generate Goldstone modes corresponding to scalar, vector and tensor degrees of freedom which may exist at null infinity and perturb the asymptotic data. Therefore, BMS transformations generate physically inequivalent vacua as they populate the universe at null infinity with these physical degrees of freedom. We also discuss the gravitational memory effect when cosmological expansion is taken into account. In this case, there are extra contribution to the gravitational memory due to the tail of the retarded Green functions which are supported not only on the light-cone, but also in its interior. The gravitational memory effect can be understood also from an asymptotic point of view as a transition among cosmological BMS-related vacua.
Energy Technology Data Exchange (ETDEWEB)
Kehagias, A. [Physics Division, National Technical University of Athens, 15780 Zografou Campus, Athens (Greece); Riotto, A. [Department of Theoretical Physics,24 quai E. Ansermet, CH-1211 Geneva 4 (Switzerland); Center for Astroparticle Physics (CAP),24 quai E. Ansermet, CH-1211 Geneva 4 (Switzerland)
2016-05-25
Symmetries play an interesting role in cosmology. They are useful in characterizing the cosmological perturbations generated during inflation and lead to consistency relations involving the soft limit of the statistical correlators of large-scale structure dark matter and galaxies overdensities. On the other hand, in observational cosmology the carriers of the information about these large-scale statistical distributions are light rays traveling on null geodesics. Motivated by this simple consideration, we study the structure of null infinity and the associated BMS symmetry in a cosmological setting. For decelerating Friedmann-Robertson-Walker backgrounds, for which future null infinity exists, we find that the BMS transformations which leaves the asymptotic metric invariant to leading order. Contrary to the asymptotic flat case, the BMS transformations in cosmology generate Goldstone modes corresponding to scalar, vector and tensor degrees of freedom which may exist at null infinity and perturb the asymptotic data. Therefore, BMS transformations generate physically inequivalent vacua as they populate the universe at null infinity with these physical degrees of freedom. We also discuss the gravitational memory effect when cosmological expansion is taken into account. In this case, there are extra contribution to the gravitational memory due to the tail of the retarded Green functions which are supported not only on the light-cone, but also in its interior. The gravitational memory effect can be understood also from an asymptotic point of view as a transition among cosmological BMS-related vacua.
Particle physics and cosmology
International Nuclear Information System (INIS)
Kolb, E.W.
1986-10-01
This series of lectures is about the role of particle physics in physical processes that occurred in the very early stages of the bug gang. Of particular interest is the role of particle physics in determining the evolution of the early Universe, and the effect of particle physics on the present structure of the Universe. The use of the big bang as a laboratory for placing limits on new particle physics theories will also be discussed. Section 1 reviews the standard cosmology, including primordial nucleosynthesis. Section 2 reviews the decoupling of weakly interacting particles in the early Universe, and discusses neutrino cosmology and the resulting limits that may be placed on the mass and lifetime of massive neutrinos. Section 3 discusses the evolution of the vacuum through phase transitions in the early Universe and the formation of topological defects in the transitions. Section 4 covers recent work on the generation of the baryon asymmetry by baryon-number violating reactions in Grand Unified Theories, and mentions some recent work on baryon number violation effects at the electroweak transition. Section 5 is devoted to theories of cosmic inflation. Finally, Section 6 is a discussion of the role of extra spatial dimensions in the evolution of the early Universe. 78 refs., 32 figs., 6 tabs
Understanding Large-scale Structure in the SSA22 Protocluster Region Using Cosmological Simulations
Topping, Michael W.; Shapley, Alice E.; Steidel, Charles C.; Naoz, Smadar; Primack, Joel R.
2018-01-01
We investigate the nature and evolution of large-scale structure within the SSA22 protocluster region at z = 3.09 using cosmological simulations. A redshift histogram constructed from current spectroscopic observations of the SSA22 protocluster reveals two separate peaks at z = 3.065 (blue) and z = 3.095 (red). Based on these data, we report updated overdensity and mass calculations for the SSA22 protocluster. We find {δ }b,{gal}=4.8+/- 1.8 and {δ }r,{gal}=9.5+/- 2.0 for the blue and red peaks, respectively, and {δ }t,{gal}=7.6+/- 1.4 for the entire region. These overdensities correspond to masses of {M}b=(0.76+/- 0.17)× {10}15{h}-1 {M}ȯ , {M}r=(2.15+/- 0.32)× {10}15{h}-1 {M}ȯ , and {M}t=(3.19+/- 0.40)× {10}15{h}-1 {M}ȯ for the red, blue, and total peaks, respectively. We use the Small MultiDark Planck (SMDPL) simulation to identify comparably massive z∼ 3 protoclusters, and uncover the underlying structure and ultimate fate of the SSA22 protocluster. For this analysis, we construct mock redshift histograms for each simulated z∼ 3 protocluster, quantitatively comparing them with the observed SSA22 data. We find that the observed double-peaked structure in the SSA22 redshift histogram corresponds not to a single coalescing cluster, but rather the proximity of a ∼ {10}15{h}-1 {M}ȯ protocluster and at least one > {10}14{h}-1 {M}ȯ cluster progenitor. Such associations in the SMDPL simulation are easily understood within the framework of hierarchical clustering of dark matter halos. We finally find that the opportunity to observe such a phenomenon is incredibly rare, with an occurrence rate of 7.4{h}3 {{{Gpc}}}-3. Based on data obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration, and was made possible by the generous financial support of the W.M. Keck Foundation.
Neutrino properties from cosmology
DEFF Research Database (Denmark)
Hannestad, S.
2013-01-01
In recent years precision cosmology has become an increasingly powerful probe of particle physics. Perhaps the prime example of this is the very stringent cosmological upper bound on the neutrino mass. However, other aspects of neutrino physics, such as their decoupling history and possible non......-standard interactions, can also be probed using observations of cosmic structure. Here, I review the current status of cosmological bounds on neutrino properties and discuss the potential of future observations, for example by the recently approved EUCLID mission, to precisely measure neutrino properties....
Neutrino properties from cosmology
CERN. Geneva
2013-01-01
Future, massive large-scale structure survey have been presented and approved.On the theory side, a significant effort has bene devoted to achieve better modeling of small scale clustering that is of cosmological non-linearities. As a result it has become clear that forthcoming cosmological data have enough statitsical power to detect the effect of non-zero neutrino mass (even at the lower mass scale limit imposed by oscillations) and to constrain the absolute neutrino mass scale.Cosmological data can also constrain the numb...
White, S
1994-01-01
Galaxy clusters are the largest coherent objects in Universe. It has been known since 1933 that their dynamical properties require either a modification of the theory of gravity, or the presence of a dominant component of unseen material of unknown nature. Clusters still provide the best laboratories for studying the amount and distribution of this dark matter relative to the material which can be observed directly -- the galaxies themselves and the hot,X-ray-emitting gas which lies between them.Imaging and spectroscopy of clusters by satellite-borne X -ray telescopes has greatly improved our knowledge of the structure and composition of this intergalactic medium. The results permit a number of new approaches to some fundamental cosmological questions,but current indications from the data are contradictory. The observed irregularity of real clusters seems to imply recent formation epochs which would require a universe with approximately the critical density. On the other hand, the large baryon fraction observ...
Cosmology and galaxy formation
International Nuclear Information System (INIS)
Jones, B.J.T.; Gonzalez, E.M.
1985-05-01
The aim of the present series of lectures is to be unashamedly pedagogical and present, in simple terms, an overview of our current thinking about our universe and the way in which we believe galaxies have formed. (orig./WL)
Jones, Bernard J. T.
2017-04-01
Preface; Notation and conventions; Part I. 100 Years of Cosmology: 1. Emerging cosmology; 2. The cosmic expansion; 3. The cosmic microwave background; 4. Recent cosmology; Part II. Newtonian Cosmology: 5. Newtonian cosmology; 6. Dark energy cosmological models; 7. The early universe; 8. The inhomogeneous universe; 9. The inflationary universe; Part III. Relativistic Cosmology: 10. Minkowski space; 11. The energy momentum tensor; 12. General relativity; 13. Space-time geometry and calculus; 14. The Einstein field equations; 15. Solutions of the Einstein equations; 16. The Robertson-Walker solution; 17. Congruences, curvature and Raychaudhuri; 18. Observing and measuring the universe; Part IV. The Physics of Matter and Radiation: 19. Physics of the CMB radiation; 20. Recombination of the primeval plasma; 21. CMB polarisation; 22. CMB anisotropy; Part V. Precision Tools for Precision Cosmology: 23. Likelihood; 24. Frequentist hypothesis testing; 25. Statistical inference: Bayesian; 26. CMB data processing; 27. Parametrising the universe; 28. Precision cosmology; 29. Epilogue; Appendix A. SI, CGS and Planck units; Appendix B. Magnitudes and distances; Appendix C. Representing vectors and tensors; Appendix D. The electromagnetic field; Appendix E. Statistical distributions; Appendix F. Functions on a sphere; Appendix G. Acknowledgements; References; Index.
Cosmological Probes for Supersymmetry
Directory of Open Access Journals (Sweden)
Maxim Khlopov
2015-05-01
Full Text Available The multi-parameter character of supersymmetric dark-matter models implies the combination of their experimental studies with astrophysical and cosmological probes. The physics of the early Universe provides nontrivial effects of non-equilibrium particles and primordial cosmological structures. Primordial black holes (PBHs are a profound signature of such structures that may arise as a cosmological consequence of supersymmetric (SUSY models. SUSY-based mechanisms of baryosynthesis can lead to the possibility of antimatter domains in a baryon asymmetric Universe. In the context of cosmoparticle physics, which studies the fundamental relationship of the micro- and macro-worlds, the development of SUSY illustrates the main principles of this approach, as the physical basis of the modern cosmology provides cross-disciplinary tests in physical and astronomical studies.
Multiverse understanding of cosmological coincidences
International Nuclear Information System (INIS)
Bousso, Raphael; Hall, Lawrence J.; Nomura, Yasunori
2009-01-01
There is a deep cosmological mystery: although dependent on very different underlying physics, the time scales of structure formation, of galaxy cooling (both radiatively and against the CMB), and of vacuum domination do not differ by many orders of magnitude, but are all comparable to the present age of the universe. By scanning four landscape parameters simultaneously, we show that this quadruple coincidence is resolved. We assume only that the statistical distribution of parameter values in the multiverse grows towards certain catastrophic boundaries we identify, across which there are drastic regime changes. We find order-of-magnitude predictions for the cosmological constant, the primordial density contrast, the temperature at matter-radiation equality, the typical galaxy mass, and the age of the universe, in terms of the fine structure constant and the electron, proton and Planck masses. Our approach permits a systematic evaluation of measure proposals; with the causal patch measure, we find no runaway of the primordial density contrast and the cosmological constant to large values.
Using Black Hole Mergers to Explore Structure Formation
Alicea-Munoz, E.; Miller, M. Coleman
2009-01-01
Observations of gravitational waves from massive black hole mergers will open a new window into the era of structure formation in the early universe. Past efforts have concentrated on calculating merger rates using different physical assumptions, resulting in merger rate estimates that span a wide range (0.1 - 10(exp 4) mergers/year). We develop a semi-analytical, phenomenological model of massive black hole mergers that includes plausible combinations of several physical parameters, which we then turn around to determine how well observations with the Laser Interferometer Space Antenna (LISA) will be able to enhance our understanding of the universe during the critical z approximately equal to 5-30 epoch. Our approach involves generating synthetic LISA observable data (total BH masses, BH mass ratios, redshifts, merger rates), which are then analyzed using a Markov Chain Monte Carlo method, thus finding constraints for the physical parameters of the mergers. We find that our method works well at estimating merger parameters and that the number of merger events is a key discriminant among models, therefore making our method robust against observational uncertainties. Our approach can also be extended to more physically-driven models and more general problems in cosmology. This work is supported in part by the Cooperative Education Program at NASA/GSFC.
International Nuclear Information System (INIS)
Meusburger, C.; Schroers, B. J.
2008-01-01
Each of the local isometry groups arising in three-dimensional (3d) gravity can be viewed as a group of unit (split) quaternions over a ring which depends on the cosmological constant. In this paper we explain and prove this statement and use it as a unifying framework for studying Poisson structures associated with the local isometry groups. We show that, in all cases except for the case of Euclidean signature with positive cosmological constant, the local isometry groups are equipped with the Poisson-Lie structure of a classical double. We calculate the dressing action of the factor groups on each other and find, among others, a simple and unified description of the symplectic leaves of SU(2) and SL(2,R). We also compute the Poisson structure on the dual Poisson-Lie groups of the local isometry groups and on their Heisenberg doubles; together, they determine the Poisson structure of the phase space of 3d gravity in the so-called combinatorial description
International Nuclear Information System (INIS)
ColIn, Pedro; Vazquez-Semadeni, Enrique; Avila-Reese, Vladimir; Valenzuela, Octavio; Ceverino, Daniel
2010-01-01
We present numerical simulations aimed at exploring the effects of varying the sub-grid physics parameters on the evolution and the properties of the galaxy formed in a low-mass dark matter halo (∼7 x 10 10 h -1 M sun at redshift z = 0). The simulations are run within a cosmological setting with a nominal resolution of 218 pc comoving and are stopped at z = 0.43. For simulations that cannot resolve individual molecular clouds, we propose the criterion that the threshold density for star formation, n SF , should be chosen such that the column density of the star-forming cells equals the threshold value for molecule formation, N ∼ 10 21 cm -2 , or ∼8 M sun pc -2 . In all of our simulations, an extended old/intermediate-age stellar halo and a more compact younger stellar disk are formed, and in most cases, the halo's specific angular momentum is slightly larger than that of the galaxy, and sensitive to the SF/feedback parameters. We found that a non-negligible fraction of the halo stars are formed in situ in a spheroidal distribution. Changes in the sub-grid physics parameters affect significantly and in a complex way the evolution and properties of the galaxy: (1) lower threshold densities n SF produce larger stellar effective radii R e , less peaked circular velocity curves V c (R), and greater amounts of low-density and hot gas in the disk mid-plane; (2) when stellar feedback is modeled by temporarily switching off radiative cooling in the star-forming regions, R e increases (by a factor of ∼2 in our particular model), the circular velocity curve becomes flatter, and a complex multi-phase gaseous disk structure develops; (3) a more efficient local conversion of gas mass to stars, measured by a stellar particle mass distribution biased toward larger values, increases the strength of the feedback energy injection-driving outflows and inducing burstier SF histories; (4) if feedback is too strong, gas loss by galactic outflows-which are easier to produce in low
Redshift structure of the big bang in inhomogeneous cosmological models. I. Spherical dust solutions
International Nuclear Information System (INIS)
Hellaby, C.; Lake, K.
1984-01-01
The redshift from the big bang in the standard model is always infinite, but in inhomogeneous cosmological models infinite blueshifts are also possible. To avoid such divergent energy fluxes, we require that all realistic cosmological models must not display infinite blueshifts. We apply this requirement to the Tolman model (spherically symmetric dust), using the geometrical optics approximation, and assuming that the geodesic tangent vectors may be expanded in power series. We conclude that the bang time must be simultaneous. The stronger requirement, that only infinite redshifts from the big bang may occur, does not lead to a stronger condition on the metric. Further consequences of simultaneity are that no decaying mode fluctuations are possible, and that the only acceptable model which is homogeneous at late times is the Robertson-Walker model
Redshift structure of the big bang in inhomogeneous cosmological models. I. Spherical dust solutions
Energy Technology Data Exchange (ETDEWEB)
Hellaby, C.; Lake, K.
1984-07-01
The redshift from the big bang in the standard model is always infinite, but in inhomogeneous cosmological models infinite blueshifts are also possible. To avoid such divergent energy fluxes, we require that all realistic cosmological models must not display infinite blueshifts. We apply this requirement to the Tolman model (spherically symmetric dust), using the geometrical optics approximation, and assuming that the geodesic tangent vectors may be expanded in power series. We conclude that the bang time must be simultaneous. The stronger requirement, that only infinite redshifts from the big bang may occur, does not lead to a stronger condition on the metric. Further consequences of simultaneity are that no decaying mode fluctuations are possible, and that the only acceptable model which is homogeneous at late times is the Robertson-Walker model.
STRUCTURE FORMATION PRINCIPLES OF INTERFERENCE BEAM SPLITTERS
Directory of Open Access Journals (Sweden)
L. A. Gubanova
2012-01-01
Full Text Available The methodology of interference beam splitters construction, formed by symmetric cells of dielectric layers is considered. The methodology of short-wave and long-wave interference beam splitters formation is given. The impact analysis of symmetric cells number and their structure on output parameters is considered.
Stecker, F. W.; Puget, J. L.
1972-01-01
Following the big-bang baryon symmetric cosmology of Omnes, the redshift was calculated to be on the order of 500-600. It is show that, at these redshifts, annihilation pressure at the boundaries between regions of matter and antimatter drives large scale supersonic turbulence which can trigger galaxy formation. This picture is consistent with the gamma-ray background observations discussed previously. Gravitational binding of galaxies then occurs at a redshift of about 70, at which time vortical turbulent velocities of about 3 x 10 to the 7th power cm/s lead to angular momenta for galaxies comparable with measured values.
Sanders, RH; Papantonopoulos, E
2005-01-01
I discuss the classical cosmological tests, i.e., angular size-redshift, flux-redshift, and galaxy number counts, in the light of the cosmology prescribed by the interpretation of the CMB anisotropies. The discussion is somewhat of a primer for physicists, with emphasis upon the possible systematic
Kazuyuki, YAMASHITA; Department of Physics, Kyoto University
1993-01-01
We investigate the thermodynamical and hydrodynamical effects on the structure formation on scales of 20h^ Mpc in the Einstein de-Sitter universe by three-dimensional numerical simulation. Calculations involve cosmological expansion, self-gravity, hydrodynamics, and cooling processes with 100×100×100 mesh cells and the same number of CDM particles. Galactic bursts out of young galaxies as a heat input are parametrically taken into account. We find that the thermodynamics of the intergalactic ...
International Nuclear Information System (INIS)
Turner, Michael S.
1999-01-01
For two decades the hot big-bang model as been referred to as the standard cosmology - and for good reason. For just as long cosmologists have known that there are fundamental questions that are not answered by the standard cosmology and point to a grander theory. The best candidate for that grander theory is inflation + cold dark matter. It holds that the Universe is flat, that slowly moving elementary particles left over from the earliest moments provide the cosmic infrastructure, and that the primeval density inhomogeneities that seed all the structure arose from quantum fluctuations. There is now prima facie evidence that supports two basic tenets of this paradigm. An avalanche of high-quality cosmological observations will soon make this case stronger or will break it. Key questions remain to be answered; foremost among them are: identification and detection of the cold dark matter particles and elucidation of the dark-energy component. These are exciting times in cosmology!
Cosmological Views of Anania Shirakatsi
Farmanyan, Sona V.; Mickaelian, Areg M.
2017-12-01
Since the ancient times the usage of cosmological ideas in mythology and poetry has contributed to the formation and development of human's philosophical thought. It is believed that before the M. Mashtots's alphabet, ancient Armenians have expressed their astronomical knowledge through stone structures and rock art.In the Armenian reality, the cosmological views, the idea of the spherical shape of the Earth and information of other celestial bodies more vividly were manifested in the works of Movses Khorenatsi, David Anhaght (5th century) and Anania Shirakatsi (7th century).Anania Shirakatsi is an Armenian Astronomer, Mathematician, Philosopher, Geographer and Alchemist.The importance of his work is also noted by foreign authors and he was called 7th century Cosmologist, First Scientist of Armenia and Middival Astronomer. Shirakatsi's works are united in his comprehensive knowledge, his insight of the mind, the ability of combining and analyzing facts and his literature talent.His works have simultaneous historical, cosmic, geographical, religious, literary and mystical significance. In the present study we will show Anania Shirakatsi's cosmological ideas and observations.
High energy physics and cosmology
International Nuclear Information System (INIS)
Silk, J.I.
1991-01-01
This research will focus on the implications of recent theories and experiments in high energy physics of the evolution of the early universe, and on the constraints that cosmological considerations can place on such theories. Several problems are under investigation, including studies of the nature of dark matter and the signature of annihilations in the galactic halo, where the resulting γ-ray fluxes are potentially observable, and in stars, where stellar evolution may be affects. We will develop constraints on the inflationary predictions of scale-free primordial fluctuations in a universe at critical closure density by studying their linear and non-linear evolution after they re-enter the particle horizon, examining the observable imprint of primordial density fluctuations on the cosmic microwave background radiation in both flat and curved cosmological models, and implications for observations of large-scale galaxy clustering and structure formation theories. We will also study spectral distortions in the microwave background radiation that are produced by exotic particle decays in the very early universe. We expect such astrophysical considerations to provide fruitful insights both into high-energy particle physics and into possible cosmological for the early universe
Asymptotic structure of space-time with a positive cosmological constant
Kesavan, Aruna
In general relativity a satisfactory framework for describing isolated systems exists when the cosmological constant Lambda is zero. The detailed analysis of the asymptotic structure of the gravitational field, which constitutes the framework of asymptotic flatness, lays the foundation for research in diverse areas in gravitational science. However, the framework is incomplete in two respects. First, asymptotic flatness provides well-defined expressions for physical observables such as energy and momentum as 'charges' of asymptotic symmetries at null infinity, [special character omitted] +. But the asymptotic symmetry group, called the Bondi-Metzner-Sachs group is infinite-dimensional and a tensorial expression for the 'charge' integral of an arbitrary BMS element is missing. We address this issue by providing a charge formula which is a 2-sphere integral over fields local to the 2-sphere and refers to no extraneous structure. The second, and more significant shortcoming is that observations have established that Lambda is not zero but positive in our universe. Can the framework describing isolated systems and their gravitational radiation be extended to incorporate this fact? In this dissertation we show that, unfortunately, the standard framework does not extend from the Lambda = 0 case to the Lambda > 0 case in a physically useful manner. In particular, we do not have an invariant notion of gravitational waves in the non-linear regime, nor an analog of the Bondi 'news tensor', nor positive energy theorems. In addition, we argue that the stronger boundary condition of conformal flatness of intrinsic metric on [special character omitted]+, which reduces the asymptotic symmetry group from Diff([special character omitted]) to the de Sitter group, is insufficient to characterize gravitational fluxes and is physically unreasonable. To obtain guidance for the full non-linear theory with Lambda > 0, linearized gravitational waves in de Sitter space-time are analyzed in
The structure and formation of natural categories
Fisher, Douglas; Langley, Pat
1990-01-01
Categorization and concept formation are critical activities of intelligence. These processes and the conceptual structures that support them raise important issues at the interface of cognitive psychology and artificial intelligence. The work presumes that advances in these and other areas are best facilitated by research methodologies that reward interdisciplinary interaction. In particular, a computational model is described of concept formation and categorization that exploits a rational analysis of basic level effects by Gluck and Corter. Their work provides a clean prescription of human category preferences that is adapted to the task of concept learning. Also, their analysis was extended to account for typicality and fan effects, and speculate on how the concept formation strategies might be extended to other facets of intelligence, such as problem solving.
Neutrino masses in astrophysics and cosmology
International Nuclear Information System (INIS)
Raffelt, G.G.
1996-01-01
Astrophysical and cosmological arguments and observations give us the most restrictive constraints on neutrino masses, electromagnetic couplings, and other properties. Conversely, massive neutrinos would contribute to the cosmic dark-matter density and would play an important role for the formation of structure in the universe. Neutrino oscillations may well solve the solar neutrino problem, and can have a significant impact on supernova physics. (author) 14 figs., tabs., 33 refs
Neutrino masses in astrophysics and cosmology
Energy Technology Data Exchange (ETDEWEB)
Raffelt, G G [Max-Planck-Institut fuer Physik, Muenchen (Germany)
1996-11-01
Astrophysical and cosmological arguments and observations give us the most restrictive constraints on neutrino masses, electromagnetic couplings, and other properties. Conversely, massive neutrinos would contribute to the cosmic dark-matter density and would play an important role for the formation of structure in the universe. Neutrino oscillations may well solve the solar neutrino problem, and can have a significant impact on supernova physics. (author) 14 figs., tabs., 33 refs.
International Nuclear Information System (INIS)
Leibundgut, B.
2005-01-01
Supernovae have developed into a versatile tool for cosmology. Their impact on the cosmological model has been profound and led to the discovery of the accelerated expansion. The current status of the cosmological model as perceived through supernova observations will be presented. Supernovae are currently the only astrophysical objects that can measure the dynamics of the cosmic expansion during the past eight billion years. Ongoing experiments are trying to determine the characteristics of the accelerated expansion and give insight into what might be the physical explanation for the acceleration. (author)
2012-01-01
This volume tells of the quest for cosmology as seen by some of the finest cosmologists in the world. It starts with "Galaxy Formation from Start to Finish" and ends with "The First Supermassive Black Holes in the Universe," exploring in between the grand themes of galaxies, the early universe, expansion of the universe, dark matter and dark energy. This up-to-date collection of review articles offers a general introduction to cosmology and is intended for all probing into the profound questions on where we came from and where we are going.
Structure formation control of foam concrete
Steshenko, Aleksei; Kudyakov, Aleksander; Konusheva, Viktoriya; Syrkin, Oleg
2017-01-01
The process of predetermined foam concrete structure formation is considered to be a crucial issue from the point of process control and it is currently understudied thus defining the need for additional research. One of the effective ways of structure formation control in naturally hardening foam concrete is reinforcement with dispersed fibers or introduction of plasticizers. The paper aims at studying the patterns of influence of microreinforcing and plasticizing additives on the structure and performance properties of foam concrete. Preparation of foam concrete mix has been conducted using one-step technology. The structure of modified foam concrete has been studied by means of electron microscopy. The cellular structure of foam concrete samples with the additives is homogeneous; the pores are uniformly distributed over the total volume. It has been revealed that introduction of the Neolas 5.2 plasticizer and microreinforcing fibers in the foam concrete mixture in the amount of 0.4 - 0.1 % by weight of cement leads to reduction of the average pore diameter in the range of 45.3 to 30.2 microns and the standard deviation of the pore average diameter from 23.6 to 9.2 in comparison with the sample without additive. Introduction of modifying additives has stimulated formation of a large number of closed pores. Thus porosity of conditionally closed pores has increased from 16.06 % to 34.48 %, which has lead to increase of frost resistance brand of foam concrete from F15 to F50 and to reduction of its water absorption by weight by 20 %.
International Nuclear Information System (INIS)
Berstein, J.
1984-01-01
These lectures offer a self-contained review of the role of neutrinos in cosmology. The first part deals with the question 'What is a neutrino.' and describes in a historical context the theoretical ideas and experimental discoveries related to the different types of neutrinos and their properties. The basic differences between the Dirac neutrino and the Majorana neutrino are pointed out and the evidence for different neutrino 'flavours', neutrino mass, and neutrino oscillations is discussed. The second part summarizes current views on cosmology, particularly as they are affected by recent theoretical and experimental advances in high-energy particle physics. Finally, the close relationship between neutrino physics and cosmology is brought out in more detail, to show how cosmological constraints can limit the various theoretical possibilities for neutrinos and, more particularly, how increasing knowledge of neutrino properties can contribute to our understanding of the origin, history, and future of the Universe. The level is that of the beginning graduate student. (orig.)
International Nuclear Information System (INIS)
Khalatnikov, I.M.; Belinskij, V.A.
1984-01-01
Application of the qualitative theory of dynamic systems to analysis of homogeneous cosmological models is described. Together with the well-known cases, requiring ideal liquid, the properties of cosmological evolution of matter with dissipative processes due to viscosity are considered. New cosmological effects occur, when viscosity terms being one and the same order with the rest terms in the equations of gravitation or even exceeding them. In these cases the description of the dissipative process by means of only two viscosity coefficients (volume and shift) may become inapplicable because all the rest decomposition terms of dissipative addition to the energy-momentum in velocity gradient can be large application of equations with hydrodynamic viscosty should be considered as a model of dissipative effects in cosmology
CERN. Geneva
2007-01-01
The understanding of the Universe at the largest and smallest scales traditionally has been the subject of cosmology and particle physics, respectively. Studying the evolution of the Universe connects today's large scales with the tiny scales in the very early Universe and provides the link between the physics of particles and of the cosmos. This series of five lectures aims at a modern and critical presentation of the basic ideas, methods, models and observations in today's particle cosmology.
Zinn, P.-C.; Middelberg, E.; Ibar, E.
2011-07-01
Context. Infrared-faint radio sources (IFRS) are extragalactic emitters clearly detected at radio wavelengths but barely detected or undetected at optical and infrared wavelengths, with 5σ sensitivities as low as 1 μJy. Aims: Spectral energy distribution (hereafter SED) modelling and analyses of their radio properties indicate that IFRS are consistent with a population of (potentially extremely obscured) high-redshift AGN at 3 ≤ z ≤ 6. We demonstrate some astrophysical implications of this population and compare them to predictions from models of galaxy evolution and structure formation. Methods: We compiled a list of IFRS from four deep extragalactic surveys and extrapolated the IFRS number density to a survey-independent value of (30.8 ± 15.0) deg-2. We computed the IFRS contribution to the total number of AGN in the Universe to account for the cosmic X-ray background. By estimating the black hole mass contained in IFRS, we present conclusions for the SMBH mass density in the early universe and compare it to relevant simulations of structure formation after the Big Bang. Results: The number density of AGN derived from the IFRS density was found to be ~310 deg-2, which is equivalent to a SMBH mass density of the order of 103 M⊙ Mpc-3 in the redshift range 3 ≤ z ≤ 6. This produces an X-ray flux of 9 × 10-16 W m-2 deg-2 in the 0.5-2.0 keV band and 3 × 10-15 W m-2 deg-2 in the 2.0-10 keV band, in agreement with the missing unresolved components of the Cosmic X-ray Background. To address SMBH formation after the Big Bang we invoke a scenario involving both halo gas accretion and major mergers.
Coupled and extended quintessence: Theoretical differences and structure formation
International Nuclear Information System (INIS)
Pettorino, Valeria; Baccigalupi, Carlo
2008-01-01
The case of a coupling between dark energy and matter [coupled quintessence (CQ)] or gravity [extended quintessence (EQ)] has recently attracted a deep interest and has been widely investigated both in the Einstein and in the Jordan frames (EF, JF), within scalar-tensor theories. Focusing on the simplest models proposed so far, in this paper we study the relation existing between the two scenarios, isolating the Weyl scaling which allows one to express them in the EF and JF. Moreover, we perform a comparative study of the behavior of linear perturbations in both scenarios, which turn out to behave in a markedly different way. In particular, while the clustering is enhanced in the considered CQ models with respect to the corresponding quintessence ones where the coupling is absent and to the ordinary cosmologies with a cosmological constant and cold dark matter (ΛCDM), structures in EQ models may grow slower. This is likely to have direct consequences on the inner properties of nonlinear structures, like cluster concentration, as well as on the weak lensing shear on large scales. Finally, we specialize our study for interfacing linear dynamics and N-body simulations in these cosmologies, giving a recipe for the corrections to be included in N-body codes in order to take into account the modifications to the expansion rate, growth of structures, and strength of gravity
Inhomogeneous anisotropic cosmology
International Nuclear Information System (INIS)
Kleban, Matthew; Senatore, Leonardo
2016-01-01
In homogeneous and isotropic Friedmann-Robertson-Walker cosmology, the topology of the universe determines its ultimate fate. If the Weak Energy Condition is satisfied, open and flat universes must expand forever, while closed cosmologies can recollapse to a Big Crunch. A similar statement holds for homogeneous but anisotropic (Bianchi) universes. Here, we prove that arbitrarily inhomogeneous and anisotropic cosmologies with “flat” (including toroidal) and “open” (including compact hyperbolic) spatial topology that are initially expanding must continue to expand forever at least in some region at a rate bounded from below by a positive number, despite the presence of arbitrarily large density fluctuations and/or the formation of black holes. Because the set of 3-manifold topologies is countable, a single integer determines the ultimate fate of the universe, and, in a specific sense, most 3-manifolds are “flat” or “open”. Our result has important implications for inflation: if there is a positive cosmological constant (or suitable inflationary potential) and initial conditions for the inflaton, cosmologies with “flat” or “open” topology must expand forever in some region at least as fast as de Sitter space, and are therefore very likely to begin inflationary expansion eventually, regardless of the scale of the inflationary energy or the spectrum and amplitude of initial inhomogeneities and gravitational waves. Our result is also significant for numerical general relativity, which often makes use of periodic (toroidal) boundary conditions.
Cosmological constants and variations
International Nuclear Information System (INIS)
Barrow, John D
2005-01-01
We review properties of theories for the variation of the gravitation and fine structure 'constants'. We highlight some general features of the cosmological models that exist in these theories with reference to recent quasar data that is consistent with time-variation in the fine structure 'constant' since a redshift of 3.5. The behaviour of a simple class of varying alpha cosmologies is outlined in the light of all the observational constraints. We also discuss some of the consequences of varying 'constants' for oscillating universes and show by means of exact solutions that they appear to evolve monotonically in time even though the scale factor of the universe oscillates
Precision cosmology with weak gravitational lensing
Hearin, Andrew P.
In recent years, cosmological science has developed a highly predictive model for the universe on large scales that is in quantitative agreement with a wide range of astronomical observations. While the number and diversity of successes of this model provide great confidence that our general picture of cosmology is correct, numerous puzzles remain. In this dissertation, I analyze the potential of planned and near future galaxy surveys to provide new understanding of several unanswered questions in cosmology, and address some of the leading challenges to this observational program. In particular, I study an emerging technique called cosmic shear, the weak gravitational lensing produced by large scale structure. I focus on developing strategies to optimally use the cosmic shear signal observed in galaxy imaging surveys to uncover the physics of dark energy and the early universe. In chapter 1 I give an overview of a few unsolved mysteries in cosmology and I motivate weak lensing as a cosmological probe. I discuss the use of weak lensing as a test of general relativity in chapter 2 and assess the threat to such tests presented by our uncertainty in the physics of galaxy formation. Interpreting the cosmic shear signal requires knowledge of the redshift distribution of the lensed galaxies. This redshift distribution will be significantly uncertain since it must be determined photometrically. In chapter 3 I investigate the influence of photometric redshift errors on our ability to constrain dark energy models with weak lensing. The ability to study dark energy with cosmic shear is also limited by the imprecision in our understanding of the physics of gravitational collapse. In chapter 4 I present the stringent calibration requirements on this source of uncertainty. I study the potential of weak lensing to resolve a debate over a long-standing anomaly in CMB measurements in chapter 5. Finally, in chapter 6 I summarize my findings and conclude with a brief discussion of my
The formation of structure in the Universe
Efstathiou, G P
1995-01-01
The discovery of temperature anisotropies in the microwave background radiation by the COBE satellite provides the first direct detection of fluctuations in the early universe. I will review more recent experiments, espacially those designed to detect anisotropies on angular scales of less than a degree,corresponding to fluctuations with physical sizes of superclusters of galaxies. I will describe the COBRAS/SAMBA satellite that is under consideration by ESA for possible launch in 2003 and show how measurements of the background anisotropies can be linked with observations of the present day galaxy ditribution to construct models of structure formation extending from the very early universe to the present day.
The Universe Adventure - The Beginnings of Cosmology
The Universe Adventure [ next ] [ home ] Go The Beginnings of Cosmology Since the beginning of of stars? What do the stars tell us about the future? Where did the Universe come from? Cosmology is will introduce you to Cosmology and the study of the structure, history, and fate of the Universe. In
Graphitic structure formation in ion implanted polyetheretherketone
Energy Technology Data Exchange (ETDEWEB)
Tavenner, E., E-mail: tazman1492@gmail.com [Creative Polymers Pty. Ltd., 41 Wilkinson Street, Toowoomba, Queensland 4350 (Australia); Chemical Committee, Surface Chemical Analysis, Standards (Australia); Wood, B. [Centre for Microscopy and Microanalysis, University of Queensland, St. Lucia, Queensland 4072 (Australia); Chemical Committee, Surface Chemical Analysis, Standards (Australia); Curry, M.; Jankovic, A.; Patel, R. [Center for Applied Science and Engineering, Missouri State University, 524 North Boonville Avenue, Springfield, MO 65806 (United States)
2013-10-15
Ion implantation is a technique that is used to change the electrical, optical, hardness and biocompatibility of a wide range of inorganic materials. This technique also imparts similar changes to organic or polymer based materials. With polymers, ion implantation can produce a carbon enriched volume. Knowledge as to the nature of this enrichment and its relative concentration is necessary to produce accurate models of the physical properties of the modified material. One technique that can achieve this is X-ray photoelectron spectroscopy. In this study the formation of graphite like structures in the near surface of polyetheretherketone by ion implantation has been elucidated from detailed analysis of the C 1s and valence band peak structures generated by X-ray photoelectron spectroscopy. Further evidence is given by both Rutherford backscatter spectroscopy and elastic recoil detection.
Modulated structure formation in demixing paraffin blends
Gilbert, E P
2002-01-01
Small angle scattering (SANS and SAXS) and differential scanning calorimetry have been measured from C sub 2 sub 8 :C sub 3 sub 6 normal paraffin mixtures of varying composition quenched from the melt. Satellite peaks are observed in the SAXS whose offset in Q, relative to Bragg diffraction peaks associated with the average structure, are composition dependent. The offset is close to the position of the most intense peak observed in SANS. Scattering from the quenched structures is consistent with a correlated displacement and substitutional disorder model yielding modulations that are incommensurate with the average lattice. DSC shows an additional endotherm in the mixtures that is not present in the pure components and is associated with this superstructure formation. (orig.)
Modulated structure formation in demixing paraffin blends
International Nuclear Information System (INIS)
Gilbert, E.P.
2002-01-01
Small angle scattering (SANS and SAXS) and differential scanning calorimetry have been measured from C 28 :C 36 normal paraffin mixtures of varying composition quenched from the melt. Satellite peaks are observed in the SAXS whose offset in Q, relative to Bragg diffraction peaks associated with the average structure, are composition dependent. The offset is close to the position of the most intense peak observed in SANS. Scattering from the quenched structures is consistent with a correlated displacement and substitutional disorder model yielding modulations that are incommensurate with the average lattice. DSC shows an additional endotherm in the mixtures that is not present in the pure components and is associated with this superstructure formation. (orig.)
Rajantie, Arttu
2018-03-06
The discovery of the Higgs boson in 2012 and other results from the Large Hadron Collider have confirmed the standard model of particle physics as the correct theory of elementary particles and their interactions up to energies of several TeV. Remarkably, the theory may even remain valid all the way to the Planck scale of quantum gravity, and therefore it provides a solid theoretical basis for describing the early Universe. Furthermore, the Higgs field itself has unique properties that may have allowed it to play a central role in the evolution of the Universe, from inflation to cosmological phase transitions and the origin of both baryonic and dark matter, and possibly to determine its ultimate fate through the electroweak vacuum instability. These connections between particle physics and cosmology have given rise to a new and growing field of Higgs cosmology, which promises to shed new light on some of the most puzzling questions about the Universe as new data from particle physics experiments and cosmological observations become available.This article is part of the Theo Murphy meeting issue 'Higgs cosmology'. © 2018 The Author(s).
International Nuclear Information System (INIS)
Wesson, P.S.
