WorldWideScience

Sample records for cosmological sph simulations

  1. Comparing AMR and SPH Cosmological Simulations. I. Dark Matter and Adiabatic Simulations

    Science.gov (United States)

    O'Shea, Brian W.; Nagamine, Kentaro; Springel, Volker; Hernquist, Lars; Norman, Michael L.

    2005-09-01

    We compare two cosmological hydrodynamic simulation codes in the context of hierarchical galaxy formation: the Lagrangian smoothed particle hydrodynamics (SPH) code GADGET, and the Eulerian adaptive mesh refinement (AMR) code Enzo. Both codes represent dark matter with the N-body method but use different gravity solvers and fundamentally different approaches for baryonic hydrodynamics. The SPH method in GADGET uses a recently developed ``entropy conserving'' formulation of SPH, while for the mesh-based Enzo two different formulations of Eulerian hydrodynamics are employed: the piecewise parabolic method (PPM) extended with a dual energy formulation for cosmology, and the artificial viscosity-based scheme used in the magnetohydrodynamics code ZEUS. In this paper we focus on a comparison of cosmological simulations that follow either only dark matter, or also a nonradiative (``adiabatic'') hydrodynamic gaseous component. We perform multiple simulations using both codes with varying spatial and mass resolution with identical initial conditions. The dark matter-only runs agree generally quite well provided Enzo is run with a comparatively fine root grid and a low overdensity threshold for mesh refinement, otherwise the abundance of low-mass halos is suppressed. This can be readily understood as a consequence of the hierarchical particle-mesh algorithm used by Enzo to compute gravitational forces, which tends to deliver lower force resolution than the tree-algorithm of GADGET at early times before any adaptive mesh refinement takes place. At comparable force resolution we find that the latter offers substantially better performance and lower memory consumption than the present gravity solver in Enzo. In simulations that include adiabatic gasdynamics we find general agreement in the distribution functions of temperature, entropy, and density for gas of moderate to high overdensity, as found inside dark matter halos. However, there are also some significant differences in

  2. Water Flow Simulation using Smoothed Particle Hydrodynamics (SPH)

    Science.gov (United States)

    Vu, Bruce; Berg, Jared; Harris, Michael F.

    2014-01-01

    Simulation of water flow from the rainbird nozzles has been accomplished using the Smoothed Particle Hydrodynamics (SPH). The advantage of using SPH is that no meshing is required, thus the grid quality is no longer an issue and accuracy can be improved.

  3. Cusps in the center of galaxies: a real conflict with observations or a numerical artefact of cosmological simulations?

    International Nuclear Information System (INIS)

    Baushev, A.N.; Valle, L. del; Campusano, L.E.; Escala, A.; Muñoz, R.R.; Palma, G.A.

    2017-01-01

    Galaxy observations and N-body cosmological simulations produce conflicting dark matter halo density profiles for galaxy central regions. While simulations suggest a cuspy and universal density profile (UDP) of this region, the majority of observations favor variable profiles with a core in the center. In this paper, we investigate the convergency of standard N-body simulations, especially in the cusp region, following the approach proposed by [1]. We simulate the well known Hernquist model using the SPH code Gadget-3 and consider the full array of dynamical parameters of the particles. We find that, although the cuspy profile is stable, all integrals of motion characterizing individual particles suffer strong unphysical variations along the whole halo, revealing an effective interaction between the test bodies. This result casts doubts on the reliability of the velocity distribution function obtained in the simulations. Moreover, we find unphysical Fokker-Planck streams of particles in the cusp region. The same streams should appear in cosmological N-body simulations, being strong enough to change the shape of the cusp or even to create it. Our analysis, based on the Hernquist model and the standard SPH code, strongly suggests that the UDPs generally found by the cosmological N-body simulations may be a consequence of numerical effects. A much better understanding of the N-body simulation convergency is necessary before a 'core-cusp problem' can properly be used to question the validity of the CDM model.

  4. Cusps in the center of galaxies: a real conflict with observations or a numerical artefact of cosmological simulations?

    Energy Technology Data Exchange (ETDEWEB)

    Baushev, A.N.; Valle, L. del; Campusano, L.E.; Escala, A.; Muñoz, R.R. [Departamento de Astronomía, Universidad de Chile, Casilla 36-D, Correo Central, Santiago (Chile); Palma, G.A., E-mail: baushev@gmail.com, E-mail: ldelvalleb@gmail.com, E-mail: luis@das.uchile.cl, E-mail: aescala@das.uchile.cl, E-mail: rmunoz@das.uchile.cl, E-mail: gpalmaquilod@ing.uchile.cl [Departamento de Física, FCFM, Universidad de Chile, Blanco Encalada 2008, Santiago (Chile)

    2017-05-01

    Galaxy observations and N-body cosmological simulations produce conflicting dark matter halo density profiles for galaxy central regions. While simulations suggest a cuspy and universal density profile (UDP) of this region, the majority of observations favor variable profiles with a core in the center. In this paper, we investigate the convergency of standard N-body simulations, especially in the cusp region, following the approach proposed by [1]. We simulate the well known Hernquist model using the SPH code Gadget-3 and consider the full array of dynamical parameters of the particles. We find that, although the cuspy profile is stable, all integrals of motion characterizing individual particles suffer strong unphysical variations along the whole halo, revealing an effective interaction between the test bodies. This result casts doubts on the reliability of the velocity distribution function obtained in the simulations. Moreover, we find unphysical Fokker-Planck streams of particles in the cusp region. The same streams should appear in cosmological N-body simulations, being strong enough to change the shape of the cusp or even to create it. Our analysis, based on the Hernquist model and the standard SPH code, strongly suggests that the UDPs generally found by the cosmological N-body simulations may be a consequence of numerical effects. A much better understanding of the N-body simulation convergency is necessary before a 'core-cusp problem' can properly be used to question the validity of the CDM model.

  5. Numerical simulation of lava flow using a GPU SPH model

    Directory of Open Access Journals (Sweden)

    Eugenio Rustico

    2011-12-01

    Full Text Available A smoothed particle hydrodynamics (SPH method for lava-flow modeling was implemented on a graphical processing unit (GPU using the compute unified device architecture (CUDA developed by NVIDIA. This resulted in speed-ups of up to two orders of magnitude. The three-dimensional model can simulate lava flow on a real topography with free-surface, non-Newtonian fluids, and with phase change. The entire SPH code has three main components, neighbor list construction, force computation, and integration of the equation of motion, and it is computed on the GPU, fully exploiting the computational power. The simulation speed achieved is one to two orders of magnitude faster than the equivalent central processing unit (CPU code. This GPU implementation of SPH allows high resolution SPH modeling in hours and days, rather than in weeks and months, on inexpensive and readily available hardware.

  6. Direct collapse to supermassive black hole seeds: comparing the AMR and SPH approaches.

    Science.gov (United States)

    Luo, Yang; Nagamine, Kentaro; Shlosman, Isaac

    2016-07-01

    We provide detailed comparison between the adaptive mesh refinement (AMR) code enzo-2.4 and the smoothed particle hydrodynamics (SPH)/ N -body code gadget-3 in the context of isolated or cosmological direct baryonic collapse within dark matter (DM) haloes to form supermassive black holes. Gas flow is examined by following evolution of basic parameters of accretion flows. Both codes show an overall agreement in the general features of the collapse; however, many subtle differences exist. For isolated models, the codes increase their spatial and mass resolutions at different pace, which leads to substantially earlier collapse in SPH than in AMR cases due to higher gravitational resolution in gadget-3. In cosmological runs, the AMR develops a slightly higher baryonic resolution than SPH during halo growth via cold accretion permeated by mergers. Still, both codes agree in the build-up of DM and baryonic structures. However, with the onset of collapse, this difference in mass and spatial resolution is amplified, so evolution of SPH models begins to lag behind. Such a delay can have effect on formation/destruction rate of H 2 due to UV background, and on basic properties of host haloes. Finally, isolated non-cosmological models in spinning haloes, with spin parameter λ ∼ 0.01-0.07, show delayed collapse for greater λ, but pace of this increase is faster for AMR. Within our simulation set-up, gadget-3 requires significantly larger computational resources than enzo-2.4 during collapse, and needs similar resources, during the pre-collapse, cosmological structure formation phase. Yet it benefits from substantially higher gravitational force and hydrodynamic resolutions, except at the end of collapse.

  7. Synthetic Observations of the HI Line in SPH-Simulated Spiral Galaxies

    NARCIS (Netherlands)

    Douglas, Kevin A.; Acreman, David; Dobbs, Clare; Brunt, Chris

    2009-01-01

    Using the radiative transfer code Torus, we produce spectral-line cubes of the predicted HI profile from global SPH simulations of spiral galaxies. Torus grids the SPH galaxy using Adaptive Mesh Refinement, then applies a ray-tracing method to infer the HI profile along the line(s) of sight. The

  8. ZENO: N-body and SPH Simulation Codes

    Science.gov (United States)

    Barnes, Joshua E.

    2011-02-01

    The ZENO software package integrates N-body and SPH simulation codes with a large array of programs to generate initial conditions and analyze numerical simulations. Written in C, the ZENO system is portable between Mac, Linux, and Unix platforms. It is in active use at the Institute for Astronomy (IfA), at NRAO, and possibly elsewhere. Zeno programs can perform a wide range of simulation and analysis tasks. While many of these programs were first created for specific projects, they embody algorithms of general applicability and embrace a modular design strategy, so existing code is easily applied to new tasks. Major elements of the system include: Structured data file utilities facilitate basic operations on binary data, including import/export of ZENO data to other systems.Snapshot generation routines create particle distributions with various properties. Systems with user-specified density profiles can be realized in collisionless or gaseous form; multiple spherical and disk components may be set up in mutual equilibrium.Snapshot manipulation routines permit the user to sift, sort, and combine particle arrays, translate and rotate particle configurations, and assign new values to data fields associated with each particle.Simulation codes include both pure N-body and combined N-body/SPH programs: Pure N-body codes are available in both uniprocessor and parallel versions.SPH codes offer a wide range of options for gas physics, including isothermal, adiabatic, and radiating models. Snapshot analysis programs calculate temporal averages, evaluate particle statistics, measure shapes and density profiles, compute kinematic properties, and identify and track objects in particle distributions.Visualization programs generate interactive displays and produce still images and videos of particle distributions; the user may specify arbitrary color schemes and viewing transformations.

  9. A Modified SPH Method for Dynamic Failure Simulation of Heterogeneous Material

    Directory of Open Access Journals (Sweden)

    G. W. Ma

    2014-01-01

    Full Text Available A modified smoothed particle hydrodynamics (SPH method is applied to simulate the failure process of heterogeneous materials. An elastoplastic damage model based on an extension form of the unified twin shear strength (UTSS criterion is adopted. Polycrystalline modeling is introduced to generate the artificial microstructure of specimen for the dynamic simulation of Brazilian splitting test and uniaxial compression test. The strain rate effect on the predicted dynamic tensile and compressive strength is discussed. The final failure patterns and the dynamic strength increments demonstrate good agreements with experimental results. It is illustrated that the polycrystalline modeling approach combined with the SPH method is promising to simulate more complex failure process of heterogeneous materials.

  10. EVOLUTION OF THE MASS-METALLICITY RELATIONS IN PASSIVE AND STAR-FORMING GALAXIES FROM SPH-COSMOLOGICAL SIMULATIONS

    International Nuclear Information System (INIS)

    Romeo Velonà, A. D.; Gavignaud, I.; Meza, A.; Sommer-Larsen, J.; Napolitano, N. R.; Antonuccio-Delogu, V.; Cielo, S.

    2013-01-01

    We present results from SPH-cosmological simulations, including self-consistent modeling of supernova feedback and chemical evolution, of galaxies belonging to two clusters and 12 groups. We reproduce the mass-metallicity (ZM) relation of galaxies classified in two samples according to their star-forming (SF) activity, as parameterized by their specific star formation rate (sSFR), across a redshift range up to z = 2. The overall ZM relation for the composite population evolves according to a redshift-dependent quadratic functional form that is consistent with other empirical estimates, provided that the highest mass bin of the brightest central galaxies is excluded. Its slope shows irrelevant evolution in the passive sample, being steeper in groups than in clusters. However, the subsample of high-mass passive galaxies only is characterized by a steep increase of the slope with redshift, from which it can be inferred that the bulk of the slope evolution of the ZM relation is driven by the more massive passive objects. The scatter of the passive sample is dominated by low-mass galaxies at all redshifts and keeps constant over cosmic times. The mean metallicity is highest in cluster cores and lowest in normal groups, following the same environmental sequence as that previously found in the red sequence building. The ZM relation for the SF sample reveals an increasing scatter with redshift, indicating that it is still being built at early epochs. The SF galaxies make up a tight sequence in the SFR-M * plane at high redshift, whose scatter increases with time alongside the consolidation of the passive sequence. We also confirm the anti-correlation between sSFR and stellar mass, pointing at a key role of the former in determining the galaxy downsizing, as the most significant means of diagnostics of the star formation efficiency. Likewise, an anti-correlation between sSFR and metallicity can be established for the SF galaxies, while on the contrary more active galaxies

  11. A Comparison of Grid-based and SPH Binary Mass-transfer and Merger Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Motl, Patrick M. [Indiana University Kokomo, School of Sciences, P.O. Box 9003, Kokomo, IN 46903-9004 (United States); Frank, Juhan; Clayton, Geoffrey C.; Tohline, Joel E. [Louisiana State University, Department of Physics and Astronomy, 202 Nicholson Hall, Baton Rouge, LA 70803-4001 (United States); Staff, Jan [College of Science and Math, University of Virgin Islands, St. Thomas, United States Virgin Islands 00802 (United States); Fryer, Christopher L.; Even, Wesley [Center for Theoretical Astrophysics/CCS-2, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Diehl, Steven, E-mail: pmotl@iuk.edu [TLT-Turbo GmbH, Gleiwitzstrasse 7, 66482 Zweibrücken (Germany)

    2017-04-01

    There is currently a great amount of interest in the outcomes and astrophysical implications of mergers of double degenerate binaries. In a commonly adopted approximation, the components of such binaries are represented by polytropes with an index of n  = 3/2. We present detailed comparisons of stellar mass-transfer and merger simulations of polytropic binaries that have been carried out using two very different numerical algorithms—a finite-volume “grid” code and a smoothed-particle hydrodynamics (SPH) code. We find that there is agreement in both the ultimate outcomes of the evolutions and the intermediate stages if the initial conditions for each code are chosen to match as closely as possible. We find that even with closely matching initial setups, the time it takes to reach a concordant evolution differs between the two codes because the initial depth of contact cannot be matched exactly. There is a general tendency for SPH to yield higher mass transfer rates and faster evolution to the final outcome. We also present comparisons of simulations calculated from two different energy equations: in one series, we assume a polytropic equation of state and in the other series an ideal gas equation of state. In the latter series of simulations, an atmosphere forms around the accretor, which can exchange angular momentum and cause a more rapid loss of orbital angular momentum. In the simulations presented here, the effect of the ideal equation of state is to de-stabilize the binary in both SPH and grid simulations, but the effect is more pronounced in the grid code.

  12. A splitting integration scheme for the SPH simulation of concentrated particle suspensions

    Science.gov (United States)

    Bian, Xin; Ellero, Marco

    2014-01-01

    Simulating nearly contacting solid particles in suspension is a challenging task due to the diverging behavior of short-range lubrication forces, which pose a serious time-step limitation for explicit integration schemes. This general difficulty limits severely the total duration of simulations of concentrated suspensions. Inspired by the ideas developed in [S. Litvinov, M. Ellero, X.Y. Hu, N.A. Adams, J. Comput. Phys. 229 (2010) 5457-5464] for the simulation of highly dissipative fluids, we propose in this work a splitting integration scheme for the direct simulation of solid particles suspended in a Newtonian liquid. The scheme separates the contributions of different forces acting on the solid particles. In particular, intermediate- and long-range multi-body hydrodynamic forces, which are computed from the discretization of the Navier-Stokes equations using the smoothed particle hydrodynamics (SPH) method, are taken into account using an explicit integration; for short-range lubrication forces, velocities of pairwise interacting solid particles are updated implicitly by sweeping over all the neighboring pairs iteratively, until convergence in the solution is obtained. By using the splitting integration, simulations can be run stably and efficiently up to very large solid particle concentrations. Moreover, the proposed scheme is not limited to the SPH method presented here, but can be easily applied to other simulation techniques employed for particulate suspensions.

  13. THE PRESSURE OF THE STAR-FORMING INTERSTELLAR MEDIUM IN COSMOLOGICAL SIMULATIONS

    International Nuclear Information System (INIS)

    Munshi, Ferah; Quinn, Thomas R.; Governato, Fabio; Christensen, Charlotte; Wadsley, James; Loebman, Sarah; Shen, Sijing

    2014-01-01

    We examine the pressure of the star-forming interstellar medium (ISM) of Milky-Way-sized disk galaxies using fully cosmological SPH+N-body, high-resolution simulations. These simulations include explicit treatment of metal-line cooling in addition to dust and self-shielding, H 2 -based star formation. The four simulated halos have masses ranging from a few times 10 10 to nearly 10 12 solar masses. Using a kinematic decomposition of these galaxies into present-day bulge and disk components, we find that the typical pressure of the star-forming ISM in the present-day bulge is higher than that in the present-day disk by an order of magnitude. We also find that the pressure of the star-forming ISM at high redshift is, on average, higher than ISM pressures at low redshift. This explains why the bulge forms at higher pressures: the disk assembles at lower redshift when the ISM exhibits lower pressure and the bulge forms at high redshift when the ISM has higher pressure. If ISM pressure and IMF variation are tied together, these results could indicate a time-dependent IMF in Milky-Way-like systems as well as a different IMF in the bulge and the disk

  14. Spatio-Temporal Process Simulation of Dam-Break Flood Based on SPH

    Science.gov (United States)

    Wang, H.; Ye, F.; Ouyang, S.; Li, Z.

    2018-04-01

    On the basis of introducing the SPH (Smooth Particle Hydrodynamics) simulation method, the key research problems were given solutions in this paper, which ere the spatial scale and temporal scale adapting to the GIS(Geographical Information System) application, the boundary condition equations combined with the underlying surface, and the kernel function and parameters applicable to dam-break flood simulation. In this regards, a calculation method of spatio-temporal process emulation with elaborate particles for dam-break flood was proposed. Moreover the spatio-temporal process was dynamic simulated by using GIS modelling and visualization. The results show that the method gets more information, objectiveness and real situations.

  15. Enforcing dust mass conservation in 3D simulations of tightly coupled grains with the PHANTOM SPH code

    Science.gov (United States)

    Ballabio, G.; Dipierro, G.; Veronesi, B.; Lodato, G.; Hutchison, M.; Laibe, G.; Price, D. J.

    2018-06-01

    We describe a new implementation of the one-fluid method in the SPH code PHANTOM to simulate the dynamics of dust grains in gas protoplanetary discs. We revise and extend previously developed algorithms by computing the evolution of a new fluid quantity that produces a more accurate and numerically controlled evolution of the dust dynamics. Moreover, by limiting the stopping time of uncoupled grains that violate the assumptions of the terminal velocity approximation, we avoid fatal numerical errors in mass conservation. We test and validate our new algorithm by running 3D SPH simulations of a large range of disc models with tightly and marginally coupled grains.

  16. Extensible, Reusable, and Reproducible Computing: A Case Study of PySPH

    International Nuclear Information System (INIS)

    Ramachandran, Prabhu

    2016-01-01

    In this work, the Smoothed Particle Hydrodynamics (SPH) technique is considered as an example of a typical computational research area. PySPH is an open source framework for SPH computations. PySPH is designed to be easy to use. The framework allows a user to implement an entire simulation in pure Python. It is designed to make it easy for scientists to reuse their code and extend the work of others. These important features allow PySPH to facilitate reproducible computational research. Based on the experience with PySPH, general recommendations are suggested for other computational researchers. (paper)

  17. Simulating non-Newtonian flows with the moving particle semi-implicit method with an SPH kernel

    International Nuclear Information System (INIS)

    Xiang, Hao; Chen, Bin

    2015-01-01

    The moving particle semi-implicit (MPS) method and smoothed particle hydrodynamics (SPH) are commonly used mesh-free particle methods for free surface flows. The MPS method has superiority in incompressible flow simulation and simple programing. However, the crude kernel function is not accurate enough for the discretization of the divergence of the shear stress tensor by the particle inconsistency when the MPS method is extended to non-Newtonian flows. This paper presents an improved MPS method with an SPH kernel to simulate non-Newtonian flows. To improve the consistency of the partial derivative, the SPH cubic spline kernel and the Taylor series expansion are combined with the MPS method. This approach is suitable for all non-Newtonian fluids that can be described with τ  = μ(|γ|) Δ (where τ is the shear stress tensor, μ is the viscosity, |γ| is the shear rate, and Δ is the strain tensor), e.g., the Casson and Cross fluids. Two examples are simulated including the Newtonian Poiseuille flow and container filling process of the Cross fluid. The results of Poiseuille flow are more accurate than the traditional MPS method, and different filling processes are obtained with good agreement with previous results, which verified the validation of the new algorithm. For the Cross fluid, the jet fracture length can be correlated with We 0.28 Fr 0.78 (We is the Weber number, Fr is the Froude number). (paper)

  18. A 1D-2D coupled SPH-SWE model applied to open channel flow simulations in complicated geometries

    Science.gov (United States)

    Chang, Kao-Hua; Sheu, Tony Wen-Hann; Chang, Tsang-Jung

    2018-05-01

    In this study, a one- and two-dimensional (1D-2D) coupled model is developed to solve the shallow water equations (SWEs). The solutions are obtained using a Lagrangian meshless method called smoothed particle hydrodynamics (SPH) to simulate shallow water flows in converging, diverging and curved channels. A buffer zone is introduced to exchange information between the 1D and 2D SPH-SWE models. Interpolated water discharge values and water surface levels at the internal boundaries are prescribed as the inflow/outflow boundary conditions in the two SPH-SWE models. In addition, instead of using the SPH summation operator, we directly solve the continuity equation by introducing a diffusive term to suppress oscillations in the predicted water depth. The performance of the two approaches in calculating the water depth is comprehensively compared through a case study of a straight channel. Additionally, three benchmark cases involving converging, diverging and curved channels are adopted to demonstrate the ability of the proposed 1D and 2D coupled SPH-SWE model through comparisons with measured data and predicted mesh-based numerical results. The proposed model provides satisfactory accuracy and guaranteed convergence.

  19. AX-GADGET: a new code for cosmological simulations of Fuzzy Dark Matter and Axion models

    Science.gov (United States)

    Nori, Matteo; Baldi, Marco

    2018-05-01

    We present a new module of the parallel N-Body code P-GADGET3 for cosmological simulations of light bosonic non-thermal dark matter, often referred as Fuzzy Dark Matter (FDM). The dynamics of the FDM features a highly non-linear Quantum Potential (QP) that suppresses the growth of structures at small scales. Most of the previous attempts of FDM simulations either evolved suppressed initial conditions, completely neglecting the dynamical effects of QP throughout cosmic evolution, or resorted to numerically challenging full-wave solvers. The code provides an interesting alternative, following the FDM evolution without impairing the overall performance. This is done by computing the QP acceleration through the Smoothed Particle Hydrodynamics (SPH) routines, with improved schemes to ensure precise and stable derivatives. As an extension of the P-GADGET3 code, it inherits all the additional physics modules implemented up to date, opening a wide range of possibilities to constrain FDM models and explore its degeneracies with other physical phenomena. Simulations are compared with analytical predictions and results of other codes, validating the QP as a crucial player in structure formation at small scales.

  20. Cosmological N -body simulations including radiation perturbations

    DEFF Research Database (Denmark)

    Brandbyge, Jacob; Rampf, Cornelius; Tram, Thomas

    2017-01-01

    CosmologicalN-body simulations are the standard tools to study the emergence of the observed large-scale structure of the Universe. Such simulations usually solve for the gravitational dynamics of matter within the Newtonian approximation, thus discarding general relativistic effects such as the ......CosmologicalN-body simulations are the standard tools to study the emergence of the observed large-scale structure of the Universe. Such simulations usually solve for the gravitational dynamics of matter within the Newtonian approximation, thus discarding general relativistic effects...

  1. A Monte Carlo Simulation Framework for Testing Cosmological Models

    Directory of Open Access Journals (Sweden)

    Heymann Y.

    2014-10-01

    Full Text Available We tested alternative cosmologies using Monte Carlo simulations based on the sam- pling method of the zCosmos galactic survey. The survey encompasses a collection of observable galaxies with respective redshifts that have been obtained for a given spec- troscopic area of the sky. Using a cosmological model, we can convert the redshifts into light-travel times and, by slicing the survey into small redshift buckets, compute a curve of galactic density over time. Because foreground galaxies obstruct the images of more distant galaxies, we simulated the theoretical galactic density curve using an average galactic radius. By comparing the galactic density curves of the simulations with that of the survey, we could assess the cosmologies. We applied the test to the expanding-universe cosmology of de Sitter and to a dichotomous cosmology.

  2. Simulating cosmologies beyond ΛCDM with PINOCCHIO

    Energy Technology Data Exchange (ETDEWEB)

    Rizzo, Luca A. [Institut de Physique Theorique, Universite Paris-Saclay CEA, CNRS, F-91191 Gif-sur-Yvette, Cedex (France); Villaescusa-Navarro, Francisco [Center for Computational Astrophysics, 160 5th Ave, New York, NY, 10010 (United States); Monaco, Pierluigi [Sezione di Astronomia, Dipartimento di Fisica, Università di Trieste, via G.B. Tiepolo 11, I-34143 Trieste (Italy); Munari, Emiliano [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Borgani, Stefano [INAF – Astronomical Observatory of Trieste, via G.B. Tiepolo 11, I-34143 Trieste (Italy); Castorina, Emanuele [Berkeley Center for Cosmological Physics, University of California, Berkeley, CA 94720 (United States); Sefusatti, Emiliano, E-mail: luca.rizzo@cea.fr, E-mail: fvillaescusa@simonsfoundation.org, E-mail: monaco@oats.inaf.it, E-mail: munari@dark-cosmology.dk, E-mail: borgani@oats.inaf.it, E-mail: ecastorina@berkeley.edu, E-mail: emiliano.sefusatti@brera.inaf.it [INAF, Osservatorio Astronomico di Brera, Via Bianchi 46, I-23807 Merate (Italy)

    2017-01-01

    We present a method that extends the capabilities of the PINpointing Orbit-Crossing Collapsed HIerarchical Objects (PINOCCHIO) code, allowing it to generate accurate dark matter halo mock catalogues in cosmological models where the linear growth factor and the growth rate depend on scale. Such cosmologies comprise, among others, models with massive neutrinos and some classes of modified gravity theories. We validate the code by comparing the halo properties from PINOCCHIO against N-body simulations, focusing on cosmologies with massive neutrinos: νΛCDM. We analyse the halo mass function, halo two-point correlation function and halo power spectrum, showing that PINOCCHIO reproduces the results from simulations with the same level of precision as the original code (∼ 5–10%). We demonstrate that the abundance of halos in cosmologies with massless and massive neutrinos from PINOCCHIO matches very well the outcome of simulations, and point out that PINOCCHIO can reproduce the Ω{sub ν}–σ{sub 8} degeneracy that affects the halo mass function. We finally show that the clustering properties of the halos from PINOCCHIO matches accurately those from simulations both in real and redshift-space, in the latter case up to k = 0.3 h Mpc{sup −1}. We emphasize that the computational time required by PINOCCHIO to generate mock halo catalogues is orders of magnitude lower than the one needed for N-body simulations. This makes this tool ideal for applications like covariance matrix studies within the standard ΛCDM model but also in cosmologies with massive neutrinos or some modified gravity theories.

  3. Effects of the initial conditions on cosmological $N$-body simulations

    OpenAIRE

    L'Huillier, Benjamin; Park, Changbom; Kim, Juhan

    2014-01-01

    Cosmology is entering an era of percent level precision due to current large observational surveys. This precision in observation is now demanding more accuracy from numerical methods and cosmological simulations. In this paper, we study the accuracy of $N$-body numerical simulations and their dependence on changes in the initial conditions and in the simulation algorithms. For this purpose, we use a series of cosmological $N$-body simulations with varying initial conditions. We test the infl...

  4. Cosmological simulations of multicomponent cold dark matter.

    Science.gov (United States)

    Medvedev, Mikhail V

    2014-08-15

    The nature of dark matter is unknown. A number of dark matter candidates are quantum flavor-mixed particles but this property has never been accounted for in cosmology. Here we explore this possibility from the first principles via extensive N-body cosmological simulations and demonstrate that the two-component dark matter model agrees with observational data at all scales. Substantial reduction of substructure and flattening of density profiles in the centers of dark matter halos found in simulations can simultaneously resolve several outstanding puzzles of modern cosmology. The model shares the "why now?" fine-tuning caveat pertinent to all self-interacting models. Predictions for direct and indirect detection dark matter experiments are made.

  5. SPH Modelling of Sea-ice Pack Dynamics

    Science.gov (United States)

    Staroszczyk, Ryszard

    2017-12-01

    The paper is concerned with the problem of sea-ice pack motion and deformation under the action of wind and water currents. Differential equations describing the dynamics of ice, with its very distinct mateFfigrial responses in converging and diverging flows, express the mass and linear momentum balances on the horizontal plane (the free surface of the ocean). These equations are solved by the fully Lagrangian method of smoothed particle hydrodynamics (SPH). Assuming that the ice behaviour can be approximated by a non-linearly viscous rheology, the proposed SPH model has been used to simulate the evolution of a sea-ice pack driven by wind drag stresses. The results of numerical simulations illustrate the evolution of an ice pack, including variations in ice thickness and ice area fraction in space and time. The effects of different initial ice pack configurations and of different conditions assumed at the coast-ice interface are examined. In particular, the SPH model is applied to a pack flow driven by a vortex wind to demonstrate how well the Lagrangian formulation can capture large deformations and displacements of sea ice.

  6. Remapping dark matter halo catalogues between cosmological simulations

    Science.gov (United States)

    Mead, A. J.; Peacock, J. A.

    2014-05-01

    We present and test a method for modifying the catalogue of dark matter haloes produced from a given cosmological simulation, so that it resembles the result of a simulation with an entirely different set of parameters. This extends the method of Angulo & White, which rescales the full particle distribution from a simulation. Working directly with the halo catalogue offers an advantage in speed, and also allows modifications of the internal structure of the haloes to account for non-linear differences between cosmologies. Our method can be used directly on a halo catalogue in a self-contained manner without any additional information about the overall density field; although the large-scale displacement field is required by the method, this can be inferred from the halo catalogue alone. We show proof of concept of our method by rescaling a matter-only simulation with no baryon acoustic oscillation (BAO) features to a more standard Λ cold dark matter model containing a cosmological constant and a BAO signal. In conjunction with the halo occupation approach, this method provides a basis for the rapid generation of mock galaxy samples spanning a wide range of cosmological parameters.

  7. ANALYZING AND VISUALIZING COSMOLOGICAL SIMULATIONS WITH ParaView

    International Nuclear Information System (INIS)

    Woodring, Jonathan; Ahrens, James; Heitmann, Katrin; Pope, Adrian; Fasel, Patricia; Hsu, Chung-Hsing; Habib, Salman

    2011-01-01

    The advent of large cosmological sky surveys-ushering in the era of precision cosmology-has been accompanied by ever larger cosmological simulations. The analysis of these simulations, which currently encompass tens of billions of particles and up to a trillion particles in the near future, is often as daunting as carrying out the simulations in the first place. Therefore, the development of very efficient analysis tools combining qualitative and quantitative capabilities is a matter of some urgency. In this paper, we introduce new analysis features implemented within ParaView, a fully parallel, open-source visualization toolkit, to analyze large N-body simulations. A major aspect of ParaView is that it can live and operate on the same machines and utilize the same parallel power as the simulation codes themselves. In addition, data movement is in a serious bottleneck now and will become even more of an issue in the future; an interactive visualization and analysis tool that can handle data in situ is fast becoming essential. The new features in ParaView include particle readers and a very efficient halo finder that identifies friends-of-friends halos and determines common halo properties, including spherical overdensity properties. In combination with many other functionalities already existing within ParaView, such as histogram routines or interfaces to programming languages like Python, this enhanced version enables fast, interactive, and convenient analyses of large cosmological simulations. In addition, development paths are available for future extensions.

  8. Seeding black holes in cosmological simulations

    Science.gov (United States)

    Taylor, P.; Kobayashi, C.

    2014-08-01

    We present a new model for the formation of black holes in cosmological simulations, motivated by the first star formation. Black holes form from high density peaks of primordial gas, and grow via both gas accretion and mergers. Massive black holes heat the surrounding material, suppressing star formation at the centres of galaxies, and driving galactic winds. We perform an investigation into the physical effects of the model parameters, and obtain a `best' set of these parameters by comparing the outcome of simulations to observations. With this best set, we successfully reproduce the cosmic star formation rate history, black hole mass-velocity dispersion relation, and the size-velocity dispersion relation of galaxies. The black hole seed mass is ˜103 M⊙, which is orders of magnitude smaller than that which has been used in previous cosmological simulations with active galactic nuclei, but suggests that the origin of the seed black holes is the death of Population III stars.

  9. The Abacus Cosmos: A Suite of Cosmological N-body Simulations

    Science.gov (United States)

    Garrison, Lehman H.; Eisenstein, Daniel J.; Ferrer, Douglas; Tinker, Jeremy L.; Pinto, Philip A.; Weinberg, David H.

    2018-06-01

    We present a public data release of halo catalogs from a suite of 125 cosmological N-body simulations from the ABACUS project. The simulations span 40 wCDM cosmologies centered on the Planck 2015 cosmology at two mass resolutions, 4 × 1010 h ‑1 M ⊙ and 1 × 1010 h ‑1 M ⊙, in 1.1 h ‑1 Gpc and 720 h ‑1 Mpc boxes, respectively. The boxes are phase-matched to suppress sample variance and isolate cosmology dependence. Additional volume is available via 16 boxes of fixed cosmology and varied phase; a few boxes of single-parameter excursions from Planck 2015 are also provided. Catalogs spanning z = 1.5 to 0.1 are available for friends-of-friends and ROCKSTAR halo finders and include particle subsamples. All data products are available at https://lgarrison.github.io/AbacusCosmos.

  10. 3D SPH numerical simulation of the wave generated by the Vajont rockslide

    Science.gov (United States)

    Vacondio, R.; Mignosa, P.; Pagani, S.

    2013-09-01

    A 3D numerical modeling of the wave generated by the Vajont slide, one of the most destructive ever occurred, is presented in this paper. A meshless Lagrangian Smoothed Particle Hydrodynamics (SPH) technique was adopted to simulate the highly fragmented violent flow generated by the falling slide in the artificial reservoir. The speed-up achievable via General Purpose Graphic Processing Units (GP-GPU) allowed to adopt the adequate resolution to describe the phenomenon. The comparison with the data available in literature showed that the results of the numerical simulation reproduce satisfactorily the maximum run-up, also the water surface elevation in the residual lake after the event. Moreover, the 3D velocity field of the flow during the event and the discharge hydrograph which overtopped the dam, were obtained.

  11. A technique to remove the tensile instability in weakly compressible SPH

    Science.gov (United States)

    Xu, Xiaoyang; Yu, Peng

    2018-01-01

    When smoothed particle hydrodynamics (SPH) is directly applied for the numerical simulations of transient viscoelastic free surface flows, a numerical problem called tensile instability arises. In this paper, we develop an optimized particle shifting technique to remove the tensile instability in SPH. The basic equations governing free surface flow of an Oldroyd-B fluid are considered, and approximated by an improved SPH scheme. This includes the implementations of the correction of kernel gradient and the introduction of Rusanov flux into the continuity equation. To verify the effectiveness of the optimized particle shifting technique in removing the tensile instability, the impacting drop, the injection molding of a C-shaped cavity, and the extrudate swell, are conducted. The numerical results obtained are compared with those simulated by other numerical methods. A comparison among different numerical techniques (e.g., the artificial stress) to remove the tensile instability is further performed. All numerical results agree well with the available data.

  12. Cosmological Simulations with Scale-Free Initial Conditions. I. Adiabatic Hydrodynamics

    International Nuclear Information System (INIS)

    Owen, J.M.; Weinberg, D.H.; Evrard, A.E.; Hernquist, L.; Katz, N.

    1998-01-01

    We analyze hierarchical structure formation based on scale-free initial conditions in an Einstein endash de Sitter universe, including a baryonic component with Ω bary = 0.05. We present three independent, smoothed particle hydrodynamics (SPH) simulations, performed at two resolutions (32 3 and 64 3 dark matter and baryonic particles) and with two different SPH codes (TreeSPH and P3MSPH). Each simulation is based on identical initial conditions, which consist of Gaussian-distributed initial density fluctuations that have a power spectrum P(k) ∝ k -1 . The baryonic material is modeled as an ideal gas subject only to shock heating and adiabatic heating and cooling; radiative cooling and photoionization heating are not included. The evolution is expected to be self-similar in time, and under certain restrictions we identify the expected scalings for many properties of the distribution of collapsed objects in all three realizations. The distributions of dark matter masses, baryon masses, and mass- and emission-weighted temperatures scale quite reliably. However, the density estimates in the central regions of these structures are determined by the degree of numerical resolution. As a result, mean gas densities and Bremsstrahlung luminosities obey the expected scalings only when calculated within a limited dynamic range in density contrast. The temperatures and luminosities of the groups show tight correlations with the baryon masses, which we find can be well represented by power laws. The Press-Schechter (PS) approximation predicts the distribution of group dark matter and baryon masses fairly well, though it tends to overestimate the baryon masses. Combining the PS mass distribution with the measured relations for T(M) and L(M) predicts the temperature and luminosity distributions fairly accurately, though there are some discrepancies at high temperatures/luminosities. In general the three simulations agree well for the properties of resolved groups, where a group

  13. A hybrid Lagrangian Voronoi-SPH scheme

    Science.gov (United States)

    Fernandez-Gutierrez, D.; Souto-Iglesias, A.; Zohdi, T. I.

    2017-11-01

    A hybrid Lagrangian Voronoi-SPH scheme, with an explicit weakly compressible formulation for both the Voronoi and SPH sub-domains, has been developed. The SPH discretization is substituted by Voronoi elements close to solid boundaries, where SPH consistency and boundary conditions implementation become problematic. A buffer zone to couple the dynamics of both sub-domains is used. This zone is formed by a set of particles where fields are interpolated taking into account SPH particles and Voronoi elements. A particle may move in or out of the buffer zone depending on its proximity to a solid boundary. The accuracy of the coupled scheme is discussed by means of a set of well-known verification benchmarks.

  14. Numerical simulation of SPH for dynamics effect of multilayer discontinuous structure irradiated by impulse X-ray

    International Nuclear Information System (INIS)

    Xu Binbin; Tang Wenhui; Ran Xianwen; Xu Zhihong; Chen Hua

    2012-01-01

    When high energy X-ray irradiates material, it will cause energy deposition in materials, and generates thermal shock wave. At present, finite difference method is used to the numerical simulation of thermal shock usually, but if considering the inter-space between the multilayer materials, the difference method will be more difficult. This paper used the SPH method to simulate multilayer discontinuous structure irradiated by high energy X-ray, and the results show that the gap between the materials of each layer has a certain influence on the thermal shock wave intensity, but doesn't have any affect to gasification impulse. (authors)

  15. Grain sedimentation with SPH-DEM and its validation

    NARCIS (Netherlands)

    Robinson, M.J.; Luding, Stefan; Ramaioli, Marco; Yu, A; Dong, K; Yang, R; Luding, S

    2013-01-01

    Our mesoscale simulation method [M. Robinson, S. Luding, and M. Ramaioli, submitted (2013)] for multiphase fluid-particle flows couples Smoothed Particle Hydrodynamics (SPH) and the Discrete Element Method (DEM) and enjoys the flexibility of meshless methods, such as being capable to handling free

  16. Analyzing and Visualizing Cosmological Simulations with ParaView

    Science.gov (United States)

    Woodring, Jonathan; Heitmann, Katrin; Ahrens, James; Fasel, Patricia; Hsu, Chung-Hsing; Habib, Salman; Pope, Adrian

    2011-07-01

    The advent of large cosmological sky surveys—ushering in the era of precision cosmology—has been accompanied by ever larger cosmological simulations. The analysis of these simulations, which currently encompass tens of billions of particles and up to a trillion particles in the near future, is often as daunting as carrying out the simulations in the first place. Therefore, the development of very efficient analysis tools combining qualitative and quantitative capabilities is a matter of some urgency. In this paper, we introduce new analysis features implemented within ParaView, a fully parallel, open-source visualization toolkit, to analyze large N-body simulations. A major aspect of ParaView is that it can live and operate on the same machines and utilize the same parallel power as the simulation codes themselves. In addition, data movement is in a serious bottleneck now and will become even more of an issue in the future; an interactive visualization and analysis tool that can handle data in situ is fast becoming essential. The new features in ParaView include particle readers and a very efficient halo finder that identifies friends-of-friends halos and determines common halo properties, including spherical overdensity properties. In combination with many other functionalities already existing within ParaView, such as histogram routines or interfaces to programming languages like Python, this enhanced version enables fast, interactive, and convenient analyses of large cosmological simulations. In addition, development paths are available for future extensions.

  17. Comparing Results of SPH/N-body Impact Simulations Using Both Solid and Rubble-pile Target Asteroids

    Science.gov (United States)

    Durda, Daniel D.; Bottke, W. F.; Enke, B. L.; Nesvorný, D.; Asphaug, E.; Richardson, D. C.

    2006-09-01

    We have been investigating the properties of satellites and the morphology of size-frequency distributions (SFDs) resulting from a suite of 160 SPH/N-body simulations of impacts into 100-km diameter parent asteroids (Durda et al. 2004, Icarus 170, 243-257; Durda et al. 2006, Icarus, in press). These simulations have produced many valuable insights into the outcomes of cratering and disruptive impacts but were limited to monolithic basalt targets. As a natural consequence of collisional evolution, however, many asteroids have undergone a series of battering impacts that likely have left their interiors substantially fractured, if not completely rubblized. In light of this, we have re-mapped the matrix of simulations using rubble-pile target objects. We constructed the rubble-pile targets by filling the interior of the 100-km diameter spherical shell (the target envelope) with randomly sized solid spheres in mutual contact. We then assigned full damage (which reduces tensile and shear stresses to zero) to SPH particles in the contacts between the components; the remaining volume is void space. The internal spherical components have a power-law distribution of sizes simulating fragments of a pre-shattered parent object. First-look analysis of the rubble-pile results indicate some general similarities to the simulations with the monolithic targets (e.g., similar trends in the number of small, gravitationally bound satellite systems as a function of impact conditions) and some significant differences (e.g., size of largest remnants and smaller debris affecting size frequency distributions of resulting families). We will report details of a more thorough analysis and the implications for collisional models of the main asteroid belt. This work is supported by the National Science Foundation, grant number AST0407045.

  18. Multi-resolution Delta-plus-SPH with tensile instability control: Towards high Reynolds number flows

    Science.gov (United States)

    Sun, P. N.; Colagrossi, A.; Marrone, S.; Antuono, M.; Zhang, A. M.

    2018-03-01

    It is well known that the use of SPH models in simulating flow at high Reynolds numbers is limited because of the tensile instability inception in the fluid region characterized by high vorticity and negative pressure. In order to overcome this issue, the δ+-SPH scheme is modified by implementing a Tensile Instability Control (TIC). The latter consists of switching the momentum equation to a non-conservative formulation in the unstable flow regions. The loss of conservation properties is shown to induce small errors, provided that the particle distribution is regular. The latter condition can be ensured thanks to the implementation of a Particle Shifting Technique (PST). The novel variant of the δ+-SPH is proved to be effective in preventing the onset of tensile instability. Several challenging benchmark tests involving flows past bodies at large Reynolds numbers have been used. Within this a simulation characterized by a deforming foil that resembles a fish-like swimming body is used as a practical application of the δ+-SPH model in biological fluid mechanics.

  19. Dynamic simulations of geologic materials using combined FEM/DEM/SPH analysis

    Energy Technology Data Exchange (ETDEWEB)

    Morris, J P; Johnson, S M

    2008-03-26

    An overview of the Lawrence Discrete Element Code (LDEC) is presented, and results from a study investigating the effect of explosive and impact loading on geologic materials using the Livermore Distinct Element Code (LDEC) are detailed. LDEC was initially developed to simulate tunnels and other structures in jointed rock masses using large numbers of polyhedral blocks. Many geophysical applications, such as projectile penetration into rock, concrete targets, and boulder fields, require a combination of continuum and discrete methods in order to predict the formation and interaction of the fragments produced. In an effort to model this class of problems, LDEC now includes implementations of Cosserat point theory and cohesive elements. This approach directly simulates the transition from continuum to discontinuum behavior, thereby allowing for dynamic fracture within a combined finite element/discrete element framework. In addition, there are many application involving geologic materials where fluid-structure interaction is important. To facilitate solution of this class of problems a Smooth Particle Hydrodynamics (SPH) capability has been incorporated into LDEC to simulate fully coupled systems involving geologic materials and a saturating fluid. We will present results from a study of a broad range of geomechanical problems that exercise the various components of LDEC in isolation and in tandem.

  20. Star Formation History of Dwarf Galaxies in Cosmological Hydrodynamic Simulations

    Directory of Open Access Journals (Sweden)

    Kentaro Nagamine

    2010-01-01

    Full Text Available We examine the past and current work on the star formation (SF histories of dwarf galaxies in cosmological hydrodynamic simulations. The results obtained from different numerical methods are still somewhat mixed, but the differences are understandable if we consider the numerical and resolution effects. It remains a challenge to simulate the episodic nature of SF history in dwarf galaxies at late times within the cosmological context of a cold dark matter model. More work is needed to solve the mysteries of SF history of dwarf galaxies employing large-scale hydrodynamic simulations on the next generation of supercomputers.

  1. Modelling by the SPH method of the impact of a shell containing a fluid

    International Nuclear Information System (INIS)

    Maurel, B.

    2008-01-01

    The aim of this work was to develop a numerical simulation tool using a mesh-less approach, able to simulate the deformation and the rupture of thin structures under the impact of a fluid. A model of thick mesh-less shell (Mindlin-Reissner) based on the SPH method has then been carried out. A contact algorithm has moreover been perfected for the interactions between the structure and the fluid, it is modelled too by the SPH method. These studies have been carried out and been included in the CEA Europlexus fast dynamics software. (O.M.)

  2. A numerical relativity scheme for cosmological simulations

    Science.gov (United States)

    Daverio, David; Dirian, Yves; Mitsou, Ermis

    2017-12-01

    Cosmological simulations involving the fully covariant gravitational dynamics may prove relevant in understanding relativistic/non-linear features and, therefore, in taking better advantage of the upcoming large scale structure survey data. We propose a new 3  +  1 integration scheme for general relativity in the case where the matter sector contains a minimally-coupled perfect fluid field. The original feature is that we completely eliminate the fluid components through the constraint equations, thus remaining with a set of unconstrained evolution equations for the rest of the fields. This procedure does not constrain the lapse function and shift vector, so it holds in arbitrary gauge and also works for arbitrary equation of state. An important advantage of this scheme is that it allows one to define and pass an adaptation of the robustness test to the cosmological context, at least in the case of pressureless perfect fluid matter, which is the relevant one for late-time cosmology.

  3. Galaxy Formation Efficiency and the Multiverse Explanation of the Cosmological Constant with EAGLE Simulations

    Science.gov (United States)

    Barnes, Luke A.; Elahi, Pascal J.; Salcido, Jaime; Bower, Richard G.; Lewis, Geraint F.; Theuns, Tom; Schaller, Matthieu; Crain, Robert A.; Schaye, Joop

    2018-04-01

    Models of the very early universe, including inflationary models, are argued to produce varying universe domains with different values of fundamental constants and cosmic parameters. Using the cosmological hydrodynamical simulation code from the EAGLE collaboration, we investigate the effect of the cosmological constant on the formation of galaxies and stars. We simulate universes with values of the cosmological constant ranging from Λ = 0 to Λ0 × 300, where Λ0 is the value of the cosmological constant in our Universe. Because the global star formation rate in our Universe peaks at t = 3.5 Gyr, before the onset of accelerating expansion, increases in Λ of even an order of magnitude have only a small effect on the star formation history and efficiency of the universe. We use our simulations to predict the observed value of the cosmological constant, given a measure of the multiverse. Whether the cosmological constant is successfully predicted depends crucially on the measure. The impact of the cosmological constant on the formation of structure in the universe does not seem to be a sharp enough function of Λ to explain its observed value alone.

  4. Rapid filling of pipelines with the SPH particle method

    NARCIS (Netherlands)

    Hou, Q.; Zhang, L.X.; Tijsseling, A.S.; Kruisbrink, A.C.H.

    2011-01-01

    The paper reports the development and application of a SPH (smoothed particle hydrodynamics) based simulation of rapid filling of pipelines, for which the rigid-column model is commonly used. In this paper the water-hammer equations with a moving boundary are used to model the pipe filling process,

  5. Rapid filling of pipelines with the SPH particle method

    NARCIS (Netherlands)

    Hou, Q.; Zhang, L.X.; Tijsseling, A.S.; Kruisbrink, A.C.H.

    2012-01-01

    The paper reports the development and application of a SPH (smoothed particle hydrodynamics) based simulation of rapid filling of pipelines, for which the rigid-column model is commonly used. In this paper the water-hammer equations with a moving boundary are used to model the pipe filling process,

  6. Resolution convergence in cosmological hydrodynamical simulations using adaptive mesh refinement

    Science.gov (United States)

    Snaith, Owain N.; Park, Changbom; Kim, Juhan; Rosdahl, Joakim

    2018-06-01

    We have explored the evolution of gas distributions from cosmological simulations carried out using the RAMSES adaptive mesh refinement (AMR) code, to explore the effects of resolution on cosmological hydrodynamical simulations. It is vital to understand the effect of both the resolution of initial conditions (ICs) and the final resolution of the simulation. Lower initial resolution simulations tend to produce smaller numbers of low-mass structures. This will strongly affect the assembly history of objects, and has the same effect of simulating different cosmologies. The resolution of ICs is an important factor in simulations, even with a fixed maximum spatial resolution. The power spectrum of gas in simulations using AMR diverges strongly from the fixed grid approach - with more power on small scales in the AMR simulations - even at fixed physical resolution and also produces offsets in the star formation at specific epochs. This is because before certain times the upper grid levels are held back to maintain approximately fixed physical resolution, and to mimic the natural evolution of dark matter only simulations. Although the impact of hold-back falls with increasing spatial and IC resolutions, the offsets in the star formation remain down to a spatial resolution of 1 kpc. These offsets are of the order of 10-20 per cent, which is below the uncertainty in the implemented physics but are expected to affect the detailed properties of galaxies. We have implemented a new grid-hold-back approach to minimize the impact of hold-back on the star formation rate.

  7. Comparing semi-analytic particle tagging and hydrodynamical simulations of the Milky Way's stellar halo

    Science.gov (United States)

    Cooper, Andrew P.; Cole, Shaun; Frenk, Carlos S.; Le Bret, Theo; Pontzen, Andrew

    2017-08-01

    Particle tagging is an efficient, but approximate, technique for using cosmological N-body simulations to model the phase-space evolution of the stellar populations predicted, for example, by a semi-analytic model of galaxy formation. We test the technique developed by Cooper et al. (which we call stings here) by comparing particle tags with stars in a smooth particle hydrodynamic (SPH) simulation. We focus on the spherically averaged density profile of stars accreted from satellite galaxies in a Milky Way (MW)-like system. The stellar profile in the SPH simulation can be recovered accurately by tagging dark matter (DM) particles in the same simulation according to a prescription based on the rank order of particle binding energy. Applying the same prescription to an N-body version of this simulation produces a density profile differing from that of the SPH simulation by ≲10 per cent on average between 1 and 200 kpc. This confirms that particle tagging can provide a faithful and robust approximation to a self-consistent hydrodynamical simulation in this regime (in contradiction to previous claims in the literature). We find only one systematic effect, likely due to the collisionless approximation, namely that massive satellites in the SPH simulation are disrupted somewhat earlier than their collisionless counterparts. In most cases, this makes remarkably little difference to the spherically averaged distribution of their stellar debris. We conclude that, for galaxy formation models that do not predict strong baryonic effects on the present-day DM distribution of MW-like galaxies or their satellites, differences in stellar halo predictions associated with the treatment of star formation and feedback are much more important than those associated with the dynamical limitations of collisionless particle tagging.

  8. SPH Simulation of Liquid Scattering from the Edge of a Rotary Atomizer

    Science.gov (United States)

    Izawa, Seiichiro; Ito, Takuya; Shigeta, Masaya; Fukunishi, Yu

    2013-11-01

    Three-dimensional incompressible SPH method is used to simulate the behavior of liquid scattering from the edge of a rotary atomizer. Rotary atomizers have been widely used for spraying, painting and coating, for instance, in the automobile industry. However, how the spray droplets are formed after leaving the edge of the rotary atomizer is not well understood, because the scale of the phenomenon is very small and the speed of rotation is very fast. The present computational result shows that while the liquid forms a film on the surface of the rotating disk of the atomizer, it quickly deforms into many thin columns after leaving the disk edge, and these columns soon break up into fine droplets which spread out in the radial direction. The size of droplets tends to become smaller with the increase in the disk rotating speed. The results show good agreement with the experimental observations.

  9. Simulation of the effect of defence structures on granular flows using SPH

    Directory of Open Access Journals (Sweden)

    P. Lachamp

    2002-01-01

    Full Text Available This paper presents the SPH (Smoothed Particles Hydrodynamics numerical method adapted to complex rheology and free surface flow. It has been developed to simulate the local effect of a simple obstacle on a granular flow. We have introduced this specific rheology to the classical formalism of the method and thanks to experimental devices, we were able to validate the results. Two viscosity values have been simultaneously computed to simulate "plugs" and "dead zone" with the same code. First, some experiments have been done on a simple inclined slope to show the accuracy of the numerical results. We have fixed the mass flow rate to see the variations of the flow depth according to the channel slope. Then we put a weir to block the flow and we analysed the dependence between the obstacle height and the length of influence upstream from the obstacle. After having shown that numerical results were consistent, we have studied speed profiles and pressure impact on the structure. Also results with any topography will be presented. This will have a great interest to study real flow over natural topography while using the model for decision help.

  10. SPHYNX: an accurate density-based SPH method for astrophysical applications

    Science.gov (United States)

    Cabezón, R. M.; García-Senz, D.; Figueira, J.

    2017-10-01

    Aims: Hydrodynamical instabilities and shocks are ubiquitous in astrophysical scenarios. Therefore, an accurate numerical simulation of these phenomena is mandatory to correctly model and understand many astrophysical events, such as supernovas, stellar collisions, or planetary formation. In this work, we attempt to address many of the problems that a commonly used technique, smoothed particle hydrodynamics (SPH), has when dealing with subsonic hydrodynamical instabilities or shocks. To that aim we built a new SPH code named SPHYNX, that includes many of the recent advances in the SPH technique and some other new ones, which we present here. Methods: SPHYNX is of Newtonian type and grounded in the Euler-Lagrange formulation of the smoothed-particle hydrodynamics technique. Its distinctive features are: the use of an integral approach to estimating the gradients; the use of a flexible family of interpolators called sinc kernels, which suppress pairing instability; and the incorporation of a new type of volume element which provides a better partition of the unity. Unlike other modern formulations, which consider volume elements linked to pressure, our volume element choice relies on density. SPHYNX is, therefore, a density-based SPH code. Results: A novel computational hydrodynamic code oriented to Astrophysical applications is described, discussed, and validated in the following pages. The ensuing code conserves mass, linear and angular momentum, energy, entropy, and preserves kernel normalization even in strong shocks. In our proposal, the estimation of gradients is enhanced using an integral approach. Additionally, we introduce a new family of volume elements which reduce the so-called tensile instability. Both features help to suppress the damp which often prevents the growth of hydrodynamic instabilities in regular SPH codes. Conclusions: On the whole, SPHYNX has passed the verification tests described below. For identical particle setting and initial

  11. Modeling Supermassive Black Holes in Cosmological Simulations

    Science.gov (United States)

    Tremmel, Michael

    My thesis work has focused on improving the implementation of supermassive black hole (SMBH) physics in cosmological hydrodynamic simulations. SMBHs are ubiquitous in mas- sive galaxies, as well as bulge-less galaxies and dwarfs, and are thought to be a critical component to massive galaxy evolution. Still, much is unknown about how SMBHs form, grow, and affect their host galaxies. Cosmological simulations are an invaluable tool for un- derstanding the formation of galaxies, self-consistently tracking their evolution with realistic merger and gas accretion histories. SMBHs are often modeled in these simulations (generally as a necessity to produce realistic massive galaxies), but their implementations are commonly simplified in ways that can limit what can be learned. Current and future observations are opening new windows into the lifecycle of SMBHs and their host galaxies, but require more detailed, physically motivated simulations. Within the novel framework I have developed, SMBHs 1) are seeded at early times without a priori assumptions of galaxy occupation, 2) grow in a way that accounts for the angular momentum of gas, and 3) experience realistic orbital evolution. I show how this model, properly tuned with a novel parameter optimiza- tion technique, results in realistic galaxies and SMBHs. Utilizing the unique ability of these simulations to capture the dynamical evolution of SMBHs, I present the first self-consistent prediction for the formation timescales of close SMBH pairs, precursors to SMBH binaries and merger events potentially detected by future gravitational wave experiments.

  12. Quantification of discreteness effects in cosmological N-body simulations: Initial conditions

    International Nuclear Information System (INIS)

    Joyce, M.; Marcos, B.

    2007-01-01

    The relation between the results of cosmological N-body simulations, and the continuum theoretical models they simulate, is currently not understood in a way which allows a quantification of N dependent effects. In this first of a series of papers on this issue, we consider the quantification of such effects in the initial conditions of such simulations. A general formalism developed in [A. Gabrielli, Phys. Rev. E 70, 066131 (2004).] allows us to write down an exact expression for the power spectrum of the point distributions generated by the standard algorithm for generating such initial conditions. Expanded perturbatively in the amplitude of the input (i.e. theoretical, continuum) power spectrum, we obtain at linear order the input power spectrum, plus two terms which arise from discreteness and contribute at large wave numbers. For cosmological type power spectra, one obtains as expected, the input spectrum for wave numbers k smaller than that characteristic of the discreteness. The comparison of real space correlation properties is more subtle because the discreteness corrections are not as strongly localized in real space. For cosmological type spectra the theoretical mass variance in spheres and two-point correlation function are well approximated above a finite distance. For typical initial amplitudes this distance is a few times the interparticle distance, but it diverges as this amplitude (or, equivalently, the initial redshift of the cosmological simulation) goes to zero, at fixed particle density. We discuss briefly the physical significance of these discreteness terms in the initial conditions, in particular, with respect to the definition of the continuum limit of N-body simulations

  13. MassiveNuS: cosmological massive neutrino simulations

    Science.gov (United States)

    Liu, Jia; Bird, Simeon; Zorrilla Matilla, José Manuel; Hill, J. Colin; Haiman, Zoltán; Madhavacheril, Mathew S.; Petri, Andrea; Spergel, David N.

    2018-03-01

    The non-zero mass of neutrinos suppresses the growth of cosmic structure on small scales. Since the level of suppression depends on the sum of the masses of the three active neutrino species, the evolution of large-scale structure is a promising tool to constrain the total mass of neutrinos and possibly shed light on the mass hierarchy. In this work, we investigate these effects via a large suite of N-body simulations that include massive neutrinos using an analytic linear-response approximation: the Cosmological Massive Neutrino Simulations (MassiveNuS). The simulations include the effects of radiation on the background expansion, as well as the clustering of neutrinos in response to the nonlinear dark matter evolution. We allow three cosmological parameters to vary: the neutrino mass sum Mν in the range of 0–0.6 eV, the total matter density Ωm, and the primordial power spectrum amplitude As. The rms density fluctuation in spheres of 8 comoving Mpc/h (σ8) is a derived parameter as a result. Our data products include N-body snapshots, halo catalogues, merger trees, ray-traced galaxy lensing convergence maps for four source redshift planes between zs=1–2.5, and ray-traced cosmic microwave background lensing convergence maps. We describe the simulation procedures and code validation in this paper. The data are publicly available at http://columbialensing.org.

  14. Development of stress boundary conditions in smoothed particle hydrodynamics (SPH) for the modeling of solids deformation

    Science.gov (United States)

    Douillet-Grellier, Thomas; Pramanik, Ranjan; Pan, Kai; Albaiz, Abdulaziz; Jones, Bruce D.; Williams, John R.

    2017-10-01

    This paper develops a method for imposing stress boundary conditions in smoothed particle hydrodynamics (SPH) with and without the need for dummy particles. SPH has been used for simulating phenomena in a number of fields, such as astrophysics and fluid mechanics. More recently, the method has gained traction as a technique for simulation of deformation and fracture in solids, where the meshless property of SPH can be leveraged to represent arbitrary crack paths. Despite this interest, application of boundary conditions within the SPH framework is typically limited to imposed velocity or displacement using fictitious dummy particles to compensate for the lack of particles beyond the boundary interface. While this is enough for a large variety of problems, especially in the case of fluid flow, for problems in solid mechanics there is a clear need to impose stresses upon boundaries. In addition to this, the use of dummy particles to impose a boundary condition is not always suitable or even feasibly, especially for those problems which include internal boundaries. In order to overcome these difficulties, this paper first presents an improved method for applying stress boundary conditions in SPH with dummy particles. This is then followed by a proposal of a formulation which does not require dummy particles. These techniques are then validated against analytical solutions to two common problems in rock mechanics, the Brazilian test and the penny-shaped crack problem both in 2D and 3D. This study highlights the fact that SPH offers a good level of accuracy to solve these problems and that results are reliable. This validation work serves as a foundation for addressing more complex problems involving plasticity and fracture propagation.

  15. The SPH homogeneization method

    International Nuclear Information System (INIS)

    Kavenoky, Alain

    1978-01-01

    The homogeneization of a uniform lattice is a rather well understood topic while difficult problems arise if the lattice becomes irregular. The SPH homogeneization method is an attempt to generate homogeneized cross sections for an irregular lattice. Section 1 summarizes the treatment of an isolated cylindrical cell with an entering surface current (in one velocity theory); Section 2 is devoted to the extension of the SPH method to assembly problems. Finally Section 3 presents the generalisation to general multigroup problems. Numerical results are obtained for a PXR rod bundle assembly in Section 4

  16. Impacts modeling using the SPH particulate method. Case study; Modelisation d'impacts par la methode particulaire SPH. Etude de cas

    Energy Technology Data Exchange (ETDEWEB)

    Debord, R

    1999-07-01

    The aim of this study is the modeling of the impact of melted metal on the reactor vessel head in the case of a core-meltdown accident. Modeling using the classical finite-element method alone is not sufficient but requires a coupling with particulate methods in order to take into account the behaviour of the corium. After a general introduction about particulate methods, the Nabor and SPH (smoothed particle hydrodynamics) methods are described. Then, the theoretical and numerical reliability of the SPH method is determined using simple cases. In particular, the number of neighbours significantly influences the preciseness of calculations. Also, the mesh of the structure must be adapted to the mesh of the fluid in order to reduce the edge effects. Finally, this study has shown that the values of artificial velocity coefficients used in the simulation of the BERDA test performed by the FZK Karlsruhe (Germany) are not correct. The domain of use of these coefficients was precised during a low speed impact. (J.S.)

  17. SPH for impact force and ricochet behavior of water-entry bodies

    Science.gov (United States)

    Omidvar, Pourya; Farghadani, Omid; Nikeghbali, Pooyan

    The numerical modeling of fluid interaction with a bouncing body has many applications in scientific and engineering application. In this paper, the problem of water impact of a body on free-surface is investigated, where the fixed ghost boundary condition is added to the open source code SPHysics2D1 to rectify the oscillations in pressure distributions with the repulsive boundary condition. First, after introducing the methodology of SPH and the option of boundary conditions, the still water problem is simulated using two types of boundary conditions. It is shown that the fixed ghost boundary condition gives a better result for a hydrostatics pressure. Then, the dam-break problem, which is a bench mark test case in SPH, is simulated and compared with available data. In order to show the behavior of the hydrostatics forces on bodies, a fix/floating cylinder is placed on free surface looking carefully at the force and heaving profile. Finally, the impact of a body on free-surface is successfully simulated for different impact angles and velocities.

  18. Development of a two-phase SPH model for sediment laden flows

    Science.gov (United States)

    Shi, Huabin; Yu, Xiping; Dalrymple, Robert A.

    2017-12-01

    A SPH model based on a general formulation for solid-fluid two-phase flows is proposed for suspended sediment motion in free surface flows. The water and the sediment are treated as two miscible fluids, and the multi-fluid system is discretized by a single set of SPH particles, which move with the water velocity and carry properties of the two phases. Large eddy simulation (LES) is introduced to deal with the turbulence effect, and the widely used Smagorinsky model is modified to take into account the influence of sediment particles on the turbulence. The drag force is accurately formulated by including the hindered settling effect. In the model, the water is assumed to be weakly compressible while the sediment is incompressible, and a new equation of state is proposed for the pressure in the sediment-water mixture. Dynamic boundary condition is employed to treat wall boundaries, and a new strategy of Shepard filtering is adopted to damp the pressure oscillation. The developed two-phase SPH model is validated by comparing the numerical results with analytical solutions for idealized cases of still water containing both neutrally buoyant and naturally settling sand and for plane Poiseuille flows carrying neutrally buoyant particles, and is then applied to sand dumping from a line source into a water tank, where the sand cloud settles with a response of the free water surface. It is shown that the numerical results are in good agreement with the experimental data as well as the empirical formulas. The characteristics of the settling sand cloud, the pressure field, and the flow vortices are studied. The motion of the free water surface is also discussed. The proposed two-phase SPH model is proven to be effective for numerical simulation of sand dumping into waters.

