Cosmological Structure Formation
Primack, Joel R
2015-01-01
LCDM is remarkably successful in predicting the cosmic microwave background and large-scale structure, and LCDM parameters have been determined with only mild tensions between different types of observations. Hydrodynamical simulations starting from cosmological initial conditions are increasingly able to capture the complex interactions between dark matter and baryonic matter in galaxy formation. Simulations with relatively low resolution now succeed in describing the overall galaxy population. For example, the EAGLE simulation in volumes up to 100 cubic Mpc reproduces the observed local galaxy mass function nearly as well as semi-analytic models. It once seemed that galaxies are pretty smooth, that they generally grow in size as they evolve, and that they are a combination of disks and spheroids. But recent HST observations combined with high-resolution hydrodynamic simulations are showing that most star-forming galaxies are very clumpy; that galaxies often undergo compaction which reduces their radius and ...
Structure formation in the DGP cosmological model
Koyama, K; Koyama, Kazuya; Maartens, Roy
2006-01-01
The DGP brane-world model provides an alternative to the standard LCDM cosmology, in which the late universe accelerates due to a modification of gravity rather than vacuum energy. The cosmological constant $\\Lambda$ in LCDM is replaced by a single parameter, the crossover scale $r_c$, in DGP. The Supernova redshift observations can be fitted by both models, with $\\Lambda\\sim H_0^2$ and $r_c \\sim H_0^{-1}$. This degeneracy is broken by structure formation, which is suppressed in different ways in the two models. There is some confusion in the literature about how the standard linear growth factor is modified in DGP. While the luminosity distance can be computed purely from the modified 4-dimensional Friedman equation, the evolution of density perturbations requires an analysis of the 5-dimensional gravitational field. We show that if the 5-dimensional effects are inappropriately neglected, then the 4-dimensional Bianchi identities are violated and the computed growth factor is incorrect. By using the 5-dimens...
Cosmological structure formation shocks and cosmic rays in hydrodynamical simulations
Pfrommer, C; Ensslin, T A; Jubelgas, M; Pfrommer, Christoph; Springel, Volker; Ensslin, Torsten A.; Jubelgas, Martin
2006-01-01
Cosmological shock waves during structure formation not only play a decisive role for the thermalization of gas in virializing structures but also for the acceleration of relativistic cosmic rays (CRs) through diffusive shock acceleration. We discuss a novel numerical treatment of the physics of cosmic rays in combination with a formalism for identifying and measuring the shock strength on-the-fly during a smoothed particle hydrodynamics simulation. In our methodology, the non-thermal CR population is treated self-consistently in order to assess its dynamical impact on the thermal gas as well as other implications on cosmological observables. Using this formalism, we study the history of the thermalization process in high-resolution hydrodynamic simulations of the Lambda cold dark matter model. Collapsed cosmological structures are surrounded by shocks with high Mach numbers up to 1000, but they play only a minor role in the energy balance of thermalization. However, this finding has important consequences fo...
Iliev, Ilian Tzankov
The postcollapse structure of objects which form by gravitational condensation out of the expanding cosmological background universe is a key element in the theory of galaxy formation. Towards this end, we present an analytical model for the postcollapse equilibrium structure of virialized objects which condense out of a cosmological background universe, either matter-dominated or flat with a cosmological constant. The model is based upon the assumption that cosmological halos form from the collapse and virialization of "top-hat" density perturbations and are spherical, isotropic, and isothermal. This leads to the prediction of a unique nonsingular truncated isothermal sphere (TIS), a particular solution of the Lane-Emden equation (suitably modified when Λ ≠ 0). The size and virial temperature are unique functions of the mass and redshift of formation of the object for a given background universe. The core density is roughly proportional to the critical density of the universe at the epoch of collapse. The rotation curves of dark-matter-dominated galaxies probe the mass profile of the underlying galactic halo. This TIS model is in excellent agreement with observations of the mass profiles of dark-matter-dominated galaxies and yields the mass and collapse epoch of an observed halo from the parameters of its rotation curve. This allows us to predict correlations amongst rotation curve parameters, such as the maximum velocity and the radius at which it occurs, for different mass halos collapsing at different epochs. We thereby derive the observed vmax-r max relation analytically. In addition, this allows us to impose constraints on the background cosmology favoring the flat ΛCDM model. On the scale of galaxy clusters, which are also dark-matter-dominated, the TIS model predicts the relationship between virial temperature and mass observed for X-ray clusters. The model also agrees well with the cluster density profiles inferred from strong gravitational lensing
Cosmological Structure Formation in Decaying Dark Matter Models
Cheng, Dalong; Tang, Jiayu
2015-01-01
The standard cold dark matter (CDM) model predicts too many and too dense small structures. We consider an alternative model that the dark matter undergoes two-body decays with cosmological lifetime $\\tau$ into only one type of massive daughters with non-relativistic recoil velocity $V_k$. This decaying dark matter model (DDM) can suppress the structure formation below its free-streaming scale at time scale comparable to $\\tau$. Comparing with warm dark matter (WDM), DDM can better reduce the small structures while being consistent with high redshfit observations. We study the cosmological structure formation in DDM by performing self-consistent N-body simulations and point out that cosmological simulations are necessary to understand the DDM structures especially on non-linear scales. We propose empirical fitting functions for the DDM suppression of the mass function and the mass-concentration relation, which depend on the decay parameters lifetime $\\tau$ and recoil velocity $V_k$, and redshift. The fitting ...
Cosmological constraints on the radiation released during structure formation
Torres, David Camarena
2016-01-01
During the process of structure formation in the universe matter is converted into radiation through a variety of processes such as light from stars, infrared radiation from cosmic dust and gravitational waves from binary black holes/neutron stars and supernova explosions. The production of this astrophysical radiation background (ARB) could affect the expansion rate of the universe and the growth of perturbations. Here, we aim at understanding to which level one can constraint the ARB using future cosmological observations. We model the energy transfer from matter to radiation through an effective interaction between matter and astrophysical radiation. Using future supernova data from LSST and growth-rate data from Euclid we find that the ARB density parameter is constrained, at the 95% confidence level, to be $\\Omega_{ar_0}<0.008$. Estimates of the energy density produced by well-known astrophysical processes give roughly $\\Omega_{ar_0}\\sim 10^{-6}$. Therefore, we conclude that cosmological observations ...
Formation and Evolution of Structure in Loop Cosmology
Bojowald, M; Kagan, M; Singh, P; Skirzewski, A; Bojowald, Martin; Hernandez, Hector; Kagan, Mikhail; Singh, Parampreet; Skirzewski, Aureliano
2006-01-01
Inhomogeneous cosmological perturbation equations are derived in loop quantum gravity, taking into account corrections in particular in gravitational parts. This provides a framework for calculating the evolution of modes in structure formation scenarios related to inflationary or bouncing models. Applications here are corrections to the Newton potential and to the evolution of large scale modes which imply non-conservation of curvature perturbations possibly noticeable in a running spectral index. These effects are sensitive to quantization procedures and test the characteristic behavior of correction terms derived from quantum gravity.
Cosmological Structure Formation Shocks and Cosmic Rays in Hydrodynamical Simulations
Pfrommer, C.; Springel, V.; Enβlin, T. A.; Jubelgas, M.
Cosmological shock waves during structure formation not only play a decisive role for the thermalization of gas in virializing structures but also for the acceleration of relativistic cosmic rays (CRs) through diffusive shock acceleration. We discuss a novel numerical treatment of the physics of cosmic rays in combination with a formalism for identifying and measuring the shock strength on-the-fly during a smoothed particle hydrodynamics simulation. In our methodology, the non-thermal CR population is treated self-consistently in order to assess its dynamical impact on the thermal gas as well as other implications on cosmological observables. Using this formalism, we study the history of the thermalization process in high-resolution hydrodynamic simulations of the Lambda cold dark matter model. Collapsed cosmological structures are surrounded by shocks with high Mach numbers up to 1000, but they play only a minor role in the energy balance of thermalization. However, this finding has important consequences for our understanding of the spatial distribution of CRs in the large-scale structure. In high resolution simulations of galaxy clusters, we find a low contribution of the averaged CR pressure, due to the small acceleration efficiency of lower Mach numbers of flow shocks inside halos and the softer adiabatic index of CRs. These effects disfavour CRs when a composite of thermal gas and CRs is adiabatically compressed. However, within cool core regions, the CR pressure reaches equipartition with the thermal pressure leading, to a lower effective adiabatic index and thus to an enhanced compressibility of the central intracluster medium. This effect increases the central density and pressure of the cluster, and thus the resulting X-ray emission and the central Sunyaev-Zel'dovich flux decrement. The integrated Sunyaev-Zel'dovich effect, however, is only slightly changed.
Cosmological constraints on the radiation released during structure formation
Energy Technology Data Exchange (ETDEWEB)
Camarena, David; Marra, Valerio [Universidade Federal do Espirito Santo, Departamento de Fisica, Vitoria, ES (Brazil)
2016-11-15
During the process of structure formation in the universe matter is converted into radiation through a variety of processes such as light from stars, infrared radiation from cosmic dust, and gravitational waves from binary black holes/neutron stars and supernova explosions. The production of this astrophysical radiation background (ARB) could affect the expansion rate of the universe and the growth of perturbations. Here, we aim at understanding to which level one can constraint the ARB using future cosmological observations. We model the energy transfer from matter to radiation through an effective interaction between matter and astrophysical radiation. Using future supernova data from large synoptic survey telescope and growth-rate data from Euclid we find that the ARB density parameter is constrained, at the 95% confidence level, to be Ω{sub ar{sub 0}} < 0.008. Estimates of the energy density produced by well-known astrophysical processes give roughly Ω{sub ar{sub 0}} ∝ 10{sup -5}. Therefore, we conclude that cosmological observations will only be able to constrain exotic or not-well understood sources of radiation. (orig.)
Cosmological constraints on the radiation released during structure formation
Camarena, David; Marra, Valerio
2016-11-01
During the process of structure formation in the universe matter is converted into radiation through a variety of processes such as light from stars, infrared radiation from cosmic dust, and gravitational waves from binary black holes/neutron stars and supernova explosions. The production of this astrophysical radiation background (ARB) could affect the expansion rate of the universe and the growth of perturbations. Here, we aim at understanding to which level one can constraint the ARB using future cosmological observations. We model the energy transfer from matter to radiation through an effective interaction between matter and astrophysical radiation. Using future supernova data from large synoptic survey telescope and growth-rate data from Euclid we find that the ARB density parameter is constrained, at the 95% confidence level, to be Ω_{ar_0}exotic or not-well understood sources of radiation.
Cosmological parameter dependence in local string theories of structure formation
Copeland, E J; Steer, D A; Magueijo, Joao
2000-01-01
We perform the most accurate study to date of the dependence on cosmological parameters of structure formation with local cosmic strings. The crucial new ingredients are the inclusion of the effects of gravitational backreaction on the evolution of the network, and the accurate evolution of the network through the radiation to matter transition. Our work re-iterates the fact that expanding Universe numerical simulations only probe a transient regime, and we incorporate our results into the unequal time correlators recently measured. We then compute the CMB and CDM fluctuations' power spectra for various values of the Hubble constant $H_0$ and baryon fraction $\\Omega_b$. We find that, whereas the dependence on $\\Omega_b$ is negligible, there is still a strong dependence on $H_0$.
K-mouflage Cosmology: Formation of Large-Scale Structures
Brax, Philippe
2014-01-01
We study structure formation in K-mouflage cosmology whose main feature is the absence of screening effect on quasi-linear scales. We show that the growth of structure at the linear level is both affected by a new time dependent Newton constant and a friction term which depend on the background evolution. These combine with the modified background evolution to change the growth rate by up to ten percent since $z\\sim 2$. At the one loop level, we find that the non-linearities of the K-mouflage models are mostly due to the matter dynamics and that the scalar perturbations can be treated at tree level. We also study the spherical collapse in K-mouflage models and show that the critical density contrast deviates from its $\\Lambda$-CDM value and that, as a result, the halo mass function is modified for large masses by an order one factor. Finally we consider the deviation of the matter spectrum from $\\Lambda$-CDM on non-linear scales where a halo model is utilised. We find that the discrepancy peaks around $1\\ h{\\...
Topics in cosmology: Structure formation, dark energy and recombination
Alizadeh, Esfandiar
The field of theoretical cosmology consists of numerous, inter-related branches, whose ambitious goal is to uncover the history of the universe from its beginning to its future. Achieving this, no doubt, requires a deep understanding of many areas of physics. In this thesis I touch upon a few of these areas in which I worked during my PhD studies. Chapter (2) describes our work in finding the accretion and merger history of dark matter halos. Dark matter halos are the collapsed dark matter structures in the late time evolution of the universe, whose existence is vital for the formation of galaxies in the Universe as they act as the potential wells where normal matter (collectively called Baryons) can accumulate, cool, and form stars. It is then no surprise that the properties of galaxies depends on the properties of the dark matter halo in which it resides, including its merger history, i.e. the number of times it merged with other halos. Even though these merger rates can be calculated theoretically for infinitesimal time steps, in order to find the merger history over an extended period of time one had to use either Monte-Carlo simulations to build up the total rates of merging and accreting from the infinitesimal rates or use N-body simulations. In chapter (2) we show how we used random walk formalism to write down an analytical (integral) equation for the merger history of halos. We have solved this equation numerically and find very good agreement with Monte-Carlo simulations. This work can be used in theories of galaxy formation and evolution. We then switch from the overdense regions of the Universe, halos, to the underdense ones, voids. These structures have not attracted as much attention from cosmologists as their overdense counterparts in probing the cosmological models. We show here that the shapes of voids as a probe can be of use for future surveys to pin down the equation of state of the dark energy, i.e. the ratio of its pressure to its energy
Simulations of structure formation in interacting dark energy cosmologies
Baldi, Marco
2009-01-01
The evidence in favor of a dark energy component dominating the Universe, and driving its presently accelerated expansion, has progressively grown during the last decade of cosmological observations. If this dark energy is given by a dynamic scalar field, it may also have a direct interaction with other matter fields in the Universe, in particular with cold dark matter. Such interaction would imprint new features on the cosmological background evolution as well as on the growth of cosmic structure, like an additional long-range fifth-force between massive particles, or a variation in time of the dark matter particle mass. We review here the implementation of these new physical effects in the N-body code GADGET-2, and we discuss the outcomes of a series of high-resolution N-body simulations for a selected family of interacting dark energy models, as already presented in Baldi et al. [20]. We interestingly find, in contrast with previous claims, that the inner overdensity of dark matter halos decreases in these...
Cosmological nonlinear structure formation in full general relativity
Torres, Jose M; Diez-Tejedor, Alberto; Nunez, Dario
2014-01-01
We perform numerical evolutions of cosmological scenarios using a standard general relativistic code in spherical symmetry. We concentrate on two different situations: initial matter distributions that are homogeneous and isotropic, and perturbations to those that respect the spherical symmetry. As matter models we consider the case of a pressureless perfect fluid, i.e. dust, and the case of a real massive scalar field oscillating around the minimum of the potential. Both types of matter have been considered as possible dark matter candidates in the cosmology literature, dust being closely related to the standard cold dark matter paradigm. We confirm that in the linear regime the perturbations associated with these types of matter grow in essentially the same way, the main difference being that in the case of a scalar field the dynamics introduce a cut-off in the power spectrum of the density perturbations at scales comparable with the Compton wavelength of the field. We also follow the evolutions well beyond...
Cosmological Structure Formation with Augmented Lagrangian Perturbation Theory
Kitaura, Francisco-Shu
2012-01-01
We present a new fast and efficient approach to model structure formation with aug- mented Lagrangian perturbation theory (ALPT). Our method is based on splitting the dis- placement field into a long and a short range component. The long range component is computed by second order LPT (2LPT). This approximation contains a tidal nonlocal and nonlinear term. Unfortunately, 2LPT fails on small scales due to severe shell crossing and a crude quadratic behaviour in the low density regime. The spherical collapse (SC) approximation has been recently reported to correct for both effects by adding an ideal collapse truncation. However, this approach fails to reproduce the structures on large scales where it is significantly less correlated with the N-body result than 2LPT or linear LPT (the Zeldovich approximation). We propose to combine both approximations using for the short range displacement field the SC solution. A Gaussian filter with a smoothing radius r_S is used to separate between both regimes. We use the re...
Simulating nonlinear cosmological structure formation with massive neutrinos
Banerjee, Arka
2016-01-01
We present a new method for simulating cosmologies that contain massive particles with thermal free streaming motion, such as massive neutrinos or warm/hot dark matter. This method combines particle and fluid descriptions of the thermal species to eliminate the shot noise known to plague conventional N-body simulations. We describe this method in detail, along with results for a number of test cases to validate our method, and check its range of applicability. Using this method, we demonstrate that massive neutrinos can produce a significant scale-dependence in the large-scale biasing of deep voids in the matter field. We show that this scale-dependence may be quantitatively understood using an extremely simple spherical expansion model which reproduces the behavior of the void bias for different neutrino parameters.
Mantz, Adam B; Morris, R Glenn
2016-01-01
This is the fifth in a series of papers studying the astrophysics and cosmology of massive, dynamically relaxed galaxy clusters. Our sample comprises 40 clusters identified as being dynamically relaxed and hot in Papers I and II of this series. Here we use constraints on cluster mass profiles from X-ray data to test some of the basic predictions of cosmological structure formation in the Cold Dark Matter (CDM) paradigm. We present constraints on the concentration--mass relation for massive clusters, finding a power-law mass dependence with a slope of $\\kappa_m=-0.16\\pm0.07$, in agreement with CDM predictions. For this relaxed sample, the relation is consistent with a constant as a function of redshift (power-law slope with $1+z$ of $\\kappa_\\zeta=-0.17\\pm0.26$), with an intrinsic scatter of $\\sigma_{\\ln c}=0.16\\pm0.03$. We investigate the shape of cluster mass profiles over the radial range probed by the data (typically $\\sim50$kpc--1Mpc), and test for departures from the simple Navarro, Frenk & White (NFW...
Early Structure Formation and Reionization in a Warm Dark Matter Cosmology
Yoshida, N; Hernquist, L; Springel, V; Yoshida, Naoki; Sokasian, Aaron; Hernquist, Lars; Springel, Volker
2003-01-01
We study first structure formation in Lambda-dominated universes using large cosmological N-body/SPH simulations. We consider a standard LCDM model and a LWDM model in which the mass of the dark matter particles is taken to be m_X=10 keV. The linear power spectrum for the LWDM model has a characteristic cut-off at a wavenumber k=200 /Mpc, suppressing the formation of low mass (< 10^6 Msun) nonlinear objects early on. The absence of low mass halos in the WDM model makes the formation of primordial gas clouds with molecular hydrogen very inefficient at high redshifts. The first star-forming gas clouds form at z~21 in the WDM model, considerably later than in the CDM counterpart, and the abundance of these gas clouds differs by an order of magnitude between the two models. We carry out radiative transfer calculations by embedding massive Population III stars in the gas clouds. We show that the volume fraction of ionized gas rises up close to 100% by z=18 in the CDM case, whereas that of the WDM model remains ...
Energy Technology Data Exchange (ETDEWEB)
Mantz, A.B.; /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Allen, S.W.; /KIPAC, Menlo Park /Stanford U., Phys. Dept. /SLAC; Morris, R.Glenn; /KIPAC, Menlo Park /SLAC
2016-07-15
This is the fifth in a series of papers studying the astrophysics and cosmology of massive, dynamically relaxed galaxy clusters. Our sample comprises 40 clusters identified as being dynamically relaxed and hot in Papers I and II of this series. Here we use constraints on cluster mass profiles from X-ray data to test some of the basic predictions of cosmological structure formation in the cold dark matter (CDM) paradigm. We present constraints on the concentration–mass relation for massive clusters, finding a power-law mass dependence with a slope of κm = -0.16 ± 0.07, in agreement with CDM predictions. For this relaxed sample, the relation is consistent with a constant as a function of redshift (power-law slope with 1 + z of κζ = -0.17 ± 0.26), with an intrinsic scatter of σln c = 0.16 ± 0.03. We investigate the shape of cluster mass profiles over the radial range probed by the data (typically ~50 kpc–1 Mpc), and test for departures from the simple Navarro–Frenk–White (NFW) form, for which the logarithmic slope of the density profile tends to -1 at small radii. Specifically, we consider as alternatives the generalized NFW (GNFW) and Einasto parametrizations. For the GNFW model, we find an average value of (minus) the logarithmic inner slope of β = 1.02 ± 0.08, with an intrinsic scatter of σβ = 0.22 ± 0.07, while in the Einasto case we constrain the average shape parameter to be α = 0.29 ± 0.04 with an intrinsic scatter of σα = 0.12 ± 0.04. Our results are thus consistent with the simple NFW model on average, but we clearly detect the presence of intrinsic, cluster-to-cluster scatter about the average.
Mantz, A. B.; Allen, S. W.; Morris, R. G.
2016-10-01
This is the fifth in a series of papers studying the astrophysics and cosmology of massive, dynamically relaxed galaxy clusters. Our sample comprises 40 clusters identified as being dynamically relaxed and hot in Papers I and II of this series. Here we use constraints on cluster mass profiles from X-ray data to test some of the basic predictions of cosmological structure formation in the cold dark matter (CDM) paradigm. We present constraints on the concentration-mass relation for massive clusters, finding a power-law mass dependence with a slope of κm = -0.16 ± 0.07, in agreement with CDM predictions. For this relaxed sample, the relation is consistent with a constant as a function of redshift (power-law slope with 1 + z of κζ = -0.17 ± 0.26), with an intrinsic scatter of σln c = 0.16 ± 0.03. We investigate the shape of cluster mass profiles over the radial range probed by the data (typically ˜50 kpc-1 Mpc), and test for departures from the simple Navarro-Frenk-White (NFW) form, for which the logarithmic slope of the density profile tends to -1 at small radii. Specifically, we consider as alternatives the generalized NFW (GNFW) and Einasto parametrizations. For the GNFW model, we find an average value of (minus) the logarithmic inner slope of β = 1.02 ± 0.08, with an intrinsic scatter of σβ = 0.22 ± 0.07, while in the Einasto case we constrain the average shape parameter to be α = 0.29 ± 0.04 with an intrinsic scatter of σα = 0.12 ± 0.04. Our results are thus consistent with the simple NFW model on average, but we clearly detect the presence of intrinsic, cluster-to-cluster scatter about the average.
A unified model for AGN feedback in cosmological simulations of structure formation
Sijacki, Debora; Di Matteo, Tiziana; Hernquist, Lars
2007-01-01
We discuss a numerical model for black hole growth and its associated feedback processes that for the first time allows cosmological simulations of structure formation to simultaneously follow the build up of the cosmic population of galaxies and active galactic nuclei. Our model assumes that seed black holes are present at early cosmic epochs at the centres of forming halos. We then track their growth from gas accretion and mergers with other black holes in the course of cosmic time. For black holes that are active, we distinguish between two distinct modes of feedback, depending on the black hole accretion rate itself. Black holes that accrete at high rates are assumed to be in a `quasar regime', where we model their feedback by thermally coupling a small fraction of their bolometric luminosity to the surrounding gas. For black holes with low accretion rates, we conjecture that most of their feedback occurs in mechanical form, where AGN-driven bubbles are injected into a gaseous environment. Using our new m...
Non-linear structure formation in the `Running FLRW' cosmological model
Bibiano, Antonio; Croton, Darren J.
2016-07-01
We present a suite of cosmological N-body simulations describing the `Running Friedmann-Lemaïtre-Robertson-Walker' (R-FLRW) cosmological model. This model is based on quantum field theory in a curved space-time and extends Lambda cold dark matter (ΛCDM) with a time-evolving vacuum density, Λ(z), and time-evolving gravitational Newton's coupling, G(z). In this paper, we review the model and introduce the necessary analytical treatment needed to adapt a reference N-body code. Our resulting simulations represent the first realization of the full growth history of structure in the R-FLRW cosmology into the non-linear regime, and our normalization choice makes them fully consistent with the latest cosmic microwave background data. The post-processing data products also allow, for the first time, an analysis of the properties of the halo and sub-halo populations. We explore the degeneracies of many statistical observables and discuss the steps needed to break them. Furthermore, we provide a quantitative description of the deviations of R-FLRW from ΛCDM, which could be readily exploited by future cosmological observations to test and further constrain the model.
Non-linear structure formation in the "Running FLRW" cosmological model
Bibiano, Antonio
2016-01-01
We present a suite of cosmological N-body simulations describing the "Running Friedmann-Lema{\\"i}tre-Robertson-Walker" (R-FLRW) cosmological model. This model is based on quantum field theory in a curved space-time and extends {\\Lambda}CDM with a time-evolving vacuum density, {\\Lambda}(z), and time-evolving gravitational Newton's coupling, G(z). In this paper we review the model and introduce the necessary analytical treatment needed to adapt a reference N-body code. Our resulting simulations represent the first realisation of the full growth history of structure in the R-FLRW cosmology into the non-linear regime, and our normalisation choice makes them fully consistent with the latest cosmic microwave background data. The post-processing data products also allow, for the first time, an analysis of the properties of the halo and sub-halo populations. We explore the degeneracies of many statistical observables and discuss the steps needed to break them. Furthermore, we provide a quantitative description of the...
Ahn, Kyungjin
2016-10-01
We study the dynamical effect of the relative velocity between dark matter and baryonic fluids, which remained supersonic after the epoch of recombination. The impact of this supersonic motion on the formation of cosmological structures was first formulated by Tseliakhovich & Hirata, in terms of the linear theory of small-scale fluctuations coupled to large-scale, relative velocities in mean-density regions. In their formalism, they limited the large-scale density environment to be that of the global mean density. We improve on their formulation by allowing variation in the density environment as well as the relative velocities. This leads to a new type of coupling between large-scale and small-scale modes. We find that the small-scale fluctuation grows in a biased way: faster in the overdense environment and slower in the underdense environment. We also find that the net effect on the global power spectrum of the density fluctuation is to boost its overall amplitude from the prediction by Tseliakhovich & Hirata. Correspondingly, the conditional mass function of cosmological halos and the halo bias parameter are both affected in a similar way. The discrepancy between our prediction and that of Tseliakhovich & Hirata is significant, and therefore, the related cosmology and high-redshift astrophysics should be revisited. The mathematical formalism of this study can be used for generating cosmological initial conditions of small-scale perturbations in generic, overdense (underdense) background patches.
The imprint of cosmological non-Gaussianities on primordial structure formation
Maio, Umberto
2011-01-01
We study via numerical N-body/SPH chemistry simulations the effects of primordial non-Gaussianities on the formation of the first stars and galaxies, and investigate the impact of supernova feedback in cosmologies with different fnl. Density distributions are biased to higher values, so star formation and the consequent feedback processes take place earlier in high-fnl models and later in low-fnl ones. Mechanical feedback is responsible for shocking and evacuating the gas from star forming sites earlier in the highly non-Gaussian cases, because of the larger bias at high densities. Chemical feedback translates into high-redshift metal filling factors that are larger by some orders of magnitude for larger fnl, but that converge within one Gyr, for both population III and population II-I stellar regimes. The efficient enrichment process, though, leads to metallicities > 0.01 Zsun by redshift ~9, almost independently from fnl. The impact of non-Gaussianities on the formation of dark-matter haloes at high redshif...
Cosmological models of galaxy formation
Menci, N.
I review the present status of galaxy formation models within a cosmological framework. I focus on semi-analytic models based on the Cold Dark Matter scenario, discussing the role of the different physical process involving dark matter and baryons in determining the observed statistical properties of galaxies and their dependence on cosmic time and on environment evolution. I will highlight some present problems and briefly present the main effects of assuming a Warm Dark Matter scenario.
Baldi, Marco; Simpson, Fergus
2017-02-01
Persisting tensions between the cosmological constraints derived from low-redshift probes and the ones obtained from temperature and polarization anisotropies of the cosmic microwave background (CMB) - although not yet providing compelling evidence against the Λcold dark matter model - seem to consistently indicate a slower growth of density perturbations as compared to the predictions of the standard cosmological scenario. Such behaviour is not easily accommodated by the simplest extensions of General Relativity, such as f(R) models, which generically predict an enhanced growth rate. In this work, we present the outcomes of a suite of large N-body simulations carried out in the context of a cosmological model featuring a non-vanishing scattering cross-section between the dark matter and the dark energy fields, for two different parametrizations of the dark energy equation of state. Our results indicate that these dark scattering models have very mild effects on many observables related to large-scale structures formation and evolution, while providing a significant suppression of the amplitude of linear density perturbations and the abundance of massive clusters. Our simulations therefore confirm that these models offer a promising route to alleviate existing tensions between low-redshift measurements and those of the CMB.
Structure formation in warm dark matter cosmologies: Top-Bottom Upside-Down
Paduroiu, Sinziana; Pfenniger, Daniel
2015-01-01
The damping on the fluctuation spectrum and the presence of thermal velocities as properties of warm dark matter particles like sterile neutrinos imprint a distinct signature found from the structure formation mechanisms to the internal structures of halos. Using warm dark matter simulations we explore these effects on the structure formation for different particle energies and we find that the formation of structure is more complex than originally assumed, a combination of top-down collapse and hierarchical (bottom-up) clustering on multiple scales. The degree on which one scenario is more prominent with respect to the other depends globally on the energy of the particle and locally on the morphology and architecture of the analyzed region. The presence of shells and caustics in warm dark matter haloes is another important effect seen in simulations. Furthermore, we discuss the impact of thermal velocities on the structure formation from theoretical considerations as well as from the analysis of the simulati...
Buchert, Thomas
2012-01-01
In this first paper we present a Lagrangian framework for the description of structure formation in general relativity, restricting attention to irrotational dust matter. As an application we present a self-contained derivation of a general-relativistic analogue of Zel'dovich's approximation for the description of structure formation in cosmology, and compare it with previous suggestions in the literature. This approximation is then investigated: paraphrasing the derivation in the Newtonian framework we provide general-relativistic analogues of the basic system of equations for a single dynamical field variable and recall the first-order perturbation solution of these equations. We then define a general-relativistic analogue of Zel'dovich's approximation and investigate consequences by functionally evaluating relevant variables. We so obtain a possibly powerful model that, although constructed through extrapolation of a perturbative solution, can be used to address non-perturbatively, e.g. problems of structu...
Buchert, Thomas; Wiegand, Alexander
2013-01-01
Kinematical and dynamical properties of a generic inhomogeneous cosmological model, spatially averaged with respect to free-falling (generalized fundamental) observers, are investigated for the matter model `irrotational dust'. Paraphrasing a previous Newtonian investigation, we present a relativistic generalization of a backreaction model based on volume-averaging the `Relativistic Zel'dovich Approximation'. In this model we investigate the effect of `kinematical backreaction' on the evolution of cosmological parameters as they are defined in an averaged inhomogenous cosmology, and we show that the backreaction model interpolates between orthogonal symmetry properties by covering subcases of the plane-symmetric solution, the Lemaitre-Tolman-Bondi solution and the Szekeres solution. We so obtain a powerful model that lays the foundations for quantitatively addressing curvature inhomogeneities as they would be interpreted as `Dark Energy' or `Dark Matter' in a quasi-Newtonian cosmology. The present model, havi...
Initial conditions, Discreteness and non-linear structure formation in cosmology
Sylos-Labini, F; Gabrielli, A; Joyce, M; Labini, Francesco Sylos; Baertschiger, Thierry; Gabrielli, Andrea; Joyce, Michael
2002-01-01
In this lecture we address three different but related aspects of the initial continuous fluctuation field in standard cosmological models. Firstly we discuss the properties of the so-called Harrison-Zeldovich like spectra. This power spectrum is a fundamental feature of all current standard cosmological models. In a simple classification of all stationary stochastic processes into three categories, we highlight with the name ``super-homogeneous'' the properties of the class to which models like this, with $P(0)=0$, belong. In statistical physics language they are well described as glass-like. Secondly, the initial continuous density field with such small amplitude correlated Gaussian fluctuations must be discretised in order to set up the initial particle distribution used in gravitational N-body simulations. We discuss the main issues related to the effects of discretisation, particularly concerning the effect of particle induced fluctuations on the statistical properties of the initial conditions and on th...
Semi-Analytic Galaxy Formation in Massive Neutrinos Cosmologies
Fontanot, Fabio; Bianchi, Davide; Viel, Matteo
2014-01-01
The present constraints on neutrino masses led to the revision of their cosmological role, as the presence of a cosmological neutrino background is a clear prediction of the current standard cosmological models. In this paper, we extend the study of the impact of such background on the spatial distribution of both Dark Matter (DM) and galaxies in the Universe, by coupling N-body numerical simulations with semi-analytic models (SAMs) of galaxy formation. Starting from the same initial conditions, massive neutrino cosmologies predict a slower evolution of DM perturbations with respect to the corresponding LCDM cosmology and a suppression on the matter power spectrum on small and intermediate scales. The resulting statistical properties of model galaxies reflect the different growth of the Large Scale Structure, but we explicitly show that most of the deviations from a LCDM realisation are due to the different $\\sigma_8$ associated with the massive neutrino cosmologies. We thus conclude that an independent estim...
Baldi, Marco
2016-01-01
Persisting tensions between the cosmological constraints derived from low-redshift probes and the ones obtained from temperature and polarisation anisotropies of the Cosmic Microwave Background -- although not yet providing compelling evidence against the $\\Lambda $CDM model -- seem to consistently indicate a slower growth of density perturbations as compared to the predictions of the standard cosmological scenario. Such behavior is not easily accommodated by the simplest extensions of General Relativity, such as f(R) models, which generically predict an enhanced growth rate. In the present work we present the outcomes of a suite of large N-body simulations carried out in the context of a cosmological model featuring a non-vanishing scattering cross section between the dark matter and the dark energy fields, for two different parameterisations of the dark energy equation of state. Our results indicate that these Dark Scattering models have very mild effects on many observables related to large-scale structure...
Primordial black hole formation from cosmological fluctuations
Harada, Tomohiro
2016-01-01
Primordial black holes (PBHs) are those which may have formed in the early Universe and affected the subsequent evolution of the Universe through their Hawking radiation and gravitational field. To constrain the early Universe from the observational constraint on the abundance of PBHs, it is essential to determine the formation threshold for primordial cosmological fluctuations, which are naturally described by cosmological long-wavelength solutions. I will briefly review our recent analytical and numerical results on the PBH formation.
Ahn, Kyungjin
2016-01-01
We study the dynamical effect of relative velocities between dark matter and baryonic fluids, which remained supersonic after the epoch of recombination. The impact of this supersonic motion on the formation of cosmological structures was first formulated by Tseliakhovich & Hirata (2010), in terms of the linear theory of small-scale fluctuations coupled to large-scale, relative velocities in mean-density regions. In their formalism, they limited the large-scale density environment to be those of the global mean density. We improve on their formulation by allowing variation in the density environment as well as the relative velocities. This leads to a new type of coupling between large-scale and small-scale modes. We find that the small-scale fluctuation grows in a biased way: faster in the overdense environment and slower in the underdense environment. We also find that the net effect on the global power spectrum of the density fluctuation is to boost its overall amplitude from the prediction by Tseliakho...
Formation of galaxies in {\\Lambda}CDM cosmologies. I. The fine structure of disc galaxies
Doménech-Moral, Mariola; Domínguez-Tenreiro, Rosa; Serna, Arturo
2012-01-01
We present a detailed analysis of the global and fine structure of four middle-mass disc galaxies obtained from simulations in a $\\Lambda$CDM scenario. These objects have photometric D/T ratios in good agreement with those observed for late-type spirals, as well as kinematic properties in agreement with the observational Tully-Fisher relation. We identify the different dynamical components at z=0 on the basis of both orbital parameters and the binding energy of stars in the galaxy. In this way, we recognize a slowly rotating centrally concentrated spheroid, and two disc components supported by rotation: a thin disc with stars in nearly circular orbits, and a thick disc with orbital parameters transitional between the thin disc and the spheroid. The spheroidal component is composed mainly by old, metal-poor and {\\alpha}-enhanced stars. The distribution of metals in this component shows, however, a clear bimodality with a low-metallicity peak, which could be related to a classical bulge, and a high-metallicity ...
Cosmic walls and filaments formation in modified Chaplygin gas cosmology
Karbasi, S
2016-01-01
We want to study the perturbation growth of an initial seed of an ellipsoidal shape in Top-Hat collapse model of structure formation in the Modified Chaplygin gas cosmology. Considering reasonable values of the constants and the parameters of the model under study, it is shown that a very small deviation from spherical symmetry (ellipsoidal geometry) in the initial seed leads to a final highly non-spherical structure which can be considered as a candidate for justifying already known cosmological structures as cosmic walls and filaments.
Mergers and star formation in SPH cosmological simulations
Tissera, P B
1999-01-01
The star formation rate history of galactic objects in hydrodynamical cosmological simulations are analyzed in relation to their merger histories. The findings suggest that massive mergers produce more efficient starbursts and that, depending on the internal structure of the objects, double starbursts could also occur.
Physical Models of Galaxy Formation in a Cosmological Framework
Somerville, Rachel S.; Davé, Romeel
2015-08-01
Modeling galaxy formation in a cosmological context presents one of the greatest challenges in astrophysics today due to the vast range of scales and numerous physical processes involved. Here we review the current status of models that employ two leading techniques to simulate the physics of galaxy formation: semianalytic models and numerical hydrodynamic simulations. We focus on a set of observational targets that describe the evolution of the global and structural properties of galaxies from roughly cosmic high noon (z â¼ 2-3) to the present. Although minor discrepancies remain, overall, models show remarkable convergence among different methods and make predictions that are in qualitative agreement with observations. Modelers have converged on a core set of physical processes that are critical for shaping galaxy properties. This core set includes cosmological accretion, strong stellar-driven winds that are more efficient at low masses, black hole feedback that preferentially suppresses star formation at high masses, and structural and morphological evolution through merging and environmental processes. However, all cosmological models currently adopt phenomenological implementations of many of these core processes, which must be tuned to observations. Many details of how these diverse processes interact within a hierarchical structure formation setting remain poorly understood. Emerging multiscale simulations are helping to bridge the gap between stellar and cosmological scales, placing models on a firmer, more physically grounded footing. Concurrently, upcoming telescope facilities will provide new challenges and constraints for models, particularly by directly constraining inflows and outflows through observations of gas in and around galaxies.
Physical Models of Galaxy Formation in a Cosmological Framework
Somerville, Rachel S.; Davé, Romeel
2014-01-01
Modeling galaxy formation in a cosmological context presents one of the greatest challenges in astrophysics today, due to the vast range of scales and numerous physical processes involved. Here we review the current status of models that employ two leading techniques to simulate the physics of galaxy formation: semi-analytic models and numerical hydrodynamic simulations. We focus on a set of observational targets that describe the evolution of the global and structural properties of galaxies ...
Physical Models of Galaxy Formation in a Cosmological Framework
Somerville, Rachel S
2014-01-01
Modeling galaxy formation in a cosmological context presents one of the greatest challenges in astrophysics today, due to the vast range of scales and numerous physical processes involved. Here we review the current status of models that employ two leading techniques to simulate the physics of galaxy formation: semi-analytic models and numerical hydrodynamic simulations. We focus on a set of observational targets that describe the evolution of the global and structural properties of galaxies from roughly Cosmic High Noon ($z\\sim 2-3$) to the present. Although minor discrepancies remain, overall, models show remarkable convergence between different methods and make predictions that are in qualitative agreement with observations. Modelers seem to have converged on a core set of physical processes that are critical for shaping galaxy properties. This core set includes cosmological accretion, strong stellar-driven winds that are more efficient at low masses, black hole feedback that preferentially suppresses star...
Tests of cosmological structure growth
Raccanelli, Alvise
2013-01-01
Cosmology aims to study the origin, composition and evolution of the entire Universe. The standard model for cosmology, called ΛCDM , represents a good fit to most of the observations we have, but it is a phenomenological model with no strong theoretical foundation, so one of the biggest challenges in cosmology (but important for the entire physics) will be to understand if this is the correct model (and so try to find a theoretical framework for it) or if a model with some sort of “new” phys...
Cosmological shock waves: clues to the formation history of haloes
Planelles, Susana
2012-01-01
Shock waves developed during the formation and evolution of cosmic structures encode crucial information on the hierarchical formation of the Universe. We analyze an Eulerian AMR hydro + N-body simulation in a $\\Lambda$CDM cosmology focused on the study of cosmological shock waves. The combination of a shock-capturing algorithm together with the use of a halo finder allows us to study the morphological structures of the shock patterns, the statistical properties of shocked cells, and the correlations between the cosmological shock waves appearing at different scales and the properties of the haloes harbouring them. The shocks in the simulation can be split into two broad classes: internal weak shocks related with evolutionary events within haloes, and external strong shocks associated with large-scale events. The shock distribution function contains information on the abundances and strength of the different shocks, and it can be fitted by a double power law with a break in the slope around a Mach number of 2...
Patwardhan, Amol V.; Fuller, George M.
2014-09-01
We show that a particular class of postrecombination phase transitions in the vacuum can lead to localized overdense regions on relatively small scales, roughly 106 to 1010M⊙, potentially interesting for the origin of large black hole seeds and for dwarf galaxy evolution. Our study suggests that this mechanism could operate over a range of conditions which are consistent with current cosmological and laboratory bounds. One byproduct of phase transition bubble-wall decay may be extra radiation energy density. This could provide an avenue for constraint, but it could also help reconcile the discordant values of the present Hubble parameter (H0) and σ8 obtained by cosmic microwave background (CMB) fits and direct observational estimates. We also suggest ways in which future probes, including CMB considerations (e.g., early dark energy limits), 21-cm observations, and gravitational radiation limits, could provide more stringent constraints on this mechanism and the sub-eV scale beyond-standard-model physics, perhaps in the neutrino sector, on which it could be based. Late phase transitions associated with sterile neutrino mass and mixing may provide a way to reconcile cosmological limits and laboratory data, should a future disagreement arise.
Cosmological Evolution and Hierarchical Galaxy Formation
Percival, W J
1999-01-01
We calculate the rate at which dark matter halos merge to form higher mass systems. Two complementary derivations using Press-Schechter theory are given, both of which result in the same equation for the formation rate. First, a derivation using the properties of the Brownian random walks within the framework of Press-Schechter theory is presented. We then use Bayes' theorem to obtain the same result from the standard Press-Schechter mass function. The rate obtained is shown to be in good agreement with results from Monte-Carlo and N-body simulations. We illustrate the usefulness of this formula by calculating the expected cosmological evolution in the rate of star formation that is due to short-lived, merger-induced starbursts. The calculated evolution is well-matched to the observed evolution in ultraviolet luminosity density, in contrast to the lower rates of evolution that are derived from semi-analytic models that do not include a dominant contribution from starbursts. Hence we suggest that the bulk of t...
Patwardhan, Amol V
2014-01-01
We show that a post-recombination phase transition in the vacuum can lead to localized over-dense regions on relatively small scales, roughly 10^6 to 10^10 M_sun, potentially interesting for the origin of large black hole seeds and for dwarf galaxy evolution. Our study suggests that this mechanism could operate over a range of conditions which are consistent with current cosmological and laboratory bounds. One byproduct of phase transition bubble-wall decay may be extra radiation energy density. This could provide an avenue for constraint, but it could also help reconcile the discordant values of the present Hubble parameter (H_0) and sigma_8 obtained by Cosmic Microwave Background (CMB) fits and direct observational estimates. We also suggest ways in which future probes, including CMB considerations (e.g., early dark energy limits), 21-cm observations, and gravitational radiation limits, could provide more stringent constraints on this mechanism and the sub-eV scale beyond-standard- model physics, perhaps in...
Cosmological long-wavelength solutions and primordial black hole formation
Harada, Tomohiro; Nakama, Tomohiro; Koga, Yasutaka
2015-01-01
We construct cosmological long-wavelength solutions without symmetry in general gauge conditions compatible with the long-wavelength scheme. We then specify the relationship among the solutions in different time slicings. Nonspherical long-wavelength solutions are particularly important for primordial structure formation in the epoch of soft equations of state. Applying this framework to spherical symmetry, we show the equivalence between long-wavelength solutions in the constant mean curvature slicing and asymptotic quasi-homogeneous solutions in the comoving slicing. We derive the correspondence relation and compare the results of numerical simulations of primordial black hole (PBH) formation. In terms of $\\tilde{\\delta}_{c}$, the value which the averaged density perturbation at threshold in the comoving slicing would take at horizon entry in the first-order long-wavelength expansion, we find that the sharper the transition from the overdense region to the FRW universe is, the larger the $\\tilde{\\delta}_{c}...
The Impact of Simulations in Cosmology and Galaxy Formation A summary of the Workshop NOVICOSMO 2008
Salucci, Paolo; Frenk, Carlos; Moscardini, Lauro; Viel, Matteo
2008-01-01
In the study of the process of cosmic structure formation numerical simulations are crucial tools to interface observational data to theoretical models and to investigate issues otherwise unexplored. Enormous advances have been achieved in the last years thanks to the availability of sophisticated codes, now allowing to tackle the problem of cosmic structure formation and subsequent evolution by covering larger and larger dynamical ranges. Moreover, computational cosmology is the ideal interpretative framework for the overwhelming amount of new data from extragalactic surveys and from large sample of individual objects. The Workshop Novicosmo 2008 "The Impact of Simulations in Cosmology and Galaxy Formation' held in SISSA was aimed at providing the state-of-the-art on the latest numerical simulations in Cosmology and in Galaxy Formation. Particular emphasis was given to the implementation of new physical processes in simulation codes, to the comparison between different codes and numerical schemes and how to ...
Cosmology and the origin of structure
Kolb, Edward W; CERN. Geneva. Audiovisual Unit
2002-01-01
There is now strong evidence that the rich and varied structure we see in the universe today in the form of stars, galaxies, galaxy clusters, and even larger structures, grew from small primordial 'seeds' that were planted in the first second in the history of the universe. The last decade has seen remarkable advances in observational cosmology, highlighted by the observations of galaxies in the deep universe and the observation of primordial fluctuations in the microwave background. With the increasing accuracy and sophistication of astronomical observations, the details of our theory for the growth of structure will be tested. These lectures will serve as an introduction to the generation and growth of structure in the universe. The series of four lectures will follow the program: Lecture 1: The observed universe Lecture 2: The growth of cosmological structure Lecture 3: Inflation and the origin of perturbations Lecture 4: Dark matter and dark energy
Bertschinger, Edumund
1994-01-01
This article reviews the prevailing paradigm for how galaxies and larger structures formed in the universe: gravitational instability. Basic observational facts are summarized to motivate the standard cosmological framework underlying most detailed investigations of structure formation. The observed univers approaches spatial uniformity on scales larger than about 10(exp 26) cm. On these scales gravitational dynamics is almost linear and therefore relatively easy to relate to observations of large-scale structure. On smaller scales cosmic structure is complicated not only by nonlinear gravitational clustering but also by nonlinear nongravitational gas dynamical processes. The complexity of these phenomena makes galaxy formation one of the grand challenge problems of the physical sciences. No fully satisfactory theory can presently account in detail for the observed cosmic structure. However, as this article summarizes, significant progress has been made during the last few years.
Cosmological anomalies and exotic smoothness structures
Asselmeyer-Maluga, Torsten; Brans, Carl H.
2001-01-01
It seems to be generally accepted that apparently anomalous cosmological observations, such as accelerating expansion, etc., necessarily are inconsistent with standard general relativity and standard matter sources. Following the suggestions of S{\\l}adkowski, we point out that in addition to exotic theories and exotic matter there is another possibility. We refer to exotic differential structures on ${\\mathbb R}^4$ which could be the source of the observed anomalies without changing the Einst...
Cosmological structures in generalized gravity
Hwang, J
1997-01-01
In a class of generalized gravity theories with general couplings between the scalar field and the scalar curvature in the Lagrangian, we describe the quantum generation and the classical evolution processes of both the scalar and tensor structures in a simple and unified manner.
Star formation in mergers with cosmologically motivated initial conditions
Karman, Wouter; Macciò, Andrea V.; Kannan, Rahul; Moster, Benjamin P.; Somerville, Rachel S.
2015-01-01
We use semi-analytic models and cosmological merger trees to provide the initial conditions for multimerger numerical hydrodynamic simulations, and exploit these simulations to explore the effect of galaxy interaction and merging on star formation (SF). We compute numerical realizations of 12 merger
Star Formation History of Dwarf Galaxies in Cosmological Hydrodynamic Simulations
Directory of Open Access Journals (Sweden)
Kentaro Nagamine
2010-01-01
Full Text Available We examine the past and current work on the star formation (SF histories of dwarf galaxies in cosmological hydrodynamic simulations. The results obtained from different numerical methods are still somewhat mixed, but the differences are understandable if we consider the numerical and resolution effects. It remains a challenge to simulate the episodic nature of SF history in dwarf galaxies at late times within the cosmological context of a cold dark matter model. More work is needed to solve the mysteries of SF history of dwarf galaxies employing large-scale hydrodynamic simulations on the next generation of supercomputers.
The structure of the classical cosmological singularity
Tipler, Frank J.
The existence of an all-encompassing initial classical cosmological singularity is established: it is shown that if: (1) global hyperbolicity, (2) the timelike convergence condition, and (3) all past-directed nonspacelike geodesics start to reconverge within a compact region in the causal past of the present-day earth, then all timelike curves in the past have a finite proper time length less than a universal constant L. It is argued that an analogue of this predicted cosmological singularity should exist even when quantum effects are taken into account. In particular, in a closed Friedmann radiation-filled universe quantized via the ADM method, the R = 0 singularity still exists and influences wave packet evolution at all times. Furthermore, quantum effects can in most cases eliminate curvature singularities only by introducing singularities in the universal action; most classical closed universes have finite action if and only if they begin and end in curvature singularities. Finally, the two basic ways of studying the structure of cosmological singularities are reviewed: completion methods (e.g., the c-boundary construction), and approach methods (e.g., analyzing metric behavior in a synchronous coordinate system).
Cosmological Constant, Fine Structure Constant and Beyond
Wei, Hao; Li, Hong-Yu; Xue, Dong-Ze
2016-01-01
In this work, we consider the cosmological constant model $\\Lambda\\propto\\alpha^{-6}$, which is well motivated from three independent approaches. As is well known, the evidence of varying fine structure constant $\\alpha$ was found in 1998. If $\\Lambda\\propto\\alpha^{-6}$ is right, it means that the cosmological constant $\\Lambda$ should be also varying. In this work, we try to develop a suitable framework to model this varying cosmological constant $\\Lambda\\propto\\alpha^{-6}$, in which we view it from an interacting vacuum energy perspective. We propose two types of models to describe the evolutions of $\\Lambda$ and $\\alpha$. Then, we consider the observational constraints on these models, by using the 293 $\\Delta\\alpha/\\alpha$ data from the absorption systems in the spectra of distant quasars, and the data of type Ia supernovae (SNIa), cosmic microwave background (CMB), baryon acoustic oscillation (BAO). We find that the model parameters can be tightly constrained to the narrow ranges of ${\\cal O}(10^{-5})$ t...
Moving mesh cosmology: the hydrodynamics of galaxy formation
Sijacki, Debora; Keres, Dusan; Springel, Volker; Hernquist, Lars
2011-01-01
We present a detailed comparison between the well-known SPH code GADGET and the new moving-mesh code AREPO on a number of hydrodynamical test problems. Through a variety of numerical experiments we establish a clear link between test problems and systematic numerical effects seen in cosmological simulations of galaxy formation. Our tests demonstrate deficiencies of the SPH method in several sectors. These accuracy problems not only manifest themselves in idealized hydrodynamical tests, but also propagate to more realistic simulation setups of galaxy formation, ultimately affecting gas properties in the full cosmological framework, as highlighted in papers by Vogelsberger et al. (2011) and Keres et al. (2011). We find that an inadequate treatment of fluid instabilities in GADGET suppresses entropy generation by mixing, underestimates vorticity generation in curved shocks and prevents efficient gas stripping from infalling substructures. In idealized tests of inside-out disk formation, the convergence rate of g...
BRS structure of simple model of cosmological constant and cosmology
Mori, Taisaku; Nitta, Daisuke; Nojiri, Shin'ichi
2017-07-01
In Mod. Phys. Lett. A 31, 1650213 (2016, 10.1142/S0217732316502138), Nojiri proposed a simple model in order to solve one of the problems related to the cosmological constant. The model is induced from a topological field theory, and the model has an infinite number of BRS symmetries. The BRS symmetries are, in general, spontaneously broken, however. We investigate the BRS symmetry in detail and show that there is one and only one BRS symmetry which is not broken, and the unitarity can be guaranteed. In the model, the quantum problem of the vacuum energy, which may be identified with the cosmological constant, reduces to the classical problem of the initial condition. We investigate the cosmology given by the model and specify the region of the initial conditions, which could be consistent with the evolution of the Universe. We also show that there is a stable solution describing the de Sitter space-time, which may explain the accelerating expansion in the current Universe.
Simulating Cosmic Structure Formation
Weinberg, D H; Hernquist, L E; Weinberg, David H.; Katz, Neal; Hernquist, Lars
1997-01-01
We describe cosmological simulation techniques and their application to studies of cosmic structure formation, with particular attention to recent hydrodynamic simulations of structure in the high redshift universe. Collisionless N-body simulations with Gaussian initial conditions produce a pattern of sheets, filaments, tunnels, and voids that resembles the observed large scale galaxy distribution. Simulations that incorporate gas dynamics and dissipation form dense clumps of cold gas with sizes and masses similar to the luminous parts of galaxies. Models based on inflation and cold dark matter predict a healthy population of high redshift galaxies, including systems with star formation rates of 20 M_{\\sun}/year at z=6. At z~3, most of the baryons in these models reside in the low density intergalactic medium, which produces fluctuating Lyman-alpha absorption in the spectra of background quasars. The physical description of this ``Lyman-alpha forest'' is particularly simple if the absorption spectrum is viewe...
Cosmological long-wavelength solutions and primordial black hole formation
Harada, Tomohiro; Yoo, Chul-Moon; Nakama, Tomohiro; Koga, Yasutaka
2015-04-01
We construct cosmological long-wavelength solutions without symmetry in general gauge conditions which are compatible with the long-wavelength scheme. We then specify the relationship among the solutions in different time slicings. Nonspherical long-wavelength solutions are particularly important for primordial structure formation in the epoch of very soft equations of state. Applying this general framework to spherical symmetry, we show the equivalence between long-wavelength solutions in the constant mean curvature slicing with conformally flat spatial coordinates and asymptotic quasihomogeneous solutions in the comoving slicing with the comoving threading. We derive the correspondence relation between these two solutions and compare the results of numerical simulations of primordial black hole (PBH) formation in these two different approaches. To discuss the PBH formation, it is convenient and conventional to use δ˜c, the value which the averaged density perturbation at threshold in the comoving slicing would take at horizon entry in the lowest-order long-wavelength expansion. We numerically find that within (approximately) compensated models, the sharper the transition from the overdense region to the Friedmann-Robertson-Walker universe is, the larger the δ˜ c becomes. We suggest that, for the equation of state p =(Γ -1 )ρ , we can apply the analytic formulas for the minimum δ˜ c ,min≃[3 Γ /(3 Γ +2 )]sin2[π √{Γ -1 }/(3 Γ -2 )] and the maximum δ˜ c ,max≃3 Γ /(3 Γ +2 ) . As for the threshold peak value of the curvature variable ψ0 ,c , we find that the sharper the transition is, the smaller the ψ0 ,c becomes. We analytically explain this intriguing feature qualitatively with a compensated top-hat density model. Using simplified models, we also analytically deduce an environmental effect that ψ0 ,c can be significantly larger (smaller) if the underlying perturbation of much longer wavelength is positive (negative).