1979-01-01
The Cosmological Principle states: the universe looks the same to all observers regardless of where they are located. To most astronomers today the Cosmological Principle means the universe looks the same to all observers because density of the galaxies is the same in all places. A new Cosmological Principle is proposed. It is called the Dimensional Cosmological Principle. It uses the properties of matter in the universe: density (rho), pressure (p), and mass (m) within some region of space of length (l). The laws of physics require incorporation of constants for gravity (G) and the speed of light (C). After combining the six parameters into dimensionless numbers, the best choices are: 8πGl 2 rho/c 2 , 8πGl 2 rho/c 4 , and 2 Gm/c 2 l (the Schwarzchild factor). The Dimensional Cosmological Principal came about because old ideas conflicted with the rapidly-growing body of observational evidence indicating that galaxies in the universe have a clumpy rather than uniform distribution
Rajantie, Arttu
2018-01-01
The discovery of the Higgs boson in 2012 and other results from the Large Hadron Collider have confirmed the standard model of particle physics as the correct theory of elementary particles and their interactions up to energies of several TeV. Remarkably, the theory may even remain valid all the way to the Planck scale of quantum gravity, and therefore it provides a solid theoretical basis for describing the early Universe. Furthermore, the Higgs field itself has unique properties that may have allowed it to play a central role in the evolution of the Universe, from inflation to cosmological phase transitions and the origin of both baryonic and dark matter, and possibly to determine its ultimate fate through the electroweak vacuum instability. These connections between particle physics and cosmology have given rise to a new and growing field of Higgs cosmology, which promises to shed new light on some of the most puzzling questions about the Universe as new data from particle physics experiments and cosmological observations become available. This article is part of the Theo Murphy meeting issue `Higgs cosmology'.
Compact stellar object: the formation and structure
Energy Technology Data Exchange (ETDEWEB)
Duarte, S.B. [Centro Brasileiro de Pesquisas Fisicas (CBPF/MCT), Rio de Janeiro, RJ (Brazil)
2012-07-01
Full text: The formation of compact objects is viewed at the final stages of stellar evolution. The supernova explosion events are then focalized to explain the formation of pulsars, hybrid neutron star and the limit case of the latter, the quark stars. We discuss the stability and structure of these objects in connection with the properties of the hadron and quark-gluon plasma equation of state. The hadron-quark phase transition in deep interior of these objects is discussed taking into account the implications on the density distribution of matter along the radial direction. The role of neutrinos confinement in the ultradense stellar medium in the early stages of pulsar formation is another interesting aspect to be mentioned in this presentation. Recent results for maximum mass of compact stellar objects for different forms of equations of state will be shown, presenting some theoretical predictions for maximum mass of neutron stars allowed by different equations of state assigned to dense stellar medium. Although a density greater than few times the nuclear equilibrium density appears in deep interior of the core, at the crust the density decreases by several orders of magnitude where a variety of hadronic states appears, the 'pasta'-states of hadrons. More externally, a lattice of nuclei can be formed permeated not only by electrons but also by a large amount of free neutrons and protons. These are possible structure of neutron star crust to have the density and pressures with null values at the neutron star surface. The ultimate goal of this talk is to give a short view of the compact star area for students and those who are introducing in this subject. (author)
Extragalactic astronomy and cosmology an introduction
Schneider, Peter
2015-01-01
Accounting for the astonishing developments in the field of Extragalactic Astronomy and Cosmology, this second edition has been updated and substantially expanded. Starting with the description of our home galaxy, the Milky Way, this cogently written textbook introduces the reader to the astronomy of galaxies, their structure, active galactic nuclei, evolution and large scale distribution in the Universe. After an extensive and thorough introduction to modern observational and theoretical cosmology, the focus turns to the formation of structures and astronomical objects in the early Universe. The basics of classical astronomy and stellar astrophysics needed for extragalactic astronomy are provided in the appendix. The new edition incorporates some of the most spectacular results from new observatories like the Galaxy Evolution Explorer, Herschel, ALMA, WMAP and Planck, as well as new instruments and multi-wavelength campaigns which have expanded our understanding of the Universe and the objects populating it....
Sanders, Robert H
2016-01-01
The advent of sensitive high-resolution observations of the cosmic microwave background radiation and their successful interpretation in terms of the standard cosmological model has led to great confidence in this model's reality. The prevailing attitude is that we now understand the Universe and need only work out the details. In this book, Sanders traces the development and successes of Lambda-CDM, and argues that this triumphalism may be premature. The model's two major components, dark energy and dark matter, have the character of the pre-twentieth-century luminiferous aether. While there is astronomical evidence for these hypothetical fluids, their enigmatic properties call into question our assumptions of the universality of locally determined physical law. Sanders explains how modified Newtonian dynamics (MOND) is a significant challenge for cold dark matter. Overall, the message is hopeful: the field of cosmology has not become frozen, and there is much fundamental work ahead for tomorrow's cosmologis...
Energy Technology Data Exchange (ETDEWEB)
Schramm, D.N.
1992-03-01
The cosmological dark matter problem is reviewed. The Big Bang Nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the {Omega} = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between ``cold`` and ``hot`` non-baryonic candidates is shown to depend on the assumed ``seeds`` that stimulate structure formation. Gaussian density fluctuations, such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed.
Energy Technology Data Exchange (ETDEWEB)
Schramm, D.N.
1992-03-01
The cosmological dark matter problem is reviewed. The Big Bang Nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the {Omega} = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between cold'' and hot'' non-baryonic candidates is shown to depend on the assumed seeds'' that stimulate structure formation. Gaussian density fluctuations, such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed.
International Nuclear Information System (INIS)
Schramm, D.N.
1992-03-01
The cosmological dark matter problem is reviewed. The Big Bang Nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the Ω = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between ''cold'' and ''hot'' non-baryonic candidates is shown to depend on the assumed ''seeds'' that stimulate structure formation. Gaussian density fluctuations, such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed
Evaluation of an Interactive Undergraduate Cosmology Curriculum
White, Aaron; Coble, Kimberly A.; Martin, Dominique; Hayes, Patrycia; Targett, Tom; Cominsky, Lynn R.
2018-06-01
The Big Ideas in Cosmology is an immersive set of web-based learning modules that integrates text, figures, and visualizations with short and long interactive tasks as well as labs that allow students to manipulate and analyze real cosmological data. This enables the transformation of general education astronomy and cosmology classes from primarily lecture and book-based courses to a format that builds important STEM skills, while engaging those outside the field with modern discoveries and a more realistic sense of practices and tools used by professional astronomers. Over two semesters, we field-tested the curriculum in general education cosmology classes at a state university in California [N ~ 80]. We administered pre- and post-instruction multiple-choice and open-ended content surveys as well as the CLASS, to gauge the effectiveness of the course and modules. Questions addressed included the structure, composition, and evolution of the universe, including students’ reasoning and “how we know.”Module development and evaluation was supported by NASA ROSES E/PO Grant #NNXl0AC89G, the Illinois Space Grant Consortium, the Fermi E/PO program, Sonoma State University’s Space Science Education and Public Outreach Group, and San Francisco State University. The modules are published by Great River Learning/Kendall-Hunt.
International Nuclear Information System (INIS)
Dickau, Jonathan J.
2009-01-01
The use of fractals and fractal-like forms to describe or model the universe has had a long and varied history, which begins long before the word fractal was actually coined. Since the introduction of mathematical rigor to the subject of fractals, by Mandelbrot and others, there have been numerous cosmological theories and analyses of astronomical observations which suggest that the universe exhibits fractality or is by nature fractal. In recent years, the term fractal cosmology has come into usage, as a description for those theories and methods of analysis whereby a fractal nature of the cosmos is shown.
Belinski, Vladimir
2018-01-01
Written for researchers focusing on general relativity, supergravity, and cosmology, this is a self-contained exposition of the structure of the cosmological singularity in generic solutions of the Einstein equations, and an up-to-date mathematical derivation of the theory underlying the Belinski–Khalatnikov–Lifshitz (BKL) conjecture on this field. Part I provides a comprehensive review of the theory underlying the BKL conjecture. The generic asymptotic behavior near the cosmological singularity of the gravitational field, and fields describing other kinds of matter, is explained in detail. Part II focuses on the billiard reformulation of the BKL behavior. Taking a general approach, this section does not assume any simplifying symmetry conditions and applies to theories involving a range of matter fields and space-time dimensions, including supergravities. Overall, this book will equip theoretical and mathematical physicists with the theoretical fundamentals of the Big Bang, Big Crunch, Black Hole singula...
Valogiannis, Georgios; Bean, Rachel
2017-05-01
We implement an adaptation of the cola approach, a hybrid scheme that combines Lagrangian perturbation theory with an N-body approach, to model nonlinear collapse in chameleon and symmetron modified gravity models. Gravitational screening is modeled effectively through the attachment of a suppression factor to the linearized Klein-Gordon equations. The adapted cola approach is benchmarked, with respect to an N-body code both for the Λ cold dark matter (Λ CDM ) scenario and for the modified gravity theories. It is found to perform well in the estimation of the dark matter power spectra, with consistency of 1% to k ˜2.5 h /Mpc . Redshift space distortions are shown to be effectively modeled through a Lorentzian parametrization with a velocity dispersion fit to the data. We find that cola performs less well in predicting the halo mass functions but has consistency, within 1 σ uncertainties of our simulations, in the relative changes to the mass function induced by the modified gravity models relative to Λ CDM . The results demonstrate that cola, proposed to enable accurate and efficient, nonlinear predictions for Λ CDM , can be effectively applied to a wider set of cosmological scenarios, with intriguing properties, for which clustering behavior needs to be understood for upcoming surveys such as LSST, DESI, Euclid, and WFIRST.
Structure formation cosmic rays: Identifying observational constraints
Directory of Open Access Journals (Sweden)
Prodanović T.
2005-01-01
Full Text Available Shocks that arise from baryonic in-fall and merger events during the structure formation are believed to be a source of cosmic rays. These "structure formation cosmic rays" (SFCRs would essentially be primordial in composition, namely, mostly made of protons and alpha particles. However, very little is known about this population of cosmic rays. One way to test the level of its presence is to look at the products of hadronic reactions between SFCRs and the ISM. A perfect probe of these reactions would be Li. The rare isotope Li is produced only by cosmic rays, dominantly in αα → 6Li fusion reactions with the ISM helium. Consequently, this nuclide provides a unique diagnostic of the history of cosmic rays. Exactly because of this unique property is Li affected most by the presence of an additional cosmic ray population. In turn, this could have profound consequences for the Big-Bang nucleosynthesis: cosmic rays created during cosmic structure formation would lead to pre-Galactic Li production, which would act as a "contaminant" to the primordial 7Li content of metalpoor halo stars. Given the already existing problem of establishing the concordance between Li observed in halo stars and primordial 7Li as predicted by the WMAP, it is crucial to set limits to the level of this "contamination". However, the history of SFCRs is not very well known. Thus we propose a few model-independent ways of testing the SFCR species and their history, as well as the existing lithium problem: 1 we establish the connection between gamma-ray and Li production, which enables us to place constraints on the SFCR-made lithium by using the observed Extragalactic Gamma-Ray Background (EGRB; 2 we propose a new site for testing the primordial and SFCR-made lithium, namely, low-metalicity High-Velocity Clouds (HVCs, which retain the pre-Galactic composition without any significant depletion. Although using one method alone may not give us strong constraints, using them in
Formation of Structure in the Universe
Bahcall, John; Fisher, Karl; Miralda-Escude, Jordi; Strauss, Michael; Weinberg, David
1997-01-01
This grant supported research by the investigators through summer salary support for Strauss and Weinberg, support for graduate students at Princeton University and Ohio State University, and travel, visitor, and publication support for the investigators. The grant originally had a duration of 1 year, and it was extended (without additional funding) for an additional year. The impact of the grant was considerable given its relatively modest duration and funding level, in part because it provided 'seed' funding to get Strauss and Weinberg started at new institutions, and in part because it was combined with support from subsequent grants. Here we summarize progress in the three general areas described in the grant proposal: Lyman alpha absorbers and the intergalactic medium, galaxy formation; and large scale structure.
Statistical Issues in Galaxy Cluster Cosmology
Mantz, Adam
2013-01-01
The number and growth of massive galaxy clusters are sensitive probes of cosmological structure formation. Surveys at various wavelengths can detect clusters to high redshift, but the fact that cluster mass is not directly observable complicates matters, requiring us to simultaneously constrain scaling relations of observable signals with mass. The problem can be cast as one of regression, in which the data set is truncated, the (cosmology-dependent) underlying population must be modeled, and strong, complex correlations between measurements often exist. Simulations of cosmological structure formation provide a robust prediction for the number of clusters in the Universe as a function of mass and redshift (the mass function), but they cannot reliably predict the observables used to detect clusters in sky surveys (e.g. X-ray luminosity). Consequently, observers must constrain observable-mass scaling relations using additional data, and use the scaling relation model in conjunction with the mass function to predict the number of clusters as a function of redshift and luminosity.
Coley, Alan
2010-05-01
In this book the use of inhomogeneous models in cosmology, both in modelling structure formation and interpreting cosmological observations, is discussed. The authors concentrate on exact solutions, and particularly the Lemaitre-Tolman (LT) and Szekeres models (the important topic of averaging is not discussed). The book serves to demonstrate that inhomogeneous metrics can generate realistic models of cosmic structure formation and nonlinear evolution and shows that general relativity has a lot more to offer to cosmology than just the standard spatially homogeneous FLRW model. I would recommend this book to people working in theoretical cosmology. In the introduction (and in the concluding chapter and throughout the book) a reasonable discussion of the potential problems with the standard FLRW cosmology is presented, and a list of examples illustrating the limitations of standard FLRW cosmology are discussed (including potential problems with perturbation methods). In particular, the authors argue that the assumptions of isotropy and spatial homogeneity (and consequently the Copernican principle) must be properly challenged and revisited. Indeed, it is possible for `good old general relativity' to be used to explain cosmological observations without introducing speculative elements. In part I of the book the necessary background is presented (readers need a background in general relativity theory at an advanced undergraduate or graduate level). There is a good (and easy to read) review of the exact spherically symmetric dust Lemaitre-Tolman model (LT) (often denoted the LTB model) and the Lemaitre and Szekeres models. Light propogation (i.e. null geodesics, for both central and off-center observers) in exact inhomogeneous (LT) models is reviewed. In part II a number of applications of exact inhomogeneous models are presented (taken mainly from the authors' own work). In chapter 4, the evolution of exact inhomogeneous models (primarily the LT model, but also the
Enqvist, K
2012-01-01
The very basics of cosmological inflation are discussed. We derive the equations of motion for the inflaton field, introduce the slow-roll parameters, and present the computation of the inflationary perturbations and their connection to the temperature fluctuations of the cosmic microwave background.
Ellis, G F R
1993-01-01
Many topics were covered in the submitted papers, showing much life in this subject at present. They ranged from conventional calculations in specific cosmological models to provocatively speculative work. Space and time restrictions required selecting from them, for summarisation here; the book of Abstracts should be consulted for a full overview.
International Nuclear Information System (INIS)
Chow, Nathan; Khoury, Justin
2009-01-01
We study the cosmology of a galileon scalar-tensor theory, obtained by covariantizing the decoupling Lagrangian of the Dvali-Gabadadze-Poratti (DGP) model. Despite being local in 3+1 dimensions, the resulting cosmological evolution is remarkably similar to that of the full 4+1-dimensional DGP framework, both for the expansion history and the evolution of density perturbations. As in the DGP model, the covariant galileon theory yields two branches of solutions, depending on the sign of the galileon velocity. Perturbations are stable on one branch and ghostlike on the other. An interesting effect uncovered in our analysis is a cosmological version of the Vainshtein screening mechanism: at early times, the galileon dynamics are dominated by self-interaction terms, resulting in its energy density being suppressed compared to matter or radiation; once the matter density has redshifted sufficiently, the galileon becomes an important component of the energy density and contributes to dark energy. We estimate conservatively that the resulting expansion history is consistent with the observed late-time cosmology, provided that the scale of modification satisfies r c > or approx. 15 Gpc.
Higher dimensional loop quantum cosmology
International Nuclear Information System (INIS)
Zhang, Xiangdong
2016-01-01
Loop quantum cosmology (LQC) is the symmetric sector of loop quantum gravity. In this paper, we generalize the structure of loop quantum cosmology to the theories with arbitrary spacetime dimensions. The isotropic and homogeneous cosmological model in n + 1 dimensions is quantized by the loop quantization method. Interestingly, we find that the underlying quantum theories are divided into two qualitatively different sectors according to spacetime dimensions. The effective Hamiltonian and modified dynamical equations of n + 1 dimensional LQC are obtained. Moreover, our results indicate that the classical big bang singularity is resolved in arbitrary spacetime dimensions by a quantum bounce. We also briefly discuss the similarities and differences between the n + 1 dimensional model and the 3 + 1 dimensional one. Our model serves as a first example of higher dimensional loop quantum cosmology and offers the possibility to investigate quantum gravity effects in higher dimensional cosmology. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Troxel, M. A.; Ishak, Mustapha; Peel, Austin, E-mail: troxel@utdallas.edu, E-mail: mishak@utdallas.edu, E-mail: austin.peel@utdallas.edu [Department of Physics, The University of Texas at Dallas, Richardson, TX 75080 (United States)
2014-03-01
The study of relativistic, higher order, and nonlinear effects has become necessary in recent years in the pursuit of precision cosmology. We develop and apply here a framework to study gravitational lensing in exact models in general relativity that are not restricted to homogeneity and isotropy, and where full nonlinearity and relativistic effects are thus naturally included. We apply the framework to a specific, anisotropic galaxy cluster model which is based on a modified NFW halo density profile and described by the Szekeres metric. We examine the effects of increasing levels of anisotropy in the galaxy cluster on lensing observables like the convergence and shear for various lensing geometries, finding a strong nonlinear response in both the convergence and shear for rays passing through anisotropic regions of the cluster. Deviation from the expected values in a spherically symmetric structure are asymmetric with respect to path direction and thus will persist as a statistical effect when averaged over some ensemble of such clusters. The resulting relative difference in various geometries can be as large as approximately 2%, 8%, and 24% in the measure of convergence (1−κ) for levels of anisotropy of 5%, 10%, and 15%, respectively, as a fraction of total cluster mass. For the total magnitude of shear, the relative difference can grow near the center of the structure to be as large as 15%, 32%, and 44% for the same levels of anisotropy, averaged over the two extreme geometries. The convergence is impacted most strongly for rays which pass in directions along the axis of maximum dipole anisotropy in the structure, while the shear is most strongly impacted for rays which pass in directions orthogonal to this axis, as expected. The rich features found in the lensing signal due to anisotropic substructure are nearly entirely lost when one treats the cluster in the traditional FLRW lensing framework. These effects due to anisotropic structures are thus likely to
Formation of Calcite Biocrystals; Structure and Formation of Matrix Glycoproteins
National Research Council Canada - National Science Library
Lennarz, William
1997-01-01
.... In these organisms, including the primitive skeleton (spicule) of the sea urchin embryo, the structural and functional role of these proteins either in the biomineralization process or in control of the structural features of the biocrystals is unclear...
Energy Technology Data Exchange (ETDEWEB)
Romano, Antonio Enea [University of Crete, Department of Physics and CCTP, Heraklion (Greece); Kyoto University, Yukawa Institute for Theoretical Physics, Kyoto (Japan); Universidad de Antioquia, Instituto de Fisica, Medellin (Colombia); Vallejo, Sergio Andres [Kyoto University, Yukawa Institute for Theoretical Physics, Kyoto (Japan); Universidad de Antioquia, Instituto de Fisica, Medellin (Colombia)
2016-04-15
In order to estimate the effects of a local structure on the Hubble parameter we calculate the low-redshift expansion for H(z) and (δH)/(H) for an observer at the center of a spherically symmetric matter distribution in the presence of a cosmological constant. We then test the accuracy of the formulas comparing them with fully relativistic non-perturbative numerical calculations for different cases for the density profile. The low-redshift expansion we obtain gives results more precise than perturbation theory since it is based on the use of an exact solution of Einstein's field equations. For larger density contrasts the low-redshift formulas accuracy improves respect to the perturbation theory accuracy because the latter is based on the assumption of a small density contrast, while the former does not rely on such an assumption. The formulas can be used to take into account the effects on the Hubble expansion parameter due to the monopole component of the local structure. If the H(z) observations will show deviations from the ΛCDM prediction compatible with the formulas we have derived, this could be considered an independent evidence of the existence of a local inhomogeneity, and the formulas could be used to determine the characteristics of this local structure. (orig.)
International Nuclear Information System (INIS)
Effenberger, R.
1974-09-01
The author summarizes some of the many questions and answers which have been raised over the years regarding the nature of matter, the origin of its forms and the associated concept of cosmology including the formation of the universe, our place in it and its course of evolution. An examination of the development of the classical concept of matter and its subsequent transformations within the space-time fields of relativity and quantum theory is also presented
Sub-structure formation in starless cores
Toci, C.; Galli, D.; Verdini, A.; Del Zanna, L.; Landi, S.
2018-02-01
Motivated by recent observational searches of sub-structure in starless molecular cloud cores, we investigate the evolution of density perturbations on scales smaller than the Jeans length embedded in contracting isothermal clouds, adopting the same formalism developed for the expanding Universe and the solar wind. We find that initially small amplitude, Jeans-stable perturbations (propagating as sound waves in the absence of a magnetic field) are amplified adiabatically during the contraction, approximately conserving the wave action density, until they either become non-linear and steepen into shocks at a time tnl, or become gravitationally unstable when the Jeans length decreases below the scale of the perturbations at a time tgr. We evaluate analytically the time tnl at which the perturbations enter the non-linear stage using a Burgers' equation approach, and we verify numerically that this time marks the beginning of the phase of rapid dissipation of the kinetic energy of the perturbations. We then show that for typical values of the rms Mach number in molecular cloud cores, tnl is smaller than tgr, and therefore density perturbations likely dissipate before becoming gravitational unstable. Solenoidal modes grow at a faster rate than compressible modes, and may eventually promote fragmentation through the formation of vortical structures.
Solitons in relativistic cosmologies
International Nuclear Information System (INIS)
Pullin, J.
1988-08-01
The application to the construction of solitonic cosmologies in General Relativity of the Inverse Scattering Technique of Belinskii an Zakharov is analyzed. Three improvements to the mentioned technique are proposed: the inclusion of higher order poles in the scattering matrix, a new renormalization technique for diagonal metrics and the extension of the technique to include backgrounds with material content by means of a Kaluza-Klein formalism. As a consequence of these improvements, three new aspects can be analyzed: a) The construction of anisotropic and inhomogeneous cosmological models which can mimic the formation of halos and voids, due to the presence of a material content. The new renormalization technique allows to construct an exact perturbation theory. b) The analysis of the dynamics of models with cosmological constant (inflationary models) and their perturbations. c) The study of interaction of gravitational solitonic waves on material backgrounds. Moreover, some additional works, connected with the existance of 'Crack of doom' type singularities in Kaluza-Klein cosmologies, stochastic perturbations in inflationary universes and inflationary phase transitions in rotating universes are described. (Author) [es
Cosmology with exponential potentials
International Nuclear Information System (INIS)
Kehagias, Alex; Kofinas, Georgios
2004-01-01
We examine in the context of general relativity the dynamics of a spatially flat Robertson-Walker universe filled with a classical minimally coupled scalar field φ of exponential potential V(φ) ∼ exp(-μφ) plus pressureless baryonic matter. This system is reduced to a first-order ordinary differential equation for Ω φ (w φ ) or q(w φ ), providing direct evidence on the acceleration/deceleration properties of the system. As a consequence, for positive potentials, passage into acceleration not at late times is generically a feature of the system for any value of μ, even when the late-times attractors are decelerating. Furthermore, the structure formation bound, together with the constraints Ω m0 ∼ 0.25 - 0.3, -1 ≤ w φ0 ≤ -0.6, provides, independently of initial conditions and other parameters, the necessary condition 0 N , while the less conservative constraint -1 ≤ w φ ≤ -0.93 gives 0 N . Special solutions are found to possess intervals of acceleration. For the almost cosmological constant case w φ ∼ -1, the general relation Ω φ (w φ ) is obtained. The generic (nonlinearized) late-times solution of the system in the plane (w φ , Ω φ ) or (w φ , q) is also derived
Cosmological quantum entanglement
International Nuclear Information System (INIS)
Martín-Martínez, Eduardo; Menicucci, Nicolas C
2012-01-01
We review recent literature on the connection between quantum entanglement and cosmology, with an emphasis on the context of expanding universes. We discuss recent theoretical results reporting on the production of entanglement in quantum fields due to the expansion of the underlying spacetime. We explore how these results are affected by the statistics of the field (bosonic or fermionic), the type of expansion (de Sitter or asymptotically stationary), and the coupling to spacetime curvature (conformal or minimal). We then consider the extraction of entanglement from a quantum field by coupling to local detectors and how this procedure can be used to distinguish curvature from heating by their entanglement signature. We review the role played by quantum fluctuations in the early universe in nucleating the formation of galaxies and other cosmic structures through their conversion into classical density anisotropies during and after inflation. We report on current literature attempting to account for this transition in a rigorous way and discuss the importance of entanglement and decoherence in this process. We conclude with some prospects for further theoretical and experimental research in this area. These include extensions of current theoretical efforts, possible future observational pursuits, and experimental analogues that emulate these cosmic effects in a laboratory setting. (paper)
Ultra-cold WIMPs relics of non-standard pre-BBN cosmologies
Gelmini, Graciela B
2008-01-01
We point out that in scenarios in which the Universe evolves in a non-standard manner during and after the kinetic decoupling of weakly interacting massive particles (WIMPs), these relics can be much colder than in standard cosmological scenarios (i.e. can be ultra-cold), possibly leading to the formation of smaller first objects in hierarchical structure formation scenarios.
Modelling non-dust fluids in cosmology
International Nuclear Information System (INIS)
Christopherson, Adam J.; Hidalgo, Juan Carlos; Malik, Karim A.
2013-01-01
Currently, most of the numerical simulations of structure formation use Newtonian gravity. When modelling pressureless dark matter, or 'dust', this approach gives the correct results for scales much smaller than the cosmological horizon, but for scenarios in which the fluid has pressure this is no longer the case. In this article, we present the correspondence of perturbations in Newtonian and cosmological perturbation theory, showing exact mathematical equivalence for pressureless matter, and giving the relativistic corrections for matter with pressure. As an example, we study the case of scalar field dark matter which features non-zero pressure perturbations. We discuss some problems which may arise when evolving the perturbations in this model with Newtonian numerical simulations and with CMB Boltzmann codes
Consensus formation on coevolving networks: groups' formation and structure
International Nuclear Information System (INIS)
Kozma, Balazs; Barrat, Alain
2008-01-01
We study the effect of adaptivity on a social model of opinion dynamics and consensus formation. We analyse how the adaptivity of the network of contacts between agents to the underlying social dynamics affects the size and topological properties of groups and the convergence time to the stable final state. We find that, while on static networks these properties are determined by percolation phenomena, on adaptive networks the rewiring process leads to different behaviors: adaptive rewiring fosters group formation by enhancing communication between agents of similar opinion, though it also makes possible the division of clusters. We show how the convergence time is determined by the characteristic time of link rearrangement. We finally investigate how the adaptivity yields nontrivial correlations between the internal topology and the size of the groups of agreeing agents
Structure formation and microlensing with axion miniclusters
Fairbairn, Malcolm; Marsh, David J. E.; Quevillon, Jérémie; Rozier, Simon
2018-04-01
If the symmetry breaking responsible for axion dark matter production occurs during the radiation-dominated epoch in the early Universe, then this produces large amplitude perturbations that collapse into dense objects known as axion miniclusters. The characteristic minicluster mass, M0, is set by the mass inside the horizon when axion oscillations begin. For the QCD axion M0˜10-10 M⊙, however, for an axionlike particle, M0 can approach M⊙ or higher. Using the Press-Schechter formalism we compute the mass function of halos formed by hierarchical structure formation from these seeds. We compute the concentrations and collapse times of these halos and show that they can grow to be as massive as 1 06M0. Within the halos, miniclusters likely remain tightly bound, and we compute their gravitational microlensing signal taking the fraction of axion dark matter collapsed into miniclusters, fMC, as a free parameter. A large value of fMC severely weakens constraints on axion scenarios from direct detection experiments. We take into account the non-Gaussian distribution of sizes of miniclusters and determine how this affects the number of microlensing events. We develop the tools to consider microlensing by an extended mass function of nonpointlike objects, and we use microlensing data to place the first observational constraints on fMC. This opens a new window for the potential discovery of the axion.
Grant, E.; Murdin, P.
2000-11-01
During the early Middle Ages (ca 500 to ca 1130) scholars with an interest in cosmology had little useful and dependable literature. They relied heavily on a partial Latin translation of PLATO's Timaeus by Chalcidius (4th century AD), and on a series of encyclopedic treatises associated with the names of Pliny the Elder (ca AD 23-79), Seneca (4 BC-AD 65), Macrobius (fl 5th century AD), Martianus ...
International Nuclear Information System (INIS)
Partridge, R.B.
1977-01-01
Some sixty years after the development of relativistic cosmology by Einstein and his colleagues, observations are finally beginning to have an important impact on our views of the Universe. The available evidence seems to support one of the simplest cosmological models, the hot Big Bang model. The aim of this paper is to assess the observational support for certain assumptions underlying the hot Big Bang model. These are that the Universe is isobaric and homogeneous on a large scale; that it is expanding from an initial state of high density and temperature; and that the proper theory to describe the dynamics of the Universe is unmodified General Relativity. The properties of the cosmic microwave background radiation and recent observations of the abundance of light elements, in particular, support these assumptions. Also examined here are the data bearing on the related questions of the geometry and the future of the Universe (is it ever-expanding, or fated to recollapse). Finally, some difficulties and faults of the standard model are discussed, particularly various aspects of the 'initial condition' problem. It appears that the simplest Big Bang cosmological model calls for a highly specific set of initial conditions to produce the presently observed properties of the Universe. (Auth.)
the Universe About Cosmology Planck Satellite Launched Cosmology Videos Professor George Smoot's group conducts research on the early universe (cosmology) using the Cosmic Microwave Background radiation (CMB science goals regarding cosmology. George Smoot named Director of Korean Cosmology Institute The GRB
International Nuclear Information System (INIS)
Ellis, Richard S.
2008-01-01
This program is concerned with developing and verifying the validity of observational methods for constraining the properties of dark matter and dark energy in the universe. Excellent progress has been made in comparing observational projects involving weak gravitational lensing using both ground and space-based instruments, in further constraining the nature of dark matter via precise measures of its distribution in clusters of galaxies using strong gravitational lensing, in demonstrating the possible limitations of using distant supernovae in future dark energy missions, and in investigating the requirement for ground-based surveys of baryonic acoustic oscillations.
Formation of disorientations in dislocation structures during plastic deformation
DEFF Research Database (Denmark)
Pantleon, W.
2002-01-01
Disorientations developing during plastic deformation in dislocation structures are investigated. Based on expected mechanisms for the formation of different types of dislocation boundaries (statistical trapping of dislocations or differently activated slip systems) the formation of the disorient...
International Nuclear Information System (INIS)
Heller, M.
1986-01-01
It is proposed to understand cosmology as a non-local physics. Non-local methods, when developed from locally performed observations, imply a considerable extrapolation, which in turn is possible without some unverifiable assumptions. Cosmology is, therefore, not only a science on the Universe but also about assumptions that render such a science possible. As far as theoretical aspects of cosmology are concerned, cosmology can be treated as a theory of the space of all solutions to Einstein's field equations (called the ensemble of universes). The very distinction is touched upon between solutions of differential equations, expressing laws of nature, and boundary conditions identifying particular instances of the law's operation. Both observational and theoretical studies demonstrate that our Universe occupies a distinguished position within the ensemble of universes. This fact remains in a close relationship with the existence and developing of structures in the Universe. Possible philosophies aimed at justifying or neutralizing our distinguished situation in the ensemble of universes are discussed at some length. 60 refs. (author)
Energy Technology Data Exchange (ETDEWEB)
Turner, Michael S
1999-03-01
For two decades the hot big-bang model as been referred to as the standard cosmology - and for good reason. For just as long cosmologists have known that there are fundamental questions that are not answered by the standard cosmology and point to a grander theory. The best candidate for that grander theory is inflation + cold dark matter. It holds that the Universe is flat, that slowly moving elementary particles left over from the earliest moments provide the cosmic infrastructure, and that the primeval density inhomogeneities that seed all the structure arose from quantum fluctuations. There is now prima facie evidence that supports two basic tenets of this paradigm. An avalanche of high-quality cosmological observations will soon make this case stronger or will break it. Key questions remain to be answered; foremost among them are: identification and detection of the cold dark matter particles and elucidation of the dark-energy component. These are exciting times in cosmology{exclamation_point}.
2002 astroparticle physics and cosmology
International Nuclear Information System (INIS)
Dvali, G.; Perez-Lorenzana, A.; Senjanovic, G.; Thompson, G.; Vissani, F.
2003-01-01
The 2002 Summer School on Astroparticle Physics and Cosmology was held at ICTP, in the three weeks from June 17 to July 5. As in previous Schools in this series, the main topics were covered by sets of 3-5 lectures (regular courses); some special topics were presented in dedicated sessions (special lectures); and emphasis was given to the discussion sessions. The main aim of the School was to give an updated survey of astroparticle physics and cosmology, with an emphasis on theoretical aspects. W. Hu introduced and discussed the theory of structure formation, and the most important features of the cosmic microwave background radiation. A closely connected topic, inflation, was reviewed in detail in the lectures of A. Riotto. The connection between dark matter and particle physics was outlined by R. Bernabei. The search for other dark matter candidates, such as monopoles and axions, was discussed by G. Giacomelli and E. Masso. Dark energy and the cosmological constant - the most puzzling aspect of particle and astroparticle physics, according to many - were the topics of the lectures of G. Dvali, who offered many stimulating proposals and speculations. G. Gabadadze reviewed the physics of large extra dimensions, and suggested a number of applications of these ideas in cosmology. Field theory at finite temperature has been presented by M. Laine. S. Sarkar and P. Tinyakov addressed the cosmic rays of ultra-high energies and discussed the puzzles they pose to astrophysics and particle physics. The lectures of W. Buchmueller provided an overview of current ideas about baryogenesis, and in particular the mechanism of leptogenesis - which draws a connection with neutrino masses. A.Yu. Smirnov discussed the status of the solar neutrino problem. An introduction to neutrino astronomy was given by F. Vissani. Finally, L. Rezzolla gave a detailed discussion of the status and perspectives for gravitational wave detection (of great interest for interferometers like VIRGO and
2002 astroparticle physics and cosmology
Energy Technology Data Exchange (ETDEWEB)
Dvali, G [New York Univ. (United States); Perez-Lorenzana, A [Instituto Politecnico Nacional (Mexico); Senjanovic, G; Thompson, G [Abdus Salam International Centre for Theoretical Physics, Trieste (Italy); Vissani, F [Istituto Nazionale di Fisica Nucleare (Italy)
2003-08-15
The 2002 Summer School on Astroparticle Physics and Cosmology was held at ICTP, in the three weeks from June 17 to July 5. As in previous Schools in this series, the main topics were covered by sets of 3-5 lectures (regular courses); some special topics were presented in dedicated sessions (special lectures); and emphasis was given to the discussion sessions. The main aim of the School was to give an updated survey of astroparticle physics and cosmology, with an emphasis on theoretical aspects. W. Hu introduced and discussed the theory of structure formation, and the most important features of the cosmic microwave background radiation. A closely connected topic, inflation, was reviewed in detail in the lectures of A. Riotto. The connection between dark matter and particle physics was outlined by R. Bernabei. The search for other dark matter candidates, such as monopoles and axions, was discussed by G. Giacomelli and E. Masso. Dark energy and the cosmological constant - the most puzzling aspect of particle and astroparticle physics, according to many - were the topics of the lectures of G. Dvali, who offered many stimulating proposals and speculations. G. Gabadadze reviewed the physics of large extra dimensions, and suggested a number of applications of these ideas in cosmology. Field theory at finite temperature has been presented by M. Laine. S. Sarkar and P. Tinyakov addressed the cosmic rays of ultra-high energies and discussed the puzzles they pose to astrophysics and particle physics. The lectures of W. Buchmueller provided an overview of current ideas about baryogenesis, and in particular the mechanism of leptogenesis - which draws a connection with neutrino masses. A.Yu. Smirnov discussed the status of the solar neutrino problem. An introduction to neutrino astronomy was given by F. Vissani. Finally, L. Rezzolla gave a detailed discussion of the status and perspectives for gravitational wave detection (of great interest for interferometers like VIRGO and
Brandenberger, Robert H.
2008-01-01
String gas cosmology is a string theory-based approach to early universe cosmology which is based on making use of robust features of string theory such as the existence of new states and new symmetries. A first goal of string gas cosmology is to understand how string theory can effect the earliest moments of cosmology before the effective field theory approach which underlies standard and inflationary cosmology becomes valid. String gas cosmology may also provide an alternative to the curren...
Cosmological constraints on variations of the fine structure constant at the epoch of recombination
International Nuclear Information System (INIS)
Menegoni, E; Galli, S; Archidiacono, M; Calabrese, E; Melchiorri, A
2013-01-01
In this brief work we investigate any possible variation of the fine structure constant at the epoch of recombination. The recent measurements of the Cosmic Microwave Background anisotropies at arcminute angular scales performed by the ACT and SPT experiments are probing the damping regime of Cosmic Microwave Background fluctuations. We study the role of a mechanism that could affect the shape of the Cosmic Microwave Background angular fluctuations at those scales, namely a change in the recombination process through variations in the fine structure constant α
Gómez-Valent, Adrià; Peracaula, Joan Solà
2018-04-01
Recent studies suggest that dynamical dark energy (DDE) provides a better fit to the rising affluence of modern cosmological observations than the concordance model (ΛCDM) with a rigid cosmological constant, Λ. Such is the case with the running vacuum models (RVMs) and to some extent also with a simple XCDM parametrization. Apart from the cosmic microwave background (CMB) anisotropies, the most crucial datasets potentially carrying the DDE signature are: i) baryonic acoustic oscillations (BAO), and ii) direct large scale structure (LSS) formation data (i.e. the observations on f(z)σ8(z) at different redshifts). As it turns out, analyses mainly focusing on CMB and with insufficient BAO+LSS input, or those just making use of gravitational weak-lensing data for the description of structure formation, generally fail to capture the DDE signature, whereas the few existing studies using a rich set of CMB+BAO+LSS data (see in particular Solà, Gómez-Valent & de Cruz Pérez 2015, 2017; and Zhao et al. 2017) do converge to the remarkable conclusion that DDE might well be encoded in the current cosmological observations. Being the issue so pressing, here we explain both analytically and numerically the origin of the possible hints of DDE in the context of RVMs, which arise at a significance level of 3 - 4σ. By performing a detailed study on the matter and vacuum perturbations within the RVMs, and comparing with the XCDM, we show why the running vacuum fully relaxes the existing σ8-tension and accounts for the LSS formation data much better than the concordance model.
Magnetohydrodynamic cosmologies
International Nuclear Information System (INIS)
Portugal, R.; Soares, I.D.
1991-01-01
We analyse a class of cosmological models in magnetohydrodynamic regime extending and completing the results of a previous paper. The material content of the models is a perfect fluid plus electromagnetic fields. The fluid is neutral in average but admits an electrical current which satisfies Ohm's law. All models fulfil the physical requirements of near equilibrium thermodynamics and can be favourably used as a more realistic description of the interior of a collapsing star in a magnetohydrodynamic regime with or without a magnetic field. (author)
Page, Don N.
2006-01-01
A complete model of the universe needs at least three parts: (1) a complete set of physical variables and dynamical laws for them, (2) the correct solution of the dynamical laws, and (3) the connection with conscious experience. In quantum cosmology, item (2) is the quantum state of the cosmos. Hartle and Hawking have made the `no-boundary' proposal, that the wavefunction of the universe is given by a path integral over all compact Euclidean 4-dimensional geometries and matter fields that hav...
Religion, theology and cosmology
Directory of Open Access Journals (Sweden)
John T. Fitzgerald
2013-10-01
Full Text Available Cosmology is one of the predominant research areas of the contemporary world. Advances in modern cosmology have prompted renewed interest in the intersections between religion, theology and cosmology. This article, which is intended as a brief introduction to the series of studies on theological cosmology in this journal, identifies three general areas of theological interest stemming from the modern scientific study of cosmology: contemporary theology and ethics; cosmology and world religions; and ancient cosmologies. These intersections raise important questions about the relationship of religion and cosmology, which has recently been addressed by William Scott Green and is the focus of the final portion of the article.
Do current cosmological observations rule out all covariant Galileons?