  19. Simulation-based marginal likelihood for cluster strong lensing cosmology

    Science.gov (United States)

    Killedar, M.; Borgani, S.; Fabjan, D.; Dolag, K.; Granato, G.; Meneghetti, M.; Planelles, S.; Ragone-Figueroa, C.

    2018-01-01

    Comparisons between observed and predicted strong lensing properties of galaxy clusters have been routinely used to claim either tension or consistency with Λ cold dark matter cosmology. However, standard approaches to such cosmological tests are unable to quantify the preference for one cosmology over another. We advocate approximating the relevant Bayes factor using a marginal likelihood that is based on the following summary statistic: the posterior probability distribution function for the parameters of the scaling relation between Einstein radii and cluster mass, α and β. We demonstrate, for the first time, a method of estimating the marginal likelihood using the X-ray selected z > 0.5 Massive Cluster Survey clusters as a case in point and employing both N-body and hydrodynamic simulations of clusters. We investigate the uncertainty in this estimate and consequential ability to compare competing cosmologies, which arises from incomplete descriptions of baryonic processes, discrepancies in cluster selection criteria, redshift distribution and dynamical state. The relation between triaxial cluster masses at various overdensities provides a promising alternative to the strong lensing test.

  20. IMPLEMENTING THE DC MODE IN COSMOLOGICAL SIMULATIONS WITH SUPERCOMOVING VARIABLES

    International Nuclear Information System (INIS)

    Gnedin, Nickolay Y.; Kravtsov, Andrey V.; Rudd, Douglas H.

    2011-01-01

    As emphasized by previous studies, proper treatment of the density fluctuation on the fundamental scale of a cosmological simulation volume-the D C mode - is critical for accurate modeling of spatial correlations on scales ∼> 10% of simulation box size. We provide further illustration of the effects of the DC mode on the abundance of halos in small boxes and show that it is straightforward to incorporate this mode in cosmological codes that use the 'supercomoving' variables. The equations governing evolution of dark matter and baryons recast with these variables are particularly simple and include the expansion factor, and hence the effect of the DC mode, explicitly only in the Poisson equation.

  1. Clues to the 'Magellanic Galaxy' from cosmological simulations

    NARCIS (Netherlands)

    Sales, Laura V.; Navarro, Julio F.; Cooper, Andrew P.; White, Simon D. M.; Frenk, Carlos S.; Helmi, Amina

    2011-01-01

    We use cosmological simulations from the Aquarius Project to study the orbital history of the Large Magellanic Cloud (LMC) and its potential association with other satellites of the Milky Way (MW). We search for dynamical analogues to the LMC and find a subhalo that matches the LMC position and

  2. Impacts modeling using the SPH particulate method. Case study; Modelisation d'impacts par la methode particulaire SPH. Etude de cas

    Energy Technology Data Exchange (ETDEWEB)

    Debord, R

    1999-07-01

    The aim of this study is the modeling of the impact of melted metal on the reactor vessel head in the case of a core-meltdown accident. Modeling using the classical finite-element method alone is not sufficient but requires a coupling with particulate methods in order to take into account the behaviour of the corium. After a general introduction about particulate methods, the Nabor and SPH (smoothed particle hydrodynamics) methods are described. Then, the theoretical and numerical reliability of the SPH method is determined using simple cases. In particular, the number of neighbours significantly influences the preciseness of calculations. Also, the mesh of the structure must be adapted to the mesh of the fluid in order to reduce the edge effects. Finally, this study has shown that the values of artificial velocity coefficients used in the simulation of the BERDA test performed by the FZK Karlsruhe (Germany) are not correct. The domain of use of these coefficients was precised during a low speed impact. (J.S.)

  3. Cosmological simulations of isotropic conduction in galaxy clusters

    International Nuclear Information System (INIS)

    Smith, Britton; O'Shea, Brian W.; Voit, G. Mark; Ventimiglia, David; Skillman, Samuel W.

    2013-01-01

    Simulations of galaxy clusters have a difficult time reproducing the radial gas-property gradients and red central galaxies observed to exist in the cores of galaxy clusters. Thermal conduction has been suggested as a mechanism that can help bring simulations of cluster cores into better alignment with observations by stabilizing the feedback processes that regulate gas cooling, but this idea has not yet been well tested with cosmological numerical simulations. Here we present cosmological simulations of 10 galaxy clusters performed with five different levels of isotropic Spitzer conduction, which alters both the cores and outskirts of clusters, though not dramatically. In the cores, conduction flattens central temperature gradients, making them nearly isothermal and slightly lowering the central density, but failing to prevent a cooling catastrophe there. Conduction has little effect on temperature gradients outside of cluster cores because outward conductive heat flow tends to inflate the outer parts of the intracluster medium (ICM), instead of raising its temperature. In general, conduction tends reduce temperature inhomogeneity in the ICM, but our simulations indicate that those homogenizing effects would be extremely difficult to observe in ∼5 keV clusters. Outside the virial radius, our conduction implementation lowers the gas densities and temperatures because it reduces the Mach numbers of accretion shocks. We conclude that, despite the numerous small ways in which conduction alters the structure of galaxy clusters, none of these effects are significant enough to make the efficiency of conduction easily measurable, unless its effects are more pronounced in clusters hotter than those we have simulated.

  4. On estimating cosmology-dependent covariance matrices

    International Nuclear Information System (INIS)

    Morrison, Christopher B.; Schneider, Michael D.

    2013-01-01

    We describe a statistical model to estimate the covariance matrix of matter tracer two-point correlation functions with cosmological simulations. Assuming a fixed number of cosmological simulation runs, we describe how to build a 'statistical emulator' of the two-point function covariance over a specified range of input cosmological parameters. Because the simulation runs with different cosmological models help to constrain the form of the covariance, we predict that the cosmology-dependent covariance may be estimated with a comparable number of simulations as would be needed to estimate the covariance for fixed cosmology. Our framework is a necessary first step in planning a simulations campaign for analyzing the next generation of cosmological surveys

  5. SImulator of GAlaxy Millimetre/submillimetre Emission (SIGAME): CO emission from massive z=2 main-sequence galaxies

    DEFF Research Database (Denmark)

    Olsen, Karen P.; Greve, Thomas R.; Brinch, Christian

    2016-01-01

    is condensed out of the hot and partly ionized SPH gas. The gas is subjected to far-UV radiation fields and cosmic ray ionization rates which are set to scale with the local star formation rate volume density. Level populations and radiative transport of the CO lines are solved with the 3D radiative transfer...... code lime. We have applied sígame to cosmological SPH simulations of three disc galaxies at z = 2 with stellar masses in the range ∼0.5–2 × 1011 M⊙ and star formation rates ∼40–140 M⊙ yr−1. Global CO luminosities and line ratios are in agreement with observations of disc galaxies at z ∼ 2 up.......5 and Cloud (GMC) mass spectrum does...

  6. Cosmological N-body simulations with generic hot dark matter

    DEFF Research Database (Denmark)

    Brandbyge, Jacob; Hannestad, Steen

    2017-01-01

    We have calculated the non-linear effects of generic fermionic and bosonic hot dark matter components in cosmological N-body simulations. For sub-eV masses, the non-linear power spectrum suppression caused by thermal free-streaming resembles the one seen for massive neutrinos, whereas for masses...

  7. Impacts modeling using the SPH particulate method. Case study

    International Nuclear Information System (INIS)

    Debord, R.

    1999-01-01

    The aim of this study is the modeling of the impact of melted metal on the reactor vessel head in the case of a core-meltdown accident. Modeling using the classical finite-element method alone is not sufficient but requires a coupling with particulate methods in order to take into account the behaviour of the corium. After a general introduction about particulate methods, the Nabor and SPH (smoothed particle hydrodynamics) methods are described. Then, the theoretical and numerical reliability of the SPH method is determined using simple cases. In particular, the number of neighbours significantly influences the preciseness of calculations. Also, the mesh of the structure must be adapted to the mesh of the fluid in order to reduce the edge effects. Finally, this study has shown that the values of artificial velocity coefficients used in the simulation of the BERDA test performed by the FZK Karlsruhe (Germany) are not correct. The domain of use of these coefficients was precised during a low speed impact. (J.S.)

  8. Numerical Simulation of Shear Slitting Process of Grain Oriented Silicon Steel using SPH Method

    Directory of Open Access Journals (Sweden)

    Bohdal Łukasz

    2017-12-01

    Full Text Available Mechanical cutting allows separating of sheet material at low cost and therefore remains the most popular way to produce laminations for electrical machines and transformers. However, recent investigations revealed the deteriorating effect of cutting on the magnetic properties of the material close to the cut edge. The deformations generate elastic stresses in zones adjacent to the area of plastically deformed and strongly affect the magnetic properties. The knowledge about residual stresses is necessary in designing the process. This paper presents the new apprach of modeling residual stresses induced in shear slitting of grain oriented electrical steel using mesh-free method. The applications of SPH (Smoothed Particle Hydrodynamics methodology to the simulation and analysis of 3D shear slitting process is presented. In experimental studies, an advanced vision-based technology based on digital image correlation (DIC for monitoring the cutting process is used.

  9. 3D Radiative Transfer in Eta Carinae: Application of the SimpleX Algorithm to 3D SPH Simulations of Binary Colliding Winds

    Science.gov (United States)

    Clementel, N.; Madura, T. I.; Kruip, C. J. H.; Icke, V.; Gull, T. R.

    2014-01-01

    Eta Carinae is an ideal astrophysical laboratory for studying massive binary interactions and evolution, and stellar wind-wind collisions. Recent three-dimensional (3D) simulations set the stage for understanding the highly complex 3D flows in Eta Car. Observations of different broad high- and low-ionization forbidden emission lines provide an excellent tool to constrain the orientation of the system, the primary's mass-loss rate, and the ionizing flux of the hot secondary. In this work we present the first steps towards generating synthetic observations to compare with available and future HST/STIS data. We present initial results from full 3D radiative transfer simulations of the interacting winds in Eta Car. We use the SimpleX algorithm to post-process the output from 3D SPH simulations and obtain the ionization fractions of hydrogen and helium assuming three different mass-loss rates for the primary star. The resultant ionization maps of both species constrain the regions where the observed forbidden emission lines can form. Including collisional ionization is necessary to achieve a better description of the ionization states, especially in the areas shielded from the secondary's radiation. We find that reducing the primary's mass-loss rate increases the volume of ionized gas, creating larger areas where the forbidden emission lines can form. We conclude that post processing 3D SPH data with SimpleX is a viable tool to create ionization maps for Eta Car.

  10. Fast Generation of Ensembles of Cosmological N-Body Simulations via Mode-Resampling

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, M D; Cole, S; Frenk, C S; Szapudi, I

    2011-02-14

    We present an algorithm for quickly generating multiple realizations of N-body simulations to be used, for example, for cosmological parameter estimation from surveys of large-scale structure. Our algorithm uses a new method to resample the large-scale (Gaussian-distributed) Fourier modes in a periodic N-body simulation box in a manner that properly accounts for the nonlinear mode-coupling between large and small scales. We find that our method for adding new large-scale mode realizations recovers the nonlinear power spectrum to sub-percent accuracy on scales larger than about half the Nyquist frequency of the simulation box. Using 20 N-body simulations, we obtain a power spectrum covariance matrix estimate that matches the estimator from Takahashi et al. (from 5000 simulations) with < 20% errors in all matrix elements. Comparing the rates of convergence, we determine that our algorithm requires {approx}8 times fewer simulations to achieve a given error tolerance in estimates of the power spectrum covariance matrix. The degree of success of our algorithm indicates that we understand the main physical processes that give rise to the correlations in the matter power spectrum. Namely, the large-scale Fourier modes modulate both the degree of structure growth through the variation in the effective local matter density and also the spatial frequency of small-scale perturbations through large-scale displacements. We expect our algorithm to be useful for noise modeling when constraining cosmological parameters from weak lensing (cosmic shear) and galaxy surveys, rescaling summary statistics of N-body simulations for new cosmological parameter values, and any applications where the influence of Fourier modes larger than the simulation size must be accounted for.

  11. Quadratic genetic modifications: a streamlined route to cosmological simulations with controlled merger history

    Science.gov (United States)

    Rey, Martin P.; Pontzen, Andrew

    2018-02-01

    Recent work has studied the interplay between a galaxy's history and its observable properties using `genetically modified' cosmological zoom simulations. The approach systematically generates alternative histories for a halo, while keeping its cosmological environment fixed. Applications to date altered linear properties of the initial conditions, such as the mean overdensity of specified regions; we extend the formulation to include quadratic features, such as local variance, that determines the overall importance of smooth accretion relative to mergers in a galaxy's history. We introduce an efficient algorithm for this new class of modification and demonstrate its ability to control the variance of a region in a one-dimensional toy model. Outcomes of this work are twofold: (i) a clarification of the formulation of genetic modifications and (ii) a proof of concept for quadratic modifications leading the way to a forthcoming implementation in cosmological simulations.

  12. N-body simulations for coupled scalar-field cosmology

    International Nuclear Information System (INIS)

    Li Baojiu; Barrow, John D.

    2011-01-01

    We describe in detail the general methodology and numerical implementation of consistent N-body simulations for coupled-scalar-field models, including background cosmology and the generation of initial conditions (with the different couplings to different matter species taken into account). We perform fully consistent simulations for a class of coupled-scalar-field models with an inverse power-law potential and negative coupling constant, for which the chameleon mechanism does not work. We find that in such cosmological models the scalar-field potential plays a negligible role except in the background expansion, and the fifth force that is produced is proportional to gravity in magnitude, justifying the use of a rescaled gravitational constant G in some earlier N-body simulation works for similar models. We then study the effects of the scalar coupling on the nonlinear matter power spectra and compare with linear perturbation calculations to see the agreement and places where the nonlinear treatment deviates from the linear approximation. We also propose an algorithm to identify gravitationally virialized matter halos, trying to take account of the fact that the virialization itself is also modified by the scalar-field coupling. We use the algorithm to measure the mass function and study the properties of dark-matter halos. We find that the net effect of the scalar coupling helps produce more heavy halos in our simulation boxes and suppresses the inner (but not the outer) density profile of halos compared with the ΛCDM prediction, while the suppression weakens as the coupling between the scalar field and dark-matter particles increases in strength.

  13. Application of the SPH method in nodal diffusion analyses of SFR cores

    Energy Technology Data Exchange (ETDEWEB)

    Nikitin, Evgeny; Fridman, Emil [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Div. Reactor Safety; Mikityuk, K. [Paul Scherrer Institut, Villigen (Switzerland)

    2016-07-01

    The current study investigated the potential of the SPH method, applied to correct the few-group XS produced by Serpent, to further improve the accuracy of the nodal diffusion solutions. The procedure for the generation of SPH-corrected few-group XS is presented in the paper. The performance of the SPH method was tested on a large oxide SFR core from the OECD/NEA SFR benchmark. The reference SFR core was modeled with the DYN3D and PARCS nodal diffusion codes using the SPH-corrected few-group XS generated by Serpent. The nodal diffusion results obtained with and without SPH correction were compared to the reference full-core Serpent MC solution. It was demonstrated that the application of the SPH method improves the accuracy of the nodal diffusion solutions, particularly for the rodded core state.

  14. Cosmological simulations using a static scalar-tensor theory

    Energy Technology Data Exchange (ETDEWEB)

    RodrIguez-Meza, M A [Depto. de Fisica, Instituto Nacional de Investigaciones Nucleares, Col. Escandon, Apdo. Postal 18-1027, 11801 Mexico D.F (Mexico); Gonzalez-Morales, A X [Departamento Ingenierias, Universidad Iberoamericana, Prol. Paseo de la Reforma 880 Lomas de Santa Fe, Mexico D.F. Mexico (Mexico); Gabbasov, R F [Depto. de Fisica, Instituto Nacional de Investigaciones Nucleares, Col. Escandon, Apdo. Postal 18-1027, 11801 Mexico D.F (Mexico); Cervantes-Cota, Jorge L [Depto. de Fisica, Instituto Nacional de Investigaciones Nucleares, Col. Escandon, Apdo. Postal 18-1027, 11801 Mexico D.F (Mexico)

    2007-11-15

    We present {lambda}CDM N-body cosmological simulations in the framework of of a static general scalar-tensor theory of gravity. Due to the influence of the non-minimally coupled scalar field, the gravitational potential is modified by a Yukawa type term, yielding a new structure formation dynamics. We present some preliminary results and, in particular, we compute the density and velocity profiles of the most massive group.

  15. External versus internal triggers of bar formation in cosmological zoom-in simulations

    Science.gov (United States)

    Zana, Tommaso; Dotti, Massimo; Capelo, Pedro R.; Bonoli, Silvia; Haardt, Francesco; Mayer, Lucio; Spinoso, Daniele

    2018-01-01

    The emergence of a large-scale stellar bar is one of the most striking features in disc galaxies. By means of state-of-the-art cosmological zoom-in simulations, we study the formation and evolution of bars in Milky Way-like galaxies in a fully cosmological context, including the physics of gas dissipation, star formation and supernova feedback. Our goal is to characterize the actual trigger of the non-axisymmetric perturbation that leads to the strong bar observable in the simulations at z = 0, discriminating between an internal/secular and an external/tidal origin. To this aim, we run a suite of cosmological zoom-in simulations altering the original history of galaxy-satellite interactions at a time when the main galaxy, though already bar-unstable, does not feature any non-axisymmetric structure yet. We find that the main effect of a late minor merger and of a close fly-by is to delay the time of bar formation and those two dynamical events are not directly responsible for the development of the bar and do not alter significantly its global properties (e.g. its final extension). We conclude that, once the disc has grown to a mass large enough to sustain global non-axisymmetric modes, then bar formation is inevitable.

  16. Hydrodynamical simulations of coupled and uncoupled quintessence models - II. Galaxy clusters

    Science.gov (United States)

    Carlesi, Edoardo; Knebe, Alexander; Lewis, Geraint F.; Yepes, Gustavo

    2014-04-01

    We study the z = 0 properties of clusters (and large groups) of galaxies within the context of interacting and non-interacting quintessence cosmological models, using a series of adiabatic SPH simulations. Initially, we examine the average properties of groups and clusters, quantifying their differences in ΛCold Dark Matter (ΛCDM), uncoupled Dark Energy (uDE) and coupled Dark Energy (cDE) cosmologies. In particular, we focus upon radial profiles of the gas density, temperature and pressure, and we also investigate how the standard hydrodynamic equilibrium hypothesis holds in quintessence cosmologies. While we are able to confirm previous results about the distribution of baryons, we also find that the main discrepancy (with differences up to 20 per cent) can be seen in cluster pressure profiles. We then switch attention to individual structures, mapping each halo in quintessence cosmology to its ΛCDM counterpart. We are able to identify a series of small correlations between the coupling in the dark sector and halo spin, triaxiality and virialization ratio. When looking at spin and virialization of dark matter haloes, we find a weak (5 per cent) but systematic deviation in fifth force scenarios from ΛCDM.

  17. Simulations of structure formation in interacting dark energy cosmologies

    International Nuclear Information System (INIS)

    Baldi, M.

    2009-01-01

    The evidence in favor of a dark energy component dominating the Universe, and driving its presently accelerated expansion, has progressively grown during the last decade of cosmological observations. If this dark energy is given by a dynamic scalar field, it may also have a direct interaction with other matter fields in the Universe, in particular with cold dark matter. Such interaction would imprint new features on the cosmological background evolution as well as on the growth of cosmic structure, like an additional long-range fifth-force between massive particles, or a variation in time of the dark matter particle mass. We present here the implementation of these new physical effects in the N-body code GADGET-2, and we discuss the outcomes of a series of high-resolution N-body simulations for a selected family of interacting dark energy models. We interestingly find, in contrast with previous claims, that the inner overdensity of dark matter halos decreases in these models with respect to ΛCDM, and consistently halo concentrations show a progressive reduction for increasing couplings. Furthermore, the coupling induces a bias in the overdensities of cold dark matter and baryons that determines a decrease of the halo baryon fraction below its cosmological value. These results go in the direction of alleviating tensions between astrophysical observations and the predictions of the ΛCDM model on small scales, thereby opening new room for coupled dark energy models as an alternative to the cosmological constant.

  18. Study on the runout of granular columns with SPH methods.

    OpenAIRE

    He, Xuzhen; Liang, Dongfang

    2015-01-01

    Landslides are catastrophic geophysical phenomena, which may cause heavy fatality and property losses. Hence, it is of vital importance to understand their mechanisms and evaluate their travel distance, so that appropriate measures can be taken to mitigate their risk. This paper reports on an application of the incompressible Smoothed Particle Hydrodynamics (SPH) method to the simulation of the collapse of granular columns onto the planes of different slopes, which is similar to dry landslide...

  19. Cosmological simulation with dust formation and destruction

    Science.gov (United States)

    Aoyama, Shohei; Hou, Kuan-Chou; Hirashita, Hiroyuki; Nagamine, Kentaro; Shimizu, Ikkoh

    2018-06-01

    To investigate the evolution of dust in a cosmological volume, we perform hydrodynamic simulations, in which the enrichment of metals and dust is treated self-consistently with star formation and stellar feedback. We consider dust evolution driven by dust production in stellar ejecta, dust destruction by sputtering, grain growth by accretion and coagulation, and grain disruption by shattering, and treat small and large grains separately to trace the grain size distribution. After confirming that our model nicely reproduces the observed relation between dust-to-gas ratio and metallicity for nearby galaxies, we concentrate on the dust abundance over the cosmological volume in this paper. The comoving dust mass density has a peak at redshift z ˜ 1-2, coincident with the observationally suggested dustiest epoch in the Universe. In the local Universe, roughly 10 per cent of the dust is contained in the intergalactic medium (IGM), where only 1/3-1/4 of the dust survives against dust destruction by sputtering. We also show that the dust mass function is roughly reproduced at ≲ 108 M⊙, while the massive end still has a discrepancy, which indicates the necessity of stronger feedback in massive galaxies. In addition, our model broadly reproduces the observed radial profile of dust surface density in the circum-galactic medium (CGM). While our model satisfies the observational constraints for the dust extinction on cosmological scales, it predicts that the dust in the CGM and IGM is dominated by large (>0.03 μm) grains, which is in tension with the steep reddening curves observed in the CGM.

  20. Halo Models of Large Scale Structure and Reliability of Cosmological N-Body Simulations

    Directory of Open Access Journals (Sweden)

    José Gaite

    2013-05-01

    Full Text Available Halo models of the large scale structure of the Universe are critically examined, focusing on the definition of halos as smooth distributions of cold dark matter. This definition is essentially based on the results of cosmological N-body simulations. By a careful analysis of the standard assumptions of halo models and N-body simulations and by taking into account previous studies of self-similarity of the cosmic web structure, we conclude that N-body cosmological simulations are not fully reliable in the range of scales where halos appear. Therefore, to have a consistent definition of halos is necessary either to define them as entities of arbitrary size with a grainy rather than smooth structure or to define their size in terms of small-scale baryonic physics.

  1. INTELLIGENT DESIGN: ON THE EMULATION OF COSMOLOGICAL SIMULATIONS

    International Nuclear Information System (INIS)

    Schneider, Michael D.; Holm, Oskar; Knox, Lloyd

    2011-01-01

    Simulation design is the choice of locations in parameter space at which simulations are to be run and is the first step in building an emulator capable of quickly providing estimates of simulation results for arbitrary locations in the parameter space. We introduce an alteration to the 'OALHS' design used by Heitmann et al. that reduces the number of simulation runs required to achieve a fixed accuracy in our case study by a factor of two. We also compare interpolation procedures for emulators and find that interpolation via Gaussian process models and via the much-easier-to-implement polynomial interpolation have comparable accuracy. A very simple emulation-building procedure consisting of a design sampled from the parameter prior distribution, combined with interpolation via polynomials also performs well. Although our primary motivation is efficient emulators of nonlinear cosmological N-body simulations, in an appendix we describe an emulator for the cosmic microwave background temperature power spectrum publicly available as a computer code.

  2. Modern Cosmology

    CERN Document Server

    Zhang Yuan Zhong

    2002-01-01

    This book is one of a series in the areas of high-energy physics, cosmology and gravitation published by the Institute of Physics. It includes courses given at a doctoral school on 'Relativistic Cosmology: Theory and Observation' held in Spring 2000 at the Centre for Scientific Culture 'Alessandro Volta', Italy, sponsored by SIGRAV-Societa Italiana di Relativita e Gravitazione (Italian Society of Relativity and Gravitation) and the University of Insubria. This book collects 15 review reports given by a number of outstanding scientists. They touch upon the main aspects of modern cosmology from observational matters to theoretical models, such as cosmological models, the early universe, dark matter and dark energy, modern observational cosmology, cosmic microwave background, gravitational lensing, and numerical simulations in cosmology. In particular, the introduction to the basics of cosmology includes the basic equations, covariant and tetrad descriptions, Friedmann models, observation and horizons, etc. The ...

  3. THE FORMATION OF A MILKY WAY-SIZED DISK GALAXY. I. A COMPARISON OF NUMERICAL METHODS

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Qirong; Li, Yuexing, E-mail: qxz125@psu.edu [Department of Astronomy and Astrophysics, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States)

    2016-11-01

    The long-standing challenge of creating a Milky Way- (MW-) like disk galaxy from cosmological simulations has motivated significant developments in both numerical methods and physical models. We investigate these two fundamental aspects in a new comparison project using a set of cosmological hydrodynamic simulations of an MW-sized galaxy. In this study, we focus on the comparison of two particle-based hydrodynamics methods: an improved smoothed particle hydrodynamics (SPH) code Gadget, and a Lagrangian Meshless Finite-Mass (MFM) code Gizmo. All the simulations in this paper use the same initial conditions and physical models, which include star formation, “energy-driven” outflows, metal-dependent cooling, stellar evolution, and metal enrichment. We find that both numerical schemes produce a late-type galaxy with extended gaseous and stellar disks. However, notable differences are present in a wide range of galaxy properties and their evolution, including star-formation history, gas content, disk structure, and kinematics. Compared to Gizmo, the Gadget simulation produced a larger fraction of cold, dense gas at high redshift which fuels rapid star formation and results in a higher stellar mass by 20% and a lower gas fraction by 10% at z = 0, and the resulting gas disk is smoother and more coherent in rotation due to damping of turbulent motion by the numerical viscosity in SPH, in contrast to the Gizmo simulation, which shows a more prominent spiral structure. Given its better convergence properties and lower computational cost, we argue that the MFM method is a promising alternative to SPH in cosmological hydrodynamic simulations.

  4. Are dSph galaxies Galactic building blocks?

    Directory of Open Access Journals (Sweden)

    Gilmore G.

    2012-02-01

    Full Text Available Dwarf spheroidal galaxies (dSph are frequently assumed to represent surviving examples of a vast now destroyed population of small systems in which many of the stars now forming the Milky Way were formed. Ongoing accretion and considerable sub-structure in the outer Galactic halo is direct evidence that there is some role for stars formed in small galaxies in populating the (outer galaxy. The evidence from stellar populations is however contradictory to this. dSph stellar populations are unlike any stars found in significant numbers in the Milky Way. The dSph are indeed small galaxies, formed over long times with low rates of star formation. Most of the stars in the Milky Way halo however seem to have formed quickly, at higher star formation rate, in gas mixed efficiently on kpc scales. The overwhelming majority of Milky Way stars, those in the Galactic thick disk and thin disk, seem to have nothing at all to do with dwarf galaxy origins.

  5. Modern Cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yuanzhong

    2002-06-21

    This book is one of a series in the areas of high-energy physics, cosmology and gravitation published by the Institute of Physics. It includes courses given at a doctoral school on 'Relativistic Cosmology: Theory and Observation' held in Spring 2000 at the Centre for Scientific Culture 'Alessandro Volta', Italy, sponsored by SIGRAV-Societa Italiana di Relativita e Gravitazione (Italian Society of Relativity and Gravitation) and the University of Insubria. This book collects 15 review reports given by a number of outstanding scientists. They touch upon the main aspects of modern cosmology from observational matters to theoretical models, such as cosmological models, the early universe, dark matter and dark energy, modern observational cosmology, cosmic microwave background, gravitational lensing, and numerical simulations in cosmology. In particular, the introduction to the basics of cosmology includes the basic equations, covariant and tetrad descriptions, Friedmann models, observation and horizons, etc. The chapters on the early universe involve inflationary theories, particle physics in the early universe, and the creation of matter in the universe. The chapters on dark matter (DM) deal with experimental evidence of DM, neutrino oscillations, DM candidates in supersymmetry models and supergravity, structure formation in the universe, dark-matter search with innovative techniques, and dark energy (cosmological constant), etc. The chapters about structure in the universe consist of the basis for structure formation, quantifying large-scale structure, cosmic background fluctuation, galaxy space distribution, and the clustering of galaxies. In the field of modern observational cosmology, galaxy surveys and cluster surveys are given. The chapter on gravitational lensing describes the lens basics and models, galactic microlensing and galaxy clusters as lenses. The last chapter, 'Numerical simulations in cosmology', deals with spatial and

  6. A SPH Method-based Numerical Simulation of the Space Debris Fragments Interaction with Spacecraft Structure Components

    Directory of Open Access Journals (Sweden)

    V. V. Zelentsov

    2017-01-01

    Full Text Available Significant amount of space debris available in the near-Earth space is a reason to protect space vehicles from the fragments of space debris. Existing empirical calculation methods do not allow us to estimate quality of developed protection. Experimental verification of protection requires complex and expensive installations that do not allow having a desirable impact velocity. The article proposes to use the ANSYS AUTODYN software environment – a software complex of the nonlinear dynamic analysis to evaluate quality of developed protection. The ANSYS AUTODYN environment is based on the integration methods of a system of equations of continuum mechanics. The SPH (smoothed particle method method is used as a solver. The SPH method is based on the area of sampling by a finite set of the Lagrangian particles that can be represented as the elementary volumes of the medium. In modeling the targets were under attack of 2 and 3 mm spheres and cylinders with 2 mm in bottom diameter and with generator of 2 and 3 mm. The apheres and cylinders are solid and hollow, with a wall thickness of 0.5 mm. The impact velocity of the particles with a target was assumed to be 7.5 km / s. The number of integration cycles in all cases of calculation was assumed to be 1000. The rate of flying debris fragments of the target material as a function of the h / d ratio (h - the thickness of the target, / d - the diameter of a sphere or a cylinder end is obtained. In simulation the sample picture obtained coincides both with results of experimental study carried out at the Tomsk State Technical University and  with results described in the literature.

  7. Modified Baryonic Dynamics: two-component cosmological simulations with light sterile neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Angus, G.W.; Gentile, G. [Department of Physics and Astrophysics, Vrije Universiteit Brussel, Pleinlaan 2, Brussels, 1050 Belgium (Belgium); Diaferio, A. [Dipartimento di Fisica, Università di Torino, Via P. Giuria 1, Torino, I-10125 Italy (Italy); Famaey, B. [Observatoire astronomique de Strasbourg, CNRS UMR 7550, Université de Strasbourg, 11 rue de l' Université, Strasbourg, F-67000 France (France); Heyden, K.J. van der, E-mail: garry.angus@vub.ac.be, E-mail: diaferio@ph.unito.it, E-mail: benoit.famaey@astro.unistra.fr, E-mail: gianfranco.gentile@ugent.be, E-mail: heyden@ast.uct.ac.za [Astrophysics, Cosmology and Gravity Centre, Dept. of Astronomy, University of Cape Town, Private Bag X3, Rondebosch, 7701 South Africa (South Africa)

    2014-10-01

    In this article we continue to test cosmological models centred on Modified Newtonian Dynamics (MOND) with light sterile neutrinos, which could in principle be a way to solve the fine-tuning problems of the standard model on galaxy scales while preserving successful predictions on larger scales. Due to previous failures of the simple MOND cosmological model, here we test a speculative model where the modified gravitational field is produced only by the baryons and the sterile neutrinos produce a purely Newtonian field (hence Modified Baryonic Dynamics). We use two-component cosmological simulations to separate the baryonic N-body particles from the sterile neutrino ones. The premise is to attenuate the over-production of massive galaxy cluster halos which were prevalent in the original MOND plus light sterile neutrinos scenario. Theoretical issues with such a formulation notwithstanding, the Modified Baryonic Dynamics model fails to produce the correct amplitude for the galaxy cluster mass function for any reasonable value of the primordial power spectrum normalisation.

  8. Simulating the Growth of a Disk Galaxy and its Supermassive Black Hole in a Cosmological Simulating the Growth of a Disk Galaxy and its Supermassive Black Hole in a Cosmological Context

    International Nuclear Information System (INIS)

    Levine, Robyn Deborah; JILA, Boulder

    2008-01-01

    Supermassive black holes (SMBHs) are ubiquitous in the centers of galaxies. Their formation and subsequent evolution is inextricably linked to that of their host galaxies, and the study of galaxy formation is incomplete without the inclusion of SMBHs. The present work seeks to understand the growth and evolution of SMBHs through their interaction with the host galaxy and its environment. In the first part of the thesis (Chap. 2 and 3), we combine a simple semi-analytic model of outflows from active galactic nuclei (AGN) with a simulated dark matter density distribution to study the impact of SMBH feedback on cosmological scales. We find that constraints can be placed on the kinetic efficiency of such feedback using observations of the filling fraction of the Lyα forest. We also find that AGN feedback is energetic enough to redistribute baryons over cosmological distances, having potentially significant effects on the interpretation of cosmological data which are sensitive to the total matter density distribution (e.g. weak lensing). However, truly assessing the impact of AGN feedback in the universe necessitates large-dynamic range simulations with extensive treatment of baryonic physics to first model the fueling of SMBHs. In the second part of the thesis (Chap. 4-6) we use a hydrodynamic adaptive mesh refinement simulation to follow the growth and evolution of a typical disk galaxy hosting a SMBH, in a cosmological context. The simulation covers a dynamical range of 10 million allowing us to study the transport of matter and angular momentum from super-galactic scales all the way down to the outer edge of the accretion disk around the SMBH. Focusing our attention on the central few hundred parsecs of the galaxy, we find the presence of a cold, self-gravitating, molecular gas disk which is globally unstable. The global instabilities drive super-sonic turbulence, which maintains local stability and allows gas to fuel a SMBH without first fragmenting completely

  9. Tensile Instability and Artificial Stresses in Impact Problems in SPH

    International Nuclear Information System (INIS)

    Mehra, Vishal; Sijoy C D; Mishra, Vinayak; Chaturvedi, Shashank

    2012-01-01

    The smooth particle hydrodynamics (SPH) is a meshless computational technique that is popular in the modeling of impact and penetration problems. However, SPH is liable to a tensile instability that manifests itself as a bunching of nodes and formation of artificial voids and no generally accepted formulation exists to counter this instability. We examine the performance of two methods that have been proposed to deal with the tensile instability— the Monaghan artificial stresses and the Godunov-type SPH. The impact and penetration of 0.5 cm radii steel spheres on 2 mm thick aluminium plate at 3.1 km/s is chosen for comparison. We show that the artificial void formation in St-Al impact is suppressed but not eliminated by using Monaghan stresses while the void formation is entirely eliminated by using Godunov-type formulation of SPH that was proposed by Parshikov and Medin.

  10. Overview of SPH-ALE applications for hydraulic turbines in ANDRITZ Hydro

    Science.gov (United States)

    Rentschler, M.; Marongiu, J. C.; Neuhauser, M.; Parkinson, E.

    2018-02-01

    Over the past 13 years, ANDRITZ Hydro has developed an in-house tool based on the SPH-ALE method for applications in flow simulations in hydraulic turbines. The initial motivation is related to the challenging simulation of free surface flows in Pelton turbines, where highly dynamic water jets interact with rotating buckets, creating thin water jets traveling inside the housing and possibly causing disturbances on the runner. The present paper proposes an overview of industrial applications allowed by the developed tool, including design evaluation of Pelton runners and casings, transient operation of Pelton units and free surface flows in hydraulic structures.

  11. A challenge to dSph formation models: are the most isolated Local Group dSph galaxies truly old?

    Science.gov (United States)

    Monelli, Matteo

    2017-08-01

    What is the origin of the different dwarf galaxy types? The classification into dwarf irregular (dIrr), spheroidal (dSph), and transition (dT) types is based on their present-day properties. However, star formation histories (SFHs) reconstructed from deep color-magnitude diagrams (CMDs) provide details on the early evolution of galaxies of all these types, and indicate only two basic evolutionary paths. One is characterized by a vigorous but brief initial star-forming event, and little or no star formation thereafter (fast evolution), and the other one by roughly continuous star formation until (nearly) the present time (slow evolution). These two paths do not map directly onto the dIrr, dT and dSph types. Thus, the present galaxy properties do not reflect their lifetime evolution. Since there are some indications that slow dwarfs were assembled in lower-density environments than fast dwarfs, Gallart et al (2015) proposed that the distinction between fast and slow dwarfs reflects the characteristic density of the environment where they formed. This scenario, and more generally scenarios where dSph galaxies formed through the interaction with a massive galaxy, are challenged by a small sample of extremely isolated dSph/dT in the outer fringes of the Local Group. This proposal targets two of these objects (VV124, KKR25) for which we will infer their SFH - through a novel technique that combines the information from their RR Lyrae stars and deep CMDs sampling the intermediate-age population - in order to test these scenarios. This is much less demanding on observing time than classical SFH derivation using full depth CMDs.

  12. Halo mass and weak galaxy-galaxy lensing profiles in rescaled cosmological N-body simulations

    Science.gov (United States)

    Renneby, Malin; Hilbert, Stefan; Angulo, Raúl E.

    2018-05-01

    We investigate 3D density and weak lensing profiles of dark matter haloes predicted by a cosmology-rescaling algorithm for N-body simulations. We extend the rescaling method of Angulo & White (2010) and Angulo & Hilbert (2015) to improve its performance on intra-halo scales by using models for the concentration-mass-redshift relation based on excursion set theory. The accuracy of the method is tested with numerical simulations carried out with different cosmological parameters. We find that predictions for median density profiles are more accurate than ˜5 % for haloes with masses of 1012.0 - 1014.5h-1 M⊙ for radii 0.05 baryons, are likely required for interpreting future (dark energy task force stage IV) experiments.

  13. Meshless Lagrangian SPH method applied to isothermal lid-driven cavity flow at low-Re numbers

    Science.gov (United States)

    Fraga Filho, C. A. D.; Chacaltana, J. T. A.; Pinto, W. J. N.

    2018-01-01

    SPH is a recent particle method applied in the cavities study, without many results available in the literature. The lid-driven cavity flow is a classic problem of the fluid mechanics, extensively explored in the literature and presenting a considerable complexity. The aim of this paper is to present a solution from the Lagrangian viewpoint for this problem. The discretization of the continuum domain is performed using the Lagrangian particles. The physical laws of mass, momentum and energy conservation are presented by the Navier-Stokes equations. A serial numerical code, written in Fortran programming language, has been used to perform the numerical simulations. The application of the SPH and comparison with the literature (mesh methods and a meshless collocation method) have been done. The positions of the primary vortex centre and the non-dimensional velocity profiles passing through the geometric centre of the cavity have been analysed. The numerical Lagrangian results showed a good agreement when compared to the results found in the literature, specifically for { Re} < 100.00 . Suggestions for improvements in the SPH model presented are listed, in the search for better results for flows with higher Reynolds numbers.

  14. Simulating nonlinear cosmological structure formation with massive neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Arka; Dalal, Neal, E-mail: abanerj6@illinois.edu, E-mail: dalaln@illinois.edu [Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, IL 61801-3080 (United States)

    2016-11-01

    We present a new method for simulating cosmologies that contain massive particles with thermal free streaming motion, such as massive neutrinos or warm/hot dark matter. This method combines particle and fluid descriptions of the thermal species to eliminate the shot noise known to plague conventional N-body simulations. We describe this method in detail, along with results for a number of test cases to validate our method, and check its range of applicability. Using this method, we demonstrate that massive neutrinos can produce a significant scale-dependence in the large-scale biasing of deep voids in the matter field. We show that this scale-dependence may be quantitatively understood using an extremely simple spherical expansion model which reproduces the behavior of the void bias for different neutrino parameters.

  15. Simulating nonlinear cosmological structure formation with massive neutrinos

    International Nuclear Information System (INIS)

    Banerjee, Arka; Dalal, Neal

    2016-01-01

    We present a new method for simulating cosmologies that contain massive particles with thermal free streaming motion, such as massive neutrinos or warm/hot dark matter. This method combines particle and fluid descriptions of the thermal species to eliminate the shot noise known to plague conventional N-body simulations. We describe this method in detail, along with results for a number of test cases to validate our method, and check its range of applicability. Using this method, we demonstrate that massive neutrinos can produce a significant scale-dependence in the large-scale biasing of deep voids in the matter field. We show that this scale-dependence may be quantitatively understood using an extremely simple spherical expansion model which reproduces the behavior of the void bias for different neutrino parameters.

  16. Simulating the formation and evolution of galaxies with EvoL, the Padova N-body Tree-SPH code

    International Nuclear Information System (INIS)

    Merlin, E.; Chiosi, C.; Grassi, T.; Buonomo, U.; Chinellato, S.

    2009-01-01

    The importance of numerical simulations in astrophysics is constantly growing, because of the complexity, the multi-scaling properties and the non-linearity of many physical phenomena. In particular, cosmological and galaxy-sized simulations of structure formation have cast light on different aspects, giving answers to many questions, but raising a number of new issues to be investigated. Over the last decade, great effort has been devoted in Padova to develop a tool explicitly designed to study the problem of galaxy formation and evolution, with particular attention to the early-type ones. To this aim, many simulations have been run on CINECA supercomputers (see publications list below). The next step is the new release of EvoL, a Fortran N-body code capable to follow in great detail many different aspects of stellar, interstellar and cosmological physics. In particular, special care has been paid to the properties of stars and their interplay with the surrounding interstellar medium (ISM), as well as to the multiphase nature of the ISM, to the setting of the initial and boundary conditions, and to the correct description of gas physics via modern formulations of the classical Smoothed Particle Hydrodynamics algorithms. Moreover, a powerful tool to compare numerical predictions with observables has been developed, self-consistently closing the whole package. A library of new simulations, run with EvoL on CINECA supercomputers, is to be built in the next years, while new physics, including magnetic properties of matter and more exotic energy feedback effects, is to be added.

  17. Local Group dSph radio survey with ATCA (I): observations and background sources

    Science.gov (United States)

    Regis, Marco; Richter, Laura; Colafrancesco, Sergio; Massardi, Marcella; de Blok, W. J. G.; Profumo, Stefano; Orford, Nicola

    2015-04-01

    Dwarf spheroidal (dSph) galaxies are key objects in near-field cosmology, especially in connection to the study of galaxy formation and evolution at small scales. In addition, dSphs are optimal targets to investigate the nature of dark matter. However, while we begin to have deep optical photometric observations of the stellar population in these objects, little is known so far about their diffuse emission at any observing frequency, and hence on thermal and non-thermal plasma possibly residing within dSphs. In this paper, we present deep radio observations of six local dSphs performed with the Australia Telescope Compact Array (ATCA) at 16 cm wavelength. We mosaicked a region of radius of about 1 deg around three `classical' dSphs, Carina, Fornax, and Sculptor, and of about half of degree around three `ultrafaint' dSphs, BootesII, Segue2, and Hercules. The rms noise level is below 0.05 mJy for all the maps. The restoring beams full width at half-maximum ranged from 4.2 arcsec × 2.5 arcsec to 30.0 arcsec × 2.1 arcsec in the most elongated case. A catalogue including the 1392 sources detected in the six dSph fields is reported. The main properties of the background sources are discussed, with positions and fluxes of brightest objects compared with the FIRST, NVSS, and SUMSS observations of the same fields. The observed population of radio emitters in these fields is dominated by synchrotron sources. We compute the associated source number counts at 2 GHz down to fluxes of 0.25 mJy, which prove to be in agreement with AGN count models.

  18. Constraints on cosmological parameters in power-law cosmology

    International Nuclear Information System (INIS)

    Rani, Sarita; Singh, J.K.; Altaibayeva, A.; Myrzakulov, R.; Shahalam, M.

    2015-01-01

    In this paper, we examine observational constraints on the power law cosmology; essentially dependent on two parameters H 0 (Hubble constant) and q (deceleration parameter). We investigate the constraints on these parameters using the latest 28 points of H(z) data and 580 points of Union2.1 compilation data and, compare the results with the results of ΛCDM . We also forecast constraints using a simulated data set for the future JDEM, supernovae survey. Our studies give better insight into power law cosmology than the earlier done analysis by Kumar [arXiv:1109.6924] indicating it tuning well with Union2.1 compilation data but not with H(z) data. However, the constraints obtained on and i.e. H 0 average and q average using the simulated data set for the future JDEM, supernovae survey are found to be inconsistent with the values obtained from the H(z) and Union2.1 compilation data. We also perform the statefinder analysis and find that the power-law cosmological models approach the standard ΛCDM model as q → −1. Finally, we observe that although the power law cosmology explains several prominent features of evolution of the Universe, it fails in details

  19. A web portal for hydrodynamical, cosmological simulations

    Science.gov (United States)

    Ragagnin, A.; Dolag, K.; Biffi, V.; Cadolle Bel, M.; Hammer, N. J.; Krukau, A.; Petkova, M.; Steinborn, D.

    2017-07-01

    This article describes a data centre hosting a web portal for accessing and sharing the output of large, cosmological, hydro-dynamical simulations with a broad scientific community. It also allows users to receive related scientific data products by directly processing the raw simulation data on a remote computing cluster. The data centre has a multi-layer structure: a web portal, a job control layer, a computing cluster and a HPC storage system. The outer layer enables users to choose an object from the simulations. Objects can be selected by visually inspecting 2D maps of the simulation data, by performing highly compounded and elaborated queries or graphically by plotting arbitrary combinations of properties. The user can run analysis tools on a chosen object. These services allow users to run analysis tools on the raw simulation data. The job control layer is responsible for handling and performing the analysis jobs, which are executed on a computing cluster. The innermost layer is formed by a HPC storage system which hosts the large, raw simulation data. The following services are available for the users: (I) CLUSTERINSPECT visualizes properties of member galaxies of a selected galaxy cluster; (II) SIMCUT returns the raw data of a sub-volume around a selected object from a simulation, containing all the original, hydro-dynamical quantities; (III) SMAC creates idealized 2D maps of various, physical quantities and observables of a selected object; (IV) PHOX generates virtual X-ray observations with specifications of various current and upcoming instruments.

  20. Cosmological N -body simulations with generic hot dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Brandbyge, Jacob; Hannestad, Steen, E-mail: jacobb@phys.au.dk, E-mail: sth@phys.au.dk [Department of Physics and Astronomy, University of Aarhus, Ny Munkegade 120, DK–8000 Aarhus C (Denmark)

    2017-10-01

    We have calculated the non-linear effects of generic fermionic and bosonic hot dark matter components in cosmological N -body simulations. For sub-eV masses, the non-linear power spectrum suppression caused by thermal free-streaming resembles the one seen for massive neutrinos, whereas for masses larger than 1 eV, the non-linear relative suppression of power is smaller than in linear theory. We furthermore find that in the non-linear regime, one can map fermionic to bosonic models by performing a simple transformation.

  1. Identification of a serine proteinase homolog (Sp-SPH) involved in immune defense in the mud crab Scylla paramamosain.

    Science.gov (United States)

    Zhang, Qiu-xia; Liu, Hai-peng; Chen, Rong-yuan; Shen, Kai-li; Wang, Ke-jian

    2013-01-01

    Clip domain serine proteinase homologs are involved in many biological processes including immune response. To identify the immune function of a serine proteinase homolog (Sp-SPH), originally isolated from hemocytes of the mud crab, Scylla paramamosain, the Sp-SPH was expressed recombinantly and purified for further studies. It was found that the Sp-SPH protein could bind to a number of bacteria (including Aeromonas hydrophila, Escherichia coli, Staphylococcus aureus, Vibrio fluvialis, Vibrio harveyi and Vibrio parahemolyticus), bacterial cell wall components such as lipopolysaccharide or peptidoglycan (PGN), and β-1, 3-glucan of fungus. But no direct antibacterial activity of Sp-SPH protein was shown by using minimum inhibitory concentration or minimum bactericidal concentration assays. Nevertheless, the Sp-SPH protein was found to significantly enhance the crab hemocyte adhesion activity (paired t-test, Pparahemolyticus which were both recognized by Sp-SPH protein, if pre-incubated with Sp-SPH protein, respectively. Whereas, the crabs died much faster when challenged with Vibrio alginolyiicus, a pathogenic bacterium not recognized by Sp-SPH protein, compared to those of crabs challenged with A. hydrophila or V. parahemolyticus when pre-coated with Sp-SPH protein. Taken together, these data suggested that Sp-SPH molecule might play an important role in immune defense against bacterial infection in the mud crab S. paramamosain.

  2. Numerical simulation of hemorrhage in human injury

    Science.gov (United States)

    Chong, Kwitae; Jiang, Chenfanfu; Santhanam, Anand; Benharash, Peyman; Teran, Joseph; Eldredge, Jeff

    2015-11-01

    Smoothed Particle Hydrodynamics (SPH) is adapted to simulate hemorrhage in the injured human body. As a Lagrangian fluid simulation, SPH uses fluid particles as computational elements and thus mass conservation is trivially satisfied. In order to ensure anatomical fidelity, a three-dimensional reconstruction of a portion of the human body -here, demonstrated on the lower leg- is sampled as skin, bone and internal tissue particles from the CT scan image of an actual patient. The injured geometry is then generated by simulation of ballistic projectiles passing through the anatomical model with the Material Point Method (MPM) and injured vessel segments are identified. From each such injured segment, SPH is used to simulate bleeding, with inflow boundary condition obtained from a coupled 1-d vascular tree model. Blood particles interact with impermeable bone and skin particles through the Navier-Stokes equations and with permeable internal tissue particles through the Brinkman equations. The SPH results are rendered in post-processing for improved visual fidelity. The overall simulation strategy is demonstrated on several injury scenarios in the lower leg.

  3. Compactified cosmological simulations of the infinite universe

    Science.gov (United States)

    Rácz, Gábor; Szapudi, István; Csabai, István; Dobos, László

    2018-06-01

    We present a novel N-body simulation method that compactifies the infinite spatial extent of the Universe into a finite sphere with isotropic boundary conditions to follow the evolution of the large-scale structure. Our approach eliminates the need for periodic boundary conditions, a mere numerical convenience which is not supported by observation and which modifies the law of force on large scales in an unrealistic fashion. We demonstrate that our method outclasses standard simulations executed on workstation-scale hardware in dynamic range, it is balanced in following a comparable number of high and low k modes and, its fundamental geometry and topology match observations. Our approach is also capable of simulating an expanding, infinite universe in static coordinates with Newtonian dynamics. The price of these achievements is that most of the simulated volume has smoothly varying mass and spatial resolution, an approximation that carries different systematics than periodic simulations. Our initial implementation of the method is called StePS which stands for Stereographically projected cosmological simulations. It uses stereographic projection for space compactification and naive O(N^2) force calculation which is nevertheless faster to arrive at a correlation function of the same quality than any standard (tree or P3M) algorithm with similar spatial and mass resolution. The N2 force calculation is easy to adapt to modern graphics cards, hence our code can function as a high-speed prediction tool for modern large-scale surveys. To learn about the limits of the respective methods, we compare StePS with GADGET-2 running matching initial conditions.

  4. Compactified Cosmological Simulations of the Infinite Universe

    Science.gov (United States)

    Rácz, Gábor; Szapudi, István; Csabai, István; Dobos, László

    2018-03-01

    We present a novel N-body simulation method that compactifies the infinite spatial extent of the Universe into a finite sphere with isotropic boundary conditions to follow the evolution of the large-scale structure. Our approach eliminates the need for periodic boundary conditions, a mere numerical convenience which is not supported by observation and which modifies the law of force on large scales in an unrealistic fashion. We demonstrate that our method outclasses standard simulations executed on workstation-scale hardware in dynamic range, it is balanced in following a comparable number of high and low k modes and, its fundamental geometry and topology match observations. Our approach is also capable of simulating an expanding, infinite universe in static coordinates with Newtonian dynamics. The price of these achievements is that most of the simulated volume has smoothly varying mass and spatial resolution, an approximation that carries different systematics than periodic simulations. Our initial implementation of the method is called StePS which stands for Stereographically Projected Cosmological Simulations. It uses stereographic projection for space compactification and naive O(N^2) force calculation which is nevertheless faster to arrive at a correlation function of the same quality than any standard (tree or P3M) algorithm with similar spatial and mass resolution. The N2 force calculation is easy to adapt to modern graphics cards, hence our code can function as a high-speed prediction tool for modern large-scale surveys. To learn about the limits of the respective methods, we compare StePS with GADGET-2 running matching initial conditions.

  5. Self-regulated growth of supermassive black holes by a dual jet-heating active galactic nucleus feedback mechanism: methods, tests and implications for cosmological simulations

    Science.gov (United States)

    Dubois, Yohan; Devriendt, Julien; Slyz, Adrianne; Teyssier, Romain

    2012-03-01

    We develop a subgrid model for the growth of supermassive black holes (BHs) and their associated active galactic nucleus (AGN) feedback in hydrodynamical cosmological simulations. This model transposes previous attempts to describe BH accretion and AGN feedback with the smoothed particle hydrodynamics (SPH) technique to the adaptive mesh refinement framework. It also furthers their development by implementing a new jet-like outflow treatment of the AGN feedback which we combine with the heating mode traditionally used in the SPH approach. Thus, our approach allows one to test the robustness of the conclusions derived from simulating the impact of self-regulated AGN feedback on galaxy formation vis-à-vis the numerical method. Assuming that BHs are created in the early stages of galaxy formation, they grow by mergers and accretion of gas at a Eddington-limited Bondi accretion rate. However this growth is regulated by AGN feedback which we model using two different modes: a quasar-heating mode when accretion rates on to the BHs are comparable to the Eddington rate, and a radio-jet mode at lower accretion rates which not only deposits energy, but also deposits mass and momentum on the grid. In other words, our feedback model deposits energy as a succession of thermal bursts and jet outflows depending on the properties of the gas surrounding the BHs. We assess the plausibility of such a model by comparing our results to observational measurements of the co-evolution of BHs and their host galaxy properties, and check their robustness with respect to numerical resolution. We show that AGN feedback must be a crucial physical ingredient for the formation of massive galaxies as it appears to be able to efficiently prevent the accumulation of and/or expel cold gas out of haloes/galaxies and significantly suppress star formation. Our model predicts that the relationship between BHs and their host galaxy mass evolves as a function of redshift, because of the vigorous accretion

  6. Modelling multi-phase liquid-sediment scour and resuspension induced by rapid flows using Smoothed Particle Hydrodynamics (SPH) accelerated with a Graphics Processing Unit (GPU)

    Science.gov (United States)

    Fourtakas, G.; Rogers, B. D.

    2016-06-01

    A two-phase numerical model using Smoothed Particle Hydrodynamics (SPH) is applied to two-phase liquid-sediments flows. The absence of a mesh in SPH is ideal for interfacial and highly non-linear flows with changing fragmentation of the interface, mixing and resuspension. The rheology of sediment induced under rapid flows undergoes several states which are only partially described by previous research in SPH. This paper attempts to bridge the gap between the geotechnics, non-Newtonian and Newtonian flows by proposing a model that combines the yielding, shear and suspension layer which are needed to predict accurately the global erosion phenomena, from a hydrodynamics prospective. The numerical SPH scheme is based on the explicit treatment of both phases using Newtonian and the non-Newtonian Bingham-type Herschel-Bulkley-Papanastasiou constitutive model. This is supplemented by the Drucker-Prager yield criterion to predict the onset of yielding of the sediment surface and a concentration suspension model. The multi-phase model has been compared with experimental and 2-D reference numerical models for scour following a dry-bed dam break yielding satisfactory results and improvements over well-known SPH multi-phase models. With 3-D simulations requiring a large number of particles, the code is accelerated with a graphics processing unit (GPU) in the open-source DualSPHysics code. The implementation and optimisation of the code achieved a speed up of x58 over an optimised single thread serial code. A 3-D dam break over a non-cohesive erodible bed simulation with over 4 million particles yields close agreement with experimental scour and water surface profiles.

  7. Pushing down the low-mass halo concentration frontier with the Lomonosov cosmological simulations

    Science.gov (United States)

    Pilipenko, Sergey V.; Sánchez-Conde, Miguel A.; Prada, Francisco; Yepes, Gustavo

    2017-12-01

    We introduce the Lomonosov suite of high-resolution N-body cosmological simulations covering a full box of size 32 h-1 Mpc with low-mass resolution particles (2 × 107 h-1 M⊙) and three zoom-in simulations of overdense, underdense and mean density regions at much higher particle resolution (4 × 104 h-1 M⊙). The main purpose of this simulation suite is to extend the concentration-mass relation of dark matter haloes down to masses below those typically available in large cosmological simulations. The three different density regions available at higher resolution provide a better understanding of the effect of the local environment on halo concentration, known to be potentially important for small simulation boxes and small halo masses. Yet, we find the correction to be small in comparison with the scatter of halo concentrations. We conclude that zoom simulations, despite their limited representativity of the volume of the Universe, can be effectively used for the measurement of halo concentrations at least at the halo masses probed by our simulations. In any case, after a precise characterization of this effect, we develop a robust technique to extrapolate the concentration values found in zoom simulations to larger volumes with greater accuracy. Altogether, Lomonosov provides a measure of the concentration-mass relation in the halo mass range 107-1010 h-1 M⊙ with superb halo statistics. This work represents a first important step to measure halo concentrations at intermediate, yet vastly unexplored halo mass scales, down to the smallest ones. All Lomonosov data and files are public for community's use.

  8. Identification of a Serine Proteinase Homolog (Sp-SPH) Involved in Immune Defense in the Mud Crab Scylla paramamosain

    Science.gov (United States)

    Zhang, Qiu-xia; Liu, Hai-peng; Chen, Rong-yuan; Shen, Kai-li; Wang, Ke-jian

    2013-01-01

    Clip domain serine proteinase homologs are involved in many biological processes including immune response. To identify the immune function of a serine proteinase homolog (Sp-SPH), originally isolated from hemocytes of the mud crab, Scylla paramamosain, the Sp-SPH was expressed recombinantly and purified for further studies. It was found that the Sp-SPH protein could bind to a number of bacteria (including Aeromonas hydrophila, Escherichia coli, Staphylococcus aureus, Vibrio fluvialis, Vibrio harveyi and Vibrio parahemolyticus), bacterial cell wall components such as lipopolysaccharide or peptidoglycan (PGN), and β-1, 3-glucan of fungus. But no direct antibacterial activity of Sp-SPH protein was shown by using minimum inhibitory concentration or minimum bactericidal concentration assays. Nevertheless, the Sp-SPH protein was found to significantly enhance the crab hemocyte adhesion activity (paired t-test, Pparahemolyticus which were both recognized by Sp-SPH protein, if pre-incubated with Sp-SPH protein, respectively. Whereas, the crabs died much faster when challenged with Vibrio alginolyiicus, a pathogenic bacterium not recognized by Sp-SPH protein, compared to those of crabs challenged with A. hydrophila or V. parahemolyticus when pre-coated with Sp-SPH protein. Taken together, these data suggested that Sp-SPH molecule might play an important role in immune defense against bacterial infection in the mud crab S. paramamosain. PMID:23724001

  9. Identification of a serine proteinase homolog (Sp-SPH involved in immune defense in the mud crab Scylla paramamosain.

    Directory of Open Access Journals (Sweden)

    Qiu-xia Zhang

    Full Text Available Clip domain serine proteinase homologs are involved in many biological processes including immune response. To identify the immune function of a serine proteinase homolog (Sp-SPH, originally isolated from hemocytes of the mud crab, Scylla paramamosain, the Sp-SPH was expressed recombinantly and purified for further studies. It was found that the Sp-SPH protein could bind to a number of bacteria (including Aeromonas hydrophila, Escherichia coli, Staphylococcus aureus, Vibrio fluvialis, Vibrio harveyi and Vibrio parahemolyticus, bacterial cell wall components such as lipopolysaccharide or peptidoglycan (PGN, and β-1, 3-glucan of fungus. But no direct antibacterial activity of Sp-SPH protein was shown by using minimum inhibitory concentration or minimum bactericidal concentration assays. Nevertheless, the Sp-SPH protein was found to significantly enhance the crab hemocyte adhesion activity (paired t-test, P<0.05, and increase phenoloxidase activity if triggered by PGN in vitro (paired t-test, P<0.05. Importantly, the Sp-SPH protein was demonstrated to promote the survival rate of the animals after challenge with A. hydrophila or V. parahemolyticus which were both recognized by Sp-SPH protein, if pre-incubated with Sp-SPH protein, respectively. Whereas, the crabs died much faster when challenged with Vibrio alginolyiicus, a pathogenic bacterium not recognized by Sp-SPH protein, compared to those of crabs challenged with A. hydrophila or V. parahemolyticus when pre-coated with Sp-SPH protein. Taken together, these data suggested that Sp-SPH molecule might play an important role in immune defense against bacterial infection in the mud crab S. paramamosain.

  10. Incompressible SPH (ISPH) with fast Poisson solver on a GPU

    Science.gov (United States)

    Chow, Alex D.; Rogers, Benedict D.; Lind, Steven J.; Stansby, Peter K.

    2018-05-01

    This paper presents a fast incompressible SPH (ISPH) solver implemented to run entirely on a graphics processing unit (GPU) capable of simulating several millions of particles in three dimensions on a single GPU. The ISPH algorithm is implemented by converting the highly optimised open-source weakly-compressible SPH (WCSPH) code DualSPHysics to run ISPH on the GPU, combining it with the open-source linear algebra library ViennaCL for fast solutions of the pressure Poisson equation (PPE). Several challenges are addressed with this research: constructing a PPE matrix every timestep on the GPU for moving particles, optimising the limited GPU memory, and exploiting fast matrix solvers. The ISPH pressure projection algorithm is implemented as 4 separate stages, each with a particle sweep, including an algorithm for the population of the PPE matrix suitable for the GPU, and mixed precision storage methods. An accurate and robust ISPH boundary condition ideal for parallel processing is also established by adapting an existing WCSPH boundary condition for ISPH. A variety of validation cases are presented: an impulsively started plate, incompressible flow around a moving square in a box, and dambreaks (2-D and 3-D) which demonstrate the accuracy, flexibility, and speed of the methodology. Fragmentation of the free surface is shown to influence the performance of matrix preconditioners and therefore the PPE matrix solution time. The Jacobi preconditioner demonstrates robustness and reliability in the presence of fragmented flows. For a dambreak simulation, GPU speed ups demonstrate up to 10-18 times and 1.1-4.5 times compared to single-threaded and 16-threaded CPU run times respectively.

  11. Polymeric cobalt(ii) thiolato complexes - syntheses, structures and properties of [Co(SMes)2] and [Co(SPh)2NH3].

    Science.gov (United States)

    Eichhöfer, Andreas; Buth, Gernot

    2016-11-01

    Reactions of [Co(N(SiMe 3 ) 2 ) 2 thf] with 2.1 equiv. of MesSH (Mes = C 6 H 2 -2,4,6-(CH 3 ) 3 ) yield dark brown crystals of the one dimensional chain compound [Co(SMes) 2 ]. In contrast reactions of [Co(N(SiMe 3 ) 2 ) 2 thf] with 2.1 equiv. of PhSH result in the formation of a dark brown almost X-ray amorphous powder of 'Co(SPh) 2 '. Addition of aliquots of CH 3 OH to the latter reaction resulted in the almost quantitative formation of crystalline ammonia thiolato complexes either [Co(SPh) 2 (NH 3 ) 2 ] or [Co(SPh) 2 NH 3 ]. Single crystal XRD reveals that [Co(SPh) 2 NH 3 ] forms one-dimensional chains in the crystal via μ 2 -SPh bridges whereas [Co(SPh) 2 (NH 3 ) 2 ] consists at a first glance of isolated distorted tetrahedral units. Magnetic measurements suggest strong antiferromagnetic coupling for the two chain compounds [Co(SMes) 2 ] (J = -38.6 cm -1 ) and [Co(SPh) 2 NH 3 ] (J = -27.1 cm -1 ). Interestingly, also the temperature dependence of the susceptibility of tetrahedral [Co(SPh) 2 (NH 3 ) 2 ] shows an antiferromagnetic transition at around 6 K. UV-Vis-NIR spectra display d-d bands in the NIR region between 500 and 2250 nm. Thermal gravimetric analysis of [Co(SPh) 2 (NH 3 ) 2 ] and [Co(SPh) 2 NH 3 ] reveals two well separated cleavage processes for NH 3 and SPh 2 upon heating accompanied by the stepwise formation of 'Co(SPh) 2 ' and cobalt sulfide.

  12. Little Bear’s pulsating stars: Variable star census of UMi dSph Galaxy

    Directory of Open Access Journals (Sweden)

    Kinemuchi K.

