Cosmological perturbations from an inhomogeneous phase transition
Energy Technology Data Exchange (ETDEWEB)
Matsuda, Tomohiro, E-mail: matsuda@sit.ac.j [Laboratory of Physics, Saitama Institute of Technology, Fusaiji, Okabe-machi, Saitama 369-0293 (Japan)
2009-07-21
A mechanism for generating metric perturbations in inflationary models is considered. Long-wavelength inhomogeneities of light scalar fields in a decoupled sector may give rise to superhorizon fluctuations of couplings and masses in the low-energy effective action. Cosmological phase transitions may then occur that are not simultaneous in space, but occur with time lags in different Hubble patches that arise from the long-wavelength inhomogeneities. Here an interesting model in which cosmological perturbations may be created at the electroweak phase transition is considered. The results show that phase transitions may be a generic source of non-Gaussianity.
Detonations and deflagrations in cosmological phase transitions
Megevand, Ariel
2009-01-01
We study the steady state motion of bubble walls in cosmological phase transitions. Taking into account the boundary and continuity conditions for the fluid variables, we calculate numerically the wall velocity as a function of the nucleation temperature, the latent heat, and a friction parameter. We determine regions in the space of these parameters in which detonations and/or deflagrations are allowed. In order to apply the results to a physical case, we calculate these quantities in a specific model, which consists of an extension of the Standard Model with singlet scalar fields. We also obtain analytic approximations for deflagrations and detonations.
Preon model and cosmological quantum-hyperchromodynamic phase transition
Nishimura, H.; Hayashi, Y.
1987-05-01
From the cosmological viewpoint, we investigate whether or not recent preon models are compatible with the picture of the first-order phase transition from the preon phase to the composite quark-lepton phase. It is shown that the current models accepting the 't Hooft anomaly-matching condition together with quantum hyperchromodynamics are consistent with the cosmological first-order phase transition.
Cosmological phase transitions from lattice field theory
Energy Technology Data Exchange (ETDEWEB)
Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC
2011-11-22
In this proceedings contribution we discuss the fate of the electroweak and the quantum chromodynamics phase transitions relevant for the early stage of the universe at non-zero temperature. These phase transitions are related to the Higgs mechanism and the breaking of chiral symmetry, respectively. We will review that non-perturbative lattice field theory simulations show that these phase transitions actually do not occur in nature and that physical observables show a completely smooth behaviour as a function of the temperature.
Late-time cosmological phase transitions
Energy Technology Data Exchange (ETDEWEB)
Schramm, D.N. (Chicago Univ., IL (USA) Fermi National Accelerator Lab., Batavia, IL (USA))
1990-11-01
It is shown that the potential galaxy formation and large-scale structure problems of objects existing at high redshifts (Z {approx gt} 5), structures existing on scales of 100M pc as well as velocity flows on such scales, and minimal microwave anisotropies ({Delta}T/T) {approx lt} 10{sup {minus}5} can be solved if the seeds needed to generate structure form in a vacuum phase transition after decoupling. It is argued that the basic physics of such a phase transition is no more exotic than that utilized in the more traditional GUT scale phase transitions, and that, just as in the GUT case, significant random gaussian fluctuations and/or topological defects can form. Scale lengths of {approximately}100M pc for large-scale structure as well as {approximately}1 M pc for galaxy formation occur naturally. Possible support for new physics that might be associated with such a late-time transition comes from the preliminary results of the SAGE solar neutrino experiment, implying neutrino flavor mixing with values similar to those required for a late-time transition. It is also noted that a see-saw model for the neutrino masses might also imply a tau neutrino mass that is an ideal hot dark matter candidate. However, in general either hot or cold dark matter can be consistent with a late-time transition. 47 refs., 2 figs.
Bubble nucleation and growth in very strong cosmological phase transitions
Megevand, Ariel
2016-01-01
Strongly first-order phase transitions, i.e., those with a large order parameter, are characterized by a considerable supercooling and high velocities of phase transition fronts. A very strong phase transition may have important cosmological consequences due to the departures from equilibrium caused in the plasma. In general, there is a limit to the strength, since the metastability of the old phase may prevent the transition to complete. Near this limit, the bubble nucleation rate achieves a maximum and thus departs from the widely assumed behavior in which it grows exponentially with time. We study the dynamics of this kind of phase transitions. We show that in some cases a gaussian approximation for the nucleation rate is more suitable, and in such a case we solve analytically the evolution of the phase transition. We compare the gaussian and exponential approximations with realistic cases and we determine their ranges of validity. We also discuss the implications for cosmic remnants such as gravitational ...
Cosmological Consequences of QCD Phase Transition(s) in Early Universe
Tawfik, A
2008-01-01
We discuss the cosmological consequences of QCD phase transition(s) on the early universe. We argue that our recent knowledge about the transport properties of quark-gluon plasma (QGP) should throw additional lights on the actual time evolution of our universe. Understanding the nature of QCD phase transition(s), which can be studied in lattice gauge theory and verified in heavy ion experiments, provides an explanation for cosmological phenomenon stem from early universe.
Gravitational waves from first-order cosmological phase transitions
Kosowsky, Arthur; Turner, Michael S.; Watkins, Richard
1992-01-01
A first-order cosmological phase transition that proceeds through the nucleation and collision of true-vacuum bubbles is a potent source of gravitational radiation. Possibilities for such include first-order inflation, grand-unified-theory-symmetry breaking, and electroweak-symmetry breaking. We have calculated gravity-wave production from the collision of two scalar-field vacuum bubbles, and, using an approximation based upon these results, from the collision of 20 to 30 vacuum bubbles. We present estimates of the relic background of gravitational waves produced by a first-order phase transition.
Accelerating cosmologies and a phase transition in M-theory
Energy Technology Data Exchange (ETDEWEB)
Wohlfarth, Mattias N.R
2003-06-19
M-theory compactifies on a seven-dimensional time-dependent hyperbolic or flat space to a four-dimensional FLRW cosmology undergoing a period of accelerated expansion in Einstein conformal frame. The strong energy condition is violated by the scalar fields produced in the compactification, as is necessary to evade the no-go theorem for time-independent compactifications. The four-form field strength of eleven-dimensional supergravity smoothly switches on during the period of accelerated expansion in hyperbolic compactifications, whereas in flat compactifications, the three-form potential smoothly changes its sign. For small acceleration times, this behaviour is like a phase transition of the three-form potential, during which the cosmological scale factor approximately doubles.
Accelerating Cosmologies and a Phase Transition in M-Theory
Wohlfarth, M N R
2003-01-01
M-theory compactifies on a seven-dimensional time-dependent hyperbolic or flat space to a four-dimensional FLRW cosmology undergoing a period of accelerated expansion in Einstein conformal frame. The strong energy condition is violated by the scalar fields produced in the compactification, as is necessary to evade the no-go theorem for time-independent compactifications. The four-form field strength of eleven-dimensional supergravity smoothly switches on during the period of accelerated expansion in hyperbolic compactifications, whereas in flat compactifications, the three-form potential smoothly changes its sign. For small acceleration times, this behaviour is like a phase transition of the three-form potential, during which the cosmological scale factor approximately doubles.
Real-Time History of the Cosmological Electroweak Phase Transition
Kurki-Suonio, H
1996-01-01
We study numerically the real-time history of the cosmological electrow= eak phase transition, as it may take place in the Standard Model or in MSSM f= or m_H < m_W according to recent lattice results. We follow the nucleated bubble= s from the initial stages of acceleration and rapid growth, through collisions w= ith compression waves resulting in slowing down and reheating to T_c, until t= he final stages of slow growth and evaporation. We find that collisions with compression waves may make the bubble walls oscillate in the radial direc= tion, and that reheating to T_c takes generically place.
Cosmological phase transitions and their properties in the NMSSM
Kozaczuk, Jonathan; Profumo, Stefano; Haskins, Laurel Stephenson; Wainwright, Carroll L.
2015-01-01
We study cosmological phase transitions in the Next-to-Minimal Supersymmetric Standard Model (NMSSM) in light of the Higgs discovery. We use an effective field theory approach to calculate the finite temperature effective potential, focusing on regions with significant tree-level contributions to the Higgs mass, a viable neutralino dark matter candidate, 1-2 TeV stops, and with the remaining particle spectrum compatible with current LHC searches and results. The phase transition structure in viable regions of parameter space exhibits a rich phenomenology, potentially giving rise to one- or two-step first-order phase transitions in the singlet and/or SU(2) directions. We compute several parameters pertaining to the bubble wall profile, including the bubble wall width and Δ β (the variation of the ratio in Higgs vacuum expectation values across the wall). These quantities can vary significantly across small regions of parameter space and can be promising for successful electroweak baryogenesis. We estimate the wall velocity microphysically, taking into account the various sources of friction acting on the expanding bubble wall. Ultra-relativistic solutions to the bubble wall equations of motion typically exist when the electroweak phase transition features substantial supercooling. For somewhat weaker transitions, the bubble wall instead tends to be sub-luminal and, in fact, likely sub-sonic, suggesting that successful electroweak baryogenesis may indeed occur in regions of the NMSSM compatible with the Higgs discovery.
The Growth of Bubbles in Cosmological Phase Transitions
Ignatius, J; Kurki-Suonio, H; Laine, Mikko
1994-01-01
We study how bubbles grow after the initial nucleation event in generic first-order cosmological phase transitions characterised by the values of latent heat, interface tension and correlation length, and driven by a scalar order parameter $\\phi$. Equations coupling $\\phi$ and the fluid variables $v$ and $T$ and depending on a dissipative constant $\\Gamma$ are derived and solved numerically in the 1+1 dimensional case starting from a slightly deformed critical bubble configuration. Parameters corresponding to QCD and electroweak phase transitions are chosen and the whole history of the bubble with formation of combustion and shock fronts is computed as a function of $\\Gamma$. Both deflagrations and detonations can appear depending on the values of the parameters. Reheating due to collisions of bubbles is also computed.
Gravitational mechanism for baryogenesis in the cosmological QCD phase transition
Antunes, V; Novello, M
2016-01-01
One of the biggest puzzles in modern cosmology is the observed baryon asymmetry in the universe. In current models of baryogenesis gravity plays a secondary role, although the process is believed to have happened in the early universe, under the influence of an intense gravitational field. In the present work we resume Sakharov's original program for baryogenesis and propose a central role for gravity in the process. This is achieved through a non-minimal coupling (NMC) between the gravitational field and both the strong interaction field and the quark fields. When in action, the present mechanism leads to baryon number non-conservation and CP violation. Moreover, the NMC induces reduced effective quark masses, which favours a first order QCD phase transition. As a consequence, a baryon asymmetry can be attained in the transition from the quark epoch to the hadron epoch.
Cosmological Phase Transitions and their Properties in the NMSSM
Kozaczuk, Jonathan; Haskins, Laurel Stephenson; Wainwright, Carroll L
2014-01-01
We study cosmological phase transitions in the Next-to-Minimal Supersymmetric Standard Model (NMSSM) in light of the Higgs discovery. We use an effective field theory approach to calculate the finite temperature effective potential, focusing on regions with significant tree-level contributions to the Higgs mass, a viable neutralino dark matter candidate, 1-2 TeV stops, and with the remaining particle spectrum compatible with current LHC searches and results. The phase transition structure in viable regions of parameter space exhibits a rich phenomenology, potentially giving rise to one- or two-step first-order phase transitions in the singlet and/or $SU(2)$ directions. We compute several parameters pertaining to the bubble wall profile, including the bubble wall width and $\\Delta\\beta$ (the variation of the ratio in Higgs vacuum expectation values across the wall). These quantities can vary significantly across small regions of parameter space and can be promising for successful electroweak baryogenesis. We e...
The Selforganization of Vacuum, Phase Transitions and the Cosmological Constant
Burdyuzha, V; Vereshkov, G M; Ponomarev, Yu; Ponomarev, Yu.
1999-01-01
The problem of the physical nature and the cosmological genesis of Lambda-term is discussed. This problem can't be solved in terms of the current quantum field theory which operates with Higgs and non-perturbative vacuum condensates and takes into account the changes of these condensates during relativistic phase transitions. The problem can't be completely solved also in terms of the conventional global quantum theory: Wheeler-DeWitt quantum geometrodynamics does not describe the evolution of the Universe in time (RPT in particular). We have investigated this problem in the context of energies density of different vacuum subsystems characteristic scales of which pervaid all energetic scale of the Universe. At first the phemenological solution of Lambda-term problem and then the hypothesis about the possible structure of a new global quantum theory are proposed. The main feature of this theory is the inreversible evolution of geometry and vacuum condensates in time in the regime of their selforganization. The...
Gravitational waves from cosmological first order phase transitions
Hindmarsh, Mark; Rummukainen, Kari; Weir, David
2015-01-01
First order phase transitions in the early Universe generate gravitational waves, which may be observable in future space-based gravitational wave observatiories, e.g. the European eLISA satellite constellation. The gravitational waves provide an unprecedented direct view of the Universe at the time of their creation. We study the generation of the gravitational waves during a first order phase transition using large-scale simulations of a model consisting of relativistic fluid and an order parameter field. We observe that the dominant source of gravitational waves is the sound generated by the transition, resulting in considerably stronger radiation than earlier calculations have indicated.
Evidence for a Cosmological Phase Transition on the TeVScale
Energy Technology Data Exchange (ETDEWEB)
Lindesay, James V.; Noyes, H.Pierre; /SLAC
2005-08-23
Examining the reverse evolution of the universe from the present, long before reaching Planck density dynamics one expects major modifications from the de-coherent thermal equations of state, suggesting a prior phase that has macroscopic coherence properties. The assumption that the phase transition occurs during the radiation dominated epoch, and that zero-point motions drive the fluctuations associated with this transition, specifies a class of cosmological models in which the cosmic microwave background fluctuation amplitude at last scattering is approximately 10{sup -5}. Quantum measurability constraints (e.g. uncertainly relations) define cosmological scales whose expansion rates can be at most luminal.
Wainwright, Carroll L.
2012-09-01
I present a numerical package (CosmoTransitions) for analyzing finite-temperature cosmological phase transitions driven by single or multiple scalar fields. The package analyzes the different vacua of a theory to determine their critical temperatures (where the vacuum energy levels are degenerate), their supercooling temperatures, and the bubble wall profiles which separate the phases and describe their tunneling dynamics. I introduce a new method of path deformation to find the profiles of both thin- and thick-walled bubbles. CosmoTransitions is freely available for public use.Program summaryProgram Title: CosmoTransitionsCatalogue identifier: AEML_v1_0Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEML_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 8775No. of bytes in distributed program, including test data, etc.: 621096Distribution format: tar.gzProgramming language: Python.Computer: Developed on a 2009 MacBook Pro. No computer-specific optimization was performed.Operating system: Designed and tested on Mac OS X 10.6.8. Compatible with any OS with Python installed.RAM: Approximately 50 MB, mostly for loading plotting packages.Classification: 1.9, 11.1.External routines: SciPy, NumPy, matplotLibNature of problem: I describe a program to analyze early-Universe finite-temperature phase transitions with multiple scalar fields. The goal is to analyze the phase structure of an input theory, determine the amount of supercooling at each phase transition, and find the bubble-wall profiles of the nucleated bubbles that drive the transitions.Solution method: To find the bubble-wall profile, the program assumes that tunneling happens along a fixed path in field space. This reduces the equations of motion to one dimension, which can then be solved using the overshoot
Exotic axion cosmology in theories with phase transitions below the QCD scale.
Kaplan, David B; Zurek, Kathryn M
2006-02-03
We show that axion phenomenology may be significantly different than conventionally assumed in theories which exhibit late phase transitions (below the QCD scale). In such theories, one can find multiple pseudoscalars with axionlike couplings to matter, including a string scale axion, whose decay constant far exceeds the conventional cosmological bound. Such theories have several dark matter candidates.
Gravitational waves generated from the cosmological QCD phase transition within AdS/QCD
Directory of Open Access Journals (Sweden)
M. Ahmadvand
2017-09-01
Full Text Available We study the gravitational waves produced by the collision of the bubbles as a probe for the cosmological first order QCD phase transition, considering heavy static quarks. Using AdS/QCD and the correspondence between a first order Hawking–Page phase transition and confinement–deconfinement phase transition, we find the spectrum and the strain amplitude of the gravitational wave within the hard and soft wall models. We postulate the duration of the phase transition corresponds to the evaporation time of the black hole in the five dimensional dual gravity space, and thereby obtain a bound on the string length in the space and correspondingly on the duration of the QCD phase transition. We also show that IPTA and SKA detectors will be able to detect these gravitational waves, which can be an evidence for the first order deconfinement transition.
Late time cosmological phase transitions 1: Particle physics models and cosmic evolution
Frieman, Joshua A.; Hill, Christopher T.; Watkins, Richard
1991-01-01
We described a natural particle physics basis for late-time phase transitions in the universe. Such a transition can seed the formation of large-scale structure while leaving a minimal imprint upon the microwave background anisotropy. The key ingredient is an ultra-light pseudo-Nambu-Goldstone boson with an astronomically large (O(kpc-Mpc)) Compton wavelength. We analyze the cosmological signatures of and constraints upon a wide class of scenarios which do not involve domain walls. In addition to seeding structure, coherent ultra-light bosons may also provide unclustered dark matter in a spatially flat universe, omega sub phi approx. = 1.
Energy Technology Data Exchange (ETDEWEB)
Caprini, Chiara [CEA Saclay, Gif-sur-Yvette (France). IPht; CNRS, Gif-sur Yvette (France); Hindmarsh, Mark [Sussex Univ. (United Kingdom). Dept. of Physics and Astronomy; Helsinki Univ. (Finland). Dept. of Physics and Helsinki Inst. of Physics; Huber, Stephan [Sussex Univ. (United Kingdom). Dept. of Physics and Astronomy; and others
2016-04-15
We investigate the potential for the eLISA space-based interferometer to detect the stochastic gravitational wave background produced by strong first-order cosmological phase transitions. We discuss the resulting contributions from bubble collisions, magnetohydrodynamic turbulence, and sound waves to the stochastic background, and estimate the total corresponding signal predicted in gravitational waves. The projected sensitivity of eLISA to cosmological phase transitions is computed in a model-independent way for various detector designs and configurations. By applying these results to several specific models, we demonstrate that eLISA is able to probe many well-motivated scenarios beyond the Standard Model of particle physics predicting strong first-order cosmological phase transitions in the early Universe.
Caprini, Chiara; Huber, Stephan; Konstandin, Thomas; Kozaczuk, Jonathan; Nardini, Germano; No, Jose Miguel; Petiteau, Antoine; Schwaller, Pedro; Servant, Geraldine; Weir, David J
2015-01-01
We investigate the potential for the eLISA space-based interferometer to detect the stochastic gravitational wave background produced by strong first-order cosmological phase transitions. We discuss the resulting contributions from bubble collisions, magnetohydrodynamic turbulence, and sound waves to the stochastic background, and estimate the total corresponding signal predicted in gravitational waves. The projected sensitivity of eLISA to cosmological phase transitions is computed in a model-independent way for various detector designs and configurations. By applying these results to several specific models, we demonstrate that eLISA is able to probe many well-motivated scenarios beyond the Standard Model of particle physics predicting strong first-order cosmological phase transitions in the early Universe.
Binétruy, Pierre; Caprini, Chiara; Dufaux, Jean-François
2012-01-01
We review the main cosmological backgrounds of gravitational waves accessible to detectors in space sensitive to the range $10^{-4}$ to $10^{-1}$ Hz, with a special emphasis on those backgrounds due to phase transitions or networks of cosmic strings. We apply this to identify the scientific potential of the NGO/eLISA mission of ESA, regarding the detectability of such cosmological backgrounds.
The B-L Phase Transition: Implications for Cosmology and Neutrinos
Schmitz, Kai
2013-01-01
We investigate the possibility that the hot thermal phase of the early universe is ignited in consequence of the B-L phase transition, which represents the cosmological realization of the spontaneous breaking of the Abelian gauge symmetry associated with B-L, the difference between baryon number B and lepton number L. Prior to the B-L phase transition, the universe experiences a stage of hybrid inflation. Towards the end of inflation, the false vacuum of unbroken B-L decays, which entails tachyonic preheating as well as the production of cosmic strings. The dynamics of the B-L breaking Higgs field and the B-L gauge degrees of freedom, in combination with thermal processes, generate an abundance of heavy (s)neutrinos. These (s)neutrinos decay into radiation, thereby reheating the universe, generating the baryon asymmetry of the universe and setting the stage for the thermal production of gravitinos. We study the B-L phase transition in the full supersymmetric Abelian Higgs model, for which we derive and discus...
The B-L phase transition. Implications for cosmology and neutrinos
Energy Technology Data Exchange (ETDEWEB)
Schmitz, Kai
2012-07-15
We investigate the possibility that the hot thermal phase of the early universe is ignited in consequence of the B-L phase transition, which represents the cosmological realization of the spontaneous breaking of the Abelian gauge symmetry associated with B-L, the difference between baryon number B and lepton number L. Prior to the B-L phase transition, the universe experiences a stage of hybrid inflation. Towards the end of inflation, the false vacuum of unbroken B-L symmetry decays, which entails tachyonic preheating as well as the production of cosmic strings. Observational constraints on this scenario require the B-L phase transition to take place at the scale of grand unification. The dynamics of the B-L breaking Higgs field and the B-L gauge degrees of freedom, in combination with thermal processes, generate an abundance of heavy (s)neutrinos. These (s)neutrinos decay into radiation, thereby reheating the universe, generating the baryon asymmetry of the universe and setting the stage for the thermal production of gravitinos. The B-L phase transition along with the (s)neutrino-driven reheating process hence represents an intriguing and testable mechanism to generate the initial conditions of the hot early universe. We study the B-L phase transition in the full supersymmetric Abelian Higgs model, for which we derive and discuss the Lagrangian in arbitrary and unitary gauge. As for the subsequent reheating process, we formulate the complete set of Boltzmann equations, the solutions of which enable us to give a detailed and time-resolved description of the evolution of all particle abundances during reheating. Assuming the gravitino to be the lightest superparticle (LSP), the requirement of consistency between hybrid inflation, leptogenesis and gravitino dark matter implies relations between neutrino parameters and superparticle masses, in particular a lower bound on the gravitino mass of 10GeV. As an alternative to gravitino dark matter, we consider the case of
Khodadi, M
2014-01-01
We study the phase transition from quark-gluon plasma to hadrons in the early universe in the context of non-equilibrium thermodynamics. According to the standard model of cosmology, a phase transition associated with chiral symmetry breaking after the electro-weak transition has occurred when the universe was about $1-10\\mu s$ old. We focus attention on such a phase transition in the presence of a viscous relativistic cosmological background fluid in the framework of non-detailed balance Ho\\v{r}ava-Lifshitz cosmology within an effective model of QCD. We consider a flat Friedmann-Robertson-Walker Universe filled with a non-causal and causal bulk viscous cosmological fluid respectively and investigate the effects of the running coupling constants of Ho\\v{r}ava-Lifshitz gravity, $\\lambda$, on the evolution of the physical quantities relevant to a description of the early universe, namely, the temperature $T$, scale factor $a$, deceleration parameter $q$ and dimensionless ratio of the bulk viscosity coefficient ...
Patwardhan, Amol V.; Fuller, George M.
2014-09-01
We show that a particular class of postrecombination phase transitions in the vacuum can lead to localized overdense regions on relatively small scales, roughly 106 to 1010M⊙, potentially interesting for the origin of large black hole seeds and for dwarf galaxy evolution. Our study suggests that this mechanism could operate over a range of conditions which are consistent with current cosmological and laboratory bounds. One byproduct of phase transition bubble-wall decay may be extra radiation energy density. This could provide an avenue for constraint, but it could also help reconcile the discordant values of the present Hubble parameter (H0) and σ8 obtained by cosmic microwave background (CMB) fits and direct observational estimates. We also suggest ways in which future probes, including CMB considerations (e.g., early dark energy limits), 21-cm observations, and gravitational radiation limits, could provide more stringent constraints on this mechanism and the sub-eV scale beyond-standard-model physics, perhaps in the neutrino sector, on which it could be based. Late phase transitions associated with sterile neutrino mass and mixing may provide a way to reconcile cosmological limits and laboratory data, should a future disagreement arise.
Cosmological phase transition, baryon asymmetry and dark matter Q-balls
Krylov, E; Rubakov, V
2013-01-01
We consider a mechanism of dark matter production in the course of first order phase transition. We assume that there is an asymmetry between X- and anti-X-particles of dark sector. In particular, it may be related to the baryon asymmetry. We also assume that the phase transition is so strongly first order, that X-particles do not permeate into the new phase. In this case, as the bubbles of old phase collapse, X-particles are packed into Q-balls with huge mass defect. These Q-balls compose the present dark matter. We find that the required present dark matter density is obtained for the energy scale of the theory in the ballpark of 1-10 TeV. As an example we consider a theory with effective potential of one-loop motivated form.
Patwardhan, Amol V
2014-01-01
We show that a post-recombination phase transition in the vacuum can lead to localized over-dense regions on relatively small scales, roughly 10^6 to 10^10 M_sun, potentially interesting for the origin of large black hole seeds and for dwarf galaxy evolution. Our study suggests that this mechanism could operate over a range of conditions which are consistent with current cosmological and laboratory bounds. One byproduct of phase transition bubble-wall decay may be extra radiation energy density. This could provide an avenue for constraint, but it could also help reconcile the discordant values of the present Hubble parameter (H_0) and sigma_8 obtained by Cosmic Microwave Background (CMB) fits and direct observational estimates. We also suggest ways in which future probes, including CMB considerations (e.g., early dark energy limits), 21-cm observations, and gravitational radiation limits, could provide more stringent constraints on this mechanism and the sub-eV scale beyond-standard- model physics, perhaps in...
Unveiling the cosmological QCD phase transition through the eLISA/NGO detector
Roque, V R C Mourão
2013-01-01
We study the evolution of turbulence in the early universe at the QCD epoch using a state-of-the-art equation of state derived from lattice QCD simulations. Since the transition is a crossover we assume that temperature and velocity fluctuations were generated by some event in the previous history of the Universe and survive until the QCD epoch due to the extremely large Reynolds number of the primordial fluid. The fluid at the QCD epoch is assumed to be non-viscous, based on the fact that the viscosity per entropy density of the quark gluon plasma obtained from heavy-ion collision experiments at the RHIC and the LHC is extremely small. Our hydrodynamic simulations show that the velocity spectrum is very different from the Kolmogorov power law considered in studies of primordial turbulence that focus on first order phase transitions. This is due to the fact that there is no continuous injection of energy in the system and the viscosity of the fluid is negligible. Thus, as kinetic energy cascades from the larg...
Phase Transitions in the Early Universe with Negatively Induced Supergravity Cosmological Constant
Institute of Scientific and Technical Information of China (English)
EL-NABULSI Ahmad Rami
2006-01-01
@@ We consider that the observable cosmological constant is the sum of the vacuum (Avac) and the induced term (Aind - 3m2/4) with m being the ultra-light masses (≈ Hubble parameter) implemented in the theory from supergravities arguments and non-minimal coupling. In the absence of a scalar buildup of matter fields, we study its effects on spontaneous symmetry breaking with a Higgs potential and show how the presence of the ultra-light masses yields some important consequences for the early universe and new constraints on the Higgs and electroweak gauge bosons masses.
BOOK REVIEW: Quantum Analogues: From Phase Transitions to Black Holes and Cosmology
Liberati, Stefano
2008-09-01
'And I cherish more than anything else the analogies, my most trustworthy masters. They know all the secrets of nature, and they ought to be least neglected in geometry.' These words of the great astronomer Johannes Kepler embody the philosophy behind the research recounted in this interesting book—a book composed of nine selected lectures (and a nice introduction by Bill Unruh) from the international workshop on 'Quantum Simulations via Analogues', which was held in the Max Planck Institute for the Physics of Complex Systems in Dresden during the summer of 2005. Analogue models of (and for) gravity have a long and distinguished history dating back to the earliest years of general relativity. However the last decade has seen a remarkable and steady development of analogue gravity models based on condensed matter systems, leading to some hundreds of published articles, numerous workshops, and several books. While the main driver for this booming field has definitely been the puzzling physics associated with quantum effects in black holes, more recently much attention has also been devoted to other interesting issues—such as cosmological particle production or the cosmological constant problem. Moreover, together with these new themes there has been a persistent interest in the possibility of simulating cosmic topological defects in the laboratory (although it should be said that momentum for this line of research has been somewhat weakened by the progressive decrease of interest in cosmological topological defects as an alternative to inflationary scenarios). All these aspects are faithfully accounted for in this book, which does a good job at presenting a vivid snapshot of many (if not quite all) of the most interesting lines of research in the field. All the articles have a self-consistent structure—which allows one to read them in arbitrary order and appreciate the full richness of each topic. However, when considered together I would say that they also
Solé, Ricard V
2011-01-01
Phase transitions--changes between different states of organization in a complex system--have long helped to explain physics concepts, such as why water freezes into a solid or boils to become a gas. How might phase transitions shed light on important problems in biological and ecological complex systems? Exploring the origins and implications of sudden changes in nature and society, Phase Transitions examines different dynamical behaviors in a broad range of complex systems. Using a compelling set of examples, from gene networks and ant colonies to human language and the degradation o
Instanton transition in thermal and moduli deformed de Sitter cosmology
Kounnas, Costas; Partouche, Hervé
2008-04-01
We consider the de Sitter cosmology deformed by the presence of a thermal bath of radiation and/or time-dependent moduli fields. Depending on the parameters, either a first or second-order phase transition can occur. In the first case, an instanton allows a double analytic continuation. It induces a probability to enter the inflationary evolution by tunnel effect from another cosmological solution. The latter starts with a big bang and, in the case the transition does not occur, ends with a big crunch. A temperature duality exchanges the two cosmological branches. In the limit where the pure de Sitter universe is recovered, the tunnel effect reduces to a “creation from nothing”, due to the vanishing of the big bang branch. However, the latter may be viable in some range of the deformation parameter. In the second case, there is a smooth evolution from a big bang to the inflationary phase.
Instanton transition in thermal and moduli deformed de Sitter cosmology
Energy Technology Data Exchange (ETDEWEB)
Kounnas, Costas [Laboratoire de Physique Theorique, Ecole Normale Superieure, 24 rue Lhomond, F-75231 Paris cedex 05 (France)], E-mail: costas.kounnas@lpt.ens.fr; Partouche, Herve [Centre de Physique Theorique, Ecole Polytechnique, F-91128 Palaiseau cedex (France)], E-mail: herve.partouche@cpht.polytechnique.fr
2008-04-11
We consider the de Sitter cosmology deformed by the presence of a thermal bath of radiation and/or time-dependent moduli fields. Depending on the parameters, either a first or second-order phase transition can occur. In the first case, an instanton allows a double analytic continuation. It induces a probability to enter the inflationary evolution by tunnel effect from another cosmological solution. The latter starts with a big bang and, in the case the transition does not occur, ends with a big crunch. A temperature duality exchanges the two cosmological branches. In the limit where the pure de Sitter universe is recovered, the tunnel effect reduces to a 'creation from nothing', due to the vanishing of the big bang branch. However, the latter may be viable in some range of the deformation parameter. In the second case, there is a smooth evolution from a big bang to the inflationary phase.
Gitterman, Moshe
2014-09-01
In discussing phase transitions, the first thing that we have to do is to define a phase. This is a concept from thermodynamics and statistical mechanics, where a phase is defined as a homogeneous system. As a simple example, let us consider instant coffee. This consists of coffee powder dissolved in water, and after stirring it we have a homogeneous mixture, i.e., a single phase. If we add to a cup of coffee a spoonful of sugar and stir it well, we still have a single phase -- sweet coffee. However, if we add ten spoonfuls of sugar, then the contents of the cup will no longer be homogeneous, but rather a mixture of two homogeneous systems or phases, sweet liquid coffee on top and coffee-flavored wet sugar at the bottom...
Cosmology with Galaxy Cluster Phase Spaces
Stark, Alejo; Huterer, Dragan
2016-01-01
We present a novel approach to constrain accelerating cosmologies with galaxy cluster phase spaces. With the Fisher matrix formalism we forecast constraints on the cosmological parameters that describe the cosmological expansion history. We find that our probe has the potential of providing constraints comparable to, or even stronger than, those from other cosmological probes. More specifically, with 1000 (100) clusters uniformly distributed in redshift between $ 0 \\leq z \\leq 0.8$, after applying a conservative $40\\%$ mass scatter prior on each cluster and marginalizing over all other parameters, we forecast $1\\sigma$ constraints on the dark energy equation of state $w$ and matter density parameter $\\Omega_M$ of $\\sigma_w = 0.161 (0.508)$ and $\\sigma_{\\Omega_M} = 0.001 (0.005)$ in a flat universe. Assuming the same galaxy cluster parameter priors and adding a prior on the Hubble constant we can achieve tight constraints on the CPL parametrization of the dark energy equation of state parameters $w_0$ and $w_a...
Compact phase space, cosmological constant, discrete time
Rovelli, Carlo
2015-01-01
We study the quantization of geometry in the presence of a cosmological constant, using a discretiza- tion with constant-curvature simplices. Phase space turns out to be compact and the Hilbert space finite dimensional for each link. Not only the intrinsic, but also the extrinsic geometry turns out to be discrete, pointing to discreetness of time, in addition to space. We work in 2+1 dimensions, but these results may be relevant also for the physical 3+1 case.
Pradhan, Anirudh; Rikhvitsky, Victor
2013-01-01
The present study deals with the exact solutions of the Einstein's field equations with variable gravitational and cosmological "constants" for a spatially homogeneous and anisotropic Bianchi type-I space-time. To study the transit behaviour of Universe, we consider a law of variation of scale factor $a(t) = \\left(t^{k} e^{t}\\right)^{\\frac{1}{n}}$ which yields a time dependent deceleration parameter (DP) $q = - 1 + \\frac{nk}{(k + t)^{2}}$, comprising a class of models that depicts a transition of the universe from the early decelerated phase to the recent accelerating phase. We find that the time dependent DP is reasonable for the present day Universe and give an appropriate description of the evolution of the universe. For $n = 0.27k$, we obtain $q_{0} = -0.73$ which is similar to observed value of DP at present epoch. It is also observed that for $n \\geq 2$ and $k = 1$, we obtain a class of transit models of the universe from early decelerating to present accelerating phase. For $k = 0$, the universe has no...
Measures on transitions for cosmology from eternal inflation.
Aguirre, Anthony; Gratton, Steven; Johnson, Matthew C
2007-03-30
We argue that, in the context of eternal inflation in the landscape, making predictions for cosmological--and possibly particle physics--observables requires a measure on the possible cosmological histories as opposed to one on the vacua themselves. If significant slow-roll inflation occurs, the observables are generally determined by the history after the last transition between metastable vacua. Hence, we start from several existing measures for counting vacua and develop measures for counting the transitions between vacua.
Baryon Number Transfer Could Delay Quark–Hadron Transition in Cosmology
Directory of Open Access Journals (Sweden)
Silvio A. Bonometto
2016-12-01
Full Text Available In the early Universe, strongly interacting matter was a quark–gluon plasma. Both lattice computations and heavy ion collision experiments, however, tell us that, in the absence of chemical potentials, no plasma survives at T < ∼ 150 MeV. The cosmological Quark–Hadron transition, however, seems to have been a crossover; cosmological consequences envisaged when it was believed to be a phase transition no longer hold. In this paper, we discuss whether even a crossover transition can leave an imprint that cosmological observations can seek or, vice versa, if there are questions cosmology should address to QCD specialists. In particular, we argue that it is still unclear how baryons (not hadrons could form at the cosmological transition. A critical role should be played by diquark states, whose abundance in the early plasma needs to be accurately evaluated. We estimate that, if the number of quarks belonging to a diquark state, at the beginning of the cosmological transition, is < ∼ 1 : 10 6 , its dynamics could be modified by the process of B-transfer from plasma to hadrons. In turn, by assuming B-transfer to cause just mild perturbations and, in particular, no entropy input, we study the deviations from the tracking regime, in the frame of SCDEW models. We find that, in some cases, residual deviations could propagate down to primeval nuclesynthesis.
Baryon number transfer could delay Quark-Hadron transition in cosmology
Bonometto, Silvio A
2016-01-01
In the early Universe, s.i. matter was a quark-gluon plasma. Both lattice computations and heavy ion collision experiments however tell us that, in the absence of chemical potentials, no plasma survives at $T <\\sim 150\\, $MeV. The cosmological QH transition, however, seems to have been a crossover; cosmological consequences envisaged when it was believed to be a phase transition no longer hold. In this paper we discuss whether even a crossover transition can leave an imprint that cosmological observations can seek or, viceversa, there are questions cosmology should still ask QCD specialists. In this context, we outline, first of all, that it is still unclear how baryons (not hadrons) could form at the cosmological transition. A critical role should be played by diquark states, whose abundance in the early plasma needs to be accurately evaluated. We estimate that, if the number of quarks belonging to a diquark state, at the eve of the cosmological transition, is $<\\sim 1:10^6$, its dynamics could be modi...
Producing a scale-invariant spectrum of perturbations in a Hagedorn phase of string cosmology.
Nayeri, Ali; Brandenberger, Robert H; Vafa, Cumrun
2006-07-14
We study the generation of cosmological perturbations during the Hagedorn phase of string gas cosmology. Using tools of string thermodynamics we provide indications that it may be possible to obtain a nearly scale-invariant spectrum of cosmological fluctuations on scales which are of cosmological interest today. In our cosmological scenario, the early Hagedorn phase of string gas cosmology goes over smoothly into the radiation-dominated phase of standard cosmology, without having a period of cosmological inflation.
Loitering Phase in Brane Gas Cosmology
Brandenberger, R H; Kimberly, D M; Brandenberger, Robert; Easson, Damien A.; Kimberly, Dagny
2002-01-01
Brane Gas Cosmology (BGC) is an approach to M-theory cosmology in which the initial state of the Universe is taken to be small, dense and hot, with all fundamental degrees of freedom near thermal equilibrium. Such a starting point is in close analogy with the Standard Big Bang (SBB) model. The topology of the Universe is assumed to be toroidal in all nine spatial dimensions and is filled with a gas of p-branes. The dynamics of winding modes allow, at most, three spatial dimensions to become large, thus explaining the origin of our macroscopic 3+1-dimensional Universe. Here we conduct a detailed analysis of the loitering phase of BGC. We do so by including into the equations of motion that describe the dilaton gravity background some new equations which determine the annihilation of string winding modes into string loops. Specific solutions are found within the model that exhibit loitering, i.e. the Universe experiences a short phase of slow contraction during which the Hubble radius grows larger than the phys...
Quark-hadron phase transition in massive gravity
Atazadeh, K.
2016-11-01
We study the quark-hadron phase transition in the framework of massive gravity. We show that the modification of the FRW cosmological equations leads to the quark-hadron phase transition in the early massive Universe. Using numerical analysis, we consider that a phase transition based on the chiral symmetry breaking after the electroweak transition, occurred at approximately 10 μs after the Big Bang to convert a plasma of free quarks and gluons into hadrons.
Quark–hadron phase transition in massive gravity
Energy Technology Data Exchange (ETDEWEB)
Atazadeh, K., E-mail: atazadeh@azaruniv.ac.ir
2016-11-15
We study the quark–hadron phase transition in the framework of massive gravity. We show that the modification of the FRW cosmological equations leads to the quark–hadron phase transition in the early massive Universe. Using numerical analysis, we consider that a phase transition based on the chiral symmetry breaking after the electroweak transition, occurred at approximately 10 μs after the Big Bang to convert a plasma of free quarks and gluons into hadrons.
Non minimally coupled condensate cosmologies: a phase space analysis
Carloni, Sante; Cianci, Roberto
2014-01-01
We present an analysis of the phase space of cosmological models based on a non minimal coupling between the geometry and a fermionic condensate. We obtain that the strong constraint coming from the Dirac equations allows a detailed design of the cosmology of these models and at the same time guarantees an evolution towards a state indistinguishable from General Relativistic cosmological models. In this light, we show how the use of some specific potentials is able to reproduce naturally two de Sitter phases separated by a power law expansion which could be an interesting model for the unification of an inflationary phase and a dark energy era.
On signature transition in Robertson-Walker cosmologies
Ghafoori-Tabrizi, K; Sepangi, H R
2000-01-01
We analyse a classical model of gravitation coupled to a self interacting scalar field. We show that, within the context of this model for Robertson-Walker cosmologies, there exist solutions in the spatially non-flat cases exhibiting transitions from a Euclidean to a Lorentzian spacetime. We then discuss the conditions under which these signature changing solutions to Einstein's field equations exist. In particular, we find that an upper bound for the cosmological constant exists and that close to the signature changing hypersurface, both the scale factor and the scalar field have to be constant. Moreover we find that the signature changing solutions do not exist when the scalar field is massless.
Energy Technology Data Exchange (ETDEWEB)
Petry, W.; Neuhaus, J. [Techn. Universitaet Muenchen, Physik Department E13, Munich (Germany)
1996-11-01
Many elements transform from a high temperature bcc phase to a more dense packed temperature phase. The great majority of these transitions are of 1st order, displacive and reconstructive. The lattice potentials which govern these martensitic transitions can be probed by inelastic neutron scattering, thereby answering fundamental questions like : Will the transition be announced by dynamical or static fluctuations? What are the trajectories for the displacements needed for the transformation? Does the vibrational entropy stabilize the high temperature phase? Are the unusual transport properties in these materials related to their ability to transform? (author) 17 figs., 1 tab., 46 refs.
Transition redshift in $f(T)$ cosmology and observational constraints
Capozziello, Salvatore; Saridakis, Emmanuel N
2015-01-01
We extract constraints on the transition redshift $z_{tr}$, determining the onset of cosmic acceleration, predicted by an effective cosmographic construction, in the framework of $f(T)$ gravity. In particular, employing cosmography we obtain bounds on the viable $f(T)$ forms and their derivatives. Since this procedure is model independent, as long as the scalar curvature is fixed, we are able to determine intervals for $z_{tr}$. In this way we guarantee that the Solar-System constraints are preserved and moreover we extract bounds on the transition time and the free parameters of the scenario. We find that the transition redshifts predicted by $f(T)$ cosmology, although compatible with the standard $\\Lambda$CDM predictions, are slightly smaller. Finally, in order to obtain observational constraints on $f(T)$ cosmology, we perform a Monte Carlo fitting using supernova data, involving the most recent union 2.1 data set.
Transition redshift in f (T ) cosmology and observational constraints
Capozziello, Salvatore; Luongo, Orlando; Saridakis, Emmanuel N.
2015-06-01
We extract constraints on the transition redshift ztr , determining the onset of cosmic acceleration, predicted by an effective cosmographic construction, in the framework of f (T ) gravity. In particular, employing cosmography we obtain bounds on the viable f (T ) forms and their derivatives. Since this procedure is model independent, as long as the scalar curvature is fixed, we are able to determine intervals for ztr . In this way we guarantee that the Solar-System constraints are preserved and, moreover, we extract bounds on the transition time and the free parameters of the scenario. We find that the transition redshifts predicted by f (T ) cosmology, although compatible with the standard Λ CDM predictions, are slightly smaller. Finally, in order to obtain observational constraints on f (T ) cosmology, we perform a Monte Carlo fitting using supernova data, involving the most recent Union 2.1 data set.