Peirone, Simone; Frusciante, Noemi; Hu, Bin; Raveri, Marco; Silvestri, Alessandra
2018-03-01
We revisit the cosmology of covariant Galileon gravity in view of the most recent cosmological data sets, including weak lensing. As a higher derivative theory, covariant Galileon models do not have a Λ CDM limit and predict a very different structure formation pattern compared with the standard Λ CDM scenario. Previous cosmological analyses suggest that this model is marginally disfavored, yet cannot be completely ruled out. In this work we use a more recent and extended combination of data, and we allow for more freedom in the cosmology, by including a massive neutrino sector with three different mass hierarchies. We use the Planck measurements of cosmic microwave background temperature and polarization; baryonic acoustic oscillations measurements by BOSS DR12; local measurements of H0; the joint light-curve analysis supernovae sample; and, for the first time, weak gravitational lensing from the KiDS Collaboration. We find, that in order to provide a reasonable fit, a nonzero neutrino mass is indeed necessary, but we do not report any sizable difference among the three neutrino hierarchies. Finally, the comparison of the Bayesian evidence to the Λ CDM one shows that in all the cases considered, covariant Galileon models are statistically ruled out by cosmological data.
Formation control of unicycle robots using virtual structure approach
Sadowska, A.D.; Huijberts, H.J.C.; Kostic, D.; Wouw, van de N.; Nijmeijer, H.
2011-01-01
This paper addresses the problem of formation control of groups of unicycle robots with possibly time-varying formation shapes. To solve the problem, we propose two simple distributed formation control algorithms based on the virtual structure approach. We prove exponential convergence of error
International Nuclear Information System (INIS)
Chimento, L P; Forte, M; Devecchi, F P; Kremer, G M; Ribas, M O; Samojeden, L L
2011-01-01
In this work we review if fermionic sources could be responsible for accelerated periods during the evolution of a FRW universe. In a first attempt, besides the fermionic source, a matter constituent would answer for the decelerated periods. The coupled differential equations that emerge from the field equations are integrated numerically. The self-interaction potential of the fermionic field is considered as a function of the scalar and pseudo-scalar invariants. It is shown that the fermionic field could behave like an inflaton field in the early universe, giving place to a transition to a matter dominated (decelerated) period. In a second formulation we turn our attention to analytical results, specifically using the idea of form-invariance transformations. These transformations can be used for obtaining accelerated cosmologies starting with conventional cosmological models. Here we reconsider the scalar field case and extend the discussion to fermionic fields. Finally we investigate the role of a Dirac field in a Brans-Dicke (BD) context. The results show that this source, in combination with the BD scalar, promote a final eternal accelerated era, after a matter dominated period.
Physical and Relativistic Numerical Cosmology.
Anninos, Peter
1998-01-01
In order to account for the observable Universe, any comprehensive theory or model of cosmology must draw from many disciplines of physics, including gauge theories of strong and weak interactions, the hydrodynamics and microphysics of baryonic matter, electromagnetic fields, and spacetime curvature, for example. Although it is difficult to incorporate all these physical elements into a single complete model of our Universe, advances in computing methods and technologies have contributed significantly towards our understanding of cosmological models, the Universe, and astrophysical processes within them. A sample of numerical calculations addressing specific issues in cosmology are reviewed in this article: from the Big Bang singularity dynamics to the fundamental interactions of gravitational waves; from the quark-hadron phase transition to the large scale structure of the Universe. The emphasis, although not exclusively, is on those calculations designed to test different models of cosmology against the observed Universe.
Physical and Relativistic Numerical Cosmology
Directory of Open Access Journals (Sweden)
Peter Anninos
1998-01-01
Full Text Available In order to account for the observable Universe, any comprehensive theory or model of cosmology must draw from many disciplines of physics, including gauge theories of strong and weak interactions, the hydrodynamics and microphysics of baryonic matter, electromagnetic fields, and spacetime curvature, for example. Although it is difficult to incorporate all these physical elements into a single complete model of our Universe, advances in computing methods and technologies have contributed significantly towards our understanding of cosmological models, the Universe, and astrophysical processes within them. A sample of numerical calculations addressing specific issues in cosmology are reviewed in this article: from the Big Bang singularity dynamics to the fundamental interactions of gravitational waves; from the quark--hadron phase transition to the large scale structure of the Universe. The emphasis, although not exclusively, is on those calculations designed to test different models of cosmology against the observed Universe.
High energy physics and cosmology
International Nuclear Information System (INIS)
Silk, J.I.; Davis, M.
1989-01-01
This research will focus on the implications of recent theories and experiments in high energy physics for the evolution of the early Universe, and on the constraints that cosmological considerations can place on such theories. Several problems are under investigation, including the development of constraints on the inflationary predictions of scale--free primordial fluctuations in a universe at critical closure density by studying their linear and non-linear evolution after they re-enter the particle horizon. We will examine the observable imprint of primordial density fluctuations on the cosmic microwave background radiation curved cosmological models. Most astronomical evidence points to an open universe: one of our goals is to reconcile this conclusion with the particle physics input. We will investigate the response of the matter distribution to a network of cosmic strings produced during an early symmetry-breaking transition, and compute the resulting cosmic microwave background anisotropies. We will simulate the formation of large-scale structures whose dynamics are dominated by weakly interacting particles such as axions, massive neutrinos or photinos in order to model the formation of galaxies, galaxy clusters and superclusters. We will study of the distortions in the microwave background radiation, both spectral and angular, that are produced by ionized gas associated with forming clusters and groups of galaxies. We will also study constraints on exotic cooling mechanisms involving axions and majorons set by stellar evolution and the energy input into low mass stars by cold dark matter annihilation galactic nuclei. We will compute the detailed gamma ray spectrum predicted by various cold dark matter candidates undergoing annihilation in the galactic halo and bulge
[High energy physics and cosmology
International Nuclear Information System (INIS)
Silk, J.I.; Davis, M.
1988-01-01
This research will focus on the implications of recent theories and experiments in high energy physics for the evolution of the early Universe, and on the constraints that cosmological considerations can place on such theories. Several problems are under investigation, including the development of constraints on the inflationary predictions of scale-free primordial fluctuations in a universe at critical closure density by studying their linear and non-linear evolution after they re-enter the particle horizon. We will examine the observable imprint of primordial density fluctuations on the cosmic microwave background radiation in curved cosmological models. Most astronomical evidence points to an open universe: one of our goals is to reconcile this conclusion with the particle physics input. We will investigate the response of the matter distribution to a network of cosmic strings produced during an early symmetry--breaking transition, and compute the resulting cosmic microwave background anisotropies. We will simulate the formation of large--scale structures whose dynamics are dominated by weakly interacting particles such as axions massive neutrinos or photinos in order to model the formation of galaxies, galaxy clusters and superclusters. We will study the distortions in the microwave background radiation, both spectral and angular, that are produced by ionized gas associated with forming clusters and groups of galaxies. We will also study constraints on exotic cooling mechanisms involving axions and majorons set by stellar evolution and the energy input into low mass stars by cold dark matter annihilation in galactic nuclei. We will compute the detailed gamma ray spectrum predicted by various cold dark matter candidates undergoing annihilation in the galactic halo and bulge
Cosmological phase transitions
International Nuclear Information System (INIS)
Kolb, E.W.
1987-01-01
If the universe stated from conditions of high temperature and density, there should have been a series of phase transitions associated with spontaneous symmetry breaking. The cosmological phase transitions could have observable consequences in the present Universe. Some of the consequences including the formation of topological defects and cosmological inflation are reviewed here. One of the most important tools in building particle physics models is the use of spontaneous symmetry breaking (SSB). The proposal that there are underlying symmetries of nature that are not manifest in the vacuum is a crucial link in the unification of forces. Of particular interest for cosmology is the expectation that are the high temperatures of the big bang symmetries broken today will be restored, and that there are phase transitions to the broken state. The possibility that topological defects will be produced in the transition is the subject of this section. The possibility that the Universe will undergo inflation in a phase transition will be the subject of the next section. Before discussing the creation of topological defects in the phase transition, some general aspects of high-temperature restoration of symmetry and the development of the phase transition will be reviewed. 29 references, 1 figure, 1 table
International Nuclear Information System (INIS)
Fliche, H.-H.; Souriau, J.-M.
1978-03-01
On the basis of colorimetric data a composite spectrum of quasars is established from the visible to the Lyman's limit. Its agreement with the spectrum of the quasar 3C273, obtained directly, confirms the homogeneity of these objects. The compatibility of the following hypotheses: negligible evolution of quasars, Friedmann type model of the universe with cosmological constant, is studied by means of two tests: a non-correlation test adopted to the observation conditions and the construction of diagrams (absolute magnitude, volume) using the K-correction deduced from the composite spectrum. This procedure happens to give relatively well-defined values of the parameters; the central values of the density parameter, the reduced curvature and the reduced cosmological constant are: Ω 0 =0.053, k 0 =0.245, lambda-zero=1.19, which correspond to a big bang model, eternally expanding, spatially finite, in which Hubble's parameter H is presently increasing. This model responds well to different cosmological tests: density of matter, diameter of radio sources, age of the universe. Its characteristics suggest various cosmogonic mechanisms, espacially mass formation by growth of empty spherical bubbles [fr
Cosmological large-scale structures beyond linear theory in modified gravity
Energy Technology Data Exchange (ETDEWEB)
Bernardeau, Francis; Brax, Philippe, E-mail: francis.bernardeau@cea.fr, E-mail: philippe.brax@cea.fr [CEA, Institut de Physique Théorique, 91191 Gif-sur-Yvette Cédex (France)
2011-06-01
We consider the effect of modified gravity on the growth of large-scale structures at second order in perturbation theory. We show that modified gravity models changing the linear growth rate of fluctuations are also bound to change, although mildly, the mode coupling amplitude in the density and reduced velocity fields. We present explicit formulae which describe this effect. We then focus on models of modified gravity involving a scalar field coupled to matter, in particular chameleons and dilatons, where it is shown that there exists a transition scale around which the existence of an extra scalar degree of freedom induces significant changes in the coupling properties of the cosmic fields. We obtain the amplitude of this effect for realistic dilaton models at the tree-order level for the bispectrum, finding them to be comparable in amplitude to those obtained in the DGP and f(R) models.
Gas Price Formation, Structure and Dynamics
Energy Technology Data Exchange (ETDEWEB)
Davoust, R.
2008-07-01
Our study, focused on gas prices in importing economies, describes wholesale prices and retail prices, their evolution for the last one or two decades, the economic mechanisms of price formation. While an international market for oil has developed thanks to moderate storage and transportation charges, these costs are much higher in the case of natural gas, which involves that this energy is still traded inside continental markets. There are three regional gas markets around the world: North America (the United States, importing mainly from Canada and Mexico), Europe (importing mainly from Russia, Algeria and Norway) and Asia (Japan, Korea, Taiwan, China and India, importing mainly from Indonesia, Malaysia and Australia). A market for gas has also developed in South America, but it will not be covered by our paper. In Europe and the US, due to large domestic resources and strong grids, natural gas is purchased mostly through pipelines. In Northeast Asia, there is a lack of such infrastructures, so imported gas takes mainly the form of Liquefied Natural Gas (LNG), shipped on maritime tankers. Currently, the LNG market is divided into two zones: the Atlantic Basin (Europe and US) and the Pacific Basin (Asia and the Western Coast of America). For the past few years, the Middle East and Africa have tended to be crucial suppliers for both LNG zones. Gas price formation varies deeply between regional markets, depending on several structural factors (regulation, contracting practises, existence of a spot market, liquidity, share of imports). Empirically, the degree of market opening (which corresponds to the seniority in the liberalization process) seems to be the primary determinant of pricing patterns. North America has the most liberalized and well-performing natural gas industry in the world. Gas pricing is highly competitive and is based on supply/demand balances. Spot and futures markets are developed. The British gas sector is also deregulated and thus follows a
Gas Price Formation, Structure and Dynamics
International Nuclear Information System (INIS)
Davoust, R.
2008-01-01
Our study, focused on gas prices in importing economies, describes wholesale prices and retail prices, their evolution for the last one or two decades, the economic mechanisms of price formation. While an international market for oil has developed thanks to moderate storage and transportation charges, these costs are much higher in the case of natural gas, which involves that this energy is still traded inside continental markets. There are three regional gas markets around the world: North America (the United States, importing mainly from Canada and Mexico), Europe (importing mainly from Russia, Algeria and Norway) and Asia (Japan, Korea, Taiwan, China and India, importing mainly from Indonesia, Malaysia and Australia). A market for gas has also developed in South America, but it will not be covered by our paper. In Europe and the US, due to large domestic resources and strong grids, natural gas is purchased mostly through pipelines. In Northeast Asia, there is a lack of such infrastructures, so imported gas takes mainly the form of Liquefied Natural Gas (LNG), shipped on maritime tankers. Currently, the LNG market is divided into two zones: the Atlantic Basin (Europe and US) and the Pacific Basin (Asia and the Western Coast of America). For the past few years, the Middle East and Africa have tended to be crucial suppliers for both LNG zones. Gas price formation varies deeply between regional markets, depending on several structural factors (regulation, contracting practises, existence of a spot market, liquidity, share of imports). Empirically, the degree of market opening (which corresponds to the seniority in the liberalization process) seems to be the primary determinant of pricing patterns. North America has the most liberalized and well-performing natural gas industry in the world. Gas pricing is highly competitive and is based on supply/demand balances. Spot and futures markets are developed. The British gas sector is also deregulated and thus follows a
Towards a superstring cosmology
International Nuclear Information System (INIS)
Taylor, J.G.
1987-01-01
If superstring theory is a theory of everything then it must give a satisfactory description of the very early evolution of the universe. Since the very early universe is not directly observable, then by satisfactory it is mean that the later evolution following the earlier (pre-Planck time era) phase leads to agreement with prediction for the various observable phenomena such as (B-bar B), inflation, galaxy structure, the cosmological constant (infimum), etc. Moreover it is to be hoped that the initial singularity of classical general relativistic cosmology is also avoided. It is clear that superstring theory is not yet able to tackle these problems. This paper describes what has been done so far to construct very simplified versions of string theory relevant to the early universe, and discusses the critical questions still to be answered
Scalar-tensor cosmology with cosmological constant
International Nuclear Information System (INIS)
Maslanka, K.
1983-01-01
The equations of scalar-tensor theory of gravitation with cosmological constant in the case of homogeneous and isotropic cosmological model can be reduced to dynamical system of three differential equations with unknown functions H=R/R, THETA=phi/phi, S=e/phi. When new variables are introduced the system becomes more symmetrical and cosmological solutions R(t), phi(t), e(t) are found. It is shown that when cosmological constant is introduced large class of solutions which depend also on Dicke-Brans parameter can be obtained. Investigations of these solutions give general limits for cosmological constant and mean density of matter in plane model. (author)
Cosmological simulations using a static scalar-tensor theory
Energy Technology Data Exchange (ETDEWEB)
RodrIguez-Meza, M A [Depto. de Fisica, Instituto Nacional de Investigaciones Nucleares, Col. Escandon, Apdo. Postal 18-1027, 11801 Mexico D.F (Mexico); Gonzalez-Morales, A X [Departamento Ingenierias, Universidad Iberoamericana, Prol. Paseo de la Reforma 880 Lomas de Santa Fe, Mexico D.F. Mexico (Mexico); Gabbasov, R F [Depto. de Fisica, Instituto Nacional de Investigaciones Nucleares, Col. Escandon, Apdo. Postal 18-1027, 11801 Mexico D.F (Mexico); Cervantes-Cota, Jorge L [Depto. de Fisica, Instituto Nacional de Investigaciones Nucleares, Col. Escandon, Apdo. Postal 18-1027, 11801 Mexico D.F (Mexico)
2007-11-15
We present {lambda}CDM N-body cosmological simulations in the framework of of a static general scalar-tensor theory of gravity. Due to the influence of the non-minimally coupled scalar field, the gravitational potential is modified by a Yukawa type term, yielding a new structure formation dynamics. We present some preliminary results and, in particular, we compute the density and velocity profiles of the most massive group.
Cosmological implication of massive neutrinos in a horizontal model context
International Nuclear Information System (INIS)
Goldman, C.
1985-04-01
An extended version of the Glashow-Weinberg-Salam model for the eletroweak interactions is studied in detail. It has an extra global horizontal symmetry, which allows the appearance of neutrino mass terms. The constraints imposed by the standard cosmological model were used to determine the allowed range of variations of the free parameters of this model. As applications, the solar neutrinos problem and the formation of large scale structures in the universe is studied. (Author) [pt
International Nuclear Information System (INIS)
Hawking, S.W.
1984-01-01
The subject of these lectures is quantum effects in cosmology. The author deals first with situations in which the gravitational field can be treated as a classical, unquantized background on which the quantum matter fields propagate. This is the case with inflation at the GUT era. Nevertheless the curvature of spacetime can have important effects on the behaviour of the quantum fields and on the development of long-range correlations. He then turns to the question of the quantization of the gravitational field itself. The plan of these lectures is as follows: Euclidean approach to quantum field theory in flat space; the extension of techniques to quantum fields on a curved background with the four-sphere, the Euclidean version of De Sitter space as a particular example; the GUT era; quantization of the gravitational field by Euclidean path integrals; mini superspace model. (Auth.)
Forero-Romero, J. E.
2017-07-01
This talk summarizes different algorithms that can be used to trace the cosmic web both in simulations and observations. We present different applications in galaxy formation and cosmology. To finalize, we show how the Dark Energy Spectroscopic Instrument (DESI) could be a good place to apply these techniques.
Lamastra, A.; Menci, N.; Fiore, F.; Antonelli, L. A.; Colafrancesco, S.; Guetta, D.; Stamerra, A.
2017-10-01
We derive the contribution to the extragalactic gamma-ray background (EGB) from active galactic nuclei (AGN) winds and star-forming galaxies by including a physical model for the γ-ray emission produced by relativistic protons accelerated by AGN-driven and supernova-driven shocks into a state-of-the-art semi-analytic model of galaxy formation. This is based on galaxy interactions as triggers of AGN accretion and starburst activity and on expanding blast waves as the mechanism to communicate outwards the energy injected into the interstellar medium by the active nucleus. We compare the model predictions with the latest measurement of the EGB spectrum performed by the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope (Fermi) in the range between 100 MeV and 820 GeV. We find that AGN winds can provide 35 ± 15% of the observed EGB in the energy interval Eγ = 0.1-1 GeV, for 73 ± 15% at Eγ = 1-10 GeV, and for 60 ± 20% at Eγ ≳10 GeV. The AGN wind contribution to the EGB is predicted to be larger by a factor of 3-5 than that provided by star-forming galaxies (quiescent plus starburst) in the hierarchical clustering scenario. The cumulative γ-ray emission from AGN winds and blazars can account for the amplitude and spectral shape of the EGB, assuming the standard acceleration theory, and AGN wind parameters that agree with observations. We also compare the model prediction for the cumulative neutrino background from AGN winds with the most recent IceCube data. We find that for AGN winds with accelerated proton spectral index p = 2.2-2.3, and taking into account internal absorption of γ-rays, the Fermi-LAT and IceCube data could be reproduced simultaneously.
On the importance of cotranscriptional RNA structure formation
Lai, Daniel; Proctor, Jeff R.; Meyer, Irmtraud M.
2013-01-01
The expression of genes, both coding and noncoding, can be significantly influenced by RNA structural features of their corresponding transcripts. There is by now mounting experimental and some theoretical evidence that structure formation in vivo starts during transcription and that this cotranscriptional folding determines the functional RNA structural features that are being formed. Several decades of research in bioinformatics have resulted in a wide range of computational methods for predicting RNA secondary structures. Almost all state-of-the-art methods in terms of prediction accuracy, however, completely ignore the process of structure formation and focus exclusively on the final RNA structure. This review hopes to bridge this gap. We summarize the existing evidence for cotranscriptional folding and then review the different, currently used strategies for RNA secondary-structure prediction. Finally, we propose a range of ideas on how state-of-the-art methods could be potentially improved by explicitly capturing the process of cotranscriptional structure formation. PMID:24131802
Extreme emulsification: formation and structure of nanoemulsions
Directory of Open Access Journals (Sweden)
T.G.Mason
2006-01-01
Full Text Available Nanoemulsions are metastable dispersions of nanodroplets of one liquid that have been ruptured by shear in another immiscible liquid. The ruptured droplets are stabilized against subsequent coalescence by a surfactant. Because the nanodroplets do not form spontaneously, as they can in lyotropic ``microemulsion'' phases, the structure of nanoemulsions is primarily dependent on the history of the applied shear stresses relative to the interfacial restoring stresses. By applying extremely high shear rates and controlling the composition of the emulsion, we have been able to rupture microscale droplets down to diameters as small as 30 nm in a microfluidic process that yields bulk quantities suitable for commercial production. Following ultracentrifugal fractionation to make the droplets uniform, we study the structure of these emulsions using small angle neutron scattering (SANS at dilute and concentrated volume fractions. We contrast the structure of a concentrated nanoemulsion with the structure factor of hard spheres at a similar volume fraction.
Longair, Malcolm S
2008-01-01
This second edition of Galaxy Formation is an up-to-date text on astrophysical cosmology, expounding the structure of the classical cosmological models from a contemporary viewpoint. This forms the background to a detailed study of the origin of structure and galaxies in the Universe. The derivations of many of the most important results are derived by simple physical arguments which illuminate the results of more advanced treatments. A very wide range of observational data is brought to bear upon these problems, including the most recent results from WMAP, the Hubble Space Telescope, galaxy surveys like the Sloan Digital Sky Survey and the 2dF Galaxy Redshift Survey, studies of Type 1a supernovae, and many other observations.
International Nuclear Information System (INIS)
Anchordoqui, Luis; Nawata, Satoshi; Goldberg, Haim; Nunez, Carlos
2007-01-01
We explore the cosmological content of Salam-Sezgin six-dimensional supergravity, and find a solution to the field equations in qualitative agreement with observation of distant supernovae, primordial nucleosynthesis abundances, and recent measurements of the cosmic microwave background. The carrier of the acceleration in the present de Sitter epoch is a quintessence field slowly rolling down its exponential potential. Intrinsic to this model is a second modulus which is automatically stabilized and acts as a source of cold dark matter, with a mass proportional to an exponential function of the quintessence field (hence realizing varying mass particle models within a string context). However, any attempt to saturate the present cold dark matter component in this manner leads to unacceptable deviations from cosmological data--a numerical study reveals that this source can account for up to about 7% of the total cold dark matter budget. We also show that (1) the model will support a de Sitter energy in agreement with observation at the expense of a miniscule breaking of supersymmetry in the compact space; (2) variations in the fine structure constant are controlled by the stabilized modulus and are negligible; (3) ''fifth'' forces are carried by the stabilized modulus and are short range; (4) the long time behavior of the model in four dimensions is that of a Robertson-Walker universe with a constant expansion rate (w=-1/3). Finally, we present a string theory background by lifting our six-dimensional cosmological solution to ten dimensions
International Nuclear Information System (INIS)
Fré, P.; Sorin, A.S.; Trigiante, M.
2014-01-01
The question whether the integrable one-field cosmologies classified in a previous paper by Fré, Sagnotti and Sorin can be embedded as consistent one-field truncations into Extended Gauged Supergravity or in N=1 supergravity gauged by a superpotential without the use of D-terms is addressed in this paper. The answer is that such an embedding is very difficult and rare but not impossible. Indeed, we were able to find two examples of integrable models embedded in supergravity in this way. Both examples are fitted into N=1 supergravity by means of a very specific and interesting choice of the superpotential W(z). The question whether there are examples of such an embedding in Extended Gauged Supergravity remains open. In the present paper, relying on the embedding tensor formalism we classified all gaugings of the N=2 STU model, confirming, in the absence on hypermultiplets, the uniqueness of the stable de Sitter vacuum found several years ago by Fré, Trigiante and Van Proeyen and excluding the embedding of any integrable cosmological model. A detailed analysis of the space of exact solutions of the first supergravity-embedded integrable cosmological model revealed several new features worth an in-depth consideration. When the scalar potential has an extremum at a negative value, the Universe necessarily collapses into a Big Crunch notwithstanding its spatial flatness. The causal structure of these Universes is quite different from that of the closed, positive curved, Universe: indeed, in this case the particle and event horizons do not coincide and develop complicated patterns. The cosmological consequences of this unexpected mechanism deserve careful consideration
Mechanism of structural type formation of rare earth polychalcogenides
International Nuclear Information System (INIS)
Kuz'micheva, G.M.; Eliseev, A.A.; Khalina, S.Yu.
1981-01-01
It proved to be possible to obtain the structural motives not only of all the known polychalcogenides of rare earth elements but to forecast compounds not yet existing on the basis of two initial structural motives. All the structural motives can be divided into superstructures and polytypes as to the mechanism of their formation [ru
International Nuclear Information System (INIS)
Tkachev, Igor
1993-01-01
When the common ground between particle physics, astrophysics and cosmology started to become a developing area, the Institute for Nuclear Research (INR) of the Russian Academy of Sciences had the foresight in 1981 to institute the Baksan Schools on Particles and Cosmology. This now traditional event, held biannually in the Baksan Valley, has gone on to attract international participation. The site is close to the INR Baksan Neutrino Observatory with its underground and surface installations, including the SAGE gallium solar neutrino detector, the Underground Scintillation Telescope, and the 'Carpet' extensive air shower array. Participation is mainly from experimentalists working in non accelerator particle physics and particle astrophysics. The most recent School, held from April 21 to 28, began with an opening address by INR Director V. A. Matveev. J.Frieman reviewed standard big bang cosmology, emphasizing how the recent COBE results and the observations of large scale galaxy clustering fit into a standard cosmology framework. For inflationary cosmology, he showed how different models may be tested through their predictions for large-scale galactic structure and for cosmic microwave background anisotropy. A.Stebbins presented details of the large scale distribution of galaxies which, combined with velocity information and microwave background anisotropy data, provide strong constraints on theories of the origin of primordial inhomogeneities. Inflation requires, and theories of the large scale structure strongly favour the critical value for the cosmic mass density, while, as D.Seckel explained in his lecture on nucleosynthesis and abundances of the light elements, the baryon contribution to this density has to be tens of times smaller. A general review on the observational evidence for dark matter, dark matter particle candidates and the strategy of dark matter searches was given by I. Tkachev, who stressed the gravitational microlensing MACHO
Elastogranular Mechanics: Buckling, Jamming, and Structure Formation
Schunter, David J.; Brandenbourger, Martin; Perriseau, Sophia; Holmes, Douglas P.
2018-02-01
Confinement of a slender body into a granular array induces stress localization in the geometrically nonlinear structure, and jamming, reordering, and vertical dislodging of the surrounding granular medium. By varying the initial packing density of grains and the length of a confined elastica, we identify the critical length necessary to induce jamming, and demonstrate how folds couple with the granular medium to localize along grain boundaries. Above the jamming threshold, the characteristic length of elastica deformation is shown to diverge in a manner that is coupled with the motion and rearrangement of the grains, suggesting the ordering of the granular array governs the deformation of the slender structure. However, overconfinement of the elastica will vertically dislodge grains, a form of stress relaxation in the granular medium that illustrates the intricate coupling in elastogranular interactions.
Elastogranular Mechanics: Buckling, Jamming, and Structure Formation.
Schunter, David J; Brandenbourger, Martin; Perriseau, Sophia; Holmes, Douglas P
2018-02-16
Confinement of a slender body into a granular array induces stress localization in the geometrically nonlinear structure, and jamming, reordering, and vertical dislodging of the surrounding granular medium. By varying the initial packing density of grains and the length of a confined elastica, we identify the critical length necessary to induce jamming, and demonstrate how folds couple with the granular medium to localize along grain boundaries. Above the jamming threshold, the characteristic length of elastica deformation is shown to diverge in a manner that is coupled with the motion and rearrangement of the grains, suggesting the ordering of the granular array governs the deformation of the slender structure. However, overconfinement of the elastica will vertically dislodge grains, a form of stress relaxation in the granular medium that illustrates the intricate coupling in elastogranular interactions.
The Formation of Structure of Marketing Department
Directory of Open Access Journals (Sweden)
Darius Dubickis
2014-04-01
Full Text Available In the changing high-level complex environment, it is moreand more important for the companies to focus on the marketand costumer. Or, in other words, the companies supposed toturn their attention to the marketing. Despite the fact that themajor subject of an economy is a company, the analysis of themarket-ing issues on the company level is limited. Meanwhile,both practical and scientific problems are significant. One ofthe most important issues is forming the structure of marketingdepartment. Its functions and the content of implementingmeasures determine that its structure supposed to consist ofthe market research and segmentation, development of businessstrategy, strategic planning as well as advertising and realizationof production.
Semiconductor structure and recess formation etch technique
Energy Technology Data Exchange (ETDEWEB)
Lu, Bin; Sun, Min; Palacios, Tomas Apostol
2017-02-14
A semiconductor structure has a first layer that includes a first semiconductor material and a second layer that includes a second semiconductor material. The first semiconductor material is selectively etchable over the second semiconductor material using a first etching process. The first layer is disposed over the second layer. A recess is disposed at least in the first layer. Also described is a method of forming a semiconductor structure that includes a recess. The method includes etching a region in a first layer using a first etching process. The first layer includes a first semiconductor material. The first etching process stops at a second layer beneath the first layer. The second layer includes a second semiconductor material.
Metastable structure formation during high velocity grinding
International Nuclear Information System (INIS)
Samarin, A.N.; Klyuev, M.M.
1984-01-01
Metastable structures in surface layers of samples are; investigated during force high-velocity abrasive grinding. Samples of martensitic (40Kh13), austenitic (12Kh18N10T), ferritic (05Kh23Yu5) steels and some alloys, in particular KhN77TYuR (EhI437B), were grinded for one pass at treatment depth from 0.17 up to 2.6 mm. It is established that processes of homogenizing, recrystallization and coagulation are; developed during force high-velocity grinding along with polymorphic transformations in the zone of thermomechanical effect, that leads to changes of physical and mechanical properties of the surface
Structures formation through self-organized accretion on cosmic strings
International Nuclear Information System (INIS)
Murdzek, R.
2009-01-01
In this paper, we shall show that the formation of structures through accretion by a cosmic string is driven by a natural feed-back mechanism: a part of the energy radiated by accretions creates a pressure on the accretion disk itself. This phenomenon leads to a nonlinear evolution of the accretion process. Thus, the formation of structures results as a consequence of a self-organized growth of the accreting central object.
Dimensional cosmological principles
International Nuclear Information System (INIS)
Chi, L.K.
1985-01-01
The dimensional cosmological principles proposed by Wesson require that the density, pressure, and mass of cosmological models be functions of the dimensionless variables which are themselves combinations of the gravitational constant, the speed of light, and the spacetime coordinates. The space coordinate is not the comoving coordinate. In this paper, the dimensional cosmological principle and the dimensional perfect cosmological principle are reformulated by using the comoving coordinate. The dimensional perfect cosmological principle is further modified to allow the possibility that mass creation may occur. Self-similar spacetimes are found to be models obeying the new dimensional cosmological principle
Cosmology and particle physics
International Nuclear Information System (INIS)
Turner, M.S.
1985-01-01
The author reviews the standard cosmology, focusing on primordial nucleosynthesis, and discusses how the standard cosmology has been used to place constraints on the properties of various particles. Baryogenesis is examined in which the B, C, CP violating interactions in GUTs provide a dynamical explanation for the predominance of matter over antimatter and the present baryon-to-baryon ratio. Monoposes, cosmology and astrophysics are reviewed. The author also discusses supersymmetry/supergravity and cosmology, superstrings and cosmology in extra dimensions, and axions, astrophics, and cosmology
Bifurcation of learning and structure formation in neuronal maps
DEFF Research Database (Denmark)
Marschler, Christian; Faust-Ellsässer, Carmen; Starke, Jens
2014-01-01
to map formation in the laminar nucleus of the barn owl's auditory system. Using equation-free methods, we perform a bifurcation analysis of spatio-temporal structure formation in the associated synaptic-weight matrix. This enables us to analyze learning as a bifurcation process and follow the unstable...... states as well. A simple time translation of the learning window function shifts the bifurcation point of structure formation and goes along with traveling waves in the map, without changing the animal's sound localization performance....
Chandra Cluster Cosmology Project III: Cosmological Parameter Constraints
DEFF Research Database (Denmark)
Vikhlinin, A.; Kravtsov, A. V.; Burenin, R. A.
2009-01-01
function evolution to be used as a useful growth of a structure-based dark energy probe. In this paper, we present cosmological parameter constraints obtained from Chandra observations of 37 clusters with langzrang = 0.55 derived from 400 deg2 ROSAT serendipitous survey and 49 brightest z ≈ 0.05 clusters...
Bojowald, Martin
2008-01-01
Quantum gravity is expected to be necessary in order to understand situations in which classical general relativity breaks down. In particular in cosmology one has to deal with initial singularities, i.e., the fact that the backward evolution of a classical spacetime inevitably comes to an end after a finite amount of proper time. This presents a breakdown of the classical picture and requires an extended theory for a meaningful description. Since small length scales and high curvatures are involved, quantum effects must play a role. Not only the singularity itself but also the surrounding spacetime is then modified. One particular theory is loop quantum cosmology, an application of loop quantum gravity to homogeneous systems, which removes classical singularities. Its implications can be studied at different levels. The main effects are introduced into effective classical equations, which allow one to avoid the interpretational problems of quantum theory. They give rise to new kinds of early-universe phenomenology with applications to inflation and cyclic models. To resolve classical singularities and to understand the structure of geometry around them, the quantum description is necessary. Classical evolution is then replaced by a difference equation for a wave function, which allows an extension of quantum spacetime beyond classical singularities. One main question is how these homogeneous scenarios are related to full loop quantum gravity, which can be dealt with at the level of distributional symmetric states. Finally, the new structure of spacetime arising in loop quantum gravity and its application to cosmology sheds light on more general issues, such as the nature of time. Supplementary material is available for this article at 10.12942/lrr-2008-4.
Directory of Open Access Journals (Sweden)
Bojowald Martin
2008-07-01
Full Text Available Quantum gravity is expected to be necessary in order to understand situations in which classical general relativity breaks down. In particular in cosmology one has to deal with initial singularities, i.e., the fact that the backward evolution of a classical spacetime inevitably comes to an end after a finite amount of proper time. This presents a breakdown of the classical picture and requires an extended theory for a meaningful description. Since small length scales and high curvatures are involved, quantum effects must play a role. Not only the singularity itself but also the surrounding spacetime is then modified. One particular theory is loop quantum cosmology, an application of loop quantum gravity to homogeneous systems, which removes classical singularities. Its implications can be studied at different levels. The main effects are introduced into effective classical equations, which allow one to avoid the interpretational problems of quantum theory. They give rise to new kinds of early-universe phenomenology with applications to inflation and cyclic models. To resolve classical singularities and to understand the structure of geometry around them, the quantum description is necessary. Classical evolution is then replaced by a difference equation for a wave function, which allows an extension of quantum spacetime beyond classical singularities. One main question is how these homogeneous scenarios are related to full loop quantum gravity, which can be dealt with at the level of distributional symmetric states. Finally, the new structure of spacetime arising in loop quantum gravity and its application to cosmology sheds light on more general issues, such as the nature of time.
Directory of Open Access Journals (Sweden)
Bojowald Martin
2005-12-01
Full Text Available Quantum gravity is expected to be necessary in order to understand situations where classical general relativity breaks down. In particular in cosmology one has to deal with initial singularities, i.e., the fact that the backward evolution of a classical space-time inevitably comes to an end after a finite amount of proper time. This presents a breakdown of the classical picture and requires an extended theory for a meaningful description. Since small length scales and high curvatures are involved, quantum effects must play a role. Not only the singularity itself but also the surrounding space-time is then modified. One particular realization is loop quantum cosmology, an application of loop quantum gravity to homogeneous systems, which removes classical singularities. Its implications can be studied at different levels. Main effects are introduced into effective classical equations which allow to avoid interpretational problems of quantum theory. They give rise to new kinds of early universe phenomenology with applications to inflation and cyclic models. To resolve classical singularities and to understand the structure of geometry around them, the quantum description is necessary. Classical evolution is then replaced by a difference equation for a wave function which allows to extend space-time beyond classical singularities. One main question is how these homogeneous scenarios are related to full loop quantum gravity, which can be dealt with at the level of distributional symmetric states. Finally, the new structure of space-time arising in loop quantum gravity and its application to cosmology sheds new light on more general issues such as time.
International Nuclear Information System (INIS)
Gaisser, T.K.; Shafi, Q.; Barr, S.M.; Seckel, D.; Rusjan, E.; Fletcher, R.S.
1991-01-01
This report discusses research of professor at Bartol research institute in the following general areas: particle phenomenology and non-accelerator physics; particle physics and cosmology; theories with higher symmetry; and particle astrophysics and cosmology
International Nuclear Information System (INIS)
Heller, M.
1985-01-01
Two Friedman's cosmological papers (1922, 1924) and his own interpretation of the obtained results are briefly reviewed. Discussion follows of Friedman's role in the early development of relativistic cosmology. 18 refs. (author)
Kunze, Kerstin E.
2016-12-20
Cosmology is becoming an important tool to test particle physics models. We provide an overview of the standard model of cosmology with an emphasis on the observations relevant for testing fundamental physics.
Electronic structure and formation energy of a vacancy in aluminum
International Nuclear Information System (INIS)
Chakraborty, B.; Siegel, R.W.
1981-11-01
The electronic structure of a vacancy in Al was calculated self-consistently using norm-conserving ionic pseudopotentials obtained from ab initio atomic calculations. A 27-atom-site supercell containing 1 vacancy and 26 atoms was used to simulate the environment of the vacancy. A vacancy formation energy of 1.5 eV was also calculated (cf. the experimental value of 0.66 eV). The effects of the supercell and the nature of the ionic potential on the resulting electronic structure and formation energy are discussed. Results for the electronic structure of a divacancy are also presented. 3 figures
Pre-Big Bang, fundamental Physics and noncyclic cosmologies
Directory of Open Access Journals (Sweden)
Gonzalez-Mestres L.
2014-04-01
Full Text Available Detailed analyses of WMAP and Planck data can have significant implications for noncyclic pre-Big Bang approaches incorporating a new fundamental scale beyond the Planck scale and, potentially, new ultimate constituents of matter with unconventional basic properties as compared to standard particles. Cosmic-ray experiments at the highest energies can also yield relevant information. Hopefully, future studies will be able to deal with alternatives: i to standard physics for the structure of the physical vacuum, the nature of space-time, the validity of quantum field theory and conventional symmetries, the interpretation of string-like theories...; ii to standard cosmology concerning the origin and evolution of our Universe, unconventional solutions to the cosmological constant problem, the validity of inflationary scenarios, the need for dark matter and dark energy... Lorentz-like symmetries for the properties of matter can then be naturally stable space-time configurations resulting from more general primordial scenarios that incorporate physics beyond the Planck scale and describe the formation and evolution of the physical vacuum. A possible answer to the question of the origin of half-integer spins can be provided by a primordial spinorial space-time with two complex coordinates instead of the conventional four real ones, leading to a really new cosmology. We discuss basic questions and phenomenological topics concerning noncyclic pre-Big Bang cosmologies and potentially related physics.
Cosmological analysis of galaxy clusters surveys in X-rays
International Nuclear Information System (INIS)
Clerc, N.