    2017-01-01

    Full Text Available Recent observations and a photometric search for variable stars in the Ursa Minor dwarf spheroidal galaxy (UMi dSph are presented. Our observations were taken at Apache Point Observatory in 2014 and 2016 using the 0.5m ARCSAT telescope and the West Mountain Observatory (WMO 0.9m telescope of Brigham Young University in 2016. Previously known RR Lyrae stars in our field of view of the UMi dSph are identified, and we also catalog new variable star candidates. Tentative classifications are given for some of the new variable stars. We have conducted period searches with the data collected with the WMO telescope. Our ultimate goal is to create an updated catalog of variable stars in the UMi dSph and to compare the RR Lyrae stellar characteristics to other RR Lyrae stars found in the Local Group dSph galaxies.

  13. Quantitative and comparative visualization applied to cosmological simulations

    International Nuclear Information System (INIS)

    Ahrens, James; Heitmann, Katrin; Habib, Salman; Ankeny, Lee; McCormick, Patrick; Inman, Jeff; Armstrong, Ryan; Ma, Kwan-Liu

    2006-01-01

    Cosmological simulations follow the formation of nonlinear structure in dark and luminous matter. The associated simulation volumes and dynamic range are very large, making visualization both a necessary and challenging aspect of the analysis of these datasets. Our goal is to understand sources of inconsistency between different simulation codes that are started from the same initial conditions. Quantitative visualization supports the definition and reasoning about analytically defined features of interest. Comparative visualization supports the ability to visually study, side by side, multiple related visualizations of these simulations. For instance, a scientist can visually distinguish that there are fewer halos (localized lumps of tracer particles) in low-density regions for one simulation code out of a collection. This qualitative result will enable the scientist to develop a hypothesis, such as loss of halos in low-density regions due to limited resolution, to explain the inconsistency between the different simulations. Quantitative support then allows one to confirm or reject the hypothesis. If the hypothesis is rejected, this step may lead to new insights and a new hypothesis, not available from the purely qualitative analysis. We will present methods to significantly improve the Scientific analysis process by incorporating quantitative analysis as the driver for visualization. Aspects of this work are included as part of two visualization tools, ParaView, an open-source large data visualization tool, and Scout, an analysis-language based, hardware-accelerated visualization tool

  14. Gas stripping and mixing in galaxy clusters: a numerical comparison study

    Science.gov (United States)

    Heß, Steffen; Springel, Volker

    2012-11-01

    The ambient hot intrahalo gas in clusters of galaxies is constantly fed and stirred by infalling galaxies, a process that can be studied in detail with cosmological hydrodynamical simulations. However, different numerical methods yield discrepant predictions for crucial hydrodynamical processes, leading for example to different entropy profiles in clusters of galaxies. In particular, the widely used Lagrangian smoothed particle hydrodynamics (SPH) scheme is suspected to strongly damp fluid instabilities and turbulence, which are both crucial to establish the thermodynamic structure of clusters. In this study, we test to which extent our recently developed Voronoi particle hydrodynamics (VPH) scheme yields different results for the stripping of gas out of infalling galaxies and for the bulk gas properties of cluster. We consider both the evolution of isolated galaxy models that are exposed to a stream of intracluster medium or are dropped into cluster models, as well as non-radiative cosmological simulations of cluster formation. We also compare our particle-based method with results obtained with a fundamentally different discretization approach as implemented in the moving-mesh code AREPO. We find that VPH leads to noticeably faster stripping of gas out of galaxies than SPH, in better agreement with the mesh-code than with SPH. We show that despite the fact that VPH in its present form is not as accurate as the moving mesh code in our investigated cases, its improved accuracy of gradient estimates makes VPH an attractive alternative to SPH.

  15. Halo statistics analysis within medium volume cosmological N-body simulation

    Directory of Open Access Journals (Sweden)

    Martinović N.

    2015-01-01

    Full Text Available In this paper we present halo statistics analysis of a ΛCDM N body cosmological simulation (from first halo formation until z = 0. We study mean major merger rate as a function of time, where for time we consider both per redshift and per Gyr dependence. For latter we find that it scales as the well known power law (1 + zn for which we obtain n = 2.4. The halo mass function and halo growth function are derived and compared both with analytical and empirical fits. We analyse halo growth through out entire simulation, making it possible to continuously monitor evolution of halo number density within given mass ranges. The halo formation redshift is studied exploring possibility for a new simple preliminary analysis during the simulation run. Visualization of the simulation is portrayed as well. At redshifts z = 0−7 halos from simulation have good statistics for further analysis especially in mass range of 1011 − 1014 M./h. [176021 ’Visible and invisible matter in nearby galaxies: theory and observations

  16. High-resolution Hydrodynamic Simulation of Tidal Detonation of a Helium White Dwarf by an Intermediate Mass Black Hole

    Science.gov (United States)

    Tanikawa, Ataru

    2018-05-01

    We demonstrate tidal detonation during a tidal disruption event (TDE) of a helium (He) white dwarf (WD) with 0.45 M ⊙ by an intermediate mass black hole using extremely high-resolution simulations. Tanikawa et al. have shown tidal detonation in results of previous studies from unphysical heating due to low-resolution simulations, and such unphysical heating occurs in three-dimensional (3D) smoothed particle hydrodynamics (SPH) simulations even with 10 million SPH particles. In order to avoid such unphysical heating, we perform 3D SPH simulations up to 300 million SPH particles, and 1D mesh simulations using flow structure in the 3D SPH simulations for 1D initial conditions. The 1D mesh simulations have higher resolutions than the 3D SPH simulations. We show that tidal detonation occurs and confirm that this result is perfectly converged with different space resolution in both 3D SPH and 1D mesh simulations. We find that detonation waves independently arise in leading parts of the WD, and yield large amounts of 56Ni. Although detonation waves are not generated in trailing parts of the WD, the trailing parts would receive detonation waves generated in the leading parts and would leave large amounts of Si group elements. Eventually, this He WD TDE would synthesize 56Ni of 0.30 M ⊙ and Si group elements of 0.08 M ⊙, and could be observed as a luminous thermonuclear transient comparable to SNe Ia.

  17. Is the cosmological singularity compulsory

    International Nuclear Information System (INIS)

    Bekenstein, J.D.; Meisels, A.

    1980-01-01

    The cosmological singularity is inherent in all conventional general relativistic cosmological models. There can be no question that it is an unphysical feature; yet there does not seem to be any convervative way of eliminating it. Here we present singularity-free isotropic cosmological models which are indistinguishable from general relativistic ones at late times. They are based on the general theory of variable rest masses that we developed recently. Outside cosmology this theory simulates general relativity well. Thus it provides a framework incorporating those features which have made geneal relativity so sucessful while providing a way out of singularity dilemma. The cosmological models can be made to incorporate Dirac's large numbers hypothesis. G(now)/G(0)approx.10 -38

  18. A small-scale dynamo in feedback-dominated galaxies - III. Cosmological simulations

    Science.gov (United States)

    Rieder, Michael; Teyssier, Romain

    2017-12-01

    Magnetic fields are widely observed in the Universe in virtually all astrophysical objects, from individual stars to entire galaxies, even in the intergalactic medium, but their specific genesis has long been debated. Due to the development of more realistic models of galaxy formation, viable scenarios are emerging to explain cosmic magnetism, thanks to both deeper observations and more efficient and accurate computer simulations. We present here a new cosmological high-resolution zoom-in magnetohydrodynamic (MHD) simulation, using the adaptive mesh refinement technique, of a dwarf galaxy with an initially weak and uniform magnetic seed field that is amplified by a small-scale dynamo (SSD) driven by supernova-induced turbulence. As first structures form from the gravitational collapse of small density fluctuations, the frozen-in magnetic field separates from the cosmic expansion and grows through compression. In a second step, star formation sets in and establishes a strong galactic fountain, self-regulated by supernova explosions. Inside the galaxy, the interstellar medium becomes highly turbulent, dominated by strong supersonic shocks, as demonstrated by the spectral analysis of the gas kinetic energy. In this turbulent environment, the magnetic field is quickly amplified via a SSD process and is finally carried out into the circumgalactic medium by a galactic wind. This realistic cosmological simulation explains how initially weak magnetic seed fields can be amplified quickly in early, feedback-dominated galaxies, and predicts, as a consequence of the SSD process, that high-redshift magnetic fields are likely to be dominated by their small-scale components.

  19. An Investigation of Intracluster Light Evolution Using Cosmological Hydrodynamical Simulations

    Science.gov (United States)

    Tang, Lin; Lin, Weipeng; Cui, Weiguang; Kang, Xi; Wang, Yang; Contini, E.; Yu, Yu

    2018-06-01

    Intracluster light (ICL) in observations is usually identified through the surface brightness limit (SBL) method. In this paper, for the first time we produce mock images of galaxy groups and clusters, using a cosmological hydrodynamical simulation to investigate the ICL fraction and focus on its dependence on observational parameters, e.g., the SBL, the effects of cosmological redshift-dimming, point-spread function (PSF), and CCD pixel size. Detailed analyses suggest that the width of the PSF has a significant effect on the measured ICL fraction, while the relatively small pixel size shows almost no influence. It is found that the measured ICL fraction depends strongly on the SBL. At a fixed SBL and redshift, the measured ICL fraction decreases with increasing halo mass, while with a much fainter SBL, it does not depend on halo mass at low redshifts. In our work, the measured ICL fraction shows a clear dependence on the cosmological redshift-dimming effect. It is found that there is more mass locked in the ICL component than light, suggesting that the use of a constant mass-to-light ratio at high surface brightness levels will lead to an underestimate of ICL mass. Furthermore, it is found that the radial profile of ICL shows a characteristic radius that is almost independent of halo mass. The current measurement of ICL from observations has a large dispersion due to different methods, and we emphasize the importance of using the same definition when observational results are compared with theoretical predictions.

  20. The magnetic universe through vector potential SPMHD simulations

    Science.gov (United States)

    Stasyszyn, F. A.

    2017-10-01

    The use of Smoothed Particle Magneto Hydrodynamics (SPMHD) is getting nowadays more and more common in Astrophysics. From galaxy clusters to neutron starts, there are multiple applications already existing in the literature. I will review some of the common methods used and highlight the successful approach of using vector potentials to describe the evolution of the magnetic fields. The latter have some interesting advantages, and their results challenge previous findings, being the magnetic divergence problem naturally vanished. We select a few examples to discuss some areas of interest. First, we show some Galaxy Clusters from the MUSIC project. These cosmological simulations are done with the usual sub-grid recipes, as radiative cooling and star formation, being the first ones obtained with an SPH code in a self consistent way. This demonstrates the robustness of the new method in a variety of astrophysical scenarios.

  1. Curcumin ameliorates diabetic nephropathy by inhibiting the activation of the SphK1-S1P signaling pathway.

    Science.gov (United States)

    Huang, Juan; Huang, Kaipeng; Lan, Tian; Xie, Xi; Shen, Xiaoyan; Liu, Peiqing; Huang, Heqing

    2013-01-30

    Curcumin, a major polyphenol from the golden spice Curcuma longa commonly known as turmeric, has been recently discovered to have renoprotective effects on diabetic nephropathy (DN). However, the mechanisms underlying these effects remain unclear. We previously demonstrated that the sphingosine kinase 1-sphingosine 1-phosphate (SphK1-S1P) signaling pathway plays a pivotal role in the pathogenesis of DN. This study aims to investigate whether the renoprotective effects of curcumin on DN are associated with its inhibitory effects on the SphK1-S1P signaling pathway. Our results demonstrated that the expression and activity of SphK1 and the production of S1P were significantly down-regulated by curcumin in diabetic rat kidneys and glomerular mesangial cells (GMCs) exposed to high glucose (HG). Simultaneously, SphK1-S1P-mediated fibronectin (FN) and transforming growth factor-beta 1 (TGF-β1) overproduction were inhibited. In addition, curcumin dose dependently reduced SphK1 expression and activity in GMCs transfected with SphK(WT) and significantly suppressed the increase in SphK1-mediated FN levels. Furthermore, curcumin inhibited the DNA-binding activity of activator protein 1 (AP-1), and c-Jun small interference RNA (c-Jun-siRNA) reversed the HG-induced up-regulation of SphK1. These findings suggested that down-regulation of the SphK1-S1P pathway is probably a novel mechanism by which curcumin improves the progression of DN. Inhibiting AP-1 activation is one of the therapeutic targets of curcumin to modulate the SphK1-S1P signaling pathway, thereby preventing diabetic renal fibrosis. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  2. SPH based modelling of oxide and oxide film formation in gravity die castings

    International Nuclear Information System (INIS)

    Ellingsen, K; M'Hamdi, M; Coudert, T

    2015-01-01

    Gravity die casting is an important casting process which has the capability of making complicated, high-integrity components for e.g. the automotive industry. Oxides and oxide films formed during filling affect the cast product quality. The Smoothed particle hydrodynamics (SPH) method is particularly suited to follow complex flows. The SPH method has been used to study filling of a gravity die including the formation and transport of oxides and oxide films for two different filling velocities. A low inlet velocity leads to a higher amount of oxides and oxide films in the casting. The study demonstrates the usefulness of the SPH method for an increased understanding of the effect of different filling procedures on the cast quality. (paper)

  3. A high-order SPH method by introducing inverse kernels

    Directory of Open Access Journals (Sweden)

    Le Fang

    2017-02-01

    Full Text Available The smoothed particle hydrodynamics (SPH method is usually expected to be an efficient numerical tool for calculating the fluid-structure interactions in compressors; however, an endogenetic restriction is the problem of low-order consistency. A high-order SPH method by introducing inverse kernels, which is quite easy to be implemented but efficient, is proposed for solving this restriction. The basic inverse method and the special treatment near boundary are introduced with also the discussion of the combination of the Least-Square (LS and Moving-Least-Square (MLS methods. Then detailed analysis in spectral space is presented for people to better understand this method. Finally we show three test examples to verify the method behavior.

  4. HOT GAS HALOS AROUND DISK GALAXIES: CONFRONTING COSMOLOGICAL SIMULATIONS WITH OBSERVATIONS

    International Nuclear Information System (INIS)

    Rasmussen, Jesper; Sommer-Larsen, Jesper; Pedersen, Kristian; Toft, Sune; Grove, Lisbeth F.; Benson, Andrew; Bower, Richard G.

    2009-01-01

    Models of disk galaxy formation commonly predict the existence of an extended reservoir of accreted hot gas surrounding massive spirals at low redshift. As a test of these models, we use X-ray and Hα data of the two massive, quiescent edge-on spirals NGC 5746 and NGC 5170 to investigate the amount and origin of any hot gas in their halos. Contrary to our earlier claim, the Chandra analysis of NGC 5746, employing more recent calibration data, does not reveal any significant evidence for diffuse X-ray emission outside the optical disk, with a 3σ upper limit to the halo X-ray luminosity of 4 x 10 39 erg s -1 . An identical study of the less massive NGC 5170 also fails to detect any extraplanar X-ray emission. By extracting hot halo properties of disk galaxies formed in cosmological hydrodynamical simulations, we compare these results to expectations for cosmological accretion of hot gas by spirals. For Milky-Way-sized galaxies, these high-resolution simulations predict hot halo X-ray luminosities which are lower by a factor of ∼2 compared to our earlier results reported by Toft et al. We find the new simulation predictions to be consistent with our observational constraints for both NGC 5746 and NGC 5170, while also confirming that the hot gas detected so far around more actively star-forming spirals is in general probably associated with stellar activity in the disk. Observational results on quiescent disk galaxies at the high-mass end are nevertheless providing powerful constraints on theoretical predictions, and hence on the assumed input physics in numerical studies of disk galaxy formation and evolution.

  5. Nonlinear evolution of f(R) cosmologies. I. Methodology

    International Nuclear Information System (INIS)

    Oyaizu, Hiroaki

    2008-01-01

    We introduce the method and the implementation of a cosmological simulation of a class of metric-variation f(R) models that accelerate the cosmological expansion without a cosmological constant and evade solar-system bounds of small-field deviations to general relativity. Such simulations are shown to reduce to solving a nonlinear Poisson equation for the scalar degree of freedom introduced by the f(R) modifications. We detail the method to efficiently solve the nonlinear Poisson equation by using a Newton-Gauss-Seidel relaxation scheme coupled with the multigrid method to accelerate the convergence. The simulations are shown to satisfy tests comparing the simulated outcome to analytical solutions for simple situations, and the dynamics of the simulations are tested with orbital and Zeldovich collapse tests. Finally, we present several static and dynamical simulations using realistic cosmological parameters to highlight the differences between standard physics and f(R) physics. In general, we find that the f(R) modifications result in stronger gravitational attraction that enhances the dark matter power spectrum by ∼20% for large but observationally allowed f(R) modifications. A more detailed study of the nonlinear f(R) effects on the power spectrum are presented in a companion paper.

  6. Identification of a novel SPLIT-HULL (SPH) gene associated with hull splitting in rice (Oryza sativa L.).

    Science.gov (United States)

    Lee, Gileung; Lee, Kang-Ie; Lee, Yunjoo; Kim, Backki; Lee, Dongryung; Seo, Jeonghwan; Jang, Su; Chin, Joong Hyoun; Koh, Hee-Jong

    2018-07-01

    The split-hull phenotype caused by reduced lemma width and low lignin content is under control of SPH encoding a type-2 13-lipoxygenase and contributes to high dehulling efficiency. Rice hulls consist of two bract-like structures, the lemma and palea. The hull is an important organ that helps to protect seeds from environmental stress, determines seed shape, and ensures grain filling. Achieving optimal hull size and morphology is beneficial for seed development. We characterized the split-hull (sph) mutant in rice, which exhibits hull splitting in the interlocking part between lemma and palea and/or the folded part of the lemma during the grain filling stage. Morphological and chemical analysis revealed that reduction in the width of the lemma and lignin content of the hull in the sph mutant might be the cause of hull splitting. Genetic analysis indicated that the mutant phenotype was controlled by a single recessive gene, sph (Os04g0447100), which encodes a type-2 13-lipoxygenase. SPH knockout and knockdown transgenic plants displayed the same split-hull phenotype as in the mutant. The sph mutant showed significantly higher linoleic and linolenic acid (substrates of lipoxygenase) contents in spikelets compared to the wild type. It is probably due to the genetic defect of SPH and subsequent decrease in lipoxygenase activity. In dehulling experiment, the sph mutant showed high dehulling efficiency even by a weak tearing force in a dehulling machine. Collectively, the results provide a basis for understanding of the functional role of lipoxygenase in structure and maintenance of hulls, and would facilitate breeding of easy-dehulling rice.

  7. A reformulation of the transport-transport SPH equivalence technique

    International Nuclear Information System (INIS)

    Hebert, A.

    2015-01-01

    The superhomogeneisation (SPH) equivalence technique is a correction procedure based on equivalence factors. These equivalence factors are computed in such a way that a macro calculation made over a macro region and a coarse energy group with a simplified transport operator leads to the same leakage and reaction rates as a reference calculation performed without homogenization and with a fine group discretization. The situation where the macro calculation is performed with diffusion theory is a well understood and a common application of the technique. However, the case where the macro calculation is performed in transport theory is more complex and the SPH technique was reformulated in order to take into account the angular parity of the flux moments and cross sections. We found that the general rule to multiply all cross sections by a SPH factor and to divide all flux moment by the same factor is not valid. A new correction strategy is proposed to deal with transport-theory macro calculations. The strategy is slightly different whether or not the macro calculation is performed with a spherical harmonics (PN or SPN) discretization. The new approach was implemented in the DRAGON lattice code. Numerical results are comparing the classical and reformulated techniques. (author)

  8. A reformulation of the transport-transport SPH equivalence technique

    Energy Technology Data Exchange (ETDEWEB)

    Hebert, A., E-mail: alain.hebert@polymtl.ca [Ecole Polytechnique de Montreal, Montreal, QC (Canada)

    2015-07-01

    The superhomogeneisation (SPH) equivalence technique is a correction procedure based on equivalence factors. These equivalence factors are computed in such a way that a macro calculation made over a macro region and a coarse energy group with a simplified transport operator leads to the same leakage and reaction rates as a reference calculation performed without homogenization and with a fine group discretization. The situation where the macro calculation is performed with diffusion theory is a well understood and a common application of the technique. However, the case where the macro calculation is performed in transport theory is more complex and the SPH technique was reformulated in order to take into account the angular parity of the flux moments and cross sections. We found that the general rule to multiply all cross sections by a SPH factor and to divide all flux moment by the same factor is not valid. A new correction strategy is proposed to deal with transport-theory macro calculations. The strategy is slightly different whether or not the macro calculation is performed with a spherical harmonics (PN or SPN) discretization. The new approach was implemented in the DRAGON lattice code. Numerical results are comparing the classical and reformulated techniques. (author)

  9. Au 38 (SPh) 24 : Au 38 Protected with Aromatic Thiolate Ligands

    Energy Technology Data Exchange (ETDEWEB)

    Rambukwella, Milan; Burrage, Shayna; Neubrander, Marie; Baseggio, Oscar; Aprà, Edoardo; Stener, Mauro; Fortunelli, Alessandro; Dass, Amala

    2017-03-21

    Au38(SR)24 is one of the most extensively investigated gold nanomolecules along with Au25(SR)18 and Au144(SR)60. However, so far it has only been prepared using aliphatic-like ligands, where R = –SC6H13, -SC12H25 and –SCH2CH2Ph. Au38(SCH2CH2Ph)24 when reacted with HSPh undergoes core-size conversion to Au36(SPh)24, and existing literature suggest that Au38(SPh)24 cannot be synthesized. Here, contrary to prevailing knowledge, we demonstrate that Au38(SPh)24 can be prepared if the ligand exchanged conditions are optimized, without any formation of Au36(SPh)24. Conclusive evidence is presented in the form of MALDI-MS, ESI-MS characterization, and optical spectra of Au38(SPh)24 in a solid glass form showing distinct differences from that of Au38(S-aliphatic)24. Theoretical analysis confirms experimental assignment of the optical spectrum and shows that the stability of Au38(SPh)24 is comparable to that of its aliphatic analogues, but results from different physical origins, with a significant component of ligand-ligand attractive interactions.

  10. Local Group dSph radio survey with ATCA (III): constraints on particle dark matter

    International Nuclear Information System (INIS)

    Regis, Marco; Colafrancesco, Sergio; Profumo, Stefano; De Blok, W.J.G.; Massardi, Marcella; Richter, Laura

    2014-01-01

    We performed a deep search for radio synchrotron emissions induced by weakly interacting massive particles (WIMPs) annihilation or decay in six dwarf spheroidal (dSph) galaxies of the Local Group. Observations were conducted with the Australia Telescope Compact Array (ATCA) at 16 cm wavelength, with an rms sensitivity better than 0.05 mJy/beam in each field. In this work, we first discuss the uncertainties associated with the modeling of the expected signal, such as the shape of the dark matter (DM) profile and the dSph magnetic properties. We then investigate the possibility that point-sources detected in the proximity of the dSph optical center might be due to the emission from a DM cuspy profile. No evidence for an extended emission over a size of few arcmin (which is the DM halo size) has been detected. We present the associated bounds on the WIMP parameter space for different annihilation/decay final states and for different astrophysical assumptions. If the confinement of electrons and positrons in the dSph is such that the majority of their power is radiated within the dSph region, we obtain constraints on the WIMP annihilation rate which are well below the thermal value for masses up to few TeV. On the other hand, for conservative assumptions on the dSph magnetic properties, the bounds can be dramatically relaxed. We show however that, within the next 10 years and regardless of the astrophysical assumptions, it will be possible to progressively close in on the full parameter space of WIMPs by searching for radio signals in dSphs with SKA and its precursors

  11. Local Group dSph radio survey with ATCA (III): constraints on particle dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Regis, Marco [Dipartimento di Fisica, Università di Torino, via P. Giuria 1, I-10125 Torino (Italy); Colafrancesco, Sergio [School of Physics, University of the Witwatersrand, Johannesburg (South Africa); Profumo, Stefano [Department of Physics, University of California, 1156 High St., Santa Cruz, CA 95064 (United States); De Blok, W.J.G. [Netherlands Institute for Radio Astronomy (ASTRON), Postbus 2, 7990 AA Dwingeloo (Netherlands); Massardi, Marcella [INAF—Istituto di Radioastronomia, Via Gobetti 101, I-40129, Bologna (Italy); Richter, Laura, E-mail: regis@to.infn.it, E-mail: sergio.colafrancesco@wits.ac.za, E-mail: profumo@ucsc.edu, E-mail: blok@astron.nl, E-mail: massardi@ira.inaf.it, E-mail: laura@ska.ac.za [SKA South Africa, 3rd Floor, The Park, Park Road, Pinelands, 7405 (South Africa)

    2014-10-01

    We performed a deep search for radio synchrotron emissions induced by weakly interacting massive particles (WIMPs) annihilation or decay in six dwarf spheroidal (dSph) galaxies of the Local Group. Observations were conducted with the Australia Telescope Compact Array (ATCA) at 16 cm wavelength, with an rms sensitivity better than 0.05 mJy/beam in each field. In this work, we first discuss the uncertainties associated with the modeling of the expected signal, such as the shape of the dark matter (DM) profile and the dSph magnetic properties. We then investigate the possibility that point-sources detected in the proximity of the dSph optical center might be due to the emission from a DM cuspy profile. No evidence for an extended emission over a size of few arcmin (which is the DM halo size) has been detected. We present the associated bounds on the WIMP parameter space for different annihilation/decay final states and for different astrophysical assumptions. If the confinement of electrons and positrons in the dSph is such that the majority of their power is radiated within the dSph region, we obtain constraints on the WIMP annihilation rate which are well below the thermal value for masses up to few TeV. On the other hand, for conservative assumptions on the dSph magnetic properties, the bounds can be dramatically relaxed. We show however that, within the next 10 years and regardless of the astrophysical assumptions, it will be possible to progressively close in on the full parameter space of WIMPs by searching for radio signals in dSphs with SKA and its precursors.

  12. PHoToNs–A parallel heterogeneous and threads oriented code for cosmological N-body simulation

    Science.gov (United States)

    Wang, Qiao; Cao, Zong-Yan; Gao, Liang; Chi, Xue-Bin; Meng, Chen; Wang, Jie; Wang, Long

    2018-06-01

    We introduce a new code for cosmological simulations, PHoToNs, which incorporates features for performing massive cosmological simulations on heterogeneous high performance computer (HPC) systems and threads oriented programming. PHoToNs adopts a hybrid scheme to compute gravitational force, with the conventional Particle-Mesh (PM) algorithm to compute the long-range force, the Tree algorithm to compute the short range force and the direct summation Particle-Particle (PP) algorithm to compute gravity from very close particles. A self-similar space filling a Peano-Hilbert curve is used to decompose the computing domain. Threads programming is advantageously used to more flexibly manage the domain communication, PM calculation and synchronization, as well as Dual Tree Traversal on the CPU+MIC platform. PHoToNs scales well and efficiency of the PP kernel achieves 68.6% of peak performance on MIC and 74.4% on CPU platforms. We also test the accuracy of the code against the much used Gadget-2 in the community and found excellent agreement.

  13. Transformation of Au144(SCH2CH2Ph)60 to Au133(SPh-tBu)52 Nanomolecules: Theoretical and Experimental Study.

    Science.gov (United States)

    Nimmala, Praneeth Reddy; Theivendran, Shevanuja; Barcaro, Giovanni; Sementa, Luca; Kumara, Chanaka; Jupally, Vijay Reddy; Apra, Edoardo; Stener, Mauro; Fortunelli, Alessandro; Dass, Amala

    2015-06-04

    Ultrastable gold nanomolecule Au144(SCH2CH2Ph)60 upon etching with excess tert-butylbenzenethiol undergoes a core-size conversion and compositional change to form an entirely new core of Au133(SPh-tBu)52. This conversion was studied using high-resolution electrospray mass spectrometry which shows that the core size conversion is initiated after 22 ligand exchanges, suggesting a relatively high stability of the Au144(SCH2CH2Ph)38(SPh-tBu)22 intermediate. The Au144 → Au133 core size conversion is surprisingly different from the Au144 → Au99 core conversion reported in the case of thiophenol, -SPh. Theoretical analysis and ab initio molecular dynamics simulations show that rigid p-tBu groups play a crucial role by reducing the cluster structural freedom, and protecting the cluster from adsorption of exogenous and reactive species, thus rationalizing the kinetic factors that stabilize the Au133 core size. This 144-atom to 133-atom nanomolecule's compositional change is reflected in optical spectroscopy and electrochemistry.

  14. The large-scale environment from cosmological simulations - I. The baryonic cosmic web

    Science.gov (United States)

    Cui, Weiguang; Knebe, Alexander; Yepes, Gustavo; Yang, Xiaohu; Borgani, Stefano; Kang, Xi; Power, Chris; Staveley-Smith, Lister

    2018-01-01

    Using a series of cosmological simulations that includes one dark-matter-only (DM-only) run, one gas cooling-star formation-supernova feedback (CSF) run and one that additionally includes feedback from active galactic nuclei (AGNs), we classify the large-scale structures with both a velocity-shear-tensor code (VWEB) and a tidal-tensor code (PWEB). We find that the baryonic processes have almost no impact on large-scale structures - at least not when classified using aforementioned techniques. More importantly, our results confirm that the gas component alone can be used to infer the filamentary structure of the universe practically un-biased, which could be applied to cosmology constraints. In addition, the gas filaments are classified with its velocity (VWEB) and density (PWEB) fields, which can theoretically connect to the radio observations, such as H I surveys. This will help us to bias-freely link the radio observations with dark matter distributions at large scale.

  15. SPH numerical investigation of the characteristics of an oscillating hydraulic jump at an abrupt drop

    Science.gov (United States)

    De Padova, Diana; Mossa, Michele; Sibilla, Stefano

    2018-02-01

    This paper shows the results of the smooth particle hydrodynamics (SPH) modelling of the hydraulic jump at an abrupt drop, where the transition from supercritical to subcritical flow is characterised by several flow patterns depending upon the inflow and tailwater conditions. SPH simulations are obtained by a pseudo-compressible XSPH scheme with pressure smoothing; turbulent stresses are represented either by an algebraic mixing-length model, or by a two-equation k- ɛ model. The numerical model is applied to analyse the occurrence of oscillatory flow conditions between two different jump types characterised by quasi-periodic oscillation, and the results are compared with experiments performed at the hydraulics laboratory of Bari Technical University. The purpose of this paper is to obtain a deeper understanding of the physical features of a flow which is in general difficult to be reproduced numerically, owing to its unstable character: in particular, vorticity and turbulent kinetic energy fields, velocity, water depth and pressure spectra downstream of the jump, and velocity and pressure cross-correlations can be computed and analysed.

  16. Multi-Scale Initial Conditions For Cosmological Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, Oliver; /KIPAC, Menlo Park; Abel, Tom; /KIPAC, Menlo Park /ZAH, Heidelberg /HITS, Heidelberg

    2011-11-04

    We discuss a new algorithm to generate multi-scale initial conditions with multiple levels of refinements for cosmological 'zoom-in' simulations. The method uses an adaptive convolution of Gaussian white noise with a real-space transfer function kernel together with an adaptive multi-grid Poisson solver to generate displacements and velocities following first- (1LPT) or second-order Lagrangian perturbation theory (2LPT). The new algorithm achieves rms relative errors of the order of 10{sup -4} for displacements and velocities in the refinement region and thus improves in terms of errors by about two orders of magnitude over previous approaches. In addition, errors are localized at coarse-fine boundaries and do not suffer from Fourier-space-induced interference ringing. An optional hybrid multi-grid and Fast Fourier Transform (FFT) based scheme is introduced which has identical Fourier-space behaviour as traditional approaches. Using a suite of re-simulations of a galaxy cluster halo our real-space-based approach is found to reproduce correlation functions, density profiles, key halo properties and subhalo abundances with per cent level accuracy. Finally, we generalize our approach for two-component baryon and dark-matter simulations and demonstrate that the power spectrum evolution is in excellent agreement with linear perturbation theory. For initial baryon density fields, it is suggested to use the local Lagrangian approximation in order to generate a density field for mesh-based codes that is consistent with the Lagrangian perturbation theory instead of the current practice of using the Eulerian linearly scaled densities.

  17. Local Group dSph radio survey with ATCA - II. Non-thermal diffuse emission

    Science.gov (United States)

    Regis, Marco; Richter, Laura; Colafrancesco, Sergio; Profumo, Stefano; de Blok, W. J. G.; Massardi, Marcella

    2015-04-01

    Our closest neighbours, the Local Group dwarf spheroidal (dSph) galaxies, are extremely quiescent and dim objects, where thermal and non-thermal diffuse emissions lack, so far, of detection. In order to possibly study the dSph interstellar medium, deep observations are required. They could reveal non-thermal emissions associated with the very low level of star formation, or to particle dark matter annihilating or decaying in the dSph halo. In this work, we employ radio observations of six dSphs, conducted with the Australia Telescope Compact Array in the frequency band 1.1-3.1 GHz, to test the presence of a diffuse component over typical scales of few arcmin and at an rms sensitivity below 0.05 mJy beam-1. We observed the dSph fields with both a compact array and long baselines. Short spacings led to a synthesized beam of about 1 arcmin and were used for the extended emission search. The high-resolution data mapped background sources, which in turn were subtracted in the short-baseline maps, to reduce their confusion limit. We found no significant detection of a diffuse radio continuum component. After a detailed discussion on the modelling of the cosmic ray (CR) electron distribution and on the dSph magnetic properties, we present bounds on several physical quantities related to the dSphs, such that the total radio flux, the angular shape of the radio emissivity, the equipartition magnetic field, and the injection and equilibrium distributions of CR electrons. Finally, we discuss the connection to far-infrared and X-ray observations.

  18. GALAXY CLUSTER RADIO RELICS IN ADAPTIVE MESH REFINEMENT COSMOLOGICAL SIMULATIONS: RELIC PROPERTIES AND SCALING RELATIONSHIPS

    International Nuclear Information System (INIS)

    Skillman, Samuel W.; Hallman, Eric J.; Burns, Jack O.; Smith, Britton D.; O'Shea, Brian W.; Turk, Matthew J.

    2011-01-01

    Cosmological shocks are a critical part of large-scale structure formation, and are responsible for heating the intracluster medium in galaxy clusters. In addition, they are capable of accelerating non-thermal electrons and protons. In this work, we focus on the acceleration of electrons at shock fronts, which is thought to be responsible for radio relics-extended radio features in the vicinity of merging galaxy clusters. By combining high-resolution adaptive mesh refinement/N-body cosmological simulations with an accurate shock-finding algorithm and a model for electron acceleration, we calculate the expected synchrotron emission resulting from cosmological structure formation. We produce synthetic radio maps of a large sample of galaxy clusters and present luminosity functions and scaling relationships. With upcoming long-wavelength radio telescopes, we expect to see an abundance of radio emission associated with merger shocks in the intracluster medium. By producing observationally motivated statistics, we provide predictions that can be compared with observations to further improve our understanding of magnetic fields and electron shock acceleration.

  19. Insulin-like growth factor binding protein-3 induces angiogenesis through IGF-I- and SphK1-dependent mechanisms.

    Science.gov (United States)

    Granata, R; Trovato, L; Lupia, E; Sala, G; Settanni, F; Camussi, G; Ghidoni, R; Ghigo, E

    2007-04-01

    Angiogenesis is critical for development and repair, and is a prominent feature of many pathological conditions. Based on evidence that insulin-like growth factor binding protein (IGFBP)-3 enhances cell motility and activates sphingosine kinase (SphK) in human endothelial cells, we have investigated whether IGFBP-3 plays a role in promoting angiogenesis. IGFBP-3 potently induced network formation by human endothelial cells on Matrigel. Moreover, it up-regulated proangiogenic genes, such as vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMP)-2 and -9. IGFBP-3 even induced membrane-type 1 MMP (MT1-MMP), which regulates MMP-2 activation. Decreasing SphK1 expression by small interfering RNA (siRNA), blocked IGFBP-3-induced network formation and inhibited VEGF, MT1-MMP but not IGF-I up-regulation. IGF-I activated SphK, leading to sphingosine-1-phosphate (S1P) formation. The IGF-I effect on SphK activity was blocked by specific inhibitors of IGF-IR, PI3K/Akt and ERK1/2 phosphorylation. The disruption of IGF-I signaling prevented the IGFBP-3 effect on tube formation, SphK activity and VEGF release. Blocking ERK1/2 signaling caused the loss of SphK activation and VEGF and IGF-I up-regulation. Finally, IGFBP-3 dose-dependently stimulated neovessel formation into subcutaneous implants of Matrigel in vivo. Thus, IGFBP-3 positively regulates angiogenesis through involvement of IGF-IR signaling and subsequent SphK/S1P activation.

  20. Simulations of reactive transport and precipitation with smoothed particle hydrodynamics

    Science.gov (United States)

    Tartakovsky, Alexandre M.; Meakin, Paul; Scheibe, Timothy D.; Eichler West, Rogene M.

    2007-03-01

    A numerical model based on smoothed particle hydrodynamics (SPH) was developed for reactive transport and mineral precipitation in fractured and porous materials. Because of its Lagrangian particle nature, SPH has several advantages for modeling Navier-Stokes flow and reactive transport including: (1) in a Lagrangian framework there is no non-linear term in the momentum conservation equation, so that accurate solutions can be obtained for momentum dominated flows and; (2) complicated physical and chemical processes such as surface growth due to precipitation/dissolution and chemical reactions are easy to implement. In addition, SPH simulations explicitly conserve mass and linear momentum. The SPH solution of the diffusion equation with fixed and moving reactive solid-fluid boundaries was compared with analytical solutions, Lattice Boltzmann [Q. Kang, D. Zhang, P. Lichtner, I. Tsimpanogiannis, Lattice Boltzmann model for crystal growth from supersaturated solution, Geophysical Research Letters, 31 (2004) L21604] simulations and diffusion limited aggregation (DLA) [P. Meakin, Fractals, scaling and far from equilibrium. Cambridge University Press, Cambridge, UK, 1998] model simulations. To illustrate the capabilities of the model, coupled three-dimensional flow, reactive transport and precipitation in a fracture aperture with a complex geometry were simulated.

  1. Numerical Analysis Study of Sarawak Barrage River Bed Erosion and Scouring by Using Smooth Particle Hydrodynamic (SPH)

    Science.gov (United States)

    Zainol, M. R. R. M. A.; Kamaruddin, M. A.; Zawawi, M. H.; Wahab, K. A.

    2017-11-01

    Smooth Particle Hydrodynamic is the three-dimensional (3D) model. In this research work, three cases and one validation have been simulate using DualSPHysics. Study area of this research work was at Sarawak Barrage. The cases have different water level at the downstream. This study actually to simulate riverbed erosion and scouring properties by using multi-phases cases which use sand as sediment and water. The velocity and the scouring profile have been recorded as the result and shown in the result chapter. The result of the validation is acceptable where the scouring profile and the velocity were slightly different between laboratory experiment and simulation. Hence, it can be concluded that the simulation by using SPH can be used as the alternative to simulate the real cases.

  2. The origin of kinematically distinct cores and misaligned gas discs in galaxies from cosmological simulations

    Science.gov (United States)

    Taylor, Philip; Federrath, Christoph; Kobayashi, Chiaki

    2018-06-01

    Integral field spectroscopy surveys provide spatially resolved gas and stellar kinematics of galaxies. They have unveiled a range of atypical kinematic phenomena, which require detailed modelling to understand. We present results from a cosmological simulation that includes stellar and AGN feedback. We find that the distribution of angles between the gas and stellar angular momenta of galaxies is not affected by projection effects. We examine five galaxies (≈6 per cent of well resolved galaxies) that display atypical kinematics; two of the galaxies have kinematically distinct cores (KDC), while the other three have counter-rotating gas and stars. All five form the majority of their stars in the field, subsequently falling into cosmological filaments where the relative orientation of the stellar angular momentum and the bulk gas flow leads to the formation of a counter-rotating gas disc. The accreted gas exchanges angular momentum with pre-existing co-rotating gas causing it to fall to the centre of the galaxy. This triggers low-level AGN feedback, which reduces star formation. Later, two of the galaxies experience a minor merger (stellar mass ratio ˜1/10) with a galaxy on a retrograde orbit compared to the spin of the stellar component of the primary. This produces the KDCs, and is a different mechanism than suggested by other works. The role of minor mergers in the kinematic evolution of galaxies may have been under-appreciated in the past, and large, high-resolution cosmological simulations will be necessary to gain a better understanding in this area.

  3. The Atacama Cosmology Telescope: Cosmology from Galaxy Clusters Detected via the Sunyaev-Zeldovich Effect

    International Nuclear Information System (INIS)

    Sehgal, N.

    2011-01-01

    We present constraints on cosmological parameters based on a sample of Sunyaev-Zeldovich-selected galaxy clusters detected in a millimeter-wave survey by the Atacama Cosmology Telescope. The cluster sample used in this analysis consists of 9 optically-confirmed high-mass clusters comprising the high-significance end of the total cluster sample identified in 455 square degrees of sky surveyed during 2008 at 148GHz. We focus on the most massive systems to reduce the degeneracy between unknown cluster astrophysics and cosmology derived from SZ surveys. We describe the scaling relation between cluster mass and SZ signal with a 4-parameter fit. Marginalizing over the values of the parameters in this fit with conservative priors gives σ 8 = 0.851 ± 0.115 and w = -1.14 ± 0.35 for a spatially-flat wCDM cosmological model with WMAP 7-year priors on cosmological parameters. This gives a modest improvement in statistical uncertainty over WMAP 7-year constraints alone. Fixing the scaling relation between cluster mass and SZ signal to a fiducial relation obtained from numerical simulations and calibrated by X-ray observations, we find σ 8 = 0.821 ± 0.044 and w = -1.05 ± 0.20. These results are consistent with constraints from WMAP 7 plus baryon acoustic oscillations plus type Ia supernoava which give σ 8 = 0.802 ± 0.038 and w = -0.98 ± 0.053. A stacking analysis of the clusters in this sample compared to clusters simulated assuming the fiducial model also shows good agreement. These results suggest that, given the sample of clusters used here, both the astrophysics of massive clusters and the cosmological parameters derived from them are broadly consistent with current models.

  4. The Atacama Cosmology Telescope: Cosmology from Galaxy Clusters Detected Via the Sunyaev-Zel'dovich Effect

    Science.gov (United States)

    Sehgal, Neelima; Trac, Hy; Acquaviva, Viviana; Ade, Peter A. R.; Aguirre, Paula; Amiri, Mandana; Appel, John W.; Barrientos, L. Felipe; Battistelli, Elia S.; Bond, J. Richard; hide

    2010-01-01

    We present constraints on cosmological parameters based on a sample of Sunyaev-Zel'dovich-selected galaxy clusters detected in a millimeter-wave survey by the Atacama Cosmology Telescope. The cluster sample used in this analysis consists of 9 optically-confirmed high-mass clusters comprising the high-significance end of the total cluster sample identified in 455 square degrees of sky surveyed during 2008 at 148 GHz. We focus on the most massive systems to reduce the degeneracy between unknown cluster astrophysics and cosmology derived from SZ surveys. We describe the scaling relation between cluster mass and SZ signal with a 4-parameter fit. Marginalizing over the values of the parameters in this fit with conservative priors gives (sigma)8 = 0.851 +/- 0.115 and w = -1.14 +/- 0.35 for a spatially-flat wCDM cosmological model with WMAP 7-year priors on cosmological parameters. This gives a modest improvement in statistical uncertainty over WMAP 7-year constraints alone. Fixing the scaling relation between cluster mass and SZ signal to a fiducial relation obtained from numerical simulations and calibrated by X-ray observations, we find (sigma)8 + 0.821 +/- 0.044 and w = -1.05 +/- 0.20. These results are consistent with constraints from WMAP 7 plus baryon acoustic oscillations plus type Ia supernova which give (sigma)8 = 0.802 +/- 0.038 and w = -0.98 +/- 0.053. A stacking analysis of the clusters in this sample compared to clusters simulated assuming the fiducial model also shows good agreement. These results suggest that, given the sample of clusters used here, both the astrophysics of massive clusters and the cosmological parameters derived from them are broadly consistent with current models.

  5. The cosmological principle is not in the sky

    Science.gov (United States)

    Park, Chan-Gyung; Hyun, Hwasu; Noh, Hyerim; Hwang, Jai-chan

    2017-08-01

    The homogeneity of matter distribution at large scales, known as the cosmological principle, is a central assumption in the standard cosmological model. The case is testable though, thus no longer needs to be a principle. Here we perform a test for spatial homogeneity using the Sloan Digital Sky Survey Luminous Red Galaxies (LRG) sample by counting galaxies within a specified volume with the radius scale varying up to 300 h-1 Mpc. We directly confront the large-scale structure data with the definition of spatial homogeneity by comparing the averages and dispersions of galaxy number counts with allowed ranges of the random distribution with homogeneity. The LRG sample shows significantly larger dispersions of number counts than the random catalogues up to 300 h-1 Mpc scale, and even the average is located far outside the range allowed in the random distribution; the deviations are statistically impossible to be realized in the random distribution. This implies that the cosmological principle does not hold even at such large scales. The same analysis of mock galaxies derived from the N-body simulation, however, suggests that the LRG sample is consistent with the current paradigm of cosmology, thus the simulation is also not homogeneous in that scale. We conclude that the cosmological principle is neither in the observed sky nor demanded to be there by the standard cosmological world model. This reveals the nature of the cosmological principle adopted in the modern cosmology paradigm, and opens a new field of research in theoretical cosmology.

  6. Galaxy formation: internal mechanisms and cosmological processes

    International Nuclear Information System (INIS)

    Martig, Marie

    2010-01-01

    This thesis is devoted to galaxy formation and evolution in a cosmological context. Cosmological simulations have unveiled two main modes of galaxy growth: hierarchical growth by mergers and accretion of cold gas from cosmic filaments. However, these simulations rarely take into account small scale mechanisms, that govern internal evolution and that are a key ingredient to understand galaxy formation and evolution. Thanks to a new simulation technique that I have developed, I first studied the colors of galaxies, and in particular the reddening of elliptical galaxies. I showed that the gas disk in an elliptical galaxy could be stabilized against star formation because of the galaxy's stellar component being within a spheroid instead of a disk. This mechanism can explain the red colors of some elliptical galaxies that contain a gas disk. I also studied the formation of spiral galaxies: most cosmological simulations cannot explain the formation of Milky Way-like galaxies, i.e. with a large disk and a small bulge. I showed that this issue could be partly solved by taking into account in the simulations the mass loss from evolved stars through stellar winds, planetary nebulae and supernovae explosions. (author) [fr

  7. Numerical Convergence in the Dark Matter Halos Properties Using Cosmological Simulations

    Science.gov (United States)

    Mosquera-Escobar, X. E.; Muñoz-Cuartas, J. C.

    2017-07-01

    Nowadays, the accepted cosmological model is the so called -Cold Dark Matter (CDM). In such model, the universe is considered to be homogeneous and isotropic, composed of diverse components as the dark matter and dark energy, where the latter is the most abundant one. Dark matter plays an important role because it is responsible for the generation of gravitational potential wells, commonly called dark matter halos. At the end, dark matter halos are characterized by a set of parameters (mass, radius, concentration, spin parameter), these parameters provide valuable information for different studies, such as galaxy formation, gravitational lensing, etc. In this work we use the publicly available code Gadget2 to perform cosmological simulations to find to what extent the numerical parameters of the simu- lations, such as gravitational softening, integration time step and force calculation accuracy affect the physical properties of the dark matter halos. We ran a suite of simulations where these parameters were varied in a systematic way in order to explore accurately their impact on the structural parameters of dark matter halos. We show that the variations on the numerical parameters affect the structural pa- rameters of dark matter halos, such as concentration, virial radius, and concentration. We show that these modifications emerged when structures become non- linear (at redshift 2) for the scale of our simulations, such that these variations affected the formation and evolution structure of halos mainly at later cosmic times. As a quantitative result, we propose which would be the most appropriate values for the numerical parameters of the simulations, such that they do not affect the halo properties that are formed. For force calculation accuracy we suggest values smaller or equal to 0.0001, integration time step smaller o equal to 0.005 and for gravitational softening we propose equal to 1/60th of the mean interparticle distance, these values, correspond to the

  8. Metastatic triple-negative breast cancer is dependent on SphKs/S1P signaling for growth and survival.

    Science.gov (United States)

    Maiti, Aparna; Takabe, Kazuaki; Hait, Nitai C

    2017-04-01

    About 40,000 American women die from metastatic breast cancer each year despite advancements in treatment. Approximately, 15% of breast cancers are triple-negative for estrogen receptor, progesterone receptor, and HER2. Triple-negative cancer is characterized by more aggressive, harder to treat with conventional approaches and having a greater possibility of recurrence. Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid signaling mediator has emerged as a key regulatory molecule in breast cancer progression. Therefore, we investigated whether cytosolic sphingosine kinase type 1 (SphK1) and nuclear sphingosine kinase type 2 (SphK2), the enzymes that make S1P are critical for growth and PI3K/AKT, ERK-MAP kinase mediated survival signaling of lung metastatic variant LM2-4 breast cancer cells, generated from the parental triple-negative MDA-MB-231 human breast cancer cell line. Similar with previous report, SphKs/S1P signaling is critical for the growth and survival of estrogen receptor positive MCF-7 human breast cancer cells, was used as our study control. MDA-MB-231 did not show a significant effect of SphKs/S1P signaling on AKT, ERK, and p38 pathways. In contrast, LM2-4 cells that gained lung metastatic phenotype from primary MDA-MB-231 cells show a significant effect of SphKs/S1P signaling requirement on cell growth, survival, and cell motility. PF-543, a selective potent inhibitor of SphK1, attenuated epidermal growth factor (EGF)-mediated cell growth and survival signaling through inhibition of AKT, ERK, and p38 MAP kinase pathways mainly in LM2-4 cells but not in parental MDA-MB-231 human breast cancer cells. Moreover, K-145, a selective inhibitor of SphK2, markedly attenuated EGF-mediated cell growth and survival of LM2-4 cells. We believe this study highlights the importance of SphKs/S1P signaling in metastatic triple-negative breast cancers and targeted therapies. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Synthesis of Aromatic Thiolate-Protected Gold Nanomolecules by Core Conversion: The Case of Au36(SPh-tBu)24.

    Science.gov (United States)

    Theivendran, Shevanuja; Dass, Amala

    2017-08-01

    Ultrasmall nanomolecules (<2 nm) such as Au 25 (SCH 2 CH 2 Ph) 18 , Au 38 (SCH 2 CH 2 Ph) 24 , and Au 144 (SCH 2 CH 2 Ph) 60 are well studied and can be prepared using established synthetic procedures. No such synthetic protocols that result in high yield products from commercially available starting materials exist for Au 36 (SPh-X) 24 . Here, we report a synthetic procedure for the large-scale synthesis of highly stable Au 36 (SPh-X) 24 with a yield of ∼42%. Au 36 (SPh-X) 24 was conveniently synthesized by using tert-butylbenzenethiol (HSPh-tBu, TBBT) as the ligand, giving a more stable product with better shelf life and higher yield than previously reported for making Au 36 (SPh) 24 from thiophenol (PhSH). The choice of thiol, solvent, and reaction conditions were modified for the optimization of the synthetic procedure. The purposes of this work are to (1) optimize the existing procedure to obtain stable product with better yield, (2) develop a scalable synthetic procedure, (3) demonstrate the superior stability of Au 36 (SPh-tBu) 24 when compared to Au 36 (SPh) 24 , and (4) demonstrate the reproducibility and robustness of the optimized synthetic procedure.

  10. Simulating quantum effects of cosmological expansion using a static ion trap

    Science.gov (United States)

    Menicucci, Nicolas C.; Olson, S. Jay; Milburn, Gerard J.

    2010-09-01

    We propose a new experimental test bed that uses ions in the collective ground state of a static trap to study the analogue of quantum-field effects in cosmological spacetimes, including the Gibbons-Hawking effect for a single detector in de Sitter spacetime, as well as the possibility of modeling inflationary structure formation and the entanglement signature of de Sitter spacetime. To date, proposals for using trapped ions in analogue gravity experiments have simulated the effect of gravity on the field modes by directly manipulating the ions' motion. In contrast, by associating laboratory time with conformal time in the simulated universe, we can encode the full effect of curvature in the modulation of the laser used to couple the ions' vibrational motion and electronic states. This model simplifies the experimental requirements for modeling the analogue of an expanding universe using trapped ions, and it enlarges the validity of the ion-trap analogy to a wide range of interesting cases.

  11. GRADSPMHD: A parallel MHD code based on the SPH formalism

    Science.gov (United States)

    Vanaverbeke, S.; Keppens, R.; Poedts, S.

    2014-03-01

    We present GRADSPMHD, a completely Lagrangian parallel magnetohydrodynamics code based on the SPH formalism. The implementation of the equations of SPMHD in the “GRAD-h” formalism assembles known results, including the derivation of the discretized MHD equations from a variational principle, the inclusion of time-dependent artificial viscosity, resistivity and conductivity terms, as well as the inclusion of a mixed hyperbolic/parabolic correction scheme for satisfying the ∇ṡB→ constraint on the magnetic field. The code uses a tree-based formalism for neighbor finding and can optionally use the tree code for computing the self-gravity of the plasma. The structure of the code closely follows the framework of our parallel GRADSPH FORTRAN 90 code which we added previously to the CPC program library. We demonstrate the capabilities of GRADSPMHD by running 1, 2, and 3 dimensional standard benchmark tests and we find good agreement with previous work done by other researchers. The code is also applied to the problem of simulating the magnetorotational instability in 2.5D shearing box tests as well as in global simulations of magnetized accretion disks. We find good agreement with available results on this subject in the literature. Finally, we discuss the performance of the code on a parallel supercomputer with distributed memory architecture. Catalogue identifier: AERP_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AERP_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 620503 No. of bytes in distributed program, including test data, etc.: 19837671 Distribution format: tar.gz Programming language: FORTRAN 90/MPI. Computer: HPC cluster. Operating system: Unix. Has the code been vectorized or parallelized?: Yes, parallelized using MPI. RAM: ˜30 MB for a

  12. The Atacama Cosmology Telescope: Cosmology from Galaxy Clusters Detected via the Sunyaev-Zel'dovich Effect

    Energy Technology Data Exchange (ETDEWEB)

    Sehgal, Neelima; Trac, Hy; Acquaviva, Viviana; Ade, Peter A.R.; Aguirre, Paula; Amiri, Mandana; Appel, John W.; Barrientos, L.Felipe; Battistelli, Elia S.; Bond, J.Richard; Brown, Ben; Burger, Bryce; Chervenak, Jay; Das, Sudeep; Devlin, Mark J.; Dicker, Simon R.; Doriese, W.Bertrand; Dunkley, Joanna; Dunner, Rolando; Essinger-Hileman, Thomas; Fisher, Ryan P.

    2011-08-18

    We present constraints on cosmological parameters based on a sample of Sunyaev-Zeldovich-selected galaxy clusters detected in a millimeter-wave survey by the Atacama Cosmology Telescope. The cluster sample used in this analysis consists of 9 optically-confirmed high-mass clusters comprising the high-significance end of the total cluster sample identified in 455 square degrees of sky surveyed during 2008 at 148GHz. We focus on the most massive systems to reduce the degeneracy between unknown cluster astrophysics and cosmology derived from SZ surveys. We describe the scaling relation between cluster mass and SZ signal with a 4-parameter fit. Marginalizing over the values of the parameters in this fit with conservative priors gives {sigma}{sub 8} = 0.851 {+-} 0.115 and w = -1.14 {+-} 0.35 for a spatially-flat wCDM cosmological model with WMAP 7-year priors on cosmological parameters. This gives a modest improvement in statistical uncertainty over WMAP 7-year constraints alone. Fixing the scaling relation between cluster mass and SZ signal to a fiducial relation obtained from numerical simulations and calibrated by X-ray observations, we find {sigma}{sub 8} = 0.821 {+-} 0.044 and w = -1.05 {+-} 0.20. These results are consistent with constraints from WMAP 7 plus baryon acoustic oscillations plus type Ia supernoava which give {sigma}{sub 8} = 0.802 {+-} 0.038 and w = -0.98 {+-} 0.053. A stacking analysis of the clusters in this sample compared to clusters simulated assuming the fiducial model also shows good agreement. These results suggest that, given the sample of clusters used here, both the astrophysics of massive clusters and the cosmological parameters derived from them are broadly consistent with current models.

  13. Component-based framework for subsurface simulations

    International Nuclear Information System (INIS)

    Palmer, B J; Fang, Yilin; Hammond, Glenn; Gurumoorthi, Vidhya

    2007-01-01

    Simulations in the subsurface environment represent a broad range of phenomena covering an equally broad range of scales. Developing modelling capabilities that can integrate models representing different phenomena acting at different scales present formidable challenges both from the algorithmic and computer science perspective. This paper will describe the development of an integrated framework that will be used to combine different models into a single simulation. Initial work has focused on creating two frameworks, one for performing smooth particle hydrodynamics (SPH) simulations of fluid systems, the other for performing grid-based continuum simulations of reactive subsurface flow. The SPH framework is based on a parallel code developed for doing pore scale simulations, the continuum grid-based framework is based on the STOMP (Subsurface Transport Over Multiple Phases) code developed at PNNL Future work will focus on combining the frameworks together to perform multiscale, multiphysics simulations of reactive subsurface flow

  14. Cosmology

    International Nuclear Information System (INIS)

    Novikov, I.D.

    1979-01-01

    Progress made by this Commission over the period 1976-1978 is reviewed. Topics include the Hubble constant, deceleration parameter, large-scale distribution of matter in the universe, radio astronomy and cosmology, space astronomy and cosmology, formation of galaxies, physics near the cosmological singularity, and unconventional cosmological models. (C.F.)

  15. Hydrodynamic Simulation of the Cosmological X-Ray Background

    Science.gov (United States)

    Croft, Rupert A. C.; Di Matteo, Tiziana; Davé, Romeel; Hernquist, Lars; Katz, Neal; Fardal, Mark A.; Weinberg, David H.

    2001-08-01

    We use a hydrodynamic simulation of an inflationary cold dark matter model with a cosmological constant to predict properties of the extragalactic X-ray background (XRB). We focus on emission from the intergalactic medium (IGM), with particular attention to diffuse emission from warm-hot gas that lies in relatively smooth filamentary structures between galaxies and galaxy clusters. We also include X-rays from point sources associated with galaxies in the simulation, and we make maps of the angular distribution of the emission. Although much of the X-ray luminous gas has a filamentary structure, the filaments are not evident in the simulated maps because of projection effects. In the soft (0.5-2 keV) band, our calculated mean intensity of radiation from intergalactic and cluster gas is 2.3×10-12 ergs-1 cm-2 deg-2, 35% of the total softband emission. This intensity is compatible at the ~1 σ level with estimates of the unresolved soft background intensity from deep ROSAT and Chandra measurements. Only 4% of the hard (2-10 keV) emission is associated with intergalactic gas. Relative to active galactic nuclei flux, the IGM component of the XRB peaks at a lower redshift (median z~0.45) and spans a narrower redshift range, so its clustering makes an important contribution to the angular correlation function of the total emission. The clustering on the scales accessible to our simulation (0.1‧-10') is significant, with an amplitude roughly consistent with an extrapolation of recent ROSAT results to small scales. A cross-correlation analysis of the XRB against nearby galaxies taken from a simulated redshift survey also yields a strong signal from the IGM. Our conclusions about the soft background intensity differ from those of some recent papers that have argued that the expected emission from gas in galaxy, group, and cluster halos would exceed the observed background unless much of the gas is expelled by supernova feedback. We obtain reasonable compatibility with

  16. Scalar-tensor cosmology with cosmological constant

    International Nuclear Information System (INIS)

    Maslanka, K.

    1983-01-01

    The equations of scalar-tensor theory of gravitation with cosmological constant in the case of homogeneous and isotropic cosmological model can be reduced to dynamical system of three differential equations with unknown functions H=R/R, THETA=phi/phi, S=e/phi. When new variables are introduced the system becomes more symmetrical and cosmological solutions R(t), phi(t), e(t) are found. It is shown that when cosmological constant is introduced large class of solutions which depend also on Dicke-Brans parameter can be obtained. Investigations of these solutions give general limits for cosmological constant and mean density of matter in plane model. (author)

  17. Cosmological Structure Formation: From Dawn till Dusk

    DEFF Research Database (Denmark)

    Heneka, Caroline Samantha

    Cosmology has entered an era where a plethora data is available on structure formation to constrain astrophysics and underlying cosmology. This thesis strives to both investigate new observables and modeling of the Epoch of Reionization, as well as to constrain dark energy phenomenology with mass......Cosmology has entered an era where a plethora data is available on structure formation to constrain astrophysics and underlying cosmology. This thesis strives to both investigate new observables and modeling of the Epoch of Reionization, as well as to constrain dark energy phenomenology...... with massive galaxy clusters, traveling from the dawn of structure formation, when the first galaxies appear, to its dusk, when a representative part of the mass in the Universe is settled in massive structures. This hunt for accurate constraints on cosmology is complemented with the demonstration of novel...... Bayesian statistical tools and kinematical constraints on dark energy. Starting at the dawn of structure formation, we study emission line fluctuations, employing semi-numerical simulations of cosmological volumes of their line emission, in order to cross-correlate fluctuations in brightness. This cross...

  18. Dark matter in the Reticulum II dSph: a radio search

    Science.gov (United States)

    Regis, Marco; Richter, Laura; Colafrancesco, Sergio

    2017-07-01

    We present a deep radio search in the Reticulum II dwarf spheroidal (dSph) galaxy performed with the Australia Telescope Compact Array. Observations were conducted at 16 cm wavelength, with an rms sensitivity of 0.01 mJy/beam, and with the goal of searching for synchrotron emission induced by annihilation or decay of weakly interacting massive particles (WIMPs). Data were complemented with observations on large angular scales taken with the KAT-7 telescope. We find no evidence for a diffuse emission from the dSph and we derive competitive bounds on the WIMP properties. In addition, we detect more than 200 new background radio sources. Among them, we show there are two compelling candidates for being the radio counterpart of the possible γ-ray emission reported by other groups using Fermi-LAT data.

  19. Dark matter in the Reticulum II dSph: a radio search

    International Nuclear Information System (INIS)

    Regis, Marco; Richter, Laura; Colafrancesco, Sergio

    2017-01-01

    We present a deep radio search in the Reticulum II dwarf spheroidal (dSph) galaxy performed with the Australia Telescope Compact Array. Observations were conducted at 16 cm wavelength, with an rms sensitivity of 0.01 mJy/beam, and with the goal of searching for synchrotron emission induced by annihilation or decay of weakly interacting massive particles (WIMPs). Data were complemented with observations on large angular scales taken with the KAT-7 telescope. We find no evidence for a diffuse emission from the dSph and we derive competitive bounds on the WIMP properties. In addition, we detect more than 200 new background radio sources. Among them, we show there are two compelling candidates for being the radio counterpart of the possible γ-ray emission reported by other groups using Fermi-LAT data.

  20. Theoretical cosmology

    International Nuclear Information System (INIS)

    Raychaudhuri, A.K.

    1979-01-01

    The subject is covered in chapters, entitled; introduction; Newtonian gravitation and cosmology; general relativity and relativistic cosmology; analysis of observational data; relativistic models not obeying the cosmological principle; microwave radiation background; thermal history of the universe and nucleosynthesis; singularity of cosmological models; gravitational constant as a field variable; cosmological models based on Einstein-Cartan theory; cosmological singularity in two recent theories; fate of perturbations of isotropic universes; formation of galaxies; baryon symmetric cosmology; assorted topics (including extragalactic radio sources; Mach principle). (U.K.)

  1. Observable cosmology and cosmological models

    International Nuclear Information System (INIS)

    Kardashev, N.S.; Lukash, V.N.; Novikov, I.D.

    1987-01-01

    Modern state of observation cosmology is briefly discussed. Among other things, a problem, related to Hibble constant and slowdown constant determining is considered. Within ''pancake'' theory hot (neutrino) cosmological model explains well the large-scale structure of the Universe, but does not explain the galaxy formation. A cold cosmological model explains well light object formation, but contradicts data on large-scale structure

  2. On the evolution of galaxy clustering and cosmological N-body simulations

    International Nuclear Information System (INIS)

    Fall, S.M.

    1978-01-01

    Some aspects of the problem of simulating the evolution of galaxy clustering by N-body computer experiments are discussed. The results of four 1000-body experiments are presented and interpreted on the basis of simple scaling arguments for the gravitational condensation of bound aggregates. They indicate that the internal dynamics of condensed aggregates are negligible in determining the form of the pair-correlation function xi. On small scales the form of xi is determined by discreteness effects in the initial N-body distribution and is not sensitive to this distribution. The experiments discussed here test the simple scaling arguments effectively for only one value of the cosmological density parameter (Ω = 1) and one form of the initial fluctuation spectrum (n = 0). (author)

  3. Numerical techniques for large cosmological N-body simulations

    International Nuclear Information System (INIS)

    Efstathiou, G.; Davis, M.; Frenk, C.S.; White, S.D.M.