Instanton transition in thermal and moduli deformed de Sitter cosmology
Kounnas, Costas
2007-01-01
We consider the de Sitter cosmology deformed by the presence of a thermal bath of radiation and/or time-dependent moduli fields. We find that an instanton allowing a double analytic continuation induces a probability to enter this inflationary evolution by tunnel effect from another cosmological solution. The latter starts with a big bang and, in the case the transition does not occur, ends with a big crunch. A temperature duality exchanges the two cosmological branches. In the limit where the pure de Sitter universe is recovered, the tunnel effect reduces to a ''creation from nothing'', due to the vanishing of the big bang branch. However, the latter happens to be viable in some range of the deformation parameters.
Phase transitions modern applications
Gitterman, Moshe
2014-01-01
This book provides a comprehensive review of the theory of phase transitions and its modern applications, based on the five pillars of the modern theory of phase transitions i.e. the Ising model, mean field, scaling, renormalization group and universality. This expanded second edition includes, along with a description of vortices and high temperature superconductivity, a discussion of phase transitions in chemical reaction and moving systems. The book covers a close connection between phase transitions and small world phenomena as well as scale-free systems such as the stock market and the Internet. Readership: Scientists working in different fields of physics, chemistry, biology and economics as well as teaching material for undergraduate and graduate courses.
Institute of Scientific and Technical Information of China (English)
许可; 李未
1999-01-01
Phase transition is an important feature of SAT problem. For random k-SAT model, it is proved that as r（ratio of clauses to variables） increases, the structure of solutions will undergo a sudden change like satisfiability phase transition when r reaches a threshold point (r=rcr). This phenomenon shows that the satisfying truth assignments suddenly shift from being relatively different from each other to being very similar to each other.##属性不符
On Signature Transition and Compactification in Kaluza-Klein Cosmology
Darabi, F
1999-01-01
We consider an empty (4+1) dimensional Kaluza-Klein universe with a negative cosmological constant and a Robertson-Walker type metric. It is shown that the solutions to Einstein field equations have degenerate metric and exhibit transitioins from a Euclidean to a Lorentzian domain. We then suggest a mechanism, based on signature transition which leads to compactification of the internal space in the Lorentzian region as $a \\sim |\\Lambda|^{1/2}$. With the assumption of a very small value for the cosmological constant we find that the size of the universe $R$ and the internal scale factor $a$ would be related according to $Ra\\sim 1$ in the Lorentzian region. The corresponding Wheeler-DeWitt equation has exact solution in the mini-superspace giving rise to a quantum state which peaks in the vicinity of the classical solutions undergoing signature transition.
Phase Space of Anisotropic $R^n$ Cosmologies
Leon, Genly
2014-01-01
We construct general anisotropic cosmological scenarios governed by an $f(R)=R^n$ gravitational sector. Focusing then on some specific geometries, and modelling the matter content as a perfect fluid, we perform a phase-space analysis. We analyze the possibility of accelerating expansion at late times, and additionally, we determine conditions for the parameter $n$ for the existence of phantom behavior, contracting solutions as well as of cyclic cosmology. Furthermore, we analyze if the universe evolves towards the future isotropization without relying on a cosmic no-hair theorem. Our results indicate that anisotropic geometries in modified gravitational frameworks present radically different cosmological behaviors compared to the simple isotropic scenarios.
Kopaev, YuV
1992-01-01
Electronic Phase Transitions deals with topics, which are presently at the forefront of scientific research in modern solid-state theory. Anderson localization, which has fundamental implications in many areas of solid-state physics as well as spin glasses, with its influence on quite different research activities such as neural networks, are two examples that are reviewed in this book. The ab initio statistical mechanics of structural phase transitions is another prime example, where the interplay and connection of two unrelated disciplines of solid-state theory - first principle ele
Quantum Transitions Between Classical Histories: Bouncing Cosmologies
Hartle, James
2015-01-01
In a quantum theory of gravity spacetime behaves classically when quantum probabilities are high for histories of geometry and field that are correlated in time by the Einstein equation. Probabilities follow from the quantum state. This quantum perspective on classicality has important implications: (a) Classical histories are generally available only in limited patches of the configuration space on which the state lives. (b) In a given patch states generally predict relative probabilities for an ensemble of possible classical histories. (c) In between patches classical predictability breaks down and is replaced by quantum evolution connecting classical histories in different patches. (d) Classical predictability can break down on scales well below the Planck scale, and with no breakdown in the classical equations of motion. We support and illustrate (a)-(d) by calculating the quantum transition across the de Sitter like throat connecting asymptotically classical, inflating histories in the no-boundary quantu...
Photoinduced phase transitions
Nasu, K
2004-01-01
A new class of insulating solids was recently discovered. Whenirradiated by a few visible photons, these solids give rise to amacroscopic excited domain that has new structural and electronicorders quite different from the starting ground state. This occurrenceis called "photoinduced phase transition", and this multi-authoredbook reviews recent theoretical and experimental studies of this newphenomenon.
Phase-Space Noncommutative Quantum Cosmology
Bastos, Catarina; Dias, Nuno Costa; Prata, João Nuno
2007-01-01
We present a noncommutative extension of Quantum Cosmology and study the Kantowski-Sachs (KS) cosmological model requiring that the two scale factors of the KS metric, the coordinates of the system, and their conjugate canonical momenta do not commute. Through the ADM formalism, we obtain the Wheeler-DeWitt (WDW) equation for the noncommutative system. The Seiberg-Witten map is used to transform the noncommutative equation into a commutative one, i.e. into an equation with commutative variables, which depend on the noncommutative parameters, $\\theta$ and $\\eta$. Numerical solutions are found both for the classical and the quantum formulations of the system. These solutions are used to characterize the dynamics and the state of the universe. From the classical solutions we obtain the behavior of quantities such as the volume expansion, the shear and the characteristic volume. However the analysis of these quantities does not lead to any restriction on the value of the noncommutative parameters, $\\theta$ and $\\...
Particle creation and non-adiabatic transitions in quantum cosmology
Massar, S
1998-01-01
The aim of this paper is to compute transitions amplitudes in quantum cosmology, and in particular pair creation amplitudes and radiative transitions. To this end, we apply a double adiabatic development to the solutions of the Wheeler-DeWitt equation restricted to mini-superspace wherein gravity is described by the scale factor $a$. The first development consists in working with instantaneous eigenstates, in $a$, of the matter Hamiltonian. The second development is applied to the gravitational part of the wave function and generalizes the usual WKB approximation. We then obtain an exact equation which replaces the Wheeler-DeWitt equation and determines the evolution, i.e. the dependence in $a$, of the coefficients of this double expansion. When working in the gravitational adiabatic approximation, the simplified equation delivers the unitary evolution of transition amplitudes occurring among instantaneous eigenstates. Upon abandoning this approximation, one finds that there is an additional coupling among ma...
Inflationary phase in Brans-Dicke cosmology with a cosmological constant
Berman, Marcelo Samuel
1989-12-01
It has been shown earlier that, for a perfect fluid, a perfect gas law of state, and the Robertson-Walker metric, an exponential phase in Brans-Dicke cosmology is possible, with both positive pressure and density, but not with the violated energy condition p = -ρ. We demonstrate in this paper that the inclusion of a cosmological constant into the theory does not change that picture. Permanent address: Departamento de Ciencias Exatas da Faculdade de Filosofia, Ceincias e Letras da FURJ, Joinville, SC 89200, Brazil.
Emergence and Phase Transitions
Sikkema, Arnold
2006-05-01
Phase transitions are well defined in physics through concepts such as spontaneous symmetry breaking, order parameter, entropy, and critical exponents. But emergence --- also exhibiting whole-part relations (such as top-down influence), unpredictability, and insensitivity to microscopic detail --- is a loosely-defined concept being used in many disciplines, particularly in psychology, biology, philosophy, as well as in physics[1,2]. I will review the concepts of emergence as used in the various fields and consider the extent to which the methods of phase transitions can clarify the usefulness of the concept of emergence both within the discipline of physics and beyond.1. Robert B. Laughlin, A Different Universe: Reinventing Physics from the Bottom Down (New York: Basic Books, 2005). 2. George F.R. Ellis, ``Physics and the Real World'', Physics Today, vol. 58, no. 7 (July 2005) pp. 49-54.
Understanding quantum phase transitions
Carr, Lincoln
2010-01-01
Quantum phase transitions (QPTs) offer wonderful examples of the radical macroscopic effects inherent in quantum physics: phase changes between different forms of matter driven by quantum rather than thermal fluctuations, typically at very low temperatures. QPTs provide new insight into outstanding problems such as high-temperature superconductivity and display fundamental aspects of quantum theory, such as strong correlations and entanglement. Over the last two decades, our understanding of QPTs has increased tremendously due to a plethora of experimental examples, powerful new numerical meth
Phase transitions in geometrothermodynamics
Quevedo, H; Taj, S; Vazquez, A
2010-01-01
Using the formalism of geometrothermodynamics, we investigate the geometric properties of the equilibrium manifold for diverse thermodynamic systems. Starting from Legendre invariant metrics of the phase manifold, we derive thermodynamic metrics for the equilibrium manifold whose curvature becomes singular at those points where phase transitions of first and second order occur. We conclude that the thermodynamic curvature of the equilibrium manifold, as defined in geometrothermodynamics, can be used as a measure of thermodynamic interaction in diverse systems with two and three thermodynamic degrees of freedom.
The quark-hadron phase transition and primordial nucleosynthesis
Hogan, Craig J.
1987-01-01
After presenting the current view of the processes taking place during the cosmological transition from 'quark soup' to normal hadron matter, attention is given to what happens to cosmological nucleosynthesis in the presence of small-scale baryon inhomogeneities. The QCD phase transition is among the plausible sources of this inhomogeneity. It is concluded that the formation of primordial 'quark nuggets' and other cold exotica requires very low entropy regions at the outset, and that even the more modest nonlinearities perturbing nucleosynthesis probably require some ingredient in addition to a quiescent, mildly supercooled transition.
The quark-hadron phase transition and primordial nucleosynthesis
Hogan, Craig J.
1987-01-01
After presenting the current view of the processes taking place during the cosmological transition from 'quark soup' to normal hadron matter, attention is given to what happens to cosmological nucleosynthesis in the presence of small-scale baryon inhomogeneities. The QCD phase transition is among the plausible sources of this inhomogeneity. It is concluded that the formation of primordial 'quark nuggets' and other cold exotica requires very low entropy regions at the outset, and that even the more modest nonlinearities perturbing nucleosynthesis probably require some ingredient in addition to a quiescent, mildly supercooled transition.
The quark-hadron phase transition and primordial nucleosynthesis
Hogan, Craig J.
After presenting the current view of the processes taking place during the cosmological transition from 'quark soup' to normal hadron matter, attention is given to what happens to cosmological nucleosynthesis in the presence of small-scale baryon inhomogeneities. The QCD phase transition is among the plausible sources of this inhomogeneity. It is concluded that the formation of primordial 'quark nuggets' and other cold exotica requires very low entropy regions at the outset, and that even the more modest nonlinearities perturbing nucleosynthesis probably require some ingredient in addition to a quiescent, mildly supercooled transition.
In situ and in-transit analysis of cosmological simulations
Friesen, Brian; Almgren, Ann; Lukić, Zarija; Weber, Gunther; Morozov, Dmitriy; Beckner, Vincent; Day, Marcus
2016-08-01
Modern cosmological simulations have reached the trillion-element scale, rendering data storage and subsequent analysis formidable tasks. To address this circumstance, we present a new MPI-parallel approach for analysis of simulation data while the simulation runs, as an alternative to the traditional workflow consisting of periodically saving large data sets to disk for subsequent `offline' analysis. We demonstrate this approach in the compressible gasdynamics/ N-body code Nyx, a hybrid MPI+OpenMP code based on the BoxLib framework, used for large-scale cosmological simulations. We have enabled on-the-fly workflows in two different ways: one is a straightforward approach consisting of all MPI processes periodically halting the main simulation and analyzing each component of data that they own (` in situ'). The other consists of partitioning processes into disjoint MPI groups, with one performing the simulation and periodically sending data to the other `sidecar' group, which post-processes it while the simulation continues (`in-transit'). The two groups execute their tasks asynchronously, stopping only to synchronize when a new set of simulation data needs to be analyzed. For both the in situ and in-transit approaches, we experiment with two different analysis suites with distinct performance behavior: one which finds dark matter halos in the simulation using merge trees to calculate the mass contained within iso-density contours, and another which calculates probability distribution functions and power spectra of various fields in the simulation. Both are common analysis tasks for cosmology, and both result in summary statistics significantly smaller than the original data set. We study the behavior of each type of analysis in each workflow in order to determine the optimal configuration for the different data analysis algorithms.
Thick strings, the liquid crystal blue phase, and cosmological large-scale structure
Luo, Xiaochun; Schramm, David N.
1992-01-01
A phenomenological model based on the liquid crystal blue phase is proposed as a model for a late-time cosmological phase transition. Topological defects, in particular thick strings and/or domain walls, are presented as seeds for structure formation. It is shown that the observed large-scale structure, including quasi-periodic wall structure, can be well fitted in the model without violating the microwave background isotropy bound or the limits from induced gravitational waves and the millisecond pulsar timing. Furthermore, such late-time transitions can produce objects such as quasars at high redshifts. The model appears to work with either cold or hot dark matter.
Fodor, Z
2000-01-01
Recent developments on the four dimensional (4d) lattice studies of the finite temperature electroweak phase transition (EWPT) are summarized. The phase diagram is given in the continuum limit. The finite temperature SU(2)-Higgs phase transition is of first order for Higgs-boson masses m/sub H/<66.5+or-1.4 GeV. Above this endpoint only a rapid cross-over can be seen. The full 4d result agrees completely with that of the dimensional reduction approximation. The Higgs-boson endpoint mass in the standard model (SM) would be 72.1+or-1. 4 GeV. Taking into account the LEP Higgs-boson mass lower bound excludes any EWPT in the SM. A one-loop calculation of the static potential in the SU(2)-Higgs model enables a precise comparison between lattice simulations and perturbative results. The most popular extension of the SM, the minimal supersymmetric SM (MSSM) is also studied on 4d lattices. (17 refs).
Reentrant Phase Transitions in Rotating AdS Black Holes
Altamirano, Natacha; Mann, Robert B
2013-01-01
We study the thermodynamics of higher-dimensional singly spinning asymptotically AdS black holes in the canonical (fixed J) ensemble of extended phase space, where the cosmological constant is treated as pressure and the corresponding conjugate quantity is interpreted as thermodynamic volume. Along with the usual small/large black hole phase transition, we find a new phenomenon of reentrant phase transitions for all d>5 dimensions, in which a monotonic variation of the temperature yields two phase transitions from large to small and back to large black holes. This situation is similar to that seen in multicomponent liquids.
Quark-Hadron Phase Transitions in Viscous Early Universe
Tawfik, A
2011-01-01
Based on hot big bang theory, the cosmological matter is conjectured to undergo QCD phase transition(s) to hadrons, when the universe was about $1-10 \\mu$s old. In the present work, we study the quark-hadron phase transition, by taking into account the effect of the bulk viscosity. We analyze the evolution of the quantities relevant for the physical description of the early universe, namely, the energy density $\\rho$, temperature $T$, Hubble parameter $H$ and scale factor $a$ before, during and after the phase transition. To study the cosmological dynamics and the time evolution we use both analytical and numerical methods. By assuming that the phase transition may be described by an effective nucleation theory (prompt {\\it first-order} phase transition), we also consider the case where the universe evolved through a mixed phase with a small initial supercooling and monotonically growing hadronic bubbles. The numerical estimation of the cosmological parameters, $a$ and $H$ for instance, makes it clear that th...
The quantum-to-classical transition of primordial cosmological perturbations
Pinto-Neto, Nelson; Struyve, Ward
2011-01-01
There is a widespread belief that the classical small inhomogeneities which gave rise to all structures in the Universe through gravitational instability originated from primordial quantum cosmological fluctuations. However, this transition from quantum to classical fluctuations is plagued with important conceptual issues, most of them related to the application of standard quantum theory to the Universe as a whole. In this paper, we show how these issues can easily be overcome in the framework of the de Broglie-Bohm quantum theory. This theory is an alternative to standard quantum theory that provides an objective description of physical reality, where rather ambiguous notions of measurement or observer play no fundamental role, and which can hence be applied to the Universe as a whole. In addition, it allows for a simple and unambiguous characterization of the classical limit.
Mixed phases during the phase transitions
Tatsumi, Toshitaka; Maruyama, Toshiki
2011-01-01
Quest for a new form of matter inside compact stars compels us to examine the thermodynamical properties of the phase transitions. We closely consider the first-order phase transitions and the phase equilibrium on the basis of the Gibbs conditions, taking the liquid-gas phase transition in asymmetric nuclear matter as an example. Characteristic features of the mixed phase are figured out by solving the coupled equations for mean-fields and densities of constituent particles self-consistently within the Thomas-Fermi approximation. The mixed phase is inhomogeneous matter composed of two phases in equilibrium; it takes a crystalline structure with a unit of various geometrical shapes, inside of which one phase with a characteristic shape, called "pasta", is embedded in another phase by some volume fraction. This framework enables us to properly take into account the Coulomb interaction and the interface energy, and thereby sometimes we see the mechanical instability of the geometric structures of the mixed phase...
Baryon number segregation at the end of the cosmological quark-hadron transition
Rezzolla, L
1996-01-01
One of the most interesting questions regarding a possible first order cosmological quark--hadron phase transition concerns the final fate of the baryon number contained within the disconnected quark regions at the end of the transition. We here present a detailed investigation of the hydrodynamical evolution of an evaporating quark drop, using a multi-component fluid description to follow the mechanisms of baryon number segregation. With this approach, we are able to take account of the simultaneous effects of baryon number flux suppression at the phase interface, entropy extraction by means of particles having long mean-free-paths, and baryon number diffusion. A range of computations has been performed to investigate the permitted parameter-space and this has shown that significant baryon number concentrations, perhaps even up to densities above that of nuclear matter, represent an inevitable outcome within this scenario.
Learning phase transitions by confusion
van Nieuwenburg, Evert P L; Huber, Sebastian D
2016-01-01
Classifying phases of matter is a central problem in physics. For quantum mechanical systems, this task can be daunting owing to the exponentially large Hilbert space. Thanks to the available computing power and access to ever larger data sets, classification problems are now routinely solved using machine learning techniques. Here, we propose to use a neural network based approach to find phase transitions depending on the performance of the neural network after training it with deliberately incorrectly labelled data. We demonstrate the success of this method on the topological phase transition in the Kitaev chain, the thermal phase transition in the classical Ising model, and the many-body-localization transition in a disordered quantum spin chain. Our method does not depend on order parameters, knowledge of the topological content of the phases, or any other specifics of the transition at hand. It therefore paves the way to a generic tool to identify unexplored phase transitions.
Rubakov, V A
2014-01-01
In these lectures we first concentrate on the cosmological problems which, hopefully, have to do with the new physics to be probed at the LHC: the nature and origin of dark matter and generation of matter-antimatter asymmetry. We give several examples showing the LHC cosmological potential. These are WIMPs as cold dark matter, gravitinos as warm dark matter, and electroweak baryogenesis as a mechanism for generating matter-antimatter asymmetry. In the remaining part of the lectures we discuss the cosmological perturbations as a tool for studying the epoch preceeding the conventional hot stage of the cosmological evolution.
Oscillatory Attractors: A New Cosmological Phase
Bains, Jasdeep S; Wilczek, Frank
2015-01-01
In expanding FRW spacetimes, it is usually the case that homogeneous scalar fields redshift and their amplitudes approach limiting values: Hubble friction usually ensures that the field relaxes to its minimum energy configuration, which is usually a static configuration. Here we discover a class of relativistic scalar field models in which the attractor behavior is the field oscillating indefinitely, with finite amplitude, in an expanding FRW spacetime, despite the presence of Hubble friction. This is an example of spontaneous breaking of time translation symmetry. We find that the effective equation of state of the field has average value $\\langle w\\rangle=-1$, implying that the field itself could drive an inflationary or dark energy dominated phase. This behavior is reminiscent of ghost condensate models, but in the new models, unlike in the ghost condensate models, the energy-momentum tensor is time dependent, so that these new models embody a more definitive breaking of time translation symmetry. We explo...
Tensor modes from a primordial Hagedorn phase of string cosmology.
Brandenberger, Robert H; Nayeri, Ali; Patil, Subodh P; Vafa, Cumrun
2007-06-01
It has recently been shown that a Hagedorn phase of string gas cosmology can provide a causal mechanism for generating a nearly scale-invariant spectrum of scalar metric fluctuations, without the need for an intervening period of de Sitter expansion. In this Letter, we compute the spectrum of tensor metric fluctuations (gravitational waves) in this scenario and show that it is also nearly scale invariant. However, whereas the spectrum of scalar modes has a small red tilt, the spectrum of tensor modes has a small blue tilt, unlike what occurs in slow-roll inflation. This provides a possible observational way to distinguish between our cosmological scenario and conventional slow-roll inflation.
Phase Transitions of Simple Systems
Berry, Stephen
2008-01-01
This monograph develops a unified microscopic basis for phases and phase changes of bulk matter and small systems in terms of classical physics. The origins of such phase changes are derived from simple but physically relevant models of how transitions between rigid crystalline, glassy and fluid states occur, how phase equilibria arise, and how bulk properties evolve from those of small systems.
Electroweak phase transition in technicolor
Jarvinen, Matti
2010-01-01
Several phenomenologically viable walking technicolor models have been proposed recently. I demonstrate that these models can have first order electroweak phase transitions, which are sufficiently strong for electroweak baryogenesis. Strong dynamics can also lead to several separate transitions at the electroweak scale, with the possibility of a temporary restoration and an extra breaking of the electroweak symmetry. First order phase transitions will produce gravitational waves, which may be detectable at future experiments.
The Phantom of the New Oscillatory Cosmological Phase
Easson, Damien A
2016-01-01
We study a recently proposed new cosmological phase where a scalar field moves periodically in an expanding spatially-flat Friedmann universe. This phase corresponds to a limiting cycle of the equations of motion and can be considered as a cosmological realization of a "time-crystal". We show that this phase is only possible, provided the Null Energy Condition is violated and the so-called Phantom divide is crossed. We prove that in general k-essence models: i) this crossing causes infinite growth of quantum perturbations on short scales, and ii) exactly periodic solutions are only possible, provided the limiting cycle encircles a singularity in the phase plane. The configurations neighboring this singular curve in the phase space are linearly unstable on one side of the curve and superluminal on the other side. Moreover, the increment of the instability is infinitely growing for each mode by approaching the singularity, while for the configurations on the other side, the sound speed is growing without limit....
Magnetic resonance of phase transitions
Owens, Frank J; Farach, Horacio A
1979-01-01
Magnetic Resonance of Phase Transitions shows how the effects of phase transitions are manifested in the magnetic resonance data. The book discusses the basic concepts of structural phase and magnetic resonance; various types of magnetic resonances and their underlying principles; and the radiofrequency methods of nuclear magnetic resonance. The text also describes quadrupole methods; the microwave technique of electron spin resonance; and the Mössbauer effect. Phase transitions in various systems such as fluids, liquid crystals, and crystals, including paramagnets and ferroelectrics, are also
Multiobjective Optimization and Phase Transitions
Seoane, Luís F
2015-01-01
Many complex systems obey to optimality conditions that are usually not simple. Conflicting traits often interact making a Multi Objective Optimization (MOO) approach necessary. Recent MOO research on complex systems report about the Pareto front (optimal designs implementing the best trade-off) in a qualitative manner. Meanwhile, research on traditional Simple Objective Optimization (SOO) often finds phase transitions and critical points. We summarize a robust framework that accounts for phase transitions located through SOO techniques and indicates what MOO features resolutely lead to phase transitions. These appear determined by the shape of the Pareto front, which at the same time is deeply related to the thermodynamic Gibbs surface. Indeed, thermodynamics can be written as an MOO from where its phase transitions can be parsimoniously derived; suggesting that the similarities between transitions in MOO-SOO and Statistical Mechanics go beyond mere coincidence.
Non-equilibrium phase transitions
Henkel, Malte; Lübeck, Sven
2009-01-01
This book describes two main classes of non-equilibrium phase-transitions: (a) static and dynamics of transitions into an absorbing state, and (b) dynamical scaling in far-from-equilibrium relaxation behaviour and ageing. The first volume begins with an introductory chapter which recalls the main concepts of phase-transitions, set for the convenience of the reader in an equilibrium context. The extension to non-equilibrium systems is made by using directed percolation as the main paradigm of absorbing phase transitions and in view of the richness of the known results an entire chapter is devoted to it, including a discussion of recent experimental results. Scaling theories and a large set of both numerical and analytical methods for the study of non-equilibrium phase transitions are thoroughly discussed. The techniques used for directed percolation are then extended to other universality classes and many important results on model parameters are provided for easy reference.
Entropy production in the early-cosmology pionic phase
Dobado, Antonio; Rodriguez-Fernandez, David
2015-01-01
We point out that in the early universe, for temperatures in the approximate interval 175-80 MeV (after the quark-gluon plasma), pions carried a large share of the entropy and supported the largest inhomogeneities. Thus, we examine the production of entropy in a pion gas, particularizing to inhomogeneities of the temperature, for which we benefit from the known thermal conductivity. We finally put that entropy produced in relaxing such thermal inhomogeneities in the broad context of this relatively unexplored phase of early-universe cosmology.
Phase transition in extended thermodynamic phase space and charged Horava-Lifshitz black holes
Poshteh, Mohammad Bagher Jahani
2016-01-01
For charged black holes in Horava-Lifshitz gravity, it is shown that a second order phase transition takes place in extended phase space. We study the behavior of specific heat and free energy at the point of transition in canonical and grand canonical ensembles and show that the black hole falls into a state which is locally and globally stable. We relate the second order nature of phase transition to the fact that the phase transition occurs at a sharp temperature and not over a temperature interval. By taking cosmological constant as thermodynamic pressure for charged black holes, we extend Ehrenfest's equations. We obtain nine equations and show that, all of them are satisfied at the point in which the specific heat diverges. We also apply geometrothermodynamics to extended phase space and show that the scalar curvature of Quevedo metric diverges at the point at which the second order phase transition takes place.
Vittorio, Nicola
2017-01-01
Modern cosmology has changed significantly over the years, from the discovery to the precision measurement era. The data now available provide a wealth of information, mostly consistent with a model where dark matter and dark energy are in a rough proportion of 3:7. The time is right for a fresh new textbook which captures the state-of-the art in cosmology. Written by one of the world's leading cosmologists, this brand new, thoroughly class-tested textbook provides graduate and undergraduate students with coverage of the very latest developments and experimental results in the field. Prof. Nicola Vittorio shows what is meant by precision cosmology, from both theoretical and observational perspectives.
Learning phase transitions by confusion
van Nieuwenburg, Evert P. L.; Liu, Ye-Hua; Huber, Sebastian D.
2017-02-01
Classifying phases of matter is key to our understanding of many problems in physics. For quantum-mechanical systems in particular, the task can be daunting due to the exponentially large Hilbert space. With modern computing power and access to ever-larger data sets, classification problems are now routinely solved using machine-learning techniques. Here, we propose a neural-network approach to finding phase transitions, based on the performance of a neural network after it is trained with data that are deliberately labelled incorrectly. We demonstrate the success of this method on the topological phase transition in the Kitaev chain, the thermal phase transition in the classical Ising model, and the many-body-localization transition in a disordered quantum spin chain. Our method does not depend on order parameters, knowledge of the topological content of the phases, or any other specifics of the transition at hand. It therefore paves the way to the development of a generic tool for identifying unexplored phase transitions.
Constraining Dark Energy and Cosmological Transition Redshift with Type Ia Supernovae
Institute of Scientific and Technical Information of China (English)
Fa-Yin Wang; Zi-Gao Dai
2006-01-01
The property of dark energy and the physical reason for the acceleration of the present universe are two of the most difficult problems in modern cosmology. The dark energy contributes about two-thirds of the critical density of the present universe from the observations of type-Ia supernovae (SNe Ia) and anisotropy of cosmic microwave background (CMB). The SN Ia observations also suggest that the universe expanded from a deceleration to an acceleration phase at some redshift, implying the existence of a nearly uniform component of dark energy with negative pressure. We use the "Gold" sample containing 157 SNe Ia and two recent well-measured additions, SNe Ia 1994ae and 1998aq to explore the properties of dark energy and the transition redshift. For a flat universe with the cosmological constant,we measure ΩM = 0.28+0.04 -0.05,which is consistent with Riess et al. The transition redshift is zT=0.60+0.06 -0.08. We also discuss several dark energy models that define w(z) of the parameterized equation of state of dark energy including one parameter and two parameters (w(z) being the ratio of the pressure to energy density). Our calculations show that the accurately calculated transition redshift varies from zT=0.06+0.07 -0.06 to zT=0.06+0.06 -0.08 across these models. We also calculate the minimum redshift zc at which the current observations need the universe to accelerate.
AdS Monopole Black Hole and Phase Transition
Miyashita, Shoichiro
2016-01-01
We study the Einstein-SO(3)Yang-Mills-Higgs system with a negative cosmological constant, and find the monopole black hole solutions as well as the trivial Reissner-Nordstr\\"{o}m black hole. We discuss thermodynamical stability of the monopole black hole in an isolated system. We expect a phase transition between those two black holes when the mass of a black hole increases or decreases. The type of phase transition depends on the cosmological constant $\\Lambda$ as well as the vacuum expectation value $v$ and the coupling constant $\\lambda$ of the Higgs field. Fixing $\\lambda$ small, we find there are two critical values of the cosmological constant $\\Lambda_{\\rm cr (1)}(v)$ and $\\Lambda_{\\rm cr(2)}(v)$, which depend on $v$. If $\\Lambda_{\\rm cr(1)}(v)<\\Lambda (<0)$, we find the first order transition, while if $\\Lambda_{\\rm cr(2)}(v)<\\Lambda<\\Lambda_{\\rm cr(1)}(v)$, the transition becomes second order. For the case of $\\Lambda_{b}(v)<\\Lambda<\\Lambda_{\\rm (2)}(v)$, we again find the first ord...
Deformed phase space Kaluza–Klein cosmology and late time acceleration
Energy Technology Data Exchange (ETDEWEB)
Sabido, M., E-mail: msabido@fisica.ugto.mx [Departamento de Física de la Universidad de Guanajuato, A.P. E-143, C.P. 37150, León, Guanajuato (Mexico); Yee-Romero, C., E-mail: carlos.yee@uabc.edu.mx [Departamento de Matemáticas, Facultad de Ciencias, Universidad Autónoma de Baja California, Ensenada, Baja California (Mexico)
2016-06-10
The effects of phase space deformations on Kaluza–Klein cosmology are studied. The deformation is introduced by modifying the symplectic structure of the minisuperspace variables. In the deformed model, we find an accelerating scale factor and therefore infer the existence of an effective cosmological constant from the phase space deformation parameter β.
Deformed phase space Kaluza-Klein cosmology and late time acceleration
Sabido, M.; Yee-Romero, C.
2016-06-01
The effects of phase space deformations on Kaluza-Klein cosmology are studied. The deformation is introduced by modifying the symplectic structure of the minisuperspace variables. In the deformed model, we find an accelerating scale factor and therefore infer the existence of an effective cosmological constant from the phase space deformation parameter β.
Incommensurate phase transitions
Energy Technology Data Exchange (ETDEWEB)
Currat, R. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)
1996-11-01
We review the characteristic aspects of modulated crystals from the point of view of inelastic neutron scattering. We discuss the phenomenological Landau theory of the normal-to-incommensurate displacive instability and its predictions concerning the fluctuation spectrum of the modulated phase. General results on the form of the normal-mode eigenvectors and on the inelastic scattering channels through which they couple to the probe are established using the superspace approach. We illustrate these results on a simple discrete model symmetry and we review available inelastic neutron scattering data on several displacively modulated compounds. (author) 21 figs., 73 refs.
Effect of extrinsic curvature on quark--hadron phase transition
Heydari-Fard, Malihe
2009-01-01
The last phase transition predicted by the standard model of particle physics took place at the QCD scale $T\\sim200$ MeV when the universe was about $t\\sim10^{-5}$ seconds old and the Hubble radius was around 10 Km. In this paper, we consider the quark--hadron phase transition in the context of brane-world cosmology where our universe is a 3-brane embedded in a $m$-dimensional bulk and localization of matter on the brane is achieved by means of a confining potential. We study the behavior of the physical quantities relevant to the description of the early universe like the energy density, temperature and scale factor, before, during, and after the phase transition and investigate the effects of extrinsic curvature on the cosmological phase transition. We show that the brane-world effects reduce the effective temperature of the quark--gluon plasma and of the hadronic fluid. Finally, we discuss the case where the universe evolved through a mixed phase with a small initial supercooling and monotonically growing ...
Phase transitions in operational risk.
Anand, Kartik; Kühn, Reimer
2007-01-01
In this paper we explore the functional correlation approach to operational risk. We consider networks with heterogeneous a priori conditional and unconditional failure probability. In the limit of sparse connectivity, self-consistent expressions for the dynamical evolution of order parameters are obtained. Under equilibrium conditions, expressions for the stationary states are also obtained. Consequences of the analytical theory developed are analyzed using phase diagrams. We find coexistence of operational and nonoperational phases, much as in liquid-gas systems. Such systems are susceptible to discontinuous phase transitions from the operational to nonoperational phase via catastrophic breakdown. We find this feature to be robust against variation of the microscopic modeling assumptions.
Symmetry structure and phase transitions
Indian Academy of Sciences (India)
Ashok Goyal; Meenu Dahiya; Deepak Chandra
2003-05-01
We study chiral symmetry structure at ﬁnite density and temperature in the presence of external magnetic ﬁeld and gravity, a situation relevant in the early Universe and in the core of compact stars. We then investigate the dynamical evolution of phase transition in the expanding early Universe and possible formation of quark nuggets and their survival.
Phase transitions in finite systems
Energy Technology Data Exchange (ETDEWEB)
Chomaz, Ph. [Grand Accelerateur National d' Ions Lourds (GANIL), DSM-CEA / IN2P3-CNRS, 14 - Caen (France); Gulminelli, F. [Caen Univ., 14 (France). Lab. de Physique Corpusculaire
2002-07-01
In this series of lectures we will first review the general theory of phase transition in the framework of information theory and briefly address some of the well known mean field solutions of three dimensional problems. The theory of phase transitions in finite systems will then be discussed, with a special emphasis to the conceptual problems linked to a thermodynamical description for small, short-lived, open systems as metal clusters and data samples coming from nuclear collisions. The concept of negative heat capacity developed in the early seventies in the context of self-gravitating systems will be reinterpreted in the general framework of convexity anomalies of thermo-statistical potentials. The connection with the distribution of the order parameter will lead us to a definition of first order phase transitions in finite systems based on topology anomalies of the event distribution in the space of observations. Finally a careful study of the thermodynamical limit will provide a bridge with the standard theory of phase transitions and show that in a wide class of physical situations the different statistical ensembles are irreducibly inequivalent. (authors)
Cosmology with phase statistics: parameter forecasts and detectability of BAO
Eggemeier, Alexander; Smith, Robert E.
2017-04-01
We consider an alternative to conventional three-point statistics such as the bispectrum, which is purely based on the Fourier phases of the density field: the line correlation function. This statistic directly probes the non-linear clustering regime and contains information highly complementary to that contained in the power spectrum. In this work, we determine, for the first time, its potential to constrain cosmological parameters and detect baryon acoustic oscillations (hereafter BAOs). We show how to compute the line correlation function for a discrete sampled set of tracers that follow a local Lagrangian biasing scheme and demonstrate how it breaks the degeneracy between the amplitude of density fluctuations and the bias parameters of the model. We then derive analytic expressions for its covariance and show that it can be written as a sum of a Gaussian piece plus non-Gaussian corrections. We compare our predictions with a large ensemble of N-body simulations and confirm that BAOs do indeed modulate the signal of the line correlation function for scales 50-100 h-1Mpc and that the characteristic S-shape feature would be detectable in upcoming Stage IV surveys at the level of ∼4σ. We then focus on the cosmological information content and compute Fisher forecasts for an idealized Stage III galaxy redshift survey of volume V ∼ 10 h-3 Gpc3 and out to z = 1. We show that combining the line correlation function with the galaxy power spectrum and a Planck-like microwave background survey yields improvements up to a factor of 2 for parameters such as σ8, b1 and b2, compared with using only the two-point information alone.
Phase transitions and critical phenomena
Domb, Cyril
2001-01-01
The field of phase transitions and critical phenomena continues to be active in research, producing a steady stream of interesting and fruitful results. It has moved into a central place in condensed matter studies.Statistical physics, and more specifically, the theory of transitions between states of matter, more or less defines what we know about 'everyday' matter and its transformations.The major aim of this serial is to provide review articles that can serve as standard references for research workers in the field, and for graduate students and others wishing to obtain reliable in
Sliding Over a Phase Transition
Tosatti, Erio; Benassi, Andrea; Vanossi, Andrea; Santoro, Giuseppe E.
2011-03-01
The frictional response experienced by a stick-slip slider when a phase transition occurs in the underlying solid substrate is a potentially exciting, poorly explored problem. We show, based on 2-dimensional simulations modeling the sliding of a nanotip, that indeed friction may be heavily affected by a continuous structural transition. First, friction turns nonmonotonic as temperature crosses the transition, peaking at the critical temperature Tc where fluctuations are strongest. Second, below Tc friction depends upon order parameter directions, and is much larger for those where the frictional slip can cause a local flip. This may open a route towards control of atomic scale friction by switching the order parameter direction by an external field or strain, with possible application to e.g., displacive ferroelectrics such as BaTi O3 , as well as ferro- and antiferro-distortive materials. Supported by project ESF FANAS/AFRI sponsored by the Italian Research Council (CNR).
Electroweak phase transition recent results
Csikor, Ferenc
2000-01-01
Recent results of four-dimensional (4d) lattice simulations on the finite temperature electroweak phase transition (EWPT) are discussed. The phase transition is of first order in the SU(2)-Higgs model below the end point Higgs mass 66.5$\\pm$1.4 GeV. For larger masses a rapid cross-over appears. This result completely agrees with the results of the dimensional reduction approach. Including the full Standard Model (SM) perturbatively the end point is at 72.1$\\pm$1.4 GeV. Combined with recent LEP Higgs mass lower bounds, this excludes any EWPT in the SM. A one-loop calculation of the static potential makes possible a precise comparison of the lattice and perturbative results. Recent 4d lattice studies of the Minimal Supersymmetric SM (MSSM) are also mentioned.
Electroweak phase transition and some related phenomena – a brief review
Indian Academy of Sciences (India)
BUDDHADEB GHOSH
2016-09-01
In this article, we give a bird’s eye view of the research on electroweak phase transition and some related phenomena, viz., cosmological baryogenesis, electroweak bubble dynamics and generation of gravitationalwaves. Our presentation revolves around the observation that a strong first-order electroweak phase transition cannot be obtained in the Standard Model for experimentally favoured Higgs mass and hence the cosmologicalevents associated with this kind of phase transition cannot be explained in this model. However, this phase transition can be achieved in a number of beyond Standard Models. As a prototype case, we consider the littlest Higgs model with T parity and show the results of some calculations within this model.
Alvarez, Enrique
1985-01-01
Some cosmological consequences of the assumption that superstrings are more fundamental objects than ordinary local quantum fields are examined. We study, in particular, the dependence of both the string tension and the temperature of the primordial string soup on cosmic time. A particular scenario is proposed in which the universe undergoes a contracting ``string phase'' before the ordinary ``big bang,'' which according to this picture is nothing but the outcome of the transition from nonlocal to local fundamental physics.
Cosmology with Phase Statistics: Parameter Forecasts and Detectability of BAO
Eggemeier, Alexander
2016-01-01
We consider an alternative to conventional three-point statistics such as the bispectrum, which is purely based on the Fourier phases of the density field: the line correlation function. This statistic directly probes the non-linear clustering regime and contains information highly complementary to that contained in the power spectrum. In this work, we determine, for the first time, its potential to constrain cosmological parameters and detect baryon acoustic oscillations (hereafter BAOs). We show how to compute the line correlation function for a discrete sampled set of tracers that follow a local Lagrangian biasing scheme and demonstrate how it breaks the degeneracy between the amplitude of density fluctuations and the bias parameters of the model. We then derive analytic expressions for its covariance and show that it can be written as a sum of a Gaussian piece plus non-Gaussian corrections. We compare our predictions with a large ensemble of $N$-body simulations and confirm that BAOs do indeed modulate th...
Jalalzadeh, S; Sepangi, H R
2003-01-01
We study the classical and quantum cosmology of a $(4+d)$-dimensional spacetime minimally coupled to a scalar field and present exact solutions for the resulting field equations for the case where the universe is spatially flat. These solutions exhibit signature transition from a Euclidean to a Lorentzian domain and lead to stabilization of the internal space, in contrast to the solutions which do not undergo signature transition. The corresponding quantum cosmology is described by the Wheeler-DeWitt equation which has exact solutions in the mini-superspace, resulting in wavefunctions peaking around the classical paths. Such solutions admit parametrizations corresponding to metric solutions of the field equations that admit signature transition.
Energy Technology Data Exchange (ETDEWEB)
Farooq, Omer; Ratra, Bharat, E-mail: omer@phys.ksu.edu, E-mail: ratra@phys.ksu.edu [Department of Physics, Kansas State University, 116 Cardwell Hall, Manhattan, KS 66506 (United States)
2013-03-20
We compile a list of 28 independent measurements of the Hubble parameter between redshifts 0.07 {<=} z {<=} 2.3 and use this to place constraints on model parameters of constant and time-evolving dark energy cosmologies. These H(z) measurements by themselves require a currently accelerating cosmological expansion at about, or better than, 3{sigma} confidence. The mean and standard deviation of the six best-fit model deceleration-acceleration transition redshifts (for the three cosmological models and two Hubble constant priors we consider) are z{sub da} = 0.74 {+-} 0.05, in good agreement with the recent Busca et al. determination of z{sub da} = 0.82 {+-} 0.08 based on 11 H(z) measurements between redshifts 0.2 {<=} z {<=} 2.3, almost entirely from baryon-acoustic-oscillation-like data.
Phase transitions at finite density
Friman, Bengt
2012-01-01
I discuss the analytic structure of thermodynamic quantities for complex values of thermodynamic variables within Landau theory. In particular, the singularities connected with phase transitions of second order, first order and cross over types are examined. A conformal mapping is introduced, which may be used to explore the thermodynamics of strongly interacting matter at finite values of the baryon chemical potential $\\mu$ starting from lattice QCD results at $\\mu^{2}\\leq 0$. This method allows us to improve the convergence of a Taylor expansion about $\\mu=0$ and to enhance the sensitivity to physical singularities in the complex $\\mu$ plane. The technique is illustrated by an application to a second-order transition in a chiral effective model.