Conselice, Christopher J; Mortlock, Alice; Palamara, David; Benson, Andrew J
2014-01-01
As galaxy formation and evolution over long cosmic time-scales depends to a large degree on the structure of the universe, the assembly history of galaxies is potentially a powerful approach for learning about the universe itself. In this paper we examine the merger history of dark matter halos based on the Extended Press-Schechter formalism as a function of cosmological parameters, redshift and halo mass. We calculate how major halo mergers are influenced by changes in the cosmological values of $\\Omega_{\\rm m}$, $\\Omega_{\\Lambda}$, $\\sigma_{8}$, the dark matter particle temperature (warm vs. cold dark matter), and the value of a constant and evolving equation of state parameter $w(z)$. We find that the merger fraction at a given halo mass varies by up to a factor of three for halos forming under the assumption of Cold Dark Matter, within different underling cosmological parameters. We find that the current measurements of the merger history, as measured through observed galaxy pairs as well as through struc...
Narlikar, Jayant Vishnu
2002-01-01
The third edition of this successful textbook is fully updated and includes important recent developments in cosmology. It begins with an introduction to cosmology and general relativity, and goes on to cover the mathematical models of standard cosmology. The physical aspects of cosmology, including primordial nucleosynthesis, the astroparticle physics of inflation, and the current ideas on structure formation are discussed. Alternative models of cosmology are reviewed, including the model of Quasi-Steady State Cosmology, which has recently been proposed as an alternative to Big Bang Cosmology.
Fundamental Particle Structure in the Cosmological Dark Matter
Khlopov, Maxim
2013-11-01
The nonbaryonic dark matter of the universe is assumed to consist of new stable forms of matter. Their stability reflects symmetry of micro-world and mechanisms of its symmetry breaking. Particle candidates for cosmological dark matter are lightest particles that bear new conserved quantum numbers. Dark matter particles may represent ideal gas of noninteracting particles. Self-interacting dark matter weakly or superweakly coupled to ordinary matter is also possible, reflecting nontrivial pattern of particle symmetry in the hidden sector of particle theory. In the early universe the structure of particle symmetry breaking gives rise to cosmological phase transitions, from which macroscopic cosmological defects or primordial nonlinear structures can be originated. Primordial black holes (PBHs) can be not only a candidate for dark matter, but also represent a universal probe for superhigh energy physics in the early universe. Evaporating PBHs turn to be a source of even superweakly interacting particles, while clouds of massive PBHs can serve as nonlinear seeds for galaxy formation. The observed broken symmetry of the three known families may provide a simultaneous solution for the problems of the mass of neutrino and strong CP-violation in the unique framework of models of horizontal unification. Dark matter candidates can also appear in the new families of quarks and leptons and the existence of new stable charged leptons and quarks is possible, hidden in elusive "dark atoms." Such possibility, strongly restricted by the constraints on anomalous isotopes of light elements, is not excluded in scenarios that predict stable double charged particles. The excessive -2 charged particles are bound in these scenarios with primordial helium in O-helium "atoms," maintaining specific nuclear-interacting form of the dark matter, which may provide an interesting solution for the puzzles of the direct dark matter searches. In the context of cosmoparticle physics, studying
Quantum Signature of Cosmological Large Scale Structures
Capozziello, S; De Siena, S; Illuminati, F; Capozziello, Salvatore; Martino, Salvatore De; Siena, Silvio De; Illuminati, Fabrizio
1998-01-01
We demonstrate that to all large scale cosmological structures where gravitation is the only overall relevant interaction assembling the system (e.g. galaxies), there is associated a characteristic unit of action per particle whose order of magnitude coincides with the Planck action constant $h$. This result extends the class of physical systems for which quantum coherence can act on macroscopic scales (as e.g. in superconductivity) and agrees with the absence of screening mechanisms for the gravitational forces, as predicted by some renormalizable quantum field theories of gravity. It also seems to support those lines of thought invoking that large scale structures in the Universe should be connected to quantum primordial perturbations as requested by inflation, that the Newton constant should vary with time and distance and, finally, that gravity should be considered as an effective interaction induced by quantization.
Cosmological MHD simulations of cluster formation with anisotropic thermal conduction
Ruszkowski, M; Bruggen, M; Parrish, I; Oh, S Peng
2010-01-01
(abridged) The ICM has been suggested to be buoyantly unstable in the presence of magnetic field and anisotropic thermal conduction. We perform first cosmological simulations of galaxy cluster formation that simultaneously include magnetic fields, radiative cooling and anisotropic thermal conduction. In isolated and idealized cluster models, the magnetothermal instability (MTI) tends to reorient the magnetic fields radially. Using cosmological simulations of the Santa Barbara cluster we detect radial bias in the velocity and magnetic fields. Such radial bias is consistent with either the inhomogeneous radial gas flows due to substructures or residual MTI-driven field rearangements that are expected even in the presence of turbulence. Although disentangling the two scenarios is challenging, we do not detect excess bias in the runs that include anisotropic thermal conduction. The anisotropy effect is potentially detectable via radio polarization measurements with LOFAR and SKA and future X-ray spectroscopic stu...
Molecular hydrogen regulated star formation in cosmological SPH simulations
Thompson, Robert; Jaacks, Jason; Choi, Jun-Hwan
2013-01-01
It has been shown observationally that star formation (SF) correlates tightly with the presence of molecular hydrogen (H2). Therefore it would be important to investigate its implication on galaxy formation in a cosmological context. In the present work, we track the H2 mass fraction within our cosmological smoothed particle hydrodynamics (SPH) code GADGET-3 using an equilibrium analytic model by Krumholz et al. This model allows us to regulate the star formation in our simulation by the local abundance of H2 rather than the total cold gas density, and naturally introduce the dependence of star formation on metallicity. We investigate implications of the equilibrium H2-based SF model on galaxy population properties, such as the stellar-to-halo mass ratio (SHMR), baryon fraction, cosmic star formation rate density (SFRD), galaxy specific SFR, galaxy stellar mass functions (GSMF), and Kennicutt-Schmidt (KS) relationship. The advantage of our work over the previous ones is having a large sample of simulated gala...
Cosmological constraints on galaxy cluster structure
Holanda, R F L
2014-01-01
Observations of galaxy clusters (GC's) are a powerful tool to probe the evolution of the Universe at $z<2$. However, the determination of their real shape and structure is not completely understood and the assumption of asphericity is often used in several cosmological tests. In this work, we propose methods to infer the elongation of the gas distribution of GC's based on measurements of the cosmic expansion rate, luminosity distance to type Ia supernovae, X-Ray and Sunyaev-Zeldovich properties of GC's and on the validity of the so-called distance duality relation. For the sample considered, we find that the clusters look elongated preferentially aligned along the line of sight with the results of the different methods showing a good agreement with each other and with those predicted by the current cosmic concordance model.
Rubakov, V A
2014-01-01
In these lectures we first concentrate on the cosmological problems which, hopefully, have to do with the new physics to be probed at the LHC: the nature and origin of dark matter and generation of matter-antimatter asymmetry. We give several examples showing the LHC cosmological potential. These are WIMPs as cold dark matter, gravitinos as warm dark matter, and electroweak baryogenesis as a mechanism for generating matter-antimatter asymmetry. In the remaining part of the lectures we discuss the cosmological perturbations as a tool for studying the epoch preceeding the conventional hot stage of the cosmological evolution.
Diverse Structural Evolution at z > 1 in Cosmologically Simulated Galaxies
Snyder, Gregory F; Moody, Christopher; Peth, Michael; Freeman, Peter; Ceverino, Daniel; Primack, Joel; Dekel, Avishai
2014-01-01
From mock Hubble Space Telescope images, we quantify non-parametric statistics of galaxy morphology, thereby predicting the emergence of relationships among stellar mass, star formation, and observed rest-frame optical structure at 1 10^10 M_sun contain relatively more disc-dominated light profiles than those with lower mass, reflecting significant disc brightening in some haloes at 1 10^10 M_sun. We analyze a cosmological major merger at z~1.5 and find that the newly proposed MID morphology diagnostics trace later stages while G-M20 trace earlier ones. MID is sensitive also to clumpy star-forming discs. The observability time of typical MID-enhanced events in our simulation sample is less than 100 Myr. A larger sample of cosmological assembly histories may be required to calibrate such diagnostics in the face of their sensitivity to viewing angle, segmentation algorithm, and various phenomena such as clumpy star formation and minor mergers.
Directory of Open Access Journals (Sweden)
Greg L. Bryan
2002-01-01
Full Text Available As an entry for the 2001 Gordon Bell Award in the "special" category, we describe our 3-d, hybrid, adaptive mesh refinement (AMR code Enzo designed for high-resolution, multiphysics, cosmological structure formation simulations. Our parallel implementation places no limit on the depth or complexity of the adaptive grid hierarchy, allowing us to achieve unprecedented spatial and temporal dynamic range. We report on a simulation of primordial star formation which develops over 8000 subgrids at 34 levels of refinement to achieve a local refinement of a factor of 1012 in space and time. This allows us to resolve the properties of the first stars which form in the universe assuming standard physics and a standard cosmological model. Achieving extreme resolution requires the use of 128-bit extended precision arithmetic (EPA to accurately specify the subgrid positions. We describe our EPA AMR implementation on the IBM SP2 Blue Horizon system at the San Diego Supercomputer Center.
Cosmological simulations of galaxy formation with cosmic rays
Salem, Munier; Hummels, Cameron
2014-01-01
We investigate the dynamical impact of cosmic rays in cosmological simulations of galaxy formation using adaptive-mesh refinement simulations of a $10^{12}$ solar mass halo. In agreement with previous work, a run with only our standard thermal energy feedback model results in a massive spheroid and unrealistically peaked rotation curves. However, the addition of a simple two-fluid model for cosmic rays drastically changes the morphology of the forming disk. We include an isotropic diffusive term and a source term tied to star formation due to (unresolved) supernova-driven shocks. Over a wide range of diffusion coefficients, the CRs generate thin, extended disks with a significantly more realistic (although still not flat) rotation curve. We find that the diffusion of CRs is key to this process, as they escape dense star forming clumps and drive outflows within the more diffuse ISM.
nIFTy Cosmology: Comparison of Galaxy Formation Models
Knebe, Alexander; Thomas, Peter A; Benson, Andrew; Blaizot, Jeremy; Bower, Richard; Carretero, Jorge; Castander, Francisco J; Cattaneo, Andrea; Cora, Sofia A; Croton, Darren J; Cui, Weiguang; Cunnama, Daniel; De Lucia, Gabriella; Devriendt, Julien E; Elahi, Pascal J; Font, Andreea; Fontanot, Fabio; Garcia-Bellido, Juan; Gargiulo, Ignacio D; Gonzalez-Perez, Violeta; Helly, John; Henriques, Bruno; Hirschmann, Michaela; Lee, Jaehyun; Mamon, Gary A; Monaco, Pierluigi; Onions, Julian; Padilla, Nelson D; Power, Chris; Pujol, Arnau; Skibba, Ramin A; Somerville, Rachel S; Srisawat, Chaichalit; Vega-Martinez, Cristian A; Yi, Sukyoung K
2015-01-01
We present a comparison of 14 galaxy formation models: 12 different semi-analytical models and 2 halo-occupation distribution models for galaxy formation based upon the same cosmological simulation and merger tree information derived from it. The participating codes have proven to be very successful in their own right but they have all been calibrated independently using various observational data sets, stellar models, and merger trees. In this paper we apply them without recalibration and this leads to a wide variety of predictions for the stellar mass function, specific star formation rates, stellar-to- halo mass ratios, and the abundance of orphan galaxies. The scatter is much larger than seen in previous comparison studies primarily because the codes have been used outside of their native environment within which they are well tested and calibrated. The purpose of the `nIFTy comparison of galaxy formation models' is to bring together as many different galaxy formation modellers as possible and to investig...
Joint Cosmological Formation of QSOs and Bulge-dominated Galaxies
Monaco, P; Danese, L; Monaco, Pierluigi; Salucci, Paolo; Danese, Luigi
1999-01-01
Older and more recent pieces of observational evidence suggest a strong connection between QSOs and galaxies; in particular, the recently discovered correlation between black hole and galactic bulge masses suggests that QSO activity is directly connected to the formation of galactic bulges. The cosmological problem of QSO formation is analyzed in the framework of an analytical model for galaxy formation; for the first time a joint comparison with galaxy and QSO observables is performed. In this model it is assumed that the same physical variable which determines galaxy morphology is able to modulate the mass of the black hole responsible for QSO activity. Both halo spin and the occurence of a major merger are considered as candidates to this role. The predictions of the model are compared to available data for the type-dependent galaxy mass functions, the star-formation history of elliptical galaxies, the QSO luminosity function and its evolution (including the obscured objects contributing to the hard-X-ray ...
Formation of Compact Clusters from High Resolution Hybrid Cosmological Simulations
Richardson, Mark L A; Gray, William J
2013-01-01
The early Universe hosted a large population of small dark matter `minihalos' that were too small to cool and form stars on their own. These existed as static objects around larger galaxies until acted upon by some outside influence. Outflows, which have been observed around a variety of galaxies, can provide this influence in such a way as to collapse, rather than disperse the minihalo gas. Gray & Scannapieco performed an investigation in which idealized spherically-symmetric minihalos were struck by enriched outflows. Here we perform high-resolution cosmological simulations that form realistic minihalos, which we then extract to perform a large suite of simulations of outflow-minihalo interactions including non-equilibrium chemical reactions. In all models, the shocked minihalo forms molecules through non-equilibrium reactions, and then cools to form dense chemically homogenous clumps of star-forming gas. The formation of these high-redshift clusters will be observable with the next generation of telesc...
Vittorio, Nicola
2017-01-01
Modern cosmology has changed significantly over the years, from the discovery to the precision measurement era. The data now available provide a wealth of information, mostly consistent with a model where dark matter and dark energy are in a rough proportion of 3:7. The time is right for a fresh new textbook which captures the state-of-the art in cosmology. Written by one of the world's leading cosmologists, this brand new, thoroughly class-tested textbook provides graduate and undergraduate students with coverage of the very latest developments and experimental results in the field. Prof. Nicola Vittorio shows what is meant by precision cosmology, from both theoretical and observational perspectives.
Star formation in mergers with cosmologically motivated initial conditions
Karman, Wouter; Kannan, Rahul; Moster, Benjamin P; Somerville, Rachel S
2015-01-01
We use semi-analytic models and cosmological merger trees to provide the initial conditions for multi-merger numerical hydrodynamic simulations, and exploit these simulations to explore the effect of galaxy interaction and merging on star formation (SF). We compute numerical realisations of twelve merger trees from z=1.5 to z=0. We include the effects of the large hot gaseous halo around all galaxies, following recent obervations and predictions of galaxy formation models. We find that including the hot gaseous halo has a number of important effects. Firstly, as expected, the star formation rate on long timescales is increased due to cooling of the hot halo and refuelling of the cold gas reservoir. Secondly, we find that interactions do not always increase the SF in the long term. This is partially due to the orbiting galaxies transferring gravitational energy to the hot gaseous haloes and raising their temperature. Finally we find that the relative size of the starburst, when including the hot halo, is much ...
Axionic Band Structure of the Cosmological Constant
Bachlechner, Thomas C.
2015-01-01
We argue that theories with multiple axions generically contain a large number of vacua that can account for the smallness of the cosmological constant. In a theory with N axions, the dominant instantons with charges Q determine the discrete symmetry of vacua. Subleading instantons break the leading periodicity and lift the vacuum degeneracy. For generic integer charges the number of distinct vacua is given by |det(Q)|~exp(N). Our construction motivates the existence of a landscape with a vas...
Challenges in Cosmology from the Big Bang to Dark Energy, Dark Matter and Galaxy Formation
Silk, Joseph
2016-01-01
I review the current status of Big Bang Cosmology, with emphasis on current issues in dark matter, dark energy, and galaxy formation. These topics motivate many of the current goals of experimental cosmology which range from targeting the nature of dark energy and dark matter to probing the epoch of the first stars and galaxies.
Chamcham, Khalil; Silk, Joseph; Barrow, John D.; Saunders, Simon
2017-04-01
Part I. Issues in the Philosophy of Cosmology: 1. Cosmology, cosmologia and the testing of cosmological theories George F. R. Ellis; 2. Black holes, cosmology and the passage of time: three problems at the limits of science Bernard Carr; 3. Moving boundaries? – comments on the relationship between philosophy and cosmology Claus Beisbart; 4. On the question why there exists something rather than nothing Roderich Tumulka; Part II. Structures in the Universe and the Structure of Modern Cosmology: 5. Some generalities about generality John D. Barrow; 6. Emergent structures of effective field theories Jean-Philippe Uzan; 7. Cosmological structure formation Joel R. Primack; 8. Formation of galaxies Joseph Silk; Part III. Foundations of Cosmology: Gravity and the Quantum: 9. The observer strikes back James Hartle and Thomas Hertog; 10. Testing inflation Chris Smeenk; 11. Why Boltzmann brains do not fluctuate into existence from the de Sitter vacuum Kimberly K. Boddy, Sean M. Carroll and Jason Pollack; 12. Holographic inflation revised Tom Banks; 13. Progress and gravity: overcoming divisions between general relativity and particle physics and between physics and HPS J. Brian Pitts; Part IV. Quantum Foundations and Quantum Gravity: 14. Is time's arrow perspectival? Carlo Rovelli; 15. Relational quantum cosmology Francesca Vidotto; 16. Cosmological ontology and epistemology Don N. Page; 17. Quantum origin of cosmological structure and dynamical reduction theories Daniel Sudarsky; 18. Towards a novel approach to semi-classical gravity Ward Struyve; Part V. Methodological and Philosophical Issues: 19. Limits of time in cosmology Svend E. Rugh and Henrik Zinkernagel; 20. Self-locating priors and cosmological measures Cian Dorr and Frank Arntzenius; 21. On probability and cosmology: inference beyond data? Martin Sahlén; 22. Testing the multiverse: Bayes, fine-tuning and typicality Luke A. Barnes; 23. A new perspective on Einstein's philosophy of cosmology Cormac O
Reionization and Galaxy Formation in Warm Dark Matter Cosmologies
Dayal, Pratika; Choudhury, Tirthankar Roy; Bromm, Volker; Pacucci, Fabio
2017-02-01
We compare model results from a semi-analytic (merger-tree based) framework for high-redshift (z ≃ 5-20) galaxy formation against reionization indicators, including the Planck electron scattering optical depth (τ es) and the ionizing photon emissivity ({\\dot{n}}{ion}), to shed light on the reionization history and sources in Cold (CDM) and Warm Dark Matter (WDM; particle masses of {m}x = 1.5, 3, and 5 keV) cosmologies. This model includes all of the key processes of star formation, supernova feedback, the merger/accretion/ejection driven evolution of gas and stellar mass and the effect of the ultra-violet background (UVB), created during reionization, in photo-evaporating the gas content of galaxies in halos with M h ≲ 109 {M}⊙ . We find that the delay in the start of reionization in light (1.5 keV) WDM models can be compensated by a steeper redshift evolution of the ionizing photon escape fraction and a faster mass assembly, resulting in reionization ending at comparable redshifts (z ≃ 5.5) in all the dark matter models considered. We find that the bulk of the reionization photons come from galaxies with a halo mass of M h ≲ 109 {M}⊙ and a UV magnitude of -15 ≲ M UV ≲ -10 in CDM. The progressive suppression of low-mass halos with decreasing {m}x leads to a shift in the “reionization” population to larger halo masses of M h ≳ 109 {M}⊙ and -17 ≲ M UV ≲ -13 for 1.5 keV WDM. We find that current observations of τ es and the ultra violet luminosity function are equally compatible with all the (cold and warm) dark matter models considered in this work. Quantifying the impact of the UVB on galaxy observables (luminosity functions, stellar mass densities, and stellar to halo mass ratios) for different DM models, we propose that global indicators including the redshift evolution of the stellar mass density and the stellar mass-halo mass relation, observable with the James Webb Space Telescope, can be used to distinguish between CDM and WDM (1
Axionic Band Structure of the Cosmological Constant
Bachlechner, Thomas C
2015-01-01
We argue that theories with multiple axions generically contain a large number of vacua that can account for the smallness of the cosmological constant. In a theory with N axions, the dominant instantons with charges Q determine the discrete symmetry of vacua. Subleading instantons break the leading periodicity and lift the vacuum degeneracy. For generic integer charges the number of distinct vacua is given by |det(Q)|~exp(N). Our construction motivates the existence of a landscape with a vast number of vacua in a large class of four-dimensional effective theories.
Axionic band structure of the cosmological constant
Bachlechner, Thomas C.
2016-01-01
We argue that theories with multiple axions generically contain a large number of vacua that can account for the smallness of the cosmological constant. In a theory with N axions, the dominant instantons with charges 풬 determine the discrete symmetry of vacua. Subleading instantons break the leading periodicity and lift the vacuum degeneracy. For generic integer charges the number of distinct vacua is given by √{det (풬⊤풬 ) }∝eN. Our construction motivates the existence of a landscape with a vast number of vacua in a large class of four-dimensional effective theories.
Fundamental Particle Structure in the Cosmological Dark Matter
Khlopov, Maxim Yu
2013-01-01
The nonbaryonic dark matter of the Universe is assumed to consist of new stable forms of matter. Their stability reflects symmetry of micro world and mechanisms of its symmetry breaking. Particle candidates for cosmological dark matter are lightest particles that bear new conserved quantum numbers. Dark matter particles may represent ideal gas of non-interacting particles. Self-interacting dark matter weakly or superweakly coupled to ordinary matter is also possible, reflecting nontrivial pattern of particle symmetry in the hidden sector of particle theory. In the early Universe the structure of particle symmetry breaking gives rise to cosmological phase transitions, from which macroscopic cosmological defects or primordial nonlinear structures can be originated. Primordial black holes (PBHs) can be not only a candidate for dark matter, but also represent a universal probe for super-high energy physics in the early Universe. Evaporating PBHs turn to be a source of even superweakly interacting particles, while...
Cattaneo, A.; Blaizot, J.; Devriendt, J.; Guiderdoni, B.
2005-12-01
This is the first paper of a series on the methods and results of the Active Galactic Nuclei In Cosmological Simulations (AGNICS) project, which incorporates the physics of active galactic nuclei (AGNs) into Galaxies In Cosmological Simulations (GalICS), a galaxy formation model that combines large cosmological N-body simulations of dark matter hierarchical clustering and a semi-analytic approach to the physics of the baryons. The project explores the quasar-galaxy link in a cosmological perspective, in response to growing observational evidence for a close relation between supermassive black holes (SMBHs) and spheroids. The key problems are the quasar fuelling mechanism, the origin of the black hole (BH)-to-bulge mass relation, the causal and chronological link between BH growth and galaxy formation, the properties of quasar hosts and the role of AGN feedback in galaxy formation. This first paper has two goals. The first is to describe the general structure and assumptions that provide the framework for the AGNICS series. The second is to apply AGNICS to studying the joint formation of SMBHs and spheroids in galaxy mergers. We investigate under what conditions this scenario can reproduce the local distribution of SMBHs in nearby galaxies and the evolution of the quasar population. AGNICS contains two star formation modes: a quiescent mode in discs and a starburst mode in proto-spheroids, the latter triggered by mergers and disc instabilities. Here we assume that BH growth is linked to the starburst mode. The simplest version of this scenario, in which the BH accretion rate and the star formation rate in the starburst component are simply related by a constant of proportionality, does not to reproduce the cosmic evolution of the quasar population. A model in which , where ρburst is the density of the gas in the starburst and ζ~= 0.5, can explain the evolution of the quasar luminosity function in B band and X-rays (taking into account the presence of obscured AGNs
The Challenge of the Largest Structures in the Universe to Cosmology
Park, Changbom; Kim, Juhan; Gott, J Richard; Kim, Sungsoo S; Kim, Kap-Sung
2012-01-01
Large galaxy redshift surveys have long been used to constrain cosmological models and structure formation scenarios. In particular, the largest structures discovered observationally are thought to carry critical information on the amplitude of large-scale density fluctuations or homogeneity of the universe, and have often challenged the standard cosmological framework. The Sloan Great Wall (SGW) recently found in the Sloan Digital Sky Survey (SDSS) region casts doubt on the concordance cosmological model with a cosmological constant (i.e. the flat LCDM model). Here we show that the existence of the SGW is perfectly consistent with the LCDM model, a result that only our very large cosmological N-body simulation (the Horizon Run 2, HR2) could supply. In addition, we report on the discovery of a void complex in the SDSS much larger than the SGW, and show that such size of the largest void is also predicted in the LCDM paradigm. Our results demonstrate that an initially homogeneous isotropic universe with primor...
Spurious Small-Scale Structure & Discreteness-Driven Relaxation in Cosmological Simulations
Power, Chris; Obreschkow, Danail; Hobbs, Alexander; Lewis, Geraint F
2016-01-01
There is strong evidence that cosmological N-body simulations dominated by Warm Dark Matter (WDM) contain spurious or unphysical haloes, most readily apparent as regularly spaced low-mass haloes strung along filaments. We show that spurious haloes are a feature of traditional N-body simulations of cosmological structure formation models, including WDM and Cold Dark Matter (CDM) models, in which gravitational collapse proceeds in an initially anisotropic fashion, and arises naturally as a consequence of discreteness-driven relaxation. We demonstrate this using controlled N-body simulations of plane-symmetric collapse and show that spurious haloes are seeded at shell crossing by localised velocity perturbations induced by the discrete nature of the density field, and that their characteristic separation should be approximately the mean inter-particle separation of the N-body simulation, which is fixed by the mass resolution within the volume. Using cosmological N-body simulations in which particles are split in...
The BAHAMAS project: Calibrated hydrodynamical simulations for large-scale structure cosmology
McCarthy, Ian G; Bird, Simeon; Brun, Amandine M C Le
2016-01-01
The evolution of the large-scale distribution of matter is sensitive to a variety of fundamental parameters that characterise the dark matter, dark energy, and other aspects of our cosmological framework. Since the majority of the mass density is in the form of dark matter that cannot be directly observed, to do cosmology with large-scale structure one must use observable (baryonic) quantities that trace the underlying matter distribution in a (hopefully) predictable way. However, recent numerical studies have demonstrated that the mapping between observable and total mass, as well as the total mass itself, are sensitive to unresolved feedback processes associated with galaxy formation, motivating explicit calibration of the feedback efficiencies. Here we construct a new suite of large-volume cosmological hydrodynamical simulations (called BAHAMAS, for BAryons and HAloes of MAssive Systems) where subgrid models of stellar and Active Galactic Nucleus (AGN) feedback have been calibrated to reproduce the present...
Cosmological parameters from large scale structure - geometric versus shape information
Hamann, Jan; Lesgourgues, Julien; Rampf, Cornelius; Wong, Yvonne Y Y
2010-01-01
The matter power spectrum as derived from large scale structure (LSS) surveys contains two important and distinct pieces of information: an overall smooth shape and the imprint of baryon acoustic oscillations (BAO). We investigate the separate impact of these two types of information on cosmological parameter estimation, and show that for the simplest cosmological models, the broad-band shape information currently contained in the SDSS DR7 halo power spectrum (HPS) is by far superseded by geometric information derived from the baryonic features. An immediate corollary is that contrary to popular beliefs, the upper limit on the neutrino mass m_\
Structure formation and the origin of dark energy
Hossain, Golam Mortuza
2007-01-01
Cosmological constant a.k.a. dark energy problem is considered to be one major challenge in modern cosmology. Here we present a model where large scale structure formation causes spatially-flat FRW universe to fragment into numerous `FRW islands' surrounded by vacuum. We show that this mechanism can explain the origin of dark energy as well as the late time cosmic acceleration. This explanation of dark energy does not require any exotic matter source nor an extremely fine-tuned cosmological constant. This explanation is given within classical general relativity and relies on the fact that our universe has been undergoing structure formation since its recent past.
Lesgourgues, Julien; Miele, Gennaro; Pastor, Sergio
2013-01-01
The role that neutrinos have played in the evolution of the Universe is the focus of one of the most fascinating research areas that has stemmed from the interplay between cosmology, astrophysics and particle physics. In this self-contained book, the authors bring together all aspects of the role of neutrinos in cosmology, spanning from leptogenesis to primordial nucleosynthesis, their role in CMB and structure formation, to the problem of their direct detection. The book starts by guiding the reader through aspects of fundamental neutrino physics, such as the standard cosmological model and the statistical mechanics in the expanding Universe, before discussing the history of neutrinos in chronological order from the very early stages until today. This timely book will interest graduate students and researchers in astrophysics, cosmology and particle physics, who work with either a theoretical or experimental focus.
Formation of stars and clusters over cosmological time
Elmegreen, Bruce G
2014-01-01
The concept that stars form in the modern era began some 60 years ago with the key observation of expanding OB associations. Now we see that these associations are an intermediate scale in a cascade of hierarchical structures that begins on the ambient Jeans length close to a kiloparsec in size and continues down to the interiors of clusters, perhaps even to binary and multiple stellar systems. The origin of this structure lies with the dynamical nature of cloud and star formation, driven by supersonic turbulence and interstellar gravity. Dynamical star formation is relatively fast compared to the timescale for cosmic accretion, and then the star formation rate keeps up with the accretion rate, leading to a sequence of near-equilibrium states during galaxy formation and evolution. Dynamical star formation also helps to explain the formation of bound clusters, which require a local efficiency that exceeds the average by more than an order of magnitude. Efficiency increases with density in a hierarchically stru...
Thermodynamic evolution of the cosmological baryonic gas II. Galaxy formation
Alimi, J M
2004-01-01
The problem of galaxy formation and its dependence on thermodynamic properties is addressed by using Eulerian hydrodynamic numerical simulations of large scale structure formation. Global galaxy properties are explored in simulations including gravitation, shock heating and cooling processes, and following self-consistently the chemical evolution of a primordial composition hydrogen-helium plasma without assuming collisional ionization equilibrium. The galaxy formation model is mainly based on the identification of converging dense cold gas regions. We show that the evolution at low redshift of the observed cosmic star formation rate density is reproduced, and that the galaxy-like object mass function is dominated by low-mass objects. The galaxy mass functions are well described by a two power-law Schechter function whose parameters are in good agreement with observational fits of the galaxy luminosity function. The high-mass end of the galaxy mass function includes objects formed at early epochs and residing...
Semi-analytic galaxy formation in f(R)-gravity cosmologies
Bianchi, Davide
2013-01-01
Modifications of the equations of general relativity at large distances offer one possibility to explain the observed properties of our Universe without invoking a cosmological constant. Numerous proposals for such modified gravity cosmologies exist, but often their consequences for structure formation in the non-linear sector are not yet accurately known. In this work, we employ high-resolution numerical simulations of f(R)-gravity models coupled with a semi-analytic model (SAM) for galaxy formation to obtain detailed predictions for the evolution of galaxy properties. The f(R)-gravity models imply the existence of a `fifth-force', which is however locally suppressed, preserving the successes of general relativity on solar system scales. We show that dark matter haloes in f(R)-gravity models are characterized by a modified virial scaling with respect to the LCDM scenario, reflecting a higher dark matter velocity dispersion at a given mass. This effect is taken into account in the SAM by an appropriate modifi...
The Formation of Population III Binaries from Cosmological Initial Conditions
Energy Technology Data Exchange (ETDEWEB)
Turk, Matthew J.; Abel, Tom; /KIPAC, Menlo Park; O' Shea, Brian W.; /Michigan State U.
2010-08-26
Previous high resolution cosmological simulations predict the first stars to appear in the early universe to be very massive and to form in isolation. Here we discuss a cosmological simulation in which the central 50M{sub {circle_dot}} clump breaks up into two cores, having a mass ratio of two to one, with one fragment collapsing to densities of 10{sup -8}g cm{sup -3}. The second fragment, at a distance of {approx}800 astronomical units, is also optically thick to its own cooling radiation from molecular hydrogen lines, but is still able to cool via collision-induced emission. The two dense peaks will continue to accrete from the surrounding cold gas reservoir over a period of {approx} 10{sup 5} years and will likely form a binary star system.
A physical model for cosmological simulations of galaxy formation
Vogelsberger, Mark; Sijacki, Debora; Torrey, Paul; Springel, Volker; Hernquist, Lars; ),
2013-01-01
We present a new comprehensive model of the physics of galaxy formation designed for large-scale hydrodynamical simulations of structure formation using the moving mesh code AREPO. Our model includes primordial and metal line cooling with self-shielding corrections, stellar evolution and feedback processes, gas recycling, chemical enrichment, a novel subgrid model for the metal loading of outflows, black hole (BH) seeding, BH growth and merging procedures, quasar- and radio-mode feedback, and a prescription for radiative electro-magnetic (EM) feedback from active galactic nuclei (AGN). Stellar feedback is realised through kinetic outflows. The scaling of the mass loading of galactic winds can be set to be either energy or momentum driven, or a mixture of both. The metal mass loading of outflows can be adjusted independently of the wind mass loading. This is required to simultaneously reproduce the stellar mass content of low mass haloes and their gas oxygen abundances. Radiative EM AGN feedback is implemented...
Spherical collapse, formation hysteresis and the deeply non-linear cosmological power spectrum
Mead, A. J.
2016-09-01
I examine differences in non-linear structure formation between cosmological models that share a z = 0 linear power spectrum in both shape and amplitude, but that differ via their growth history. N-body simulations of these models display an approximately identical large-scale-structure skeleton, but reveal deeply non-linear differences in the demographics and properties of haloes. I investigate to what extent the spherical-collapse model can help in understanding these differences, in both real and redshift space. I discuss how this is difficult to do if one attempts to identify haloes directly, because in that case one is subject to the vagaries of halo finding algorithms. However, I demonstrate that the halo model of structure formation provides an accurate non-linear response in the power spectrum, but only if results from spherical collapse that include formation hysteresis are properly incorporated. I comment on how this fact can be used to provide per cent level accurate matter power spectrum predictions for dark energy models for k ≤ 5 hMpc-1 by using the halo model as a correction to accurate ΛCDM simulations. In the appendix I provide some fitting functions for the linear-collapse threshold (δc) and virialized overdensity (Δv) that are valid for a wide range of dark energy models. I also make my spherical-collapse code available at https://github.com/alexander-mead/collapse.
Spherical collapse, formation hysteresis and the deeply non-linear cosmological power spectrum
Mead, Alexander
2016-01-01
I examine differences in non-linear structure formation between cosmological models that share a $z=0$ linear power spectrum in both shape and amplitude, but that differ via their growth history. $N$-body simulations of these models display an approximately identical large-scale-structure skeleton, but reveal deeply non-linear differences in the demographics and properties of haloes. I investigate to what extent the spherical-collapse model can help in understanding these differences, in both real and redshift space. I discuss how this is difficult to do if one attempts to identify haloes directly, because in that case one is subject to the vagaries of halo finding algorithms. However, I demonstrate that the halo model of structure formation provides an accurate non-linear response in the power spectrum, but only if results from spherical collapse that include formation hysteresis are properly incorporated. I comment on how this fact can be used to provide per cent level accurate matter power spectrum predict...
Spherical collapse, formation hysteresis and the deeply non-linear cosmological power spectrum
Mead, A. J.
2017-01-01
I examine differences in non-linear structure formation between cosmological models that share a z = 0 linear power spectrum in both shape and amplitude, but that differ via their growth history. N-body simulations of these models display an approximately identical large-scale-structure skeleton, but reveal deeply non-linear differences in the demographics and properties of haloes. I investigate to what extent the spherical-collapse model can help in understanding these differences, in both real and redshift space. I discuss how this is difficult to do if one attempts to identify haloes directly, because in that case one is subject to the vagaries of halo-finding algorithms. However, I demonstrate that the halo model of structure formation provides an accurate non-linear response in the power spectrum, but only if results from spherical collapse that include formation hysteresis are properly incorporated. I comment on how this fact can be used to provide per cent level accurate matter power-spectrum predictions for dark energy models for k ≤ 5 h Mpc-1 by using the halo model as a correction to accurate ΛCDM simulations. In the Appendix, I provide some fitting functions for the linear-collapse threshold (δc) and virialized overdensity (Δv) that are valid for a wide range of dark energy models. I also make my spherical-collapse code available at https://github.com/alexander-mead/collapse.
Testing anthropic reasoning for the cosmological constant with a realistic galaxy formation model
Sudoh, Takahiro; Makiya, Ryu; Nagashima, Masahiro
2016-01-01
The anthropic principle is one of the possible explanations for the cosmological constant ($\\Lambda$) problem. In previous studies, a dark halo mass threshold comparable with our Galaxy must be assumed in galaxy formation to get a reasonably large probability of finding the observed small value, $P(<$$\\Lambda_{\\rm obs})$, though stars are found in much smaller galaxies as well. Here we examine the anthropic argument by using a semi-analytic model of cosmological galaxy formation, which can reproduce many observations such as galaxy luminosity functions. We calculate the probability distribution of $\\Lambda$ by running the model code for a wide range of $\\Lambda$, while other cosmological parameters and model parameters for baryonic processes of galaxy formation are kept constant. Assuming that the prior probability distribution is flat per unit $\\Lambda$, and that the number of observers is proportional to stellar mass, we find $P(<$$\\Lambda_{\\rm obs}) = 6.7 \\%$ without introducing any galaxy mass thres...
Thick strings, the liquid crystal blue phase, and cosmological large-scale structure
Luo, Xiaochun; Schramm, David N.
1992-01-01
A phenomenological model based on the liquid crystal blue phase is proposed as a model for a late-time cosmological phase transition. Topological defects, in particular thick strings and/or domain walls, are presented as seeds for structure formation. It is shown that the observed large-scale structure, including quasi-periodic wall structure, can be well fitted in the model without violating the microwave background isotropy bound or the limits from induced gravitational waves and the millisecond pulsar timing. Furthermore, such late-time transitions can produce objects such as quasars at high redshifts. The model appears to work with either cold or hot dark matter.
Structure scalars and evolution equations in f( G) cosmology
Sharif, M.; Fatima, H. Ismat
2017-01-01
In this paper, we study the dynamics of self-gravitating fluid using structure scalars for spherical geometry in the context of f( G) cosmology. We construct structure scalars through orthogonal splitting of the Riemann tensor and deduce a complete set of equations governing the evolution of dissipative anisotropic fluid in terms of these scalars. We explore different causes of density inhomogeneity which turns out to be a necessary condition for viable models. It is explicitly shown that anisotropic inhomogeneous static spherically symmetric solutions can be expressed in terms of these scalar functions.
Formation of the First Low-Mass Stars from Cosmological Initial Conditions
Safranek-Shrader, Chalence; Bromm, Volker
2014-01-01
We simulate the formation of a metal-poor ($10^{-2}\\,Z_{\\odot}$) stellar cluster in one of the first galaxies to form in the early Universe, specifically a high-redshift atomic cooling halo ($z\\sim14$). This is the first calculation that resolves the formation of individual metal-enriched stars in simulations starting from realistic cosmological initial conditions. We follow the evolution of a single dense clump among several in the parent halo. The clump forms a cluster of $\\sim40$ stars and sub-stellar objects within $7000$ yrs and could continue forming stars $\\sim5$ times longer. Protostellar dust heating has a negligible effect on the star formation efficiency, at least during the early evolutionary stages, but it moderately suppresses gaseous fragmentation and brown dwarf formation. We observe fragmentation in thin gaseous filaments and sustained accretion in larger, rotating structures as well as ejections by binary interactions. The stellar initial mass function above $0.1\\,M_{\\odot}$, evaluated after...
Cosmological Structures behind the Milky Way
Kraan-Korteweg, R C
2005-01-01
This paper provides an update to the review on extragalactic large-scale structures uncovered in the Zone of Avoidance (ZOA) by Kraan-Korteweg & Lahav 2000, in particular in the Great Attractor region. Emphasis is given to the penetration of the ZOA with the in 2003 released NIR 2MASX Catalog. The distribution is little affected by the foreground dust. Galaxies can be identified to extinction levels of over A(B) < 10m except in the wider Galactic Bulge region (see Fig. 9) where star density is a strong delimiting factor. The shape of the NIR-ZOA is quite asymmetric due to Galactic features such as spiral arms and the Bulge, something that should not be ignored when using NIR samples for studies such as dipole determinations. Results are presented from the deep blind HI ZOA survey performed with the Multibeam Receiver at the Parkes telescope (v < 12700km/s). The distribution of the roughly one thousand discovered spiral galaxies in the optically and NIR impenetratable part of the ZOA clearly depict t...
Zentner, A R
2003-01-01
Improvements in observational techniques have transformed cosmology into a field inundated with ever-expanding, high-quality data sets and driven cosmology toward a standard model where the classic cosmological parameters are accurately measured. I briefly discuss some of the methods used to determine cosmological parameters, particularly primordial nucleosynthesis, the magnitude- redshift relation of supernovae, and cosmic microwave background anisotropy. I demonstrate how cosmological data can be used to complement particle physics and constrain extensions to the Standard Model. Specifically, I present bounds on light particle species and the properties of unstable, weakly-interacting, massive particles. Despite the myriad successes of the emerging standard cosmological model, unanswered questions linger. Numerical simulations of structure formation predict galactic central densities that are considerably higher than observed. They also reveal hundreds of satellites orbiting Milky Way-like galaxies while th...
The BAHAMAS project: calibrated hydrodynamical simulations for large-scale structure cosmology
McCarthy, Ian G.; Schaye, Joop; Bird, Simeon; Le Brun, Amandine M. C.
2017-03-01
The evolution of the large-scale distribution of matter is sensitive to a variety of fundamental parameters that characterize the dark matter, dark energy, and other aspects of our cosmological framework. Since the majority of the mass density is in the form of dark matter that cannot be directly observed, to do cosmology with large-scale structure, one must use observable (baryonic) quantities that trace the underlying matter distribution in a (hopefully) predictable way. However, recent numerical studies have demonstrated that the mapping between observable and total mass, as well as the total mass itself, are sensitive to unresolved feedback processes associated with galaxy formation, motivating explicit calibration of the feedback efficiencies. Here, we construct a new suite of large-volume cosmological hydrodynamical simulations (called BAHAMAS, for BAryons and HAloes of MAssive Systems), where subgrid models of stellar and active galactic nucleus feedback have been calibrated to reproduce the present-day galaxy stellar mass function and the hot gas mass fractions of groups and clusters in order to ensure the effects of feedback on the overall matter distribution are broadly correct. We show that the calibrated simulations reproduce an unprecedentedly wide range of properties of massive systems, including the various observed mappings between galaxies, hot gas, total mass, and black holes, and represent a significant advance in our ability to mitigate the primary systematic uncertainty in most present large-scale structure tests.
Plionis, M.
2004-07-01
The recent scientific efforts in Astrophysics & Cosmology have brought a revolution to our understanding of the Cosmos. Amazing results is the outcome of amazing experiments! The huge scientific, technological & financial effort that has gone into building the 10-m class telescopes as well as many space and balloon observatories, essential to observe the multitude of cosmic phenomena in their manifestations at different wavelengths, from gamma-rays to the millimetre and the radio, has given and is still giving its fruits of knowledge. These recent scientific achievements in Observational and Theoretical Cosmology were presented in the "Multiwavelength Cosmology" conference that took place on beautiful Mykonos island in the Aegean between 17 and 20 June 2003. More than 180 Cosmologists from all over the world gathered for a four-day intense meeting in which recent results from large ground based surveys (AAT/2-df, SLOAN) and space missions (WMAP, Chandra, XMM, ISO, HST) were presented and debated, providing a huge impetus to our knowledge of the Cosmos. The future of the subject (experiments, and directions of research) was also discussed. The conference was devoted mostly on the constraints on Cosmological models and galaxy formation theories that arise from the study of the high redshift Universe, from clusters of galaxies, and their evolution, from the cosmic microwave background, the large-scale structure and star-formation history. Link: http://www.wkap.nl/prod/b/1-4020-1971-8
Marsh, David J E
2015-01-01
Axions comprise a broad class of particles that can play a major role in explaining the unknown aspects of cosmology. They are also extraordinarily well-motivated within high energy physics, and so axion cosmology offers us a unique view onto these theories. I present a comprehensive and pedagogical view on the cosmology and astrophysics of axion-like particles, starting from inflation and progressing via the CMB and structure formation up to the present-day Universe. I briefly review the motivation and models for axions in particle physics and string theory. The primary focus is on the population of ultralight axions created via vacuum realignment, and its role as a dark matter (DM) candidate with distinctive phenomenology. Cosmological observations place robust constraints on the axion mass and relic density in this scenario, and I review where such constraints come from. I next cover aspects of galaxy formation with axion DM, and ways this can be used to further search for evidence of axions. An absolute l...
Galaxy Formation and Large Scale Structure
Ellis, R
1999-01-01
Galaxies represent the visible fabric of the Universe and there has been considerable progress recently in both observational and theoretical studies. The underlying goal is to understand the present-day diversity of galaxy forms, masses and luminosities in the context of theories for the growth of structure. Popular models predict the bulk of the galaxy population assembled recently, in apparent agreement with optical and near-infrared observations. However, detailed conclusions rely crucially on the choice of the cosmological parameters. Although the star formation history has been sketched to early times, uncertainties remain, particularly in connecting to the underlying mass assembly rate. I discuss the expected progress in determining the cosmological parameters and address the question of which observations would most accurately check contemporary models for the origin of the Hubble sequence. The new generation of ground-based and future space-based large telescopes, equipped with instrumentation approp...
The effective field theory of cosmological large scale structures
Energy Technology Data Exchange (ETDEWEB)
Carrasco, John Joseph M. [Stanford Univ., Stanford, CA (United States); Hertzberg, Mark P. [Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States); Senatore, Leonardo [Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)
2012-09-20
Large scale structure surveys will likely become the next leading cosmological probe. In our universe, matter perturbations are large on short distances and small at long scales, i.e. strongly coupled in the UV and weakly coupled in the IR. To make precise analytical predictions on large scales, we develop an effective field theory formulated in terms of an IR effective fluid characterized by several parameters, such as speed of sound and viscosity. These parameters, determined by the UV physics described by the Boltzmann equation, are measured from N-body simulations. We find that the speed of sound of the effective fluid is c^{2}_{s} ≈ 10^{–6}c^{2} and that the viscosity contributions are of the same order. The fluid describes all the relevant physics at long scales k and permits a manifestly convergent perturbative expansion in the size of the matter perturbations δ(k) for all the observables. As an example, we calculate the correction to the power spectrum at order δ(k)^{4}. As a result, the predictions of the effective field theory are found to be in much better agreement with observation than standard cosmological perturbation theory, already reaching percent precision at this order up to a relatively short scale k ≃ 0.24h Mpc^{–1}.
Mathematical Structure of Loop Quantum Cosmology: Homogeneous Models
Directory of Open Access Journals (Sweden)
Martin Bojowald
2013-12-01
Full Text Available The mathematical structure of homogeneous loop quantum cosmology is analyzed, starting with and taking into account the general classification of homogeneous connections not restricted to be Abelian. As a first consequence, it is seen that the usual approach of quantizing Abelian models using spaces of functions on the Bohr compactification of the real line does not capture all properties of homogeneous connections. A new, more general quantization is introduced which applies to non-Abelian models and, in the Abelian case, can be mapped by an isometric, but not unitary, algebra morphism onto common representations making use of the Bohr compactification. Physically, the Bohr compactification of spaces of Abelian connections leads to a degeneracy of edge lengths and representations of holonomies. Lifting this degeneracy, the new quantization gives rise to several dynamical properties, including lattice refinement seen as a direct consequence of state-dependent regularizations of the Hamiltonian constraint of loop quantum gravity. The representation of basic operators - holonomies and fluxes - can be derived from the full theory specialized to lattices. With the new methods of this article, loop quantum cosmology comes closer to the full theory and is in a better position to produce reliable predictions when all quantum effects of the theory are taken into account.
Topological structure of the vacuum, cosmological constant and dark energy
Sidharth, B. G.; Das, A.; Das, C. R.; Laperashvili, L. V.; Nielsen, H. B.
2016-11-01
In this review, we present a theory of cosmological constant and dark energy (DE), based on the topological structure of the vacuum. The multiple point principle (MPP) is reviewed. It demonstrates the existence of the two vacua into the SM. The Froggatt-Nielsen’s prediction of the top-quark and Higgs masses is given in the assumption that there exist two degenerate vacua in the SM. This prediction was improved by the next-order calculations. We also considered Sidharth’s theory of cosmological constant based on the noncommutative geometry of the Planck scale space-time, what gives an extremely small DE density providing the accelerating expansion of the Universe. Theory of two degenerate vacua — the Planck scale phase and electroweak (EW) phase — is also reviewed, topological defects in these vacua are investigated, also the Compton wavelength phase suggested by Sidharth is discussed. A general theory of the phase transition and the problem of the vacuum stability in the SM is reviewed. Assuming the existence of a new scalar S bound state 6t + 6t¯, earlier predicted by Froggatt, Nielsen and Laperashvili, we try to provide the vacuum stability in the SM and exact accuracy of the MPP.
Tremmel, Michael; Governato, Fabio; Volonteri, Marta; Quinn, Tom; Pontzen, Andrew; Anderson, Lauren
2016-01-01
We present a novel implementation of supermassive black hole (SMBH) formation, dynamics, and accretion in the massively parallel tree+SPH code, ChaNGa. This approach improves the modeling of SMBHs in fully cosmological simulations, allowing for a more detailed analysis of SMBH-galaxy co-evolution throughout cosmic time. Our scheme includes novel, physically motivated models for SMBH formation, dynamics and sinking timescales within galaxies, and SMBH accretion of rotationally supported gas. The sub-grid parameters that regulate star formation (SF) and feedback from SMBHs and SNe are optimized against a comprehensive set of z = 0 galaxy scaling relations using a novel, multi-dimensional parameter search. We have incorporated our new SMBH implementation and parameter optimization onto a new set of high resolution, large-scale cosmological simulations called Romulus. We present initial results from our flagship simulation, Romulus25, showing that our SMBH model results in SF efficiency, SMBH masses, and global c...
Reionization and Galaxy Formation in Warm Dark Matter Cosmologies
Dayal, Pratika; Choudhury, Tirthankar Roy; Bromm, Volker; Pacucci, F.
2017-01-01
We compare model results from a semi-analytic (merger-tree based) framework for high-redshift (z ' 5 − 20) galaxy formation against reionization indicators, including the Planck electron scattering optical depth (τes) and the ionizing photon emissivity ( ˙nion), to shed light on the reionization his
Reionization and Galaxy Formation in Warm Dark Matter Cosmologies
Dayal, Pratika; Choudhury, Tirthankar Roy; Bromm, Volker; Pacucci, F.
2017-01-01
We compare model results from a semi-analytic (merger-tree based) framework for high-redshift (z ' 5 − 20) galaxy formation against reionization indicators, including the Planck electron scattering optical depth (τes) and the ionizing photon emissivity ( ˙nion), to shed light on the reionization
Varying Fine-Structure Constant and the Cosmological Constant Problem
Fujii, Y
2003-01-01
We start with a brief account of the latest analysis of the Oklo phenomenon providing the still most stringent constraint on time-variability of the fine- structure constant $\\alpha$. Comparing this with the recent result from the measurement of distant QSO's appears to indicate a non-uniform time-dependence, which we argue to be related to another recent finding of the accelerating universe. This view is implemented in terms of the scalar-tensor theory, applied specifically to the small but nonzero cosmological constant. Our detailed calculation shows that these two phenomena can be understood in terms of a common origin, a particular behavior of the scalar field, dilaton. We also sketch how this theoretical approach makes it appropriate to revisit non- Newtonian gravity featuring small violation of Weak Equivalence Principle at medium distances.
Varying Fine-Structure Constant and the Cosmological Constant Problem
Fujii, Yasunori
We start with a brief account of the latest analysis of the Oklo phenomenon providing the still most stringent constraint on time variability of the fine-structure constant α. Comparing this with the recent result from the measurement of distant QSO's appears to indicate a non-uniform time-dependence, which we argue to be related to another recent finding of the accelerating universe. This view is implemented in terms of the scalar-tensor theory, applied specifically to the small but nonzero cosmological constant. Our detailed calculation shows that these two phenomena can be understood in terms of a common origin, a particular behavior of the scalar field, dilaton. We also sketch how this theoretical approach makes it appropriate to revisit non-Newtonian gravity featuring small violation of Weak Equivalence Principle at medium distances.
Cosmological special relativity the large scale structure of space, time and velocity
Carmeli, Moshe
2002-01-01
This book presents Einstein's theory of space and time in detail, and describes the large-scale structure of space, time and velocity as a new cosmological special relativity. A cosmological Lorentz-like transformation, which relates events at different cosmic times, is derived and applied. A new law of addition of cosmic times is obtained, and the inflation of the space at the early universe is derived, both from the cosmological transformation. The relationship between cosmic velocity, acceleration and distances is given. In the appendices gravitation is added in the form of a cosmological g
Cosmological special relativity the large scale structure of space, time and velocity
Carmeli, Moshe
1997-01-01
This book deals with special relativity theory and its application to cosmology. It presents Einstein's theory of space and time in detail, and describes the large scale structure of space, time and velocity as a new cosmological special relativity. A cosmological Lorentz-like transformation, which relates events at different cosmic times, is derived and applied. A new law of addition of cosmic times is obtained, and the inflation of the space at the early universe is derived, both from the cosmological transformation. The book will be of interest to cosmologists, astrophysicists, theoretical
Neutrino physics and precision cosmology
DEFF Research Database (Denmark)
Hannestad, Steen
2016-01-01
I review the current status of structure formation bounds on neutrino properties such as mass and energy density. I also discuss future cosmological bounds as well as a variety of different scenarios for reconciling cosmology with the presence of light sterile neutrinos....
Neutrino physics and precision cosmology
DEFF Research Database (Denmark)
Hannestad, Steen
2016-01-01
I review the current status of structure formation bounds on neutrino properties such as mass and energy density. I also discuss future cosmological bounds as well as a variety of different scenarios for reconciling cosmology with the presence of light sterile neutrinos....
Testing anthropic reasoning for the cosmological constant with a realistic galaxy formation model
Sudoh, Takahiro; Totani, Tomonori; Makiya, Ryu; Nagashima, Masahiro
2017-01-01
The anthropic principle is one of the possible explanations for the cosmological constant (Λ) problem. In previous studies, a dark halo mass threshold comparable with our Galaxy must be assumed in galaxy formation to get a reasonably large probability of finding the observed small value, P(running the model code for a wide range of Λ, while other cosmological parameters and model parameters for baryonic processes of galaxy formation are kept constant. Assuming that the prior probability distribution is flat per unit Λ, and that the number of observers is proportional to stellar mass, we find P(extremely small, we conclude that the anthropic argument is a viable explanation, if the value of Λ observed in our Universe is determined by a probability distribution.
The formation of disc galaxies in high resolution moving-mesh cosmological simulations
Marinacci, Federico; Springel, Volker
2013-01-01
We present cosmological hydrodynamical simulations of eight Milky Way-sized haloes that have been previously studied with dark matter only in the Aquarius project. For the first time, we employ the moving-mesh code AREPO in zoom simulations combined with a new comprehensive model for galaxy formation physics designed for large cosmological simulations. Our simulations form in most of the eight haloes strongly disc-dominated systems with realistic rotation curves, close to exponential surface density profiles, a stellar-mass to halo-mass ratio that matches expectations from abundance matching techniques, and galaxy sizes and ages consistent with expectations from large galaxy surveys in the local Universe. There is no evidence for any dark matter core formation in our simulations, even so they include repeated baryonic outflows by supernova-driven winds and black hole quasar feedback. The simulations significantly improve upon the results obtained for the same objects in some of the earlier work based on the S...