    1985-01-01

    We describe and compare techniques for carrying out large N-body simulations of the gravitational evolution of clustering in the fundamental cube of an infinite periodic universe. In particular, we consider both particle mesh (PM) codes and P 3 M codes in which a higher resolution force is obtained by direct summation of contributions from neighboring particles. We discuss the mesh-induced anisotropies in the forces calculated by these schemes, and the extent to which they can model the desired 1/r 2 particle-particle interaction. We also consider how transformation of the time variable can improve the efficiency with which the equations of motion are integrated. We present tests of the accuracy with which the resulting schemes conserve energy and are able to follow individual particle trajectories. We have implemented an algorithm which allows initial conditions to be set up to model any desired spectrum of linear growing mode density fluctuations. A number of tests demonstrate the power of this algorithm and delineate the conditions under which it is effective. We carry out several test simulations using a variety of techniques in order to show how the results are affected by dynamic range limitations in the force calculations, by boundary effects, by residual artificialities in the initial conditions, and by the number of particles employed. For most purposes cosmological simulations are limited by the resolution of their force calculation rather than by the number of particles they can employ. For this reason, while PM codes are quite adequate to study the evolution of structure on large scale, P 3 M methods are to be preferred, in spite of their greater cost and complexity, whenever the evolution of small-scale structure is important

  4. Modelling non-dust fluids in cosmology

    International Nuclear Information System (INIS)

    Christopherson, Adam J.; Hidalgo, Juan Carlos; Malik, Karim A.

    2013-01-01

    Currently, most of the numerical simulations of structure formation use Newtonian gravity. When modelling pressureless dark matter, or 'dust', this approach gives the correct results for scales much smaller than the cosmological horizon, but for scenarios in which the fluid has pressure this is no longer the case. In this article, we present the correspondence of perturbations in Newtonian and cosmological perturbation theory, showing exact mathematical equivalence for pressureless matter, and giving the relativistic corrections for matter with pressure. As an example, we study the case of scalar field dark matter which features non-zero pressure perturbations. We discuss some problems which may arise when evolving the perturbations in this model with Newtonian numerical simulations and with CMB Boltzmann codes

  5. Cosmological hydrodynamical simulations of galaxy clusters: X-ray scaling relations and their evolution

    Science.gov (United States)

    Truong, N.; Rasia, E.; Mazzotta, P.; Planelles, S.; Biffi, V.; Fabjan, D.; Beck, A. M.; Borgani, S.; Dolag, K.; Gaspari, M.; Granato, G. L.; Murante, G.; Ragone-Figueroa, C.; Steinborn, L. K.

    2018-03-01

    We analyse cosmological hydrodynamical simulations of galaxy clusters to study the X-ray scaling relations between total masses and observable quantities such as X-ray luminosity, gas mass, X-ray temperature, and YX. Three sets of simulations are performed with an improved version of the smoothed particle hydrodynamics GADGET-3 code. These consider the following: non-radiative gas, star formation and stellar feedback, and the addition of feedback by active galactic nuclei (AGN). We select clusters with M500 > 1014 M⊙E(z)-1, mimicking the typical selection of Sunyaev-Zeldovich samples. This permits to have a mass range large enough to enable robust fitting of the relations even at z ˜ 2. The results of the analysis show a general agreement with observations. The values of the slope of the mass-gas mass and mass-temperature relations at z = 2 are 10 per cent lower with respect to z = 0 due to the applied mass selection, in the former case, and to the effect of early merger in the latter. We investigate the impact of the slope variation on the study of the evolution of the normalization. We conclude that cosmological studies through scaling relations should be limited to the redshift range z = 0-1, where we find that the slope, the scatter, and the covariance matrix of the relations are stable. The scaling between mass and YX is confirmed to be the most robust relation, being almost independent of the gas physics. At higher redshifts, the scaling relations are sensitive to the inclusion of AGNs which influences low-mass systems. The detailed study of these objects will be crucial to evaluate the AGN effect on the ICM.

  6. SEURAT: SPH scheme extended with ultraviolet line radiative transfer

    Science.gov (United States)

    Abe, Makito; Suzuki, Hiroyuki; Hasegawa, Kenji; Semelin, Benoit; Yajima, Hidenobu; Umemura, Masayuki

    2018-05-01

    We present a novel Lyman alpha (Ly α) radiative transfer code, SEURAT (SPH scheme Extended with Ultraviolet line RAdiative Transfer), where line scatterings are solved adaptively with the resolution of the smoothed particle hydrodynamics (SPH). The radiative transfer method implemented in SEURAT is based on a Monte Carlo algorithm in which the scattering and absorption by dust are also incorporated. We perform standard test calculations to verify the validity of the code; (i) emergent spectra from a static uniform sphere, (ii) emergent spectra from an expanding uniform sphere, and (iii) escape fraction from a dusty slab. Thereby, we demonstrate that our code solves the {Ly} α radiative transfer with sufficient accuracy. We emphasize that SEURAT can treat the transfer of {Ly} α photons even in highly complex systems that have significantly inhomogeneous density fields. The high adaptivity of SEURAT is desirable to solve the propagation of {Ly} α photons in the interstellar medium of young star-forming galaxies like {Ly} α emitters (LAEs). Thus, SEURAT provides a powerful tool to model the emergent spectra of {Ly} α emission, which can be compared to the observations of LAEs.

  7. Numerical cosmology: Revealing the universe using computers

    International Nuclear Information System (INIS)

    Centrella, J.; Matzner, R.A.; Tolman, B.W.

    1986-01-01

    In this paper the authors present two research projects which study the evolution of different periods in the history of the universe using numerical simulations. The first investigates the synthesis of light elements in an inhomogeneous early universe dominated by shocks and non-linear gravitational waves. The second follows the evolution of large scale structures during the later history of the universe and calculates their effect on the 3K background radiation. Their simulations are carried out using modern supercomputers and make heavy use of multidimensional color graphics, including film to elucidate the results. Both projects provide the authors the opportunity to do experiments in cosmology and assess their results against fundamental cosmological observations

  8. Precision Cosmology

    Science.gov (United States)

    Jones, Bernard J. T.

    2017-04-01

    Preface; Notation and conventions; Part I. 100 Years of Cosmology: 1. Emerging cosmology; 2. The cosmic expansion; 3. The cosmic microwave background; 4. Recent cosmology; Part II. Newtonian Cosmology: 5. Newtonian cosmology; 6. Dark energy cosmological models; 7. The early universe; 8. The inhomogeneous universe; 9. The inflationary universe; Part III. Relativistic Cosmology: 10. Minkowski space; 11. The energy momentum tensor; 12. General relativity; 13. Space-time geometry and calculus; 14. The Einstein field equations; 15. Solutions of the Einstein equations; 16. The Robertson-Walker solution; 17. Congruences, curvature and Raychaudhuri; 18. Observing and measuring the universe; Part IV. The Physics of Matter and Radiation: 19. Physics of the CMB radiation; 20. Recombination of the primeval plasma; 21. CMB polarisation; 22. CMB anisotropy; Part V. Precision Tools for Precision Cosmology: 23. Likelihood; 24. Frequentist hypothesis testing; 25. Statistical inference: Bayesian; 26. CMB data processing; 27. Parametrising the universe; 28. Precision cosmology; 29. Epilogue; Appendix A. SI, CGS and Planck units; Appendix B. Magnitudes and distances; Appendix C. Representing vectors and tensors; Appendix D. The electromagnetic field; Appendix E. Statistical distributions; Appendix F. Functions on a sphere; Appendix G. Acknowledgements; References; Index.

  9. HBT+: an improved code for finding subhaloes and building merger trees in cosmological simulations

    Science.gov (United States)

    Han, Jiaxin; Cole, Shaun; Frenk, Carlos S.; Benitez-Llambay, Alejandro; Helly, John

    2018-02-01

    Dark matter subhalos are the remnants of (incomplete) halo mergers. Identifying them and establishing their evolutionary links in the form of merger trees is one of the most important applications of cosmological simulations. The HBT (Hierachical Bound-Tracing) code identifies haloes as they form and tracks their evolution as they merge, simultaneously detecting subhaloes and building their merger trees. Here we present a new implementation of this approach, HBT+ , that is much faster, more user friendly, and more physically complete than the original code. Applying HBT+ to cosmological simulations, we show that both the subhalo mass function and the peak-mass function are well fitted by similar double-Schechter functions. The ratio between the two is highest at the high-mass end, reflecting the resilience of massive subhaloes that experience substantial dynamical friction but limited tidal stripping. The radial distribution of the most-massive subhaloes is more concentrated than the universal radial distribution of lower mass subhaloes. Subhalo finders that work in configuration space tend to underestimate the masses of massive subhaloes, an effect that is stronger in the host centre. This may explain, at least in part, the excess of massive subhaloes in galaxy cluster centres inferred from recent lensing observations. We demonstrate that the peak-mass function is a powerful diagnostic of merger tree defects, and the merger trees constructed using HBT+ do not suffer from the missing or switched links that tend to afflict merger trees constructed from more conventional halo finders. We make the HBT+ code publicly available.

  10. Cosmology

    International Nuclear Information System (INIS)

    Contopoulos, G.; Kotsakis, D.

    1987-01-01

    An extensive first part on a wealth of observational results relevant to cosmology lays the foundation for the second and central part of the book; the chapters on general relativity, the various cosmological theories, and the early universe. The authors present in a complete and almost non-mathematical way the ideas and theoretical concepts of modern cosmology including the exciting impact of high-energy particle physics, e.g. in the concept of the ''inflationary universe''. The final part addresses the deeper implications of cosmology, the arrow of time, the universality of physical laws, inflation and causality, and the anthropic principle

  11. Constraining holographic cosmology using Planck data

    Science.gov (United States)

    Afshordi, Niayesh; Gould, Elizabeth; Skenderis, Kostas

    2017-06-01

    Holographic cosmology offers a novel framework for describing the very early Universe in which cosmological predictions are expressed in terms of the observables of a three-dimensional quantum field theory (QFT). This framework includes conventional slow-roll inflation, which is described in terms of a strongly coupled QFT, but it also allows for qualitatively new models for the very early Universe, where the dual QFT may be weakly coupled. The new models describe a universe which is nongeometric at early times. While standard slow-roll inflation leads to a (near-) power-law primordial power spectrum, perturbative super-renormalizable QFTs yield a new holographic spectral shape. Here, we compare the two predictions against cosmological observations. We use CosmoMC to determine the best fit parameters, and MultiNest for Bayesian evidence, comparing the likelihoods. We find that the dual QFT should be nonperturbative at the very low multipoles (l ≲30 ), while for higher multipoles (l ≳30 ) the new holographic model, based on perturbative QFT, fits the data just as well as the standard power-law spectrum assumed in Λ CDM cosmology. This finding opens the door to applications of nonperturbative QFT techniques, such as lattice simulations, to observational cosmology on gigaparsec scales and beyond.

  12. Weak Galactic halo-Fornax dSph connection from RR Lyrae stars

    NARCIS (Netherlands)

    Fiorentino, G.; Monelli, M.; Stetson, P. B.; Bono, G.; Gallart, C.; Martínez-Vázquez, C. E.; Bernard, E. J.; Massari, D.; Braga, V. F.; Dall'Ora, M.

    2017-01-01

    Aims: For the first time accurate pulsation properties of the ancient variable stars of the Fornax dwarf spheroidal galaxy (dSph) are discussed in the broad context of galaxy formation and evolution. Methods: Homogeneous multi-band BVI optical photometry of spanning twenty years has allowed us to

  13. Smoot Group Cosmology

    Science.gov (United States)

    the Universe About Cosmology Planck Satellite Launched Cosmology Videos Professor George Smoot's group conducts research on the early universe (cosmology) using the Cosmic Microwave Background radiation (CMB science goals regarding cosmology. George Smoot named Director of Korean Cosmology Institute The GRB

  14. Mathematical cosmology

    International Nuclear Information System (INIS)

    Wainwright, J.

    1990-01-01

    The workshop on mathematical cosmology was devoted to four topics of current interest. This report contains a brief discussion of the historical background of each topic and a concise summary of the content of each talk. The topics were; the observational cosmology program, the cosmological perturbation program, isotropic singularities, and the evolution of Bianchi cosmologies. (author)

  15. Arbitrary scalar-field and quintessence cosmological models

    International Nuclear Information System (INIS)

    Harko, Tiberiu; Lobo, Francisco S.N.; Mak, M.K.

    2014-01-01

    The mechanism of the initial inflationary scenario of the Universe and of its late-time acceleration can be described by assuming the existence of some gravitationally coupled scalar fields φ, with the inflaton field generating inflation and the quintessence field being responsible for the late accelerated expansion. Various inflationary and late-time accelerated scenarios are distinguished by the choice of an effective self-interaction potential V(φ), which simulates a temporarily non-vanishing cosmological term. In this work, we present a new formalism for the analysis of scalar fields in flat isotropic and homogeneous cosmological models. The basic evolution equation of the models can be reduced to a first-order non-linear differential equation. Approximate solutions of this equation can be constructed in the limiting cases of the scalar-field kinetic energy and potential energy dominance, respectively, as well as in the intermediate regime. Moreover, we present several new accelerating and decelerating exact cosmological solutions, based on the exact integration of the basic evolution equation for scalar-field cosmologies. More specifically, exact solutions are obtained for exponential, generalized cosine hyperbolic, and power-law potentials, respectively. Cosmological models with power-law scalar field potentials are also analyzed in detail. (orig.)

  16. SphK1 inhibitor II (SKI-II) inhibits acute myelogenous leukemia cell growth in vitro and in vivo

    International Nuclear Information System (INIS)

    Yang, Li; Weng, Wei; Sun, Zhi-Xin; Fu, Xian-Jie; Ma, Jun; Zhuang, Wen-Fang

    2015-01-01

    Previous studies have identified sphingosine kinase 1 (SphK1) as a potential drug target for treatment of acute myeloid leukemia (AML). In the current study, we investigated the potential anti-leukemic activity of a novel and specific SphK1 inhibitor, SKI-II. We demonstrated that SKI-II inhibited growth and survival of human AML cell lines (HL-60 and U937 cells). SKI-II was more efficient than two known SphK1 inhibitors SK1-I and FTY720 in inhibiting AML cells. Meanwhile, it induced dramatic apoptosis in above AML cells, and the cytotoxicity by SKI-II was almost reversed by the general caspase inhibitor z-VAD-fmk. SKI-II treatment inhibited SphK1 activation, and concomitantly increased level of sphingosine-1-phosphate (S1P) precursor ceramide in AML cells. Conversely, exogenously-added S1P protected against SKI-II-induced cytotoxicity, while cell permeable short-chain ceramide (C6) aggravated SKI-II's lethality against AML cells. Notably, SKI-II induced potent apoptotic death in primary human AML cells, but was generally safe to the human peripheral blood mononuclear cells (PBMCs) isolated from healthy donors. In vivo, SKI-II administration suppressed growth of U937 leukemic xenograft tumors in severe combined immunodeficient (SCID) mice. These results suggest that SKI-II might be further investigated as a promising anti-AML agent. - Highlights: • SKI-II inhibits proliferation and survival of primary and transformed AML cells. • SKI-II induces apoptotic death of AML cells, but is safe to normal PBMCs. • SKI-II is more efficient than two known SphK1 inhibitors in inhibiting AML cells. • SKI-II inhibits SphK1 activity, while increasing ceramide production in AML cells. • SKI-II dose-dependently inhibits U937 xenograft growth in SCID mice

  17. SphK1 inhibitor II (SKI-II) inhibits acute myelogenous leukemia cell growth in vitro and in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Li; Weng, Wei; Sun, Zhi-Xin; Fu, Xian-Jie; Ma, Jun, E-mail: majuntongrensh1@126.com; Zhuang, Wen-Fang, E-mail: wenfangzhuangmd@163.com

    2015-05-15

    Previous studies have identified sphingosine kinase 1 (SphK1) as a potential drug target for treatment of acute myeloid leukemia (AML). In the current study, we investigated the potential anti-leukemic activity of a novel and specific SphK1 inhibitor, SKI-II. We demonstrated that SKI-II inhibited growth and survival of human AML cell lines (HL-60 and U937 cells). SKI-II was more efficient than two known SphK1 inhibitors SK1-I and FTY720 in inhibiting AML cells. Meanwhile, it induced dramatic apoptosis in above AML cells, and the cytotoxicity by SKI-II was almost reversed by the general caspase inhibitor z-VAD-fmk. SKI-II treatment inhibited SphK1 activation, and concomitantly increased level of sphingosine-1-phosphate (S1P) precursor ceramide in AML cells. Conversely, exogenously-added S1P protected against SKI-II-induced cytotoxicity, while cell permeable short-chain ceramide (C6) aggravated SKI-II's lethality against AML cells. Notably, SKI-II induced potent apoptotic death in primary human AML cells, but was generally safe to the human peripheral blood mononuclear cells (PBMCs) isolated from healthy donors. In vivo, SKI-II administration suppressed growth of U937 leukemic xenograft tumors in severe combined immunodeficient (SCID) mice. These results suggest that SKI-II might be further investigated as a promising anti-AML agent. - Highlights: • SKI-II inhibits proliferation and survival of primary and transformed AML cells. • SKI-II induces apoptotic death of AML cells, but is safe to normal PBMCs. • SKI-II is more efficient than two known SphK1 inhibitors in inhibiting AML cells. • SKI-II inhibits SphK1 activity, while increasing ceramide production in AML cells. • SKI-II dose-dependently inhibits U937 xenograft growth in SCID mice.

  18. Cosmology with the cosmic web

    Science.gov (United States)

    Forero-Romero, J. E.

    2017-07-01

    This talk summarizes different algorithms that can be used to trace the cosmic web both in simulations and observations. We present different applications in galaxy formation and cosmology. To finalize, we show how the Dark Energy Spectroscopic Instrument (DESI) could be a good place to apply these techniques.

  19. A study of solid wall models for weakly compressible SPH

    Energy Technology Data Exchange (ETDEWEB)

    Valizadeh, Alireza, E-mail: alireza.valizadeh@monash.edu [Department of Mechanical and Aerospace Engineering, Monash University, Clayton VIC 3800 (Australia); Monaghan, Joseph J., E-mail: joe.monaghan@monash.edu [School of Mathematical Sciences, Monash University, Clayton VIC 3800 (Australia)

    2015-11-01

    This paper is concerned with a comparison of two methods of treating solid wall boundaries in the weakly compressible (SPH) method. They have been chosen because of their wide use in simulations. These methods are the boundary force particles of Monaghan and Kajtar [24] and the use of layers of fixed boundary particles. The latter was first introduced by Morris et al. [26] but has since been improved by Adami et al. [1] whose algorithm involves interpolating the pressure and velocity from the actual fluid to the boundary particles. For each method, we study the effect of the density diffusive terms proposed by Molteni and Colagrossi [19] and modified by Antuono et al. [3]. We test the methods by a series of simulations commencing with the time-dependent spin-down of fluid within a cylinder and the behaviour of fluid in a box subjected to constant acceleration at an angle to the walls of the box, and concluding with a dam break over a triangular obstacle. In the first two cases the results from the two methods can be compared to analytical solutions while, in the latter case, they can be compared with experiments and other methods. These results show that the method of Adami et al. together with density diffusion is in very satisfactory agreement with the experimental results and is, overall, the best of the methods discussed here.

  20. String Gas Cosmology

    OpenAIRE

    Brandenberger, Robert H.

    2008-01-01

    String gas cosmology is a string theory-based approach to early universe cosmology which is based on making use of robust features of string theory such as the existence of new states and new symmetries. A first goal of string gas cosmology is to understand how string theory can effect the earliest moments of cosmology before the effective field theory approach which underlies standard and inflationary cosmology becomes valid. String gas cosmology may also provide an alternative to the curren...

  1. Estimating cosmological parameters by the simulated data of gravitational waves from the Einstein Telescope

    Science.gov (United States)

    Cai, Rong-Gen; Yang, Tao

    2017-02-01

    We investigate the constraint ability of the gravitational wave (GW) as the standard siren on the cosmological parameters by using the third-generation gravitational wave detector: the Einstein Telescope. The binary merger of a neutron with either a neutron or black hole is hypothesized to be the progenitor of a short and intense burst of γ rays; some fraction of those binary mergers could be detected both through electromagnetic radiation and gravitational waves. Thus we can determine both the luminosity distance and redshift of the source separately. We simulate the luminosity distances and redshift measurements from 100 to 1000 GW events. We use two different algorithms to constrain the cosmological parameters. For the Hubble constant H0 and dark matter density parameter Ωm, we adopt the Markov chain Monte Carlo approach. We find that with about 500-600 GW events we can constrain the Hubble constant with an accuracy comparable to Planck temperature data and Planck lensing combined results, while for the dark matter density, GWs alone seem not able to provide the constraints as good as for the Hubble constant; the sensitivity of 1000 GW events is a little lower than that of Planck data. It should require more than 1000 events to match the Planck sensitivity. Yet, for analyzing the more complex dynamical property of dark energy, i.e., the equation of state w , we adopt a new powerful nonparametric method: the Gaussian process. We can reconstruct w directly from the observational luminosity distance at every redshift. In the low redshift region, we find that about 700 GW events can give the constraints of w (z ) comparable to the constraints of a constant w by Planck data with type-Ia supernovae. Those results show that GWs as the standard sirens to probe the cosmological parameters can provide an independent and complementary alternative to current experiments.

  2. Simulating coupled dynamics of a rigid-flexible multibody system and compressible fluid

    Science.gov (United States)

    Hu, Wei; Tian, Qiang; Hu, HaiYan

    2018-04-01

    As a subsequent work of previous studies of authors, a new parallel computation approach is proposed to simulate the coupled dynamics of a rigid-flexible multibody system and compressible fluid. In this approach, the smoothed particle hydrodynamics (SPH) method is used to model the compressible fluid, the natural coordinate formulation (NCF) and absolute nodal coordinate formulation (ANCF) are used to model the rigid and flexible bodies, respectively. In order to model the compressible fluid properly and efficiently via SPH method, three measures are taken as follows. The first is to use the Riemann solver to cope with the fluid compressibility, the second is to define virtual particles of SPH to model the dynamic interaction between the fluid and the multibody system, and the third is to impose the boundary conditions of periodical inflow and outflow to reduce the number of SPH particles involved in the computation process. Afterwards, a parallel computation strategy is proposed based on the graphics processing unit (GPU) to detect the neighboring SPH particles and to solve the dynamic equations of SPH particles in order to improve the computation efficiency. Meanwhile, the generalized-alpha algorithm is used to solve the dynamic equations of the multibody system. Finally, four case studies are given to validate the proposed parallel computation approach.

  3. A new gravitational N-body simulation algorithm for investigation of Lagrangian turbulence in astrophysical and cosmological systems

    Energy Technology Data Exchange (ETDEWEB)

    Rosa, Reinaldo Roberto; Gomes, Vitor; Araujo, Amarisio [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil); Clua, Esteban [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil)

    2011-07-01

    Full text: Turbulent-like behaviour is an important and recent ingredient in the investigation of large-scale structure formation in the observable universe. Recently, an established statistical method was used to demonstrate the importance of considering chaotic advection (or Lagrange turbulence) in combination with gravitational instabilities in the {Lambda}-CDM simulations performed from the Virgo Consortium (VC). However, the Hubble volumes simulated from GADGET-VC algorithm have some limitations for direct Lagrangian data analysis due to the large amount of data and no real time computation for particle kinetic velocity along the dark matter structure evolution. Hence, the Lab for Computing and Applied Mathematics at INPE, Brazil, has been working for the past two years in computational environments to achieve the so-called COsmic LAgrangian TUrbulence Simulator (COLATUS) allowing N-body simulation from a Lagrangian perspective. The COLATUS prototype, as usual packages, computes gravitational forces with a hierarchical tree algorithm in combination with a local particle kinetic velocity vector in a particle-mesh scheme for long-range gravitational forces. In the present work we show preliminary simulations for 106 particles showing Lagrangian power spectra for individual particles converging to a stable power-law of S(v) {approx} v{sup 5}. The code may be run on an arbitrary number of processors, with a restriction to powers of two. COLATUS has a potential to evaluate complex kinematics of a single particle in a simulated N-body gravitational system. However, to introduce this method as a GNU software further improvements and investigations are necessary. Then, the mapping techniques for the N-body problem incorporating radiation pressure and fluid characteristics by means of smoothed particle hydrodynamics (SPH) are discussed. Finally, we focus on the all-pairs computational kernel and its future GPU implementation using the NVIDIA CUDA programming model

  4. A new gravitational N-body simulation algorithm for investigation of Lagrangian turbulence in astrophysical and cosmological systems

    International Nuclear Information System (INIS)

    Rosa, Reinaldo Roberto; Gomes, Vitor; Araujo, Amarisio; Clua, Esteban

    2011-01-01

    Full text: Turbulent-like behaviour is an important and recent ingredient in the investigation of large-scale structure formation in the observable universe. Recently, an established statistical method was used to demonstrate the importance of considering chaotic advection (or Lagrange turbulence) in combination with gravitational instabilities in the Λ-CDM simulations performed from the Virgo Consortium (VC). However, the Hubble volumes simulated from GADGET-VC algorithm have some limitations for direct Lagrangian data analysis due to the large amount of data and no real time computation for particle kinetic velocity along the dark matter structure evolution. Hence, the Lab for Computing and Applied Mathematics at INPE, Brazil, has been working for the past two years in computational environments to achieve the so-called COsmic LAgrangian TUrbulence Simulator (COLATUS) allowing N-body simulation from a Lagrangian perspective. The COLATUS prototype, as usual packages, computes gravitational forces with a hierarchical tree algorithm in combination with a local particle kinetic velocity vector in a particle-mesh scheme for long-range gravitational forces. In the present work we show preliminary simulations for 106 particles showing Lagrangian power spectra for individual particles converging to a stable power-law of S(v) ∼ v 5 . The code may be run on an arbitrary number of processors, with a restriction to powers of two. COLATUS has a potential to evaluate complex kinematics of a single particle in a simulated N-body gravitational system. However, to introduce this method as a GNU software further improvements and investigations are necessary. Then, the mapping techniques for the N-body problem incorporating radiation pressure and fluid characteristics by means of smoothed particle hydrodynamics (SPH) are discussed. Finally, we focus on the all-pairs computational kernel and its future GPU implementation using the NVIDIA CUDA programming model. (author)

  5. Cosmological Constraints on Mirror Matter Parameters

    International Nuclear Information System (INIS)

    Wallemacq, Quentin; Ciarcelluti, Paolo

    2014-01-01

    Up-to-date estimates of the cosmological parameters are presented as a result of numerical simulations of cosmic microwave background and large scale structure, considering a flat Universe in which the dark matter is made entirely or partly of mirror matter, and the primordial perturbations are scalar adiabatic and in linear regime. A statistical analysis using the Markov Chain Monte Carlo method allows to obtain constraints of the cosmological parameters. As a result, we show that a Universe with pure mirror dark matter is statistically equivalent to the case of an admixture with cold dark matter. The upper limits for the ratio of the temperatures of ordinary and mirror sectors are around 0.3 for both the cosmological models, which show the presence of a dominant fraction of mirror matter, 0.06≲Ω_m_i_r_r_o_rh"2≲0.12.

  6. Computational complexity of the landscape II-Cosmological considerations

    Science.gov (United States)

    Denef, Frederik; Douglas, Michael R.; Greene, Brian; Zukowski, Claire

    2018-05-01

    We propose a new approach for multiverse analysis based on computational complexity, which leads to a new family of "computational" measure factors. By defining a cosmology as a space-time containing a vacuum with specified properties (for example small cosmological constant) together with rules for how time evolution will produce the vacuum, we can associate global time in a multiverse with clock time on a supercomputer which simulates it. We argue for a principle of "limited computational complexity" governing early universe dynamics as simulated by this supercomputer, which translates to a global measure for regulating the infinities of eternal inflation. The rules for time evolution can be thought of as a search algorithm, whose details should be constrained by a stronger principle of "minimal computational complexity". Unlike previously studied global measures, ours avoids standard equilibrium considerations and the well-known problems of Boltzmann Brains and the youngness paradox. We also give various definitions of the computational complexity of a cosmology, and argue that there are only a few natural complexity classes.

  7. Towards Forming a Primordial Protostar in a Cosmological AMR Simulation

    Science.gov (United States)

    Turk, Matthew J.; Abel, Tom; O'Shea, Brian W.

    2008-03-01

    Modeling the formation of the first stars in the universe is a well-posed problem and ideally suited for computational investigation.We have conducted high-resolution numerical studies of the formation of primordial stars. Beginning with primordial initial conditions appropriate for a ΛCDM model, we used the Eulerian adaptive mesh refinement code (Enzo) to achieve unprecedented numerical resolution, resolving cosmological scales as well as sub-stellar scales simultaneously. Building on the work of Abel, Bryan and Norman (2002), we followed the evolution of the first collapsing cloud until molecular hydrogen is optically thick to cooling radiation. In addition, the calculations account for the process of collision-induced emission (CIE) and add approximations to the optical depth in both molecular hydrogen roto-vibrational cooling and CIE. Also considered are the effects of chemical heating/cooling from the formation/destruction of molecular hydrogen. We present the results of these simulations, showing the formation of a 10 Jupiter-mass protostellar core bounded by a strongly aspherical accretion shock. Accretion rates are found to be as high as one solar mass per year.

  8. Dimensional cosmological principles

    International Nuclear Information System (INIS)

    Chi, L.K.

    1985-01-01

    The dimensional cosmological principles proposed by Wesson require that the density, pressure, and mass of cosmological models be functions of the dimensionless variables which are themselves combinations of the gravitational constant, the speed of light, and the spacetime coordinates. The space coordinate is not the comoving coordinate. In this paper, the dimensional cosmological principle and the dimensional perfect cosmological principle are reformulated by using the comoving coordinate. The dimensional perfect cosmological principle is further modified to allow the possibility that mass creation may occur. Self-similar spacetimes are found to be models obeying the new dimensional cosmological principle

  9. Approximate Bayesian computation for forward modeling in cosmology

    International Nuclear Information System (INIS)

    Akeret, Joël; Refregier, Alexandre; Amara, Adam; Seehars, Sebastian; Hasner, Caspar

    2015-01-01

    Bayesian inference is often used in cosmology and astrophysics to derive constraints on model parameters from observations. This approach relies on the ability to compute the likelihood of the data given a choice of model parameters. In many practical situations, the likelihood function may however be unavailable or intractable due to non-gaussian errors, non-linear measurements processes, or complex data formats such as catalogs and maps. In these cases, the simulation of mock data sets can often be made through forward modeling. We discuss how Approximate Bayesian Computation (ABC) can be used in these cases to derive an approximation to the posterior constraints using simulated data sets. This technique relies on the sampling of the parameter set, a distance metric to quantify the difference between the observation and the simulations and summary statistics to compress the information in the data. We first review the principles of ABC and discuss its implementation using a Population Monte-Carlo (PMC) algorithm and the Mahalanobis distance metric. We test the performance of the implementation using a Gaussian toy model. We then apply the ABC technique to the practical case of the calibration of image simulations for wide field cosmological surveys. We find that the ABC analysis is able to provide reliable parameter constraints for this problem and is therefore a promising technique for other applications in cosmology and astrophysics. Our implementation of the ABC PMC method is made available via a public code release

  10. Statistical Issues in Galaxy Cluster Cosmology

    Science.gov (United States)

    Mantz, Adam

    2013-01-01

    The number and growth of massive galaxy clusters are sensitive probes of cosmological structure formation. Surveys at various wavelengths can detect clusters to high redshift, but the fact that cluster mass is not directly observable complicates matters, requiring us to simultaneously constrain scaling relations of observable signals with mass. The problem can be cast as one of regression, in which the data set is truncated, the (cosmology-dependent) underlying population must be modeled, and strong, complex correlations between measurements often exist. Simulations of cosmological structure formation provide a robust prediction for the number of clusters in the Universe as a function of mass and redshift (the mass function), but they cannot reliably predict the observables used to detect clusters in sky surveys (e.g. X-ray luminosity). Consequently, observers must constrain observable-mass scaling relations using additional data, and use the scaling relation model in conjunction with the mass function to predict the number of clusters as a function of redshift and luminosity.

  11. Simulation of impact ballistic of Cu-10wt%Sn frangible bullet using smoothed particle hydrodynamics

    Science.gov (United States)

    Hidayat, Mas Irfan P.; Widyastuti, Simaremare, Peniel

    2018-04-01

    Frangible bullet is designed to disintegrate upon impact against a hard target. Understanding the impact response and performance of frangible bullet is therefore of highly interest. In this paper, simulation of impact ballistic of Cu-IOwt%Sn frangible bullet using smoothed particle hydrodynamics (SPH) method is presented. The frangible bullet is impacted against a hard, cylindrical stainless steel target. Effect of variability of the frangible bullet material properties due to the variation of sintering temperature in its manufacturing process to the bullet frangibility factor (FF) is investigated numerically. In addition, the bullet kinetic energy during impact as well as its ricochet and fragmentation are also examined and simulated. Failure criterion based upon maximum strain is employed in the simulation. It is shown that the SPH simulation can produce good estimation for kinetic energy of bullet after impact, thus giving the FF prediction with respect to the variation of frangible bullet material properties. In comparison to explicit finite element (FE) simulation, in which only material/element deletion is shown, convenience in showing frangible bullet fragmentation is shown using the SPH simulation. As a result, the effect of sintering temperature to the way of the frangible bullet fragmented can be also observed clearly.

  12. Religion, theology and cosmology

    Directory of Open Access Journals (Sweden)

    John T. Fitzgerald

    2013-10-01

    Full Text Available Cosmology is one of the predominant research areas of the contemporary world. Advances in modern cosmology have prompted renewed interest in the intersections between religion, theology and cosmology. This article, which is intended as a brief introduction to the series of studies on theological cosmology in this journal, identifies three general areas of theological interest stemming from the modern scientific study of cosmology: contemporary theology and ethics; cosmology and world religions; and ancient cosmologies. These intersections raise important questions about the relationship of religion and cosmology, which has recently been addressed by William Scott Green and is the focus of the final portion of the article.

  13. An introduction to cosmology

    CERN Document Server

    Narlikar, Jayant Vishnu

    2002-01-01

    The third edition of this successful textbook is fully updated and includes important recent developments in cosmology. It begins with an introduction to cosmology and general relativity, and goes on to cover the mathematical models of standard cosmology. The physical aspects of cosmology, including primordial nucleosynthesis, the astroparticle physics of inflation, and the current ideas on structure formation are discussed. Alternative models of cosmology are reviewed, including the model of Quasi-Steady State Cosmology, which has recently been proposed as an alternative to Big Bang Cosmology.

  14. Mathematical cosmology

    International Nuclear Information System (INIS)

    Landsberg, P.T.; Evans, D.A.

    1977-01-01

    The subject is dealt with in chapters, entitled: cosmology -some fundamentals; Newtonian gravitation - some fundamentals; the cosmological differential equation - the particle model and the continuum model; some simple Friedmann models; the classification of the Friedmann models; the steady-state model; universe with pressure; optical effects of the expansion according to various theories of light; optical observations and cosmological models. (U.K.)

  15. Essential role for SphK1/S1P signaling to regulate hypoxia-inducible factor 2α expression and activity in cancer.

    Science.gov (United States)

    Bouquerel, P; Gstalder, C; Müller, D; Laurent, J; Brizuela, L; Sabbadini, R A; Malavaud, B; Pyronnet, S; Martineau, Y; Ader, I; Cuvillier, O

    2016-03-14

    The sphingosine kinase-1/sphingosine 1-phosphate (SphK1/S1P) signaling pathway has been reported to modulate the expression of the canonical transcription factor hypoxia-inducible HIF-1α in multiple cell lineages. HIF-2α is also frequently overexpressed in solid tumors but its role has been mostly studied in clear cell renal cell carcinoma (ccRCC), the most common form of kidney cancer, where HIF-2α has been established as a driver of a more aggressive disease. In this study, the role of SphK1/S1P signaling with regard to HIF-2α was investigated in various cancer cell models including ccRCC cells. Under hypoxic conditions or in ccRCC lacking a functional von Hippel-Lindau (VHL) gene and expressing high levels of HIF-2α, SphK1 activity controls HIF-2α expression and transcriptional activity through a phospholipase D (PLD)-driven mechanism. SphK1 silencing promotes a VHL-independent HIF-2α loss of expression and activity and reduces cell proliferation in ccRCC. Importantly, downregulation of SphK1 is associated with impaired Akt and mTOR signaling in ccRCC. Taking advantage of a monoclonal antibody neutralizing extracellular S1P, we show that inhibition of S1P extracellular signaling blocks HIF-2α accumulation in ccRCC cell lines, an effect mimicked when the S1P transporter Spns2 or the S1P receptor 1 (S1P1) is silenced. Here, we report the first evidence that the SphK1/S1P signaling pathway regulates the transcription factor hypoxia-inducible HIF-2α in diverse cancer cell lineages notably ccRCC, where HIF-2α has been established as a driver of a more aggressive disease. These findings demonstrate that SphK1/S1P signaling may act as a canonical regulator of HIF-2α expression in ccRCC, giving support to its inhibition as a therapeutic strategy that could contribute to reduce HIF-2 activity in ccRCC.

  16. Astrophysical cosmology

    Science.gov (United States)

    Bardeen, J. M.

    The last several years have seen a tremendous ferment of activity in astrophysical cosmology. Much of the theoretical impetus has come from particle physics theories of the early universe and candidates for dark matter, but what promise to be even more significant are improved direct observations of high z galaxies and intergalactic matter, deeper and more comprehensive redshift surveys, and the increasing power of computer simulations of the dynamical evolution of large scale structure. Upper limits on the anisotropy of the microwave background radiation are gradually getting tighter and constraining more severely theoretical scenarios for the evolution of the universe.

  17. Astrophysical cosmology

    International Nuclear Information System (INIS)

    Bardeen, J.M.

    1986-01-01

    The last several years have seen a tremendous ferment of activity in astrophysical cosmology. Much of the theoretical impetus has come from particle physics theories of the early universe and candidates for dark matter, but what promise to be even more significant are improved direct observations of high z galaxies and intergalactic matter, deeper and more comprehensive redshift surveys, and the increasing power of computer simulations of the dynamical evolution of large scale structure. Upper limits on the anisotropy of the microwave background radiation are gradually getting tighter and constraining more severely theoretical scenarios for the evolution of the universe. 47 refs

  18. The Coyote Universe II: Cosmological Models and Precision Emulation of the Nonlinear Matter Power Spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Heitmann, Katrin [Los Alamos National Laboratory; Habib, Salman [Los Alamos National Laboratory; Higdon, David [Los Alamos National Laboratory; Williams, Brian J [Los Alamos National Laboratory; White, Martin [Los Alamos National Laboratory; Wagner, Christian [Los Alamos National Laboratory

    2008-01-01

    The power spectrum of density fluctuations is a foundational source of cosmological information. Precision cosmological probes targeted primarily at investigations of dark energy require accurate theoretical determinations of the power spectrum in the nonlinear regime. To exploit the observational power of future cosmological surveys, accuracy demands on the theory are at the one percent level or better. Numerical simulations are currently the only way to produce sufficiently error-controlled predictions for the power spectrum. The very high computational cost of (precision) N-body simulations is a major obstacle to obtaining predictions in the nonlinear regime, while scanning over cosmological parameters. Near-future observations, however, are likely to provide a meaningful constraint only on constant dark energy equation of state 'wCDM' cosmologies. In this paper we demonstrate that a limited set of only 37 cosmological models -- the 'Coyote Universe' suite -- can be used to predict the nonlinear matter power spectrum at the required accuracy over a prior parameter range set by cosmic microwave background observations. This paper is the second in a series of three, with the final aim to provide a high-accuracy prediction scheme for the nonlinear matter power spectrum for wCDM cosmologies.

  19. Sequential creep-fatigue interaction in austenitic stainless steel type 316L-SPH

    International Nuclear Information System (INIS)

    Tavassoli, A.A.; Mottot, M.; Petrequin, P.

    1986-01-01

    Influence of a prior creep or fatigue exposure on subsequent fatigue or creep properties of stainless steel type 316 L SPH has been investigated. The results obtained are used to verify the validity of time and cycle fraction rule and to obtain information on the effect of very long intermittent hold times on low cycle fatigue properties, as well as on transitory loads occurring during normal service of some structural components of LMFBR reactors. Creep and fatigue tests have been carried out at 600 0 C and under conditions yielding equal or different fatigue saturation and creep stresses. Prior creep damage levels introduced range from primary to tertiary creep, whilst those of fatigue span from 20 to 70 percent of fatigue life. In both creep-fatigue and fatigue-creep sequences in the absence of a permanent prior damage (cavitation or cracking) the subsequent resistance of 316 L-SPH to fatigue or creep is unchanged, if not improved. Thin foils prepared from the specimens confirmed these observations and showed that the dislocation substructure developed during the first mode of testing is quickly replaced by that of the second mode. Grain boundary cavitation does not occur in 316 L-SPH during creep exposures to well beyond the apparent end of secondary stage and as a result prior creep exposures up to approximately 80% of rupture life do not affect fatigue properties. Conversely, significant surface cracks were found in the prior fatigue tested specimens after above about 50% life. In the presence of such cracks the subsequent creep damage was localized at the tip of the main crack and the remaining creep life was found to be usually proportional to the effective specimen cross section. Creep and fatigue sequential damage are not necessarily additive and this type of loadings are in general less severe than the repeated creep-fatigue cycling. 17 refs.

  20. Introduction to cosmology

    CERN Document Server

    Roos, Matts

    2015-01-01

    The Fourth Edition of Introduction to Cosmology provides a concise, authoritative study of cosmology at an introductory level. Starting from elementary principles and the early history of cosmology, the text carefully guides the student on to curved spacetimes, special and general relativity, gravitational lensing, the thermal history of the Universe, and cosmological models, including extended gravity models, black holes and Hawking's recent conjectures on the not-so-black holes.

  1. On the cosmological gravitational waves and cosmological distances

    Science.gov (United States)

    Belinski, V. A.; Vereshchagin, G. V.

    2018-03-01

    We show that solitonic cosmological gravitational waves propagated through the Friedmann universe and generated by the inhomogeneities of the gravitational field near the Big Bang can be responsible for increase of cosmological distances.

  2. EFFECT OF MEASUREMENT ERRORS ON PREDICTED COSMOLOGICAL CONSTRAINTS FROM SHEAR PEAK STATISTICS WITH LARGE SYNOPTIC SURVEY TELESCOPE

    Energy Technology Data Exchange (ETDEWEB)

    Bard, D.; Chang, C.; Kahn, S. M.; Gilmore, K.; Marshall, S. [KIPAC, Stanford University, 452 Lomita Mall, Stanford, CA 94309 (United States); Kratochvil, J. M.; Huffenberger, K. M. [Department of Physics, University of Miami, Coral Gables, FL 33124 (United States); May, M. [Physics Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); AlSayyad, Y.; Connolly, A.; Gibson, R. R.; Jones, L.; Krughoff, S. [Department of Astronomy, University of Washington, Seattle, WA 98195 (United States); Ahmad, Z.; Bankert, J.; Grace, E.; Hannel, M.; Lorenz, S. [Department of Physics, Purdue University, West Lafayette, IN 47907 (United States); Haiman, Z.; Jernigan, J. G., E-mail: djbard@slac.stanford.edu [Department of Astronomy and Astrophysics, Columbia University, New York, NY 10027 (United States); and others

    2013-09-01

    We study the effect of galaxy shape measurement errors on predicted cosmological constraints from the statistics of shear peak counts with the Large Synoptic Survey Telescope (LSST). We use the LSST Image Simulator in combination with cosmological N-body simulations to model realistic shear maps for different cosmological models. We include both galaxy shape noise and, for the first time, measurement errors on galaxy shapes. We find that the measurement errors considered have relatively little impact on the constraining power of shear peak counts for LSST.

  3. Cosmological principle

    International Nuclear Information System (INIS)

    Wesson, P.S.

    1979-01-01

    The Cosmological Principle states: the universe looks the same to all observers regardless of where they are located. To most astronomers today the Cosmological Principle means the universe looks the same to all observers because density of the galaxies is the same in all places. A new Cosmological Principle is proposed. It is called the Dimensional Cosmological Principle. It uses the properties of matter in the universe: density (rho), pressure (p), and mass (m) within some region of space of length (l). The laws of physics require incorporation of constants for gravity (G) and the speed of light (C). After combining the six parameters into dimensionless numbers, the best choices are: 8πGl 2 rho/c 2 , 8πGl 2 rho/c 4 , and 2 Gm/c 2 l (the Schwarzchild factor). The Dimensional Cosmological Principal came about because old ideas conflicted with the rapidly-growing body of observational evidence indicating that galaxies in the universe have a clumpy rather than uniform distribution

  4. Cosmology and particle physics

    International Nuclear Information System (INIS)

    Turner, M.S.

    1985-01-01

    The author reviews the standard cosmology, focusing on primordial nucleosynthesis, and discusses how the standard cosmology has been used to place constraints on the properties of various particles. Baryogenesis is examined in which the B, C, CP violating interactions in GUTs provide a dynamical explanation for the predominance of matter over antimatter and the present baryon-to-baryon ratio. Monoposes, cosmology and astrophysics are reviewed. The author also discusses supersymmetry/supergravity and cosmology, superstrings and cosmology in extra dimensions, and axions, astrophics, and cosmology

  5. Origin of chemically distinct discs in the Auriga cosmological simulations

    Science.gov (United States)

    Grand, Robert J. J.; Bustamante, Sebastián; Gómez, Facundo A.; Kawata, Daisuke; Marinacci, Federico; Pakmor, Rüdiger; Rix, Hans-Walter; Simpson, Christine M.; Sparre, Martin; Springel, Volker

    2018-03-01

    The stellar disc of the Milky Way shows complex spatial and abundance structure that is central to understanding the key physical mechanisms responsible for shaping our Galaxy. In this study, we use six very high resolution cosmological zoom-in simulations of Milky Way-sized haloes to study the prevalence and formation of chemically distinct disc components. We find that our simulations develop a clearly bimodal distribution in the [α/Fe]-[Fe/H] plane. We find two main pathways to creating this dichotomy, which operate in different regions of the galaxies: (a) an early (z > 1) and intense high-[α/Fe] star formation phase in the inner region (R ≲ 5 kpc) induced by gas-rich mergers, followed by more quiescent low-[α/Fe] star formation; and (b) an early phase of high-[α/Fe] star formation in the outer disc followed by a shrinking of the gas disc owing to a temporarily lowered gas accretion rate, after which disc growth resumes. In process (b), a double-peaked star formation history around the time and radius of disc shrinking accentuates the dichotomy. If the early star formation phase is prolonged (rather than short and intense), chemical evolution proceeds as per process (a) in the inner region, but the dichotomy is less clear. In the outer region, the dichotomy is only evident if the first intense phase of star formation covers a large enough radial range before disc shrinking occurs; otherwise, the outer disc consists of only low-[α/Fe] sequence stars. We discuss the implication that both processes occurred in the Milky Way.

  6. Cosmology

    CERN Document Server

    Vittorio, Nicola

    2018-01-01

    Modern cosmology has changed significantly over the years, from the discovery to the precision measurement era. The data now available provide a wealth of information, mostly consistent with a model where dark matter and dark energy are in a rough proportion of 3:7. The time is right for a fresh new textbook which captures the state-of-the art in cosmology. Written by one of the world's leading cosmologists, this brand new, thoroughly class-tested textbook provides graduate and undergraduate students with coverage of the very latest developments and experimental results in the field. Prof. Nicola Vittorio shows what is meant by precision cosmology, from both theoretical and observational perspectives.

  7. Relativistic numerical cosmology with silent universes

    Science.gov (United States)

    Bolejko, Krzysztof

    2018-01-01

    Relativistic numerical cosmology is most often based either on the exact solutions of the Einstein equations, or perturbation theory, or weak-field limit, or the BSSN formalism. The silent universe provides an alternative approach to investigate relativistic evolution of cosmological systems. The silent universe is based on the solution of the Einstein equations in 1  +  3 comoving coordinates with additional constraints imposed. These constraints include: the gravitational field is sourced by dust and cosmological constant only, both rotation and magnetic part of the Weyl tensor vanish, and the shear is diagnosable. This paper describes the code simsilun (free software distributed under the terms of the reposi General Public License), which implements the equations of the silent universe. The paper also discusses applications of the silent universe and it uses the Millennium simulation to set up the initial conditions for the code simsilun. The simulation obtained this way consists of 16 777 216 worldlines, which are evolved from z  =  80 to z  =  0. Initially, the mean evolution (averaged over the whole domain) follows the evolution of the background ΛCDM model. However, once the evolution of cosmic structures becomes nonlinear, the spatial curvature evolves from ΩK =0 to ΩK ≈ 0.1 at the present day. The emergence of the spatial curvature is associated with ΩM and Ω_Λ being smaller by approximately 0.05 compared to the ΛCDM.

  8. The Philosophy of Cosmology

    Science.gov (United States)

    Chamcham, Khalil; Silk, Joseph; Barrow, John D.; Saunders, Simon

    2017-04-01

    Part I. Issues in the Philosophy of Cosmology: 1. Cosmology, cosmologia and the testing of cosmological theories George F. R. Ellis; 2. Black holes, cosmology and the passage of time: three problems at the limits of science Bernard Carr; 3. Moving boundaries? - comments on the relationship between philosophy and cosmology Claus Beisbart; 4. On the question why there exists something rather than nothing Roderich Tumulka; Part II. Structures in the Universe and the Structure of Modern Cosmology: 5. Some generalities about generality John D. Barrow; 6. Emergent structures of effective field theories Jean-Philippe Uzan; 7. Cosmological structure formation Joel R. Primack; 8. Formation of galaxies Joseph Silk; Part III. Foundations of Cosmology: Gravity and the Quantum: 9. The observer strikes back James Hartle and Thomas Hertog; 10. Testing inflation Chris Smeenk; 11. Why Boltzmann brains do not fluctuate into existence from the de Sitter vacuum Kimberly K. Boddy, Sean M. Carroll and Jason Pollack; 12. Holographic inflation revised Tom Banks; 13. Progress and gravity: overcoming divisions between general relativity and particle physics and between physics and HPS J. Brian Pitts; Part IV. Quantum Foundations and Quantum Gravity: 14. Is time's arrow perspectival? Carlo Rovelli; 15. Relational quantum cosmology Francesca Vidotto; 16. Cosmological ontology and epistemology Don N. Page; 17. Quantum origin of cosmological structure and dynamical reduction theories Daniel Sudarsky; 18. Towards a novel approach to semi-classical gravity Ward Struyve; Part V. Methodological and Philosophical Issues: 19. Limits of time in cosmology Svend E. Rugh and Henrik Zinkernagel; 20. Self-locating priors and cosmological measures Cian Dorr and Frank Arntzenius; 21. On probability and cosmology: inference beyond data? Martin Sahlén; 22. Testing the multiverse: Bayes, fine-tuning and typicality Luke A. Barnes; 23. A new perspective on Einstein's philosophy of cosmology Cormac O

  9. Time variation of the cosmological redshift in Dicke-Brans-Jordan cosmologies

    International Nuclear Information System (INIS)

    Ruediger, R.

    1982-01-01

    In this paper the time variation z of the cosmological redshift z is discussed for Dicke-Brans-Jordan (DBJ) cosmologies. We determine the general z-z relation in the functional form zH -1 0 = F(z; q 0 , sigma 0 ,xi 0 , ω) for small values of z, where all the symbols have their conventional meanings. For certain combinations of cosmological parameters, which are within the present observational limitations, the DBJ terms in the function F can dominate the general relativistic terms. Furthermore, zH -1 0 can be positive in DBJ cosmologies in contrast to general relativistic cosmologies with q 0 >0

  10. KiDS-450: cosmological constraints from weak-lensing peak statistics - II: Inference from shear peaks using N-body simulations

    Science.gov (United States)

    Martinet, Nicolas; Schneider, Peter; Hildebrandt, Hendrik; Shan, HuanYuan; Asgari, Marika; Dietrich, Jörg P.; Harnois-Déraps, Joachim; Erben, Thomas; Grado, Aniello; Heymans, Catherine; Hoekstra, Henk; Klaes, Dominik; Kuijken, Konrad; Merten, Julian; Nakajima, Reiko

    2018-02-01

    We study the statistics of peaks in a weak-lensing reconstructed mass map of the first 450 deg2 of the Kilo Degree Survey (KiDS-450). The map is computed with aperture masses directly applied to the shear field with an NFW-like compensated filter. We compare the peak statistics in the observations with that of simulations for various cosmologies to constrain the cosmological parameter S_8 = σ _8 √{Ω _m/0.3}, which probes the (Ωm, σ8) plane perpendicularly to its main degeneracy. We estimate S8 = 0.750 ± 0.059, using peaks in the signal-to-noise range 0 ≤ S/N ≤ 4, and accounting for various systematics, such as multiplicative shear bias, mean redshift bias, baryon feedback, intrinsic alignment, and shear-position coupling. These constraints are ˜ 25 per cent tighter than the constraints from the high significance peaks alone (3 ≤ S/N ≤ 4) which typically trace single-massive haloes. This demonstrates the gain of information from low-S/N peaks. However, we find that including S/N KiDS-450. Combining shear peaks with non-tomographic measurements of the shear two-point correlation functions yields a ˜20 per cent improvement in the uncertainty on S8 compared to the shear two-point correlation functions alone, highlighting the great potential of peaks as a cosmological probe.

  11. Qualitative cosmology

    International Nuclear Information System (INIS)

    Khalatnikov, I.M.; Belinskij, V.A.

    1984-01-01

    Application of the qualitative theory of dynamic systems to analysis of homogeneous cosmological models is described. Together with the well-known cases, requiring ideal liquid, the properties of cosmological evolution of matter with dissipative processes due to viscosity are considered. New cosmological effects occur, when viscosity terms being one and the same order with the rest terms in the equations of gravitation or even exceeding them. In these cases the description of the dissipative process by means of only two viscosity coefficients (volume and shift) may become inapplicable because all the rest decomposition terms of dissipative addition to the energy-momentum in velocity gradient can be large application of equations with hydrodynamic viscosty should be considered as a model of dissipative effects in cosmology

  12. Correlation between centre offsets and gas velocity dispersion of galaxy clusters in cosmological simulations

    Science.gov (United States)

    Li, Ming-Hua; Zhu, Weishan; Zhao, Dong

    2018-05-01

    The gas is the dominant component of baryonic matter in most galaxy groups and clusters. The spatial offsets of gas centre from the halo centre could be an indicator of the dynamical state of cluster. Knowledge of such offsets is important for estimate the uncertainties when using clusters as cosmological probes. In this paper, we study the centre offsets roff between the gas and that of all the matter within halo systems in ΛCDM cosmological hydrodynamic simulations. We focus on two kinds of centre offsets: one is the three-dimensional PB offsets between the gravitational potential minimum of the entire halo and the barycentre of the ICM, and the other is the two-dimensional PX offsets between the potential minimum of the halo and the iterative centroid of the projected synthetic X-ray emission of the halo. Haloes at higher redshifts tend to have larger values of rescaled offsets roff/r200 and larger gas velocity dispersion σ v^gas/σ _{200}. For both types of offsets, we find that the correlation between the rescaled centre offsets roff/r200 and the rescaled 3D gas velocity dispersion, σ _v^gas/σ _{200} can be approximately described by a quadratic function as r_{off}/r_{200} ∝ (σ v^gas/σ _{200} - k_2)2. A Bayesian analysis with MCMC method is employed to estimate the model parameters. Dependence of the correlation relation on redshifts and the gas mass fraction are also investigated.

  13. Introduction to cosmology

    CERN Document Server

    Roos, Matts

    2003-01-01

    The Third Edition of the hugely successful Introduction to Cosmology provides a concise, authoritative study of cosmology at an introductory level. Starting from elementary principles and the history of cosmology, the text carefully guides the student on to curved spacetimes, general relativity, black holes, cosmological models, particles and symmetries, and phase transitions. Extensively revised, this latest edition includes broader and updated coverage of distance measures, gravitational lensing and waves, dark energy and quintessence, the thermal history of the Universe, inflation,

  14. Higgs cosmology

    Science.gov (United States)

    Rajantie, Arttu

    2018-01-01

    The discovery of the Higgs boson in 2012 and other results from the Large Hadron Collider have confirmed the standard model of particle physics as the correct theory of elementary particles and their interactions up to energies of several TeV. Remarkably, the theory may even remain valid all the way to the Planck scale of quantum gravity, and therefore it provides a solid theoretical basis for describing the early Universe. Furthermore, the Higgs field itself has unique properties that may have allowed it to play a central role in the evolution of the Universe, from inflation to cosmological phase transitions and the origin of both baryonic and dark matter, and possibly to determine its ultimate fate through the electroweak vacuum instability. These connections between particle physics and cosmology have given rise to a new and growing field of Higgs cosmology, which promises to shed new light on some of the most puzzling questions about the Universe as new data from particle physics experiments and cosmological observations become available. This article is part of the Theo Murphy meeting issue `Higgs cosmology'.

  15. Computational performance of a smoothed particle hydrodynamics simulation for shared-memory parallel computing

    Science.gov (United States)

    Nishiura, Daisuke; Furuichi, Mikito; Sakaguchi, Hide

    2015-09-01

    The computational performance of a smoothed particle hydrodynamics (SPH) simulation is investigated for three types of current shared-memory parallel computer devices: many integrated core (MIC) processors, graphics processing units (GPUs), and multi-core CPUs. We are especially interested in efficient shared-memory allocation methods for each chipset, because the efficient data access patterns differ between compute unified device architecture (CUDA) programming for GPUs and OpenMP programming for MIC processors and multi-core CPUs. We first introduce several parallel implementation techniques for the SPH code, and then examine these on our target computer architectures to determine the most effective algorithms for each processor unit. In addition, we evaluate the effective computing performance and power efficiency of the SPH simulation on each architecture, as these are critical metrics for overall performance in a multi-device environment. In our benchmark test, the GPU is found to produce the best arithmetic performance as a standalone device unit, and gives the most efficient power consumption. The multi-core CPU obtains the most effective computing performance. The computational speed of the MIC processor on Xeon Phi approached that of two Xeon CPUs. This indicates that using MICs is an attractive choice for existing SPH codes on multi-core CPUs parallelized by OpenMP, as it gains computational acceleration without the need for significant changes to the source code.

  16. Launch Environment Water Flow Simulations Using Smoothed Particle Hydrodynamics

    Science.gov (United States)

    Vu, Bruce T.; Berg, Jared J.; Harris, Michael F.; Crespo, Alejandro C.

    2015-01-01

    This paper describes the use of Smoothed Particle Hydrodynamics (SPH) to simulate the water flow from the rainbird nozzle system used in the sound suppression system during pad abort and nominal launch. The simulations help determine if water from rainbird nozzles will impinge on the rocket nozzles and other sensitive ground support elements.

  17. Smoot Cosmology Group

    Science.gov (United States)

    . ______________________________________________________________________________________ Nobelist George Smoot to Direct Korean Cosmology Institute Nobel Laureate George Smoot has been appointed director of a new cosmology institute in South Korea that will work closely with the year-old Berkeley the Early Universe (IEU) at EWHA Womans University in Seoul, Korea will provide cosmology education

  18. Smooth Particle Hydrodynamics GPU-Acceleration Tool for Asteroid Fragmentation Simulation

    Science.gov (United States)

    Buruchenko, Sergey K.; Schäfer, Christoph M.; Maindl, Thomas I.

    2017-10-01

    The impact threat of near-Earth objects (NEOs) is a concern to the global community, as evidenced by the Chelyabinsk event (caused by a 17-m meteorite) in Russia on February 15, 2013 and a near miss by asteroid 2012 DA14 ( 30 m diameter), on the same day. The expected energy, from either a low-altitude air burst or direct impact, would have severe consequences, especially in populated regions. To mitigate this threat one of the methods is employment of large kinetic-energy impactors (KEIs). The simulation of asteroid target fragmentation is a challenging task which demands efficient and accurate numerical methods with large computational power. Modern graphics processing units (GPUs) lead to a major increase 10 times and more in the performance of the computation of astrophysical and high velocity impacts. The paper presents a new implementation of the numerical method smooth particle hydrodynamics (SPH) using NVIDIA-GPU and the first astrophysical and high velocity application of the new code. The code allows for a tremendous increase in speed of astrophysical simulations with SPH and self-gravity at low costs for new hardware. We have implemented the SPH equations to model gas, liquids and elastic, and plastic solid bodies and added a fragmentation model for brittle materials. Self-gravity may be optionally included in the simulations.

  19. THE CHALLENGE OF THE LARGEST STRUCTURES IN THE UNIVERSE TO COSMOLOGY

    International Nuclear Information System (INIS)

    Park, Changbom; Choi, Yun-Young; Kim, Sungsoo S.; Kim, Kap-Sung; Kim, Juhan; Gott III, J. Richard

    2012-01-01

    Large galaxy redshift surveys have long been used to constrain cosmological models and structure formation scenarios. In particular, the largest structures discovered observationally are thought to carry critical information on the amplitude of large-scale density fluctuations or homogeneity of the universe, and have often challenged the standard cosmological framework. The Sloan Great Wall (SGW) recently found in the Sloan Digital Sky Survey (SDSS) region casts doubt on the concordance cosmological model with a cosmological constant (i.e., the flat ΛCDM model). Here we show that the existence of the SGW is perfectly consistent with the ΛCDM model, a result that only our very large cosmological N-body simulation (the Horizon Run 2, HR2) could supply. In addition, we report on the discovery of a void complex in the SDSS much larger than the SGW, and show that such size of the largest void is also predicted in the ΛCDM paradigm. Our results demonstrate that an initially homogeneous isotropic universe with primordial Gaussian random phase density fluctuations growing in accordance with the general relativity can explain the richness and size of the observed large-scale structures in the SDSS. Using the HR2 simulation we predict that a future galaxy redshift survey about four times deeper or with 3 mag fainter limit than the SDSS should reveal a largest structure of bright galaxies about twice as big as the SGW.

  20. Extending cosmology: the metric approach

    OpenAIRE

    Mendoza, S.

    2012-01-01

    Comment: 2012, Extending Cosmology: The Metric Approach, Open Questions in Cosmology; Review article for an Intech "Open questions in cosmology" book chapter (19 pages, 3 figures). Available from: http://www.intechopen.com/books/open-questions-in-cosmology/extending-cosmology-the-metric-approach

  1. Magneto-Structural Correlations in Pseudotetrahedral Forms of the [Co(SPh)4]2- Complex Probed by Magnetometry, MCD Spectroscopy, Advanced EPR Techniques, and ab Initio Electronic Structure Calculations.

    Science.gov (United States)

    Suturina, Elizaveta A; Nehrkorn, Joscha; Zadrozny, Joseph M; Liu, Junjie; Atanasov, Mihail; Weyhermüller, Thomas; Maganas, Dimitrios; Hill, Stephen; Schnegg, Alexander; Bill, Eckhard; Long, Jeffrey R; Neese, Frank

    2017-03-06

    The magnetic properties of pseudotetrahedral Co(II) complexes spawned intense interest after (PPh 4 ) 2 [Co(SPh) 4 ] was shown to be the first mononuclear transition-metal complex displaying slow relaxation of the magnetization in the absence of a direct current magnetic field. However, there are differing reports on its fundamental magnetic spin Hamiltonian (SH) parameters, which arise from inherent experimental challenges in detecting large zero-field splittings. There are also remarkable changes in the SH parameters of [Co(SPh) 4 ] 2- upon structural variations, depending on the counterion and crystallization conditions. In this work, four complementary experimental techniques are utilized to unambiguously determine the SH parameters for two different salts of [Co(SPh) 4 ] 2- : (PPh 4 ) 2 [Co(SPh) 4 ] (1) and (NEt 4 ) 2 [Co(SPh) 4 ] (2). The characterization methods employed include multifield SQUID magnetometry, high-field/high-frequency electron paramagnetic resonance (HF-EPR), variable-field variable-temperature magnetic circular dichroism (VTVH-MCD), and frequency domain Fourier transform THz-EPR (FD-FT THz-EPR). Notably, the paramagnetic Co(II) complex [Co(SPh) 4 ] 2- shows strong axial magnetic anisotropy in 1, with D = -55(1) cm -1 and E/D = 0.00(3), but rhombic anisotropy is seen for 2, with D = +11(1) cm -1 and E/D = 0.18(3). Multireference ab initio CASSCF/NEVPT2 calculations enable interpretation of the remarkable variation of D and its dependence on the electronic structure and geometry.

  2. Unimodular-mimetic cosmology

    International Nuclear Information System (INIS)

    Nojiri, S; Odintsov, S D; Oikonomou, V K

    2016-01-01

    We combine the unimodular gravity and mimetic gravity theories into a unified theoretical framework, which is proposed to provide a suggestive proposal for a framework that may assist in the discussion and search for a solution to the cosmological constant problem and the dark matter issue. After providing the formulation of the unimodular mimetic gravity and investigating all the new features that the vacuum unimodular gravity implies, by using the underlying reconstruction method, we realize some well known cosmological evolutions, with some of these being exotic for the ordinary Einstein–Hilbert gravity. Specifically we provide the vacuum unimodular mimetic gravity description of the de Sitter cosmology and of the perfect fluid with constant equation of state cosmology. As we demonstrate, these cosmologies can be realized by vacuum mimetic unimodular gravity, without the existence of any matter fluid source. Moreover, we investigate how cosmologically viable cosmologies, which are compatible with the recent observational data, can be realized by the vacuum unimodular mimetic gravity. Since in some cases, a graceful exit from inflation problem might exist, we provide a qualitative description of the mechanism that can potentially generate the graceful exit from inflation in these theories, by searching for the unstable de Sitter solutions in the context of unimodular mimetic theories of gravity. (paper)

  3. Cosmological constant problem

    International Nuclear Information System (INIS)

    Weinberg, S.