Binned Hubble parameter measurements and the cosmological deceleration–acceleration transition
Energy Technology Data Exchange (ETDEWEB)
Farooq, Omer, E-mail: omer@phys.ksu.edu; Crandall, Sara, E-mail: sara1990@k-state.edu; Ratra, Bharat, E-mail: ratra@phys.ksu.edu
2013-10-07
Weighted mean and median statistics techniques are used to combine 23 independent lower redshift, z<1.04, Hubble parameter, H(z), measurements and determine binned forms of H(z). When these are combined with 5 higher redshift, 1.3≤z≤2.3, H(z) measurements the resulting constraints on cosmological parameters, of three cosmological models, that follow from the weighted-mean binned data are almost identical to those derived from analyses using the 28 independent H(z) measurements. This is consistent with what is expected if the lower redshift measurements errors are Gaussian. Plots of the binned weighted-mean H(z)/(1+z) versus z data are consistent with the presence of a cosmological deceleration–acceleration transition at redshift z{sub da}=0.74±0.05[30], which is expected in cosmological models with present-epoch energy budget dominated by dark energy as in the standard spatially-flat ΛCDM cosmological model.
Binned Hubble parameter measurements and the cosmological deceleration-acceleration transition
Farooq, Omer; Ratra, Bharat
2013-01-01
Weighted mean and median statistics techniques are used to combine 23 independent lower redshift, $z<1.04$, Hubble parameter, $H(z)$, measurements and determine binned forms of $H(z)$. When these are combined with 5 higher redshift, $1.3\\leqslant z \\leqslant 2.3$, $H(z)$ measurements the resulting constraints on cosmological parameters, of three cosmological models, that follow from the weighted-mean binned data are almost identical to those derived from analyses using the 28 independent $H(z)$ measurements. This is consistent with what is expected if the lower redshift measurements errors are Gaussian. Plots of the binned weighted-mean $H(z)/(1+z)$ versus $z$ data are consistent with the presence of a cosmological deceleration-acceleration transition at redshift $z_{\\rm da}=0.74 \\pm 0.05$ \\citep{farooq3}, which is expected in cosmological models with present-epoch energy budget dominated by dark energy as in the standard spatially-flat $\\Lambda$CDM cosmological model.
Interacting Weyl fermions: Phases, phase transitions, and global phase diagram
Roy, Bitan; Goswami, Pallab; Juričić, Vladimir
2017-05-01
We study the effects of short-range interactions on a generalized three-dimensional Weyl semimetal, where the band touching points act as the (anti)monopoles of Abelian Berry curvature of strength n . We show that any local interaction has a negative scaling dimension -2 /n . Consequently, all Weyl semimetals are stable against weak short-range interactions. For sufficiently strong interactions, we demonstrate that the Weyl semimetal either undergoes a first-order transition into a band insulator or a continuous transition into a symmetry breaking phase. A translational symmetry breaking axion insulator and a rotational symmetry breaking semimetal are two prominent candidates for the broken symmetry phase. At the one-loop order, the correlation length exponent for continuous transitions is ν =n /2 , indicating their non-Gaussian nature for any n >1 . We also discuss the scaling of the thermodynamic and transport quantities in general Weyl semimetals as well as inside broken symmetry phases.
Phase Transition in Tensor Models
Delepouve, Thibault
2015-01-01
Generalizing matrix models, tensor models generate dynamical triangulations in any dimension and support a $1/N$ expansion. Using the intermediate field representation we explicitly rewrite a quartic tensor model as a field theory for a fluctuation field around a vacuum state corresponding to the resummation of the entire leading order in $1/N$ (a resummation of the melonic family). We then prove that the critical regime in which the continuum limit in the sense of dynamical triangulations is reached is precisely a phase transition in the field theory sense for the fluctuation field.
Gibbs measures and phase transitions
Georgii, Hans-Otto
2011-01-01
From a review of the first edition: ""This book […] covers in depth a broad range of topics in the mathematical theory of phase transition in statistical mechanics. […] It is in fact one of the author's stated aims that this comprehensive monograph should serve both as an introductory text and as a reference for the expert."" (F. Papangelou, Zentralblatt MATH) The second edition has been extended by a new section on large deviations and some comments on the more recent developments in the area.
Light scattering near phase transitions
Cummins, HZ
1983-01-01
Since the development of the laser in the early 1960's, light scattering has played an increasingly crucial role in the investigation of many types of phase transitions and the published work in this field is now widely dispersed in a large number of books and journals.A comprehensive overview of contemporary theoretical and experimental research in this field is presented here. The reviews are written by authors who have actively contributed to the developments that have taken place in both Eastern and Western countries.
Phase transitions and critical phenomena
Domb, Cyril
2000-01-01
The field of phase transitions and critical phenomena continues to be active in research, producing a steady stream of interesting and fruitful results. No longer an area of specialist interest, it has acquired a central focus in condensed matter studies. The major aim of this serial is to provide review articles that can serve as standard references for research workers in the field, and for graduate students and others wishing to obtain reliable information on important recent developments.The two review articles in this volume complement each other in a remarkable way. Both deal with what m
A two-phase scenario for bulge assembly in LCDM cosmologies
Obreja, A; Brook, C; Martínez-Serrano, F J; Doménech-Moral, M; Serna, A; Mollá, M; Stinson, G
2012-01-01
We analyze and compare the bulges of a sample of L* spiral galaxies in hydrodynamical simulations in a cosmological context, using two different codes, P-DEVA and GASOLINE. The codes regulate star formation in very different ways, with P-DEVA simulations inputing low star formation efficiency under the assumption that feedback occurs on subgrid scales, while the GASOLINE simulations have feedback which drives large scale outflows. In all cases, the marked knee-shape in mass aggregation tracks, corresponding to the transition from an early phase of rapid mass assembly to a later slower one, separates the properties of two populations within the simulated bulges. The bulges analyzed show an important early starburst resulting from the collapse-like fast phase of mass assembly, followed by a second phase with lower star formation, driven by a variety of processes such as disk instabilities and/or mergers. Classifying bulge stellar particles identified at z=0 into old and young according to these two phases, we f...
Dark energy and dust matter phases from an exact f(R)-cosmology model
Energy Technology Data Exchange (ETDEWEB)
Capozziello, S. [Dipartimento di Scienze Fisiche, Universita di Napoli ' Federico II' and INFN Sezioze di Napoli, Complesso Universitario di Monte S. Angelo, Ed. N, Via Cinthia, I-80126 Napoli (Italy)], E-mail: capozziello@na.infn.it; Martin-Moruno, P. [Colina de los Chopos, Instituto de Matematicas y Fisica Fundamental, Consejo Superior de Investigaciones Cientificas, Serrano 121, 28006 Madrid (Spain); Rubano, C. [Dipartimento di Scienze Fisiche, Universita di Napoli ' Federico II' and INFN Sezioze di Napoli, Complesso Universitario di Monte S. Angelo, Ed. N, Via Cinthia, I-80126 Napoli (Italy)
2008-06-12
We show that dust matter-dark energy combined phases can be achieved by the exact solution derived from a power law f(R) cosmological model. This example answers the query by which a dust-dominated decelerated phase, before dark-energy accelerated phase, is needed in order to form large scale structures.
Quark Deconfinement Phase Transition in Neutron Stars
Alaverdyan, G B
2009-01-01
The hadron-quark phase transition in the interior of compact stars is investigated, when the transition proceeds through a mixed phase. The hadronic phase is described in the framework of relativistic mean-field theory, when also the scalar-isovector delta-meson mean-field is taken into account. The changes of the parameters of phase transition caused by the presence of delta-meson field are explored. The results of calculation of structure of the mixed phase (Glendenning construction) are compared with the results of usual first-order phase transition (Maxwell construction).
Interacting Weyl fermions: Phases, phase transitions and global phase diagram
Roy, Bitan; Juricic, Vladimir
2016-01-01
We study the effects of short-range interactions on a generalized three-dimensional Weyl semimetal, where the band touching points act as the (anti)monopoles of Abelian Berry curvature of strength $n$. We show that any local interaction has a \\emph{negative} scaling dimension $-2/n$. Consequently all Weyl semimetals are stable against weak short-range interactions. For sufficiently strong interactions, we demonstrate that the Weyl semimetal either undergoes a first order transition into a band insulator or a continuous transition into a symmetry breaking phase. A translational symmetry breaking axion insulator and a rotational symmetry breaking semimetal are two prominent candidates for the broken symmetry phase. At one loop level, the correlation length exponent for continuous transitions is $\
Light sterile neutrinos from a late phase transition
Vecchi, Luca
2016-01-01
Light sterile neutrinos represent a well-motivated extension of the 3-neutrino paradigm. However, the impressive agreement between standard cosmology and data casts doubts on their existence. Here we present a class of scenarios that robustly avoids this tension. In these models the sterile neutrinos are light, chiral states of a new sector interacting with the Standard Model via the right-handed neutrino portal and, crucially, active-sterile neutrino oscillations require a phase transition in the hidden sector. We explore the hidden-couplings/critical-temperature plane and identify regions where several sterile neutrinos can be accommodated. A late phase transition is usually preferred and may also ward off a potential threat posed by the formation of topologically stable defects.
Light sterile neutrinos from a late phase transition
Vecchi, Luca
2016-12-01
Light sterile neutrinos represent a well-motivated extension of the 3-neutrino paradigm. However, the impressive agreement between standard cosmology and data casts doubts on their existence. Here, we present a class of scenarios that robustly avoids this tension. In these models the sterile neutrinos are light, chiral states of a new sector interacting with the Standard Model via the right-handed neutrino portal, and crucially active-sterile neutrino oscillations require a phase transition in the hidden sector. We explore the hidden-couplings/critical-temperature plane and identify regions where several sterile neutrinos can be accommodated. A late phase transition is usually preferred and may also ward off a potential threat posed by the formation of topologically stable defects.
QCD deconfinement phase transitions and collapsing quark stars
Bednarek, I; Manka, R; Bednarek, Ilona; Biesiada, Marek; Manka, Ryszard
1996-01-01
In this paper we discuss the QCD phase-transitions in the nontopological soliton model of quark confinement and explore possible astrophysical consequences. Our key idea is to look at quark stars (which are believed to exist since the quark matter is energetically preferred over the ordinary matter) from the point of view of soliton model. We propose that the phase transition taking place during the core collapse of massive evolved star may provide a new physical effect not taken into account in modeling the supernova explosions. We also point out the possibility that merging quark stars may produce gamma-ray bursts energetic enough to be at cosmological distances. Our idea based on the finite-temperature nontopologiocal soliton model overcomes major difficulties present in neutron star merger scenario --- the baryon loading problem and nonthermal spectra of the bursts.
QCD Phase Transitions, Volume 15
Energy Technology Data Exchange (ETDEWEB)
Schaefer, T.; Shuryak, E.
1999-03-20
The title of the workshop, ''The QCD Phase Transitions'', in fact happened to be too narrow for its real contents. It would be more accurate to say that it was devoted to different phases of QCD and QCD-related gauge theories, with strong emphasis on discussion of the underlying non-perturbative mechanisms which manifest themselves as all those phases. Before we go to specifics, let us emphasize one important aspect of the present status of non-perturbative Quantum Field Theory in general. It remains true that its studies do not get attention proportional to the intellectual challenge they deserve, and that the theorists working on it remain very fragmented. The efforts to create Theory of Everything including Quantum Gravity have attracted the lion share of attention and young talent. Nevertheless, in the last few years there was also a tremendous progress and even some shift of attention toward emphasis on the unity of non-perturbative phenomena. For example, we have seen some efforts to connect the lessons from recent progress in Supersymmetric theories with that in QCD, as derived from phenomenology and lattice. Another example is Maldacena conjecture and related development, which connect three things together, string theory, super-gravity and the (N=4) supersymmetric gauge theory. Although the progress mentioned is remarkable by itself, if we would listen to each other more we may have chance to strengthen the field and reach better understanding of the spectacular non-perturbative physics.
The Structural Phase Transition in Solid DCN
DEFF Research Database (Denmark)
Dietrich, O. W.; Mackenzie, Gordon A.; Pawley, G. S.
1976-01-01
Neutron scattering measurements on deuterated hydrogen cyanide have shown that the structural phase transition from a tetragonal to an orthorhombic form at 160 K is a first order transition. A transverse acoustic phonon mode, which has the symmetry of the transition was observed at very low energ...... energies and showed “softening” as the transition was approached from above.......Neutron scattering measurements on deuterated hydrogen cyanide have shown that the structural phase transition from a tetragonal to an orthorhombic form at 160 K is a first order transition. A transverse acoustic phonon mode, which has the symmetry of the transition was observed at very low...
Controlling chaos through compactification in cosmological models with a collapsing phase
Wesley, Daniel H.; Steinhardt, Paul J.; Turok, Neil
2005-09-01
We consider the effect of compactification of extra dimensions on the onset of classical chaotic mixmaster behavior during cosmic contraction. Assuming a universe that is well-approximated as a four-dimensional Friedmann-Robertson-Walker model (with negligible Kaluza-Klein excitations) when the contraction phase begins, we identify compactifications that allow a smooth contraction and delay the onset of chaos until arbitrarily close to the big crunch. These compactifications are defined by the de Rham cohomology (Betti numbers) and Killing vectors of the compactification manifold. We find compactifications that control chaos in vacuum Einstein gravity, as well as in string theories with N=1 supersymmetry and M-theory. In models where chaos is controlled in this way, the universe can remain homogeneous and flat until it enters the quantum gravity regime. At this point, the classical equations leading to chaotic behavior can no longer be trusted, and quantum effects may allow a smooth approach to the big crunch and transition into a subsequent expanding phase. Our results may be useful for constructing cosmological models with contracting phases, such as the ekpyrotic/cyclic and pre-big bang models.
Cosmic $\\Delta B$ from Lepton Violating Interactions at the Electroweak Phase Transition
Masiero, A; Masiero, Antonio; Riotto, Antonio
1992-01-01
We propose a new mechanism for late cosmological baryon asymmetry in models with first order electroweak phase transition. Lepton asymmetry arises through the decay of particles produced out of equilbrium in bubble collisions and is converted into baryon asymmetry by sphalerons. Supersymmetric models with explicitly broken R-parity may provide a suiatble framework for the implementation of this mechanism.
QGP phase transition and multiplicity fluctuations
Institute of Scientific and Technical Information of China (English)
杨纯斌; 王晓荣; 蔡勖
1997-01-01
The scaled factorial moments in QGP phase transitions are studied analytically by the extended Ginzburg-Landau model.The dependence of InFq on phase space interval is different for the first- and second-order QGP phase transitions.When lnFq are fitted to polynomials of X=δ1/3,the relative sign between the fitted coefficients of X and bq,l calculated theoretically can be used to judge the order of phase transitions.Two sets of experimental data are reanalysed and the phase transitions are the first order for one set of data but the second order for another.
A Tale of Two Timescales: Mixing, Mass Generation, and Phase Transitions in the Early Universe
Dienes, Keith R; Thomas, Brooks
2015-01-01
Light scalar fields such as axions and string moduli can play an important role in early-universe cosmology. However, many factors can significantly impact their late-time cosmological abundances. For example, in cases where the potentials for these fields are generated dynamically --- such as during cosmological mass-generating phase transitions --- the duration of the time interval required for these potentials to fully develop can have significant repercussions. Likewise, in scenarios with multiple scalars, mixing amongst the fields can also give rise to an effective timescale that modifies the resulting late-time abundances. Previous studies have focused on the effects of either the first or the second timescale in isolation. In this paper, by contrast, we examine the new features that arise from the interplay between these two timescales when both mixing and time-dependent phase transitions are introduced together. First, we find that the effects of these timescales can conspire to alter not only the tot...
Quantum phase transitions with parity-symmetry breaking and hysteresis
Trenkwalder, A.; Spagnolli, G.; Semeghini, G.; Coop, S.; Landini, M.; Castilho, P.; Pezzè, L.; Modugno, G.; Inguscio, M.; Smerzi, A.; Fattori, M.
2016-09-01
Symmetry-breaking quantum phase transitions play a key role in several condensed matter, cosmology and nuclear physics theoretical models. Its observation in real systems is often hampered by finite temperatures and limited control of the system parameters. In this work we report, for the first time, the experimental observation of the full quantum phase diagram across a transition where the spatial parity symmetry is broken. Our system consists of an ultracold gas with tunable attractive interactions trapped in a spatially symmetric double-well potential. At a critical value of the interaction strength, we observe a continuous quantum phase transition where the gas spontaneously localizes in one well or the other, thus breaking the underlying symmetry of the system. Furthermore, we show the robustness of the asymmetric state against controlled energy mismatch between the two wells. This is the result of hysteresis associated with an additional discontinuous quantum phase transition that we fully characterize. Our results pave the way to the study of quantum critical phenomena at finite temperature, the investigation of macroscopic quantum tunnelling of the order parameter in the hysteretic regime and the production of strongly quantum entangled states at critical points.
Nonlinear clustering during the BEC dark matter phase transition
Energy Technology Data Exchange (ETDEWEB)
Freitas, Rodolfo C. de, E-mail: rodolfo.camargo@pq.cnpq.br [Universidade Federal do Espírito Santo, Av. Fernando Ferrari, Goiabeiras, Vitória (Brazil); Instituto Federal de Educação, Ciência e Tecnologia do Espírito Santo, Avenida Vitória 1729, Jucutuquara, Vitória (Brazil); Velten, Hermano, E-mail: velten@pq.cnpq.br [Universidade Federal do Espírito Santo, Av. Fernando Ferrari, Goiabeiras, Vitória (Brazil); UMR 7332, CPT, Aix Marseille Université, 13288, Marseille (France)
2015-12-16
Spherical collapse of the Bose–Einstein condensate (BEC) dark matter model is studied in the Thomas–Fermi approximation. The evolution of the overdensity of the collapsed region and its expansion rate are calculated for two scenarios. We consider the case of a sharp phase transition (which happens when the critical temperature is reached) from the normal dark matter state to the condensate one and the case of a smooth first order phase transition where there is a continuous conversion of “normal” dark matter to the BEC phase. We present numerical results for the physics of the collapse for a wide range of the model’s space parameter, i.e. the mass of the scalar particle m{sub χ} and the scattering length l{sub s}. We show the dependence of the transition redshift on m{sub χ} and l{sub s}. Since small scales collapse earlier and eventually before the BEC phase transition, the evolution of collapsing halos in this limit is indeed the same in both the CDM and the BEC models. Differences are expected to appear only on the largest astrophysical scales. However, we argue that the BEC model is almost indistinguishable from the usual dark matter scenario concerning the evolution of nonlinear perturbations above typical clusters scales, i.e., ≳10{sup 14}M{sub ⊙}. This provides an analytical confirmation for recent results from cosmological numerical simulations (Schive et al., Nat Phys 10:496, 2014)
Current fluctuations at a phase transition
Gerschenfeld, A.; Derrida, B.
2011-10-01
The ABC model is a simple diffusive one-dimensional non-equilibrium system which exhibits a phase transition. Here we show that the cumulants of the currents of particles through the system become singular near the phase transition. At the transition, they exhibit an anomalous dependence on the system size (an anomalous Fourier's law). An effective theory for the dynamics of the single mode which becomes unstable at the transition allows one to predict this anomalous scaling.
Echoes of Inflationary Particle Phase Transitions in the CMB
Jiang, Hongliang; Sun, Sichun; Wang, Yi
2015-01-01
Cosmological phase transitions (CPTs), such as the Grand Unified Theory (GUT) and the electroweak (EW) ones, play a significant role in both particle physics and cosmology. In this letter, we propose to probe the first-order CPTs, by detecting gravitational waves (GWs) which are generated during the phase transitions through the cosmic microwave background (CMB). If happened around the inflation era, the first-order CPTs may yield low-frequency GWs due to bubble dynamics, leaving imprints on the CMB. In contrast to the nearly scale-invariant primordial GWs caused by vacuum fluctuation, these bubble-generated GWs are scale dependent and have non-trivial B-mode spectra. If decoupled from inflaton, the EWPT during inflation may serve as a mirror image of the one after reheating where the baryon asymmetry could be generated via EW baryogenesis (EWBG). The CMB thus provides a potential way to test the feasibility of the EWBG, complementary to the collider measurements of Higgs potential and the direct detection of...
Chaos-order transition in Bianchi I non-Abelian Born-Infeld cosmology
Dyadichev, V V; Moniz, P V; Dyadichev, Vladimir V.; Gal'tsov, Dmitri V.; Moniz, Paulo Vargas
2005-01-01
We investigate the Bianchi I cosmology with the homogeneous SU(2) Yang-Mills field governed by the non-Abelian Born-Infeld action. Similar system with the standard Einstein-Yang-Mills (EYM) action is known to exhibit chaotic behavior induced by the Yang-Mills field. When the action is replaced by the Born-Infeld-type non-Abelian action (NBI), the chaos-order transition is observed in the high energy region. This is interpreted as a smothering effect due to (non-perturbative in $alpha'$) string corrections to the classical EYM action. We give a numerical evidence for the chaos-order transition, and present an analytical proof of regularity of color oscillations in the limit of strong Born-Infeld non-linearity. We also perform some general analysis of the Bianchi I NBI cosmology and derive an exact solution in the case when only the U(1) component of the Yang-Mills field is excited. Our new exact solution generalizes the Rosen solution to the Bianchi I Einstein-Maxwell cosmology to the U(1) Einstein-Born-Infeld...
Holographic Phase Transition Probed by Nonlocal Observables
Directory of Open Access Journals (Sweden)
Xiao-Xiong Zeng
2016-01-01
Full Text Available From the viewpoint of holography, the phase structure of a 5-dimensional Reissner-Nordström-AdS black hole is probed by the two-point correlation function, Wilson loop, and entanglement entropy. As the case of thermal entropy, we find for all the probes that the black hole undergoes a Hawking-Page phase transition, a first-order phase transition, and a second-order phase transition successively before it reaches a stable phase. In addition, for these probes, we find that the equal area law for the first-order phase transition is valid always and the critical exponent of the heat capacity for the second-order phase transition coincides with that of the mean field theory regardless of the size of the boundary region.
When is the deconfinement phase transition universal?
Holland, K; Wiese, U J
2003-01-01
Pure Yang-Mills theory has a finite-temperature phase transition, separating the confined and deconfined bulk phases. Svetitsky and Yaffe conjectured that if this phase transition is of second order, it belongs to the universality class of transitions for particular scalar field theories in one lower dimension. We examine Yang-Mills theory with the symplectic gauge groups Sp(N). We find new evidence supporting the Svetitsky-Yaffe conjecture and make our own conjecture as to which gauge theories have a universal second order deconfinement phase transition.
Phase transitions of quadrupolar fluids
O'Shea, Seamus F.; Dubey, Girija S.; Rasaiah, Jayendran C.
1997-07-01
Gibbs ensemble simulations are reported for Lennard-Jones particles with embedded quadrupoles of strength Q*=Q/(ɛσ5)1/2=2.0 where ɛ and σ are the Lennard-Jones parameters. Calculations revealing the effect of the dispersive forces on the liquid-vapor coexistence were carried out by scaling the attractive r-6 term in the Lennard-Jones pair potential by a factor λ ranging from 0 to 1. Liquid-vapor coexistence is observed for all values of λ including λ=0 for Q*=2.0, unlike the corresponding dipolar fluid studied by van Leeuwen and Smit et al. [Phys. Rev. Lett. 71, 3991 (1993)] which showed no phase transition below λ=0.35 when the reduced dipole moment μ*=2.0. The simulation data are analyzed to estimate the critical properties of the quadrupolar fluid and their dependence on the strength λ of the dispersive force. The critical temperature and pressure show a clear quadratic dependence on λ, while the density is less confidently identified as being linear in λ. The compressibility is roughly linear in λ.
Analysis of Scalar Field Cosmology with Phase Space Deformations
Directory of Open Access Journals (Sweden)
Sinuhe Perez-Payan
2014-01-01
modifying the symplectic structure of the minisuperspace variables. The effects of the deformation are studied in the “C-frame” and the “NC-frame.” In order to remove the ambiguities of working on different frames, a new principle is introduced. When we impose that both frames should be physically equivalent, we conclude that the only possibility for this model, is to have an effective cosmological constant Λeff≥0. Finally we bound the parameter space for θ and β.
Phase transitions in the web of science
Phillips, J. C.
2015-06-01
The Internet age is changing the structure of science, and affecting interdisciplinary interactions. Publication profiles connecting mathematics with molecular biology and condensed matter physics over the last 40 years exhibit common phase transitions indicative of the critical role played by specific interdisciplinary interactions. The strengths of the phase transitions quantify the importance of interdisciplinary interactions.
Quantum Phase Transitions in a Finite System
Leviatan, A
2006-01-01
A general procedure for studying finite-N effects in quantum phase transitions of finite systems is presented and applied to the critical-point dynamics of nuclei undergoing a shape-phase transition of second-order (continuous), and of first-order with an arbitrary barrier.
The Structural Phase Transition in Solid DCN
DEFF Research Database (Denmark)
Dietrich, O. W.; Mackenzie, Gordon A.; Pawley, G. S.
1975-01-01
Neutron scattering measurements on deuterated hydrogen cyanide have shown that the structural phase change from a tetragonal to an orthorhombic form at 160K is a first-order transition. A transverse acoustic phonon mode, which has the symmetry of the phase change, was observed at very low energies...... and showed 'softening' as the transition temperature was approached from above....
A TWO-PHASE SCENARIO FOR BULGE ASSEMBLY IN {Lambda}CDM COSMOLOGIES
Energy Technology Data Exchange (ETDEWEB)
Obreja, A.; Dominguez-Tenreiro, R.; Brook, C. [Departamento de Fisica Teorica, Universidad Autonoma de Madrid, E-28049 Cantoblanco Madrid (Spain); Martinez-Serrano, F. J.; Domenech-Moral, M.; Serna, A. [Departamento de Fisica y Arquitectura de Computadores, Universidad Miguel Hernandez, E-03202 Elche (Spain); Molla, M. [Departamento de Investigacion Basica, CIEMAT, E-28040 Madrid (Spain); Stinson, G., E-mail: aura.obreja@uam.es [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, D-69117, Heidelberg (Germany)
2013-01-20
We analyze and compare the bulges of a sample of L {sub *} spiral galaxies in hydrodynamical simulations in a cosmological context, using two different codes, P-DEVA and GASOLINE. The codes regulate star formation in very different ways, with P-DEVA simulations inputting low star formation efficiency under the assumption that feedback occurs on subgrid scales, while the GASOLINE simulations have feedback that drives large-scale outflows. In all cases, the marked knee shape in mass aggregation tracks, corresponding to the transition from an early phase of rapid mass assembly to a later slower one, separates the properties of two populations within the simulated bulges. The bulges analyzed show an important early starburst resulting from the collapse-like fast phase of mass assembly, followed by a second phase with lower star formation, driven by a variety of processes such as disk instabilities and/or mergers. Classifying bulge stellar particles identified at z = 0 into old and young according to these two phases, we found bulge stellar sub-populations with distinct kinematics, shapes, stellar ages, and metal contents. The young components are more oblate, generally smaller, more rotationally supported, with higher metallicity and less alpha-element enhanced than the old ones. These results are consistent with the current observational status of bulges, and provide an explanation for some apparently paradoxical observations, such as bulge rejuvenation and metal-content gradients observed. Our results suggest that bulges of L {sub *} galaxies will generically have two bulge populations that can be likened to classical and pseudo-bulges, with differences being in the relative proportions of the two, which may vary due to galaxy mass and specific mass accretion and merger histories.
Capozziello, Salvatore; Luongo, Orlando; Ratra, Bharat
2014-01-01
We examine the observational viability of a class of $f(\\mathcal{R})$ gravity cosmological models. Particular attention is devoted to constraints from the recent observational determination of the redshift of the cosmological deceleration-acceleration transition. Making use of the fact that the Ricci scalar is a function of redshift $z$ in these models, $\\mathcal {R=R}(z)$, and so is $f(z)$, we use cosmography to relate a $f(z)$ test function evaluated at higher $z$ to late-time cosmographic bounds. First, we consider a model independent procedure to build up a numerical $f(z)$ by requiring that at $z=0$ the corresponding cosmological model reduces to standard $\\Lambda$CDM. We then infer late-time observational constraints on $f(z)$ in terms of bounds on the Taylor expansion cosmographic coefficients. In doing so we parameterize possible departures from the standard $\\Lambda$CDM model in terms of a two-parameter logarithmic correction. The physical meaning of the two parameters is also discussed in terms of t...
Capozziello, Salvatore; Farooq, Omer; Luongo, Orlando; Ratra, Bharat
2014-08-01
We examine the observational viability of a class of f(R) gravity cosmological models. Particular attention is devoted to constraints from the recent observational determination of the redshift of the cosmological deceleration-acceleration transition. Making use of the fact that the Ricci scalar is a function of redshift z in these models, R =R(z), and so is f(z), we use cosmography to relate a f(z) test function evaluated at higher z to late-time cosmographic bounds. First, we consider a model-independent procedure to build up a numerical f(z) by requiring that at z=0 the corresponding cosmological model reduces to standard ΛCDM. We then infer late-time observational constraints on f(z) in terms of bounds on the Taylor expansion cosmographic coefficients. In doing so we parametrize possible departures from the standard ΛCDM model in terms of a two-parameter logarithmic correction. The physical meaning of the two parameters is also discussed in terms of the post-Newtonian approximation. Second, we provide numerical estimates of the cosmographic series terms by using type Ia supernova apparent magnitude data and Hubble parameter measurements. Finally, we use these estimates to bound the two parameters of the logarithmic correction. We find that the deceleration parameter in our model changes sign at a redshift consistent with what is observed.
Thermodynamics of rotating black holes and black rings: phase transitions and thermodynamic volume
Altamirano, Natacha; Mann, Robert B; Sherkatghanad, Zeinab
2014-01-01
In this review we summarize, expand, and set in context recent developments on the thermodynamics of black holes in extended phase space, where the cosmological constant is interpreted as thermodynamic pressure and treated as a thermodynamic variable in its own right. We specifically consider the thermodynamics of higher-dimensional rotating asymptotically flat and AdS black holes and black rings in a canonical (fixed angular momentum) ensemble. We plot the associated thermodynamic potential-the Gibbs free energy-and study its behaviour to uncover possible thermodynamic phase transitions in these black hole spacetimes. We show that the multiply-rotating Kerr-AdS black holes exhibit a rich set of interesting thermodynamic phenomena analogous to the "every day thermodynamics" of simple substances, such as reentrant phase transitions of multicomponent liquids, multiple first-order solid/liquid/gas phase transitions, and liquid/gas phase transitions of the Van der Waals type. Furthermore, the reentrant phase tran...
SUSY and the Electroweak Phase Transition
Farrar, Glennys R S; Farrar, Glennys R.; Losada, Marta
1996-01-01
We analyze the effective 3 dimensional theory previously constructed for the MSSM and multi-Higgs models to determine the regions of parameter space in which the electroweak phase transition is sufficiently strong for a $B+L$ asymmetry to survive in the low temperature phase. We find that the inclusion of all supersymmetric scalars and all 1-loop corrections has the effect of enhancing the strength of the phase transition. Without a light stop or extension of the MSSM the phase transition is sufficiently first order only if the lightest Higgs mass $M_{h}\\lsi 70$ GeV and $tan\\beta\\lsi 1.75$.
Sherkatghanad, Zeinab; Mirzaeyan, Zahra; Mansoori, Seyed Ali Hosseini
2014-01-01
We consider the critical behaviors and phase transitions of Gauss Bonnet-Born Infeld-AdS black holes (GB-BI-AdS) for $d=5,6$ and the extended phase space. We assume the cosmological constant, $\\Lambda$, the coupling coefficient $\\alpha$, and the BI parameter $\\beta$ to be thermodynamic pressures of the system. Having made these assumptions, the critical behaviors are then studied in the two canonical and grand canonical ensembles. We find "reentrant and triple point phase transitions" (RPT-TP) and "multiple reentrant phase transitions" (multiple RPT) with increasing pressure of the system for specific values of the coupling coefficient $\\alpha$ in the canonical ensemble. Also, we observe a reentrant phase transition (RPT) of GB-BI-AdS black holes in the grand canonical ensemble and for $d=6$. These calculations are then expanded to the critical behavior of Born-Infeld-AdS (BI-AdS) black holes in the third order of Lovelock gravity and in the grand canonical ensemble to find a Van der Waals behavior for $d=7$ ...
Workshop III – Cosmology: Observations versus theories
Indian Academy of Sciences (India)
T R Seshadri
2000-10-01
The topics on which there were presentations in this workshop can broadly be divided into the following categories: Observational aspects of large-scale structures in the universities; phase transitions in the early universe; cosmic microwave background radiation; observational cosmology.
Chirality effects on 2D phase transitions
DEFF Research Database (Denmark)
Scalas, E.; Brezesinski, G.; Möhwald, H.
1996-01-01
-nearest neighbours (NNN) and an NNN-distorted lattice is observed. At 5 degrees C, the transition pressure is 15 mN m(-1), whereas at 20 degrees C it is 18 mN m(-1). Chirality destroys this transition: the pure enantiomer always exhibits an oblique lattice with tilted molecules, and the azimuths of tilt...... and distortion continuously vary from a direction close to NN to a direction close to NNN. The nature of the phase transition and the influence of chirality on it are discussed within the framework of Landau's theory of phase transitions....
Phase transitions in dissipative Josephson chains
Energy Technology Data Exchange (ETDEWEB)
Bobbert, P.A.; Fazio, R.; Schoen, G. (Department of Applied Physics, Delft University of Technology, 2628 CJ Delft, The Netherlands (NL)); Zimanyi, G.T. (Department of Physics, University of California, Davis, Davis, California 95616 (USA))
1990-03-01
We study the zero-temperature phase transitions of a chain of Josephson junctions, taking into account the quantum fluctuations due to the charging energy and the effects of an Ohmic dissipation. We map the problem onto a generalized Coulomb gas model, which then is transformed into a sine-Gordon field theory. Apart from the expected dipole unbinding transition, which describes a transition between globally superconducting and resistive behavior, we find a quadrupole unbinding transition at a critical strength of the dissipation. This transition separates two superconducting states characterized by different local properties.
Conductor-insulator quantum phase transitions
Trivedi, Nandini; Valles, James M
2012-01-01
When many particles come together how do they organise themselves? And what destroys this organisation? Combining experiments and theory, this book describes intriguing quantum phases - metals, superconductors and insulators - and transitions between them.
Magnetic Fields from the Electroweak Phase Transition
Törnkvist, O
1998-01-01
I review some of the mechanisms through which primordial magnetic fields may be created in the electroweak phase transition. I show that no magnetic fields are produced initially from two-bubble collisions in a first-order transition. The initial field produced in a three-bubble collision is computed. The evolution of fields at later times is discussed.
The transition to chaotic phase synchronization
DEFF Research Database (Denmark)
Mosekilde, E.; Laugesen, J. L.; Zhusubaliyev, Zh. T.
2012-01-01
The transition to chaotic phase synchronization for a periodically driven spiral-type chaotic oscillator is known to involve a dense set of saddle-node bifurcations. By following the synchronization transition through the cascade of period-doubling bifurcations in a forced Ro¨ssler system, this p...
Nonlinear clustering during the BEC dark matter phase transition
Energy Technology Data Exchange (ETDEWEB)
Freitas, Rodolfo C. de [Universidade Federal do Espirito Santo, Vitoria (Brazil); Ciencia e Tecnologia do Espirito Santo, Instituto Federal de Educacao, Vitoria (Brazil); Velten, Hermano [Universidade Federal do Espirito Santo, Vitoria (Brazil); Aix Marseille Universite, UMR 7332, CPT, Marseille (France)
2015-12-15
Spherical collapse of the Bose-Einstein condensate (BEC) dark matter model is studied in the Thomas-Fermi approximation. The evolution of the overdensity of the collapsed region and its expansion rate are calculated for two scenarios. We consider the case of a sharp phase transition (which happens when the critical temperature is reached) from the normal dark matter state to the condensate one and the case of a smooth first order phase transition where there is a continuous conversion of ''normal'' dark matter to the BEC phase. We present numerical results for the physics of the collapse for a wide range of the model's space parameter, i.e. the mass of the scalar particle m{sub χ} and the scattering length l{sub s}. We show the dependence of the transition redshift on m{sub χ} and l{sub s}. Since small scales collapse earlier and eventually before the BEC phase transition, the evolution of collapsing halos in this limit is indeed the same in both the CDM and the BEC models. Differences are expected to appear only on the largest astrophysical scales. However, we argue that the BEC model is almost indistinguishable from the usual dark matter scenario concerning the evolution of nonlinear perturbations above typical clusters scales, i.e., >or similar 10{sup 14}M{sub s}un. This provides an analytical confirmation for recent results from cosmological numerical simulations (Schive et al., Nat Phys 10:496, 2014). (orig.)
Transit time MESFET phase shifter
Walters, Peter C.; Roger D. Pollard; Richardson, John R.
1992-01-01
The phase shift of a signal through a common-source MESFET can be changed with little effect on the amplitude by altering the gate-drain spacing. The feasibility of employing this principle to realize a highly compact, monolithic phase shifter has been investigated. The behaviour of the devices with differing gate-drain spacing has been measured and modelled and a design for a monolithic implementation is presented.
Molecular markers of phase transition in locusts
Institute of Scientific and Technical Information of China (English)
ARNOLD DE LOOF; ILSE CLAEYS; GERT SIMONET; PETER VERLEYEN; TIM VANDERSMISSEN; FILIP SAS; JURGEN HUYBRECHTS
2006-01-01
The changes accompanying the transition from the gregarious to the solitary phase state in locusts are so drastic that for a long time these phases were considered as distinct species. It was Boris Uvarov who introduced the concept of polyphenism. Decades of research revealed that phase transition implies changes in morphometry, the color of the cuticle, behavior and several aspects of physiology. In particular, in the recent decade, quite a number of molecular studies have been undertaken to uncover phase-related differences.They resulted in novel insights into the role of corazonin, neuroparsins, some protease inhibitors, phenylacetonitrile and so on. The advent of EST-databases of locusts (e.g. Kang et al., 2004) is a most encouraging novel development in physiological and behavioral locust research. Yet, the answer to the most intriguing question, namely whether or not there is a primordial molecular inducer of phase transition, is probably not within reach in the very near future.
Polymorphic phase transition in Superhydrous Phase B
Koch-Müller, M.; Dera, P.; Fei, Y.; Hellwig, H.; Liu, Z.; Orman, J. Van; Wirth, R.
2005-09-01
We synthesized superhydrous phase B (shy-B) at 22 GPa and two different temperatures: 1200°C (LT) and 1400°C (HT) using a multi-anvil apparatus. The samples were investigated by transmission electron microscopy (TEM), single crystal X-ray diffraction, Raman and IR spectroscopy. The IR spectra were collected on polycrystalline thin-films and single crystals using synchrotron radiation, as well as a conventional IR source at ambient conditions and in situ at various pressures (up to 15 GPa) and temperatures (down to -180°C). Our studies show that shy-B exists in two polymorphic forms. As expected from crystal chemistry, the LT polymorph crystallizes in a lower symmetry space group ( Pnn2), whereas the HT polymorph assumes a higher symmetry space group ( Pnnm). TEM shows that both modifications consist of nearly perfect crystals with almost no lattice defects or inclusions of additional phases. IR spectra taken on polycrystalline thin films exhibit just one symmetric OH band and 29 lattice modes for the HT polymorph in contrast to two intense but asymmetric OH stretching bands and at least 48 lattice modes for the LT sample. The IR spectra differ not only in the number of bands, but also in the response of the bands to changes in pressure. The pressure derivatives for the IR bands are higher for the HT polymorph indicating that the high symmetry form is more compressible than the low symmetry form. Polarized, low-temperature single-crystal IR spectra indicate that in the LT-polymorph extensive ordering occurs not only at the Mg sites but also at the hydrogen sites.
Polymorphic Phase Transition in Superhydrous Phase B
Energy Technology Data Exchange (ETDEWEB)
Koch-Muller,M.; Dera, P.; Fei, Y.; Hellwig, H.; Liu, Z.; Van Orman, J.; Wirth, R.
2005-01-01
We synthesized superhydrous phase B (shy-B) at 22 GPa and two different temperatures: 1200 C (LT) and 1400 C (HT) using a multi-anvil apparatus. The samples were investigated by transmission electron microscopy (TEM), single crystal X-ray diffraction, Raman and IR spectroscopy. The IR spectra were collected on polycrystalline thin-films and single crystals using synchrotron radiation, as well as a conventional IR source at ambient conditions and in situ at various pressures (up to 15 GPa) and temperatures (down to -180 C). Our studies show that shy-B exists in two polymorphic forms. As expected from crystal chemistry, the LT polymorph crystallizes in a lower symmetry space group (Pnn2), whereas the HT polymorph assumes a higher symmetry space group (Pnnm). TEM shows that both modifications consist of nearly perfect crystals with almost no lattice defects or inclusions of additional phases. IR spectra taken on polycrystalline thin films exhibit just one symmetric OH band and 29 lattice modes for the HT polymorph in contrast to two intense but asymmetric OH stretching bands and at least 48 lattice modes for the LT sample. The IR spectra differ not only in the number of bands, but also in the response of the bands to changes in pressure. The pressure derivatives for the IR bands are higher for the HT polymorph indicating that the high symmetry form is more compressible than the low symmetry form. Polarized, low-temperature single-crystal IR spectra indicate that in the LT-polymorph extensive ordering occurs not only at the Mg sites but also at the hydrogen sites.
Contemporary research of dynamically induced phase transitions
Hull, L. M.
2017-01-01
Dynamically induced phase transitions in metals, within the present discussion, are those that take place within a time scale characteristic of the shock waves and any reflections or rarefactions involved in the loading structure along with associated plastic flow. Contemporary topics of interest include the influence of loading wave shape, the effect of shear produced by directionality of the loading relative to the sample dimensions and initial velocity field, and the loading duration (kinetic effects, hysteresis) on the appearance and longevity of a transformed phase. These topics often arise while considering the loading of parts of various shapes with high explosives, are typically two or three-dimensional, and are often selected because of the potential of the transformed phase to significantly modify the motion. In this paper, we look at current work on phase transitions in metals influenced by shear reported in the literature, and relate recent work conducted at Los Alamos on iron's epsilon phase transition that indicates a significant response to shear produced by reflected elastic waves. A brief discussion of criteria for the occurrence of stress induced phase transitions is provided. Closing remarks regard certain physical processes, such as fragmentation and jet formation, which may be strongly influenced by phase transitions.
Coexistent physics of massive black holes in the phase transitions
Zhang, Ming
2016-01-01
The coexistent physics of de Rham-Gabada-dze-Tolley (dRGT) massive black holes and holographic massive black holes is investigated in the extended phase space where the cosmological constant is viewed as pressure. Van der Waals like phase transitions are found for both of them. Coexistent curves of reduced pressure and reduced temperature are found to be different from that of RN-AdS black holes. Coexistent curves of reduced Gibbs free energy and reduced pressure show that Gibbs free energy in the canonical ensemble decreases monotonically with the increasing pressure. The concept number density is introduced to study the coexistent physics. It is uncovered that with the increasing pressure, the number densities of small black holes (SBHs) and large black holes (LBHs) change monotonically in the contrary directions till finally reaching the same value at the critical points of the phase transitions. In other words, with the increasing pressure the number density differences between SBHs and LBHs decrease mono...