2012-01-01
Clusters of galaxies are the most massive objects in equilibrium in our Universe. Their study allows to test cosmological scenarios of structure formation with precision, bringing constraints complementary to those stemming from the cosmological background radiation, supernovae or galaxies. They are identified through the X-ray emission of their heated gas, thus facilitating their mapping at different epochs of the Universe. This report presents two surveys of galaxy clusters detected in X-rays and puts forward a method for their cosmological interpretation. Thanks to its multi-wavelength coverage extending over 10 sq. deg. and after one decade of expertise, the XMM-LSS allows a systematic census of clusters in a large volume of the Universe. In the framework of this survey, the first part of this report describes the techniques developed to the purpose of characterizing the detected objects. A particular emphasis is placed on the most distant ones (z ≥ 1) through the complementarity of observations in X-ray, optical and infrared bands. Then the X-CLASS survey is fully described. Based on XMM archival data, it provides a new catalogue of 800 clusters detected in X-rays. A cosmological analysis of this survey is performed thanks to 'CR-HR' diagrams. This new method self-consistently includes selection effects and scaling relations and provides a means to bypass the computation of individual cluster masses. Propositions are made for applying this method to future surveys as XMM-XXL and eRosita. (author) [fr
Nonlocal gravity. Conceptual aspects and cosmological predictions
Belgacem, Enis; Dirian, Yves; Foffa, Stefano; Maggiore, Michele
2018-03-01
Even if the fundamental action of gravity is local, the corresponding quantum effective action, that includes the effect of quantum fluctuations, is a nonlocal object. These nonlocalities are well understood in the ultraviolet regime but much less in the infrared, where they could in principle give rise to important cosmological effects. Here we systematize and extend previous work of our group, in which it is assumed that a mass scale Λ is dynamically generated in the infrared, giving rise to nonlocal terms in the quantum effective action of gravity. We give a detailed discussion of conceptual aspects related to nonlocal gravity (including causality, degrees of freedom, ambiguities related to the boundary conditions of the nonlocal operator, scenarios for the emergence of a dynamical scale in the infrared) and of the cosmological consequences of these models. The requirement of providing a viable cosmological evolution severely restricts the form of the nonlocal terms, and selects a model (the so-called RR model) that corresponds to a dynamical mass generation for the conformal mode. For such a model: (1) there is a FRW background evolution, where the nonlocal term acts as an effective dark energy with a phantom equation of state, providing accelerated expansion without a cosmological constant. (2) Cosmological perturbations are well behaved. (3) Implementing the model in a Boltzmann code and comparing with observations we find that the RR model fits the CMB, BAO, SNe, structure formation data and local H0 measurements at a level statistically equivalent to ΛCDM. (4) Bayesian parameter estimation shows that the value of H0 obtained in the RR model is higher than in ΛCDM, reducing to 2.0σ the tension with the value from local measurements. (5) The RR model provides a prediction for the sum of neutrino masses that falls within the limits set by oscillation and terrestrial experiments (in contrast to ΛCDM, where letting the sum of neutrino masses vary as a free
Roos, Matts
2015-01-01
The Fourth Edition of Introduction to Cosmology provides a concise, authoritative study of cosmology at an introductory level. Starting from elementary principles and the early history of cosmology, the text carefully guides the student on to curved spacetimes, special and general relativity, gravitational lensing, the thermal history of the Universe, and cosmological models, including extended gravity models, black holes and Hawking's recent conjectures on the not-so-black holes.
Phantom cosmologies and fermions
International Nuclear Information System (INIS)
Chimento, Luis P; Forte, Monica; Devecchi, Fernando P; Kremer, Gilberto M
2008-01-01
Form invariance transformations can be used for constructing phantom cosmologies starting with conventional cosmological models. In this work we reconsider the scalar field case and extend the discussion to fermionic fields, where the 'phantomization' process exhibits a new class of possible accelerated regimes. As an application we analyze the cosmological constant group for a fermionic seed fluid
Particle physics and cosmology
International Nuclear Information System (INIS)
Schramm, D.N.; Turner, M.S.
1982-06-01
work is described in these areas: cosmological baryon production; cosmological production of free quarks and other exotic particle species; the quark-hadron transition in the early universe; astrophysical and cosmological constraints on particle properties; massive neutrinos; phase transitions in the early universe; and astrophysical implications of an axion-like particle
International Nuclear Information System (INIS)
Weinberg, S.
1989-01-01
Cosmological constant problem is discussed. History of the problem is briefly considered. Five different approaches to solution of the problem are described: supersymmetry, supergravity, superstring; anthropic approach; mechamism of lagrangian alignment; modification of gravitation theory and quantum cosmology. It is noted that approach, based on quantum cosmology is the most promising one
. ______________________________________________________________________________________ Nobelist George Smoot to Direct Korean Cosmology Institute Nobel Laureate George Smoot has been appointed director of a new cosmology institute in South Korea that will work closely with the year-old Berkeley the Early Universe (IEU) at EWHA Womans University in Seoul, Korea will provide cosmology education
International Nuclear Information System (INIS)
Davies, P.
1991-01-01
The main concepts of cosmology are discussed, and some of the misconceptions are clarified. The features of big bang cosmology are examined, and it is noted that the existence of the cosmic background radiation provides welcome confirmation of the big bang theory. Calculations of relative abundances of the elements conform with observations, further strengthening the confidence in the basic ideas of big bang cosmology
CERN. Geneva. Audiovisual Unit
2001-01-01
Cosmology and particle physics have enjoyed a useful relationship over the entire histories of both subjects. Today, ideas and techniques in cosmology are frequently used to elucidate and constrain theories of elementary particles. These lectures give an elementary overview of the essential elements of cosmology, which is necessary to understand this relationship.
CERN. Geneva
1999-01-01
Cosmology and particle physics have enjoyed a useful relationship over the entire histories of both subjects. Today, ideas and techniques in cosmology are frequently used to elucidate and constrain theories of elementary particles. These lectures give an elementary overview of the essential elements of cosmology, which is necessary to understand this relationship.
International Nuclear Information System (INIS)
Langer, M.
2007-01-01
This is a very concise introductory lecture to Cosmology. We start by reviewing the basics of homogeneous and isotropic cosmology. We then spend some time on the description of the Cosmic Microwave Background. Finally, a small section is devoted to the discussion of the cosmological constant and of some of the related problems
The effect of early radiation in N-body simulations of cosmic structure formation
DEFF Research Database (Denmark)
Adamek, Julian; Brandbyge, Jacob; Fidler, Christian
2017-01-01
Newtonian N-body simulations have been employed successfully over the past decades for the simulation of the cosmological large-scale structure. Such simulations usually ignore radiation perturbations (photons and massless neutrinos) and the impact of general relativity (GR) beyond the background...
Structural control of void formation in dual phase steels
DEFF Research Database (Denmark)
Azuma, Masafumi
The objective of this study is to explore the void formation mechanisms and to clarify the influence of the hardness and structural parameters (volume fraction, size and morphology) of martensite particles on the void formation and mechanical properties in dual phase steels composed of ferrite...... and (iii) strain localization. The critical strain for void formation depends on hardness of the martensite, but is independent of the volume fraction, shape, size and distribution of the martensite. The strain partitioning between the martensite and ferrite depends on the volume fraction and hardness...... of the martensite accelerates the void formation in the martensite by enlarging the size of voids both in the martensite and ferrite. It is suggested that controlling the hardness and structural parameters associated with the martensite particles such as morphology, size and volume fraction are the essential...
Structure Formation Mechanisms during Solid Ti with Molten Al Interaction
International Nuclear Information System (INIS)
Gurevich, L; Pronichev, D; Trunov, M
2016-01-01
The study discuses advantages and disadvantages of previously proposed mechanisms of the formation of structure between solid Ti and molten Al and presents a new mechanism based on the reviewed and experimental data. The previously proposed mechanisms were classified into three groups: mechanisms of precipitation, mechanisms of destruction and mechanisms of chemical interaction between intermetallics and melt. The reviewed mechanisms did not explain the formation of heterogeneous interlayer with globular aluminide particles and thin layers of pure Al, while the present study reveals variation in the solid Ti/molten Al reaction kinetics during various phases of laminated metal-intermetallic composite formation. The proposed mechanism considers formed during composite fabrication thin oxide interlayers between Ti and Al evolution and its impact on the intermetallic compound formation and explains the initial slow rate of intermetallic interlayer formation and its subsequent acceleration when the oxide foils are ruptured. (paper)
Neutrino mass constraints from joint cosmological probes.
Kwan, Juliana
2018-01-01
One of the most promising avenues to come from precision cosmology is the measurement of the sum of neutrino masses in the next 5-10 years. Ongoing imaging surveys, such as the Dark Energy Survey and the Hyper Suprime Cam survey, will cover a substantial volume of the sky and when combined with existing spectroscopic data, are expected to deliver a definitive measurement in the near future. But it is important that the accuracy of theoretical predictions matches the precision of the observational data so that the neutrino mass signal can be properly detected without systematic error. To this end, we have run a suite of high precision, large volume cosmological N-body simulations containing massive neutrinos to quantify their effect on probes of large scale structure such as weak lensing and galaxy clustering. In this talk, I will describe the analytical tools that we have developed to extract the neutrino mass that are capable of fully utilizing the non-linear regime of structure formation. These include predictions for the bias in the clustering of dark matter halos (one of the fundamental ingredients of the halo model) with an error of only a few percent.
Controlling Non-Equilibrium Structure Formation on the Nanoscale.
Buchmann, Benedikt; Hecht, Fabian Manfred; Pernpeintner, Carla; Lohmueller, Theobald; Bausch, Andreas R
2017-12-06
Controlling the structure formation of gold nanoparticle aggregates is a promising approach towards novel applications in many fields, ranging from (bio)sensing to (bio)imaging to medical diagnostics and therapeutics. To steer structure formation, the DNA-DNA interactions of DNA strands that are coated on the surface of the particles have become a valuable tool to achieve precise control over the interparticle potentials. In equilibrium approaches, this technique is commonly used to study particle crystallization and ligand binding. However, regulating the structural growth processes from the nano- to the micro- and mesoscale remains elusive. Here, we show that the non-equilibrium structure formation of gold nanoparticles can be stirred in a binary heterocoagulation process to generate nanoparticle clusters of different sizes. The gold nanoparticles are coated with sticky single stranded DNA and mixed at different stoichiometries and sizes. This not only allows for structural control but also yields access to the optical properties of the nanoparticle suspensions. As a result, we were able to reliably control the kinetic structure formation process to produce cluster sizes between tens of nanometers up to micrometers. Consequently, the intricate optical properties of the gold nanoparticles could be utilized to control the maximum of the nanoparticle suspension extinction spectra between 525 nm and 600 nm. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
The cosmology/particle physics interface
International Nuclear Information System (INIS)
Olive, K.A.; Schramm, D.N.
1985-01-01
The paper reviews the interface between elementary particle physics and cosmology; and concentrates on inflation and the dark matter problem. Inflationary models of the Universe are examined, including phase transitions and supergravity. The three classes of dark matter problems discussed are: dynamical halos, galaxy formation and clustering, and the Ω=1 of inflation. Possible solutions to the cosmological dark matter problems are considered. (U.K.)
Cao, Shuo; Zheng, Xiaogang; Biesiada, Marek; Qi, Jingzhao; Chen, Yun; Zhu, Zong-Hong
2017-09-01
Context. Ultra-compact structure in radio sources (especially in quasars that can be observed up to very high redshifts), with milliarcsecond angular sizes measured by very-long-baseline interferometry (VLBI), is becoming an important astrophysical tool for probing both cosmology and the physical properties of AGN. Aims: We present a newly compiled data set of 120 milliarcsec. compact radio sources representing intermediate-luminosity quasars covering the redshift range 0.46 RDE) or the Dvali-Gabadadze-Porrati (DGP) brane-world scenario. While no significant change in w with redshift is detected, there is still considerable room for evolution in w and the transition redshift at which w departing from -1 is located at z 2.0. Our results demonstrate that the method extensively investigated in our work on observational radio quasar data can be used to effectively derive cosmological information. Finally, we find the combination of high-redshift quasars and low-redshift clusters may provide an important source of angular diameter distances, considering the redshift coverage of these two astrophysical probes.
Weak lensing cosmology beyond ΛCDM
International Nuclear Information System (INIS)
Das, Sudeep; Linder, Eric V.; Nakajima, Reiko; Putter, Roland de
2012-01-01
Weak gravitational lensing is one of the key probes of the cosmological model, dark energy, and dark matter, providing insight into both the cosmic expansion history and large scale structure growth history. Taking into account a broad spectrum of physics affecting growth — dynamical dark energy, extended gravity, neutrino masses, and spatial curvature — we analyze the cosmological constraints. Similarly we consider the effects of a range of systematic uncertainties, in shear measurement, photometric redshifts, intrinsic alignments, and the nonlinear power spectrum, on cosmological parameter extraction. We also investigate, and provide fitting formulas for, the influence of survey parameters such as redshift depth, galaxy number densities, and sky area on the cosmological constraints in the beyond-ΛCDM parameter space. Finally, we examine the robustness of results for different fiducial cosmologies
Mechanism and conditions of the chessboard structure formation
International Nuclear Information System (INIS)
Ni, Yong; Khachaturyan, Armen G.
2008-01-01
The observations of the pseudo-periodical chessboard (CB) microstructure in metal and ceramic solid solutions indicate that this is a general phenomenon. We propose a theory and three-dimensional (3-D) computational modeling explaining the origin of the CB microstructure in the cubic → tetragonal decomposition. The 3-D modeling demonstrates that the formation of two-phase CB structures is contingent on the formation of a compositionally stabilized precursor state with the tweed structure that is spontaneously formed at the initial stage of the transformation. The modeling has shown that this tweed structure is a distribution of spatially correlated tetragonal nanodomains whose spatial arrangement has the CB topological features. This precursor tweed structure serves as a template for the precipitation of the equilibrium cubic phase. The CB-like tweed template channels the microstructure evolution towards the two-phase CB structure whose complex and detailed 3-D geometry is in excellent agreement with electron microscopic observations. The thermodynamic analysis and obtained evolution sequences allow us to formulate the necessary thermodynamic, structural and kinetic conditions for the CB structure formation. Reasons for its relative stability are discussed. It is also shown that the coherency between the cubic and tetragonal phases comprising the CB structure produces the stress-induced tetragonality of the cubic phase, orthorhombicity of the tetragonal phase, and rotations of cubic phase rods. These effects should diminish and disappear upon lifting of coherency
Circulating Microparticles Alter Formation, Structure, and Properties of Fibrin Clots.
Zubairova, Laily D; Nabiullina, Roza M; Nagaswami, Chandrasekaran; Zuev, Yuriy F; Mustafin, Ilshat G; Litvinov, Rustem I; Weisel, John W
2015-12-04
Despite the importance of circulating microparticles in haemostasis and thrombosis, there is limited evidence for potential causative effects of naturally produced cell-derived microparticles on fibrin clot formation and its properties. We studied the significance of blood microparticles for fibrin formation, structure, and susceptibility to fibrinolysis by removing them from platelet-free plasma using filtration. Clots made in platelet-free and microparticle-depleted plasma samples from the same healthy donors were analyzed in parallel. Microparticles accelerate fibrin polymerisation and support formation of more compact clots that resist internal and external fibrinolysis. These variations correlate with faster thrombin generation, suggesting thrombin-mediated kinetic effects of microparticles on fibrin formation, structure, and properties. In addition, clots formed in the presence of microparticles, unlike clots from the microparticle-depleted plasma, contain 0.1-0.5-μm size granular and CD61-positive material on fibres, suggesting that platelet-derived microparticles attach to fibrin. Therefore, the blood of healthy individuals contains functional microparticles at the levels that have a procoagulant potential. They affect the structure and stability of fibrin clots indirectly through acceleration of thrombin generation and through direct physical incorporation into the fibrin network. Both mechanisms underlie a potential role of microparticles in haemostasis and thrombosis as modulators of fibrin formation, structure, and resistance to fibrinolysis.
Philosophical Roots of Cosmology
Ivanovic, M.
2008-10-01
We shall consider the philosophical roots of cosmology in the earlier Greek philosophy. Our goal is to answer the question: Are earlier Greek theories of pure philosophical-mythological character, as often philosophers cited it, or they have scientific character. On the bases of methodological criteria, we shall contend that the latter is the case. In order to answer the question about contemporary situation of the relation philosophy-cosmology, we shall consider the next question: Is contemporary cosmology completely independent of philosophical conjectures? The answer demands consideration of methodological character about scientific status of contemporary cosmology. We also consider some aspects of the relation contemporary philosophy-cosmology.
Formation of cellular structure in beryllium at plastic working
International Nuclear Information System (INIS)
Papirov, I.I.; Nikolaenko, A.A.; Shokurov, V.S.; Pikalov, A.I.
2013-01-01
Conditions of cellular structure formation are investigated at various kinds of deformation and heat treatment of beryllium ingots. It is shown that the cellular structure plays the important role in formation of complex of physical mechanical properties of beryllium. Influence of impurity, various conditions of deformation (temperature, squeezing degree) and heat treatments on substructure, texture and mechanical properties of metal is investigated. Optimum conditions of rolling and heat treatments of beryllium are defined. The way of sign-variable cyclic deformation of beryllium ingots is offered for reception quasi-isotropic fine-grained metal. Physical-mechanical properties of ultra fine-grained metal are studied
Inflation and the theory of cosmological perturbations
International Nuclear Information System (INIS)
Riotto, A.
2003-01-01
These lectures provide a pedagogical introduction to inflation and the theory of cosmological perturbations generated during inflation which are thought to be the origin of structure in the universe. (author)
Structure formation in the Deser-Woodard nonlocal gravity model: a reappraisal
Energy Technology Data Exchange (ETDEWEB)
Nersisyan, Henrik; Cid, Adrian Fernandez; Amendola, Luca, E-mail: h.nersisyan@thphys.uni-heidelberg.de, E-mail: fernandez@thphys.uni-heidelberg.de, E-mail: l.amendola@thphys.uni-heidelberg.de [Institut für Theoretische Physik, Ruprecht-Karls-Universität Heidelberg, Philosophenweg 16, 69120 Heidelberg (Germany)
2017-04-01
In this work, we extend previous analyses of the structure formation in the f (□{sup −1} R ) model of nonlocal gravity proposed by Deser and Woodard (DW), which reproduces the background expansion of ΛCDM with no need of a cosmological constant nor of any dimensional constant beside Newton's one. A previous analysis based on redshift-space distortions (RSD) data concluded that the model was ruled out. In this work we revisit the issue and find that, when recast in a localized model, the DW model is not ruled out and actually gives a better fit to RSD data than ΛCDM. In fact, the DW model presents a suppressed growth of matter perturbations with respect to ΛCDM and a slightly lower value of σ{sub 8}, as favored by observations. We also produce analytical approximations of the two modified gravity functions, i.e. the anisotropic stress η and the relative change of Newton's constant Y , and of f σ{sub 8}( z ) as a function of redshift. Finally, we also show how much the fit depends on initial conditions when these are generalized with respect to a standard matter-dominated era.
Relative velocity of dark matter and baryonic fluids and the formation of the first structures
International Nuclear Information System (INIS)
Tseliakhovich, Dmitriy; Hirata, Christopher
2010-01-01
At the time of recombination, baryons and photons decoupled and the sound speed in the baryonic fluid dropped from relativistic, ∼c/√(3), to the thermal velocities of the hydrogen atoms, ∼2x10 -5 c. This is less than the relative velocities of baryons and dark matter computed via linear perturbation theory, so we infer that there are supersonic coherent flows of the baryons relative to the underlying potential wells created by the dark matter. As a result, the advection of small-scale perturbations (near the baryonic Jeans scale) by large-scale velocity flows is important for the formation of the first structures. This effect involves a quadratic term in the cosmological perturbation theory equations and hence has not been included in studies based on linear perturbation theory. We show that the relative motion suppresses the abundance of the first bound objects, even if one only investigates dark matter haloes, and leads to qualitative changes in their spatial distribution, such as introducing scale-dependent bias and stochasticity. We further discuss the possible observable implications of this effect for high-redshift galaxy clustering and reionization.
Structure formation in the Deser-Woodard nonlocal gravity model: a reappraisal
International Nuclear Information System (INIS)
Nersisyan, Henrik; Cid, Adrian Fernandez; Amendola, Luca
2017-01-01
In this work, we extend previous analyses of the structure formation in the f (□ −1 R ) model of nonlocal gravity proposed by Deser and Woodard (DW), which reproduces the background expansion of ΛCDM with no need of a cosmological constant nor of any dimensional constant beside Newton's one. A previous analysis based on redshift-space distortions (RSD) data concluded that the model was ruled out. In this work we revisit the issue and find that, when recast in a localized model, the DW model is not ruled out and actually gives a better fit to RSD data than ΛCDM. In fact, the DW model presents a suppressed growth of matter perturbations with respect to ΛCDM and a slightly lower value of σ 8 , as favored by observations. We also produce analytical approximations of the two modified gravity functions, i.e. the anisotropic stress η and the relative change of Newton's constant Y , and of f σ 8 ( z ) as a function of redshift. Finally, we also show how much the fit depends on initial conditions when these are generalized with respect to a standard matter-dominated era.
16. Paris Cosmology Colloquium 2012 - Slides of the presentations
International Nuclear Information System (INIS)
Lasenby, A.; Page, L.; Vega, H.J. de; Biermann, P.L.; Ma, E.; Laveder, M.; Kormendy, J.; Weinheimer, C.; Freeman, K.; Walker, M.; Conselice, C.J.; Rebolo, R.; Wehus, K.; Mirabel, F.; Serenelli, A.; Das, S.; Cooray, A.; Burigana, C.; Sanchez, N.G.; Mather, J.C.; Smoot, G.F.; Schmidt, B.P.; Tognini, M.A.
2014-01-01
Recently, Warm (keV scale) Dark Matter emerged impressively over CDM (Cold Dark Matter) as the leading Dark Matter candidate. In the context of this new Dark Matter situation, which implies novelties in the astrophysical, cosmological and keV particle physics context, this 16. Paris Colloquium 2012 is devoted to the LambdaWDM Standard Model of the Universe. The topics of the colloquium are as follows: -) observational and theoretical progress on the nature of dark matter: keV scale warm dark matter, -) large and small scale structure formation in agreement with observations at large scales and small galactic scales, and -) neutrinos in astrophysics and cosmology. This document gathers the slides of the presentations.
Relativistic kinetic theory with applications in astrophysics and cosmology
Vereshchagin, Gregory V
2017-01-01
Relativistic kinetic theory has widespread application in astrophysics and cosmology. The interest has grown in recent years as experimentalists are now able to make reliable measurements on physical systems where relativistic effects are no longer negligible. This ambitious monograph is divided into three parts. It presents the basic ideas and concepts of this theory, equations and methods, including derivation of kinetic equations from the relativistic BBGKY hierarchy and discussion of the relation between kinetic and hydrodynamic levels of description. The second part introduces elements of computational physics with special emphasis on numerical integration of Boltzmann equations and related approaches, as well as multi-component hydrodynamics. The third part presents an overview of applications ranging from covariant theory of plasma response, thermalization of relativistic plasma, comptonization in static and moving media to kinetics of self-gravitating systems, cosmological structure formation and neut...
Tests of the particle physics-physical cosmology interface
International Nuclear Information System (INIS)
Schramm, D.N.
1993-01-01
Three interrelated interfaces of particle physics and physical cosmology are discussed: (1) inflation and other phase transitions; (2) Big Bang Nucleosynthesis (and also the quark-hadron transition); and (3) structure formation (including dark matter). Recent observations that affect each of these topics are discussed. Topic number 1 is shown to be consistent with the COBE observations but not proven and it may be having problems with some age-expansion data. Topic number 2 has now been well-tested and is an established ''pillar'' of the Big Bang. Topic number 3 is the prime arena of current physical cosmological activity. Experiments to resolve the current exciting, but still ambiguous, situation following the COBE results are discussed
In-situ observation of structure formation in polymer processing
International Nuclear Information System (INIS)
Murase, Hiroki
2009-01-01
In-situ X-ray scattering in polymer processing is a crucial method to elucidate the mechanism of structure formation in the process. Fiber spinning is one such process primarily imposing extensional deformation on polymeric melt at the spin-line during rapid cooling. In-situ small-angle X-ray scattering using synchrotron radiation on the spinning process allows direct observation of the transient structure developing in the process. (author)
BOOK REVIEW: Black Holes, Cosmology and Extra Dimensions Black Holes, Cosmology and Extra Dimensions
Frolov, Valeri P.
2013-10-01
flatness of the Universe, the horizon problem and isotropy of cosmological microwave background. All this material is covered in chapter seven. Chapter eight contains brief discussion of several popular inflation models. Chapter nine is devoted to the problem of the large-scale structure formation from initial quantum vacuum fluctuation during the inflation and the spectrum of the density fluctuations. It also contains remarks on the baryonic asymmetry of the Universe, baryogenesis and primordial black holes. Part III covers the material on extra dimensions. It describes how Einstein gravity is modified in the presence of one or more additional spatial dimensions and how these extra dimensions are compactified in the Kaluza-Klein scheme. The authors also discuss how extra dimensions may affect low energy physics. They present examples of higher-dimensional generalizations of the gravity with higher-in-curvature corrections and discuss a possible mechanism of self-stabilization of an extra space. A considerable part of the chapter 10 is devoted to cosmological models with extra dimensions. In particular, the authors discuss how extra dimensions can modify 'standard' inflation models. At the end of this chapter they make several remarks on a possible relation of the value of fundamental constants in our universe with the existence of extra dimensions. Finally, in chapter 11 they demonstrate that several observable properties of the Universe are closely related with the special value of the fundamental physical constants and their fine tuning. They give interesting examples of such fine tuning and summarize many other cases. The book ends with discussion of a so-called 'cascade birth of universes in multidimensional spaces' model, proposed by one of the authors. As is evident from this brief summary of topics presented in the book, many interesting areas of modern gravity and cosmology are covered. However, since the subject is so wide, this inevitably implies that the
Formation of nanoscale tungsten oxide structures and colouration ...
Indian Academy of Sciences (India)
The X-ray diffraction, together with transmission electron microscopic studies have revealed formation of regular polyhedral nanocrystalline ..... For molecular structure and orientation determination, the ... self-similarity within a complicated system. ..... Hummel R I 1997 Handbook of optical properties: Optics of small particles ...
Testing Structure Formation in the Universe via Coupled Matter Fluids
African Journals Online (AJOL)
kagoyire
the universe is dominated by two “dark” components- dark matter. (DM) and dark energy (DE)- that contribute about 26% and 69% respectively to the total cosmic energy budget, raises key questions about the nature of the “dark-sector” and large-scale structure formation (Planck Collaboration XVI, 2014). Motivated by a ...
Structural formation of aluminide phases on titanium alloy during annealing
International Nuclear Information System (INIS)
Mamaeva, A.A.; Romankov, S.E.; Sagdoldina, Zh.
2006-01-01
Full text: The aluminum layer on the surface of titanium alloy has been formed by thermal deposition. The structural formation of aluminide phases on the surface has been studied. The sequence of structural transformations at the Ti/Al interface is limited by the reaction temperature and time. The sequence of aluminide phase formation is occurred in compliance with Ti-Al equilibrium phase diagram. At the initial stages at the Ti/Al interface the Al3Ti alloy starts forming as a result of interdiffusion, and gradually the whole aluminum films is spent on the formation of this layer. The Al3Ti layer decomposes with the increase of temperature (>600C). At 800C the two-phase (Ti3Al+TiAl) layer is formed on the titanium surface. The TiAl compound is unstable and later on with the increase of the exposure time at 800C gradually transforms into the Ti3Al. The chain of these successive transformations leads to the formation of the continuous homogeneous layer consisting of the Ti3Al compound on the surface. At temperatures exceeding the allotropic transformation temperature (>900C) the Ti3Al compound starts decomposing. All structural changes taking place at the Ti/Al interface are accompanied by considerable changes in micro hardness. The structure of initial substrate influences on kinetics of phase transformation and microstructure development. (author)
International Nuclear Information System (INIS)
Nottale, Laurent
2003-01-01
The principle of relativity, when it is applied to scale transformations, leads to the suggestion of a generalization of fundamental dilations laws. These new special scale-relativistic resolution transformations involve log-Lorentz factors and lead to the occurrence of a minimal and of a maximal length-scale in nature, which are invariant under dilations. The minimal length-scale, that replaces the zero from the viewpoint of its physical properties, is identified with the Planck length l P , and the maximal scale, that replaces infinity, is identified with the cosmic scale L=Λ -1/2 , where Λ is the cosmological constant.The new interpretation of the Planck scale has several implications for the structure and history of the early Universe: we consider the questions of the origin, of the status of physical laws at very early times, of the horizon/causality problem and of fluctuations at recombination epoch.The new interpretation of the cosmic scale has consequences for our knowledge of the present universe, concerning in particular Mach's principle, the large number coincidence, the problem of the vacuum energy density, the nature and the value of the cosmological constant. The value (theoretically predicted ten years ago) of the scaled cosmological constant Ω Λ =0.75+/-0.15 is now supported by several different experiments (Hubble diagram of Supernovae, Boomerang measurements, gravitational lensing by clusters of galaxies).The scale-relativity framework also allows one to suggest a solution to the missing mass problem, and to make theoretical predictions of fundamental energy scales, thanks to the interpretation of new structures in scale space: fractal/classical transitions as Compton lengths, mass-coupling relations and critical value 4π 2 of inverse couplings. Among them, we find a structure at 3.27+/-0.26x10 20 eV, which agrees closely with the observed highest energy cosmic rays at 3.2+/-0.9x10 20 eV, and another at 5.3x10 -3 eV, which corresponds to the
Orogenic structural inheritance and rifted passive margin formation
Salazar Mora, Claudio A.; Huismans, Ritske S.
2016-04-01
Structural inheritance is related to mechanical weaknesses in the lithosphere due to previous tectonic events, e.g. rifting, subduction and collision. The North and South Atlantic rifted passive margins that formed during the breakup of Western Gondwana, are parallel to the older Caledonide and the Brasiliano-Pan-African orogenic belts. In the South Atlantic, 'old' mantle lithospheric fabric resulting from crystallographic preferred orientation of olivine is suggested to play a role during rifted margin formation (Tommasi and Vauchez, 2001). Magnetometric and gravimetric mapping of onshore structures in the Camamu and Almada basins suggest that extensional faults are controlled by two different directions of inherited older Brasiliano structures in the upper lithosphere (Ferreira et al., 2009). In the South Atlantic Campos Basin, 3D seismic data indicate that inherited basement structures provide a first order control on basin structure (Fetter, 2009). Here we investigate the role of structural inheritance on the formation of rifted passive margins with high-resolution 2D thermo-mechanical numerical experiments. The numerical domain is 1200 km long and 600 km deep and represents the lithosphere and the sublithospheric mantle. Model experiments were carried out by creating self-consistent orogenic inheritance where a first phase of orogen formation is followed by extension. We focus in particular on the role of varying amount of orogenic shortening, crustal rheology, contrasting styles of orogen formation on rifted margin style, and the time delay between orogeny and subsequent rifted passive formation. Model results are compared to contrasting structural styles of rifted passive margin formation as observed in the South Atlantic. Ferreira, T.S., Caixeta, J.M., Lima, F.D., 2009. Basement control in Camamu and Almada rift basins. Boletim de Geociências da Petrobrás 17, 69-88. Fetter, M., 2009. The role of basement tectonic reactivation on the structural evolution
Self-regulating star formation and disk structure
International Nuclear Information System (INIS)
Dopita, M.A.
1987-01-01
Star formation processes determine the disk structure of galaxies. Stars heavier than about 1 solar mass determine the chemical evolution of the system and are produced at a rate which maintains (by the momentum input of the stars) the phase structure, pressure, and vertical velocity dispersion of the gas. Low mass stars are produced quiescently within molecular clouds, and their associated T-Tauri winds maintain the support of molecular clouds and regulate the star formation rate. Inefficient cooling suppresses this mode of star formation at low metallicity. Applied to the solar neighborhood, such a model can account for age/metallicity relationships, the increase in the O/Fe ratio at low metallicity, the paucity of metal-poor G and K dwarf stars, the missing mass in the disk and, possibly, the existence of a metal-poor thick disk. For other galaxies, it accounts for constant w-velocity dispersion of the gas, the relationship between gas content and specific rates of star formation, the surface brightness/metallicity relationship and for the shallow radial gradients in both star formation rates and HI content. 71 references
International Nuclear Information System (INIS)
Lukash, V.N.
1983-01-01
Information discussed at the 18th General Assembly of the International Astronomical Union and Symposium on ''Early Universe Evolution and Its Modern Structure'' on the problems of relic radiation, Hubble expansion, spatial structure and physics of the early Universe is presented. The spectrum of relic radioemission differs but slightly from the equilibrium one in the maximum range. In G. Smith (USA) opinion such difference may be caused by any radiosources radiating in the same wave range. The absence of unanimous opinion of astronomers on Hubble constant value is pointed out. G.Tam-man (Switzerland) estimates the Hubble constant 50+-7 km/s. J. Voculer (USA) gives a twice greater value. Such divergence is ca sed by various methods of determining distances up to remote galaxies and galaxy clusters. Many reports deal with large-scale Universe structure. For the first time considered are the processes which occurred in the epoch at times about 10 -35 c from the beginning of the Universe expansion. Such possibility is presented by the theory of ''great unification'' which permits to explain some fundamental properties of the Universe: spatial uniformity of isotropic expansion, existence of small primary density perturbations
Directory of Open Access Journals (Sweden)
Kownacki Cezary
2017-09-01
Full Text Available One of the issues related to formation flights, which requires to be still discussed, is the stability of formation flight in turns, where the aerodynamic conditions can be substantially different for outer vehicles due to varying bank angles. Therefore, this paper proposes a decentralized control algorithm based on a leader as the reference point for followers, i.e. other UAVs and two flocking behaviors responsible for local position control, i.e. cohesion and repulsion. But opposite to other research in this area, the structure of the formation becomes flexible (structure is being reshaped and bent according to actual turn radius of the leader. During turns the structure is bent basing on concentred circles with different radiuses corresponding to relative locations of vehicles in the structure. Simultaneously, UAVs' air-speeds must be modified according to the length of turn radius to achieve the stability of the structure. The effectiveness of the algorithm is verified by the results of simulated flights of five UAVs.
Extending cosmology: the metric approach
Mendoza, S.
2012-01-01
Comment: 2012, Extending Cosmology: The Metric Approach, Open Questions in Cosmology; Review article for an Intech "Open questions in cosmology" book chapter (19 pages, 3 figures). Available from: http://www.intechopen.com/books/open-questions-in-cosmology/extending-cosmology-the-metric-approach
Combination and interpretation of observables in Cosmology
Directory of Open Access Journals (Sweden)
Virey Jean-Marc
2010-04-01
Full Text Available The standard cosmological model has deep theoretical foundations but need the introduction of two major unknown components, dark matter and dark energy, to be in agreement with various observations. Dark matter describes a non-relativistic collisionless fluid of (non baryonic matter which amount to 25% of the total density of the universe. Dark energy is a new kind of fluid not of matter type, representing 70% of the total density which should explain the recent acceleration of the expansion of the universe. Alternatively, one can reject this idea of adding one or two new components but argue that the equations used to make the interpretation should be modified consmological scales. Instead of dark matter one can invoke a failure of Newton's laws. Instead of dark energy, two approaches are proposed : general relativity (in term of the Einstein equation should be modified, or the cosmological principle which fixes the metric used for cosmology should be abandonned. One of the main objective of the community is to find the path of the relevant interpretations thanks to the next generation of experiments which should provide large statistics of observationnal data. Unfortunately, cosmological in formations are difficult to pin down directly fromt he measurements, and it is mandatory to combine the various observables to get the cosmological parameters. This is not problematic from the statistical point of view, but assumptions and approximations made for the analysis may bias our interprettion of the data. Consequently, a strong attention should be paied to the statistical methods used to make parameters estimation and for model testing. After a review of the basics of cosmology where the cosmological parameters are introduced, we discuss the various cosmological probes and their associated observables used to extract cosmological informations. We present the results obtained from several statistical analyses combining data of diferent nature but
Propagating star formation and irregular structure in spiral galaxies
International Nuclear Information System (INIS)
Mueller, M.W.; Arnett, W.D.
1976-01-01
A simple model is proposed which describes the irregular optical appearance often seen in late-type spiral galaxies. If high-mass stars produce spherical shock waves which induce star formation, new high-mass stars will be born which, in turn, produce new shock waves. When this process operates in a differentially rotating disk, our numerical model shows that large-scale spiral-shaped regions of star formation are built up. The structure is seen to be most sensitive to a parameter which governs how often a region of the interstellar medium can undergo star formation. For a proper choice of this parameter, large-scale features disappear before differential rotation winds them up. New spiral features continuously form, so some spiral structure is seen indefinitely. The structure is not the classical two-armed symmetric spiral pattern which the density-wave theory attempts to explain, but it is asymmetric and disorderly.The mechanism of propagating star formation used in our model is consistent with observations which connect young OB associations with expanding shells of gas. We discuss the possible interaction of this mechanism with density waves
Backreaction mechanism in multifluid and extended cosmologies
Energy Technology Data Exchange (ETDEWEB)
Jiménez, Jose Beltrán [Centre for Cosmology, Particle Physics and Phenomenology, Institute of Mathematics and Physics, Louvain University, 2 Chemin du Cyclotron, 1348 Louvain-la-Neuve (Belgium); Cruz-Dombriz, Álvaro de la [Departamento de Física Teórica I, Ciudad Universitaria, Universidad Complutense de Madrid, E-28040 Madrid (Spain); Dunsby, Peter K.S.; Sáez-Gómez, Diego, E-mail: jose.beltran@uclouvain.be, E-mail: dombriz@fis.ucm.es, E-mail: peter.dunsby@uct.ac.za, E-mail: diego.saezgomez@uct.ac.za [Astrophysics, Cosmology and Gravity Centre (ACGC), University of Cape Town, Rondebosch 7701, Cape Town (South Africa)
2014-05-01
One possible explanation for the present observed acceleration of the Universe is the breakdown of homogeneity and isotropy due to the formation of non-linear structures. How inhomogeneities affect the averaged cosmological expansion rate and lead to late-time acceleration is generally considered to be due to some backreaction mechanism. In the recent literature most averaging calculations have focused their attention on General Relativity together with pressure-free matter. In this communication we focus our attention on more general scenarios, including imperfect fluids as well as alternative theories of gravity, and apply an averaging procedure to them in order to determine possible backreaction effects. For illustrative purposes, we present our results for dark energy models, quintessence and Brans-Dicke theories. We also provide a discussion about the limitations of frame choices in the averaging procedure.
Cosmological constraints on neutrinos with Planck data
International Nuclear Information System (INIS)
Spinelli, M.
2015-01-01
Neutrinos take part in the dance of the evolving Universe influencing its history from leptogenesis, to Big Bang nucleosynthesis, until late time structure formation. This makes cosmology, and in particular one of its primary observables the Cosmic Microwave Background (CMB), an unusual but valuable tool for testing Neutrino Physics. The best measurement to date of full-sky CMB anisotropies comes from the Planck satellite launched in 2009 by the European Space Agency (ESA) and successful follower of COBE and WMAP. Testing Planck data against precise theoretical predictions allow us to shed light on various interesting open questions such as the value of the absolute scale of neutrino masses or their energy density. We revise here the results concerning neutrinos obtained by the Planck Collaboration in the 2013 data release
Cosmological constraints on neutrinos with Planck data
Energy Technology Data Exchange (ETDEWEB)
Spinelli, M. [Laboratoire de l’Accélérateur Linéaire, Bat.200, 91400 Orsay (France)
2015-07-15
Neutrinos take part in the dance of the evolving Universe influencing its history from leptogenesis, to Big Bang nucleosynthesis, until late time structure formation. This makes cosmology, and in particular one of its primary observables the Cosmic Microwave Background (CMB), an unusual but valuable tool for testing Neutrino Physics. The best measurement to date of full-sky CMB anisotropies comes from the Planck satellite launched in 2009 by the European Space Agency (ESA) and successful follower of COBE and WMAP. Testing Planck data against precise theoretical predictions allow us to shed light on various interesting open questions such as the value of the absolute scale of neutrino masses or their energy density. We revise here the results concerning neutrinos obtained by the Planck Collaboration in the 2013 data release.
Cosmological constraints on neutrinos with Planck data
Spinelli, M.