    1989-01-01

    Cosmological constant problem is discussed. History of the problem is briefly considered. Five different approaches to solution of the problem are described: supersymmetry, supergravity, superstring; anthropic approach; mechamism of lagrangian alignment; modification of gravitation theory and quantum cosmology. It is noted that approach, based on quantum cosmology is the most promising one

  4. Introduction to cosmology

    CERN Multimedia

    CERN. Geneva. Audiovisual Unit

    2001-01-01

    Cosmology and particle physics have enjoyed a useful relationship over the entire histories of both subjects. Today, ideas and techniques in cosmology are frequently used to elucidate and constrain theories of elementary particles. These lectures give an elementary overview of the essential elements of cosmology, which is necessary to understand this relationship.

  5. Introduction to cosmology

    CERN Multimedia

    CERN. Geneva

    1999-01-01

    Cosmology and particle physics have enjoyed a useful relationship over the entire histories of both subjects. Today, ideas and techniques in cosmology are frequently used to elucidate and constrain theories of elementary particles. These lectures give an elementary overview of the essential elements of cosmology, which is necessary to understand this relationship.

  6. SPH modeling of fluid-solid interaction for dynamic failure analysis of fluid-filled thin shells

    Science.gov (United States)

    Caleyron, F.; Combescure, A.; Faucher, V.; Potapov, S.

    2013-05-01

    This work concerns the prediction of failure of a fluid-filled tank under impact loading, including the resulting fluid leakage. A water-filled steel cylinder associated with a piston is impacted by a mass falling at a prescribed velocity. The cylinder is closed at its base by an aluminum plate whose characteristics are allowed to vary. The impact on the piston creates a pressure wave in the fluid which is responsible for the deformation of the plate and, possibly, the propagation of cracks. The structural part of the problem is modeled using Mindlin-Reissner finite elements (FE) and Smoothed Particle Hydrodynamics (SPH) shells. The modeling of the fluid is also based on an SPH formulation. The problem involves significant fluid-structure interactions (FSI) which are handled through a master-slave-based method and the pinballs method. Numerical results are compared to experimental data.

  7. The Dirac-Milne cosmology

    Science.gov (United States)

    Benoit-Lévy, Aurélien; Chardin, Gabriel

    2014-05-01

    We study an unconventional cosmology, in which we investigate the consequences that antigravity would pose to cosmology. We present the main characteristics of the Dirac-Milne Universe, a cosmological model where antimatter has a negative active gravitational mass. In this non-standard Universe, separate domains of matter and antimatter coexist at our epoch without annihilation, separated by a gravitationally induced depletion zone. We show that this cosmology does not require a priori the Dark Matter and Dark Energy components of the standard model of cosmology. Additionally, inflation becomes an unnecessary ingredient. Investigating this model, we show that the classical cosmological tests such as primordial nucleosynthesis, Type Ia supernovæ and Cosmic Microwave Background are surprisingly concordant.

  8. Implications of a decay law for the cosmological constant in higher dimensional cosmology and cosmological wormholes

    International Nuclear Information System (INIS)

    Rami, El-Nabulsi Ahmad

    2009-01-01

    Higher dimensional cosmological implications of a decay law for the cosmological constant term are analyzed. Three independent cosmological models are explored mainly: 1) In the first model, the effective cosmological constant was chosen to decay with times like Δ effective = Ca -2 + D(b/a I ) 2 where a I is an arbitrary scale factor characterizing the isotropic epoch which proceeds the graceful exit period. Further, the extra-dimensional scale factor decays classically like b(t) approx. a x (t), x is a real negative number. 2) In the second model, we adopt in addition to Δ effective = Ca -2 + D(b/a I ) 2 the phenomenological law b(t) = a(t)exp( -Qt) as we expect that at the origin of time, there is no distinction between the visible and extra dimensions; Q is a real number. 3) In the third model, we study a Δ - decaying extra-dimensional cosmology with a static traversable wormhole in which the four-dimensional Friedmann-Robertson-Walker spacetime is subject to the conventional perfect fluid while the extra-dimensional part is endowed by an exotic fluid violating strong energy condition and where the cosmological constant in (3+n+1) is assumed to decays like Δ(a) = 3Ca -2 . The three models are discussed and explored in some details where many interesting points are revealed. (author)

  9. BOOK REVIEW: Observational Cosmology Observational Cosmology

    Science.gov (United States)

    Howell, Dale Andrew

    2013-04-01

    Observational Cosmology by Stephen Serjeant fills a niche that was underserved in the textbook market: an up-to-date, thorough cosmology textbook focused on observations, aimed at advanced undergraduates. Not everything about the book is perfect - some subjects get short shrift, in some cases jargon dominates, and there are too few exercises. Still, on the whole, the book is a welcome addition. For decades, the classic textbooks of cosmology have focused on theory. But for every Sunyaev-Zel'dovich effect there is a Butcher-Oemler effect; there are as many cosmological phenomena established by observations, and only explained later by theory, as there were predicted by theory and confirmed by observations. In fact, in the last decade, there has been an explosion of new cosmological findings driven by observations. Some are so new that you won't find them mentioned in books just a few years old. So it is not just refreshing to see a book that reflects the new realities of cosmology, it is vital, if students are to truly stay up on a field that has widened in scope considerably. Observational Cosmology is filled with full-color images, and graphs from the latest experiments. How exciting it is that we live in an era where satellites and large experiments have gathered so much data to reveal astounding details about the origin of the universe and its evolution. To have all the latest data gathered together and explained in one book will be a revelation to students. In fact, at times it was to me. I've picked up modern cosmological knowledge through a patchwork of reading papers, going to colloquia, and serving on grant and telescope allocation panels. To go back and see them explained from square one, and summarized succinctly, filled in quite a few gaps in my own knowledge and corrected a few misconceptions I'd acquired along the way. To make room for all these graphs and observational details, a few things had to be left out. For one, there are few derivations

  10. The Cosmological Dependence of Galaxy Cluster Morphologies

    Science.gov (United States)

    Crone, Mary Margaret

    1995-01-01

    Measuring the density of the universe has been a fundamental problem in cosmology ever since the "Big Bang" model was developed over sixty years ago. In this simple and successful model, the age and eventual fate of the universe are determined by its density, its rate of expansion, and the value of a universal "cosmological constant". Analytic models suggest that many properties of galaxy clusters are sensitive to cosmological parameters. In this thesis, I use N-body simulations to examine cluster density profiles, abundances, and degree of subclustering to test the feasibility of using them as cosmological tests. The dependence on both cosmology and initial density field is examined, using a grid of cosmologies and scale-free initial power spectra P(k)~ k n. Einstein-deSitter ( Omegao=1), open ( Omegao=0.2 and 0.1) and flat, low density (Omegao=0.2, lambdao=0.8) models are studied, with initial spectral indices n=-2, -1 and 0. Of particular interest are the results for cluster profiles and substructure. The average density profiles are well fit by a power law p(r)~ r ^{-alpha} for radii where the local density contrast is between 100 and 3000. There is a clear trend toward steeper slopes with both increasing n and decreasing Omegao, with profile slopes in the open models consistently higher than Omega=1 values for the range of n examined. The amount of substructure in each model is quantified and explained in terms of cluster merger histories and the behavior of substructure statistics. The statistic which best distinguishes models is a very simple measure of deviations from symmetry in the projected mass distribution --the "Center-of-Mass Shift" as a function of overdensity. Some statistics which are quite sensitive to substructure perform relatively poorly as cosmological indicators. Density profiles and the Center-of-Mass test are both well-suited for comparison with weak lensing data and galaxy distributions. Such data are currently being collected and should

  11. Encyclopedia of cosmology historical, philosophical, and scientific foundations of modern cosmology

    CERN Document Server

    Hetherington, Norriss S

    2014-01-01

    The Encyclopedia of Cosmology, first published in 1993, recounts the history, philosophical assumptions, methodological ambiguities, and human struggles that have influenced the various responses to the basic questions of cosmology through the ages, as well as referencing important scientific theories.Just as the recognition of social conventions in other cultures can lead to a more productive perspective on our own behaviour, so too a study of the cosmologies of other times and places can enable us recognise elements of our own cosmology that might otherwise pass as inevitable developments.Ap

  12. Higgs cosmology.

    Science.gov (United States)

    Rajantie, Arttu

    2018-03-06

    The discovery of the Higgs boson in 2012 and other results from the Large Hadron Collider have confirmed the standard model of particle physics as the correct theory of elementary particles and their interactions up to energies of several TeV. Remarkably, the theory may even remain valid all the way to the Planck scale of quantum gravity, and therefore it provides a solid theoretical basis for describing the early Universe. Furthermore, the Higgs field itself has unique properties that may have allowed it to play a central role in the evolution of the Universe, from inflation to cosmological phase transitions and the origin of both baryonic and dark matter, and possibly to determine its ultimate fate through the electroweak vacuum instability. These connections between particle physics and cosmology have given rise to a new and growing field of Higgs cosmology, which promises to shed new light on some of the most puzzling questions about the Universe as new data from particle physics experiments and cosmological observations become available.This article is part of the Theo Murphy meeting issue 'Higgs cosmology'. © 2018 The Author(s).

  13. Investigating the Et-1/SphK/S1P Pathway as a Novel Approach for the Prevention of Inflammation-Induced Preterm Birth.

    Science.gov (United States)

    Giusto, Kiersten; Ashby, Charles R

    2018-01-30

    Preterm birth (PTB), defined as birth before 37 completed weeks of gestation, occurs in up to 18 percent of births worldwide and accounts for the majority of perinatal morbidity and mortality. While the single most common cause of PTB has been identified as inflammation, safe and effective pharmacotherapy to prevent PTB has yet to be developed. Our group has used an in vivo model of inflammation driven PTB, biochemical methods, pharmacological approaches, a novel endothelin receptor antagonist that we synthesized and RNA knockdown to help establish the role of endothelin-1 (ET-1) in inflammation-associated PTB. Further, we have used our in vivo model to test whether sphingosine kinase, which acts downstream of ET-1, plays a role in PTB. We have shown that levels of endothelin converting enzyme-1 (ECE-1) and ET-1 are increased when PTB is induced in timed pregnant mice with lipopolysaccharide (LPS) and that blocking ET-1 action, pharmacologically or using ECE-1 RNA silencing, rescues LPS-induced mice from PTB. ET-1 activates the sphingosine kinase/sphingosine-1-phosphate (SphK/S1P) pathway. S1P, in turn, is an important signaling molecule in the pro-inflammatory response. Interestingly, we have shown that SphK inhibition also prevents LPS-induced PTB in timed pregnant mice. Further, we showed that SphK inhibition suppresses the ECE-1/ET-1 axis, implicating positive feedback regulation of the SphK/S1P/ECE-1/ET-1 axis. The ET-1/SphK/SIP pathway is a potential pharmacotherapeutic target for the prevention of PTB. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Neutrino cosmology

    CERN Document Server

    Lesgourgues, Julien; Miele, Gennaro; Pastor, Sergio

    2013-01-01

    The role that neutrinos have played in the evolution of the Universe is the focus of one of the most fascinating research areas that has stemmed from the interplay between cosmology, astrophysics and particle physics. In this self-contained book, the authors bring together all aspects of the role of neutrinos in cosmology, spanning from leptogenesis to primordial nucleosynthesis, their role in CMB and structure formation, to the problem of their direct detection. The book starts by guiding the reader through aspects of fundamental neutrino physics, such as the standard cosmological model and the statistical mechanics in the expanding Universe, before discussing the history of neutrinos in chronological order from the very early stages until today. This timely book will interest graduate students and researchers in astrophysics, cosmology and particle physics, who work with either a theoretical or experimental focus.

  15. Investigating the physics and environment of Lyman limit systems in cosmological simulations

    Science.gov (United States)

    Erkal, Denis

    2015-07-01

    In this work, I investigate the properties of Lyman limit systems (LLSs) using state-of-the-art zoom-in cosmological galaxy formation simulations with on the fly radiative transfer, which includes both the cosmic UV background (UVB) and local stellar sources. I compare the simulation results to observations of the incidence frequency of LLSs and the H I column density distribution function over the redshift range z = 2-5 and find good agreement. I explore the connection between LLSs and their host haloes and find that LLSs reside in haloes with a wide range of halo masses with a nearly constant covering fraction within a virial radius. Over the range z = 2-5, I find that more than half of the LLSs reside in haloes with M test a simple model which encapsulates many of their properties. I confirm that LLSs have a characteristic absorption length given by the Jeans length and that they are in photoionization equilibrium at low column densities. Finally, I investigate the self-shielding of LLSs to the UVB and explore how the non-sphericity of LLSs affects the photoionization rate at a given N_{H I}. I find that at z ≈ 3, LLSs have an optical depth of unity at a column density of ˜1018 cm-2 and that this is the column density which characterizes the onset of self-shielding.

  16. Supernova cosmology

    International Nuclear Information System (INIS)

    Leibundgut, B.

    2005-01-01

    Supernovae have developed into a versatile tool for cosmology. Their impact on the cosmological model has been profound and led to the discovery of the accelerated expansion. The current status of the cosmological model as perceived through supernova observations will be presented. Supernovae are currently the only astrophysical objects that can measure the dynamics of the cosmic expansion during the past eight billion years. Ongoing experiments are trying to determine the characteristics of the accelerated expansion and give insight into what might be the physical explanation for the acceleration. (author)

  17. Supersymmetry and cosmology

    International Nuclear Information System (INIS)

    Feng, Jonathan L.

    2005-01-01

    Cosmology now provides unambiguous, quantitative evidence for new particle physics. I discuss the implications of cosmology for supersymmetry and vice versa. Topics include: motivations for supersymmetry; supersymmetry breaking; dark energy; freeze out and WIMPs; neutralino dark matter; cosmologically preferred regions of minimal supergravity; direct and indirect detection of neutralinos; the DAMA and HEAT signals; inflation and reheating; gravitino dark matter; Big Bang nucleosynthesis; and the cosmic microwave background. I conclude with speculations about the prospects for a microscopic description of the dark universe, stressing the necessity of diverse experiments on both sides of the particle physics/cosmology interface

  18. The inflationary cosmology

    International Nuclear Information System (INIS)

    Sasaki, Misao

    1983-01-01

    We review the recent status of the inflationary cosmology. After exhibiting the essence of difficulties associated with the horizon, flatness and baryon number problems in the standard big-bang cosmology, we discuss that the inflationary universe scenario is one of the most plausible solutions to these fundamental cosmological problems. Since there are two qualitatively different versions of the inflationary universe scenario, we review each of them separately and discuss merits and demerits of each version. The Hawking radiation in de Sitter space is also reviewed since it may play an essential role in the inflationary cosmology. (author)

  19. Cosmological evolution as squeezing: a toy model for group field cosmology

    Science.gov (United States)

    Adjei, Eugene; Gielen, Steffen; Wieland, Wolfgang

    2018-05-01

    We present a simple model of quantum cosmology based on the group field theory (GFT) approach to quantum gravity. The model is formulated on a subspace of the GFT Fock space for the quanta of geometry, with a fixed volume per quantum. In this Hilbert space, cosmological expansion corresponds to the generation of new quanta. Our main insight is that the evolution of a flat Friedmann–Lemaître–Robertson–Walker universe with a massless scalar field can be described on this Hilbert space as squeezing, familiar from quantum optics. As in GFT cosmology, we find that the three-volume satisfies an effective Friedmann equation similar to the one of loop quantum cosmology, connecting the classical contracting and expanding solutions by a quantum bounce. The only free parameter in the model is identified with Newton’s constant. We also comment on the possible topological interpretation of our squeezed states. This paper can serve as an introduction into the main ideas of GFT cosmology without requiring the full GFT formalism; our results can also motivate new developments in GFT and its cosmological application.

  20. Cosmological N-body simulations with a tree code - Fluctuations in the linear and nonlinear regimes

    International Nuclear Information System (INIS)

    Suginohara, Tatsushi; Suto, Yasushi; Bouchet, F.R.; Hernquist, L.

    1991-01-01

    The evolution of gravitational systems is studied numerically in a cosmological context using a hierarchical tree algorithm with fully periodic boundary conditions. The simulations employ 262,144 particles, which are initially distributed according to scale-free power spectra. The subsequent evolution is followed in both flat and open universes. With this large number of particles, the discretized system can accurately model the linear phase. It is shown that the dynamics in the nonlinear regime depends on both the spectral index n and the density parameter Omega. In Omega = 1 universes, the evolution of the two-point correlation function Xi agrees well with similarity solutions for Xi greater than about 100 but its slope is steeper in open models with the same n. 28 refs

  1. Post-inflationary brane cosmology

    International Nuclear Information System (INIS)

    Mazumdar, Anupam

    2001-01-01

    The brane cosmology has invoked new challenges to the usual Big Bang cosmology. In this paper we present a brief account on thermal history of the post-inflationary brane cosmology. We have realized that it is not obvious that the post-inflationary brane cosmology would always deviate from the standard Big Bang cosmology. However, if it deviates some stringent conditions on the brane tension are to be satisfied. In this regard we study various implications on gravitino production and its abundance. We discuss Affleck-Dine mechanism for baryogenesis and make some comments on moduli and dilaton problems in this context

  2. A whirling plane of satellite galaxies around Centaurus A challenges cold dark matter cosmology.

    Science.gov (United States)

    Müller, Oliver; Pawlowski, Marcel S; Jerjen, Helmut; Lelli, Federico

    2018-02-02

    The Milky Way and Andromeda galaxies are each surrounded by a thin plane of satellite dwarf galaxies that may be corotating. Cosmological simulations predict that most satellite galaxy systems are close to isotropic with random motions, so those two well-studied systems are often interpreted as rare statistical outliers. We test this assumption using the kinematics of satellite galaxies around the Centaurus A galaxy. Our statistical analysis reveals evidence for corotation in a narrow plane: Of the 16 Centaurus A satellites with kinematic data, 14 follow a coherent velocity pattern aligned with the long axis of their spatial distribution. In standard cosmological simulations, cosmological paradigm. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  3. Cosmology

    CERN Document Server

    García-Bellido, J

    2015-01-01

    In these lectures I review the present status of the so-called Standard Cosmological Model, based on the hot Big Bang Theory and the Inflationary Paradigm. I will make special emphasis on the recent developments in observational cosmology, mainly the acceleration of the universe, the precise measurements of the microwave background anisotropies, and the formation of structure like galaxies and clusters of galaxies from tiny primordial fluctuations generated during inflation.

  4. The effective field theory of nonsingular cosmology: II

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Yong; Li, Hai-Guang [University of Chinese Academy of Sciences, School of Physics, Beijing (China); Qiu, Taotao [Central China Normal University, Institute of Astrophysics, Wuhan (China); Piao, Yun-Song [University of Chinese Academy of Sciences, School of Physics, Beijing (China); Chinese Academy of Sciences, Institute of Theoretical Physics, P.O. Box 2735, Beijing (China)

    2017-06-15

    Based on the effective field theory (EFT) of cosmological perturbations, we explicitly clarify the pathology in nonsingular cubic Galileon models and show how to cure it in EFT with new insights into this issue. With the least set of EFT operators that are capable to avoid instabilities in nonsingular cosmologies, we construct a nonsingular model dubbed the Genesis-inflation model, in which a slowly expanding phase (namely, Genesis) with increasing energy density is followed by slow-roll inflation. The spectrum of the primordial perturbation may be simulated numerically, which shows itself a large-scale cutoff, as the large-scale anomalies in CMB might be a hint for. (orig.)

  5. Einstein and cosmology

    International Nuclear Information System (INIS)

    Gekman, O.

    1982-01-01

    The brief essay of the development of the main ideas of relativistic cosmology is presented. The Einstein's cosmological work about the Universe - ''Cosmological considerations in connection with the general relativity theory'' - gave the basis to all further treatments in this field. In 1922 A. Friedman's work appeared, in which the first expanding Universe model was proposed as a solution of the Einstein field equations. The model was spherically closed, but its curvature radius was a function of time. About 1955 the searches for anisotropic homogeneous solutions to Einstein field equation began. It turned out that isotropic cosmological models are unstable in general. The predominant part of them transform to anisotropic at insignificant breaking of isotropy. The discovery of isotropic background cosmic radiation in 1965, along with the Hubble low of the Universe expansion, served as the direct confirmation of cosmology based on the Einstein theory

  6. Particle physics and cosmology

    International Nuclear Information System (INIS)

    Turner, M.S.; Schramm, D.N.

    1985-01-01

    During the past year, the research of the members of our group has spanned virtually all the topics at the interface of cosmology and particle physics: inflationary Universe scenarios, astrophysical and cosmological constraints on particle properties, ultra-high energy cosmic ray physics, quantum field theory in curved space-time, cosmology with extra dimensions, superstring cosmology, neutrino astronomy with large, underground detectors, and the formation of structure in the Universe

  7. Cosmology and time

    Directory of Open Access Journals (Sweden)

    Balbi Amedeo

    2013-09-01

    Full Text Available Time has always played a crucial role in cosmology. I review some of the aspects of the present cosmological model which are more directly related to time, such as: the definition of a cosmic time; the existence of typical timescales and epochs in an expanding universe; the problem of the initial singularity and the origin of time; the cosmological arrow of time.

  8. THERMAL AND DYNAMICAL PROPERTIES OF GAS ACCRETING ONTO A SUPERMASSIVE BLACK HOLE IN AN ACTIVE GALACTIC NUCLEUS

    International Nuclear Information System (INIS)

    Mościbrodzka, M.; Proga, D.

    2013-01-01

    We study stability of gas accretion in active galactic nuclei (AGNs). Our grid-based simulations cover a radial range from 0.1 to 200 pc, which may enable linking the galactic/cosmological simulations with small-scale black hole (BH) accretion models within a few hundreds of Schwarzschild radii. Here, as in previous studies by our group, we include gas radiative cooling as well as heating by a sub-Eddington X-ray source near the central supermassive BH of 10 8 M ☉ . Our theoretical estimates and simulations show that for the X-ray luminosity, L X ∼ 0.008 L Edd , the gas is thermally and convectively unstable within the computational domain. In the simulations, we observe that very tiny fluctuations in an initially smooth, spherically symmetric, accretion flow, grow first linearly and then nonlinearly. Consequently, an initially one-phase flow relatively quickly transitions into a two-phase/cold-hot accretion flow. For L X = 0.015 L Edd or higher, the cold clouds continue to accrete but in some regions of the hot phase, the gas starts to move outward. For L X Edd , the cold phase contribution to the total mass accretion rate only moderately dominates over the hot phase contribution. This result might have some consequences for cosmological simulations of the so-called AGN feedback problem. Our simulations confirm the previous results of Barai et al. who used smoothed particle hydrodynamic (SPH) simulations to tackle the same problem. Here, however, because we use a grid-based code to solve equations in one dimension and two dimensions, we are able to follow the gas dynamics at much higher spacial resolution and for longer time compared with the three-dimensional SPH simulations. One of the new features revealed by our simulations is that the cold condensations in the accretion flow initially form long filaments, but at the later times, those filaments may break into smaller clouds advected outward within the hot outflow. Therefore, these simulations may serve as

  9. Quantum cosmology - science of Genesis

    International Nuclear Information System (INIS)

    Padmanabhan, Thanu

    1987-01-01

    Quantum cosmology, the marriage between the theories of the microscopic and macroscopic Universe, is examined in an attempt to explain the birth of the Universe in the 'big bang'. A quantum cosmological model of the Universe does not exist, but a rough approximation, or 'poor man's' version of quantum cosmology has been developed. The idea is to combine the theory of quantum mechanics with the classical cosmological solutions to obtain a quantum mechanical version of cosmology. Such a model of quantum cosmology is described -here the quantum universe behaves like a hydrogen atom with the Planck length replacing the Bohr radius. Properties of quantum cosmologies and the significance of the Planck length are both discussed. (UK)

  10. Cluster cosmology with next-generation surveys.

    Science.gov (United States)

    Ascaso, B.

    2017-03-01

    The advent of next-generation surveys will provide a large number of cluster detections that will serve the basis for constraining cos mological parameters using cluster counts. The main two observational ingredients needed are the cluster selection function and the calibration of the mass-observable relation. In this talk, we present the methodology designed to obtain robust predictions of both ingredients based on realistic cosmological simulations mimicking the following next-generation surveys: J-PAS, LSST and Euclid. We display recent results on the selection functions for these mentioned surveys together with others coming from other next-generation surveys such as eROSITA, ACTpol and SPTpol. We notice that the optical and IR surveys will reach the lowest masses between 0.3simulations, obtaining similar scatter to other observational results limited to higher redshifts. Finally, we describe the technique that we are developing to perform a Fisher Matrix analysis to provide cosmological constraints for the considered next-generation surveys and introduce very preliminary results.

  11. Stability analysis in tachyonic potential chameleon cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Farajollahi, H.; Salehi, A.; Tayebi, F.; Ravanpak, A., E-mail: hosseinf@guilan.ac.ir, E-mail: a.salehi@guilan.ac.ir, E-mail: ftayebi@guilan.ac.ir, E-mail: aravanpak@guilan.ac.ir [Department of Physics, University of Guilan, Rasht (Iran, Islamic Republic of)

    2011-05-01

    We study general properties of attractors for tachyonic potential chameleon scalar-field model which possess cosmological scaling solutions. An analytic formulation is given to obtain fixed points with a discussion on their stability. The model predicts a dynamical equation of state parameter with phantom crossing behavior for an accelerating universe. We constrain the parameters of the model by best fitting with the recent data-sets from supernovae and simulated data points for redshift drift experiment generated by Monte Carlo simulations.

  12. Stability analysis in tachyonic potential chameleon cosmology

    International Nuclear Information System (INIS)

    Farajollahi, H.; Salehi, A.; Tayebi, F.; Ravanpak, A.

    2011-01-01

    We study general properties of attractors for tachyonic potential chameleon scalar-field model which possess cosmological scaling solutions. An analytic formulation is given to obtain fixed points with a discussion on their stability. The model predicts a dynamical equation of state parameter with phantom crossing behavior for an accelerating universe. We constrain the parameters of the model by best fitting with the recent data-sets from supernovae and simulated data points for redshift drift experiment generated by Monte Carlo simulations

  13. BMS in cosmology

    International Nuclear Information System (INIS)

    Kehagias, A.; Riotto, A.

    2016-01-01

    Symmetries play an interesting role in cosmology. They are useful in characterizing the cosmological perturbations generated during inflation and lead to consistency relations involving the soft limit of the statistical correlators of large-scale structure dark matter and galaxies overdensities. On the other hand, in observational cosmology the carriers of the information about these large-scale statistical distributions are light rays traveling on null geodesics. Motivated by this simple consideration, we study the structure of null infinity and the associated BMS symmetry in a cosmological setting. For decelerating Friedmann-Robertson-Walker backgrounds, for which future null infinity exists, we find that the BMS transformations which leaves the asymptotic metric invariant to leading order. Contrary to the asymptotic flat case, the BMS transformations in cosmology generate Goldstone modes corresponding to scalar, vector and tensor degrees of freedom which may exist at null infinity and perturb the asymptotic data. Therefore, BMS transformations generate physically inequivalent vacua as they populate the universe at null infinity with these physical degrees of freedom. We also discuss the gravitational memory effect when cosmological expansion is taken into account. In this case, there are extra contribution to the gravitational memory due to the tail of the retarded Green functions which are supported not only on the light-cone, but also in its interior. The gravitational memory effect can be understood also from an asymptotic point of view as a transition among cosmological BMS-related vacua.

  14. BMS in cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Kehagias, A. [Physics Division, National Technical University of Athens, 15780 Zografou Campus, Athens (Greece); Riotto, A. [Department of Theoretical Physics,24 quai E. Ansermet, CH-1211 Geneva 4 (Switzerland); Center for Astroparticle Physics (CAP),24 quai E. Ansermet, CH-1211 Geneva 4 (Switzerland)

    2016-05-25

    Symmetries play an interesting role in cosmology. They are useful in characterizing the cosmological perturbations generated during inflation and lead to consistency relations involving the soft limit of the statistical correlators of large-scale structure dark matter and galaxies overdensities. On the other hand, in observational cosmology the carriers of the information about these large-scale statistical distributions are light rays traveling on null geodesics. Motivated by this simple consideration, we study the structure of null infinity and the associated BMS symmetry in a cosmological setting. For decelerating Friedmann-Robertson-Walker backgrounds, for which future null infinity exists, we find that the BMS transformations which leaves the asymptotic metric invariant to leading order. Contrary to the asymptotic flat case, the BMS transformations in cosmology generate Goldstone modes corresponding to scalar, vector and tensor degrees of freedom which may exist at null infinity and perturb the asymptotic data. Therefore, BMS transformations generate physically inequivalent vacua as they populate the universe at null infinity with these physical degrees of freedom. We also discuss the gravitational memory effect when cosmological expansion is taken into account. In this case, there are extra contribution to the gravitational memory due to the tail of the retarded Green functions which are supported not only on the light-cone, but also in its interior. The gravitational memory effect can be understood also from an asymptotic point of view as a transition among cosmological BMS-related vacua.

  15. Cosmological implication of wide field Sunyaev-Zel'dovich galaxy clusters survey: exploration by simulation

    International Nuclear Information System (INIS)

    Juin, Jean-Baptiste

    2005-01-01

    The goal of my Phd research is to prepare the data analysis of the near future wide-field observations of galaxy clusters detected by Sunyaev Zel'dovitch effect. I set up a complete chain of original tools to carry out this study. These tools allow me to highlight critical and important points of selection effects that has to be taken into account in future analysis. Analysis chain is composed by: a simulation of observed millimeter sky, state-of-the-art algorithms of SZ galaxy clusters extraction from observed maps, a statistical model of selection effects of the whole detection chain and, finally, tools to constrain, from detected SZ sources catalog, the cosmological parameters. I focus myself on multi-channel experiments equipped with large bolometer camera. I use these tools for a prospecting on Olimpo experiment. (author) [fr

  16. Philosophical Roots of Cosmology

    Science.gov (United States)

    Ivanovic, M.

    2008-10-01

    We shall consider the philosophical roots of cosmology in the earlier Greek philosophy. Our goal is to answer the question: Are earlier Greek theories of pure philosophical-mythological character, as often philosophers cited it, or they have scientific character. On the bases of methodological criteria, we shall contend that the latter is the case. In order to answer the question about contemporary situation of the relation philosophy-cosmology, we shall consider the next question: Is contemporary cosmology completely independent of philosophical conjectures? The answer demands consideration of methodological character about scientific status of contemporary cosmology. We also consider some aspects of the relation contemporary philosophy-cosmology.

  17. Observational cosmology

    NARCIS (Netherlands)

    Sanders, RH; Papantonopoulos, E

    2005-01-01

    I discuss the classical cosmological tests, i.e., angular size-redshift, flux-redshift, and galaxy number counts, in the light of the cosmology prescribed by the interpretation of the CMB anisotropies. The discussion is somewhat of a primer for physicists, with emphasis upon the possible systematic

  18. Second-order Cosmological Perturbations Engendered by Point-like Masses

    Energy Technology Data Exchange (ETDEWEB)

    Brilenkov, Ruslan [Institute for Astro- and Particle Physics, University of Innsbruck, Technikerstrasse 25/8, A‐6020 Innsbruck (Austria); Eingorn, Maxim, E-mail: ruslan.brilenkov@gmail.com, E-mail: maxim.eingorn@gmail.com [North Carolina Central University, CREST and NASA Research Centers, 1801 Fayetteville St., Durham, NC 27707 (United States)

    2017-08-20

    In the ΛCDM framework, presenting nonrelativistic matter inhomogeneities as discrete massive particles, we develop the second‐order cosmological perturbation theory. Our approach relies on the weak gravitational field limit. The derived equations for the second‐order scalar, vector, and tensor metric corrections are suitable at arbitrary distances, including regions with nonlinear contrasts of the matter density. We thoroughly verify fulfillment of all Einstein equations, as well as self‐consistency of order assignments. In addition, we achieve logical positive results in the Minkowski background limit. Feasible investigations of the cosmological back-reaction manifestations by means of relativistic simulations are also outlined.

  19. Neutrino cosmology

    International Nuclear Information System (INIS)

    Berstein, J.

    1984-01-01

    These lectures offer a self-contained review of the role of neutrinos in cosmology. The first part deals with the question 'What is a neutrino.' and describes in a historical context the theoretical ideas and experimental discoveries related to the different types of neutrinos and their properties. The basic differences between the Dirac neutrino and the Majorana neutrino are pointed out and the evidence for different neutrino 'flavours', neutrino mass, and neutrino oscillations is discussed. The second part summarizes current views on cosmology, particularly as they are affected by recent theoretical and experimental advances in high-energy particle physics. Finally, the close relationship between neutrino physics and cosmology is brought out in more detail, to show how cosmological constraints can limit the various theoretical possibilities for neutrinos and, more particularly, how increasing knowledge of neutrino properties can contribute to our understanding of the origin, history, and future of the Universe. The level is that of the beginning graduate student. (orig.)

  20. Analysis of New Aerodynamic Design of the Nose Cone Section Using CFD and SPH

    Directory of Open Access Journals (Sweden)

    Bogdan-Alexandru BELEGA

    2015-06-01

    Full Text Available A new nose cones concept that promises a gain in performance over existing conventional nose cones is discussed in this paper. It is shown that significant performance gains result from the adaptation of the exhaust flow to the ambient pressure. For this complex work, it was necessary to collect and study the various nose cone shapes and the equations describing them? The paper objective was to identify the types of nose cones with ejector channels and specific aerodynamic characteristics of different types of nose cones. The scope of this paper is to develop some prototype profiles with outstanding aerodynamic qualities and low cost for use in construction projects for missile increasing their range and effect on target. The motivation for such a work is caused by a lack of data on aerodynamics for profiles of some nose cones and especially improved aerodynamic qualities that can be used in designing missiles/ rockets. This design method consists of a geometry creation step in which a three-dimensional geometry is generated, a mathematical model presented and a simple flow analysis (FLUENT Simulation from SolidWorks2012 and ANSYS Simulation with SPH for fluid-structure interaction, step which predicts the air intake mass flow rate. Flow phenomena observed in numerical simulations during different nose cone operations are highlighted, critical design aspects and operation conditions are discussed, and performance characteristics of the selected nose cone are presented.

  1. Cosmology and particle physics

    International Nuclear Information System (INIS)

    Turner, M.S.

    1986-01-01

    Progress in cosmology has become linked to progress in elementary particle physics. In these six lectures, the author illustrates the two-way nature of the interplay between these fields by focusing on a few selected topics. In the next section the author reviews the standard cosmology, especially concentrating on primordial nucleosynthesis and discusses how the standard cosmology has been used to place constraints on the properties of various particles. Grand Unification makes two striking predictions: (i) B non-conservation; (ii) the existence of stable, superheavy magnetic monopoles. Both have had great cosmological impact. In the following section the author discusses baryogenesis, the very attractive scenario in which the B,C,CP violating interactions in GUTs provide a dynamical explanation for the predominance of matter over antimatter and the present baryon-to-photon ratio. Monopoles are a cosmological disaster and an astrophysicist's delight. In Section 4 discusses monopoles, cosmology, and astrophysics. In the fourth lecture the author discusses how a very early (t≤10/sup -34/ sec) phase transition associated with spontaneous symmetry breaking (SSB) has the potential to explain a handful of very fundamental cosmological facts, facts which can be accommodated by the standard cosmology, but which are not ''explained'' by it. The fifth lecture is devoted to a discussion of structure formation in the universe

  2. The cosmological perturbation theory in loop cosmology with holonomy corrections

    International Nuclear Information System (INIS)

    Wu, Jian-Pin; Ling, Yi

    2010-01-01

    In this paper we investigate the scalar mode of first-order metric perturbations over spatially flat FRW spacetime when the holonomy correction is taken into account in the semi-classical framework of loop quantum cosmology. By means of the Hamiltonian derivation, the cosmological perturbation equations is obtained in longitudinal gauge. It turns out that in the presence of metric perturbation the holonomy effects influence both background and perturbations, and contribute the non-trivial terms S h1 and S h2 in the cosmological perturbation equations

  3. Evaluating simulant materials for understanding cranial backspatter from a ballistic projectile.

    Science.gov (United States)

    Das, Raj; Collins, Alistair; Verma, Anurag; Fernandez, Justin; Taylor, Michael

    2015-05-01

    In cranial wounds resulting from a gunshot, the study of backspatter patterns can provide information about the actual incidents by linking material to surrounding objects. This study investigates the physics of backspatter from a high-speed projectile impact and evaluates a range of simulant materials using impact tests. Next, we evaluate a mesh-free method called smoothed particle hydrodynamics (SPH) to model the splashing mechanism during backspatter. The study has shown that a projectile impact causes fragmentation at the impact site, while transferring momentum to fragmented particles. The particles travel along the path of least resistance, leading to partial material movement in the reverse direction of the projectile motion causing backspatter. Medium-density fiberboard is a better simulant for a human skull than polycarbonate, and lorica leather is a better simulant for a human skin than natural rubber. SPH is an effective numerical method for modeling the high-speed impact fracture and fragmentations. © 2015 American Academy of Forensic Sciences.

  4. Massive optimal data compression and density estimation for scalable, likelihood-free inference in cosmology

    Science.gov (United States)

    Alsing, Justin; Wandelt, Benjamin; Feeney, Stephen

    2018-03-01

    Many statistical models in cosmology can be simulated forwards but have intractable likelihood functions. Likelihood-free inference methods allow us to perform Bayesian inference from these models using only forward simulations, free from any likelihood assumptions or approximations. Likelihood-free inference generically involves simulating mock data and comparing to the observed data; this comparison in data-space suffers from the curse of dimensionality and requires compression of the data to a small number of summary statistics to be tractable. In this paper we use massive asymptotically-optimal data compression to reduce the dimensionality of the data-space to just one number per parameter, providing a natural and optimal framework for summary statistic choice for likelihood-free inference. Secondly, we present the first cosmological application of Density Estimation Likelihood-Free Inference (DELFI), which learns a parameterized model for joint distribution of data and parameters, yielding both the parameter posterior and the model evidence. This approach is conceptually simple, requires less tuning than traditional Approximate Bayesian Computation approaches to likelihood-free inference and can give high-fidelity posteriors from orders of magnitude fewer forward simulations. As an additional bonus, it enables parameter inference and Bayesian model comparison simultaneously. We demonstrate Density Estimation Likelihood-Free Inference with massive data compression on an analysis of the joint light-curve analysis supernova data, as a simple validation case study. We show that high-fidelity posterior inference is possible for full-scale cosmological data analyses with as few as ˜104 simulations, with substantial scope for further improvement, demonstrating the scalability of likelihood-free inference to large and complex cosmological datasets.

  5. Baseline metal enrichment from Population III star formation in cosmological volume simulations

    Science.gov (United States)

    Jaacks, Jason; Thompson, Robert; Finkelstein, Steven L.; Bromm, Volker

    2018-04-01

    We utilize the hydrodynamic and N-body code GIZMO coupled with our newly developed sub-grid Population III (Pop III) Legacy model, designed specifically for cosmological volume simulations, to study the baseline metal enrichment from Pop III star formation at z > 7. In this idealized numerical experiment, we only consider Pop III star formation. We find that our model Pop III star formation rate density (SFRD), which peaks at ˜ 10- 3 M⊙ yr- 1 Mpc- 1 near z ˜ 10, agrees well with previous numerical studies and is consistent with the observed estimates for Pop II SFRDs. The mean Pop III metallicity rises smoothly from z = 25 to 7, but does not reach the critical metallicity value, Zcrit = 10-4 Z⊙, required for the Pop III to Pop II transition in star formation mode until z ≃ 7. This suggests that, while individual haloes can suppress in situ Pop III star formation, the external enrichment is insufficient to globally terminate Pop III star formation. The maximum enrichment from Pop III star formation in star-forming dark matter haloes is Z ˜ 10-2 Z⊙, whereas the minimum found in externally enriched haloes is Z ≳ 10-7 Z⊙. Finally, mock observations of our simulated IGM enriched with Pop III metals produce equivalent widths similar to observations of an extremely metal-poor damped Lyman alpha system at z = 7.04, which is thought to be enriched by Pop III star formation only.

  6. Systematic Biases in Weak Lensing Cosmology with the Dark Energy Survey

    Energy Technology Data Exchange (ETDEWEB)

    Samuroff, Simon [Manchester U.

    2017-01-01

    This thesis sets out a practical guide to applying shear measurements as a cosmological tool. We first present one of two science-ready galaxy shape catalogues from Year 1 of the Dark Energy Survey (DES Y1), which covers 1500 square degrees in four bands $griz$, with a median redshift of $0.59$. We describe the shape measurement process implemented by the DES Y1 imshape catalogue, which contains 21.9 million high-quality $r$-band bulge/disc fits. In Chapter 3 a new suite of image simulations, referred to as Hoopoe, are presented. The Hoopoe dataset is tailored to DES Y1 and includes realistic blending, spatial masks and variation in the point spread function. We derive shear corrections, which we show are robust to changes in calibration method, galaxy binning and variance within the simulated dataset. Sources of systematic uncertainty in the simulation-based shear calibration are discussed, leading to a final estimate of the $1\\sigma$ uncertainties in the residual multiplica tive bias after calibration of 0.025. Chapter 4 describes an extension of the analysis on the Hoopoe simulations into a detailed investigation of the impact of galaxy neighbours on shape measurement and shear cosmology. Four mechanisms by which neighbours can have a non-negligible influence on shear measurement are identified. These effects, if ignored, would contribute a net multiplicative bias of $m \\sim 0.03 - 0.09$ in DES Y1, though the precise impact will depend on both the measurement code and the selection cuts applied. We use the cosmological inference pipeline of DES Y1 to explore the cosmological implications of neighbour bias and show that omitting blending from the calibration simulation for DES Y1 would bias the inferred clustering amplitude $S_8 \\equiv \\sigma_8 (\\omegam /0.3)^{0.5}$ by $1.5 \\sigma$ towards low values. Finally, we use the Hoopoe simulations to test the effect of neighbour-induced spatial correlations in the multiplicative bias. We find the cosmo logical

  7. Synthesis, structure and DFT conformation analysis of CpNiX(NHC) and NiX2(NHC)2 (X = SPh or Br) complexes

    Science.gov (United States)

    Malan, Frederick P.; Singleton, Eric; van Rooyen, Petrus H.; Conradie, Jeanet; Landman, Marilé

    2017-11-01

    The synthesis, density functional theory (DFT) conformational study and structure analysis of novel two-legged piano stool Ni N-heterocyclic carbene (NHC) complexes and square planar Ni bis-N-heterocyclic carbene complexes, all containing either bromido- or thiophenolato ligands, are described. [CpNi(SPh)(NHC)] complexes were obtained from the neutral 18-electron [CpNiBr(NHC)] complexes by substitution of a bromido ligand with SPh, using NEt3 as a base to abstract the proton of HSPh. The 16-electron biscarbene complexes [Ni(SPh)2{NHC}2] were isolated when an excess of HSPh was added to the reaction mixture. Biscarbene complexes of the type [NiBr2(NHC)2] were obtained in the reaction of NiCp2 with a slight excess of the specific imidazolium bromide salt. The molecular and electronic structures of the mono- and bis-N-heterocyclic carbene complexes have been analysed using single crystal diffraction and density functional theory (DFT) calculations, to give insight into their structural properties.

  8. Inhibition of the SphK1/S1P signaling pathway by melatonin in mice with liver fibrosis and human hepatic stellate cells.

    Science.gov (United States)

    González-Fernández, Bárbara; Sánchez, Diana I; Crespo, Irene; San-Miguel, Beatriz; Álvarez, Marcelino; Tuñón, María J; González-Gallego, Javier

    2017-03-01

    The sphingosine kinase 1/sphingosine 1-phosphate (SphK1/S1P) system is involved in different pathological processes, including fibrogenesis. Melatonin abrogates activation of hepatic stellate cells (HSCs) and attenuates different profibrogenic pathways in animal models of fibrosis, but it is unknown if protection associates with its inhibitory effect on the SphK1/S1P axis. Mice in treatment groups received carbon tetrachloride (CCl 4 ) 5 μL g -1 body wt i.p. twice a week for 4 or 6 weeks. Melatonin was given at 5 or 10 mg kg -1  day -1 i.p, beginning 2 weeks after the start of CCl 4 administration. At both 4 and 6 weeks following CCl 4 treatment, liver mRNA levels, protein concentration and immunohistochemical labelling for SphK1 increased significantly. S1P production, and expression of S1P receptor (S1PR)1, S1PR3 and acid sphingomyelinase (ASMase) were significantly elevated. However, there was a decreased expression of S1PR2 and S1P lyase (S1PL). Melatonin attenuated liver fibrosis, as shown by a significant inhibition of the expression of α-smooth muscle actin (α-SMA), transforming growth factor (TGF)-β and collagen (Col) Ι. Furthermore, melatonin inhibited S1P production, lowered expression of SphK1, S1PR1, SP1R3, and ASMase, and increased expression of S1PL. Melatonin induced a reversal of activated human HSCs cell line LX2, as evidenced by a reduction in α-SMA, TGF-β, and Col I expression. Melatonin-treated cells also exhibited an inhibition of the SphK1/S1P axis. Antifibrogenic effect of SphK1 inhibition was confirmed by treatment of LX2 cells with PF543. Abrogation of the lipid signaling pathway by the indole reveals novel molecular pathways that may account for the protective effect of melatonin in liver fibrogenesis. © 2016 BioFactors, 43(2):272-282, 2017. © 2016 International Union of Biochemistry and Molecular Biology.

  9. A taste of cosmology

    International Nuclear Information System (INIS)

    Verde, L.

    2011-01-01

    This is the summary of two lectures that aim to give an overview of cosmology. I will not try to be toa rigorous in derivations, nor to give a full historical overview. The idea is to provide a 'taste' of cosmology and some of the interesting topics it covers. The standard cosmological model is presented and I highlight the successes of cosmology over the past decade or so. Keys to the development of the standard cosmological model are observations of the cosmic microwave background and of large-scale structure, which are introduced. Inflation and dark energy and the outlook for the future are also discussed. Slides from the lectures are available from the school web site: physicschool.web.cern.ch/PhysicSchool/CLASHEP/CLASHEP2011/. (author)

  10. A Taste of Cosmology

    CERN Document Server

    Verde, L.

    2013-06-27

    This is the summary of two lectures that aim to give an overview of cosmology. I will not try to be too rigorous in derivations, nor to give a full historical overview. The idea is to provide a "taste" of cosmology and some of the interesting topics it covers. The standard cosmological model is presented and I highlight the successes of cosmology over the past decade or so. Keys to the development of the standard cosmological model are observations of the cosmic microwave background and of large-scale structure, which are introduced. Inflation and dark energy and the outlook for the future are also discussed. Slides from the lectures are available from the school website: physicschool.web.cern.ch/PhysicSchool/CLASHEP/CLASHEP2011/.

  11. Friedman's cosmological views

    International Nuclear Information System (INIS)

    Heller, M.

    1985-01-01

    Two Friedman's cosmological papers (1922, 1924) and his own interpretation of the obtained results are briefly reviewed. Discussion follows of Friedman's role in the early development of relativistic cosmology. 18 refs. (author)

  12. Galileon cosmology

    International Nuclear Information System (INIS)

    Chow, Nathan; Khoury, Justin

    2009-01-01

    We study the cosmology of a galileon scalar-tensor theory, obtained by covariantizing the decoupling Lagrangian of the Dvali-Gabadadze-Poratti (DGP) model. Despite being local in 3+1 dimensions, the resulting cosmological evolution is remarkably similar to that of the full 4+1-dimensional DGP framework, both for the expansion history and the evolution of density perturbations. As in the DGP model, the covariant galileon theory yields two branches of solutions, depending on the sign of the galileon velocity. Perturbations are stable on one branch and ghostlike on the other. An interesting effect uncovered in our analysis is a cosmological version of the Vainshtein screening mechanism: at early times, the galileon dynamics are dominated by self-interaction terms, resulting in its energy density being suppressed compared to matter or radiation; once the matter density has redshifted sufficiently, the galileon becomes an important component of the energy density and contributes to dark energy. We estimate conservatively that the resulting expansion history is consistent with the observed late-time cosmology, provided that the scale of modification satisfies r c > or approx. 15 Gpc.

  13. Effects of inhibition of serine palmitoyltransferase (SPT and sphingosine kinase 1 (SphK1 on palmitate induced insulin resistance in L6 myotubes.

    Directory of Open Access Journals (Sweden)

    Agnieszka Mikłosz

    Full Text Available BACKGROUND: The objective of this study was to examine the effects of short (2 h and prolonged (18 h inhibition of serine palmitoyltransferase (SPT and sphingosine kinase 1 (SphK1 on palmitate (PA induced insulin resistance in L6 myotubes. METHODS: L6 myotubes were treated simultaneously with either PA and myriocin (SPT inhibitor or PA and Ski II (SphK1inhibitor for different time periods (2 h and 18 h. Insulin stimulated glucose uptake was measured using radioactive isotope. Expression of insulin signaling proteins was determined using Western blot analyses. Intracellular sphingolipids content [sphinganine (SFA, ceramide (CER, sphingosine (SFO, sphingosine-1-phosphate (S1P] were estimated by HPLC. RESULTS: Our results revealed that both short and prolonged time of inhibition of SPT by myriocin was sufficient to prevent ceramide accumulation and simultaneously reverse palmitate induced inhibition of insulin-stimulated glucose transport. In contrast, prolonged inhibition of SphK1 intensified the effect of PA on insulin-stimulated glucose uptake and attenuated further the activity of insulin signaling proteins (pGSK3β/GSK3β ratio in L6 myotubes. These effects were related to the accumulation of sphingosine in palmitate treated myotubes. CONCLUSION: Myriocin is more effective in restoration of palmitate induced insulin resistance in L6 myocytes, despite of the time of SPT inhibition, comparing to SKII (a specific SphK1 inhibitor. Observed changes in insulin signaling proteins were related to the content of specific sphingolipids, namely to the reduction of ceramide. Interestingly, inactivation of SphK1 augmented the effect of PA induced insulin resistance in L6 myotubes, which was associated with further inhibition of insulin stimulated PKB and GSK3β phosphorylation, glucose uptake and the accumulation of sphingosine.

  14. Particle physics and cosmology

    International Nuclear Information System (INIS)

    Schramm, D.N.; Turner, M.S.

    1982-06-01

    work is described in these areas: cosmological baryon production; cosmological production of free quarks and other exotic particle species; the quark-hadron transition in the early universe; astrophysical and cosmological constraints on particle properties; massive neutrinos; phase transitions in the early universe; and astrophysical implications of an axion-like particle

  15. Programme de soutien à l'interaction avec la sphère des politiques ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Programme de soutien à l'interaction avec la sphère des politiques et à la communication de l'Initiative Think tank. Les think tanks des pays en développement entendent effectuer des recherches de qualité fondées sur des données probantes pour contribuer à la résolution d'enjeux en matière de politiques dans les pays ...

  16. Open problems in string cosmology

    International Nuclear Information System (INIS)

    Toumbas, N.

    2010-01-01

    Some of the open problems in string cosmology are highlighted within the context of the recently constructed thermal and quantum superstring cosmological solutions. Emphasis is given on the high temperature cosmological regime, where it is argued that thermal string vacua in the presence of gravito-magnetic fluxes can be used to bypass the Hagedorn instabilities of string gas cosmology. This article is based on a talk given at the workshop on ''Cosmology and Strings'', Corfu, September 6-13, 2009. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  17. Crucial test of the Dirac cosmologies

    International Nuclear Information System (INIS)

    Steigman, G.

    1978-01-01

    In a cosmology consistent with the Cosmological Principle (large scale, statistical isotropy and homogeneity of the universe), a Planck spectrum is not preserved as the universe evolves unless the number of photons in a comoving volume is conserved. It is shown that a large class of cosmological models based on Dirac's Large Numbers Hypothesis (LNH) violate this constraint. The observed isotropy and spectral distribution of the microwave background radiation thus provide a crucial test of such cosmologies. After reviewing the LNH, the general evolution of radiation spectra in cosmologies consistent with the cosmological principle is outlined. It is shown that the predicted deviations from a Planck spectrum for Dirac cosmologies (as well as for ''tired-light'' cosmologies) are enormous. The Planckian (or near-Planckian) spectral form for the microwave radiation provides a crucial test, failed by such cosmologies

  18. Multi-dimensional cosmology and GUP

    International Nuclear Information System (INIS)

    Zeynali, K.; Motavalli, H.; Darabi, F.

    2012-01-01

    We consider a multidimensional cosmological model with FRW type metric having 4-dimensional space-time and d-dimensional Ricci-flat internal space sectors with a higher dimensional cosmological constant. We study the classical cosmology in commutative and GUP cases and obtain the corresponding exact solutions for negative and positive cosmological constants. It is shown that for negative cosmological constant, the commutative and GUP cases result in finite size universes with smaller size and longer ages, and larger size and shorter age, respectively. For positive cosmological constant, the commutative and GUP cases result in infinite size universes having late time accelerating behavior in good agreement with current observations. The accelerating phase starts in the GUP case sooner than the commutative case. In both commutative and GUP cases, and for both negative and positive cosmological constants, the internal space is stabilized to the sub-Planck size, at least within the present age of the universe. Then, we study the quantum cosmology by deriving the Wheeler-DeWitt equation, and obtain the exact solutions in the commutative case and the perturbative solutions in GUP case, to first order in the GUP small parameter, for both negative and positive cosmological constants. It is shown that good correspondence exists between the classical and quantum solutions

  19. Multi-dimensional cosmology and GUP

    Energy Technology Data Exchange (ETDEWEB)

    Zeynali, K.; Motavalli, H. [Department of Theoretical Physics and Astrophysics, University of Tabriz, 51666-16471, Tabriz (Iran, Islamic Republic of); Darabi, F., E-mail: k.zeinali@arums.ac.ir, E-mail: f.darabi@azaruniv.edu, E-mail: motavalli@tabrizu.ac.ir [Department of Physics, Azarbaijan Shahid Madani University, 53714-161, Tabriz (Iran, Islamic Republic of)

    2012-12-01

    We consider a multidimensional cosmological model with FRW type metric having 4-dimensional space-time and d-dimensional Ricci-flat internal space sectors with a higher dimensional cosmological constant. We study the classical cosmology in commutative and GUP cases and obtain the corresponding exact solutions for negative and positive cosmological constants. It is shown that for negative cosmological constant, the commutative and GUP cases result in finite size universes with smaller size and longer ages, and larger size and shorter age, respectively. For positive cosmological constant, the commutative and GUP cases result in infinite size universes having late time accelerating behavior in good agreement with current observations. The accelerating phase starts in the GUP case sooner than the commutative case. In both commutative and GUP cases, and for both negative and positive cosmological constants, the internal space is stabilized to the sub-Planck size, at least within the present age of the universe. Then, we study the quantum cosmology by deriving the Wheeler-DeWitt equation, and obtain the exact solutions in the commutative case and the perturbative solutions in GUP case, to first order in the GUP small parameter, for both negative and positive cosmological constants. It is shown that good correspondence exists between the classical and quantum solutions.

  20. A savour of Cosmology

    International Nuclear Information System (INIS)

    Langer, M.

    2007-01-01

    This is a very concise introductory lecture to Cosmology. We start by reviewing the basics of homogeneous and isotropic cosmology. We then spend some time on the description of the Cosmic Microwave Background. Finally, a small section is devoted to the discussion of the cosmological constant and of some of the related problems

  1. Simulations of the WFIRST Supernova Survey and Forecasts of Cosmological Constraints

    Energy Technology Data Exchange (ETDEWEB)

    Hounsell, R. [Illinois U., Urbana, Astron. Dept.; Scolnic, D. [Chicago U., KICP; Foley, R. J. [UC, Santa Cruz; Kessler, R. [Chicago U., KICP; Miranda, V. [Pennsylvania U.; Avelino, A. [Harvard-Smithsonian Ctr. Astrophys.; Bohlin, R. C. [Baltimore, Space Telescope Sci.; Filippenko, A. V. [UC, Berkeley; Frieman, J. [Fermilab; Jha, S. W. [Rutgers U., Piscataway; Kelly, P. L. [UC, Berkeley; Kirshner, R. P. [Xerox, Palo Alto; Mandel, K. [Harvard-Smithsonian Ctr. Astrophys.; Rest, A. [Baltimore, Space Telescope Sci.; Riess, A. G. [Johns Hopkins U.; Rodney, S. A. [South Carolina U.; Strolger, L. [Baltimore, Space Telescope Sci.

    2017-02-06

    The Wide Field InfraRed Survey Telescope (WFIRST) was the highest rankedlarge space-based mission of the 2010 New Worlds, New Horizons decadal survey.It is now a NASA mission in formulation with a planned launch in themid-2020's. A primary mission objective is to precisely constrain the nature ofdark energy through multiple probes, including Type Ia supernovae (SNe Ia).Here, we present the first realistic simulations of the WFIRST SN survey basedon current hardware specifications and using open-source tools. We simulate SNlight curves and spectra as viewed by the WFIRST wide-field channel (WFC)imager and integral field channel (IFC) spectrometer, respectively. We examine11 survey strategies with different time allocations between the WFC and IFC,two of which are based upon the strategy described by the WFIRST ScienceDefinition Team, which measures SN distances exclusively from IFC data. Wepropagate statistical and, crucially, systematic uncertainties to predict thedark energy task force figure of merit (DETF FoM) for each strategy. Theincrease in FoM values with SN search area is limited by the overhead times foreach exposure. For IFC-focused strategies the largest individual systematicuncertainty is the wavelength-dependent calibration uncertainty, whereas forWFC-focused strategies, it is the intrinsic scatter uncertainty. We find thatthe best IFC-focused and WFC-exclusive strategies have comparable FoM values.Even without improvements to other cosmological probes, the WFIRST SN surveyhas the potential to increase the FoM by more than an order of magnitude fromthe current values. Although the survey strategies presented here have not beenfully optimized, these initial investigations are an important step in thedevelopment of the final hardware design and implementation of the WFIRSTmission.

  2. Neutrino mass from Cosmology

    CERN Document Server

    Lesgourgues, Julien

    2012-01-01

    Neutrinos can play an important role in the evolution of the Universe, modifying some of the cosmological observables. In this contribution we summarize the main aspects of cosmological relic neutrinos and we describe how the precision of present cosmological data can be used to learn about neutrino properties, in particular their mass, providing complementary information to beta decay and neutrinoless double-beta decay experiments. We show how the analysis of current cosmological observations, such as the anisotropies of the cosmic microwave background or the distribution of large-scale structure, provides an upper bound on the sum of neutrino masses of order 1 eV or less, with very good perspectives from future cosmological measurements which are expected to be sensitive to neutrino masses well into the sub-eV range.

  3. Initial conditions for cosmological N-body simulations of the scalar sector of theories of Newtonian, Relativistic and Modified Gravity

    International Nuclear Information System (INIS)

    Valkenburg, Wessel; Hu, Bin

    2015-01-01

    We present a description for setting initial particle displacements and field values for simulations of arbitrary metric theories of gravity, for perfect and imperfect fluids with arbitrary characteristics. We extend the Zel'dovich Approximation to nontrivial theories of gravity, and show how scale dependence implies curved particle paths, even in the entirely linear regime of perturbations. For a viable choice of Effective Field Theory of Modified Gravity, initial conditions set at high redshifts are affected at the level of up to 5% at Mpc scales, which exemplifies the importance of going beyond Λ-Cold Dark Matter initial conditions for modifications of gravity outside of the quasi-static approximation. In addition, we show initial conditions for a simulation where a scalar modification of gravity is modelled in a Lagrangian particle-like description. Our description paves the way for simulations and mock galaxy catalogs under theories of gravity beyond the standard model, crucial for progress towards precision tests of gravity and cosmology

  4. SIMULATING MAGNETIC FIELDS IN THE ANTENNAE GALAXIES

    International Nuclear Information System (INIS)

    Kotarba, H.; Karl, S. J.; Naab, T.; Johansson, P. H.; Lesch, H.; Dolag, K.; Stasyszyn, F. A.

    2010-01-01

    We present self-consistent high-resolution simulations of NGC 4038/4039 (the A ntennae galaxies ) including star formation, supernova feedback, and magnetic fields performed with the N-body/smoothed particle hydrodynamic (SPH) code GADGET, in which magnetohydrodynamics are followed with the SPH method. We vary the initial magnetic field in the progenitor disks from 10 -9 to 10 -4 G. At the time of the best match with the central region of the Antennae system, the magnetic field has been amplified by compression and shear flows to an equilibrium field value of ∼10 μG, independent of the initial seed field. These simulations are a proof of the principle that galaxy mergers are efficient drivers for the cosmic evolution of magnetic fields. We present a detailed analysis of the magnetic field structure in the central overlap region. Simulated radio and polarization maps are in good morphological and quantitative agreement with the observations. In particular, the two cores with the highest synchrotron intensity and ridges of regular magnetic fields between the cores and at the root of the southern tidal arm develop naturally in our simulations. This indicates that the simulations are capable of realistically following the evolution of the magnetic fields in a highly nonlinear environment. We also discuss the relevance of the amplification effect for present-day magnetic fields in the context of hierarchical structure formation.

  5. Cosmological Models and Stability

    Science.gov (United States)

    Andersson, Lars

    Principles in the form of heuristic guidelines or generally accepted dogma play an important role in the development of physical theories. In particular, philosophical considerations and principles figure prominently in the work of Albert Einstein. As mentioned in the talk by Jiří Bičák at this conference, Einstein formulated the equivalence principle, an essential step on the road to general relativity, during his time in Prague 1911-1912. In this talk, I would like to discuss some aspects of cosmological models. As cosmology is an area of physics where "principles" such as the "cosmological principle" or the "Copernican principle" play a prominent role in motivating the class of models which form part of the current standard model, I will start by comparing the role of the equivalence principle to that of the principles used in cosmology. I will then briefly describe the standard model of cosmology to give a perspective on some mathematical problems and conjectures on cosmological models, which are discussed in the later part of this paper.

  6. Development and initial validation of a novel smoothed-particle hydrodynamics-based simulation model of trabecular bone penetration by metallic implants.

    Science.gov (United States)

    Kulper, Sloan A; Fang, Christian X; Ren, Xiaodan; Guo, Margaret; Sze, Kam Y; Leung, Frankie K L; Lu, William W

    2018-04-01

    A novel computational model of implant migration in trabecular bone was developed using smoothed-particle hydrodynamics (SPH), and an initial validation was performed via correlation with experimental data. Six fresh-frozen human cadaveric specimens measuring 10 × 10 × 20 mm were extracted from the proximal femurs of female donors (mean age of 82 years, range 75-90, BV/TV ratios between 17.88% and 30.49%). These specimens were then penetrated under axial loading to a depth of 10 mm with 5 mm diameter cylindrical indenters bearing either flat or sharp/conical tip designs similar to blunt and self-tapping cancellous screws, assigned in a random manner. SPH models were constructed based on microCT scans (17.33 µm) of the cadaveric specimens. Two initial specimens were used for calibration of material model parameters. The remaining four specimens were then simulated in silico using identical material model parameters. Peak forces varied between 92.0 and 365.0 N in the experiments, and 115.5-352.2 N in the SPH simulations. The concordance correlation coefficient between experimental and simulated pairs was 0.888, with a 95%CI of 0.8832-0.8926, a Pearson ρ (precision) value of 0.9396, and a bias correction factor Cb (accuracy) value of 0.945. Patterns of bone compaction were qualitatively similar; both experimental and simulated flat-tipped indenters produced dense regions of compacted material adjacent to the advancing face of the indenter, while sharp-tipped indenters deposited compacted material along their peripheries. Simulations based on SPH can produce accurate predictions of trabecular bone penetration that are useful for characterizing implant performance under high-strain loading conditions. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1114-1123, 2018. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  7. Cosmological Particle Data Compression in Practice

    Science.gov (United States)

    Zeyen, M.; Ahrens, J.; Hagen, H.; Heitmann, K.; Habib, S.

    2017-12-01

    In cosmological simulations trillions of particles are handled and several terabytes of unstructured particle data are generated in each time step. Transferring this data directly from memory to disk in an uncompressed way results in a massive load on I/O and storage systems. Hence, one goal of domain scientists is to compress the data before storing it to disk while minimizing the loss of information. To prevent reading back uncompressed data from disk, this can be done in an in-situ process. Since the simulation continuously generates data, the available time for the compression of one time step is limited. Therefore, the evaluation of compression techniques has shifted from only focusing on compression rates to include run-times and scalability.In recent years several compression techniques for cosmological data have become available. These techniques can be either lossy or lossless, depending on the technique. For both cases, this study aims to evaluate and compare the state of the art compression techniques for unstructured particle data. This study focuses on the techniques available in the Blosc framework with its multi-threading support, the XZ Utils toolkit with the LZMA algorithm that achieves high compression rates, and the widespread FPZIP and ZFP methods for lossy compressions.For the investigated compression techniques, quantitative performance indicators such as compression rates, run-time/throughput, and reconstruction errors are measured. Based on these factors, this study offers a comprehensive analysis of the individual techniques and discusses their applicability for in-situ compression. In addition, domain specific measures are evaluated on the reconstructed data sets, and the relative error rates and statistical properties are analyzed and compared. Based on this study future challenges and directions in the compression of unstructured cosmological particle data were identified.