An absorbing phase transition from a structured active particle phase
Energy Technology Data Exchange (ETDEWEB)
Lopez, Cristobal [Instituto Mediterraneo de Estudios Avanzados IMEDEA (CSIC-UIB), Campus de la Universidad de las Islas Baleares, E-07122 Palma de Mallorca (Spain); Ramos, Francisco [Departamento de Electromagnetismo y Fisica de la Materia and Instituto de Fisica Teorica y Computacional Carlos I, Facultad de Ciencias, Universidad de Granada, 18071 Granada (Spain); Hernandez-GarcIa, Emilio [Instituto Mediterraneo de Estudios Avanzados IMEDEA (CSIC-UIB), Campus de la Universidad de las Islas Baleares, E-07122 Palma de Mallorca (Spain)
2007-02-14
In this work we study the absorbing state phase transition of a recently introduced model for interacting particles with neighbourhood-dependent reproduction rates. The novelty of the transition is that as soon as the active phase is reached by increasing a control parameter a periodically arranged structure of particle clusters appears. A numerical study in one and two dimensions shows that the system falls into the directed percolation universality class.
Magnetic phase transitions in layered intermetallic compounds
Mushnikov, N. V.; Gerasimov, E. G.; Rosenfeld, E. V.; Terent'ev, P. B.; Gaviko, V. S.
2012-10-01
Magnetic, magnetoelastic, and magnetotransport properties have been studied for the RMn2Si2 and RMn6Sn6 (R is a rare earth metal) intermetallic compounds with natural layered structure. The compounds exhibit wide variety of magnetic structures and magnetic phase transitions. Substitution of different R atoms allows us to modify the interatomic distances and interlayer exchange interactions thus providing the transition from antiferromagnetic to ferromagnetic state. Near the boundary of this transition the magnetic structures are very sensitive to the external field, temperature and pressure. The field-induced transitions are accompanied by considerable change in the sample size and resistivity. It has been shown that various magnetic structures and magnetic phase transitions observed in the layered compounds arise as a result of competition of the Mn-Mn and Mn-R exchange interactions.
Reentrant phase transitions of higher-dimensional AdS black holes in dRGT massive gravity
Energy Technology Data Exchange (ETDEWEB)
Zou, De-Cheng; Yue, Ruihong [Yangzhou University, College of Physical Science and Technology, Yangzhou (China); Zhang, Ming [Xi' an Aeronautical University, Faculty of Science, Xi' an (China)
2017-04-15
We study the P-V criticality and phase transition in the extended phase space of anti-de Sitter (AdS) black holes in higher-dimensional de Rham, Gabadadze and Tolley (dRGT) massive gravity, treating the cosmological constant as pressure and the corresponding conjugate quantity is interpreted as thermodynamic volume. Besides the usual small/large black hole phase transitions, the interesting thermodynamic phenomena of reentrant phase transitions (RPTs) are observed for black holes in all d ≥ 6-dimensional spacetime when the coupling coefficients c{sub i}m{sup 2} of massive potential satisfy some certain conditions. (orig.)
Inflationary spectra from a near Ω -deformed spacetime transition point in loop quantum cosmology
Chen, Long; Zhu, Jian-Yang
2016-09-01
Anomaly-free perturbations of loop quantum cosmology with holonomy corrections reveal an Ω -deformed spacetime structure, Ω ≔1 -2 ρ /ρc , where Ω 0 indicates a Lorentz-like space. It would be reasonable to give the initial value at the spacetime transition point, ρ =ρc/2 , but we find that it is impossible to define a Minkowski-like vacuum even for large k modes at that time. However, if we loosen the condition and give the initial value slightly after Ω =0 , e.g., Ω ≃0.2 , the vacuum state can be well defined and, furthermore, the slow roll approximation also works well in that region. Both scalar and tensor spectra are considered in the framework of loop quantum cosmology with holonomy corrections. We find that, if the energy density is not too small in relation to ρc/2 when the considered k mode crossing the horizon, effective theory can give a much smaller scalar power spectrum than classical theory and the spectrum of tensor perturbations could blueshift. However, when compared to other observations, since the energy densities when the modes crossed the horizon were significantly smaller than ρc, the results we get agree with previous work in the literature and with the classical inflation theory.
Cosmological implications of the transition from the false vacuum to the true vacuum state
Stachowski, Aleksander; Urbanowski, Krzysztof
2016-01-01
We study the cosmology with the running dark energy. The parametrization of dark energy with the respect to the redshift is derived from the first principles of quantum mechanics. Energy density of dark energy is obtained from the quantum process of transition from the false vacuum state to the true vacuum state. This is the class of the extended interacting $\\Lambda$CDM models. We consider the energy density of dark energy parametrization $\\rho_\\text{de}(t)$, which follows from the Breit-Wigner energy distribution function which is used to model the quantum unstable systems. The idea that properties of the process of the quantum mechanical decay of unstable states can help to understand the properties of the observed universe was formulated by Krauss and Dent and this idea was used in our considerations. In the cosmological model with the mentioned parametrization there is an energy transfer between the dark matter and dark energy. In such a evolutional scenario the universe is starting from the false vacuum...
Cosmological implications of the transition from the false vacuum to the true vacuum state
Energy Technology Data Exchange (ETDEWEB)
Stachowski, Aleksander [Jagiellonian University, Astronomical Observatory, Krakow (Poland); Szydlowski, Marek [Jagiellonian University, Astronomical Observatory, Krakow (Poland); Jagiellonian University, Mark Kac Complex Systems Research Centre, Krakow (Poland); Urbanowski, Krzysztof [University of Zielona Gora, Institute of Physics, Zielona Gora (Poland)
2017-06-15
We study cosmology with running dark energy. The energy density of dark energy is obtained from the quantum process of transition from the false vacuum state to the true vacuum state. We use the Breit-Wigner energy distribution function to model the quantum unstable systems and obtain the energy density of the dark energy parametrization ρ{sub de}(t). We also use Krauss and Dent's idea linking properties of the quantum mechanical decay of unstable states with the properties of the observed Universe. In the cosmological model with this parametrization there is an energy transfer between dark matter and dark energy. The intensity of this process, measured by a parameter α, distinguishes two scenarios. As the Universe starts from the false vacuum state, for the small value of α (0 < α < 0.4) it goes through an intermediate oscillatory (quantum) regime of the density of dark energy, while for α > 0.4 the density of the dark energy jumps down. In both cases the present value of the density of dark energy is reached. From a statistical analysis we find this model to be in good agreement with the astronomical data and practically indistinguishable from the ΛCDM model. (orig.)
Chen, Long
2016-01-01
Anomaly-free perturbations of loop quantum cosmology with holonomy corrections reveal a $\\Omega$ -deformed space-time structure, $\\Omega:=1-2\\rho/\\rho_c$, where $\\Omega0$ means a Lorentz-like space. It would be reasonable to give the initial value at the space-time transition point, $\\rho=\\rho_c/2$, but we find it is impossible to define a Minkowski-like vacuum even for large $k$-modes at that time. However if we loose the condition and give the initial value near after $\\Omega=0$, e.g. $\\Omega\\simeq 0.2$, the vacuum state can be well defined and furthermore the slow roll approximation also works well in that region. Both scalar and tensor spectra are considered in the framework of loop quantum cosmology with holonomy corrections. We find that if the energy density is not too small compared with $\\rho_c/2$ when the considered $k$-mode crossing the horizon, effective theory can give a much smaller scalar power spectrum than classical theory and the spectrum of tensor perturbations could blue shift. But when co...
Numerical Study of Phase Transition in Thermoviscoelasticity
Institute of Scientific and Technical Information of China (English)
ShaoqingTANG
1997-01-01
We study the spatially periodic problem of thermoviscoelasticity with nonmonotone structure relations.By pseudo-spectral method.we demosnstrate numerically phase transitions for certain symmetric initial data.Without symmetry,the simulations show that a translation occurs for the phase boundary.
Phase Transition in the Simplest Plasma Model
Iosilevskiy, Igor
2009-01-01
We have investigated the phase transition of the gas-liquid type, with an upper critical point, in a variant of the One Component Plasma model (OCP) that has a uniform but compressible compensating background. We have calculated the parameters of the critical and triple points, spinodals, and two-phase coexistence curves (binodals). We have analyzed the connection of this simplest plasma phase transition with anomalies in the spatial charge profiles of equilibrium non-uniform plasma in the local-density approximations of Thomas-Fermi or Poisson-Boltzmann-type.
Theory of phase transitions rigorous results
Sinai, Ya G
1982-01-01
Theory of Phase Transitions: Rigorous Results is inspired by lectures on mathematical problems of statistical physics presented in the Mathematical Institute of the Hungarian Academy of Sciences, Budapest. The aim of the book is to expound a series of rigorous results about the theory of phase transitions. The book consists of four chapters, wherein the first chapter discusses the Hamiltonian, its symmetry group, and the limit Gibbs distributions corresponding to a given Hamiltonian. The second chapter studies the phase diagrams of lattice models that are considered at low temperatures. The no
End point of the electroweak phase transition
Csikor, Ferenc; Heitger, J; Aoki, Y; Ukawa, A
1999-01-01
We study the hot electroweak phase transition (EWPT) by 4-dimensional lattice simulations on lattices with symmetric and asymmetric lattice spacings and give the phase diagram. A continuum extrapolation is done. We find first order phase transition for Higgs-boson masses $m_H<66.5 \\pm 1.4$ GeV. Above this end point a rapid cross-over occurs. Our result agrees with that of the dimensional reduction approach. It also indicates that the fermionic sector of the Standard Model (SM) may be included perturbatively. We get for the SM end point $72.4 the SM.
Phase transition and entropy inequality of noncommutative black holes in a new extended phase space
Miao, Yan-Gang
2016-01-01
We analyze the thermodynamics of the noncommutative high-dimensional Schwarzschild-Tangherlini AdS black hole with the non-Gaussian smeared matter distribution by regarding a noncommutative parameter as an independent thermodynamic variable named as {\\em the noncommutative pressure}. In the new extended phase space that includes this noncommutative pressure and its conjugate variable, we reveal that the noncommutative pressure and the original thermodynamic pressure related to the negative cosmological constant make the opposite effects in the phase transition of the noncommutative black hole, i.e. the former takes a UV effect while the latter does an IR effect, respectively. In addition, by means of the reverse isoperimetric inequality, we indicate that only the black hole with the Gaussian smeared matter distribution holds the maximum entropy for a given thermodynamic volume among the noncommutative black holes with various matter distributions.
Phase Transition Induced Fission in Lipid Vesicles
Leirer, C; Myles, V M; Schneider, M F
2010-01-01
In this work we demonstrate how the first order phase transition in giant unilamellar vesicles (GUVs) can function as a trigger for membrane fission. When driven through their gel-fluid phase transition GUVs exhibit budding or pearl formation. These buds remain connected to the mother vesicle presumably by a small neck. Cooling these vesicles from the fluid phase (T>Tm) through the phase transition into the gel state (T
Comment on the "Influence of Cosmological Transitions on the Evolution of Density Perturbations"
Grishchuk, L P
1998-01-01
The "standard inflationary result" has been confirmed once again. This time, by Martin and Schwarz [1]. The fallacy - "the closer the inflationary epoch is to the de Sitter space-time, the less important are large-scale gravitational waves in the CMBR today" - has been repeated and has been claimed to be finally proved. The paper [1] is somewhat better than many other incorrect inflationary papers on the subject of cosmological perurbations. This paper at least operates with correct equations (taken from the criticized work of Grishchuk [2, 3]). Martin and Schwarz say that Grishchuk's conclusion about approximate equality of metric amplitudes for gravitational waves and density perturbations "is wrong because the time evolution of the scalar metric perturbation through the (smooth) reheating transition was not calculated correctly". They reiterate an old inflationary fantasy about "big amplification" of scalar perturbations (in contrast to gravitational waves) during "reheating". They say that after appropria...
Microgravity Two-Phase Flow Transition
Parang, M.; Chao, D.
1999-01-01
Two-phase flows under microgravity condition find a large number of important applications in fluid handling and storage, and spacecraft thermal management. Specifically, under microgravity condition heat transfer between heat exchanger surfaces and fluids depend critically on the distribution and interaction between different fluid phases which are often qualitatively different from the gravity-based systems. Heat transfer and flow analysis in two-phase flows under these conditions require a clear understanding of the flow pattern transition and development of appropriate dimensionless scales for its modeling and prediction. The physics of this flow is however very complex and remains poorly understood. This has led to various inadequacies in flow and heat transfer modeling and has made prediction of flow transition difficult in engineering design of efficient thermal and flow systems. In the present study the available published data for flow transition under microgravity condition are considered for mapping. The transition from slug to annular flow and from bubbly to slug flow are mapped using dimensionless variable combination developed in a previous study by the authors. The result indicate that the new maps describe the flow transitions reasonably well over the range of the data available. The transition maps are examined and the results are discussed in relation to the presumed balance of forces and flow dynamics. It is suggested that further evaluation of the proposed flow and transition mapping will require a wider range of microgravity data expected to be made available in future studies.
PT phase transition in multidimensional quantum systems
Bender, Carl M
2012-01-01
Non-Hermitian PT-symmetric quantum-mechanical Hamiltonians generally exhibit a phase transition that separates two parametric regions, (i) a region of unbroken PT symmetry in which the eigenvalues are all real, and (ii) a region of broken PT symmetry in which some of the eigenvalues are complex. This transition has recently been observed experimentally in a variety of physical systems. Until now, theoretical studies of the PT phase transition have generally been limited to one-dimensional models. Here, four nontrivial coupled PT-symmetric Hamiltonians, $H=p^2/2+x^2/2+q^2/2+y^2/2+igx^2y$, $H=p^2/2+x^2/2+q^2/2+y^2+igx^2y$, $H=p^2/2+x^2/2+q^2/2+y^2/2+r^2/2+z^2/2+igxyz$, and $H=p^2/2+x^2/2+q^2/2+y^2+r^2/2+3z^2/2+igxyz$ are examined. Based on extensive numerical studies, this paper conjectures that all four models exhibit a phase transition. The transitions are found to occur at $g\\approx 0.1$, $g\\approx 0.04$, $g\\approx 0.1$, and $g\\approx 0.05$. These results suggest that the PT phase transition is a robust phen...
Exit from inflation with a first-order phase transition and a gravitational wave blast
Directory of Open Access Journals (Sweden)
Amjad Ashoorioon
2015-07-01
Full Text Available In double-field inflation, which exploits two scalar fields, one of the fields rolls slowly during inflation whereas the other field is trapped in a meta-stable vacuum. The nucleation rate from the false vacuum to the true one becomes substantial enough that triggers a first order phase transition and ends inflation. We revisit the question of first order phase transition in an “extended” model of hybrid inflation, realizing the double-field inflationary scenario, and correctly identify the parameter space that leads to a first order phase transition at the end of inflation. We compute the gravitational wave profile which is generated during this first order phase transition. Assuming instant reheating, the peak frequency falls in the 1 GHz to 10 GHz frequency band and the amplitude varies in the range 10−11≲ΩGWh2≲10−8, depending on the value of the cosmological constant in the false vacuum. For a narrow band of vacuum energies, the first order phase transition can happen after the end of inflation via the violation of slow-roll, with a peak frequency that varies from 1 THz to 100 THz. For smaller values of cosmological constant, even though inflation can end via slow-roll violation, the universe gets trapped in a false vacuum whose energy drives a second phase of eternal inflation. This range of vacuum energies do not lead to viable inflationary models, unless the value of the cosmological constant is compatible with the observed value, M∼10−3 eV.
The diamagnetic phase transition in Magnetars
Wang, Zhaojun; Zhu, Chunhua; Wu, Baoshan
2016-01-01
Neutron stars are ideal astrophysical laboratories for testing theories of the de Haas-van Alphen (dHvA) effect and diamagnetic phase transition which is associated with magnetic domain formation. The "magnetic interaction" between delocalized magnetic moments of electrons (the Shoenberg effect), can result in an effect of the diamagnetic phase transition into domains of alternating magnetization (Condon's domains). Associated with the domain formation are prominent magnetic field oscillation and anisotropic magnetic stress which may be large enough to fracture the crust of magnetar with a super-strong field. Even if the fracture is impossible as in "low-field" magnetar, the depinning phase transition of domain wall motion driven by low field rate (mainly due to the Hall effect) in the randomly perturbed crust can result in a catastrophically variation of magnetic field. This intermittent motion, similar to the avalanche process, makes the Hall effect be dissipative. These qualitative consequences about magne...
Thermogeometric phase transition in a unified framework
Banerjee, Rabin; Samanta, Saurav
2016-01-01
Using geomterothermodynamics (GTD), we investigate the phase transition of black hole in a metric independent way. We show that for any black hole, curvature scalar (of equilibrium state space geometry) is singular at the point where specific heat diverges. Previously such a result could only be shown by taking specific examples on a case by case basis. A different type of phase transition, where inverse specific heat diverges, is also studied within this framework. We show that in the latter case, metric (of equilibrium state space geometry) is singular instead of curvature scalar. Since a metric singularity may be a coordinate artifact, we propose that GTD indicates that it is the singularity of specific heat and not inverse specific heat which indicates a phase transition of black holes.
Quantum phase transitions with dynamical flavors
Bea, Yago; Ramallo, Alfonso V
2016-01-01
We study the properties of a D6-brane probe in the ABJM background with smeared massless dynamical quarks in the Veneziano limit. Working at zero temperature and non-vanishing charge density, we show that the system undergoes a quantum phase transition in which the topology of the brane embedding changes from a black hole to a Minkowski embedding. In the unflavored background the phase transition is of second order and takes place when the charge density vanishes. We determine the corresponding critical exponents and show that the scaling behavior near the quantum critical point has multiplicative logarithmic corrections. In the background with dynamical quarks the phase transition is of first order and occurs at non-zero charge density. In this case we compute the discontinuity of several physical quantities as functions of the number $N_f$ of unquenched quarks of the background.
Quantum phase transitions with dynamical flavors
Bea, Yago; Jokela, Niko; Ramallo, Alfonso V.
2016-07-01
We study the properties of a D6-brane probe in the Aharony-Bergman-Jafferis-Maldacena (ABJM) background with smeared massless dynamical quarks in the Veneziano limit. Working at zero temperature and nonvanishing charge density, we show that the system undergoes a quantum phase transition in which the topology of the brane embedding changes from a black hole to a Minkowski embedding. In the unflavored background the phase transition is of second order and takes place when the charge density vanishes. We determine the corresponding critical exponents and show that the scaling behavior near the quantum critical point has multiplicative logarithmic corrections. In the background with dynamical quarks the phase transition is of first order and occurs at nonzero charge density. In this case we compute the discontinuity of several physical quantities as functions of the number Nf of unquenched quarks of the background.
A new way of setting the phases for cosmological multiscale Gaussian initial conditions
Jenkins, Adrian
2013-09-01
We describe how to define an extremely large discrete realization of a Gaussian white noise field that has a hierarchical structure and the property that the value of any part of the field can be computed quickly. Tiny subregions of such a field can be used to set the phase information for Gaussian initial conditions for individual cosmological simulations of structure formation. This approach has several attractive features: (i) the hierarchical structure based on an octree is particularly well suited for generating follow-up resimulation or zoom initial conditions; (ii) the phases are defined for all relevant physical scales in advance so that resimulation initial conditions are, by construction, consistent both with their parent simulation and with each other; (iii) the field can easily be made public by releasing a code to compute it - once public, phase information can be shared or published by specifying a spatial location within the realization. In this paper, we describe the principles behind creating such realizations. We define an example called Panphasia and in a companion paper by Jenkins and Booth (2013) make public a code to compute it. With 50 octree levels Panphasia spans a factor of more than 1015 in linear scale - a range that significantly exceeds the ratio of the current Hubble radius to the putative cold dark matter free-streaming scale. We show how to modify a code used for making cosmological and resimulation initial conditions so that it can take the phase information from Panphasia and, using this code, we demonstrate that it is possible to make good quality resimulation initial conditions. We define a convention for publishing phase information from Panphasia and publish the initial phases for several of the Virgo Consortium's most recent cosmological simulations including the 303 billion particle MXXL simulation. Finally, for reference, we give the locations and properties of several dark matter haloes that can be resimulated within these
Fluctuations near the deconfinement phase transition boundary
Mishustin, I N
2005-01-01
In this talk I discuss how a first order phase transition may proceed in rapidly expanding partonic matter produced in a relativistic heavy-ion collision. The resulting picture is that a strong collective flow of matter will lead to the fragmentation of a metastable phase into droplets. If the transition from quark-gluon plasma to hadron gas is of the first order, it will manifest itself by strong nonstatistical fluctuations in observable hadron distributions. I discuss shortly existing experimental data on the multiplicity fluctuations.
Queueing phase transition: theory of translation.
Romano, M Carmen; Thiel, Marco; Stansfield, Ian; Grebogi, Celso
2009-05-15
We study the current of particles on a lattice, where to each site a different hopping probability has been associated and the particles can move only in one direction. We show that the queueing of the particles behind a slow site can lead to a first-order phase transition, and derive analytical expressions for the configuration of slow sites for this to happen. We apply this stochastic model to describe the translation of mRNAs. We show that the first-order phase transition, uncovered in this work, is the process responsible for the classification of the proteins having different biological functions.
Exceptional Points and Dynamical Phase Transitions
Directory of Open Access Journals (Sweden)
I. Rotter
2010-01-01
Full Text Available In the framework of non-Hermitian quantum physics, the relation between exceptional points,dynamical phase transitions and the counter intuitive behavior of quantum systems at high level density is considered. The theoretical results obtained for open quantum systems and proven experimentally some years ago on a microwave cavity, may explain environmentally induce deffects (including dynamical phase transitions, which have been observed in various experimental studies. They also agree(qualitatively with the experimental results reported recently in PT symmetric optical lattices.
Phase Transition in Loop Quantum Gravity
Mäkelä, Jarmo
2016-01-01
We point out that with a specific counting of states loop quantum gravity implies that black holes perform a phase transition at a certain characteristic temperature $T_C$. In this phase transition the punctures of the spin network on the stretched horizon of the black hole jump, in effect, from the vacuum to the excited states. The characteristic temperature $T_C$ may be regarded as the lowest possible temperature of the hole. From the point of view of a distant observer at rest with respect to the hole the characteristic temperature $T_C$ corresponds to the Hawking temperature of the hole.
Scaling Concepts in Describing Continuous Phase Transitions
Indian Academy of Sciences (India)
2016-10-01
Phase transitions, like the boiling of water upon increasingtemperature, are a part of everyday experience and are yet,upon closer inspection, unusual phenomena, and reveal a hostof fascinating features. Comprehending key aspects of phasetransitions has lead to the uncovering of new ways of describingmatter composed of large numbers of interacting elements,which form a dominant way of analysis in contemporarystatistical mechanics and much else. An introductorydiscussion is presented here of the concepts of scaling, universalityand renormalization, which forms the foundation ofthe study of continuous phase transitions, such as the spontaneousmagnetization of ferromagnetic substances.
Endpoint of the hot electroweak phase transition
Csikor, Ferenc; Heitger, J
1999-01-01
We give the nonperturbative phase diagram of the four-dimensional hot electroweak phase transition. The Monte-Carlo analysis is done on lattices with different lattice spacings ($a$). A systematic extrapolation $a \\to 0$ is done. Our results show that the finite temperature SU(2)-Higgs phase transition is of first order for Higgs-boson masses $m_H<66.5 \\pm 1.4$ GeV. At this endpoint the phase transition is of second order, whereas above it only a rapid cross-over can be seen. The full four-dimensional result agrees completely with that of the dimensional reduction approximation. This fact is of particular importance, because it indicates that the fermionic sector of the Standard Model can be included perturbatively. We obtain that the Higgs-boson endpoint mass in the Standard Model is $72.4 \\pm 1.7$ GeV. Taking into account the LEP Higgs-boson mass lower bound excludes any electroweak phase transition in the Standard Model.
Transition to turbulence in pipe flow as a phase transition
Vasudevan, Mukund; Hof, Björn
2015-11-01
In pipe flow, turbulence first arises in the form of localized turbulent patches called puffs. The flow undergoes a transition to sustained turbulence via spatio-temporal intermittency, with puffs splitting, decaying and merging in the background laminar flow. However, the due to mean advection of the puffs and the long timescales involved (~107 advective time units), it is not possible to study the transition in typical laboratory set-ups. So far, it has only been possible to indirectly estimate the critical point for the transition. Here, we exploit the stochastic memoryless nature of the puff decay and splitting processes to construct a pipe flow set-up, that is periodic in a statistical sense. It then becomes possible to study the flow for sufficiently long times and characterize the transition in detail. We present measurements of the turbulent fraction as a function of Reynolds number which in turn allows a direct estimate of the critical point. We present evidence that the transition has features of a phase transition of second order.
Deconfinement phase transition in neutron star matter
Institute of Scientific and Technical Information of China (English)
LI Ang; PENG Guang-Xiong; Lombardo U
2009-01-01
The transition from hadron phase to strange quark phase in dense matter is investigated. Instead of using the conventional bag model in quark sect, we achieve the confinement by a density-dependent quark mass derived from in-medium chiral condensates, with a thermodynamic problem improved. In nuclear slot,we adopt the equation of state from Brueckner-Bethe-Goldstone approach with three-body force. It is found that the mixed phase can occur, for reasonable confinement parameter, near the normal saturation density,and transit to pure quark matter at 4-5 times the saturation, which is quite different from the previous results from other quark models that pure quark phase can not appear at neutron-star densities.
Liquid gas phase transition in hypernuclei
Mallik, S
2016-01-01
The fragmentation of excited hypernuclear system formed in heavy ion collisions has been described by the canonical thermodynamical model extended to three component systems. The multiplicity distribution of the fragments has been analyzed in detail and it has been observed that the hyperons have the tendency to get attached to the heavier fragments. Another important observation is the phase coexistence of the hyperons, a phenomenon which is linked to liquid gas phase transition in strange matter.
Transition from accelerated to decelerated regimes in JT and CGHS cosmologies
Christmann, M H; Kremer, G M; Zanetti, C M
2004-01-01
In this work we discuss the possibility of positive-acceleration regimes, and their transition to decelerated regimes, in two-dimensional (2D) cosmological models. We use general relativity and the thermodynamics in a 2D space-time, where the gas is seen as the sources of the gravitational field. An early-Universe model is analyzed where the state equation of van der Waals is used, replacing the usual barotropic equation. We show that this substitution permits the simulation of a period of inflation, followed by a negative-acceleration era. The dynamical behavior of the system follows from the solution of the Jackiw-Teitelboim equations (JT equations) and the energy-momentum conservation laws. In a second stage we focus the Callan-Giddings-Harvey-Strominger model (CGHS model); here the transition from the inflationary period to the decelerated period is also present between the solutions, although this result depend strongly on the initial conditions used for the dilaton field. The temporal evolution of the c...
Passive Supporters of Terrorism and Phase Transitions
August, Friedrich; Delitzscher, Sascha; Hiller, Gerald; Krueger, Tyll
2010-01-01
We discuss some social contagion processes to describe the formation and spread of radical opinions. The dynamics of opinion spread involves local threshold processes as well as mean field effects. We calculate and observe phase transitions in the dynamical variables resulting in a rapidly increasing number of passive supporters. This strongly indicates that military solutions are inappropriate.
Hysteresis in the phase transition of chocolate
Ren, Ruilong; Lu, Qunfeng; Lin, Sihua; Dong, Xiaoyan; Fu, Hao; Wu, Shaoyi; Wu, Minghe; Teng, Baohua
2016-01-01
We designed an experiment to reproduce the hysteresis phenomenon of chocolate appearing in the heating and cooling process, and then established a model to relate the solidification degree to the order parameter. Based on the Landau-Devonshire theory, our model gave a description of the hysteresis phenomenon in chocolate, which lays the foundations for the study of the phase transition behavior of chocolate.
Caloric materials near ferroic phase transitions
Moya, X.; Kar-Narayan, S.; Mathur, N. D.
2014-05-01
A magnetically, electrically or mechanically responsive material can undergo significant thermal changes near a ferroic phase transition when its order parameter is modified by the conjugate applied field. The resulting magnetocaloric, electrocaloric and mechanocaloric (elastocaloric or barocaloric) effects are compared here in terms of history, experimental method, performance and prospective cooling applications.
Neutrino Oscillation Induced by Chiral Phase Transition
Institute of Scientific and Technical Information of China (English)
MU Cheng-Fu; SUN Gao-Feng; ZHUANG Peng-Fei
2009-01-01
Electric charge neutrality provides a relationship between chiral dynamics and neutrino propagation in compact stars.Due to the sudden drop of the electron density at the first-order chiral phase transition,the oscillation for low energy neutrinos is significant and can be regarded as a signature of chiral symmetry restoration in the core of compact stars.
Higgs Couplings and Electroweak Phase Transition
Katz, Andrey
2014-01-01
We argue that extensions of the Standard Model (SM) with a strongly first-order electroweak phase transition generically predict significant deviations of the Higgs couplings to gluons, photons, and Z bosons from their SM values. Precise experimental measurements of the Higgs couplings at the LHC and at the proposed next-generation facilities will allow for a robust test of the phase transition dynamics. To illustrate this point, in this paper we focus on the scenario in which loops of a new scalar field are responsible for the first-order phase transition, and study a selection of benchmark models with various SM gauge quantum numbers of the new scalar. We find that the current LHC measurement of the Higgs coupling to gluons already excludes the possibility of a first-order phase transition induced by a scalar in a sextet, or larger, representation of the SU(3)_c. Future LHC experiments (including HL-LHC) will be able to definitively probe the case when the new scalar is a color triplet. If the new scalar is...
Chaos: Butterflies also Generate Phase Transitions
Leplaideur, Renaud
2015-10-01
We exhibit examples of mixing subshifts of finite type and of continuous potentials such that there are phase transitions but the pressure is always strictly convex. More surprisingly, we show that the pressure can be analytic on some interval although there exist several equilibrium states.
Phase Transitions, Diffraction Studies and Marginal Dimensionality
DEFF Research Database (Denmark)
Als-Nielsen, Jens Aage
1985-01-01
Continuous phase transitions and the associated critical phenomena have been one of the most active areas of research in condensed matter physics for several decades. This short review is only one cut through this huge subject and the author has chosen to emphasize diffraction studies as a basic...
Problem of phase transitions in nuclear structure
Energy Technology Data Exchange (ETDEWEB)
Scharff-Goldhaber, G
1980-01-01
Phase transitions between rotational and vibrational nuclei are discussed from the point of view of the variable moment of inertia model. A three-dimensional plot of the ground-state moments of inertia of even-even nuclei vs N and Z is shown. 3 figures. (RWR)
The Structural Phase Transition in Octaflournaphtalene
DEFF Research Database (Denmark)
Mackenzie, Gordon A.; Arthur, J. W.; Pawley, G. S.
1977-01-01
The phase transition in octafluoronaphthalene has been investigated by Raman scattering and neutron powder diffraction. The weight of the experimental evidence points to a unit cell doubling in the a direction, but with no change in space group symmetry. Lattice dynamics calculations support...
Dimensional phase transitions in small Yukawa clusters
Sheridan, T E
2009-01-01
We investigate the one- to two-dimensional zigzag transition in clusters consisting of a small number of particles interacting through a Yukawa (Debye) potential and confined in a two-dimensional biharmonic potential well. Dusty (complex) plasma clusters with $n \\le 19$ monodisperse particles are characterized experimentally for two different confining wells. The well anisotropy is accurately measured, and the Debye shielding parameter is determined from the longitudinal breathing frequency. Debye shielding is shown to be important. A model for this system is used to predict equilibrium particle configurations. The experiment and model exhibit excellent agreement. The critical value of $n$ for the zigzag transition is found to be less than that predicted for an unshielded Coulomb interaction. The zigzag transition is shown to behave as a continuous phase transition from a one-dimensional to a two-dimensional state, where the state variables are the number of particles, the well anisotropy and the Debye shield...
Phase transition to QGP matter : confined vs deconfined matter
Maire, Antonin
2015-01-01
Simplified phase diagram of the nuclear phase transition, from the regular hadronic matter to the QGP phase. The sketch is meant to describe the transition foreseen along the temperature axis, at low baryochemical potential, µB.
Phase transition – Break down the walls
DEFF Research Database (Denmark)
Wandahl, Søren
2012-01-01
-phase issues of the construction process. This research first identifies the problems theoretically, and looks into which framework to be used in understanding of the phase transition problem. This combined with data from interviews reveal 8 major issues in phase transition, which decrease the value....... In a popular term this problem is often called “over the wall syndrome”. The manufacturing industry has worked with this for many years, in e.g. integrated product development, concurrent engineering, supply chain management, etc. Now the construction industry needs to focus more on these crucial inter...... tender often is limited due to regulations. Therefore, contractors miss a large amount of non-operational information, and the client and his consulting engineers never mange to share their tacit knowledge of project preconditions....
Phase transitions in Pareto optimal complex networks
Seoane, Luís F
2015-01-01
The organization of interactions in complex systems can be described by networks connecting different units. These graphs are useful representations of the local and global complexity of the underlying systems. The origin of their topological structure can be diverse, resulting from different mechanisms including multiplicative processes and optimization. In spatial networks or in graphs where cost constraints are at work, as it occurs in a plethora of situations from power grids to the wiring of neurons in the brain, optimization plays an important part in shaping their organization. In this paper we study network designs resulting from a Pareto optimization process, where different simultaneous constraints are the targets of selection. We analyze three variations on a problem finding phase transitions of different kinds. Distinct phases are associated to different arrangements of the connections; but the need of drastic topological changes does not determine the presence, nor the nature of the phase transit...
Phase diagrams and kinetics of phase transitions in protein solutions.
Vekilov, Peter G
2012-05-16
The phase behavior of proteins is of interest for fundamental and practical reasons. The nucleation of new phases is one of the last major unresolved problems of nature. The formation of protein condensed phases (crystals, polymers, and other solid aggregates, as well as dense liquids and gels) underlies pathological conditions, plays a crucial role in the biological function of the respective protein, or is an essential part of laboratory and industrial processes. In this review, we focus on phase transitions of proteins in their properly folded state. We first summarize the recently acquired understanding of physical processes underlying the phase diagrams of the protein solutions and the thermodynamics of protein phase transitions. Then we review recent findings on the kinetics of nucleation of dense liquid droplets and crystals. We explore the transition from nucleation to spinodal decomposition for liquid-liquid separation and introduce the new concept of solution-to-crystal spinodal. We review the two-step mechanism of protein crystal nucleation, in which mesoscopic metastable protein clusters serve as precursors to the ordered crystal nuclei. The concepts and mechanisms reviewed here provide powerful tools for control of the nucleation process by varying the solution thermodynamic parameters.
F-Term Hybrid Inflation Followed by a Peccei-Quinn Phase Transition
Lazarides, G
2010-01-01
We consider a cosmological set-up, based on renormalizable superpotential terms, in which a superheavy scale F-term hybrid inflation is followed by a Peccei-Quinn phase transition, resolving the strong CP and mu problems of the minimal supersymmetric standard model. We show that the field which triggers the Peccei-Quinn phase transition can remain after inflation well above the Peccei-Quinn scale thanks to (i) its participation in the supergravity and logarithmic corrections during the inflationary stage and (ii) the high reheat temperature after the same period. As a consequence, its presence influences drastically the inflationary dynamics and the universe suffers a second period of reheating after the Peccei-Quinn phase transition. Confronting our inflationary predictions with the current observational data, we find that, for about the central value of the spectral index, the grand unification scale can be identified with its supersymmetric value for the relevant coupling constant \\kappa=0.002 and, more or...
The comfortable driving model revisited: Traffic phases and phase transitions
Knorr, Florian
2013-01-01
We study the spatiotemporal patterns resulting from different boundary conditions for a microscopic traffic model and contrast it with empirical results. By evaluating the time series of local measurements, the local traffic states are assigned to the different traffic phases of Kerner's three-phase traffic theory. For this classification we use the rule-based FOTO-method, which provides `hard' rules for this assignment. Using this approach, our analysis shows that the model is indeed able to reproduce three qualitatively different traffic phases: free flow (F), synchronized traffic (S), and wide moving jams (J). In addition, we investigate the likelihood of transitions between the three traffic phases. We show that a transition from free flow (F) to a wide moving jam (J) often involves an intermediate transition; first from free flow F to synchronized flow S and then from synchronized flow to a wide moving jam. This is supported by the fact that the so called F->S transition (from free flow to synchronized t...
Dynamics of the chiral phase transition
van Hees, H; Meistrenko, A; Greiner, C
2013-01-01
The intention of this study is the search for signatures of the chiral phase transition in heavy-ion collisions. To investigate the impact of fluctuations, e.g., of the baryon number, at the transition or at a critical point, the linear sigma model is treated in a dynamical (3+1)-dimensional numerical simulation. Chiral fields are approximated as classical mean fields, and quarks are described as quasi particles in a Vlasov equation. Additional dynamics is implemented by quark-quark and quark-sigma-field interactions. For a consistent description of field-particle interactions, a new Monte-Carlo-Langevin-like formalism has been developed and is discussed.
Phase transitions in Pareto optimal complex networks.
Seoane, Luís F; Solé, Ricard
2015-09-01
The organization of interactions in complex systems can be described by networks connecting different units. These graphs are useful representations of the local and global complexity of the underlying systems. The origin of their topological structure can be diverse, resulting from different mechanisms including multiplicative processes and optimization. In spatial networks or in graphs where cost constraints are at work, as it occurs in a plethora of situations from power grids to the wiring of neurons in the brain, optimization plays an important part in shaping their organization. In this paper we study network designs resulting from a Pareto optimization process, where different simultaneous constraints are the targets of selection. We analyze three variations on a problem, finding phase transitions of different kinds. Distinct phases are associated with different arrangements of the connections, but the need of drastic topological changes does not determine the presence or the nature of the phase transitions encountered. Instead, the functions under optimization do play a determinant role. This reinforces the view that phase transitions do not arise from intrinsic properties of a system alone, but from the interplay of that system with its external constraints.
Phase transitions in charged topological black holes dressed with a scalar hair
Martínez, Cristián; Montecinos, Alejandra
2010-12-01
Phase transitions in charged topological black holes dressed with a scalar field are studied. These black holes are solutions of the Einstein-Maxwell theory with a negative cosmological constant and a conformally coupled real self-interacting scalar field. Comparing, in the grand canonical ensemble, the free energies of the hairy and undressed black holes two different phase transitions are found. The first of them is one of second-order type and it occurs at a temperature defined by the value of the cosmological constant. Below this temperature an undressed black hole spontaneously acquires a scalar hair. The other phase transition is one of first-order type. The corresponding critical temperature, which is bounded from above by the one of the previous case, strongly depends on the coupling constant of the quartic self-interaction potential, and this transition only appears when the coupling constant is less than a certain value. In this case, below the critical temperature the undressed black hole is thermodynamically favored. However, when the temperature exceeds the critical value a hairy black hole is likely to be occur.
Phase transitions in charged topological black holes dressed with a scalar hair
Martinez, Cristian
2010-01-01
Phase transitions in charged topological black holes dressed with a scalar field are studied. These black holes are solutions of the Einstein-Maxwell theory with a negative cosmological constant and a conformally coupled real self-interacting scalar field. Comparing, in the grand canonical ensemble, the free energies of the hairy and undressed black holes two different phase transitions are found. The first of them is one of second-order type and it occurs at a temperature defined by the value of the cosmological constant. Below this temperature an undressed black hole spontaneously acquires a scalar hair. The other phase transition is one of first-order type. The corresponding critical temperature, which is bounded from above by the one of the previous case, strongly depends on the coupling constant of the quartic self-interaction potential, and this transition only appears when the coupling constant is less than a certain value. In this case, below the critical temperature the undressed black is thermodynam...
Thermodynamics of Rotating Black Holes and Black Rings: Phase Transitions and Thermodynamic Volume
Directory of Open Access Journals (Sweden)
Natacha Altamirano
2014-03-01
Full Text Available In this review we summarize, expand, and set in context recent developments on the thermodynamics of black holes in extended phase space, where the cosmological constant is interpreted as thermodynamic pressure and treated as a thermodynamic variable in its own right. We specifically consider the thermodynamics of higher-dimensional rotating asymptotically flat and AdS black holes and black rings in a canonical (fixed angular momentum ensemble. We plot the associated thermodynamic potential—the Gibbs free energy—and study its behavior to uncover possible thermodynamic phase transitions in these black hole spacetimes. We show that the multiply-rotating Kerr-AdS black holes exhibit a rich set of interesting thermodynamic phenomena analogous to the “every day thermodynamics” of simple substances, such as reentrant phase transitions of multicomponent liquids, multiple first-order solid/liquid/gas phase transitions, and liquid/gas phase transitions of the van derWaals type. Furthermore, the reentrant phase transitions also occur for multiply-spinning asymptotically flat Myers–Perry black holes. These phenomena do not require a variable cosmological constant, though they are more naturally understood in the context of the extended phase space. The thermodynamic volume, a quantity conjugate to the thermodynamic pressure, is studied for AdS black rings and demonstrated to satisfy the reverse isoperimetric inequality; this provides a first example of calculation confirming the validity of isoperimetric inequality conjecture for a black hole with non-spherical horizon topology. The equation of state P = P(V,T is studied for various black holes both numerically and analytically—in the ultraspinning and slow rotation regimes.
A new way of setting the phases for cosmological multi-scale Gaussian initial conditions
Jenkins, Adrian
2013-01-01
We describe how to define an extremely large discrete realisation of a Gaussian white noise field that has a hierarchical structure and the property that the value of any part of the field can be computed quickly. Tiny subregions of such a field can be used to set the phase information for Gaussian initial conditions for individual cosmological simulations of structure formation. This approach has several attractive features: (i) the hierarchical structure based on an octree is particular well suited for generating follow up resimulation or zoom initial conditions; (ii) the phases are defined for all relevant physical scales in advance so that resimulation initial conditions are, by construction, consistent both with their parent simulation and with each other; (iii) the field can easily be made public by releasing a code to compute it - once public, phase information can be shared or published by specifying a spatial location within the realisation. In this paper we describe the principles behind creating su...
The Next Generation Transit Survey - Prototyping Phase
McCormac, James; Wheatley, Peter; West, Richard; Walker, Simon; Bento, Joao; Skillen, Ian; Faedi, Francesca; Burleigh, Matt; Casewell, Sarah; Chazelas, Bruno; Genolet, Ludovic; Gibson, Neale; Goad, Mike; Lawrie, Katherine; Ryans, Robert; Todd, Ian; Udry, Stephan; Watson, Christopher
2016-01-01
We present the prototype telescope for the Next Generation Transit Survey, which was built in the UK in 2008/09 and tested on La Palma in the Canary Islands in 2010. The goals for the prototype system were severalfold: to determine the level of systematic noise in an NGTS-like system; demonstrate that we can perform photometry at the (sub) millimagnitude level on transit timescales across a wide field; show that it is possible to detect transiting super-Earth and Neptune-sized exoplanets and prove the technical feasibility of the proposed planet survey. We tested the system for around 100 nights and met each of the goals above. Several key areas for improvement were highlighted during the prototyping phase. They have been subsequently addressed in the final NGTS facility which was recently commissioned at ESO Cerro Paranal, Chile.
Holographic phase transitions at finite chemical potential
Mateos, David; Matsuura, Shunji; Myers, Robert C.; Thomson, Rowan M.