2015-07-01
Neutrinos take part in the dance of the evolving Universe influencing its history from leptogenesis, to Big Bang nucleosynthesis, until late time structure formation. This makes cosmology, and in particular one of its primary observables the Cosmic Microwave Background (CMB), an unusual but valuable tool for testing Neutrino Physics. The best measurement to date of full-sky CMB anisotropies comes from the Planck satellite launched in 2009 by the European Space Agency (ESA) and successful follower of COBE and WMAP. Testing Planck data against precise theoretical predictions allow us to shed light on various interesting open questions such as the value of the absolute scale of neutrino masses or their energy density. We revise here the results concerning neutrinos obtained by the Planck Collaboration in the 2013 data release.
Directory of Open Access Journals (Sweden)
Balbi Amedeo
2013-09-01
Full Text Available Time has always played a crucial role in cosmology. I review some of the aspects of the present cosmological model which are more directly related to time, such as: the definition of a cosmic time; the existence of typical timescales and epochs in an expanding universe; the problem of the initial singularity and the origin of time; the cosmological arrow of time.
Inflation and quantum cosmology
International Nuclear Information System (INIS)
Linde, A.
1991-01-01
In this article a review of the present status of inflationary cosmology is given. We start with a discussion of the simplest version of the chaotic inflation scenario. Then we discuss some recent develoments in the inflationary cosmology, including the theory of a self-reproducing inflationary universe (eternal chaotic inflation). We do it with the help of stochastic approach to inflation. The results obtained within this approach are compared with the results obtained in the context of Euclidean quantum cosmology. (WL)
International Nuclear Information System (INIS)
Surdin, M.
1980-01-01
It is shown that viewed from the 'outside', our universe is a black hole. Hence the 'inside' cosmology considered is termed as the Bright Universe Cosmology. The model proposed avoids the singularities of cosmologies of the Big Bang variety, it gives a good account of the redshifts, the cosmic background radiation, the number counts; it also gives a satisfactory explanation of the 'large numbers coincidence' and of the variation in time of fundamental constants. (Auth.)
Lyth, David
2016-01-01
Written by an award-winning cosmologist, this brand new textbook provides advanced undergraduate and graduate students with coverage of the very latest developments in the observational science of cosmology. The book is separated into three parts; part I covers particle physics and general relativity, part II explores an account of the known history of the universe, and part III studies inflation. Full treatment of the origin of structure, scalar fields, the cosmic microwave background and the early universe are provided. Problems are included in the book with solutions provided in a separate solutions manual. More advanced extension material is offered in the Appendix, ensuring the book is fully accessible to students with a wide variety of background experience.
Cosmological disformal invariance
Energy Technology Data Exchange (ETDEWEB)
Domènech, Guillem; Sasaki, Misao [Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan); Naruko, Atsushi, E-mail: guillem.domenech@yukawa.kyoto-u.ac.jp, E-mail: naruko@th.phys.titech.ac.jp, E-mail: misao@yukawa.kyoto-u.ac.jp [Department of Physics, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551 (Japan)
2015-10-01
The invariance of physical observables under disformal transformations is considered. It is known that conformal transformations leave physical observables invariant. However, whether it is true for disformal transformations is still an open question. In this paper, it is shown that a pure disformal transformation without any conformal factor is equivalent to rescaling the time coordinate. Since this rescaling applies equally to all the physical quantities, physics must be invariant under a disformal transformation, that is, neither causal structure, propagation speed nor any other property of the fields are affected by a disformal transformation itself. This fact is presented at the action level for gravitational and matter fields and it is illustrated with some examples of observable quantities. We also find the physical invariance for cosmological perturbations at linear and high orders in perturbation, extending previous studies. Finally, a comparison with Horndeski and beyond Horndeski theories under a disformal transformation is made.
Vesicles and vesicle gels - structure and dynamics of formation
International Nuclear Information System (INIS)
Gradzielski, M
2003-01-01
Vesicles constitute an interesting morphology formed by self-aggregating amphiphilic molecules. They exhibit a rich structural variety and are of interest both from a fundamental point of view (for studying closed bilayer systems) and from a practical point of view (whenever one is interested in the encapsulation of active molecules). In many circumstances vesicular structures have to be formed by external forces, but of great interest are amphiphilic systems, where they form spontaneously. Here the question arises of whether this means that they are also thermodynamically stable structures, which at least in some systems appears to be the case. If such vesicles are well defined in size, it is possible to pack them densely and thereby form vesicle gels that possess highly elastic properties even for relatively low volume fractions of amphiphile. Conditions for the formation and the microstructure of such vesicle gels have been studied in some detail for the case of unilamellar vesicles. Another important and topical issue is the dynamics of vesicle formation/breakdown, as the understanding of the transition process will open the way to a deeper understanding of their stability and also allow controlling of the structures formed, by means of their formation processes. Significant progress in the study of the transformation processes has been achieved, in particular by means of time-resolved scattering experiments. (topical review)
International Nuclear Information System (INIS)
Feng, Jonathan L.
2005-01-01
Cosmology now provides unambiguous, quantitative evidence for new particle physics. I discuss the implications of cosmology for supersymmetry and vice versa. Topics include: motivations for supersymmetry; supersymmetry breaking; dark energy; freeze out and WIMPs; neutralino dark matter; cosmologically preferred regions of minimal supergravity; direct and indirect detection of neutralinos; the DAMA and HEAT signals; inflation and reheating; gravitino dark matter; Big Bang nucleosynthesis; and the cosmic microwave background. I conclude with speculations about the prospects for a microscopic description of the dark universe, stressing the necessity of diverse experiments on both sides of the particle physics/cosmology interface
International Nuclear Information System (INIS)
Sasaki, Misao
1983-01-01
We review the recent status of the inflationary cosmology. After exhibiting the essence of difficulties associated with the horizon, flatness and baryon number problems in the standard big-bang cosmology, we discuss that the inflationary universe scenario is one of the most plausible solutions to these fundamental cosmological problems. Since there are two qualitatively different versions of the inflationary universe scenario, we review each of them separately and discuss merits and demerits of each version. The Hawking radiation in de Sitter space is also reviewed since it may play an essential role in the inflationary cosmology. (author)
Roos, Matts
2003-01-01
The Third Edition of the hugely successful Introduction to Cosmology provides a concise, authoritative study of cosmology at an introductory level. Starting from elementary principles and the history of cosmology, the text carefully guides the student on to curved spacetimes, general relativity, black holes, cosmological models, particles and symmetries, and phase transitions. Extensively revised, this latest edition includes broader and updated coverage of distance measures, gravitational lensing and waves, dark energy and quintessence, the thermal history of the Universe, inflation,
Axions in inflationary cosmology
International Nuclear Information System (INIS)
Linde, A.
1991-01-01
The problem of the cosmological constraints on the axion mass is re-examined. It is argued that in the context of inflationary cosmology the constraint m a > or approx.10 -5 eV can be avoided even when the axion perturbations produced during inflation are taken into account. It is shown also that in most axion models the effective parameter f a rapidly changes during inflation. This modifies some earlier statements concerning isothermal perturbations in the axion cosmology. A hybrid inflation scenario is proposed which combines some advantages of chaotic inflation with specific features of new and/or extended inflation. Its implications for the axion cosmology are discussed. (orig.)
Physical phenomena stipulating nucleus formation, growth and structure films
Energy Technology Data Exchange (ETDEWEB)
Aleksandrov, L N [AN SSSR, Novosibirsk. Inst. Fiziki Poluprovodnikov
1975-03-01
This review is concerned with the physical phenomena responsible for the nucleation, growth and structure of films. Emphasis is placed on the study of films of solid-metal systems, semiconductors (In, As, Cd, Se, CdS), and dielectrics. The following problems are discussed in the paper: general regularities of the thermodynamics and kinetics of film formation, methods of obtaining a solid film, the process of film formation, the rate of growth of individual grains. The critical film thickness and its measurement are also considered. The results of investigating the process of formation of mono- and polycrystalline films are discussed. It is concluded, on the basis of studies into the relaxation processes accompanying the growth of films, that an insight into these processes will permits improving film properties.
Spherical collapse model in time varying vacuum cosmologies
International Nuclear Information System (INIS)
Basilakos, Spyros; Plionis, Manolis; Sola, Joan
2010-01-01
We investigate the virialization of cosmic structures in the framework of flat Friedmann-Lemaitre-Robertson-Walker cosmological models, in which the vacuum energy density evolves with time. In particular, our analysis focuses on the study of spherical matter perturbations, as they decouple from the background expansion, 'turn around', and finally collapse. We generalize the spherical collapse model in the case when the vacuum energy is a running function of the Hubble rate, Λ=Λ(H). A particularly well-motivated model of this type is the so-called quantum field vacuum, in which Λ(H) is a quadratic function, Λ(H)=n 0 +n 2 H 2 , with n 0 ≠0. This model was previously studied by our team using the latest high quality cosmological data to constrain its free parameters, as well as the predicted cluster formation rate. It turns out that the corresponding Hubble expansion history resembles that of the traditional ΛCDM cosmology. We use this Λ(t)CDM framework to illustrate the fact that the properties of the spherical collapse model (virial density, collapse factor, etc.) depend on the choice of the considered vacuum energy (homogeneous or clustered). In particular, if the distribution of the vacuum energy is clustered, then, under specific conditions, we can produce more concentrated structures with respect to the homogeneous vacuum energy case.
Spontaneous Self-Formation of 3D Plasmonic Optical Structures.
Choi, Inhee; Shin, Yonghee; Song, Jihwan; Hong, SoonGweon; Park, Younggeun; Kim, Dongchoul; Kang, Taewook; Lee, Luke P
2016-08-23
Self-formation of colloidal oil droplets in water or water droplets in oil not only has been regarded as fascinating fundamental science but also has been utilized in an enormous number of applications in everyday life. However, the creation of three-dimensional (3D) architectures by a liquid droplet and an immiscible liquid interface has been less investigated than other applications. Here, we report interfacial energy-driven spontaneous self-formation of a 3D plasmonic optical structure at room temperature without an external force. Based on the densities and interfacial energies of two liquids, we simulated the spontaneous formation of a plasmonic optical structure when a water droplet containing metal ions meets an immiscible liquid polydimethylsiloxane (PDMS) interface. At the interface, the metal ions in the droplet are automatically reduced to form an interfacial plasmonic layer as the liquid PDMS cures. The self-formation of both an optical cavity and integrated plasmonic nanostructure significantly enhances the fluorescence by a magnitude of 1000. Our findings will have a huge impact on the development of various photonic and plasmonic materials as well as metamaterials and devices.
Crystal structure representations for machine learning models of formation energies
Energy Technology Data Exchange (ETDEWEB)
Faber, Felix [Department of Chemistry, Institute of Physical Chemistry and National Center for Computational Design and Discovery of Novel Materials, University of Basel Switzerland; Lindmaa, Alexander [Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping Sweden; von Lilienfeld, O. Anatole [Department of Chemistry, Institute of Physical Chemistry and National Center for Computational Design and Discovery of Novel Materials, University of Basel Switzerland; Argonne Leadership Computing Facility, Argonne National Laboratory, 9700 S. Cass Avenue Lemont Illinois 60439; Armiento, Rickard [Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping Sweden
2015-04-20
We introduce and evaluate a set of feature vector representations of crystal structures for machine learning (ML) models of formation energies of solids. ML models of atomization energies of organic molecules have been successful using a Coulomb matrix representation of the molecule. We consider three ways to generalize such representations to periodic systems: (i) a matrix where each element is related to the Ewald sum of the electrostatic interaction between two different atoms in the unit cell repeated over the lattice; (ii) an extended Coulomb-like matrix that takes into account a number of neighboring unit cells; and (iii) an ansatz that mimics the periodicity and the basic features of the elements in the Ewald sum matrix using a sine function of the crystal coordinates of the atoms. The representations are compared for a Laplacian kernel with Manhattan norm, trained to reproduce formation energies using a dataset of 3938 crystal structures obtained from the Materials Project. For training sets consisting of 3000 crystals, the generalization error in predicting formation energies of new structures corresponds to (i) 0.49, (ii) 0.64, and (iii) 0.37eV/atom for the respective representations.
Testing the Big Bang: Light elements, neutrinos, dark matter and large-scale structure
Schramm, David N.
1991-01-01
Several experimental and observational tests of the standard cosmological model are examined. In particular, a detailed discussion is presented regarding: (1) nucleosynthesis, the light element abundances, and neutrino counting; (2) the dark matter problems; and (3) the formation of galaxies and large-scale structure. Comments are made on the possible implications of the recent solar neutrino experimental results for cosmology. An appendix briefly discusses the 17 keV thing and the cosmological and astrophysical constraints on it.
An introduction to cosmological inflation
International Nuclear Information System (INIS)
Liddle, A.R.
1999-01-01
An introductory account is given of the inflationary cosmology, which postulates a period of accelerated expansion during the Universe's earliest stages. The historical motivation is briefly outlined, and the modelling of the inflationary epoch explained. The most important aspect of inflation is that it provides a possible model for the origin of structure in the Universe, and key results are reviewed, along with a discussion of the current observational situation and outlook. (author)
Quantum cosmological relational model of shape and scale in 1D
International Nuclear Information System (INIS)
Anderson, Edward
2011-01-01
Relational particle models are useful toy models for quantum cosmology and the problem of time in quantum general relativity. This paper shows how to extend existing work on concrete examples of relational particle models in 1D to include a notion of scale. This is useful as regards forming a tight analogy with quantum cosmology and the emergent semiclassical time and hidden time approaches to the problem of time. This paper shows furthermore that the correspondence between relational particle models and classical and quantum cosmology can be strengthened using judicious choices of the mechanical potential. This gives relational particle mechanics models with analogues of spatial curvature, cosmological constant, dust and radiation terms. A number of these models are then tractable at the quantum level. These models can be used to study important issues (1) in canonical quantum gravity: the problem of time, the semiclassical approach to it and timeless approaches to it (such as the naive Schroedinger interpretation and records theory) and (2) in quantum cosmology, such as in the investigation of uniform states, robustness and the qualitative understanding of the origin of structure formation.
Light dark photon and fermionic dark radiation for the Hubble constant and the structure formation
Ko, P.; Tang, Yong
2018-01-01
Motivated by the tensions in the Hubble constant $H_0$ and the structure growth $\\sigma_8$ between $Planck$ results and other low redshift measurements, we discuss some cosmological effects of a dark sector model in which dark matter (DM) interacts with fermionic dark radiation (DR) through a light gauge boson (dark photon). Such kind of models are very generic in particle physics with a dark sector with dark gauge symmetries. The effective number of neutrinos is increased by $\\delta N_{eff} ...
The Poisson equation at second order in relativistic cosmology
International Nuclear Information System (INIS)
Hidalgo, J.C.; Christopherson, Adam J.; Malik, Karim A.
2013-01-01
We calculate the relativistic constraint equation which relates the curvature perturbation to the matter density contrast at second order in cosmological perturbation theory. This relativistic ''second order Poisson equation'' is presented in a gauge where the hydrodynamical inhomogeneities coincide with their Newtonian counterparts exactly for a perfect fluid with constant equation of state. We use this constraint to introduce primordial non-Gaussianity in the density contrast in the framework of General Relativity. We then derive expressions that can be used as the initial conditions of N-body codes for structure formation which probe the observable signature of primordial non-Gaussianity in the statistics of the evolved matter density field
International Nuclear Information System (INIS)
Klebanov, I.; Susskind, L.
1988-10-01
We review Coleman's wormhole mechanism for the vanishing of the cosmological constant. We find a discouraging result that wormholes much bigger than the Planck size are generated. We also consider the implications of the wormhole theory for cosmology. 7 refs., 2 figs
Particle physics and cosmology
International Nuclear Information System (INIS)
Ellis, J.; Nanopoulos, D.
1983-01-01
The authors describe the connection between cosmology and particle physics in an introductory way. In this connection the big bang theory and unified gauge models of strong, electromagnetic, and weak interactions are considered. Furthermore cosmological nucleosynthesis is discussed in this framework, and the problem of cosmic neutrinos is considered with special regards to its rest mass. (HSI).
Barkana, Rennan; Tsujikawa, Shinji; Kim, Jihn E; Nagamine, Kentaro
2018-01-01
The Encyclopedia of Cosmology, in four volumes, is a major, long-lasting, seminal reference at the graduate student level, laid out by the most prominent, respected researchers in the general field of Cosmology. These volumes will be a comprehensive review of the most important concepts and current status in the field, covering both theory and observation.
Astroparticle physics and cosmology
International Nuclear Information System (INIS)
Senjanovic, G.; Smirnov, A.Yu.; Thompson, G.
2001-01-01
In this volume a wide spectrum of topics of modern astroparticle physics, such as neutrino astrophysics, dark matter of the universe, high energy cosmic rays, topological defects in cosmology, γ-ray bursts, phase transitions at high temperatures, is covered. The articles written by top level experts in the field give a comprehensive view of the state-of-the-art of modern cosmology
Energy Technology Data Exchange (ETDEWEB)
Vilenkin, Alexander, E-mail: vilenkin@cosmos.phy.tufts.ed [Institute of Cosmology, Department of Physics and Astronomy, Tufts University, Medford, MA 02155 (United States)
2010-01-01
The 'new standard cosmology', based on the theory of inflation, has very impressive observational support. I review some outstanding problems of the new cosmology and the global view of the universe - the multiverse - that it suggests. I focus in particular on prospects for further observational tests of inflation and of the multiverse.
International Nuclear Information System (INIS)
Vilenkin, Alexander
2010-01-01
The n ew standard cosmology , based on the theory of inflation, has very impressive observational support. I review some outstanding problems of the new cosmology and the global view of the universe - the multiverse - that it suggests. I focus in particular on prospects for further observational tests of inflation and of the multiverse.
Astroparticle physics and cosmology
Energy Technology Data Exchange (ETDEWEB)
Senjanovic, G; Smirnov, A Yu; Thompson, G [eds.
2001-11-15
In this volume a wide spectrum of topics of modern astroparticle physics, such as neutrino astrophysics, dark matter of the universe, high energy cosmic rays, topological defects in cosmology, {gamma}-ray bursts, phase transitions at high temperatures, is covered. The articles written by top level experts in the field give a comprehensive view of the state-of-the-art of modern cosmology.
International Nuclear Information System (INIS)
Stecker, F.W.
1989-01-01
This paper discusses two aspects of antimatter and cosmology: 1. the fundamental cosmological question as to whether antimatter plays an equally important role as matter in the universe (overall baryon symmetry), and 2. cosmic-ray antimatter tests for the nature of the dark matter in the universe. (orig.)
Classical and quantum cosmology
Calcagni, Gianluca
2017-01-01
This comprehensive textbook is devoted to classical and quantum cosmology, with particular emphasis on modern approaches to quantum gravity and string theory and on their observational imprint. It covers major challenges in theoretical physics such as the big bang and the cosmological constant problem. An extensive review of standard cosmology, the cosmic microwave background, inflation and dark energy sets the scene for the phenomenological application of all the main quantum-gravity and string-theory models of cosmology. Born of the author's teaching experience and commitment to bridging the gap between cosmologists and theoreticians working beyond the established laws of particle physics and general relativity, this is a unique text where quantum-gravity approaches and string theory are treated on an equal footing. As well as introducing cosmology to undergraduate and graduate students with its pedagogical presentation and the help of 45 solved exercises, this book, which includes an ambitious bibliography...
International Nuclear Information System (INIS)
Gekman, O.
1982-01-01
The brief essay of the development of the main ideas of relativistic cosmology is presented. The Einstein's cosmological work about the Universe - ''Cosmological considerations in connection with the general relativity theory'' - gave the basis to all further treatments in this field. In 1922 A. Friedman's work appeared, in which the first expanding Universe model was proposed as a solution of the Einstein field equations. The model was spherically closed, but its curvature radius was a function of time. About 1955 the searches for anisotropic homogeneous solutions to Einstein field equation began. It turned out that isotropic cosmological models are unstable in general. The predominant part of them transform to anisotropic at insignificant breaking of isotropy. The discovery of isotropic background cosmic radiation in 1965, along with the Hubble low of the Universe expansion, served as the direct confirmation of cosmology based on the Einstein theory
Revolutions in astronomy, physics and cosmology
International Nuclear Information System (INIS)
Idlis, G.M.
1985-01-01
As consecutive turning-points in the development of natural science four global natural science revolutions (Aristotelian, Newton, Einstein and post-Einstein) are marked out and briefly outlined. Each of them simultaneously occurred in astronomy, physics and cosmology and was accompanied by radical changes of cosmological representations. These changes had quite a regular consecutive character and represented necessary steps in turn along the natural way of further elimination of ego centrism from cosmology. The first (Aristotelian) revolution turnes out a peculiar prototype of all three subsequent revolutions in astronomy, physics and cosmology. The special more detailed analysis of this revolution in this monograph allows one to tie together antique and modern phases of the science development including corresponding representations on fundamental structural elements of the matter. Besides the review of literature data the monograph comprises a series of author's scientific results
COSMOLOGICAL ADAPTIVE MESH REFINEMENT MAGNETOHYDRODYNAMICS WITH ENZO
International Nuclear Information System (INIS)
Collins, David C.; Xu Hao; Norman, Michael L.; Li Hui; Li Shengtai
2010-01-01
In this work, we present EnzoMHD, the extension of the cosmological code Enzo to include the effects of magnetic fields through the ideal magnetohydrodynamics approximation. We use a higher order Godunov method for the computation of interface fluxes. We use two constrained transport methods to compute the electric field from those interface fluxes, which simultaneously advances the induction equation and maintains the divergence of the magnetic field. A second-order divergence-free reconstruction technique is used to interpolate the magnetic fields in the block-structured adaptive mesh refinement framework already extant in Enzo. This reconstruction also preserves the divergence of the magnetic field to machine precision. We use operator splitting to include gravity and cosmological expansion. We then present a series of cosmological and non-cosmological test problems to demonstrate the quality of solution resulting from this combination of solvers.
Development of the Universe and New Cosmology
Sakharov, Alexander S
2003-01-01
Cosmology is undergoing an explosive period of activity, fueled both by new, accurate astrophysical data and by innovative theoretical developments. Cosmological parameters such as the total density of the Universe and the rate of cosmological expansion are being precisely measured for the first time, and a consistent standard picture of the Universe is beginning to emerge. Recent developments in cosmology give rise the intriguing possibility that all structures in the Universe, from superclusters to planets, had a quantum-mechanical origin in its earliest moments. Furthermore, these ideas are not idle theorizing, but predictive, and subject to meaningful experimental test. We review the concordance model of the development of the Universe, as well as evidence for the observational revolution that this field is going through. This already provides us with important information on particle physics, which is inaccessible to accelerators.
COMPOSITIONAL AND SUBSTANTIAL STRUCTURE OF THE MEDICAL DOCUMENT: FORMATION STAGES
Directory of Open Access Journals (Sweden)
Romashova Olga Vladimirovna
2015-03-01
Full Text Available The article deals with the compositional and substantial structure of the ambulatory medical record, or "case history", which has being formed for a long time. The author allocates the three main periods in the formation of this medical document: the first period (the beginning of the 19th century – 1920s is connected with the origin and formation; the second period (1920-1980s is marked by emergence of the normative legal acts regulating registration and maintaining; the third period (1980s – up to the present is associated with the cancellation of regulations and the introduction of the new order of the Ministry of Health of the USSR that changed the document's form and name. It is determined that the composition of the case history consists of the title page and the main part. The following processes take place in the course of ambulatory medical record's formation: strengthening formalization, increase in the number of pattern text fragments, increase in the text's volume, and the implementation of bigger number of functions. The author reveals the main (informative and cumulative, accounting and additional (scientific, controlling, legal, financial functions of the document. The implementation of these functions is reflected in the compositional and substantial structure of the document text and is conditioned by a number of extralinguistic factors.
Inflationary universe models and the formation of structure
International Nuclear Information System (INIS)
Brandenberger, R.H.
1987-01-01
The main features of inflationary universe models are briefly reviewed. Inflation provides a mechanism which produces energy density fluctuations on cosmological scales. In the original models, it was not possible to obtain the correct magnitude of these fluctuations without fine tuning the particle physics models. Two mechanisms, chaotic inflation, and a dynamical relaxation process are discussed by which inflation may be realized in models which give the right magnitude of fluctuations. 22 references
Cosmologies of the ancient Mediterranean world
Directory of Open Access Journals (Sweden)
John T. Fitzgerald
2013-07-01
Full Text Available Cosmology is concerned with the order of the universe and seeks to provide an account, not only of that order, but also of the mind or reason behind it. In antiquity, the cosmos was usually understood religiously, such that the cosmologies of the ancient Mediterranean world were either religious in nature or constituted a reaction to a religiously conceived understanding of the structures of the universe. The oldest form in which ancient cosmologies occur is myth, which, owing to its elasticity as a form, enabled them to be appropriated, adapted and used by different groups. In addition, different cosmologies co-existed within the same ancient culture, each having an authoritative status. This article provides an introductory overview of these cosmological myths and argues that a comparative approach is the most fruitful way to study them. Emphasis is given to certain prominent cosmological topics, including theogony (the genesis of the divine or the relationship of the divine to the cosmos, cosmogony (the genesis of the cosmos, and anthropogony (the origin of humans within the cosmos. Although these myths vary greatly in terms of content and how they envision the origin of the cosmos, many of them depict death as part of the structure of the universe.
Preliminary Evaluation of a New Cosmology Curriculum
Coble, Kimberly A.; Martin, Dominique; Hayes, Patrycia; Targett, Tom; Bailey, Janelle M.; Cominsky, Lynn R.
2015-01-01
Informed by our research on student understanding of cosmology, The Big Ideas in Cosmology is an immersive set of web-based learning modules that integrates text, figures, and visualizations with short and long interactive tasks and real cosmological data. This enables the transformation of general education astronomy and cosmology classes from primarily lecture and book-based courses to a more engaging format that builds important STEM skills.During the spring 2014 semester, we field-tested a subset of chapters with the general education astronomy and cosmology classes at Sonoma State University in a flipped-classroom format. We administered pre and post content and attitude assessments in the two flipped classes as well as two lecture classes. The majority of cosmology students had taken astronomy before whereas the astronomy students had not.When switching to an active mode of learning (e.g., flipped classroom instead of lecture), many instructors report pushback from students. We saw this effect from students in course evaluations, who reported dissatisfaction with "having to do more work." However, the students in the flipped section in astronomy made greater gains on the multiple choice content assessment than the students in either of the two lecture sections. On the attitude assessment (the CLASS), the cosmology students made a small shift toward more expert-like opinions. Preliminary results from open-ended content surveys indicate that, prior to instruction, students had difficulty answering 'why' or 'how do we know' questions; that post-instruction, students are less likely to respond "I don't know" or to leave an answer blank; and that students using the modules made gains in their content knowledge.Module development was supported by NASA ROSES E/PO Grant #NNXl0AC89G, the Illinois Space Grant Consortium, the Fermi E/PO program, Sonoma State University's Space Science Education and Public Outreach Group, and Great River Technology
Universal Scaling Relations in Scale-Free Structure Formation
Guszejnov, Dávid; Hopkins, Philip F.; Grudić, Michael Y.
2018-04-01
A large number of astronomical phenomena exhibit remarkably similar scaling relations. The most well-known of these is the mass distribution dN/dM∝M-2 which (to first order) describes stars, protostellar cores, clumps, giant molecular clouds, star clusters and even dark matter halos. In this paper we propose that this ubiquity is not a coincidence and that it is the generic result of scale-free structure formation where the different scales are uncorrelated. We show that all such systems produce a mass function proportional to M-2 and a column density distribution with a power law tail of dA/d lnΣ∝Σ-1. In the case where structure formation is controlled by gravity the two-point correlation becomes ξ2D∝R-1. Furthermore, structures formed by such processes (e.g. young star clusters, DM halos) tend to a ρ∝R-3 density profile. We compare these predictions with observations, analytical fragmentation cascade models, semi-analytical models of gravito-turbulent fragmentation and detailed "full physics" hydrodynamical simulations. We find that these power-laws are good first order descriptions in all cases.
Cosmology and CPT violating neutrinos
Energy Technology Data Exchange (ETDEWEB)
Barenboim, Gabriela; Salvado, Jordi [Universitat de Valencia-CSIC, Departament de Fisica Teorica y Instituto de Fisica Corpuscular, Burjassot (Spain)
2017-11-15
The combination charge conjugation-parity-time reversal (CPT) is a fundamental symmetry in our current understanding of nature. As such, testing CPT violation is a strongly motivated path to explore new physics. In this paper we study CPT violation in the neutrino sector, giving for the first time a bound, for a fundamental particle, in the CPT violating particle-antiparticle gravitational mass difference. We argue that cosmology is nowadays the only data sensitive to CPT violation for the neutrino-antineutrino mass splitting and we use the latest data release from Planck combined with the current baryonic-acoustic-oscillation measurement to perform a full cosmological analysis. To show the potential of the future experiments we also show the results for Euclid, a next generation large scale structure experiment. (orig.)
Cosmic strings and galaxy formation
International Nuclear Information System (INIS)
Bertschinger, E.
1989-01-01
Cosmic strings have become increasingly popular candidates as seeds for the formation of structure in the universe. This scenario, remains a serious cosmogonical model despite close scrutiny. In constrast, magnetic monopoles and domain walls - relic topological defects as are cosmic strings - are disastrous for cosmology if they are left over from the early universe. The production of heavy cosmic strings is speculative, as it depends on the details of ultrahigh energy physics. Fortunately, speculation about cosmic strings is not entirely idle because, if they exist and are heavy enough to seed galaxy formation, cosmic strings can be detected astronomically. Failure to detect cosmic strings would impose some constraints on grand unified theories (GUTs); their discovery would have exciting consequences for high energy physics and cosmology. This article reviews the basic physics of nonsuperconducting cosmic strings, highlighting the field theory aspects, and provides a progress report on calculations of structure formation with cosmic strings
Nonlinear structure formation with the environmentally dependent dilaton
International Nuclear Information System (INIS)
Brax, Philippe; Bruck, Carsten van de; Davis, Anne-Christine; Shaw, Douglas J.; Li, Baojiu
2011-01-01
We have studied the nonlinear structure formation of the environmentally dependent dilaton model using N-body simulations. We find that the mechanism of suppressing the scalar fifth force in high-density regions works very well. Within the parameter space allowed by the solar-system tests, the dilaton model predicts small deviations of the matter power spectrum and the mass function from their ΛCDM counterparts. The importance of taking full account of the nonlinearity of the model is also emphasized.
International Nuclear Information System (INIS)
Nojiri, S; Odintsov, S D; Oikonomou, V K
2016-01-01
We combine the unimodular gravity and mimetic gravity theories into a unified theoretical framework, which is proposed to provide a suggestive proposal for a framework that may assist in the discussion and search for a solution to the cosmological constant problem and the dark matter issue. After providing the formulation of the unimodular mimetic gravity and investigating all the new features that the vacuum unimodular gravity implies, by using the underlying reconstruction method, we realize some well known cosmological evolutions, with some of these being exotic for the ordinary Einstein–Hilbert gravity. Specifically we provide the vacuum unimodular mimetic gravity description of the de Sitter cosmology and of the perfect fluid with constant equation of state cosmology. As we demonstrate, these cosmologies can be realized by vacuum mimetic unimodular gravity, without the existence of any matter fluid source. Moreover, we investigate how cosmologically viable cosmologies, which are compatible with the recent observational data, can be realized by the vacuum unimodular mimetic gravity. Since in some cases, a graceful exit from inflation problem might exist, we provide a qualitative description of the mechanism that can potentially generate the graceful exit from inflation in these theories, by searching for the unstable de Sitter solutions in the context of unimodular mimetic theories of gravity. (paper)
Interactions in the Dark Sector of Cosmology
Bean, Rachel
The success of modern cosmology hinges on two dramatic augmentations beyond the minimalist assumption of baryonic matter interacting gravitationally through general relativity. The first assumption is that there must exist either new gravitational dynamics or a new component of the cosmic energy budget - dark matter - that allows structure to form and accounts for weak lensing and galactic rotation curves. The second assumption is that a further dynamical modification or energy component - dark energy - exists, driving late-time cosmic acceleration. The need for these is now firmly established through a host of observations, which have raised crucial questions, and present a deep challenge to fundamental physics. The central theme of this proposal is the detailed understanding of the nature of the dark sector through the inevitable interactions between its individual components and with the visible universe. Such interactions can be crucial to a given model's viability, affecting its capability to reproduce the cosmic expansion history; the detailed predictions or structure formation; the gravitational dynamics on astrophysical and solar system scales; the stability of the microphysical model, and its ultimate consistency. While many models are consistent with cosmology on the coarsest scales, as is often the case, the devil may lie in the details. In this proposal we plan a comprehensive analysis of these details, focusing on the interactions within the dark sector and between it and visible matter, and on how these interactions affect the observational and theoretical consistency of models. Since it is unlikely that there will be a silver bullet allowing us to isolate the cause of cosmic acceleration, it is critical to develop a coherent view of the landscape of proposed models, extract clear predictions, and determine what combination of experiments and observations might allow us to test these predictions.
Structured assessment format for evaluating operative reports in general surgery.
Vergis, Ashley; Gillman, Lawrence; Minor, Samuel; Taylor, Mark; Park, Jason
2008-01-01
Despite its multifaceted importance, no validated or reliable tools assess the quality of the dictated operative note. This study determined the construct validity, interrater reliability, and internal consistency of a Structured Assessment Format for Evaluating Operative Reports (SAFE-OR) in general surgery. SAFE-OR was developed by using consensus criteria set forth by the Canadian Association of General Surgeons. This instrument includes a structured assessment and a global quality rating scale. Residents divided into novice and experienced groups viewed and dictated a videotaped laparoscopic sigmoid colectomy. Blinded, independent faculty evaluators graded the transcribed reports using SAFE-OR. Twenty-one residents participated in the study. Mean structured assessment scores (out of 44) were significantly lower for novice versus experienced residents (23.3 +/- 5.2 vs 34.1 +/- 6.0, t = .001). Mean global quality scores (out of 45) were similarly lower for novice residents (25.6 +/- 4.7 vs 35.9 +/- 7.6, t = .006). Interclass correlation coefficients were .98 (95% confidence interval, .96-.99) for structured assessment and .93 (95% confidence interval, .83-.97) for global quality scales. Cronbach alpha coefficients for internal consistency were .85 for structured assessment and .96 for global quality assessment scales. SAFE-OR shows significant construct validity, excellent interrater reliability, and high internal consistency. This tool will allow educators to objectively evaluate the quality of trainee operative reports and provide a mechanism for implementing, monitoring, and refining curriculum for dictation skills.
Cosmology and particle physics
International Nuclear Information System (INIS)
Barrow, J.D.
1982-01-01
A brief overview is given of recent work that integrates cosmology and particle physics. The observational data regarding the abundance of matter and radiation in the Universe is described. The manner in which the cosmological survival density of stable massive particles can be calculated is discussed along with the process of cosmological nucleosynthesis. Several applications of these general arguments are given with reference to the survival density of nucleons, neutrinos and unconfined fractionally charge particles. The use of nucleosynthesis to limit the number of lepton generations is described together with the implications of a small neutrino mass for the origin of galaxies and clusters. (Auth.)
Cosmology and particle physics
Energy Technology Data Exchange (ETDEWEB)
Steigman, G [California Univ., Santa Barbara (USA). Inst. for Theoretical Physics; Bartol Research Foundation, Newark, Delaware (USA))
1982-01-29
The cosmic connections between physics on the very largest and very smallest scales are reviewed with an emphasis on the symbiotic relation between elementary particle physics and cosmology. After a review of the early Universe as a cosmic accelerator, various cosmological and astrophysical constraints on models of particle physics are outlined. To illustrate this approach to particle physics via cosmology, reference is made to several areas of current research: baryon non-conservation and baryon asymmetry; free quarks, heavy hadrons and other exotic relics; primordial nucleosynthesis and neutrino masses.
Formation, structure, and stability of MHD intermediate shocks
International Nuclear Information System (INIS)
Wu, C.C.
1990-01-01
Contrary to the usual belief that MHD intermediate shocks are extraneous, the author has recently shown by numerical solutions of dissipative MHD equations that intermediate shocks are admissible and can be formed through nonlinear wave steepening from continuous waves. In this paper, the formation, structure and stability of intermediate shocks in dissipative MHD are considered in detail. The differences between the conventional theory and his are pointed out and clarified. He shows that all four types of intermediate shocks can be formed from smooth waves. He also shows that there are free parameters in the structure of the intermediate shocks, and that these parameters are related to the shock stability. In addition, he shows that a rotational discontinuity can not exist with finite width, indicate how this is related to the existence of time-dependent intermediate shocks, and show why the conventional theory is not a good approximation to dissipative MHD solutions whenever there is rotation in magnetic field
Roberts, Alex
2016-08-01
Recently, a new framework for describing the multiverse has been proposed which is based on the principles of quantum mechanics. The framework allows for well-defined predictions, both regarding global properties of the universe and outcomes of particular experiments, according to a single probability formula. This provides complete unification of the eternally inflating multiverse and many worlds in quantum mechanics. We elucidate how cosmological parameters can be calculated in this framework, and study the probability distribution for the value of the cosmological constant. We consider both positive and negative values, and find that the observed value is consistent with the calculated distribution at an order of magnitude level. In particular, in contrast to the case of earlier measure proposals, our framework prefers a positive cosmological constant over a negative one. These results depend only moderately on how we model galaxy formation and life evolution therein. We explore supersymmetric theories in which the Higgs mass is boosted by the non-decoupling D-terms of an extended U(1) X gauge symmetry, defined here to be a general linear combination of hypercharge, baryon number, and lepton number. Crucially, the gauge coupling, gX, is bounded from below to accommodate the Higgs mass, while the quarks and leptons are required by gauge invariance to carry non-zero charge under U(1)X. This induces an irreducible rate, sigmaBR, for pp → X → ll relevant to existing and future resonance searches, and gives rise to higher dimension operators that are stringently constrained by precision electroweak measurements. Combined, these bounds define a maximally allowed region in the space of observables, (sigmaBR, mX), outside of which is excluded by naturalness and experimental limits. If natural supersymmetry utilizes non-decoupling D-terms, then the associated X boson can only be observed within this window, providing a model independent 'litmus test' for this broad
International Nuclear Information System (INIS)
Copeland, Edmund J.; Padilla, Antonio; Saffin, Paul M.
2012-01-01
We have recently proposed a novel self tuning mechanism to alleviate the famous cosmological constant problem, based on the general scalar tensor theory proposed by Horndeski. The self-tuning model ends up consisting of four geometric terms in the action, with each term containing a free potential function of the scalar field; the four together being labeled as the Fab-Four. In this paper we begin the important task of deriving the cosmology associated with the Fab-Four Lagrangian. Performing a phase plane analysis of the system we are able to obtain a number of fixed points for the system, with some remarkable new solutions emerging from the trade-off between the various potentials. As well as obtaining inflationary solutions we also find conventional radiation/matter-like solutions, but in regimes where the energy density is dominated by a cosmological constant, and where we do not have any explicit forms of radiation or matter. Stability conditions for matter solutions are obtained and we show how it is possible for there to exist an extended period of 'matter domination' opening up the possibility that we can generate cosmological structures, and recover a consistent cosmology even in the presence of a large cosmological constant
Excimer Formation Dynamics of Dipyrenyldecane in Structurally Different Ionic Liquids.