From Systematic Errors to Cosmology Using Large-Scale Structure
Hunterer, Dragan
We propose to carry out a two-pronged program to significantly improve links between galaxy surveys and constraints on primordial cosmology and fundamental physics. We will first develop the methodology to self-calibrate the survey, that is, determine the large-angle calibration systematics internally from the survey. We will use this information to correct biases that propagate from the largest to smaller angular scales. Our approach for tackling the systematics is very complementary to existing ones, in particular in the sense that it does not assume knowledge of specific systematic maps or templates. It is timely to undertake these analyses, since none of the currently known methods addresses the multiplicative effects of large-angle calibration errors that contaminate the small-scale signal and present one of the most significant sources of error in the large-scale structure. The second part of the proposal is to precisely quantify the statistical and systematic errors in the reconstruction of the Integrated Sachs-Wolfe (ISW) contribution to the cosmic microwave background (CMB) sky map using information from galaxy surveys. Unlike the ISW contributions to CMB power, the ISW map reconstruction has not been studied in detail to date. We will create a nimble plug-and-play pipeline to ascertain how reliably a map from an arbitrary LSS survey can be used to separate the late-time and early-time contributions to CMB anisotropy at large angular scales. We will pay particular attention to partial sky coverage, incomplete redshift information, finite redshift range, and imperfect knowledge of the selection function for the galaxy survey. Our work should serve as the departure point for a variety of implications in cosmology, including the physical origin of the large-angle CMB "anomalies".
Cosmological parameters from large scale structure - geometric versus shape information
Hamann, Jan; Hannestad, Steen; Lesgourgues, Julien; Rampf, Cornelius; Wong, Yvonne Y. Y.
2010-07-01
The matter power spectrum as derived from large scale structure (LSS) surveys contains two important and distinct pieces of information: an overall smooth shape and the imprint of baryon acoustic oscillations (BAO). We investigate the separate impact of these two types of information on cosmological parameter estimation for current data, and show that for the simplest cosmological models, the broad-band shape information currently contained in the SDSS DR7 halo power spectrum (HPS) is by far superseded by geometric information derived from the baryonic features. An immediate corollary is that contrary to popular beliefs, the upper limit on the neutrino mass mν presently derived from LSS combined with cosmic microwave background (CMB) data does not in fact arise from the possible small-scale power suppression due to neutrino free-streaming, if we limit the model framework to minimal ΛCDM+mν. However, in more complicated models, such as those extended with extra light degrees of freedom and a dark energy equation of state parameter w differing from -1, shape information becomes crucial for the resolution of parameter degeneracies. This conclusion will remain true even when data from the Planck spacecraft are combined with SDSS DR7 data. In the course of our analysis, we update both the BAO likelihood function by including an exact numerical calculation of the time of decoupling, as well as the HPS likelihood, by introducing a new dewiggling procedure that generalises the previous approach to models with an arbitrary sound horizon at decoupling. These changes allow a consistent application of the BAO and HPS data sets to a much wider class of models, including the ones considered in this work. All the cases considered here are compatible with the conservative 95%-bounds ∑mν < 1.16eV, Neff = 4.8±2.0.
Marsh, David J. E.
2016-07-01
Axions comprise a broad class of particles that can play a major role in explaining the unknown aspects of cosmology. They are also well-motivated within high energy physics, appearing in theories related to CP-violation in the standard model, supersymmetric theories, and theories with extra-dimensions, including string theory, and so axion cosmology offers us a unique view onto these theories. I review the motivation and models for axions in particle physics and string theory. I then present a comprehensive and pedagogical view on the cosmology and astrophysics of axion-like particles, starting from inflation and progressing via BBN, the CMB, reionization and structure formation, up to the present-day Universe. Topics covered include: axion dark matter (DM); direct and indirect detection of axions, reviewing existing and future experiments; axions as dark radiation; axions and the cosmological constant problem; decays of heavy axions; axions and stellar astrophysics; black hole superradiance; axions and astrophysical magnetic fields; axion inflation, and axion DM as an indirect probe of inflation. A major focus is on the population of ultralight axions created via vacuum realignment, and its role as a DM candidate with distinctive phenomenology. Cosmological observations place robust constraints on the axion mass and relic density in this scenario, and I review where such constraints come from. I next cover aspects of galaxy formation with axion DM, and ways this can be used to further search for evidence of axions. An absolute lower bound on DM particle mass is established. It is ma > 10-24eV from linear observables, extending to ma ≳ 10-22eV from non-linear observables, and has the potential to reach ma ≳ 10-18eV in the future. These bounds are weaker if the axion is not all of the DM, giving rise to limits on the relic density at low mass. This leads to the exciting possibility that the effects of axion DM on structure formation could one day be detected
Magnetic fields during high redshift structure formation
Schleicher, Dominik R G; Schober, Jennifer; Schmidt, Wolfram; Bovino, Stefano; Federrath, Christoph; Niemeyer, Jens; Banerjee, Robi; Klessen, Ralf S
2012-01-01
We explore the amplification of magnetic fields in the high-redshift Universe. For this purpose, we perform high-resolution cosmological simulations following the formation of primordial halos with \\sim10^7 M_solar, revealing the presence of turbulent structures and complex morphologies at resolutions of at least 32 cells per Jeans length. Employing a turbulence subgrid-scale model, we quantify the amount of unresolved turbulence and show that the resulting turbulent viscosity has a significant impact on the gas morphology, suppressing the formation of low-mass clumps. We further demonstrate that such turbulence implies the efficient amplification of magnetic fields via the small-scale dynamo. We discuss the properties of the dynamo in the kinematic and non-linear regime, and explore the resulting magnetic field amplification during primordial star formation. We show that field strengths of \\sim10^{-5} G can be expected at number densities of \\sim5 cm^{-3}.
Constraining cosmological ultralarge scale structure using numerical relativity
Braden, Jonathan; Johnson, Matthew C.; Peiris, Hiranya V.; Aguirre, Anthony
2017-07-01
Cosmic inflation, a period of accelerated expansion in the early universe, can give rise to large amplitude ultralarge scale inhomogeneities on distance scales comparable to or larger than the observable universe. The cosmic microwave background (CMB) anisotropy on the largest angular scales is sensitive to such inhomogeneities and can be used to constrain the presence of ultralarge scale structure (ULSS). We numerically evolve nonlinear inhomogeneities present at the beginning of inflation in full general relativity to assess the CMB quadrupole constraint on the amplitude of the initial fluctuations and the size of the observable universe relative to a length scale characterizing the ULSS. To obtain a statistically meaningful ensemble of simulations, we adopt a toy model in which inhomogeneities are injected along a preferred direction. We compute the likelihood function for the CMB quadrupole including both ULSS and the standard quantum fluctuations produced during inflation. We compute the posterior given the observed CMB quadrupole, finding that when including gravitational nonlinearities, ULSS curvature perturbations of order unity are allowed by the data, even on length scales not too much larger than the size of the observable universe. To demonstrate the robustness of our conclusions, we also explore a semianalytic model for the ULSS which reproduces our numerical results for the case of planar symmetry, and which can be extended to ULSS with a three-dimensional inhomogeneity structure. Our results illustrate the utility and importance of numerical relativity for constraining early universe cosmology.
Scalar-Fluid theories: cosmological perturbations and large-scale structure
Koivisto, Tomi S; Tamanini, Nicola
2015-01-01
Recently a new Lagrangian framework was introduced to describe interactions between scalar fields and relativistic perfect fluids. This allows two consistent generalizations of coupled quintessence models: non-vanishing pressures and a new type of derivative interaction. Here the implications of these to the formation of cosmological large-scale structure are uncovered at the linear order. The full perturbation equations in the two cases are derived in a unified formalism and their Newtonian, quasi-static limit is studied analytically. Requiring the absence of an effective sound speed for the coupled dark matter fluid restricts the Lagrangian to be a linear function of the matter number density. This still leaves new potentially viable classes of both algebraically and derivatively interacting models wherein the coupling may impact the background expansion dynamics and imprint signatures into the large-scale structure.
Statistical characteristics of formation and evolution of structure in the universe
Demianski, M.; Doroshkevich, A.
1999-01-01
An approximate statistical description of the formation and evolution of structure of the universe based on the Zel'dovich theory of gravitational instability is proposed. It is found that the evolution of DM structure shows features of self-similarity and the main structure characteristics can be expressed through the parameters of initial power spectrum and cosmological model. For the CDM-like power spectrum and suitable parameters of the cosmological model the effective matter compression ...
Crosby, Brian D; Smith, Britton D; Turk, Matthew J; Hahn, Oliver
2013-01-01
We present a semi-analytic, computationally inexpensive model to identify halos capable of forming a Population III star in cosmological simulations across a wide range of times and environments. This allows for a much more complete and representative set of Population III star forming halos to be constructed, which will lead to Population III star formation simulations that more accurately reflect the diversity of Population III stars, both in time and halo mass. This model shows that Population III and chemically enriched stars coexist beyond the formation of the first generation of stars in a cosmological simulation until at least z~10, and likely beyond, though Population III stars form at rates that are 4-6 orders of magnitude lower than chemically enriched stars by z=10. A catalog of more than 40,000 candidate Population III forming halos were identified, with formation times temporally ranging from z=30 to z=10, and ranging in mass from 2.3x10^5 M_sun to 1.2x10^10 M_sun. At early times, the environment...
Kay, S T; Aghanim, N; Blanchard, A; Liddle, A R; Puget, J L; Sadat, R; Thomas, P A; Kay, Scott T.; Silva, Antonio C. da; Aghanim, Nabila; Blanchard, Alain; Liddle, Andrew R.; Puget, Jean-Loup; Sadat, Rachida; Thomas, Peter A.
2006-01-01
We present results from a study of the X-ray cluster population that forms within the CLEF cosmological hydrodynamics simulation, a large N-body/SPH simulation of the Lambda CDM cosmology with radiative cooling, star formation and feedback. The scaled projected temperature and entropy profiles at z=0 are in good agreement with recent high-quality observations of cool core clusters, suggesting that the simulation grossly follows the processes that structure the intracluster medium (ICM) in these objects. Cool cores are a ubiquitous phenomenon in the simulation at low and high redshift, regardless of a cluster's dynamical state. This is at odds with the observations and so suggests there is still a heating mechanism missing from the simulation. Using a simple, observable measure of the concentration of the ICM, which correlates with the apparent mass deposition rate in the cluster core, we find a large dispersion within regular clusters at low redshift, but this diminishes at higher redshift, where strong "cool...
The metal enrichment of passive galaxies in cosmological simulations of galaxy formation
Okamoto, Takashi; Lacey, Cedric G; Frenk, Carlos S
2016-01-01
Massive early-type galaxies have higher metallicities and higher ratios of $\\alpha$ elements to iron than their less massive counterparts. Reproducing these correlations has long been a problem for hierarchical galaxy formation theory, both in semi-analytic models and cosmological hydrodynamic simulations. We show that a simulation in which gas cooling in massive dark haloes is quenched by radio-mode active galactic nuclei (AGNs) feedback naturally reproduces the observed trend between $\\alpha$/Fe and the velocity dispersion of galaxies, $\\sigma$. The quenching occurs earlier for more massive galaxies. Consequently, these galaxies complete their star formation before $\\alpha$/Fe is diluted by the contribution from type Ia supernovae. For galaxies more massive than $\\sim 10^{11}~M_\\odot$ whose $\\alpha$/Fe correlates positively with stellar mass, we find an inversely correlated mass-metallicity relation. This is a common problem in simulations in which star formation in massive galaxies is quenched either by qu...
Stecker, F. W.; Brown, R. W.
1979-01-01
Grand unified theories (GUT) such as SU(5), with spontaneous symmetry breaking, can lead more naturally to a globally baryon symmetric big bang cosmology with a domain structure than to a totally asymmetric cosmology. The symmetry is broken at random in causally independent domains, favoring neither a baryon nor an antibaryon excess on a universal scale. Because of the additional freedom in the high-energy physics allowed by such GUT gauge theories, new observational tests may be possible. Arguments in favor of this cosmology and various observational tests are discussed.
Henriques, Bruno M B; Thomas, Peter A; Angulo, Raul E; Guo, Qi; Lemson, Gerard; Wang, Wenting
2016-01-01
We study the quenching of star formation as a function of redshift, environment and stellar mass in the galaxy formation simulations of Henriques et al. (2015), which implement an updated version of the Munich semi-analytic model (L-GALAXIES) on the two Millennium Simulations after scaling to a Planck cosmology. In this model massive galaxies are quenched by AGN feedback depending on both black hole and hot gas mass, and hence indirectly on stellar mass. In addition, satellite galaxies of any mass can be quenched by ram-pressure or tidal stripping of gas and through the suppression of gaseous infall. This combination of processes produces quenching efficiencies which depend on stellar mass, host halo mass, environment density, distance to group centre and group central galaxy properties in ways which agree qualitatively with observation. Some discrepancies remain in dense regions and close to group centres, where quenching still seems too efficient. In addition, although the mean stellar age of massive galaxi...
Pawlik, Andreas H; Vecchia, Claudio Dalla
2015-01-01
We present a suite of cosmological radiation-hydrodynamical simulations of the assembly of galaxies driving the reionization of the intergalactic medium (IGM) at z >~ 6. The simulations account for the hydrodynamical feedback from photoionization heating and the explosion of massive stars as supernovae (SNe). Our reference simulation, which was carried out in a box of size 25 comoving Mpc/h using 2 x 512^3 particles, produces a reasonable reionization history and matches the observed UV luminosity function of galaxies. Simulations with different box sizes and resolutions are used to investigate numerical convergence, and simulations in which either SNe or photoionization heating or both are turned off, are used to investigate the role of feedback from star formation. Ionizing radiation is treated using accurate radiative transfer at the high spatially adaptive resolution at which the hydrodynamics is carried out. SN feedback strongly reduces the star formation rates (SFRs) over nearly the full mass range of s...
Shapiro, P R; Raga, A C; Shapiro, Paul R.; Iliev, Ilian; Raga, Alejandro C.
1998-01-01
The postcollapse structure of objects which form by gravitational condensation out of the expanding cosmological background universe is a key element in the theory of galaxy formation. Towards this end, we have reconsidered the outcome of the nonlinear growth of a uniform, spherical density perturbation in an unperturbed background universe - the cosmological ``top-hat'' problem. We adopt the usual assumption that the collapse to infinite density at a finite time predicted by the top-hat solution is interrupted by a rapid virialization caused by the growth of small-scale inhomogeneities in the initial perturbation. We replace the standard description of the postcollapse object as a uniform sphere in virial equilibrium by a more self-consistent one as a truncated, nonsingular, isothermal sphere in virial and hydrostatic equilibrium, including for the first time a proper treatment of the finite-pressure boundary condition on the sphere. The results differ significantly from both the uniform sphere and the singu...
Computational Cosmology: from the Early Universe to the Large Scale Structure
Directory of Open Access Journals (Sweden)
Anninos Peter
2001-01-01
Full Text Available In order to account for the observable Universe, any comprehensive theory or model of cosmology must draw from many disciplines of physics, including gauge theories of strong and weak interactions, the hydrodynamics and microphysics of baryonic matter, electromagnetic fields, and spacetime curvature, for example. Although it is difficult to incorporate all these physical elements into a single complete model of our Universe, advances in computing methods and technologies have contributed significantly towards our understanding of cosmological models, the Universe, and astrophysical processes within them. A sample of numerical calculations (and numerical methods applied to specific issues in cosmology are reviewed in this article: from the Big Bang singularity dynamics to the fundamental interactions of gravitational waves; from the quark-hadron phase transition to the large scale structure of the Universe. The emphasis, although not exclusively, is on those calculations designed to test different models of cosmology against the observed Universe.
Computational Cosmology: from the Early Universe to the Large Scale Structure
Directory of Open Access Journals (Sweden)
Peter Anninos
1998-09-01
Full Text Available In order to account for the observable Universe, any comprehensive theory or model of cosmology must draw from many disciplines of physics, including gauge theories of strong and weak interactions, the hydrodynamics and microphysics of baryonic matter, electromagnetic fields, and spacetime curvature, for example. Although it is difficult to incorporate all these physical elements into a single complete model of our Universe, advances in computing methods and technologies have contributed significantly towards our understanding of cosmological models, the Universe, and astrophysical processes within them. A sample of numerical calculations addressing specific issues in cosmology are reviewed in this article: from the Big Bang singularity dynamics to the fundamental interactions of gravitational waves; from the quark--hadron phase transition to the large scale structure of the Universe. The emphasis, although not exclusively, is on thosecalculations designed to test different models of cosmology against the observed Universe.
Deformed extra space and the smallness of the cosmological constant
Rubin, Sergey G
2016-01-01
The mechanism of different universes formation is elaborated. Each universe is characterized by a unique cosmological constant. It is shown that the set of cosmological constants has the cardinality of the continuum and contains zero cosmological constant. Those universes with cosmological constants near zero could be filled by complex structures. There is no necessity in a special mechanism of the fine tuning. The role of quantum fluctuations is studied.
Cosmology and the weak interaction
Energy Technology Data Exchange (ETDEWEB)
Schramm, D.N. (Fermi National Accelerator Lab., Batavia, IL (USA)):(Chicago Univ., IL (USA))
1989-12-01
The weak interaction plays a critical role in modern Big Bang cosmology. This review will emphasize two of its most publicized cosmological connections: Big Bang nucleosynthesis and Dark Matter. The first of these is connected to the cosmological prediction of Neutrino Flavours, N{sub {nu}} {approximately} 3 which is now being confirmed at SLC and LEP. The second is interrelated to the whole problem of galaxy and structure formation in the universe. This review will demonstrate the role of the weak interaction both for dark matter candidates and for the problem of generating seeds to form structure. 87 refs., 3 figs., 5 tabs.
Star Cluster Formation in Cosmological Simulations. I. Properties of Young Clusters
Li, Hui; Gnedin, Oleg Y.; Gnedin, Nickolay Y.; Meng, Xi; Semenov, Vadim A.; Kravtsov, Andrey V.
2017-01-01
We present a new implementation of star formation in cosmological simulations by considering star clusters as a unit of star formation. Cluster particles grow in mass over several million years at the rate determined by local gas properties, with high time resolution. The particle growth is terminated by its own energy and momentum feedback on the interstellar medium. We test this implementation for Milky Way-sized galaxies at high redshift by comparing the properties of model clusters with observations of young star clusters. We find that the cluster initial mass function is best described by a Schechter function rather than a single power law. In agreement with observations, at low masses the logarithmic slope is α ≈ 1.8{--}2, while the cutoff at high mass scales with the star formation rate (SFR). A related trend is a positive correlation between the surface density of the SFR and fraction of stars contained in massive clusters. Both trends indicate that the formation of massive star clusters is preferred during bursts of star formation. These bursts are often associated with major-merger events. We also find that the median timescale for cluster formation ranges from 0.5 to 4 Myr and decreases systematically with increasing star formation efficiency. Local variations in the gas density and cluster accretion rate naturally lead to the scatter of the overall formation efficiency by an order of magnitude, even when the instantaneous efficiency is kept constant. Comparison of the formation timescale with the observed age spread of young star clusters provides an additional important constraint on the modeling of star formation and feedback schemes.
Origin of Structure in the Universe: Quantum Cosmology Reconsidered
Anderson, Edward
2015-01-01
Based on a more careful canonical analysis, we motivate a reduced quantization of slightly inhomogeneous cosmology in place of the Dirac quantization in the existing literature, and provide it in the vacuum case. This is attained via consideration of configuration space geometries at various levels of reduction. Some of these have the good fortunate of being flat. Geometrically natural coordinates thereupon are interpreted in terms of the original redundant formulation's well-known mode expansion coefficients.
Compact extra dimensions in cosmologies with f(T) structure
Fiorini, Franco; Vasquez, Yerko
2013-01-01
The presence of compact extra dimensions in cosmological scenarios in the context of f(T)-like gravities is discussed. For the case of toroidal compactifications, the analysis is performed in an arbitrary number of extra dimensions. Spherical topologies for the extra dimensions are then carefully studied in six and seven spacetime dimensions, where the proper vielbein fields responsible for the parallelization process are found.
Davé, Romeel; Finlator, Kristian
2011-01-01
We examine the growth of the stellar content of galaxies from z=3-0 in cosmological hydrodynamic simulations incorporating parameterised galactic outflows. Without outflows, galaxies overproduce stellar masses (M*) and star formation rates (SFRs) compared to observations. Winds introduce a three-tier form for the galaxy stellar mass and star formation rate functions, where the middle tier depends on differential (i.e. mass-dependent) recycling of ejected wind material back into galaxies. A tight M*-SFR relation is a generic outcome of all these simulations, and its evolution is well-described as being powered by cold accretion, although current observations at z>2 suggest that star formation in small early galaxies must be highly suppressed. Roughly one-third of z=0 galaxies at masses below M^* are satellites, and star formation in satellites is not much burstier than in centrals. All models fail to suppress star formation and stellar mass growth in massive galaxies at z<2, indicating the need for an exter...
Star cluster formation in cosmological simulations. I. properties of young clusters
Li, Hui; Gnedin, Nickolay Y; Meng, Xi; Semenov, Vadim A; Kravtsov, Andrey V
2016-01-01
We present a new implementation of star formation in cosmological simulations, by considering star clusters as a unit of star formation. Cluster particles grow in mass over several million years at the rate determined by local gas properties, with high time resolution. The particle growth is terminated by its own energy and momentum feedback on the interstellar medium. We test this implementation for Milky Way-sized galaxies at high redshift, by comparing the properties of model clusters with observations of young star clusters. We find that the cluster initial mass function is best described by a Schechter function rather than a single power law. In agreement with observations, at low masses the logarithmic slope is $\\alpha\\approx 1.8-2$, while the cutoff at high mass scales with the star formation rate. A related trend is a positive correlation between the surface density of star formation rate and fraction of stars contained in massive clusters. Both trends indicate that the formation of massive star clust...
Cosmological mass transport on galactic nuclei and the formation of high Z quasars
Escala, A.; Prieto, J.
2017-07-01
By using AMR cosmological hydrodynamic N-body zoom-in simulations, we studied the mass transport processes onto galactic nuclei from high redshift up to z˜6. We were able to study the mass accretion process on scales from ˜50 kpc to ˜ few pc. We studied the BH growth at the galactic center in relation with the mass transport processes associated to both the Reynolds and the gravitational stress on the disc. We found that in simulations that include radiative cooling and SN feedback, the SMBH grows at the Eddington limit for some periods of time presenting ≍0.5 throughout its evolution. The α parameter is dominated by the Reynolds term, αR, with αR»1. The gravitational part of the α parameter, αG, has an increasing trend toward the galactic center at higher redshifts, with values αG˜1 at radii &lesssim, few 101 pc contributing to the BH fueling. In terms of torques, we also found that gravity has an increasing contribution toward the galactic center at earlier epochs with a mixed contribution above ˜100 pc. This complementary work between pressure gradients and gravitational potential gradients allows an efficient mass transport on the disc with average mass accretion rates of the order ˜ few 1M⊙/yr. These level of SMBH accretion rates found in our cosmological simulations are needed in all models of SMBH growth that attempt to explain the formation of redshift 6-7 quasars.
Tremmel, M.; Karcher, M.; Governato, F.; Volonteri, M.; Quinn, T. R.; Pontzen, A.; Anderson, L.; Bellovary, J.
2017-09-01
We present a novel implementation of supermassive black hole (SMBH) formation, dynamics and accretion in the massively parallel tree+SPH code, ChaNGa. This approach improves the modelling of SMBHs in fully cosmological simulations, allowing for a more detailed analysis of SMBH-galaxy co-evolution throughout cosmic time. Our scheme includes novel, physically motivated models for SMBH formation, dynamics and sinking timescales within galaxies and SMBH accretion of rotationally supported gas. The sub-grid parameters that regulate star formation (SF) and feedback from SMBHs and SNe are optimized against a comprehensive set of z = 0 galaxy scaling relations using a novel, multidimensional parameter search. We have incorporated our new SMBH implementation and parameter optimization into a new set of high-resolution, large-scale cosmological simulations called Romulus. We present initial results from our flagship simulation, Romulus25, showing that our SMBH model results in SF efficiency, SMBH masses and global SF and SMBH accretion histories at high redshift that are consistent with observations. We discuss the importance of SMBH physics in shaping the evolution of massive galaxies and show how SMBH feedback is much more effective at regulating SF compared to SNe feedback in this regime. Further, we show how each aspect of our SMBH model impacts this evolution compared to more common approaches. Finally, we present a science application of this scheme studying the properties and time evolution of an example dual active galactic nucleus system, highlighting how our approach allows simulations to better study galaxy interactions and SMBH mergers in the context of galaxy-BH co-evolution.
Structure formation with strings plus inflation a new paradigm
Magueijo, J; Hindmarsh, M B; Magueijo, Joao; Contaldi, Carlo; Hindmarsh, Mark
1999-01-01
Recent developments in inflation model building, based on supersymmetry, have produced compelling models in which strings are produced at the end of inflation. In such models the cosmological perturbations are seeded both by the defects and by the quantum fluctuations. We show that such models produce qualitatively new and desirable predictions for CMB anisotropies and the CDM power spectrum. This remark should put an end to the long term animosity between defect and inflationary scenarios of structure formation.
Simulating Structure Formation of the Local Universe
Heß, Steffen; Gottloeber, Stefan
2013-01-01
In this work we present cosmological N-body simulations of the Local Universe with initial conditions constrained by the Two-Micron Redshift Survey (2MRS) within a cubic volume of 180 Mpc/h side-length centred at the Local Group. We use a self-consistent Bayesian based approach to explore the joint parameter space of primordial density fluctuations and peculiar velocity fields, which are compatible with the 2MRS galaxy distribution after cosmic evolution. This method (the KIGEN-code) includes the novel ALPT (Augmented Lagrangian Perturbation Theory) structure formation model which combines second order LPT (2LPT) on large scales with the spherical collapse model on small scales. Furthermore we describe coherent flows with 2LPT and include a dispersion term to model fingers-of-god (fogs) arising from virialised structures. These implementations are crucial to avoid artificial filamentary structures, which appear when using a structure formation model with 2LPT and data with compressed fogs. We assume LCDM cosm...
The Early Universe in Loop Quantum Cosmology
Bojowald, M.
2005-01-01
Loop quantum cosmology applies techniques derived for a background independent quantization of general relativity to cosmological situations and draws conclusions for the very early universe. Direct implications for the singularity problem as well as phenomenology in the context of inflation or bouncing universes result, which will be reviewed here. The discussion focuses on recent new results for structure formation and generalizations of the methods.
Effective theory for the cosmological generation of structure
Bojowald, Martin
2008-01-01
The current understanding of structure formation in the early universe is mainly built on a magnification of quantum fluctuations in an initial vacuum state during an early phase of accelerated universe expansion. One usually describes this process by solving equations for a quantum state of matter on a given expanding background space-time, followed by decoherence arguments for the emergence of classical inhomogeneities from the quantum fluctuations. Here, we formulate the coupling of quantum matter fields to a dynamical gravitational background in an effective framework which allows the inclusion of back-reaction effects. It is shown how quantum fluctuations couple to classical inhomogeneities and can thus manage to generate cosmic structure in an evolving background. Several specific effects follow from a qualitative analysis of the back-reaction, including a likely reduction of the overall amplitude of power in the cosmic microwave background, the occurrence of small non-Gaussianities, and a possible supp...
The metal enrichment of passive galaxies in cosmological simulations of galaxy formation
Okamoto, Takashi; Nagashima, Masahiro; Lacey, Cedric G.; Frenk, Carlos S.
2017-02-01
Massive early-type galaxies have higher metallicities and higher ratios of α elements to iron than their less massive counterparts. Reproducing these correlations has long been a problem for hierarchical galaxy formation theory, both in semi-analytic models and cosmological hydrodynamic simulations. We show that a simulation in which gas cooling in massive dark haloes is quenched by radio-mode active galactic nuclei (AGNs) feedback naturally reproduces the observed trend between α/Fe and the velocity dispersion of galaxies, σ. The quenching occurs earlier for more massive galaxies. Consequently, these galaxies complete their star formation before α/Fe is diluted by the contribution from Type Ia supernovae. For galaxies more massive than ˜1011 M⊙, whose α/Fe correlates positively with stellar mass, we find an inversely correlated mass-metallicity relation. This is a common problem in simulations in which star formation in massive galaxies is quenched either by quasar- or radio-mode AGN feedback. The early suppression of gas cooling in progenitors of massive galaxies prevents them from recapturing enriched gas ejected as winds. Simultaneously reproducing the [α/Fe]-σ relation and the mass-metallicity relation is, thus, difficult in the current framework of galaxy formation.
The effects of galaxy formation on the matter power spectrum: A challenge for precision cosmology
van Daalen, Marcel P; Booth, C M; Vecchia, Claudio Dalla
2011-01-01
Upcoming weak lensing surveys, such as LSST, EUCLID, and WFIRST, aim to measure the matter power spectrum with unprecedented accuracy. In order to fully exploit these observations, models are needed that, given a set of cosmological parameters, can predict the non-linear matter power spectrum at the level of 1% or better for scales corresponding to comoving wave numbers 0.170 h/Mpc. Therefore, baryons, and particularly AGN feedback, cannot be ignored in theoretical power spectra for k>0.3 h/Mpc. It will thus be necessary to improve our understanding of feedback processes in galaxy formation, or at least to constrain them through auxiliary observations, before we can fulfil the goals of upcoming weak lensing surveys.
A physical model for cosmological simulations of galaxy formation: multi-epoch validation
Torrey, Paul; Genel, Shy; Sijacki, Debora; Springel, Volker; Hernquist, Lars
2013-01-01
We present a multi-epoch analysis of the galaxy populations formed within the cosmological hydrodynamical simulations presented in Vogelsberger et al. (2013). These simulations explore the performance of a recently implemented feedback model which includes primordial and metal line radiative cooling with self-shielding corrections; stellar evolution with associated mass loss and chemical enrichment; feedback by stellar winds; black hole seeding, growth and merging; and AGN quasar- and radio-mode heating with a phenomenological prescription for AGN electro-magnetic feedback. We illustrate the impact of the model parameter choices on the resulting simulated galaxy population properties at high and intermediate redshifts. We demonstrate that our scheme is capable of producing galaxy populations that broadly reproduce the observed galaxy stellar mass function extending from redshift z=0 to z=3. We also characterise the evolving galactic B-band luminosity function, stellar mass to halo mass ratio, star formation m...
New Frontiers in Cosmology and Galaxy Formation: Challenges for the Future
Ellis, Richard
2007-01-01
(Abridged) Cosmology faces three distinct challenges in the next decade. (1) The dark sector, both dark matter and dark energy, dominates the Universe. Key questions include determining the nature of both. Improved observational probes are crucial. (2) Galaxy formation was initiated at around the epoch of reionization: we need to understand how and when as well as to develop probes of earlier epochs. (3) Our simple dark matter-driven picture of galaxy assembly is seemingly at odds with several observational results, including the presence of ULIRGS at high z, the `downsizing' signature, chemical signatures of alpha-element ratios and suggestions that merging may not be important in defining the Hubble sequence. Understanding the physical implications is a major challenge for theorists and refiniing the observational uncertainties a major goal for observers.
Formation of Milky Way-type stellar haloes in a Λ-CDM cosmology
Directory of Open Access Journals (Sweden)
Font A.S.
2012-02-01
Full Text Available Recent observations suggest that the Milky Way stellar halo has a ‘dual nature’, meaning that both dissipational and dissipationless processes play a role in its build-up. The GIMIC suite of cosmological hydro-dynamical simulations show that, for Milky Way-mass haloes, in situ star formation is the dominant factor in the inner < 20 − 30 kpc, while tidal disruption of satellite galaxies contributes primarily to the outer regions. The in situ stars are found to originate in the earlier disc, at redshifts ~ 1– 1.5, and subsequently diffusing out of the disc by dynamical heating associated with mergers. The in situ component has a more flattened shape, a net prograde rotation and more metal-rich populations, in quantitative agreement with the observations. We conclude that the dual nature of the stellar halo is entirely compatible with the currently favoured Λ-CDM model.
Henriques, Bruno M. B.; White, Simon D. M.; Thomas, Peter A.; Angulo, Raul E.; Guo, Qi; Lemson, Gerard; Wang, Wenting
2017-08-01
We study the quenching of star formation as a function of redshift, environment and stellar mass in the galaxy formation simulations of Henriques et al. (2015), which implement an updated version of the Munich semi-analytic model (L-GALAXIES) on the two Millennium Simulations after scaling to a Planck cosmology. In this model, massive galaxies are quenched by active galactic nucleus (AGN) feedback depending on both black hole and hot gas mass, and hence indirectly on stellar mass. In addition, satellite galaxies of any mass can be quenched by ram-pressure or tidal stripping of gas and through the suppression of gaseous infall. This combination of processes produces quenching efficiencies which depend on stellar mass, host halo mass, environment density, distance to group centre and group central galaxy properties in ways which agree qualitatively with observation. Some discrepancies remain in dense regions and close to group centres, where quenching still seems too efficient. In addition, although the mean stellar age of massive galaxies agrees with observation, the assumed AGN feedback model allows too much ongoing star formation at late times. The fact that both AGN feedback and environmental effects are stronger in higher density environments leads to a correlation between the quenching of central and satellite galaxies which roughly reproduces observed conformity trends inside haloes.
Chon, Sunmyon; Hosokawa, Takashi; Yoshida, Naoki
2016-01-01
Gravitational collapse of a massive primordial gas cloud is thought to be a promising path for the formation of supermassive blackholes in the early universe. We study conditions for the so-called direct collapse (DC) blackhole formation in a fully cosmological context. We combine a semi-analytic model of early galaxy formation with halo merger trees constructed from dark matter $N$-body simulations. We locate a total of 68 possible DC sites in a volume of $20\\;h^{-1}\\;\\mathrm{Mpc}$ on a side. We then perform hydrodynamics simulations for 42 selected halos to study in detail the evolution of the massive clouds within them. We find only two successful cases where the gas clouds rapidly collapse to form stars. In the other cases, gravitational collapse is prevented by the tidal force exerted by a nearby massive halo, which otherwise should serve as a radiation source necessary for DC. Ram pressure stripping disturbs the cloud approaching the source. In many cases, a DC halo and its nearby light source halo merg...
Brandenberger, R H; Brandenberger, Robert H.; Magueijo, Joao
1999-01-01
We review a few off-the-beaten-track ideas in cosmology. They solve a variety of fundamental problems; also they are fun. We start with a description of non-singular dilaton cosmology. In these scenarios gravity is modified so that the Universe does not have a singular birth. We then present a variety of ideas mixing string theory and cosmology. These solve the cosmological problems usually solved by inflation, and furthermore shed light upon the issue of the number of dimensions of our Universe. We finally review several aspects of the varying speed of light theory. We show how the horizon, flatness, and cosmological constant problems may be solved in this scenario. We finally present a possible experimental test for a realization of this theory: a test in which the Supernovae results are to be combined with recent evidence for redshift dependence in the fine structure constant.
Cosmological Parameter Estimation with Large Scale Structure Observations
Di Dio, Enea; Durrer, Ruth; Lesgourgues, Julien
2014-01-01
We estimate the sensitivity of future galaxy surveys to cosmological parameters, using the redshift dependent angular power spectra of galaxy number counts, $C_\\ell(z_1,z_2)$, calculated with all relativistic corrections at first order in perturbation theory. We pay special attention to the redshift dependence of the non-linearity scale and present Fisher matrix forecasts for Euclid-like and DES-like galaxy surveys. We compare the standard $P(k)$ analysis with the new $C_\\ell(z_1,z_2)$ method. We show that for surveys with photometric redshifts the new analysis performs significantly better than the $P(k)$ analysis. For spectroscopic redshifts, however, the large number of redshift bins which would be needed to fully profit from the redshift information, is severely limited by shot noise. We also identify surveys which can measure the lensing contribution and we study the monopole, $C_0(z_1,z_2)$.
Cosmological Shock Waves in the Large Scale Structure of the Universe: Non-gravitational Effects
Kang, Hyesung; Cen, Renyue; Ostriker, J P
2007-01-01
Cosmological shock waves result from supersonic flow motions induced by hierarchical clustering of nonlinear structures in the universe. These shocks govern the nature of cosmic plasma through thermalization of gas and acceleration of nonthermal, cosmic-ray (CR) particles. We study the statistics and energetics of shocks formed in cosmological simulations of a concordance $\\Lambda$CDM universe, with a special emphasis on the effects of non-gravitational processes such as radiative cooling, photoionization/heating, and galactic superwind feedbacks. Adopting an improved model for gas thermalization and CR acceleration efficiencies based on nonlinear diffusive shock acceleration calculations, we then estimate the gas thermal energy and the CR energy dissipated at shocks through the history of the universe. Since shocks can serve as sites for generation of vorticity, we also examine the vorticity that should have been generated mostly at curved shocks in cosmological simulations. We find that the dynamics and ene...
Supermassive Black Hole Formation at High Redshifts via Direct Collapse in a Cosmological Context
Choi, Jun-Hwan; Begelman, Mitchell C
2014-01-01
We study the early stage of the formation of seed SMBHs via direct collapse in DM halos, in the cosmological context. We have performed high-resolution zoom-in simulations of such collapse at high redshifts, and have compared it with gas collapse within the isolated DM halo model of Choi et al. Using the AMR code ENZO, we have resolved the formation and growth of a DM halo via cold accretion of the filamentary and diffuse gas, until its virial temperature has reached $\\sim 10^4$K, atomic cooling has turned on, and collapse has ensued. We confirm our previous result that direct collapse proceeds in two stages, although, as expected, they are not as well separated. The first stage is triggered by the onset of atomic cooling, and leads to rapidly increasing accretion rate with radius, from $\\dot M\\sim 0.1\\,M_\\odot\\,{\\rm yr^{-1}}$ at the halo virial radius to a few $M_\\odot\\,{\\rm yr^{-1}}$, just inside the scale radius $R_{\\rm s}\\sim 30$pc of the NFW DM density profile. The second stage of the runaway collapse co...
The Red Sequence of High-Redshift Clusters: A Comparison with Cosmological Galaxy Formation Models
Menci, N.
2008-10-01
We compare the results from a state-of-the-art semi-analytic model of galaxy formation with spectroscopic observations of the distant galaxy clusters observed in the range 1≲ z≲ 1.5. In our model we find that i) a well-defined, narrow red sequence (RS) is obtained already by z≈ 1.2; this is more populated than the field RS analogously to what observed and predicted at z=0; ii) the predicted RS colors and width have average values of 1 and 0.15, respectively, with a cluster-to-cluster variance. The width of the RS of cluster galaxy is 5-10 times lower than the corresponding field value; iii) The predicted distribution of stellar ages of RS galaxies at z=1.2 are peaked at the value τ=3.7 Gyr for both cluster and field; however, for the latter the distribution is significantly skewed toward lower ages. When compared with observations, the above findings show an overall consistency, although the average value ≈ 0.07 of the observed cluster RS width at z≈1.2 is smaller than the corresponding model central value. We discuss the physical origin and the significance of the above results in the framework of cosmological galaxy formation.
Silk, Joseph
2008-11-01
recent, and comprehensive, is Cosmology, in which the University of Texas physicist and Nobel Laureate, Steven Weinberg provides a concise introduction to modern cosmology. The book is aimed at the level of a final year physics undergraduate, or a first year graduate student. The discussion is self-contained, with numerous derivations. It begins with an overview of the standard cosmological model, and presents a detailed treatment of fluctuation growth. There are sections on gravitational lensing and inflationary cosmology, on microwave background fluctuations and structure growth. There are aspects however where a supplementary book is essential for the physicist being introduced to cosmology. The text is lacking in physical cosmology. The baryon physics of galaxy formation is barely mentioned, apart from a discussion of the Jeans mass. And it ignores one of the greatest contributions to the field by Russian cosmologist Yaakov Zel'dovich, who discovered the only nonspherical solution to the nonlinear evolution of density fluctuations, one that has since dominated our understanding of the large-scale structure of the universe via the cosmic web. But these are minor quibbles about what provides an outstanding introduction to modern cosmology, and one that takes us from the physics fundamentals up to the cosmic frontier. I recommend Cosmology for anyone wishing to enter the field and with a good physics background. It is ideal for the astronomer who may only have a sketchy knowledge of general relativity or particle physics. She will learn about vielbeins and scalar fields, gauge-invariant fluctuation theory and inflation. Steven Weinberg is a leading physicist who has also made important contributions to cosmology. The text provides a rigorous treatment of the standard model of cosmology, and of structure formation. Numerous exercises are provided. It provides an excellent core for a course on cosmology.
Gardner, Carl L.
2003-08-01
Cosmological variation of the fine structure constant α due to the evolution of a spatially homogeneous ultralight scalar field (m˜H0) during the matter and Λ dominated eras is analyzed. Agreement of Δα/α with the value suggested by recent observations of quasar absorption lines is obtained by adjusting a single parameter, the coupling of the scalar field to matter. Asymptotically α(t) in this model goes to a constant value α¯≈α0 in the early radiation and the late Λ dominated eras. The coupling of the scalar field to (nonrelativistic) matter drives α slightly away from α¯ in the epochs when the density of matter is important. Simultaneous agreement with the more restrictive bounds on the variation |Δα/α| from the Oklo natural fission reactor and from meteorite samples can be achieved if the mass of the scalar field is on the order of 0.5 0.6 HΛ, where HΛ=Ω1/2ΛH0. Depending on the scalar field mass, α may be slightly smaller or larger than α0 at the times of big bang nucleosynthesis, the emission of the cosmic microwave background, the formation of early solar system meteorites, and the Oklo reactor. The effects on the evolution of α due to nonzero mass for the scalar field are emphasized. An order of magnitude improvement in the laboratory technique could lead to a detection of (α˙/α)0.
Hopkins, Philip F; Onorbe, Jose; Faucher-Giguere, Claude-Andre; Quataert, Eliot; Murray, Norm; Bullock, James S
2013-01-01
We present a series of high-resolution cosmological simulations of galaxy formation to z=0, spanning halo masses ~10^8-10^13 M_sun, and stellar masses ~10^4-10^11. Our simulations include fully explicit treatment of both the multi-phase ISM (molecular through hot) and stellar feedback. The stellar feedback inputs (energy, momentum, mass, and metal fluxes) are taken directly from stellar population models. These sources of stellar feedback, with zero adjusted parameters, reproduce the observed relation between stellar and halo mass up to M_halo~10^12 M_sun (including dwarfs, satellites, MW-mass disks, and small groups). By extension, this leads to reasonable agreement with the stellar mass function for M_star6. We find that the M_star-M_halo relation is insensitive to numerical details, but is sensitive to the feedback physics. Simulations with only supernova feedback fail to reproduce the observed stellar masses, particularly in dwarf and high-redshift galaxies: radiative feedback (photo-heating and radiation...
Energy Technology Data Exchange (ETDEWEB)
Reddick, Rachel M.; Wechsler, Risa H.; Lu, Yu [Kavli Institute for Particle Astrophysics and Cosmology, Physics Department, Stanford University, Stanford, CA 94305 (United States); Tinker, Jeremy L., E-mail: rmredd@stanford.edu, E-mail: rwechsler@stanford.edu [Center for Cosmology and Particle Physics, Department of Physics, New York University, New York, NY 10003 (United States)
2014-03-10
Many approaches to obtaining cosmological constraints rely on the connection between galaxies and dark matter. However, the distribution of galaxies is dependent on their formation and evolution as well as on the cosmological model, and galaxy formation is still not a well-constrained process. Thus, methods that probe cosmology using galaxies as tracers for dark matter must be able to accurately estimate the cosmological parameters. This can be done without knowing details of galaxy formation a priori as long as the galaxies are well represented by a halo occupation distribution (HOD). We apply this reasoning to the method of obtaining Ω {sub m} and σ{sub 8} from galaxy clustering combined with the mass-to-number ratio of galaxy clusters. To test the sensitivity of this method to variations due to galaxy formation, we consider several different models applied to the same cosmological dark matter simulation. The cosmological parameters are then estimated using the observables in each model, marginalizing over the parameters of the HOD. We find that for models where the galaxies can be well represented by a parameterized HOD, this method can successfully extract the desired cosmological parameters for a wide range of galaxy formation prescriptions.
Demiański, M
2015-01-01
To restore the evolutionary history of the Dark Matter (DM) dominated objects -- galaxies and clusters of galaxies. Analyze the observational data to reveal correlations between the virial mass, $M_{vir}$, of halos and main properties of their central cores, namely, the mean DM density, pressure and entropy, and the redshifts of halo formation, $z_f$. These correlations indicate a high degree of self similarity of both the process of halos formation and the internal structure of relaxed halos. We confirm the CDM--like shape of the small scale power spectrum. However our reconstruction of evolutionary history of observed objects differs from expectations of the standard $\\Lambda$CDM cosmology and requires either multicomponent composition of DM or more complex primordial power spectrum of density perturbations with significant excess of power at scales of clusters of galaxies and larger. This approach seems to be quite efficient and suitably supplements the current investigations of galaxies at large redshifts...
Evaluating galactic habitability using high-resolution cosmological simulations of galaxy formation
Forgan, Duncan; Dayal, Pratika; Cockell, Charles; Libeskind, Noam
2017-01-01
We present the first model that couples high-resolution simulations of the formation of local group galaxies with calculations of the galactic habitable zone (GHZ), a region of space which has sufficient metallicity to form terrestrial planets without being subject to hazardous radiation. These simulations allow us to make substantial progress in mapping out the asymmetric three-dimensional GHZ and its time evolution for the Milky Way (MW) and Triangulum (M33) galaxies, as opposed to works that generally assume an azimuthally symmetric GHZ. Applying typical habitability metrics to MW and M33, we find that while a large number of habitable planets exist as close as a few kiloparsecs from the galactic centre, the probability of individual planetary systems being habitable rises as one approaches the edge of the stellar disc. Tidal streams and satellite galaxies also appear to be fertile grounds for habitable planet formation. In short, we find that both galaxies arrive at similar GHZs by different evolutionary paths, as measured by the first and third quartiles of surviving biospheres. For the MW, this interquartile range begins as a narrow band at large radii, expanding to encompass much of the Galaxy at intermediate times before settling at a range of 2-13 kpc. In the case of M33, the opposite behaviour occurs - the initial and final interquartile ranges are quite similar, showing gradual evolution. This suggests that Galaxy assembly history strongly influences the time evolution of the GHZ, which will affect the relative time lag between biospheres in different galactic locations. We end by noting the caveats involved in such studies and demonstrate that high-resolution cosmological simulations will play a vital role in understanding habitability on galactic scales, provided that these simulations accurately resolve chemical evolution.
Structure formation in active networks
Köhler, Simone; Bausch, Andreas R
2011-01-01
Structure formation and constant reorganization of the actin cytoskeleton are key requirements for the function of living cells. Here we show that a minimal reconstituted system consisting of actin filaments, crosslinking molecules and molecular-motor filaments exhibits a generic mechanism of structure formation, characterized by a broad distribution of cluster sizes. We demonstrate that the growth of the structures depends on the intricate balance between crosslinker-induced stabilization and simultaneous destabilization by molecular motors, a mechanism analogous to nucleation and growth in passive systems. We also show that the intricate interplay between force generation, coarsening and connectivity is responsible for the highly dynamic process of structure formation in this heterogeneous active gel, and that these competing mechanisms result in anomalous transport, reminiscent of intracellular dynamics.
The current status of observational cosmology
Indian Academy of Sciences (India)
Jeremiah P Ostriker; Tarun Souradeep
2004-10-01
Observational cosmology has indeed made very rapid progress in recent years. The ability to quantify the universe has largely improved due to observational constraints coming from structure formation. The transition to precision cosmology has been spearheaded by measurements of the anisotropy in the cosmic microwave background (CMB) over the past decade. Observations of the large scale structure in the distribution of galaxies, high red-shift supernova, have provided the required complementary information. We review the current status of cosmological parameter estimates from joint analysis of CMB anisotropy and large scale structure (LSS) data. We also sound a note of caution on overstating the successes achieved thus far.
Halo Models of Large Scale Structure and Reliability of Cosmological N-Body Simulations
Gaite, Jose
2013-01-01
Halo models of the large scale structure of the Universe are critically examined, focusing on the definition of halos as smooth distributions of cold dark matter. This definition is essentially based on the results of cosmological N-body simulations. By a careful analysis of the standard assumptions of halo models and N-body simulations and by taking into account previous studies of self-similarity of the cosmic web structure, we conclude that N-body cosmological simulations are not fully reliable in the range of scales where halos appear. Therefore, to have a consistent definition of halos, it is necessary either to define them as entities of arbitrary size with a grainy rather than smooth structure or to define their size in terms of small-scale baryonic physics.
Halo Models of Large Scale Structure and Reliability of Cosmological N-Body Simulations
Directory of Open Access Journals (Sweden)
José Gaite
2013-05-01
Full Text Available Halo models of the large scale structure of the Universe are critically examined, focusing on the definition of halos as smooth distributions of cold dark matter. This definition is essentially based on the results of cosmological N-body simulations. By a careful analysis of the standard assumptions of halo models and N-body simulations and by taking into account previous studies of self-similarity of the cosmic web structure, we conclude that N-body cosmological simulations are not fully reliable in the range of scales where halos appear. Therefore, to have a consistent definition of halos is necessary either to define them as entities of arbitrary size with a grainy rather than smooth structure or to define their size in terms of small-scale baryonic physics.
The velocity field in MOND cosmology
Candlish, G N
2016-01-01
The recently developed code for N-body/hydrodynamics simulations in Modified Newtonian Dynamics (MOND), known as RAyMOND, is used to investigate the consequences of MOND on structure formation in a cosmological context, with a particular focus on the velocity field. This preliminary study investigates the results obtained with the two formulations of MOND implemented in RAyMOND, as well as considering the effects of changing the choice of MOND interpolation function, and the cosmological evolution of the MOND acceleration scale. The simulations are contrived such that structure forms in a background cosmology that is similar to $\\Lambda$CDM, but with a significantly lower matter content. Given this, and the fact that a fully consistent MOND cosmology is still lacking, we compare our results with a standard $\\Lambda$CDM simulation, rather than observations. As well as demonstrating the effectiveness of using RAyMOND for cosmological simulations, it is shown that a significant enhancement of the velocity field ...
Indian Academy of Sciences (India)
Jayanti Prasad
2007-06-01
In this study we show how errors due to finite box size affect formation and the destruction rate for haloes in cosmological N-body simulations. In an earlier study we gave an analytic prescription of finding the corrections in the mass function. Following the same approach, in this paper we give analytical expressions for corrections in the formation rate, destruction rate and the rate of change in comoving number density, and compute their expected values for the power law ( = -2) and LCDM models.
An evaluation of cosmological models from expansion and growth of structure measurements
Zhai, Zhongxu; Blanton, Michael; Slosar, Anže; Tinker, Jeremy
2017-01-01
We compare a large suite of theoretical cosmological models to observational data from the cosmic microwave background, baryon acoustic oscillation measurements of expansion, Type Ia SNe measurements of expansion, redshift space distortion measurements of the growth of structure, and the local Hubble constant. Our theoretical models include parametrizations of dark energy as well as physical models of dark energy and modified gravity. We determine the constraints on the model parameters, inco...
Eaves, Laurence
2014-01-01
Christian Beck has proposed a set of Shannon-Khinchin axioms to derive a formula for the cosmological constant, {\\Lambda}. We discuss this result in relation to numerical coincidences involving the measured values of {\\Lambda} and the gravitational and fine structure constants, G and {\\alpha}. The empirical formulae that inter-relate the three constants suggest that the measured values of G and {\\Lambda} are consistent with the apparent anthropic fine-tuning of {\\alpha}.
Cosmological implications in electrodynamics due to variations of the fine structure constant
Martínez-Ledesma, J L
2002-01-01
Astronomical observations are strongly suggesting that the fine structure constant varies cosmologically. We present an analysis on the consequences that this variations might induce on the electromagnetic field as a whole. We show that under this circumstances the electrodynamics in vacuum of the universe are described by two fields, the ``standard'' Maxwell's field and a new scalar field. We provide a generalized Lorentz force which can be used to test our results experimentally.
Iliev, I. T.; Shapiro, P. R.; Raga, A. C.
1998-12-01
The postcollapse structure of objects which form by gravitational condensation out of the expanding cosmological background universe is a key element in the theory of galaxy formation. Towards this end, we have reconsidered the outcome of the nonlinear growth of a uniform, spherical density perturbation in an unperturbed background universe - the cosmological ``top-hat'' problem. We adopt the usual assumption that the collapse to infinite density at a finite time predicted by the top-hat solution is interrupted by a rapid virialization caused by the growth of small-scale inhomogeneities in the initial perturbation. We replace the standard description of the postcollapse object as a uniform sphere in virial equilibrium by a more self-consistent one as a truncated, nonsingular, isothermal sphere in virial and hydrostatic equilibrium, including for the first time a proper treatment of the finite-pressure boundary condition on the sphere. The results differ significantly from both the uniform sphere and the singular isothermal sphere approximations for the postcollapse objects. These results will have a significant effect on a wide range of applications of the Press-Schechter and other semi-analytical models to cosmology. The truncated isothermal sphere solution presented here predicts the virial temperature and integrated mass distribution of the X-ray clusters formed in the CDM model as found by detailed, 3D, numerical gas and N-body dynamical simulations remarkably well. This solution allows us to derive analytically the numerically-calibrated mass-temperature and radius-temperature scaling laws for X-ray clusters which were derived empirically by Evrard, Metzler and Navarro from simulation results for the CDM model.
Shaposhnikov, Mikhail
2015-01-01
I will discuss how the Higgs field of the Standard Model may have played an important role in cosmology, leading to the homogeneity, isotropy and flatness of the Universe; producing the quantum fluctuations that seed structure formation; triggering the radiation-dominated era of the hot Big Bang; and contributing to the processes of baryogenesis and dark matter production.
Preons, Dark Matter and the Production of Early Cosmological Structures
Burdyuzha, V; Ponomarev, Yu; Vereshkov, G M; Ponomarev, Yu.
1999-01-01
If the preon structure of quarks, leptons and gauge bosons will be proved then in the Universe during relativistic phase transition the production of nonperturbative preon condensates has been occured collective excitations of which are perceived as pseudogoldstone bosons. Dark matter consisting of pseudogoldstone bosons of familon type contains a "hot" component from massless particles and a "cold" (nonrelativistic) component from massive particles. It is shown that such dark matter was undergone to two relativistic phase transitions temperatures of which were different. In the result of these phase transitions the structurization of dark matter and therefore the baryon subsystem has taken place. Besides, the role of particle generations in the Universe become more evident. For the possibility of structurization of matter as minimum three generations of particles are necessary.
The cosmological consequences of the preon structure of matter
Burdyuzha, Vladimir V.; Vereshkov, Grigory M.; Lalakulich, Olga D.; Ponomarev, Yuri N.
1999-07-01
If the preon structure of quarks, leptons and gauge bosons will be proved then in the Universe during a relativistic phase transition the production of nonperturbative preon condensates has occurred. Familons are collective excitations of these condensates. It is shown that the dark matter consisting of familon type pseudogoldstone bosons was undergone to two relativistic phase transitions temperatures of which were different. In the result of these phase transitions the structurization of dark matter and therefore the baryon subsystem had taken place. In the Universe two characteristic scales which have printed this phenomenon arise naturally.