  8. Spectroscopic failures in photometric redshift calibration: cosmological biases and survey requirements

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, Carlos E. [KIPAC, Menlo Park; Huterer, Dragan [Michigan U.; Lin, Huan [Fermilab; Busha, Michael T. [Zurich U.; Wechsler, Risa H. [SLAC

    2014-10-11

    We use N-body-spectro-photometric simulations to investigate the impact of incompleteness and incorrect redshifts in spectroscopic surveys to photometric redshift training and calibration and the resulting effects on cosmological parameter estimation from weak lensing shear-shear correlations. The photometry of the simulations is modeled after the upcoming Dark Energy Survey and the spectroscopy is based on a low/intermediate resolution spectrograph with wavelength coverage of 5500{\\AA} < {\\lambda} < 9500{\\AA}. The principal systematic errors that such a spectroscopic follow-up encounters are incompleteness (inability to obtain spectroscopic redshifts for certain galaxies) and wrong redshifts. Encouragingly, we find that a neural network-based approach can effectively describe the spectroscopic incompleteness in terms of the galaxies' colors, so that the spectroscopic selection can be applied to the photometric sample. Hence, we find that spectroscopic incompleteness yields no appreciable biases to cosmology, although the statistical constraints degrade somewhat because the photometric survey has to be culled to match the spectroscopic selection. Unfortunately, wrong redshifts have a more severe impact: the cosmological biases are intolerable if more than a percent of the spectroscopic redshifts are incorrect. Moreover, we find that incorrect redshifts can also substantially degrade the accuracy of training set based photo-z estimators. The main problem is the difficulty of obtaining redshifts, either spectroscopically or photometrically, for objects at z > 1.3. We discuss several approaches for reducing the cosmological biases, in particular finding that photo-z error estimators can reduce biases appreciably.

  9. Phantom cosmologies and fermions

    International Nuclear Information System (INIS)

    Chimento, Luis P; Forte, Monica; Devecchi, Fernando P; Kremer, Gilberto M

    2008-01-01

    Form invariance transformations can be used for constructing phantom cosmologies starting with conventional cosmological models. In this work we reconsider the scalar field case and extend the discussion to fermionic fields, where the 'phantomization' process exhibits a new class of possible accelerated regimes. As an application we analyze the cosmological constant group for a fermionic seed fluid

  10. Cosmological constraints from the convergence 1-point probability distribution

    Energy Technology Data Exchange (ETDEWEB)

    Patton, Kenneth [The Ohio State Univ., Columbus, OH (United States); Blazek, Jonathan [The Ohio State Univ., Columbus, OH (United States); Ecole Polytechnique Federale de Lausanne (EPFL), Versoix (Switzerland); Honscheid, Klaus [The Ohio State Univ., Columbus, OH (United States); Huff, Eric [The Ohio State Univ., Columbus, OH (United States); California Inst. of Technology (CalTech), Pasadena, CA (United States); Melchior, Peter [Princeton Univ., Princeton, NJ (United States); Ross, Ashley J. [The Ohio State Univ., Columbus, OH (United States); Suchyta, Eric D. [The Ohio State Univ., Columbus, OH (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-06-29

    Here, we examine the cosmological information available from the 1-point probability density function (PDF) of the weak-lensing convergence field, utilizing fast l-picola simulations and a Fisher analysis. We find competitive constraints in the Ωm–σ8 plane from the convergence PDF with 188 arcmin2 pixels compared to the cosmic shear power spectrum with an equivalent number of modes (ℓ < 886). The convergence PDF also partially breaks the degeneracy cosmic shear exhibits in that parameter space. A joint analysis of the convergence PDF and shear 2-point function also reduces the impact of shape measurement systematics, to which the PDF is less susceptible, and improves the total figure of merit by a factor of 2–3, depending on the level of systematics. Finally, we present a correction factor necessary for calculating the unbiased Fisher information from finite differences using a limited number of cosmological simulations.

  11. Cosmic Rays Accelerated at Cosmological Shock Waves Renyi Ma1 ...

    Indian Academy of Sciences (India)

    Cosmic Rays Accelerated at Cosmological Shock Waves. Renyi Ma1,2,∗ ... ratio of CR to thermal energy in the ICM and WHIM based on numerical simulations and diffusive shock ... Hence, the nonthermal radiation of CRs may provide us a.

  12. Quantum cosmological models

    International Nuclear Information System (INIS)

    Coule, D H

    2005-01-01

    We contrast the initial condition requirements of various contemporary cosmological models including inflationary and bouncing cosmologies. Canonical quantization of general relativity is used, as a first approximation to full quantum gravity, to determine whether suitable initial conditions are present. Various proposals such as Hartle-Hawking's 'no boundary' or tunnelling boundary conditions are assessed on grounds of naturalness and fine tuning. Alternatively, a quiescent initial state or an initial closed timelike curve 'time machine' is considered. Possible extensions to brane models are also addressed. Further ideas about universe creation from a meta-universe are outlined. Semiclassical and time asymmetry requirements of cosmology are briefly discussed and contrasted with the black-hole final-state proposal. We compare the recent loop quantum cosmology of Bojowald and co-workers with these earlier schemes. A number of possible difficulties and limitations are outlined. (topical review)

  13. A varying-α brane world cosmology

    International Nuclear Information System (INIS)

    Youm, Donam

    2001-08-01

    We study the brane world cosmology in the RS2 model where the electric charge varies with time in the manner described by the varying fine-structure constant theory of Bekenstein. We map such varying electric charge cosmology to the dual variable-speed-of-light cosmology by changing system of units. We comment on cosmological implications for such cosmological models. (author)

  14. Projective relativity, cosmology and gravitation

    International Nuclear Information System (INIS)

    Arcidiacono, G.

    1986-01-01

    This book describes the latest applications of projective geometry to cosmology and gravitation. The contents of the book are; the Poincare group and Special Relativity, the thermodynamics and electromagnetism, general relativity, gravitation and cosmology, group theory and models of universe, the special projective relativity, the Fantappie group and Big-Bang cosmology, a new cosmological projective mechanics, the plasma physics and cosmology, the projective magnetohydrodynamics field, projective relativity and waves propagation, the generalizations of the gravitational field, the general projective relativity, the projective gravitational field, the De Sitter Universe and quantum physics, the conformal relativity and Newton gravitation

  15. Culture et exercice du pouvoir par les femmes dans les sphères de ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Culture et exercice du pouvoir par les femmes dans les sphères de décisions en Afrique de l'Ouest. Cette recherche s'inscrit dans le contexte d'une superposition de deux faits : l'existence d'un arsenal juridique et de dispositions nationales et internationales favorables à une intégration des femmes dans les instances de ...

  16. Cosmology in one dimension: Vlasov dynamics.

    Science.gov (United States)

    Manfredi, Giovanni; Rouet, Jean-Louis; Miller, Bruce; Shiozawa, Yui

    2016-04-01

    Numerical simulations of self-gravitating systems are generally based on N-body codes, which solve the equations of motion of a large number of interacting particles. This approach suffers from poor statistical sampling in regions of low density. In contrast, Vlasov codes, by meshing the entire phase space, can reach higher accuracy irrespective of the density. Here, we perform one-dimensional Vlasov simulations of a long-standing cosmological problem, namely, the fractal properties of an expanding Einstein-de Sitter universe in Newtonian gravity. The N-body results are confirmed for high-density regions and extended to regions of low matter density, where the N-body approach usually fails.

  17. Classical and quantum cosmology

    CERN Document Server

    Calcagni, Gianluca

    2017-01-01

    This comprehensive textbook is devoted to classical and quantum cosmology, with particular emphasis on modern approaches to quantum gravity and string theory and on their observational imprint. It covers major challenges in theoretical physics such as the big bang and the cosmological constant problem. An extensive review of standard cosmology, the cosmic microwave background, inflation and dark energy sets the scene for the phenomenological application of all the main quantum-gravity and string-theory models of cosmology. Born of the author's teaching experience and commitment to bridging the gap between cosmologists and theoreticians working beyond the established laws of particle physics and general relativity, this is a unique text where quantum-gravity approaches and string theory are treated on an equal footing. As well as introducing cosmology to undergraduate and graduate students with its pedagogical presentation and the help of 45 solved exercises, this book, which includes an ambitious bibliography...

  18. Wormholes and cosmology

    International Nuclear Information System (INIS)

    Klebanov, I.; Susskind, L.

    1988-10-01

    We review Coleman's wormhole mechanism for the vanishing of the cosmological constant. We find a discouraging result that wormholes much bigger than the Planck size are generated. We also consider the implications of the wormhole theory for cosmology. 7 refs., 2 figs

  19. Axions in inflationary cosmology

    International Nuclear Information System (INIS)

    Linde, A.

    1991-01-01

    The problem of the cosmological constraints on the axion mass is re-examined. It is argued that in the context of inflationary cosmology the constraint m a > or approx.10 -5 eV can be avoided even when the axion perturbations produced during inflation are taken into account. It is shown also that in most axion models the effective parameter f a rapidly changes during inflation. This modifies some earlier statements concerning isothermal perturbations in the axion cosmology. A hybrid inflation scenario is proposed which combines some advantages of chaotic inflation with specific features of new and/or extended inflation. Its implications for the axion cosmology are discussed. (orig.)

  20. Testing cosmology with galaxy clusters

    DEFF Research Database (Denmark)

    Rapetti Serra, David Angelo

    2011-01-01

    PASCOS 2011 will be held in Cambridge UK. The conference will be hosted by the Centre for Theoretical Cosmology (DAMTP) at the Mathematical Sciences site in the University of Cambridge. The aim of the conference is to explore and develop synergies between particle physics, string theory and cosmo......PASCOS 2011 will be held in Cambridge UK. The conference will be hosted by the Centre for Theoretical Cosmology (DAMTP) at the Mathematical Sciences site in the University of Cambridge. The aim of the conference is to explore and develop synergies between particle physics, string theory...... and cosmology. There will be an emphasis on timely interdisciplinary topics: • critical tests of inflationary cosmology • advances in fundamental cosmology • applications of string theory (AdS/CMT) • particle and string phenomenology • new experimental particle physics results • and cosmological probes...

  1. Introduction to cosmology

    CERN Document Server

    Ryden, Barbara

    2017-01-01

    This second edition of Introduction to Cosmology is an exciting update of an award-winning textbook. It is aimed primarily at advanced undergraduate students in physics and astronomy, but is also useful as a supplementary text at higher levels. It explains modern cosmological concepts, such as dark energy, in the context of the Big Bang theory. Its clear, lucid writing style, with a wealth of useful everyday analogies, makes it exceptionally engaging. Emphasis is placed on the links between theoretical concepts of cosmology and the observable properties of the universe, building deeper physical insights in the reader. The second edition includes recent observational results, fuller descriptions of special and general relativity, expanded discussions of dark energy, and a new chapter on baryonic matter that makes up stars and galaxies. It is an ideal textbook for the era of precision cosmology in the accelerating universe.

  2. Everyone's guide to cosmology

    International Nuclear Information System (INIS)

    Davies, P.

    1991-01-01

    The main concepts of cosmology are discussed, and some of the misconceptions are clarified. The features of big bang cosmology are examined, and it is noted that the existence of the cosmic background radiation provides welcome confirmation of the big bang theory. Calculations of relative abundances of the elements conform with observations, further strengthening the confidence in the basic ideas of big bang cosmology

  3. Cosmological applications in Kaluza—Klein theory

    International Nuclear Information System (INIS)

    Wanas, M.I.; Nashed, Gamal G. L.; Nowaya, A.A.

    2012-01-01

    The field equations of Kaluza—Klein (KK) theory have been applied in the domain of cosmology. These equations are solved for a flat universe by taking the gravitational and the cosmological constants as a function of time t. We use Taylor's expansion of cosmological function, Λ(t), up to the first order of the time t. The cosmological parameters are calculated and some cosmological problems are discussed. (geophysics, astronomy, and astrophysics)

  4. Conformal symmetry and holographic cosmology

    NARCIS (Netherlands)

    Bzowski, A.W.

    2013-01-01

    This thesis presents a novel approach to cosmology using gauge/gravity duality. Analysis of the implications of conformal invariance in field theories leads to quantitative cosmological predictions which are in agreement with current data. Furthermore, holographic cosmology extends the theory of

  5. The cosmological term and a modified Brans-Dicke cosmology

    International Nuclear Information System (INIS)

    Endo, M.; Fukui, T.

    1977-01-01

    Adding the cosmological term Λ, which is assumed to be variable in this paper, to the Brans-Dicke Lagrangian, an attempt is made to understand the meaning of the term and to relate it to the mass of the universe. The Dirac large-number hypothesis is considered, applying the results obtained from the application of the present theory to a uniform cosmological model. (author)

  6. Evolution of N/O ratios in galaxies from cosmological hydrodynamical simulations

    Science.gov (United States)

    Vincenzo, Fiorenzo; Kobayashi, Chiaki

    2018-04-01

    We study the redshift evolution of the gas-phase O/H and N/O abundances, both (i) for individual ISM regions within single spatially-resolved galaxies and (ii) when dealing with average abundances in the whole ISM of many unresolved galaxies. We make use of a cosmological hydrodynamical simulation including detailed chemical enrichment, which properly takes into account the variety of different stellar nucleosynthetic sources of O and N in galaxies. We identify 33 galaxies in the simulation, lying within dark matter halos with virial mass in the range 1011 ≤ MDM ≤ 1013 M⊙ and reconstruct how they evolved with redshift. For the local and global measurements, the observed increasing trend of N/O at high O/H can be explained, respectively, (i) as the consequence of metallicity gradients which have settled in the galaxy interstellar medium, where the innermost galactic regions have the highest O/H abundances and the highest N/O ratios, and (ii) as the consequence of an underlying average mass-metallicity relation that galaxies obey as they evolve across cosmic epochs, where - at any redshift - less massive galaxies have lower average O/H and N/O ratios than the more massive ones. We do not find a strong dependence on the environment. For both local and global relations, the predicted N/O-O/H relation is due to the mostly secondary origin of N in stars. We also predict that the O/H and N/O gradients in the galaxy interstellar medium gradually flatten as functions of redshift, with the average N/O ratios being strictly coupled with the galaxy star formation history. Because N production strongly depends on O abundances, we obtain a universal relation for the N/O-O/H abundance diagram whether we consider average abundances of many unresolved galaxies put together or many abundance measurements within a single spatially-resolved galaxy.

  7. iCosmo: an interactive cosmology package

    Science.gov (United States)

    Refregier, A.; Amara, A.; Kitching, T. D.; Rassat, A.

    2011-04-01

    Aims: The interactive software package iCosmo, designed to perform cosmological calculations is described. Methods: iCosmo is a software package to perfom interactive cosmological calculations for the low-redshift universe. Computing distance measures, the matter power spectrum, and the growth factor is supported for any values of the cosmological parameters. It also computes derived observed quantities for several cosmological probes such as cosmic shear, baryon acoustic oscillations, and type Ia supernovae. The associated errors for these observable quantities can be derived for customised surveys, or for pre-set values corresponding to current or planned instruments. The code also allows for calculation of cosmological forecasts with Fisher matrices, which can be manipulated to combine different surveys and cosmological probes. The code is written in the IDL language and thus benefits from the convenient interactive features and scientific libraries available in this language. iCosmo can also be used as an engine to perform cosmological calculations in batch mode, and forms a convenient adaptive platform for the development of further cosmological modules. With its extensive documentation, it may also serve as a useful resource for teaching and for newcomers to the field of cosmology. Results: The iCosmo package is described with a number of examples and command sequences. The code is freely available with documentation at http://www.icosmo.org, along with an interactive web interface and is part of the Initiative for Cosmology, a common archive for cosmological resources.

  8. Low-redshift Lyman limit systems as diagnostics of cosmological inflows and outflows

    Science.gov (United States)

    Hafen, Zachary; Faucher-Giguère, Claude-André; Anglés-Alcázar, Daniel; Kereš, Dušan; Feldmann, Robert; Chan, T. K.; Quataert, Eliot; Murray, Norman; Hopkins, Philip F.

    2017-08-01

    We use cosmological hydrodynamic simulations with stellar feedback from the FIRE (Feedback In Realistic Environments) project to study the physical nature of Lyman limit systems (LLSs) at z ≤ 1. At these low redshifts, LLSs are closely associated with dense gas structures surrounding galaxies, such as galactic winds, dwarf satellites and cool inflows from the intergalactic medium. Our analysis is based on 14 zoom-in simulations covering the halo mass range Mh ≈ 109-1013 M⊙ at z = 0, which we convolve with the dark matter halo mass function to produce cosmological statistics. We find that the majority of cosmologically selected LLSs are associated with haloes in the mass range 1010 ≲ Mh ≲ 1012 M⊙. The incidence and H I column density distribution of simulated absorbers with columns in the range 10^{16.2} ≤ N_{H I} ≤ 2× 10^{20} cm-2 are consistent with observations. High-velocity outflows (with radial velocity exceeding the halo circular velocity by a factor of ≳ 2) tend to have higher metallicities ([X/H] ˜ -0.5) while very low metallicity ([X/H] standard deviation) [X/H] = -0.9 (0.4) and does not show significant evidence for bimodality, in contrast to recent observational studies, but consistent with LLSs arising from haloes with a broad range of masses and metallicities.

  9. Cosmology solved? Maybe

    International Nuclear Information System (INIS)

    Turner, Michael S.

    1999-01-01

    For two decades the hot big-bang model as been referred to as the standard cosmology - and for good reason. For just as long cosmologists have known that there are fundamental questions that are not answered by the standard cosmology and point to a grander theory. The best candidate for that grander theory is inflation + cold dark matter. It holds that the Universe is flat, that slowly moving elementary particles left over from the earliest moments provide the cosmic infrastructure, and that the primeval density inhomogeneities that seed all the structure arose from quantum fluctuations. There is now prima facie evidence that supports two basic tenets of this paradigm. An avalanche of high-quality cosmological observations will soon make this case stronger or will break it. Key questions remain to be answered; foremost among them are: identification and detection of the cold dark matter particles and elucidation of the dark-energy component. These are exciting times in cosmology!

  10. Cosmology solved? Maybe

    Energy Technology Data Exchange (ETDEWEB)

    Turner, Michael S

    1999-03-01

    For two decades the hot big-bang model as been referred to as the standard cosmology - and for good reason. For just as long cosmologists have known that there are fundamental questions that are not answered by the standard cosmology and point to a grander theory. The best candidate for that grander theory is inflation + cold dark matter. It holds that the Universe is flat, that slowly moving elementary particles left over from the earliest moments provide the cosmic infrastructure, and that the primeval density inhomogeneities that seed all the structure arose from quantum fluctuations. There is now prima facie evidence that supports two basic tenets of this paradigm. An avalanche of high-quality cosmological observations will soon make this case stronger or will break it. Key questions remain to be answered; foremost among them are: identification and detection of the cold dark matter particles and elucidation of the dark-energy component. These are exciting times in cosmology{exclamation_point}.

  11. Partial rip scenario - a cosmology with a growing cosmological term

    International Nuclear Information System (INIS)

    Stefancic, H.

    2004-01-01

    A cosmology with the growing cosmological term is considered. If there is no exchange of energy between vacuum and matter components, the requirement of general covariance implies the time dependence of the gravitational constant G. Irrespectively of the exact functional form of the cosmological term growth, the universe ends in a de Sitter regime with a constant asymptotic Λ, but vanishing G. Although there is no divergence of the scale factor in finite time, such as in the 'Big Rip' scenario, gravitationally bound systems eventually become unbound. In the case of systems bound by non-gravitational forces, there is no unbounding effect, as the asymptotic Λ is insufficiently large to disturb these systems

  12. Resolved granular debris-flow simulations with a coupled SPH-DCDEM model

    Science.gov (United States)

    Birjukovs Canelas, Ricardo; Domínguez, José M.; Crespo, Alejandro J. C.; Gómez-Gesteira, Moncho; Ferreira, Rui M. L.

    2016-04-01

    Debris flows represent some of the most relevant phenomena in geomorphological events. Due to the potential destructiveness of such flows, they are the target of a vast amount of research (Takahashi, 2007 and references therein). A complete description of the internal processes of a debris-flow is however still an elusive achievement, explained by the difficulty of accurately measuring important quantities in these flows and developing a comprehensive, generalized theoretical framework capable of describing them. This work addresses the need for a numerical model applicable to granular-fluid mixtures featuring high spatial and temporal resolution, thus capable of resolving the motion of individual particles, including all interparticle contacts. This corresponds to a brute-force approach: by applying simple interaction laws at local scales the macro-scale properties of the flow should be recovered by upscaling. This methodology effectively bypasses the complexity of modelling the intermediate scales by resolving them directly. The only caveat is the need of high performance computing, a demanding but engaging research challenge. The DualSPHysics meshless numerical implementation, based on Smoothed Particle Hydrodynamics (SPH), is expanded with a Distributed Contact Discrete Element Method (DCDEM) in order to explicitly solve the fluid and the solid phase. The model numerically solves the Navier-Stokes and continuity equations for the liquid phase and Newton's motion equations for solid bodies. The interactions between solids are modelled with classical DEM approaches (Kruggel-Emden et al, 2007). Among other validation tests, an experimental set-up for stony debris flows in a slit check dam is reproduced numerically, where solid material is introduced trough a hopper assuring a constant solid discharge for the considered time interval. With each sediment particle undergoing tens of possible contacts, several thousand time-evolving contacts are efficiently treated

  13. Axion cold dark matter in nonstandard cosmologies

    International Nuclear Information System (INIS)

    Visinelli, Luca; Gondolo, Paolo

    2010-01-01

    We study the parameter space of cold dark matter axions in two cosmological scenarios with nonstandard thermal histories before big bang nucleosynthesis: the low-temperature reheating (LTR) cosmology and the kination cosmology. If the Peccei-Quinn symmetry breaks during inflation, we find more allowed parameter space in the LTR cosmology than in the standard cosmology and less in the kination cosmology. On the contrary, if the Peccei-Quinn symmetry breaks after inflation, the Peccei-Quinn scale is orders of magnitude higher than standard in the LTR cosmology and lower in the kination cosmology. We show that the axion velocity dispersion may be used to distinguish some of these nonstandard cosmologies. Thus, axion cold dark matter may be a good probe of the history of the Universe before big bang nucleosynthesis.

  14. PowderSim: Lagrangian Discrete and Mesh-Free Continuum Simulation Code for Cohesive Soils

    Science.gov (United States)

    Johnson, Scott; Walton, Otis; Settgast, Randolph

    2013-01-01

    PowderSim is a calculation tool that combines a discrete-element method (DEM) module, including calibrated interparticle-interaction relationships, with a mesh-free, continuum, SPH (smoothed-particle hydrodynamics) based module that utilizes enhanced, calibrated, constitutive models capable of mimicking both large deformations and the flow behavior of regolith simulants and lunar regolith under conditions anticipated during in situ resource utilization (ISRU) operations. The major innovation introduced in PowderSim is to use a mesh-free method (SPH-based) with a calibrated and slightly modified critical-state soil mechanics constitutive model to extend the ability of the simulation tool to also address full-scale engineering systems in the continuum sense. The PowderSim software maintains the ability to address particle-scale problems, like size segregation, in selected regions with a traditional DEM module, which has improved contact physics and electrostatic interaction models.

  15. Cosmology and the early universe

    CERN Document Server

    Di Bari, Pasquale

    2018-01-01

    This book discusses cosmology from both an observational and a strong theoretical perspective. The first part focuses on gravitation, notably the expansion of the universe and determination of cosmological parameters, before moving onto the main emphasis of the book, the physics of the early universe, and the connections between cosmological models and particle physics. Readers will gain a comprehensive account of cosmology and the latest observational results, without requiring prior knowledge of relativistic theories, making the text ideal for students.

  16. Antimatter and cosmology

    International Nuclear Information System (INIS)

    Stecker, F.W.

    1989-01-01

    This paper discusses two aspects of antimatter and cosmology: 1. the fundamental cosmological question as to whether antimatter plays an equally important role as matter in the universe (overall baryon symmetry), and 2. cosmic-ray antimatter tests for the nature of the dark matter in the universe. (orig.)

  17. The SLUGGS survey: a comparison of total-mass profiles of early-type galaxies from observations and cosmological simulations, to ˜4 effective radii

    Science.gov (United States)

    Bellstedt, Sabine; Forbes, Duncan A.; Romanowsky, Aaron J.; Remus, Rhea-Silvia; Stevens, Adam R. H.; Brodie, Jean P.; Poci, Adriano; McDermid, Richard; Alabi, Adebusola; Chevalier, Leonie; Adams, Caitlin; Ferré-Mateu, Anna; Wasserman, Asher; Pandya, Viraj

    2018-06-01

    We apply the Jeans Anisotropic Multi-Gaussian Expansion dynamical modelling method to SAGES Legacy Unifying Globulars and GalaxieS (SLUGGS) survey data of early-type galaxies in the stellar mass range 1010 physical processes shaping the mass distributions of galaxies in cosmological simulations are still incomplete. For galaxies with M* > 1010.7 M⊙ in the Magneticum simulations, we identify a significant anticorrelation between total-mass density profile slopes and the fraction of stellar mass formed ex situ (i.e. accreted), whereas this anticorrelation is weaker for lower stellar masses, implying that the measured total-mass density slopes for low-mass galaxies are less likely to be determined by merger activity.

  18. Cosmological abundance of the QCD axion coupled to hidden photons

    Science.gov (United States)

    Kitajima, Naoya; Sekiguchi, Toyokazu; Takahashi, Fuminobu

    2018-06-01

    We study the cosmological evolution of the QCD axion coupled to hidden photons. For a moderately strong coupling, the motion of the axion field leads to an explosive production of hidden photons by tachyonic instability. We use lattice simulations to evaluate the cosmological abundance of the QCD axion. In doing so, we incorporate the backreaction of the produced hidden photons on the axion dynamics, which becomes significant in the non-linear regime. We find that the axion abundance is suppressed by at most O (102) for the decay constant fa =1016GeV, compared to the case without the coupling. For a sufficiently large coupling, the motion of the QCD axion becomes strongly damped, and as a result, the axion abundance is enhanced. Our results show that the cosmological upper bound on the axion decay constant can be relaxed by a few hundred for a certain range of the coupling to hidden photons.

  19. Cosmic Explosions, Life in the Universe, and the Cosmological Constant

    Science.gov (United States)

    Piran, Tsvi; Jimenez, Raul; Cuesta, Antonio J.; Simpson, Fergus; Verde, Licia

    2016-02-01

    Gamma-ray bursts (GRBs) are copious sources of gamma rays whose interaction with a planetary atmosphere can pose a threat to complex life. Using recent determinations of their rate and probability of causing massive extinction, we explore what types of universes are most likely to harbor advanced forms of life. We use cosmological N -body simulations to determine at what time and for what value of the cosmological constant (Λ ) the chances of life being unaffected by cosmic explosions are maximized. Life survival to GRBs favors Lambda-dominated universes. Within a cold dark matter model with a cosmological constant, the likelihood of life survival to GRBs is governed by the value of Λ and the age of the Universe. We find that we seem to live in a favorable point in this parameter space that minimizes the exposure to cosmic explosions, yet maximizes the number of main sequence (hydrogen-burning) stars around which advanced life forms can exist.

  20. Cosmic Explosions, Life in the Universe, and the Cosmological Constant.

    Science.gov (United States)

    Piran, Tsvi; Jimenez, Raul; Cuesta, Antonio J; Simpson, Fergus; Verde, Licia

    2016-02-26

    Gamma-ray bursts (GRBs) are copious sources of gamma rays whose interaction with a planetary atmosphere can pose a threat to complex life. Using recent determinations of their rate and probability of causing massive extinction, we explore what types of universes are most likely to harbor advanced forms of life. We use cosmological N-body simulations to determine at what time and for what value of the cosmological constant (Λ) the chances of life being unaffected by cosmic explosions are maximized. Life survival to GRBs favors Lambda-dominated universes. Within a cold dark matter model with a cosmological constant, the likelihood of life survival to GRBs is governed by the value of Λ and the age of the Universe. We find that we seem to live in a favorable point in this parameter space that minimizes the exposure to cosmic explosions, yet maximizes the number of main sequence (hydrogen-burning) stars around which advanced life forms can exist.

  1. The Bright Universe Cosmology

    International Nuclear Information System (INIS)

    Surdin, M.

    1980-01-01

    It is shown that viewed from the 'outside', our universe is a black hole. Hence the 'inside' cosmology considered is termed as the Bright Universe Cosmology. The model proposed avoids the singularities of cosmologies of the Big Bang variety, it gives a good account of the redshifts, the cosmic background radiation, the number counts; it also gives a satisfactory explanation of the 'large numbers coincidence' and of the variation in time of fundamental constants. (Auth.)

  2. Dark matter direct detection signals inferred from a cosmological N-body simulation with baryons

    International Nuclear Information System (INIS)

    Ling, F.-S.; Nezri, E.; Athanassoula, E.; Teyssier, R.

    2010-01-01

    We extract at redshift z = 0 a Milky Way sized object including gas, stars and dark matter (DM) from a recent, high-resolution cosmological N-body simulation with baryons. Its resolution is sufficient to witness the formation of a rotating disk and bulge at the center of the halo potential, therefore providing a realistic description of the birth and the evolution of galactic structures in the ΛCDM cosmology paradigm. The phase-space structure of the central galaxy reveals that, throughout a thick region, the dark halo is co-rotating on average with the stellar disk. At the Earth's location, the rotating component, sometimes called dark disk in the literature, is characterized by a minimum lag velocity v lag ≅ 75 km/s, in which case it contributes to around 25% of the total DM local density, whose value is ρ DM ≅ 0.37GeV/cm 3 . The velocity distributions also show strong deviations from pure Gaussian and Maxwellian distributions, with a sharper drop of the high velocity tail. We give a detailed study of the impact of these features on the predictions for DM signals in direct detection experiments. In particular, the question of whether the modulation signal observed by DAMA is or is not excluded by limits set by other experiments (CDMS, XENON and CRESST...) is re-analyzed and compared to the case of a standard Maxwellian halo. We consider spin-independent interactions for both the elastic and the inelastic scattering scenarios. For the first time, we calculate the allowed regions for DAMA and the exclusion limits of other null experiments directly from the velocity distributions found in the simulation. We then compare these results with the predictions of various analytical distributions. We find that the compatibility between DAMA and the other experiments is improved. In the elastic scenario, the DAMA modulation signal is slightly enhanced in the so-called channeling region, as a result of several effects that include a departure from a Maxwellian

  3. Friedmann cosmology with a cosmological 'constant' in the scale covariant theory

    International Nuclear Information System (INIS)

    Beesham, A.

    1986-01-01

    Homogeneous isotropic cosmologies in the presence of a cosmological 'constant' are studied in the scale covariant theory. A class of solutions is obtained for kappa = 0 for models filled with dust, radiation or stiff matter. For kappa not= 0, solutions are presented for the radiation models. (author)

  4. Improved constraints on cosmological parameters from SNIa data

    International Nuclear Information System (INIS)

    March, M.C.; Trotta, R.

    2011-02-01

    We present a new method based on a Bayesian hierarchical model to extract constraints on cosmological parameters from SNIa data obtained with the SALT-II lightcurve fitter. We demonstrate with simulated data sets that our method delivers considerably tighter statistical constraints on the cosmological parameters and that it outperforms the usual χ 2 approach 2/3 of the times. As a further benefit, a full posterior probability distribution for the dispersion of the intrinsic magnitude of SNe is obtained. We apply this method to recent SNIa data and find that it improves statistical constraints on cosmological parameters from SNIa data alone by about 40% w.r.t. the standard approach. From the combination of SNIa, CMB and BAO data we obtain Ω m =0.29±0.01, Ω Λ =0.72±0.01 (assuming w=-1) and Ω m =0.28±0.01, w=-0.90±0.04 (assuming flatness; statistical uncertainties only). We constrain the intrinsic dispersion of the B-band magnitude of the SNIa population, obtaining σ μ int =0.13±0.01 [mag]. Applications to systematic uncertainties will be discussed in a forthcoming paper. (orig.)

  5. Improved constraints on cosmological parameters from SNIa data

    Energy Technology Data Exchange (ETDEWEB)

    March, M.C.; Trotta, R. [Imperial College, London (United Kingdom). Astrophysics Group; Berkes, P. [Brandeis Univ., Waltham (United States). Volen Centre for Complex Systems; Starkman, G.D. [Case Western Reserve Univ., Cleveland (United States). CERCA and Dept. of Physics; Vaudrevange, P.M. [Case Western Reserve Univ., Cleveland (United States). CERCA and Dept. of Physics; Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2011-02-15

    We present a new method based on a Bayesian hierarchical model to extract constraints on cosmological parameters from SNIa data obtained with the SALT-II lightcurve fitter. We demonstrate with simulated data sets that our method delivers considerably tighter statistical constraints on the cosmological parameters and that it outperforms the usual {chi}{sup 2} approach 2/3 of the times. As a further benefit, a full posterior probability distribution for the dispersion of the intrinsic magnitude of SNe is obtained. We apply this method to recent SNIa data and find that it improves statistical constraints on cosmological parameters from SNIa data alone by about 40% w.r.t. the standard approach. From the combination of SNIa, CMB and BAO data we obtain {omega}{sub m}=0.29{+-}0.01, {omega}{sub {lambda}}=0.72{+-}0.01 (assuming w=-1) and {omega}{sub m}=0.28{+-}0.01, w=-0.90{+-}0.04 (assuming flatness; statistical uncertainties only). We constrain the intrinsic dispersion of the B-band magnitude of the SNIa population, obtaining {sigma}{sub {mu}}{sup int}=0.13{+-}0.01 [mag]. Applications to systematic uncertainties will be discussed in a forthcoming paper. (orig.)

  6. Cosmological Reflection of Particle Symmetry

    Directory of Open Access Journals (Sweden)

    Maxim Khlopov

    2016-08-01

    Full Text Available The standard model involves particle symmetry and the mechanism of its breaking. Modern cosmology is based on inflationary models with baryosynthesis and dark matter/energy, which involves physics beyond the standard model. Studies of the physical basis of modern cosmology combine direct searches for new physics at accelerators with its indirect non-accelerator probes, in which cosmological consequences of particle models play an important role. The cosmological reflection of particle symmetry and the mechanisms of its breaking are the subject of the present review.

  7. Cosmological Probes for Supersymmetry

    Directory of Open Access Journals (Sweden)

    Maxim Khlopov

    2015-05-01

    Full Text Available The multi-parameter character of supersymmetric dark-matter models implies the combination of their experimental studies with astrophysical and cosmological probes. The physics of the early Universe provides nontrivial effects of non-equilibrium particles and primordial cosmological structures. Primordial black holes (PBHs are a profound signature of such structures that may arise as a cosmological consequence of supersymmetric (SUSY models. SUSY-based mechanisms of baryosynthesis can lead to the possibility of antimatter domains in a baryon asymmetric Universe. In the context of cosmoparticle physics, which studies the fundamental relationship of the micro- and macro-worlds, the development of SUSY illustrates the main principles of this approach, as the physical basis of the modern cosmology provides cross-disciplinary tests in physical and astronomical studies.

  8. Measuring the cosmological constant through the Lyman-alpha forest using the Alcock-Paczynski test

    Science.gov (United States)

    Lin, Wen-Ching

    An important topic in cosmology is the determination of the energy densities of the major components of the Universe---OB, O DM and OΛ. Among these, the cosmological constant OΛ, which associates with the vacuum energy of our universe, draws specific attentions for its importance in fundamental particle physics. The Lyalpha forest QSO spectra are observationally available from z ˜ 0 to z ˜ 4. Recently the concept of performing the Alcock-Paczynski test on the Lyalpha forest to determine the cosmological constant has been proposed. This motivates us to develop a methodology incorporating sophisticated cosmological hydrodynamics simulations including these effects to implement the AP test and to perform an accurate measurement on the cosmological constant O Λ. To manipulate the data from paired QSO spectra with different angular separations, we propose an explicit method based on the maximum likelihood estimation. We use this method to implement the AP test and demonstrate the whole procedure based on our numerical simulations. Using mock pair spectra, we estimate that more than 40 pairs are required to derive an accurate value of OΛ due to the impact of cosmic variance. The degeneracy of other cosmological parameters is an important topic for this project. We examine two other parameters, sigma8 and n, the initial power spectrum amplitude and index, whose value are not consistently derived through other means. We conclude that when the uncertainties of these two parameters are around 10%--20%, the resulting bias in O Λ is less than 10%. Using a small sample of currently available QSO pairs, we have derived OΛ = 0.65+0.39-1.16 . Our preliminary result encourges us to take further steps on this project.

  9. Current cosmology

    International Nuclear Information System (INIS)

    Zeldovich, Ya.

    1984-01-01

    The knowledge is summed up of contemporary cosmology on the universe and its development resulting from a great number of highly sensitive observations and the application of contemporary physical theories to the entire universe. The questions are assessed of mass density in the universe, the structure and origin of the universe, its baryon asymmetry and the quantum explanation of the origin of the universe. Physical problems are presented which should be resolved for the future development of cosmology. (Ha)

  10. Particle cosmology

    CERN Multimedia

    CERN. Geneva

    2007-01-01

    The understanding of the Universe at the largest and smallest scales traditionally has been the subject of cosmology and particle physics, respectively. Studying the evolution of the Universe connects today's large scales with the tiny scales in the very early Universe and provides the link between the physics of particles and of the cosmos. This series of five lectures aims at a modern and critical presentation of the basic ideas, methods, models and observations in today's particle cosmology.

  11. Perspectives in cosmology

    International Nuclear Information System (INIS)

    Vilenkin, Alexander

    2010-01-01

    The n ew standard cosmology , based on the theory of inflation, has very impressive observational support. I review some outstanding problems of the new cosmology and the global view of the universe - the multiverse - that it suggests. I focus in particular on prospects for further observational tests of inflation and of the multiverse.

  12. Quark matter and cosmology

    International Nuclear Information System (INIS)

    Schramm, D.N.; Fields, B.; Thomas, D.

    1992-01-01

    The possible implications of the quark-hadron transition for cosmology are explored. Possible surviving signatures are discussed. In particular, the possibility of generating a dark matter candidate such as strange nuggets or planetary mass black holes is noted. Much discussion is devoted to the possible role of the transition for cosmological nucleosynthesis. It is emphasized that even an optimized first order phase transition will not significantly alter the nucleosynthesis constraints on the cosmological baryon density nor on neutrino counting. However, it is noted that Be and B observations in old stars may eventually be able to be a signature of a cosmologically significant quark-hadron transition. It is pointed out that the critical point in this regard is whether the observed B/Be ratio can be produced by spallation processes or requires cosmological input. Spallation cannot produce a B/Be ratio below 7.6. A supporting signature would be Be and B ratios to oxygen that greatly exceed galactic values. At present, all data is still consistent with a spallagenic origin

  13. Standard cosmological evolution in the f(R) model to Kaluza-Klein cosmology

    International Nuclear Information System (INIS)

    Aghmohammadi, A; Abolhassani, M R; Saaidi, Kh; Vajdi, A

    2009-01-01

    In this paper, using f(R) theory of gravity we explicitly calculate cosmological evolution in the presence of a perfect fluid source in four- and five-dimensional space-time in which this cosmological evolution in self-creation is presented by Reddy et al (2009 Int. J. Theor. Phys. 48 10). An exact cosmological model is presented using a relation between Einstein's gravity field equation components due to a metric with the same component from f(R) theory of gravity. Some physics and kinematical properties of the model are also discussed.

  14. An introduction to modern cosmology

    CERN Document Server

    Liddle, Andrew

    2015-01-01

    An Introduction to Modern Cosmology Third Edition is an accessible account of modern cosmological ideas. The Big Bang Cosmology is explored, looking at its observational successes in explaining the expansion of the Universe, the existence and properties of the cosmic microwave background, and the origin of light elements in the universe. Properties of the very early Universe are also covered, including the motivation for a rapid period of expansion known as cosmological inflation. The third edition brings this established undergraduate textbook up-to-date with the rapidly evolving observation

  15. Perturbations in loop quantum cosmology

    International Nuclear Information System (INIS)

    Nelson, W; Agullo, I; Ashtekar, A

    2014-01-01

    The era of precision cosmology has allowed us to accurately determine many important cosmological parameters, in particular via the CMB. Confronting Loop Quantum Cosmology with these observations provides us with a powerful test of the theory. For this to be possible, we need a detailed understanding of the generation and evolution of inhomogeneous perturbations during the early, quantum gravity phase of the universe. Here, we have described how Loop Quantum Cosmology provides a completion of the inflationary paradigm, that is consistent with the observed power spectra of the CMB

  16. An introduction to cosmology

    CERN Document Server

    Kunze, Kerstin E.

    2016-12-20

    Cosmology is becoming an important tool to test particle physics models. We provide an overview of the standard model of cosmology with an emphasis on the observations relevant for testing fundamental physics.

  17. Cosmological horizons, quintessence and string theory

    International Nuclear Information System (INIS)

    Kaloper, Nemanja

    2003-01-01

    String theory is presently the best candidate for a quantum theory of gravity unified with other forces. It is natural to hope that applications of string theory to cosmology may shed new light on the cosmological conundra, such as singularities, initial conditions, cosmological constant problem and the origin of inflation. Before we can apply string theory to cosmology, there are important conceptual and practical problems which must be addressed. We have reviewed here some of these problems, related to how one defines string theory in a cosmological setting. (author)

  18. Quintessence and the cosmological constant

    International Nuclear Information System (INIS)

    Doran, M.; Wetterich, C.

    2003-01-01

    Quintessence -- the energy density of a slowly evolving scalar field -- may constitute a dynamical form of the homogeneous dark energy in the universe. We review the basic idea in the light of the cosmological constant problem. Cosmological observations or a time variation of fundamental 'constants' can distinguish quintessence from a cosmological constant

  19. Galactic Angular Momentum in Cosmological Zoom-in Simulations. I. Disk and Bulge Components and the Galaxy-Halo Connection

    Science.gov (United States)

    Sokołowska, Aleksandra; Capelo, Pedro R.; Fall, S. Michael; Mayer, Lucio; Shen, Sijing; Bonoli, Silvia

    2017-02-01

    We investigate the angular momentum evolution of four disk galaxies residing in Milky-Way-sized halos formed in cosmological zoom-in simulations with various sub-grid physics and merging histories. We decompose these galaxies, kinematically and photometrically, into their disk and bulge components. The simulated galaxies and their components lie on the observed sequences in the j *-M * diagram, relating the specific angular momentum and mass of the stellar component. We find that galaxies in low-density environments follow the relation {j}* \\propto {M}* α past major mergers, with α ˜ 0.6 in the case of strong feedback, when bulge-to-disk ratios are relatively constant, and α ˜ 1.4 in the other cases, when secular processes operate on shorter timescales. We compute the retention factors (I.e., the ratio of the specific angular momenta of stars and dark matter) for both disks and bulges and show that they vary relatively slowly after averaging over numerous but brief fluctuations. For disks, the retention factors are usually close to unity, while for bulges, they are a few times smaller. Our simulations therefore indicate that galaxies and their halos grow in a quasi-homologous way.

  20. Dissipative N-body simulations of the formation of single galaxies in a cold dark-matter cosmology

    International Nuclear Information System (INIS)

    Ewell, M.W. Jr.

    1988-01-01

    The details of an N-body code designed specifically to study the collapse of a single protogalaxy are presented. This code uses a spherical harmonic expansion to model the gravity and a sticky-particle algorithm to model the gas physics. It includes external tides and cosmologically realistic boundary conditions. The results of twelve simulations using this code are given. The initial conditions for these runs use mean-density profiles and r.m.s. quadrupoles and tides taken from the CDM power spectrum. The simulations start when the center of the perturbation first goes nonlinear, and continue until a redshift Z ∼ 1-2. The resulting rotation curves are approximately flat out to 100 kpc, but do show some structure. The circular velocity is 200 km/sec around a 3σ peak. The final systems have λ approx-equal .03. The angular momentum per unit mass of the baryons implies disk scale lengths of 1-3 kpc. The tidal forces are strong enough to profoundly influence the collapse geometry. In particular, the usual assumption, that tidal torques produce a system approximately in solid-body rotation, is shown to be seriously in error

  1. Bose-Einstein condensate haloes embedded in dark energy

    Science.gov (United States)

    Membrado, M.; Pacheco, A. F.

    2018-04-01

    Context. We have studied clusters of self-gravitating collisionless Newtonian bosons in their ground state and in the presence of the cosmological constant to model dark haloes of dwarf spheroidal (dSph) galaxies. Aim. We aim to analyse the influence of the cosmological constant on the structure of these systems. Observational data of Milky Way dSph galaxies allow us to estimate the boson mass. Methods: We obtained the energy of the ground state of the cluster in the Hartree approximation by solving a variational problem in the particle density. We have also developed and applied the virial theorem. Dark halo models were tested in a sample of 19 galaxies. Galaxy radii, 3D deprojected half-light radii, mass enclosed within them, and luminosity-weighted averages of the square of line-of-sight velocity dispersions are used to estimate the particle mass. Results: Cosmological constant repulsive effects are embedded in one parameter ξ. They are appreciable for ξ > 10-5. Bound structures appear for ξ ≤ ξc = 1.65 × 10-4, what imposes a lower bound for cluster masses as a function of the particle mass. In principle, these systems present tunnelling through a potential barrier; however, after estimating their mean lifes, we realize that their existence is not affected by the age of the Universe. When Milky Way dSph galaxies are used to test the model, we obtain 3.5-1.0+1.3 × 10-22 eV for the particle mass and a lower limit of 5.1-2.8+2.2 × 106 M⊙ for bound haloes. Conclusions: Our estimation for the boson mass is in agreement with other recent results which use different methods. From our particle mass estimation, the treated dSph galaxies would present dark halo masses 5-11 ×107 M⊙. With these values, they would not be affected by the cosmological constant (ξ 10-5) would already feel their effects. Our model that includes dark energy allows us to deal with these dark haloes. Assuming quantities averaged in the sample of galaxies, 10-5 < ξ ≤ ξc dark

  2. Perspectives in cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Vilenkin, Alexander, E-mail: vilenkin@cosmos.phy.tufts.ed [Institute of Cosmology, Department of Physics and Astronomy, Tufts University, Medford, MA 02155 (United States)

    2010-01-01

    The 'new standard cosmology', based on the theory of inflation, has very impressive observational support. I review some outstanding problems of the new cosmology and the global view of the universe - the multiverse - that it suggests. I focus in particular on prospects for further observational tests of inflation and of the multiverse.

  3. Inflation and quantum cosmology

    International Nuclear Information System (INIS)

    Linde, A.

    1991-01-01

    In this article a review of the present status of inflationary cosmology is given. We start with a discussion of the simplest version of the chaotic inflation scenario. Then we discuss some recent develoments in the inflationary cosmology, including the theory of a self-reproducing inflationary universe (eternal chaotic inflation). We do it with the help of stochastic approach to inflation. The results obtained within this approach are compared with the results obtained in the context of Euclidean quantum cosmology. (WL)

  4. Cosmological dynamical systems

    CERN Document Server

    Leon, Genly

    2011-01-01

    In this book are studied, from the perspective of the dynamical systems, several Universe models. In chapter 1 we give a bird's eye view on cosmology and cosmological problems. Chapter 2 is devoted to a brief review on some results and useful tools from the qualitative theory of dynamical systems. They provide the theoretical basis for the qualitative study of concrete cosmological models. Chapters 1 and 2 are a review of well-known results. Chapters 3, 4, 5 and 6 are devoted to our main results. In these chapters are extended and settled in a substantially different, more strict mathematical language, several results obtained by one of us in arXiv:0812.1013 [gr-qc]; arXiv:1009.0689 [gr-qc]; arXiv:0904.1577[gr-qc]; and arXiv:0909.3571 [hep-th]. In chapter 6, we provide a different approach to the subject discussed in astro-ph/0503478. Additionally, we perform a Poincar\\'e compactification process allowing to construct a global phase space containing all the cosmological information in both finite and infinite...

  5. Graviton fluctuations erase the cosmological constant

    Science.gov (United States)

    Wetterich, C.

    2017-10-01

    Graviton fluctuations induce strong non-perturbative infrared renormalization effects for the cosmological constant. The functional renormalization flow drives a positive cosmological constant towards zero, solving the cosmological constant problem without the need to tune parameters. We propose a simple computation of the graviton contribution to the flow of the effective potential for scalar fields. Within variable gravity, with effective Planck mass proportional to the scalar field, we find that the potential increases asymptotically at most quadratically with the scalar field. The solutions of the derived cosmological equations lead to an asymptotically vanishing cosmological "constant" in the infinite future, providing for dynamical dark energy in the present cosmological epoch. Beyond a solution of the cosmological constant problem, our simplified computation also entails a sizeable positive graviton-induced anomalous dimension for the quartic Higgs coupling in the ultraviolet regime, substantiating the successful prediction of the Higgs boson mass within the asymptotic safety scenario for quantum gravity.

  6. Particle theory and cosmology

    International Nuclear Information System (INIS)

    Gaisser, T.K.; Shafi, Q.; Barr, S.M.; Seckel, D.; Rusjan, E.; Fletcher, R.S.

    1991-01-01

    This report discusses research of professor at Bartol research institute in the following general areas: particle phenomenology and non-accelerator physics; particle physics and cosmology; theories with higher symmetry; and particle astrophysics and cosmology

  7. Was Newtonian cosmology really inconsistent?

    Science.gov (United States)

    Vickers, Peter

    This paper follows up a debate as to the consistency of Newtonian cosmology. Whereas Malament [(1995). Is Newtonian cosmology really inconsistent? Philosophy of Science 62, 489-510] has shown that Newtonian cosmology is not inconsistent, to date there has been no analysis of Norton's claim [(1995). The force of Newtonian cosmology: Acceleration is relative. Philosophy of Science 62, 511-522.] that Newtonian cosmology was inconsistent prior to certain advances in the 1930s, and in particular prior to Seeliger's seminal paper of Seeliger [(1895). Über das Newton'sche Gravitationsgesetz. Astronomische Nachrichten 137 (3273), 129-136.] In this paper I agree that there are assumptions, Newtonian and cosmological in character, and relevant to the real history of science, which are inconsistent. But there are some important corrections to make to Norton's account. Here I display for the first time the inconsistencies-four in total-in all their detail. Although this extra detail shows there to be several different inconsistencies, it also goes some way towards explaining why they went unnoticed for 200 years.

  8. Cosmology. A first course

    Science.gov (United States)

    Lachieze-Rey, Marc

    This book delivers a quantitative account of the science of cosmology, designed for a non-specialist audience. The basic principles are outlined using simple maths and physics, while still providing rigorous models of the Universe. It offers an ideal introduction to the key ideas in cosmology, without going into technical details. The approach used is based on the fundamental ideas of general relativity such as the spacetime interval, comoving coordinates, and spacetime curvature. It provides an up-to-date and thoughtful discussion of the big bang, and the crucial questions of structure and galaxy formation. Questions of method and philosophical approaches in cosmology are also briefly discussed. Advanced undergraduates in either physics or mathematics would benefit greatly from use either as a course text or as a supplementary guide to cosmology courses.

  9. Application of the Ewald method to cosmological N-body simulations

    International Nuclear Information System (INIS)

    Hernquist, L.; Suto, Yasushi; Bouchet, F.R.

    1990-03-01

    Fully periodic boundary conditions are incorporated into a gridless cosmological N-body code using the Ewald method. It is shown that the linear evolution of density fluctuations agrees well with analytic calculations, contrary to the case of quasi-periodic boundary conditions where the fundamental mode grows too rapidly. The implementation of fully periodic boundaries is of particular importance to relative comparisons of methods based on hierarchical tree algorithms and more traditional schemes using Fourier techniques such as PM and P 3 M codes. (author)

  10. Keeping it real: revisiting a real-space approach to running ensembles of cosmological N-body simulations

    International Nuclear Information System (INIS)

    Orban, Chris

    2013-01-01

    In setting up initial conditions for ensembles of cosmological N-body simulations there are, fundamentally, two choices: either maximizing the correspondence of the initial density field to the assumed fourier-space clustering or, instead, matching to real-space statistics and allowing the DC mode (i.e. overdensity) to vary from box to box as it would in the real universe. As a stringent test of both approaches, I perform ensembles of simulations using power law and a ''powerlaw times a bump'' model inspired by baryon acoustic oscillations (BAO), exploiting the self-similarity of these initial conditions to quantify the accuracy of the matter-matter two-point correlation results. The real-space method, which was originally proposed by Pen 1997 [1] and implemented by Sirko 2005 [2], performed well in producing the expected self-similar behavior and corroborated the non-linear evolution of the BAO feature observed in conventional simulations, even in the strongly-clustered regime (σ 8 ∼>1). In revisiting the real-space method championed by [2], it was also noticed that this earlier study overlooked an important integral constraint correction to the correlation function in results from the conventional approach that can be important in ΛCDM simulations with L box ∼ −1 Gpc and on scales r∼>L box /10. Rectifying this issue shows that the fourier space and real space methods are about equally accurate and efficient for modeling the evolution and growth of the correlation function, contrary to previous claims. An appendix provides a useful independent-of-epoch analytic formula for estimating the importance of the integral constraint bias on correlation function measurements in ΛCDM simulations

  11. Osmotic regulation of expression of two extracellular matrix-binding proteins and a haemolysin of Leptospira interrogans: differential effects on LigA and Sph2 extracellular release.

    Science.gov (United States)

    Matsunaga, James; Medeiros, Marco A; Sanchez, Yolanda; Werneid, Kristian F; Ko, Albert I

    2007-10-01

    The life cycle of the pathogen Leptospira interrogans involves stages outside and inside the host. Entry of L. interrogans from moist environments into the host is likely to be accompanied by the induction of genes encoding virulence determinants and the concomitant repression of genes encoding products required for survival outside of the host. The expression of the adhesin LigA, the haemolysin Sph2 (Lk73.5) and the outer-membrane lipoprotein LipL36 of pathogenic Leptospira species have been reported to be regulated by mammalian host signals. A previous study demonstrated that raising the osmolarity of the leptospiral growth medium to physiological levels encountered in the host by addition of various salts enhanced the levels of cell-associated LigA and LigB and extracellular LigA. In this study, we systematically examined the effects of osmotic upshift with ionic and non-ionic solutes on expression of the known mammalian host-regulated leptospiral genes. The levels of cell-associated LigA, LigB and Sph2 increased at physiological osmolarity, whereas LipL36 levels decreased, corresponding to changes in specific transcript levels. These changes in expression occurred irrespective of whether sodium chloride or sucrose was used as the solute. The increase of cellular LigA, LigB and Sph2 protein levels occurred within hours of adding sodium chloride. Extracellular Sph2 levels increased when either sodium chloride or sucrose was added to achieve physiological osmolarity. In contrast, enhanced levels of extracellular LigA were observed only with an increase in ionic strength. These results indicate that the mechanisms for release of LigA and Sph2 differ during host infection. Thus, osmolarity not only affects leptospiral gene expression by affecting transcript levels of putative virulence determinants but also affects the release of such proteins into the surroundings.

  12. Cosmological constant--the weight of the vacuum

    International Nuclear Information System (INIS)

    Padmanabhan, T.

    2003-01-01

    Recent cosmological observations suggest the existence of a positive cosmological constant Λ with the magnitude Λ(Gℎ/c 3 )∼10 -123 . This review discusses several aspects of the cosmological constant both from the cosmological (Sections 1-6) and field theoretical (Sections 7-11) perspectives. After a brief introduction to the key issues related to cosmological constant and a historical overview, a summary of the kinematics and dynamics of the standard Friedmann model of the universe is provided. The observational evidence for cosmological constant, especially from the supernova results, and the constraints from the age of the universe, structure formation, Cosmic Microwave Background Radiation (CMBR) anisotropies and a few others are described in detail, followed by a discussion of the theoretical models (quintessence, tachyonic scalar field, ...) from different perspectives. The latter part of the review (Sections 7-11) concentrates on more conceptual and fundamental aspects of the cosmological constant like some alternative interpretations of the cosmological constant, relaxation mechanisms to reduce the cosmological constant to the currently observed value, the geometrical structure of the de Sitter spacetime, thermodynamics of the de Sitter universe and the role of string theory in the cosmological constant problem

  13. Deconstructing cosmology

    CERN Document Server

    Sanders, Robert H

    2016-01-01

    The advent of sensitive high-resolution observations of the cosmic microwave background radiation and their successful interpretation in terms of the standard cosmological model has led to great confidence in this model's reality. The prevailing attitude is that we now understand the Universe and need only work out the details. In this book, Sanders traces the development and successes of Lambda-CDM, and argues that this triumphalism may be premature. The model's two major components, dark energy and dark matter, have the character of the pre-twentieth-century luminiferous aether. While there is astronomical evidence for these hypothetical fluids, their enigmatic properties call into question our assumptions of the universality of locally determined physical law. Sanders explains how modified Newtonian dynamics (MOND) is a significant challenge for cold dark matter. Overall, the message is hopeful: the field of cosmology has not become frozen, and there is much fundamental work ahead for tomorrow's cosmologis...

  14. Neutrino properties from cosmology

    CERN Multimedia

    CERN. Geneva

    2013-01-01

    Future, massive large-scale structure survey have been presented and approved.On the theory side, a significant effort has bene devoted to achieve better modeling of small scale clustering that is of cosmological non-linearities. As a result it has become clear that forthcoming cosmological data have enough statitsical power to detect the effect of non-zero neutrino mass (even at the lower mass scale limit imposed by oscillations) and to constrain the absolute neutrino mass scale.Cosmological data can also constrain the numb...

  15. Inhomogeneous anisotropic cosmology

    International Nuclear Information System (INIS)

    Kleban, Matthew; Senatore, Leonardo

    2016-01-01

    In homogeneous and isotropic Friedmann-Robertson-Walker cosmology, the topology of the universe determines its ultimate fate. If the Weak Energy Condition is satisfied, open and flat universes must expand forever, while closed cosmologies can recollapse to a Big Crunch. A similar statement holds for homogeneous but anisotropic (Bianchi) universes. Here, we prove that arbitrarily inhomogeneous and anisotropic cosmologies with “flat” (including toroidal) and “open” (including compact hyperbolic) spatial topology that are initially expanding must continue to expand forever at least in some region at a rate bounded from below by a positive number, despite the presence of arbitrarily large density fluctuations and/or the formation of black holes. Because the set of 3-manifold topologies is countable, a single integer determines the ultimate fate of the universe, and, in a specific sense, most 3-manifolds are “flat” or “open”. Our result has important implications for inflation: if there is a positive cosmological constant (or suitable inflationary potential) and initial conditions for the inflaton, cosmologies with “flat” or “open” topology must expand forever in some region at least as fast as de Sitter space, and are therefore very likely to begin inflationary expansion eventually, regardless of the scale of the inflationary energy or the spectrum and amplitude of initial inhomogeneities and gravitational waves. Our result is also significant for numerical general relativity, which often makes use of periodic (toroidal) boundary conditions.

  16. Parameterized post-Newtonian cosmology

    International Nuclear Information System (INIS)

    Sanghai, Viraj A A; Clifton, Timothy

    2017-01-01

    Einstein’s theory of gravity has been extensively tested on solar system scales, and for isolated astrophysical systems, using the perturbative framework known as the parameterized post-Newtonian (PPN) formalism. This framework is designed for use in the weak-field and slow-motion limit of gravity, and can be used to constrain a large class of metric theories of gravity with data collected from the aforementioned systems. Given the potential of future surveys to probe cosmological scales to high precision, it is a topic of much contemporary interest to construct a similar framework to link Einstein’s theory of gravity and its alternatives to observations on cosmological scales. Our approach to this problem is to adapt and extend the existing PPN formalism for use in cosmology. We derive a set of equations that use the same parameters to consistently model both weak fields and cosmology. This allows us to parameterize a large class of modified theories of gravity and dark energy models on cosmological scales, using just four functions of time. These four functions can be directly linked to the background expansion of the universe, first-order cosmological perturbations, and the weak-field limit of the theory. They also reduce to the standard PPN parameters on solar system scales. We illustrate how dark energy models and scalar-tensor and vector-tensor theories of gravity fit into this framework, which we refer to as ‘parameterized post-Newtonian cosmology’ (PPNC). (paper)

  17. Parameterized post-Newtonian cosmology

    Science.gov (United States)

    Sanghai, Viraj A. A.; Clifton, Timothy

    2017-03-01

    Einstein’s theory of gravity has been extensively tested on solar system scales, and for isolated astrophysical systems, using the perturbative framework known as the parameterized post-Newtonian (PPN) formalism. This framework is designed for use in the weak-field and slow-motion limit of gravity, and can be used to constrain a large class of metric theories of gravity with data collected from the aforementioned systems. Given the potential of future surveys to probe cosmological scales to high precision, it is a topic of much contemporary interest to construct a similar framework to link Einstein’s theory of gravity and its alternatives to observations on cosmological scales. Our approach to this problem is to adapt and extend the existing PPN formalism for use in cosmology. We derive a set of equations that use the same parameters to consistently model both weak fields and cosmology. This allows us to parameterize a large class of modified theories of gravity and dark energy models on cosmological scales, using just four functions of time. These four functions can be directly linked to the background expansion of the universe, first-order cosmological perturbations, and the weak-field limit of the theory. They also reduce to the standard PPN parameters on solar system scales. We illustrate how dark energy models and scalar-tensor and vector-tensor theories of gravity fit into this framework, which we refer to as ‘parameterized post-Newtonian cosmology’ (PPNC).

  18. Relativistic initial conditions for N-body simulations

    Energy Technology Data Exchange (ETDEWEB)

    Fidler, Christian [Catholic University of Louvain—Center for Cosmology, Particle Physics and Phenomenology (CP3) 2, Chemin du Cyclotron, B-1348 Louvain-la-Neuve (Belgium); Tram, Thomas; Crittenden, Robert; Koyama, Kazuya; Wands, David [Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth PO1 3FX (United Kingdom); Rampf, Cornelius, E-mail: christian.fidler@uclouvain.be, E-mail: thomas.tram@port.ac.uk, E-mail: rampf@thphys.uni-heidelberg.de, E-mail: robert.crittenden@port.ac.uk, E-mail: kazuya.koyama@port.ac.uk, E-mail: david.wands@port.ac.uk [Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 16, D–69120 Heidelberg (Germany)

    2017-06-01

    Initial conditions for (Newtonian) cosmological N-body simulations are usually set by re-scaling the present-day power spectrum obtained from linear (relativistic) Boltzmann codes to the desired initial redshift of the simulation. This back-scaling method can account for the effect of inhomogeneous residual thermal radiation at early times, which is absent in the Newtonian simulations. We analyse this procedure from a fully relativistic perspective, employing the recently-proposed Newtonian motion gauge framework. We find that N-body simulations for ΛCDM cosmology starting from back-scaled initial conditions can be self-consistently embedded in a relativistic space-time with first-order metric potentials calculated using a linear Boltzmann code. This space-time coincides with a simple ''N-body gauge'' for z < 50 for all observable modes. Care must be taken, however, when simulating non-standard cosmologies. As an example, we analyse the back-scaling method in a cosmology with decaying dark matter, and show that metric perturbations become large at early times in the back-scaling approach, indicating a breakdown of the perturbative description. We suggest a suitable ''forwards approach' for such cases.

  19. A new cosmological paradigm: the cosmological constant and dark matter

    International Nuclear Information System (INIS)

    Krauss, L.M.

    1998-01-01

    The Standard Cosmological Model of the 1980 close-quote s is no more. I describe the definitive evidence that the density of matter is insufficient to result in a flat universe, as well as the mounting evidence that the cosmological constant is not zero. I finally discuss the implications of these results for particle physics and direct searches for non-baryonic dark matter. copyright 1998 American Institute of Physics

  20. Tensors, relativity, and cosmology

    CERN Document Server

    Dalarsson, Mirjana

    2015-01-01

    Tensors, Relativity, and Cosmology, Second Edition, combines relativity, astrophysics, and cosmology in a single volume, providing a simplified introduction to each subject that is followed by detailed mathematical derivations. The book includes a section on general relativity that gives the case for a curved space-time, presents the mathematical background (tensor calculus, Riemannian geometry), discusses the Einstein equation and its solutions (including black holes and Penrose processes), and considers the energy-momentum tensor for various solutions. In addition, a section on relativistic astrophysics discusses stellar contraction and collapse, neutron stars and their equations of state, black holes, and accretion onto collapsed objects, with a final section on cosmology discussing cosmological models, observational tests, and scenarios for the early universe. This fully revised and updated second edition includes new material on relativistic effects, such as the behavior of clocks and measuring rods in m...

  1. Neutrino properties from cosmology

    DEFF Research Database (Denmark)

    Hannestad, S.

    2013-01-01

    In recent years precision cosmology has become an increasingly powerful probe of particle physics. Perhaps the prime example of this is the very stringent cosmological upper bound on the neutrino mass. However, other aspects of neutrino physics, such as their decoupling history and possible non......-standard interactions, can also be probed using observations of cosmic structure. Here, I review the current status of cosmological bounds on neutrino properties and discuss the potential of future observations, for example by the recently approved EUCLID mission, to precisely measure neutrino properties....

  2. Cosmology and particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Steigman, G [California Univ., Santa Barbara (USA). Inst. for Theoretical Physics; Bartol Research Foundation, Newark, Delaware (USA))

    1982-01-29

    The cosmic connections between physics on the very largest and very smallest scales are reviewed with an emphasis on the symbiotic relation between elementary particle physics and cosmology. After a review of the early Universe as a cosmic accelerator, various cosmological and astrophysical constraints on models of particle physics are outlined. To illustrate this approach to particle physics via cosmology, reference is made to several areas of current research: baryon non-conservation and baryon asymmetry; free quarks, heavy hadrons and other exotic relics; primordial nucleosynthesis and neutrino masses.

  3. On the Cold Big Bang Cosmology

    Directory of Open Access Journals (Sweden)

    Assis A. V. D. B.