Yadav, Anita; Pandey, Siddharth
2017-12-07
Ionic liquids, being composed of ions alone, may offer alternative pathways for molecular aggregation. These pathways could be controlled by the chemical structure of the cation and the anion of the ionic liquids. Intramolecular excimer formation dynamics of a bifluorophoric probe, 1,3-bis(1-pyrenyl)decane [1Py(10)1Py], where the fluorophoric pyrene moieties are separated by a long decyl chain, is investigated in seven different ionic liquids in 10-90 °C temperature range. The long alkyl separator allows for ample interaction with the solubilizing milieu prior to the formation of the excimer. The ionic liquids are composed of two sets, one having four ionic liquids of 1-butyl-3-methylimidazolium cation ([bmim + ]) with different anions and the other having four ionic liquids of bis(trifluoromethylsulfonyl)imide anion ([Tf 2 N - ]) with different cations. The excimer-to-monomer emission intensity ratio (I E /I M ) is found to increase with increasing temperature in sigmoidal fashion. Chemical structure of the ionic liquid controls the excimer formation efficiency, as I E /I M values within ionic liquids with the same viscosities are found to be significantly different. The excited-state intensity decay kinetics of 1Py(10)1Py in ionic liquids do not adhere to a simplistic Birk's scheme, where only one excimer conformer forms after excitation. The apparent rate constants of excimer formation (k a ) in highly viscous ionic liquids are an order of magnitude lower than those reported in organic solvents. In general, the higher the viscosity of the ionic liquid, the more sensitive is the k a to the temperature with higher activation energy, E a . The trend in E a is found to be similar to that for activation energy of the viscous flow (E a,η ). Stokes-Einstein relationship is not followed in [bmim + ] ionic liquids; however, with the exception of [choline][Tf 2 N], it is found to be followed in [Tf 2 N - ] ionic liquids suggesting the cyclization dynamics of 1Py(10)1Py
The Past, Present, and Future of Statistical Cosmology
Hirata, Christopher M.
2016-01-01
We now have a standard paradigm for the evolution of the Universe and the distribution of matter on large scales. This model has many seemingly strange aspects: an inflationary period, during which quantum mechanical fluctuations set the initial conditions for the formation of galaxies and clusters; dark matter and dark energy, which make up most of the Universe, and yet have no established relation to the more familiar visible particles and fields; and -- if dark energy is a cosmological constant -- a future in which the Universe enters a permanent exponential expansion phase, with a limiting finite "temperature" and observable volume. Over the past 15 years, a diverse array of observations have continued to support the simplest version of this model at ever-improving levels of precision (although not without a few anomalies). I will describe this development from the perspective of one participant, with an emphasis on a subset of the observational probes -- the cosmic microwave background, galaxy surveys, and gravitational lensing. I will emphasize in particular the demands of tight control of systematic errors in both the observations and the theoretical predictions, and the impact this has had on the organization of research programs in cosmology.I will then turn to the the future of statistical cosmology. In the near term, a major goal in dark energy is to use new facilities to go beyond fitting a small number of parameters, and map out the full history of the expansion of the Universe and the growth of structures. I will describe some of these ambitious efforts to probe the effects of dark energy in the distant past, when it was a subdominant component of the cosmic energy budget. Finally, I will speculate on what cosmology as a field might look like in 25 years.
Spiral Structure and Global Star Formation Processes in M 51
Gruendl, Robert A.
1994-12-01
The nearby grand design spiral galaxy, M 51, is an obvious proving ground for studies of spiral structure and large scale star formation processes. New near--infrared observations of M 51 made with COB (Cryogenic Optical Bench) on the Kitt Peak 1.3m allow us to examine the stellar distribution and the young star formation regions as well as probe regions of high extinction such as dust lanes. We also present an analysis of the kinematics of the ionized gas observed with the Maryland--Caltech Imaging Fabry Perot. The color information we derive from the near--infrared bands provides a more accurate tracer of extinction than optical observations. We find that the dust extinction and CO emission in the arms are well correlated. Our kinematic data show unambiguously that these dense gas concentrations are associated with kinematic perturbations. In the inner disk, these perturbations are seen to be consistent with the streaming motions predicted by classical density wave theory. The dust lanes, and presumably the molecular arms, form a narrow ridge that matches these velocity perturbations wherever the viewing angle is appropriate. This interpretation requires that the corotation radius be inward of the outer tidal arms. The outer tidal arms however show streaming velocities of the sign that would be expected interior to the corotation point. This can be reconciled if the outer arms are part of a second spiral pattern, most likely due to the interaction with the companion NGC 5195. The near--infrared observations also show emission from the massive star forming regions. These observations are less affected by extinction than optical observations of H II regions and show clearly that the sites of massive star formation are correlated with but downstream from the concentrations of dense molecular material. This provides clear evidence that the ISM has been organized by the streaming motions which have in turn triggered massive star formation.
Structural and kinematic analysis from Montevideo Formation rocks
International Nuclear Information System (INIS)
Masquelin, E.; Gutierrez, L.; Sienra, M.
2004-01-01
The main purpose of this work is to bring new advances about structural and kinematic analysis from Montevideo Formation rocks. This information was collected by means of the classic methodology used for metamorphic terrains: (i) to recognize the nature of the protoliths, (ii) to discriminate the diversity of intrusive rocks and their relative age, (iii) to evaluate the intensity of strain, and (iv) to find the relationship between this strain and related displacements, in accordance to the unified theory for ductile shear zones. The exposed results show that there are not enough evidences to prove that the layering found in para-amphibolites and para-gneisses is the bedding surface. Although various lava primary structures were presented, these structures do not bring the bedding plane directly, and sedimentary structures are suspicious. In the other hand, the strain has proved to be very intense, by the development of isoclinal folds (may be intrafolial), highly strained veins of plagioclase-bearing gneiss and the boudinage of the duplicated sequence parallel to the axes of D2 later folds. The D2 fold axes parallel direction could be acted as the transport direction of a major strike-slip shear zone, striking N70 0 E. The fact is that various ductile flow vorticity indicators were found in para-amphibolites showing a dextral shear sense [es
Stasińska, Grażyna; Harfst, Stefan; Kroupa, Pavel; Theis, Christian; THE EVOLUTION OF GALAXIES
2003-01-01
Galaxies have a history This has become clear from recent sky surveys which have shown that distant galaxies, formed early in the life of the Universe, differ from the nearby ones New observational windows at ultraviolet, infrared and millimetric wavelengths (provided by ROSAT, IRAM, IUE, IRAS, ISO) have revealed that galaxies contain a wealth of components very hot gas, atomic hydrogen, molecules, dust, dark matter A significant advance is expected from the results of new instruments (VLT, FIRST, XMM) which will allow one to explore the most distant Universe Three Euroconferences were planned to punctuate this new epoch in galactic research, bringing together specialists in various fields of Astronomy This book contains the proceedings of the third conference and presents the actual state-of-the-art of modelling galaxy evolution
Origin of cosmological density fluctuations
International Nuclear Information System (INIS)
Carr, B.J.
1984-11-01
The density fluctuations required to explain the large-scale cosmological structure may have arisen spontaneously as a result of a phase transition in the early Universe. There are several ways in which such fluctuations may have ben produced, and they could have a variety of spectra, so one should not necessarily expect all features of the large-scale structure to derive from a simple power law spectrum. Some features may even result from astrophysical amplification mechanisms rather than gravitational instability. 128 references
Resolution convergence in cosmological hydrodynamical simulations using adaptive mesh refinement
Snaith, Owain N.; Park, Changbom; Kim, Juhan; Rosdahl, Joakim
2018-06-01
We have explored the evolution of gas distributions from cosmological simulations carried out using the RAMSES adaptive mesh refinement (AMR) code, to explore the effects of resolution on cosmological hydrodynamical simulations. It is vital to understand the effect of both the resolution of initial conditions (ICs) and the final resolution of the simulation. Lower initial resolution simulations tend to produce smaller numbers of low-mass structures. This will strongly affect the assembly history of objects, and has the same effect of simulating different cosmologies. The resolution of ICs is an important factor in simulations, even with a fixed maximum spatial resolution. The power spectrum of gas in simulations using AMR diverges strongly from the fixed grid approach - with more power on small scales in the AMR simulations - even at fixed physical resolution and also produces offsets in the star formation at specific epochs. This is because before certain times the upper grid levels are held back to maintain approximately fixed physical resolution, and to mimic the natural evolution of dark matter only simulations. Although the impact of hold-back falls with increasing spatial and IC resolutions, the offsets in the star formation remain down to a spatial resolution of 1 kpc. These offsets are of the order of 10-20 per cent, which is below the uncertainty in the implemented physics but are expected to affect the detailed properties of galaxies. We have implemented a new grid-hold-back approach to minimize the impact of hold-back on the star formation rate.
The Age of Precision Cosmology
Chuss, David T.
2012-01-01
In the past two decades, our understanding of the evolution and fate of the universe has increased dramatically. This "Age of Precision Cosmology" has been ushered in by measurements that have both elucidated the details of the Big Bang cosmology and set the direction for future lines of inquiry. Our universe appears to consist of 5% baryonic matter; 23% of the universe's energy content is dark matter which is responsible for the observed structure in the universe; and 72% of the energy density is so-called "dark energy" that is currently accelerating the expansion of the universe. In addition, our universe has been measured to be geometrically flat to 1 %. These observations and related details of the Big Bang paradigm have hinted that the universe underwent an epoch of accelerated expansion known as Uinflation" early in its history. In this talk, I will review the highlights of modern cosmology, focusing on the contributions made by measurements of the cosmic microwave background, the faint afterglow of the Big Bang. I will also describe new instruments designed to measure the polarization of the cosmic microwave background in order to search for evidence of cosmic inflation.
The cosmological constant problem
International Nuclear Information System (INIS)
Dolgov, A.D.
1989-05-01
A review of the cosmological term problem is presented. Baby universe model and the compensating field model are discussed. The importance of more accurate data on the Hubble constant and the Universe age is stressed. 18 refs
Time in contemporary cosmology
International Nuclear Information System (INIS)
Mavrides, Stamatia
1980-01-01
Cosmological time is defined, as is coordinated universal time against local times of special relativity. The problems of time and matter, age of the universe, Goedel models, arrow of time, are also discussed [fr
International Nuclear Information System (INIS)
Coule, D H
2005-01-01
We contrast the initial condition requirements of various contemporary cosmological models including inflationary and bouncing cosmologies. Canonical quantization of general relativity is used, as a first approximation to full quantum gravity, to determine whether suitable initial conditions are present. Various proposals such as Hartle-Hawking's 'no boundary' or tunnelling boundary conditions are assessed on grounds of naturalness and fine tuning. Alternatively, a quiescent initial state or an initial closed timelike curve 'time machine' is considered. Possible extensions to brane models are also addressed. Further ideas about universe creation from a meta-universe are outlined. Semiclassical and time asymmetry requirements of cosmology are briefly discussed and contrasted with the black-hole final-state proposal. We compare the recent loop quantum cosmology of Bojowald and co-workers with these earlier schemes. A number of possible difficulties and limitations are outlined. (topical review)
International Nuclear Information System (INIS)
Senjanovic, G.; Virginia Polytechnic Inst. and State Univ., Blacksburg
1984-07-01
Extended supersymmetry, Kaluza-Klein theory and family unification all suggest the existence of mirror fermions, with same quantum numbers but opposite helicities from ordinary fermions. The laboratory and especially cosmological implications of such particles are reviewed and summarized. (author)
Ryden, Barbara
2017-01-01
This second edition of Introduction to Cosmology is an exciting update of an award-winning textbook. It is aimed primarily at advanced undergraduate students in physics and astronomy, but is also useful as a supplementary text at higher levels. It explains modern cosmological concepts, such as dark energy, in the context of the Big Bang theory. Its clear, lucid writing style, with a wealth of useful everyday analogies, makes it exceptionally engaging. Emphasis is placed on the links between theoretical concepts of cosmology and the observable properties of the universe, building deeper physical insights in the reader. The second edition includes recent observational results, fuller descriptions of special and general relativity, expanded discussions of dark energy, and a new chapter on baryonic matter that makes up stars and galaxies. It is an ideal textbook for the era of precision cosmology in the accelerating universe.
Tensors, relativity, and cosmology
Dalarsson, Mirjana
2015-01-01
Tensors, Relativity, and Cosmology, Second Edition, combines relativity, astrophysics, and cosmology in a single volume, providing a simplified introduction to each subject that is followed by detailed mathematical derivations. The book includes a section on general relativity that gives the case for a curved space-time, presents the mathematical background (tensor calculus, Riemannian geometry), discusses the Einstein equation and its solutions (including black holes and Penrose processes), and considers the energy-momentum tensor for various solutions. In addition, a section on relativistic astrophysics discusses stellar contraction and collapse, neutron stars and their equations of state, black holes, and accretion onto collapsed objects, with a final section on cosmology discussing cosmological models, observational tests, and scenarios for the early universe. This fully revised and updated second edition includes new material on relativistic effects, such as the behavior of clocks and measuring rods in m...
Study of structure formation scenarios with X-ray and SZ observed galaxy clusters
International Nuclear Information System (INIS)
Democles, Jessica
2010-01-01
Galaxy clusters are the largest structures formed by gravitational collapse. They are cited as cosmological probes for their dependence on the matter density parameter Ω_M, the normalization of the power spectrum of density fluctuations σ_8 and the Dark Energy parameters Ω_D_E and w_D_E. This thesis takes advantage of the multi-wavelength observation of galaxy clusters in order to optimize their cosmological exploitation. In particular, it deals with two aspects: the statistical characterization of cluster catalogues and the existence of scaling relations between their mass and their observables. It presents an observation model for SZ detected cluster catalogues, as it is the case for the Planck and SPT experiments. This model characterizes of the catalogues in terms of completeness, photometry and contamination. Its direct application to the theoretical distribution of clusters enables us to compute the observed cluster abundance. A Fisher analysis estimates the potential of cosmological parameter constraints associated with this abundance. We notice that one of the main limitations of constraints comes from the uncertainty of the scaling relation. Dissipative physics of the baryons are the main feature of the complexification of the scaling relations. The data analysis of two fossil groups observed with XMM-Newton shed light on the influence of dissipative physics on both the scaling relations and the matter distribution of gas and dark matter at group scale. (author) [fr
Seeding black holes in cosmological simulations
Taylor, P.; Kobayashi, C.
2014-08-01
We present a new model for the formation of black holes in cosmological simulations, motivated by the first star formation. Black holes form from high density peaks of primordial gas, and grow via both gas accretion and mergers. Massive black holes heat the surrounding material, suppressing star formation at the centres of galaxies, and driving galactic winds. We perform an investigation into the physical effects of the model parameters, and obtain a `best' set of these parameters by comparing the outcome of simulations to observations. With this best set, we successfully reproduce the cosmic star formation rate history, black hole mass-velocity dispersion relation, and the size-velocity dispersion relation of galaxies. The black hole seed mass is ˜103 M⊙, which is orders of magnitude smaller than that which has been used in previous cosmological simulations with active galactic nuclei, but suggests that the origin of the seed black holes is the death of Population III stars.
Magnetohydrodynamics and Plasma Cosmology
Kleidis, Kostas; Kuiroukidis, Apostolos; Papadopoulos, Demetrios; Vlahos, Loukas
2007-09-01
We study the linear magnetohydrodynamic (MHD) equations, both in the Newtonian and the general-relativistic limit, as regards a viscous magnetized fluid of finite conductivity and discuss instability criteria. In addition, we explore the excitation of cosmological perturbations in anisotropic spacetimes, in the presence of an ambient magnetic field. Acoustic, electromagnetic (e/m) and fast-magnetosonic modes, propagating normal to the magnetic field, can be excited, resulting in several implications of cosmological significance.
International Nuclear Information System (INIS)
Novikov, I.D.
1999-01-01
In this talk a brief survey has been carried out on the development of cosmology from the days Leopold Infeld was active in the field up to the present. Attention in particular is paid to the history of our knowledge of Hubble's expansion, of the cosmological constant, of the average density of matter and its distribution, and of the related issue of possible types of matter in the Universe. (author)
Cosmological phase transitions
International Nuclear Information System (INIS)
Kolb, E.W.
1993-10-01
If modern ideas about the role of spontaneous symmetry breaking in fundamental physics are correct, then the Universe should have undergone a series of phase transitions early in its history. The study of cosmological phase transitions has become an important aspect of early-Universe cosmology. In this lecture I review some very recent work on three aspects of phase transitions: the electroweak transition, texture, and axions
Directory of Open Access Journals (Sweden)
Daywitt W. C.
2009-04-01
Full Text Available Both the big-bang and the quasi-steady-state cosmologies originate in some type of Planck state. This paper presents a new cosmological theory based on the Planck- vacuum negative-energy state, a state consisting of a degenerate collection of negative- energy Planck particles. A heuristic look at the Einstein field equation provides a con- vincing argument that such a vacuum state could provide a theoretical explanation for the visible universe.
Cosmological Models and Stability
Andersson, Lars
Principles in the form of heuristic guidelines or generally accepted dogma play an important role in the development of physical theories. In particular, philosophical considerations and principles figure prominently in the work of Albert Einstein. As mentioned in the talk by Jiří Bičák at this conference, Einstein formulated the equivalence principle, an essential step on the road to general relativity, during his time in Prague 1911-1912. In this talk, I would like to discuss some aspects of cosmological models. As cosmology is an area of physics where "principles" such as the "cosmological principle" or the "Copernican principle" play a prominent role in motivating the class of models which form part of the current standard model, I will start by comparing the role of the equivalence principle to that of the principles used in cosmology. I will then briefly describe the standard model of cosmology to give a perspective on some mathematical problems and conjectures on cosmological models, which are discussed in the later part of this paper.
Structural mechanisms of formation of adiabatic shear bands
Directory of Open Access Journals (Sweden)
Mikhail Sokovikov
2016-10-01
Full Text Available The paper focuses on the experimental and theoretical study of plastic deformation instability and localization in materials subjected to dynamic loading and high-velocity perforation. We investigate the behavior of samples dynamically loaded during Hopkinson-Kolsky pressure bar tests in a regime close to simple shear conditions. Experiments were carried out using samples of a special shape and appropriate test rigging, which allowed us to realize a plane strain state. Also, the shear-compression specimens proposed in were investigated. The lateral surface of the samples was investigated in a real-time mode with the aid of a high-speed infra-red camera CEDIP Silver 450M. The temperature field distribution obtained at different time made it possible to trace the evolution of plastic strain localization. Use of a transmission electron microscope for studying the surface of samples showed that in the regions of strain localization there are parts taking the shape of bands and honeycomb structure in the deformed layer. The process of target perforation involving plug formation and ejection was investigated using a high-speed infra-red camera. A specially designed ballistic set-up for studying perforation was used to test samples in different impulse loading regimes followed by plastic flow instability and plug ejection. Changes in the velocity of the rear surface at different time of plug ejection were analyzed by Doppler interferometry techniques. The microstructure of tested samples was analyzed using an optical interferometer-profilometer and a scanning electron microscope. The subsequent processing of 3D deformation relief data enabled estimation of the distribution of plastic strain gradients at different time of plug formation and ejection. It has been found that in strain localization areas the subgrains are elongated taking the shape of bands and undergo fragmentation leading to the formation of super-microcrystalline structure, in which the
Cosmological constant in the quantum multiverse
International Nuclear Information System (INIS)
Larsen, Grant; Nomura, Yasunori; Roberts, Hannes L. L.
2011-01-01
Recently, a new framework for describing the multiverse has been proposed which is based on the principles of quantum mechanics. The framework allows for well-defined predictions, both regarding global properties of the universe and outcomes of particular experiments, according to a single probability formula. This provides complete unification of the eternally inflating multiverse and many worlds in quantum mechanics. In this paper, we elucidate how cosmological parameters can be calculated in this framework, and study the probability distribution for the value of the cosmological constant. We consider both positive and negative values, and find that the observed value is consistent with the calculated distribution at an order of magnitude level. In particular, in contrast to the case of earlier measure proposals, our framework prefers a positive cosmological constant over a negative one. These results depend only moderately on how we model galaxy formation and life evolution therein.
Hydration characteristics and structure formation of cement pastes containing metakaolin
Directory of Open Access Journals (Sweden)
Dvorkin Leonid
2018-01-01
crystalline structure with dominance of partially crystalized hydrosilicates and gel-like formations.
Entropy, matter, and cosmology.
Prigogine, I; Géhéniau, J
1986-09-01
The role of irreversible processes corresponding to creation of matter in general relativity is investigated. The use of Landau-Lifshitz pseudotensors together with conformal (Minkowski) coordinates suggests that this creation took place in the early universe at the stage of the variation of the conformal factor. The entropy production in this creation process is calculated. It is shown that these dissipative processes lead to the possibility of cosmological models that start from empty conditions and gradually build up matter and entropy. Gravitational entropy takes a simple meaning as associated to the entropy that is necessary to produce matter. This leads to an extension of the third law of thermodynamics, as now the zero point of entropy becomes the space-time structure out of which matter is generated. The theory can be put into a convenient form using a supplementary "C" field in Einstein's field equations. The role of the C field is to express the coupling between gravitation and matter leading to irreversible entropy production.
International Nuclear Information System (INIS)
Buchbinder, Evgeny I.; Khoury, Justin; Ovrut, Burt A.
2007-01-01
In this paper, we present a new scenario of the early universe that contains a pre-big bang ekpyrotic phase. By combining this with a ghost condensate, the theory explicitly violates the null energy condition without developing any ghostlike instabilities. Thus the contracting universe goes through a nonsingular bounce and evolves smoothly into the expanding post-big bang phase. The curvature perturbation acquires a scale-invariant spectrum well before the bounce in this scenario. It is sourced by the scale-invariant entropy perturbation engendered by two ekpyrotic scalar fields, a mechanism recently proposed by Lehners et al. Since the background geometry is nonsingular at all times, the curvature perturbation remains nearly constant on superhorizon scales. It emerges from the bounce unscathed and imprints a scale-invariant spectrum of density fluctuations in the matter-radiation fluid at the onset of the hot big bang phase. The ekpyrotic potential can be chosen so that the spectrum has a red tilt, in accordance with the recent data from WMAP. As in the original ekpyrotic scenario, the model predicts a negligible gravity wave signal on all observable scales. As such ''new ekpyrotic cosmology'' provides a consistent and distinguishable alternative to inflation to account for the origin of the seeds of large-scale structure
Mediator structure and rearrangements required for holoenzyme formation.
Tsai, Kuang-Lei; Yu, Xiaodi; Gopalan, Sneha; Chao, Ti-Chun; Zhang, Ying; Florens, Laurence; Washburn, Michael P; Murakami, Kenji; Conaway, Ronald C; Conaway, Joan W; Asturias, Francisco J
2017-04-13
The conserved Mediator co-activator complex has an essential role in the regulation of RNA polymerase II transcription in all eukaryotes. Understanding the structure and interactions of Mediator is crucial for determining how the complex influences transcription initiation and conveys regulatory information to the basal transcription machinery. Here we present a 4.4 Å resolution cryo-electron microscopy map of Schizosaccharomyces pombe Mediator in which conserved Mediator subunits are individually resolved. The essential Med14 subunit works as a central backbone that connects the Mediator head, middle and tail modules. Comparison with a 7.8 Å resolution cryo-electron microscopy map of a Mediator-RNA polymerase II holoenzyme reveals that changes in the structure of Med14 facilitate a large-scale Mediator rearrangement that is essential for holoenzyme formation. Our study suggests that access to different conformations and crosstalk between structural elements are essential for the Mediator regulation mechanism, and could explain the capacity of the complex to integrate multiple regulatory signals.
BOOK REVIEW: Observational Cosmology Observational Cosmology
Howell, Dale Andrew
2013-04-01
Observational Cosmology by Stephen Serjeant fills a niche that was underserved in the textbook market: an up-to-date, thorough cosmology textbook focused on observations, aimed at advanced undergraduates. Not everything about the book is perfect - some subjects get short shrift, in some cases jargon dominates, and there are too few exercises. Still, on the whole, the book is a welcome addition. For decades, the classic textbooks of cosmology have focused on theory. But for every Sunyaev-Zel'dovich effect there is a Butcher-Oemler effect; there are as many cosmological phenomena established by observations, and only explained later by theory, as there were predicted by theory and confirmed by observations. In fact, in the last decade, there has been an explosion of new cosmological findings driven by observations. Some are so new that you won't find them mentioned in books just a few years old. So it is not just refreshing to see a book that reflects the new realities of cosmology, it is vital, if students are to truly stay up on a field that has widened in scope considerably. Observational Cosmology is filled with full-color images, and graphs from the latest experiments. How exciting it is that we live in an era where satellites and large experiments have gathered so much data to reveal astounding details about the origin of the universe and its evolution. To have all the latest data gathered together and explained in one book will be a revelation to students. In fact, at times it was to me. I've picked up modern cosmological knowledge through a patchwork of reading papers, going to colloquia, and serving on grant and telescope allocation panels. To go back and see them explained from square one, and summarized succinctly, filled in quite a few gaps in my own knowledge and corrected a few misconceptions I'd acquired along the way. To make room for all these graphs and observational details, a few things had to be left out. For one, there are few derivations
Cosmological N -body simulations including radiation perturbations
DEFF Research Database (Denmark)
Brandbyge, Jacob; Rampf, Cornelius; Tram, Thomas
2017-01-01
CosmologicalN-body simulations are the standard tools to study the emergence of the observed large-scale structure of the Universe. Such simulations usually solve for the gravitational dynamics of matter within the Newtonian approximation, thus discarding general relativistic effects such as the ......CosmologicalN-body simulations are the standard tools to study the emergence of the observed large-scale structure of the Universe. Such simulations usually solve for the gravitational dynamics of matter within the Newtonian approximation, thus discarding general relativistic effects...
Structural modification in the formation of starch – silver nanocomposites
Energy Technology Data Exchange (ETDEWEB)
Begum, S. N. Suraiya; Ramasamy, Radha Perumal, E-mail: perumal.ramasamy@gmail.com [Department of Applied Science and Technology, A.C.Tech. Campus, Anna University, Chennai – 600 025 (India); Aswal, V. K. [Solid State Physics Division, Bhabha Atomic Research Center, Trombay, Mumbai (India)
2016-05-23
Polymer based nanocomposites have gained wide applications in field of battery technology. Starch is a naturally occurring polysaccharide with sustainable properties such as biodegradable, non toxic, excellent film forming capacity and it also act as reducing agent for the metal nanoparticles. In our research various concentration of silver nitrate (AgNO{sub 3}) was added to the starch solution and films were obtained using solution casting method. Surface electron microscope (SEM) of the films shows modifications depending upon the concentration of AgNO{sub 3}. Small angle neutron scattering (SANS) analysis showed that addition of silver nitrate modifies the starch to disc like structures and with increasing the AgNO{sub 3} concentration leads to the formation of fractals. This research could benefit battery technology where solid polymer membranes using starch is used.
Structural modification in the formation of starch – silver nanocomposites
International Nuclear Information System (INIS)
Begum, S. N. Suraiya; Ramasamy, Radha Perumal; Aswal, V. K.
2016-01-01
Polymer based nanocomposites have gained wide applications in field of battery technology. Starch is a naturally occurring polysaccharide with sustainable properties such as biodegradable, non toxic, excellent film forming capacity and it also act as reducing agent for the metal nanoparticles. In our research various concentration of silver nitrate (AgNO_3) was added to the starch solution and films were obtained using solution casting method. Surface electron microscope (SEM) of the films shows modifications depending upon the concentration of AgNO_3. Small angle neutron scattering (SANS) analysis showed that addition of silver nitrate modifies the starch to disc like structures and with increasing the AgNO_3 concentration leads to the formation of fractals. This research could benefit battery technology where solid polymer membranes using starch is used.
Structural modification in the formation of starch - silver nanocomposites
Begum, S. N. Suraiya; Aswal, V. K.; Ramasamy, Radha Perumal
2016-05-01
Polymer based nanocomposites have gained wide applications in field of battery technology. Starch is a naturally occurring polysaccharide with sustainable properties such as biodegradable, non toxic, excellent film forming capacity and it also act as reducing agent for the metal nanoparticles. In our research various concentration of silver nitrate (AgNO3) was added to the starch solution and films were obtained using solution casting method. Surface electron microscope (SEM) of the films shows modifications depending upon the concentration of AgNO3. Small angle neutron scattering (SANS) analysis showed that addition of silver nitrate modifies the starch to disc like structures and with increasing the AgNO3 concentration leads to the formation of fractals. This research could benefit battery technology where solid polymer membranes using starch is used.
Nano-sized Adsorbate Structure Formation in Anisotropic Multilayer System
Kharchenko, Vasyl O.; Kharchenko, Dmitrii O.; Yanovsky, Vladimir V.
2017-05-01
In this article, we study dynamics of adsorbate island formation in a model plasma-condensate system numerically. We derive the generalized reaction-diffusion model for adsorptive multilayer system by taking into account anisotropy in transfer of adatoms between neighbor layers induced by electric field. It will be found that with an increase in the electric field strength, a structural transformation from nano-holes inside adsorbate matrix toward separated nano-sized adsorbate islands on a substrate is realized. Dynamics of adsorbate island sizes and corresponding distributions are analyzed in detail. This study provides an insight into details of self-organization of adatoms into nano-sized adsorbate islands in anisotropic multilayer plasma-condensate systems.
Structure formation in inhomogeneous Early Dark Energy models
International Nuclear Information System (INIS)
Batista, R.C.; Pace, F.
2013-01-01
We study the impact of Early Dark Energy fluctuations in the linear and non-linear regimes of structure formation. In these models the energy density of dark energy is non-negligible at high redshifts and the fluctuations in the dark energy component can have the same order of magnitude of dark matter fluctuations. Since two basic approximations usually taken in the standard scenario of quintessence models, that both dark energy density during the matter dominated period and dark energy fluctuations on small scales are negligible, are not valid in such models, we first study approximate analytical solutions for dark matter and dark energy perturbations in the linear regime. This study is helpful to find consistent initial conditions for the system of equations and to analytically understand the effects of Early Dark Energy and its fluctuations, which are also verified numerically. In the linear regime we compute the matter growth and variation of the gravitational potential associated with the Integrated Sachs-Wolf effect, showing that these observables present important modifications due to Early Dark Energy fluctuations, though making them more similar to the ΛCDM model. We also make use of the Spherical Collapse model to study the influence of Early Dark Energy fluctuations in the nonlinear regime of structure formation, especially on δ c parameter, and their contribution to the halo mass, which we show can be of the order of 10%. We finally compute how the number density of halos is modified in comparison to the ΛCDM model and address the problem of how to correct the mass function in order to take into account the contribution of clustered dark energy. We conclude that the inhomogeneous Early Dark Energy models are more similar to the ΛCDM model than its homogeneous counterparts
International Nuclear Information System (INIS)
Danchev, V.I.; Komarnitskij, G.M.; Levin, V.N.; Shumlyanskij, V.A.
1985-01-01
Factors, affecting mineralization processes are considered. Characteristic features of uranium-bearing provinces are as follows: the presence of crust of continental type; deep-seated tectonic structures-rises and saggings, roofs, gneiss domes, rift zones and transform fractures; specialization for uranium of sedimentary and magmatic formations; the presence of manifestation regions of deep thermal and gaseous flow, etc. In uranium-bearing provinces territories favourable for the manifestation of different types of uranium mineralization: metamorphogenetic, polygenetic and exogenetic ones, are singled out. Different epochs of uranium ore formation are established. In sedimentary masses tectonic regime and climate are of special importance, and for epigenetic deposits, formed with an aid of underground waters-hydrogeological conditions. In the limits of the main structural elements of the Earth crust and geotectonic structures of higher orders the following types of sedimentary and volcanic formations can be singled out: 1-formations with exogenous uranium mineralization; 2-formations, accumulated in the epochs of epigenous ore formation; 3-formations fav ourable for epigenous uranium deposit formation; 4-formations unfavourable for the formation and localization of uranium mineralization
Cosmology between Physics and Philosophy--Galileo to Einstein
Büttner, J.; Renn, J.
2008-06-01
The intention of the present paper is to illuminate, using the example of cosmology, some of the general processes and mechanisms involved in the development of knowledge. Rather than getting immersed in the details of the advancement of cosmological theories, we will concentrate instead on the wider context in which scientific knowledge develops. From its inception, cosmological knowledge in particular has been integrated into comprehensive worldviews. Such worldviews in turn imposed challenges on science and especially on cosmology, and, in a reciprocal development, scientific challenges were incorporated into the formation of comprehensive worldviews as presented in particular by religion. Besides this negotiation process with existing worldviews, technological challenges will be identified as another mainspring that, mediated by cultural contexts, contributed substantially to the development of cosmological knowledge.
Introduction to particle cosmology the standard model of cosmology and its open problems
Bambi, Cosimo
2016-01-01
This book introduces the basic concepts of particle cosmology and covers all the main aspects of the Big Bang Model (expansion of the Universe, Big Bang Nucleosynthesis, Cosmic Microwave Background, large scale structures) and the search for new physics (inflation, baryogenesis, dark matter, dark energy). It also includes the majority of recent discoveries, such as the precise determination of cosmological parameters using experiments like WMAP and Planck, the discovery of the Higgs boson at LHC, the non-discovery to date of supersymmetric particles, and the search for the imprint of gravitational waves on the CMB polarization by Planck and BICEP. This textbook is based on the authors’ courses on Cosmology, and aims at introducing Particle Cosmology to senior undergraduate and graduate students. It has been especially written to be accessible even for those students who do not have a strong background in General Relativity and quantum field theory. The content of this book is organized in an easy-to-use ...
The cosmological principle is not in the sky
Park, Chan-Gyung; Hyun, Hwasu; Noh, Hyerim; Hwang, Jai-chan
2017-08-01
The homogeneity of matter distribution at large scales, known as the cosmological principle, is a central assumption in the standard cosmological model. The case is testable though, thus no longer needs to be a principle. Here we perform a test for spatial homogeneity using the Sloan Digital Sky Survey Luminous Red Galaxies (LRG) sample by counting galaxies within a specified volume with the radius scale varying up to 300 h-1 Mpc. We directly confront the large-scale structure data with the definition of spatial homogeneity by comparing the averages and dispersions of galaxy number counts with allowed ranges of the random distribution with homogeneity. The LRG sample shows significantly larger dispersions of number counts than the random catalogues up to 300 h-1 Mpc scale, and even the average is located far outside the range allowed in the random distribution; the deviations are statistically impossible to be realized in the random distribution. This implies that the cosmological principle does not hold even at such large scales. The same analysis of mock galaxies derived from the N-body simulation, however, suggests that the LRG sample is consistent with the current paradigm of cosmology, thus the simulation is also not homogeneous in that scale. We conclude that the cosmological principle is neither in the observed sky nor demanded to be there by the standard cosmological world model. This reveals the nature of the cosmological principle adopted in the modern cosmology paradigm, and opens a new field of research in theoretical cosmology.
On the cosmological gravitational waves and cosmological distances
Belinski, V. A.; Vereshchagin, G. V.
2018-03-01
We show that solitonic cosmological gravitational waves propagated through the Friedmann universe and generated by the inhomogeneities of the gravitational field near the Big Bang can be responsible for increase of cosmological distances.
Directory of Open Access Journals (Sweden)
William P. Neace
2008-02-01
Full Text Available Five experiments addressed a controversy in the probability judgment literature that centers on the efficacy of framing probabilities as frequencies. The natural frequency view predicts that frequency formats attenuate errors, while the nested-sets view predicts that highlighting the set-subset structure of the problem reduces error, regardless of problem format. This study tested these predictions using a conjunction task. Previous studies reporting that frequency formats reduced conjunction errors confounded reference class with problem format. After controlling this confound, the present study's findings show that conjunction errors can be reduced using either a probability or a frequency format, that frequency effects depend upon the presence of a reference class, and that frequency formats do not promote better statistical reasoning than probability formats.
Cosmology with clusters in the CMB
International Nuclear Information System (INIS)
Majumdar, Subhabrata
2008-01-01
Ever since the seminal work by Sunyaev and Zel'dovich describing the distortion of the CMB spectrum, due to photons passing through the hot inter cluster gas on its way to us from the surface of last scattering (the so called Sunyaev-Zel'dovich effect (SZE)), small scale distortions of the CMB by clusters has been used to detect clusters as well as to do cosmology with clusters. Cosmology with clusters in the CMB can be divided into three distinct regimes: a) when the clusters are completely unresolved and contribute to the secondary CMB distortions power spectrum at small angular scales; b) when we can just about resolve the clusters so as to detect the clusters through its total SZE flux such that the clusters can be tagged and counted for doing cosmology and c) when we can completely resolve the clusters so as to measure their sizes and other cluster structural properties and their evolution with redshift. In this article, we take a look at these three aspects of SZE cluster studies and their implication for using clusters as cosmological probes. We show that clusters can be used as effective probes of cosmology, when in all of these three cases, one explores the synergy between cluster physics and cosmology as well take clues about cluster physics from the latest high precision cluster observations (for example, from Chandra and XMM - Newton). As a specific case, we show how an observationally motivated cluster SZ template can explain the CBI-excess without the need for a high σ 8 . We also briefly discuss 'self-calibration' in cluster surveys and the prospect of using clusters as an ensemble of cosmic rulers to break degeneracies arising in cluster cosmology.
International Nuclear Information System (INIS)
Schramm, D.N.; Fields, B.; Thomas, D.
1992-01-01
The possible implications of the quark-hadron transition for cosmology are explored. Possible surviving signatures are discussed. In particular, the possibility of generating a dark matter candidate such as strange nuggets or planetary mass black holes is noted. Much discussion is devoted to the possible role of the transition for cosmological nucleosynthesis. It is emphasized that even an optimized first order phase transition will not significantly alter the nucleosynthesis constraints on the cosmological baryon density nor on neutrino counting. However, it is noted that Be and B observations in old stars may eventually be able to be a signature of a cosmologically significant quark-hadron transition. It is pointed out that the critical point in this regard is whether the observed B/Be ratio can be produced by spallation processes or requires cosmological input. Spallation cannot produce a B/Be ratio below 7.6. A supporting signature would be Be and B ratios to oxygen that greatly exceed galactic values. At present, all data is still consistent with a spallagenic origin
International Nuclear Information System (INIS)
Tsytovich, V.N.
2005-01-01
It is demonstrated that a homogeneous dusty plasma is universally unstable to form structures. The effect of collective grain attraction is a basic phenomenon for the proposed new paradigm (general principles) for the plasma crystal formation
On the interplay between cosmological shock waves and their environment
Martin-Alvarez, Sergio; Planelles, Susana; Quilis, Vicent
2017-05-01
Cosmological shock waves are tracers of the thermal history of the structures in the Universe. They play a crucial role in redistributing the energy within the cosmic structures and are also amongst the main ingredients of galaxy and galaxy cluster formation. Understanding this important function requires a proper description of the interplay between shocks and the different environments where they can be found. In this paper, an Adaptive Mesh Refinement (AMR) Eulerian cosmological simulation is analysed by means of a shock-finding algorithm that allows to generate shock wave maps. Based on the population of dark matter halos and on the distribution of density contrast in the simulation, we classify the shocks in five different environments. These range from galaxy clusters to voids. The shock distribution function and the shocks power spectrum are studied for these environments dynamics. We find that shock waves on different environments undergo different formation and evolution processes, showing as well different characteristics. We identify three different phases of formation, evolution and dissipation of these shock waves, and an intricate migration between distinct environments and scales. Shock waves initially form at external, low density regions and are merged and amplified through the collapse of structures. Shock waves and cosmic structures follow a parallel evolution. Later on, shocks start to detach from them and dissipate. We also find that most of the power that shock waves dissipate is found at scales of k ˜0.5 Mpc^{-1}, with a secondary peak at k ˜8 Mpc^{-1}. The evolution of the shocks power spectrum confirms that shock waves evolution is coupled and conditioned by their environment.
Molecular Cloud Structures and Massive Star Formation in N159
Nayak, O.; Meixner, M.; Fukui, Y.; Tachihara, K.; Onishi, T.; Saigo, K.; Tokuda, K.; Harada, R.