Inflation after COBE: Lectures on inflationary cosmology
Energy Technology Data Exchange (ETDEWEB)
Turner, M.S. (Chicago Univ., IL (United States). Enrico Fermi Inst. Fermi National Accelerator Lab., Batavia, IL (United States))
1992-01-01
In these lectures I review the standard hot big-bang cosmology, emphasizing its successes, its shortcomings, and its major challenge-a detailed understanding of the formation of structure in the Universe. I then discuss the motivations for and the fundamentals of inflationary cosmology, particularly emphasizing the quantum origin of metric (density and gravity-wave) perturbations. Inflation addresses the shortcomings of the standard cosmology and provides the initial data'' for structure formation. I conclude by addressing the implications of inflation for structure formation, evaluating the various cold dark matter models in the light of the recent detection of temperature anisotropies in the cosmic background radiation by COBE. In the near term, the study of structure formation offers a powerful probe of inflation, as well as specific inflationary models.
Inflation after COBE: Lectures on inflationary cosmology
Energy Technology Data Exchange (ETDEWEB)
Turner, M.S. [Chicago Univ., IL (United States). Enrico Fermi Inst.]|[Fermi National Accelerator Lab., Batavia, IL (United States)
1992-12-31
In these lectures I review the standard hot big-bang cosmology, emphasizing its successes, its shortcomings, and its major challenge-a detailed understanding of the formation of structure in the Universe. I then discuss the motivations for and the fundamentals of inflationary cosmology, particularly emphasizing the quantum origin of metric (density and gravity-wave) perturbations. Inflation addresses the shortcomings of the standard cosmology and provides the ``initial data`` for structure formation. I conclude by addressing the implications of inflation for structure formation, evaluating the various cold dark matter models in the light of the recent detection of temperature anisotropies in the cosmic background radiation by COBE. In the near term, the study of structure formation offers a powerful probe of inflation, as well as specific inflationary models.
Renormalization-group flow of the effective action of cosmological large-scale structures
Floerchinger, Stefan
2017-01-01
Following an approach of Matarrese and Pietroni, we derive the functional renormalization group (RG) flow of the effective action of cosmological large-scale structures. Perturbative solutions of this RG flow equation are shown to be consistent with standard cosmological perturbation theory. Non-perturbative approximate solutions can be obtained by truncating the a priori infinite set of possible effective actions to a finite subspace. Using for the truncated effective action a form dictated by dissipative fluid dynamics, we derive RG flow equations for the scale dependence of the effective viscosity and sound velocity of non-interacting dark matter, and we solve them numerically. Physically, the effective viscosity and sound velocity account for the interactions of long-wavelength fluctuations with the spectrum of smaller-scale perturbations. We find that the RG flow exhibits an attractor behaviour in the IR that significantly reduces the dependence of the effective viscosity and sound velocity on the input ...
Temperature and thermodynamic structure of Einstein's equations for a cosmological black hole
Bhattacharya, Krishnakanta
2016-01-01
It is expected that the cosmological black holes are the closest realistic solutions of gravitational theories and they evolve with time. Moreover, the natural way of defining thermodynamic entities for the stationary ones is not applicable in the case of a time dependent spacetime. Here we confine our discussion within the Sultana-Dyer metric which is a cosmological black hole solution of Einstein's gravity. In literature, there exists two expressions of horizon temperature -- one is time dependent and the other does not depend on time. To single out the correct one we find the temperature by studying the Hawking effect in the tunnelling formalism. This leads to time dependent structure. After identifying the correct one, the Einstein's equations are written on the horizon and we show that this leads to the first law of thermodynamics. In this process the expressions for horizon entropy and energy, obtained earlier by explicit calculations, are being used. This provides the evidence that Einstein's equations...
Possible Cosmological Implications of Time Varying Fine Structure Constant
Berman, M S; Berman, Marcelo S.; Trevisan, Luis A.
2001-01-01
We make use of Dirac LNH and results for a time varying fine structure constant in order to derive possible laws of variation for speed of light, the number of nucleons in the Universe, energy density and gravitational constant. By comparing with experimental bounds on G variation, we find that the deceleration paramenter of the present Universe is negative. This is coherent with recent Supernovae observations.
Wang, Liang; Stinson, Gregory S; Macciò, Andrea V; Penzo, Camilla; Kang, Xi; Keller, Ben W; Wadsley, James
2015-01-01
We introduce project NIHAO (Numerical Investigation of a Hundred Astrophysical Objects), a set of 100 cosmological zoom-in hydrodynamical simulations performed using the GASOLINE code, with an improved implementation of the SPH algorithm. The haloes in our study range from dwarf to Milky Way masses, and represent an unbiased sampling of merger histories, concentrations and spin parameters. The particle masses and force softenings are chosen to resolve the mass profile to below 1% of the virial radius at all masses, ensuring that galaxy half-light radii are well resolved. Using the same treatment of star formation and stellar feedback for every object, the simulated galaxies reproduce the observed inefficiency of galaxy formation across cosmic time as expressed through the stellar mass vs halo mass relation, and the star formation rate vs stellar mass relation. We thus conclude that stellar feedback is the chief piece of physics required to limit the efficiency of star formation in galaxies less massive than t...
The Cosmological Consequences of the Preon Structure of Matter
Burdyuzha, V; Lalakulich, O; Ponomarev, Yu; Burdyuzha, Vladimir; Vereshkov, Grigory; Lalakulich, Olga; Ponomarev, Yuri
1999-01-01
If the preon structure of quarks, leptons and gauge bosons will be provedthen in the Universe during a relativistic phase transition the production ofnonperturbative preon condensates has occured. Familons are collectiveexcitations of these condensates. It is shown that the dark matter consisting of familon type pseudogoldstonebosons was undergone to two relativistic phase transitions temperatures ofwhich were different. In the result of these phase transitions thestructurization of dark matter and therefore the baryon subsystem has takenplace. In the Universe two characteristic scales which have printed thisphenomenon arise naturally.
Thermal condensate structure and cosmological energy density of the Universe
Capolupo, Antonio; Vitiello, Giuseppe
2016-01-01
The aim of this paper is the study of thermal vacuum condensate for scalar and fermion fields. We analyze the thermal states at the temperature of the cosmic microwave background (CMB) and we show that the vacuum expectation value of the energy momentum tensor density of photon fields reproduces the energy density and pressure of the CMB. We perform the computations in the formal framework of the thermo field dynamics. We also consider the case of neutrinos and thermal states at the temperature of the neutrino cosmic background. Consistency with the estimated lower bound of the sum of the active neutrino masses is verified. In the boson sector, non trivial contribution to the energy of the universe is given by particles of masses of the order of $10^{-4}eV$ compatible with the ones of the axion-like particles. The fractal self-similar structure of the thermal radiation is also discussed and related to the coherent structure of the thermal vacuum.
Thermal Condensate Structure and Cosmological Energy Density of the Universe
Directory of Open Access Journals (Sweden)
Antonio Capolupo
2016-01-01
Full Text Available The aim of this paper is to study thermal vacuum condensate for scalar and fermion fields. We analyze the thermal states at the temperature of the cosmic microwave background (CMB and we show that the vacuum expectation value of the energy momentum tensor density of photon fields reproduces the energy density and pressure of the CMB. We perform the computations in the formal framework of the Thermo Field Dynamics. We also consider the case of neutrinos and thermal states at the temperature of the neutrino cosmic background. Consistency with the estimated lower bound of the sum of the active neutrino masses is verified. In the boson sector, nontrivial contribution to the energy of the universe is given by particles of masses of the order of 10−4 eV compatible with the ones of the axion-like particles. The fractal self-similar structure of the thermal radiation is also discussed and related to the coherent structure of the thermal vacuum.
Indian Academy of Sciences (India)
Roy Maartens
2000-10-01
Magnetic ﬁelds are observed not only in stars, but in galaxies, clusters, and even high redshift Lyman- systems. In principle, these ﬁelds could play an important role in structure formation and also affect the anisotropies in the cosmic microwave background radiation (CMB). The study of cosmological magnetic ﬁelds aims not only to quantify these effects on large-scale structure and the CMB, but also to answer one of the outstanding puzzles of modern cosmology: when and how do magnetic ﬁelds originate? They are either primordial, i.e. created before the onset of structure formation, or they are generated during the process of structure formation itself.
Constraining cosmological ultra-large scale structure using numerical relativity
Braden, Jonathan; Peiris, Hiranya V; Aguirre, Anthony
2016-01-01
Cosmic inflation, a period of accelerated expansion in the early universe, can give rise to large amplitude ultra-large scale inhomogeneities on distance scales comparable to or larger than the observable universe. The cosmic microwave background (CMB) anisotropy on the largest angular scales is sensitive to such inhomogeneities and can be used to constrain the presence of ultra-large scale structure (ULSS). We numerically evolve nonlinear inhomogeneities present at the beginning of inflation in full General Relativity to assess the CMB quadrupole constraint on the amplitude of the initial fluctuations and the size of the observable universe relative to a length scale characterizing the ULSS. To obtain a statistically significant number of simulations, we adopt a toy model in which inhomogeneities are injected along a preferred direction. We compute the likelihood function for the CMB quadrupole including both ULSS and the standard quantum fluctuations produced during inflation. We compute the posterior given...
Further Evidence for Cosmological Evolution of the Fine Structure Constant
Webb, J K; Flambaum, V V; Dzuba, V A; Barrow, John D; Churchill, C W; Prochaska, J X; Wolfe, A M
2001-01-01
We summarise the results of a search for time variability of the fine structure constant, alpha, using absorption systems in the spectra of distant quasars. Three large optical datasets and two 21cm/mm absorption systems provide four independent samples, spanning approximately 23% to 87% of the age of the universe. Each sample yields a negative Delta(alpha)/alpha (smaller alpha in the past) and the whole optical sample shows a 4-sigma deviation: Delta(alpha)/alpha = -0.72 +/- 0.18 x 10^{-5} over the redshift range 0.5 < z < 3.5. A comprehensive search for systematic effects reveals none which can explain our results. The only potentially significant systematic effects push Delta(alpha)/alpha towards positive values, i.e. our results would become more significant were we to correct for them.
Rampf, Cornelius; Villa, Eleonora; Bertacca, Daniele; Bruni, Marco
2016-10-01
We study the nonlinear gravitational dynamics of a universe filled with a pressureless fluid and a cosmological constant Λ in the context of Newtonian gravity, and in the relativistic post-Friedmann approach proposed in paper I [I. Milillo et al., Phys. Rev. D 92, 023519 (2015)]. The post-Friedmann approximation scheme is based on the 1 /c expansion of the space-time metric and the energy-momentum tensor, and includes nonlinear Newtonian cosmology. Here we establish the nonlinear post-Friedmann framework in the Lagrangian-coordinates approach for structure formation. For this we first identify a Lagrangian gauge which is suitable for incorporating nonzero vorticity. We analyze our results in two limits: at the leading order we recover the fully nonlinear Newtonian cosmological equations in the Lagrangian formulation, and we provide a space-time metric consistent from the perspective of general relativity. We then linearize our expressions and recover the relativistic results at first order in cosmological perturbation theory. Therefore, the introduced approximation scheme provides a unified treatment for the two leading-order regimes, from the small scales described by Newtonian gravity to the large linear scale, where first-order relativistic cosmological perturbation theory gives a very good description of structure formation.
Structure formation in modified gravity models alternative to dark energy
Koyama, K
2006-01-01
We study structure formation in phenomenological models in which the Friedmann equation receives a correction of the form $H^{\\alpha}/r_c^{2-\\alpha}$, which realize an accelerated expansion without dark energy. In order to address structure formation in these model, we construct simple covariant gravitational equations which give the modified Friedmann equation with $\\alpha=2/n$ where $n$ is an integer. For $n=2$, the underlying theory is known as a 5D braneworld model (the DGP model). Thus the models interpolate between the DGP model ($n=2, \\alpha=1$) and the LCDM model in general relativity ($n \\to \\infty, \\alpha \\to 0$). Using the covariant equations, cosmological perturbations are analyzed. It is shown that in order to satisfy the Bianchi identity at a perturbative level, we need to introduce a correction term $E_{\\mu \
Ultracompact Minihalos as Probes of Inflationary Cosmology
Aslanyan, Grigor; Price, Layne C.; Adams, Jenni; Bringmann, Torsten; Clark, Hamish A.; Easther, Richard; Lewis, Geraint F.; Scott, Pat
2016-09-01
Cosmological inflation generates primordial density perturbations on all scales, including those far too small to contribute to the cosmic microwave background. At these scales, isolated ultracompact minihalos of dark matter can form well before standard structure formation, if the perturbations have sufficient amplitude. Minihalos affect pulsar timing data and are potentially bright sources of gamma rays. The resulting constraints significantly extend the observable window of inflation in the presence of cold dark matter, coupling two of the key problems in modern cosmology.
Kiselev, V V
2012-01-01
A huge value of cosmological constant characteristic for the particle physics and the inflation of early Universe are inherently related to each other: one can construct a fine-tuned superpotential, which produces a flat potential of inflaton with a constant density of energy V=\\Lambda^4 after taking into account for leading effects due to the supergravity, so that an introduction of small quantum loop-corrections to parameters of this superpotential naturally results in the dynamical instability relaxing the primary cosmological constant by means of inflationary regime. The model phenomenologically agrees with observational data on the large scale structure of Universe at \\Lambda~10^{16} GeV.
Narimani, Ali; Scott, Douglas
2011-01-01
Although it is possible that some fundamental physical constants could vary in time, it is important to only consider dimensionless combinations, such as the fine structure constant or the equivalent coupling constant for gravity. Once all such dimensionless numbers have been given, then we can be sure that our cosmological picture is governed by the same physical laws as that of another civilization with an entirely different set of units. An additional feature of the standard model of cosmology raises an extra complication, namely that the epoch at which we live is a crucial part of the model. This can be defined by giving the value of any one of the evolving cosmological parameters. It takes some care to avoid inconsistent results for constraints on variable constants, which could be caused by effectively fixing more than one parameter today. We show examples of this effect by considering in some detail the physics of Big Bang nucleosynthesis, recombination and microwave background anisotropies, being care...
Constraints on the Cosmological Parameters using CMB observations
Rocha, Graca
1999-01-01
This paper covers several techniques of intercomparison of Cosmic Microwave Background (CMB) anisotropy experiments and models of structure formation. It presents the constraints on several cosmological parameters using current CMB observations.
Cosmological dynamics of extended chameleons
Tamanini, Nicola
2016-01-01
We investigate the cosmological dynamics of the recently proposed extended chameleon models at both background and linear perturbation levels. Dynamical systems techniques are employed to fully characterize the evolution of the universe at the largest distances, while structure formation is analysed at sub-horizon scales within the quasi-static approximation. The late time dynamical transition from dark matter to dark energy domination can be well described by almost all extended chameleon models considered, with no deviations from $\\Lambda$CDM results at both background and perturbation levels. The results obtained in this work confirm the cosmological viability of extended chameleons as alternative dark energy models.
Singularities formation, structure, and propagation
Eggers, J
2015-01-01
Many key phenomena in physics and engineering are described as singularities in the solutions to the differential equations describing them. Examples covered thoroughly in this book include the formation of drops and bubbles, the propagation of a crack and the formation of a shock in a gas. Aimed at a broad audience, this book provides the mathematical tools for understanding singularities and explains the many common features in their mathematical structure. Part I introduces the main concepts and techniques, using the most elementary mathematics possible so that it can be followed by readers with only a general background in differential equations. Parts II and III require more specialised methods of partial differential equations, complex analysis and asymptotic techniques. The book may be used for advanced fluid mechanics courses and as a complement to a general course on applied partial differential equations.
Nuclear structure constrains on resonant energies: A solution of the cosmological {sup 7}Li problem?
Energy Technology Data Exchange (ETDEWEB)
Civitarese, O., E-mail: osvaldo.civitarese@fisica.unlp.edu.ar [Department of Physics, University of La Plata c.c. 67, 1900 La Plata (Argentina); Mosquera, M.E., E-mail: mmosquera@fcaglp.unlp.edu.ar [Department of Physics, University of La Plata c.c. 67, 1900 La Plata (Argentina); Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, Paseo del Bosque, 1900 La Plata (Argentina)
2013-01-17
In this work, we study the cosmological {sup 7}Li problem from a nuclear structure point of view, by including resonances in the reactions which populate beryllium. The calculation of primordial abundances is performed by solving the balance equations semi-analytically. It is found that the primordial abundance of lithium is indeed reduced, as a consequence of the presence of resonant channels in the relevant cross sections. We set limits on the resonant energy for each reaction relevant for the chain leading to {sup 7}Li, by performing a statistical analysis of the available observational data.
Global structure of Robinson-Trautman radiative space-times with cosmological constant
Bicák, J
1997-01-01
Robinson-Trautman radiative space-times of Petrov type II with a non-vanishing cosmological constant Lambda and mass parameter m>0 are studied using analytical methods. They are shown to approach the corresponding spherically symmetric Schwarzschild-de Sitter or Schwarzschild-anti-de Sitter solution at large retarded times. Their global structure is analyzed, and it is demonstrated that the smoothness of the extension of the metrics across the horizon, as compared with the case Lambda=0, is increased for Lambda>0 and decreased for Lambda0 exhibit explicitly the cosmic no-hair conjecture under the presence of gravitational waves.
Energy Technology Data Exchange (ETDEWEB)
Pfrommer, Christoph [Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, D-69118 Heidelberg (Germany); Chang, Philip; Broderick, Avery E., E-mail: christoph.pfrommer@h-its.org, E-mail: aeb@cita.utoronto.ca, E-mail: pchang@cita.utoronto.ca [Canadian Institute for Theoretical Astrophysics, 60 St. George Street, Toronto, ON M5S 3H8 (Canada)
2012-06-10
A subset of blazars are powerful TeV emitters, dominating the extragalactic component of the very high energy gamma-ray universe (E {approx}> 100 GeV). These TeV gamma rays generate ultrarelativistic electron-positron pairs via pair production with the extragalactic background light. While it has generally been assumed that the kinetic energy of these pairs cascades to GeV gamma rays via inverse Compton scattering, we have argued in Broderick et al. (Paper I in this series) that plasma beam instabilities are capable of dissipating the pairs' energy locally on timescales short in comparison to the inverse Compton cooling time, heating the intergalactic medium (IGM) with a rate that is independent of density. This dramatically increases the entropy of the IGM after redshift z {approx} 2, with a number of important implications for structure formation: (1) this suggests a scenario for the origin of the cool core (CC)/non-cool core (NCC) bimodality in galaxy clusters and groups. Early-forming galaxy groups are unaffected because they can efficiently radiate the additional entropy, developing a CC. However, late-forming groups do not have sufficient time to cool before the entropy is gravitationally reprocessed through successive mergers-counteracting cooling and potentially raising the core entropy further. This may result in a population of X-ray dim groups/clusters, consistent with X-ray stacking analyses of optically selected samples. Hence, blazar heating works differently than feedback by active galactic nuclei, which we show can balance radiative cooling but is unable to transform CC into NCC clusters on the buoyancy timescale due to the weak coupling between the mechanical energy to the cluster gas. (2) We predict a suppression of the Sunyaev-Zel'dovich (SZ) power spectrum template on angular scales smaller than 5' due to the globally reduced central pressure of groups and clusters forming after z {approx} 1. This allows for a larger rms amplitude
Shapiro, Paul R.; Iliev, Ilian T.; Raga, Alejandro C.
1999-07-01
The post-collapse structure of objects that form by gravitational condensation out of the expanding cosmological background universe is a key element in the theory of galaxy formation. Towards this end, we have reconsidered the outcome of the non-linear growth of a uniform, spherical density perturbation in an unperturbed background universe - the cosmological `top-hat' problem. We adopt the usual assumption that the collapse to infinite density at a finite time predicted by the top-hat solution is interrupted by a rapid virialization caused by the growth of small-scale inhomogeneities in the initial perturbation. We replace the standard description of the post-collapse object as a uniform sphere in virial equilibrium by a more self-consistent one as a truncated, non-singular, isothermal sphere in virial and hydrostatic equilibrium, including for the first time a proper treatment of the finite-pressure boundary condition on the sphere. The results differ significantly from both the uniform sphere and the singular isothermal sphere approximations for the post-collapse objects. The virial temperature that results is more than twice the previously used `standard value' of the post-collapse uniform sphere approximation, but 1.4 times smaller than that of the singular, truncated isothermal sphere approximation. The truncation radius is 0.554 times the radius of the top-hat at maximum expansion, and the ratio of the truncation radius to the core radius is 29.4, yielding a central density that is 514 times greater than at the surface and 1.8x10^4 times greater than that of the unperturbed background density at the epoch of infinite collapse predicted by the top-hat solution. For the top-hat fractional overdensity delta_L predicted by extrapolating the linear solution into the non-linear regime, the standard top-hat model assumes that virialization is instantaneous at delta_Ldelta_c=1.686 i.e. the epoch at which the non-linear top-hat reaches infinite density. The surface
Gamma-ray burst cosmology: Hubble diagram and star formation history
Wei, Jun-Jie
2016-01-01
We briefly introduce the disadvantages for Type Ia supernovae (SNe Ia) as standard candles to measure the Universe, and suggest Gamma-ray bursts (GRBs) can serve as a powerful tool for probing the properties of high redshift Universe. We use GRBs as distance indicators in constructing the Hubble diagram at redshifts beyond the current reach of SNe Ia observations. Since the progenitors of long GRBs are confirmed to be massive stars, they are deemed as an effective approach to study the cosmic star formation rate (SFR). A detailed representation of how to measure high-$z$ SFR using GRBs is presented. Moreover, first stars can form only in structures that are suitably dense, which can be parameterized by defining the minimum dark matter halo mass $M_{\\rm min}$. $M_{\\rm min}$ must play a crucial role in star formation. The association of long GRBs with the collapses of massive stars also indicates that the GRB data can be applied to constrain the minimum halo mass $M_{\\rm min}$ and to investigate star formation ...
Krtous, Pavel; Podolský, Jirí
2004-12-01
We analyse the directional properties of general gravitational, electromagnetic and spin-s fields near conformal infinity \\scri . The fields are evaluated in normalized tetrads which are parallelly propagated along null geodesics which approach a point P of \\scri . The standard peeling-off property is recovered and its meaning is discussed and refined. When the (local) character of the conformal infinity is null, such as in asymptotically flat spacetimes, the dominant term which is identified with radiation is unique. However, for spacetimes with a non-vanishing cosmological constant the conformal infinity is spacelike (for Λ > 0) or timelike (for Λ 0 the radiation vanishes only along directions which are opposite to principal null directions. For Λ conformal infinity the corresponding directional structures differ, depending not only on the number and degeneracy of the principal null directions at P but also on their specific orientation with respect to \\scri . The directional structure of radiation near (anti-)de Sitter-like infinities supplements the standard peeling-off property of spin-s fields. This characterization offers a better understanding of the asymptotic behaviour of the fields near conformal infinity under the presence of a cosmological constant.
Renormalization-group flow of the effective action of cosmological large-scale structures
Floerchinger, Stefan; Garny, Mathias; Tetradis, Nikolaos; Wiedemann, Urs Achim
2017-01-01
Following an approach of Matarrese and Pietroni, we derive the functional renormalization group (RG) flow of the effective action of cosmological large-scale structures. Perturbative solutions of this RG flow equation are shown to be consistent with standard cosmological perturbation theory. Non-perturbative approximate solutions can be obtained by truncating the a priori infinite set of possible effective actions to a finite subspace. Using for the truncated effective action a form dictated by dissipative fluid dynamics, we derive RG flow equations for the scale dependence of the effective viscosity and sound velocity of non-interacting dark matter, and we solve them numerically. Physically, the effective viscosity and sound velocity account for the interactions of long-wavelength fluctuations with the spectrum of smaller-scale perturbations. We find that the RG flow exhibits an attractor behaviour in the IR that significantly reduces the dependence of the effective viscosity and sound velocity on the input values at the UV scale. This allows for a self-contained computation of matter and velocity power spectra for which the sensitivity to UV modes is under control.
Correlation of CMB with large-scale structure: I. ISW Tomography and Cosmological Implications
Ho, Shirley; Padmanabhan, Nikhil; Seljak, Uros; Bahcall, Neta
2008-01-01
We cross-correlate large scale structure (LSS) observations from a number of surveys with CMB anisotropies from WMAP to investigate the Integrated Sachs-Wolfe (ISW) effect as a function of redshift, covering z~0.1-2.5. Our main goal is to go beyond reporting detections towards developing a reliable likelihood analysis that allows one to determine cosmological constraints from ISW observations. With this in mind we spend a considerable amount of effort in determining the redshift-dependent bias and redshift distribution b(z)*dN/dz of these samples by matching with spectroscopic observations where available, and analyzing auto-power spectra and cross-power spectra between the samples. The data sets we use are 2-Micron All Sky Survey (2MASS) samples, Sloan Digital Sky Survey (SDSS) photometric Luminous Red Galaxies, SDSS photometric quasars and NRAO VLA Sky Survey (NVSS) radio sources. We make a joint analysis of all samples constructing a full covariance matrix, which we subsequently use for cosmological parame...
Ishak, Mustapha; Troxel, M A
2013-01-01
Probes of cosmic expansion constitute the main basis for arguments to support or refute a possible apparent acceleration due to uneven dynamics in the universe as described by inhomogeneous cosmological models. We present in this Letter a separate argument based on results from the study of the growth rate of large-scale structure in the universe as modeled by the Szekeres inhomogeneous cosmological models. We use the models in all generality with no assumptions of spherical or axial symmetries. We find that Szekeres inhomogeneous models that fit well the observed expansion history fail to explain the observed late-time suppression of the growth of structure unless a cosmological constant is added to the dynamics.
Cosmological evolution of the gravitational entropy of the large-scale structure
Marozzi, Giovanni; Umeh, Obinna; Clarkson, Chris
2015-01-01
This article derives the entropy associated with the large-scale structure of the Universe in the linear regime, where the Universe can be described by a perturbed Friedmann-Lema\\^{\\i}tre spacetime. In particular, it compares two different definitions proposed in the literature for the entropy using a spatial averaging prescription. For one definition, the entropy of the large-scale structure and for a given comoving volume always grows with time, both for a CDM and a $\\Lambda$CDM model. In particular, while it diverges for a CDM model, it saturates to a constant value in the presence of a cosmological constant. The use of a light-cone averaging prescription in the context of the evaluation of the entropy is also discussed.
Cosmological tests of modified gravity
Koyama, Kazuya
2016-04-01
We review recent progress in the construction of modified gravity models as alternatives to dark energy as well as the development of cosmological tests of gravity. Einstein’s theory of general relativity (GR) has been tested accurately within the local universe i.e. the Solar System, but this leaves the possibility open that it is not a good description of gravity at the largest scales in the Universe. This being said, the standard model of cosmology assumes GR on all scales. In 1998, astronomers made the surprising discovery that the expansion of the Universe is accelerating, not slowing down. This late-time acceleration of the Universe has become the most challenging problem in theoretical physics. Within the framework of GR, the acceleration would originate from an unknown dark energy. Alternatively, it could be that there is no dark energy and GR itself is in error on cosmological scales. In this review, we first give an overview of recent developments in modified gravity theories including f(R) gravity, braneworld gravity, Horndeski theory and massive/bigravity theory. We then focus on common properties these models share, such as screening mechanisms they use to evade the stringent Solar System tests. Once armed with a theoretical knowledge of modified gravity models, we move on to discuss how we can test modifications of gravity on cosmological scales. We present tests of gravity using linear cosmological perturbations and review the latest constraints on deviations from the standard Λ CDM model. Since screening mechanisms leave distinct signatures in the non-linear structure formation, we also review novel astrophysical tests of gravity using clusters, dwarf galaxies and stars. The last decade has seen a number of new constraints placed on gravity from astrophysical to cosmological scales. Thanks to on-going and future surveys, cosmological tests of gravity will enjoy another, possibly even more, exciting ten years.
Cosmological tests of modified gravity.
Koyama, Kazuya
2016-04-01
We review recent progress in the construction of modified gravity models as alternatives to dark energy as well as the development of cosmological tests of gravity. Einstein's theory of general relativity (GR) has been tested accurately within the local universe i.e. the Solar System, but this leaves the possibility open that it is not a good description of gravity at the largest scales in the Universe. This being said, the standard model of cosmology assumes GR on all scales. In 1998, astronomers made the surprising discovery that the expansion of the Universe is accelerating, not slowing down. This late-time acceleration of the Universe has become the most challenging problem in theoretical physics. Within the framework of GR, the acceleration would originate from an unknown dark energy. Alternatively, it could be that there is no dark energy and GR itself is in error on cosmological scales. In this review, we first give an overview of recent developments in modified gravity theories including f(R) gravity, braneworld gravity, Horndeski theory and massive/bigravity theory. We then focus on common properties these models share, such as screening mechanisms they use to evade the stringent Solar System tests. Once armed with a theoretical knowledge of modified gravity models, we move on to discuss how we can test modifications of gravity on cosmological scales. We present tests of gravity using linear cosmological perturbations and review the latest constraints on deviations from the standard [Formula: see text]CDM model. Since screening mechanisms leave distinct signatures in the non-linear structure formation, we also review novel astrophysical tests of gravity using clusters, dwarf galaxies and stars. The last decade has seen a number of new constraints placed on gravity from astrophysical to cosmological scales. Thanks to on-going and future surveys, cosmological tests of gravity will enjoy another, possibly even more, exciting ten years.
Wang, Liang; Dutton, Aaron A.; Stinson, Gregory S.; Macciò, Andrea V.; Penzo, Camilla; Kang, Xi; Keller, Ben W.; Wadsley, James
2015-11-01
We introduce project NIHAO (Numerical Investigation of a Hundred Astrophysical Objects), a set of 100 cosmological zoom-in hydrodynamical simulations performed using the GASOLINE code, with an improved implementation of the SPH algorithm. The haloes in our study range from dwarf (M200 ˜ 5 × 109 M⊙) to Milky Way (M200 ˜ 2 × 1012 M⊙) masses, and represent an unbiased sampling of merger histories, concentrations and spin parameters. The particle masses and force softenings are chosen to resolve the mass profile to below 1 per cent of the virial radius at all masses, ensuring that galaxy half-light radii are well resolved. Using the same treatment of star formation and stellar feedback for every object, the simulated galaxies reproduce the observed inefficiency of galaxy formation across cosmic time as expressed through the stellar mass versus halo mass relation, and the star formation rate versus stellar mass relation. We thus conclude that stellar feedback is the chief piece of physics required to limit the efficiency of star formation in galaxies less massive than the Milky Way.
Gill, S P D; Gibson, B K; Flynn, C; Ibata, R A; Lewis, G F; Gill, Stuart P.D.; Knebe, Alexander; Gibson, Brad K.; Flynn, Chris; Ibata, Rodrigo A.; Lewis, Geraint F.
2002-01-01
An adaptive multi grid approach to simulating the formation of structure from collisionless dark matter is described. MLAPM (Multi-Level Adaptive Particle Mesh) is one of the most efficient serial codes available on the cosmological 'market' today. As part of Swinburne University's role in the development of the Square Kilometer Array, we are implementing hydrodynamics, feedback, and radiative transfer within the MLAPM adaptive mesh, in order to simulate baryonic processes relevant to the interstellar and intergalactic media at high redshift. We will outline our progress to date in applying the existing MLAPM to a study of the decay of satellite galaxies within massive host potentials.
Asymptotic directional structure of radiative fields in spacetimes with a cosmological constant
Energy Technology Data Exchange (ETDEWEB)
Krtous, Pavel; Podolsky, JirI [Institute of Theoretical Physics, Charles University in Prague, V Holesovickach 2, 18000 Prague 8 (Czech Republic)
2004-12-21
We analyse the directional properties of general gravitational, electromagnetic and spin-s fields near conformal infinity I. The fields are evaluated in normalized tetrads which are parallelly propagated along null geodesics which approach a point P of I. The standard peeling-off property is recovered and its meaning is discussed and refined. When the (local) character of the conformal infinity is null, such as in asymptotically flat spacetimes, the dominant term which is identified with radiation is unique. However, for spacetimes with a non-vanishing cosmological constant the conformal infinity is spacelike (for {lambda} > 0) or timelike (for {lambda} < 0), and the radiative component of each field depends substantially on the null direction along which P is approached. The directional dependence of asymptotic fields near such de Sitter-like or anti-de Sitter-like I is explicitly found and described. We demonstrate that the corresponding directional structure of radiation has a universal character that is determined by the algebraic (Petrov) type of the field. In particular, when {lambda} > 0 the radiation vanishes only along directions which are opposite to principal null directions. For {lambda} < 0 the directional dependence is more complicated because it is necessary to distinguish outgoing and ingoing radiation. Near such anti-de Sitter-like conformal infinity the corresponding directional structures differ, depending not only on the number and degeneracy of the principal null directions at P but also on their specific orientation with respect to I. The directional structure of radiation near (anti-)de Sitter-like infinities supplements the standard peeling-off property of spin-s fields. This characterization offers a better understanding of the asymptotic behaviour of the fields near conformal infinity under the presence of a cosmological constant. (topical review)
Gauge Invariant Cosmological Perturbation Theory
Durrer, R
1993-01-01
After an introduction to the problem of cosmological structure formation, we develop gauge invariant cosmological perturbation theory. We derive the first order perturbation equations of Einstein's equations and energy momentum ``conservation''. Furthermore, the perturbations of Liouville's equation for collisionless particles and Boltzmann's equation for Compton scattering are worked out. We fully discuss the propagation of photons in a perturbed Friedmann universe, calculating the Sachs--Wolfe effect and light deflection. The perturbation equations are extended to accommodate also perturbations induced by seeds. With these general results we discuss some of the main aspects of the texture model for the formation of large scale structure in the Universe (galaxies, clusters, sheets, voids). In this model, perturbations in the dark matter are induced by texture seeds. The gravitational effects of a spherically symmetric collapsing texture on dark matter, baryonic matter and photons are calculated in first orde...
Radiative feedback on early molecular gas and implications for primordial structure formation
Petkova, Margarita
2011-01-01
We present results from self-consistent simulations of cosmic structure formation with a multi-frequency radiative transfer scheme and non-equilibrium molecular chemistry of e-, H, H+, H-, He, He+, He++, H_2, H_2+, D, D+, HD, HeH+, performed by using the simulation code GADGET. We describe our implementation and show tests for ionized sphere expansion in a static density field around a central radiative source; cosmological abundance evolution coupled with the cosmic microwave background radiation; cosmological simulations of early structure formation with radiative feedback. Our tests agree well with analytical and numerical expectations. The contributions from the detailed chemical network affect at a ~10% level the determination of the Stroemgren radius of an ionized bubble, and additional processes from the different species considered allows the gas to recombine slightly later, with respect to the H-only approximation. Moreover, we find that radiative effects from the cosmic microwave background are negl...
Automatically generated code for relativistic inhomogeneous cosmologies
Bentivegna, Eloisa
2017-02-01
The applications of numerical relativity to cosmology are on the rise, contributing insight into such cosmological problems as structure formation, primordial phase transitions, gravitational-wave generation, and inflation. In this paper, I present the infrastructure for the computation of inhomogeneous dust cosmologies which was used recently to measure the effect of nonlinear inhomogeneity on the cosmic expansion rate. I illustrate the code's architecture, provide evidence for its correctness in a number of familiar cosmological settings, and evaluate its parallel performance for grids of up to several billion points. The code, which is available as free software, is based on the Einstein Toolkit infrastructure, and in particular leverages the automated code generation capabilities provided by its component Kranc.
Friedmann cosmology with decaying vacuum density
Borges, H A
2005-01-01
Among the several proposals to solve the incompatibility between the observed small value of the cosmological constant and the huge value obtained by quantum field theories, we can find the idea of a decaying vacuum energy density, leading from high values at early times of universe evolution to the small value observed nowadays. In this paper we consider a variation law for the vacuum density recently proposed by Schutzhold on the basis of quantum field estimations in the curved, expanding background, characterized by a vacuum density proportional to the Hubble parameter. We show that, in the context of an isotropic and homogeneous, spatially flat model, the corresponding solutions retain the well established features of the standard cosmology, and, in addition, are in accordance with the observed cosmological parameters. Our scenario presents an initial phase dominated by radiation, followed by a dust era long enough to permit structure formation, and by an epoch dominated by the cosmological term, which te...
Julien Lesgourgues presents his book "Neutrino Cosmology"
2013-01-01
The role that neutrinos have played in the evolution of the Universe is the focus of one of the most fascinating research areas that has stemmed from the interplay between cosmology, astrophysics and particle physics. In this self-contained book, the authors bring together all aspects of the role of neutrinos in cosmology, spanning from leptogenesis to primordial nucleosynthesis and from their role in CMB and structure formation, to the problem of their direct detection. The book starts by guiding the reader through aspects of fundamental neutrino physics, such as the standard cosmological model and statistical mechanics in the expanding Universe, before discussing the history of neutrinos chronologically from the very early stages until today. "Neutrino Cosmology" by Julien Lesgourgues, Gianpiero Mangano, Gennaro Miele, Sergio Pastor, Cambridge University Press, 2013, ISBN 9781107013957. Monday 22 April 2013 at 4 p.m. in the Library, 52-1-052. Tea and coffee will be served...
Testing Models for Structure Formation
Kaiser, N
1993-01-01
I review a number of tests of theories for structure formation. Large-scale flows and IRAS galaxies indicate a high density parameter $\\Omega \\simeq 1$, in accord with inflationary predictions, but it is not clear how this meshes with the uniformly low values obtained from virial analysis on scales $\\sim$ 1Mpc. Gravitational distortion of faint galaxies behind clusters allows one to construct maps of the mass surface density, and this should shed some light on the large vs small-scale $\\Omega$ discrepancy. Power spectrum analysis reveals too red a spectrum (compared to standard CDM) on scales $\\lambda \\sim 10-100$ $h^{-1}$Mpc, but the gaussian fluctuation hypothesis appears to be in good shape. These results suggest that the problem for CDM lies not in the very early universe --- the inflationary predictions of $\\Omega = 1$ and gaussianity both seem to be OK; furthermore, the COBE result severely restricts modifications such as tilting the primordial spectrum --- but in the assumed matter content. The power s...
Gelmini, Graciela B
1996-01-01
Talks given at the V Taller de Particulas y Campos (V-TPyC) and V Taller Latinoam. de Fenomenologia de las Interac. Fundam. (V-TLFIF), Puebla, Mexico, 10/30 - 11/3 1995. These lectures are devoted to elementary particle physicists and assume the reader has very little or no knowledge of cosmology and astrophysics. After a brief historical introduction to the development of modern cosmology and astro-particles in which the Hot Big Bang model is defined, the Robertson-Walker metric and the dynamics of the Friedmann-Robertson-Walker cosmology are discussed in section 2. In section 3 the main observational features of the Universe are reviewed, including a description of our neighbourhood, homogeneity and isotropy, the cosmic background radiation, the expansion, the age and the matter content of the Universe. A brief account of the thermal history of the Universe follows in section 4, and relic abundances are discussed in section 5. Section 6 is devoted to primordial nucleosynthesis, section 7 to structure format...
Observational constraints on undulant cosmologies
Energy Technology Data Exchange (ETDEWEB)
Barenboim, Gabriela; /Valencia U.; Mena Requejo, Olga; Quigg, Chris; /Fermilab
2005-10-01
In an undulant universe, cosmic expansion is characterized by alternating periods of acceleration and deceleration. We examine cosmologies in which the dark-energy equation of state varies periodically with the number of e-foldings of the scale factor of the universe, and use observations to constrain the frequency of oscillation. We find a tension between a forceful response to the cosmic coincidence problem and the standard treatment of structure formation.
The new discussion of a neutrino mass and issues in the formation of large-scale structure
Melott, Adrian L.
1991-01-01
It is argued that the discrepancy between the large-scale structure predicted by cosmological models with neutrino mass (hot dark matter) do not differ drastically from the observed structure. Evidence from the correlation amplitude, nonlinearity and the onset of galaxy formation, large-scale streaming velocities, and the topology of large-scale structure is considered. Hot dark matter models seem to be as accurate predictors of the large-scale structure as are cold dark matter models.
Martizzi, Davide; Moore, Ben
2011-01-01
We use 500 pc resolution cosmological simulations of a Virgo-like galaxy cluster to study the properties of the brightest cluster galaxy (BCG) that forms at the center of the halo. We compared two simulations; one incorporating only supernovae feedback and a second that also includes prescriptions for black hole growth and the resulting AGN feedback from gas accretion. As previous work has shown, with supernovae feedback alone we are unable to reproduce any of the observed properties of massive cluster ellipticals. The resulting BCG is rotating quickly, has a high Sersic index, a strong mass excess in the center and a total central density profile falling more steeply than isothermal. Furthermore, it is far too efficient at converting most of the available baryons into stars which is strongly constrained by abundance matching. With a treatment of black hole dynamics and AGN feedback the BCG properties are in good agreement with data: they rotate slowly, have a cored surface density profile, a flat or rising v...
Younger, Joshua D
2007-01-01
We perform a set of non--radiative cosmological simulations of a preheated intracluster medium in which the entropy of the gas was uniformly boosted at high redshift. The results of these simulations are used first to test the current analytic techniques of preheating via entropy input in the smooth accretion limit. When the unmodified profile is taken directly from simulations, we find that this model is in excellent agreement with the results of our simulations. This suggests that preheated efficiently smoothes the accreted gas, and therefore a shift in the unmodified profile is a good approximation even with a realistic accretion history. When we examine the simulation results in detail, we do not find strong evidence for entropy amplification, at least for the high-redshift preheating model adopted here. In the second section of the paper, we compare the results of the preheating simulations to recent observations. We show -- in agreement with previous work -- that for a reasonable amount of preheating, a...
Jeltema, Tesla E; Burns, Jack O; Motl, Patrick M
2007-01-01
We use Enzo, a hybrid Eulerian AMR/N-body code including non-gravitational heating and cooling, to explore the morphology of the X-ray gas in clusters of galaxies and its evolution in current generation cosmological simulations. We employ and compare two observationally motivated structure measures: power ratios and centroid shift. Overall, the structure of our simulated clusters compares remarkably well to low-redshift observations, although some differences remain that may point to incomplete gas physics. We find no dependence on cluster structure in the mass-observable scaling relations, T_X-M and Y_X-M, when using the true cluster masses. However, estimates of the total mass based on the assumption of hydrostatic equilibrium, as assumed in observational studies, are systematically low. We show that the hydrostatic mass bias strongly correlates with cluster structure and, more weakly, with cluster mass. When the hydrostatic masses are used, the mass-observable scaling relations and gas mass fractions depen...
Inhomogeneous Big Bang Cosmology
Wagh, S M
2002-01-01
In this letter, we outline an inhomogeneous model of the Big Bang cosmology. For the inhomogeneous spacetime used here, the universe originates in the infinite past as the one dominated by vacuum energy and ends in the infinite future as the one consisting of "hot and relativistic" matter. The spatial distribution of matter in the considered inhomogeneous spacetime is {\\em arbitrary}. Hence, observed structures can arise in this cosmology from suitable "initial" density contrast. Different problems of the standard model of Big Bang cosmology are also resolved in the present inhomogeneous model. This inhomogeneous model of the Big Bang Cosmology predicts "hot death" for the universe.
Cosmological perturbations beyond linear order
CERN. Geneva
2013-01-01
Cosmological perturbation theory is the standard tool to understand the formation of the large scale structure in the Universe. However, its degree of applicability is limited by the growth of the amplitude of the matter perturbations with time. This problem can be tackled with by using N-body simulations or analytical techniques that go beyond the linear calculation. In my talk, I'll summarise some recent efforts in the latter that ameliorate the bad convergence of the standard perturbative expansion. The new techniques allow better analytical control on observables (as the matter power spectrum) over scales very relevant to understand the expansion history and formation of structure in the Universe.
Structure Formation with Generalized Dark Matter
Hu, Wayne
1998-10-01
The next generation of cosmic microwave background (CMB) experiments, galaxy surveys, and high-redshift observations can potentially determine the nature of the dark matter observationally. With this in mind, we introduce a phenomenological model for a generalized dark matter (GDM) component and discuss its effect on large-scale structure and CMB anisotropies. Specifying the gravitational influence of the otherwise noninteracting GDM requires not merely a model for its equation of state but one for its full stress tensor. From consideration of symmetries, conservation laws, and gauge invariance, we construct a simple but powerful three-component parameterization of these stresses that exposes the new phenomena produced by GDM. Limiting cases include: a particle component (e.g., weakly interacting massive particles, radiation, or massive neutrinos), a cosmological constant, and a scalar field component. Intermediate cases illustrate how the clustering properties of the dark matter can be specified independently of its equation of state. This freedom allows one to alter the amplitude and features in the matter-power spectrum relative to those of the CMB anisotropies while leaving the background cosmology fixed. Conversely, observational constraints on such phenomena can help determine the nature of the dark matter.
Galaxy Pairs in cosmological simulations: Effects of interactions on star formation
Perez, M J; Lambas, D G; Scannapieco, C; Tissera, Patricia B.; Lambas, Diego G.; Scannapieco, Cecilia
2005-01-01
We carried out a statistical analysis of galaxy pairs in hydrodynamical Lambda-CDM simulations. We focused on the triggering of star formation by interactions and analysed the enhancement of star formation activity in terms of orbital parameters. By comparing to a suitable sample of simulated galaxies without a nearby companion, we find that close encounters (r<30 kpc/h) may effectively induce star formation. However, our results suggest that the stability properties of systems and the spatial proximity are both relevant factors in the process of triggering star formation by tidal interactions. In order to assess the effects of projection and spurious pairs in observational samples, we also constructed and analysed samples of pairs of galaxies in the simulations obtained in projection. We found a good agreement with observational results with a threshold at rp ~ 25 kpc/h for interactions to effectively enhance star formation activity. For pairs within rp < 100 kpc/h, we estimated a ~27% contamination by...
Cosmological simulations using GCMHD+
Barnes, David J.; Kawata, Daisuke; Wu, Kinwah
2012-03-01
Radio observations of galaxy clusters show that the intracluster medium is permeated by ? magnetic fields. The origin and evolution of these cosmological magnetic fields is currently not well understood, and so their impact on the dynamics of structure formation is not known. Numerical simulations are required to gain a greater understanding and produce predictions for the next generation of radio telescopes. We present the galactic chemodynamics smoothed particle magnetohydrodynamics (SPMHD) code (GCMHD+), which is an MHD implementation for the cosmological smoothed particle hydrodynamics code GCD+. The results of 1D, 2D and 3D tests are presented and the performance of the code is shown relative to the ATHENA grid code. GCMHD+ shows good agreement with the reference solutions produced by ATHENA. The code is then used to simulate the formation of a galaxy cluster with a simple primordial magnetic field embedded in the gas. A homogeneous seed field of 3.5 × 10-11 G is amplified by a factor of 103 during the formation of the cluster. The results show good agreement with the profiles found in other magnetic cluster simulations of similar resolution.
The Inner Structure of Dwarf-sized Halos in Warm and Cold Dark Matter Cosmologies
González-Samaniego, A.; Avila-Reese, V.; Colín, P.
2016-03-01
By means of N-body + hydrodynamic zoom-in simulations we study the evolution of the inner dark matter and stellar mass distributions of central dwarf galaxies formed in halos of virial masses Mv = (2-3) × 1010 h-1 M⊙ at z = 0, both in a warm dark matter (WDM) and cold dark matter (CDM) cosmology. The half-mode mass in the WDM power spectrum of our simulations is Mf = 2 × 1010 h-1 M⊙. In the dark matter (DM) only simulations halo density profiles are well described by the Navarro-Frenk-White parametric fit in both cosmologies, though the WDM halos have concentrations lower by factors of 1.5-2.0 than their CDM counterparts. In the hydrodynamic simulations, the effects of baryons significantly flatten the inner density, velocity dispersion, and pseudo phase space density profiles of the WDM halos but not of the CDM ones. The density slope, measured at ≈0.02Rv, α0.02, becomes shallow in periods of 2-5 Gyr in the WDM runs. We explore whether this flattening process correlates with the global star formation (SF), Ms/Mv ratio, gas outflow, and internal specific angular momentum histories. We do not find any clear trends, but when α0.02 is shallower than -0.5, Ms/Mv is always between 0.25% and 1%. We conclude that the main reason for the formation of the shallow core is the presence of strong gas mass fluctuations inside the inner halo, which are a consequence of the feedback driven by a very bursty and sustained SF history in shallow gravitational potentials. Our WDM halos, which assemble late and are less concentrated than the CDM ones, obey these conditions. There are also (rare) CDM systems with extended mass assembly histories that obey these conditions and form shallow cores. The dynamical heating and expansion processes behind the DM core flattening apply also to the stars in such a way that the stellar age and metallicity gradients of the dwarfs are softened, their stellar half-mass radii strongly grow with time, and their central surface densities
THE INNER STRUCTURE OF DWARF-SIZED HALOS IN WARM AND COLD DARK MATTER COSMOLOGIES
Energy Technology Data Exchange (ETDEWEB)
González-Samaniego, A.; Avila-Reese, V. [Instituto de Astronomía, Universidad Nacional Autónoma de México, A.P. 70-264, 04510, México, D.F., México (Mexico); Colín, P. [Instituto de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, A.P. 72-3 (Xangari), Morelia, Michoacán 58089, México (Mexico)
2016-03-10
By means of N-body + hydrodynamic zoom-in simulations we study the evolution of the inner dark matter and stellar mass distributions of central dwarf galaxies formed in halos of virial masses M{sub v} = (2–3) × 10{sup 10} h{sup −1} M{sub ⊙} at z = 0, both in a warm dark matter (WDM) and cold dark matter (CDM) cosmology. The half-mode mass in the WDM power spectrum of our simulations is M{sub f} = 2 × 10{sup 10} h{sup −1} M{sub ⊙}. In the dark matter (DM) only simulations halo density profiles are well described by the Navarro–Frenk–White parametric fit in both cosmologies, though the WDM halos have concentrations lower by factors of 1.5–2.0 than their CDM counterparts. In the hydrodynamic simulations, the effects of baryons significantly flatten the inner density, velocity dispersion, and pseudo phase space density profiles of the WDM halos but not of the CDM ones. The density slope, measured at ≈0.02R{sub v}, α{sub 0.02}, becomes shallow in periods of 2–5 Gyr in the WDM runs. We explore whether this flattening process correlates with the global star formation (SF), M{sub s}/M{sub v} ratio, gas outflow, and internal specific angular momentum histories. We do not find any clear trends, but when α{sub 0.02} is shallower than −0.5, M{sub s}/M{sub v} is always between 0.25% and 1%. We conclude that the main reason for the formation of the shallow core is the presence of strong gas mass fluctuations inside the inner halo, which are a consequence of the feedback driven by a very bursty and sustained SF history in shallow gravitational potentials. Our WDM halos, which assemble late and are less concentrated than the CDM ones, obey these conditions. There are also (rare) CDM systems with extended mass assembly histories that obey these conditions and form shallow cores. The dynamical heating and expansion processes behind the DM core flattening apply also to the stars in such a way that the stellar age and metallicity gradients of the
Brax, Philippe
2016-01-01
We investigate scalar-tensor theories where matter couples to the scalar field via a kinetically dependent conformal coupling. These models can be seen as the low-energy description of invariant field theories under a global Abelian symmetry. The scalar field is then identified with the Goldstone mode of the broken symmetry. It turns out that the properties of these models are very similar to the ones of ultralocal theories where the scalar-field value is directly determined by the local matter density. This leads to a complete screening of the fifth force in the Solar System and between compact objects, through the ultralocal screening mechanism. On the other hand, the fifth force can have large effects in extended structures with large-scale density gradients, such as galactic halos. Interestingly, it can either amplify or damp Newtonian gravity, depending on the model parameters. We also study the background cosmology and the linear cosmological perturbations. The background cosmology is hardly different f...
Hopkins, Philip F.; Cox, Thomas J.; Keres, Dusan; Hernquist, Lars
2007-01-01
(Abridged) We develop and test a model for the cosmological role of mergers in the formation and quenching of red, early-type galaxies. Making the ansatz that star formation is quenched after a gas-rich, spheroid-forming major merger, we demonstrate that this naturally predicts the turnover in the efficiency of star formation at ~L_star, as well as the observed mass functions/density of red galaxies as a function of redshift, the formation times of spheroids as a function of mass, and the fra...
Particle physics and cosmology, Task C. Progress report, January 1992--April 1993
Energy Technology Data Exchange (ETDEWEB)
Turner, M.S.
1993-05-01
The research has spanned many topics at the boundary of particle physics and cosmology. The major focus has been in the general areas of inflationary cosmology, cosmological phase transitions, astrophysical constraints to particle physics theories, and dark matter/structure formation as it relates to particle physics. Some attention is given to axion physics. Narrative summaries of the research of the individual group members are given, followed by a list of publications.
Scannapieco, C.
2013-06-01
I use cosmological hydrodynamical simulations to study the formation and evolution of galaxies similar in mass to the Milky Way. First, I use a set of eight simulations where the haloes have a great variety of merger and formation histories, to investigate how similar or diverse these galaxies are at the present epoch, and how their final properties are related to the particular formation history of the galaxy. I find that rotationally-supported disks are present in 7 of the 8 galaxies at {z˜ 2}-3; however, only half of the galaxies have significant disks at z=0. Both major mergers and the accretion of gas that is misaligned with the preexisting stellar disk contribute to the transfer of material from the disks to the spheroidal components, lowering the disk-to-total ratios during evolution. I also present and discuss recent results of the Aquila Project, which compares the predictions of 13 different numerical codes for the properties of a galaxy in a \\Lambda cold dark matter universe. All simulations use a unique initial condition and are analysed in the exact same way, allowing a fair comparison of results. We find large code-to-code variations in stellar masses, star formation rates, galaxy sizes and morphologies. We also find that the way feedback is implemented is the main cause of the differences, although some differences might also result from the use of different numerical technique. Our results show that state-of-the-art simulations cannot yet uniquely predict the properties of the baryonic component of a galaxy, even when the assembly history of its host halo is fully specified.
Energy Technology Data Exchange (ETDEWEB)
McAllister, Liam P.; Silverstein, Eva
2007-10-22
We give an overview of the status of string cosmology. We explain the motivation for the subject, outline the main problems, and assess some of the proposed solutions. Our focus is on those aspects of cosmology that benefit from the structure of an ultraviolet-complete theory.
Evolution of cosmic star formation in the SCUBA-2 Cosmology Legacy Survey
Bourne, N; Merlin, E; Parsa, S; Schreiber, C; Castellano, M; Conselice, C J; Coppin, K E K; Farrah, D; Fontana, A; Geach, J E; Halpern, M; Knudsen, K K; Michalowski, M J; Mortlock, A; Santini, P; Scott, D; Shu, X W; Simpson, C; Simpson, J M; Smith, D J B; van der Werf, P
2016-01-01
We present a new exploration of the cosmic star-formation history and dust obscuration in massive galaxies at redshifts $0.510^{10}M_\\odot$ galaxies at $0.510$. One third of this is accounted for by 450$\\mu$m-detected sources, while one fifth is attributed to UV-luminous sources (brighter than $L^\\ast_{UV}$), although even these are largely obscured. By extrapolating our results to include all stellar masses, we estimate a total SFRD that is in good agreement with previous results from IR and UV data at $z\\lesssim3$, and from UV-only data at $z\\sim5$. The cosmic star-formation history undergoes a transition at $z\\sim3-4$, as predominantly unobscured growth in the early Universe is overtaken by obscured star formation, driven by the build-up of the most massive galaxies during the peak of cosmic assembly.
Structure Formation with Generalized Dark Matter
Hu, W
1998-01-01
The next generation of cosmic microwave background (CMB) experiments, galaxy surveys, and high-redshift observations can potentially determine the nature of the dark matter observationally. With this in mind, we introduce a phenomenological model for a generalized dark matter (GDM) component and discuss its effect on large-scale structure and CMB anisotropies. Specifying the gravitational influence of the otherwise non-interacting GDM requires not merely a model for its equation of state but one for its full stress tensor. From consideration of symmetries, conservation laws, and gauge invariance, we construct a simple but powerful 3 component parameterization of these stresses that exposes the new phenomena produced by GDM. Limiting cases include: a particle component (e.g. WIMPS, radiation or massive neutrinos), a cosmological constant, and a scalar field component. Intermediate cases illustrate how the clustering properties of the dark matter can be specified independently of its equation of state. This fre...