2007-11-01
Recently, holographic techniques have been used to study the thermal properties of Script N = 2 super-Yang-Mills theory, with gauge group SU(Nc) and coupled to Nf coupling. Here we consider the phase diagram as a function of temperature and baryon chemical potential μb. For fixed μb transitions separating a region with vanishing baryon density and one with nonzero density. For fixed μb>Nc Mq there is no phase transition as a function of the temperature and the baryon density is always nonzero. We also compare the present results for the grand canonical ensemble with those for canonical ensemble in which the baryon density is held fixed [1].
Nonequilibrium phase transitions in biomolecular signal transduction
Smith, Eric; Krishnamurthy, Supriya; Fontana, Walter; Krakauer, David
2011-11-01
We study a mechanism for reliable switching in biomolecular signal-transduction cascades. Steady bistable states are created by system-size cooperative effects in populations of proteins, in spite of the fact that the phosphorylation-state transitions of any molecule, by means of which the switch is implemented, are highly stochastic. The emergence of switching is a nonequilibrium phase transition in an energetically driven, dissipative system described by a master equation. We use operator and functional integral methods from reaction-diffusion theory to solve for the phase structure, noise spectrum, and escape trajectories and first-passage times of a class of minimal models of switches, showing how all critical properties for switch behavior can be computed within a unified framework.
A nonequilibrium phase transition in immune response
Institute of Scientific and Technical Information of China (English)
Zhang Wei; Qi An-Shen
2004-01-01
The dynamics of immune response correlated to signal transduction in immune thymic cells (T cells) is studied.In particular, the problem of the phosphorylation of the immune-receptor tyrosine-based activation motifs (ITAM) is explored. A nonlinear model is established on the basis of experimental observations. The behaviours of the model can be well analysed using the concepts of nonequilibrium phase transitions. In addition, the Riemann-Hugoniot cusp catastrophe is demonstrated by the model. Due to the application of the theory of nonequilibrium phase transitions,the biological phenomena can be clarified more precisely. The results can also be used to further explain the signal transduction and signal discrimination of an important type of immune T cell.
Phase transition in the countdown problem
Lacasa, Lucas; Luque, Bartolo
2012-07-01
We present a combinatorial decision problem, inspired by the celebrated quiz show called Countdown, that involves the computation of a given target number T from a set of k randomly chosen integers along with a set of arithmetic operations. We find that the probability of winning the game evidences a threshold phenomenon that can be understood in the terms of an algorithmic phase transition as a function of the set size k. Numerical simulations show that such probability sharply transitions from zero to one at some critical value of the control parameter, hence separating the algorithm's parameter space in different phases. We also find that the system is maximally efficient close to the critical point. We derive analytical expressions that match the numerical results for finite size and permit us to extrapolate the behavior in the thermodynamic limit.
Structural phase transitions in monolayer molybdenum dichalcogenides
Choe, Duk-Hyun; Sung, Ha June; Chang, Kee Joo
2015-03-01
The recent discovery of two-dimensional materials such as graphene and transition metal dichalcogenides (TMDs) has provided opportunities to develop ultimate thin channel devices. In contrast to graphene, the existence of moderate band gap and strong spin-orbit coupling gives rise to exotic electronic properties which vary with layer thickness, lattice structure, and symmetry. TMDs commonly appear in two structures with distinct symmetries, trigonal prismatic 2H and octahedral 1T phases which are semiconducting and metallic, respectively. In this work, we investigate the structural and electronic properties of monolayer molybdenum dichalcogenides (MoX2, where X = S, Se, Te) through first-principles density functional calculations. We find a tendency that the semiconducting 2H phase is more stable than the metallic 1T phase. We show that a spontaneous symmetry breaking of 1T phase leads to various distorted octahedral (1T') phases, thus inducing a metal-to-semiconductor transition. We discuss the effects of carrier doping on the structural stability and the modification of the electronic structure. This work was supported by the National Research Foundation of Korea (NRF) under Grant No. NRF-2005-0093845 and Samsung Science and Technology Foundation under Grant No. SSTFBA1401-08.
Dimension Changing Phase Transitions in Instanton Crystals
Kaplunovsky, Vadim
2013-01-01
We investigate lattices of instantons and the dimension-changing transitions between them. Our ultimate goal is the 3d->4D transition, which is holographically dual to the phase transition between the baryonic and the quarkyonic phases of cold nuclear matter. However, in this paper (just as in [1]) we focus on lower dimensions -- the 1D lattice of instantons in a harmonic potential V M_2^2x_2^2+M_3^2x_2^2+M_4^2x_4^2 and the zigzag-shaped lattice as a first stage of the 1D->2D transition. We prove that in the low- and moderate-density regimes, interactions between the instantons are dominated by two-body forces. This drastically simplifies finding the ground state of the instantons' orientations, so we made a numeric scan of the whole orientation space instead of assuming any particular ansatz. We find that depending on the M_2/M_3/M_4 ratios, the ground state of instanton orientations can follow a wide variety of patterns. For the straight 1D lattices, we found orientations periodically running over elements ...
Extracellular ice phase transitions in insects.
Hawes, T C
2014-01-01
At temperatures below their temperature of crystallization (Tc), the extracellular body fluids of insects undergo a phase transition from liquid to solid. Insects that survive the transition to equilibrium (complete freezing of the body fluids) are designated as freeze tolerant. Although this phenomenon has been reported and described in many Insecta, current nomenclature and theory does not clearly delineate between the process of transition (freezing) and the final solid phase itself (the frozen state). Thus freeze tolerant insects are currently, by convention, described in terms of the temperature at which the crystallization of their body fluids is initiated, Tc. In fact, the correct descriptor for insects that tolerate freezing is the temperature of equilibrium freezing, Tef. The process of freezing is itself a separate physical event with unique physiological stresses that are associated with ice growth. Correspondingly there are a number of insects whose physiological cryo-limits are very specifically delineated by this transitional envelope. The distinction also has considerable significance for our understanding of insect cryobiology: firstly, because the ability to manage endogenous ice growth is a fundamental segregator of cryotype; and secondly, because our understanding of internal ice management is still largely nascent.
Holographic phase transitions at finite chemical potential
Mateos, David; Myers, Robert C; Thomson, Rowan M
2007-01-01
Recently holographic techniques have been used to study the thermal properties of N=2 SYM theory, with gauge group SU(Nc) and coupled to Nf Nc Mq there is no phase transition as a function of the temperature and the baryon density is always nonzero. We also compare the present results for the grand canonical ensemble with those for canonical ensemble in which the baryon density is held fixed [1].
Quantum phase transitions in constrained Bose systems
Bonnes, Lars
2011-01-01
This doctoral thesis studies low dimensional quantum systems that can be realized in recent cold atom experiments. From the viewpoint of quantum statistical mechanics, the main emphasis is on the detailed study of the different quantum and thermal phases and their transitions using numerical methods, such as quantum Monte Carlo and the Tensor Network Renormalization Group. The first part of this work deals with a lattice Boson model subject to strong three-body losses. In a quantum-Zeno li...
Recent theoretical advances on superradiant phase transitions
Baksic, Alexandre; Nataf, Pierre; Ciuti, Cristiano
2013-03-01
The Dicke model describing a single-mode boson field coupled to two-level systems is an important paradigm in quantum optics. In particular, the physics of ``superradiant phase transitions'' in the ultrastrong coupling regime is the subject of a vigorous research activity in both cavity and circuit QED. Recently, we explored the rich physics of two interesting generalizations of the Dicke model: (i) A model describing the coupling of a boson mode to two independent chains A and B of two-level systems, where chain A is coupled to one quadrature of the boson field and chain B to the orthogonal quadrature. This original model leads to a quantum phase transition with a double symmetry breaking and a fourfold ground state degeneracy. (ii) A generalized Dicke model with three-level systems including the diamagnetic term. In contrast to the case of two-level atoms for which no-go theorems exist, in the case of three-level system we prove that the Thomas-Reich-Kuhn sum rule does not always prevent a superradiant phase transition.
Dynamical quantum phase transitions (Review Article)
Zvyagin, A. A.
2016-11-01
During recent years the interest to dynamics of quantum systems has grown considerably. Quantum many body systems out of equilibrium often manifest behavior, different from the one predicted by standard statistical mechanics and thermodynamics in equilibrium. Since the dynamics of a many-body quantum system typically involve many excited eigenstates, with a non-thermal distribution, the time evolution of such a system provides an unique way for investigation of non-equilibrium quantum statistical mechanics. Last decade such new subjects like quantum quenches, thermalization, pre-thermalization, equilibration, generalized Gibbs ensemble, etc. are among the most attractive topics of investigation in modern quantum physics. One of the most interesting themes in the study of dynamics of quantum many-body systems out of equilibrium is connected with the recently proposed important concept of dynamical quantum phase transitions. During the last few years a great progress has been achieved in studying of those singularities in the time dependence of characteristics of quantum mechanical systems, in particular, in understanding how the quantum critical points of equilibrium thermodynamics affect their dynamical properties. Dynamical quantum phase transitions reveal universality, scaling, connection to the topology, and many other interesting features. Here we review the recent achievements of this quickly developing part of low-temperature quantum physics. The study of dynamical quantum phase transitions is especially important in context of their connection to the problem of the modern theory of quantum information, where namely non-equilibrium dynamics of many-body quantum system plays the major role.
Superconducting phase transition in STM tips
Energy Technology Data Exchange (ETDEWEB)
Eltschka, Matthias; Jaeck, Berthold; Assig, Maximilian; Etzkorn, Markus; Ast, Christian R. [Max Planck Institute for Solid State Research, Stuttgart (Germany); Kern, Klaus [Max Planck Institute for Solid State Research, Stuttgart (Germany); Ecole Polytechnique Federale de Lausanne (Switzerland)
2015-07-01
The superconducting properties of systems with dimensions comparable to the London penetration depth considerably differ from macroscopic systems. We have studied the superconducting phase transition of vanadium STM tips in external magnetic fields. Employing Maki's theory we extract the superconducting parameters such as the gap or the Zeeman splitting from differential conductance spectra. While the Zeeman splitting follows the theoretical description of a system with s=1/2 and g=2, the superconducting gaps as well as the critical fields depend on the specific tip. For a better understanding of the experimental results, we solve a one dimensional Usadel equation modeling the superconducting tip as a cone with the opening angle α in an external magnetic field. We find that only a small region at the apex of the tip is superconducting in high magnetic fields and that the order of the phase transition is directly determined by α. Further, the spectral broadening increases with α indicating an intrinsic broadening mechanism due to the conical shape of the tip. Comparing these calculations to our experimental results reveals the order of the superconducting phase transition of the STM tips.
Cosmological Backgrounds of Gravitational Waves and eLISA
Dufaux, Jean-Francois
2012-01-01
We review cosmological backgrounds of gravitational waves with a particular attention to the scientific potential of the eLISA/NGO mission. After an overview of cosmological backgrounds and detectors, we consider different cosmological sources that could lead to an observable signal. We then study the backgrounds produced by first-order phase transitions and networks of cosmic strings, assessing the prospects for their detection.
Physical and Relativistic Numerical Cosmology
Directory of Open Access Journals (Sweden)
Peter Anninos
1998-01-01
Full Text Available In order to account for the observable Universe, any comprehensive theory or model of cosmology must draw from many disciplines of physics, including gauge theories of strong and weak interactions, the hydrodynamics and microphysics of baryonic matter, electromagnetic fields, and spacetime curvature, for example. Although it is difficult to incorporate all these physical elements into a single complete model of our Universe, advances in computing methods and technologies have contributed significantly towards our understanding of cosmological models, the Universe, and astrophysical processes within them. A sample of numerical calculations addressing specific issues in cosmology are reviewed in this article: from the Big Bang singularity dynamics to the fundamental interactions of gravitational waves; from the quark--hadron phase transition to the large scale structure of the Universe. The emphasis, although not exclusively, is on those calculations designed to test different models of cosmology against the observed Universe.
Thermal Tachyacoustic Cosmology
Agarwal, Abhineet
2014-01-01
An intriguing possibility that can address pathologies in both early universe cosmology (i.e. the horizon problem) and quantum gravity (i.e. non-renormalizability), is that particles at very high energies and/or temperatures could propagate arbitrarily fast. A concrete realization of this possibility for the early universe is the Tachyacoustic (or Speedy Sound) cosmology, which could also produce a scale-invariant spectrum for scalar cosmological perturbations. Here, we study Thermal Tachyacoustic Cosmology (TTC), i.e. this scenario with thermal initial conditions. We find that a phase transition in the early universe, around the scale of Grand Unified Theories (GUT scale; $T\\sim 10^{15}$ GeV), during which the speed of sound drops by $25$ orders of magnitude within a Hubble time, can fit current CMB observations. We further discuss how production of primordial black holes constrains the cosmological acoustic history, while coupling TTC to Horava-Lifshitz gravity leads to a lower limit on the amplitude of ten...
Thermal tachyacoustic cosmology
Agarwal, Abhineet; Afshordi, Niayesh
2014-08-01
An intriguing possibility that can address pathologies in both early Universe cosmology (i.e. the horizon problem) and quantum gravity (i.e. nonrenormalizability), is that particles at very high energies and/or temperatures could propagate arbitrarily fast. A concrete realization of this possibility for the early Universe is the tachyacoustic (or speedy sound) cosmology, which could also produce a scale-invariant spectrum for scalar cosmological perturbations. Here, we study thermal tachyacoustic cosmology (TTC), i.e. this scenario with thermal initial conditions. We find that a phase transition in the early Universe, around the scale of the grand unified theory (GUT scale; T ˜1015 GeV), during which the speed of sound drops by 25 orders of magnitude within a Hubble time, can fit current CMB observations. We further discuss how production of primordial black holes constrains the cosmological acoustic history, while coupling TTC to Horava-Lifshitz gravity leads to a lower limit on the amplitude of tensor modes (r≳10-3), that are detectable by CMBpol (and might have already been seen by the BICEP-Keck Collaboration).
Sherkatghanad, Zeinab; Mirza, Behrouz; Mirzaiyan, Zahra; Mansoori, Seyed Ali Hosseini
We consider the critical behaviors and phase transitions of Gauss-Bonnet-Born-Infeld-AdS black holes (GB-BI-AdS) for d = 5, 6 and the extended phase space. We assume the cosmological constant, Λ, the coupling coefficient α, and the BI parameter β to be thermodynamic pressures of the system. Having made these assumptions, the critical behaviors are then studied in the two canonical and grand canonical ensembles. We find “reentrant and triple point phase transitions” (RPT-TP) and “multiple reentrant phase transitions” (multiple RPT) with increasing pressure of the system for specific values of the coupling coefficient α in the canonical ensemble. Also, we observe a reentrant phase transition (RPT) of GB-BI-AdS black holes in the grand canonical ensemble and for d = 6. These calculations are then expanded to the critical behavior of Born-Infeld-AdS (BI-AdS) black holes in the third-order of Lovelock gravity and in the grand canonical ensemble to find a van der Waals (vdW) behavior for d = 7 and a RPT for d = 8 for specific values of potential ϕ in the grand canonical ensemble. Furthermore, we obtain a similar behavior for the limit of β →∞, i.e. charged-AdS black holes in the third-order of the Lovelock gravity. Thus, it is shown that the critical behaviors of these black holes are independent of the parameter β in the grand canonical ensemble.
Gravitational Waves from the Phase Transition of a Non-linearly Realised Electroweak Gauge Symmetry
Kobakhidze, Archil; Yue, Jason
2016-01-01
Within the Standard Model with non-linearly realised electroweak symmetry, the LHC Higgs boson may reside in a singlet representation of the gauge group. Several new interactions are then allowed, including anomalous Higgs self-couplings, which may drive the electroweak phase transition to be strongly first-order. In this paper we investigate the cosmological electroweak phase transition in a simplified model with an anomalous Higgs cubic self- coupling. We look at the feasibility of detecting gravitational waves produced during such a transition in the early universe by future space-based experiments. We find that for the range of relatively large cubic couplings, $111~{\\rm GeV}~ \\lesssim |\\kappa| \\lesssim 118~{\\rm GeV}$, $\\sim $mHz frequency gravitational waves can be observed by eLISA, while BBO will potentially be able to detect waves in a wider frequency range, $0.1-10~$mHz.
Phase transitions of ε-HNIW in compound systems
Directory of Open Access Journals (Sweden)
Jing-yuan Zhang
2016-05-01
Full Text Available The heat-induced phase transitions of ε-HNIW, both neat and coated with various additives used in plastic bonded explosives, were investigated using powder X-ray diffraction and differential scanning calorimetry. It was found that ε-HNIW, after being held at 70°C for 60h, remained in the ε-phase. Applying other conditions, various phase transition parameters were determined, including Tc (the critical phase transition temperature, T50 (the temperature at which 50% of the phase transition is complete and T180 (the percentage of γ-HNIW present in samples heated to 180°C. According to the above three parameters, additives were divided into three categories: those that delay phase transition, those that raise the critical temperature and the transition rate, and those that promote the phase transition. Based on the above data, a phase transition mechanism is proposed.
Stability and Existence of Multidimensional Subsonic Phase Transitions
Institute of Scientific and Technical Information of China (English)
Ya-Guang Wang; Zhouping Xin
2003-01-01
The purpose of this paper is to prove the uniform stability of multidimensional subsonic phase transitions satisfying the viscosity-capillarity criterion in a van der Waals fluid, and further to establish the local existence of phase transition solutions.
Holography and the Electroweak Phase Transition
Creminelli, P; Rattazzi, Riccardo; Creminelli, Paolo; Nicolis, Alberto; Rattazzi, Riccardo
2002-01-01
We study through holography the compact Randall-Sundrum (RS) model at finite temperature. In the presence of radius stabilization, the system is described at low enough temperature by the RS solution. At high temperature it is described by the AdS-Schwarzshild solution with an event horizon replacing the TeV brane. We calculate the transition temperature T_c between the two phases and we find it to be somewhat smaller than the TeV scale. Assuming that the Universe starts out at T >> T_c and cools down by expansion, we study the rate of the transition to the RS phase. We find that the transition is too slow and the Universe ends up in an old inflation scenario unless tight bounds are satisfied by the model parameters. In particular we find that the AdS curvature must be comparable to the 5D Planck mass and that the radius stabilization mechanism must lead to a sizeable distortion of the basic RS metric.
Second-order phase transitions of pure substances
Schaftenaar, H.P.C.
2009-01-01
In this report we are dealing with the thermodynamic theory of second-order phase transitions or continuous transitions of unary systems. The first classification of these phase transitions is due to Ehrenfest (1933), based on chemical potentials. First-order transitions are changes in which the der
Landau Theory in the Region of First Order Phase Transitions
Directory of Open Access Journals (Sweden)
O.G. Medvedovskaya
2014-04-01
Full Text Available For the case when the line of the first order phase transitions does not transform into the line of the second order phase transitions, i.e. not as ends with the tricritical point but not with a critical one: critical lines, limiting the region of metastable states, by using the Landau theory of phase transitions were determined.
Scale invariance from phase transitions to turbulence
Lesne, Annick
2012-01-01
During a century, from the Van der Waals mean field description (1874) of gases to the introduction of renormalization group (RG techniques 1970), thermodynamics and statistical physics were just unable to account for the incredible universality which was observed in numerous critical phenomena. The great success of RG techniques is not only to solve perfectly this challenge of critical behaviour in thermal transitions but to introduce extremely useful tools in a wide field of daily situations where a system exhibits scale invariance. The introduction of scaling, scale invariance and universality concepts has been a significant turn in modern physics and more generally in natural sciences. Since then, a new "physics of scaling laws and critical exponents", rooted in scaling approaches, allows quantitative descriptions of numerous phenomena, ranging from phase transitions to earthquakes, polymer conformations, heartbeat rhythm, diffusion, interface growth and roughening, DNA sequence, dynamical systems, chaos ...
Locating phase transitions in computationally hard problems
Indian Academy of Sciences (India)
B Ashok; T K Patra
2010-09-01
We discuss how phase-transitions may be detected in computationally hard problems in the context of anytime algorithms. Treating the computational time, value and utility functions involved in the search results in analogy with quantities in statistical physics, we indicate how the onset of a computationally hard regime can be detected and the transit to higher quality solutions be quantified by an appropriate response function. The existence of a dynamical critical exponent is shown, enabling one to predict the onset of critical slowing down, rather than finding it after the event, in the specific case of a travelling salesman problem (TSP). This can be used as a means of improving efficiency and speed in searches, and avoiding needless computations.
Phase transition in SONFIS&SORST
Owladeghaffari, Hamed
2008-01-01
In this study, we introduce general frame of MAny Connected Intelligent Particles Systems (MACIPS). Connections and interconnections between particles get a complex behavior of such merely simple system (system in system).Contribution of natural computing, under information granulation theory, are the main topics of this spacious skeleton. Upon this clue, we organize two algorithms involved a few prominent intelligent computing and approximate reasoning methods: self organizing feature map (SOM), Neuro- Fuzzy Inference System and Rough Set Theory (RST). Over this, we show how our algorithms can be taken as a linkage of government-society interaction, where government catches various fashions of behavior: solid (absolute) or flexible. So, transition of such society, by changing of connectivity parameters (noise) from order to disorder is inferred. Add to this, one may find an indirect mapping among finical systems and eventual market fluctuations with MACIPS. Keywords: phase transition, SONFIS, SORST, many con...
Dynamical phase transitions in quantum mechanics
Directory of Open Access Journals (Sweden)
Rotter Ingrid
2012-02-01
Full Text Available The nucleus is described as an open many-body quantum system with a non-Hermitian Hamilton operator the eigenvalues of which are complex, in general. The eigenvalues may cross in the complex plane (exceptional points, the phases of the eigenfunctions are not rigid in approaching the crossing points and the widths bifurcate. By varying only one parameter, the eigenvalue trajectories usually avoid crossing and width bifurcation occurs at the critical value of avoided crossing. An analog spectroscopic redistribution takes place for discrete states below the particle decay threshold. By this means, a dynamical phase transition occurs in the many-level system starting at a critical value of the level density. Hence the properties of the low-lying nuclear states (described well by the shell model and those of highly excited nuclear states (described by random ensembles differ fundamentally from one another. The statement of Niels Bohr on the collective features of compound nucleus states at high level density is therefore not in contradiction to the shell-model description of nuclear (and atomic states at low level density. Dynamical phase transitions are observed experimentally in different quantum mechanical systems by varying one or two parameters.
Phases and phase transitions in the algebraic microscopic shell model
Directory of Open Access Journals (Sweden)
Georgieva A. I.
2016-01-01
Full Text Available We explore the dynamical symmetries of the shell model number conserving algebra, which define three types of pairing and quadrupole phases, with the aim to obtain the prevailing phase or phase transition for the real nuclear systems in a single shell. This is achieved by establishing a correspondence between each of the pairing bases with the Elliott’s SU(3 basis that describes collective rotation of nuclear systems. This allows for a complete classification of the basis states of different number of particles in all the limiting cases. The probability distribution of the SU(3 basis states within theirs corresponding pairing states is also obtained. The relative strengths of dynamically symmetric quadrupole-quadrupole interaction in respect to the isoscalar, isovector and total pairing interactions define a control parameter, which estimates the importance of each term of the Hamiltonian in the correct reproduction of the experimental data for the considered nuclei.
Decaying Domain Walls in an Extended Gravity Model and Cosmology
Shiraishi, Kiyoshi
2013-01-01
We investigate cosmological consequences of an extended gravity model which belongs to the same class studied by Accetta and Steinhardt in an extended inflationary scenario. But we do not worry about inflation in our model; instead, we focus on a topological object formed during cosmological phase transitions. Although domain walls appear during first-order phase transitions such as QCD transition, they decay at the end of the phase transition. Therefore the "domain wall problem" does not exist in the suitable range of pameters and, on the contrary, the "fragments" of walls may become seeds of dark matter. A possible connection to "oscillating universe" model offered by Morikawa et al. is also discussed.
Chiral phase transition from string theory.
Parnachev, Andrei; Sahakyan, David A
2006-09-15
The low energy dynamics of a certain D-brane configuration in string theory is described at weak t'Hooft coupling by a nonlocal version of the Nambu-Jona-Lasinio model. We study this system at finite temperature and strong t'Hooft coupling, using the string theory dual. We show that for sufficiently low temperatures chiral symmetry is broken, while for temperatures larger then the critical value, it gets restored. We compute the latent heat and observe that the phase transition is of the first order.
Melonic phase transition in group field theory
Baratin, Aristide; Oriti, Daniele; Ryan, James P; Smerlak, Matteo
2013-01-01
Group field theories have recently been shown to admit a 1/N expansion dominated by so-called `melonic graphs', dual to triangulated spheres. In this note, we deepen the analysis of this melonic sector. We obtain a combinatorial formula for the melonic amplitudes in terms of a graph polynomial related to a higher dimensional generalization of the Kirchhoff tree-matrix theorem. Simple bounds on these amplitudes show the existence of a phase transition driven by melonic interaction processes. We restrict our study to the Boulatov-Ooguri models, which describe topological BF theories and are the basis for the construction of four dimensional models of quantum gravity.
Observables of non-equilibrium phase transition
Tomasik, Boris; Melo, Ivan; Kopecna, Renata
2015-01-01
Rapidly expanding fireball which undergoes first-order phase transition will supercool and proceed via spinodal decomposition. Hadrons are produced from the individual fragments as well as leftover matter filling the space between them. Emission from fragments should be visible in rapidity correlations, particularly of protons. Also, even within narrow centrality classes, rapidity distributions will be fluctuating from one event to another in case of fragmentation. This can be identified with the help of Kolmogorov-Smirnov test. Finally, a method is presented which allows to sort events with varying rapidity distributions in such a way, that events with similar rapidity histograms are grouped together.
Early Work on Defect Driven Phase Transitions
Kosterlitz, J. Michael; Thouless, David J.
2016-12-01
This article summarizes the early history of the theory of phase transitions driven by topological defects, such as vortices in superfluid helium films or dislocations and disclinations in two-dimensional solids. We start with a review of our two earliest papers, pointing out their errors and omissions as well as their insights. We then describe the work, partly done by Kosterlitz but mostly done by other people, which corrected these oversights, and applied these ideas to experimental systems, and to numerical and experimental simulations.
Berry phase transition in twisted bilayer graphene
Rode, Johannes C.; Smirnov, Dmitri; Schmidt, Hennrik; Haug, Rolf J.
2016-09-01
The electronic dispersion of a graphene bilayer is highly dependent on rotational mismatch between layers and can be further manipulated by electrical gating. This allows for an unprecedented control over electronic properties and opens up the possibility of flexible band structure engineering. Here we present novel magnetotransport data in a twisted bilayer, crossing the energetic border between decoupled monolayers and coupled bilayer. In addition a transition in Berry phase between π and 2π is observed at intermediate magnetic fields. Analysis of Fermi velocities and gate induced charge carrier densities suggests an important role of strong layer asymmetry for the observed phenomena.
Adiabatic quantum computation and quantum phase transitions
Latorre, J I; Latorre, Jose Ignacio; Orus, Roman
2003-01-01
We analyze the ground state entanglement in a quantum adiabatic evolution algorithm designed to solve the NP-complete Exact Cover problem. The entropy of entanglement seems to obey linear and universal scaling at the point where the mass gap becomes small, suggesting that the system passes near a quantum phase transition. Such a large scaling of entanglement suggests that the effective connectivity of the system diverges as the number of qubits goes to infinity and that this algorithm cannot be efficiently simulated by classical means. On the other hand, entanglement in Grover's algorithm is bounded by a constant.
Phase transition equilibrium of terthiophene isomers
Energy Technology Data Exchange (ETDEWEB)
Costa, Jose C.S.; Lima, Carlos F.R.A.C.; Rocha, Marisa A.A. [Centro de Investigacao em Quimica, Departamento de Quimica e Bioquimica, Faculdade de Ciencias da Universidade do Porto, Rua do Campo Alegre, 687, P-4169-007 Porto (Portugal); Gomes, Ligia R. [CIAGEB, Faculdade de Ciencias de Saude Escola Superior de Saude da UFP, Universidade Fernando Pessoa, Rua Carlos da Maia, 296, P-4200-150 Porto (Portugal); REQUIMTE, Departamento de Quimica e Bioquimica, Faculdade de Ciencias, Universidade do Porto, Rua do Campo Alegre, 687, P-4169-007 Porto (Portugal); Santos, Luis M.N.B.F., E-mail: lbsantos@fc.up.p [Centro de Investigacao em Quimica, Departamento de Quimica e Bioquimica, Faculdade de Ciencias da Universidade do Porto, Rua do Campo Alegre, 687, P-4169-007 Porto (Portugal)
2011-02-15
The thermodynamic study of the phase transition (fusion and sublimation) of 2,2':5',2''-terthiophene and 3,2':5',3''-terthiophene is presented. The obtained data is used to evaluate the (solid + liquid) and (solid + gas) phase equilibrium, and draw the phase diagrams of the pure compounds near the triple point coordinates. For each compound the vapour pressures at different temperatures were measured by a combined Knudsen effusion method with a vacuum quartz crystal microbalance. Based on the previous results, the standard molar enthalpies, entropies and Gibbs energies of sublimation were derived at T = 298.15 K. For the two terthiophenes and for 3,3'-bithiophene, the temperature, and the molar enthalpies of fusion were measured in a power compensated differential scanning calorimetry. The relationship between structure and energetics is discussed based on the experimental results, ab initio calculations and previous literature data for 2,2'-bithiophene and 3,3'-bithiophene. The 3,2':5',3''-terthiophene shows a higher solid phase stability than the 2,2':5',2''-terthiophene isomer arising from the higher cohesive energy due to positioning of the sulphur atom in the thiophene ring. The higher phase stability of 3,3'-bithiophene relative to 2,2'-bithiophene isomer is also related to its higher absolute entropy in the solid phase associated with the ring positional degeneracy observed in the crystal structure of this isomer. A significant differentiation in the crystal phase stability between isomers was found.
Topological phase transitions in superradiance lattices
Wang, Da-Wei; Yuan, Luqi; Liu, Ren-Bao; Zhu, Shi-Yao
2015-01-01
The discovery of the quantum Hall effect (QHE) reveals a new class of matter phases, topological insulators (TI's), which have been extensively studied in solid-state materials and recently in photonic structures, time-periodic systems and optical lattices of cold atoms. All these topological systems are lattices in real space. Our recent study shows that Scully's timed Dicke states (TDS) can form a superradiance lattice (SL) in momentum space. Here we report the discovery of topological phase transitions in a two-dimensional SL in electromagnetically induced transparency (EIT). By periodically modulating the three EIT coupling fields, we can create a Haldane model with in-situ tunable topological properties. The Chern numbers of the energy bands and hence the topological properties of the SL manifest themselves in the contrast between diffraction signals emitted by superradiant TDS. The topological superradiance lattices (TSL) provide a controllable platform for simulating exotic phenomena in condensed matte...
Transitional Phenomena on Phase Change Materials
Directory of Open Access Journals (Sweden)
Wójcik Tadeusz M.
2014-03-01
Full Text Available One of the most significant problem with technology development is transferring of large heat fluxes, which requires constant heat transfer temperature (in the specified temperature range. This problem concern mainly the nuclear energetics, space technologies, military technologies and most of all electronics containing integrated circuits with very large scale of integrations. Intensive heat transfer and thermal energy storage are possible by the use of phase change materials (PCMs. In the paper there are presented preliminary results of research on the use of liquid-gas (L-G PCMs and solid-solid phase change materials (S-S PCMs. For L-G PCMs the boiling characteristics were determined by increasing and decreasing the heat flux, which for certain sets of structural parameters of the heating surface and the physical properties of the liquid induce a variety of forms of transitional phenomena. Thermal energy storage is much more effective when using PCMs than sensible heat.
Phase transitions in fluids and biological systems
Sipos, Maksim
metric to 16S rRNA metagenomic studies of 6 vertebrate gastrointestinal microbiomes and find that they assembled through a highly non-neutral process. I then consider a phase transition that may occur in nutrient-poor environments such as ocean surface waters. In these systems, I find that the experimentally observed genome streamlining, specialization and opportunism may well be generic statistical phenomena.
On Phase Transition of Compressed Sensing in the Complex Domain
Yang, Zai; Xie, Lihua
2011-01-01
The phase transition is a performance measure of the sparsity-undersampling tradeoff in compressed sensing (CS). This letter reports, for the first time, the existence of an exact phase transition for the $\\ell_1$ minimization approach to the complex valued CS problem. This discovery is not only a complementary result to the known phase transition of the real valued CS but also shows considerable superiority of the phase transition of complex valued CS over that of the real valued CS. The results are obtained by extending the recently developed ONE-L1 algorithms to complex valued CS and applying their optimal and iterative solutions to empirically evaluate the phase transition.
Nuclear Binding Near a Quantum Phase Transition
Elhatisari, Serdar; Li, Ning; Rokash, Alexander; Alarcón, Jose Manuel; Du, Dechuan; Klein, Nico; Lu, Bing-nan; Meißner, Ulf-G.; Epelbaum, Evgeny; Krebs, Hermann; Lähde, Timo A.; Lee, Dean; Rupak, Gautam
2016-09-01
How do protons and neutrons bind to form nuclei? This is the central question of ab initio nuclear structure theory. While the answer may seem as simple as the fact that nuclear forces are attractive, the full story is more complex and interesting. In this work we present numerical evidence from ab initio lattice simulations showing that nature is near a quantum phase transition, a zero-temperature transition driven by quantum fluctuations. Using lattice effective field theory, we perform Monte Carlo simulations for systems with up to twenty nucleons. For even and equal numbers of protons and neutrons, we discover a first-order transition at zero temperature from a Bose-condensed gas of alpha particles (4He nuclei) to a nuclear liquid. Whether one has an alpha-particle gas or nuclear liquid is determined by the strength of the alpha-alpha interactions, and we show that the alpha-alpha interactions depend on the strength and locality of the nucleon-nucleon interactions. This insight should be useful in improving calculations of nuclear structure and important astrophysical reactions involving alpha capture on nuclei. Our findings also provide a tool to probe the structure of alpha cluster states such as the Hoyle state responsible for the production of carbon in red giant stars and point to a connection between nuclear states and the universal physics of bosons at large scattering length.
Nuclear binding near a quantum phase transition
Elhatisari, Serdar; Rokash, Alexander; Alarcón, Jose Manuel; Du, Dechuan; Klein, Nico; Lu, Bing-nan; Meißner, Ulf-G; Epelbaum, Evgeny; Krebs, Hermann; Lähde, Timo A; Lee, Dean; Rupak, Gautam
2016-01-01
How do protons and neutrons bind to form nuclei? This is the central question of ab initio nuclear structure theory. While the answer may seem as simple as the fact that nuclear forces are attractive, the full story is more complex and interesting. In this work we present numerical evidence from ab initio lattice simulations showing that nature is near a quantum phase transition, a zero-temperature transition driven by quantum fluctuations. Using lattice effective field theory, we perform Monte Carlo simulations for systems with up to twenty nucleons. For even and equal numbers of protons and neutrons, we discover a first-order transition at zero temperature from a Bose-condensed gas of alpha particles (4He nuclei) to a nuclear liquid. Whether one has an alpha-particle gas or nuclear liquid is determined by the strength of the alpha-alpha interactions, and we show that the alpha-alpha interactions depend on the strength and locality of the nucleon-nucleon interactions. The existence of the nearby first-order ...
Phase transition in the ABC model
Clincy, M.; Derrida, B.; Evans, M. R.
2003-06-01
Recent studies have shown that one-dimensional driven systems can exhibit phase separation even if the dynamics is governed by local rules. The ABC model, which comprises three particle species that diffuse asymmetrically around a ring, shows anomalous coarsening into a phase separated steady state. In the limiting case in which the dynamics is symmetric and the parameter q describing the asymmetry tends to one, no phase separation occurs and the steady state of the system is disordered. In the present work, we consider the weak asymmetry regime q=exp(-β/N), where N is the system size, and study how the disordered state is approached. In the case of equal densities, we find that the system exhibits a second-order phase transition at some nonzero βc. The value of βc=2π(3) and the optimal profiles can be obtained by writing the exact large deviation functional. For nonequal densities, we write down mean-field equations and analyze some of their predictions.
Phase transitions in Thirring’s model
Campa, Alessandro; Casetti, Lapo; Latella, Ivan; Pérez-Madrid, Agustín; Ruffo, Stefano
2016-07-01
In his pioneering work on negative specific heat, Walter Thirring introduced a model that is solvable in the microcanonical ensemble. Here, we give a complete description of the phase-diagram of this model in both the microcanonical and the canonical ensemble, highlighting the main features of ensemble inequivalence. In both ensembles, we find a line of first-order phase transitions which ends in a critical point. However, neither the line nor the point have the same location in the phase-diagram of the two ensembles. We also show that the microcanonical and canonical critical points can be analytically related to each other using a Landau expansion of entropy and free energy, respectively, in analogy with what has been done in (Cohen and Mukamel 2012 J. Stat. Mech. P12017). Examples of systems with certain symmetries restricting the Landau expansion have been considered in this reference, while no such restrictions are present in Thirring’s model. This leads to a phase diagram that can be seen as a prototype for what happens in systems of particles with kinematic degrees of freedom dominated by long-range interactions.
Spinor Field at the Phase Transition Point of Reissner-Nordström de Sitter Space
Lyu, Yan; Zhang, Li-Qing; Zheng, Wei; Pan, Qing-Chao
2010-08-01
The radial parts of Dirac equation between the outer black hole horizon and the cosmological horizon are solved in Reissner-Nordström de Sitter (RNdS) space when it is at the phase transition point. We use an accurate polynomial approximation to approximate the modified tortoise coordinate hat{r}_{*} in order to get the inverse function r=r(hat{r}_{*}) and the potential V(hat{r}_{*}). Then we use a quantum mechanical method to solve the wave equation numerically. We consider two cases, one is when the two horizons are lying close to each other, the other is when the two horizons are widely separated.
Baryon number diffusion and instabilities in the quark/hadron phase transition
Adams, F C; Langer, J S; Adams, Fred C.; Freese, Katherine
1992-01-01
Hadron bubbles that nucleate with radius $R_{nuc}$ in a quark sea (if the phase transition is first order) are shown to be unstable to the growth of nonspherical structure when the bubble radii exceed a critical size of $20 - 10^3$ $R_{nuc}$. This instability is driven by a very thin layer of slowly diffusing excess baryon number that forms on the surface of the bubble wall and limits its growth. This instability occurs on a shorter length scale than those studied previously and these effects can thus be important for both cosmology and heavy ion collisions.
Multifractality and Network Analysis of Phase Transition
Li, Wei; Yang, Chunbin; Han, Jihui; Su, Zhu; Zou, Yijiang
2017-01-01
Many models and real complex systems possess critical thresholds at which the systems shift dramatically from one sate to another. The discovery of early-warnings in the vicinity of critical points are of great importance to estimate how far the systems are away from the critical states. Multifractal Detrended Fluctuation analysis (MF-DFA) and visibility graph method have been employed to investigate the multifractal and geometrical properties of the magnetization time series of the two-dimensional Ising model. Multifractality of the time series near the critical point has been uncovered from the generalized Hurst exponents and singularity spectrum. Both long-term correlation and broad probability density function are identified to be the sources of multifractality. Heterogeneous nature of the networks constructed from magnetization time series have validated the fractal properties. Evolution of the topological quantities of the visibility graph, along with the variation of multifractality, serve as new early-warnings of phase transition. Those methods and results may provide new insights about the analysis of phase transition problems and can be used as early-warnings for a variety of complex systems. PMID:28107414
Rugh, Svend E
2016-01-01
We provide a discussion of some main ideas in our project about the physical foundation of the time concept in cosmology. It is standard to point to the Planck scale (located at $\\sim 10^{-43}$ seconds after a fictitious "Big Bang" point) as a limit for how far back we may extrapolate the standard cosmological model. In our work we have suggested that there are several other (physically motivated) interesting limits -- located at least thirty orders of magnitude before the Planck time -- where the physical basis of the cosmological model and its time concept is progressively weakened. Some of these limits are connected to phase transitions in the early universe which gradually undermine the notion of 'standard clocks' widely employed in cosmology. Such considerations lead to a 'scale problem' for time which becomes particularly acute above the electroweak phase transition (before $\\sim 10^{-11}$ seconds). Other limits are due to problems of building up a cosmological reference frame, or even contemplating a s...
Stress induced phase transitions in silicon
Budnitzki, M.; Kuna, M.
2016-10-01
Silicon has a tremendous importance as an electronic, structural and optical material. Modeling the interaction of a silicon surface with a pointed asperity at room temperature is a major step towards the understanding of various phenomena related to brittle as well as ductile regime machining of this semiconductor. If subjected to pressure or contact loading, silicon undergoes a series of stress-driven phase transitions accompanied by large volume changes. In order to understand the material's response for complex non-hydrostatic loading situations, dedicated constitutive models are required. While a significant body of literature exists for the dislocation dominated high-temperature deformation regime, the constitutive laws used for the technologically relevant rapid low-temperature loading have severe limitations, as they do not account for the relevant phase transitions. We developed a novel finite deformation constitutive model set within the framework of thermodynamics with internal variables that captures the stress induced semiconductor-to-metal (cd-Si → β-Si), metal-to-amorphous (β-Si → a-Si) as well as amorphous-to-amorphous (a-Si → hda-Si, hda-Si → a-Si) transitions. The model parameters were identified in part directly from diamond anvil cell data and in part from instrumented indentation by the solution of an inverse problem. The constitutive model was verified by successfully predicting the transformation stress under uniaxial compression and load-displacement curves for different indenters for single loading-unloading cycles as well as repeated indentation. To the authors' knowledge this is the first constitutive model that is able to adequately describe cyclic indentation in silicon.
Uniaxial Phase Transition in Si : Ab initio Calculations
Cheng, C.
2002-01-01
Based on a previously proposed thermodynamic analysis, we study the relative stabilities of five Si phases under uniaxial compression using ab initio methods. The five phases are diamond, beta-tin, sh, sc, and hcp structures. The possible phase-transition patterns were investigated by considering the phase transitions between any two chosen phases of the five phases. By analyzing the different conributions to the relative pahse stability, we identified the most important factors in reducing t...
Universal space-time scaling symmetry in the dynamics of bosons across a quantum phase transition
Clark, Logan W; Chin, Cheng
2016-01-01
The dynamics of many-body systems spanning condensed matter, cosmology, and beyond is hypothesized to be universal when the systems cross continuous phase transitions. The universal dynamics is expected to satisfy a scaling symmetry of space and time with the crossing rate, inspired by the Kibble-Zurek mechanism. We test this symmetry based on Bose condensates in a shaken optical lattice. Shaking the lattice drives condensates across an effectively ferromagnetic quantum phase transition. After crossing the critical point, the condensates manifest delayed growth of spin fluctuations and develop anti-ferromagnetic spatial correlations resulting from sub-Poisson generation of topological defects. The characteristic times and lengths scale as power-laws of the crossing rate, yielding the temporal exponent 0.50(2) and the spatial exponent 0.26(2), consistent with theory. Furthermore, the fluctuations and correlations are invariant in scaled space-time coordinates, in support of the scaling symmetry of quantum crit...