2018-02-01
The N159 star-forming region is one of the most massive giant molecular clouds (GMCs) in the Large Magellanic Cloud (LMC). We show the 12CO, 13CO, CS molecular gas lines observed with ALMA in N159 west (N159W) and N159 east (N159E). We relate the structure of the gas clumps to the properties of 24 massive young stellar objects (YSOs) that include 10 newly identified YSOs based on our search. We use dendrogram analysis to identify properties of the molecular clumps, such as flux, mass, linewidth, size, and virial parameter. We relate the YSO properties to the molecular gas properties. We find that the CS gas clumps have a steeper size–linewidth relation than the 12CO or 13CO gas clumps. This larger slope could potentially occur if the CS gas is tracing shocks. The virial parameters of the 13CO gas clumps in N159W and N159E are low (<1). The threshold for massive star formation in N159W is 501 M ⊙ pc‑2, and the threshold for massive star formation in N159E is 794 M ⊙ pc‑2. We find that 13CO is more photodissociated in N159E than N159W. The most massive YSO in N159E has cleared out a molecular gas hole in its vicinity. All the massive YSO candidates in N159E have a more evolved spectral energy distribution type in comparison to the YSO candidates in N159W. These differences lead us to conclude that the giant molecular cloud complex in N159E is more evolved than the giant molecular cloud complex in N159W.
Testing ΛCDM cosmology at turnaround: where to look for violations of the bound?
International Nuclear Information System (INIS)
Tanoglidis, D.; Pavlidou, V.; Tomaras, T.N.
2015-01-01
In ΛCDM cosmology, structure formation is halted shortly after dark energy dominates the mass/energy budget of the Universe. A manifestation of this effect is that in such a cosmology the turnaround radius—the non-expanding mass shell furthest away from the center of a structure— has an upper bound. Recently, a new, local, test for the existence of dark energy in the form of a cosmological constant was proposed based on this turnaround bound. Before designing an experiment that, through high-precision determination of masses and —independently— turnaround radii, will challenge ΛCDM cosmology, we have to answer two important questions: first, when turnaround-scale structures are predicted to be close enough to their maximum size, so that a possible violation of the bound may be observable. Second, which is the best mass scale to target for possible violations of the bound. These are the questions we address in the present work. Using the Press-Schechter formalism, we find that turnaround structures have in practice already stopped forming, and consequently, the turnaround radius of structures must be very close to the maximum value today. We also find that the mass scale of ∼ 10 13 M ⊙ characterizes the turnaround structures that start to form in a statistically important number density today —and even at an infinite time in the future, since structure formation has almost stopped. This mass scale also separates turnaround structures with qualitatively different cosmological evolution: smaller structures are no longer readjusting their mass distribution inside the turnaround scale, they asymptotically approach their ultimate abundance from higher values, and they are common enough to have, at some epoch, experienced major mergers with structures of comparable mass; larger structures exhibit the opposite behavior. We call this mass scale the transitional mass scale and we argue that it is the optimal for the purpose outlined above. As a corollary
Energy Technology Data Exchange (ETDEWEB)
Bouhmadi-Lopez, Mariam [Universidade da Beira Interior, Departamento de Fisica, Covilha (Portugal); Centro de Matematica e Aplicacoes da Universidade da Beira Interior (CMA-UBI), Covilha (Portugal); University of the Basque Country UPV/EHU, Department of Theoretical Physics, Bilbao (Spain); IKERBASQUE, Basque Foundation for Science, Bilbao (Spain); Chen, Che-Yu [National Taiwan University, Department of Physics, Taipei (China); National Taiwan University, Graduate Institute of Astrophysics, Taipei (China); Chen, Pisin [National Taiwan University, Department of Physics, Taipei (China); National Taiwan University, LeCosPA, Taipei (China); National Taiwan University, Graduate Institute of Astrophysics, Taipei (China); Stanford University, SLAC National Accelerator Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Stanford, CA (United States)
2015-02-01
The Eddington-inspired-Born-Infeld scenario (EiBI) can prevent the big bang singularity for a matter content whose equation of state is constant and positive. In a recent paper [Bouhmadi-Lopez et al. (Eur. Phys. J. C 74:2802, 2014)] we showed that, on the contrary, it is impossible to smooth a big rip in the EiBI setup. In fact the situations are still different for other singularities. In this paper we show that a big freeze singularity in GR can in some cases be smoothed to a sudden or a type IV singularity under the EiBI scenario. Similarly, a sudden or a type IV singularity in GR can be replaced in some regions of the parameter space by a type IV singularity or a loitering behaviour, respectively, in the EiBI framework. Furthermore, we find that the auxiliary metric related to the physical connection usually has a smoother behaviour than that based on the physical metric. In addition, we show that bound structures close to a big rip or a little rip will be destroyed before the advent of the singularity and will remain bound close to a sudden, big freeze or type IV singularity. We then constrain the model following a cosmographic approach, which is well known to be model independent, for a given Friedmann-Lemaitre-Robertson-Walker geometry. It turns out that among the various past or present singularities, the cosmographic analysis can pick up the physical region that determines the occurrence of a type IV singularity or a loitering effect in the past. Moreover, to determine which of the future singularities or doomsdays is more probable, observational constraints on the higher-order cosmographic parameters are required. (orig.)
Tomaschitz, R
1994-01-01
Spinor fields are studied in infinite, topologically multiply connected Robertson-Walker cosmologies. Unitary spinor representations for the discrete covering groups of the spacelike slices are constructed. The spectral resolution of Dirac's equation is given in terms of horospherical elementary waves, on which the treatment of spin and energy is based in these cosmologies. The meaning of the energy and the particle-antiparticle concept is explained in the context of this varying cosmic background. Discrete symmetries, in particular inversions of the multiply connected spacelike slices, are studied. The violation of the unitarity of the parity operator, due to self-interference of P-reflected wave packets, is discussed. The violation of the CP and CPT invariance - already on the level of the free Dirac equation on this cosmological background - is pointed out.
DEFF Research Database (Denmark)
Skaanes, Thea
2015-01-01
Abstract: This article concerns Hadza cosmology examined through objects, rituals and the Hadza concept of epeme. A brief background to the Hadza and the eldwork that informs this study is followed by a close analysis of three key objects that are central to the argument presented. The objects...... are intimately linked to women and to aspects of the social and cosmological identity of the individual makers. one object is a materi- alisation of the woman’s name and it leads to an examination by interview of naming practices more generally. Naming a child gives it a spirit and places the child in a strong...... of ethnographic research indicating the potential and need for further examination of the power and role of objects in Hadza society. Keywords: Hadza, epeme, ritual, cosmology, power objects...
Silk, Joseph; Barrow, John D; Saunders, Simon
2017-01-01
Following a long-term international collaboration between leaders in cosmology and the philosophy of science, this volume addresses foundational questions at the limit of science across these disciplines, questions raised by observational and theoretical progress in modern cosmology. Space missions have mapped the Universe up to its early instants, opening up questions on what came before the Big Bang, the nature of space and time, and the quantum origin of the Universe. As the foundational volume of an emerging academic discipline, experts from relevant fields lay out the fundamental problems of contemporary cosmology and explore the routes toward finding possible solutions. Written for graduates and researchers in physics and philosophy, particular efforts are made to inform academics from other fields, as well as the educated public, who wish to understand our modern vision of the Universe, related philosophical questions, and the significant impacts on scientific methodology.
Perturbative Gaussianizing transforms for cosmological fields
Hall, Alex; Mead, Alexander
2018-01-01
Constraints on cosmological parameters from large-scale structure have traditionally been obtained from two-point statistics. However, non-linear structure formation renders these statistics insufficient in capturing the full information content available, necessitating the measurement of higher order moments to recover information which would otherwise be lost. We construct quantities based on non-linear and non-local transformations of weakly non-Gaussian fields that Gaussianize the full multivariate distribution at a given order in perturbation theory. Our approach does not require a model of the fields themselves and takes as input only the first few polyspectra, which could be modelled or measured from simulations or data, making our method particularly suited to observables lacking a robust perturbative description such as the weak-lensing shear. We apply our method to simulated density fields, finding a significantly reduced bispectrum and an enhanced correlation with the initial field. We demonstrate that our method reconstructs a large proportion of the linear baryon acoustic oscillations, improving the information content over the raw field by 35 per cent. We apply the transform to toy 21 cm intensity maps, showing that our method still performs well in the presence of complications such as redshift-space distortions, beam smoothing, pixel noise and foreground subtraction. We discuss how this method might provide a route to constructing a perturbative model of the fully non-Gaussian multivariate likelihood function.
Gonzalez-Mestres, L.
2014-04-01
Detailed analyses of WMAP and Planck data can have significant implications for noncyclic pre-Big Bang approaches incorporating a new fundamental scale beyond the Planck scale and, potentially, new ultimate constituents of matter with unconventional basic properties as compared to standard particles. Cosmic-ray experiments at the highest energies can also yield relevant information. Hopefully, future studies will be able to deal with alternatives: i) to standard physics for the structure of the physical vacuum, the nature of space-time, the validity of quantum field theory and conventional symmetries, the interpretation of string-like theories...; ii) to standard cosmology concerning the origin and evolution of our Universe, unconventional solutions to the cosmological constant problem, the validity of inflationary scenarios, the need for dark matter and dark energy... Lorentz-like symmetries for the properties of matter can then be naturally stable space-time configurations resulting from more general primordial scenarios that incorporate physics beyond the Planck scale and describe the formation and evolution of the physical vacuum. A possible answer to the question of the origin of half-integer spins can be provided by a primordial spinorial space-time with two complex coordinates instead of the conventional four real ones, leading to a really new cosmology. We discuss basic questions and phenomenological topics concerning noncyclic pre-Big Bang cosmologies and potentially related physics.
International Nuclear Information System (INIS)
Silk, J.; Di Cintio, A.; Dvorkin, I.
2014-01-01
Galaxy formation is at the forefront of observation and theory in cosmology. An improved understanding is essential for improving our knowledge both of the cosmological parameters, of the contents of the universe, and of our origins. In these lectures intended for graduate students, galaxy formation theory is reviewed and confronted with recent observational issues. In lecture 1, the following topics are presented: star formation considerations, including IMF, star formation efficiency and star formation rate, the origin of the galaxy luminosity function, and feedback in dwarf galaxies. In lecture 2, we describe formation of disks and massive spheroids, including the growth of supermassive black holes, negative feedback in spheroids, the AGN-star formation connection, star formation rates at high redshift and the baryon fraction in galaxies.
Cosmology and the early universe
Di Bari, Pasquale
2018-01-01
This book discusses cosmology from both an observational and a strong theoretical perspective. The first part focuses on gravitation, notably the expansion of the universe and determination of cosmological parameters, before moving onto the main emphasis of the book, the physics of the early universe, and the connections between cosmological models and particle physics. Readers will gain a comprehensive account of cosmology and the latest observational results, without requiring prior knowledge of relativistic theories, making the text ideal for students.
Soft theorems for shift-symmetric cosmologies
Finelli, Bernardo; Goon, Garrett; Pajer, Enrico; Santoni, Luca
2018-03-01
We derive soft theorems for single-clock cosmologies that enjoy a shift symmetry. These so-called consistency conditions arise from a combination of a large diffeomorphism and the internal shift symmetry and fix the squeezed limit of all correlators with a soft scalar mode. As an application, we show that our results reproduce the squeezed bispectrum for ultra-slow-roll inflation, a particular shift-symmetric, nonattractor model which is known to violate Maldacena's consistency relation. Similar results have been previously obtained by Mooij and Palma using background-wave methods. Our results shed new light on the infrared structure of single-clock cosmological spacetimes.
Non equilibrium relativistic cosmology
International Nuclear Information System (INIS)
Novello, M.; Salim, J.M.
1982-01-01
A certain systematization through the discussion of results already known on cosmology and the presentation of new ones is given. In section 2 a brief review of the necessary mathematical background is also given. The theory of perturbation of Friedmann-like Universes is presented in section 3. The reduction of Einstein's equations for homogeneous Universes to an autonomous planar system of differential equations is done in section 4. Finally in section 5 the alternative gravitational non-minimal coupling and its consequences to cosmology are discussed. (Author) [pt
CERN. Geneva
2000-01-01
Most of the puzzles with standard big bang cosmology can be avoided if the big bang is NOT identified with the beginning of time. The short-distance cutoff and duality symmetries of superstring theory suggest a new (so-called pre-big bang) cosmology in which the birth of our Universe is the result of a long classical evolution characterized by a gravitational instability. I will motivate and describe this heretical scenario and compare its phenomenological implications with those of ortodox (post-big bang) inflation.
Exploring Cosmology with Supernovae
DEFF Research Database (Denmark)
Li, Xue
distribution of strong gravitational lensing is developed. For Type Ia supernova (SNe Ia), the rate is lower than core-collapse supernovae (CC SNe). The rate of SNe Ia declines beyond z 1:5. Based on these reasons, we investigate a potential candidate to measure cosmological distance: GRB......-SNe. They are a subclass of CC SNe. Light curves of GRB-SNe are obtained and their properties are studied. We ascertain that the properties of GRB-SNe make them another candidate for standardizable candles in measuring the cosmic distance. Cosmological parameters M and are constrained with the help of GRB-SNe. The first...
Silk, Joseph
2011-01-01
Horizons of Cosmology: Exploring Worlds Seen and Unseen is the fourth title published in the Templeton Science and Religion Series, in which scientists from a wide range of fields distill their experience and knowledge into brief tours of their respective specialties. In this volume, highly esteemed astrophysicist Joseph Silk explores the vast mysteries and speculations of the field of cosmology in a way that balances an accessible style for the general reader and enough technical detail for advanced students and professionals. Indeed, while the p
Relativistic Cosmology Revisited
Directory of Open Access Journals (Sweden)
Crothers S. J.
2007-04-01
Full Text Available In a previous paper the writer treated of particular classes of cosmological solutions for certain Einstein spaces and claimed that no such solutions exist in relation thereto. In that paper the assumption that the proper radius is zero when the line-element is singular was generally applied. This general assumption is unjustified and must be dropped. Consequently, solutions do exist in relation to the aforementioned types, and are explored herein. The concept of the Big Bang cosmology is found to be inconsistent with General Relativity
Tkachev, Igor
2017-01-01
This lecture course covers cosmology from the particle physicist perspective. Therefore, the emphasis will be on the evidence for the new physics in cosmological and astrophysical data together with minimal theoretical frameworks needed to understand and appreciate the evidence. I review the case for non-baryonic dark matter and describe popular models which incorporate it. In parallel, the story of dark energy will be developed, which includes accelerated expansion of the Universe today, the Universe origin in the Big Bang, and support for the Inflationary theory in CMBR data.
International Nuclear Information System (INIS)
Stabell, R.
1979-01-01
Einstein applied his gravitation theory to a universe model with positively curved space in 1917. In order to maintain a static universe he introduced the cosmological constant, which in the light of later nonstatic universe models, he described as his life's greatest mistake. The best known such model is the Einstein-de Sitter model, which is here discussed in some detail. The 'big bang' theory is also discussed leading to the cosmic background radiation. The early phase of the 'big bang' cosmology, the first ten seconds, and the first minutes are discussed, leading to the transparent stage. (JIW)
Cosmological models without singularities
International Nuclear Information System (INIS)
Petry, W.
1981-01-01
A previously studied theory of gravitation in flat space-time is applied to homogeneous and isotropic cosmological models. There exist two different classes of models without singularities: (i) ever-expanding models, (ii) oscillating models. The first class contains models with hot big bang. For these models there exist at the beginning of the universe-in contrast to Einstein's theory-very high but finite densities of matter and radiation with a big bang of very short duration. After short time these models pass into the homogeneous and isotropic models of Einstein's theory with spatial curvature equal to zero and cosmological constant ALPHA >= O. (author)
Difficulties with inflationary cosmology
International Nuclear Information System (INIS)
Penrose, R.
1989-01-01
According to the author, the idea of inflationary cosmology is an ingenious attempt to solve some of the major puzzles of cosmology, most notably the flatness problem, the homogeneity (horizon) problem, and the monopole problem. The homogeneity problem, in particular, is intimately connected with a largely unappreciated, but profound puzzle presented by the second law of thermodynamics. The author argues that the mechanism of inflation does not, by itself, come to terms with this and consequently, comes nowhere close to providing an understanding of the large-scale homogeneity of the universe
International Nuclear Information System (INIS)
Marrakchi, A.E.L.; Tapia, V.
1992-05-01
Some cosmological implications of the recently proposed fourth-rank theory of gravitation are studied. The model exhibits the possibility of being free from the horizon and flatness problems at the price of introducing a negative pressure. The field equations we obtain are compatible with k obs =0 and Ω obs t clas approx. 10 20 t Planck approx. 10 -23 s. When interpreted at the light of General Relativity the treatment is shown to be almost equivalent to that of the standard model of cosmology combined with the inflationary scenario. Hence, an interpretation of the negative pressure hypothesis is provided. (author). 8 refs
Cosmology, cosmogony and theogony in Parmenides’ poem
Directory of Open Access Journals (Sweden)
Luis Andrés Bredlow
2010-12-01
Full Text Available The aim of this paper is to offer a fresh reconstruction of Parmenides’ system of the physical world, duly distinguishing the cosmological, cosmogonic and theogonic moments of the theory, whose confusion has been a main source of misunderstanding in earlier interpretations. In particular, the system of wreaths or bands of B 12 and A 37 does not represent the present order of the universe, but the general structure of matter, as well as the initial stage of the cosmogony (section 1, as can be substantiated also from Simplicius’ reading of the fragments (section 2. This distinction will allow a tentative reconstruction of Parmenides’ cosmogony (section 3 and cosmology, whose most striking feature is the position of the fixed stars below the sun and the moon, paralleled in Anaximander and —as I will try to show— in the cosmology of the orphic Derveni Papyrus (section 4.
Cosmological Constraints on Mirror Matter Parameters
International Nuclear Information System (INIS)
Wallemacq, Quentin; Ciarcelluti, Paolo
2014-01-01
Up-to-date estimates of the cosmological parameters are presented as a result of numerical simulations of cosmic microwave background and large scale structure, considering a flat Universe in which the dark matter is made entirely or partly of mirror matter, and the primordial perturbations are scalar adiabatic and in linear regime. A statistical analysis using the Markov Chain Monte Carlo method allows to obtain constraints of the cosmological parameters. As a result, we show that a Universe with pure mirror dark matter is statistically equivalent to the case of an admixture with cold dark matter. The upper limits for the ratio of the temperatures of ordinary and mirror sectors are around 0.3 for both the cosmological models, which show the presence of a dominant fraction of mirror matter, 0.06≲Ω_m_i_r_r_o_rh"2≲0.12.
A numerical relativity scheme for cosmological simulations
Daverio, David; Dirian, Yves; Mitsou, Ermis
2017-12-01
Cosmological simulations involving the fully covariant gravitational dynamics may prove relevant in understanding relativistic/non-linear features and, therefore, in taking better advantage of the upcoming large scale structure survey data. We propose a new 3 + 1 integration scheme for general relativity in the case where the matter sector contains a minimally-coupled perfect fluid field. The original feature is that we completely eliminate the fluid components through the constraint equations, thus remaining with a set of unconstrained evolution equations for the rest of the fields. This procedure does not constrain the lapse function and shift vector, so it holds in arbitrary gauge and also works for arbitrary equation of state. An important advantage of this scheme is that it allows one to define and pass an adaptation of the robustness test to the cosmological context, at least in the case of pressureless perfect fluid matter, which is the relevant one for late-time cosmology.
Field theoretic approach to structure formation in an anisotropic medium
International Nuclear Information System (INIS)
Joy, Minu; Kuriakose, V.C.
2003-01-01
Considering a real scalar field distribution which is assumed to be locally anisotropic and coupled to a Bianchi type-I background spacetime, the energy density and pressure associated with the anisotropic matter field distribution are evaluated. The vanishing of the expectation values of the nondiagonal components of T μν allows us to treat the scalar field in complete analogy with the distribution of fluid. The primeval density perturbations produced by the vacuum fluctuations of the scalar field are considered and the Jeans criterion for structure formation is obtained. The metric and matter field perturbations are considered and it is found that for the present anisotropic case the perturbations of the pressure in the radial and tangential directions are different. The Jeans instability is discussed and the Jeans wave number for the present case is evaluated. It is found that for the anisotropic case the Jeans length depends on the velocity of the fluctuations in the radial and transverse directions and thus on the direction of propagation of the perturbations
Baryon bias and structure formation in an accelerating universe
International Nuclear Information System (INIS)
Amendola, Luca; Tocchini-Valentini, Domenico
2002-01-01
In most models of dark energy the structure formation stops after the accelerated expansion begins. In contrast, we show that the coupling of dark energy to dark matter may induce the growth of perturbations even in the accelerated regime. In particular, we show that this occurs in the models proposed to solve the cosmic coincidence problem, in which the ratio of dark energy to dark matter is constant. Depending on the parameters, the growth may be much faster than in a standard matter-dominated era. Moreover, if the dark energy couples only to dark matter and not to baryons, as requested by the constraints imposed by local gravity measurements, the baryon fluctuations develop a constant, scale-independent, large-scale bias which is in principle directly observable. We find that a lower limit to the baryon bias b>0.5 requires the total effective parameter of state w e =1+p/ρ to be larger than 0.6 while a limit b>0.73 would rule out the model
Quantum cosmology and the early universe
International Nuclear Information System (INIS)
Hartle, J.B.
1983-01-01
Despite the absence of a complete and manageable quantum theory of gravity, it is shown that considerable progress has been made in constructing cosmological models displaying the possible implications such a theory might have for the structure and dynamics of the very early universe. (U.K.)
Constraints on cosmological models from strong gravitational lensing systems
International Nuclear Information System (INIS)
Cao, Shuo; Pan, Yu; Zhu, Zong-Hong; Biesiada, Marek; Godlowski, Wlodzimierz
2012-01-01
Strong lensing has developed into an important astrophysical tool for probing both cosmology and galaxies (their structure, formation, and evolution). Using the gravitational lensing theory and cluster mass distribution model, we try to collect a relatively complete observational data concerning the Hubble constant independent ratio between two angular diameter distances D ds /D s from various large systematic gravitational lens surveys and lensing by galaxy clusters combined with X-ray observations, and check the possibility to use it in the future as complementary to other cosmological probes. On one hand, strongly gravitationally lensed quasar-galaxy systems create such a new opportunity by combining stellar kinematics (central velocity dispersion measurements) with lensing geometry (Einstein radius determination from position of images). We apply such a method to a combined gravitational lens data set including 70 data points from Sloan Lens ACS (SLACS) and Lens Structure and Dynamics survey (LSD). On the other hand, a new sample of 10 lensing galaxy clusters with redshifts ranging from 0.1 to 0.6 carefully selected from strong gravitational lensing systems with both X-ray satellite observations and optical giant luminous arcs, is also used to constrain three dark energy models (ΛCDM, constant w and CPL) under a flat universe assumption. For the full sample (n = 80) and the restricted sample (n = 46) including 36 two-image lenses and 10 strong lensing arcs, we obtain relatively good fitting values of basic cosmological parameters, which generally agree with the results already known in the literature. This results encourages further development of this method and its use on larger samples obtained in the future
Constraints on cosmological models from strong gravitational lensing systems
Energy Technology Data Exchange (ETDEWEB)
Cao, Shuo; Pan, Yu; Zhu, Zong-Hong [Department of Astronomy, Beijing Normal University, Beijing 100875 (China); Biesiada, Marek [Department of Astrophysics and Cosmology, Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice (Poland); Godlowski, Wlodzimierz, E-mail: baodingcaoshuo@163.com, E-mail: panyu@cqupt.edu.cn, E-mail: biesiada@us.edu.pl, E-mail: godlowski@uni.opole.pl, E-mail: zhuzh@bnu.edu.cn [Institute of Physics, Opole University, Oleska 48, 45-052 Opole (Poland)
2012-03-01
Strong lensing has developed into an important astrophysical tool for probing both cosmology and galaxies (their structure, formation, and evolution). Using the gravitational lensing theory and cluster mass distribution model, we try to collect a relatively complete observational data concerning the Hubble constant independent ratio between two angular diameter distances D{sub ds}/D{sub s} from various large systematic gravitational lens surveys and lensing by galaxy clusters combined with X-ray observations, and check the possibility to use it in the future as complementary to other cosmological probes. On one hand, strongly gravitationally lensed quasar-galaxy systems create such a new opportunity by combining stellar kinematics (central velocity dispersion measurements) with lensing geometry (Einstein radius determination from position of images). We apply such a method to a combined gravitational lens data set including 70 data points from Sloan Lens ACS (SLACS) and Lens Structure and Dynamics survey (LSD). On the other hand, a new sample of 10 lensing galaxy clusters with redshifts ranging from 0.1 to 0.6 carefully selected from strong gravitational lensing systems with both X-ray satellite observations and optical giant luminous arcs, is also used to constrain three dark energy models (ΛCDM, constant w and CPL) under a flat universe assumption. For the full sample (n = 80) and the restricted sample (n = 46) including 36 two-image lenses and 10 strong lensing arcs, we obtain relatively good fitting values of basic cosmological parameters, which generally agree with the results already known in the literature. This results encourages further development of this method and its use on larger samples obtained in the future.
Conformal symmetry and holographic cosmology
Bzowski, A.W.
2013-01-01
This thesis presents a novel approach to cosmology using gauge/gravity duality. Analysis of the implications of conformal invariance in field theories leads to quantitative cosmological predictions which are in agreement with current data. Furthermore, holographic cosmology extends the theory of
Quintessence and the cosmological constant
International Nuclear Information System (INIS)
Doran, M.; Wetterich, C.
2003-01-01
Quintessence -- the energy density of a slowly evolving scalar field -- may constitute a dynamical form of the homogeneous dark energy in the universe. We review the basic idea in the light of the cosmological constant problem. Cosmological observations or a time variation of fundamental 'constants' can distinguish quintessence from a cosmological constant
Condensed matter analogues of cosmology
Kibble, Tom; Srivastava, Ajit
2013-10-01
It is always exciting when developments in one branch of physics turn out to have relevance in a quite different branch. It would be hard to find two branches farther apart in terms of energy scales than early-universe cosmology and low-temperature condensed matter physics. Nevertheless ideas about the formation of topological defects during rapid phase transitions that originated in the context of the very early universe have proved remarkably fruitful when applied to a variety of condensed matter systems. The mathematical frameworks for describing these systems can be very similar. This interconnection has led to a deeper understanding of the phenomena in condensed matter systems utilizing ideas from cosmology. At the same time, one can view these condensed matter analogues as providing, at least in a limited sense, experimental access to the phenomena of the early universe for which no direct probe is possible. As this special issue well illustrates, this remains a dynamic and exciting field. The basic idea is that when a system goes through a rapid symmetry-breaking phase transition from a symmetric phase into one with spontaneously broken symmetry, the order parameter may make different choices in different regions, creating domains that when they meet can trap defects. The scale of those domains, and hence the density of defects, is constrained by the rate at which the system goes through the transition and the speed with which order parameter information propagates. This is what has come to be known as the Kibble-Zurek mechanism. The resultant scaling laws have now been tested in a considerable variety of different systems. The earliest experiments illustrating the analogy between cosmology and condensed matter were in liquid crystals, in particular on the isotropic-to-nematic transition, primarily because it is very easy to induce the phase transition (typically at room temperature) and to image precisely what is going on. This field remains one of the
International Nuclear Information System (INIS)
Skillman, Samuel W.; Hallman, Eric J.; Burns, Jack O.; Smith, Britton D.; O'Shea, Brian W.; Turk, Matthew J.
2011-01-01
Cosmological shocks are a critical part of large-scale structure formation, and are responsible for heating the intracluster medium in galaxy clusters. In addition, they are capable of accelerating non-thermal electrons and protons. In this work, we focus on the acceleration of electrons at shock fronts, which is thought to be responsible for radio relics-extended radio features in the vicinity of merging galaxy clusters. By combining high-resolution adaptive mesh refinement/N-body cosmological simulations with an accurate shock-finding algorithm and a model for electron acceleration, we calculate the expected synchrotron emission resulting from cosmological structure formation. We produce synthetic radio maps of a large sample of galaxy clusters and present luminosity functions and scaling relationships. With upcoming long-wavelength radio telescopes, we expect to see an abundance of radio emission associated with merger shocks in the intracluster medium. By producing observationally motivated statistics, we provide predictions that can be compared with observations to further improve our understanding of magnetic fields and electron shock acceleration.
International Nuclear Information System (INIS)
Filippova, E. V.; Polyakov, K. M.; Tikhonova, T. V.; Stekhanova, T. N.; Boiko, K. M.; Sadykhov, I. G.; Tishkov, V. I.; Popov, V. O.; Labru, N.
2006-01-01
Formate dehydrogenase (FDH) from the methylotrophic bacterium Pseudomonas sp. 101 catalyzes oxidation of formate to NI 2 with the coupled reduction of nicotinamide adenine dinucleotide (NAD + ). The three-dimensional structures of the apo form (the free enzyme) and the holo form (the ternary FDH-NAD + -azide complex) of FDH have been established earlier. In the present study, the structures of FDH complexes with formate are solved at 2.19 and 2.28 A resolution by the molecular replacement method and refined to the R factors of 22.3 and 20.5%, respectively. Both crystal structures contain four protein molecules per asymmetric unit. These molecules form two dimers identical to the dimer of the apo form of FDH. Two possible formatebinding sites are found in the active site of the FDH structure. In the complexes the sulfur atom of residue Cys354 exists in the oxidized state
Indian Academy of Sciences (India)
in quality, quantity, and the scope of cosmological observations. While the ob- ... In this article, I summarize both the oral and poster presentations made at the workshop. ... the angular spectrum of CMB anisotropy with recent measurements of the power spectrum of ..... A thermodynamical treatment within the framework of.
Primack, Joel R.
2000-01-01
The cosmological parameters that I emphasize are the age of the universe $t_0$, the Hubble parameter $H_0 \\equiv 100 h$ km s$^{-1}$ Mpc$^{-1}$, the average matter density $\\Omega_m$, the baryonic matter density $\\Omega_b$, the neutrino density $\\Omega_\
Culture and Children's Cosmology
Siegal, Michael; Butterworth, George; Newcombe, Peter A.
2004-01-01
In this investigation, we examined children's knowledge of cosmology in relation to the shape of the earth and the day-night cycle. Using explicit questioning involving a choice of alternative answers and 3D models, we carried out a comparison of children aged 4-9 years living in Australia and England. Though Australia and England have a close…
Cosmological dynamical systems
Leon, Genly
2011-01-01
In this book are studied, from the perspective of the dynamical systems, several Universe models. In chapter 1 we give a bird's eye view on cosmology and cosmological problems. Chapter 2 is devoted to a brief review on some results and useful tools from the qualitative theory of dynamical systems. They provide the theoretical basis for the qualitative study of concrete cosmological models. Chapters 1 and 2 are a review of well-known results. Chapters 3, 4, 5 and 6 are devoted to our main results. In these chapters are extended and settled in a substantially different, more strict mathematical language, several results obtained by one of us in arXiv:0812.1013 [gr-qc]; arXiv:1009.0689 [gr-qc]; arXiv:0904.1577[gr-qc]; and arXiv:0909.3571 [hep-th]. In chapter 6, we provide a different approach to the subject discussed in astro-ph/0503478. Additionally, we perform a Poincar\\'e compactification process allowing to construct a global phase space containing all the cosmological information in both finite and infinite...
International Nuclear Information System (INIS)
Schramm, D.N.
1995-01-01
Primordial nucleosynthesis has established itself as one of the three pillars of Big Bang cosmology. Many of the Big Bang Nucleosynthesis reactions involve unstable nuclei. Hence there is a tight relationship hetween the subject of this conference and cosmology. The prime role of unstable nuclei in cosmology is related to lithium synthesis and the lack of cosmological synthesis of Be and B. These nuclei will thus be focused upon. Nucleosynthesis involves comparing calculated abundances with observed abundances. In general, abundance determinations are dominated by systematic rather than statistical errors, and work on bounding systematics is crucial. The quark-hadron inspired inhomogeneous calculations now unanimously agree that only relatively small variations in Ω b are possible vis-a-vis the homogeneous model; hence the robustness of Ω b ∼0.05 is now apparent. (These calculations depend critically on unstable nuclei.) The above argues that the bulk of the baryons in the universe are not producing visible light. A comparison with the ROSAT cluster data is also shown to be consistent with the standard BBN model. Ω b ∼1 seems to be definitely excluded, so if Ω TOTAL =1, as some recent observations may hint, then non-baryonic dark matter is required. The implications of the recently reported halo microlensing events are discussed. In summary, it is argued that the physics of unstable nuclei affects the fundamental dark matter argument. ((orig.))
Energy Technology Data Exchange (ETDEWEB)
Sefusatti, Emiliano; /Fermilab /CCPP, New York; Crocce, Martin; Pueblas, Sebastian; Scoccimarro, Roman; /CCPP, New York
2006-04-01
The present spatial distribution of galaxies in the Universe is non-Gaussian, with 40% skewness in 50 h{sup -1} Mpc spheres, and remarkably little is known about the information encoded in it about cosmological parameters beyond the power spectrum. In this work they present an attempt to bridge this gap by studying the bispectrum, paying particular attention to a joint analysis with the power spectrum and their combination with CMB data. They address the covariance properties of the power spectrum and bispectrum including the effects of beat coupling that lead to interesting cross-correlations, and discuss how baryon acoustic oscillations break degeneracies. They show that the bispectrum has significant information on cosmological parameters well beyond its power in constraining galaxy bias, and when combined with the power spectrum is more complementary than combining power spectra of different samples of galaxies, since non-Gaussianity provides a somewhat different direction in parameter space. In the framework of flat cosmological models they show that most of the improvement of adding bispectrum information corresponds to parameters related to the amplitude and effective spectral index of perturbations, which can be improved by almost a factor of two. Moreover, they demonstrate that the expected statistical uncertainties in {sigma}s of a few percent are robust to relaxing the dark energy beyond a cosmological constant.
McFadden, P.; Skenderis, K.
2010-01-01
We propose a holographic description of four-dimensional single-scalar inflationary universes, and show how cosmological observables, such as the primordial power spectrum, are encoded in the correlation functions of a three-dimensional quantum field theory (QFT). The holographic description
International Nuclear Information System (INIS)
Novello, M.; Salim, J.M.; Torres, J.; Oliveira, H.P. de
1989-01-01
A set of spatially homogeneous and isotropic cosmological geometries generated by a class of non-perfect is investigated fluids. The irreversibility if this system is studied in the context of causal thermodynamics which provides a useful mechanism to conform to the non-violation of the causal principle. (author) [pt
Indian Academy of Sciences (India)
This report is based on a recent work in collaboration with Bagla and Padmanabhan. [1]. In this paper, we construct cosmological models with homogeneous tachyon matter [2] to provide the dark energy component which drives acceleration of the universe (for a recent review of dark energy models, see [3]). We assume that.
Ekpyrotic and cyclic cosmology
International Nuclear Information System (INIS)
Lehners, Jean-Luc
2008-01-01
Ekpyrotic and cyclic cosmologies provide theories of the very early and of the very late universe. In these models, the big bang is described as a collision of branes - and thus the big bang is not the beginning of time. Before the big bang, there is an ekpyrotic phase with equation of state w=P/(ρ) >>1 (where P is the average pressure and ρ the average energy density) during which the universe slowly contracts. This phase resolves the standard cosmological puzzles and generates a nearly scale-invariant spectrum of cosmological perturbations containing a significant non-Gaussian component. At the same time it produces small-amplitude gravitational waves with a blue spectrum. The dark energy dominating the present-day cosmological evolution is reinterpreted as a small attractive force between our brane and a parallel one. This force eventually induces a new ekpyrotic phase and a new brane collision, leading to the idea of a cyclic universe. This review discusses the detailed properties of these models, their embedding in M-theory and their viability, with an emphasis on open issues and observational signatures
Excessive extrapolations in cosmology
Czech Academy of Sciences Publication Activity Database
Křížek, Michal; Somer, L.
2016-01-01
Roč. 22, č. 3 (2016), s. 270-280 ISSN 0202-2893 Institutional support: RVO:67985840 Keywords : cosmology * friedmann equation Subject RIV: BA - General Mathematics Impact factor: 0.734, year: 2016 http://link.springer.com/article/10.1134%2FS0202289316030105
Modified geodetic brane cosmology
International Nuclear Information System (INIS)
Cordero, Rubén; Cruz, Miguel; Molgado, Alberto; Rojas, Efraín
2012-01-01
We explore the cosmological implications provided by the geodetic brane gravity action corrected by an extrinsic curvature brane term, describing a codimension-1 brane embedded in a 5D fixed Minkowski spacetime. In the geodetic brane gravity action, we accommodate the correction term through a linear term in the extrinsic curvature swept out by the brane. We study the resulting geodetic-type equation of motion. Within a Friedmann–Robertson–Walker metric, we obtain a generalized Friedmann equation describing the associated cosmological evolution. We observe that, when the radiation-like energy contribution from the extra dimension is vanishing, this effective model leads to a self-(non-self)-accelerated expansion of the brane-like universe in dependence on the nature of the concomitant parameter β associated with the correction, which resembles an analogous behaviour in the DGP brane cosmology. Several possibilities in the description for the cosmic evolution of this model are embodied and characterized by the involved density parameters related in turn to the cosmological constant, the geometry characterizing the model, the introduced β parameter as well as the dark-like energy and the matter content on the brane. (paper)
, i.e. with the cosmology hidden. Looking Beyond Lambda with the Union Supernova Compilation by Rubin et Matrix Description Covariance Matrix with Systematics Description Full Table of All SNe Description Beyond Lambda Figures Updated 11-18-11 Contact: drubin at physics dot fsu dot edu, saul at lbl dot gov
Kevane, C J
1961-02-24
A cosmological model based on a gravitational plasma of matter and antimatter is discussed. The antigravitational interaction of matter and antimatter leads to segregation and an expansion of the plasma universe. The expansion time scale is controlled by the aggregation time scale.
Stepping out of homogeneity in loop quantum cosmology
International Nuclear Information System (INIS)
Rovelli, Carlo; Vidotto, Francesca
2008-01-01
We explore the extension of quantum cosmology outside the homogeneous approximation using the formalism of loop quantum gravity. We introduce a model where some of the inhomogeneous degrees of freedom are present, providing a tool for describing general fluctuations of quantum geometry near the initial singularity. We show that the dynamical structure of the model reduces to that of loop quantum cosmology in the Born-Oppenheimer approximation. This result corroborates the assumptions that ground loop cosmology sheds some light on the physical and mathematical relation between loop cosmology and full loop quantum gravity, and on the nature of the cosmological approximation. Finally, we show that the non-graph-changing Hamiltonian constraint considered in the context of algebraic quantum gravity provides a viable effective dynamics within this approximation
Wetzel, Andrew R.; Hopkins, Philip F.; Kim, Ji-Hoon; Faucher-Giguère, Claude-André; Kereš, Dušan; Quataert, Eliot
2016-01-01
ï¿½ 2016. The American Astronomical Society. All rights reserved. Low-mass "dwarf" galaxies represent the most significant challenges to the cold dark matter (CDM) model of cosmological structure formation. Because these faint galaxies are (best) observed within the Local Group (LG) of the Milky Way (MW) and Andromeda (M31), understanding their formation in such an environment is critical. We present first results from the Latte Project: the Milky Way on Feedback in Realistic Environments (FI...
Projective relativity, cosmology and gravitation
International Nuclear Information System (INIS)
Arcidiacono, G.
1986-01-01
This book describes the latest applications of projective geometry to cosmology and gravitation. The contents of the book are; the Poincare group and Special Relativity, the thermodynamics and electromagnetism, general relativity, gravitation and cosmology, group theory and models of universe, the special projective relativity, the Fantappie group and Big-Bang cosmology, a new cosmological projective mechanics, the plasma physics and cosmology, the projective magnetohydrodynamics field, projective relativity and waves propagation, the generalizations of the gravitational field, the general projective relativity, the projective gravitational field, the De Sitter Universe and quantum physics, the conformal relativity and Newton gravitation
Post-inflationary brane cosmology
International Nuclear Information System (INIS)
Mazumdar, Anupam
2001-01-01
The brane cosmology has invoked new challenges to the usual Big Bang cosmology. In this paper we present a brief account on thermal history of the post-inflationary brane cosmology. We have realized that it is not obvious that the post-inflationary brane cosmology would always deviate from the standard Big Bang cosmology. However, if it deviates some stringent conditions on the brane tension are to be satisfied. In this regard we study various implications on gravitino production and its abundance. We discuss Affleck-Dine mechanism for baryogenesis and make some comments on moduli and dilaton problems in this context
Open problems in string cosmology
International Nuclear Information System (INIS)
Toumbas, N.