The cosmological Kibble mechanism in the laboratory string formation in liquid crystals
Bowick, M J; Schiff, E A; Srivastava, A M
1994-01-01
We have observed the production of strings (disclination lines and loops) via the Kibble mechanism of domain (bubble) formation in the isotropic to nematic phase transition of a sample of uniaxial nematic liquid crystal. The probablity of string formation per bubble is measured to be $0.33 \\pm 0.01$. This is in good agreement with the theoretical value $1/ \\pi$ expected in two dimensions for the order parameter space $S^2/{\\bf Z}_2$ of a simple uniaxial nematic liquid crystal.
Cosmological constraints on a classical limit of quantum gravity
Easson, D A; Trodden, M; Wohlfarth, M N R; Easson, Damien A.; Schuller, Frederic P.; Trodden, Mark; Wohlfarth, Mattias N.R.
2005-01-01
We investigate the cosmology of a recently proposed deformation of Einstein gravity, emerging from quantum gravity heuristics. The theory is constructed to have de Sitter space as a vacuum solution, and thus to be relevant to the accelerating universe. However, this solution turns out to be unstable, and the true phase space of cosmological solutions is significantly more complex, displaying two late-time power-law attractors -- one accelerating and the other dramatically decelerating. It is also shown that non-accelerating cosmologies sit on a separatrix between the two basins of attraction of these attractors. Hence it is impossible to pass from a decelerating cosmology to an accelerating one, as required in standard cosmology for consistency with nucleosynthesis and structure formation and compatibility with the data inferred from supernovae Ia. We point out that alternative models of the early universe, such as the one investigated here might provide possible ways to circumvent these requirements.
Shamshiri, Sorour; Henriques, Bruno M; Tojeiro, Rita; Lemson, Gerard; Oliver, Seb J; Wilkins, Stephen
2015-01-01
We adapt the L-Galaxies semi-analytic model to follow the star-formation histories (SFH) of galaxies -- by which we mean a record of the formation time and metallicities of the stars that are present in each galaxy at a given time. We use these to construct stellar spectra in post-processing, which offers large efficiency savings and allows user-defined spectral bands and dust models to be applied to data stored in the Millennium data repository. We contrast model SFHs from the Millennium Simulation with observed ones from the VESPA algorithm as applied to the SDSS-7 catalogue. The overall agreement is good, with both simulated and SDSS galaxies showing a steeper SFH with increased stellar mass. The SFHs of blue and red galaxies, however, show poor agreement between data and simulations, which may indicate that the termination of star formation is too abrupt in the models. The mean star-formation rate (SFR) of model galaxies is well-defined and is accurately modelled by a double power law at all redshifts: SF...
Boeyens, Jan CA
2010-01-01
The composition of the most remote objects brought into view by the Hubble telescope can no longer be reconciled with the nucleogenesis of standard cosmology and the alternative explanation, in terms of the LAMBDA-Cold-Dark-Matter model, has no recognizable chemical basis. A more rational scheme, based on the chemistry and periodicity of atomic matter, opens up an exciting new interpretation of the cosmos in terms of projective geometry and general relativity. The response of atomic structure to environmental pressure predicts non-Doppler cosmical redshifts and equilibrium nucleogenesis by alp
Kehagias, Alex
2016-01-01
Symmetries play an interesting role in cosmology. They are useful in characterizing the cosmological perturbations generated during inflation and lead to consistency relations involving the soft limit of the statistical correlators of large-scale structure dark matter and galaxies overdensities. On the other hand, in observational cosmology the carriers of the information about these large-scale statistical distributions are light rays traveling on null geodesics. Motivated by this simple consideration, we study the structure of null infinity and the associated BMS symmetry in a cosmological setting. For decelerating Friedmann-Robertson-Walker backgrounds, for which future null infinity exists, we find that the BMS transformations which leaves the asymptotic metric invariant to leading order. Contrary to the asymptotic flat case, the BMS transformations in cosmology generate Goldstone modes corresponding to both scalar and tensor degrees of freedom which may exist at null infinity and perturb the asymptotic d...
Baldi, Marco
2010-01-01
We present a complete numerical study of cosmological models with a time dependent coupling between the dark energy component driving the present accelerated expansion of the Universe and the Cold Dark Matter (CDM) fluid. Depending on the functional form of the coupling strength, these models show a range of possible intermediate behaviors between the standard LCDM background evolution and the widely studied case of interacting dark energy models with a constant coupling. These different background evolutions play a crucial role in the growth of cosmic structures, and determine strikingly different effects of the coupling on the internal dynamics of nonlinear objects. By means of a suitable modification of the cosmological N-body code GADGET-2 we have performed a series of high-resolution N-body simulations of structure formation in the context of interacting dark energy models with variable couplings. Depending on the type of background evolution, the halo density profiles are found to be either less or more...
Cyr-Racine, Francis-Yan; Zavala, Jesus; Bringmann, Torsten; Vogelsberger, Mark; Pfrommer, Christoph
2015-01-01
We formulate an effective theory of structure formation (ETHOS) that enables cosmological structure formation to be computed in almost any microphysical model of dark matter physics. This framework maps the detailed microphysical theories of particle dark matter interactions into the physical effective parameters that shape the linear matter power spectrum and the self-interaction transfer cross section of non-relativistic dark matter. These are the input to structure formation simulations, which follow the evolution of the cosmological and galactic dark matter distributions. Models with similar effective parameters in ETHOS but with different dark particle physics would nevertheless result in similar dark matter distributions. We present a general method to map an ultraviolet complete or effective field theory of low energy dark matter physics into parameters that affect the linear matter power spectrum and carry out this mapping for several representative particle models. We further propose a simple but use...
Cosmological Simulations using GCMHD+
Barnes, David J; Wu, Kinwah
2011-01-01
Radio observations of galaxy clusters show that the intra cluster medium is permeated by \\mu G magnetic fields. The origin and evolution of these cosmological magnetic fields is currently not well understood and so their impact on the dynamics of structure formation is not known. Numerical simulations are required to gain a greater understanding and produce predictions for the next generation of radio telescopes. We present the galactic chemodynamics smoothed particle magnetohydrodynamic (SPMHD) code (GCMHD+), which is an MHD implementation for the cosmological smoothed particle hydrodynamic code GCD+. The results of 1, 2 and 3 dimensional tests are presented and the performance of the code is shown relative to the ATHENA grid code. GCMHD+ shows good agreement with the reference solutions produced by ATHENA. The code is then used to simulate the formation of a galaxy cluster with a simple primordial magnetic field embedded in the gas. A homogeneous seed field of 10^-11 G is amplified by a factor of 10^3 durin...
Integrated approach to cosmology: Combining CMB, large-scale structure and weak lensing
Nicola, Andrina; Amara, Adam
2016-01-01
Recent observational progress has led to the establishment of the standard $\\Lambda$CDM model for cosmology. This development is based on different cosmological probes that are usually combined through their likelihoods at the latest stage in the analysis. We implement here an integrated scheme for cosmological probes, which are combined in a common framework starting at the map level. This treatment is necessary as the probes are generally derived from overlapping maps and are thus not independent. It also allows for a thorough test of the cosmological model and of systematics through the consistency of different physical tracers. As a first application, we combine current measurements of the Cosmic Microwave Background (CMB) from the Planck satellite, and galaxy clustering and weak lensing from SDSS. We consider the spherical harmonic power spectra of these probes including all six auto- and cross-correlations along with the associated full gaussian covariance matrix. This provides an integrated treatment o...
Evaluating Galactic Habitability Using High Resolution Cosmological Simulations of Galaxy Formation
Forgan, Duncan; Cockell, Charles; Libeskind, Noam
2015-01-01
We present the first model that couples high-resolution simulations of the formation of Local Group galaxies with calculations of the galactic habitable zone (GHZ), a region of space which has sufficient metallicity to form terrestrial planets without being subject to hazardous radiation. These simulations allow us to make substantial progress in mapping out the asymmetric three-dimensional GHZ and its time evolution for the Milky Way (MW) and Triangulum (M33) galaxies, as opposed to works that generally assume an azimuthally symmetric GHZ. Applying typical habitability metrics to MW and M33, we find that while a large number of habitable planets exist as close as a few kiloparsecs from the galactic centre, the probability of individual planetary systems being habitable rises as one approaches the edge of the stellar disc. Tidal streams and satellite galaxies also appear to be fertile grounds for habitable planet formation. In short, we find that both galaxies arrive at similar GHZs by different evolutionary ...
Rampf, Cornelius; Bertacca, Daniele; Bruni, Marco
2016-01-01
We study the gravitational dynamics of a Universe filled with a pressure-less fluid and a cosmological constant $\\Lambda$ in the context of Newtonian gravity, and in the relativistic post-Friedmann approach proposed by Milillo et al.\\ in \\cite{Milillo:2015cva}. The post-Friedmann approximation scheme is based on the $1/c$ expansion of the space-time metric and the energy-momentum tensor, and includes non-linear Newtonian cosmology. %, assuming a flat $\\Lambda$CDM cosmological model. Here we establish the non-linear post-Friedmann framework in the Lagrangian-coordinates approach for structure formation. For this we first identify a Lagrangian gauge which is suitable for incorporating non-zero vorticity. We analyze our results in two limits: at the leading order we recover the fully non-linear Newtonian cosmological equations in the Lagrangian formulation, and we provide a space-time metric consistent from the perspective of general relativity. We then linearize our expressions and recover the relativistic resu...
Interacting dark energy models in Cosmology and large-scale structure observational tests
Rafael José França Marcondes
2016-01-01
Modern Cosmology offers us a great understanding of the universe with striking precision, made possible by the modern technologies of the newest generations of telescopes. The standard cosmological model, however, is not absent of theoretical problems and open questions. One possibility that has been put forward is the existence of a coupling between dark sectors. The idea of an interaction between the dark components could help physicists understand why we live in an epoch of the universe wh...
Visualizing Cosmological Concepts Using the Analog of a Hot Liquid
Yusofi, E
2010-01-01
We have used the expansion process of hot milk, which has similarities with the cosmic expansion, to facilitate easier and better visualization and teaching of cosmological concepts. Observations of the milk are used to illustrate phenomena related to the Planck era, the standard hot big bang model, cosmic inflation, problems with the formation of structure, and other subjects. This innovative and easily implemented demonstration can enhance the learning of cosmological concepts.
How secret interactions can reconcile sterile neutrinos with cosmology
Hannestad, Steen; Tram, Thomas
2013-01-01
Short baseline neutrino oscillation experiments have shown hints of the existence of additional sterile neutrinos in the eV mass range. However, such neutrinos seem incompatible with cosmology because they have too large an impact on cosmic structure formation. Here we show that new interactions in the sterile neutrino sector can prevent their production in the early Universe and reconcile short baseline oscillation experiments with cosmology.
Abate, Alexandra; Teodoro, Luis F A; Warren, Michael S; Hendry, Martin
2008-01-01
We investigate methods to best estimate the normalisation of the mass density fluctuation power spectrum (sigma_8) using peculiar velocity data from a survey like the Six degree Field Galaxy Velocity Survey (6dFGSv). We focus on two potential problems (i) biases from nonlinear growth of structure and (ii) the large number of velocities in the survey. Simulations of LambdaCDM-like models are used to test the methods. We calculate the likelihood from a full covariance matrix of velocities averaged in grid cells. This simultaneously reduces the number of data points and smooths out nonlinearities which tend to dominate on small scales. We show how the averaging can be taken into account in the predictions in a practical way, and show the effect of the choice of cell size. We find that a cell size can be chosen that significantly reduces the nonlinearities without significantly increasing the error bars on cosmological parameters. We compare our results with those from a principal components analysis following Wa...
nIFTy cosmology: the clustering consistency of galaxy formation models
Pujol, Arnau; Skibba, Ramin A.; Gaztañaga, Enrique; Benson, Andrew; Blaizot, Jeremy; Bower, Richard; Carretero, Jorge; Castander, Francisco J.; Cattaneo, Andrea; Cora, Sofia A.; Croton, Darren J.; Cui, Weiguang; Cunnama, Daniel; De Lucia, Gabriella; Devriendt, Julien E.; Elahi, Pascal J.; Font, Andreea; Fontanot, Fabio; Garcia-Bellido, Juan; Gargiulo, Ignacio D.; Gonzalez-Perez, Violeta; Helly, John; Henriques, Bruno M. B.; Hirschmann, Michaela; Knebe, Alexander; Lee, Jaehyun; Mamon, Gary A.; Monaco, Pierluigi; Onions, Julian; Padilla, Nelson D.; Pearce, Frazer R.; Power, Chris; Somerville, Rachel S.; Srisawat, Chaichalit; Thomas, Peter A.; Tollet, Edouard; Vega-Martínez, Cristian A.; Yi, Sukyoung K.
2017-07-01
We present a clustering comparison of 12 galaxy formation models [including semi-analytic models (SAMs) and halo occupation distribution (HOD) models] all run on halo catalogues and merger trees extracted from a single Λ cold dark matter N-body simulation. We compare the results of the measurements of the mean halo occupation numbers, the radial distribution of galaxies in haloes and the two-point correlation functions (2PCF). We also study the implications of the different treatments of orphan (galaxies not assigned to any dark matter subhalo) and non-orphan galaxies in these measurements. Our main result is that the galaxy formation models generally agree in their clustering predictions but they disagree significantly between HOD and SAMs for the orphan satellites. Although there is a very good agreement between the models on the 2PCF of central galaxies, the scatter between the models when orphan satellites are included can be larger than a factor of 2 for scales smaller than 1 h-1 Mpc. We also show that galaxy formation models that do not include orphan satellite galaxies have a significantly lower 2PCF on small scales, consistent with previous studies. Finally, we show that the 2PCF of orphan satellites is remarkably different between SAMs and HOD models. Orphan satellites in SAMs present a higher clustering than in HOD models because they tend to occupy more massive haloes. We conclude that orphan satellites have an important role on galaxy clustering and they are the main cause of the differences in the clustering between HOD models and SAMs.
Problems and Challenges for Cosmology involving Massive Neutrinos
Krauss, L M
1996-01-01
I review the challenges and problems facing the standard cosmological model, involving an $\\Omega=1$ Universe dominated by non-baryonic dark matter, which arise due to: age estimates of the universe, estimates of the baryon fraction of the universe, and structure formation. Certain of these problems are exacerbated, and certain of these are eased, by the inclusion of some component to the energy density of matter from massive neutrinos. I conclude with a comparison of the two favored current cosmological models, involving either a mixture of cold dark matter and hot dark matter, or the inclusion of a cosmological constant.
The Red Sequence of High-Redshift Clusters: a Comparison with Cosmological Galaxy Formation Models
Menci, N.; Rosati, P.; Gobat, R.; Strazzullo, V.; Rettura, A.; S. Mei; Demarco, R.
2008-01-01
We compare the results from a semi-analytic model of galaxy formation with spectro-photometric observations of distant galaxy clusters observed in the range 0.8< z< 1.3. We investigate the properties of their red sequence (RS) galaxies and compare them with those of the field at the same redshift. In our model we find that i) a well-defined, narrow RS is obtained already by z= 1.2; this is found to be more populated than the field RS, analogously to what observed and predicted at z=0; ii) the...
Giant Planet Formation, Evolution, and Internal Structure
Helled, Ravit; Podolak, Morris; Boley, Aaron; Meru, Farzana; Nayakshin, Sergei; Fortney, Jonathan J; Mayer, Lucio; Alibert, Yann; Boss, Alan P
2013-01-01
The large number of detected giant exoplanets offers the opportunity to improve our understanding of the formation mechanism, evolution, and interior structure of gas giant planets. The two main models for giant planet formation are core accretion and disk instability. There are substantial differences between these formation models, including formation timescale, favorable formation location, ideal disk properties for planetary formation, early evolution, planetary composition, etc. First, we summarize the two models including their substantial differences, advantages, and disadvantages, and suggest how theoretical models should be connected to available (and future) data. We next summarize current knowledge of the internal structures of solar- and extrasolar- giant planets. Finally, we suggest the next steps to be taken in giant planet exploration.
The GRB Redshift Distribution: Implications for Abundance Evolution, Star Formation, and Cosmology
Wei, Jun-Jie; Melia, Fulvio; Wei, Da-Ming; Feng, Long-Long
2013-01-01
It has been claimed that the \\emph{Swift} long gamma-ray bursts (LGRBs) do not trace the star formation history (SFH) in $\\Lambda$CDM. In this paper, we confirm that the latest \\emph{Swift} sample of GRBs reveals an increasing evolution in the GRB rate relative to the star formation rate (SFR) at high redshifts. One may eliminate the observed discrepancy between the GRB rate and the SFR by assuming a modest evolution, parameterized as $(1+z)^{0.5}$---an effect that perhaps implies a cosmic evolution in metallicity. However, we find a relatively higher metallicity cut of $Z=0.68Z_{\\odot}$ than was seen in previous studies, which suggested that LGRBs occur preferentially in metal poor environments, i.e., $Z\\sim0.1-0.3Z_{\\odot}$. Here, we use a simple power-law approximation to the high-\\emph{z} ($\\ga 3.8$) SFH, i.e., $R_{\\rm SF}\\propto[(1+z)/4.8]^{\\alpha}$, to examine how the high-\\emph{z} SFR may be impacted by a possible abundance evolution in the \\emph{Swift} GRB sample. For an expansion history consistent w...
Galaxy formation in the PLANCK cosmology IV: the high-redshift universe
Clay, Scott; Wilkins, Stephen; Henriques, Bruno
2015-01-01
We present high-redshift predictions of the star-formation-rate distribution function (SFR DF), UV luminosity function (UV LF), galactic stellar mass function (GSMF), and specific star-formation rates (sSFRs) of galaxies from the latest version of the Munich semi-analytic model L-Galaxies. We find a good fit to both the shape and normalisation of the SFR DF at $z=4-7$, apart from a slight under-prediction at the low SFR end at $z=4$. Likewise, we find a good fit to the faint number counts for the observed UV LF; at brighter magnitudes our predictions lie below the observations, increasingly so at higher redshifts. At all redshifts and magnitudes, the raw (unattenuated) number counts for the UV LF lie above the observations. Because of the good agreement with the SFR we interpret our under-prediction as an over-estimate of the amount of dust in the model for the brightest galaxies, especially at high-redshift. While the shape of our GSMF matches that of the observations, we lie between (conflicting) observatio...
Zavala, J; Frenk, Carlos S
2007-01-01
We investigate the evolution of angular momentum in simulations of galaxy formation in a cold dark matter universe. We analyse two model galaxies produced in the N-body/hydrodynamic simulations of Okamoto et al. Starting from identical initial conditions, but using different assumptions for the baryonic physics, one of the simulations produced a bulge-dominated galaxy and the other one a disk-dominated galaxy. The main difference is the treatment of star formation and feedback, both of which were designed to be more efficient in the disk-dominated object. We find that the specific angular momentum of the disk-dominated galaxy tracks the evolution of the angular momentum of the dark matter halo very closely: the angular momentum grows as predicted by linear theory until the epoch of maximum expansion and remains constant thereafter. By contrast, the evolution of the angular momentum of the bulge-dominated galaxy resembles that of the central, most bound halo material: it also grows at first according to linear...
Star formation and structure formation in galaxy collisions
Bournaud, Frederic
2009-01-01
A number of theoretical and simulation results on star and structure formation in galaxy interactions and mergers is reviewed, and recent hydrodynamic simulations are presented. The role of gravity torques and ISM turbulence in galaxy interactions, in addition to the tidal field, is highlighted. Interactions can drive gas inflows towards the central kpc and trigger a central starburst, the intensity and statistical properties of which are discussed. A kinematically decoupled core and a supermassive central black hole can be fueled. Outside of the central kpc, many structures can form inside tidal tails, collisional ring, bridges, including super star clusters and tidal dwarf galaxies. The formation of super star clusters in galaxy mergers can now be directly resolved in hydrodynamic simulations. Their formation mechanisms and long-term evolution are reviewed, and the connection with present-day early-type galaxies is discussed.
Black Hole Mergers as Probes of Structure Formation
Alicea-Munoz, E.; Miller, M. Coleman
2008-01-01
Intense structure formation and reionization occur at high redshift, yet there is currently little observational information about this very important epoch. Observations of gravitational waves from massive black hole (MBH) mergers can provide us with important clues about the formation of structures in the early universe. Past efforts have been limited to calculating merger rates using different models in which many assumptions are made about the specific values of physical parameters of the mergers, resulting in merger rate estimates that span a very wide range (0.1 - 104 mergers/year). Here we develop a semi-analytical, phenomenological model of MBH mergers that includes plausible combinations of several physical parameters, which we then turn around to determine how well observations with the Laser Interferometer Space Antenna (LISA) will be able to enhance our understanding of the universe during the critical z 5 - 30 structure formation era. We do this by generating synthetic LISA observable data (total BH mass, BH mass ratio, redshift, merger rates), which are then analyzed using a Markov Chain Monte Carlo method. This allows us to constrain the physical parameters of the mergers. We find that our methodology works well at estimating merger parameters, consistently giving results within 1- of the input parameter values. We also discover that the number of merger events is a key discriminant among models. This helps our method be robust against observational uncertainties. Our approach, which at this stage constitutes a proof of principle, can be readily extended to physical models and to more general problems in cosmology and gravitational wave astrophysics.
Verde, L
2013-01-01
This is the summary of two lectures that aim to give an overview of cosmology. I will not try to be too rigorous in derivations, nor to give a full historical overview. The idea is to provide a "taste" of cosmology and some of the interesting topics it covers. The standard cosmological model is presented and I highlight the successes of cosmology over the past decade or so. Keys to the development of the standard cosmological model are observations of the cosmic microwave background and of large-scale structure, which are introduced. Inflation and dark energy and the outlook for the future are also discussed. Slides from the lectures are available from the school website: physicschool.web.cern.ch/PhysicSchool/CLASHEP/CLASHEP2011/.
Reisswig, C; Ott, C D; Abdikamalov, E; Haas, R; Mösta, P; Schnetter, E
2013-10-11
We study the collapse of rapidly rotating supermassive stars that may have formed in the early Universe. By self-consistently simulating the dynamics from the onset of collapse using three-dimensional general-relativistic hydrodynamics with fully dynamical spacetime evolution, we show that seed perturbations in the progenitor can lead to the formation of a system of two high-spin supermassive black holes, which inspiral and merge under the emission of powerful gravitational radiation that could be observed at redshifts z is approximately equal or > to 10 with the DECIGO or Big Bang Observer gravitational-wave observatories, assuming supermassive stars in the mass range 10(4)-10(6)M[symbol: see text]. The remnant is rapidly spinning with dimensionless spin a*=0.9. The surrounding accretion disk contains ~10% of the initial mass.
Early Structure Formation from Primordial Density Fluctuations with a Blue, Tilted Power Spectrum
Hirano, Shingo; Zhu, Nick; Yoshida, Naoki; Spergel, David; Yorke, Harold W.
2015-11-01
While observations of large-scale structure and the cosmic microwave background (CMB) provide strong constraints on the amplitude of the primordial power spectrum (PPS) on scales larger than 10 Mpc, the amplitude of the power spectrum on sub-galactic length scales is much more poorly constrained. We study early structure formation in a cosmological model with a blue-tilted PPS. We assume that the standard scale-invariant PPS is modified at small length scales as P(k)∼ {k}{m{{s}}} with ms > 1. We run a series of cosmological hydrodynamic simulations to examine the dependence of the formation epoch and the characteristic mass of primordial stars on the tilt of the PPS. In models with ms > 1, star-forming gas clouds are formed at z > 100 when the formation of hydrogen molecules is inefficient because the intense CMB radiation destroys chemical intermediates. Without efficient coolant, the gas clouds gravitationally contract while retaining a high temperature. The protostars formed in such “hot” clouds grow very rapidly through accretion to become extremely massive stars that may leave massive black holes with a few hundred solar masses at z > 100. The shape of the PPS critically affects the properties and the formation epoch of the first generation of stars. Future experiments on CMB polarization and spectrum distortion may provide important information on the nature of the first stars and their formation epoch, and hence on the shape of the small-scale power spectrum.
Ivanchik, A V; Varshalovich, D A
1999-01-01
Endeavours of the unification of the four fundamental interactions have resulted in a development of theories having cosmological solutions in which low-energy limits of fundamental physical constants vary with time. The validity of such theoretical models should be checked by comparison of the theoretical predictions with observational and experimental bounds on possible time-dependences of the fundamental constants. Based on high-resolution measurements of quasar spectra, we obtain the following direct limits on the average rate of the cosmological time variation of the fine-structure constant limit, and |\\dot{\\alpha}/\\alpha| < 3.1 \\times 10^{-14} yr^{-1} is the most conservative limit. Analogous estimates published previously, as well as other contemporary tests for possible variations of \\alpha (those based on the "Oklo phenomenon", on the primordial nucleosynthesis models, and others) are discussed and compared with the present upper limit. We argue that the present result is the most conservative one...
The Formation and Growth of Black Holes in the Universe: New cosmological clues
CERN. Geneva
2004-01-01
In the last few years a change of paradigm occurred in the field of black hole research. We now believe, that stellar mass black holes are created in powerful gamma ray bursts. Stellar remnants of the first generation of stars have very likely been the seeds of supermassive black holes, which we find dormant in the centers of most nearby galaxies - including our own Milky Way. A tight correlation between black hole mass and the global properties of their host galaxies indicates a co-formation and evolution of black holes and galaxies. The X-ray sky is dominated by a diffuse extragalactic background radiation, which our team, together with others, was able to resolve almost completely into discrete sources using the X-ray satellites ROSAT, Chandra and XMM-Newton. Optical and NIR follow-up identifications showed, that we observe the growth phase of the population of supermassive black holes throughout the history of the Universe. The accretion history derived from X-ray observations shows, that the black holes ...
The Red Sequence of High-Redshift Clusters: a Comparison with Cosmological Galaxy Formation Models
Menci, N; Gobat, R; Strazzullo, V; Rettura, A; Mei, S; Demarco, R
2008-01-01
We compare the results from a semi-analytic model of galaxy formation with spectro-photometric observations of distant galaxy clusters observed in the range 0.8< z< 1.3. We investigate the properties of their red sequence (RS) galaxies and compare them with those of the field at the same redshift. In our model we find that i) a well-defined, narrow RS is obtained already by z= 1.2; this is found to be more populated than the field RS, analogously to what observed and predicted at z=0; ii) the predicted U-V rest-frame colors and scatter of the cluster RS at z=1.2 have average values of 1 and 0.15 respectively, with a cluster-to-cluster variance of 0.2 and 0.06, respectively. The scatter of the RS of cluster galaxies is around 5 times smaller than the corresponding field value; iii) when the RS galaxies are considered, the mass growth histories of field and cluster galaxies at z=1.2 are similar, with 90 % of the stellar mass of RS galaxies at z=1.2 already formed at cosmic times t=2.5 Gyr, and 50 % at t=1...
The Formation and Growth of Black Holes in the Universe New cosmological clues
CERN. Geneva; Landua, Rolf
2004-01-01
In the last few years a change of paradigm occurred in the field of black hole research. We now believe, that stellar mass black holes are created in powerful gamma ray bursts. Stellar remnants of the first generation of stars have very likely been the seeds of supermassive black holes, which we find dormant in the centers of most nearby galaxies - including our own Milky Way. A tight correlation between black hole mass and the global properties of their host galaxies indicates a co-formation and evolution of black holes and galaxies. The X-ray sky is dominated by a diffuse extragalactic background radiation, which our team, together with others, was able to resolve almost completely into discrete sources using the X-ray satellites ROSAT, Chandra and XMM-Newton. Optical and NIR follow-up identifications showed, that we observe the growth phase of the population of supermassive black holes throughout the history of the Universe. The accretion history derived from X-ray observations shows, that the black holes ...
Cosmological experiments in superfluid helium?
Zurek, W. H.
1985-10-01
Symmetry breaking phase transitions occurring in the early Universe are expected to leave behind long-lived topologically stabel structures such as monopoles, strings or domain walls. The author discusses the analogy between cosmological strings and vortex lines in the superfluid, and suggests a cryogenic experiment which tests key elements of the cosmological scenario for string formation. In a superfluid obtained through a rapid pressure quench, the phase of the Bose condensate wavefunction - the 4He analogue of the broken symmetry of the field-theoretic vacuum - will be chosen randomly in domains of some characteristic size d. When the quench is performed in an annulus of circumference C the typical value of the phase mismatch around the loop will be ≡(C/d)1/2. The resulting phase gradient can be sufficiently large to cause the superfluid to flow with a measurable, randomly directed velocity.
Unravelling lignin formation and structure
Energy Technology Data Exchange (ETDEWEB)
Lewis, N.G. (Washington State Univ., Pullman, WA (United States). Inst. of Biological Chemistry)
1991-01-01
During this study, we established that the Fagaceae exclusively accumulate Z-monolignois/glucosides, and not the E-isomers. Evidence for the presence of a novel E{yields}Z isomerse has been obtained. Our pioneering work in lignin biosynthesis and structure in situ has also progressed smoothly. We established the bonding environments of a woody angiosperm, Leucanea leucocephala, as well as wheat (T. aestivum) and tobacco (N. tabacum). A cell culture system from Pinus taeda was developed which seems ideal for investigating the early stages of lignification. These cultures excrete peroxidase isozymes, considered to be specifically involved in lignin deposition. We also studied the effect of the putative lignin-degrading enzyme, lignin peroxidase, on monolignols and dehydropolymerisates therefrom. In all cases, polymerization was observed, and not degradation; these polymers are identical to that obtained with horseradish peroxidases/H{sub 2}O{sub 2}. It seems inconceivable that these enzymes can be considered as being primarily responsible for lignin biodegradation.
FEATURES OF FORMATION OF REGIONAL CLUSTER STRUCTURES
Directory of Open Access Journals (Sweden)
Ekaterina V. Andreyeva
2016-01-01
Full Text Available In article is considered features of formation of cluster structures for increase of efficiency of economic entities and growth of investment and innovative appeal of the region. Cluster structures are described as a specialized product oriented commands, which were created for common decision making about production, nancial and organizational questions.
Energy Technology Data Exchange (ETDEWEB)
Kehagias, A. [Physics Division, National Technical University of Athens, 15780 Zografou Campus, Athens (Greece); Riotto, A. [Department of Theoretical Physics,24 quai E. Ansermet, CH-1211 Geneva 4 (Switzerland); Center for Astroparticle Physics (CAP),24 quai E. Ansermet, CH-1211 Geneva 4 (Switzerland)
2016-05-25
Symmetries play an interesting role in cosmology. They are useful in characterizing the cosmological perturbations generated during inflation and lead to consistency relations involving the soft limit of the statistical correlators of large-scale structure dark matter and galaxies overdensities. On the other hand, in observational cosmology the carriers of the information about these large-scale statistical distributions are light rays traveling on null geodesics. Motivated by this simple consideration, we study the structure of null infinity and the associated BMS symmetry in a cosmological setting. For decelerating Friedmann-Robertson-Walker backgrounds, for which future null infinity exists, we find that the BMS transformations which leaves the asymptotic metric invariant to leading order. Contrary to the asymptotic flat case, the BMS transformations in cosmology generate Goldstone modes corresponding to scalar, vector and tensor degrees of freedom which may exist at null infinity and perturb the asymptotic data. Therefore, BMS transformations generate physically inequivalent vacua as they populate the universe at null infinity with these physical degrees of freedom. We also discuss the gravitational memory effect when cosmological expansion is taken into account. In this case, there are extra contribution to the gravitational memory due to the tail of the retarded Green functions which are supported not only on the light-cone, but also in its interior. The gravitational memory effect can be understood also from an asymptotic point of view as a transition among cosmological BMS-related vacua.
Kehagias, A.; Riotto, A.
2016-05-01
Symmetries play an interesting role in cosmology. They are useful in characterizing the cosmological perturbations generated during inflation and lead to consistency relations involving the soft limit of the statistical correlators of large-scale structure dark matter and galaxies overdensities. On the other hand, in observational cosmology the carriers of the information about these large-scale statistical distributions are light rays traveling on null geodesics. Motivated by this simple consideration, we study the structure of null infinity and the associated BMS symmetry in a cosmological setting. For decelerating Friedmann-Robertson-Walker backgrounds, for which future null infinity exists, we find that the BMS transformations which leaves the asymptotic metric invariant to leading order. Contrary to the asymptotic flat case, the BMS transformations in cosmology generate Goldstone modes corresponding to scalar, vector and tensor degrees of freedom which may exist at null infinity and perturb the asymptotic data. Therefore, BMS transformations generate physically inequivalent vacua as they populate the universe at null infinity with these physical degrees of freedom. We also discuss the gravitational memory effect when cosmological expansion is taken into account. In this case, there are extra contribution to the gravitational memory due to the tail of the retarded Green functions which are supported not only on the light-cone, but also in its interior. The gravitational memory effect can be understood also from an asymptotic point of view as a transition among cosmological BMS-related vacua.
Particle physics and cosmology
Energy Technology Data Exchange (ETDEWEB)
Kolb, E.W.
1986-10-01
This series of lectures is about the role of particle physics in physical processes that occurred in the very early stages of the bug gang. Of particular interest is the role of particle physics in determining the evolution of the early Universe, and the effect of particle physics on the present structure of the Universe. The use of the big bang as a laboratory for placing limits on new particle physics theories will also be discussed. Section 1 reviews the standard cosmology, including primordial nucleosynthesis. Section 2 reviews the decoupling of weakly interacting particles in the early Universe, and discusses neutrino cosmology and the resulting limits that may be placed on the mass and lifetime of massive neutrinos. Section 3 discusses the evolution of the vacuum through phase transitions in the early Universe and the formation of topological defects in the transitions. Section 4 covers recent work on the generation of the baryon asymmetry by baryon-number violating reactions in Grand Unified Theories, and mentions some recent work on baryon number violation effects at the electroweak transition. Section 5 is devoted to theories of cosmic inflation. Finally, Section 6 is a discussion of the role of extra spatial dimensions in the evolution of the early Universe. 78 refs., 32 figs., 6 tabs.
Cosmology with matter diffusion
Calogero, Simone
2013-01-01
We construct a viable cosmological model based on velocity diffusion of matter particles. In order to ensure the conservation of the total energy-momentum tensor in the presence of diffusion, we include a cosmological scalar field $\\phi$ which we identify with the dark energy component of the Universe. The model is characterized by only one new degree of freedom, the diffusion parameter $\\sigma$. The standard $\\Lambda$CDM model can be recovered by setting $\\sigma=0$. If diffusion takes place ($\\sigma >0$) the dynamics of the matter and of the dark energy fields are coupled. We argue that the existence of a diffusion mechanism in the Universe can serve as a theoretical motivation for interacting models. We constrain the background dynamics of the diffusion model with Supernovae, H(z) and BAO data. We also perform a perturbative analysis of this model in order to understand structure formation in the Universe. We calculate the impact of diffusion both on the CMB spectrum, with particular attention to the integr...
Cosmological parameters from lenses distance ratio
Cardone, Vincenzo F; Scudellaro, Paolo
2015-01-01
Strong lensing provides popular techniques to investigate the mass distribution of intermediate redshift galaxies, testing galaxy evolution and formation scenarios. It especially probes the background cosmic expansion, hence constraining cosmological parameters. The measurement of Einstein radii and central velocity dispersions indeed allows to trace the ratio D_s/D_ls between the distance D_s from the observer to the source and the distance D_ls from the lens to the source. We present an improved method to explicitly include the two - component structure in the galaxy lens modeling, in order to analyze the role played by the redshift and the model dependence on a nuisance parameter, F_E, which is usually marginalized in the cosmological applications. We show how to deal with these problems and carry on a Fisher matrix analysis to infer the accuracy on cosmological parameters achieved by this method.
Cosmological quantum entanglement
Martin-Martinez, Eduardo
2012-01-01
We review recent literature on the connection between quantum entanglement and cosmology, with an emphasis on the context of expanding universes. We discuss recent theoretical results reporting on the production of entanglement in quantum fields due to the expansion of the underlying spacetime. We explore how these results are affected by the statistics of the field (bosonic or fermionic), the type of expansion (de Sitter or asymptotically stationary), and the coupling to spacetime curvature (conformal or minimal). We then consider the extraction of entanglement from a quantum field by coupling to local detectors and how this procedure can be used to distinguish curvature from heating by their entanglement signature. We review the role played by quantum fluctuations in the early universe in nucleating the formation of galaxies and other cosmic structures through their conversion into classical density anisotropies during and after inflation. We report on current literature attempting to account for this trans...
Nonlinear structure formation in Nonlocal Gravity
Barreira, Alexandre; Hellwing, Wojciech A; Baugh, Carlton M; Pascoli, Silvia
2014-01-01
We study the nonlinear growth of structure in nonlocal gravity models with the aid of N-body simulation and the spherical collapse and halo models. We focus on a model in which the inverse-squared of the d'Alembertian operator acts on the Ricci scalar in the action. For fixed cosmological parameters, this model differs from $\\Lambda{\\rm CDM}$ by having a lower late-time expansion rate and an enhanced and time-dependent gravitational strength ($\\sim 6\\%$ larger today). Compared to $\\Lambda{\\rm CDM}$ today, in the nonlocal model, massive haloes are slightly more abundant (by $\\sim 10\\%$ at $M \\sim 10^{14} M_{\\odot}/h$) and concentrated ($\\approx 8\\%$ enhancement over a range of mass scales), but their linear bias remains almost unchanged. We find that the Sheth-Tormen formalism describes the mass function and halo bias very well, with little need for recalibration of free parameters. The fitting of the halo concentrations is however essential to ensure the good performance of the halo model on small scales. For...
Cosmological Probes for Supersymmetry
Directory of Open Access Journals (Sweden)
Maxim Khlopov
2015-05-01
Full Text Available The multi-parameter character of supersymmetric dark-matter models implies the combination of their experimental studies with astrophysical and cosmological probes. The physics of the early Universe provides nontrivial effects of non-equilibrium particles and primordial cosmological structures. Primordial black holes (PBHs are a profound signature of such structures that may arise as a cosmological consequence of supersymmetric (SUSY models. SUSY-based mechanisms of baryosynthesis can lead to the possibility of antimatter domains in a baryon asymmetric Universe. In the context of cosmoparticle physics, which studies the fundamental relationship of the micro- and macro-worlds, the development of SUSY illustrates the main principles of this approach, as the physical basis of the modern cosmology provides cross-disciplinary tests in physical and astronomical studies.
Cosmological Probes for Supersymmetry
Khlopov, Maxim
2015-01-01
The multi-parameter character of supersymmetric dark-matter models implies the combination of their experimental studies with astrophysical and cosmological probes. The physics of the early Universe provides nontrivial effects of non-equilibrium particles and primordial cosmological structures. Primordial black holes (PBHs) are a profound signature of such structures that may arise as a cosmological consequence of supersymmetric (SUSY) models. SUSY-based mechanisms of baryosynthesis can lead to the possibility of antimatter domains in a baryon asymmetric Universe. In the context of cosmoparticle physics, which studies the fundamental relationship of the micro- and macro-worlds, the development of SUSY illustrates the main principles of this approach, as the physical basis of the modern cosmology provides cross-disciplinary tests in physical and astronomical studies.
Jones, Bernard J. T.
2017-04-01
Preface; Notation and conventions; Part I. 100 Years of Cosmology: 1. Emerging cosmology; 2. The cosmic expansion; 3. The cosmic microwave background; 4. Recent cosmology; Part II. Newtonian Cosmology: 5. Newtonian cosmology; 6. Dark energy cosmological models; 7. The early universe; 8. The inhomogeneous universe; 9. The inflationary universe; Part III. Relativistic Cosmology: 10. Minkowski space; 11. The energy momentum tensor; 12. General relativity; 13. Space-time geometry and calculus; 14. The Einstein field equations; 15. Solutions of the Einstein equations; 16. The Robertson–Walker solution; 17. Congruences, curvature and Raychaudhuri; 18. Observing and measuring the universe; Part IV. The Physics of Matter and Radiation: 19. Physics of the CMB radiation; 20. Recombination of the primeval plasma; 21. CMB polarisation; 22. CMB anisotropy; Part V. Precision Tools for Precision Cosmology: 23. Likelihood; 24. Frequentist hypothesis testing; 25. Statistical inference: Bayesian; 26. CMB data processing; 27. Parametrising the universe; 28. Precision cosmology; 29. Epilogue; Appendix A. SI, CGS and Planck units; Appendix B. Magnitudes and distances; Appendix C. Representing vectors and tensors; Appendix D. The electromagnetic field; Appendix E. Statistical distributions; Appendix F. Functions on a sphere; Appendix G. Acknowledgements; References; Index.
Using Black Hole Mergers to Explore Structure Formation
Alicea-Munoz, E.; Miller, M. Coleman
2009-01-01
Observations of gravitational waves from massive black hole mergers will open a new window into the era of structure formation in the early universe. Past efforts have concentrated on calculating merger rates using different physical assumptions, resulting in merger rate estimates that span a wide range (0.1 - 10(exp 4) mergers/year). We develop a semi-analytical, phenomenological model of massive black hole mergers that includes plausible combinations of several physical parameters, which we then turn around to determine how well observations with the Laser Interferometer Space Antenna (LISA) will be able to enhance our understanding of the universe during the critical z approximately equal to 5-30 epoch. Our approach involves generating synthetic LISA observable data (total BH masses, BH mass ratios, redshifts, merger rates), which are then analyzed using a Markov Chain Monte Carlo method, thus finding constraints for the physical parameters of the mergers. We find that our method works well at estimating merger parameters and that the number of merger events is a key discriminant among models, therefore making our method robust against observational uncertainties. Our approach can also be extended to more physically-driven models and more general problems in cosmology. This work is supported in part by the Cooperative Education Program at NASA/GSFC.
School on Particle Physics, Gravity and Cosmology
Brandenberger, Robert
These lectures present a brief review of inflationary cosmology, provide an overview of the theory of cosmological perturbations, and then focus on the conceptual problems of the current paradigm of early universe cosmology, thus motivating an exploration of the potential of string theory to provide a new paradigm. Specifically, the string gas cosmology model is introduced, and a resulting mechanism for structure formation which does not require a period of cosmological inflation is discussed. The School consisted of level-up courses intended for PhD students, as well as updating courses for postdocs and researchers. In addition, a few propaedeutical crash courses were organized to bridge the gaps in the attendance and to facilitate an active participation. The courses were held mostly on the blackboard. The audience was assumed to have at least a PhD student level either in phenomenological particle theory, in astroparticle physics or in field and string theory. One of the aims of the School was to bring together researchers of these different areas and to update them on one another's discipline. The School was divided in two workshops: Interface between Cosmology and Particle Physics Courses: W. GRIMUS and S. PETCOV: Neutrino Phenomenology A. MASIERO and F. FERUGLIO: Beyond the Standard Model P. ULLIO: Introduction to Dark Matter N. BILIC: Black holes phenomenology 2) Particle Physics, Gravity and String Theory Courses: R. BRANDENBERGER: Topics in Cosmology J. ZANELLI: Black holes physics C. NUNEZ: StringsGauge Correspondence A. JEVICKI: AdS/CFT G. DALL'AGATA: String vacua and moduli stabilization C. BURGESS: Cosmology and Strings G. CARDOSO: Black Holes and String Theory Seminars were held during the School: Seminars: D. DENEGRI: New physics at LHC D. WARK: Neutrino Experiments C. BACCIGALUPI: Review on Cosmological Experiments A. MUELLER: Experimental evidence of Black Holes S. LIBERATI: Astrophysical constraints on Lorentz violation In addition the following
Understanding cochleate formation: insights into structural development.
Nagarsekar, Kalpa; Ashtikar, Mukul; Steiniger, Frank; Thamm, Jana; Schacher, Felix; Fahr, Alfred
2016-04-20
Understanding the structure and the self-assembly process of cochleates has become increasingly necessary considering the advances of this drug delivery system towards the pharmaceutical industry. It is well known that the addition of cations like calcium to a dispersion of anionic lipids such as phosphatidylserines results in stable, multilamellar cochleates through a spontaneous assembly. In the current investigation we have studied the intermediate structures generated during this self-assembly of cochleates. To achieve this, we have varied the process temperature for altering the rate of cochleate formation. Our findings from electron microscopy studies showed the formation of ribbonlike structures, which with proceeding interaction associate to form lipid stacks, networks and eventually cochleates. We also observed that the variation in lipid acyl chains did not make a remarkable difference to the type of structure evolved during the formation of cochleates. More generally, our observations provide a new insight into the self-assembly process of cochleates based on which we have proposed a pathway for cochleate formation from phosphatidylserine and calcium. This knowledge could be employed in using cochleates for a variety of possible biomedical applications in the future.
Stecker, F. W.; Puget, J. L.
1972-01-01
Following the big-bang baryon symmetric cosmology of Omnes, the redshift was calculated to be on the order of 500-600. It is show that, at these redshifts, annihilation pressure at the boundaries between regions of matter and antimatter drives large scale supersonic turbulence which can trigger galaxy formation. This picture is consistent with the gamma-ray background observations discussed previously. Gravitational binding of galaxies then occurs at a redshift of about 70, at which time vortical turbulent velocities of about 3 x 10 to the 7th power cm/s lead to angular momenta for galaxies comparable with measured values.
Interacting dark energy models in Cosmology and large-scale structure observational tests
Marcondes, Rafael J F
2016-01-01
Modern Cosmology offers us a great understanding of the universe with striking precision, made possible by the modern technologies of the newest generations of telescopes. The standard cosmological model, however, is not absent of theoretical problems and open questions. One possibility that has been put forward is the existence of a coupling between dark sectors. The idea of an interaction between the dark components could help physicists understand why we live in an epoch of the universe where dark matter and dark energy are comparable in terms of energy density, which can be regarded as a coincidence given that their time evolutions are completely different. We introduce the interaction phenomenologically and proceed to test models of interaction with observations of redshift-space distortions. In a flat universe composed only of those two fluids, we consider separately two forms of interaction, through terms proportional to the densities of both dark energy and dark matter. An analytic expression for the ...
Sanders, RH; Papantonopoulos, E
2005-01-01
I discuss the classical cosmological tests, i.e., angular size-redshift, flux-redshift, and galaxy number counts, in the light of the cosmology prescribed by the interpretation of the CMB anisotropies. The discussion is somewhat of a primer for physicists, with emphasis upon the possible systematic
Quantum Cosmology: Effective Theory
Bojowald, Martin
2012-01-01
Quantum cosmology has traditionally been studied at the level of symmetry-reduced minisuperspace models, analyzing the behavior of wave functions. However, in the absence of a complete full setting of quantum gravity and detailed knowledge of specific properties of quantum states, it remained difficult to make testable predictions. For quantum cosmology to be part of empirical science, it must allow for a systematic framework in which corrections to well-tested classical equations can be derived, with any ambiguities and ignorance sufficiently parameterized. As in particle and condensed-matter physics, a successful viewpoint is one of effective theories, adapted to specific issues one encounters in quantum cosmology. This review presents such an effective framework of quantum cosmology, taking into account, among other things, space-time structures, covariance, the problem of time and the anomaly issue.
Early structure formation from primordial density fluctuations with a blue-tilted power spectrum
Hirano, Shingo; Yoshida, Naoki; Spergel, David; Yorke, Harold W
2015-01-01
While observations of large-scale structure and the cosmic microwave background (CMB) provide strong constraints on the amplitude of the primordial power spectrum (PPS) on scales larger than 10 Mpc, the amplitude of the power spectrum on sub-galactic length scales is much more poorly constrained. We study early structure formation in a cosmological model with a blue-tilted PPS. We assume that the standard scale-invariant PPS is modified at small length scales as $P(k) \\sim k^{m_{\\rm s}}$ with $m_{\\rm s} > 1$. We run a series of cosmological hydrodynamic simulations to examine the dependence of the formation epoch and the characteristic mass of primordial stars on the tilt of the PPS. In models with $m_{\\rm s} > 1$, star-forming gas clouds are formed at $z > 100$, when formation of hydrogen molecules is inefficient because the intense CMB radiation destroys chemical intermediates. Without efficient coolant, the gas clouds gravitationally contract while keeping a high temperature. The protostars formed in such ...
Odintsov, S D
2015-01-01
We study mimetic $F(R)$ gravity with potential and Lagrange multiplier constraint. In the context of these theories, we introduce a reconstruction technique which enables us to realize arbitrary cosmologies, given the Hubble rate and an arbitrarily chosen $F(R)$ gravity. We exemplify our method by realizing cosmologies that are in concordance with current observations (Planck data) and also well known bouncing cosmologies. The attribute of our method is that the $F(R)$ gravity can be arbitrarily chosen, so we can have the appealing features of the mimetic approach combined with the known features of some $F(R)$ gravities, which unify early-time with late-time acceleration. Moreover, we study the existence and the stability of de Sitter points in the context of mimetic $F(R)$ gravity. In the case of unstable de Sitter points, it is demonstrated that graceful exit from inflation occurs. We also study the Einstein frame counterpart theory of the Jordan frame mimetic $F(R)$ gravity, we discuss the general propert...
An automatically generated code for relativistic inhomogeneous cosmologies
Bentivegna, Eloisa
2016-01-01
The applications of numerical relativity to cosmology are on the rise, contributing insight into such cosmological problems as structure formation, primordial phase transitions, gravitational-wave generation, and inflation. In this paper, I present the infrastructure for the computation of inhomogeneous dust cosmologies which was used recently to measure the effect of nonlinear inhomogeneity on the cosmic expansion rate. I illustrate the code's architecture, provide evidence for its correctness in a number of familiar cosmological settings, and evaluate its parallel performance for grids of up to several billion points. The code, which is available as free software, is based on the Einstein Toolkit infrastructure, and in particular leverages the automated-code-generation capabilities provided by its component Kranc.
Post-Newtonian cosmological models
Sanghai, Viraj A A
2015-01-01
We construct a framework to probe the effect of non-linear structure formation on the large-scale expansion of the universe. We take a bottom-up approach to cosmological modelling by splitting our universe into cells. The matter content within each cell is described by the post-Newtonian formalism. We assume that most of the cell is in the vicinity of weak gravitational fields, so that it can be described using a perturbed Minkowski metric. Our cells are patched together using the Israel junction conditions. We impose reflection symmetry across the boundary of these cells. This allows us to calculate the equation of motion for the boundary of the cell and, hence, the expansion rate of the universe. At Newtonian order, we recover the standard Friedmann-like equations. At post-Newtonian orders, we obtain a correction to the large-scale expansion of the universe. Our framework does not depend on the process of averaging in cosmology. As an example, we use this framework to investigate the cosmological evolution ...
Neutrino masses in astrophysics and cosmology
Energy Technology Data Exchange (ETDEWEB)
Raffelt, G.G. [Max-Planck-Institut fuer Physik, Muenchen (Germany)
1996-11-01
Astrophysical and cosmological arguments and observations give us the most restrictive constraints on neutrino masses, electromagnetic couplings, and other properties. Conversely, massive neutrinos would contribute to the cosmic dark-matter density and would play an important role for the formation of structure in the universe. Neutrino oscillations may well solve the solar neutrino problem, and can have a significant impact on supernova physics. (author) 14 figs., tabs., 33 refs.
Romano, Antonio Enea
2014-01-01
Motivated by reported claims of the measurements of a variation of the fine structure constant $\\alpha$ we consider a theory where the electric charge, and consequently $\\alpha$, is not a constant but depends on the Ricci scalar $R$. %We then show how this can be considered a particular case of the Bekenstein theory in which there is no need to %introduce an additional kinetic term for the scalar field associated to the electric charge, since the Einstein's% %equations are sufficient to determine the geometry and, consequently the Ricci scalar. We then study the cosmological implications of this theory, considering in particular the effects of dark energy and of a cosmological constant on the evolution of $\\alpha$. Some low-red shift expressions for the variation of $\\alpha(z)$ are derived, showing the effects of the equation of state of dark energy on $\\alpha$ and observing how future measurements of the variation of the fine structure constant could be used to determine indirectly the equation of state of d...
Structure Formation in the Early Universe
Miedema, P G
2016-01-01
The evolution of the perturbations in the energy density and the particle number density in a flat Friedmann-Lemaitre-Robertson-Walker universe in the radiation-dominated era and in the epoch after decoupling of matter and radiation is studied. For large-scale perturbations the outcome is in accordance with treatments in the literature. For small-scale perturbations the differences are conspicuous. Firstly, in the radiation-dominated era small-scale perturbations grew proportional to the square root of time. Secondly, perturbations in the Cold Dark Matter particle number density were, due to gravitation, coupled to perturbations in the total energy density. This implies that structure formation has commenced successfully only after decoupling of matter and radiation. Finally, after decoupling density perturbations evolved diabatically, i.e., they exchanged heat with their environment. This heat exchange may have enhanced the growth rate of its mass sufficiently to explain structure formation in the early univ...
Ryan, M.
1972-01-01
The study of cosmological models by means of equations of motion in Hamiltonian form is considered. Hamiltonian methods applied to gravity seem to go back to Rosenfeld (1930), who constructed a quantum-mechanical Hamiltonian for linearized general relativity theory. The first to notice that cosmologies provided a simple model in which to demonstrate features of Hamiltonian formulation was DeWitt (1967). Applications of the ADM formalism to homogeneous cosmologies are discussed together with applications of the Hamiltonian formulation, giving attention also to Bianchi-type universes. Problems involving the concept of superspace and techniques of quantization are investigated.
Scientific Realism and Primordial Cosmology
Azhar, Feraz
2016-01-01
We discuss scientific realism from the perspective of modern cosmology, especially primordial cosmology: i.e. the cosmological investigation of the very early universe. We first (Section 2) state our allegiance to scientific realism, and discuss what insights about it cosmology might yield, as against "just" supplying scientific claims that philosophers can then evaluate. In particular, we discuss: the idea of laws of cosmology, and limitations on ascertaining the global structure of spacetime. Then we review some of what is now known about the early universe (Section 3): meaning, roughly, from a thousandth of a second after the Big Bang onwards(!). The rest of the paper takes up two issues about primordial cosmology, i.e. the very early universe, where "very early" means, roughly, much earlier (logarithmically) than one second after the Big Bang: say, less than $10^{-11}$ seconds. Both issues illustrate that familiar philosophical threat to scientific realism, the under-determination of theory by data---on a...
Structure, dynamics and evolution of disk galaxies in a hierarchical formation scenario
Firmani, C
1999-01-01
Using galaxy evolutionary models in a hierarchical formation scenario, we predict the structure, dynamics and evolution of disk galaxies in a LCDM universe. Our models include star formation and hydrodynamics of the ISM. We find that the Tully-Fisher relation (TFR) in the I and H bands is an imprint of the mass-velocity relation of the cosmological dark halos. The scatter of the TFR originates mainly from the scatter in the dark halo structure and, to a minor extension, from the dispersion of the primordial spin parameter lambda. Our models allow us to explain why low and high surface brightness galaxies have the same TFR. The disk gas fractions predicted agree with the observations. The disks formed within the growing halos have nearly exponential surface brightness and flat rotation curves. Towards high redshifts, the zero-point of the TFR in the H band increases while in the B-band it slightly decreases.