Zhang, Li-Chun; Zhao, Hui-Hua; Zhao, Ren
2014-01-01
It is well known that there are black hole and the cosmological horizons for the Reissner-Nordstr\\"{o}m-de Sitter spacetime. Although the thermodynamic quantities on the horizons are not irrelevant, they satisfy the laws of black hole thermodynamics respectively. In this paper by considering the relations between the two horizons we give the effective thermodynamic quantities in $(n+2)$-dimensional Reissner-Nordstr\\"{o}m-de Sitter spacetime. The thermodynamic properties of these effective quantities are analyzed, moreover, the critical temperature, critical pressure and critical volume are obtained. We carry out an analytical check of Ehrenfest equations and prove that both Ehrenfest equations are satisfied. So the spacetime undergoes a second order phase transition at the critical point. This result is consistent with the nature of liquid--gas phase transition at the critical point, hence deepening the understanding of the analogy of charged dS spacetime and liquid--gas systems.
The Higgs Portal and Cosmology
Energy Technology Data Exchange (ETDEWEB)
Assamagan, Ketevi [Brookhaven National Lab. (BNL), Upton, NY (United States); Chen, Chien-Yi [Perimeter Inst. for Theoretical Physics, Waterloo, ON (Canada); Univ. of Victoria, BC (Canada); Chou, John Paul [Rutgers Univ., Piscataway, NJ (United States); Curtin, David [Univ. of Maryland, College Park, MD (United States); Fedderke, Michael A. [Univ. of Chicago, IL (United States); Gershtein, Yuri [Rutgers Univ., Piscataway, NJ (United States); He, Xiao-Gang [Shanghai Jiao Tong Univ. (China); Klute, Markus [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Kozaczuk, Jonathon [TRIUMF, Vancouver, BC (Canada); Kotwal, Ashutosh [Duke Univ., Durham, NC (United States); Lowette, Steven [Vrije Univ., Brussels (Belgium); No, Jose Miguel [Univ. of Sussex, Brighton (United Kingdom); Plehn, Tilman [Heidelberg Univ. (Germany); Qian, Jianming [Univ. of Michigan, Ann Arbor, MI (United States); Ramsey-Musolf, Michael [Univ. of Massachusetts, Amherst, MA (United States); Safonov, Alexei [Texas A & M Univ., College Station, TX (United States); Shelton, Jessie [Univ. of Illinois, Urbana-Champaign, IL (United States); Spannowsky, Michael [Durham Univ. (United Kingdom); Su, Shufang [Univ. of Arizona, Tucson, AZ (United States); Walker, Devin G. E. [Univ. of Washington, Seattle, WA (United States); Willocq, Stephane [Univ. of Massachusetts, Amherst, MA (United States); Winslow, Peter [Univ. of Massachusetts, Amherst, MA (United States)
2016-04-18
Higgs portal interactions provide a simple mechanism for addressing two open problems in cosmology: dark matter and the baryon asymmetry. In the latter instance, Higgs portal interactions may contain the ingredients for a strong first-order electroweak phase transition as well as new CP-violating interactions as needed for electroweak baryogenesis. These interactions may also allow for a viable dark matter candidate. We survey the opportunities for probing the Higgs portal as it relates to these questions in cosmology at the LHC and possible future colliders.
The Higgs Portal and Cosmology
Energy Technology Data Exchange (ETDEWEB)
Assamagan, Ketevi [Brookhaven National Lab. (BNL), Upton, NY (United States); Chen, Chien-Yi [Perimeter Inst. for Theoretical Physics, Waterloo, ON (Canada); Univ. of Victoria, BC (Canada); Chou, John Paul [Rutgers Univ., Piscataway, NJ (United States); Curtin, David [Univ. of Maryland, College Park, MD (United States); Fedderke, Michael A. [Univ. of Chicago, IL (United States); Gershtein, Yuri [Rutgers Univ., Piscataway, NJ (United States); He, Xiao-Gang [Shanghai Jiao Tong Univ. (China); Klute, Markus [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Kozaczuk, Jonathon [TRIUMF, Vancouver, BC (Canada); Kotwal, Ashutosh [Duke Univ., Durham, NC (United States); Lowette, Steven [Vrije Univ., Brussels (Belgium); No, Jose Miguel [Univ. of Sussex, Brighton (United Kingdom); Plehn, Tilman [Heidelberg Univ. (Germany); Qian, Jianming [Univ. of Michigan, Ann Arbor, MI (United States); Ramsey-Musolf, Michael [Univ. of Massachusetts, Amherst, MA (United States); Safonov, Alexei [Texas A & M Univ., College Station, TX (United States); Shelton, Jessie [Univ. of Illinois, Urbana-Champaign, IL (United States); Spannowsky, Michael [Durham Univ. (United Kingdom); Su, Shufang [Univ. of Arizona, Tucson, AZ (United States); Walker, Devin G. E. [Univ. of Washington, Seattle, WA (United States); Willocq, Stephane [Univ. of Massachusetts, Amherst, MA (United States); Winslow, Peter [Univ. of Massachusetts, Amherst, MA (United States)
2016-04-18
Higgs portal interactions provide a simple mechanism for addressing two open problems in cosmology: dark matter and the baryon asymmetry. In the latter instance, Higgs portal interactions may contain the ingredients for a strong first order electroweak phase transition as well as new CP-violating interactions as needed for electroweak baryogenesis. These interactions may also allow for a viable dark matter candidate. We survey the opportunities for probing the Higgs portal as it relates to these questions in cosmology at the LHC and possible future colliders.
The Higgs Portal and Cosmology
Assamagan, Ketevi; Chou, John Paul; Curtin, David; Fedderke, Michael A; Gershtein, Yuri; He, Xiao-Gang; Klute, Markus; Kozaczuk, Jonathan; Kotwal, Ashutosh; Lowette, Steven; No, Jose Miguel; Plehn, Tilman; Qian, Jianming; Ramsey-Musolf, Michael; Safonov, Alexei; Shelton, Jessie; Spannowsky, Michael; Su, Shufang; Walker, Devin G E; Willocq, Stephane; Winslow, Peter
2016-01-01
Higgs portal interactions provide a simple mechanism for addressing two open problems in cosmology: dark matter and the baryon asymmetry. In the latter instance, Higgs portal interactions may contain the ingredients for a strong first order electroweak phase transition as well as new CP-violating interactions as needed for electroweak baryogenesis. These interactions may also allow for a viable dark matter candidate. We survey the opportunities for probing the Higgs portal as it relates to these questions in cosmology at the LHC and possible future colliders.
Exotic quantum phase transitions of strongly interacting topological insulators
Slagle, Kevin; You, Yi-Zhuang; Xu, Cenke
2015-03-01
Using determinant quantum Monte Carlo simulations, we demonstrate that an extended Hubbard model on a bilayer honeycomb lattice has two novel quantum phase transitions. The first is a quantum phase transition between the weakly interacting gapless Dirac fermion phase and a strongly interacting fully gapped and symmetric trivial phase, which cannot be described by the standard Gross-Neveu model. The second is a quantum critical point between a quantum spin Hall insulator with spin Sz conservation and the previously mentioned strongly interacting fully gapped phase. At the latter quantum critical point the single-particle excitations remain gapped, while spin and charge gaps both close. We argue that the first quantum phase transition is related to the Z16 classification of the topological superconductor 3He-B phase with interactions, while the second quantum phase transition is a topological phase transition described by a bosonic O (4 ) nonlinear sigma model field theory with a Θ term.
Dynamical phase transitions in the two-dimensional ANNNI model
Energy Technology Data Exchange (ETDEWEB)
Barber, M.N.; Derrida, B.
1988-06-01
We study the phase diagram of the two-dimensional anisotropic next-nearest neighbor Ising (ANNNI) model by comparing the time evolution of two distinct spin configurations submitted to the same thermal noise. We clearly se several dynamical transitions between ferromagnetic, paramagnetic, antiphase, and floating phases. These dynamical transitions seem to occur rather close to the transition lines determined previously in the literature.
Magnetocaloric materials and first order phase transitions
DEFF Research Database (Denmark)
Neves Bez, Henrique
of the properties of such materials.The experimental characterization of these materials is done through various different methods, such as X-ray diffraction, magnetometry, calorimetry, direct measurements of entropy change, capacitance dilatometry, scanning electron microscopy,energy-dispersive X-ray spectrometry......This thesis studies the first order phase transitions of the magnetocaloric materials La0.67Ca0.33MnO3 and La(Fe,Mn,Si)13Hz trying to overcome challenges that these materials face when applied in active magnetic regenerators. The study is done through experimental characterization and modelling...... and magnetocaloric regenerative tests. The magnetic, thermal and structural properties obtained from such measurements are then evaluated through different models, i.e. the Curie-Weiss law, the Bean-Rodbell model, the free electron model and the Debye model.The measured magnetocaloric properties of La0.67Ca0.33MnO3...
Information Dynamics at a Phase Transition
Sowinski, Damian
2016-01-01
We propose a new way of investigating phase transitions in the context of information theory. We use an information-entropic measure of spatial complexity known as configurational entropy (CE) to quantify both the storage and exchange of information in a lattice simulation of a Ginzburg-Landau model with a scalar order parameter coupled to a heat bath. The CE is built from the Fourier spectrum of fluctuations around the mean-field and reaches a minimum at criticality. In particular, we investigate the behavior of CE near and at criticality, exploring the relation between information and the emergence of ordered domains. We show that as the temperature is increased from below, the CE displays three essential scaling regimes at different spatial scales: scale free, turbulent, and critical. Together, they offer an information-entropic characterization of critical behavior where the storage and processing of information is maximized at criticality.
The phase transition of Axelrod's model revisited
Reia, Sandro M
2016-01-01
Axelrod's model with $F=2$ cultural features, where each feature can assume $k$ states drawn from a Poisson distribution of parameter $q$, exhibits a continuous nonequilibrium phase transition in the square lattice. Here we use extensive Monte Carlo simulations and finite size scaling to study the critical behavior of the order parameter $\\rho$, which is the fraction of sites that belong to the largest domain of an absorbing configuration averaged over many runs. We find that it vanishes as $\\rho \\sim \\left (q_c^0 - q \\right)^\\beta$ with $\\beta \\approx 0.25$ at the critical point $q_c^0 \\approx 3.10$ and that the exponent that measures the width of the critical region is $\
Switchable Metal-Insulator Phase Transition Metamaterials.
Hajisalem, Ghazal; Nezami, Mohammadreza S; Gordon, Reuven
2017-05-10
We investigate the switching of a gap plasmon tunnel junction between conducting and insulating states. Hysteresis is observed in the second and the third harmonic generation power dependence, which arises by thermally induced disorder ("melting") of a two-carbon self-assembled monolayer between an ultraflat gold surface and metal nanoparticles. The hysteresis is observed for a variety of nanoparticle sizes, but not for larger tunnel junctions where there is no appreciable tunneling. By combining quantum corrected finite-difference time-domain simulations with nonlinear scattering theory, we calculate the changes in the harmonic generation between the tunneling and the insulating states, and good agreement is found with the experiments. This paves the way to a new class of metal-insulator phase transition switchable metamaterials, which may provide next-generation information processing technologies.
Phase transitions in open quantum systems
Jung, C; Rotter, I
1999-01-01
We consider the behaviour of open quantum systems in dependence on the coupling to one decay channel by introducing the coupling parameter $\\alpha$ being proportional to the average degree of overlapping. Under critical conditions, a reorganization of the spectrum takes place which creates a bifurcation of the time scales with respect to the lifetimes of the resonance states. We derive analytically the conditions under which the reorganization process can be understood as a second-order phase transition and illustrate our results by numerical investigations. The conditions are fulfilled e.g. for a picket fence with equal coupling of the states to the continuum. Energy dependencies within the system are included. We consider also the generic case of an unfolded Gaussian Orthogonal Ensemble. In all these cases, the reorganization of the spectrum occurs at the critical value $\\alpha_{crit}$ of the control parameter globally over the whole energy range of the spectrum. All states act cooperatively.
Observables of non-equilibrium phase transition
Energy Technology Data Exchange (ETDEWEB)
Tomasik, Boris [Univerzita Mateja Bela, FPV, Banska Bystrica (Slovakia); Ceske vysoke uceni technicke v Praze, FJFI, Prague (Czech Republic); Schulc, Martin; Kopecna, Renata [Ceske vysoke uceni technicke v Praze, FJFI, Prague (Czech Republic); Melo, Ivan [Univerzita Mateja Bela, FPV, Banska Bystrica (Slovakia); Zilinska univerzita, Elektrotechnicka fakulta, Zilina (Slovakia)
2016-08-15
A rapidly expanding fireball which undergoes first-order phase transition will supercool and proceed via spinodal decomposition. Hadrons are produced from the individual fragments as well as the left-over matter filling the space between them. Emission from fragments should be visible in rapidity correlations, particularly of protons. In addition to that, even within narrow centrality classes, rapidity distributions will be fluctuating from one event to another in case of fragmentation. This can be identified with the help of the Kolmogorov-Smirnov test. Finally, we present a method which allows to sort events with varying rapidity distributions, in such a way that events with similar rapidity histograms are grouped together. (orig.)
Scaling theory of topological phase transitions
Chen, Wei
2016-02-01
Topologically ordered systems are characterized by topological invariants that are often calculated from the momentum space integration of a certain function that represents the curvature of the many-body state. The curvature function may be Berry curvature, Berry connection, or other quantities depending on the system. Akin to stretching a messy string to reveal the number of knots it contains, a scaling procedure is proposed for the curvature function in inversion symmetric systems, from which the topological phase transition can be identified from the flow of the driving energy parameters that control the topology (hopping, chemical potential, etc) under scaling. At an infinitesimal operation, one obtains the renormalization group (RG) equations for the driving energy parameters. A length scale defined from the curvature function near the gap-closing momentum is suggested to characterize the scale invariance at critical points and fixed points, and displays a universal critical behavior in a variety of systems examined.
Information Dynamics at a Phase Transition
Sowinski, Damian; Gleiser, Marcelo
2017-03-01
We propose a new way of investigating phase transitions in the context of information theory. We use an information-entropic measure of spatial complexity known as configurational entropy (CE) to quantify both the storage and exchange of information in a lattice simulation of a Ginzburg-Landau model with a scalar order parameter coupled to a heat bath. The CE is built from the Fourier spectrum of fluctuations around the mean-field and reaches a minimum at criticality. In particular, we investigate the behavior of CE near and at criticality, exploring the relation between information and the emergence of ordered domains. We show that as the temperature is increased from below, the CE displays three essential scaling regimes at different spatial scales: scale free, turbulent, and critical. Together, they offer an information-entropic characterization of critical behavior where the storage and fidelity of information processing is maximized at criticality.
Valleytronics and phase transition in silicene
Aftab, Tayyaba
2017-03-01
Magnetic and transport properties of silicene in the presence of perpendicular electromagnetic fields and a ferromagnetic material are studied. It is shown that for small exchange field, the magnetic moment associated with each valley is opposite for the other and it gives a shift in band energy, by a Zeeman-like coupling term. Thus opening a new horizon for valley-orbit coupling. Magnetic proximity effect is seen to adjust the spintronics of each valley. Valley polarization is calculated using the semi classical formulation of electron dynamics. It can be modified and measured due to its contribution in Hall conductivity. Quantum phase transitions are observed in silicene, providing a tool to control the topological state experimentally. The strong dependence of the physical properties on valley degree of freedom is an important step towards valleytronics.
Phase transitions in undoped BaCeO3
DEFF Research Database (Denmark)
Kuzmin, A.V.; Gorelov, V.P.; Melekh, B.T.
2003-01-01
of the structural phase transitions in BaCeO3. Five second-order transitions at 480 +/- 10, 530 +/- 10, 900 +/- 10, 1030 +/- 20 and 1170 +/- 20 K, and also one first-order transition at 665 +/- 10 K, were found. The transitions at 900 and 1030 K have not been reported before. (C) 2003 Elsevier B.V. All rights...
Modeling the competing phase transition pathways in nanoscale olivine electrodes
Energy Technology Data Exchange (ETDEWEB)
Tang Ming, E-mail: tang25@llnl.go [Condensed Matter and Materials Division, Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Carter, W. Craig [Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Belak, James F. [Condensed Matter and Materials Division, Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Chiang, Yet-Ming [Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)
2010-12-30
Recent experimental developments reveal that nanoscale lithium iron phosphate (LiFePO{sub 4}) olivine particles exhibit very different phase transition behavior from the bulk olivine phase. A crystalline-to-amorphous phase transition has been observed in nanosized particles in competition with the equilibrium phase transition between the lithium-rich and lithium-poor olivine phases. Here we apply a diffuse-interface (phase-field) model to study the kinetics of the different phase transition pathways in nanosized LiFePO{sub 4} particles upon delithiation. We find that the nucleation and growth kinetics of the crystalline-to-crystalline and crystalline-to-amorphous phase transformations are sensitive to the applied electrical overpotential and particle size, which collectively determine the preferred phase transition pathway. While the crystalline-to-crystalline phase transition is favored by either faster nucleation or growth kinetics at low or high overpotentials, particle amorphization dominates at intermediate overpotentials. Decreasing particle size expands the overpotential region in which amorphization is preferred. The asymmetry in the nucleation energy barriers for amorphization and recrystallization results in a phase transition hysteresis that should promote the accumulation of the amorphous phase in electrodes after repeated electrochemical cycling. The predicted overpotential- and size-dependent phase transition behavior of nanoscale LiFePO{sub 4} particles is consistent with experimental observations.
Thermotropic and barotropic phase transitions on diacylphosphatidylethanolamine bilayer membranes.
Matsuki, Hitoshi; Endo, Shigeru; Sueyoshi, Ryosuke; Goto, Masaki; Tamai, Nobutake; Kaneshina, Shoji
2017-07-01
The bilayer phase transitions of four diacylphosphatidylethanolamines (PEs) with matched saturated acyl chains (Cn=12, 14, 16 and 18) and two PEs with matched unsaturated acyl chains containing a different kind of double bonds were observed by differential scanning calorimetry under atmospheric pressure and light-transmittance measurements under high pressure. The temperature-pressure phase diagrams for these PE bilayer membranes were constructed from the obtained phase-transition data. The saturated PE bilayer membranes underwent two different phase transitions related to the liquid crystalline (Lα) phase, the transition from the hydrated crystalline (Lc) phase and the chain melting (gel (Lβ) to Lα) transition, depending on the thermal history. Pressure altered the gel-phase stability of the bilayer membranes of PEs with longer chains at a low pressure. Comparing the thermodynamic quantities of the saturated PE bilayer membranes with those of diacylphosphatidylcholine (PC) bilayer membranes, the PE bilayer membranes showed higher phase-transition temperatures and formed more stable Lc phase, which originates from the strong interaction between polar head groups of PE molecules. On the other hand, the unsaturated PE bilayer membranes underwent the transition from the Lα phase to the inverted hexagonal (HII) phase at a high temperature and this transition showed a small transition enthalpy but high pressure-responsivity. It turned out that the kind of double bonds markedly affects both bilayer-bilayer and bilayer-nonbilayer transitions and the Lα/HII transition is a volume driven transition for the reconstruction of molecular packing. Further, the phase-transition behavior was explained by chemical potential curves of bilayer phases. Copyright © 2017 Elsevier B.V. All rights reserved.
Phase Transitions in Living Neural Networks
Williams-Garcia, Rashid Vladimir
Our nervous systems are composed of intricate webs of interconnected neurons interacting in complex ways. These complex interactions result in a wide range of collective behaviors with implications for features of brain function, e.g., information processing. Under certain conditions, such interactions can drive neural network dynamics towards critical phase transitions, where power-law scaling is conjectured to allow optimal behavior. Recent experimental evidence is consistent with this idea and it seems plausible that healthy neural networks would tend towards optimality. This hypothesis, however, is based on two problematic assumptions, which I describe and for which I present alternatives in this thesis. First, critical transitions may vanish due to the influence of an environment, e.g., a sensory stimulus, and so living neural networks may be incapable of achieving "critical" optimality. I develop a framework known as quasicriticality, in which a relative optimality can be achieved depending on the strength of the environmental influence. Second, the power-law scaling supporting this hypothesis is based on statistical analysis of cascades of activity known as neuronal avalanches, which conflate causal and non-causal activity, thus confounding important dynamical information. In this thesis, I present a new method to unveil causal links, known as causal webs, between neuronal activations, thus allowing for experimental tests of the quasicriticality hypothesis and other practical applications.
Phase Transitions in Networks of Memristive Elements
Sheldon, Forrest; di Ventra, Massimiliano
The memory features of memristive elements (resistors with memory), analogous to those found in biological synapses, have spurred the development of neuromorphic systems based on them (see, e.g.,). In turn, this requires a fundamental understanding of the collective dynamics of networks of memristive systems. Here, we study an experimentally-inspired model of disordered memristive networks in the limit of a slowly ramped voltage and show through simulations that these networks undergo a first-order phase transition in the conductivity for sufficiently high values of memory, as quantified by the memristive ON/OFF ratio. We provide also a mean-field theory that reproduces many features of the transition and particularly examine the role of boundary conditions and current- vs. voltage-controlled networks. The dynamics of the mean-field theory suggest a distribution of conductance jumps which may be accessible experimentally. We finally discuss the ability of these networks to support massively-parallel computation. Work supported in part by the Center for Memory and Recording Research at UCSD.
The Deconfinement Phase Transition in the Interior of Neutron Stars
Zhou, Xia
2010-01-01
The decon?nement phase transition which happens in the interior of neutron stars are investigated. Coupled with the spin evolution of the stars, the effect of entropy production and deconfinement heat generation during the deconfinement phase transition in the mixed phase of the neutron stars are discussed. The entropy production of deconfinement phase transition can be act as a signature of phase transition, but less important and does not significantly change the thermal evolution of neutron stars. The deconfinement heat can change the thermal evolution of neutron star distinctly.
Topological and geometrical aspects of phase transitions
Santos, F. A. N.; Rehn, J. A.; Coutinho-Filho, M. D.
2014-03-01
In the first part of this review, we use a topological approach to describe the frustration- and field-induced phase transitions exhibited by the infinite-range XY model on the AB2 chain, including noncollinear spin structures. For this purpose, we have computed the Euler characteristic, χ, as well as other topological invariants, which are found to behave similarly as a function of the energy level in the context of Morse theory. Our findings and those available in the literature suggest that the cusp-like singularity exhibited by χ at the critical energy, Ec, put together with the divergence of the density of Jacobian's critical points emerge as necessary and sufficient conditions for the occurrence of finite-temperature topology-induced phase transitions. In the second part, we present an alternative solution of the Ising chain in a field under free and periodic boundary conditions, in the microcanonical, canonical, and grand canonical ensembles, from a unified combinatorial and topological perspective. In particular, the computation of the per-site entropy as a function of the energy unveils a residual value for critical values of the magnetic field, a phenomenon for which we provide a topological interpretation and a connection with the Fibonacci sequence. We also show that, in the thermodynamic limit, the per-site microcanonical entropy is equal to the logarithm of the per-site Euler characteristic. Finally, we emphasize that our combinatorial approach to the canonical ensemble allows exact computation of the thermally averaged value (T) of the Euler characteristic; our results show that the conjecture (Tc)= 0, where Tc is the critical temperature, is valid for the Ising chain.
Phase Transition Properties of 3D Potts Models
Bazavov, Alexei; Dubey, Santosh
2008-01-01
Using multicanonical Metropolis simulations we estimate phase transition properties of 3D Potts models for q=4 to 10: The transition temperatures, latent heats, entropy gaps, normalized entropies at the disordered and ordered endpoints, interfacial tensions, and spinodal endpoints.
Non-equilibrium phase transitions in complex plasma
Sutterlin, K. R.; Wysocki, A.; Rath, C.; Ivlev, A. V.; Thomas, H. M.; Khrapak, S.; Zhdanov, S.; Rubin-Zuzic, M.; W. J. Goedheer,; Fortov, V. E.; Lipaev, A. M.; Molotkov, V. I.; Petrov, O. F.; Morfill, G. E.; Lowen, H.
2010-01-01
Complex plasma being the 'plasma state of soft matter' is especially suitable for investigations of non-equilibrium phase transitions. Non-equilibrium phase transitions can manifest in dissipative structures or self-organization. Two specific examples are lane formation and phase separatio
Indian Academy of Sciences (India)
Tarun Sandeep
2004-10-01
Cosmology is passing through a golden phase of rapid advance. The cosmology workshop at ICGC-2004 attracted a large number of research contributions to diverse topics of cosmology. I attempt to classify and summarize the research work and results of the oral and poster presentations made at the meeting.
Phase transitions in a gas of anyons
MacKenzie, R; Paranjape, M B; Richer, J
2010-01-01
We continue our numerical Monte Carlo simulation of a gas of closed loops on a 3 dimensional lattice, however now in the presence of a topological term added to the action corresponding to the total linking number between the loops. We compute the linking number using certain notions from knot theory. Adding the topological term converts the particles into anyons. Using the correspondence that the model is an effective theory that describes the 2+1-dimensional Abelian Higgs model in the asymptotic strong coupling regime, the topological linking number simply corresponds to the addition to the action of the Chern-Simons term. We find the following new results. The system continues to exhibit a phase transition as a function of the anyon mass as it becomes small \\cite{mnp}, although the phases do not change the manifestation of the symmetry. The Chern-Simons term has no effect on the Wilson loop, but it does affect the {\\rm '}t Hooft loop. For a given configuration it adds the linking number of the 't Hooft loo...
F-term hybrid inflation followed by a Peccei-Quinn phase transition
Lazarides, G.; Pallis, C.
2010-09-01
We consider a cosmological setup, based on renormalizable superpotential terms, in which a superheavy scale F-term hybrid inflation is followed by a Peccei-Quinn phase transition, resolving the strong CP and μ problems of the minimal supersymmetric standard model. We show that the field which triggers the Peccei-Quinn phase transition can remain after inflation well above the Peccei-Quinn scale thanks to (i) its participation in the supergravity and logarithmic corrections during the inflationary stage and (ii) the high reheat temperature after the same period. As a consequence, its presence influences drastically the inflationary dynamics and the universe suffers a second period of reheating after the Peccei-Quinn phase transition. Confronting our inflationary predictions with the current observational data, we find that, for about the central value of the spectral index, the grand unification scale can be identified with its supersymmetric value for the relevant coupling constant κ≃0.002 and, more or less, natural values, ±(0.01-0.1), for the remaining parameters. On the other hand, the final reheat temperature after the Peccei-Quinn phase transition turns out to be low enough so as the gravitino problem is avoided.
Pressure-induced phase transition in CrO2.
Alptekin, Sebahaddin
2015-12-01
The ab initio constant pressure molecular dynamics technique and density functional theory with generalized gradient approximation (GGA) was used to study the pressure-induced phase transition of CrO2. The phase transition of the rutile (P42/mnm) to the orthorhombic CaCl2 (Pnnm) structure at 30 GPa was determined successfully in a constant pressure simulation. This phase transition was analyzed from total energy calculations and, from the enthalpy calculation, occurred at around 17 GPa. Structural properties such as bulk modules, lattice parameters and phase transition were compared with experimental results. The phase transition at 12 ± 3 GPa was in good agreement with experimental results, as was the phase transition from the orthorhombic CaCl2 (Pnnm) to the monoclinic (P21/c) structure also found at 35 GPa.
Quantum phase transition and entanglement in Li atom system
Institute of Scientific and Technical Information of China (English)
2008-01-01
By use of the exact diagonalization method, the quantum phase transition and en- tanglement in a 6-Li atom system are studied. It is found that entanglement appears before the quantum phase transition and disappears after it in this exactly solvable quantum system. The present results show that the von Neumann entropy, as a measure of entanglement, may reveal the quantum phase transition in this model.
Discord under the influence of a quantum phase transition
Institute of Scientific and Technical Information of China (English)
Wang Lin-cheng; Shen Jian; Yi Xue-Xi
2011-01-01
This paper studies the discord of a bipartite two-level system coupling to an XY spin-chain environment in a transverse field and investigates the relationship between the discord property and the environment's quantum phase transition. The results show that the quantum discord is also able to characterize the quantum phase transitions. We also discuss the difference between discord and entanglement, and show that quantum discord may reveal more general information than quantum entanglement for characterizing the environment's quantum phase transition.
Gravitational waves from global second order phase transitions
Energy Technology Data Exchange (ETDEWEB)
Jr, John T. Giblin [Department of Physics, Kenyon College, 201 North College Rd, Gambier, OH 43022 (United States); Price, Larry R.; Siemens, Xavier; Vlcek, Brian, E-mail: giblinj@kenyon.edu, E-mail: larryp@caltech.edu, E-mail: siemens@gravity.phys.uwm.edu, E-mail: bvlcek@uwm.edu [Center for Gravitation and Cosmology, Department of Physics, University of Wisconsin-Milwaukee, P.O. Box 413, Milwaukee, WI 53201 (United States)
2012-11-01
Global second-order phase transitions are expected to produce scale-invariant gravitational wave spectra. In this manuscript we explore the dynamics of a symmetry-breaking phase transition using lattice simulations. We explicitly calculate the stochastic gravitational wave background produced during the transition and subsequent self-ordering phase. We comment on this signal as it compares to the scale-invariant spectrum produced during inflation.
Gasperini, Maurizio
2011-03-01
Preface; Acknowledgements; Notation, units and conventions; 1. A short review of standard and inflationary cosmology; 2. The basic string cosmology equations; 3. Conformal invariance and string effective action; 4. Duality symmetries and cosmological solutions; 5. Inflationary kinematics; 6. The string phase; 7. The cosmic background of relic gravitational waves; 8. Scalar perturbations and the anisotropy of the CMB radiation; 9. Dilaton phenomenology; 10. Elements of brane cosmology; Index.
Echoes of inflationary first-order phase transitions in the CMB
Directory of Open Access Journals (Sweden)
Hongliang Jiang
2017-02-01
Full Text Available Cosmological phase transitions (CPTs, such as the Grand Unified Theory (GUT and the electroweak (EW ones, play a significant role in both particle physics and cosmology. In this letter, we propose to probe the first-order CPTs, by detecting gravitational waves (GWs which are generated during the phase transitions through the cosmic microwave background (CMB. If happened around the inflation era, the first-order CPTs may yield low-frequency GWs due to bubble dynamics, leaving imprints on the CMB. In contrast to the nearly scale-invariant primordial GWs caused by vacuum fluctuation, these bubble-generated GWs are scale dependent and have non-trivial B-mode spectra. If decoupled from inflaton, the EWPT during inflation may serve as a probe for the one after reheating where the baryon asymmetry could be generated via EW baryogenesis (EWBG. The CMB thus provides a potential way to test the feasibility of the EWBG, complementary to the collider measurements of Higgs potential and the direct detection of GWs generated during EWPT.
Phase transition of holographic entanglement entropy in massive gravity
Energy Technology Data Exchange (ETDEWEB)
Zeng, Xiao-Xiong, E-mail: xxzeng@itp.ac.cn [School of Material Science and Engineering, Chongqing Jiaotong University, Chongqing 400074 (China); Key Laboratory of Frontiers in Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China); Zhang, Hongbao, E-mail: hzhang@vub.ac.be [Department of Physics, Beijing Normal University, Beijing 100875 (China); Theoretische Natuurkunde, Vrije Universiteit Brussel, and The International Solvay Institutes, Pleinlaan 2, B-1050 Brussels (Belgium); Li, Li-Fang, E-mail: lilf@itp.ac.cn [State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing 100190 (China)
2016-05-10
The phase structure of holographic entanglement entropy is studied in massive gravity for the quantum systems with finite and infinite volumes, which in the bulk is dual to calculating the minimal surface area for a black hole and black brane respectively. In the entanglement entropy–temperature plane, we find for both the black hole and black brane there is a Van der Waals-like phase transition as the case in thermal entropy–temperature plane. That is, there is a first order phase transition for the small charge and a second order phase transition at the critical charge. For the first order phase transition, the equal area law is checked and for the second order phase transition, the critical exponent of the heat capacity is obtained. All the results show that the phase structure of holographic entanglement entropy is the same as that of thermal entropy regardless of the volume of the spacetime on the boundary.
Holographic phase transition probed by non-local observables
Zeng, Xiao-Xiong
2016-01-01
From the viewpoint of holography, the phase structure of a 5-dimensional Reissner-Nordstr\\"{o}m-AdS black hole is probed by the two point correlation function, Wilson loop, and entanglement entropy. As the case of thermal entropy, we find for all the probes, the black hole undergos a Hawking-Page phase transition, a first order phase transition and a second order phase transition successively before it reaches to a stable phase. In addition, for these probes, we find the equal area law for the first order phase transition is valid always and the critical exponent of the heat capacity for the second order phase transition coincides with that of the mean field theory regardless of the size of the boundary region.
Kinetics of shock-induced polymorphic phase transitions
Energy Technology Data Exchange (ETDEWEB)
Hayes, D.B.
1976-01-01
Shock-loading induces polymorphic phase transitions in some solids if the pressure exceeds that at which phase transition occurs under quasi-static compression. Volume changes in shock-induced transitions must occur very rapidly to produce the structured shock waves observed, so transition rates are large under these dynamic conditions. By contrast, the same transition might require minutes or hours under quasi-static loading. If shock-induced transition is so rapid that kinetic effects can be ignored, a steady two-wave structure is propagated. The first wave, of amplitude equal to the transition pressure, shocks the material to the phase boundary but produces no transition; the second, slower wave produces the transformed phase. When kinetic effects are important, this two-wave structure does not form immediately but by an evolutionary process which produces transients in the amplitudes and rise times of the stress waves. By measuring these transient effects, some facts about the kinetics of phase transitions have been inferred. Comprehensive studies on phase-transition kinetics in antimony, iron, and potassium chloride are described, with emphasis on a thermodynamic description of the intermediate states during transition. Complicating effects such as shear strength and wave perturbations due to free surfaces are discussed.
Elastic phase transitions in metals at high pressures.
Krasilnikov, O M; Vekilov, Yu Kh; Mosyagin, I Yu; Isaev, E I; Bondarenko, N G
2012-04-19
The elastic phase transitions of cubic metals at high pressures are investigated within the framework of Landau theory. It is shown that at pressures comparable with the magnitude of the bulk modulus the phase transition is connected with the loss of stability relative to uniform deformation of the crystalline lattice. Discontinuity of the order parameter at the transition point and its equilibrium value are expressed through the second- to fourth-order elastic constants. The second-,third- and fourth-order elastic constants and phonon dispersion curves of vanadium under hydrostatic pressure are obtained by first-principles calculations. Structural transformation in vanadium under pressure is studied using the obtained results. It is shown that the experimentally observed at P ≈ 69 GPa phase transition in vanadium is the first-order phase transition close to a second-order phase transition.
Pressure induced phase transitions in ceramic compounds containing tetragonal zirconia
Energy Technology Data Exchange (ETDEWEB)
Sparks, R.G.; Pfeiffer, G.; Paesler, M.A.
1988-12-01
Stabilized tetragonal zirconia compounds exhibit a transformation toughening process in which stress applied to the material induces a crystallographic phase transition. The phase transition is accompanied by a volume expansion in the stressed region thereby dissipating stress and increasing the fracture strength of the material. The hydrostatic component of the stress required to induce the phase transition can be investigated by the use of a high pressure technique in combination with Micro-Raman spectroscopy. The intensity of Raman lines characteristic for the crystallographic phases can be used to calculate the amount of material that has undergone the transition as a function of pressure. It was found that pressures on the order of 2-5 kBar were sufficient to produce an almost complete transition from the original tetragonal to the less dense monoclinic phase; while a further increase in pressure caused a gradual reversal of the transition back to the original tetragonal structure.
Classically Stable Nonsingular Cosmological Bounces
Ijjas, Anna; Steinhardt, Paul J.
2016-09-01
One of the fundamental questions of theoretical cosmology is whether the Universe can undergo a nonsingular bounce, i.e., smoothly transit from a period of contraction to a period of expansion through violation of the null energy condition (NEC) at energies well below the Planck scale and at finite values of the scale factor such that the entire evolution remains classical. A common claim has been that a nonsingular bounce either leads to ghost or gradient instabilities or a cosmological singularity. In this Letter, we consider a well-motivated class of theories based on the cubic Galileon action and present a procedure for explicitly constructing examples of a nonsingular cosmological bounce without encountering any pathologies and maintaining a subluminal sound speed for comoving curvature modes throughout the NEC violating phase. We also discuss the relation between our procedure and earlier work.
Cosmological experiments in superfluid helium?
Zurek, W. H.
1985-10-01
Symmetry breaking phase transitions occurring in the early Universe are expected to leave behind long-lived topologically stabel structures such as monopoles, strings or domain walls. The author discusses the analogy between cosmological strings and vortex lines in the superfluid, and suggests a cryogenic experiment which tests key elements of the cosmological scenario for string formation. In a superfluid obtained through a rapid pressure quench, the phase of the Bose condensate wavefunction - the 4He analogue of the broken symmetry of the field-theoretic vacuum - will be chosen randomly in domains of some characteristic size d. When the quench is performed in an annulus of circumference C the typical value of the phase mismatch around the loop will be ≡(C/d)1/2. The resulting phase gradient can be sufficiently large to cause the superfluid to flow with a measurable, randomly directed velocity.
Highly birefringent crystal for Raman transitions with phase modulators
Arias, Nieves; Abediyeh, Vahide; Hamzeloui, Saeed; Jeronimo-Moreno, Yasser; Gomez, Eduardo
2016-05-01
We present a system to excite Raman transitions with minimum phase noise. The system uses a phase modulator to generate the phase locked beams required for the transition. We use a long calcite crystal to filter out one of the sidebands, avoiding the cancellation that appears at high detunings for phase modulation. The measured phase noise is limited by the quality of the microwave synthesizer. We use the calcite crystal a second time to produce a co-propagating Raman pair with perpendicular polarizations to drive velocity insensitive Raman transitions. Support from CONACYT and Fundacion Marcos Moshinsky.
Van der Waals phase transition in the framework of holography
Zeng, Xiao-Xiong
2015-01-01
Phase structure of the quintessence Reissner-Nordstr\\"{o}m-AdS black hole is probed with the nonlocal observables such as holographic entanglement entropy and two point correlation function. Our result shows that, as the case of the thermal entropy, both the observables exhibit the similar Van der Waals-like phase transition. To reinforce the conclusion, we further check the equal area law for the first order phase transition and critical exponent of the heat capacity for the second order phase transition. We also discuss the effect of the state parameter on the phase structure of the nonlocal observables.
Phase conversion in a weakly first-order quark-hadron transition
Bessa, A; Mintz, B W
2008-01-01
We investigate the process of phase conversion in a thermally-driven {\\it weakly} first-order quark-hadron transition. This scenario is physically appealing even if the nature of this transition in equilibrium proves to be a smooth crossover for vanishing baryonic chemical potential. We construct an effective potential by combining the equation of state obtained within Lattice QCD for the partonic sector with that of a gas of resonances in the hadronic phase, and present numerical results on bubble profiles, nucleation rates and time evolution, including the effects from reheating on the dynamics for different expansion scenarios. Our findings confirm the standard picture of a cosmological first-order transition, in which the process of phase conversion is entirely dominated by nucleation, also in the case of a weakly first-order transition. On the other hand, we show that, even for expansion rates much lower than those expected in high-energy heavy ion collisions, nucleation is very unlikely, indicating that...
Consistent lattice Boltzmann equations for phase transitions.
Siebert, D N; Philippi, P C; Mattila, K K
2014-11-01
Unlike conventional computational fluid dynamics methods, the lattice Boltzmann method (LBM) describes the dynamic behavior of fluids in a mesoscopic scale based on discrete forms of kinetic equations. In this scale, complex macroscopic phenomena like the formation and collapse of interfaces can be naturally described as related to source terms incorporated into the kinetic equations. In this context, a novel athermal lattice Boltzmann scheme for the simulation of phase transition is proposed. The continuous kinetic model obtained from the Liouville equation using the mean-field interaction force approach is shown to be consistent with diffuse interface model using the Helmholtz free energy. Density profiles, interface thickness, and surface tension are analytically derived for a plane liquid-vapor interface. A discrete form of the kinetic equation is then obtained by applying the quadrature method based on prescribed abscissas together with a third-order scheme for the discretization of the streaming or advection term in the Boltzmann equation. Spatial derivatives in the source terms are approximated with high-order schemes. The numerical validation of the method is performed by measuring the speed of sound as well as by retrieving the coexistence curve and the interface density profiles. The appearance of spurious currents near the interface is investigated. The simulations are performed with the equations of state of Van der Waals, Redlich-Kwong, Redlich-Kwong-Soave, Peng-Robinson, and Carnahan-Starling.
ATLAS Transition Region Upgrade at Phase-1
Song, H; The ATLAS collaboration
2014-01-01
This report presents the L1 Muon trigger transition region (1.0<|ƞ|<1.3) upgrade of ATLAS Detector at phase-1. The high fake trigger rate in the Endcap region 1.0<|ƞ|<2.4 would become a serious problem for the ATLAS L1 Muon trigger system at high luminosity. For the region 1.3<|ƞ|<2.4, covered by the Small Wheel, ATLAS is enhancing the present muon trigger by adding local fake rejection and track angle measurement capabilities. To reduce the rate in the remaining ƞ interval it has been proposed a similar enhancement by adding at the edge of the inner barrel a structure of 3-layers RPCs of a new generation. These RPCs will be based on a thinner gas gap and electrodes with respect to the ATLAS standards, a new high performance Front End, integrating fast TDC capabilities, and a new low profile and light mechanical structure allowing the installation in the tiny space available.This design effectively suppresses fake triggers by making the coincidence with both end-cap and interaction point...
Phase transitions in models of human cooperation
Perc, Matjaž
2016-08-01
If only the fittest survive, why should one cooperate? Why should one sacrifice personal benefits for the common good? Recent research indicates that a comprehensive answer to such questions requires that we look beyond the individual and focus on the collective behavior that emerges as a result of the interactions among individuals, groups, and societies. Although undoubtedly driven also by culture and cognition, human cooperation is just as well an emergent, collective phenomenon in a complex system. Nonequilibrium statistical physics, in particular the collective behavior of interacting particles near phase transitions, has already been recognized as very valuable for understanding counterintuitive evolutionary outcomes. However, unlike pairwise interactions among particles that typically govern solid-state physics systems, interactions among humans often involve group interactions, and they also involve a larger number of possible states even for the most simplified description of reality. Here we briefly review research done in the realm of the public goods game, and we outline future research directions with an emphasis on merging the most recent advances in the social sciences with methods of nonequilibrium statistical physics. By having a firm theoretical grip on human cooperation, we can hope to engineer better social systems and develop more efficient policies for a sustainable and better future.
Swarms, Phase Transitions, and Collective Intelligence
Millonas, M M
1993-01-01
A spacially extended model of the collective behavior of a large number of locally acting organisms is proposed in which organisms move probabilistically between local cells in space, but with weights dependent on local morphogenetic substances, or morphogens. The morphogens are in turn are effected by the passage of an organism. The evolution of the morphogens, and the corresponding flow of the organisms constitutes the collective behavior of the group. Such models have various types of phase transitions and self-organizing properties controlled both by the level of the noise, and other parameters. The model is then applied to the specific case of ants moving on a lattice. The local behavior of the ants is inspired by the actual behavior observed in the laboratory, and analytic results for the collective behavior are compared to the corresponding laboratory results. It is hoped that the present model might serve as a paradigmatic example of a complex cooperative system in nature. In particular swarm models c...