    2011-04-01

    Full Text Available We solve the general relativity (GR field equations under the cosmological scope via one extra postulate. The plausibility of the postulate resides within the Heisenberg indeterminacy principle, being heuristically analysed throughout the appendix. Under this approach, a negative energy density may provide the positive energy content of the universe via fluctuation, since the question of conservation of energy in cosmology is weakened, supported by the known lack of scope of the Noether's theorem in cosmology. The initial condition of the primordial universe turns out to have a natural cutoff such that the temperature of the cosmological substratum converges to the absolute zero, instead of the established divergence at the very beginning. The adopted postulate provides an explanation for the cosmological dark energy open question. The solution agrees with cosmological observations, including a 2.7K CMBT prediction.

  4. zBEAMS: a unified solution for supernova cosmology with redshift uncertainties

    International Nuclear Information System (INIS)

    Roberts, Ethan; Lochner, Michelle; Bassett, Bruce A.; Lablanche, Pierre-Yves; Agarwal, Shankar; Fonseca, José

    2017-01-01

    Supernova cosmology without spectra will be an important component of future surveys such as LSST. This lack of supernova spectra results in uncertainty in the redshifts which, if ignored, leads to significantly biased estimates of cosmological parameters. Here we present a hierarchical Bayesian formalism— zBEAMS—that addresses this problem by marginalising over the unknown or uncertain supernova redshifts to produce unbiased cosmological estimates that are competitive with supernova data with spectroscopically confirmed redshifts. zBEAMS provides a unified treatment of both photometric redshifts and host galaxy misidentification (occurring due to chance galaxy alignments or faint hosts), effectively correcting the inevitable contamination in the Hubble diagram. Like its predecessor BEAMS, our formalism also takes care of non-Ia supernova contamination by marginalising over the unknown supernova type. We illustrate this technique with simulations of supernovae with photometric redshifts and host galaxy misidentification. A novel feature of the photometric redshift case is the important role played by the redshift distribution of the supernovae.

  5. zBEAMS: a unified solution for supernova cosmology with redshift uncertainties

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Ethan; Lochner, Michelle; Bassett, Bruce A.; Lablanche, Pierre-Yves; Agarwal, Shankar [African Institute for Mathematical Sciences, 6 Melrose Road, Muizenberg, 7945, Cape Town (South Africa); Fonseca, José, E-mail: rbreth001@myuct.ac.za, E-mail: michelle@aims.ac.za, E-mail: jfonseca@uwc.ac.za, E-mail: bruce.a.bassett@gmail.com, E-mail: plablanche@aims.ac.za, E-mail: agarwalshankar@aims.ac.za [Department of Physics and Astronomy, University of the Western Cape, Cape Town 7535 (South Africa)

    2017-10-01

    Supernova cosmology without spectra will be an important component of future surveys such as LSST. This lack of supernova spectra results in uncertainty in the redshifts which, if ignored, leads to significantly biased estimates of cosmological parameters. Here we present a hierarchical Bayesian formalism— zBEAMS—that addresses this problem by marginalising over the unknown or uncertain supernova redshifts to produce unbiased cosmological estimates that are competitive with supernova data with spectroscopically confirmed redshifts. zBEAMS provides a unified treatment of both photometric redshifts and host galaxy misidentification (occurring due to chance galaxy alignments or faint hosts), effectively correcting the inevitable contamination in the Hubble diagram. Like its predecessor BEAMS, our formalism also takes care of non-Ia supernova contamination by marginalising over the unknown supernova type. We illustrate this technique with simulations of supernovae with photometric redshifts and host galaxy misidentification. A novel feature of the photometric redshift case is the important role played by the redshift distribution of the supernovae.

  6. Higher dimensional loop quantum cosmology

    International Nuclear Information System (INIS)

    Zhang, Xiangdong

    2016-01-01

    Loop quantum cosmology (LQC) is the symmetric sector of loop quantum gravity. In this paper, we generalize the structure of loop quantum cosmology to the theories with arbitrary spacetime dimensions. The isotropic and homogeneous cosmological model in n + 1 dimensions is quantized by the loop quantization method. Interestingly, we find that the underlying quantum theories are divided into two qualitatively different sectors according to spacetime dimensions. The effective Hamiltonian and modified dynamical equations of n + 1 dimensional LQC are obtained. Moreover, our results indicate that the classical big bang singularity is resolved in arbitrary spacetime dimensions by a quantum bounce. We also briefly discuss the similarities and differences between the n + 1 dimensional model and the 3 + 1 dimensional one. Our model serves as a first example of higher dimensional loop quantum cosmology and offers the possibility to investigate quantum gravity effects in higher dimensional cosmology. (orig.)

  7. Highlights in gravitation and cosmology

    International Nuclear Information System (INIS)

    Iyer, B.R.; Kembhavi, Ajit; Narlikar, J.V.; Vishveshwara, C.V.

    1988-01-01

    This book assesses research into gravitation and cosmology by examining the subject from various viewpoints: the classical and quantum pictures, along with the cosmological and astrophysical applications. There are 35 articles by experts of international standing. Each defines the state of the art and contains a concise summary of our present knowledge of a facet of gravitational physics. These edited papers are based on those first given at an international conference held in Goa, India at the end of 1987. The following broad areas are covered: classical relativity, quantum gravity, cosmology, black holes, compact objects, gravitational radiation and gravity experiments. In this volume there are also summaries of discussions on the following special topics: exact solutions of cosmological equations, mathematical aspects of general relativity, the early universe, and quantum gravity. For research workers in cosmology and gravitation this reference book provides a broad view of present achievements and current problems. (author)

  8. Targeting the SphK1/S1P/S1PR1 Axis That Links Obesity, Chronic Inflammation, and Breast Cancer Metastasis.

    Science.gov (United States)

    Nagahashi, Masayuki; Yamada, Akimitsu; Katsuta, Eriko; Aoyagi, Tomoyoshi; Huang, Wei-Ching; Terracina, Krista P; Hait, Nitai C; Allegood, Jeremy C; Tsuchida, Junko; Yuza, Kizuki; Nakajima, Masato; Abe, Manabu; Sakimura, Kenji; Milstien, Sheldon; Wakai, Toshifumi; Spiegel, Sarah; Takabe, Kazuaki

    2018-04-01

    Although obesity with associated inflammation is now recognized as a risk factor for breast cancer and distant metastases, the functional basis for these connections remain poorly understood. Here, we show that in breast cancer patients and in animal breast cancer models, obesity is a sufficient cause for increased expression of the bioactive sphingolipid mediator sphingosine-1-phosphate (S1P), which mediates cancer pathogenesis. A high-fat diet was sufficient to upregulate expression of sphingosine kinase 1 (SphK1), the enzyme that produces S1P, along with its receptor S1PR1 in syngeneic and spontaneous breast tumors. Targeting the SphK1/S1P/S1PR1 axis with FTY720/fingolimod attenuated key proinflammatory cytokines, macrophage infiltration, and tumor progression induced by obesity. S1P produced in the lung premetastatic niche by tumor-induced SphK1 increased macrophage recruitment into the lung and induced IL6 and signaling pathways important for lung metastatic colonization. Conversely, FTY720 suppressed IL6, macrophage infiltration, and S1P-mediated signaling pathways in the lung induced by a high-fat diet, and it dramatically reduced formation of metastatic foci. In tumor-bearing mice, FTY720 similarly reduced obesity-related inflammation, S1P signaling, and pulmonary metastasis, thereby prolonging survival. Taken together, our results establish a critical role for circulating S1P produced by tumors and the SphK1/S1P/S1PR1 axis in obesity-related inflammation, formation of lung metastatic niches, and breast cancer metastasis, with potential implications for prevention and treatment. Significance: These findings offer a preclinical proof of concept that signaling by a sphingolipid may be an effective target to prevent obesity-related breast cancer metastasis. Cancer Res; 78(7); 1713-25. ©2018 AACR . ©2018 American Association for Cancer Research.

  9. Formation of globular cluster candidates in merging proto-galaxies at high redshift: a view from the FIRE cosmological simulations

    Science.gov (United States)

    Kim, Ji-hoon; Ma, Xiangcheng; Grudić, Michael Y.; Hopkins, Philip F.; Hayward, Christopher C.; Wetzel, Andrew; Faucher-Giguère, Claude-André; Kereš, Dušan; Garrison-Kimmel, Shea; Murray, Norman

    2018-03-01

    Using a state-of-the-art cosmological simulation of merging proto-galaxies at high redshift from the FIRE project, with explicit treatments of star formation and stellar feedback in the interstellar medium, we investigate the formation of star clusters and examine one of the formation hypotheses of present-day metal-poor globular clusters. We find that frequent mergers in high-redshift proto-galaxies could provide a fertile environment to produce long-lasting bound star clusters. The violent merger event disturbs the gravitational potential and pushes a large gas mass of ≳ 105-6 M⊙ collectively to high density, at which point it rapidly turns into stars before stellar feedback can stop star formation. The high dynamic range of the reported simulation is critical in realizing such dense star-forming clouds with a small dynamical time-scale, tff ≲ 3 Myr, shorter than most stellar feedback time-scales. Our simulation then allows us to trace how clusters could become virialized and tightly bound to survive for up to ˜420 Myr till the end of the simulation. Because the cluster's tightly bound core was formed in one short burst, and the nearby older stars originally grouped with the cluster tend to be preferentially removed, at the end of the simulation the cluster has a small age spread.

  10. Hunting local Mixmaster dynamics in spatially inhomogeneous cosmologies[04.20.Dw Singularities and cosmic censorship; 04.25.Dm Numerical relativity; 98.80.Jk Mathematical and relativistic aspects of cosmology;

    Energy Technology Data Exchange (ETDEWEB)

    Berger, Beverly K [Physics Division, National Science Foundation, Arlington, VA 22207 (United States)

    2004-02-07

    Heuristic arguments and numerical simulations support the Belinskii, Khalatnikov and Lifshitz (BKL) claim that the approach to the singularity in generic gravitational collapse is characterized by local Mixmaster dynamics (LMD). Here, one way to identify LMD in collapsing spatially inhomogeneous cosmologies is explored. By writing the metric of one spacetime in the standard variables of another, signatures for LMD may be found. Such signatures for the dynamics of spatially homogeneous Mixmaster models in the variables of U(1)-symmetric cosmologies are reviewed. Similar constructions for U(1)-symmetric spacetimes in terms of the dynamics of generic T{sup 2}-symmetric spacetime are presented.

  11. New Challenges for Cosmology

    NARCIS (Netherlands)

    van de Weygaert, Rien; van Albada, Tjeerd S.

    1996-01-01

    A detailed account of the ways in which a square kilometer array could further cosmological research. Observational and theoretical studies of the large scale structure and morphology of the local universe are reviewed against the potential capabilities of a new generation telescope. Cosmological

  12. Cosmological phase transitions

    International Nuclear Information System (INIS)

    Kolb, E.W.

    1993-10-01

    If modern ideas about the role of spontaneous symmetry breaking in fundamental physics are correct, then the Universe should have undergone a series of phase transitions early in its history. The study of cosmological phase transitions has become an important aspect of early-Universe cosmology. In this lecture I review some very recent work on three aspects of phase transitions: the electroweak transition, texture, and axions

  13. Selecting ultra-faint dwarf candidate progenitors in cosmological N-body simulations at high redshifts

    Science.gov (United States)

    Safarzadeh, Mohammadtaher; Ji, Alexander P.; Dooley, Gregory A.; Frebel, Anna; Scannapieco, Evan; Gómez, Facundo A.; O'Shea, Brian W.

    2018-06-01

    The smallest satellites of the Milky Way ceased forming stars during the epoch of reionization and thus provide archaeological access to galaxy formation at z > 6. Numerical studies of these ultrafaint dwarf galaxies (UFDs) require expensive cosmological simulations with high mass resolution that are carried out down to z = 0. However, if we are able to statistically identify UFD host progenitors at high redshifts with relatively high probabilities, we can avoid this high computational cost. To find such candidates, we analyse the merger trees of Milky Way type haloes from the high-resolution Caterpillar suite of dark matter only simulations. Satellite UFD hosts at z = 0 are identified based on four different abundance matching (AM) techniques. All the haloes at high redshifts are traced forward in time in order to compute the probability of surviving as satellite UFDs today. Our results show that selecting potential UFD progenitors based solely on their mass at z = 12 (8) results in a 10 per cent (20 per cent) chance of obtaining a surviving UFD at z = 0 in three of the AM techniques we adopted. We find that the progenitors of surviving satellite UFDs have lower virial ratios (η), and are preferentially located at large distances from the main MW progenitor, while they show no correlation with concentration parameter. Haloes with favorable locations and virial ratios are ≈3 times more likely to survive as satellite UFD candidates at z = 0.

  14. The Case for a Hierarchical Cosmology

    Science.gov (United States)

    Vaucouleurs, G. de

    1970-01-01

    The development of modern theoretical cosmology is presented and some questionable assumptions of orthodox cosmology are pointed out. Suggests that recent observations indicate that hierarchical clustering is a basic factor in cosmology. The implications of hierarchical models of the universe are considered. Bibliography. (LC)

  15. Cosmological CP Violation

    CERN Document Server

    Tomaschitz, R

    1994-01-01

    Spinor fields are studied in infinite, topologically multiply connected Robertson-Walker cosmologies. Unitary spinor representations for the discrete covering groups of the spacelike slices are constructed. The spectral resolution of Dirac's equation is given in terms of horospherical elementary waves, on which the treatment of spin and energy is based in these cosmologies. The meaning of the energy and the particle-antiparticle concept is explained in the context of this varying cosmic background. Discrete symmetries, in particular inversions of the multiply connected spacelike slices, are studied. The violation of the unitarity of the parity operator, due to self-interference of P-reflected wave packets, is discussed. The violation of the CP and CPT invariance - already on the level of the free Dirac equation on this cosmological background - is pointed out.

  16. Heavy ion collisions and cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Floerchinger, Stefan

    2016-12-15

    There are interesting parallels between the physics of heavy ion collisions and cosmology. Both systems are out-of-equilibrium and relativistic fluid dynamics plays an important role for their theoretical description. From a comparison one can draw interesting conclusions for both sides. For heavy ion physics it could be rewarding to attempt a theoretical description of fluid perturbations similar to cosmological perturbation theory. In the context of late time cosmology, it could be interesting to study dissipative properties such as shear and bulk viscosity and corresponding relaxation times in more detail. Knowledge and experience from heavy ion physics could help to constrain the microscopic properties of dark matter from observational knowledge of the cosmological fluid properties.

  17. Cosmology of a charged universe

    International Nuclear Information System (INIS)

    Barnes, A.

    1979-01-01

    The Proca generalization of electrodynamics admits the possibility that the universe could possess a net electric charge uniformly distributed throughout space, while possessing no electric field. A charged intergalactic (and intragalactic) medium of this kind could contain enough energy to be of cosmological importance. A general-relativistic model of cosmological expansion dominated by such a charged background has been calculated, and is consistent with present observational limits on the Hubble constant, the decleration parameter, and the age of the universe. However, if this cosmology applied at the present epoch, the very early expansion of the universe would have been much more rapid than in conventional ''big bang'' cosmologies, too rapid for cosmological nucleosynthesis or thermalization of the background radiation to have occurred. Hence, domination of the present expansion by background charge appears to be incompatible with the 3 K background and big-bang production of light elements. If the present background charge density were sufficiently small (but not strictly zero), expansion from the epoch of nucleosynthesis would proceed according to the conventional scenario, but the energy due to the background charge would have dominated at some earlier epoch. This last possibility leads to equality of pressure and energy density in the primordial universe, a condition of special significance in certain cosmological theories

  18. Probabilistic Cosmological Mass Mapping from Weak Lensing Shear

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, M. D.; Dawson, W. A. [Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States); Ng, K. Y. [University of California, Davis, Davis, CA 95616 (United States); Marshall, P. J. [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94035 (United States); Meyers, J. E. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Bard, D. J., E-mail: schneider42@llnl.gov, E-mail: dstn@cmu.edu, E-mail: boutigny@in2p3.fr, E-mail: djbard@slac.stanford.edu, E-mail: jmeyers314@stanford.edu [National Energy Research Scientific Computing Center, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720-8150 (United States)

    2017-04-10

    We infer gravitational lensing shear and convergence fields from galaxy ellipticity catalogs under a spatial process prior for the lensing potential. We demonstrate the performance of our algorithm with simulated Gaussian-distributed cosmological lensing shear maps and a reconstruction of the mass distribution of the merging galaxy cluster Abell 781 using galaxy ellipticities measured with the Deep Lens Survey. Given interim posterior samples of lensing shear or convergence fields on the sky, we describe an algorithm to infer cosmological parameters via lens field marginalization. In the most general formulation of our algorithm we make no assumptions about weak shear or Gaussian-distributed shape noise or shears. Because we require solutions and matrix determinants of a linear system of dimension that scales with the number of galaxies, we expect our algorithm to require parallel high-performance computing resources for application to ongoing wide field lensing surveys.

  19. On the cosmological problem

    International Nuclear Information System (INIS)

    Heller, M.

    1986-01-01

    It is proposed to understand cosmology as a non-local physics. Non-local methods, when developed from locally performed observations, imply a considerable extrapolation, which in turn is possible without some unverifiable assumptions. Cosmology is, therefore, not only a science on the Universe but also about assumptions that render such a science possible. As far as theoretical aspects of cosmology are concerned, cosmology can be treated as a theory of the space of all solutions to Einstein's field equations (called the ensemble of universes). The very distinction is touched upon between solutions of differential equations, expressing laws of nature, and boundary conditions identifying particular instances of the law's operation. Both observational and theoretical studies demonstrate that our Universe occupies a distinguished position within the ensemble of universes. This fact remains in a close relationship with the existence and developing of structures in the Universe. Possible philosophies aimed at justifying or neutralizing our distinguished situation in the ensemble of universes are discussed at some length. 60 refs. (author)

  20. Conformal Cosmology and Supernova Data

    OpenAIRE

    Behnke, Danilo; Blaschke, David; Pervushin, Victor; Proskurin, Denis

    2000-01-01

    We define the cosmological parameters $H_{c,0}$, $\\Omega_{m,c}$ and $\\Omega_{\\Lambda, c}$ within the Conformal Cosmology as obtained by the homogeneous approximation to the conformal-invariant generalization of Einstein's General Relativity theory. We present the definitions of the age of the universe and of the luminosity distance in the context of this approach. A possible explanation of the recent data from distant supernovae Ia without a cosmological constant is presented.

  1. The several faces of the cosmological principle

    Energy Technology Data Exchange (ETDEWEB)

    Beisbart, Claus [TU Dortmund (Germany). Fakultaet 14, Institut fuer Philosophie und Politikwissenschaft

    2010-07-01

    Much work in relativistic cosmology relies upon the cosmological principle. Very roughly, this principle has it hat the universe is spatially homogeneous and isotropic. However, if the principle is to do some work, it has to be rendered more precise. The aim of this talk is to show that such a precification significantly depends on the theoretical framework adopted and on its ontology. Moreover, it is shown that present-day cosmology uses the principle in different versions that do not fit together nicely. Whereas, in theoretical cosmology, the principle is spelt out as a requirement on space-time manifolds, observational cosmology cashes out the principle using the notion of a random process. I point out some philosophical problems that arise in this context. My conclusion is that the cosmological principle is not a very precise hypothesis, but rather a rough idea that has several faces in contemporary cosmology.

  2. Understanding Large-scale Structure in the SSA22 Protocluster Region Using Cosmological Simulations

    Science.gov (United States)

    Topping, Michael W.; Shapley, Alice E.; Steidel, Charles C.; Naoz, Smadar; Primack, Joel R.

    2018-01-01

    We investigate the nature and evolution of large-scale structure within the SSA22 protocluster region at z = 3.09 using cosmological simulations. A redshift histogram constructed from current spectroscopic observations of the SSA22 protocluster reveals two separate peaks at z = 3.065 (blue) and z = 3.095 (red). Based on these data, we report updated overdensity and mass calculations for the SSA22 protocluster. We find {δ }b,{gal}=4.8+/- 1.8 and {δ }r,{gal}=9.5+/- 2.0 for the blue and red peaks, respectively, and {δ }t,{gal}=7.6+/- 1.4 for the entire region. These overdensities correspond to masses of {M}b=(0.76+/- 0.17)× {10}15{h}-1 {M}ȯ , {M}r=(2.15+/- 0.32)× {10}15{h}-1 {M}ȯ , and {M}t=(3.19+/- 0.40)× {10}15{h}-1 {M}ȯ for the red, blue, and total peaks, respectively. We use the Small MultiDark Planck (SMDPL) simulation to identify comparably massive z∼ 3 protoclusters, and uncover the underlying structure and ultimate fate of the SSA22 protocluster. For this analysis, we construct mock redshift histograms for each simulated z∼ 3 protocluster, quantitatively comparing them with the observed SSA22 data. We find that the observed double-peaked structure in the SSA22 redshift histogram corresponds not to a single coalescing cluster, but rather the proximity of a ∼ {10}15{h}-1 {M}ȯ protocluster and at least one > {10}14{h}-1 {M}ȯ cluster progenitor. Such associations in the SMDPL simulation are easily understood within the framework of hierarchical clustering of dark matter halos. We finally find that the opportunity to observe such a phenomenon is incredibly rare, with an occurrence rate of 7.4{h}3 {{{Gpc}}}-3. Based on data obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration, and was made possible by the generous financial support of the W.M. Keck Foundation.

  3. Current observations with a decaying cosmological constant allow for chaotic cyclic cosmology

    International Nuclear Information System (INIS)

    Ellis, George F.R.; Platts, Emma; Weltman, Amanda; Sloan, David

    2016-01-01

    We use the phase plane analysis technique of Madsen and Ellis [1] to consider a universe with a true cosmological constant as well as a cosmological 'constant' that is decaying. Time symmetric dynamics for the inflationary era allows eternally bouncing models to occur. Allowing for scalar field dynamic evolution, we find that if dark energy decays in the future, chaotic cyclic universes exist provided the spatial curvature is positive. This is particularly interesting in light of current observations which do not yet rule out either closed universes or possible evolution of the cosmological constant. We present only a proof of principle, with no definite claim on the physical mechanism required for the present dark energy to decay

  4. Nonlinear evolution of f(R) cosmologies. II. Power spectrum

    International Nuclear Information System (INIS)

    Oyaizu, Hiroaki; Hu, Wayne; Lima, Marcos

    2008-01-01

    We carry out a suite of cosmological simulations of modified action f(R) models where cosmic acceleration arises from an alteration of gravity instead of dark energy. These models introduce an extra scalar degree of freedom which enhances the force of gravity below the inverse mass or Compton scale of the scalar. The simulations exhibit the so-called chameleon mechanism, necessary for satisfying local constraints on gravity, where this scale depends on environment, in particular, the depth of the local gravitational potential. We find that the chameleon mechanism can substantially suppress the enhancement of power spectrum in the nonlinear regime if the background field value is comparable to or smaller than the depth of the gravitational potentials of typical structures. Nonetheless power spectrum enhancements at intermediate scales remain at a measurable level for models even when the expansion history is indistinguishable from a cosmological constant, cold dark matter model. Simple scaling relations that take the linear power spectrum into a nonlinear spectrum fail to capture the modifications of f(R) due to the change in collapsed structures, the chameleon mechanism, and the time evolution of the modifications.

  5. Simulating Magnetized Laboratory Plasmas with Smoothed Particle Hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Jeffrey N. [Univ. of California, Davis, CA (United States)

    2009-01-01

    The creation of plasmas in the laboratory continues to generate excitement in the physics community. Despite the best efforts of the intrepid plasma diagnostics community, the dynamics of these plasmas remains a difficult challenge to both the theorist and the experimentalist. This dissertation describes the simulation of strongly magnetized laboratory plasmas with Smoothed Particle Hydrodynamics (SPH), a method born of astrophysics but gaining broad support in the engineering community. We describe the mathematical formulation that best characterizes a strongly magnetized plasma under our circumstances of interest, and we review the SPH method and its application to astrophysical plasmas based on research by Phillips [1], Buerve [2], and Price and Monaghan [3]. Some modifications and extensions to this method are necessary to simulate terrestrial plasmas, such as a treatment of magnetic diffusion based on work by Brookshaw [4] and by Atluri [5]; we describe these changes as we turn our attention toward laboratory experiments. Test problems that verify the method are provided throughout the discussion. Finally, we apply our method to the compression of a magnetized plasma performed by the Compact Toroid Injection eXperiment (CTIX) [6] and show that the experimental results support our computed predictions.

  6. Exact solutions in string-motivated scalar-field cosmology

    International Nuclear Information System (INIS)

    Oezer, M.; Taha, M.O.

    1992-01-01

    Two exact cosmological solutions to a scalar-field potential motivated by six-dimensional (6D) Einstein-Maxwell theory are given. The resulting pure scalar-field cosmology is free of singularity and causality problems but conserves entropy. These solutions are then extended into exact cosmological solutions for a decaying scalar field with an approximate two-loop 4D string potential. The resulting cosmology is, for both solutions, free of cosmological problems and close to the standard cosmology of the radiation era

  7. Fractal cosmology

    International Nuclear Information System (INIS)

    Dickau, Jonathan J.

    2009-01-01

    The use of fractals and fractal-like forms to describe or model the universe has had a long and varied history, which begins long before the word fractal was actually coined. Since the introduction of mathematical rigor to the subject of fractals, by Mandelbrot and others, there have been numerous cosmological theories and analyses of astronomical observations which suggest that the universe exhibits fractality or is by nature fractal. In recent years, the term fractal cosmology has come into usage, as a description for those theories and methods of analysis whereby a fractal nature of the cosmos is shown.

  8. Introduction to particle cosmology the standard model of cosmology and its open problems

    CERN Document Server

    Bambi, Cosimo

    2016-01-01

    This book introduces the basic concepts of particle cosmology and covers all the main aspects of the Big Bang Model (expansion of the Universe, Big Bang Nucleosynthesis, Cosmic Microwave Background, large scale structures) and the search for new physics (inflation, baryogenesis, dark matter, dark energy). It also includes the majority of recent discoveries, such as the precise determination of cosmological parameters using experiments like WMAP and Planck, the discovery of the Higgs boson at LHC, the non-discovery to date of supersymmetric particles, and the search for the imprint of gravitational waves on the CMB polarization by Planck and BICEP.   This textbook is based on the authors’ courses on Cosmology, and aims at introducing Particle Cosmology to senior undergraduate and graduate students. It has been especially written to be accessible even for those students who do not have a strong background in General Relativity and quantum field theory. The content of this book is organized in an easy-to-use ...

  9. Newtonian cosmology Newton would understand

    International Nuclear Information System (INIS)

    Lemons, D.S.

    1988-01-01

    Isaac Newton envisioned a static, infinite, and initially uniform, zero field universe that was gravitationally unstable to local condensations of matter. By postulating the existence of such a universe and using it as a boundary condition on Newtonian gravity, a new field equation for gravity is derived, which differs from the classical one by a time-dependent cosmological term proportional to the average mass density of the universe. The new field equation not only makes Jeans' analysis of the gravitational instability of a Newtonian universe consistent, but also gives rise to a family of Newtonian evolutionary cosmologies parametrized by a time-invariant expansion velocity. This Newtonian cosmology contrasts with both 19th-century ones and with post general relativity Newtonian cosmology

  10. Chaos, decoherence and quantum cosmology

    International Nuclear Information System (INIS)

    Calzetta, Esteban

    2012-01-01

    In this topical review we discuss the connections between chaos, decoherence and quantum cosmology. We understand chaos as classical chaos in systems with a finite number of degrees of freedom, decoherence as environment induced decoherence and quantum cosmology as the theory of the Wheeler-DeWitt equation or else the consistent history formulation thereof, first in mini super spaces and later through its extension to midi super spaces. The overall conclusion is that consideration of decoherence is necessary (and probably sufficient) to sustain an interpretation of quantum cosmology based on the wavefunction of the Universe adopting a Wentzel-Kramers-Brillouin form for large Universes, but a definitive account of the semiclassical transition in classically chaotic cosmological models is not available in the literature yet. (topical review)

  11. Beyond the Standard Model of Cosmology

    International Nuclear Information System (INIS)

    Ellis, John; Nanopoulos, D. V.

    2004-01-01

    Recent cosmological observations of unprecented accuracy, by WMAP in particular, have established a 'Standard Model' of cosmology, just as LEP established the Standard Model of particle physics. Both Standard Models raise open questions whose answers are likely to be linked. The most fundamental problems in both particle physics and cosmology will be resolved only within a framework for Quantum Gravity, for which the only game in town is string theory. We discuss novel ways to model cosmological inflation and late acceleration in a non-critical string approach, and discuss possible astrophysical tests

  12. Cosmology and particle physics

    International Nuclear Information System (INIS)

    Barrow, J.D.

    1982-01-01

    A brief overview is given of recent work that integrates cosmology and particle physics. The observational data regarding the abundance of matter and radiation in the Universe is described. The manner in which the cosmological survival density of stable massive particles can be calculated is discussed along with the process of cosmological nucleosynthesis. Several applications of these general arguments are given with reference to the survival density of nucleons, neutrinos and unconfined fractionally charge particles. The use of nucleosynthesis to limit the number of lepton generations is described together with the implications of a small neutrino mass for the origin of galaxies and clusters. (Auth.)

  13. Cosmology for high energy physicists

    International Nuclear Information System (INIS)

    Albrecht, A.

    1987-11-01

    The standard big bang model of cosmology is presented. Although not perfect, its many successes make it a good starting point for most discussions of cosmology. Places are indicated where well understood laboratory physics is incorporated into the big bang, leading to successful predictions. Much less established aspects of high energy physics and some of the new ideas they have introduced into the field of cosmology are discussed, such as string theory, inflation and monopoles. 49 refs., 5 figs

  14. Relic gravitons and viscous cosmologies

    International Nuclear Information System (INIS)

    Cataldo, Mauricio; Mella, Patricio

    2006-01-01

    Previously it was shown that there exists a class of viscous cosmological models which violate the dominant energy condition for a limited amount of time after which they are smoothly connected to the ordinary radiation era (which preserves the dominant energy conditions). This violation of the dominant energy condition at an early cosmological epoch may influence the slopes of energy spectra of relic gravitons that might be of experimental relevance. However, the bulk viscosity coefficient of these cosmologies became negative during the ordinary radiation era, and then the entropy of the sources driving the geometry decreases with time. We show that in the presence of viscous sources with a linear barotropic equation of state p=γρ we get viscous cosmological models with positive bulk viscous stress during all their evolution, and hence the matter entropy increases with the expansion time. In other words, in the framework of viscous cosmologies, there exist isotropic models compatible with the standard second law of thermodynamics which also may influence the slopes of energy spectra of relic gravitons

  15. Weak lensing cosmology beyond ΛCDM

    International Nuclear Information System (INIS)

    Das, Sudeep; Linder, Eric V.; Nakajima, Reiko; Putter, Roland de

    2012-01-01

    Weak gravitational lensing is one of the key probes of the cosmological model, dark energy, and dark matter, providing insight into both the cosmic expansion history and large scale structure growth history. Taking into account a broad spectrum of physics affecting growth — dynamical dark energy, extended gravity, neutrino masses, and spatial curvature — we analyze the cosmological constraints. Similarly we consider the effects of a range of systematic uncertainties, in shear measurement, photometric redshifts, intrinsic alignments, and the nonlinear power spectrum, on cosmological parameter extraction. We also investigate, and provide fitting formulas for, the influence of survey parameters such as redshift depth, galaxy number densities, and sky area on the cosmological constraints in the beyond-ΛCDM parameter space. Finally, we examine the robustness of results for different fiducial cosmologies

  16. Dynamical system approach to running Λ cosmological models

    International Nuclear Information System (INIS)

    Stachowski, Aleksander; Szydlowski, Marek

    2016-01-01

    We study the dynamics of cosmological models with a time dependent cosmological term. We consider five classes of models; two with the non-covariant parametrization of the cosmological term Λ: Λ(H)CDM cosmologies, Λ(a)CDM cosmologies, and three with the covariant parametrization of Λ: Λ(R)CDM cosmologies, where R(t) is the Ricci scalar, Λ(φ)-cosmologies with diffusion, Λ(X)-cosmologies, where X = (1)/(2)g"α"β∇_α∇_βφ is a kinetic part of the density of the scalar field. We also consider the case of an emergent Λ(a) relation obtained from the behaviour of trajectories in a neighbourhood of an invariant submanifold. In the study of the dynamics we used dynamical system methods for investigating how an evolutionary scenario can depend on the choice of special initial conditions. We show that the methods of dynamical systems allow one to investigate all admissible solutions of a running Λ cosmology for all initial conditions. We interpret Alcaniz and Lima's approach as a scaling cosmology. We formulate the idea of an emergent cosmological term derived directly from an approximation of the exact dynamics. We show that some non-covariant parametrization of the cosmological term like Λ(a), Λ(H) gives rise to the non-physical behaviour of trajectories in the phase space. This behaviour disappears if the term Λ(a) is emergent from the covariant parametrization. (orig.)

  17. The Atacama Cosmology Telescope: Cosmological Parameters from the 2008 Power Spectrum

    Science.gov (United States)

    Dunkley, J.; Hlozek, R.; Sievers, J.; Acquaviva, V.; Ade, P. A. R.; Aguirre, P.; Amiri, M.; Appel, J. W.; Barrientos, L. F.; Battistelli, E. S.; hide

    2011-01-01

    We present cosmological parameters derived from the angular power spectrum of the cosmic microwave background (CMB) radiation observed at 148 GHz and 218 GHz over 296 deg(exp 2) with the Atacama Cosmology Telescope (ACT) during its 2008 season. ACT measures fluctuations at scales 500 cosmological parameters from the less contaminated 148 GHz spectrum, marginalizing over SZ and source power. The ACDM cosmological model is a good fit to the data (chi square/dof = 29/46), and ACDM parameters estimated from ACT+Wilkinson Microwave Anisotropy Probe (WMAP) are consistent with the seven-year WMAP limits, with scale invariant n(sub s) = 1 excluded at 99.7% confidence level (CL) (3 sigma). A model with no CMB lensing is disfavored at 2.8 sigma. By measuring the third to seventh acoustic peaks, and probing the Silk damping regime, the ACT data improve limits on cosmological parameters that affect the small-scale CMB power. The ACT data combined with WMAP give a 6 sigma detection of primordial helium, with Y(sub p) = 0.313 +/- 0.044, and a 4 sigma detection of relativistic species, assumed to be neutrinos, with N(sub eff) = 5.3 +/- 1.3 (4.6 +/- 0.8 with BAO+H(sub 0) data). From the CMB alone the running of the spectral index is constrained to be d(sub s) / d ln k = -0,034 +/- 0,018, the limit on the tensor-to-scalar ratio is r < 0,25 (95% CL), and the possible contribution of Nambu cosmic strings to the power spectrum is constrained to string tension G(sub mu) < 1.6 x 10(exp -7) (95% CL),

  18. Cosmological perturbations beyond linear order

    CERN Multimedia

    CERN. Geneva

    2013-01-01

    Cosmological perturbation theory is the standard tool to understand the formation of the large scale structure in the Universe. However, its degree of applicability is limited by the growth of the amplitude of the matter perturbations with time. This problem can be tackled with by using N-body simulations or analytical techniques that go beyond the linear calculation. In my talk, I'll summarise some recent efforts in the latter that ameliorate the bad convergence of the standard perturbative expansion. The new techniques allow better analytical control on observables (as the matter power spectrum) over scales very relevant to understand the expansion history and formation of structure in the Universe.

  19. Quantum cosmology and baby universes

    International Nuclear Information System (INIS)

    Grishchuk, L.P.

    1990-01-01

    The contributed papers presented to the workshop on ''Quantum Cosmology and Baby Universes'' have demonstrated the great interest in, and rapid development of, the field of quantum cosmology. In my view, there are at least three areas of active research at present. The first area can be defined as that of practical calculations. Here researchers are dealing with the basic quantum cosmological equation, which is the Wheeler-DeWitt equation. They try to classify all possible solutions to the Wheeler-DeWitt equation or seek a specific integration contour in order to select one particular wave function or generalize the simple minisuperspace models to more complicated cases, including various inhomogeneities, anisotropies, etc. The second area of research deals with the interpretational issues of quantum cosmology. There are still many questions about how to extract the observational consequences from a given cosmological wave function, the role of time in quantum cosmology, and how to reformulate the rules of quantum mechanics in such a way that they could be applicable to the single system which is our Universe. The third area of research is concerned with the so-called ''third quantization'' of gravity. In this approach a wave function satisfying the Wheeler-DeWitt equation becomes an operator acting on a Wave Function of the many-universes system. Within this approach one operates with Euclidean worm-holes joining different Lorentzian universes. (author)

  20. Effective field theory of cosmological perturbations

    International Nuclear Information System (INIS)

    Piazza, Federico; Vernizzi, Filippo

    2013-01-01

    The effective field theory of cosmological perturbations stems from considering a cosmological background solution as a state displaying spontaneous breaking of time translations and (adiabatic) perturbations as the related Nambu–Goldstone modes. With this insight, one can systematically develop a theory for the cosmological perturbations during inflation and, with minor modifications, also describe in full generality the gravitational interactions of dark energy, which are relevant for late-time cosmology. The formalism displays a unique set of Lagrangian operators containing an increasing number of cosmological perturbations and derivatives. We give an introductory description of the unitary gauge formalism for theories with broken gauge symmetry—that allows us to write down the most general Lagrangian—and of the Stückelberg ‘trick’—that allows to recover gauge invariance and to make the scalar field explicit. We show how to apply this formalism to gravity and cosmology and we reproduce the detailed analysis of the action in the ADM variables. We also review some basic applications to inflation and dark energy. (paper)

  1. Effective field theory of cosmological perturbations

    Science.gov (United States)

    Piazza, Federico; Vernizzi, Filippo

    2013-11-01

    The effective field theory of cosmological perturbations stems from considering a cosmological background solution as a state displaying spontaneous breaking of time translations and (adiabatic) perturbations as the related Nambu-Goldstone modes. With this insight, one can systematically develop a theory for the cosmological perturbations during inflation and, with minor modifications, also describe in full generality the gravitational interactions of dark energy, which are relevant for late-time cosmology. The formalism displays a unique set of Lagrangian operators containing an increasing number of cosmological perturbations and derivatives. We give an introductory description of the unitary gauge formalism for theories with broken gauge symmetry—that allows us to write down the most general Lagrangian—and of the Stückelberg ‘trick’—that allows to recover gauge invariance and to make the scalar field explicit. We show how to apply this formalism to gravity and cosmology and we reproduce the detailed analysis of the action in the ADM variables. We also review some basic applications to inflation and dark energy.

  2. Cosmological information in Gaussianized weak lensing signals

    Science.gov (United States)

    Joachimi, B.; Taylor, A. N.; Kiessling, A.

    2011-11-01

    Gaussianizing the one-point distribution of the weak gravitational lensing convergence has recently been shown to increase the signal-to-noise ratio contained in two-point statistics. We investigate the information on cosmology that can be extracted from the transformed convergence fields. Employing Box-Cox transformations to determine optimal transformations to Gaussianity, we develop analytical models for the transformed power spectrum, including effects of noise and smoothing. We find that optimized Box-Cox transformations perform substantially better than an offset logarithmic transformation in Gaussianizing the convergence, but both yield very similar results for the signal-to-noise ratio. None of the transformations is capable of eliminating correlations of the power spectra between different angular frequencies, which we demonstrate to have a significant impact on the errors in cosmology. Analytic models of the Gaussianized power spectrum yield good fits to the simulations and produce unbiased parameter estimates in the majority of cases, where the exceptions can be traced back to the limitations in modelling the higher order correlations of the original convergence. In the ideal case, without galaxy shape noise, we find an increase in the cumulative signal-to-noise ratio by a factor of 2.6 for angular frequencies up to ℓ= 1500, and a decrease in the area of the confidence region in the Ωm-σ8 plane, measured in terms of q-values, by a factor of 4.4 for the best performing transformation. When adding a realistic level of shape noise, all transformations perform poorly with little decorrelation of angular frequencies, a maximum increase in signal-to-noise ratio of 34 per cent, and even slightly degraded errors on cosmological parameters. We argue that to find Gaussianizing transformations of practical use, it will be necessary to go beyond transformations of the one-point distribution of the convergence, extend the analysis deeper into the non

  3. Inflationary phase in Brans-Dicke cosmology with a cosmological constant

    Science.gov (United States)

    Berman, Marcelo Samuel

    1989-12-01

    It has been shown earlier that, for a perfect fluid, a perfect gas law of state, and the Robertson-Walker metric, an exponential phase in Brans-Dicke cosmology is possible, with both positive pressure and density, but not with the violated energy condition p = -ρ. We demonstrate in this paper that the inclusion of a cosmological constant into the theory does not change that picture. Permanent address: Departamento de Ciencias Exatas da Faculdade de Filosofia, Ceincias e Letras da FURJ, Joinville, SC 89200, Brazil.

  4. Thermodynamics in Loop Quantum Cosmology

    International Nuclear Information System (INIS)

    Li, L.F.; Zhu, J.Y.

    2009-01-01

    Loop quantum cosmology (LQC) is very powerful to deal with the behavior of early universe. Moreover, the effective loop quantum cosmology gives a successful description of the universe in the semiclassical region. We consider the apparent horizon of the Friedmann-Robertson-Walker universe as a thermodynamical system and investigate the thermodynamics of LQC in the semiclassical region. The effective density and effective pressure in the modified Friedmann equation from LQC not only determine the evolution of the universe in LQC scenario but also are actually found to be the thermodynamic quantities. This result comes from the energy definition in cosmology (the Misner-Sharp gravitational energy) and is consistent with thermodynamic laws. We prove that within the framework of loop quantum cosmology, the elementary equation of equilibrium thermodynamics is still valid.

  5. Accelerating Approximate Bayesian Computation with Quantile Regression: application to cosmological redshift distributions

    Science.gov (United States)

    Kacprzak, T.; Herbel, J.; Amara, A.; Réfrégier, A.

    2018-02-01

    Approximate Bayesian Computation (ABC) is a method to obtain a posterior distribution without a likelihood function, using simulations and a set of distance metrics. For that reason, it has recently been gaining popularity as an analysis tool in cosmology and astrophysics. Its drawback, however, is a slow convergence rate. We propose a novel method, which we call qABC, to accelerate ABC with Quantile Regression. In this method, we create a model of quantiles of distance measure as a function of input parameters. This model is trained on a small number of simulations and estimates which regions of the prior space are likely to be accepted into the posterior. Other regions are then immediately rejected. This procedure is then repeated as more simulations are available. We apply it to the practical problem of estimation of redshift distribution of cosmological samples, using forward modelling developed in previous work. The qABC method converges to nearly same posterior as the basic ABC. It uses, however, only 20% of the number of simulations compared to basic ABC, achieving a fivefold gain in execution time for our problem. For other problems the acceleration rate may vary; it depends on how close the prior is to the final posterior. We discuss possible improvements and extensions to this method.

  6. The cosmological singularity

    CERN Document Server

    Belinski, Vladimir

    2018-01-01

    Written for researchers focusing on general relativity, supergravity, and cosmology, this is a self-contained exposition of the structure of the cosmological singularity in generic solutions of the Einstein equations, and an up-to-date mathematical derivation of the theory underlying the Belinski–Khalatnikov–Lifshitz (BKL) conjecture on this field. Part I provides a comprehensive review of the theory underlying the BKL conjecture. The generic asymptotic behavior near the cosmological singularity of the gravitational field, and fields describing other kinds of matter, is explained in detail. Part II focuses on the billiard reformulation of the BKL behavior. Taking a general approach, this section does not assume any simplifying symmetry conditions and applies to theories involving a range of matter fields and space-time dimensions, including supergravities. Overall, this book will equip theoretical and mathematical physicists with the theoretical fundamentals of the Big Bang, Big Crunch, Black Hole singula...

  7. Hybrid petacomputing meets cosmology: The Roadrunner Universe project

    International Nuclear Information System (INIS)

    Habib, Salman; Pope, Adrian; Lukic, Zarija; Daniel, David; Fasel, Patricia; Desai, Nehal; Heitmann, Katrin; Hsu, Chung-Hsing; Ankeny, Lee; Mark, Graham; Bhattacharya, Suman; Ahrens, James

    2009-01-01

    The target of the Roadrunner Universe project at Los Alamos National Laboratory is a set of very large cosmological N-body simulation runs on the hybrid supercomputer Roadrunner, the world's first petaflop platform. Roadrunner's architecture presents opportunities and difficulties characteristic of next-generation supercomputing. We describe a new code designed to optimize performance and scalability by explicitly matching the underlying algorithms to the machine architecture, and by using the physics of the problem as an essential aid in this process. While applications will differ in specific exploits, we believe that such a design process will become increasingly important in the future. The Roadrunner Universe project code, MC 3 (Mesh-based Cosmology Code on the Cell), uses grid and direct particle methods to balance the capabilities of Roadrunner's conventional (Opteron) and accelerator (Cell BE) layers. Mirrored particle caches and spectral techniques are used to overcome communication bandwidth limitations and possible difficulties with complicated particle-grid interaction templates.

  8. Solitons in relativistic cosmologies

    International Nuclear Information System (INIS)

    Pullin, J.

    1988-08-01

    The application to the construction of solitonic cosmologies in General Relativity of the Inverse Scattering Technique of Belinskii an Zakharov is analyzed. Three improvements to the mentioned technique are proposed: the inclusion of higher order poles in the scattering matrix, a new renormalization technique for diagonal metrics and the extension of the technique to include backgrounds with material content by means of a Kaluza-Klein formalism. As a consequence of these improvements, three new aspects can be analyzed: a) The construction of anisotropic and inhomogeneous cosmological models which can mimic the formation of halos and voids, due to the presence of a material content. The new renormalization technique allows to construct an exact perturbation theory. b) The analysis of the dynamics of models with cosmological constant (inflationary models) and their perturbations. c) The study of interaction of gravitational solitonic waves on material backgrounds. Moreover, some additional works, connected with the existance of 'Crack of doom' type singularities in Kaluza-Klein cosmologies, stochastic perturbations in inflationary universes and inflationary phase transitions in rotating universes are described. (Author) [es

  9. Ekpyrotic and cyclic cosmology

    International Nuclear Information System (INIS)

    Lehners, Jean-Luc

    2008-01-01

    Ekpyrotic and cyclic cosmologies provide theories of the very early and of the very late universe. In these models, the big bang is described as a collision of branes - and thus the big bang is not the beginning of time. Before the big bang, there is an ekpyrotic phase with equation of state w=P/(ρ) >>1 (where P is the average pressure and ρ the average energy density) during which the universe slowly contracts. This phase resolves the standard cosmological puzzles and generates a nearly scale-invariant spectrum of cosmological perturbations containing a significant non-Gaussian component. At the same time it produces small-amplitude gravitational waves with a blue spectrum. The dark energy dominating the present-day cosmological evolution is reinterpreted as a small attractive force between our brane and a parallel one. This force eventually induces a new ekpyrotic phase and a new brane collision, leading to the idea of a cyclic universe. This review discusses the detailed properties of these models, their embedding in M-theory and their viability, with an emphasis on open issues and observational signatures

  10. On globally static and stationary cosmologies with or without a cosmological constant and the dark energy problem

    International Nuclear Information System (INIS)

    Buchert, Thomas

    2006-01-01

    In the framework of spatially averaged inhomogeneous cosmologies in classical general relativity, effective Einstein equations govern the regional and the global dynamics of averaged scalar variables of cosmological models. A particular solution may be characterized by a cosmic equation of state. In this paper, it is pointed out that a globally static averaged dust model is conceivable without employing a compensating cosmological constant. Much in the spirit of Einstein's original model we discuss consequences for the global, but also for the regional properties of this cosmology. We then consider the wider class of globally stationary cosmologies that are conceivable in the presented framework. All these models are based on exact solutions of the averaged Einstein equations and provide examples of cosmologies in an out-of-equilibrium state, which we characterize by an information-theoretical measure. It is shown that such cosmologies preserve high-magnitude kinematical fluctuations and so tend to maintain their global properties. The same is true for a Λ-driven cosmos in such a state despite exponential expansion. We outline relations to inflationary scenarios and put the dark energy problem into perspective. Here, it is argued, on the grounds of the discussed cosmologies, that a classical explanation of dark energy through backreaction effects is theoretically conceivable, if the matter-dominated universe emerged from a non-perturbative state in the vicinity of the stationary solution. We also discuss a number of caveats that furnish strong counter arguments in the framework of structure formation in a perturbed Friedmannian model

  11. A cosmology forecast toolkit — CosmoLib

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhiqi, E-mail: zqhuang@cita.utoronto.ca [CEA, Institut de Physique Théorique, Orme des Merisiers, Saint-Aubin, 91191 Gif-sur-Yvette Cédex (France)

    2012-06-01

    The package CosmoLib is a combination of a cosmological Boltzmann code and a simulation toolkit to forecast the constraints on cosmological parameters from future observations. In this paper we describe the released linear-order part of the package. We discuss the stability and performance of the Boltzmann code. This is written in Newtonian gauge and including dark energy perturbations. In CosmoLib the integrator that computes the CMB angular power spectrum is optimized for a l-by-l brute-force integration, which is useful for studying inflationary models predicting sharp features in the primordial power spectrum of metric fluctuations. As an application, CosmoLib is used to study the axion monodromy inflation model that predicts cosine oscillations in the primordial power spectrum. In contrast to the previous studies by Aich et al. and Meerburg et al., we found no detection or hint of the osicllations. We pointed out that the CAMB code modified by Aich et al. does not have sufficient numerical accuracy. CosmoLib and its documentation are available at http://www.cita.utoronto.ca/∼zqhuang/CosmoLib.

  12. Cosmological models in energy-momentum-squared gravity

    Science.gov (United States)

    Board, Charles V. R.; Barrow, John D.

    2017-12-01

    We study the cosmological effects of adding terms of higher order in the usual energy-momentum tensor to the matter Lagrangian of general relativity. This is in contrast to most studies of higher-order gravity which focus on generalizing the Einstein-Hilbert curvature contribution to the Lagrangian. The resulting cosmological theories give rise to field equations of similar form to several particular theories with different fundamental bases, including bulk viscous cosmology, loop quantum gravity, k -essence, and brane-world cosmologies. We find a range of exact solutions for isotropic universes, discuss their behaviors with reference to the early- and late-time evolution, accelerated expansion, and the occurrence or avoidance of singularities. We briefly discuss extensions to anisotropic cosmologies and delineate the situations where the higher-order matter terms will dominate over anisotropies on approach to cosmological singularities.

  13. Particle physics and cosmology

    International Nuclear Information System (INIS)

    Ellis, J.; Nanopoulos, D.

    1983-01-01

    The authors describe the connection between cosmology and particle physics in an introductory way. In this connection the big bang theory and unified gauge models of strong, electromagnetic, and weak interactions are considered. Furthermore cosmological nucleosynthesis is discussed in this framework, and the problem of cosmic neutrinos is considered with special regards to its rest mass. (HSI).

  14. The encyclopedia of cosmology

    CERN Document Server

    Barkana, Rennan; Tsujikawa, Shinji; Kim, Jihn E; Nagamine, Kentaro

    2018-01-01

    The Encyclopedia of Cosmology, in four volumes, is a major, long-lasting, seminal reference at the graduate student level, laid out by the most prominent, respected researchers in the general field of Cosmology. These volumes will be a comprehensive review of the most important concepts and current status in the field, covering both theory and observation.

  15. Cosmological tests of modified gravity.

    Science.gov (United States)

    Koyama, Kazuya

    2016-04-01

    We review recent progress in the construction of modified gravity models as alternatives to dark energy as well as the development of cosmological tests of gravity. Einstein's theory of general relativity (GR) has been tested accurately within the local universe i.e. the Solar System, but this leaves the possibility open that it is not a good description of gravity at the largest scales in the Universe. This being said, the standard model of cosmology assumes GR on all scales. In 1998, astronomers made the surprising discovery that the expansion of the Universe is accelerating, not slowing down. This late-time acceleration of the Universe has become the most challenging problem in theoretical physics. Within the framework of GR, the acceleration would originate from an unknown dark energy. Alternatively, it could be that there is no dark energy and GR itself is in error on cosmological scales. In this review, we first give an overview of recent developments in modified gravity theories including f(R) gravity, braneworld gravity, Horndeski theory and massive/bigravity theory. We then focus on common properties these models share, such as screening mechanisms they use to evade the stringent Solar System tests. Once armed with a theoretical knowledge of modified gravity models, we move on to discuss how we can test modifications of gravity on cosmological scales. We present tests of gravity using linear cosmological perturbations and review the latest constraints on deviations from the standard [Formula: see text]CDM model. Since screening mechanisms leave distinct signatures in the non-linear structure formation, we also review novel astrophysical tests of gravity using clusters, dwarf galaxies and stars. The last decade has seen a number of new constraints placed on gravity from astrophysical to cosmological scales. Thanks to on-going and future surveys, cosmological tests of gravity will enjoy another, possibly even more, exciting ten years.

  16. From Mateev's baryogenesis ideas to contemporary cosmological constraints

    International Nuclear Information System (INIS)

    Kirilova, D.

    2011-01-01

    Mateev's ideas on baryogenesis and the possibility to constrain new physics on the basis of cosmological observations present the first impulse for the development of the physical cosmology and astroparticle physics in Bulgaria. Contemporary cosmological models of baryogenesis, leptogenesis, primordial nucleosynthesis and cosmological constraints on new physics are discussed

  17. CIFOG: Cosmological Ionization Fields frOm Galaxies

    Science.gov (United States)

    Hutter, Anne

    2018-03-01

    CIFOG is a versatile MPI-parallelised semi-numerical tool to perform simulations of the Epoch of Reionization. From a set of evolving cosmological gas density and ionizing emissivity fields, it computes the time and spatially dependent ionization of neutral hydrogen (HI), neutral (HeI) and singly ionized helium (HeII) in the intergalactic medium (IGM). The code accounts for HII, HeII, HeIII recombinations, and provides different descriptions for the photoionization rate that are used to calculate the residual HI fraction in ionized regions. This tool has been designed to be coupled to semi-analytic galaxy formation models or hydrodynamical simulations. The modular fashion of the code allows the user to easily introduce new descriptions for recombinations and the photoionization rate.

  18. Cosmology and unified gauge theory

    Science.gov (United States)

    Oraifeartaigh, L.

    1981-09-01

    Theoretical points in common between cosmology and unified gauge theory (UGT) are reviewed, with attention given to areas of one which have proven useful for the other. The underlying principles for both theoretical frameworks are described, noting the differences in scale, i.e., 10 to the 25th cm in cosmology and 10 to the -15th cm for UGT. Cosmology has produced bounds on the number of existing neutrino species, and also on the mass of neutrinos, two factors of interest in particle physics. Electrons, protons, and neutrinos, having been spawned from the same massive leptons, each composed of three quarks, have been predicted to be present in equal numbers in the Universe by UGT, in line with necessities of cosmology. The Grand UGT also suggests specific time scales for proton decay, thus accounting for the observed baryon assymmetry.

  19. Dissipative Boltzmann-Robertson-Walker cosmologies

    International Nuclear Information System (INIS)

    Hiscock, W.A.; Salmonson, J.

    1991-01-01

    The equations governing a flat Robertson-Walker cosmological model containing a dissipative Boltzmann gas are integrated numerically. The bulk viscous stress is modeled using the Eckart and Israel-Stewart theories of dissipative relativistic fluids; the resulting cosmologies are compared and contrasted. The Eckart models are shown to always differ in a significant quantitative way from the Israel-Stewart models. It thus appears inappropriate to use the pathological (nonhyperbolic) Eckart theory for cosmological applications. For large bulk viscosities, both cosmological models approach asymptotic nonequilibrium states; in the Eckart model the total pressure is negative, while in the Israel-Stewart model the total pressure is asymptotically zero. The Eckart model also expands more rapidly than the Israel-Stewart models. These results suggest that ''bulk-viscous'' inflation may be an artifact of using a pathological fluid theory such as the Eckart theory

  20. SPH simulations of star/planet formation triggered by cloud-cloud collisions

    OpenAIRE

    Kitsionas, Spyridon; Whitworth, Anthony Peter; Klessen, Ralf S.

    2007-01-01

    We present results of hydrodynamic simulations of star formation triggered by cloud-cloud collisions. During the early stages of star formation, low-mass objects form by gravitational instabilities in protostellar discs. A number of these low-mass objects are in the sub-stellar mass range, including a few objects of planetary mass. The disc instabilities that lead to the formation of low-mass objects in our simulations are the product of disc-disc interactions and/or interactions between the ...

  1. On the Cold Big Bang Cosmology

    Directory of Open Access Journals (Sweden)

    Assis A. V. D. B.

    2011-04-01

    Full Text Available We solve the general relativity (GR field equations under the cosmological scope via one extra postulate. The plausibility of the postulate resides within the Heisenberg in- determinacy principle, being heuristically analysed throughout the appendix. Under this approach, a negative energy density may provide the positive energy content of the universe via fluctuation, since the question of conservation of energy in cosmol- ogy is weakened, supported by the known lack of scope of the Noether’s theorem in cosmology. The initial condition of the primordial universe turns out to have a natural cuto such that the temperature of the cosmological substratum converges to the ab- solute zero, instead of the established divergence at the very beginning. The adopted postulate provides an explanation for the cosmological dark energy open question. The solution agrees with cosmological observations, including a 2.7K CMBT prediction.

  2. Black hole versus cosmological horizon entropy

    International Nuclear Information System (INIS)

    Davis, Tamara M; Davies, P C W; Lineweaver, Charles H

    2003-01-01

    The generalized second law of thermodynamics states that entropy always increases when all event horizons are attributed with an entropy proportional to their area. We test the generalized second law by investigating the change in entropy when dust, radiation and black holes cross a cosmological event horizon. We generalize for flat, open and closed Friedmann-Robertson-Walker universes by using numerical calculations to determine the cosmological horizon evolution. In most cases, the loss of entropy from within the cosmological horizon is more than balanced by an increase in cosmological event horizon entropy, maintaining the validity of the generalized second law of thermodynamics. However, an intriguing set of open universe models shows an apparent entropy decrease when black holes disappear over the cosmological event horizon. We anticipate that this apparent violation of the generalized second law will disappear when solutions are available for black holes embedded in arbitrary backgrounds

  3. Landscape predictions from cosmological vacuum selection

    Energy Technology Data Exchange (ETDEWEB)

    Bousso, Raphael; Bousso, Raphael; Yang, Sheng

    2007-04-23

    In Bousso-Polchinski models with hundreds of fluxes, we compute the effects of cosmological dynamics on the probability distribution of landscape vacua. Starting from generic initial conditions, we find that most fluxes are dynamically driven into a different and much narrower range of values than expected from landscape statistics alone. Hence, cosmological evolution will access only a tiny fraction of the vacua with small cosmological constant. This leads to a host of sharp predictions. Unlike other approaches to eternal inflation, the holographic measure employed here does not lead to staggering, an excessive spread of probabilities that would doom the string landscape as a solution to the cosmological constant problem.

  4. Landscape predictions from cosmological vacuum selection

    International Nuclear Information System (INIS)

    Bousso, Raphael; Yang, I-S.

    2007-01-01

    In Bousso-Polchinski models with hundreds of fluxes, we compute the effects of cosmological dynamics on the probability distribution of landscape vacua. Starting from generic initial conditions, we find that most fluxes are dynamically driven into a different and much narrower range of values than expected from landscape statistics alone. Hence, cosmological evolution will access only a tiny fraction of the vacua with small cosmological constant. This leads to a host of sharp predictions. Unlike other approaches to eternal inflation, the holographic measure employed here does not lead to staggering, an excessive spread of probabilities that would doom the string landscape as a solution to the cosmological constant problem

  5. Cosmological string solutions by dimensional reduction

    International Nuclear Information System (INIS)

    Behrndt, K.; Foerste, S.

    1993-12-01

    We obtain cosmological four dimensional solutions of the low energy effective string theory by reducing a five dimensional black hole, and black hole-de Sitter solution of the Einstein gravity down to four dimensions. The appearance of a cosmological constant in the five dimensional Einstein-Hilbert produces a special dilaton potential in the four dimensional effective string action. Cosmological scenarios implement by our solutions are discussed

  6. Cosmological Constraints from the Redshift Dependence of the Volume Effect Using the Galaxy 2-point Correlation Function across the Line of Sight

    Science.gov (United States)

    Li, Xiao-Dong; Park, Changbom; Sabiu, Cristiano G.; Park, Hyunbae; Cheng, Cheng; Kim, Juhan; Hong, Sungwook E.

    2017-08-01

    We develop a methodology to use the redshift dependence of the galaxy 2-point correlation function (2pCF) across the line of sight, ξ ({r}\\perp ), as a probe of cosmological parameters. The positions of galaxies in comoving Cartesian space varies under different cosmological parameter choices, inducing a redshift-dependent scaling in the galaxy distribution. This geometrical distortion can be observed as a redshift-dependent rescaling in the measured ξ ({r}\\perp ). We test this methodology using a sample of 1.75 billion mock galaxies at redshifts 0, 0.5, 1, 1.5, and 2, drawn from the Horizon Run 4 N-body simulation. The shape of ξ ({r}\\perp ) can exhibit a significant redshift evolution when the galaxy sample is analyzed under a cosmology differing from the true, simulated one. Other contributions, including the gravitational growth of structure, galaxy bias, and the redshift space distortions, do not produce large redshift evolution in the shape. We show that one can make use of this geometrical distortion to constrain the values of cosmological parameters governing the expansion history of the universe. This method could be applicable to future large-scale structure surveys, especially photometric surveys such as DES and LSST, to derive tight cosmological constraints. This work is a continuation of our previous works as a strategy to constrain cosmological parameters using redshift-invariant physical quantities.

  7. 1D and 3D Polymeric Manganese(II) Thiolato Complexes: Synthesis, Structure, and Properties of    ∞3[Mn4(SPh)8] and ∞1[Mn(SMes)2].

    Science.gov (United States)

    Eichhöfer, Andreas; Lebedkin, Sergei

    2018-01-16

    Reactions of [Mn{N(SiMe 3 ) 2 } 2 ] 2 with 2.1 equiv of RSH, R = Ph or Mes = C 6 H 2 -2,4,6-(CH 3 ) 3 , yield compounds of the formal composition "Mn(SR) 2 ". Single-crystal X-ray diffraction reveals that ∞ 1 [Mn(SMes) 2 ] forms one-dimensional chains in the crystal via μ 2 -SMes bridges, whereas ∞ 3 [Mn 4 (SPh) 8 ] comprises a three-dimensional network in which adamantanoid cages composed of four Mn atoms and six μ 2 -bridging SPh ligands are connected in three dimensions by doubly bridging SPh ligands. Thermogravimetric analysis and powder diffractometry indicate an reversible uptake of solvent molecules (tetrahydrofuran) into the channels of ∞ 1 [Mn(SMes) 2 ]. Magnetic measurements reveal antiferromagnetic coupling for both compounds with J = -8.2 cm -1 ( ∞ 1 [Mn(SMes) 2 ]) and -10.0 cm -1 ( ∞ 3 [Mn 4 (SPh) 8 ]), respectively. Their optical absorption and photoluminescence (PL) excitation spectra display characteristic d-d bands of Mn 2+ ions in the visible spectral region. Both compounds emit bright phosphorescence at ∼800 nm at low temperatures (SMes) 2 ] retains a moderately intense emission at ambient temperature (with a quantum yield of 1.2%). Similar PL properties are also found for the related selenolate complexes ∞ 1 [Mn(SeR) 2 ] (R = Ph, Mes).

  8. Elements of the universe in Philo’s De Vita Mosis: Cosmological theology or theological cosmology?

    Directory of Open Access Journals (Sweden)

    Gert J. Steyn

    2013-11-01

    Full Text Available It is the intention of this article to investigate how Philo’s understanding of the universe, and particularly its four basic elements as taught by the Greek philosophers, influenced his description of the God of Israel’s world in which the Moses narrative unfolds. Given the fact that Philo was a theologian par excellence, the question can be asked whether Philo’s approach is closer to what one might call ‘theological cosmology’ or rather closer to ‘cosmological theology’? After a brief survey of Philo’s inclination to interpret Jewish history in the light of Greek cosmology, the study proceeds with his universe as symbolised in the high priest’s vestments. The τετρακτύςwith its 10 points of harmony is a key to Philo’s symbolism and numerology. The article concludes that Philo is not writing cosmology per se in his De Vita Mosis, but he is rather writing a theology that sketches the cosmic superiority and involvement of Israel’s God against the backdrop of Greek cosmology as it was influenced by Pythagoras’ geometry and numerology as well as by Plato’s philosophy. In this sense his account in the De Vita Mosisis closer to a cosmological theology. He utilises the cosmological picture of the Greco-Hellenistic world in order to introduce and present the powerful nature and qualities of Israel’s God.

  9. Zero cosmological constant from normalized general relativity

    International Nuclear Information System (INIS)

    Davidson, Aharon; Rubin, Shimon

    2009-01-01

    Normalizing the Einstein-Hilbert action by the volume functional makes the theory invariant under constant shifts in the Lagrangian. The associated field equations then resemble unimodular gravity whose otherwise arbitrary cosmological constant is now determined as a Machian universal average. We prove that an empty space-time is necessarily Ricci tensor flat, and demonstrate the vanishing of the cosmological constant within the scalar field paradigm. The cosmological analysis, carried out at the mini-superspace level, reveals a vanishing cosmological constant for a universe which cannot be closed as long as gravity is attractive. Finally, we give an example of a normalized theory of gravity which does give rise to a non-zero cosmological constant.

  10. Astroparticle physics and cosmology

    International Nuclear Information System (INIS)

    Senjanovic, G.; Smirnov, A.Yu.; Thompson, G.