On the relativistic mass function and averaging in cosmology
Ostrowski, Jan J; Roukema, Boudewijn F
2016-01-01
The general relativistic description of cosmological structure formation is an important challenge from both the theoretical and the numerical point of views. In this paper we present a brief prescription for a general relativistic treatment of structure formation and a resulting mass function on galaxy cluster scales in a highly generic scenario. To obtain this we use an exact scalar averaging scheme together with the relativistic generalization of Zel'dovich's approximation (RZA) that serves as a closure condition for the averaged equations.
The Bohmian Approach to the Problems of Cosmological Quantum Fluctuations
Goldstein, Sheldon; Struyve, Ward; Tumulka, Roderich
2015-01-01
There are two kinds of quantum fluctuations relevant to cosmology that we focus on in this article: those that form the seeds for structure formation in the early universe and those giving rise to Boltzmann brains in the late universe. First, structure formation requires slight inhomogeneities in the density of matter in the early universe, which then get amplified by the effect of gravity, leading to clumping of matter into stars and galaxies. According to inflation theory, quantum fluctuati...
2012-01-01
This volume tells of the quest for cosmology as seen by some of the finest cosmologists in the world. It starts with "Galaxy Formation from Start to Finish" and ends with "The First Supermassive Black Holes in the Universe," exploring in between the grand themes of galaxies, the early universe, expansion of the universe, dark matter and dark energy. This up-to-date collection of review articles offers a general introduction to cosmology and is intended for all probing into the profound questions on where we came from and where we are going.
Antigravitational Instability of Cosmic Substrate in the Newtonian Cosmology
Institute of Scientific and Technical Information of China (English)
CHECHIN L. M.
2006-01-01
@@ A new version of the forming Universe large-scale structures is proposed, based on the refuse of analyses of only the gravitational instability of the cosmological substrate. Vacuum, i.e. The dominant nonbaryonic matter in the Universe, creates the antigravitational instability of the baryonic cosmic substrate itself and causes the formation of galaxies.
Belinski, V
2009-01-01
The talk at international conference in honor of Ya. B. Zeldovich 95th Anniversary, Minsk, Belarus, April 2009. The talk represents a review of the old results and contemporary development on the problem of cosmological singularity.
The inner structure of dwarf sized halos in Warm and Cold Dark Matter cosmologies
Gonzalez-Samaniego, Alejandro; Colin, Pedro
2015-01-01
By means of N-body+Hydrodynamics zoom-in simulations we study the evolution of the inner dark matter and stellar mass distributions of central dwarf galaxies formed in halos of virial masses mh=2-3x10^10 Msun at z=0, both in a WDM and CDM cosmology. The half-mode mass in the WDM power spectrum of our simulations is Mv= 2x 10^10 Msun. In the dark matter only simulations halo density profiles are well described by the NFW parametric fit in both cosmologies, though the WDM halos have concentrations lower by factors 1.5--2.0 than their CDM counterparts. In the hydrodynamical simulations, the effects of baryons significantly flatten the inner density, velocity dispersion, and pseudo phase-space density profiles of the WDM halos but not of the CDM ones. The density slope measured at ~ 0.02xRv, alpha, becomes shallow in periods of 2 to 5 Gyr in the WDM runs. We explore whether this flattening process correlates with the global SF, Ms/Mv ratio, gas outflow, and internal specific angular momentum histories. We do not ...
Bonometto, S A; Musco, I; Mainini, R; Maccio', A V
2014-01-01
Models including an energy transfer from CDM to DE are widely considered in the literature, namely to allow DE a significant high-z density. Strongly Coupled cosmologies assume a much larger coupling between DE and CDM, together with the presence of an uncoupled warm DM component, as the role of CDM is mostly restricted to radiative eras. This allows us to preserve small scale fluctuations even if the warm particle, possibly a sterile neutrino, is quite light, O(100 eV). Linear theory and numerical simulations show that these cosmologies agree with LCDM on supergalactic scales; e.g., CMB spectra are substantially identical. Simultaneously, simulations show that they significantly ease problems related to the properties of MW satellites and cores in dwarfs. SC cosmologies also open new perspectives on early black hole formation, and possibly lead towards unificating DE and inflationary scalar fields.
Evolving Horava Cosmological Horizons
Fathi, Mohsen
2016-01-01
Several sets of radially propagating null congruence generators are exploited in order to form 3-dimensional marginally trapped surfaces, referred to as black hole and cosmological apparent horizons in a Horava universe. Based on this method, we deal with the characteristics of the 2-dimensional space-like spheres of symmetry and the peculiarities of having trapping horizons. Moreover, we apply this method in standard expanding and contracting FLRW cosmological models of a Horava universe to investigate the conditions under which the extra parameters of the theory may lead to trapped/anti-trapped surfaces both in the future and in the past. We also include the cases of negative time, referred to as the finite past, and discuss the formation of anti-trapped surfaces inside the cosmological apparent horizons.
Stornaiolo, C
2002-01-01
In this letter we propose the existence of low density black holes and discuss its compatibility with the cosmological observations. The origin of these black holes can be traced back to the collapse of long wavelength cosmological perturbations during the matter dominated era, when the densities are low enough to neglect any internal and thermal pressure. By introducing a threshold density $\\hat{\\rho}$ above which pressure and non-gravitational interactions become effective, we find the highest wavelength for the perturbations that can reach an equilibrium state instead of collapsing to a black hole. The low density black holes introduced here, if they exist, can be observed through weak and strong gravitational lensing effects. Finally we observe that we obtained here a cosmological model which is capable to explain in a qualitative way the void formation together with the value $\\Omega=1$. But we remark that it needs to be improved by considering non spherical symmetric black holes.
Zinn, P.-C.; Middelberg, E.; Ibar, E.
2011-07-01
Context. Infrared-faint radio sources (IFRS) are extragalactic emitters clearly detected at radio wavelengths but barely detected or undetected at optical and infrared wavelengths, with 5σ sensitivities as low as 1 μJy. Aims: Spectral energy distribution (hereafter SED) modelling and analyses of their radio properties indicate that IFRS are consistent with a population of (potentially extremely obscured) high-redshift AGN at 3 ≤ z ≤ 6. We demonstrate some astrophysical implications of this population and compare them to predictions from models of galaxy evolution and structure formation. Methods: We compiled a list of IFRS from four deep extragalactic surveys and extrapolated the IFRS number density to a survey-independent value of (30.8 ± 15.0) deg-2. We computed the IFRS contribution to the total number of AGN in the Universe to account for the cosmic X-ray background. By estimating the black hole mass contained in IFRS, we present conclusions for the SMBH mass density in the early universe and compare it to relevant simulations of structure formation after the Big Bang. Results: The number density of AGN derived from the IFRS density was found to be ~310 deg-2, which is equivalent to a SMBH mass density of the order of 103 M⊙ Mpc-3 in the redshift range 3 ≤ z ≤ 6. This produces an X-ray flux of 9 × 10-16 W m-2 deg-2 in the 0.5-2.0 keV band and 3 × 10-15 W m-2 deg-2 in the 2.0-10 keV band, in agreement with the missing unresolved components of the Cosmic X-ray Background. To address SMBH formation after the Big Bang we invoke a scenario involving both halo gas accretion and major mergers.
Lin, David; Rocha, Miguel E.; Primack, Joel R.
2015-01-01
Dark matter halos existing around visible galaxies are important for studies of galaxy formation and evolution. Since dark matter does not interact with light and cannot be observed directly, studies of dark matter halos are advanced by computer simulations. Normally, halos are defined by their virialized regions; however, regions that are non-virialized can still be gravitationally bound, like the collision-bound Milky Way and Andromeda galaxies. Our project is the first comprehensive characterization of gravitationally bound halo structures, their properties, and their evolution. This study found the bound regions surrounding every dark matter halo from a 100 Mpc cube of the Bolshoi Simulation at redshifts 0, 1, and 2. We optimized computation by removing subhalos, implementing a search radius, and parallelizing code across 160 supercomputer cores. Then, we created a mass function, circular velocity function, and correlation function to describe these regions. The evolution of these properties was consistent with predictions from a ΛCDM universe model. We characterized the sizes and shapes of these bound regions across different mass intervals and redshifts. Most bound regions are elongated, although they become more spheroidal with time. The results enable astronomers to predict how dark matter halos behave in non-virialized regions of space and deepen our understanding of galaxy formation.
Inhomogeneous anisotropic cosmology
Energy Technology Data Exchange (ETDEWEB)
Kleban, Matthew [Center for Cosmology and Particle Physics, New York University,4 Washington Place, New York, NY 10003 (United States); Senatore, Leonardo [Stanford Institute for Theoretical Physics and Department of Physics, Stanford University,382 Via Pueblo Mall, Stanford, CA 94306 (United States); Kavli Institute for Particle Astrophysics and Cosmology, Stanford University and SLAC,2575 Sand Hill Road, M/S 29, Menlo Park, CA 94025 (United States)
2016-10-12
In homogeneous and isotropic Friedmann-Robertson-Walker cosmology, the topology of the universe determines its ultimate fate. If the Weak Energy Condition is satisfied, open and flat universes must expand forever, while closed cosmologies can recollapse to a Big Crunch. A similar statement holds for homogeneous but anisotropic (Bianchi) universes. Here, we prove that arbitrarily inhomogeneous and anisotropic cosmologies with “flat” (including toroidal) and “open” (including compact hyperbolic) spatial topology that are initially expanding must continue to expand forever at least in some region at a rate bounded from below by a positive number, despite the presence of arbitrarily large density fluctuations and/or the formation of black holes. Because the set of 3-manifold topologies is countable, a single integer determines the ultimate fate of the universe, and, in a specific sense, most 3-manifolds are “flat” or “open”. Our result has important implications for inflation: if there is a positive cosmological constant (or suitable inflationary potential) and initial conditions for the inflaton, cosmologies with “flat” or “open” topology must expand forever in some region at least as fast as de Sitter space, and are therefore very likely to begin inflationary expansion eventually, regardless of the scale of the inflationary energy or the spectrum and amplitude of initial inhomogeneities and gravitational waves. Our result is also significant for numerical general relativity, which often makes use of periodic (toroidal) boundary conditions.
Inhomogeneous anisotropic cosmology
Kleban, Matthew; Senatore, Leonardo
2016-10-01
In homogeneous and isotropic Friedmann-Robertson-Walker cosmology, the topology of the universe determines its ultimate fate. If the Weak Energy Condition is satisfied, open and flat universes must expand forever, while closed cosmologies can recollapse to a Big Crunch. A similar statement holds for homogeneous but anisotropic (Bianchi) universes. Here, we prove that arbitrarily inhomogeneous and anisotropic cosmologies with ``flat'' (including toroidal) and ``open'' (including compact hyperbolic) spatial topology that are initially expanding must continue to expand forever at least in some region at a rate bounded from below by a positive number, despite the presence of arbitrarily large density fluctuations and/or the formation of black holes. Because the set of 3-manifold topologies is countable, a single integer determines the ultimate fate of the universe, and, in a specific sense, most 3-manifolds are ``flat'' or ``open''. Our result has important implications for inflation: if there is a positive cosmological constant (or suitable inflationary potential) and initial conditions for the inflaton, cosmologies with ``flat'' or ``open'' topology must expand forever in some region at least as fast as de Sitter space, and are therefore very likely to begin inflationary expansion eventually, regardless of the scale of the inflationary energy or the spectrum and amplitude of initial inhomogeneities and gravitational waves. Our result is also significant for numerical general relativity, which often makes use of periodic (toroidal) boundary conditions.
Stochastic structure formation in random media
Klyatskin, V. I.
2016-01-01
Stochastic structure formation in random media is considered using examples of elementary dynamical systems related to the two-dimensional geophysical fluid dynamics (Gaussian random fields) and to stochastically excited dynamical systems described by partial differential equations (lognormal random fields). In the latter case, spatial structures (clusters) may form with a probability of one in almost every system realization due to rare events happening with vanishing probability. Problems involving stochastic parametric excitation occur in fluid dynamics, magnetohydrodynamics, plasma physics, astrophysics, and radiophysics. A more complicated stochastic problem dealing with anomalous structures on the sea surface (rogue waves) is also considered, where the random Gaussian generation of sea surface roughness is accompanied by parametric excitation.
Keung Chan, Tsang; Keres, Dusan; Oñorbe, Jose; Hopkins, Philip F.; Muratov, Alexander; Faucher-Giguere, Claude-Andre; Quataert, Eliot
2016-06-01
We study the distribution of cold dark matter (CDM) in cosmological simulations from the FIRE (Feedback In Realistic Environments) project, which incorporates explicit stellar feedback in the multi-phase ISM, with energetics from stellar population models. We find that stellar feedback, without ``fine-tuned'' parameters, greatly alleviates small-scale problems in CDM. Feedback causes bursts of star formation and outflows, altering the DM distribution. As a result, the inner slope of the DM halo profile (α) shows a strong mass dependence: profiles are shallow at Mh ˜ 1010-1011 M⊙ and steepen at higher/lower masses. The resulting core sizes and slopes are consistent with observations. Because the star formation efficiency, Ms/Mh is strongly halo mass dependent, a rapid change in α occurs around Mh ˜1010M⊙, (Ms˜106-107M⊙) as sufficient feedback energy becomes available to perturb the DM. Large cores are not established during the period of rapid growth of halos because of ongoing DM mass accumulation. Instead, cores require several bursts of star formation after the rapid buildup has completed. Stellar feedback dramatically reduces circular velocities in the inner kpc of massive dwarfs; this could be sufficient to explain the ``Too Big To Fail'' problem without invoking non-standard DM. Finally, feedback and baryonic contraction in Milky Way-mass halos produce DM profiles slightly shallower than the Navarro-Frenk-White profile, consistent with the normalization of the observed Tully-Fisher relation.
VLT/UVES constraints on the cosmological variability of the fine-structure constant
Levshakov, S. A.; Centurión, M.; Molaro, P.; D'Odorico, S.
2005-05-01
We propose a new methodology for probing the cosmological variability of α from pairs of Fe II lines (SIDAM, single ion differential α measurement) observed in individual exposures from a high resolution spectrograph. By this we avoid the influence of the spectral shifts due to (i) ionization inhomogeneities in the absorbers; and (ii) non-zero offsets between different exposures. Applied to the Fe II lines of the metal absorption line system at z_abs = 1.839 in the spectrum of Q 1101-264 obtained by means of the UV-Visual Echelle Spectrograph (UVES) at the ESO Very Large Telescope (VLT), SIDAM provides Δα/α = (2.4±3.8_stat)×10-6. The z_abs = 1.15 Fe II system toward HE 0515-4414 has been re-analyzed by this method thus obtaining for the combined sample Δα/α = (0.4±1.5_stat)×10-6. These values are shifted with respect to the Keck/HIRES mean Δα/α = (-5.7 ± 1.1_stat)×10-6 (Murphy et al. 2004) at very high confidence level (95%). The fundamental photon noise limitation in the Δα/α measurement with the VLT/UVES is discussed to figure the prospects for future observations. It is suggested that with a spectrograph of ~10 times the UVES dispersion coupled to a 100 m class telescope the present Oklo level (Δα/α ≥ 4.5 × 10-8) can be achieved along cosmological distances with differential measurements of Δα/α.
Machine Learning and Cosmological Simulations
Kamdar, Harshil; Turk, Matthew; Brunner, Robert
2016-01-01
We explore the application of machine learning (ML) to the problem of galaxy formation and evolution in a hierarchical universe. Our motivations are two-fold: (1) presenting a new, promising technique to study galaxy formation, and (2) quantitatively evaluating the extent of the influence of dark matter halo properties on small-scale structure formation. For our analyses, we use both semi-analytical models (Millennium simulation) and N-body + hydrodynamical simulations (Illustris simulation). The ML algorithms are trained on important dark matter halo properties (inputs) and galaxy properties (outputs). The trained models are able to robustly predict the gas mass, stellar mass, black hole mass, star formation rate, $g-r$ color, and stellar metallicity. Moreover, the ML simulated galaxies obey fundamental observational constraints implying that the population of ML predicted galaxies is physically and statistically robust. Next, ML algorithms are trained on an N-body + hydrodynamical simulation and applied to an N-body only simulation (Dark Sky simulation, Illustris Dark), populating this new simulation with galaxies. We can examine how structure formation changes with different cosmological parameters and are able to mimic a full-blown hydrodynamical simulation in a computation time that is orders of magnitude smaller. We find that the set of ML simulated galaxies in Dark Sky obey the same observational constraints, further solidifying ML's place as an intriguing and promising technique in future galaxy formation studies and rapid mock galaxy catalog creation.
,
2011-01-01
A subset of blazars emit TeV gamma rays which annihilate and pair produce on the extragalactic background light. We have argued in Broderick et al. (2011, Paper I) that plasma beam instabilities can dissipate the pairs' energy locally. This heats the intergalactic medium and dramatically increases its entropy after redshift z~2, with important implications for structure formation: (1) This suggests a scenario for the origin of the cool core (CC)/non-cool core (NCC) bimodality in galaxy clusters and groups. Early forming galaxy groups are unaffected because they can efficiently radiate the additional entropy, developing a CC. However, late forming groups do not have sufficient time to cool before the entropy is gravitationally reprocessed through successive mergers - counteracting cooling and raising the core entropy further. Hence blazar heating works different than feedback by active galactic nuclei, which balances radiative cooling but is unable to transform CC into NCC clusters due to the weak coupling to ...
Statistical characteristics of formation and evolution of structure in the universe
Demianski, M
1999-01-01
An approximate statistical description of the formation and evolution of structure of the universe based on the Zel'dovich theory of gravitational instability is proposed. It is found that the evolution of DM structure shows features of self-similarity and the main structure characteristics can be expressed through the parameters of initial power spectrum and cosmological model. For the CDM-like power spectrum and suitable parameters of the cosmological model the effective matter compression reaches the observed scales $R_{wall}\\sim $20 -- 25$h^{-1}$Mpc with the typical mean separation of wall-like elements $D_{SLSS}\\sim $50 -- 70$h^{-1}$Mpc. This description can be directly applied to the deep pencil beam galactic surveys and absorption spectra of quasars. For larger 3D catalogs and simulations it can be applied to results obtained with the core-sampling analysis. It is shown that the interaction of large and small scale perturbations modulates the creation rate of early Zel'dovich pancakes and generates bia...
Troxel, M A; Peel, Austin
2013-01-01
The study of relativistic, higher order and nonlinear effects has become necessary in recent years in the pursuit of precision cosmology. We develop and apply here a framework to study gravitational lensing in exact models in general relativity that are not restricted to homogeneity and isotropy, and where full nonlinearity and relativistic effects are included. We apply the framework to a specific, anisotropic galaxy cluster model which is based on a modified NFW halo density profile and described by the Szekeres metric. We examine the effects of increasing levels of anisotropy in the galaxy cluster on lensing observables like the convergence and shear for various lensing geometries, finding a strong nonlinear response in both the convergence and shear for rays passing through anisotropic regions of the cluster. Deviation from the expected values in a spherically symmetric structure are asymmetric with respect to path direction and thus will persist as a statistical effect when averaged over some ensemble of...
Extragalactic astronomy and cosmology an introduction
Schneider, Peter
2015-01-01
Accounting for the astonishing developments in the field of Extragalactic Astronomy and Cosmology, this second edition has been updated and substantially expanded. Starting with the description of our home galaxy, the Milky Way, this cogently written textbook introduces the reader to the astronomy of galaxies, their structure, active galactic nuclei, evolution and large scale distribution in the Universe. After an extensive and thorough introduction to modern observational and theoretical cosmology, the focus turns to the formation of structures and astronomical objects in the early Universe. The basics of classical astronomy and stellar astrophysics needed for extragalactic astronomy are provided in the appendix. The new edition incorporates some of the most spectacular results from new observatories like the Galaxy Evolution Explorer, Herschel, ALMA, WMAP and Planck, as well as new instruments and multi-wavelength campaigns which have expanded our understanding of the Universe and the objects populating it....
Dark matter and cosmological nucleosynthesis
Schramm, D. N.
1986-01-01
Existing dark matter problems, i.e., dynamics, galaxy formation and inflation, are considered, along with a model which proposes dark baryons as the bulk of missing matter in a fractal universe. It is shown that no combination of dark, nonbaryonic matter can either provide a cosmological density parameter value near unity or, as in the case of high energy neutrinos, allow formation of condensed matter at epochs when quasars already existed. The possibility that correlations among galactic clusters are scale-free is discussed. Such a distribution of matter would yield a fractal of 1.2, close to a one-dimensional universe. Biasing, cosmic superstrings, and percolated explosions and hot dark matter are theoretical approaches that would satisfy the D = 1.2 fractal model of the large-scale structure of the universe and which would also allow sufficient dark matter in halos to close the universe.
Modulated structure formation in demixing paraffin blends
Gilbert, E P
2002-01-01
Small angle scattering (SANS and SAXS) and differential scanning calorimetry have been measured from C sub 2 sub 8 :C sub 3 sub 6 normal paraffin mixtures of varying composition quenched from the melt. Satellite peaks are observed in the SAXS whose offset in Q, relative to Bragg diffraction peaks associated with the average structure, are composition dependent. The offset is close to the position of the most intense peak observed in SANS. Scattering from the quenched structures is consistent with a correlated displacement and substitutional disorder model yielding modulations that are incommensurate with the average lattice. DSC shows an additional endotherm in the mixtures that is not present in the pure components and is associated with this superstructure formation. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Wesson, P.S.
1979-10-01
The Cosmological Principle states: the universe looks the same to all observers regardless of where they are located. To most astronomers today the Cosmological Principle means the universe looks the same to all observers because density of the galaxies is the same in all places. A new Cosmological Principle is proposed. It is called the Dimensional Cosmological Principle. It uses the properties of matter in the universe: density (rho), pressure (p), and mass (m) within some region of space of length (l). The laws of physics require incorporation of constants for gravity (G) and the speed of light (C). After combining the six parameters into dimensionless numbers, the best choices are: 8..pi..Gl/sup 2/ rho/c/sup 2/, 8..pi..Gl/sup 2/ rho/c/sup 4/, and 2 Gm/c/sup 2/l (the Schwarzchild factor). The Dimensional Cosmological Principal came about because old ideas conflicted with the rapidly-growing body of observational evidence indicating that galaxies in the universe have a clumpy rather than uniform distribution. (SC)
Entanglement inside the cosmological apparent horizon
Energy Technology Data Exchange (ETDEWEB)
Capozziello, Salvatore [Dipartimento di Fisica, Università di Napoli “Federico II”, Via Cinthia, Napoli (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Napoli, Via Cinthia, Napoli (Italy); Gran Sasso Science Institute (INFN), Via F. Crispi 7, I-67100, L' Aquila (Italy); Luongo, Orlando [Dipartimento di Fisica, Università di Napoli “Federico II”, Via Cinthia, Napoli (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Napoli, Via Cinthia, Napoli (Italy); Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de México (UNAM), México (Mexico)
2014-06-13
Highlights: • We consider cosmological dark energy. • Entanglement between cosmological eras is the source. • Negativity is the leading parameter. • We consider the violation of energy conditions. - Abstract: Possible connections between quantum entanglement and cosmological eras are considered. In particular, assuming that two epochs are each other entangling, by measuring the entanglement degree, it is possible to recover dynamical properties of the universe. In particular, the effects of dark energy could be due to the entanglement between states, since a negative pressure arises at late times. In this process, we choose as ruler to quantify the “entanglement weight”, the so-called negativity of entanglement. It follows that a natural anti-gravitational effect occurs when the cosmological eras are entangled. Thus, dark energy could be seen as a straightforward consequence of entanglement. Specifically, our results can be compared with observational data. In doing so, it is possible to show that a pressureless term is recovered at a certain epoch dominating over dark energy and ruling the structure formation.
Cosmology with three interacting spin-2 fields
Lüben, Marvin; Akrami, Yashar; Amendola, Luca; Solomon, Adam R.
2016-08-01
Theories of massive gravity with one or two dynamical metrics generically lack stable and observationally viable cosmological solutions that are distinguishable from Λ cold dark matter (CDM). We consider an extension to trimetric gravity, with three interacting spin-2 fields which are not plagued by the Boulware-Deser ghost. We systematically explore every combination with two free parameters in search of background cosmologies that are competitive with Λ CDM . For each case we determine whether the expansion history satisfies viability criteria, and whether or not it contains beyond-Λ CDM phenomenology. Among the many models we consider, there are only three cases that seem to be both viable and distinguishable from standard cosmology. One of the models has only one free parameter and displays a crossing from above to below the phantom divide. The other two provide scaling behavior, although they contain future singularities that need to be studied in more detail. These models possess interesting features that make them compelling targets for a full comparison to observations of both cosmological expansion history and structure formation.
Compact stellar object: the formation and structure
Energy Technology Data Exchange (ETDEWEB)
Duarte, S.B. [Centro Brasileiro de Pesquisas Fisicas (CBPF/MCT), Rio de Janeiro, RJ (Brazil)
2012-07-01
Full text: The formation of compact objects is viewed at the final stages of stellar evolution. The supernova explosion events are then focalized to explain the formation of pulsars, hybrid neutron star and the limit case of the latter, the quark stars. We discuss the stability and structure of these objects in connection with the properties of the hadron and quark-gluon plasma equation of state. The hadron-quark phase transition in deep interior of these objects is discussed taking into account the implications on the density distribution of matter along the radial direction. The role of neutrinos confinement in the ultradense stellar medium in the early stages of pulsar formation is another interesting aspect to be mentioned in this presentation. Recent results for maximum mass of compact stellar objects for different forms of equations of state will be shown, presenting some theoretical predictions for maximum mass of neutron stars allowed by different equations of state assigned to dense stellar medium. Although a density greater than few times the nuclear equilibrium density appears in deep interior of the core, at the crust the density decreases by several orders of magnitude where a variety of hadronic states appears, the 'pasta'-states of hadrons. More externally, a lattice of nuclei can be formed permeated not only by electrons but also by a large amount of free neutrons and protons. These are possible structure of neutron star crust to have the density and pressures with null values at the neutron star surface. The ultimate goal of this talk is to give a short view of the compact star area for students and those who are introducing in this subject. (author)
Energy Technology Data Exchange (ETDEWEB)
Schramm, D.N.
1992-03-01
The cosmological dark matter problem is reviewed. The Big Bang Nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the {Omega} = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between ``cold`` and ``hot`` non-baryonic candidates is shown to depend on the assumed ``seeds`` that stimulate structure formation. Gaussian density fluctuations, such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed.
Energy Technology Data Exchange (ETDEWEB)
Schramm, D.N.
1992-03-01
The cosmological dark matter problem is reviewed. The Big Bang Nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the {Omega} = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between cold'' and hot'' non-baryonic candidates is shown to depend on the assumed seeds'' that stimulate structure formation. Gaussian density fluctuations, such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed.
Hopkins, Philip F; Keres, Dusan; Hernquist, Lars
2007-01-01
(Abridged) We develop and test a model for the cosmological role of mergers in the formation and quenching of red, early-type galaxies. Making the ansatz that star formation is quenched after a gas-rich, spheroid-forming major merger, we demonstrate that this naturally predicts the turnover in the efficiency of star formation at ~L_star, as well as the observed mass functions/density of red galaxies as a function of redshift, the formation times of spheroids as a function of mass, and the fraction of quenched galaxies as a function of galaxy and halo mass, environment, and redshift. Comparing to a variety of semi-analytic models in which quenching is primarily driven by halo mass considerations or secular/disk instabilities, we demonstrate that our model and different broad classes of models make unique and robust qualitative predictions for a number of observables, including the red fraction as a function of galaxy and halo mass, the density of passive galaxies and evolution of the color-morphology-density r...
(Participation in high energy physics): Task C, Particle physics and cosmology
Energy Technology Data Exchange (ETDEWEB)
Turner, M.S.
1992-05-01
Over the past year or so the research of our group has spanned many topics at the boundary of particle physics and cosmology. The major focus has been in the general areas of inflation, cosmological phase transitions, astrophysical constraints to particle physics theories, and dark matter/structure formation as it relates to particle physics. Narrative summaries of the research of the individual group members are given in this paper.
Sanders, Robert H
2016-01-01
The advent of sensitive high-resolution observations of the cosmic microwave background radiation and their successful interpretation in terms of the standard cosmological model has led to great confidence in this model's reality. The prevailing attitude is that we now understand the Universe and need only work out the details. In this book, Sanders traces the development and successes of Lambda-CDM, and argues that this triumphalism may be premature. The model's two major components, dark energy and dark matter, have the character of the pre-twentieth-century luminiferous aether. While there is astronomical evidence for these hypothetical fluids, their enigmatic properties call into question our assumptions of the universality of locally determined physical law. Sanders explains how modified Newtonian dynamics (MOND) is a significant challenge for cold dark matter. Overall, the message is hopeful: the field of cosmology has not become frozen, and there is much fundamental work ahead for tomorrow's cosmologis...
On the equivalence between the effective cosmology and excursion set treatments of environment
Martino, Matthew C
2009-01-01
In studies of the environmental dependence of structure formation, the large scale environment is often thought of as providing an effective background cosmology: e.g. the formation of structure in voids is expected to be just like that in a less dense universe with appropriately modified Hubble and cosmological constants. However, in the excursion set description of structure formation which is commonly used to model this effect, no explicit mention is made of the effective cosmology. Rather, this approach uses the spherical evolution model to compute an effective linear theory growth factor, which is then used to predict the growth and evolution of nonlinear structures. We show that these approaches are, in fact, equivalent: a consequence of Birkhoff's theorem. We speculate that this equivalence will not survive in models where the gravitational force law is modified from an inverse square, potentially making the environmental dependence of clustering a good test of such models.
Statistical Issues in Galaxy Cluster Cosmology
Mantz, Adam
2013-01-01
The number and growth of massive galaxy clusters are sensitive probes of cosmological structure formation. Surveys at various wavelengths can detect clusters to high redshift, but the fact that cluster mass is not directly observable complicates matters, requiring us to simultaneously constrain scaling relations of observable signals with mass. The problem can be cast as one of regression, in which the data set is truncated, the (cosmology-dependent) underlying population must be modeled, and strong, complex correlations between measurements often exist. Simulations of cosmological structure formation provide a robust prediction for the number of clusters in the Universe as a function of mass and redshift (the mass function), but they cannot reliably predict the observables used to detect clusters in sky surveys (e.g. X-ray luminosity). Consequently, observers must constrain observable-mass scaling relations using additional data, and use the scaling relation model in conjunction with the mass function to predict the number of clusters as a function of redshift and luminosity.
Coley, Alan
2010-05-01
In this book the use of inhomogeneous models in cosmology, both in modelling structure formation and interpreting cosmological observations, is discussed. The authors concentrate on exact solutions, and particularly the Lemaitre-Tolman (LT) and Szekeres models (the important topic of averaging is not discussed). The book serves to demonstrate that inhomogeneous metrics can generate realistic models of cosmic structure formation and nonlinear evolution and shows that general relativity has a lot more to offer to cosmology than just the standard spatially homogeneous FLRW model. I would recommend this book to people working in theoretical cosmology. In the introduction (and in the concluding chapter and throughout the book) a reasonable discussion of the potential problems with the standard FLRW cosmology is presented, and a list of examples illustrating the limitations of standard FLRW cosmology are discussed (including potential problems with perturbation methods). In particular, the authors argue that the assumptions of isotropy and spatial homogeneity (and consequently the Copernican principle) must be properly challenged and revisited. Indeed, it is possible for `good old general relativity' to be used to explain cosmological observations without introducing speculative elements. In part I of the book the necessary background is presented (readers need a background in general relativity theory at an advanced undergraduate or graduate level). There is a good (and easy to read) review of the exact spherically symmetric dust Lemaitre-Tolman model (LT) (often denoted the LTB model) and the Lemaitre and Szekeres models. Light propogation (i.e. null geodesics, for both central and off-center observers) in exact inhomogeneous (LT) models is reviewed. In part II a number of applications of exact inhomogeneous models are presented (taken mainly from the authors' own work). In chapter 4, the evolution of exact inhomogeneous models (primarily the LT model, but also the
Ostriker, J P; Ostriker, Jeremiah P; Cen, Renyue
1996-01-01
We compute, including a current state-of-the-art treatment of hydrodynamical processes, heating and cooling, a variety of cosmological models into the extreme nonlinear phase to enable comparisons with observations. First, we note the common, model independent results. All have a mean (z=0) temperature of 10^{4.5}-10^{5.5}\\Kel, set essentially by photoheating processes. Most gas is in one of two components: either at the photoheating floor 10^{4.5}\\Kel and primarily in low density regions or else shock heated to 10^5-10^6\\Kel and in regions of moderate overdensity (in caustics and near groups and clusters). It presents a major observational challenge to observationally detect this second, abundant component as it is neither an efficient radiator nor absorber. About 2\\% to 10\\% of the baryons cool and collapse into galaxies forming on caustics and migrating to clusters. About 1\\%-2\\% of baryons are in the very hot X-ray emitting gas near cluster cores, in good agreement with observations. These correspondances...
VLT/UVES constraints on the cosmological variability of the fine-structure constant
Levshakov, S A; Molaro, P; D'Odorico, S
2004-01-01
A differential many-multiplet (DMM) technique is developed to probe the variability of alpha. Applied to the FeII lines of the metal absorption line system at zabs = 1.839 in the spectrum of Q1101-264 obtained by means of the UV-Visual Echelle Spectrograph (UVES) at the ESO Very Large Telescope (VLT), the DMM provides da/a = (4.3+/-7.8) 10^{-6}.The zabs = 1.15 FeII system toward HE0515-4414 has been re-analyzed by the DMM method thus obtaining for the combined sample da/a = (0.7+/-3.1) 10^{-6}. These values are shifted with respect to the Keck/HIRES mean da/a = (-5.7+/-1.1) 10^{-6} (Murphy et al. 2004) at very high confidence level (95%). The fundamental photon noise limitation in the da/a measurement with the VLT/UVES is discussed to figure the prospects for future observations. It is suggested that with a spectrograph of 10 times the UVES resolution coupled to a 100m class telescope the present Oklo level (da/a >= 4.5 10^{-8}) can be achieved along cosmological distances with differential measurements of da...
Structure Formation in a Variable Dark Energy Model and Observational Constraints
Arbabi-Bidgoli, S.; Movahed, M. S.
The interpretation of a vast number of cosmological observations in the framework of FRW models suggests that the major part of the energy density of the universe is in form of dark energy with still unknown physical nature. In some models for dark energy, which are motivated by particle physics theory, the equation of state and the contribution of dark energy to the energy density of the universe can be variable. Here we study structure formation in a parameterized dark energy model, and compare its predictions with recent observational data, from the Supernova Ia gold sample and the parameters of large scale structure determined by the 2-degree Field Galaxy Redshift Survey (2dFGRS), and put some constraints on the free parameters of this model.
Higher dimensional loop quantum cosmology
Zhang, Xiangdong
2016-07-01
Loop quantum cosmology (LQC) is the symmetric sector of loop quantum gravity. In this paper, we generalize the structure of loop quantum cosmology to the theories with arbitrary spacetime dimensions. The isotropic and homogeneous cosmological model in n+1 dimensions is quantized by the loop quantization method. Interestingly, we find that the underlying quantum theories are divided into two qualitatively different sectors according to spacetime dimensions. The effective Hamiltonian and modified dynamical equations of n+1 dimensional LQC are obtained. Moreover, our results indicate that the classical big bang singularity is resolved in arbitrary spacetime dimensions by a quantum bounce. We also briefly discuss the similarities and differences between the n+1 dimensional model and the 3+1 dimensional one. Our model serves as a first example of higher dimensional loop quantum cosmology and offers the possibility to investigate quantum gravity effects in higher dimensional cosmology.
Microwave Anisotropies from Texture Seeded Structure Formation
Durrer, R; Zhou, Z H
1994-01-01
The cosmic microwave anisotropies in a scenario of large scale structure formation with cold dark matter and texture are discussed and compared with recent observational results of the COBE satellite. A couple of important statistical parameters are determined. The fluctuations are slightly non gaussian. The quadrupole anisotropy is $1.5\\pm 1.2\\times 10^{-5}$ and the fluctuations on a angular scale of 10 degrees are $ (3.8\\pm 2.6)\\times 10^{-5}$. The COBE are within about one standard deviation of the typical texture + CDM model discussed in this paper. Furthermore, we calculate fluctuations on intermediate scales (about 2 degrees) with the result $\\De T/T(\\theta \\sim 2^o) = 3.9\\pm 0.8)\\times 10^{-5}$. Collapsing textures are modeled by spherically symmetric field configurations. This leads to uncertainties of about a factor of~2.
Zinn, Peter-Christian; Ibar, Edo
2011-01-01
Context. Infrared Faint Radio Sources (IFRS) are extragalactic emitters clearly detected at radio wavelengths but barely detected or undetected at optical and infrared wavelengths, with 5 sigma sensitivities as low as 1 uJy. Aims. Recent SED-modelling and analysis of their radio properties shows that IFRS are consistent with a population of (potentially extremely obscured) high-redshift AGN at 3
Turbulence and Vorticity in Galaxy Clusters Generated by Structure Formation
Vazza, F; Brüggen, M; Brunetti, G; Gheller, C; Porter, D; Ryu, D
2016-01-01
Turbulence is a key ingredient for the evolution of the intracluster medium, whose properties can be predicted with high resolution numerical simulations. We present initial results on the generation of solenoidal and compressive turbulence in the intracluster medium during the formation of a small-size cluster using highly resolved, non-radiative cosmological simulations, with a refined monitoring in time. In this first of a series of papers, we closely look at one simulated cluster whose formation was distinguished by a merger around $z \\sim 0.3$. We separate laminar gas motions, turbulence and shocks with dedicated filtering strategies and distinguish the solenoidal and compressive components of the gas flows using Hodge-Helmholtz decomposition. Solenoidal turbulence dominates the dissipation of turbulent motions ($\\sim 95\\%$) in the central cluster volume at all epochs. The dissipation via compressive modes is found to be more important ($\\sim 30 \\%$ of the total) only at large radii ($\\geq 0.5 ~r_{\\rm vi...
Energy Technology Data Exchange (ETDEWEB)
Romano, Antonio Enea [University of Crete, Department of Physics and CCTP, Heraklion (Greece); Kyoto University, Yukawa Institute for Theoretical Physics, Kyoto (Japan); Universidad de Antioquia, Instituto de Fisica, Medellin (Colombia); Vallejo, Sergio Andres [Kyoto University, Yukawa Institute for Theoretical Physics, Kyoto (Japan); Universidad de Antioquia, Instituto de Fisica, Medellin (Colombia)
2016-04-15
In order to estimate the effects of a local structure on the Hubble parameter we calculate the low-redshift expansion for H(z) and (δH)/(H) for an observer at the center of a spherically symmetric matter distribution in the presence of a cosmological constant. We then test the accuracy of the formulas comparing them with fully relativistic non-perturbative numerical calculations for different cases for the density profile. The low-redshift expansion we obtain gives results more precise than perturbation theory since it is based on the use of an exact solution of Einstein's field equations. For larger density contrasts the low-redshift formulas accuracy improves respect to the perturbation theory accuracy because the latter is based on the assumption of a small density contrast, while the former does not rely on such an assumption. The formulas can be used to take into account the effects on the Hubble expansion parameter due to the monopole component of the local structure. If the H(z) observations will show deviations from the ΛCDM prediction compatible with the formulas we have derived, this could be considered an independent evidence of the existence of a local inhomogeneity, and the formulas could be used to determine the characteristics of this local structure. (orig.)
Visualising Matter and Cosmologies: A Transhistorical Example
Ayala, Lucia
2011-01-01
We propose a connection between the visualisation of cosmic matter and structure formation in the Cartesian tradition and that used by contemporary astrophysics. More precisely, we identify cosmological simulations of large scale structure in the Universe with the system of vortices in Descartes physics. This connection operates at different levels of the images: their representational purpose; the theoretical systems behind their use; and, finally, their function and materiality as visual productions. A skilled use of image analysis is necessary to stress the continuities and peculiarities between different epochs and disciplines.
Moving Mesh Cosmology: Properties of Gas Disks
Torrey, Paul; Sijacki, Debora; Springel, Volker; Hernquist, Lars
2011-01-01
We compare the structural properties of galaxies formed in cosmological simulations using the smoothed particle hydrodynamics (SPH) code GADGET with those using the moving-mesh code AREPO. Both codes employ identical gravity solvers and the same sub-resolution physics but use very different methods to track the hydrodynamic evolution of gas. This permits us to isolate the effects of the hydro solver on the formation and evolution of galactic disks. In a matching sample of GADGET and AREPO haloes we fit simulated gas disks with exponential profiles. We find that the cold gas disks formed using AREPO have systematically larger disk scale lengths and higher specific angular momenta than their GADGET counterparts. The reason for these differences is rooted in the inaccuracies of the SPH solver and calls for a reassessment of commonly adopted feedback prescriptions in cosmological simulations.
Observational constraints on extended Chaplygin gas cosmologies
Indian Academy of Sciences (India)
B C PAUL; P THAKUR; A SAHA
2017-08-01
We investigate cosmological models with extended Chaplygin gas (ECG) as a candidate for dark energy and determine the equation of state parameters using observed data namely, observed Hubble data, baryon acousticoscillation data and cosmic microwave background shift data. Cosmological models are investigated considering cosmic fluid which is an extension of Chaplygin gas, however, it reduces to modified Chaplygin gas (MCG) andalso to generalized Chaplygin gas (GCG) in special cases. It is found that in the case of MCG and GCG, the best-fit values of all the parameters are positive. The distance modulus agrees quite well with the experimental Union2data. The speed of sound obtained in the model is small, necessary for structure formation. We also determine the observational constraints on the constants of the ECG equation.
Cosmological perturbations without inflation
Melia, Fulvio
2017-01-01
A particularly attractive feature of inflation is that quantum fluctuations in the inflaton field may have seeded inhomogeneities in the cosmic microwave background (CMB) and the formation of large-scale structure. In this paper, we demonstrate that a scalar field with zero active mass, i.e. with an equation of state ρ +3p=0 , where ρ and p are its energy density and pressure, respectively, could also have produced an essentially scale-free fluctuation spectrum, though without inflation. This alternative mechanism is based on the Hollands–Wald concept of a minimum wavelength for the emergence of quantum fluctuations into the semi-classical universe. A cosmology with zero active mass does not have a horizon problem, so it does not need inflation to solve this particular (non) issue. In this picture, the {{1}\\circ}{ {--}}{{10}\\circ} fluctuations in the CMB correspond almost exactly to the Planck length at the Planck time, firmly supporting the view that CMB observations may already be probing trans-Planckian physics.
Cosmological Perturbations without Inflation
Melia, Fulvio
2016-01-01
A particularly attractive feature of inflation is that quantum fluctuations in the inflaton field may have seeded inhomogeneities in the cosmic microwave background (CMB) and the formation of large-scale structure. In this paper, we demonstrate that a scalar field with zero active mass, i.e., with an equation of state rho+3p=0, where rho and p are its energy density and pressure, respectively, could also have produced an essentially scale-free fluctuation spectrum, though without inflation. This alternative mechanism is based on the Hollands-Wald concept of a minimum wavelength for the emergence of quantum fluctuations into the semi-classical universe. A cosmology with zero active mass does not have a horizon problem, so it does not need inflation to solve this particular (non) issue. In this picture, the 1-10 degree fluctuations in the CMB correspond almost exactly to the Planck length at the time these modes were produced, firmly supporting the view that CMB observations may already be probing trans-Plancki...
Formation and Settling of a Disc Galaxy During the Last 8 Billion Years in a Cosmological Simulation
Ceverino, Daniel; Dekel, Avishai; Kassin, Susan A
2016-01-01
We present results of a high-resolution zoom cosmological simulation of the evolution of a low-mass galaxy with a maximum velocity of V=100 km/s at z=0, using the initial conditions from the AGORA project (Kim et al 2014). The final disc-dominated galaxy matches local disc scaling relations. The galaxy evolves from a compact, dispersion-dominated galaxy into a rotation-dominated but dynamically hot disc in about 0.5 Gyr (from z=1.4 to z=1.2). The disc dynamically cools down for the following 7 Gyr, as the gas velocity dispersion decreases over time, in agreement with observations. The primary cause of this slow evolution of velocity dispersion in this low-mass galaxy is stellar feedback. It is related to the decline in gas fraction, and to the associated gravitational disk instability, as the disc slowly settles from a global Toomre Q>1 turbulent disc to a marginally unstable disc (Q=1).
Makiya, Ryu; Enoki, Motohiro; Ishiyama, Tomoaki; Kobayashi, Masakazu A. R.; Nagashima, Masahiro; Okamoto, Takashi; Okoshi, Katsuya; Oogi, Taira; Shirakata, Hikari
2016-04-01
We present a new cosmological galaxy formation model, ν2GC, as an updated version of our previous model νGC. We adopt the so-called "semi-analytic" approach, in which the formation history of dark matter halos is computed by N-body simulations, while the baryon physics such as gas cooling, star formation, and supernova feedback are simply modeled by phenomenological equations. Major updates of the model are as follows: (1) the merger trees of dark matter halos are constructed in state-of-the-art N-body simulations, (2) we introduce the formation and evolution process of supermassive black holes and the suppression of gas cooling due to active galactic nucleus (AGN) activity, (3) we include heating of the intergalactic gas by the cosmic UV background, and (4) we tune some free parameters related to the astrophysical processes using a Markov chain Monte Carlo method. Our N-body simulations of dark matter halos have unprecedented box size and mass resolution (the largest simulation contains 550 billion particles in a 1.12 Gpc h-1 box), enabling the study of much smaller and rarer objects. The model was tuned to fit the luminosity functions of local galaxies and mass function of neutral hydrogen. Local observations, such as the Tully-Fisher relation, the size-magnitude relation of spiral galaxies, and the scaling relation between the bulge mass and black hole mass were well reproduced by the model. Moreover, the model also reproduced well the cosmic star formation history and redshift evolution of rest-frame K-band luminosity functions. The numerical catalog of the simulated galaxies and AGNs is publicly available on the web.
Detecting shock waves in cosmological smoothed particle hydrodynamics simulations
Pfrommer, C; Ensslin, T A; Jubelgas, M; Pfrommer, Christoph; Springel, Volker; Ensslin, Torsten A.; Jubelgas, Martin
2006-01-01
We develop a formalism for the identification and accurate estimation of the strength of structure formation shocks during cosmological smoothed particle hydrodynamics simulations. Shocks not only play a decisive role for the thermalization of gas in virialising structures but also for the acceleration of relativistic cosmic rays (CRs) through diffusive shock acceleration. Our formalism is applicable both to ordinary non-relativistic thermal gas, and to plasmas composed of CRs and thermal gas. To this end, we derive an analytical solution to the one-dimensional Riemann shock tube problem for a composite plasma of CRs and thermal gas. We apply our methods to study the properties of structure formation shocks in high-resolution hydrodynamic simulations of the LCDM model. We find that most of the energy is dissipated in weak internal shocks with Mach numbers M~2 which are predominantly central flow shocks or merger shock waves traversing halo centres. Collapsed cosmological structures are surrounded by external ...
Bothun, Greg
2011-10-01
Ever since Aristotle placed us, with certainty, in the Center of the Cosmos, Cosmological models have more or less operated from a position of known truths for some time. As early as 1963, for instance, it was ``known'' that the Universe had to be 15-17 billion years old due to the suspected ages of globular clusters. For many years, attempts to determine the expansion age of the Universe (the inverse of the Hubble constant) were done against this preconceived and biased notion. Not surprisingly when more precise observations indicated a Hubble expansion age of 11-13 billion years, stellar models suddenly changed to produce a new age for globular cluster stars, consistent with 11-13 billion years. Then in 1980, to solve a variety of standard big bang problems, inflation was introduced in a fairly ad hoc manner. Inflation makes the simple prediction that the net curvature of spacetime is zero (i.e. spacetime is flat). The consequence of introducing inflation is now the necessary existence of a dark matter dominated Universe since the known baryonic material could comprise no more than 1% of the necessary energy density to make spacetime flat. As a result of this new cosmological ``truth'' a significant world wide effort was launched to detect the dark matter (which obviously also has particle physics implications). To date, no such cosmological component has been detected. Moreover, all available dynamical inferences of the mass density of the Universe showed in to be about 20% of that required for closure. This again was inconsistent with the truth that the real density of the Universe was the closure density (e.g. Omega = 1), that the observations were biased, and that 99% of the mass density had to be in the form of dark matter. That is, we know the universe is two component -- baryons and dark matter. Another prevailing cosmological truth during this time was that all the baryonic matter was known to be in galaxies that populated our galaxy catalogs. Subsequent
Energy Technology Data Exchange (ETDEWEB)
Rodriguez-Meza, M A, E-mail: marioalberto.rodriguez@inin.gob.m [Instituto Avanzado de Cosmologia, IAC, Instituto Nacional de Investigaciones Nucleares, Col. Escandon, Apdo. Postal 18-1027, 11801 Mexico D.F. (Mexico)
2010-05-01
We study the large-scale structure formation in the Universe in the frame of scalar-tensor theories as an alternative to general relativity. We review briefly the Newtonian limit of non-minimally coupled scalar-tensor theories and the evolution equations of the N-body system that is appropriate to study large-scale structure formation in the Universe. We compute the power-spectrum of the universe at present epoch and show how the large-scale structure depends on the scalar field contribution.
Variable speed of light cosmology, primordial fluctuations and gravitational waves
Energy Technology Data Exchange (ETDEWEB)
Moffat, J.W. [Perimeter Institute for Theoretical Physics, Waterloo, Ontario (Canada); University of Waterloo, Department of Physics and Astronomy, Waterloo, Ontario (Canada)
2016-03-15
A variable speed of light (VSL) cosmology is described in which the causal mechanism of generating primordial perturbations is achieved by varying the speed of light in a primordial epoch. This yields an alternative to inflation for explaining the formation of the cosmic microwave background (CMB) and the large scale structure (LSS) of the universe. The initial value horizon and flatness problems in cosmology are solved. The model predicts primordial scalar and tensor fluctuation spectral indices n{sub s} = 0.96 and n{sub t} = - 0.04, respectively. We make use of the δN formalism to identify signatures of primordial nonlinear fluctuations, and this allows the VSL model to be distinguished from inflationary models. In particular, we find that the parameter f{sub NL} = 5 in the variable speed of light cosmology. The value of the parameter g{sub NL} evolves during the primordial era and shows a running behavior. (orig.)
Tomaschitz, R
1991-01-01
Keywords: Robertson-Walker cosmology, relativistic chaos, mixing, Bernoulli property, time evolution, quantum fields, quantum chaos, bound states, energy functional, hyperbolic manifold, deformation space, Kleinian group, limit set, Hausdorff dimension, convex hull.
Neves, J C S
2015-01-01
In the Nietzschean philosophy, the concept of force from physics is important to build one of its main concepts: the will to power. The concept of force, which Nietzsche found out in the Classical Mechanics, almost disappears in the physics of the XX century with the Quantum Field Theory and General Relativity. Is the Nietzschean world as contending forces, a Dionysian cosmology, possible in the current science?
Alvarez, Enrique
1985-01-01
Some cosmological consequences of the assumption that superstrings are more fundamental objects than ordinary local quantum fields are examined. We study, in particular, the dependence of both the string tension and the temperature of the primordial string soup on cosmic time. A particular scenario is proposed in which the universe undergoes a contracting ``string phase'' before the ordinary ``big bang,'' which according to this picture is nothing but the outcome of the transition from nonlocal to local fundamental physics.
Grant, E.; Murdin, P.
2000-11-01
During the early Middle Ages (ca 500 to ca 1130) scholars with an interest in cosmology had little useful and dependable literature. They relied heavily on a partial Latin translation of PLATO's Timaeus by Chalcidius (4th century AD), and on a series of encyclopedic treatises associated with the names of Pliny the Elder (ca AD 23-79), Seneca (4 BC-AD 65), Macrobius (fl 5th century AD), Martianus ...
Inflationary Perturbations and Precision Cosmology
Habib, S; Heitmann, K; Jungman, G; Habib, Salman; Heinen, Andreas; Heitmann, Katrin; Jungman, Gerard
2005-01-01
Inflationary cosmology provides a natural mechanism for the generation of primordial perturbations which seed the formation of observed cosmic structure and lead to specific signals of anisotropy in the cosmic microwave background radiation. In order to test the broad inflationary paradigm as well as particular models against precision observations, it is crucial to be able to make accurate predictions for the power spectrum of both scalar and tensor fluctuations. We present detailed calculations of these quantities utilizing direct numerical approaches as well as error-controlled uniform approximations, comparing with the (uncontrolled) traditional slow-roll approach. A simple extension of the leading-order uniform approximation yields results for the power spectra amplitudes, the spectral indices, and the running of spectral indices, with accuracy of the order of 0.1% - approximately the same level at which the transfer functions are known. Several representative examples are used to demonstrate these resul...
Formation of disorientations in dislocation structures during plastic deformation
DEFF Research Database (Denmark)
Pantleon, W.
2002-01-01
Disorientations developing during plastic deformation in dislocation structures are investigated. Based on expected mechanisms for the formation of different types of dislocation boundaries (statistical trapping of dislocations or differently activated slip systems) the formation of the disorient...
Coupled and Extended Quintessence: theoretical differences and structure formation
Pettorino, Valeria
2008-01-01
The case of a coupling between dark energy and matter (Coupled Quintessence) or gravity (Extended Quintessence) has recently attracted a deep interest and has been widely investigated both in the Einstein and in the Jordan frames (EF, JF), within scalar tensor theories. Focusing on the simplest models proposed so far, in this paper we study the relation existing between the two scenarios, isolating the Weyl scaling which allows to express them in the EF and JF. Moreover, we perform a comparative study of the behavior of linear perturbations in both scenarios, which turn out to behave in a markedly different way. In particular, while the clustering is enhanced in the considered CQ models with respect to the corresponding Quintessence ones where the coupling is absent and to the ordinary cosmologies with a Cosmological Constant and Cold Dark Matter (LCDM), structures in EQ models may grow slower. This is likely to have direct consequences on the inner properties of non-linear structures, like cluster concentrat...
Gardner, C L
2003-01-01
Cosmological variation of the fine structure constant $\\alpha$ due to the evolution of a spatially homogeneous ultra-light scalar field ($m \\sim H_0$) during the matter and $\\Lambda$ dominated eras is analyzed. Agreement of $\\Delta \\alpha/\\alpha$ with the value suggested by recent observations of quasar absorption lines is obtained by adjusting a single parameter, the coupling of the scalar field to matter. Asymptotically $\\alpha(t)$ in this model goes to a constant value $\\bar{\\alpha} \\approx \\alpha_0$ in the early radiation and the late $\\Lambda$ dominated eras. The coupling of the scalar field to (nonrelativistic) matter drives $\\alpha$ slightly away from $\\bar{\\alpha}$ in the epochs when the density of matter is important. Simultaneous agreement with the more restrictive bounds on the variation $|\\Delta \\alpha/\\alpha|$ from the Oklo natural fission reactor and from meteorite samples can be achieved if the mass of the scalar field is on the order of 0.5--0.6 $\\bar{H}$, where $\\bar{H} = \\Omega_\\Lambda^{1/2}...
Domain Structure of Black Hole Space-Times with a Cosmological Constant
Armas, Jay; Harmark, Troels
2011-01-01
We generalize the domain structure for stationary black hole space-times to include asymptotically de Sitter and Anti-de Sitter space-times. Given a set of commuting Killing vector fields of a space-time the domain structure lives on the submanifold of the orbit space on which at least one of the Killing vector fields has zero norm. In general the domain structure provides topological and geometrical invariants of black hole space-times that in specific cases have proven to be a crucial part of a full characterization leading to uniqueness theorems. In four and five dimensions the domain structure generalizes the rod structure. We examine in detail the domain structure for four, five, six and seven-dimensional black hole space-times including a very general class of spherically symmetric and static black hole space-times as well as the exact solutions for Kerr-(Anti)-de Sitter black holes. While for asymptotically Anti-de Sitter space-times the domain structures resemble that of asymptotically flat space-time...