Entanglement, quantum phase transitions and quantum algorithms
Orus, R
2006-01-01
The work that we present in this thesis tries to be at the crossover of quantum information science, quantum many-body physics, and quantum field theory. We use tools from these three fields to analyze problems that arise in the interdisciplinary intersection. More concretely, in Chapter 1 we consider the irreversibility of renormalization group flows from a quantum information perspective by using majorization theory and conformal field theory. In Chapter 2 we compute the entanglement of a single copy of a bipartite quantum system for a variety of models by using techniques from conformal field theory and Toeplitz matrices. The entanglement entropy of the so-called Lipkin-Meshkov-Glick model is computed in Chapter 3, showing analogies with that of (1+1)-dimensional quantum systems. In Chapter 4 we apply the ideas of scaling of quantum correlations in quantum phase transitions to the study of quantum algorithms, focusing on Shor's factorization algorithm and quantum algorithms by adiabatic evolution solving a...
Phase Transitions in Two-Dimensional Traffic Flow Models
Cuesta, J A; Molera, J M; Cuesta, José A; Martinez, Froilán C; Molera, Juan M
1993-01-01
Abstract: We introduce two simple two-dimensional lattice models to study traffic flow in cities. We have found that a few basic elements give rise to the characteristic phase diagram of a first-order phase transition from a freely moving phase to a jammed state, with a critical point. The jammed phase presents new transitions corresponding to structural transformations of the jam. We discuss their relevance in the infinite size limit.
Phase Transitions in Two-Dimensional Traffic Flow Models
Cuesta, José A; Molera, Juan M; Escuela, Angel Sánchez; 10.1103/PhysRevE.48.R4175
2009-01-01
We introduce two simple two-dimensional lattice models to study traffic flow in cities. We have found that a few basic elements give rise to the characteristic phase diagram of a first-order phase transition from a freely moving phase to a jammed state, with a critical point. The jammed phase presents new transitions corresponding to structural transformations of the jam. We discuss their relevance in the infinite size limit.
Fast phase transitions induced by picosecond electrical pulses on phase change memory cells
Wang, W. J.; Shi, L. P.; Zhao, R.; Lim, K. G.; Lee, H. K.; Chong, T. C.; Wu, Y. H.
2008-07-01
The reversible and fast phase transitions induced by picosecond electrical pulses are observed in the nanostructured GeSbTe materials, which provide opportunities in the application of high speed nonvolatile random access memory devices. The mechanisms for fast phase transition are discussed based on the investigation of the correlation between phase transition speed and material size. With the shrinkage of material dimensions, the size effects play increasingly important roles in enabling the ultrafast phase transition under electrical activation. The understanding of how the size effects contribute to the phase transition speed is of great importance for ultrafast phenomena and applications.
Phase-space analysis of the cosmological 3-fluid problem: Families of attractors and repellers
Azreg-Aïnou, Mustapha
2013-01-01
We perform a phase-space analysis of the cosmological 3-fluid problem consisting of a barotropic fluid with an equation-of-state parameter $\\gamma-1$, a pressureless dark matter fluid, plus a scalar field $\\phi$ (representing dark energy) coupled to exponential potential $V=V_0\\exp{(-\\kappa\\lambda\\phi)}$. Besides the potential-kinetic-scaling solutions, which are not the unique late-time attractors whenever they exist for $\\lambda^2\\geq 3\\ga$, we derive new attractors where both dark energy and dark matter coexist and the final density is shared in a way independent of the value of $\\ga >1$. The case of a pressureless barotropic fluid ($\\ga=1$) has a one-parameter family of attractors where all components coexist. New one-parameter families of matter-dark matter saddle points and kinetic-matter repellers exist. We investigate the stability of the ten critical points by linearization and/or Lyapunov's Theorems and a variant of the theorems formulated in this paper.
Pressure-Induced Phase Transitions of n-Tridecane
Yamashita, Motoi
Pressure-induced phase transition behavior of n-tridecane from the ordered phase through the rotator phase into the liquid phase has been investigated by using Fourier transform infrared spectroscopy at 25 °C. The transition between the ordered and rotator phases has been observed in the pressure range of 270-220 MPa and the transition between the rotator and liquid phases has been observed in the pressure range of 171-112 MPa, within the experimental error of ±50 MPa. The populations of the -gtg- + -gtg'-, -gg- and gt- defects determined from the methylene wagging mode are smaller in the rotator phase than in the liquid phase and are smaller under higher pressure in both of the rotator and liquid phases. A relationship has been found between the conformation and the intensity of the 890 cm-1 band, which has been assigned as the methyl rocking mode and has been considered as insensitive to conformation.
Quantum phase transitions in Bose-Fermi systems
Petrellis, D; Iachello, F
2011-01-01
Quantum phase transitions in a system of N bosons with angular momentum L=0,2 (s,d) and a single fermion with angular momentum j are investigated both classically and quantum mechanically. It is shown that the presence of the odd fermion strongly influences the location and nature of the phase transition, especially the critical value of the control parameter at which the phase transition occurs. Experimental evidence for the U(5)-SU(3) (spherical to axially-deformed) transition in odd-even nuclei is presented.
Liquid-Gas Phase Transition in Nuclear Equation of State
Lee, S J
1997-01-01
A canonical ensemble model is used to describe a caloric curve of nuclear liquid-gas phase transition. Allowing a discontinuity in the freeze out density from one spinodal density to another for a given initial temperature, the nuclear liquid-gas phase transition can be described as first order. Averaging over various freeze out densities of all the possible initial temperatures for a given total reaction energy, the first order characteristics of liquid-gas phase transition is smeared out to a smooth transition. Two experiments, one at low beam energy and one at high beam energy show different caloric behaviors and are discussed.
On the theory of phase transitions in polypeptides
DEFF Research Database (Denmark)
Yakubovich, Alexander V.; Solov'yov, Ilia; Greiner, Walter
2008-01-01
We suggest a theoretical method based on the statistical mechanics for treating the alpha-helix random coil transition in polypeptides. This process is considered as a first-order-like phase transition. The developed theory is free of model parameters and is based solely on fundamental physical...... principles. We apply the developed formalism for the description of thermodynamical properties of alanine polypeptides of different length. We analyze the essential thermodynamical properties of the system such as heat capacity, phase transition temperature and latent heat of the phase transition...
Liquid-liquid phase transition in Stillinger-Weber silicon
Energy Technology Data Exchange (ETDEWEB)
Beaucage, Philippe; Mousseau, Normand [Departement de Physique and Regroupement Quebecois sur les Materiaux de Pointe, Universite de Montreal, CP 6128, Succursale Centre-ville, Montreal, QC, H3C 3J7 (Canada)
2005-04-20
It was recently demonstrated that Stillinger-Weber silicon undergoes a liquid-liquid first-order phase transition deep into the supercooled region (Sastry and Angell 2003 Nat. Mater. 2 739). Here we study the effects of perturbations on this phase transition. We show that the order of the liquid-liquid transition changes with negative pressure. We also find that the liquid-liquid transition disappears when the three-body term of the potential is strengthened by as little as 5%. This implies that the details of the potential could affect strongly the nature and even the existence of the liquid-liquid phase.
On the Phase Transition of N-Isopropylcarbazole.
1986-05-01
vacinity of the phase transition (ca. T 137 + 40 K). We propose a semiquantitative interpretation of the phase transition in NIPC based on this assumption...the order parameter fluctuations in the vacinity of TO . V. Conclusions. The elastic properties of NIPC in the temperature range 90 K - 295 K have
Local discontinuous Galerkin methods for phase transition problems
Tian, Lulu
2015-01-01
In this thesis we develop a local discontinuous Galerkin (LDG) finite element method to solve mathematical models for phase transitions in solids and fluids. The first model we study is called a viscosity-capillarity (VC) system associated with phase transitions in elastic bars and Van der Waals
Quantum Monte Carlo simulation of topological phase transitions
Yamamoto, Arata; Kimura, Taro
2016-12-01
We study the electron-electron interaction effects on topological phase transitions by the ab initio quantum Monte Carlo simulation. We analyze two-dimensional class A topological insulators and three-dimensional Weyl semimetals with the long-range Coulomb interaction. The direct computation of the Chern number shows the electron-electron interaction modifies or extinguishes topological phase transitions.
Diamagnetic phase transitions in two-dimensional conductors
Bakaleinikov, L. A.; Gordon, A.
2014-11-01
A theory describing the susceptibility amplitude and the magnetic induction bifurcation near the dHvA driven diamagnetic phase transitions in quasi two-dimensional (2D) organic conductors of the (ET)2X with X=Cu(NCS)2, KHg(SCN)4, I3, AuBr2, IBr2, etc. is presented. We show that there is a drastic increase in the temperature and magnetic field dependence of the susceptibility amplitude on approaching the diamagnetic phase transition point. Near the phase transition point the temperature and magnetic field dependences are fitted by the ones typical of the mean-field phase transition theory. These dependences confirm the long-range character of the magnetic interactions among the conduction electrons leading to diamagnetic phase transitions. We demonstrate that the magnetic induction splitting of nuclear magnetic resonance (NMR) and muon spin-rotation spectroscopy (μSR) lines due to two Condon domains decreases tending to zero on approaching the diamagnetic phase transition. This decrease is fitted by the temperature and magnetic field dependence of the susceptibility characteristic of the mean-field theory of phase transitions. Performing new susceptibility, NMR and μSR experiments will enable to detect diamagnetic phase transitions and Condon domains in quasi 2D metals.
Nuclear Liquid-Gas Phase Transition: Experimental Signals
D'Agostino, M.; Bruno, M.; Gulminelli, F.; Cannata, F.; Chomaz, Ph.; Casini, G.; Geraci, E.; Gramegna, F.; Moroni, A.; Vannini, G.
2005-03-01
The connection between the thermodynamics of charged finite nuclear systems and the asymptotically measured partitions in heavy ion collisions is discussed. Different independent signals compatible with a liquid-to-gas-like phase transition are reported. In particular abnormally large fluctuations in the measured observables are presented as a strong evidence of a first order phase transition with negative heat capacity.
Nuclear liquid-gas phase transition: Experimental signals
Energy Technology Data Exchange (ETDEWEB)
D' Agostino, M. [Dipartimento di Fisica and INFN, Bologna (Italy); Bruno, M. [Dipartimento di Fisica and INFN, Bologna (Italy); Gulminelli, F. [LPC Caen (IN2P3-CNRS/ISMRA et Universite), F-14050 Caen Cedex (France); Cannata, F. [Dipartimento di Fisica and INFN, Bologna (Italy); Chomaz, Ph. [GANIL, DSM-CEA/IN2P3-CNRS (France); Casini, G. [INFN Sezione di Firenze (Italy); Geraci, E. [Dipartimento di Fisica and INFN, Bologna (Italy); Gramegna, F. [INFN Laboratorio Nazionale di Legnaro (Italy); Moroni, A. [Dipartimento di Fisica and INFN, Milano (Italy); Vannini, G. [Dipartimento di Fisica and INFN, Bologna (Italy)
2005-03-07
The connection between the thermodynamics of charged finite nuclear systems and the asymptotically measured partitions in heavy ion collisions is discussed. Different independent signals compatible with a liquid-to-gas-like phase transition are reported. In particular abnormally large fluctuations in the measured observables are presented as a strong evidence of a first order phase transition with negative heat capacity.
Experimental and theoretical investigations on shock wave induced phase transitions
Gupta, Satish C.; Sikka, S. K.
2001-06-01
Shock wave loading of a material can cause variety of phase transitions, like polymorphism, amorphization, metallization and molecular dissociations. As the shocked state lasts only for a very short duration (about a few microseconds or less), in-situ microscopic measurements are very difficult. Although such studies are beginning to be possible, most of the shock-induced phase transitions are detected using macroscopic measurements. The microscopic nature of the transition is then inferred from comparison with static pressure data or interpreted by theoretical methods. For irreversible phase transitions, microscopic measurements on recovered samples, together with orientation relations determined from selected area electron diffraction and examination of the morphology of growth of the new phase can provide insight into mechanism of phase transitions. On theoretical side, the current ab initio band structure techniques based on density functional formalism provide capability for accurate computation of the small energy differences (a few mRy or smaller) between different plausible structures. Total energy calculation along the path of a phase transition can furnish estimates of activation barrier, which has implications for understanding kinetics of phase transitions. Molecular dynamics calculations, where the new structure evolves naturally, are becoming increasingly popular especially for understanding crystal to amorphous phase transitions. Illustrations from work at our laboratory will be presented.
Quantum Monte Carlo simulation of topological phase transitions
Yamamoto, Arata
2016-01-01
We study the electron-electron interaction effects on topological phase transitions by the ab-initio quantum Monte Carlo simulation. We analyze two-dimensional class A topological insulators and three-dimensional Weyl semimetals with the long-range Coulomb interaction. The direct computation of the Chern number shows the electron-electron interaction modifies or extinguishes topological phase transitions.
Two kinds of Phase transitions in a Voting model
Hisakado, Masato
2012-01-01
In this paper, we discuss a voting model with two candidates, C_1 and C_2. We consider two types of voters--herders and independents. The voting of independents is based on their fundamental values; on the other hand, the voting of herders is based on the number of previous votes. We can identify two kinds of phase transitions. One is information cascade transition similar to a phase transition seen in Ising model. The other is a transition of super and normal diffusions. These phase transitions coexist together. We compared our results to the conclusions of experiments and identified the phase transitions in the upper t limit using analysis of human behavior obtained from experiments.
High pressure phase transitions for CdSe
Indian Academy of Sciences (India)
Bo Kong; Ti-Xian Zeng; Zhu-Wen Zhou; De-Liang Chen; Xiao-Wei Sun
2014-05-01
The structure and pressure-induced phase transitions for CdSe are investigated using first-principles calculations. The pressure-induced phase transition sequence WZ/ZB $\\to$ Rs $\\to$ $\\to$ CsCl for CdSe is drawn reasonably for the fist time, the corresponding transition pressures are 3.8, 29 and 107 GPa, respectively and the intermediate states between the structure and the CsCl structure should exist.
Quantum Phase Transitions in Odd-Mass Nuclei
Leviatan, A; Iachello, F
2011-01-01
Quantum shape-phase transitions in odd-even nuclei are investigated in the framework of the interacting boson-fermion model. Classical and quantum analysis show that the presence of the odd fermion strongly influences the location and nature of the phase transition, especially near the critical point. Experimental evidence for the occurrence of spherical to axially-deformed transitions in odd-proton nuclei Pm, Eu and Tb (Z=61, 63, 65) is presented.
Deconfinement Phase Transition Heating and Thermal Evolution of Neutron Stars
Kang, Miao; Wang, Xiaodong
2007-01-01
The deconfinement phase transition will lead to the release of latent heat during spins down of neutron stars if the transition is the first-order one.We have investigated the thermal evolution of neutron stars undergoing such deconfinement phase transition. The results show that neutron stars may be heated to higher temperature.This feature could be particularly interesting for high temperature of low-magnetic field millisecond pulsar at late stage.
Chiral phase transition in QED3 at finite temperature
Yin, Pei-Lin; Xiao, Hai-Xiao; Wei, Wei; Feng, Hong-Tao; Zong, Hong-Shi
2016-12-01
In the framework of Dyson-Schwinger equations, we employ two kinds of criteria (one kind is the chiral condensate, the other kind is thermodynamic quantities, such as the pressure, the entropy, and the specific heat) to investigate the nature of chiral phase transitions in QED3 for different fermion flavors. It is found that the chiral phase transitions in QED3 for different fermion flavors are all typical second-order phase transitions; the critical temperature and order of the chiral phase transition obtained from the chiral condensate and susceptibility are the same with that obtained by the thermodynamic quantities, which means that they are equivalent in describing the chiral phase transition; the critical temperature decreases as the number of fermion flavors increases and there is a boundary that separates the Tc-Nf plane into chiral symmetry breaking and restoration regions.
Thermodynamics of Phase Transitions of a Kerr Nonlinear Blackbody
Institute of Scientific and Technical Information of China (English)
CHENG Ze
2008-01-01
We study the thermodynamics of phase transitions of a blackbody whose interior is filled by a Kerr nonlinear crystal. There is a transition temperature To, above which the Kerr nonlinear blackbody is in the normal thermal radiation state, and below which it is in the squeezed thermal radiation state. At To, the Gibbs free energy of the two phases is continuous but the entropy density of the two phases is discontinuous. Hence, there is a jump in the entropy density and this leads to a latent heat density. The photon system undergoes a first-order phase transition from the normal to the squeezed thermal radiation state.
Large N Phase Transitions, Finite Volume, and Entanglement Entropy
Johnson, Clifford V
2014-01-01
Holographic studies of the entanglement entropy of field theories dual to charged and neutral black holes in asymptotically global AdS4 spacetimes are presented. The goal is to elucidate various properties of the quantity that are peculiar to working in finite volume, and to gain access to the behaviour of the entanglement entropy in the rich thermodynamic phase structure that is present at finite volume and large N. The entropy is followed through various first order phase transitions, and also a novel second order phase transition. Behaviour is found that contrasts interestingly with an earlier holographic study of a second order phase transition dual to an holographic superconductor.
Diamagnetic phase transitions in two-dimensional conductors
Energy Technology Data Exchange (ETDEWEB)
Bakaleinikov, L.A., E-mail: bakal.ammp@mail.ioffe.ru [A.F. Ioffe Physico-Technical Institute, Russian Academy of Sciences, St. Petersburg 194021 (Russian Federation); Department of Mathematics and Physics, Faculty of Natural Sciences, University of Haifa, Campus Oranim, Tivon 36006 (Israel); Gordon, A. [Department of Mathematics and Physics, Faculty of Natural Sciences, University of Haifa, Campus Oranim, Tivon 36006 (Israel)
2014-11-15
A theory describing the susceptibility amplitude and the magnetic induction bifurcation near the dHvA driven diamagnetic phase transitions in quasi two-dimensional (2D) organic conductors of the (ET){sub 2}X with X=Cu(NCS){sub 2},KHg(SCN){sub 4},I{sub 3},AuBr{sub 2},IBr{sub 2}, etc. is presented. We show that there is a drastic increase in the temperature and magnetic field dependence of the susceptibility amplitude on approaching the diamagnetic phase transition point. Near the phase transition point the temperature and magnetic field dependences are fitted by the ones typical of the mean-field phase transition theory. These dependences confirm the long-range character of the magnetic interactions among the conduction electrons leading to diamagnetic phase transitions. We demonstrate that the magnetic induction splitting of nuclear magnetic resonance (NMR) and muon spin-rotation spectroscopy (μSR) lines due to two Condon domains decreases tending to zero on approaching the diamagnetic phase transition. This decrease is fitted by the temperature and magnetic field dependence of the susceptibility characteristic of the mean-field theory of phase transitions. Performing new susceptibility, NMR and μSR experiments will enable to detect diamagnetic phase transitions and Condon domains in quasi 2D metals. - Highlights: • A theory of diamagnetic phase transitions (DPTs) is presented in 2D organic conductors. • The behaviour of the susceptibility amplitude and the induction splitting is shown near the DPT. • The calculated quantities are described by the mean-field theory of phase transitions.
Phase transition and PTCR effect in erbium doped BT ceramics
Energy Technology Data Exchange (ETDEWEB)
Leyet, Y. [Departamento de Fisica, Facultad de Ciencias Naturales, Universidad de Oriente, C.P. 90500 Santiago de Cuba (Cuba); Instituto Federal de Educacao Ciencia e Tecnologia (IFAM), Av. 7 de Setembro 1975, Centro, Manaus 69020-120, AM (Brazil); Pena, R.; Zulueta, Y. [Departamento de Fisica, Facultad de Ciencias Naturales, Universidad de Oriente, C.P. 90500 Santiago de Cuba (Cuba); Guerrero, F. [Departamento de Fisica, Facultad de Ciencias Naturales, Universidad de Oriente, C.P. 90500 Santiago de Cuba (Cuba); CESI, Universidade do Estado do Amazonas, Ave Mario Andreaza, Amazonas (Brazil); Anglada-Rivera, J. [CESI, Universidade do Estado do Amazonas, Ave Mario Andreaza, Amazonas (Brazil); Romaguera, Y. [INESC TEC, Rua do Campo Alegre, 687, 4169-007 Porto (Portugal); Perez de la Cruz, J., E-mail: jcruz@inescporto.pt [INESC TEC, Rua do Campo Alegre, 687, 4169-007 Porto (Portugal)
2012-06-25
Highlights: Black-Right-Pointing-Pointer Erbium influence the dielectric response BaTiO{sub 3} ceramics. Black-Right-Pointing-Pointer Features of the phase transition are not explained by phenomenological models. Black-Right-Pointing-Pointer Relaxation parameters do not show influence on ferroelectric-paraelectric phase transition. Black-Right-Pointing-Pointer Dielectric anomaly on BET phase transition is associated with the PTCR effect. - Abstract: In this work the dielectric behaviour and main features of the phase transition of BaTiO{sub 3} and Ba{sub 0.99}Er{sub 0.01}TiO{sub 3} ceramics were carefully investigated. The temperature and frequency dependences of the dielectric properties of erbium doped BaTiO{sub 3} ceramics were measured in the 25-225 Degree-Sign C and 100 Hz to 10 MHz ranges, respectively. From this study, a dielectric anomaly in the ferroelectric-paraelectric phase transition of the Ba{sub 0.99}Er{sub 0.01}TiO{sub 3} ceramic was observed. The features of the samples phase transition were analysed by using Curie-Weiss, Santos-Eiras' and order parameter local phenomenological models. In the BaTiO{sub 3} system, all models showed a normal phase transition, while was not possible to establish the character of the phase transition in the Ba{sub 0.99}Er{sub 0.01}TiO{sub 3} system. The relaxation parameters of conductive processes for the study ferroelectric materials, analysed in the time domain, did not show any influence on the ferroelectric-paraelectric phase transition. Finally, it was demonstrated that the anomaly observed on the phase transition of the erbium doped BaTiO{sub 3} ceramics is associated with the processes that results in the PTCR effect.
Insight into Structural Phase Transitions from Density Functional Theory
Ruzsinszky, Adrienn
2014-03-01
Structural phase transitions caused by high pressure or temperature are very relevant in materials science. The high pressure transitions are essential to understand the interior of planets. Pressure or temperature induced phase transitions can be relevant to understand other phase transitions in strongly correlated systems or molecular crystals.Phase transitions are important also from the aspect of method development. Lower level density functionals, LSDA and GGAs all fail to predict the lattice parameters of different polymorphs and the phase transition parameters at the same time. At this time only nonlocal density functionals like HSE and RPA have been proved to resolve the geometry-energy dilemma to some extent in structural phase transitions. In this talk I will report new results from the MGGA_MS family of meta-GGAs and give an insight why this type of meta-GGAs can give a systematic improvement of the geometry and phase transition parameters together. I will also present results from the RPA and show a possible way to improve beyond RPA.
CO2 Capture from Flue Gas by Phase Transitional Absorption
Energy Technology Data Exchange (ETDEWEB)
Liang Hu
2009-06-30
A novel absorption process called Phase Transitional Absorption was invented. What is the Phase Transitional Absorption? Phase Transitional Absorption is a two or multi phase absorption system, CO{sub 2} rich phase and CO{sub 2} lean phase. During Absorption, CO{sub 2} is accumulated in CO{sub 2} rich phase. After separating the two phases, CO{sub 2} rich phase is forward to regeneration. After regeneration, the regenerated CO{sub 2} rich phase combines CO{sub 2} lean phase to form absorbent again to complete the cycle. The advantage for Phase Transitional Absorption is obvious, significantly saving on regeneration energy. Because CO{sub 2} lean phase was separated before regeneration, only CO{sub 2} rich phase was forward to regeneration. The absorption system we developed has the features of high absorption rate, high loading and working capacity, low corrosion, low regeneration heat, no toxic to environment, etc. The process evaluation shows that our process is able to save 80% energy cost by comparing with MEA process.
Particle physics and cosmology, Task C. Progress report, January 1992--April 1993
Energy Technology Data Exchange (ETDEWEB)
Turner, M.S.
1993-05-01
The research has spanned many topics at the boundary of particle physics and cosmology. The major focus has been in the general areas of inflationary cosmology, cosmological phase transitions, astrophysical constraints to particle physics theories, and dark matter/structure formation as it relates to particle physics. Some attention is given to axion physics. Narrative summaries of the research of the individual group members are given, followed by a list of publications.
Dimensionless constants, cosmology and other dark matters
Tegmark, M; Rees, M; Wilczek, F; Tegmark, Max; Aguirre, Anthony; Rees, Martin; Wilczek, Frank
2006-01-01
We identify 31 dimensionless physical constants required by particle physics and cosmology, and emphasize that both microphysical constraints and selection effects might help elucidate their origin. Axion cosmology provides an instructive example, in which these two kinds of arguments must both be taken into account, and work well together. If a Peccei-Quinn phase transition occurred before or during inflation, then the axion dark matter density will vary from place to place with a probability distribution. By calculating the net dark matter halo formation rate as a function of all four relevant cosmological parameters and assessing other constraints, we find that this probability distribution, computed at stable solar systems, is arguably peaked near the observed dark matter density. If cosmologically relevant WIMP dark matter is discovered, then one naturally expects comparable densities of WIMPs and axions, making it important to follow up with precision measurements to determine whether WIMPs account for ...
Automatically generated code for relativistic inhomogeneous cosmologies
Bentivegna, Eloisa
2017-02-01
The applications of numerical relativity to cosmology are on the rise, contributing insight into such cosmological problems as structure formation, primordial phase transitions, gravitational-wave generation, and inflation. In this paper, I present the infrastructure for the computation of inhomogeneous dust cosmologies which was used recently to measure the effect of nonlinear inhomogeneity on the cosmic expansion rate. I illustrate the code's architecture, provide evidence for its correctness in a number of familiar cosmological settings, and evaluate its parallel performance for grids of up to several billion points. The code, which is available as free software, is based on the Einstein Toolkit infrastructure, and in particular leverages the automated code generation capabilities provided by its component Kranc.
High pressure structural phase transitions of PbPo
Energy Technology Data Exchange (ETDEWEB)
Bencherif, Y.; Boukra, A. [Departement de Physique, Faculte des Sciences, Universite de Mostaganem (Algeria); Departement de Physique, Universite des Sciences et de la Technologie d' Oran, USTO, Oran (Algeria); Zaoui, A., E-mail: azaoui@polytech-lille.fr [Universite Lille Nord de France, LGCgE (EA 4515) Lille1, Polytech' Lille, Cite Scientifique, Avenue Paul Langevin, 59655 Villeneuve D' Ascq Cedex (France); Ferhat, M. [Departement de Physique, Universite des Sciences et de la Technologie d' Oran, USTO, Oran (Algeria)
2012-09-01
First-principles calculations have been performed to investigate the high pressure phase transitions and dynamical properties of the less known lead polonium compound. The calculated ground state parameters for the NaCl phase show good agreement with the experimental data. The obtained results show that the intermediate phase transition for this compound is the orthorhombic Pnma phase. The PbPo undergoes from the rocksalt to Pnma phase at 4.20 GPa. Further structural phase transition from intermediate to CsCl phase has been found at 8.5 GPa. In addition, phonon dispersion spectra were derived from linear-response to density functional theory. In particular, we show that the dynamical properties of PbPo exhibit some peculiar features compared to other III-V compounds. Finally, thermodynamics properties have been also addressed from quasiharmonic approximation.
Phase Transition Induced by Small Molecules in Confined Copolymer Films
Institute of Scientific and Technical Information of China (English)
ZHOU Ling
2007-01-01
We investigate the phase transition induced by small molecules in confined copolymer films by using density functional theory.It is found that the addition of small molecules can effectively promote the phase separation of copolymers.In a symmetric diblock copolymer film,the affinity and concentration of small molecules play an important role in the structure transjtions.The disordered-lamellar transitions lamellar-lamellar transitions and the re-entrant transitions of the same structures are observed.Our results have potential applications in the fabrication of new functional materials.
Phase-separation transitions in asymmetric lipid bilayers
Shimobayashi, Shunsuke F; Taniguchi, Takashi
2015-01-01
Morphological transitions of phase separation associated with the asymmetry of lipid composition were investigated using micrometer-sized vesicles of lipid bilayers made from a lipid mixture. The complete macro-phase-separated morphology undergoes a transition to a micro-phase-separation-like morphology via a lorate morphology as a metastable state. The transition leads to the emergence of monodisperse nanosized domains through repeated domain scission events. Moreover, we have numerically confirmed the transitions using the time-dependent Ginzburg-Landau model describing phase separation and the bending elastic membrane, which is quantitatively consistent with experimental results by fixing one free parameter. Our findings suggest that the local spontaneous curvature due to the asymmetric composition plays an essential role in the thermodynamic stabilization of micro-phase separation in lipid bilayers.
Mizher, A J; Fraga, E S
2010-01-01
The structure of the phase diagram for strong interactions becomes richer in the presence of a magnetic background, which enters as a new control parameter for the thermodynamics. Motivated by the relevance of this physical setting for current and future high-energy heavy ion collision experiments and for the cosmological QCD transitions, we use the linear sigma model coupled to quarks and to Polyakov loops as an effective theory to investigate how the chiral and the deconfining transitions are affected, and present a general picture for the temperature--magnetic field phase diagram. We compute and discuss each contribution to the effective potential for the approximate order parameters, and uncover new phenomena such as the paramagnetically-induced breaking of global $\\mathbb{Z}_3$ symmetry, and possible splitting of deconfinement and chiral transitions in a strong magnetic field.
Phase transitions in pure and dilute thin ferromagnetic films
Korneta, W.; Pytel, Z.
1983-10-01
The mean-field model of a thin ferromagnetic film where the nearest-neighbor exchange coupling in surface layers can be different from that inside the film is considered. The phase diagram, equations for the second-order phase-transition lines, and the spontaneous magnetization profiles near the phase transitions are given. It is shown that there is no extra-ordinary transition in a thin film. If the thickness of the film tends to infinity the well-known results for the mean-field model of a semi-infinite ferromagnet are obtained. The generalization for disordered dilute thin ferromagnetic films and semi-infinite ferromagnets is also given.
Superradiant phase transitions with three-level systems
Baksic, Alexandre; Nataf, Pierre; Ciuti, Cristiano
2013-02-01
We determine the phase diagram of N identical three-level systems interacting with a single photonic mode in the thermodynamical limit (N→∞) by accounting for the so-called diamagnetic term and the inequalities imposed by the Thomas-Reich-Kuhn (TRK) oscillator strength sum rule. The key role of transitions between excited levels and the occurrence of first-order phase transitions is discussed. We show that, in contrast to two-level systems, in the three-level case the TRK inequalities do not always prevent a superradiant phase transition in the presence of a diamagnetic term.
Superradiant phase transitions with three-level systems
Baksic, Alexandre; Ciuti, Cristiano
2013-01-01
We determine the phase diagram of $N$ identical three-level systems interacting with a single photonic mode in the thermodynamical limit ($N \\to \\infty$) by accounting for the so-called diamagnetic term and the inequalities imposed by the Thomas-Reich-Kuhn (TRK) oscillator strength sum rule. The key role of transitions between excited levels and the occurrence of first-order phase transitions is discussed. We show that, in contrast to two-level systems, in the three-level case the TRK inequalities do not always prevent a superradiant phase transition in presence of a diamagnetic term.
Topology-driven magnetic quantum phase transition in topological insulators.
Zhang, Jinsong; Chang, Cui-Zu; Tang, Peizhe; Zhang, Zuocheng; Feng, Xiao; Li, Kang; Wang, Li-Li; Chen, Xi; Liu, Chaoxing; Duan, Wenhui; He, Ke; Xue, Qi-Kun; Ma, Xucun; Wang, Yayu
2013-03-29
The breaking of time reversal symmetry in topological insulators may create previously unknown quantum effects. We observed a magnetic quantum phase transition in Cr-doped Bi2(SexTe1-x)3 topological insulator films grown by means of molecular beam epitaxy. Across the critical point, a topological quantum phase transition is revealed through both angle-resolved photoemission measurements and density functional theory calculations. We present strong evidence that the bulk band topology is the fundamental driving force for the magnetic quantum phase transition. The tunable topological and magnetic properties in this system are well suited for realizing the exotic topological quantum phenomena in magnetic topological insulators.
Geometrical phase transitions on hierarchical lattices and universality
Hauser, P. R.; Saxena, V. K.
1986-12-01
In order to examine the validity of the principle of universality for phase transitions on hierarchical lattices, we have studied percolation on a variety of hierarchical lattices, within exact position-space renormalization-group schemes. It is observed that the percolation critical exponent νp strongly depends on the topology of the lattices, even for lattices with the same intrinsic dimensions and connectivities. These results support some recent similar results on thermal phase transitions on hierarchical lattices and point out the possible violation of universality in phase transitions on hierarchical lattices.
On the Chiral Phase Transition in the Linear Sigma Model
Phat, T H; Hoa, L V; Phat, Tran Huu; Anh, Nguyen Tuan; Hoa, Le Viet
2004-01-01
The Cornwall-Jackiw-Tomboulis (CJT) effective action for composite operators at finite temperature is used to investigate the chiral phase transition within the framework of the linear sigma model as the low-energy effective model of quantum chromodynamics (QCD). A new renormalization prescription for the CJT effective action in the Hartree-Fock (HF) approximation is proposed. A numerical study, which incorporates both thermal and quantum effect, shows that in this approximation the phase transition is of first order. However, taking into account the higher-loop diagrams contribution the order of phase transition is unchanged.
Particle physics and cosmology
Energy Technology Data Exchange (ETDEWEB)
Kolb, E.W.
1986-10-01
This series of lectures is about the role of particle physics in physical processes that occurred in the very early stages of the bug gang. Of particular interest is the role of particle physics in determining the evolution of the early Universe, and the effect of particle physics on the present structure of the Universe. The use of the big bang as a laboratory for placing limits on new particle physics theories will also be discussed. Section 1 reviews the standard cosmology, including primordial nucleosynthesis. Section 2 reviews the decoupling of weakly interacting particles in the early Universe, and discusses neutrino cosmology and the resulting limits that may be placed on the mass and lifetime of massive neutrinos. Section 3 discusses the evolution of the vacuum through phase transitions in the early Universe and the formation of topological defects in the transitions. Section 4 covers recent work on the generation of the baryon asymmetry by baryon-number violating reactions in Grand Unified Theories, and mentions some recent work on baryon number violation effects at the electroweak transition. Section 5 is devoted to theories of cosmic inflation. Finally, Section 6 is a discussion of the role of extra spatial dimensions in the evolution of the early Universe. 78 refs., 32 figs., 6 tabs.
Sim, Taeyong; Choi, Ahnryul; Lee, Soeun; Mun, Joung Hwan
2017-10-01
The transition phase of a golf swing is considered to be a decisive instant required for a powerful swing. However, at the same time, the low back torsional loads during this phase can have a considerable effect on golf-related low back pain (LBP). Previous efforts to quantify the transition phase were hampered by problems with accuracy due to methodological limitations. In this study, vector-coding technique (VCT) method was proposed as a comprehensive methodology to quantify the precise transition phase and examine low back torsional load. Towards this end, transition phases were assessed using three different methods (VCT, lead hand speed and X-factor stretch) and compared; then, low back torsional load during the transition phase was examined. As a result, the importance of accurate transition phase quantification has been documented. The largest torsional loads were observed in healthy professional golfers (10.23 ± 1.69 N · kg(-1)), followed by professional golfers with a history of LBP (7.93 ± 1.79 N · kg(-1)), healthy amateur golfers (1.79 ± 1.05 N · kg(-1)) and amateur golfers with a history of LBP (0.99 ± 0.87 N · kg(-1)), which order was equal to that of the transition phase magnitudes of each group. These results indicate the relationship between the transition phase and LBP history and the dependency of the torsional load magnitude on the transition phase.
Phase sensitive quantum interference on forbidden transition in ladder scheme
Koganov, Gennady A
2014-01-01
A three level ladder system is analyzed and the coherence of initially electric-dipole forbidden transition is calculated. Due to the presence of two laser fields the initially dipole forbidden transition becomes dynamically permitted due to ac Stark effect. It is shown that such transitions exhibit quantum-interference-related phenomena, such as electromagnetically induced transparency, gain without inversion and enhanced refractive index. Gain and dispersion characteristics of such transitions strongly depend upon the relative phase between the driving and the probe fields. Unlike allowed transitions, gain/absorption behavior of ac-Stark allowed transitions exhibit antisymmetric feature on the Rabi sidebands. It is found that absorption/gain spectra possess extremely narrow sub-natural resonances on these ac Stark allowed forbidden transitions. An interesting finding is simultaneous existence of gain and negative dispersion at Autler-Townes transition which may lead to both reduction of the group velocity a...
Safety performance of traffic phases and phase transitions in three phase traffic theory.
Xu, Chengcheng; Liu, Pan; Wang, Wei; Li, Zhibin
2015-12-01
Crash risk prediction models were developed to link safety to various phases and phase transitions defined by the three phase traffic theory. Results of the Bayesian conditional logit analysis showed that different traffic states differed distinctly with respect to safety performance. The random-parameter logit approach was utilized to account for the heterogeneity caused by unobserved factors. The Bayesian inference approach based on the Markov Chain Monte Carlo (MCMC) method was used for the estimation of the random-parameter logit model. The proposed approach increased the prediction performance of the crash risk models as compared with the conventional logit model. The three phase traffic theory can help us better understand the mechanism of crash occurrences in various traffic states. The contributing factors to crash likelihood can be well explained by the mechanism of phase transitions. We further discovered that the free flow state can be divided into two sub-phases on the basis of safety performance, including a true free flow state in which the interactions between vehicles are minor, and a platooned traffic state in which bunched vehicles travel in successions. The results of this study suggest that a safety perspective can be added to the three phase traffic theory. The results also suggest that the heterogeneity between different traffic states should be considered when estimating the risks of crash occurrences on freeways.
Phase transitions in ferroelectric silicon doped hafnium oxide
Böscke, T. S.; Teichert, St.; Bräuhaus, D.; Müller, J.; Schröder, U.; Böttger, U.; Mikolajick, T.
2011-09-01
We investigated phase transitions in ferroelectric silicon doped hafnium oxide (FE-Si:HfO2) by temperature dependent polarization and x-ray diffraction measurements. If heated under mechanical confinement, the orthorhombic ferroelectric phase reversibly transforms into a phase with antiferroelectric behavior. Without confinement, a transformation into a monoclinic/tetragonal phase mixture is observed during cooling. These results suggest the existence of a common higher symmetry parent phase to the orthorhombic and monoclinic phases, while transformation between these phases appears to be inhibited by an energy barrier.
Phase transitions in simplified models with long-range interactions
Rocha Filho, T. M.; Amato, M. A.; Mello, B. A.; Figueiredo, A.
2011-10-01
We study the origin of phase transitions in several simplified models with long-range interactions. For the self-gravitating ring model, we are unable to observe a possible phase transition predicted by Nardini and Casetti [Phys. Rev. EPLEEE81539-375510.1103/PhysRevE.80.060103 80, 060103R (2009).] from an energy landscape analysis. Instead we observe a sharp, although without any nonanalyticity, change from a core-halo to a core-only configuration in the spatial distribution functions for low energies. By introducing a different class of solvable simplified models without any critical points in the potential energy we show that a behavior similar to the thermodynamics of the ring model is obtained, with a first-order phase transition from an almost homogeneous high-energy phase to a clustered phase and the same core-halo to core configuration transition at lower energies. We discuss the origin of these features for the simplified models and show that the first-order phase transition comes from the maximization of the entropy of the system as a function of energy and an order parameter, as previously discussed by Hahn and Kastner [Phys. Rev. EPLEEE81539-375510.1103/PhysRevE.72.056134 72, 056134 (2005); Eur. Phys. J. BEPJBFY1434-602810.1140/epjb/e2006-00100-7 50, 311 (2006)], which seems to be the main mechanism causing phase transitions in long-range interacting systems.
Behavior of the Lyapunov Exponent and Phase Transition in Nuclei
Institute of Scientific and Technical Information of China (English)
WANG Nan; WU Xi-Zhen; LI Zhu-Xia; WANG Ning; ZHUO Yi-Zhong; SUN Xiu-Quan
2000-01-01
Based on the quantum molecular dynamics model, we investigate the dynamical behaviors of the excited nuclear system to simulate the latter stage of heavy ion reactions, which associate with a liquid-gas phase transition. We try to search a microscopic way to describe the phase transition in realnuclei. The Lyapunov exponent is employed and examined for our purpose. We find out that the Lyapunov exponent is one of good microscopic quantities to describe the phase transition in hot nuclei. Coulomb potential and the finite size effect may give a strong influence on the critical temperature. However, the collision term plays a minor role in the process of the liquid-gas phase transition in finite systems.
Phase transitions in the coal-water-methane system
Energy Technology Data Exchange (ETDEWEB)
Alexeev, A.D.; Ulyanova, E.V.; Kalugina, N.A.; Degtyar, S.E. [Institute of Physical & Mining Processes, Donetsk (Ukraine)
2006-07-01
Low temperature phase transitions in water and methane occurring in fossil coals were studied experimentally using Nuclear Magnetic Resonance (NMR) techniques. Contributions of constituent fluids into narrow line of {sup 1}H NMR wide line spectrum were analyzed.
Integrability and Quantum Phase Transitions in Interacting Boson Models
Dukelsky, J; García-Ramos, J E; Pittel, S
2003-01-01
The exact solution of the boson pairing hamiltonian given by Richardson in the sixties is used to study the phenomena of level crossings and quantum phase transitions in the integrable regions of the sd and sdg interacting boson models.
Lifshitz Transitions in Magnetic Phases of the Periodic Anderson Model
Kubo, Katsunori
2015-09-01
We investigate the reconstruction of a Fermi surface, which is called a Lifshitz transition, in magnetically ordered phases of the periodic Anderson model on a square lattice with a finite Coulomb interaction between f electrons. We apply the variational Monte Carlo method to the model by using the Gutzwiller wavefunctions for the paramagnetic, antiferromagnetic, ferromagnetic, and charge-density-wave states. We find that an antiferromagnetic phase is realized around half-filling and a ferromagnetic phase is realized when the system is far away from half-filling. In both magnetic phases, Lifshitz transitions take place. By analyzing the electronic states, we conclude that the Lifshitz transitions to large ordered-moment states can be regarded as itinerant-localized transitions of the f electrons.
Instabilities of uniform filtration flows with phase transition
Il'Ichev, A. T.; Tsypkin, G. G.
2008-10-01
New mechanisms of instability are described for vertical flows with phase transition through horizontally extended two-dimensional regions of a porous medium. A plane surface of phase transition becomes unstable at an infinitely large wavenumber and at zero wavenumber. In the latter case, the unstable flow undergoes reversible subcritical bifurcations leading to the development of secondary flows (which may not be horizontally uniform). The evolution of subcritical modes near the instability threshold is governed by the Kolmogorov-Petrovskii-Piskunov equation. Two examples of flow through a porous medium are considered. One is the unstable flow across a water-bearing layer above a layer that carries a vapor-air mixture under isothermal conditions in the presence of capillary forces at the phase transition interface. The other is the vertical flow with phase transition in a high-temperature geothermal reservoir consisting of two high-permeability regions separated by a low-permeability stratum.
Wet Process Induced Phase Transited Drug Delivery System as a ...