2010-01-01
Some of the open problems in string cosmology are highlighted within the context of the recently constructed thermal and quantum superstring cosmological solutions. Emphasis is given on the high temperature cosmological regime, where it is argued that thermal string vacua in the presence of gravito-magnetic fluxes can be used to bypass the Hagedorn instabilities of string gas cosmology. This article is based on a talk given at the workshop on ''Cosmology and Strings'', Corfu, September 6-13, 2009. (Abstract Copyright [2010], Wiley Periodicals, Inc.)
Cosmology with cosmic shear observations: a review.
Kilbinger, Martin
2015-07-01
Cosmic shear is the distortion of images of distant galaxies due to weak gravitational lensing by the large-scale structure in the Universe. Such images are coherently deformed by the tidal field of matter inhomogeneities along the line of sight. By measuring galaxy shape correlations, we can study the properties and evolution of structure on large scales as well as the geometry of the Universe. Thus, cosmic shear has become a powerful probe into the nature of dark matter and the origin of the current accelerated expansion of the Universe. Over the last years, cosmic shear has evolved into a reliable and robust cosmological probe, providing measurements of the expansion history of the Universe and the growth of its structure. We review here the principles of weak gravitational lensing and show how cosmic shear is interpreted in a cosmological context. Then we give an overview of weak-lensing measurements, and present the main observational cosmic-shear results since it was discovered 15 years ago, as well as the implications for cosmology. We then conclude with an outlook on the various future surveys and missions, for which cosmic shear is one of the main science drivers, and discuss promising new weak cosmological lensing techniques for future observations.
Cosmology with decaying vacuum energy
International Nuclear Information System (INIS)
Freese, K.; Adams, F.; Frieman, J.; Mottola, E.
1987-09-01
Motivated by recent attempts to solve the cosmological constant problem, we examine the observational consequences of a vacuum energy density which decays in time. For all times later than t ∼ 1 sec, the ratio of the vacuum to the total energy density of the universe must be small. Although the vacuum cannot provide the ''missing mass'' required to close the universe today, its presence earlier in the history of the universe could have important consequences. We discuss restrictions on the vacuum energy arising from primordial nucleosynthesis, the microwave and gamma ray background spectra, and galaxy formation. A small vacuum component at the era of nucleosynthesis, 0.01 5, but in some cases would severely distort the microwave spectrum. 9 refs., 3 figs
Nanocomposites with thermosetting matrix: structure formation at the interphase boundary
Directory of Open Access Journals (Sweden)
KOROLEV Evgenij Valerjevich
2014-06-01
Full Text Available Composites with thermosetting matrix are often characterized by elevated values of operational properties – flexural and compressive strength, resistance to aggressive environments, etc. At the same time the cost of most thermosets (particularly – epoxy resins is quite high. Because of this the area of application of polymer composites in construction is limited. One of such application is the creation of multifunctional coatings. The high cost of resin dictates the need to improve the operational properties to ensure economic efficiency. So far, the known way to improve the operational properties is to produce nanoscale interfacial layer between fine filler and matrix in block. This way proved to be effective, but mechanism of the improvement is still uncertain. There areat least two different theories – so-called «adhesion theory» and «theory of deformable layer». The investigation is complicated by the variety of oligomers, hardeners (crosslinking agents and precursors of nanomodifiers. It is becoming more common lately to use adducts of aliphatic amines and epoxy oligomers as hardeners. As precursors of nanomodifiers the organosilicon compounds with siloxane bond in the main chain can be successfully used. In this paper we present results of investigation of a model system comprised of oligomer, crosslinking agent and precursor. The analysis of structure is carried out by means of Raman spectroscopy and atomic force microscopy. It is shown that at gelation point modifier has no significant effect on the chemical composition of the curing products; nevertheless, the admixture of modifier reduces the regularity of the emerging three-dimensional spatial net of thermoset. After completion of curing process the irregular spatial grid is still present. This indicates that in composites admixture of organosilicon precursors may lead to the formation of transition layer with reduced modulus of elasticity. Such layer, in turn, causes stress
The formation and deformation of protein structures with viscoelastic properties
Riemsdijk, van L.E.
2011-01-01
This study describes the formation of a gluten substitute.
Chapter 1 describes the properties that are necessary to obtain a gluten substitute.
Chapter 2 describes the formation and properties of protein particle suspensions. Two proteins with different
Quantum cosmology - science of Genesis
International Nuclear Information System (INIS)
Padmanabhan, Thanu
1987-01-01
Quantum cosmology, the marriage between the theories of the microscopic and macroscopic Universe, is examined in an attempt to explain the birth of the Universe in the 'big bang'. A quantum cosmological model of the Universe does not exist, but a rough approximation, or 'poor man's' version of quantum cosmology has been developed. The idea is to combine the theory of quantum mechanics with the classical cosmological solutions to obtain a quantum mechanical version of cosmology. Such a model of quantum cosmology is described -here the quantum universe behaves like a hydrogen atom with the Planck length replacing the Bohr radius. Properties of quantum cosmologies and the significance of the Planck length are both discussed. (UK)
Constraints on particle physics from cosmology
International Nuclear Information System (INIS)
Schramm, D.N.; Charlton, J.C.
1986-01-01
Cosmology and particle physics have become symbiotic in their relationship. In the past, developments in physics have been used to explain astrophysics problems. Recently, cosmology also has been able to place constraints on particle properties and these constraints can be tested by experiment. Thus, the flow of information at the interface of particle physics and cosmology is no longer just one-way. (Astronomy is no longer a parasite of physics.) Many examples of the interchange are described in this review. The timeline of cosmology is rapidly filling in as later events find their explanations in earlier events. In this review, the authors mention what is known about each epoch and show how it might constrain the particle models. Since a great deal of effort is devoted currently to the study of the dark matter problem, special emphasis will be placed on this issue. This study of dark matter and galaxy formation will allow us to draw upon much of what was discussed in earlier epochs. This review draws heavily on a previous review by the authors
Origins Space Telescope: Cosmology and Reionization
Vieira, Joaquin Daniel; Origins Space Telescope
2018-01-01
The Origins Space Telescope (OST) is the mission concept for the Far-Infrared Surveyor, a study in development by NASA in preparation for the 2020 Astronomy and Astrophysics Decadal Survey. Origins is planned to be a large aperture, actively-cooled telescope covering a wide span of the mid- to far-infrared spectrum. Its imagers and spectrographs will enable a variety of surveys of the sky that will discover and characterize the most distant galaxies, Milky-Way, exoplanets, and the outer reaches of our Solar system. Origins will enable flagship-quality general observing programs led by the astronomical community in the 2030s. The Science and Technology Definition Team (STDT) would like to hear your science needs and ideas for this mission. The team can be contacted at firsurveyor_info@lists.ipac.caltech.edu.A core science goal of the OST mission is to study the the cosmological history of star, galaxy, and structure formation into the epoch of reionization (EoR). OST will probe the birth of galaxies through warm molecular hydrogen emission during the cosmic dark ages. Utilizing the unique power of the infrared fine-structure emission lines, OST will trace the rise of metals from the first galaxies until today. It will quantify the dust enrichment history of the Universe, uncover its composition and physical conditions, reveal the first cosmic sources of dust, and probe the properties of the earliest star formation. OST will provide a detailed astrophysical probe into the condition of the intergalactic medium at z > 6 and the galaxies which dominate the epoch of reionization.
Constraining cosmology with the velocity function of low-mass galaxies
Schneider, Aurel; Trujillo-Gomez, Sebastian
2018-04-01
The number density of field galaxies per rotation velocity, referred to as the velocity function, is an intriguing statistical measure probing the smallest scales of structure formation. In this paper we point out that the velocity function is sensitive to small shifts in key cosmological parameters such as the amplitude of primordial perturbations (σ8) or the total matter density (Ωm). Using current data and applying conservative assumptions about baryonic effects, we show that the observed velocity function of the Local Volume favours cosmologies in tension with the measurements from Planck but in agreement with the latest findings from weak lensing surveys. While the current systematics regarding the relation between observed and true rotation velocities are potentially important, upcoming data from H I surveys as well as new insights from hydrodynamical simulations will dramatically improve the situation in the near future.
Genesis of the "Critical-Acceleration of MOND" and Its Role in "Formation of Structures"
Directory of Open Access Journals (Sweden)
Tank H. K.
2012-10-01
Full Text Available As an attempt to explain the “flattening of galaxies rotation-curves”, Milgrom proposed a Modification of Newtonian Dynamics MOND, in which he needed a new constant of nature a 0 , termed as “critical-acceleration-of MOND”, in his best-fit empirical formula. But so far it has been an ad-hoc introduction of a new constant. Whereas this article pro- poses: (i a genesis of this constant; (ii explains its recurrences in various physical sit- uations; and (iii its role in determining the size and radii of various structures, like: the electron, the proton, the nucleus-of-atom, the globular-clusters, the spiral-galaxies, the galactic-clusters and the whole universe. In this process we get a new interpretation of “the cosmological-red-shift”, that the linear part of the cosmological-red-shift may not be due to “metric-expansion-of-space”; and even the currently-believed “accelerated- expansion” may be slowing down with time.
Ion structure and sequence of ion formation in acetylene flames
Energy Technology Data Exchange (ETDEWEB)
Larionova, I.A.; Fialkov, B.S.; Kalinich, K.YA.; Fialkov, A.B.; Ospanov, B.S.
1993-06-01
Results of a study of the ion composition of acetylene-air flames burning at low pressures are reported. Data on ion formation are compared for flames of saturated hydrocarbons, oxygen-containing fuels, and acetylene. It is shown that the characteristics of ion formation in the flame front and directly ahead of it are similar to those observed in flames of other fuels. These characteristics, however, are different in the low-temperature region. 9 refs.
International Nuclear Information System (INIS)
2006-01-01
This year's Nobel prize is welcome recognition for cosmology. Back in the 1960s, according to Paul Davies' new book The Goldilocks Enigma (see 'Seeking anthropic answers' in this issue), cynics used to quip that there is 'speculation, speculation squared - and cosmology'. Anyone trying to understand the origin and fate of the universe was, in other words, dealing with questions that were simply impractical - or even impossible - to answer. But that has all changed with the development of new telescopes, satellites and data-processing techniques - to the extent that cosmology is now generally viewed as a perfectly acceptable branch of science. If anyone was in any doubt of cosmology's new status, the Royal Swedish Academy of Sciences last month gave the subject welcome recognition with the award of this year's Nobel prize to John Mather and George Smoot (see pp6-7; print version only). The pair were the driving force behind the COBE satellite that in 1992 produced the now famous image of the cosmic microwave background. The mission's data almost certainly proved that the universe started with a Big Bang, while tiny fluctuations in the temperature signal between different parts of the sky were shown to be the seeds of the stars and galaxies we see today. These results are regarded by many as the start of a new era of 'precision cosmology'. But for cosmologists, the job is far from over. There are still massive holes in our understanding of the cosmos, notably the nature of dark matter and dark energy, which together account for over 95% of the total universe. Indeed, some regard dark energy and matter as just ad hoc assumptions needed to fit the data. (Hypothetical particles called 'axions' are one possible contender for dark matter (see pp20-23; print version only), but don't bet your house on it.) Some physicists even think it makes more sense to adjust Newtonian gravity rather than invoke dark matter. But the notion that cosmology is in crisis, as argued by some
Rim formation and fission gas behaviour: some structure remarks
International Nuclear Information System (INIS)
Spino, J.; Papaioannou, D.; Ray, I.; Baron, D.
2002-01-01
In high burn-up LWR nuclear fuel an increase of the Xe-mobility is observed in the rim region according to EPMA. This often coincides with an increase of the local porosity and the grain subdivision of the material in regions around the pores. The restructuring does not always imply disappearance of the prior grain boundaries. This seems to occur in a final step. Micro-XRD studies also show a contraction of the fuel lattice in the rim zone, reflecting mainly the release of accumulated stresses during irradiation, via reordering of defects and defect complexes, including sub-grain formation and displacement of Xe traps. The lattice contraction is not measurable when the fraction of restructured areas is low and the prior grain structure still remains. Nevertheless, in such a case, even the Xe signal by EPMA is observed to decrease, anticipating the displacement of Xe inside the grains, probably towards cavities. However, the quantitative proportion of Xe in matrix and pores can not be given by EPMA. This is confirmed by TEM examinations, showing still plenty of gas bubbles inside restructured grains, in spite of the low Xe signal detected by EPMA. An alternative determination therefore appears necessary. The fission gas release (FGR) behaviour of the rim zone seems then to depend basically on the efficiency of gas retention in its porosity. The closed character of these pores and the low percolation probability derived from the high pore to grain size ratio anticipate a low incidence of open porosity. Also, mechanical tests suggest a low pore interconnection probability by microcracking. However, at very high local burn-ups (>150 GWd/tM), too high porosity values are determined compared to the values derived from immersion density and solid swelling, suggesting the potential existence of open channels. Also, abnormally high porosity values by quantitative metallography might arise from grain pullout during sample preparation. Here, a rough estimation of the release
Braun, Hans-Georg; Meyer, Evelyn
2013-01-01
The direct contact of ultrathin polymer films with a solid substrate may result in thin film rupture caused by dewetting. With crystallisable polymers such as polyethyleneoxide (PEO), molecular self-assembly into partial ordered lamella structures is studied as an additional source of pattern formation. Morphological features in ultrathin PEO films (thickness dewetting patterns and diffusion limited growth pattern of ordered lamella growing within the dewetting areas. Besides structure formation of hydrophilic PEO molecules, n-alkylterminated (hydrophobic) PEO oligomers are investigated with respect to self-organization in ultrathin films. Morphological features characteristic for pure PEO are not changed by the presence of the n-alkylgroups. PMID:23385233
Where the world stands still: turnaround as a strong test of ΛCDM cosmology
Energy Technology Data Exchange (ETDEWEB)
Pavlidou, V.; Tomaras, T.N., E-mail: pavlidou@physics.uoc.gr, E-mail: tomaras@physics.uoc.gr [Department of Physics and ITCP, University of Crete, 71003 Heraklion (Greece)
2014-09-01
Our intuitive understanding of cosmic structure formation works best in scales small enough so that isolated, bound, relaxed gravitating systems are no longer adjusting their radius; and large enough so that space and matter follow the average expansion of the Universe. Yet one of the most robust predictions of ΛCDM cosmology concerns the scale that separates these limits: the turnaround radius, which is the non-expanding shell furthest away from the center of a bound structure. We show that the maximum possible value of the turnaround radius within the framework of the ΛCDM model is, for a given mass M, equal to (3GM/Λ c{sup 2}){sup 1/3}, with G Newton's constant and c the speed of light, independently of cosmic epoch, exact nature of dark matter, or baryonic effects. We discuss the possible use of this prediction as an observational test for ΛCDM cosmology. Current data appear to favor ΛCDM over alternatives with local inhomogeneities and no Λ. However there exist several local-universe structures that have, within errors, reached their limiting size. With improved determinations of their turnaround radii and the enclosed mass, these objects may challenge the limit and ΛCDM cosmology.
Where the world stands still: turnaround as a strong test of ΛCDM cosmology
Pavlidou, V.; Tomaras, T. N.
2014-09-01
Our intuitive understanding of cosmic structure formation works best in scales small enough so that isolated, bound, relaxed gravitating systems are no longer adjusting their radius; and large enough so that space and matter follow the average expansion of the Universe. Yet one of the most robust predictions of ΛCDM cosmology concerns the scale that separates these limits: the turnaround radius, which is the non-expanding shell furthest away from the center of a bound structure. We show that the maximum possible value of the turnaround radius within the framework of the ΛCDM model is, for a given mass M, equal to (3GM/Λ c2)1/3, with G Newton's constant and c the speed of light, independently of cosmic epoch, exact nature of dark matter, or baryonic effects. We discuss the possible use of this prediction as an observational test for ΛCDM cosmology. Current data appear to favor ΛCDM over alternatives with local inhomogeneities and no Λ. However there exist several local-universe structures that have, within errors, reached their limiting size. With improved determinations of their turnaround radii and the enclosed mass, these objects may challenge the limit and ΛCDM cosmology.
Importance of intrinsic properties of dense caseinate dispersions for structure formation
Manski, J.M.; Riemsdijk, van L.E.; Goot, van der A.J.; Boom, R.M.
2007-01-01
Rheological measurements of dense calcium caseinate and sodium caseinate dispersions (15%) provided insight into the factors determining shear-induced structure formation in caseinates. Calcium caseinate at a sufficiently high concentration (30%) was shown to form highly anisotropic structures
Study of the cosmological evolution of the magnetic field
International Nuclear Information System (INIS)
Dubois, Yohan
2008-01-01
In numerical models within the standard hierarchical structure formation, galaxies contain too much stars in comparison with observations. That is called the over-cooling dilemma. I have studied the galactic wind formation produced by the supernovae explosions using the numerical code RAMSES and a bunch of analytical tools. I have underlined the central role of the infalling gas accreting on galactic disks, and I have determined the conditions under which this accretion can prevent any gas ejection on large scales. It appears that winds are unable to elucidate the over-cooling problem in quiescent star forming galaxies. On the other hand, dwarf galaxies, capable to form such super-winds, are responsible for the metallic and magnetic enrichment of the extra-galactic medium. Using the same numerical tool, I performed the first simulation of the formation of a galactic win with magnetic fields. Numerical simulations of galactic wind formation with magnetic fields show the necessity of some amplification process occurring in galaxies: associated to a strong stellar dynamo, supernovae explosions can originate the residual magnetic field of the Universe. The magnetic field present on large scales is therefore amplified when the hot gas of the galaxy cluster collapses. By achieving the first magnetic cosmological simulation of the formation of a cluster and its galaxies, I was able to point out the necessity of accounting for the cooling processes to properly describe the magnetic field evolution inside the cluster core and to reconcile simulations with observational values. (author) [fr
A cosmological solution to the Impossibly Early Galaxy Problem
Yennapureddy, Manoj K.; Melia, Fulvio
2018-06-01
To understand the formation and evolution of galaxies at redshifts 0 ≲ z ≲ 10, one must invariably introduce specific models (e.g., for the star formation) in order to fully interpret the data. Unfortunately, this tends to render the analysis compliant to the theory and its assumptions, so consensus is still somewhat elusive. Nonetheless, the surprisingly early appearance of massive galaxies challenges the standard model, and the halo mass function estimated from galaxy surveys at z ≳ 4 appears to be inconsistent with the predictions of ΛCDM, giving rise to what has been termed "The Impossibly Early Galaxy Problem" by some workers in the field. A simple resolution to this question may not be forthcoming. The situation with the halos themselves, however, is more straightforward and, in this paper, we use linear perturbation theory to derive the halo mass function over the redshift range 0 ≲ z ≲ 10 for the Rh = ct universe. We use this predicted halo distribution to demonstrate that both its dependence on mass and its very weak dependence on redshift are compatible with the data. The difficulties with ΛCDM may eventually be overcome with refinements to the underlying theory of star formation and galaxy evolution within the halos. For now, however, we demonstrate that the unexpected early formation of structure may also simply be due to an incorrect choice of the cosmology, rather than to yet unknown astrophysical issues associated with the condensation of mass fluctuations and subsequent galaxy formation.
DEFF Research Database (Denmark)
Teilum, K; Kragelund, B B; Knudsen, J
2000-01-01
A burst phase in the early folding of the four-helix two-state folder protein acyl-coenzyme A binding protein (ACBP) has been detected using quenched-flow in combination with site-specific NMR-detected hydrogen exchange. Several of the burst phase structures coincide with a structure consisting...... of eight conserved hydrophobic residues at the interface between the two N and C-terminal helices. Previous mutation studies have shown that the formation of this structure is rate limiting for the final folding of ACBP. The burst phase structures observed in ACBP are different from the previously reported...
CERN. Geneva
2017-01-01
Extensions of Einstein’s theory of General Relativity are under investigation as a potential explanation of the accelerating expansion rate of the universe. I’ll present a cosmologist’s overview of attempts to test these ideas in an efficient and unbiased manner. I’ll start by introducing the bestiary of alternative gravity theories that have been put forwards. This proliferation of models motivates us to develop model-independent, agnostic tools for comparing the theory space to cosmological data. I’ll introduce the effective field theory for cosmological perturbations, a framework designed to unify modified gravity theories in terms of a manageable set of parameters. Having outlined the formalism, I’ll talk about the current constraints on this framework, and the improvements expected from the next generation of large galaxy clustering, weak lensing and intensity mapping experiments.
Nonlocal teleparallel cosmology.
Bahamonde, Sebastian; Capozziello, Salvatore; Faizal, Mir; Nunes, Rafael C
2017-01-01
Even though it is not possible to differentiate general relativity from teleparallel gravity using classical experiments, it could be possible to discriminate between them by quantum gravitational effects. These effects have motivated the introduction of nonlocal deformations of general relativity, and similar effects are also expected to occur in teleparallel gravity. Here, we study nonlocal deformations of teleparallel gravity along with its cosmological solutions. We observe that nonlocal teleparallel gravity (like nonlocal general relativity) is consistent with the present cosmological data obtained by SNe Ia + BAO + CC + [Formula: see text] observations. Along this track, future experiments probing nonlocal effects could be used to test whether general relativity or teleparallel gravity gives the most consistent picture of gravitational interaction.
Bojowald, Martin
2015-02-01
In quantum cosmology, one applies quantum physics to the whole universe. While no unique version and no completely well-defined theory is available yet, the framework gives rise to interesting conceptual, mathematical and physical questions. This review presents quantum cosmology in a new picture that tries to incorporate the importance of inhomogeneity. De-emphasizing the traditional minisuperspace view, the dynamics is rather formulated in terms of the interplay of many interacting 'microscopic' degrees of freedom that describe the space-time geometry. There is thus a close relationship with more-established systems in condensed-matter and particle physics even while the large set of space-time symmetries (general covariance) requires some adaptations and new developments. These extensions of standard methods are needed both at the fundamental level and at the stage of evaluating the theory by effective descriptions.
Elementary particles and cosmology
International Nuclear Information System (INIS)
Audouze, J.; Paty, M.
2000-01-01
The universe is the most efficient laboratory of particle physics and the understanding of cosmological processes implies the knowledge of how elementary particles interact. This article recalls the mutual influences between on the one hand: astrophysics and cosmology and on the other hand: nuclear physics and particle physics. The big-bang theory relies on nuclear physics to explain the successive stages of nucleo-synthesis and the study of solar neutrinos has led to discover new aspects of this particle: it is likely that neutrinos undergo oscillations from one neutrino type to another. In some universe events such as the bursting of a super-nova, particles are released with a kinetic energy that would be impossible to reach on earth with a particle accelerator. These events are become common points of interest between astrophysicists and particle physicists and have promoted a deeper cooperation between astrophysics and elementary particle physics. (A.C.)
Nonlocal teleparallel cosmology
Energy Technology Data Exchange (ETDEWEB)
Bahamonde, Sebastian [University College London, Department of Mathematics, London (United Kingdom); Capozziello, Salvatore [Universita di Napoli ' ' Federico II' ' , Dipartimento di Fisica ' ' E. Pancini' ' , Naples (Italy); Gran Sasso Science Institute, L' Aquila (Italy); Compl. Univ. di Monte S. Angelo, Naples (Italy); INFN, Napoli (Italy); Faizal, Mir [University of British Columbia - Okanagan, Irving K. Barber School of Arts and Sciences, Kelowna, BC (Canada); University of Lethbridge, Department of Physics and Astronomy, Lethbridge, AB (Canada); Nunes, Rafael C. [Universidade Federal de Juiz de Fora, Departamento de Fisica, Juiz de Fora, MG (Brazil)
2017-09-15
Even though it is not possible to differentiate general relativity from teleparallel gravity using classical experiments, it could be possible to discriminate between them by quantum gravitational effects. These effects have motivated the introduction of nonlocal deformations of general relativity, and similar effects are also expected to occur in teleparallel gravity. Here, we study nonlocal deformations of teleparallel gravity along with its cosmological solutions. We observe that nonlocal teleparallel gravity (like nonlocal general relativity) is consistent with the present cosmological data obtained by SNe Ia + BAO + CC + H{sub 0} observations. Along this track, future experiments probing nonlocal effects could be used to test whether general relativity or teleparallel gravity gives the most consistent picture of gravitational interaction. (orig.)
Supersymmetric GUTs and cosmology
International Nuclear Information System (INIS)
Lazarides, G.; Shafi, Q.
1982-06-01
By examining the behaviour of supersymmetric GUTs in the very early universe we find two classes of realistic models. In one of them supersymmetry is broken at or near the superheavy GUT scale. The cosmological implications of such models are expected to be similar to those of nonsupersymmetric GUTs. In the second class of models, the superheavy GUT scale is related to the supersymmetry breaking scale a la Witten. Two types of cosmological scenarios appear possible in this case, either with or without an intermediate (new) inflationary phase. They can be experimentally distinguished, since the former predicts an absence and the latter an observable number density of superheavy monopoles. A mechanism for generating baryon asymmetry in such models is pointed out. Further constraint on model building appears if global R invariance is employed to resolve the strong CP problem. (author)
International Nuclear Information System (INIS)
Padmanabhan, T.
1989-01-01
Quantum cosmology is to quantum gravity what the Bohr model is to the full quantum mechanical description of the hydrogen atom. In quantum cosmology one attempts to give a quantum-mechanical meaning to classical solutions of general relativity. This is discussed in this chapter. The approach is illustrated by quantizing only the conformal degree of freedom of the gravitational field, in particular the Friedmann-Robertson-Walker models. And, as in the hydrogen atom, the classical singularity of general relativity is avoided and one has analogous stationary states in the quantum Universe. The chapter ends with a model of the fundamental role that the Planck length may play as the universal cutoff in all field theories, thus ridding the theory of ultra-violet divergences. Two appendices introduce field theory in the Schroedinger representation and the Schroedinger equation for quantum gravity, namely the Wheeler-De Wit equation. (author). 38 refs.; 2 figs.; 1 tab
Massive neutrinos and cosmology
International Nuclear Information System (INIS)
Shandarin, S.F.
1991-01-01
This paper discussed the importance of the consequences of a nonzero neutrino rest mass on cosmology, perhaps, first recognized by Gershtein and Zeldovich, after the discover of the 3-K microwave background radiation MBR. Since the first works on the primordial synthesis of 4 He, it has been known that additional neutrino species increase the rate of expansion of the universe during the epoch of the primordial nucleosynthesis, which increases the yield of 4 He. Combining the results of the theory with astronomical measurements of the 4 He abundance and the estimate of the mass density of MBR, Shvartsman suggested the upper limit on the mass density of all relativistic matter at that epoch: ρ rel ≤ 5ρ MBR which eventually became the upper limit for the number of neutrino species: N ν ≤ 7. At that time, the constraints based on cosmological arguments were much stronger than one based on laboratory experiments
Merritt, David
2017-02-01
I argue that some important elements of the current cosmological model are 'conventionalist' in the sense defined by Karl Popper. These elements include dark matter and dark energy; both are auxiliary hypotheses that were invoked in response to observations that falsified the standard model as it existed at the time. The use of conventionalist stratagems in response to unexpected observations implies that the field of cosmology is in a state of 'degenerating problemshift' in the language of Imre Lakatos. I show that the 'concordance' argument, often put forward by cosmologists in support of the current paradigm, is weaker than the convergence arguments that were made in the past in support of the atomic theory of matter or the quantization of energy.
Cosmology, inflation, and supersymmetry
International Nuclear Information System (INIS)
Albrecht, A.; Dimopoulos, S.; Fischler, W.; Kolb, E.W.; Raby, S.; Steinhardt, P.J.
1982-01-01
Cosmological consequences of supersymmetric grand unified models based on the Witten-O'Raifeartaigh potential are discussed. In particular we study the development of the phase transition in the spontaneous breaking of supersymmetry. We find that in realistic models where light fields feel supersymmetry breaking only through coupling to massive fields, e.g., the Geometric Hierarchy model, the universe does not inflate or reheat. Thus, the standard cosmological flatness, monopole, and horizon problems remain. In addition, we find that the transition is never completed, in the sense that the universe remains dominated by coherent Higgs field energy, resulting in an apparent matter dominated universe with Ω greater than or equal to 10 30
Efficient exploration of cosmology dependence in the EFT of LSS
Energy Technology Data Exchange (ETDEWEB)
Cataneo, Matteo [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, 2100 Copenhagen (Denmark); Foreman, Simon; Senatore, Leonardo, E-mail: matteoc@dark-cosmology.dk, E-mail: sfore@stanford.edu, E-mail: senatore@stanford.edu [Stanford Institute for Theoretical Physics and Department of Physics, Stanford University, 382 Via Pueblo Mall, Stanford, CA 94306 (United States)
2017-04-01
The most effective use of data from current and upcoming large scale structure (LSS) and CMB observations requires the ability to predict the clustering of LSS with very high precision. The Effective Field Theory of Large Scale Structure (EFTofLSS) provides an instrument for performing analytical computations of LSS observables with the required precision in the mildly nonlinear regime. In this paper, we develop efficient implementations of these computations that allow for an exploration of their dependence on cosmological parameters. They are based on two ideas. First, once an observable has been computed with high precision for a reference cosmology, for a new cosmology the same can be easily obtained with comparable precision just by adding the difference in that observable, evaluated with much less precision. Second, most cosmologies of interest are sufficiently close to the Planck best-fit cosmology that observables can be obtained from a Taylor expansion around the reference cosmology. These ideas are implemented for the matter power spectrum at two loops and are released as public codes. When applied to cosmologies that are within 3σ of the Planck best-fit model, the first method evaluates the power spectrum in a few minutes on a laptop, with results that have 1% or better precision, while with the Taylor expansion the same quantity is instantly generated with similar precision. The ideas and codes we present may easily be extended for other applications or higher-precision results.
Energy Technology Data Exchange (ETDEWEB)
Harada, Akira [Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan (Japan); Kamada, Ayuki, E-mail: harada@utap.phys.s.u-tokyo.ac.jp, E-mail: ayuki.kamada@ucr.edu [Kavli IPMU (WPI), University of Tokyo, 5-1-5 Kashiwa-no-ha, Kashiwa-shi, Chiba, 277-8583 Japan (Japan)
2016-01-01
We perform a set of cosmological simulations of structure formation in a mixed dark matter (MDM) model. Our model is motivated by the recently identified 3.5 keV X-ray line, which can be explained by the decay of non-resonantly produced sterile neutrinos accounting for 20–60% of the dark matter in the Universe. These non-resonantly produced sterile neutrinos have a sizable free-streaming length and hence behave effectively as warm dark matter (WDM). Assuming the rest of dark matter is composed of some cold dark matter (CDM) particles, we follow the coevolution of a mixed WDM plus CDM cosmology. Specifically, we consider the models with the warm component fraction of r{sub warm}=0.25 and 0.50. Our MDM models predict that the comoving Jeans length at the matter-radiation equality is close to that of the thermally produced warm dark matter model with particle mass m{sub WDM}=2.4 keV, but the suppression in the fluctuation power spectrum is weaker. We perform large N-body simulations to study the structure of non-linear dark halos in the MDM models. The abundance of substructure is significantly reduced in the MDM models, and hence the so-called small-scale crisis is mitigated. The cumulative maximum circular velocity function (CVF) of at least one halo in the MDM models is in good agreement with the CVFs of the observed satellites in the Milky Way and the Andromeda galaxy. We argue that the MDM models open an interesting possibility to reconcile the reported 3.5 keV line and the internal structure of galaxies.
Weighing the Dark and Light in Cosmology with Machine Learning
Trac, Hy
2017-09-01
Galaxy clusters contain large amounts of cold dark matter, hot ionized gas, and tens to hundreds of visible galaxies. They are the largest gravitationally bound systems in the Universe and make excellent laboratories for studying cosmology and astrophysics. Historically, Fritz Zwicky postulated the existence of dark matter when he inferred the total mass of the nearby Coma Cluster from the motions of its galaxies and found it to be much larger than the visible mass. Nowadays, the abundance of clusters as a function of mass and time can be used to study structure formation and constrain cosmological parameters. Dynamical measurements of the motions of galaxies can be used to probe the entire mass distribution, but standard analyses yield unwanted high mass errors. First, we show that modern machine learning algorithms can improve mass measurements by more than a factor of two compared to using standard scaling relations. Support Distribution Machines are used to train and test on the entire distribution of galaxy velocities to maximally use available information. Second, we discuss how Deep Learning can be used to train on multi-wavelength images of galaxies and clusters and to predict the underlying total matter distribution. By applying machine learning to observations and simulations, we can map out the dark and light in the Universe. DOE DE-SC0011114, NSF RI-1563887.
Fluctuations in a Hořava-Lifshitz bouncing cosmology
International Nuclear Information System (INIS)
Gao, Xian; Wang, Yi; Xue, Wei; Brandenberger, Robert
2010-01-01
Hořava-Lifshitz gravity is a potentially UV complete theory with important implications for the very early universe. In particular, in the presence of spatial curvature it is possible to obtain a non-singular bouncing cosmology. The bounce is realized as a consequence of higher order spatial curvature terms in the gravitational action. Here, we extend the study of linear cosmological perturbations in Hořava-Lifshitz gravity coupled to matter in the case when spatial curvature is present. As in the case without spatial curvature, we find that there is no extra dynamical degree of freedom for scalar metric perturbations. We study the evolution of fluctuations through the bounce and show that the solutions remain non-singular throughout. If we start with quantum vacuum fluctuations on sub-Hubble scales in the contracting phase, and if the contracting phase is dominated by pressure-less matter, then for λ = 1 and in the infrared limit the perturbations at late times are scale invariant. Thus, Hořava-Lifshitz gravity can provide a realization of the ''matter bounce'' scenario of structure formation
Nonlinear electrodynamics and cosmology
International Nuclear Information System (INIS)
Breton, Nora
2010-01-01
Nonlinear electrodynamics (NLED) generalizes Maxwell's theory for strong fields. When coupled to general relativity NLED presents interesting features like the non-vanishing of the trace of the energy-momentum tensor that leads to the possibility of violation of some energy conditions and of acting as a repulsive contribution in the Raychaudhuri equation. This theory is worth to study in cosmological and astrophysical situations characterized by strong electromagnetic and gravitational fields.
Cosmology, Clusters and Calorimeters
Figueroa-Feliciano, Enectali
2005-01-01
I will review the current state of Cosmology with Clusters and discuss the application of microcalorimeter arrays to this field. With the launch of Astro-E2 this summer and a slew of new missions being developed, microcalorimeters are the next big thing in x-ray astronomy. I will cover the basics and not-so-basic concepts of microcalorimeter designs and look at the future to see where this technology will go.
Energy Technology Data Exchange (ETDEWEB)
Klimek, Z.
1981-01-01
The evolution of Friedman models with bulk viscosity in the plane ''Hubble's constant'' - energy density is presented. The general conclusions are: viscosity leads to intense energy production - energy density increases in spite of expansion; if the above result can be regarded as non-physical, the bulk viscosity can produce cosmological models without the initial singularity only for flat universes; the results do not essentially depend on the equation of state.
Supersymmetric inflationary cosmology
International Nuclear Information System (INIS)
Ruiz-Altaba, M.
1986-06-01
An action is presented, within the framework of supergravity unification, which satisfies all experimental and cosmological constraints. In intermediate scale, around 10 10 - 10 11 GeV, arises from a critical examination of inflation, supersymmetry breaking, fermion masses, proton decay, baryogenesis, and electroweak breaking - including neutrino oscillations and CP violation. Careful consideration is given to some relevant calculations. 86 refs., 10 figs., 5 tabs
International Nuclear Information System (INIS)
Klimek, Z.
1981-01-01
The evolution of Friedman models with bulk viscosity in the plane ''Hubble's constant'' - energy density is presented. The general conclusions are: viscosity leads to intense energy production - energy density increases in spite of expansion; if the above result be regarded as non-physical, the bulk viscosity can produce cosmological models without the initial singularity only for flat universes; the results do not essentially depend on the equation of state. (author)
Topics in inflationary cosmologies
International Nuclear Information System (INIS)
Mahajan, S.
1986-04-01
Several aspects of inflationary cosmologies are discussed. An introduction to the standard hot big bang cosmological model is reviewed, and some of the problems associated with it are presented. A short review of the proposals for solving the cosmological conundrums of the big bang model is presented. Old and the new inflationary scenarios are discussed and shown to be unacceptable. Some alternative scenarios especially those using supersymmetry are reviewed briefly. A study is given of inflationary models where the same set of fields that breaks supersymmetry is also responsible for inflation. In these models, the scale of supersymmetry breaking is related to the slope of the potential near the origin and can thus be kept low. It is found that a supersymmetry breaking scale of the order of the weak breaking scale. The cosmology obtained from the simplest of such models is discussed in detail and it is shown that there are no particular problems except a low reheating temperature and a violation of the thermal constraint. A possible solution to the thermal constraint problem is given by introducing a second field, and the role played by this second field in the scenario is discussed. An alternative mechanism for the generation of baryon number within the framework of supergravity inflationary models is studied using the gravitational couplings of the heavy fields with the hidden sector (the sector which breaks supersymmetry). This mechanism is applied to two specific models - one with and one without supersymmetry breaking. The baryon to entropy ratio is found to be dependent on parameters which are model dependent. Finally, the effect of direct coupling between the two sectors on results is related, 88 refs., 6 figs
Vacuum inhomogeneous cosmological models
International Nuclear Information System (INIS)
Hanquin, J.-L.
1984-01-01
The author presents some results concerning the vacuum cosmological models which admit a 2-dimensional Abelian group of isometries: classifications of these space-times based on the topological nature of their space-like hypersurfaces and on their time evolution, analysis of the asymptotical behaviours at spatial infinity for hyperbolical models as well as in the neighbourhood of the singularity for the models possessing a time singularity during their evolution. (Auth.)
International Nuclear Information System (INIS)
Wang Xiaomin; Tegmark, Max; Zaldarriaga, Matias
2002-01-01
We perform a detailed analysis of the latest cosmic microwave background (CMB) measurements (including BOOMERaNG, DASI, Maxima and CBI), both alone and jointly with other cosmological data sets involving, e.g., galaxy clustering and the Lyman Alpha Forest. We first address the question of whether the CMB data are internally consistent once calibration and beam uncertainties are taken into account, performing a series of statistical tests. With a few minor caveats, our answer is yes, and we compress all data into a single set of 24 bandpowers with associated covariance matrix and window functions. We then compute joint constraints on the 11 parameters of the 'standard' adiabatic inflationary cosmological model. Our best fit model passes a series of physical consistency checks and agrees with essentially all currently available cosmological data. In addition to sharp constraints on the cosmic matter budget in good agreement with those of the BOOMERaNG, DASI and Maxima teams, we obtain a heaviest neutrino mass range 0.04-4.2 eV and the sharpest constraints to date on gravity waves which (together with preference for a slight red-tilt) favor 'small-field' inflation models
International Nuclear Information System (INIS)
Amsterdamski, P.
1986-01-01
The standard cosmological model is reviewed and shown not to be self-sufficient in that it requires initial conditions most likely to be supplied by quantum cosmology. The possible approaches to the issue of initial conditions for cosmology are then discussed. In this thesis, the author considers three separate problems related to this issue. First, the possibility of inflation is investigated in detail by analyzing the evolution of metric perturbations and fluctuations in the expectation value of a scalar field prior to a phase transition; finite temperature effects are also included. Since the inhomogeneities were damped well before the onset of a phase transition. It is concluded that an inflation was possible. Next, the effective action of neutrino and photon fields is calculated for homogeneous spacetimes with small anisotropy; it is shown that quantum corrections to the action due to these fields influence the evolution of an early Universe in the Same way as do the analogous correction terms arising from a conformally invariant scalar which has been previously studied. Finally, the question of an early anisotropy is also discussed in a framework of Hartle-Hawking wave function of the Universe. A wave function of a Bianchi IX type Universe is calculated in a semiclassical approximation