Constraining Cosmological Models with Different Observations
Wei, J. J.
2016-07-01
cosmological probes, perhaps even out to redshifts much greater (z≫2) than those accessible using SNe Ia. However, the currently available sample of SNe Ia is still quite small. Our simulations have shown that if SLSNe Ic can be commonly detected in the future, they have the potential of greatly refining the measurement of cosmological parameters, particularly the parameter w_{de} of the dark energy equation of state. In Chapter 3, we focus on GRB cosmology. We firstly use GRBs as standard candles in constructing the Hubble diagram at redshifts beyond the current reach of SNe Ia observations. Then we measure high-z star formation rate (SFR) using GRBs. We confirm that the latest Swift sample of GRBs reveals an increasing evolution in the GRB rate relative to SFR at high redshifts. The observed discrepancy between the GRB rate and the SFR may be eliminated by assuming a cosmic evolution in metallicity. Assuming that the SFR and GRB rate are related via an evolving metallicity, we find that the GRB data constrain the slope of the high-z SFR to be -2.41_{-2.09}^{+1.87}. In addition, first stars can only form in structures that are suitably dense, which can be parameterized by the minimum dark matter halo mass M_{min}. M_{min} must play an important role in star formation. We can constrain M_{min}systems, and carefully introduce how to constrain cosmological parameters using these important data. We find that both ΛCDM and the R_{h}=ct Universe account for the lens observations quite well, though the precision of these measurements does not appear to be good enough to favor one model over the other. In Chapters 5 and 6, we use measurements of the galaxy-cluster angular diameter distances and 32 age measurements of passively evolving galaxies to test and compare the standard model (ΛCDM) and the R_{h}=ct Universe, respectively. We show that both models appear to account for these two data very well. However, because of the different number of free parameters in these models, we
Magnetic monopoles and relativistic cosmological models
Energy Technology Data Exchange (ETDEWEB)
Stein-Schabes, J.A.
1984-01-01
A dissertation is presented on magnetic monopoles and relativistic cosmological models. The maximum number density of monopoles in various astrophysical scenarios was investigated along with: the monopole flux in the galaxy, the allowed monopole abundance, and the formation of stable monopole orbits. Limits on the mass and lifetime of monopolonium were calculated. Boltzmann's equation was used to calculate the monopole abundance in a magnetic axisymmetric Bianchi I cosmological model, and a solution was found describing an axisymmetric Bianchi I magnetic cosmology with monopoles. New inhomogeneous solutions to Einstein's equations were found. Finally, stability and inflation in Kaluza-Klein cosmologies in d + D + 1 dimensions was studied.
A convenient set of comoving cosmological variables and their application
Martel, Hugo; Shapiro, Paul R.
1998-06-01
A set of cosmological variables, which we shall refer to as `supercomoving variables', are presented which are an alternative to the standard comoving variables, particularly useful for describing the gas dynamics of cosmic structure formation. For an ideal gas with a ratio of specific heats gamma=5/3, the supercomoving position, velocity and thermodynamic properties (i.e. density, temperature and pressure) of matter are constant in time in a uniform, isotropic, adiabatically expanding universe. Expressed in terms of these supercomoving variables, the non-relativistic, cosmological fluid conservation equations of the Newtonian approximation and the Poisson equation closely resemble their non-cosmological counterparts. This makes it possible to generalize non-cosmological results and techniques to address problems involving departures from uniform, adiabatic Hubble expansion in a straightforward way, for a wide range of cosmological models. These variables were initially introduced by Shandarin to describe structure formation in matter-dominated models. In this paper, we generalize supercomoving variables to models with a uniform contribution to the energy density corresponding to a non-zero cosmological constant, domain walls, cosmic strings, a non-clumping form of non-relativistic matter (e.g. massive neutrinos in the presence of primordial density fluctuations of small wavelength) or a radiation background. Each model is characterized by the value of the density parameter Omega_0 of the non-relativistic matter component in which density fluctuation is possible, and the density parameter Omega_X0 of the additional non-clumping component. For each type of non-clumping background, we identify families within which different values of Omega_0 and Omega_X0 lead to fluid equations and solutions in supercomoving variables which are independent of the cosmological parameters Omega_0 and Omega_X0. We also generalize the description to include the effects of non
Cosmology with Clusters of Galaxies
Borgani, Stefano
I reviewed in my talk recent results on the cosmological constraints that can be obtained by following the evolution of the population of galaxy clusters. Using extended samples of X-ray selected clusters, I have shown how they can be used to trace this evolution out to redshift z ~ 1. This evolution can be compared to model predictions and, therefore, to constrain cosmological parameters, such as the density parameter Omega_m and the shape and amplitude of the power spectrum of density perturbations. I have emphasized that the robustness of such constraints is quite sensitive to the relation between cluster collapsed mass and X-ray luminosity and temperature. This demonstrates that our ability to place significant constraints on cosmology using clusters of galaxies relies on our capability to understand the physical processes, which determine the properties of the intra-cluster medium (ICM). In this context, I have discussed how numerical simulations of cluster formation in cosmological context can play an important role in uderstanding the ICM physics. I have presented results from a very large cosmological simulation, which also includes the hydrodynamical description of the cosmic baryons, the processes of star formation and feedback from the stellar populations. The results from this simulation represent a unique baseline to describe the processes of formation and evolution of clusters of galaxies.
Cosmology with cosmic microwave background anisotropy
Indian Academy of Sciences (India)
Tarun Sourdeep
2006-10-01
Measurements of CMB anisotropy and, more recently, polarization have played a very important role in allowing precise determination of various parameters of the `standard' cosmological model. The expectation of the paradigm of inflation and the generic prediction of the simplest realization of inflationary scenario in the early Universe have also been established - `acausally' correlated initial perturbations in a flat, statistically isotropic Universe, adiabatic nature of primordial density perturbations. Direct evidence for gravitational instability mechanism for structure formation from primordial perturbations has been established. In the next decade, future experiments promise to strengthen these deductions and uncover the remaining crucial signature of inflation - the primordial gravitational wave background.
Cosmology emerging as the gauge structure of a nonlinear quantum system
Kam, Chon-Fai
2016-01-01
Berry phases and gauge structures in parameter spaces of quantum systems are the foundation of a broad range of quantum effects such as quantum Hall effects and topological insulators. The gauge structures of interacting many-body systems, which often present exotic features, are particularly interesting. While quantum systems are intrinsically linear due to the superposition principle, nonlinear quantum mechanics can arise as an effective theory for interacting systems (such as condensates of interacting bosons). Here we show that gauge structures similar to curved spacetime can arise in nonlinear quantum systems where the superposition principle breaks down. In the canonical formalism of the nonlinear quantum mechanics, the geometric phases of quantum evolutions can be formulated as the classical geometric phases of a harmonic oscillator that represents the Bogoliubov excitations. We find that the classical geometric phase can be described by a de Sitter universe. The fundamental frequency of the harmonic o...
Religion, theology and cosmology
Directory of Open Access Journals (Sweden)
John T. Fitzgerald
2013-10-01
Full Text Available Cosmology is one of the predominant research areas of the contemporary world. Advances in modern cosmology have prompted renewed interest in the intersections between religion, theology and cosmology. This article, which is intended as a brief introduction to the series of studies on theological cosmology in this journal, identifies three general areas of theological interest stemming from the modern scientific study of cosmology: contemporary theology and ethics; cosmology and world religions; and ancient cosmologies. These intersections raise important questions about the relationship of religion and cosmology, which has recently been addressed by William Scott Green and is the focus of the final portion of the article.
Cosmology and astrophysics 1992
Krauss, L M
1992-01-01
I review recent developments in cosmology and astrophysics relevant to particle physics, focussing on the following questions: What's new in 1992? What have we learned since the last ICHEP meeting in 1990? and What are the prospects for the future? AMong the topics explicitly discussed are: COBE, Large Scale Structure, and Dark Matter; Bib Bang Nucleosynthesis; the Solar Neutrino Problem; and High Energy Gamma Ray PHysics.
Nanoparticles from the gasphase formation, structure, properties
Lorke, Axel; Schmechel, Roland; Schulz, Christof
2012-01-01
This book offers a broad overview of the complete production and value chain from nanoparticle formation to integration in products and devices, and offers deep insight into the fabrication, characterization and application of nanoparticles from the gasphase.
Bojowald, Martin
1999-01-01
A complete model of the universe needs at least three parts: (1) a complete set of physical variables and dynamical laws for them, (2) the correct solution of the dynamical laws, and (3) the connection with conscious experience. In quantum cosmology, item (2) is the quantum state of the cosmos. Hartle and Hawking have made the `no-boundary' proposal, that the wavefunction of the universe is given by a path integral over all compact Euclidean 4-dimensional geometries and matter fields that hav...
Fabris, J C; Rodrigues, D C; Batista, C E M; Daouda, M H
2012-01-01
We review the difficulties of the generalized Chaplygin gas model to fit observational data, due to the tension between background and perturbative tests. We argue that such issues may be circumvented by means of a self-interacting scalar field representation of the model. However, this proposal seems to be successful only if the self-interacting scalar field has a non-canonical form. The latter can be implemented in Rastall's theory of gravity, which is based on a modification of the usual matter conservation law. We show that, besides its application to the generalized Chaplygin gas model, other cosmological models based on Rastall's theory have many interesting and unexpected new features.
Energy Technology Data Exchange (ETDEWEB)
Turner, M.S.
1992-05-01
Over the past year or so the research of our group has spanned many topics at the boundary of particle physics and cosmology. The major focus has been in the general areas of inflation, cosmological phase transitions, astrophysical constraints to particle physics theories, and dark matter/structure formation as it relates to particle physics. Narrative summaries of the research of the individual group members are given in this paper.
The Formation of Primordial Luminous Objects
Ripamont, E.; Abel, T.
2005-01-01
Abstract: In these lecture notes we review the current knowledge about the formation of the first luminous objects. We start from the cosmological context of hierarchical models of structure formation, and discuss the main physical processes which are believed to lead to primordial star formation,
Oñorbe, J; Domínguez-Tenreiro, R; Knebe, A; Serna, A
2011-01-01
Relaxed, massive galactic objects have been identified at redshifts z = 4;5; and 6 in hydrodynamical simulations run in a large cosmological volume. This allowed us to analyze the assembly patterns of the high mass end of the galaxy distribution at these high zs, by focusing on their structural and dynamical properties. Our simulations indicate that massive objects at high redshift already follow certain scaling relations. These relations define virial planes at the halo scale, whereas at the galactic scale they define intrinsic dynamical planes that are, however, tilted relative to the virial plane. Therefore, we predict that massive galaxies must lie on fundamental planes from their formation. We briefly discuss the physical origin of the tilt in terms the physical processes underlying massive galaxy formation at high z, in the context of a two-phase galaxy formation scenario. Specifically, we have found that it lies on the different behavior of the gravitationally heated gas as compared with cold gas previ...
Physical and Relativistic Numerical Cosmology
Directory of Open Access Journals (Sweden)
Peter Anninos
1998-01-01
Full Text Available In order to account for the observable Universe, any comprehensive theory or model of cosmology must draw from many disciplines of physics, including gauge theories of strong and weak interactions, the hydrodynamics and microphysics of baryonic matter, electromagnetic fields, and spacetime curvature, for example. Although it is difficult to incorporate all these physical elements into a single complete model of our Universe, advances in computing methods and technologies have contributed significantly towards our understanding of cosmological models, the Universe, and astrophysical processes within them. A sample of numerical calculations addressing specific issues in cosmology are reviewed in this article: from the Big Bang singularity dynamics to the fundamental interactions of gravitational waves; from the quark--hadron phase transition to the large scale structure of the Universe. The emphasis, although not exclusively, is on those calculations designed to test different models of cosmology against the observed Universe.
Coasting cosmologies with time dependent cosmological constant
Pimentel, L O; Pimentel, Luis O.
1999-01-01
The effect of a time dependent cosmological constant is considered in a family of scalar tensor theories. Friedmann-Robertson-Walker cosmological models for vacumm and perfect fluid matter are found. They have a linear expansion factor, the so called coasting cosmology, the gravitational "constant" decreace inversely with time; this model satisfy the Dirac hipotesis. The cosmological "constant" decreace inversely with the square of time, therefore we can have a very small value for it at present time.
Hinterbichler, Kurt; Levy, Aaron; Matas, Andrew
2011-01-01
The symmetron is a scalar field associated with the dark sector whose coupling to matter depends on the ambient matter density. The symmetron is decoupled and screened in regions of high density, thereby satisfying local constraints from tests of gravity, but couples with gravitational strength in regions of low density, such as the cosmos. In this paper we derive the cosmological expansion history in the presence of a symmetron field, tracking the evolution through the inflationary, radiation- and matter-dominated epochs, using a combination of analytical approximations and numerical integration. For a broad range of initial conditions at the onset of inflation, the scalar field reaches its symmetry-breaking vacuum by the present epoch, as assumed in the local analysis of spherically-symmetric solutions and tests of gravity. For the simplest form of the potential, the energy scale is too small for the symmetron to act as dark energy, hence we must add a cosmological constant to drive late-time cosmic acceler...
Agarwal, Nishant; Khoury, Justin; Trodden, Mark
2009-01-01
We develop a fully covariant, well-posed 5D effective action for the 6D cascading gravity brane-world model, and use this to study cosmological solutions. We obtain this effective action through the 6D decoupling limit, in which an additional scalar degree mode, \\pi, called the brane-bending mode, determines the bulk-brane gravitational interaction. The 5D action obtained this way inherits from the sixth dimension an extra \\pi self-interaction kinetic term. We compute appropriate boundary terms, to supplement the 5D action, and hence derive fully covariant junction conditions and the 5D Einstein field equations. Using these, we derive the cosmological evolution induced on a 3-brane moving in a static bulk. We study the strong- and weak-coupling regimes analytically in this static ansatz, and perform a complete numerical analysis of our solution. Although the cascading model can generate an accelerating solution in which the \\pi field comes to dominate at late times, the presence of a critical singularity prev...
Energy Technology Data Exchange (ETDEWEB)
Chimento, L P; Forte, M [Physics Department, UBA, 1428 Buenos Aires (Argentina); Devecchi, F P; Kremer, G M; Ribas, M O; Samojeden, L L, E-mail: kremer@fisica.ufpr.br, E-mail: devecchi@fisica.ufpr.br, E-mail: chimento@df.uba.ar [Physics Department, UFPR, 81531-990 Curitiba (Brazil)
2011-07-08
In this work we review if fermionic sources could be responsible for accelerated periods during the evolution of a FRW universe. In a first attempt, besides the fermionic source, a matter constituent would answer for the decelerated periods. The coupled differential equations that emerge from the field equations are integrated numerically. The self-interaction potential of the fermionic field is considered as a function of the scalar and pseudo-scalar invariants. It is shown that the fermionic field could behave like an inflaton field in the early universe, giving place to a transition to a matter dominated (decelerated) period. In a second formulation we turn our attention to analytical results, specifically using the idea of form-invariance transformations. These transformations can be used for obtaining accelerated cosmologies starting with conventional cosmological models. Here we reconsider the scalar field case and extend the discussion to fermionic fields. Finally we investigate the role of a Dirac field in a Brans-Dicke (BD) context. The results show that this source, in combination with the BD scalar, promote a final eternal accelerated era, after a matter dominated period.
Newtonian cosmology - Problems of cosmological didactics
Energy Technology Data Exchange (ETDEWEB)
Skarzynski, E.
1983-03-01
The article presents different methods of model construction in Newtonian cosmology. Newtonian cosmology is very convenient for discussion of local problems, so the problems presented are of great didactic importance. The constant k receives a new interpretation in relativistic cosmology as the curvature of the space in consequence of the greater informational capacity of Riemann space in comparison to Euclidean space. 11 references.
Murphy, Michael T.; Malec, Adrian L.; Prochaska, J. Xavier
2016-09-01
The strongest transitions of Zn and Cr II are the most sensitive to relative variations in the fine-structure constant (Δα/α) among the transitions commonly observed in quasar absorption spectra. They also lie within just 40 Å of each other (rest frame), so they are resistant to the main systematic error affecting most previous measurements of Δα/α: long-range distortions of the wavelength calibration. While Zn and Cr II absorption is normally very weak in quasar spectra, we obtained high signal-to-noise, high-resolution echelle spectra from the Keck and Very Large Telescopes of nine rare systems where it is strong enough to constrain Δα/α from these species alone. These provide 12 independent measurements (three quasars were observed with both telescopes) at redshifts 1.0-2.4, 11 of which pass stringent reliability criteria. These 11 are all consistent with Δα/α = 0 within their individual uncertainties of 3.5-13 parts per million (ppm), with a weighted mean Δα/α = 0.4 ± 1.4stat ± 0.9sys ppm (1σ statistical and systematic uncertainties), indicating no significant cosmological variations in α. This is the first statistical sample of absorbers that is resistant to long-range calibration distortions (at the <1 ppm level), with a precision comparable to previous large samples of ˜150 (distortion-affected) absorbers. Our systematic error budget is instead dominated by much shorter range distortions repeated across echelle orders of individual spectra.
Abate, Alexandra; Bridle, Sarah; Teodoro, Luis F. A.; Warren, Michael S.; Hendry, Martin
2008-10-01
We investigate methods to best estimate the normalization of the mass density fluctuation power spectrum (σ8) using peculiar velocity data from a survey like the six-degree Field Galaxy Velocity Survey (6dFGSv). We focus on two potential problems: (i) biases from non-linear growth of structure and (ii) the large number of velocities in the survey. Simulations of ΛCDM-like models are used to test the methods. We calculate the likelihood from a full covariance matrix of velocities averaged in grid cells. This simultaneously reduces the number of data points and smoothes out non-linearities which tend to dominate on small scales. We show how the averaging can be taken into account in the predictions in a practical way, and show the effect of the choice of cell size. We find that a cell size can be chosen that significantly reduces the non-linearities without significantly increasing the error bars on cosmological parameters. We compare our results with those from a principal components analysis following Watkins et al. and Feldman et al. to select a set of optimal moments constructed from linear combinations of the peculiar velocities that are least sensitive to the non-linear scales. We conclude that averaging in grid cells performs equally well. We find that for a survey such as 6dFGSv we can estimate σ8 with less than 3 per cent bias from non-linearities. The expected error on σ8 after marginalizing over Ωm is approximately 16 per cent.
Gas Price Formation, Structure and Dynamics
Energy Technology Data Exchange (ETDEWEB)
Davoust, R.
2008-07-01
Our study, focused on gas prices in importing economies, describes wholesale prices and retail prices, their evolution for the last one or two decades, the economic mechanisms of price formation. While an international market for oil has developed thanks to moderate storage and transportation charges, these costs are much higher in the case of natural gas, which involves that this energy is still traded inside continental markets. There are three regional gas markets around the world: North America (the United States, importing mainly from Canada and Mexico), Europe (importing mainly from Russia, Algeria and Norway) and Asia (Japan, Korea, Taiwan, China and India, importing mainly from Indonesia, Malaysia and Australia). A market for gas has also developed in South America, but it will not be covered by our paper. In Europe and the US, due to large domestic resources and strong grids, natural gas is purchased mostly through pipelines. In Northeast Asia, there is a lack of such infrastructures, so imported gas takes mainly the form of Liquefied Natural Gas (LNG), shipped on maritime tankers. Currently, the LNG market is divided into two zones: the Atlantic Basin (Europe and US) and the Pacific Basin (Asia and the Western Coast of America). For the past few years, the Middle East and Africa have tended to be crucial suppliers for both LNG zones. Gas price formation varies deeply between regional markets, depending on several structural factors (regulation, contracting practises, existence of a spot market, liquidity, share of imports). Empirically, the degree of market opening (which corresponds to the seniority in the liberalization process) seems to be the primary determinant of pricing patterns. North America has the most liberalized and well-performing natural gas industry in the world. Gas pricing is highly competitive and is based on supply/demand balances. Spot and futures markets are developed. The British gas sector is also deregulated and thus follows a
Relativistic Fractal Cosmologies
Ribeiro, Marcelo B
2009-01-01
This article reviews an approach for constructing a simple relativistic fractal cosmology whose main aim is to model the observed inhomogeneities of the distribution of galaxies by means of the Lemaitre-Tolman solution of Einstein's field equations for spherically symmetric dust in comoving coordinates. This model is based on earlier works developed by L. Pietronero and J.R. Wertz on Newtonian cosmology, whose main points are discussed. Observational relations in this spacetime are presented, together with a strategy for finding numerical solutions which approximate an averaged and smoothed out single fractal structure in the past light cone. Such fractal solutions are shown, with one of them being in agreement with some basic observational constraints, including the decay of the average density with the distance as a power law (the de Vaucouleurs' density power law) and the fractal dimension in the range 1 <= D <= 2. The spatially homogeneous Friedmann model is discussed as a special case of the Lemait...
Holography from quantum cosmology
Rashki, M
2014-01-01
The Weyl-Wigner-Groenewold-Moyal formalism of deformation quantization is applied to the closed Friedmann-Lema\\^itre-Robertson-Walker (FLRW) cosmological model. We show that the phase space average for the surface of the apparent horizon is quantized in units of the Planck's surface, and that the total entropy of the universe is also quantized. Taking into account these two concepts, it is shown that 't Hooft conjecture on the cosmological holographic principle (CHP) in radiation and dust dominated quantum universes is satisfied as a manifestation of quantization. This suggests that the entire universe (not only inside the apparent horizon) can be seen as a two-dimensional information structure encoded on the apparent horizon.
Cosmological extrapolation of MOND
Kiselev, V V
2011-01-01
Regime of MOND, which is used in astronomy to describe the gravitating systems of island type without the need to postulate the existence of a hypothetical dark matter, is generalized to the case of homogeneous distribution of usual matter by introducing a linear dependence of the critical acceleration on the size of region under consideration. We show that such the extrapolation of MOND in cosmology is consistent with both the observed dependence of brightness on the redshift for type Ia supernovae and the parameters of large-scale structure of Universe in the evolution, that is determined by the presence of a cosmological constant, the ordinary matter of baryons and electrons as well as the photon and neutrino radiation without any dark matter.
Cosmological simulations using a static scalar-tensor theory
Energy Technology Data Exchange (ETDEWEB)
RodrIguez-Meza, M A [Depto. de Fisica, Instituto Nacional de Investigaciones Nucleares, Col. Escandon, Apdo. Postal 18-1027, 11801 Mexico D.F (Mexico); Gonzalez-Morales, A X [Departamento Ingenierias, Universidad Iberoamericana, Prol. Paseo de la Reforma 880 Lomas de Santa Fe, Mexico D.F. Mexico (Mexico); Gabbasov, R F [Depto. de Fisica, Instituto Nacional de Investigaciones Nucleares, Col. Escandon, Apdo. Postal 18-1027, 11801 Mexico D.F (Mexico); Cervantes-Cota, Jorge L [Depto. de Fisica, Instituto Nacional de Investigaciones Nucleares, Col. Escandon, Apdo. Postal 18-1027, 11801 Mexico D.F (Mexico)
2007-11-15
We present {lambda}CDM N-body cosmological simulations in the framework of of a static general scalar-tensor theory of gravity. Due to the influence of the non-minimally coupled scalar field, the gravitational potential is modified by a Yukawa type term, yielding a new structure formation dynamics. We present some preliminary results and, in particular, we compute the density and velocity profiles of the most massive group.
Energy Technology Data Exchange (ETDEWEB)
Goernitz, T.
1988-06-01
In the first part of the present work, I treated the global structure of space by ur-theoretic considerations and also introduced a smallest physically accessible length. This enterprise led to a cosmography, a description of a cosmic model at a fixed time. Of course, there must also be a description of its time development, of the change of the number of urs with time. There has been no a priori assumption for this process. Here an attempt is made to treat this evolution by means of general relativity and to compare the result with observations. This means that general relativity is used as an existing and adequate theory; it is hoped that general relativity can be reconstructed from ur theory.
The formation of matter structures in the Universe
Institute of Scientific and Technical Information of China (English)
陶必修
2002-01-01
We discuss the formation of matter structures in the Universe, and show that spheri cal Higgs bosonic membraneswere possibly produced homogeneously in the early Universe and expanded rapidly. After a period of evolution, thecomposition of the membranes began to change, the massive particles replaced the imaginary Higgs bosons through theHiggs mechanism, while the energy came from the Universe expansion. After that, the membranes reduced their speedand broke into pieces, which became the seeds of matter structures. It is proven that microscopic principles may affectthe formation of large-scale structures, and the formation of structures such as cosmic foam is also possible.
Three Dimensional Structure of Relativistic Jet Formation
Porth, Oliver
2012-01-01
Using high resolution adaptive mesh refinement simulations in 3D, we investigate the formation of relativistic jets from rotating magnetospheres. Here, we focus on the development of non-axisymmetric modes due to internal and external perturbations to the jet. These originate either from injection of perturbations with the flow or from a clumpy external medium. In the helical field geometry of the accelerating jet, the m=1 to m=5 modes are analyzed and found to saturate at a height of \\sim 20 inner disk radii. We also discuss a means to control artificial amplification of m = 4 noise in the cartesian simulation geometry. Strong perturbations due to an in-homogeneous ambient medium lead to flow configurations with increased magnetic pitch and thus indicate a self-stabilization of the jet formation mechanism.
Negative Energy Cosmology and the Cosmological Constant
Prokopec, Tomislav
2011-01-01
It is well known that string theories naturally compactify on anti-de Sitter spaces, and yet cosmological observations show no evidence of a negative cosmological constant in the early Universe's evolution. In this letter we present two simple nonlocal modifications of the standard Friedmann cosmology that can lead to observationally viable cosmologies with an initial (negative) cosmological constant. The nonlocal operators we include are toy models for the quantum cosmological backreaction. In Model I an initial quasiperiodic oscillatory epoch is followed by inflation and a late time matter era, representing a dark matter candidate. The backreaction in Model II quickly compensates the negative cosmological term such that the Ricci curvature scalar rapidly approaches zero, and the Universe ends up in a late time radiation era.
On the importance of cotranscriptional RNA structure formation.
Lai, Daniel; Proctor, Jeff R; Meyer, Irmtraud M
2013-11-01
The expression of genes, both coding and noncoding, can be significantly influenced by RNA structural features of their corresponding transcripts. There is by now mounting experimental and some theoretical evidence that structure formation in vivo starts during transcription and that this cotranscriptional folding determines the functional RNA structural features that are being formed. Several decades of research in bioinformatics have resulted in a wide range of computational methods for predicting RNA secondary structures. Almost all state-of-the-art methods in terms of prediction accuracy, however, completely ignore the process of structure formation and focus exclusively on the final RNA structure. This review hopes to bridge this gap. We summarize the existing evidence for cotranscriptional folding and then review the different, currently used strategies for RNA secondary-structure prediction. Finally, we propose a range of ideas on how state-of-the-art methods could be potentially improved by explicitly capturing the process of cotranscriptional structure formation.
Boguna, Marian; Krioukov, Dmitri
2013-01-01
Networks often represent systems that do not have a long history of studies in traditional fields of physics, albeit there are some notable exceptions such as energy landscapes and quantum gravity. Here we consider networks that naturally arise in cosmology. Nodes in these networks are stationary observers uniformly distributed in an expanding open FLRW universe with any scale factor, and two observers are connected if one can causally influence the other. We show that these networks are growing Lorentz-invariant graphs with power-law distributions of node degrees. New links in these networks not only connect new nodes to existing ones, but also appear at a certain rate between existing nodes, as they do in many complex networks.
Longair, Malcolm S
2008-01-01
This second edition of Galaxy Formation is an up-to-date text on astrophysical cosmology, expounding the structure of the classical cosmological models from a contemporary viewpoint. This forms the background to a detailed study of the origin of structure and galaxies in the Universe. The derivations of many of the most important results are derived by simple physical arguments which illuminate the results of more advanced treatments. A very wide range of observational data is brought to bear upon these problems, including the most recent results from WMAP, the Hubble Space Telescope, galaxy surveys like the Sloan Digital Sky Survey and the 2dF Galaxy Redshift Survey, studies of Type 1a supernovae, and many other observations.
Galaxy alignments: Observations and impact on cosmology
Kirk, Donnacha; Hoekstra, Henk; Joachimi, Benjamin; Kitching, Thomas D; Mandelbaum, Rachel; Sifón, Cristóbal; Cacciato, Marcello; Choi, Ami; Kiessling, Alina; Leonard, Adrienne; Rassat, Anais; Schäfer, Björn Malte
2015-01-01
Galaxy shapes are not randomly oriented, rather they are statistically aligned in a way that can depend on formation environment, history and galaxy type. Studying the alignment of galaxies can therefore deliver important information about the astrophysics of galaxy formation and evolution as well as the growth of structure in the Universe. In this review paper we summarise key measurements of intrinsic alignments, divided by galaxy type, scale and environment. We also cover the statistics and formalism necessary to understand the observations in the literature. With the emergence of weak gravitational lensing as a precision probe of cosmology, galaxy alignments took on an added importance because they can mimic cosmic shear, the effect of gravitational lensing by large-scale structure on observed galaxy shapes. This makes intrinsic alignments an important systematic effect in weak lensing studies. We quantify the impact of intrinsic alignments on cosmic shear surveys and finish by reviewing practical mitigat...
Vankov, A
1998-01-01
The suggested alternative cosmology is based on the idea of barion symmetric universe, in which our home universe is a representative of multitude of typical matter and antimatter universes. This alternative concept gives a physically reasonable explanation of all major problems of the Standard Cosmological Model. Classification Code MSC: Cosmology 524.8 Key words: standard cosmological model, alternative cosmology, barionic symmetry, typical universe, quasars, cosmic rays.
Hopkins, Philip F.; Cox, Thomas J.; Kereš, Dušan; Hernquist, Lars
2008-04-01
We develop and test a model for the cosmological role of mergers in the formation and quenching of red, early-type galaxies. By combining theoretically well-constrained halo and subhalo mass functions as a function of redshift and environment with empirical halo occupation models, we predict the distribution of mergers as a function of redshift, environment, and physical galaxy properties. Making the simple Ansatz that star formation is quenched after a gas-rich, spheroid-forming major merger, we demonstrate that this naturally predicts the turnover in the efficiency of star formation and baryon fractions in galaxies at ~L* (without any parameters tuned to this value), as well as the observed mass functions and mass density of red galaxies as a function of redshift, the formation times of early-type galaxies as a function of mass, and the fraction of quenched galaxies as a function of galaxy and halo mass, environment, and redshift. Comparing our model to a variety of semianalytic models in which quenching is primarily driven by halo mass considerations or secular/disk instabilities, we demonstrate that our model makes unique and robust qualitative predictions for a number of observables, including the bivariate red fraction as a function of galaxy and halo mass, the density of passive galaxies at high redshifts, the emergence/evolution of the color-morphology-density relations at high redshift, and the fraction of disky/boxy (or cusp/core) spheroids as a function of mass. In each case, the observations favor a model in which some mechanism quenches future star formation after a major merger builds a massive spheroid. Models where quenching is dominated by a halo mass threshold fail to match the behavior of the bivariate red fractions, predict too low a density of passive galaxies at high redshift, and overpredict by an order of magnitude the mass of the transition from disky to boxy ellipticals. Models driven by secular disk instabilities also qualitatively
Formation of bulk refractive index structures
Energy Technology Data Exchange (ETDEWEB)
Potter, Jr., Barrett George; Potter, Kelly Simmons; Wheeler, David R.; Jamison, Gregory M.
2003-07-15
A method of making a stacked three-dimensional refractive index structure in photosensitive materials using photo-patterning where first determined is the wavelength at which a photosensitive material film exhibits a change in refractive index upon exposure to optical radiation, a portion of the surfaces of the photosensitive material film is optically irradiated, the film is marked to produce a registry mark. Multiple films are produced and aligned using the registry marks to form a stacked three-dimensional refractive index structure.
Constraints on cosmological models from lens redshift data
Cao, Shuo
2011-01-01
Strong lensing has developed into an important astrophysical tool for probing both cosmology and galaxies (their structures, formations, and evolutions). Now several hundreds of strong lens systems produced by massive galaxies have been discovered, which may form well-defined samples useful for statistical analyses. To collect a relatively complete lens redshift data from various large systematic surveys of gravitationally lensed quasars and check the possibility to use it as a future complementarity to other cosmological probes. We use the distribution of gravitationally-lensed image separations observed in the Cosmic Lens All-Sky Survey (CLASS), the PMN-NVSS Extragalactic Lens Survey (PANELS), the Sloan Digital Sky Survey (SDSS) and other surveys, considering a singular isothermal ellipsoid (SIE) model for galactic potentials as well as improved new measurements of the velocity dispersion function of galaxies based on the SDSS DR5 data and recent semi-analytical modeling of galaxy formation, to constrain tw...
Structure and Mechanism of a Pentameric Formate Channel
Energy Technology Data Exchange (ETDEWEB)
Waight, A.; Love, J; Wang, D
2010-01-01
Formate transport across the inner membrane is a critical step in anaerobic bacterial respiration. Members of the formate/nitrite transport protein family function to shuttle substrate across the cytoplasmic membrane. In bacterial pathogens, the nitrite transport protein is involved in protecting bacteria from peroxynitrite released by host macrophages. We have determined the 2.13-{angstrom} structure of the formate channel FocA from Vibrio cholerae, which reveals a pentamer in which each monomer possesses its own substrate translocation pore. Unexpectedly, the fold of the FocA monomer resembles that found in water and glycerol channels. The selectivity filter in FocA consists of a cytoplasmic slit and a central constriction ring. A 2.5-{angstrom} high-formate structure shows two formate ions bound to the cytoplasmic slit via both hydrogen bonding and van der Waals interactions, providing a structural basis for the substrate selectivity of the channel.
Cosmological parameter estimation from weak lensing. The case of $\\Omega_m$, $\\sigma_8$
Castañeda, Leonardo
2014-01-01
Propagation of light in the universe with structure which amplify and modify the shape of distant galaxies, producing a correlation between nearby and distant density of galaxies, is a phenomena very important in cosmology for determining cosmological parameters as the {\\Lambda}CDM. In this paper, we discuss the estimation of the two point correlation function in the gravitational shear produced by the large scale structure. We will compare the result given by gravitational lensing with the use of another alternatives such as a counting galaxy clusters. We also describe some software used in the gravitational lensing study for determining mass distribution models and images formation.
Cosmological surveys with multi-object spectrographs
Colless, Matthew
2016-01-01
Multi-object spectroscopy has been a key technique contributing to the current era of 'precision cosmology'. From the first exploratory surveys of the large-scale structure and evolution of the universe to the current generation of superbly detailed maps spanning a wide range of redshifts, multi-object spectroscopy has been a fundamentally important tool for mapping the rich structure of the cosmic web and extracting cosmological information of increasing variety and precision. This will continue to be true for the foreseeable future, as we seek to map the evolving geometry and structure of the universe over the full extent of cosmic history in order to obtain the most precise and comprehensive measurements of cosmological parameters. Here I briefly summarize the contributions that multi-object spectroscopy has made to cosmology so far, then review the major surveys and instruments currently in play and their prospects for pushing back the cosmological frontier. Finally, I examine some of the next generation ...
MPS/CAS Partner Group on Cosmology
Institute of Scientific and Technical Information of China (English)
Jing Yipeng; Gerhard B(o)rner
2004-01-01
@@ The Partner Group does research in cosmology, focussing on the quantitative modeling of the structure and evolution of galaxies and galaxy clusters, the pattern of galaxies and of larger structures.
Semiconductor structure and recess formation etch technique
Energy Technology Data Exchange (ETDEWEB)
Lu, Bin; Sun, Min; Palacios, Tomas Apostol
2017-02-14
A semiconductor structure has a first layer that includes a first semiconductor material and a second layer that includes a second semiconductor material. The first semiconductor material is selectively etchable over the second semiconductor material using a first etching process. The first layer is disposed over the second layer. A recess is disposed at least in the first layer. Also described is a method of forming a semiconductor structure that includes a recess. The method includes etching a region in a first layer using a first etching process. The first layer includes a first semiconductor material. The first etching process stops at a second layer beneath the first layer. The second layer includes a second semiconductor material.
Primmorphs from seven marine sponges : formation and structure
Sipkema, D.; Wielink, van R.; Lammeren, van A.A.M.; Tramper, J.; Osinga, R.; Wijffels, R.H.
2003-01-01
Primmorphs were obtained from seven different marine sponges: Stylissa massa, Suberites domuncula, Pseudosuberites aff. andrewsi, Geodia cydonium, Axinella polypoides, Halichondria panicea and Haliclona oculata. The formation process and the ultra structure of primmorphs were studied. A positive
Primmorphs from seven marine sponges : formation and structure
Sipkema, D.; Wielink, van R.; Lammeren, van A.A.M.; Tramper, J.; Osinga, R.; Wijffels, R.H.
2003-01-01
Primmorphs were obtained from seven different marine sponges: Stylissa massa, Suberites domuncula, Pseudosuberites aff. andrewsi, Geodia cydonium, Axinella polypoides, Halichondria panicea and Haliclona oculata. The formation process and the ultra structure of primmorphs were studied. A positive cor
Formation and Structure of Boron Nitride Nanotubes
Institute of Scientific and Technical Information of China (English)
Jiang ZHANG; Zongquan LI; Jin XU
2005-01-01
Boron nitride (BN) nanotubes were simply synthesized by heating well-mixed boric acid, urea and iron nitrate powders at 1000℃. A small amount of BN nanowires was also obtained in the resultants. The morphological and structural characters of the BN nanostructures were studied using transmission electron microscopy. Other novel BN nanostructures, such as Y-junction nanotubes and bamboo-like nanotubes, were simultaneously observed. The growth mechanism of the BN nanotubes was discussed briefly.
A microscopic, non-equilibrium, statistical field theory for cosmic structure formation
Bartelmann, Matthias; Fabis, Felix; Berg, Daniel; Kozlikin, Elena; Lilow, Robert; Viermann, Celia
2016-04-01
Building upon the recent pioneering work by Mazenko and by Das and Mazenko, we develop a microscopic, non-equilibrium, statistical field theory for initially correlated canonical ensembles of classical microscopic particles obeying Hamiltonian dynamics. Our primary target is cosmic structure formation, where initial Gaussian correlations in phase space are believed to be set by inflation. We give an exact expression for the generating functional of this theory and work out suitable approximations. We specify the initial correlations by a power spectrum and derive general expressions for the correlators of the density and the response field. We derive simple closed expressions for the lowest-order contributions to the nonlinear cosmological power spectrum, valid for arbitrary wave numbers. We further calculate the bispectrum expected in this theory within these approximations and the power spectrum of cosmic density fluctuations to first order in the gravitational interaction, using a recent improvement of the Zel’dovich approximation. We show that, with a modification motivated by the adhesion approximation, the nonlinear growth of the density power spectrum found in numerical simulations of cosmic structure evolution is reproduced well to redshift zero and for arbitrary wave numbers even within first-order perturbation theory. Our results present the first fully analytic calculation of the nonlinear power spectrum of cosmic structures.
Energy Technology Data Exchange (ETDEWEB)
Weinstein, M
2003-11-19
This paper discusses the problem of inflation in the context of Friedmann-Robertson-Walker Cosmology. We show how, after a simple change of variables, one can quantize the problem in a way which parallels the classical discussion. The result is that two of the Einstein equations arise as exact equations of motion; one of the usual Einstein equations (suitably quantized) survives as a constraint equation to be imposed on the space of physical states. However, the Friedmann equation, which is also a constraint equation and which is the basis of the Wheeler-DeWitt equation, acquires a welcome quantum correction that becomes significant for small scale factors. We then discuss the extension of this result to a full quantum mechanical derivation of the anisotropy ({delta}{rho}/{rho}) in the cosmic microwave background radiation and the possibility that the extra term in the Friedmann equation could have observable consequences. Finally, we suggest interesting ways in which these techniques can be generalized to cast light on the question of chaotic or eternal inflation. In particular, we suggest that one can put an experimental bound on how far away a universe with a scale factor very different from our own must be, by looking at its effects on our CMB radiation.
Aref'eva, I. Ya.; Volovich, I. V.
2011-08-01
Classical versions of the Big Bang cosmological models of the universe contain a singularity at the start of time, hence the time variable in the field equations should run over a half-line. Nonlocal string field theory equations with infinite number of derivatives are considered and an important difference between nonlocal operators on the whole real line and on a half-line is pointed out. We use the heat equation method and show that on the half-line in addition to the usual initial data a new arbitrary function (external source) occurs that we call the daemon function. The daemon function governs the evolution of the universe similar to Maxwell's demon in thermodynamics. The universe and multiverse are open systems interacting with the daemon environment. In the simplest case the nonlocal scalar field reduces to the usual local scalar field coupled with an external source which is discussed in the stochastic approach to inflation. The daemon source can help to get the chaotic inflation scenario with a small scalar field.
The formation of the first cosmic structures and the physics of the z~20 Universe
O'Leary, Ryan M
2012-01-01
We preform a suite of cosmological simulations in the LCDM paradigm of the formation of the first structures in the Universe prior to astrophysical reheating and reionization (15<~z<200). These are the first simulations initialized in a manner that self consistently accounts for the impact of pressure on the rate of growth of modes, temperature fluctuations in the gas, and the dark matter-baryon supersonic velocity difference. Even with these improvements, these are still difficult times to simulate accurately as the Jeans length of the cold intergalactic gas must be resolved while also capturing a representative sample of the Universe. Our simulations support the finding of recent studies that the dark matter-baryon velocity difference has a surprisingly large impact on the accretion of gas onto the first star-forming minihalos (with masses of ~10^6 Msun). In fact, the halo gas is often significantly downwind of such halos and with lower densities, which delays the formation of the first stars in most ...
Structure and cluster formation in granular media
Indian Academy of Sciences (India)
S Luding
2005-06-01
The two most important phenomena at the basis of granular media are excluded volume and dissipation. The former is captured by the hard sphere model and is responsible for, e.g., crystallization, the latter leads to interesting structures like clusters in non-equilibrium dynamical, freely cooling states. The freely cooling system is examined concerning the energy decay and the cluster evolution in time. Corrections for crystallization and multi-particle contacts are provided, which become more and more important with increasing density.
Competing stability modes in vortex structure formation
Garrett, Stephen; Gostelow, J. Paul; Rona, Aldo; McMullan, W. Andrew
2015-11-01
Nose cones and turbine blades have rotating components and represent very practical geometries for which the behavior of vortex structures is not completely understood. These two different physical cases demonstrate a common theme of competition between mode and vortex types. The literature concerning boundary-layer transition over rotating cones presents clear evidence of an alternative instability mode leading to counter-rotating vortex pairs, consistent with a centrifugal instability. This is in contrast to co-rotating vortices present over rotating disks that arise from crossflow effects. It is demonstrated analytically that this mode competes with the crossflow mode and is dominant only over slender cones. Predictions are aligned with experimental measurements over slender cones. Concurrent experimental work on the flow over swept cylinders shows that organized fine-scale streamwise vorticity occurs more frequently on convex surfaces than is appreciated. The conventional view of purely two-dimensional laminar boundary layers following blunt leading edges is not realistic and such boundary layers need to be treated three-dimensionally, particularly when sweep is present. The vortical structures are counter-rotating for normal cylinders and co-rotating under high sweep conditions. Crossflow instabilities may have a major role to play in the transition process but the streamline curvature mode is still present, and seemingly unchanged, when the boundary layer becomes turbulent.
Tipler, Frank J.
1996-09-01
I show that if Newtonian gravity is formulated in geometrical language, then Newtonian cosmology is as rigorous as relativistic cosmology. In homogeneous and isotropic universes, the geodesic deviation equation in Newtonian cosmology is proven to be exactly the same as the geodesic deviation equation in relativistic Friedmann cosmologies. This equation can be integrated to yield a constraint equation formally identical to the Friedmann equation. However, Newtonian cosmology is more general than Friedmann cosmology: by generalizing the flat-space Newtonian gravity force law to Riemannian metrics, I show that ever-expanding and recollapsing universes are allowed in any homogeneous and isotropic spatial geometry.
The First Generation of Stars in Lambda-CDM Cosmology
Energy Technology Data Exchange (ETDEWEB)
Gao, Liang; /Durham U. /Garching, Max Planck Inst.; Abel, T.; /KIPAC, Menlo Park; Frenk, C.S.; Jenkins, A.; /Durham U.; Springel, V.; /Garching, Max Planck Inst.; Yoshida,; /Nagoya U.
2006-10-10
We have performed a large set of high-resolution cosmological simulations using smoothed particle hydrodynamics (SPH) to study the formation of the first luminous objects in the {Lambda}CDM cosmology. We follow the collapse of primordial gas clouds in eight early structures and document the scatter in the properties of the first star-forming clouds. Our first objects span formation redshifts from z {approx} 10 to z {approx} 50 and cover an order of magnitude in halo mass. We find that the physical properties of the central star-forming clouds are very similar in all of the simulated objects despite significant differences in formation redshift and environment. This suggests that the formation path of the first stars is largely independent of the collapse redshift; the physical properties of the clouds have little correlation with spin, mass, or assembly history of the host halo. The collapse of proto-stellar objects at higher redshifts progresses much more rapidly due to the higher densities, which accelerates the formation of molecular hydrogen, enhances initial cooling and shortens the dynamical timescales. The mass of the star-forming clouds cover a broad range, from a few hundred to a few thousand solar masses, and exhibit various morphologies: some have disk-like structures which are nearly rotational supported; others form flattened spheroids; still others form bars. All of them develop a single protostellar ''seed'' which does not fragment into multiple objects up to the moment that the central gas becomes optically thick to H{sub 2} cooling lines. At this time, the instantaneous mass accretion rate onto the centre varies significantly from object to object, with disk-like structures having the smallest mass accretion rates. The formation epoch and properties of the star-forming clouds are sensitive to the values of cosmological parameters.
Pre-Big Bang, fundamental Physics and noncyclic cosmologies
Directory of Open Access Journals (Sweden)
Gonzalez-Mestres L.
2014-04-01
Full Text Available Detailed analyses of WMAP and Planck data can have significant implications for noncyclic pre-Big Bang approaches incorporating a new fundamental scale beyond the Planck scale and, potentially, new ultimate constituents of matter with unconventional basic properties as compared to standard particles. Cosmic-ray experiments at the highest energies can also yield relevant information. Hopefully, future studies will be able to deal with alternatives: i to standard physics for the structure of the physical vacuum, the nature of space-time, the validity of quantum field theory and conventional symmetries, the interpretation of string-like theories...; ii to standard cosmology concerning the origin and evolution of our Universe, unconventional solutions to the cosmological constant problem, the validity of inflationary scenarios, the need for dark matter and dark energy... Lorentz-like symmetries for the properties of matter can then be naturally stable space-time configurations resulting from more general primordial scenarios that incorporate physics beyond the Planck scale and describe the formation and evolution of the physical vacuum. A possible answer to the question of the origin of half-integer spins can be provided by a primordial spinorial space-time with two complex coordinates instead of the conventional four real ones, leading to a really new cosmology. We discuss basic questions and phenomenological topics concerning noncyclic pre-Big Bang cosmologies and potentially related physics.
Directory of Open Access Journals (Sweden)
Bojowald Martin
2008-07-01
Full Text Available Quantum gravity is expected to be necessary in order to understand situations in which classical general relativity breaks down. In particular in cosmology one has to deal with initial singularities, i.e., the fact that the backward evolution of a classical spacetime inevitably comes to an end after a finite amount of proper time. This presents a breakdown of the classical picture and requires an extended theory for a meaningful description. Since small length scales and high curvatures are involved, quantum effects must play a role. Not only the singularity itself but also the surrounding spacetime is then modified. One particular theory is loop quantum cosmology, an application of loop quantum gravity to homogeneous systems, which removes classical singularities. Its implications can be studied at different levels. The main effects are introduced into effective classical equations, which allow one to avoid the interpretational problems of quantum theory. They give rise to new kinds of early-universe phenomenology with applications to inflation and cyclic models. To resolve classical singularities and to understand the structure of geometry around them, the quantum description is necessary. Classical evolution is then replaced by a difference equation for a wave function, which allows an extension of quantum spacetime beyond classical singularities. One main question is how these homogeneous scenarios are related to full loop quantum gravity, which can be dealt with at the level of distributional symmetric states. Finally, the new structure of spacetime arising in loop quantum gravity and its application to cosmology sheds light on more general issues, such as the nature of time.
Directory of Open Access Journals (Sweden)
Bojowald Martin
2005-12-01
Full Text Available Quantum gravity is expected to be necessary in order to understand situations where classical general relativity breaks down. In particular in cosmology one has to deal with initial singularities, i.e., the fact that the backward evolution of a classical space-time inevitably comes to an end after a finite amount of proper time. This presents a breakdown of the classical picture and requires an extended theory for a meaningful description. Since small length scales and high curvatures are involved, quantum effects must play a role. Not only the singularity itself but also the surrounding space-time is then modified. One particular realization is loop quantum cosmology, an application of loop quantum gravity to homogeneous systems, which removes classical singularities. Its implications can be studied at different levels. Main effects are introduced into effective classical equations which allow to avoid interpretational problems of quantum theory. They give rise to new kinds of early universe phenomenology with applications to inflation and cyclic models. To resolve classical singularities and to understand the structure of geometry around them, the quantum description is necessary. Classical evolution is then replaced by a difference equation for a wave function which allows to extend space-time beyond classical singularities. One main question is how these homogeneous scenarios are related to full loop quantum gravity, which can be dealt with at the level of distributional symmetric states. Finally, the new structure of space-time arising in loop quantum gravity and its application to cosmology sheds new light on more general issues such as time.
Nojiri, S; Oikonomou, V K
2016-01-01
We combine the unimodular gravity and mimetic gravity theories into a unified theoretical framework, which is proposed to solve the cosmological constant problem and the dark matter issue. After providing the formulation of the unimodular mimetic gravity and investigating all the new features that the vacuum unimodular gravity implies, by using the underlying reconstruction method, we realize some well known cosmological evolutions, with some of these being exotic for the ordinary Einstein-Hilbert gravity. Specifically we provide the vacuum unimodular mimetic gravity description of the de Sitter cosmology, of the perfect fluid with constant equation of state cosmology, of the Type IV singular cosmology and of the $R^2$ inflation cosmology. Moreover, we investigate how cosmologically viable cosmologies, which are compatible with the recent observational data, can be realized by the vacuum unimodular mimetic gravity. Since in some cases, the graceful exit from inflation problem might exist, we provide a qualita...
Kunze, Kerstin E
2016-01-01
Cosmology is becoming an important tool to test particle physics models. We provide an overview of the standard model of cosmology with an emphasis on the observations relevant for testing fundamental physics.
Matrix Model Approach to Cosmology
Chaney, A; Stern, A
2015-01-01
We perform a systematic search for rotationally invariant cosmological solutions to matrix models, or more specifically the bosonic sector of Lorentzian IKKT-type matrix models, in dimensions $d$ less than ten, specifically $d=3$ and $d=5$. After taking a continuum (or commutative) limit they yield $d-1$ dimensional space-time surfaces, with an attached Poisson structure, which can be associated with closed, open or static cosmologies. For $d=3$, we obtain recursion relations from which it is possible to generate rotationally invariant matrix solutions which yield open universes in the continuum limit. Specific examples of matrix solutions have also been found which are associated with closed and static two-dimensional space-times in the continuum limit. The solutions provide for a matrix resolution of cosmological singularities. The commutative limit reveals other desirable features, such as a solution describing a smooth transition from an initial inflation to a noninflationary era. Many of the $d=3$ soluti...
Concordance cosmology without dark energy
Rácz, Gábor; Beck, Róbert; Szapudi, István; Csabai, István
2016-01-01
According to the general relativistic Birkhoff's theorem, spherically symmetric regions in an isotropic universe behave like mini-universes with their own cosmological parameters. We estimate local expansion rates for a large number of such regions, and use the volume-averaged increment of the scale parameter at each time step in an otherwise standard cosmological $N$-body simulation. The particle mass, corresponding to a coarse graining scale, is an adjustable parameter. This mean field approximation neglects tidal forces and boundary effects, but it is the first step towards a non-perturbative statistical backreaction calculation. We show that a volume-averaged simulation with the $\\Omega_m=1$ Einstein--de~Sitter setting in each region closely tracks the expansion and structure growth history of a $\\Lambda$CDM cosmology, and confirm the numerical results with analytic calculations as well. The very similar expansion history guarantees consistency with the concordance model and, due to the small but characte...
Roos, Matts
2015-01-01
The Fourth Edition of Introduction to Cosmology provides a concise, authoritative study of cosmology at an introductory level. Starting from elementary principles and the early history of cosmology, the text carefully guides the student on to curved spacetimes, special and general relativity, gravitational lensing, the thermal history of the Universe, and cosmological models, including extended gravity models, black holes and Hawking's recent conjectures on the not-so-black holes.
Gasperini, Maurizio
2011-03-01
Preface; Acknowledgements; Notation, units and conventions; 1. A short review of standard and inflationary cosmology; 2. The basic string cosmology equations; 3. Conformal invariance and string effective action; 4. Duality symmetries and cosmological solutions; 5. Inflationary kinematics; 6. The string phase; 7. The cosmic background of relic gravitational waves; 8. Scalar perturbations and the anisotropy of the CMB radiation; 9. Dilaton phenomenology; 10. Elements of brane cosmology; Index.
Gravitational-wave implications for structure formation: a second-order approach
Pazouli, Despoina
2015-01-01
Gravitational waves are propagating undulations in the spacetime fabric, which interact very weakly with their environment. In cosmology, gravitational-wave distortions are produced by most of the inflationary scenarios and their anticipated detection should open a new window to the early universe. Motivated by the relative lack of studies on the potential implications of gravitational radiation for the large-scale structure of the universe, we consider its coupling to density perturbations during the post-recombination era. We do so by assuming an Einstein-de Sitter background cosmology and by employing a second-order perturbation study. At this perturbative level and on superhorizon scales, we find that gravitational radiation adds a distinct and faster growing mode to the standard linear solution for the density contrast. Given the expected weakness of cosmological gravitational waves, however, the effect of the new mode is currently subdominant and it could start becoming noticeable only in the far future...
The effect of early radiation in N-body simulations of cosmic structure formation
DEFF Research Database (Denmark)
Adamek, Julian; Brandbyge, Jacob; Fidler, Christian
2017-01-01
Newtonian N-body simulations have been employed successfully over the past decades for the simulation of the cosmological large-scale structure. Such simulations usually ignore radiation perturbations (photons and massless neutrinos) and the impact of general relativity (GR) beyond the background...
Indian Academy of Sciences (India)
Tarun Sandeep
2004-10-01
Cosmology is passing through a golden phase of rapid advance. The cosmology workshop at ICGC-2004 attracted a large number of research contributions to diverse topics of cosmology. I attempt to classify and summarize the research work and results of the oral and poster presentations made at the meeting.
Disney, M J
2000-01-01
It is argued that some of the recent claims for cosmology are grossly overblown. Cosmology rests on a very small database: it suffers from many fundamental difficulties as a science (if it is a science at all) whilst observations of distant phenomena are difficult to make and harder to interpret. It is suggested that cosmological inferences should be tentatively made and sceptically received.