    2001-01-01

    In this volume a wide spectrum of topics of modern astroparticle physics, such as neutrino astrophysics, dark matter of the universe, high energy cosmic rays, topological defects in cosmology, γ-ray bursts, phase transitions at high temperatures, is covered. The articles written by top level experts in the field give a comprehensive view of the state-of-the-art of modern cosmology

  11. Astroparticle physics and cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Senjanovic, G; Smirnov, A Yu; Thompson, G [eds.

    2001-11-15

    In this volume a wide spectrum of topics of modern astroparticle physics, such as neutrino astrophysics, dark matter of the universe, high energy cosmic rays, topological defects in cosmology, {gamma}-ray bursts, phase transitions at high temperatures, is covered. The articles written by top level experts in the field give a comprehensive view of the state-of-the-art of modern cosmology.

  12. Evolution of the mass-metallicity relations in passive and star-forming galaxies from SPH-cosmological simulations

    DEFF Research Database (Denmark)

    Velonà, A. D Romeo; Sommer-Larsen, J.; Napolitano, N. R.

    2013-01-01

    at high redshift, whose scatter increases with time alongside the consolidation of the passive sequence. We also confirm the anti-correlation between sSFR and stellar mass, pointing at a key role of the former in determining the galaxy downsizing, as the most significant means of diagnostics of the star...... formation efficiency. Likewise, an anti-correlation between sSFR and metallicity can be established for the SF galaxies, while on the contrary more active galaxies in terms of simple SFR are also metal-richer. Finally, the [O/Fe] abundance ratio is presented too: we report a strong increasing evolution...

  13. A null test of the cosmological constant

    International Nuclear Information System (INIS)

    Chiba, Takeshi; Nakamura, Takashi

    2007-01-01

    We provide a consistency relation between cosmological observables in general relativity with the cosmological constant. Breaking of this relation at any redshift would imply the breakdown of the hypothesis of the cosmological constant as an explanation of the current acceleration of the universe. (author)

  14. Horizons of cosmology

    CERN Document Server

    Silk, Joseph

    2011-01-01

    Horizons of Cosmology: Exploring Worlds Seen and Unseen is the fourth title published in the Templeton Science and Religion Series, in which scientists from a wide range of fields distill their experience and knowledge into brief tours of their respective specialties. In this volume, highly esteemed astrophysicist Joseph Silk explores the vast mysteries and speculations of the field of cosmology in a way that balances an accessible style for the general reader and enough technical detail for advanced students and professionals. Indeed, while the p

  15. Neutrino physics and precision cosmology

    DEFF Research Database (Denmark)

    Hannestad, Steen

    2016-01-01

    I review the current status of structure formation bounds on neutrino properties such as mass and energy density. I also discuss future cosmological bounds as well as a variety of different scenarios for reconciling cosmology with the presence of light sterile neutrinos....

  16. Cosmological constraints from Chandra observations of galaxy clusters.

    Science.gov (United States)

    Allen, Steven W

    2002-09-15

    Chandra observations of rich, relaxed galaxy clusters allow the properties of the X-ray gas and the total gravitating mass to be determined precisely. Here, we present results for a sample of the most X-ray luminous, dynamically relaxed clusters known. We show that the Chandra data and independent gravitational lensing studies provide consistent answers on the mass distributions in the clusters. The mass profiles exhibit a form in good agreement with the predictions from numerical simulations. Combining Chandra results on the X-ray gas mass fractions in the clusters with independent measurements of the Hubble constant and the mean baryonic matter density in the Universe, we obtain a tight constraint on the mean total matter density of the Universe, Omega(m), and an interesting constraint on the cosmological constant, Omega(Lambda). We also describe the 'virial relations' linking the masses, X-ray temperatures and luminosities of galaxy clusters. These relations provide a key step in linking the observed number density and spatial distribution of clusters to the predictions from cosmological models. The Chandra data confirm the presence of a systematic offset of ca. 40% between the normalization of the observed mass-temperature relation and the predictions from standard simulations. This finding leads to a significant revision of the best-fit value of sigma(8) inferred from the observed temperature and luminosity functions of clusters.

  17. Bianchi type II brane-world cosmologies (U≥0)

    International Nuclear Information System (INIS)

    Hoogen, R.J. van den; Ibanez, J.

    2003-01-01

    The asymptotic properties of the Bianchi type II cosmological model in the brane-world scenario are investigated. The matter content is assumed to be a combination of a perfect fluid and a minimally coupled scalar field that is restricted to the brane. The isotropic brane-world solution is determined to represent the initial singularity in all brane-world cosmologies. Additionally, it is shown that it is the kinetic energy of the scalar field which dominates the initial dynamics in these brane-world cosmologies. It is important to note that the dynamics of these brane-world cosmologies is not necessarily asymptotic to general relativistic cosmologies to the future in the case of a zero four-dimensional cosmological constant

  18. Physical and Relativistic Numerical Cosmology.

    Science.gov (United States)

    Anninos, Peter

    1998-01-01

    In order to account for the observable Universe, any comprehensive theory or model of cosmology must draw from many disciplines of physics, including gauge theories of strong and weak interactions, the hydrodynamics and microphysics of baryonic matter, electromagnetic fields, and spacetime curvature, for example. Although it is difficult to incorporate all these physical elements into a single complete model of our Universe, advances in computing methods and technologies have contributed significantly towards our understanding of cosmological models, the Universe, and astrophysical processes within them. A sample of numerical calculations addressing specific issues in cosmology are reviewed in this article: from the Big Bang singularity dynamics to the fundamental interactions of gravitational waves; from the quark-hadron phase transition to the large scale structure of the Universe. The emphasis, although not exclusively, is on those calculations designed to test different models of cosmology against the observed Universe.

  19. Physical and Relativistic Numerical Cosmology

    Directory of Open Access Journals (Sweden)

    Peter Anninos

    1998-01-01

    Full Text Available In order to account for the observable Universe, any comprehensive theory or model of cosmology must draw from many disciplines of physics, including gauge theories of strong and weak interactions, the hydrodynamics and microphysics of baryonic matter, electromagnetic fields, and spacetime curvature, for example. Although it is difficult to incorporate all these physical elements into a single complete model of our Universe, advances in computing methods and technologies have contributed significantly towards our understanding of cosmological models, the Universe, and astrophysical processes within them. A sample of numerical calculations addressing specific issues in cosmology are reviewed in this article: from the Big Bang singularity dynamics to the fundamental interactions of gravitational waves; from the quark--hadron phase transition to the large scale structure of the Universe. The emphasis, although not exclusively, is on those calculations designed to test different models of cosmology against the observed Universe.

  20. Bimetric gravity is cosmologically viable

    Directory of Open Access Journals (Sweden)

    Yashar Akrami

    2015-09-01

    Full Text Available Bimetric theory describes gravitational interactions in the presence of an extra spin-2 field. Previous work has suggested that its cosmological solutions are generically plagued by instabilities. We show that by taking the Planck mass for the second metric, Mf, to be small, these instabilities can be pushed back to unobservably early times. In this limit, the theory approaches general relativity with an effective cosmological constant which is, remarkably, determined by the spin-2 interaction scale. This provides a late-time expansion history which is extremely close to ΛCDM, but with a technically-natural value for the cosmological constant. We find Mf should be no larger than the electroweak scale in order for cosmological perturbations to be stable by big-bang nucleosynthesis. We further show that in this limit the helicity-0 mode is no longer strongly-coupled at low energy scales.

  1. Particle physics and cosmology, Task C

    International Nuclear Information System (INIS)

    Turner, M.S.

    1993-05-01

    The research has spanned many topics at the boundary of particle physics and cosmology. The major focus has been in the general areas of inflationary cosmology, cosmological phase transitions, astrophysical constraints to particle physics theories, and dark matter/structure formation as it relates to particle physics. Some attention is given to axion physics. Narrative summaries of the research of the individual group members are given, followed by a list of publications

  2. Modified geodetic brane cosmology

    International Nuclear Information System (INIS)

    Cordero, Rubén; Cruz, Miguel; Molgado, Alberto; Rojas, Efraín

    2012-01-01

    We explore the cosmological implications provided by the geodetic brane gravity action corrected by an extrinsic curvature brane term, describing a codimension-1 brane embedded in a 5D fixed Minkowski spacetime. In the geodetic brane gravity action, we accommodate the correction term through a linear term in the extrinsic curvature swept out by the brane. We study the resulting geodetic-type equation of motion. Within a Friedmann–Robertson–Walker metric, we obtain a generalized Friedmann equation describing the associated cosmological evolution. We observe that, when the radiation-like energy contribution from the extra dimension is vanishing, this effective model leads to a self-(non-self)-accelerated expansion of the brane-like universe in dependence on the nature of the concomitant parameter β associated with the correction, which resembles an analogous behaviour in the DGP brane cosmology. Several possibilities in the description for the cosmic evolution of this model are embodied and characterized by the involved density parameters related in turn to the cosmological constant, the geometry characterizing the model, the introduced β parameter as well as the dark-like energy and the matter content on the brane. (paper)

  3. Large-eddy simulations of 3D Taylor-Green vortex: comparison of Smoothed Particle Hydrodynamics, Lattice Boltzmann and Finite Volume methods

    International Nuclear Information System (INIS)

    Kajzer, A; Pozorski, J; Szewc, K

    2014-01-01

    In the paper we present Large-eddy simulation (LES) results of 3D Taylor- Green vortex obtained by the three different computational approaches: Smoothed Particle Hydrodynamics (SPH), Lattice Boltzmann Method (LBM) and Finite Volume Method (FVM). The Smagorinsky model was chosen as a subgrid-scale closure in LES for all considered methods and a selection of spatial resolutions have been investigated. The SPH and LBM computations have been carried out with the use of the in-house codes executed on GPU and compared, for validation purposes, with the FVM results obtained using the open-source CFD software OpenFOAM. A comparative study in terms of one-point statistics and turbulent energy spectra shows a good agreement of LES results for all methods. An analysis of the GPU code efficiency and implementation difficulties has been made. It is shown that both SPH and LBM may offer a significant advantage over mesh-based CFD methods.

  4. Observational cosmology

    International Nuclear Information System (INIS)

    Partridge, R.B.

    1977-01-01

    Some sixty years after the development of relativistic cosmology by Einstein and his colleagues, observations are finally beginning to have an important impact on our views of the Universe. The available evidence seems to support one of the simplest cosmological models, the hot Big Bang model. The aim of this paper is to assess the observational support for certain assumptions underlying the hot Big Bang model. These are that the Universe is isobaric and homogeneous on a large scale; that it is expanding from an initial state of high density and temperature; and that the proper theory to describe the dynamics of the Universe is unmodified General Relativity. The properties of the cosmic microwave background radiation and recent observations of the abundance of light elements, in particular, support these assumptions. Also examined here are the data bearing on the related questions of the geometry and the future of the Universe (is it ever-expanding, or fated to recollapse). Finally, some difficulties and faults of the standard model are discussed, particularly various aspects of the 'initial condition' problem. It appears that the simplest Big Bang cosmological model calls for a highly specific set of initial conditions to produce the presently observed properties of the Universe. (Auth.)

  5. Improved standard cosmology: Comparison with observation

    International Nuclear Information System (INIS)

    Wesson, P.S.

    1982-01-01

    A cosmological model describing inhomogeneous clusters of galaxies embedded in a homogeneous background is compared to observation. In this model, a cluster is described as a spherically symmetric distribution of matter with an inverse-square density law and an isothermal equation of state, while the background universe is essentially the Einstein/de Sitter one of standard cosmology, but with a small pressure. The model is found to be in overall good agreement with observation, and its adjustable parameters are assigned numerical values. The equation of state for a cluster and the finite cosmological pressure are properties of the model which can in principle be investigated by carrying out observations. Subject headings: cosmology: galaxies: clusters of: relativity

  6. The cosmology of the Fab-Four

    International Nuclear Information System (INIS)

    Copeland, Edmund J.; Padilla, Antonio; Saffin, Paul M.

    2012-01-01

    We have recently proposed a novel self tuning mechanism to alleviate the famous cosmological constant problem, based on the general scalar tensor theory proposed by Horndeski. The self-tuning model ends up consisting of four geometric terms in the action, with each term containing a free potential function of the scalar field; the four together being labeled as the Fab-Four. In this paper we begin the important task of deriving the cosmology associated with the Fab-Four Lagrangian. Performing a phase plane analysis of the system we are able to obtain a number of fixed points for the system, with some remarkable new solutions emerging from the trade-off between the various potentials. As well as obtaining inflationary solutions we also find conventional radiation/matter-like solutions, but in regimes where the energy density is dominated by a cosmological constant, and where we do not have any explicit forms of radiation or matter. Stability conditions for matter solutions are obtained and we show how it is possible for there to exist an extended period of 'matter domination' opening up the possibility that we can generate cosmological structures, and recover a consistent cosmology even in the presence of a large cosmological constant

  7. Cosmologies of the ancient Mediterranean world

    Directory of Open Access Journals (Sweden)

    John T. Fitzgerald

    2013-07-01

    Full Text Available Cosmology is concerned with the order of the universe and seeks to provide an account, not only of that order, but also of the mind or reason behind it. In antiquity, the cosmos was usually understood religiously, such that the cosmologies of the ancient Mediterranean world were either religious in nature or constituted a reaction to a religiously conceived understanding of the structures of the universe. The oldest form in which ancient cosmologies occur is myth, which, owing to its elasticity as a form, enabled them to be appropriated, adapted and used by different groups. In addition, different cosmologies co-existed within the same ancient culture, each having an authoritative status. This article provides an introductory overview of these cosmological myths and argues that a comparative approach is the most fruitful way to study them. Emphasis is given to certain prominent cosmological topics, including theogony (the genesis of the divine or the relationship of the divine to the cosmos, cosmogony (the genesis of the cosmos, and anthropogony (the origin of humans within the cosmos. Although these myths vary greatly in terms of content and how they envision the origin of the cosmos, many of them depict death as part of the structure of the universe.

  8. Quantum cosmology and late-time singularities

    International Nuclear Information System (INIS)

    Kamenshchik, A Yu

    2013-01-01

    The development of dark energy models has stimulated interest to cosmological singularities, which differ from the traditional Big Bang and Big Crunch singularities. We review a broad class of phenomena connected with soft cosmological singularities in classical and quantum cosmology. We discuss the classification of singularities from the geometrical point of view and from the point of view of the behavior of finite size objects, crossing such singularities. We discuss in some detail quantum and classical cosmology of models based on perfect fluids (anti-Chaplygin gas and anti-Chaplygin gas plus dust), of models based on the Born–Infeld-type fields and of the model of a scalar field with a potential inversely proportional to the field itself. We dwell also on the phenomenon of the phantom divide line crossing in the scalar field models with cusped potentials. Then we discuss the Friedmann equations modified by quantum corrections to the effective action of the models under considerations and the influence of such modification on the nature and the existence of soft singularities. We review also quantum cosmology of models, where the initial quantum state of the universe is presented by the density matrix (mixed state). Finally, we discuss the exotic singularities arising in the braneworld cosmological models. (topical review)

  9. Cosmic curvature from de Sitter equilibrium cosmology.

    Science.gov (United States)

    Albrecht, Andreas

    2011-10-07

    I show that the de Sitter equilibrium cosmology generically predicts observable levels of curvature in the Universe today. The predicted value of the curvature, Ω(k), depends only on the ratio of the density of nonrelativistic matter to cosmological constant density ρ(m)(0)/ρ(Λ) and the value of the curvature from the initial bubble that starts the inflation, Ω(k)(B). The result is independent of the scale of inflation, the shape of the potential during inflation, and many other details of the cosmology. Future cosmological measurements of ρ(m)(0)/ρ(Λ) and Ω(k) will open up a window on the very beginning of our Universe and offer an opportunity to support or falsify the de Sitter equilibrium cosmology.

  10. Cosmology and the weak interaction

    International Nuclear Information System (INIS)

    Schramm, D.N.

    1989-12-01

    The weak interaction plays a critical role in modern Big Bang cosmology. This review will emphasize two of its most publicized cosmological connections: Big Bang nucleosynthesis and Dark Matter. The first of these is connected to the cosmological prediction of Neutrino Flavours, N ν ∼ 3 which is now being confirmed at SLC and LEP. The second is interrelated to the whole problem of galaxy and structure formation in the universe. This review will demonstrate the role of the weak interaction both for dark matter candidates and for the problem of generating seeds to form structure. 87 refs., 3 figs., 5 tabs

  11. Cosmology and the weak interaction

    Energy Technology Data Exchange (ETDEWEB)

    Schramm, D.N. (Fermi National Accelerator Lab., Batavia, IL (USA)):(Chicago Univ., IL (USA))

    1989-12-01

    The weak interaction plays a critical role in modern Big Bang cosmology. This review will emphasize two of its most publicized cosmological connections: Big Bang nucleosynthesis and Dark Matter. The first of these is connected to the cosmological prediction of Neutrino Flavours, N{sub {nu}} {approximately} 3 which is now being confirmed at SLC and LEP. The second is interrelated to the whole problem of galaxy and structure formation in the universe. This review will demonstrate the role of the weak interaction both for dark matter candidates and for the problem of generating seeds to form structure. 87 refs., 3 figs., 5 tabs.

  12. The redshift distribution of cosmological samples: a forward modeling approach

    Energy Technology Data Exchange (ETDEWEB)

    Herbel, Jörg; Kacprzak, Tomasz; Amara, Adam; Refregier, Alexandre; Bruderer, Claudio; Nicola, Andrina, E-mail: joerg.herbel@phys.ethz.ch, E-mail: tomasz.kacprzak@phys.ethz.ch, E-mail: adam.amara@phys.ethz.ch, E-mail: alexandre.refregier@phys.ethz.ch, E-mail: claudio.bruderer@phys.ethz.ch, E-mail: andrina.nicola@phys.ethz.ch [Institute for Astronomy, Department of Physics, ETH Zürich, Wolfgang-Pauli-Strasse 27, 8093 Zürich (Switzerland)

    2017-08-01

    Determining the redshift distribution n ( z ) of galaxy samples is essential for several cosmological probes including weak lensing. For imaging surveys, this is usually done using photometric redshifts estimated on an object-by-object basis. We present a new approach for directly measuring the global n ( z ) of cosmological galaxy samples, including uncertainties, using forward modeling. Our method relies on image simulations produced using \\textsc(UFig) (Ultra Fast Image Generator) and on ABC (Approximate Bayesian Computation) within the MCCL (Monte-Carlo Control Loops) framework. The galaxy population is modeled using parametric forms for the luminosity functions, spectral energy distributions, sizes and radial profiles of both blue and red galaxies. We apply exactly the same analysis to the real data and to the simulated images, which also include instrumental and observational effects. By adjusting the parameters of the simulations, we derive a set of acceptable models that are statistically consistent with the data. We then apply the same cuts to the simulations that were used to construct the target galaxy sample in the real data. The redshifts of the galaxies in the resulting simulated samples yield a set of n ( z ) distributions for the acceptable models. We demonstrate the method by determining n ( z ) for a cosmic shear like galaxy sample from the 4-band Subaru Suprime-Cam data in the COSMOS field. We also complement this imaging data with a spectroscopic calibration sample from the VVDS survey. We compare our resulting posterior n ( z ) distributions to the one derived from photometric redshifts estimated using 36 photometric bands in COSMOS and find good agreement. This offers good prospects for applying our approach to current and future large imaging surveys.

  13. The redshift distribution of cosmological samples: a forward modeling approach

    Science.gov (United States)

    Herbel, Jörg; Kacprzak, Tomasz; Amara, Adam; Refregier, Alexandre; Bruderer, Claudio; Nicola, Andrina

    2017-08-01

    Determining the redshift distribution n(z) of galaxy samples is essential for several cosmological probes including weak lensing. For imaging surveys, this is usually done using photometric redshifts estimated on an object-by-object basis. We present a new approach for directly measuring the global n(z) of cosmological galaxy samples, including uncertainties, using forward modeling. Our method relies on image simulations produced using \\textsc{UFig} (Ultra Fast Image Generator) and on ABC (Approximate Bayesian Computation) within the MCCL (Monte-Carlo Control Loops) framework. The galaxy population is modeled using parametric forms for the luminosity functions, spectral energy distributions, sizes and radial profiles of both blue and red galaxies. We apply exactly the same analysis to the real data and to the simulated images, which also include instrumental and observational effects. By adjusting the parameters of the simulations, we derive a set of acceptable models that are statistically consistent with the data. We then apply the same cuts to the simulations that were used to construct the target galaxy sample in the real data. The redshifts of the galaxies in the resulting simulated samples yield a set of n(z) distributions for the acceptable models. We demonstrate the method by determining n(z) for a cosmic shear like galaxy sample from the 4-band Subaru Suprime-Cam data in the COSMOS field. We also complement this imaging data with a spectroscopic calibration sample from the VVDS survey. We compare our resulting posterior n(z) distributions to the one derived from photometric redshifts estimated using 36 photometric bands in COSMOS and find good agreement. This offers good prospects for applying our approach to current and future large imaging surveys.

  14. The redshift distribution of cosmological samples: a forward modeling approach

    International Nuclear Information System (INIS)

    Herbel, Jörg; Kacprzak, Tomasz; Amara, Adam; Refregier, Alexandre; Bruderer, Claudio; Nicola, Andrina

    2017-01-01

    Determining the redshift distribution n ( z ) of galaxy samples is essential for several cosmological probes including weak lensing. For imaging surveys, this is usually done using photometric redshifts estimated on an object-by-object basis. We present a new approach for directly measuring the global n ( z ) of cosmological galaxy samples, including uncertainties, using forward modeling. Our method relies on image simulations produced using \\textsc(UFig) (Ultra Fast Image Generator) and on ABC (Approximate Bayesian Computation) within the MCCL (Monte-Carlo Control Loops) framework. The galaxy population is modeled using parametric forms for the luminosity functions, spectral energy distributions, sizes and radial profiles of both blue and red galaxies. We apply exactly the same analysis to the real data and to the simulated images, which also include instrumental and observational effects. By adjusting the parameters of the simulations, we derive a set of acceptable models that are statistically consistent with the data. We then apply the same cuts to the simulations that were used to construct the target galaxy sample in the real data. The redshifts of the galaxies in the resulting simulated samples yield a set of n ( z ) distributions for the acceptable models. We demonstrate the method by determining n ( z ) for a cosmic shear like galaxy sample from the 4-band Subaru Suprime-Cam data in the COSMOS field. We also complement this imaging data with a spectroscopic calibration sample from the VVDS survey. We compare our resulting posterior n ( z ) distributions to the one derived from photometric redshifts estimated using 36 photometric bands in COSMOS and find good agreement. This offers good prospects for applying our approach to current and future large imaging surveys.

  15. Intrinsic and cosmological signatures in gamma-ray burst time profiles: Time dilation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, A.

    2000-02-08

    The time profiles of many gamma-ray bursts consist of distinct pulses, which offers the possibility of characterizing the temporal structure of these bursts using a relatively small set of pulse shape parameters. The authors have used a pulse decomposition procedure to analyze the Time-to-Spill (TTS) data for all bursts observed by BATSE up through trigger number 2000, in all energy channels for which TTS data is available. The authors obtain amplitude, rise and decay timescales, a pulse shape parameter, and the fluencies of individual pulses in all of the bursts. The authors investigate the correlations between brightness measures (amplitude and fluence) and timescale measures (pulse width and separation) which may result from cosmological time dilation of bursts, or from intrinsic properties of burst sources or from selection effects. The effects of selection biases are evaluated through simulations. The correlations between these parameters among pulses within individual bursts give a measure of the intrinsic effects while the correlations among bursts could result both from intrinsic and cosmological effects. The authors find that timescales tend to be shorter in bursts with higher peak fluxes, as expected from cosmological time dilation effects, but also find that there are non-cosmological effects contributing to this inverse correlation. The authors find that timescales tend to be longer in bursts with higher total fluences, contrary to what is expected from cosmological effects. The authors also find that peak fluxes and total fluences of bursts are uncorrelated, indicating that they cannot both be good distance indicators for bursts.

  16. An efficient probe of the cosmological CPT violation

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Gong-Bo; Wang, Yuting [National Astronomy Observatories, Chinese Academy of Science, Beijing, 100012 (China); Xia, Jun-Qing [Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Science, P. O. Box 918-3, Beijing 100049 (China); Li, Mingzhe [Interdisciplinary Center for Theoretical Study, University of Science and Technology of China, Hefei, Anhui 230026 (China); Zhang, Xinmin, E-mail: gbzhao@nao.cas.cn, E-mail: ytwang@nao.cas.cn, E-mail: xiajq@ihep.ac.cn, E-mail: limz@ustc.edu.cn, E-mail: xmzhang@ihep.ac.cn [Theory Division, Institute of High Energy Physics, Chinese Academy of Science, P. O. Box 918-4, Beijing 100049 (China)

    2015-07-01

    We develop an efficient method based on the linear regression algorithm to probe the cosmological CPT violation using the CMB polarisation data. We validate this method using simulated CMB data and apply it to recent CMB observations. We find that a combined data sample of BICEP1 and BOOMERanG 2003 favours a nonzero isotropic rotation angle at 2.3σ confidence level, i.e., α-bar =−3.3{sup o}±1.4{sup o} (68% CL) with systematics included.

  17. Adventures in cosmology

    CERN Document Server

    2012-01-01

    This volume tells of the quest for cosmology as seen by some of the finest cosmologists in the world. It starts with "Galaxy Formation from Start to Finish" and ends with "The First Supermassive Black Holes in the Universe," exploring in between the grand themes of galaxies, the early universe, expansion of the universe, dark matter and dark energy. This up-to-date collection of review articles offers a general introduction to cosmology and is intended for all probing into the profound questions on where we came from and where we are going.

  18. Relativistic Cosmology Revisited

    Directory of Open Access Journals (Sweden)

    Crothers S. J.

    2007-04-01

    Full Text Available In a previous paper the writer treated of particular classes of cosmological solutions for certain Einstein spaces and claimed that no such solutions exist in relation thereto. In that paper the assumption that the proper radius is zero when the line-element is singular was generally applied. This general assumption is unjustified and must be dropped. Consequently, solutions do exist in relation to the aforementioned types, and are explored herein. The concept of the Big Bang cosmology is found to be inconsistent with General Relativity

  19. A simple way to improve AGN feedback prescription in SPH simulations

    Science.gov (United States)

    Zubovas, Kastytis; Bourne, Martin A.; Nayakshin, Sergei

    2016-03-01

    Active galactic nuclei (AGN) feedback is an important ingredient in galaxy evolution, however its treatment in numerical simulations is necessarily approximate, requiring subgrid prescriptions due to the dynamical range involved in the calculations. We present a suite of smoothed particle hydrodynamics simulations designed to showcase the importance of the choice of a particular subgrid prescription for AGN feedback. We concentrate on two approaches to treating wide-angle AGN outflows: thermal feedback, where thermal and kinetic energy is injected into the gas surrounding the supermassive black hole (SMBH) particle, and virtual particle feedback, where energy is carried by tracer particles radially away from the AGN. We show that the latter model produces a far more complex structure around the SMBH, which we argue is a more physically correct outcome. We suggest a simple improvement to the thermal feedback model - injecting the energy into a cone, rather than spherically symmetrically - and show that this markedly improves the agreement between the two prescriptions, without requiring any noticeable increase in the computational cost of the simulation.

  20. Cosmological reconstruction of realistic modified F(R) gravities

    International Nuclear Information System (INIS)

    Nojiri, Shin'ichi; Odintsov, Sergei D.; Saez-Gomez, Diego

    2009-01-01

    The cosmological reconstruction scheme for modified F(R) gravity is developed in terms of e-folding (or, redshift). It is demonstrated how any FRW cosmology may emerge from specific F(R) theory. The specific examples of well-known cosmological evolution are reconstructed, including ΛCDM cosmology, deceleration with transition to phantom superacceleration era which may develop singularity or be transient. The application of this scheme to viable F(R) gravities unifying inflation with dark energy era is proposed. The additional reconstruction of such models leads to non-leading gravitational correction mainly relevant at the early/late universe and helping to pass the cosmological bounds (if necessary). It is also shown how cosmological reconstruction scheme may be generalized in the presence of scalar field.

  1. Constraining cosmology with the velocity function of low-mass galaxies

    Science.gov (United States)

    Schneider, Aurel; Trujillo-Gomez, Sebastian

    2018-04-01

    The number density of field galaxies per rotation velocity, referred to as the velocity function, is an intriguing statistical measure probing the smallest scales of structure formation. In this paper we point out that the velocity function is sensitive to small shifts in key cosmological parameters such as the amplitude of primordial perturbations (σ8) or the total matter density (Ωm). Using current data and applying conservative assumptions about baryonic effects, we show that the observed velocity function of the Local Volume favours cosmologies in tension with the measurements from Planck but in agreement with the latest findings from weak lensing surveys. While the current systematics regarding the relation between observed and true rotation velocities are potentially important, upcoming data from H I surveys as well as new insights from hydrodynamical simulations will dramatically improve the situation in the near future.

  2. Will nonlinear peculiar velocity and inhomogeneous reionization spoil 21 cm cosmology from the epoch of reionization?

    Science.gov (United States)

    Shapiro, Paul R; Mao, Yi; Iliev, Ilian T; Mellema, Garrelt; Datta, Kanan K; Ahn, Kyungjin; Koda, Jun

    2013-04-12

    The 21 cm background from the epoch of reionization is a promising cosmological probe: line-of-sight velocity fluctuations distort redshift, so brightness fluctuations in Fourier space depend upon angle, which linear theory shows can separate cosmological from astrophysical information. Nonlinear fluctuations in ionization, density, and velocity change this, however. The validity and accuracy of the separation scheme are tested here for the first time, by detailed reionization simulations. The scheme works reasonably well early in reionization (≲40% ionized), but not late (≳80% ionized).

  3. The Universe Adventure - The Beginnings of Cosmology

    Science.gov (United States)

    The Universe Adventure [ next ] [ home ] Go The Beginnings of Cosmology Since the beginning of of stars? What do the stars tell us about the future? Where did the Universe come from? Cosmology is will introduce you to Cosmology and the study of the structure, history, and fate of the Universe. In

  4. Notes on Hadza cosmology

    DEFF Research Database (Denmark)

    Skaanes, Thea

    2015-01-01

    Abstract: This article concerns Hadza cosmology examined through objects, rituals and the Hadza concept of epeme. A brief background to the Hadza and the eldwork that informs this study is followed by a close analysis of three key objects that are central to the argument presented. The objects...... are intimately linked to women and to aspects of the social and cosmological identity of the individual makers. one object is a materi- alisation of the woman’s name and it leads to an examination by interview of naming practices more generally. Naming a child gives it a spirit and places the child in a strong...... of ethnographic research indicating the potential and need for further examination of the power and role of objects in Hadza society. Keywords: Hadza, epeme, ritual, cosmology, power objects...

  5. Introduction. Cosmology meets condensed matter.

    Science.gov (United States)

    Kibble, T W B; Pickett, G R

    2008-08-28

    At first sight, low-temperature condensed-matter physics and early Universe cosmology seem worlds apart. Yet, in the last few years a remarkable synergy has developed between the two. It has emerged that, in terms of their mathematical description, there are surprisingly close parallels between them. This interplay has been the subject of a very successful European Science Foundation (ESF) programme entitled COSLAB ('Cosmology in the Laboratory') that ran from 2001 to 2006, itself built on an earlier ESF network called TOPDEF ('Topological Defects: Non-equilibrium Field Theory in Particle Physics, Condensed Matter and Cosmology'). The articles presented in this issue of Philosophical Transactions A are based on talks given at the Royal Society Discussion Meeting 'Cosmology meets condensed matter', held on 28 and 29 January 2008. Many of the speakers had participated earlier in the COSLAB programme, but the strength of the field is illustrated by the presence also of quite a few new participants.

  6. Loop quantum cosmology and singularities.

    Science.gov (United States)

    Struyve, Ward

    2017-08-15

    Loop quantum gravity is believed to eliminate singularities such as the big bang and big crunch singularity. This belief is based on studies of so-called loop quantum cosmology which concerns symmetry-reduced models of quantum gravity. In this paper, the problem of singularities is analysed in the context of the Bohmian formulation of loop quantum cosmology. In this formulation there is an actual metric in addition to the wave function, which evolves stochastically (rather than deterministically as the case of the particle evolution in non-relativistic Bohmian mechanics). Thus a singularity occurs whenever this actual metric is singular. It is shown that in the loop quantum cosmology for a homogeneous and isotropic Friedmann-Lemaître-Robertson-Walker space-time with arbitrary constant spatial curvature and cosmological constant, coupled to a massless homogeneous scalar field, a big bang or big crunch singularity is never obtained. This should be contrasted with the fact that in the Bohmian formulation of the Wheeler-DeWitt theory singularities may exist.

  7. Particle cosmology comes of age

    International Nuclear Information System (INIS)

    Turner, M.S.

    1988-01-01

    The application of modern ideas in particle physics to astrophysical and cosmological settings is a continuation of a fruitful tradition in astrophysics which began with the application of atomic physics, and then nuclear physics. In the past decade particle cosmology and particle astrophysics have been recognized as 'legitimate activities' by both particle physicists and astrophysicists and astronomers. During this time there has been a high level of theoretical activity producing much speculation about the earliest history of the Universe, as well as important and interesting astrophysical and cosmological constraints to particle physics theories. This period of intense theoretical activity has produced a number of ideas most worthy of careful consideration and scrutiny, and even more importantly, amenable to experimental/observational test. Among the ideas which are likely to be tested in the next decade are: the cosmological bound to the number of neutrino flavors, inflation, relic WIMPs as the dark matter, and MSW neutrino oscillations as a solution to the solar neutrino problems. (orig.)

  8. Evolution in bouncing quantum cosmology

    International Nuclear Information System (INIS)

    Mielczarek, Jakub; Piechocki, Włodzimierz

    2012-01-01

    We present the method of describing an evolution in quantum cosmology in the framework of the reduced phase space quantization of loop cosmology. We apply our method to the flat Friedmann-Robertson-Walker model coupled to a massless scalar field. We identify the physical quantum Hamiltonian that is positive-definite and generates globally a unitary evolution of the considered quantum system. We examine the properties of expectation values of physical observables in the process of the quantum big bounce transition. The dispersion of evolved observables is studied for the Gaussian state. Calculated relative fluctuations enable an examination of the semi-classicality conditions and possible occurrence of the cosmic forgetfulness. Preliminary estimations based on the cosmological data suggest that there was no cosmic amnesia. Presented results are analytical, and numerical computations are only used for the visualization purposes. Our method may be generalized to sophisticated cosmological models including the Bianchi-type universes. (paper)

  9. Precision cosmology and the landscape

    International Nuclear Information System (INIS)

    Bousso, Raphael; Bousso, Raphael

    2006-01-01

    After reviewing the cosmological constant problem--why is Lambda not huge?--I outline the two basic approaches that had emerged by the late 1980s, and note that each made a clear prediction. Precision cosmological experiments now indicate that the cosmological constant is nonzero. This result strongly favors the environmental approach, in which vacuum energy can vary discretely among widely separated regions in the universe. The need to explain this variation from first principles constitutes an observational constraint on fundamental theory. I review arguments that string theory satisfies this constraint, as it contains a dense discretuum of metastable vacua. The enormous landscape of vacua calls for novel, statistical methods of deriving predictions, and it prompts us to reexamine our description of spacetime on the largest scales. I discuss the effects of cosmological dynamics, and I speculate that weighting vacua by their entropy production may allow for prior-free predictions that do not resort to explicitly anthropic arguments

  10. Particle cosmology comes of age

    International Nuclear Information System (INIS)

    Turner, M.S.

    1987-12-01

    The application of modern ideas in particle physics to astrophysical and cosmological settings is a continuation of a fruitful tradition in astrophysics which began with the application of atomic physics, and then nuclear physics. In the past decade particle cosmology and particle astrophysics have been recognized as 'legitimate activities' by both particle physicists and astrophysicists and astronomers. During this time there has been a high level of theoretical activity producing much speculation about the earliest history of the Universe, as well as important and interesting astrophysical and cosmological constraints to particle physics theories. This period of intense theoretical activity has produced a number of ideas most worthy of careful consideration and scrutiny, and even more importantly, amenable to experimental/observational test. Among the ideas which are likely to be tested in the next decade are: the cosmological bound to the number of neutrino flavors, inflation, relic WIMPs as the dark matter, and MSW neutrino oscillations as a solution to the solar neutrino problems. 94 refs

  11. Cluster cosmological analysis with X ray instrumental observables: introduction and testing of AsPIX method

    International Nuclear Information System (INIS)

    Valotti, Andrea

    2016-01-01

    Cosmology is one of the fundamental pillars of astrophysics, as such it contains many unsolved puzzles. To investigate some of those puzzles, we analyze X-ray surveys of galaxy clusters. These surveys are possible thanks to the bremsstrahlung emission of the intra-cluster medium. The simultaneous fit of cluster counts as a function of mass and distance provides an independent measure of cosmological parameters such as Ω m , σ s , and the dark energy equation of state w0. A novel approach to cosmological analysis using galaxy cluster data, called top-down, was developed in N. Clerc et al. (2012). This top-down approach is based purely on instrumental observables that are considered in a two-dimensional X-ray color-magnitude diagram. The method self-consistently includes selection effects and scaling relationships. It also provides a means of bypassing the computation of individual cluster masses. My work presents an extension of the top-down method by introducing the apparent size of the cluster, creating a three-dimensional X-ray cluster diagram. The size of a cluster is sensitive to both the cluster mass and its angular diameter, so it must also be included in the assessment of selection effects. The performance of this new method is investigated using a Fisher analysis. In parallel, I have studied the effects of the intrinsic scatter in the cluster size scaling relation on the sample selection as well as on the obtained cosmological parameters. To validate the method, I estimate uncertainties of cosmological parameters with MCMC method Amoeba minimization routine and using two simulated XMM surveys that have an increasing level of complexity. The first simulated survey is a set of toy catalogues of 100 and 10000 deg 2 , whereas the second is a 1000 deg 2 catalogue that was generated using an Aardvark semi-analytical N-body simulation. This comparison corroborates the conclusions of the Fisher analysis. In conclusion, I find that a cluster diagram that accounts

  12. Singular perturbations of empty Robertson-Walker cosmologies

    International Nuclear Information System (INIS)

    Newman, R.P.A.C.

    1979-02-01

    An investigation is presented which concerns a class of cosmological models defined by McVittie (1931): the universe is envisaged as a set of galaxies, idealised as point particles, which provide singular perturbations of Robertson-Walker cosmologies. The perturbations are considered only to first order in the gravitational coupling constant (8πG)/c 2 . Attention will only be given to such perturbations of empty Robertson-Walker cosmologies. Chapter 1 summarises the observational support for the type of model employed and for the smallness of the quantities to be used as perturbation coefficients. Chapter 2 provides the prerequisite analysis of Robertson-Walker cosmologies. Perturbations of empty Robertson-Walker cosmologies of non-vanishing cosmical constant are considered in general in Chapter 3. The structure of McVittie's singularly perturbed Robertson-Walker cosmologies are considered in detail in Chapter 4. The remaining chapters seek to investigate them further by way of their optical properties. Chapter 5 provides the necessary theory of geometric optics with particular regard to the intensity and distortion of a beam of light, and Chapter 6 applies this theory to the McVittie cosmologies. Chapter 7 sees the definition of an averaging procedure which leads to expressions for the intensity and distortion of a typical beam of light from a point source. (author)

  13. Evolution of Occupant Survivability Simulation Framework Using FEM-SPH Coupling

    Science.gov (United States)

    2011-08-10

    Conference (Oral only). • [5] K. Williams, et. al, “Validation of a Loading Model for Simulating Blast Mine Effects on Armoured Vehicles”, 7th...necessarily state or reflect those of the United States Government or the Department of the Army (DoA), and shall not be used for advertising or product endorsement purposes. 24

  14. Nonsingular cosmology with a scale-invariant spectrum of cosmological perturbations from Lee-Wick theory

    International Nuclear Information System (INIS)

    Cai Yifu; Qiu Taotao; Brandenberger, Robert; Zhang Xinmin

    2009-01-01

    We study the cosmology of a Lee-Wick type scalar field theory. First, we consider homogeneous and isotropic background solutions and find that they are nonsingular, leading to cosmological bounces. Next, we analyze the spectrum of cosmological perturbations which result from this model. Unless either the potential of the Lee-Wick theory or the initial conditions are finely tuned, it is impossible to obtain background solutions which have a sufficiently long period of inflation after the bounce. More interestingly, however, we find that in the generic noninflationary bouncing cosmology, perturbations created from quantum vacuum fluctuations in the contracting phase have the correct form to lead to a scale-invariant spectrum of metric inhomogeneities in the expanding phase. Since the background is nonsingular, the evolution of the fluctuations is defined unambiguously through the bounce. We also analyze the evolution of fluctuations which emerge from thermal initial conditions in the contracting phase. The spectrum of gravitational waves stemming from quantum vacuum fluctuations in the contracting phase is also scale-invariant, and the tensor to scalar ratio is not suppressed.

  15. How fabulous is Fab 5 cosmology?

    International Nuclear Information System (INIS)

    Linder, Eric V.

    2013-01-01

    Extended gravity origins for cosmic acceleration can solve some fine tuning issues and have useful characteristics, but generally have little to say regarding the cosmological constant problem. Fab 5 gravity can be ghost free and stable, have attractor solutions in the past and future, and possess self tuning that solves the original cosmological constant problem. Here we show however it does not possess all these qualities at the same time. We also demonstrate that the self tuning is so powerful that it not only cancels the cosmological constant but also all other energy density, and we derive the scalings of its approach to a renormalized de Sitter cosmology. While this strong cancellation is bad for the late universe, it greatly eases early universe inflation

  16. How fabulous is Fab 5 cosmology?

    Energy Technology Data Exchange (ETDEWEB)

    Linder, Eric V., E-mail: evlinder@lbl.gov [Berkeley Center for Cosmological Physics and Berkeley Lab, University of California, Berkeley, CA, 94720 (United States)

    2013-12-01

    Extended gravity origins for cosmic acceleration can solve some fine tuning issues and have useful characteristics, but generally have little to say regarding the cosmological constant problem. Fab 5 gravity can be ghost free and stable, have attractor solutions in the past and future, and possess self tuning that solves the original cosmological constant problem. Here we show however it does not possess all these qualities at the same time. We also demonstrate that the self tuning is so powerful that it not only cancels the cosmological constant but also all other energy density, and we derive the scalings of its approach to a renormalized de Sitter cosmology. While this strong cancellation is bad for the late universe, it greatly eases early universe inflation.

  17. Cosmology Then and Now

    International Nuclear Information System (INIS)

    Novikov, I.D.

    1999-01-01

    In this talk a brief survey has been carried out on the development of cosmology from the days Leopold Infeld was active in the field up to the present. Attention in particular is paid to the history of our knowledge of Hubble's expansion, of the cosmological constant, of the average density of matter and its distribution, and of the related issue of possible types of matter in the Universe. (author)

  18. Cosmological string theory with thermal energy

    International Nuclear Information System (INIS)

    Shiraishi, Kiyoshi.

    1988-09-01

    An attempt to construct a cosmological scenario directly from string theory is made. Cosmological string theory was presented by Antoniadis, Bachas, Ellis and Nanopoulos. They also expect loop effects on cosmological string theory. In this paper, we point out the other importance of the one-loop effect, the finite temperature effect. The equations of motion for background geometry at finite temperature is given. We address a problem on derivation of the effective action at non-zero temperature. (author)

  19. Gravitational particle production in braneworld cosmology.

    Science.gov (United States)

    Bambi, C; Urban, F R

    2007-11-09

    Gravitational particle production in a time variable metric of an expanding universe is efficient only when the Hubble parameter H is not too small in comparison with the particle mass. In standard cosmology, the huge value of the Planck mass M{Pl} makes the mechanism phenomenologically irrelevant. On the other hand, in braneworld cosmology, the expansion rate of the early Universe can be much faster, and many weakly interacting particles can be abundantly created. Cosmological implications are discussed.

  20. Averaging in spherically symmetric cosmology

    International Nuclear Information System (INIS)

    Coley, A. A.; Pelavas, N.

    2007-01-01

    The averaging problem in cosmology is of fundamental importance. When applied to study cosmological evolution, the theory of macroscopic gravity (MG) can be regarded as a long-distance modification of general relativity. In the MG approach to the averaging problem in cosmology, the Einstein field equations on cosmological scales are modified by appropriate gravitational correlation terms. We study the averaging problem within the class of spherically symmetric cosmological models. That is, we shall take the microscopic equations and effect the averaging procedure to determine the precise form of the correlation tensor in this case. In particular, by working in volume-preserving coordinates, we calculate the form of the correlation tensor under some reasonable assumptions on the form for the inhomogeneous gravitational field and matter distribution. We find that the correlation tensor in a Friedmann-Lemaitre-Robertson-Walker (FLRW) background must be of the form of a spatial curvature. Inhomogeneities and spatial averaging, through this spatial curvature correction term, can have a very significant dynamical effect on the dynamics of the Universe and cosmological observations; in particular, we discuss whether spatial averaging might lead to a more conservative explanation of the observed acceleration of the Universe (without the introduction of exotic dark matter fields). We also find that the correlation tensor for a non-FLRW background can be interpreted as the sum of a spatial curvature and an anisotropic fluid. This may lead to interesting effects of averaging on astrophysical scales. We also discuss the results of averaging an inhomogeneous Lemaitre-Tolman-Bondi solution as well as calculations of linear perturbations (that is, the backreaction) in an FLRW background, which support the main conclusions of the analysis

  1. Particle accelerators test cosmological theory

    International Nuclear Information System (INIS)

    Schramm, D.N.; Steigman, G.

    1988-01-01

    Over the past decade two subfields of science, cosmology and elementary-particle physics, have become married in a symbiotic relationship that has produced a number of exciting offspring. These offspring are beginning to yield insights on the creation of spacetime and matter at epochs as early as 10 to the minus 43 to 10 to the minus 35 second after the birth of the universe in the primordial explosion known as the big bang. Important clues to the nature of the big bang itself may even come from a theory currently under development, known as the ultimate theory of everything (T.E.O.). A T.E.O. would describe all the interactions among the fundamental particles in a single bold stroke. Now that cosmology ahs begun to make predictions about elementary-particle physics, it has become conceivable that those cosmological predictions could be checked with carefully controlled accelerator experiments. It has taken more than 10 years for accelerators to reach the point where they can do the appropriate experiments, but the experiments are now in fact in progress. The preliminary results confirm the predictions of cosmology. The cosmological prediction the authors have been concerned with pertains to setting limits on the number of fundamental particles of matter. It appears that there are 12 fundamental particles, as well as their corresponding antiparticles. Six of the fundamental particles are quarks. The other six are leptons. The 12 particles are grouped in three families, each family consisting of four members. Cosmology suggests there must be a finite number of families and, further limits the possible range of to small values: only three or at most four families exist. 7 figs

  2. Holographic (de)confinement transitions in cosmological backgrounds

    International Nuclear Information System (INIS)

    Erdmenger, Johanna; Ghoroku, Kazuo; Meyer, Rene

    2011-01-01

    For type IIB supergravity with a running axio-dilaton, we construct bulk solutions which admit a cosmological background metric of Friedmann-Robertson-Walker type. These solutions include both a dark radiation term in the bulk as well as a four-dimensional (boundary) cosmological constant, while gravity at the boundary remains nondynamical. We holographically calculate the stress-energy tensor, showing that it consists of two contributions: The first one, generated by the dark radiation term, leads to the thermal fluid of N=4 SYM theory, while the second, the conformal anomaly, originates from the boundary cosmological constant. Conservation of the boundary stress-tensor implies that the boundary cosmological constant is time-independent, such that there is no exchange between the two stress-tensor contributions. We then study (de)confinement by evaluating the Wilson loop in these backgrounds. While the dark radiation term favors deconfinement, a negative cosmological constant drives the system into a confined phase. When both contributions are present, we find an oscillating universe with negative cosmological constant which undergoes periodic (de)confinement transitions as the scale of three-space expands and recontracts.

  3. From Planck Data to Planck Era: Observational Tests of Holographic Cosmology.

    Science.gov (United States)

    Afshordi, Niayesh; Corianò, Claudio; Delle Rose, Luigi; Gould, Elizabeth; Skenderis, Kostas

    2017-01-27

    We test a class of holographic models for the very early Universe against cosmological observations and find that they are competitive to the standard cold dark matter model with a cosmological constant (ΛCDM) of cosmology. These models are based on three-dimensional perturbative superrenormalizable quantum field theory (QFT), and, while they predict a different power spectrum from the standard power law used in ΛCDM, they still provide an excellent fit to the data (within their regime of validity). By comparing the Bayesian evidence for the models, we find that ΛCDM does a better job globally, while the holographic models provide a (marginally) better fit to the data without very low multipoles (i.e., l≲30), where the QFT becomes nonperturbative. Observations can be used to exclude some QFT models, while we also find models satisfying all phenomenological constraints: The data rule out the dual theory being a Yang-Mills theory coupled to fermions only but allow for a Yang-Mills theory coupled to nonminimal scalars with quartic interactions. Lattice simulations of 3D QFTs can provide nonperturbative predictions for large-angle statistics of the cosmic microwave background and potentially explain its apparent anomalies.

  4. Efficient simulations of large-scale structure in modified gravity cosmologies with comoving Lagrangian acceleration

    Science.gov (United States)

    Valogiannis, Georgios; Bean, Rachel

    2017-05-01

    We implement an adaptation of the cola approach, a hybrid scheme that combines Lagrangian perturbation theory with an N-body approach, to model nonlinear collapse in chameleon and symmetron modified gravity models. Gravitational screening is modeled effectively through the attachment of a suppression factor to the linearized Klein-Gordon equations. The adapted cola approach is benchmarked, with respect to an N-body code both for the Λ cold dark matter (Λ CDM ) scenario and for the modified gravity theories. It is found to perform well in the estimation of the dark matter power spectra, with consistency of 1% to k ˜2.5 h /Mpc . Redshift space distortions are shown to be effectively modeled through a Lorentzian parametrization with a velocity dispersion fit to the data. We find that cola performs less well in predicting the halo mass functions but has consistency, within 1 σ uncertainties of our simulations, in the relative changes to the mass function induced by the modified gravity models relative to Λ CDM . The results demonstrate that cola, proposed to enable accurate and efficient, nonlinear predictions for Λ CDM , can be effectively applied to a wider set of cosmological scenarios, with intriguing properties, for which clustering behavior needs to be understood for upcoming surveys such as LSST, DESI, Euclid, and WFIRST.

  5. A Time-Dependent Λ and G Cosmological Model Consistent with Cosmological Constraints

    Directory of Open Access Journals (Sweden)

    L. Kantha

    2016-01-01

    Full Text Available The prevailing constant Λ-G cosmological model agrees with observational evidence including the observed red shift, Big Bang Nucleosynthesis (BBN, and the current rate of acceleration. It assumes that matter contributes 27% to the current density of the universe, with the rest (73% coming from dark energy represented by the Einstein cosmological parameter Λ in the governing Friedmann-Robertson-Walker equations, derived from Einstein’s equations of general relativity. However, the principal problem is the extremely small value of the cosmological parameter (~10−52 m2. Moreover, the dark energy density represented by Λ is presumed to have remained unchanged as the universe expanded by 26 orders of magnitude. Attempts to overcome this deficiency often invoke a variable Λ-G model. Cosmic constraints from action principles require that either both G and Λ remain time-invariant or both vary in time. Here, we propose a variable Λ-G cosmological model consistent with the latest red shift data, the current acceleration rate, and BBN, provided the split between matter and dark energy is 18% and 82%. Λ decreases (Λ~τ-2, where τ is the normalized cosmic time and G increases (G~τn with cosmic time. The model results depend only on the chosen value of Λ at present and in the far future and not directly on G.

  6. Cosmological production of noncommutative black holes

    International Nuclear Information System (INIS)

    Mann, Robert B.; Nicolini, Piero

    2011-01-01

    We investigate the pair creation of noncommutative black holes in a background with a positive cosmological constant. As a first step we derive the noncommutative geometry inspired Schwarzschild-de Sitter solution. By varying the mass and the cosmological constant parameters, we find several spacetimes compatible with the new solution: positive-mass spacetimes admit one cosmological horizon and two, one, or no black hole horizons, while negative-mass spacetimes have just a cosmological horizon. These new black holes share the properties of the corresponding asymptotically flat solutions, including the nonsingular core and thermodynamic stability in the final phase of the evaporation. As a second step we determine the action which generates the matter sector of gravitational field equations and we construct instantons describing the pair production of black holes and the other admissible topologies. As a result we find that for current values of the cosmological constant the de Sitter background is quantum mechanically stable according to experience. However, positive-mass noncommutative black holes and solitons would have plentifully been produced during inflationary times for Planckian values of the cosmological constant. As a special result we find that, in these early epochs of the Universe, Planck size black holes production would have been largely disfavored. We also find a potential instability for production of negative-mass solitons.

  7. Quantum Gravity Effects in Cosmology

    Directory of Open Access Journals (Sweden)

    Gu Je-An

    2018-01-01

    Full Text Available Within the geometrodynamic approach to quantum cosmology, we studied the quantum gravity effects in cosmology. The Gibbons-Hawking temperature is corrected by quantum gravity due to spacetime fluctuations and the power spectrum as well as any probe field will experience the effective temperature, a quantum gravity effect.

  8. Cosmological effects of nonlinear electrodynamics

    International Nuclear Information System (INIS)

    Novello, M; Goulart, E; Salim, J M; Bergliaffa, S E Perez

    2007-01-01

    It will be shown that a given realization of nonlinear electrodynamics, used as a source of Einstein's equations, generates a cosmological model with interesting features, namely a phase of current cosmic acceleration, and the absence of an initial singularity, thus pointing to a way of solving two important problems in cosmology

  9. Nikolay Lossky’s Cosmology

    Directory of Open Access Journals (Sweden)

    Gennadii Aliaiev

    2018-02-01

    Full Text Available The paper focuses on cosmological ideas of a twentieth-century Russian philosopher Nikolay Lossky (1870-1965. It specifies the place of these ideas within the entire framework of his philosophical views, as well as in the context of his topology of philosophical systems, in particular ― the discrimination between organic and non-organic worldview. A historico-philosophical analysis of Lossky’s cosmology allows revealing the interaction of gnoseological and ontological principles of his system, e.g. explicating the difference of Lossky’s intuitionism from the one of Bergson. The key section of the organic worldview is the doctrine of the hierarchy of substantival agents: the hierarchical personalism, as well as the notions of transcreation, dynamic understanding of matter, and the doctrine of free will closely related to it. The paper specifies the peculiarities of Lossky’s interpretations of panvitalism and panpsychism, as well as the doctrine of reincarnation, which has a particular place in his system. The final stage of Lossky’s cosmological ideas development is his ontological aesthetics: on this stage he understands the world as an embodiment of beauty. The conclusion is drawn that Lossky’s cosmological doctrine is Christian and metaphysical in its nature.

  10. The Effect of Color Choice on Learner Interpretation of a Cosmology Visualization

    Science.gov (United States)

    Buck, Zoe

    2013-01-01

    As we turn more and more to high-end computing to understand the Universe at cosmological scales, dynamic visualizations of simulations will take on a vital role as perceptual and cognitive tools. In collaboration with the Adler Planetarium and University of California High-Performance AstroComputing Center (UC-HiPACC), I am interested in better…

  11. The Cosmic Mandala: Celebrating Tibetan Cosmologies

    Science.gov (United States)

    Larsen, Kristine

    2008-05-01

    The past decade has seen an increased establishment of Tibetan cultural centers in North America and increased public interest in and media coverage of Tibetan culture. As a result, interest has grown in all aspects of this rich tradition. Astronomy has long played an important role in the lives of the Tibetan people, from their unique luni-solar calendar to their tradition of combining what they call "astro-science" and medicine. To this day, nomads in northern Tibet will ask the North Star - the "Stable Star of the North" - to protect a wayward animal for the night in the expectation that the star will aid in the animal's return in the morning. In Tibetan cosmology, our universe is symbolized as a series of parallel disks centered around Mount Meru, with the heavenly bodies orbiting around it. Central to this cosmology is the concept that time and space have no absolute beginning or end (paralleling the concept of eternal human reincarnation), but that at any given time there exist a billionfold impermanent universes, each one involved in its own independent 4-stage cycle of emptiness, becoming, unfolding, and dissolution. Two distinct symbolic cosmology systems, the Abhidharma ("Topics of special knowledge") and Kalachakra ("Wheel of time"), are recognized in Tibetan culture. These cosmologies also differ in their geographical description of Mount Meru and the "continents" as well as the specifics of the 4-stage cosmological cycle. This poster will celebrate the richness of Tibetan "astro-science", including the calendar, star names, traditional cosmological systems, and astronomical artwork, and demonstrate ways that this tradition can be directly utilized to celebrate and teach cultural cosmologies during the IYA.

  12. Quantum Gravity and Cosmology: an intimate interplay

    Science.gov (United States)

    Sakellariadou, Mairi

    2017-08-01

    I will briefly discuss three cosmological models built upon three distinct quantum gravity proposals. I will first highlight the cosmological rôle of a vector field in the framework of a string/brane cosmological model. I will then present the resolution of the big bang singularity and the occurrence of an early era of accelerated expansion of a geometric origin, in the framework of group field theory condensate cosmology. I will then summarise results from an extended gravitational model based on non-commutative spectral geometry, a model that offers a purely geometric explanation for the standard model of particle physics.

  13. Non-singular string-cosmologies from exact conformal field theories

    International Nuclear Information System (INIS)

    Vega, H.J. de; Larsen, A.L.; Sanchez, N.

    2001-01-01

    Non-singular two and three dimensional string cosmologies are constructed using the exact conformal field theories corresponding to SO(2,1)/SO(1,1) and SO(2,2)/SO(2,1). All semi-classical curvature singularities are canceled in the exact theories for both of these cosets, but some new quantum curvature singularities emerge. However, considering different patches of the global manifolds, allows the construction of non-singular space-times with cosmological interpretation. In both two and three dimensions, we construct non-singular oscillating cosmologies, non-singular expanding and inflationary cosmologies including a de Sitter (exponential) stage with positive scalar curvature as well as non-singular contracting and deflationary cosmologies. Similarities between the two and three dimensional cases suggest a general picture for higher dimensional coset cosmologies: Anisotropy seems to be a generic unavoidable feature, cosmological singularities are generically avoided and it is possible to construct non-singular cosmologies where some spatial dimensions are experiencing inflation while the others experience deflation

  14. Neutrino mass constraints from joint cosmological probes.

    Science.gov (United States)

    Kwan, Juliana

    2018-01-01

    One of the most promising avenues to come from precision cosmology is the measurement of the sum of neutrino masses in the next 5-10 years. Ongoing imaging surveys, such as the Dark Energy Survey and the Hyper Suprime Cam survey, will cover a substantial volume of the sky and when combined with existing spectroscopic data, are expected to deliver a definitive measurement in the near future. But it is important that the accuracy of theoretical predictions matches the precision of the observational data so that the neutrino mass signal can be properly detected without systematic error. To this end, we have run a suite of high precision, large volume cosmological N-body simulations containing massive neutrinos to quantify their effect on probes of large scale structure such as weak lensing and galaxy clustering. In this talk, I will describe the analytical tools that we have developed to extract the neutrino mass that are capable of fully utilizing the non-linear regime of structure formation. These include predictions for the bias in the clustering of dark matter halos (one of the fundamental ingredients of the halo model) with an error of only a few percent.

  15. Cosmological constraints from galaxy clustering and the mass-to-number ratio of galaxy clusters: marginalizing over the physics of galaxy formation

    Energy Technology Data Exchange (ETDEWEB)

    Reddick, Rachel M.; Wechsler, Risa H.; Lu, Yu [Kavli Institute for Particle Astrophysics and Cosmology, Physics Department, Stanford University, Stanford, CA 94305 (United States); Tinker, Jeremy L., E-mail: rmredd@stanford.edu, E-mail: rwechsler@stanford.edu [Center for Cosmology and Particle Physics, Department of Physics, New York University, New York, NY 10003 (United States)

    2014-03-10

    Many approaches to obtaining cosmological constraints rely on the connection between galaxies and dark matter. However, the distribution of galaxies is dependent on their formation and evolution as well as on the cosmological model, and galaxy formation is still not a well-constrained process. Thus, methods that probe cosmology using galaxies as tracers for dark matter must be able to accurately estimate the cosmological parameters. This can be done without knowing details of galaxy formation a priori as long as the galaxies are well represented by a halo occupation distribution (HOD). We apply this reasoning to the method of obtaining Ω {sub m} and σ{sub 8} from galaxy clustering combined with the mass-to-number ratio of galaxy clusters. To test the sensitivity of this method to variations due to galaxy formation, we consider several different models applied to the same cosmological dark matter simulation. The cosmological parameters are then estimated using the observables in each model, marginalizing over the parameters of the HOD. We find that for models where the galaxies can be well represented by a parameterized HOD, this method can successfully extract the desired cosmological parameters for a wide range of galaxy formation prescriptions.

  16. Cosmological constraints from galaxy clustering and the mass-to-number ratio of galaxy clusters: marginalizing over the physics of galaxy formation

    International Nuclear Information System (INIS)

    Reddick, Rachel M.; Wechsler, Risa H.; Lu, Yu; Tinker, Jeremy L.

    2014-01-01

    Many approaches to obtaining cosmological constraints rely on the connection between galaxies and dark matter. However, the distribution of galaxies is dependent on their formation and evolution as well as on the cosmological model, and galaxy formation is still not a well-constrained process. Thus, methods that probe cosmology using galaxies as tracers for dark matter must be able to accurately estimate the cosmological parameters. This can be done without knowing details of galaxy formation a priori as long as the galaxies are well represented by a halo occupation distribution (HOD). We apply this reasoning to the method of obtaining Ω m and σ 8 from galaxy clustering combined with the mass-to-number ratio of galaxy clusters. To test the sensitivity of this method to variations due to galaxy formation, we consider several different models applied to the same cosmological dark matter simulation. The cosmological parameters are then estimated using the observables in each model, marginalizing over the parameters of the HOD. We find that for models where the galaxies can be well represented by a parameterized HOD, this method can successfully extract the desired cosmological parameters for a wide range of galaxy formation prescriptions.

  17. The Hubble IR cutoff in holographic ellipsoidal cosmologies

    Energy Technology Data Exchange (ETDEWEB)

    Cataldo, Mauricio [Universidad del Bio-Bio, Departamento de Fisica, Facultad de Ciencias, Concepcion (Chile); Cruz, Norman [Grupo de Cosmologia y Gravitacion-UBB, Concepcion (Chile)

    2018-01-15

    It is well known that for spatially flat FRW cosmologies, the holographic dark energy disfavors the Hubble parameter as a candidate for the IR cutoff. For overcoming this problem, we explore the use of this cutoff in holographic ellipsoidal cosmological models, and derive the general ellipsoidal metric induced by a such holographic energy density. Despite the drawbacks that this cutoff presents in homogeneous and isotropic universes, based on this general metric, we developed a suitable ellipsoidal holographic cosmological model, filled with a dark matter and a dark energy components. At late time stages, the cosmic evolution is dominated by a holographic anisotropic dark energy with barotropic equations of state. The cosmologies expand in all directions in accelerated manner. Since the ellipsoidal cosmologies given here are not asymptotically FRW, the deviation from homogeneity and isotropy of the universe on large cosmological scales remains constant during all cosmic evolution. This feature allows the studied holographic ellipsoidal cosmologies to be ruled by an equation of state ω = p/ρ, whose range belongs to quintessence or even phantom matter. (orig.)

  18. Fourth-rank cosmology

    International Nuclear Information System (INIS)

    Marrakchi, A.E.L.; Tapia, V.

    1992-05-01

    Some cosmological implications of the recently proposed fourth-rank theory of gravitation are studied. The model exhibits the possibility of being free from the horizon and flatness problems at the price of introducing a negative pressure. The field equations we obtain are compatible with k obs =0 and Ω obs t clas approx. 10 20 t Planck approx. 10 -23 s. When interpreted at the light of General Relativity the treatment is shown to be almost equivalent to that of the standard model of cosmology combined with the inflationary scenario. Hence, an interpretation of the negative pressure hypothesis is provided. (author). 8 refs

  19. Magnetohydrodynamics and Plasma Cosmology

    Science.gov (United States)

    Kleidis, Kostas; Kuiroukidis, Apostolos; Papadopoulos, Demetrios; Vlahos, Loukas

    2007-09-01

    We study the linear magnetohydrodynamic (MHD) equations, both in the Newtonian and the general-relativistic limit, as regards a viscous magnetized fluid of finite conductivity and discuss instability criteria. In addition, we explore the excitation of cosmological perturbations in anisotropic spacetimes, in the presence of an ambient magnetic field. Acoustic, electromagnetic (e/m) and fast-magnetosonic modes, propagating normal to the magnetic field, can be excited, resulting in several implications of cosmological significance.

  20. A Planck Vacuum Cosmology

    Directory of Open Access Journals (Sweden)

    Daywitt W. C.

    2009-04-01

    Full Text Available Both the big-bang and the quasi-steady-state cosmologies originate in some type of Planck state. This paper presents a new cosmological theory based on the Planck- vacuum negative-energy state, a state consisting of a degenerate collection of negative- energy Planck particles. A heuristic look at the Einstein field equation provides a con- vincing argument that such a vacuum state could provide a theoretical explanation for the visible universe.