Modified Streaming Format for Direct Access Triangular Data Structures
Directory of Open Access Journals (Sweden)
Khaled Abid
2014-01-01
Full Text Available We define in this paper an extended solution to improve an Out-of-Core data structure which is the streaming format, by adding new information allowing to reduce file access cost, reducing the neighborhood access delay to constant time. The original streaming format is conceived to manipulate huge triangular meshes. It assumes that the whole mesh cannot be loaded entirely into the main memory. That's why the authors did not include the neighborhood in the file structure. However, almost all of the applications need the neighborhood information in the triangular structures. Using the original streaming format does not allow us to extract the neighborhood information easily. By adding the neighbor indices to the file in the same way as the original format, we can benefit from the streaming format, and at the same time, guarantee a constant time access to the neighborhood. We have adapted our new structure so that it can allow us to apply our direct access algorithm to different parts of the structure without having to go through the entire file.
Cao, Shuo; Zheng, Xiaogang; Biesiada, Marek; Qi, Jingzhao; Chen, Yun; Zhu, Zong-Hong
2017-09-01
Context. Ultra-compact structure in radio sources (especially in quasars that can be observed up to very high redshifts), with milliarcsecond angular sizes measured by very-long-baseline interferometry (VLBI), is becoming an important astrophysical tool for probing both cosmology and the physical properties of AGN. Aims: We present a newly compiled data set of 120 milliarcsec. compact radio sources representing intermediate-luminosity quasars covering the redshift range 0.46 quasars observed at 2.29 GHz show negligible dependence on redshifts and intrinsic luminosity, and thus represent a fixed comoving-length of standard ruler. Methods: For a cosmological ruler with intrinsic length lm, the angular size-redshift relation can be written as θ(z) = lm/DA(z, where θ(z) is the angular size at redshift z, and DA(z) is the corresponding angular diameter distance. We use a compilation of angular size and redshift data for ultra-compact radio sources from a well-known VLBI survey, and implement a new cosmology-independent technique to calibrate the linear size of this standard ruler, which is also used to test different cosmological models with and without the flat universe assumption. Results: We determine the linear size of this standard ruler as lm = 11.03 ± 0.25 pc, which is the typical radius at which AGN jets become opaque at the observed frequency ν 2 GHz. Our measurement of this linear size is also consistent with the previous and recent radio observations at other different frequencies. In the framework of flat ΛCDM model, we find a high value of the matter density parameter, Ωm = 0.322+0.244-0.141, and a low value of the Hubble constant, H0 = 67.6+7.8-7.4 km s-1 Mpc-1, which is in excellent agreement with the cosmic microwave background (CMB) anisotropy measurements by Planck. We obtain Ωm = 0.309+0.215-0.151, w = -0.970+0.500-1.730 at 68.3% CL for the constant w of a dynamical dark-energy model, which demonstrates no significant deviation from the
Cold Dark Matter Cosmology Conflicts with Fluid Mechanics and Observations
Directory of Open Access Journals (Sweden)
Carl H. Gibson
2008-01-01
Full Text Available Cold dark matter (CDM cosmology based on the Jeans 1902 criterion for gravitational instability gives predictions about the early universe contrary to fluid mechanics and observations. Jeans neglected viscosity, diffusivity, and turbulence: factors that determine gravitational structure formation and contradict small structures (CDM halos forming from non-baryonic dark matter particle candidates. From hydro-gravitational-dynamics (HGD cosmology, viscous-gravitational fragmentation produced supercluster (10^46 kg, cluster, and galaxy-mass (10^42 kg clouds in the primordial plasma with the large fossil density turbulence (3 ×10 ^ -17 kg m ^ -3 of the first fragmentation at 10^12 s, and a protogalaxy linear morphology reflecting maximum stretching on vortex lines of the plasma turbulence at plasma-gas transition at 10^13 s. Gas protogalaxies fragmented into proto-globular-star-cluster mass (10 ^36 kg clumps of protoplanet gas clouds that are now frozen as earth-mass (10^ 24-25 kg Jovian planets of the baryonic dark matter, about 30,000,000 rogue planets per star. Observations contradict the prediction of CDM hierarchical clustering cosmology that massive Population III first stars at 10^16 s existed but support the HGD prediction of gentle formation of small first stars in globular-star-clusters soon after 10^13 s.
Nonlinear structure formation in the Cubic Galileon gravity model
Barreira, Alexandre; Hellwing, Wojciech A; Baugh, Carlton M; Pascoli, Silvia
2013-01-01
We model the linear and nonlinear growth of large scale structure in the Cubic Galileon gravity model, by running a suite of N-body cosmological simulations using the {\\tt ECOSMOG} code. Our simulations include the Vainshtein screening effect, which reconciles the Cubic Galileon model with local tests of gravity. In the linear regime, the amplitude of the matter power spectrum increases by $\\sim 25%$ with respect to the standard $\\Lambda$CDM model today. The modified expansion rate accounts for $\\sim 20%$ of this enhancement, while the fifth force is responsible for only $\\sim 5%$. This is because the effective unscreened gravitational strength deviates from standard gravity only at late times, even though it can be twice as large today. In the nonlinear regime ($k \\gtrsim 0.1 h\\rm{Mpc}^{-1}$), the fifth force leads to only a modest increase ($\\lesssim 8%$) in the clustering power on all scales due to the very efficient operation of the Vainshtein mechanism. Such a strong effect is typically not seen in other...
The Standard Cosmological Model
Scott, D
2005-01-01
The Standard Model of Particle Physics (SMPP) is an enormously successful description of high energy physics, driving ever more precise measurements to find "physics beyond the standard model", as well as providing motivation for developing more fundamental ideas that might explain the values of its parameters. Simultaneously, a description of the entire 3-dimensional structure of the present-day Universe is being built up painstakingly. Most of the structure is stochastic in nature, being merely the result of the particular realisation of the "initial conditions" within our observable Universe patch. However, governing this structure is the Standard Model of Cosmology (SMC), which appears to require only about a dozen parameters. Cosmologists are now determining the values of these quantities with increasing precision in order to search for "physics beyond the standard model", as well as trying to develop an understanding of the more fundamental ideas which might explain the values of its parameters. Althoug...
Bojowald, Martin
The universe, ultimately, is to be described by quantum theory. Quantum aspects of all there is, including space and time, may not be significant for many purposes, but are crucial for some. And so a quantum description of cosmology is required for a complete and consistent worldview. At any rate, even if we were not directly interested in regimes where quantum cosmology plays a role, a complete physical description could not stop at a stage before the whole universe is reached. Quantum theory is essential in the microphysics of particles, atoms, molecules, solids, white dwarfs and neutron stars. Why should one expect this ladder of scales to end at a certain size? If regimes are sufficiently violent and energetic, quantum effects are non-negligible even on scales of the whole cosmos; this is realized at least once in the history of the universe: at the big bang where the classical theory of general relativity would make energy densities diverge. 1.Lachieze-Rey, M., Luminet, J.P.: Phys. Rept. 254,135 (1995), gr-qc/9605010 2.BSDeWitt1967Phys. Rev.160511131967PhRv..160.1113D0158.4650410.1103/PhysRev.160.1113DeWitt, B.S.: Phys. Rev. 160(5), 1113 (1967) 3.Wiltshire, D.L.: In: Robson B., Visvanathan N., Woolcock W.S. (eds.) Cosmology: The Physics of the Universe, pp. 473-531. World Scientific, Singapore (1996). gr-qc/0101003 4.Isham C.J.: In: DeWitt, B.S., Stora, R. (eds.) Relativity, Groups and Topology II. Lectures Given at the 1983 Les Houches Summer School on Relativity, Groups and Topology, Elsevier Science Publishing Company (1986) 5.Klauder, J.: Int. J. Mod. Phys. D 12, 1769 (2003), gr-qc/0305067 6.Klauder, J.: Int. J. Geom. Meth. Mod. Phys. 3, 81 (2006), gr-qc/0507113 7.DGiulini1995Phys. Rev. D5110563013381161995PhRvD..51.5630G10.1103/PhysRevD.51.5630Giulini, D.: Phys. Rev. D 51(10), 5630 (1995) 8.Kiefer, C., Zeh, H.D.: Phys. Rev. D 51, 4145 (1995), gr-qc/9402036 9.WFBlythCJIsham1975Phys. Rev. D117684086991975PhRvD..11..768B10.1103/PhysRevD.11.768Blyth, W
Physics of primordial star formation
Yoshida, Naoki
2012-09-01
The study of primordial star formation has a history of nearly sixty years. It is generally thought that primordial stars are one of the key elements in a broad range of topics in astronomy and cosmology, from Galactic chemical evolution to the formation of super-massive blackholes. We review recent progress in the theory of primordial star formation. The standard theory of cosmic structure formation posits that the present-day rich structure of the Universe developed through gravitational amplification of tiny matter density fluctuations left over from the Big Bang. It has become possible to study primordial star formation rigorously within the framework of the standard cosmological model. We first lay out the key physical processes in a primordial gas. Then, we introduce recent developments in computer simulations. Finally, we discuss prospects for future observations of the first generation of stars.
Formation of coherent structures in 3D laminar mixing flows
Speetjens, Michel; Clercx, Herman
2009-11-01
Mixing under laminar flow conditions is key to a wide variety of industrial systems of size extending from microns to meters. Examples range from the traditional (and still very relevant) mixing of viscous fluids via compact processing equipment down to emerging micro-fluidics applications. Profound insight into laminar mixing mechanisms is imperative for further advancement of mixing technology (particularly for complex micro-fluidics systems) yet remains limited to date. The present study concentrates on a fundamental transport phenomenon of potential relevance to laminar mixing: the formation of coherent structures in the web of 3D fluid trajectories due to fluid inertia. Such coherent structures geometrically determine the transport properties of the flow and better understanding of their formation and characteristics may offer ways to control and manipulate the mixing properties of laminar flows. The formation of coherent structures and its impact upon 3D transport properties is demonstrated by way of examples.
STRUCTURE FORMATION OF COLLOIDS IN NEMATIC LIQUID CRYSTALS
Directory of Open Access Journals (Sweden)
B.I.Lev
2003-01-01
Full Text Available We investigated the behaviour of colloidal particles suspended in nematic liquid crystals. These colloidal particles interact through elastic deformation of the nematic director field which can result in nontrivial collective behavior, leading to the formation of spatially modulated structures. In this paper, the formation of lattice structures is described both by computer simulations and by analytical theory. Effective interactions of the pairs of spherical macroparticles suspended in nematic liquid crystals have been suggested by many authors. Using these pairwise interactions, spatial structures are obtained by means of dynamic simulations. We have suggested a number of possible structures, which may be formed in multi-macroparticle systems. Regions of temperatures and concentrations are determined in which such a structure might appear.
Merlin, Emiliano; Buonomo, Umberto; Grassi, Tommaso; Piovan, Lorenzo; Chiosi, Cesare
2009-01-01
We present EvoL, the new release of the Padova N-body code for cosmological simulations of galaxy formation and evolution. In this paper, the basic Tree + SPH code is presented and analysed, together with an overview on the software architectures. EvoL is a flexible parallel Fortran95 code, specifically designed for simulations of cosmological structure formation on cluster, galactic and sub-galactic scales. EvoL is a fully Lagrangian self-adaptive code, based on the classical Oct-tree and on...
Tseytlin, Arkady A
1992-01-01
Aspects of string cosmology for critical and non-critical strings are discussed emphasizing the necessity to account for the dilaton dynamics for a proper incorporation of ``large - small" duality. This drastically modifies the intuition one has with Einstein's gravity. For example winding modes, even though contribute to energy density, oppose expansion and if not annihilated will stop the expansion. Moreover we find that the radiation dominated era of the standard cosmology emerges quite naturally in string cosmology. Our analysis of non-critical string cosmology provides a reinterpretation of the (universal cover of the) recently studied two dimensional black hole solution as a conformal realization of cosmological solutions found previously by Mueller.
Workshop III – Cosmology: Observations versus theories
Indian Academy of Sciences (India)
T R Seshadri
2000-10-01
The topics on which there were presentations in this workshop can broadly be divided into the following categories: Observational aspects of large-scale structures in the universities; phase transitions in the early universe; cosmic microwave background radiation; observational cosmology.
Cosmology With Extra Dimensions
Martín, J
2005-01-01
We review several properties of models that include extra dimensions, focusing on aspects related to cosmology and particle physics phenomenology. The properties of effective four dimensional inflationary geometry are studied in two distinct frameworks: (i) in Kaluza- Klein (KK) compactifications and (ii) in braneworld scenarios. From numerical simulations we find that inflationary braneworlds are unstable if the scale of inflation is too large in comparison with the stabilization scale of the interbrane distance. The analysis of perturbations confirms the existence of a tachyon associated with the volume modulus of the extra dimensions both in braneworlds and KK compactifications. With the numerical program BRANECODE non- perturbative properties of braneworlds are studied. We fully understand the non-perturbative consequences of this instability. Generic attractors are (i) an increase of the interbrane distance and the formation of a naked singularity, (ii) the brane colli...
DEFF Research Database (Denmark)
Sparre, Martin
Galaxy formation is an enormously complex discipline due to the many physical processes that play a role in shaping galaxies. The objective of this thesis is to study galaxy formation with two different approaches: First, numerical simulations are used to study the structure of dark matter and how...... galaxies form stars throughout the history of the Universe, and secondly it is shown that observations of gamma-ray bursts (GRBs) can be used to probe galaxies with active star formation in the early Universe. A conclusion from the hydrodynamical simulations is that the galaxies from the stateof......-the-art cosmological simulation, Illustris, follow a tight relation between star formation rate and stellar mass. This relation agrees well with the observed relation at a redshift of z = 0 and z = 4, but at intermediate redshifts of z ' 2 the normalisation is lower than in real observations. This is highlighted...
Structure formation in the universe from texture induced fluctuation
Durrer, R; Ruth Durrer; Zhi-hong Zhou
1995-01-01
The topic of this letter is structure formation with topological defects. We first present a partially new, fully local and gauge invariant system of perturbation equations to treat microwave background and dark matter fluctuations induced by topological defects (or any other type of seeds). We show that this treatment is extremly well suited for linear numerical analysis of structure formation by applying it to the texture scenario. Our numerical results cover a larger dynamical range than previous investigations and are complementary since we use substantially different methods.
Tipler, Frank J.
1996-10-01
It is generally believed that it is not possible to rigorously analyze a homogeneous and isotropic cosmological model in Newtonian mechanics. I show on the contrary that if Newtonian gravity theory is rewritten in geometrical language in the manner outlined in 1923-1924 by Élie Cartan [Ann. Ecole Norm. Sup. 40, 325-412 (1923); 41, 1-25 (1924)], then Newtonian cosmology is as rigorous as Friedmann cosmology. In particular, I show that the equation of geodesic deviation in Newtonian cosmology is exactly the same as equation of geodesic deviation in the Friedmann universe, and that this equation can be integrated to yield a constraint equation formally identical to the Friedmann equation. However, Newtonian cosmology is more general than Friedmann cosmology: Ever-expanding and recollapsing universes are allowed in any noncompact homogeneous and isotropic spatial topology. I shall give a brief history of attempts to do cosmology in the framework of Newtonian mechanics.
Coffee melanoidins: structures, mechanisms of formation and potential health impacts.
Moreira, Ana S P; Nunes, Fernando M; Domingues, M Rosário; Coimbra, Manuel A
2012-09-01
During the roasting process, coffee bean components undergo structural changes leading to the formation of melanoidins, which are defined as high molecular weight nitrogenous and brown-colored compounds. As coffee brew is one of the main sources of melanoidins in the human diet, their health implications are of great interest. In fact, several biological activities, such as antioxidant, antimicrobial, anticariogenic, anti-inflammatory, antihypertensive, and antiglycative activities, have been attributed to coffee melanoidins. To understand the potential of coffee melanoidin health benefits, it is essential to know their chemical structures. The studies undertaken to date dealing with the structural characterization of coffee melanoidins have shown that polysaccharides, proteins, and chlorogenic acids are involved in coffee melanoidin formation. However, exact structures of coffee melanoidins and mechanisms involved in their formation are far to be elucidated. This paper systematizes the available information and provides a critical overview of the knowledge obtained so far about the structure of coffee melanoidins, mechanisms of their formation, and their potential health implications.
Fundamental Questions of Practical Cosmology Exploring the Realm of Galaxies
Baryshev, Yurij
2012-01-01
This book guides readers (astronomers, physicists, and university students) through central questions of Practical Cosmology, a term used by the late Allan Sandage to denote the modern scientific endeavor to find the cosmological model best describing the universe of galaxies, its geometry, size, age, and matter composition. The authors draw on their personal experience in astrophysics and cosmology to explain key concepts of cosmology, both observational and theoretical, and to highlight several items which give cosmology its special character. These highlighted items are: - Idiosyncratic features of the “cosmic laboratory” - Malmquist bias in the determination of cosmic distances - Theory of gravitation as a cornerstone of cosmological models - Crucial tests for checking the reality of space expansion - Methods of analyzing the structures of the universe as mapped by galaxies - Usefulness of fractals as a model to describe the large-scale structure - New cosmological physics inherent in the Frie...
Relativistic kinetic theory with applications in astrophysics and cosmology
Vereshchagin, Gregory V
2017-01-01
Relativistic kinetic theory has widespread application in astrophysics and cosmology. The interest has grown in recent years as experimentalists are now able to make reliable measurements on physical systems where relativistic effects are no longer negligible. This ambitious monograph is divided into three parts. It presents the basic ideas and concepts of this theory, equations and methods, including derivation of kinetic equations from the relativistic BBGKY hierarchy and discussion of the relation between kinetic and hydrodynamic levels of description. The second part introduces elements of computational physics with special emphasis on numerical integration of Boltzmann equations and related approaches, as well as multi-component hydrodynamics. The third part presents an overview of applications ranging from covariant theory of plasma response, thermalization of relativistic plasma, comptonization in static and moving media to kinetics of self-gravitating systems, cosmological structure formation and neut...
Tests of the particle physics-physical cosmology interface
Energy Technology Data Exchange (ETDEWEB)
Schramm, D.N. [Chicago Univ., IL (United States)]|[Fermi National Accelerator Lab., Batavia, IL (United States)
1993-01-01
Three interrelated interfaces of particle physics and physical cosmology are discussed: (1) inflation and other phase transitions; (2) Big Bang Nucleosynthesis (and also the quark-hadron transition); and (3) structure formation (including dark matter). Recent observations that affect each of these topics are discussed. Topic number 1 is shown to be consistent with the COBE observations but not proven and it may be having problems with some age-expansion data. Topic number 2 has now been well-tested and is an established ``pillar`` of the Big Bang. Topic number 3 is the prime arena of current physical cosmological activity. Experiments to resolve the current exciting, but still ambiguous, situation following the COBE results are discussed.
Tests of the particle physics-physical cosmology interface
Energy Technology Data Exchange (ETDEWEB)
Schramm, D.N. (Chicago Univ., IL (United States) Fermi National Accelerator Lab., Batavia, IL (United States))
1993-01-01
Three interrelated interfaces of particle physics and physical cosmology are discussed: (1) inflation and other phase transitions; (2) Big Bang Nucleosynthesis (and also the quark-hadron transition); and (3) structure formation (including dark matter). Recent observations that affect each of these topics are discussed. Topic number 1 is shown to be consistent with the COBE observations but not proven and it may be having problems with some age-expansion data. Topic number 2 has now been well-tested and is an established pillar'' of the Big Bang. Topic number 3 is the prime arena of current physical cosmological activity. Experiments to resolve the current exciting, but still ambiguous, situation following the COBE results are discussed.
Effects of simulated cosmological magnetic fields on the galaxy population
Marinacci, Federico
2015-01-01
We investigate the effects of varying the intensity of the primordial magnetic seed field on the global properties of the galaxy population in ideal MHD cosmological simulations performed with the moving-mesh code AREPO. We vary the seed field in our calculations in a range of values still compatible with the current cosmological upper limits. We show that above a critical intensity of $\\simeq 10^{-9}\\,{\\rm G}$ the additional pressure arising from the field strongly affects the evolution of gaseous structures, leading to a suppression of the cosmic star formation history. The suppression is stronger for larger seed fields, and directly reflects into a lower galaxy number density at fixed stellar mass and a less massive stellar component at fixed virial mass at all mass scales. These signatures may be used, in addition to the existing methods, to derive tighter constraints on primordial magnetic seed field intensities.
Cosmological Hints of Modified Gravity ?
Di Valentino, Eleonora; Silk, Joseph
2016-01-01
The recent measurements of Cosmic Microwave Background temperature and polarization anisotropies made by the Planck satellite have provided impressive confirmation of the $\\Lambda$CDM cosmological model. However interesting hints of slight deviations from $\\Lambda$CDM have been found, including a $95 \\%$ c.l. preference for a "modified gravity" structure formation scenario. In this paper we confirm the preference for a modified gravity scenario from Planck 2015 data, find that modified gravity solves the so-called $A_{lens}$ anomaly in the CMB angular spectrum, and constrains the amplitude of matter density fluctuations to $\\sigma_8=0.815_{-0.048}^{+0.032}$, in better agreement with weak lensing constraints. Moreover, we find a lower value for the reionization optical depth of $\\tau=0.059\\pm0.020$ (to be compared with the value of $\\tau= 0.079 \\pm 0.017$ obtained in the standard scenario), more consistent with recent optical and UV data. We check the stability of this result by considering possible degeneraci...
Bechtol, Keith; Magellanic Satellites Survey (MagLiteS)
2017-01-01
A generic prediction of galaxy formation in the standard cosmological model with cold dark matter is the hierarchical assembly of structure on mass scales ranging from ultra-faint galaxies to galaxy clusters. In the Local Group, dozens of galaxies have been found orbiting the Milky Way and Andromeda. The question of whether the largest Milky Way satellites, the Large and Small Magellanic Clouds, brought in their own entourage of satellites has been a long standing puzzle, and has garnered renewed interest following the recent discovery of more than a dozen ultra-faint galaxy candidates in the southern hemisphere. The on-going Magellanic Satellites Survey (MagLiteS) aims to complete an annulus of contiguous deep optical imaging with Blanco/DECam around the periphery of the Magellanic Clouds, enabling a systematic search for ultra-faint galaxies and other low-surface-brightness stellar substructures associated with the Magellanic system. I will report on the progress of MagLiteS and discuss science highlights from the first observing season, including a new ultra-faint galaxy candidate located ~11 kpc from the Large Magellanic Cloud.
The role of the dark matter distribution in the structure formation
Energy Technology Data Exchange (ETDEWEB)
Gómez, L. Gabriel [Dip. di Fisica, Sapienza Università di Roma, Piazzale Aldo Moro 5, I-00185 Rome (Italy); University of Nice-Sophia Antipolis, 28 Av. de Valrose, 06103 Nice Cedex 2 (France); ICRANet, Piazza della Repubblica 10, I-65122 Pescara (Italy); Rueda, Jorge A. [Dip. di Fisica, Sapienza Università di Roma, Piazzale Aldo Moro 5, I-00185 Rome (Italy); ICRANet, Piazza della Repubblica 10, I-65122 Pescara (Italy); ICRANet-Rio, Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud 150, 22290–180 Rio de Janeiro (Brazil)
2015-12-17
We review the most important ingredients that compose the halo model of structure formation, emphasizing on the role played by the density profile of dark matter (DM). The theoretical predictions of the so-called warm DM (WDM) and cold DM (CDM) cosmologies at small scales are discussed in terms of recent numerical simulations and current observational data coming from rotation curves of galaxies. We elaborate on the recently introduced Ruffini-Argüelles-Rueda (RAR) DM profile, which is obtained from the configuration of equilibrium of a self-gravitating system of massive fermions, hereafter “inos”, and show that it can be a good candidate for WDM. A significant insight for this model might be inferred based on the analytical approach of the halo model, pointing out that there might have signals of quantum cores of galaxies on the non-linear matter power spectrum at small scales, which are however unfortunately inaccessible today with the current observational instruments. Upcoming surveys could test in the future the quantum features of galactic cores.
Concordance cosmology without dark energy
Rácz, Gábor; Dobos, László; Beck, Róbert; Szapudi, István; Csabai, István
2017-07-01
According to the separate universe conjecture, spherically symmetric sub-regions in an isotropic universe behave like mini-universes with their own cosmological parameters. This is an excellent approximation in both Newtonian and general relativistic theories. We estimate local expansion rates for a large number of such regions, and use a scale parameter calculated from the volume-averaged increments of local scale parameters at each time step in an otherwise standard cosmological N-body simulation. The particle mass, corresponding to a coarse graining scale, is an adjustable parameter. This mean field approximation neglects tidal forces and boundary effects, but it is the first step towards a non-perturbative statistical estimation of the effect of non-linear evolution of structure on the expansion rate. Using our algorithm, a simulation with an initial Ωm = 1 Einstein-de Sitter setting closely tracks the expansion and structure growth history of the Λ cold dark matter (ΛCDM) cosmology. Due to small but characteristic differences, our model can be distinguished from the ΛCDM model by future precision observations. Moreover, our model can resolve the emerging tension between local Hubble constant measurements and the Planck best-fitting cosmology. Further improvements to the simulation are necessary to investigate light propagation and confirm full consistency with cosmic microwave background observations.
Molecular Component Structures Mediated Formation of Self-assemblies
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
Molecular recognition directed self-assemblies from complementary molecular components, melamine and barbituric acid derivatives were studied by means of NMR, fluorescence, and TEM. It was found that both the process of the self-assembly and the morphologies of the result ed self-assemblies could be mediated by modifying the structures of the molecular components used. The effect of the structures of the molecular components on the formation of the self-as semblies was discussed in terms of intermolecular interactions.
Bifurcation of learning and structure formation in neuronal maps
DEFF Research Database (Denmark)
Marschler, Christian; Faust-Ellsässer, Carmen; Starke, Jens
2014-01-01
Most learning processes in neuronal networks happen on a much longer time scale than that of the underlying neuronal dynamics. It is therefore useful to analyze slowly varying macroscopic order parameters to explore a network's learning ability. We study the synaptic learning process giving rise...... to map formation in the laminar nucleus of the barn owl's auditory system. Using equation-free methods, we perform a bifurcation analysis of spatio-temporal structure formation in the associated synaptic-weight matrix. This enables us to analyze learning as a bifurcation process and follow the unstable...... states as well. A simple time translation of the learning window function shifts the bifurcation point of structure formation and goes along with traveling waves in the map, without changing the animal's sound localization performance....
Band gap formation and control in coupled periodic ferromagnetic structures
Morozova, M. A.; Sharaevskaya, A. Yu.; Sadovnikov, A. V.; Grishin, S. V.; Romanenko, D. V.; Beginin, E. N.; Sharaevskii, Yu. P.; Nikitov, S. A.
2016-12-01
We demonstrate theoretically and experimentally the formation of additional bandgaps in the spectrum of spin waves in coupled magnonic crystals. We present the analytical model, which reveals the mechanism of bandgaps formation in coupled structures. In particular, the formation of one, two, or three bandgaps in the region of the first Bragg resonance is demonstrated and control of its characteristics by the variation of the complex coupling coefficient between magnonic crystals is shown. The spatially-resolved Brillouin light scattering spectroscopy and microwave measurements demonstrate the bandgap splitting in the spin-wave spectrum. The main advantage of proposed coupled structure, as compared to the conventional magnonic crystal, is the tunability of multiple bandgaps in the spin-wave spectrum, which enables potential applications in the frequency selective magnonic devices.
Food Composition Database Format and Structure: A User Focused Approach.
Clancy, Annabel K; Woods, Kaitlyn; McMahon, Anne; Probst, Yasmine
2015-01-01
This study aimed to investigate the needs of Australian food composition database user's regarding database format and relate this to the format of databases available globally. Three semi structured synchronous online focus groups (M = 3, F = 11) and n = 6 female key informant interviews were recorded. Beliefs surrounding the use, training, understanding, benefits and limitations of food composition data and databases were explored. Verbatim transcriptions underwent preliminary coding followed by thematic analysis with NVivo qualitative analysis software to extract the final themes. Schematic analysis was applied to the final themes related to database format. Desktop analysis also examined the format of six key globally available databases. 24 dominant themes were established, of which five related to format; database use, food classification, framework, accessibility and availability, and data derivation. Desktop analysis revealed that food classification systems varied considerably between databases. Microsoft Excel was a common file format used in all databases, and available software varied between countries. User's also recognised that food composition databases format should ideally be designed specifically for the intended use, have a user-friendly food classification system, incorporate accurate data with clear explanation of data derivation and feature user input. However, such databases are limited by data availability and resources. Further exploration of data sharing options should be considered. Furthermore, user's understanding of food composition data and databases limitations is inherent to the correct application of non-specific databases. Therefore, further exploration of user FCDB training should also be considered.
Food Composition Database Format and Structure: A User Focused Approach.
Directory of Open Access Journals (Sweden)
Annabel K Clancy
Full Text Available This study aimed to investigate the needs of Australian food composition database user's regarding database format and relate this to the format of databases available globally. Three semi structured synchronous online focus groups (M = 3, F = 11 and n = 6 female key informant interviews were recorded. Beliefs surrounding the use, training, understanding, benefits and limitations of food composition data and databases were explored. Verbatim transcriptions underwent preliminary coding followed by thematic analysis with NVivo qualitative analysis software to extract the final themes. Schematic analysis was applied to the final themes related to database format. Desktop analysis also examined the format of six key globally available databases. 24 dominant themes were established, of which five related to format; database use, food classification, framework, accessibility and availability, and data derivation. Desktop analysis revealed that food classification systems varied considerably between databases. Microsoft Excel was a common file format used in all databases, and available software varied between countries. User's also recognised that food composition databases format should ideally be designed specifically for the intended use, have a user-friendly food classification system, incorporate accurate data with clear explanation of data derivation and feature user input. However, such databases are limited by data availability and resources. Further exploration of data sharing options should be considered. Furthermore, user's understanding of food composition data and databases limitations is inherent to the correct application of non-specific databases. Therefore, further exploration of user FCDB training should also be considered.
Distributed formation stabilization for mobile agents using virtual tensegrity structures
Yang, Qingkai; Cao, Ming; Fang, Hao; Chen, Jie
2015-01-01
This paper investigates the distributed formation control problem for a group of mobile Euler-Lagrange agents to achieve global stabilization by using virtual tensegrity structures. Firstly, a systematic approach to design tensegrity frameworks is elaborately explained to confine the interaction rel
Formation shape and orientation control using projected collinear tensegrity structures
Pais, Darren; Cao, Ming; Leonard, Naomi Ehrich
2009-01-01
The goal of this work is to stabilize the shape and orientation of formations of N identical and fully actuated agents, each governed by double-integrator dynamics. Using stability and rigidity properties inherent to tensegrity structures, we first design a tensegrity-based, globally exponentially s
Formation, structure and rheological properties of soy protein gels.
Renkema, J.M.S.
2001-01-01
Keywords: soy protein isolate, glycinin,β-conglycinin, heat denaturation, gelation, network structure, rheology, permeability measurements, microscopy, pH, ionic strength, emulsified oil dropletsThis study was performed to understand the factors determining heat-induced formation an
Matter power spectra in dynamical-Dark Energy cosmologies
Fedeli, C; Moscardini, L
2011-01-01
(abridged) We used a suite of numerical cosmological simulations in order to investigate the effect of gas cooling and star formation on the large scale matter distribution. The simulations follow the formation of cosmic structures in five different Dark Energy models: the fiducial $\\Lambda$CDM cosmology and four models where the Dark Energy density is allowed to have a non-trivial redshift evolution. For each cosmology we have a control run with dark matter only, in order to allow a direct assessment of the impact of baryonic processes. We found that the power spectra of gas and stars, as well as the total matter power spectrum, are in qualitative agreement with the results of previous works in the framework of the fiducial model, although several quantitative differences exist. We used the halo model in order to investigate the backreaction of gas and stars on the dark matter distribution, finding that it is very well reproduced by increasing the average dark matter halo concentration by 17%, irrespective o...
Statistics, Computation, and Modeling in Cosmology
Jewell, Jeff; Guiness, Joe; SAMSI 2016 Working Group in Cosmology
2017-01-01
Current and future ground and space based missions are designed to not only detect, but map out with increasing precision, details of the universe in its infancy to the present-day. As a result we are faced with the challenge of analyzing and interpreting observations from a wide variety of instruments to form a coherent view of the universe. Finding solutions to a broad range of challenging inference problems in cosmology is one of the goals of the “Statistics, Computation, and Modeling in Cosmology” workings groups, formed as part of the year long program on ‘Statistical, Mathematical, and Computational Methods for Astronomy’, hosted by the Statistical and Applied Mathematical Sciences Institute (SAMSI), a National Science Foundation funded institute. Two application areas have emerged for focused development in the cosmology working group involving advanced algorithmic implementations of exact Bayesian inference for the Cosmic Microwave Background, and statistical modeling of galaxy formation. The former includes study and development of advanced Markov Chain Monte Carlo algorithms designed to confront challenging inference problems including inference for spatial Gaussian random fields in the presence of sources of galactic emission (an example of a source separation problem). Extending these methods to future redshift survey data probing the nonlinear regime of large scale structure formation is also included in the working group activities. In addition, the working group is also focused on the study of ‘Galacticus’, a galaxy formation model applied to dark matter-only cosmological N-body simulations operating on time-dependent halo merger trees. The working group is interested in calibrating the Galacticus model to match statistics of galaxy survey observations; specifically stellar mass functions, luminosity functions, and color-color diagrams. The group will use subsampling approaches and fractional factorial designs to statistically and
Krioukov, Dmitri; Sinkovits, Robert S; Rideout, David; Meyer, David; Boguna, Marian
2012-01-01
Causal sets are an approach to quantum gravity in which the causal structure of spacetime plays a fundamental role. The causal set is a quantum network which underlies the fabric of spacetime. The nodes in this network are tiny quanta of spacetime, with two such quanta connected if they are causally related. Here we show that the structure of these networks in de Sitter spacetime, such as our accelerating universe, is remarkably similar to the structure of complex networks -- the brain or the Internet, for example. Specifically, we show that the node degree distribution of causal sets in de Sitter spacetime is described by a power law with exponent 2, similar to many complex networks. Quantifying the differences between the causal set structure in de Sitter spacetime and in the real universe, we find that since the universe today is relatively young, its power-law exponent is not 2 but 3/4, yet exponent 2 is currently emerging. Finally, we show that as a consequence of a simple geometric duality, the growth d...
Initial Conditions for Accurate N-Body Simulations of Massive Neutrino Cosmologies
Zennaro, Matteo; Villaescusa-Navarro, Francisco; Carbone, Carmelita; Sefusatti, Emiliano; Guzzo, Luigi
2016-01-01
The set-up of the initial conditions in cosmological N-body simulations is usually implemented by rescaling the desired low-redshift linear power spectrum to the required starting redshift consistently with the Newtonian evolution of the simulation. The implementation of this practical solution requires more care in the context of massive neutrino cosmologies, mainly because of the non-trivial scale-dependence of the linear growth that characterises these models. In this work we consider a simple two-fluid, Newtonian approximation for cold dark matter and massive neutrinos perturbations that can reproduce the cold matter linear evolution predicted by Boltzmann codes such as CAMB or CLASS with a 0.1% accuracy or below for all redshift relevant to nonlinear structure formation. We use this description, in the first place, to quantify the systematic errors induced by several approximations often assumed in numerical simulations, including the typical set-up of the initial conditions for massive neutrino cosmolog...
CMB polarization anisotropies from cosmological reionization: extension to B-modes
Trombetti, Tiziana
2012-01-01
The accurate understanding of the ionization history of the Universe plays a fundamental role in modern cosmology. It includes a phase of cosmological reionization after the standard recombination epoch, possibly associated to the early stages of structure and star formation. While the simple "{\\tau}-parametrization" of the reionization process and, in particular, of its imprints on the CMB anisotropy likely represents a sufficiently accurate modelling for the interpretation of current CMB data, a great attention has been recently posed on the accurate computation of the reionization signatures in the CMB for a large variety of astrophysical scenarios and physical processes. This work is aimed at a careful characterization of the imprints introduced in the polarization anisotropy, with particular attention to the B-modes. We have implemented a modified version of CAMB, the Cosmological Boltzmann code for computing the angular power spectrum (APS) of the anisotropies of the CMB, to introduce the hydrogen and h...
Dimensionless constants, cosmology and other dark matters
Tegmark, M; Rees, M; Wilczek, F; Tegmark, Max; Aguirre, Anthony; Rees, Martin; Wilczek, Frank
2006-01-01
We identify 31 dimensionless physical constants required by particle physics and cosmology, and emphasize that both microphysical constraints and selection effects might help elucidate their origin. Axion cosmology provides an instructive example, in which these two kinds of arguments must both be taken into account, and work well together. If a Peccei-Quinn phase transition occurred before or during inflation, then the axion dark matter density will vary from place to place with a probability distribution. By calculating the net dark matter halo formation rate as a function of all four relevant cosmological parameters and assessing other constraints, we find that this probability distribution, computed at stable solar systems, is arguably peaked near the observed dark matter density. If cosmologically relevant WIMP dark matter is discovered, then one naturally expects comparable densities of WIMPs and axions, making it important to follow up with precision measurements to determine whether WIMPs account for ...
Combination and interpretation of observables in Cosmology
Directory of Open Access Journals (Sweden)
Virey Jean-Marc
2010-04-01
Full Text Available The standard cosmological model has deep theoretical foundations but need the introduction of two major unknown components, dark matter and dark energy, to be in agreement with various observations. Dark matter describes a non-relativistic collisionless fluid of (non baryonic matter which amount to 25% of the total density of the universe. Dark energy is a new kind of fluid not of matter type, representing 70% of the total density which should explain the recent acceleration of the expansion of the universe. Alternatively, one can reject this idea of adding one or two new components but argue that the equations used to make the interpretation should be modified consmological scales. Instead of dark matter one can invoke a failure of Newton's laws. Instead of dark energy, two approaches are proposed : general relativity (in term of the Einstein equation should be modified, or the cosmological principle which fixes the metric used for cosmology should be abandonned. One of the main objective of the community is to find the path of the relevant interpretations thanks to the next generation of experiments which should provide large statistics of observationnal data. Unfortunately, cosmological in formations are difficult to pin down directly fromt he measurements, and it is mandatory to combine the various observables to get the cosmological parameters. This is not problematic from the statistical point of view, but assumptions and approximations made for the analysis may bias our interprettion of the data. Consequently, a strong attention should be paied to the statistical methods used to make parameters estimation and for model testing. After a review of the basics of cosmology where the cosmological parameters are introduced, we discuss the various cosmological probes and their associated observables used to extract cosmological informations. We present the results obtained from several statistical analyses combining data of diferent nature but
Early Modified Gravity: Implications for Cosmology
Brax, Philippe; Clesse, Sebastien; Davis, Anne-Christine; Sculthorpe, Gregory
2013-01-01
We study the effects of modifications of gravity after Big Bang Nucleosynthesis (BBN) which would manifest themselves mainly before recombination. We consider their effects on the Cosmic Microwave Background (CMB) radiation and on the formation of large scale structure. The models that we introduce here represent all screened modifications of General Relativity (GR) which evade the local tests of gravity such as the violation of the strong equivalence principle as constrained by the Lunar Ranging experiment. We use the tomographic description of modified gravity which defines models with screening mechanisms of the chameleon or Damour-Polyakov types and allows one to relate the temporal evolution of the mass and the coupling to matter of a scalar field to its Lagrangian and also to cosmological perturbations. The models with early modifications of gravity all involve a coupling to matter which is stronger in the past leading to effects on perturbations before recombination while minimising deviations from Lam...
Cosmological constraints on neutrinos with Planck data
Energy Technology Data Exchange (ETDEWEB)
Spinelli, M. [Laboratoire de l’Accélérateur Linéaire, Bat.200, 91400 Orsay (France)
2015-07-15
Neutrinos take part in the dance of the evolving Universe influencing its history from leptogenesis, to Big Bang nucleosynthesis, until late time structure formation. This makes cosmology, and in particular one of its primary observables the Cosmic Microwave Background (CMB), an unusual but valuable tool for testing Neutrino Physics. The best measurement to date of full-sky CMB anisotropies comes from the Planck satellite launched in 2009 by the European Space Agency (ESA) and successful follower of COBE and WMAP. Testing Planck data against precise theoretical predictions allow us to shed light on various interesting open questions such as the value of the absolute scale of neutrino masses or their energy density. We revise here the results concerning neutrinos obtained by the Planck Collaboration in the 2013 data release.
Backreaction mechanism in multifluid and extended cosmologies
Jimenez, Jose Beltran; Dunsby, P K S; Saez-Gomez, D
2013-01-01
One possible explanation for the present observed acceleration of the Universe is the breakdown of homogeneity and isotropy due to the formation of non-linear structures. How inhomogeneities affect the averaged cosmological expansion rate and lead to late-time acceleration is generally considered to be due to some backreaction mechanism. General Relativity together with pressure-free matter have until recently been considered as the sole ingredients for averaged calculations. In this communication we focus our attention on more general scenarios, including imperfect fluids as well as alternative theories of gravity, and apply an averaging procedure to them in order to determine possible backreaction effects. For illustrative purposes, we present our results for dark energy models, quintessence and Brans-Dicke theories. We also provide a discussion about the limitations of frame choices in the averaging procedure.
Cosmological HII Bubble Growth During Reionization
Shin, Min-Su; Cen, Renyue
2007-01-01
We present general properties of ionized hydrogen (HII) bubbles and their growth based on a state-of-the-art large-scale (100 Mpc/h) cosmological radiative transfer simulation. The simulation resolves all halos with atomic cooling at the relevant redshifts and simultaneously performs radiative transfer and dynamical evolution of structure formation. Our major conclusions include: (1) for significant HII bubbles, the number distribution is peaked at a volume of ~ 0.6 Mpc^3/h^3 at all redshifts. But, at z 10 even the largest HII bubbles have a balanced ionizing photon contribution from Pop II and Pop III stars, while at z < 8 Pop II stars start to dominate the overall ionizing photon production for large bubbles, although Pop III stars continue to make a non-negligible contribution. (6) The relationship between halo number density and bubble size is complicated but a strong correlation is found between halo number density and bubble size for for large bubbles.
Directory of Open Access Journals (Sweden)
Balbi Amedeo
2013-09-01
Full Text Available Time has always played a crucial role in cosmology. I review some of the aspects of the present cosmological model which are more directly related to time, such as: the definition of a cosmic time; the existence of typical timescales and epochs in an expanding universe; the problem of the initial singularity and the origin of time; the cosmological arrow of time.
Lyth, David
2016-01-01
Written by an award-winning cosmologist, this brand new textbook provides advanced undergraduate and graduate students with coverage of the very latest developments in the observational science of cosmology. The book is separated into three parts; part I covers particle physics and general relativity, part II explores an account of the known history of the universe, and part III studies inflation. Full treatment of the origin of structure, scalar fields, the cosmic microwave background and the early universe are provided. Problems are included in the book with solutions provided in a separate solutions manual. More advanced extension material is offered in the Appendix, ensuring the book is fully accessible to students with a wide variety of background experience.
Cosmological disformal invariance
Domènech, Guillem; Sasaki, Misao
2015-01-01
The invariance of physical observables under disformal transformations is considered. It is known that conformal transformations leave physical observables invariant. However, whether it is true for disformal transformations is still an open question. In this paper, it is shown that a pure disformal transformation without any conformal factor is equivalent to rescaling the time coordinate. Since this rescaling applies equally to all the physical quantities, physics must be invariant under a disformal transformation, that is, neither causal structure, propagation speed nor any other property of the fields are affected by a disformal transformation itself. This fact is presented at the action level for gravitational and matter fields and it is illustrated with some examples of observable quantities. We also find the physical invariance for cosmological perturbations at linear and high orders in perturbation, extending previous studies. Finally, a comparison with Horndeski and beyond Horndeski theories under a d...
Testing the Big Bang: Light elements, neutrinos, dark matter and large-scale structure
Schramm, David N.
1991-01-01
Several experimental and observational tests of the standard cosmological model are examined. In particular, a detailed discussion is presented regarding: (1) nucleosynthesis, the light element abundances, and neutrino counting; (2) the dark matter problems; and (3) the formation of galaxies and large-scale structure. Comments are made on the possible implications of the recent solar neutrino experimental results for cosmology. An appendix briefly discusses the 17 keV thing and the cosmological and astrophysical constraints on it.
Issues of structure formation of multi-component construction materials
Directory of Open Access Journals (Sweden)
Sidorenko Yulia
2017-01-01
Full Text Available Growing volumes of construction result in the rising demand for high-quality wall materials and products, growing relevance of availability of resource and raw-material base of natural and industrial products for the construction industry. Structural, physical and mechanical qualities of these products can be improved through systematical selection of compositions based on natural and raw materials, including nano-scale products. The goal of this paper is to provide rationale for structure formation mechanisms of multicomponent materials (silica-lime, silicate, cement materials, with the possibility of using nano-scale products in their production. The primary mechanism of directed structure formation at the interface boundaries of binders are nano- and ultra-disperse particles with high absorption and adhesion properties, which are primarily intended to strengthen the contact area (one of the key structural units of multicomponent binders. The knowledge of genesis, chemical, mineralogical, and phase compositions, as well as specific features of formation of nano-technological raw materials, enables optimization of construction product properties. Using the small-angle neutron scattering method, we identified granulometric and surface properties of a series of nano-technological products (binary and sludge and materials where such products are used, which enabled us to design optimal mixture compositions and parameters of pressing operations.
López-Corredoira, M.
2009-08-01
Certain results of observational cosmology cast critical doubt on the foundations of standard cosmology but leave most cosmologists untroubled. Alternative cosmological models that differ from the Big Bang have been published and defended by heterodox scientists; however, most cosmologists do not heed these. This may be because standard theory is correct and all other ideas and criticisms are incorrect, but it is also to a great extent due to sociological phenomena such as the ``snowball effect'' or ``groupthink''. We might wonder whether cosmology, the study of the Universe as a whole, is a science like other branches of physics or just a dominant ideology.
Kraft, Ralph; Bautz, Mark
2017-01-01
X-ray astrophysics lies at the conjunction of many of the big picture questions we have about our Universe. We detect X-rays from supermassive black holes when the Universe was 7% of its present age, just after the formation of the first galaxies. Most of the baryons in the Universe are in clusters or in the filaments between collapsed structures heated to X-ray emitting temperatures. X-ray studies of the evolution of these collapsed structures provide strong constraints on cosmological parameters. Studies by future X-ray observatories of this hot filamentary gas between clusters and of halos of galaxies will provide unique windows in the processes of the early universe and formation of structure. In this presentation, we discuss the current state of X-ray astrophysics. We will present the status of and recent science highlights from the current generation of X-ray observatories. We will outline the scientific potential for missions that will soon be launched including NICER, eRosita, and a potential refly of the Hitomi mission, as well as longer term missions such as the European L2 Athena mission. Finally, we will summarize the status of the X-ray Surveyor, one of the four large mission concepts under study prior to the 2020 Astrophysics Decadal Review.
Precision cosmology in muddy waters: Cosmological constraints and N-body codes
Smith, Robert E; Potter, Doug; Marian, Laura; Crocce, Martin; Moore, Ben
2012-01-01
Future large-scale structure surveys of the Universe will aim to constrain the cosmological model and the true nature of dark energy with unprecedented accuracy. In order for these surveys to achieve their designed goals, they will require predictions for the nonlinear matter power spectrum to sub-percent accuracy. Through the use of a large ensemble of cosmological N-body simulations, we demonstrate that if we do not understand the uncertainties associated with simulating structure formation, i.e. knowledge of the `true' simulation parameters, and simply seek to marginalize over them, then the constraining power of such future surveys can be significantly reduced. However, for the parameters {n_s, h, Om_b, Om_m}, this effect can be largely mitigated by adding the information from a CMB experiment, like Planck. In contrast, for the amplitude of fluctuations sigma8 and the time-evolving equation of state of dark energy {w_0, w_a}, the mitigation is mild. On marginalizing over the simulation parameters, we find...
Strain phase separation: Formation of ferroelastic domain structures
Xue, Fei; Li, Yongjun; Gu, Yijia; Zhang, Jinxing; Chen, Long-Qing
2016-12-01
Phase decomposition is a well-known process leading to the formation of two-phase mixtures. Here we show that a strain imposed on a ferroelastic crystal promotes the formation of mixed phases and domains, i.e., strain phase separation with local strains determined by a common tangent construction on the free energy versus strain curves. It is demonstrated that a domain structure can be understood using the concepts of domain/phase rule, lever rule, and coherent and incoherent strain phase separation, in a complete analogy to phase decomposition. The proposed strain phase separation model is validated using phase-field simulations and experimental observations of PbTi O3 and BiFe O3 thin films as examples. The proposed model provides a simple tool to guide and design domain structures of ferroelastic systems.
Crystal Structure Representations for Machine Learning Models of Formation Energies
Faber, Felix; von Lilienfeld, O Anatole; Armiento, Rickard
2015-01-01
We introduce and evaluate a set of feature vector representations of crystal structures for machine learning (ML) models of formation energies of solids. ML models of atomization energies of organic molecules have been successful using a Coulomb matrix representation of the molecule. We consider three ways to generalize such representations to periodic systems: (i) a matrix where each element is related to the Ewald sum of the electrostatic interaction between two different atoms in the unit cell repeated over the lattice; (ii) an extended Coulomb-like matrix that takes into account a number of neighboring unit cells; and (iii) an Ansatz that mimics the periodicity and the basic features of the elements in the Ewald sum matrix by using a sine function of the crystal coordinates of the atoms. The representations are compared for a Laplacian kernel with Manhattan norm, trained to reproduce formation energies using a data set of 3938 crystal structures obtained from the Materials Project. For training sets consi...
Black Hole Mergers as Probes of Structure Formation
Alicea-Munoz, Emily
2008-01-01
Observations of gravitational waves from massive black hole (MBH) mergers can provide us with important clues about the era of structure formation in the early universe. Previous research in this field has been limited to calculating merger rates of MBHs using different models where many assumptions are made about the specific values of physical parameters of the mergers, resulting in merger rate estimates that span 5 to 6 orders of magnitude. We develop a semi-analytical, phenomenological model that includes plausible combinations of several physical parameters involved in the mergers. which we then turn around to determine how well LISA observations will be able to enhance our understanding of the universe during the critical z approximately equal to 5-30 structure formation era. We do this by generating synthetic LISA observable data (masses, redshifts, merger rates), which are then analyzed using a Markov Chain Monte Carlo (MCMC) method. This allows us to constrain the physical parameters of the mergers.
Analysis of the Particle Formation Process of Structured Microparticles.
Baldelli, Alberto; Boraey, Mohammed A; Nobes, David S; Vehring, Reinhard
2015-08-03
The particle formation process for microparticles of cellulose acetate butyrate dried from an acetone solution was investigated experimentally and theoretically. A monodisperse droplet chain was used to produce solution microdroplets in a size range of 55-70 μm with solution concentrations of 0.37 and 10 mg/mL. As the droplets dried in a laminar air flow with a temperature of 30, 40, or 55 °C, the particle formation process was recorded by two independent optical methods. Dried particles in a size range of 10-30 μm were collected for morphology analysis, showing hollow, elongated particles whose structure was dependent on the drying gas temperature and initial solution concentration. The setup allowed comprehensive measurements of the particle formation process to be made, including the period after initial shell formation. The early particle formation process for this system was controlled by the diffusion of cellulose acetate butyrate in the liquid phase, whereas later stages of the process were dominated by shell buckling and folding.
Peebles, P J
1998-01-01
It is argued that within the standard Big Bang cosmological model the bulk of the mass of the luminous parts of the large galaxies likely had been assembled by redshift z approximately 10. Galaxy assembly this early would be difficult to fit in the widely discussed adiabatic cold dark matter model for structure formation, but it could agree with an isocurvature version in which the cold dark matter is the remnant of a massive scalar field frozen (or squeezed) from quantum fluctuations during inflation. The squeezed field fluctuations would be Gaussian with zero mean, and the distribution of the field mass therefore would be the square of a random Gaussian process. This offers a possibly interesting new direction for the numerical exploration of models for cosmic structure formation.
Nonlinear Structure Formation with the Environmentally Dependent Dilaton
Brax, Phil; Davis, Anne-C; Li, Baojiu; Shaw, Douglas J
2011-01-01
We have studied the nonlinear structure formation of the environmentally dependent dilaton model using $N$-body simulations. We find that the mechanism of suppressing the scalar fifth force in high-density regions works very well. Within the parameter space allowed by the solar system tests, the dilaton model predicts small deviations of the matter power spectrum and the mass function from their $\\Lambda$CDM counterparts. The importance of taking full account of the nonlinearity of the model is also emphasized.
Gravitationally induced particle production and its impact on structure formation
Nunes, Rafael C
2016-01-01
In this paper we investigate the influence of a continuous particles creation processes on the linear and nonlinear matter clustering, and its consequences on the weak lensing effect induced by structure formation. We study the line of sight behavior of the contribution to the bispectrum signal at a given angular multipole $l$, showing that the scale where the nonlinear growth overcomes the linear effect depends strongly of particles creation rate.
Structure formation in the Lemaitre-Tolman model I
Krasinski, A; Krasinski, Andrzej; Hellaby, Charles
2002-01-01
Structure formation within the Lemaitre-Tolman model is investigated in a general manner. We seek models such that the initial density perturbation within a homogeneous background has a smaller mass than the structure into which it will develop, and the perturbation then accretes more mass during evolution. This is a generalisation of the approach taken by Bonnor in 1956. It is proved that any two spherically symmetric density profiles specified on any two constant time slices can be joined by a Lemaitre-Tolman evolution, and exact implicit formulae for the arbitrary functions that determine the resulting L-T model are obtained. Examples of the process are investigated numerically.
Structure formation of surfactant membranes under shear flow
Shiba, Hayato; Noguchi, Hiroshi; Gompper, Gerhard
2013-07-01
Shear-flow-induced structure formation in surfactant-water mixtures is investigated numerically using a meshless-membrane model in combination with a particle-based hydrodynamics simulation approach for the solvent. At low shear rates, uni-lamellar vesicles and planar lamellae structures are formed at small and large membrane volume fractions, respectively. At high shear rates, lamellar states exhibit an undulation instability, leading to rolled or cylindrical membrane shapes oriented in the flow direction. The spatial symmetry and structure factor of this rolled state agree with those of intermediate states during lamellar-to-onion transition measured by time-resolved scatting experiments. Structural evolution in time exhibits a moderate dependence on the initial condition.
Directory of Open Access Journals (Sweden)
Heidi Keinonen
2016-08-01
Full Text Available Despite the growing number of publications on television formats, specific theorisations regarding formats and format adaptation, in particular, are still rare. In this article, I introduce a synthesizing approach for studying format appropriation. Drawing on format study, media industry research and structuration theory, I suggest that television formats should be understood and studied as a process of cultural negotiation in which global influences and local elements amalgamate on various levels of television culture (i.e., production, text, and reception; every level includes several sites of symbolic or actual negotiation. These sites emerge in the duality of structure and human agency.
Direct cosmological simulations of the growth of black holes and galaxies
Di Matteo, Tiziana; Springel, Volker; Hernquist, Lars; Sijacki, Debora
2007-01-01
We investigate the coupled formation and evolution of galaxies and their embedded supermassive black holes using state-of-the-art hydrodynamic simulations of cosmological structure formation. For the first time, we self-consistently follow the dark matter dynamics, radiative gas cooling, star formation, as well as black hole growth and associated feedback processes, starting directly from initial conditions appropriate for the LambdaCDM cosmology. Our modeling of the black hole physics is based on an approach we have developed in simulations of isolated galaxy mergers. Here we examine: (i) the predicted global history of black hole mass assembly (ii) the evolution of the local black hole-host mass correlations and (iii) the conditions that allow rapid growth of the first quasars, and the properties of their hosts and descendants today. We find a total black hole mass density in good agreement with observational estimates. The black hole accretion rate density peaks at lower redshift and evolves more strongly ...