African Journals Online (AJOL)
Nx 6110
effect of varying osmotic pressure of the dissolution medium on drug release was studied. ... results of in vivo toxicity studies may support the use of phase transited ... ocular inflammatory conditions [16]. ... Flurbiprofen was obtained from Sun.
Dynamical symmetries and causality in non-equilibrium phase transitions
Henkel, Malte
2015-01-01
Dynamical symmetries are of considerable importance in elucidating the complex behaviour of strongly interacting systems with many degrees of freedom. Paradigmatic examples are cooperative phenomena as they arise in phase transitions, where conformal invariance has led to enormous progress in equilibrium phase transitions, especially in two dimensions. Non-equilibrium phase transitions can arise in much larger portions of the parameter space than equilibrium phase transitions. The state of the art of recent attempts to generalise conformal invariance to a new generic symmetry, taking into account the different scaling behaviour of space and time, will be reviewed. Particular attention will be given to the causality properties as they follow for co-variant $n$-point functions. These are important for the physical identification of n-point functions as responses or correlators.
Dynamical Symmetries and Causality in Non-Equilibrium Phase Transitions
Directory of Open Access Journals (Sweden)
Malte Henkel
2015-11-01
Full Text Available Dynamical symmetries are of considerable importance in elucidating the complex behaviour of strongly interacting systems with many degrees of freedom. Paradigmatic examples are cooperative phenomena as they arise in phase transitions, where conformal invariance has led to enormous progress in equilibrium phase transitions, especially in two dimensions. Non-equilibrium phase transitions can arise in much larger portions of the parameter space than equilibrium phase transitions. The state of the art of recent attempts to generalise conformal invariance to a new generic symmetry, taking into account the different scaling behaviour of space and time, will be reviewed. Particular attention will be given to the causality properties as they follow for co-variant n-point functions. These are important for the physical identification of n-point functions as responses or correlators.
Entropy, Macroscopic Information, and Phase Transitions
Parrondo, Juan M. R.
1999-01-01
The relationship between entropy and information is reviewed, taking into account that information is stored in macroscopic degrees of freedom, such as the order parameter in a system exhibiting spontaneous symmetry breaking. It is shown that most problems of the relationship between entropy and information, embodied in a variety of Maxwell demons, are also present in any symmetry breaking transition.
The QCD phase transitions: From mechanism to observables
Energy Technology Data Exchange (ETDEWEB)
Shuryak, E.V.
1997-09-22
This paper contains viewgraphs on quantum chromodynamic phase transformations during heavy ion collisions. Some topics briefly described are: finite T transitions of I molecule pairs; finite density transitions of diquarks polymers; and the softtest point of the equation of state as a source of discontinuous behavior as a function of collision energy or centrality.
Quantum Shape-Phase Transitions in Finite Nuclei
Leviatan, A
2007-01-01
Quantum shape-phase transitions in finite nuclei are considered in the framework of the interacting boson model. Critical-point Hamiltonians for first- and second-order transitions are identified by resolving them into intrinsic and collective parts. Suitable wave functions and finite-N estimates for observables at the critical-points are derived.
Quantum Shape-Phase Transitions in Finite Nuclei
Energy Technology Data Exchange (ETDEWEB)
Leviatan, A. [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel)
2007-05-15
Quantum shape-phase transitions in finite nuclei are considered in the framework of the interacting boson model. Critical-point Hamiltonians for first- and second-order transitions are identified by resolving them into intrinsic and collective parts. Suitable wave functions and finite-N estimates for observables at the critical-points are derived.
Phase transition of bismuth telluride thin films grown by MBE
DEFF Research Database (Denmark)
Fülöp, Attila; Song, Yuxin; Charpentier, Sophie
2014-01-01
A previously unreported phase transition between Bi2Te3 and Bi4Te3 in bismuth telluride grown by molecular beam epitaxy is recorded via XRD, AFM, and SIMS observations. This transition is found to be related to the Te/Bi beam equivalent pressure (BEP) ratio. BEP ratios below 17 favor the formation...
Phase transition in L-alaninium oxalate by photoacoustics
Indian Academy of Sciences (India)
M Sivabarathy; S Natarajan; S K Ramakrishnan; K Ramachandran
2004-10-01
Phase transition in L-alaninium oxalate is studied by using TG, DTA and photoacoustic spectroscopy. A sharp transition at 378 K by photoacoustics is observed whereas at the same temperature the endothermic energy change observed by TG and DTA is not very sharp. This is discussed in detail with reference to the other known data for the organic crystals.
Baryogenesis via leptonic CP-violating phase transition
Pascoli, Silvia; Zhou, Ye-Ling
2016-01-01
We propose a new mechanism to generate a lepton asymmetry based on the vacuum CP-violating phase transition (CPPT). This approach differs from classical thermal leptogenesis as a specific seesaw model, and its UV completion, need not be specified. The lepton asymmetry is generated via the dynamically realised coupling of the Weinberg operator during the phase transition. This mechanism provides strong connections with low-energy neutrino experiments.
Partial dynamical symmetry at critical points of quantum phase transitions.
Leviatan, A
2007-06-15
We show that partial dynamical symmetries can occur at critical points of quantum phase transitions, in which case underlying competing symmetries are conserved exactly by a subset of states, and mix strongly in other states. Several types of partial dynamical symmetries are demonstrated with the example of critical-point Hamiltonians for first- and second-order transitions in the framework of the interacting boson model, whose dynamical symmetries correspond to different shape phases in nuclei.
Raman study of magnetic phase transitions of hexagonal manganites
Nam, Ji-Yeon; Hien, Nguyen T. M.; Huyen, Nguyen T.; Han, Kiok; Chen, Xiang-Bai; Cheong, S. W.; Lee, D.; Noh, T. W.; Sung, N. H.; Cho, B. K.; Yang, In-Sang
2014-03-01
Results of Raman studies of magnetic phase transitions of hexagonal LuMnO3 single crystal and HoMnO3 thin films are compared directly with the results of magnetic measurements. Our results show that the temperature dependent Raman study of magnon scattering provides a simple and accurate method for investigating magnetic phase transitions, especially in HoMnO3 thin films. In single crystal, our optical method provides results as good as magnetization measurements.
Quark-gluon plasma phase transition using cluster expansion method
Syam Kumar, A. M.; Prasanth, J. P.; Bannur, Vishnu M.
2015-08-01
This study investigates the phase transitions in QCD using Mayer's cluster expansion method. The inter quark potential is modified Cornell potential. The equation of state (EoS) is evaluated for a homogeneous system. The behaviour is studied by varying the temperature as well as the number of Charm Quarks. The results clearly show signs of phase transition from Hadrons to Quark-Gluon Plasma (QGP).
Ab initio theory of helix <-> coil phase transition
DEFF Research Database (Denmark)
Yakubovich, Alexander V.; Solov'yov, Ilia; Solov'yov, Andrey V.
2008-01-01
on fundamental physical principles. It describes essential thermodynamical properties of the system such as heat capacity, the phase transition temperature and others from the analysis of the polypeptide potential energy surface calculated as a function of two dihedral angles, responsible for the polypeptide...... twisting. The suggested theory is general and with some modification can be applied for the description of phase transitions in other complex molecular systems (e.g. proteins, DNA, nanotubes, atomic clusters, fullerenes)....
Effect of point defects and disorder on structural phase transitions
Energy Technology Data Exchange (ETDEWEB)
Toulouse, J.
1997-06-01
Since the beginning in 1986, the object of this project has been Structural Phase Transitions (SPT) in real as opposed to ideal materials. The first stage of the study has been centered around the role of Point Defects in SPT`s. Our intent was to use the previous knowledge we had acquired in the study of point defects in non-transforming insulators and apply it to the study of point defects in insulators undergoing phase transitions. In non-transforming insulators, point defects, in low concentrations, marginally affect the bulk properties of the host. It is nevertheless possible by resonance or relaxation methods to study the point defects themselves via their local motion. In transforming solids, however, close to a phase transition, atomic motions become correlated over very large distances; there, even point defects far removed from one another can undergo correlated motions which may strongly affect the transition behavior of the host. Near a structural transition, the elastic properties win be most strongly affected so as to either raise or decrease the transition temperature, prevent the transition from taking place altogether, or simply modify its nature and the microstructure or domain structure of the resulting phase. One of the well known practical examples is calcium-stabilized zirconia in which the high temperature cubic phase is stabilized at room temperature with greatly improved mechanical properties.
The Cosmological Quark-Hadron Transition and Massive Compact Halo Objects
Banerjee, S; Ghosh, S; Raha, S; Sinha, B; Banerjee, Shibaji; Bhattacharyya, Abhijit; Ghosh, Sanjay K.; Raha, Sibaji; Sinha, Bikash
2000-01-01
One of the abiding mysteries in the so-called standard cosmological model is the nature of the dark matter. It is universally accepted that there is an abundance of matter in the universe which is non-luminous, due to their very weak interaction, if at all, with the other forms of matter, excepting of course the gravitational attraction. Speculations as to the nature of dark matter are numerous, often bordering on exotics, and searches for such exotic matter is a very active field of astroparticle physics at the dawn of the new century. Nevertheless, in recent years, there has been experimental evidence for at least one form of dark matter - the massive compact halo objects detected through gravitational microlensing effects proposed by Paczynski some years ago. To date, no clear consensus as to what these objects, referred to in the literature as well as in the following by the acronym MACHO, are made of; for a brief discussion of some of the suggestions, see below. In this work, we show that they find a nat...
Vacuum Particle-Antiparticle Creation in Strong Fields as a Field-Induced Phase Transition
Smolyansky, S. A.; Panferov, A. D.; Blaschke, D. B.; Juchnowski, L.; Kämpfer, B.; Otto, A.
2017-03-01
We study the special features of vacuum particle creation in an external classical field for two simple external field models in standard QED. Our investigation is based on a kinetic equation that is a nonperturbative consequence of the fundamental QED equations of motion. We identify the special features of system evolution that apply qualitatively also for other systems and are therefore rather general. The common basis for a description of these systems is formed by kinetic equations for vacuum particle creation belonging to the class of integro-differential equations of non-Markovian type with fastly oscillating kernel. This allows us to characterize the processes of this type as belonging to the class of field-induced phase transitions. Examples range from condensed matter physics to cosmology.
Vacuum particle-antiparticle creation in strong fields as a field induced phase transition
Smolyansky, S A; Blaschke, D B; Juchnowski, L; Kaempfer, B; Otto, A
2016-01-01
The features of vacuum particle creation in an external classical field are studied for simplest external field models in $3 + 1$ dimensional QED. The investigation is based on a kinetic equation that is a nonperturbative consequence of the fundamental equations of motion of QED. The observed features of the evolution of the system apply on the qualitative level also for systems of other nature and therefore are rather general. Examples from cosmology and condensed matter physics illustrate this statement. The common basis for the description of these systems are kinetic equations for vacuum particle creation belonging to the class of integro-differential equations of non-Markovian type with fastly oscillating kernel. This allows to characterize processes of this type as belonging to the class of field induced phase transitions.
Quantum Phase Transitions and Dimerized Phases in Frustrated Spin Ladder
Institute of Scientific and Technical Information of China (English)
WEN Rui; LIU Guang-Hua; TIAN Guang-Shan
2011-01-01
In this paper, we study the phase diagram of a frustrated spin ladder model by applying the bosonization technique and the density-matrix renormalization-group (DMRG) algorithm. Effect of the intra-chain next-nearestneighbor (NNN) super-exchange interaction is investigated in detail and the order parameters are calculated to detect the emergence of the dimerized phases. We find that the intra-chain NNN interaction plays a key role in inducing dimerized phases.
A Quantum Phase Transition in the Cosmic Ray Energy Distribution
Widom, A; Srivastava, Y
2015-01-01
We here argue that the "knee" of the cosmic ray energy distribution at $E_c \\sim 1$ PeV represents a second order phase transition of cosmic proportions. The discontinuity of the heat capacity per cosmic ray particle is given by $\\Delta c=0.450196\\ k_B$. However the idea of a deeper critical point singularity cannot be ruled out by present accuracy in neither theory nor experiment. The quantum phase transition consists of cosmic rays dominated by bosons for the low temperature phase E E_c$. The low temperature phase arises from those nuclei described by the usual and conventional collective boson models of nuclear physics. The high temperature phase is dominated by protons. The transition energy $E_c$ may be estimated in terms of the photo-disintegration of nuclei.
Signals of the QCD Phase Transition in the Heavens
Schaffner-Bielich, J
2007-01-01
The modern phase diagram of strongly interacting matter reveals a rich structure at high-densities due to phase transitions related to the chiral symmetry of quantum chromodynamics (QCD) and the phenomenon of color superconductivity. These exotic phases have significant impacts on high-density astrophysics as the properties of neutron stars and the evolution of astrophysical systems as proto-neutron stars, core-collapse supernovae and neutron star mergers. Most recent pulsar mass measurements and constraints on neutron star radii are critically discussed. Astrophysical signals for exotic matter and phase transitions in high-density matter proposed recently in the literature are outlined. A strong first order phase transition leads to the emergence of a third family of compact stars besides white dwarfs and neutron stars. The different microphysics of quark matter results in an enhanced r-mode stability window for rotating compact stars compared to normal neutron stars. Future telescope and satellite data will...
Problem-solving phase transitions during team collaboration
DEFF Research Database (Denmark)
Wiltshire, Travis; Butner, Jonathan E.; Fiore, Stephen M.
2017-01-01
) with dynamical systems theory suggesting that when a system is undergoing a phase transition it should exhibit a peak in entropy and that entropy levels should also relate to team performance. Communications from 40 teams that collaborated on a complex problem were coded for occurrence of problem...... phases. Peaks in entropy thus corresponded to qualitative shifts in teams’ CPS communications, providing empirical evidence that teams exhibit phase transitions during CPS. Also, lower average levels of entropy at the phase transition points predicted better CPS performance. We specify future directions......-solving processes. We applied a sliding window entropy technique to each team's communications and specified criteria for (a) identifying data points that qualify as peaks and (b) determining which peaks were robust. We used multilevel modeling, and provide a qualitative example, to evaluate whether phases exhibit...
Density Functional Theory for Phase-Ordering Transitions
Energy Technology Data Exchange (ETDEWEB)
Wu, Jianzhong [Univ. of California, Riverside, CA (United States)
2016-03-30
Colloids display astonishing structural and dynamic properties that can be dramatically altered by modest changes in the solution condition or an external field. This complex behavior stems from a subtle balance of colloidal forces and intriguing mesoscopic and macroscopic phase transitions that are sensitive to the processing conditions and the dispersing environment. Whereas the knowledge on the microscopic structure and phase behavior of colloidal systems at equilibrium is now well-advanced, quantitative predictions of the dynamic properties and the kinetics of phase-ordering transitions in colloids are not always realized. Many important mesoscopic and off-equilibrium colloidal states remain poorly understood. The proposed research aims to develop a new, unifying approach to describe colloidal dynamics and the kinetics of phase-ordering transitions based on accomplishments from previous work for the equilibrium properties of both uniform and inhomogeneous systems and on novel concepts from the state-of-the-art dynamic density functional theory. In addition to theoretical developments, computational research is designed to address a number of fundamental questions on phase-ordering transitions in colloids, in particular those pertinent to a competition of the dynamic pathways leading to various mesoscopic structures, off-equilibrium states, and crystalline phases. By providing a generic theoretical framework to describe equilibrium, metastable as well as non-ergodic phase transitions concurrent with the colloidal self-assembly processes, accomplishments from this work will have major impacts on both fundamental research and technological applications.
A little inflation in the early universe at the QCD phase transition
Boeckel, Tillmann
2009-01-01
We explore a scenario that allows for a strong first order phase-transition of QCD at non-negligible baryon number in the early universe and its possible cosmological observable consequences. The main assumption is a quasi-stable QCD-vacuum state that leads to a short period of inflation, consequently diluting the net baryon to photon ratio to it's today observed value. A strong mechanism for baryogenesis is needed to start out with a baryon asymmetry of order unity, e.g. as provided by Affleck-Dine baryogenesis. The cosmological implications are direct effects on primordial density fluctuations up to dark matter mass scales of 1 - 10 solar masses, change in the spectral slope up to mass scales of 10^6 - 10^7 solar masses, production of primordial magnetic fields with initial strength up to 10^12 Gauss and a gravitational wave spectrum with present day peak strain amplitude of at most h_c = 4.7 * 10^-15 around a frequency of 4*10^-8 Hz. The little QCD inflation scenario could be probed with the upcoming heavy...
How accurately can we measure the hydrogen 2S->1S transition rate from the cosmological data?
Mukhanov, Viatcheslav; Naselsky, Pavel; Trombetti, Tiziana; Burigana, Carlo
2012-01-01
Recent progress in observational cosmology, and especially the forthcoming PLANCK mission data, open new directions in so-called precision cosmology. In this paper we illustrate this statement considering the accuracy of cosmological determination of the two-quanta decay rate of 2s hydrogen atom state. We show that the PLANCK data will allow us to measure this decay rate significantly better than in the laboratory experiments.
Antiferromagnetic phase transition and spin correlations in NiO
DEFF Research Database (Denmark)
Chatterji, Tapan; McIntyre, G.J.; Lindgård, Per-Anker
2009-01-01
We have investigated the antiferromagnetic (AF) phase transition and spin correlations in NiO by high-temperature neutron diffraction below and above TN. We show that AF phase transition is a continuous second-order transition within our experimental resolution. The spin correlations manifested...... by this process. We determined the critical exponents =0.328±0.002 and =0.64±0.03 and the Néel temperature TN=530±1 K. These critical exponents suggest that NiO should be regarded as a 3dXY system...
Collectivity, Phase Transitions and Exceptional Points in Open Quantum Systems
Heiss, W D; Rotter, I
1998-01-01
Phase transitions in open quantum systems, which are associated with the formation of collective states of a large width and of trapped states with rather small widths, are related to exceptional points of the Hamiltonian. Exceptional points are the singularities of the spectrum and eigenfunctions, when they are considered as functions of a coupling parameter. In the present paper this parameter is the coupling strength to the continuum. It is shown that the positions of the exceptional points (their accumulation point in the thermodynamical limit) depend on the particular type and energy dependence of the coupling to the continuum in the same way as the transition point of the corresponding phase transition.
Exact Scalar-Tensor Cosmological Solutions via Noether Symmetry
Belinchón, J A; Mak, M K
2016-01-01
In this paper, we investigate the Noether symmetries of a generalized scalar-tensor, Brans-Dicke type cosmological model, in which we consider explicit scalar field dependent couplings to the Ricci scalar, and to the scalar field kinetic energy, respectively. We also include the scalar field self-interaction potential into the gravitational action. From the condition of the vanishing of the Lie derivative of the gravitational cosmological Lagrangian with respect to a given vector field we obtain three cosmological solutions describing the time evolution of a spatially flat Friedman-Robertson-Walker Universe filled with a scalar field. The cosmological properties of the solutions are investigated in detail, and it is shown that they can describe a large variety of cosmological evolutions, including models that experience a smooth transition from a decelerating to an accelerating phase.
Cosmology with Nonminimal Derivative Couplings
Amendola, L
1993-01-01
We study a theory which generalizes the nonminimal coupling of matter to gravity by including derivative couplings. This leads to several interesting new dynamical phenomena in cosmology. In particular, the range of parameters in which inflationary attractors exist is greatly expanded. We also numerically integrate the field equations and draw the phase space of the model in second order approximation. The model introduced here may display different inflationary epochs, generating a non-scale-invariant fluctuation spectrum without the need of two or more fields. Finally, we comment on the bubble spectrum arising during a first-order phase transition occurring in our model.
Solid-solid phase transitions via melting in metals
Pogatscher, S.; Leutenegger, D.; Schawe, J. E. K.; Uggowitzer, P. J.; Löffler, J. F.
2016-04-01
Observing solid-solid phase transitions in-situ with sufficient temporal and spatial resolution is a great challenge, and is often only possible via computer simulations or in model systems. Recently, a study of polymeric colloidal particles, where the particles mimic atoms, revealed an intermediate liquid state in the transition from one solid to another. While not yet observed there, this finding suggests that such phenomena may also occur in metals and alloys. Here we present experimental evidence for a solid-solid transition via the formation of a metastable liquid in a `real' atomic system. We observe this transition in a bulk glass-forming metallic system in-situ using fast differential scanning calorimetry. We investigate the corresponding transformation kinetics and discuss the underlying thermodynamics. The mechanism is likely to be a feature of many metallic glasses and metals in general, and may provide further insight into phase transition theory.
Spin-current probe for phase transition in an insulator
Qiu, Zhiyong; Li, Jia; Hou, Dazhi; Arenholz, Elke; N'diaye, Alpha T.; Tan, Ali; Uchida, Ken-Ichi; Sato, Koji; Okamoto, Satoshi; Tserkovnyak, Yaroslav; Qiu, Z. Q.; Saitoh, Eiji
2016-08-01
Spin fluctuation and transition have always been one of the central topics of magnetism and condensed matter science. Experimentally, the spin fluctuation is found transcribed onto scattering intensity in the neutron-scattering process, which is represented by dynamical magnetic susceptibility and maximized at phase transitions. Importantly, a neutron carries spin without electric charge, and therefore it can bring spin into a sample without being disturbed by electric energy. However, large facilities such as a nuclear reactor are necessary. Here we show that spin pumping, frequently used in nanoscale spintronic devices, provides a desktop microprobe for spin transition; spin current is a flux of spin without an electric charge and its transport reflects spin excitation. We demonstrate detection of antiferromagnetic transition in ultra-thin CoO films via frequency-dependent spin-current transmission measurements, which provides a versatile probe for phase transition in an electric manner in minute devices.
Phase Transitions and Backbones of the Asymmetric Traveling Salesman Problem
Zhang, W
2011-01-01
In recent years, there has been much interest in phase transitions of combinatorial problems. Phase transitions have been successfully used to analyze combinatorial optimization problems, characterize their typical-case features and locate the hardest problem instances. In this paper, we study phase transitions of the asymmetric Traveling Salesman Problem (ATSP), an NP-hard combinatorial optimization problem that has many real-world applications. Using random instances of up to 1,500 cities in which intercity distances are uniformly distributed, we empirically show that many properties of the problem, including the optimal tour cost and backbone size, experience sharp transitions as the precision of intercity distances increases across a critical value. Our experimental results on the costs of the ATSP tours and assignment problem agree with the theoretical result that the asymptotic cost of assignment problem is pi ^2 /6 the number of cities goes to infinity. In addition, we show that the average computation...
Dissipation-driven quantum phase transitions in collective spin systems
Energy Technology Data Exchange (ETDEWEB)
Morrison, S [Institute for Theoretical Physics, University of Innsbruck, A-6020 Innsbruck (Austria); Parkins, A S [Department of Physics, University of Auckland, Private Bag 92019, Auckland (New Zealand)], E-mail: smor161@aucklanduni.ac.nz
2008-10-14
We consider two different collective spin systems subjected to strong dissipation-on the same scale as interaction strengths and external fields-and show that either continuous or discontinuous dissipative quantum phase transitions can occur as the dissipation strength is varied. First, we consider a well-known model of cooperative resonance fluorescence that can exhibit a second-order quantum phase transition, and analyse the entanglement properties near the critical point. Next, we examine a dissipative version of the Lipkin-Meshkov-Glick interacting collective spin model, where we find that either first- or second-order quantum phase transitions can occur, depending only on the ratio of the interaction and external field parameters. We give detailed results and interpretation for the steady-state entanglement in the vicinity of the critical point, where it reaches a maximum. For the first-order transition we find that the semiclassical steady states exhibit a region of bistability. (fast track communication)
The Physics of Phase Transitions Concepts and Applications
Papon, Pierre; Meijer, Paul H.E
2006-01-01
The physics of phase transitions is an important area at the crossroads of several fields that play central roles in materials sciences. In this second edition, new developments had been included which came up in the states of matter physics, in particular in the domain of nanomaterials and atomic Bose-Einstein condensates where progress is accelerating. The presentation of several chapters had been improved by bringing better information on some phase transition mechanisms and by illustrating them with new application examples. This work deals with all classes of phase transitions in fluids and solids. It contains chapters on evaporation, melting, solidification, magnetic transitions, critical phenomena, superconductivity, etc., and is intended for graduate students in physics and engineering; for scientists it will serve both as an introduction and an overview. End-of-chapter problems and complete answers are included.
Structural phase transitions and topological defects in ion Coulomb crystals
Energy Technology Data Exchange (ETDEWEB)
Partner, Heather L. [Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig (Germany); Nigmatullin, Ramil [Institute of Quantum Physics, Albert-Einstein Allee-11, Ulm University, 89069 Ulm (Germany); Burgermeister, Tobias; Keller, Jonas; Pyka, Karsten [Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig (Germany); Plenio, Martin B. [Center for Integrated Quantum Science and Technology, Albert-Einstein-Allee 11, Ulm University, 89069 Ulm (Germany); Institute for Theoretical Physics, Albert-Einstein-Allee 11, Ulm University, 89069 Ulm (Germany); Retzker, Alex [Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem 91904, Givat Ram (Israel); Zurek, Wojciech H. [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Campo, Adolfo del [Department of Physics, University of Massachusetts Boston, Boston, MA 02125 (United States); Mehlstäubler, Tanja E., E-mail: tanja.mehlstaeubler@ptb.de [Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig (Germany)
2015-03-01
We use laser-cooled ion Coulomb crystals in the well-controlled environment of a harmonic radiofrequency ion trap to investigate phase transitions and defect formation. Topological defects in ion Coulomb crystals (kinks) have been recently proposed for studies of nonlinear physics with solitons and as carriers of quantum information. Defects form when a symmetry breaking phase transition is crossed nonadiabatically. For a second order phase transition, the Kibble–Zurek mechanism predicts that the formation of these defects follows a power law scaling in the rate of the transition. We demonstrate a scaling of defect density and describe kink dynamics and stability. We further discuss the implementation of mass defects and electric fields as first steps toward controlled kink preparation and manipulation.
Structural phase transitions and topological defects in ion Coulomb crystals
Energy Technology Data Exchange (ETDEWEB)
Partner, Heather L. [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany); Nigmatullin, Ramil [Institute of Quantum Physics, Ulm Univ., Ulm (Germany); Burgermeister, Tobias [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany); Keller, Jonas [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany); Pyka, Karsten [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany); Plenio, Martin B. [Center for Integrated Quantum Science and Technology, Ulm Univ., Ulm, (Germany):Institute for Theoretical Physics, Ulm Univ.,Ulm, (Germany); Retzker, Alex [Racah Institute of Physics, The Hebrew University of Jerusalem, Givat Ram (Israel); Zurek, Wojciech Hubert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); del Campo, Adolfo [Univ. of Massachusetts, Amherst, MA (United States). Dept. of Physics; Mehlstaubler, Tanja E. [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany)
2014-11-19
We use laser-cooled ion Coulomb crystals in the well-controlled environment of a harmonic radiofrequency ion trap to investigate phase transitions and defect formation. Topological defects in ion Coulomb crystals (kinks) have been recently proposed for studies of nonlinear physics with solitons and as carriers of quantum information. Defects form when a symmetry breaking phase transition is crossed non-adiabatically. For a second order phase transition, the Kibble-Zurek mechanism predicts that the formation of these defects follows a power law scaling in the rate of the transition. We demonstrate a scaling of defect density and describe kink dynamics and stability. We further discuss the implementation of mass defects and electric fields as first steps toward controlled kink preparation and manipulation.
Folding of a single polymer chain and phase transition
Institute of Scientific and Technical Information of China (English)
DING YanWei; ZHANG GuangZhao
2009-01-01
Using an ultra-sensitive differential scanning calorimetry (US-DSC), we have investigated the folding and aggregation behaviors of poly(N-isopropylacrylamide) (PNIPAM) chains in dilute and semidilute solutions. In the heating process, the intrachain folding and interchain aggregation simultaneously occur in the dilute solutions, and the ratio of intrachain folding increases with decreasing concentra-tion. In the semidilute solutions, PNIPAM chains show limited interchain aggregation with elevated temperature, because most of the PNIPAM chains have been collapsed at lower temperature. In an ex-tremely dilute solution, PNIPAM chains undergo a single folding transition in the heating process. By extrapolating heating rate and concentration to zero, we have obtained the phase transition tempera-ture (Ts) and enthalpy change (AHs) of the single chain folding. AHs is higher than that for a phase transition involving intrachain collapse and interchain aggregation, indicating that a single chain fold-ing can not be taken to be a macroscopic phase transition.
Origin of time before inflation from a topological phase transition
Bellini, Mauricio
2017-09-01
We study the origin of the universe (or pre-inflation) by suggesting that the primordial space-time in the universe suffered a global topological phase transition, from a 4D Euclidean manifold to an asymptotic 4D hyperbolic one. We introduce a complex time, τ, such that its real part becomes dominant after started the topological phase transition. Before the big bang, τ is a space-like coordinate, so that can be considered as a reversal variable. After the phase transition is converted in a causal variable. The formalism solves in a natural manner the quantum to classical transition of the geometrical relativistic quantum fluctuations: σ, which has a geometric origin.
Cascading dynamics on random networks: Crossover in phase transition
Liu, Run-Ran; Wang, Wen-Xu; Lai, Ying-Cheng; Wang, Bing-Hong
2012-02-01
In a complex network, random initial attacks or failures can trigger subsequent failures in a cascading manner, which is effectively a phase transition. Recent works have demonstrated that in networks with interdependent links so that the failure of one node causes the immediate failures of all nodes connected to it by such links, both first- and second-order phase transitions can arise. Moreover, there is a crossover between the two types of transitions at a critical system-parameter value. We demonstrate that these phenomena can occur in the more general setting where no interdependent links are present. A heuristic theory is derived to estimate the crossover and phase-transition points, and a remarkable agreement with numerics is obtained.
Horava-Lifshitz early universe phase transition beyond detailed balance
Energy Technology Data Exchange (ETDEWEB)
Kheyri, F.; Khodadi, M.; Sepangi, H.R. [Shahid Beheshti University, Department of Physics, Tehran (Iran, Islamic Republic of)
2013-01-15
The early universe is believed to have undergone a QCD phase transition to hadrons at about 10 {mu}s after the big bang. We study such a transition in the context of the non-detailed balance Horava-Lifshitz theory by investigating the effects of the dynamical coupling constant {lambda} in a flat universe. The evolution of the relevant physical quantities, namely the energy density {rho}, temperature T, scale factor a and the Hubble parameter H is investigated before, during and after the phase transition, assumed to be of first order. Also, in view of the recent lattice QCD simulations data, we study a cross-over phase transition of the early universe whose results are based on two different sets of lattice data. (orig.)
Pairing Phase Transitions of Matter under Rotation
Jiang, Yin
2016-01-01
The phases and properties of matter under global rotation have attracted much interest recently. In this paper we investigate the pairing phenomena in a system of fermions under the presence of rotation. We find that there is a generic suppression effect on pairing states with zero angular momentum. We demonstrate this effect with the chiral condensation and the color superconductivity in hot dense QCD matter as explicit examples. In the case of chiral condensation, a new phase diagram in the temperature-rotation parameter space is found, with a nontrivial critical point.
Sample-dependent phase transitions in disordered exclusion models
Enaud, C.; Derrida, B.
2004-04-01
We give numerical evidence that the location of the first-order phase transition between the low- and the high-density phases of the one-dimensional asymmetric simple exclusion process with open boundaries becomes sample dependent when quenched disorder is introduced for the hopping rates.
Dynamics and phase transitions in A 1C 60 compounds
Schober, H.; Renker, B.; Heid, R.; Tölle, A.
1997-02-01
We present an overview of extensive inelastic neutron scattering experiments carried out on powders of A 1C 60. The various phases leave strong fingerprints in the microscopic dynamics confirming the solid-state chemical reactions. The strong kinetic phase transitions can be followed in real time and turn out to be highly complex.
Instabilities near the QCD phase transition in the holographic models
Gürsoy, U.; Lin, S.; Shuryak, E.
2013-01-01
This paper discusses phenomena close to the critical QCD temperature, using the holographic model. One issue studied is the overcooled high-T phase, in which we calculate quasinormal sound modes. We do not find instabilities associated with other first-order phase transitions, but nevertheless obser
Phase transitions in dense 2-colour QCD
Boz, Tamer; Fister, Leonard; Skullerud, Jon-Ivar
2013-01-01
We investigate 2-colour QCD with 2 flavours of Wilson fermion at nonzero temperature T and quark chemical potential mu, with a pion mass of 700 MeV (m_pi/m_rho=0.8). From temperature scans at fixed mu we find that the critical temperature for the superfluid to normal transition depends only very weakly on mu above the onset chemical potential, while the deconfinement crossover temperature is clearly decreasing with mu. We also present results for the Landau-gauge gluon propagator in the hot and dense medium.
Kinetics of silica-phase transitions
Energy Technology Data Exchange (ETDEWEB)
Duffy, C.J.
1993-07-01
In addition to the stable silica polymorph quartz, several metastable silica phases are present in Yucca Mountain. The conversion of these phases to quartz is accompanied by volume reduction and a decrease in the aqueous silica activity, which may destabilize clinoptilolite and mordenite. The primary reaction sequence for the silica phases is from opal or glass to disordered opal-CT, followed by ordering of the opal-CT and finally by the crystallization of quartz. The ordering of opal-CT takes place in the solid state, whereas the conversion of opal-CT takes place through dissolution-reprecipitation involving the aqueous phase. It is proposed that the rate of conversion of opal-CT to quartz is controlled by diffusion of defects out of a disordered surface layer formed on the crystallizing quartz. The reaction rates are observed to be dependent on temperature, pressure, degree of supersaturation, and pH. Rate equations selected from the literature appear to be consistent with observations at Yucca Mountain.
Kinetics of silica-phase transitions
Energy Technology Data Exchange (ETDEWEB)
Duffy, C.J.
1993-07-01
In addition to the stable silica polymorph quartz, several metastable silica phases are present in Yucca Mountain. The conversion of these phases to quartz is accompanied by volume reduction and a decrease in the aqueous silica activity, which may destabilize clinoptilolite and mordenite. The primary reaction sequence for the silica phases is from opal or glass to disordered opal-CT, followed by ordering of the opal-CT and finally by the crystallization of quartz. The ordering of opal-CT takes place in the solid state, whereas the conversion of opal-CT takes place through dissolution-reprecipitation involving the aqueous phase. It is proposed that the rate of conversion of opal-CT to quartz is controlled by diffusion of defects out of a disordered surface layer formed on the crystallizing quartz. The reaction rates are observed to be dependent on temperature, pressure, degree of supersaturation, and pH. Rate equations selected from the literature appear to be consistent with observations at Yucca Mountain.
The deconfining phase transition in and out of equilibrium
Bazavov, Oleksiy
Recent experiments carried out at the Relativistic Heavy Ion Collider at the Brookhaven National Laboratory provide strong evidence that a matter can be driven from a confined, low-temperature phase, observed in our every day world into a deconfined high-temperature phase of liberated quarks and gluons. The equilibrium and dynamical properties of the deconfining phase transition are thus of great theoretical interest, since they also provide an information about the first femtoseconds of the evolution of our Universe, when the hot primordial soup while cooling has undergone a chain of phase transitions. The aspects of the deconfining phase transition studied in this work include: the dynamics of the SU(3) gauge theory after the heating quench (which models rapid heating in the heavy-ion collisions), equilibrium properties of the phase transition in the SU(3) gauge theory with boundaries at low temperature (small volumes at RHIC suggest that boundary effects cannot be neglected and periodic boundary conditions normally used in lattice simulations do not correspond to the experimental situation), and a study of the order of the transition in U(1) gauge theory.
Non-equilibrium quantum phase transition via entanglement decoherence dynamics
Lin, Yu-Chen; Yang, Pei-Yun; Zhang, Wei-Min
2016-01-01
We investigate the decoherence dynamics of continuous variable entanglement as the system-environment coupling strength varies from the weak-coupling to the strong-coupling regimes. Due to the existence of localized modes in the strong-coupling regime, the system cannot approach equilibrium with its environment, which induces a nonequilibrium quantum phase transition. We analytically solve the entanglement decoherence dynamics for an arbitrary spectral density. The nonequilibrium quantum phase transition is demonstrated as the system-environment coupling strength varies for all the Ohmic-type spectral densities. The 3-D entanglement quantum phase diagram is obtained. PMID:27713556
Ferrofluid nucleus phase transitions in an external uniform magnetic field
Institute of Scientific and Technical Information of China (English)
B. M. Tanygin; S. I. Shulyma; V. F. Kovalenko; M. V. Petrychuk
2015-01-01
The phase transition between a massive dense phase and a diluted superparamagnetic phase has been studied by means of a direct molecular dynamics simulation. The equilibrium structures of the ferrofluid aggregate nucleus are obtained for different values of a temperature and an external magnetic field magnitude. An approximate match of experiment and simulation has been shown for the ferrofluid phase diagram coordinates “field–temperature”. The provided phase coexistence curve has an opposite trend comparing to some of known theoretical results. This contradiction has been discussed. For given experimental parameters, it has been concluded that the present results describe more precisely the transition from linear chains to a dense globes phase. The theoretical concepts which provide the opposite binodal curve dependency trend match other experimental conditions:a diluted ferrofluid, a high particle coating rate, a high temperature, and/or a less particles coupling constant value.
The Nature of Massive Transition Galaxies in CANDELS, GAMA, and Cosmological Simulations
Pandya, Viraj; Somerville, Rachel S; Choi, Ena; Barro, Guillermo; Wuyts, Stijn; Taylor, Edward N; Behroozi, Peter; Kirkpatrick, Allison; Faber, Sandra M; Primack, Joel; Koo, David C; McIntosh, Daniel H; Kocevski, Dale; Bell, Eric F; Dekel, Avishai; Fang, Jerome J; Ferguson, Henry C; Grogin, Norman; Koekemoer, Anton M; Lu, Yu; Mantha, Kameswara; Mobasher, Bahram; Newman, Jeffrey; Pacifici, Camilla; Papovich, Casey; van der Wel, Arjen; Yesuf, Hassen M
2016-01-01
It is common practice to speak of a "green valley" that hosts galaxies whose colors are intermediate relative to those in the "blue cloud" and the "red sequence." In this study, we raise several questions about how galaxies might transition between the star-forming main sequence (SFMS) and varying "degrees of quiescence" from $z=3$ to $z\\sim0$. We develop a physically and statistically motivated definition of "transition galaxies" based on their uniquely intermediate specific star formation rates, which relieves ambiguities associated with color-based selections and allows us to more cleanly compare observations to theoretical models. Our analysis is focused on galaxies with stellar mass $M_*>10^{10}M_{\\odot}$, and is enabled by GAMA and CANDELS observations, a semi-analytic model (SAM) of galaxy formation, and a hydrodynamical simulation with state-of-the-art mechanical AGN feedback. In both the observations and the SAM, transition galaxies tend to have intermediate S\\'ersic indices, half-light radii, and su...
A third-order phase transition in random tilings
Colomo, F
2013-01-01
We consider the domino tilings of an Aztec diamond with a cut-off corner of macroscopic square shape and given size, and address the bulk properties of tilings as the size is varied. We observe that the free energy exhibits a third-order phase transition when the cut-off square, increasing in size, reaches the arctic ellipse---the phase separation curve of the original (unmodified) Aztec diamond. We obtain this result by studying the thermodynamic limit of certain nonlocal correlation function of the underlying six-vertex model with domain wall boundary conditions, the so-called emptiness formation probability (EFP). We consider EFP in two different representations: as a tau-function for Toda chains and as a random matrix model integral. The latter has a discrete measure and a linear potential with hard walls; the observed phase transition shares properties with both Gross-Witten-Wadia and Douglas-Kazakov phase transitions.
Theory of interfacial phase transitions in surfactant systems
Shukla, K. P.; Payandeh, B.; Robert, M.
1991-06-01
The spin-1 Ising model, which is equivalent to the three-component lattice gas model, is used to study wetting transitions in three-component surfactant systems consisting of an oil, water, and a nonionic surfactant. Phase equilibria, interfacial profiles, and interfacial tensions for three-phase equilibrium are determined in mean field approximation, for a wide range of temperature and interaction parameters. Surfactant interaction parameters are found to strongly influence interfacial tensions, reducing them in some cases to ultralow values. Interfacial tensions are used to determine whether the middle phase, rich in surfactant, wets or does not wet the interface between the oil-rich and water-rich phases. By varying temperature and interaction parameters, a wetting transition is located and found to be of the first order. Comparison is made with recent experimental results on wetting transitions in ternary surfactant systems.
Shear induced phase transitions induced in edible fats
Mazzanti, Gianfranco; Welch, Sarah E.; Marangoni, Alejandro G.; Sirota, Eric B.; Idziak, Stefan H. J.
2003-03-01
The food industry crystallizes fats under different conditions of temperature and shear to obtain products with desired crystalline phases. Milk fat, palm oil, cocoa butter and chocolate were crystallized from the melt in a temperature controlled Couette cell. Synchrotron x-ray diffraction studies were conducted to examine the role of shear on the phase transitions seen in edible fats. The shear forces on the crystals induced acceleration of the alpha to beta-prime phase transition with increasing shear rate in milk fat and palm oil. The increase was slow at low shear rates and became very strong above 360 s-1. In cocoa butter the acceleration between beta-prime-III and beta-V phase transition increased until a maximum of at 360 s-1, and then decreased, showing competition between enhanced heat transfer and viscous heat generation.
Quantum phase transitions in the noncommutative Dirac Oscillator
Panella, O
2014-01-01
We study the (2+1) dimensional Dirac oscillator in a homogeneous magnetic field in the non-commutative plane. It is shown that the effect of non-commutativity is twofold: $i$) momentum non commuting coordinates simply shift the critical value ($B_{\\text{cr}}$) of the magnetic field at which the well known left-right chiral quantum phase transition takes place (in the commuting phase); $ii$) non-commutativity in the space coordinates induces a new critical value of the magnetic field, $B_{\\text{cr}}^*$, where there is a second quantum phase transition (right-left), --this critical point disappears in the commutative limit--. The change in chirality associated with the magnitude of the magnetic field is examined in detail for both critical points. The phase transitions are described in terms of the magnetisation of the system. Possible applications to the physics of silicene and graphene are briefly discussed.
Where does the hot electroweak phase transition end?
Csikor, Ferenc; Heitger, J
1999-01-01
We give the nonperturbative phase diagram of the four-dimensional hot electroweak phase transition. A systematic extrapolation $a \\to 0$ is done. Our results show that the finite temperature SU(2)-Higgs phase transition is of first order for Higgs-boson masses $m_H<66.5 \\pm 1.4$ GeV. The full four-dimensional result agrees completely with that of the dimensional reduction approximation. This fact is of particular importance, because it indicates that the fermionic sector of the Standard Model (SM) can be included perturbatively. We obtain that the Higgs-boson endpoint mass in the SM is $72.4 any electroweak phase transition in the SM.
Phase transition properties of a cylindrical ferroelectric nanowire
Indian Academy of Sciences (India)
Wang Ying; Yang Xiong
2013-11-01
Based on the transverse Ising model (TIM) and using the mean-field theory, we investigate the phase transition properties of a cylindrical ferroelectric nanowire. Two different kinds of phase diagrams are constructed. We discuss systematically the effects of exchange interactions and the transverse field parameters on the phase diagrams. Moreover, the cross-over features of the parameters from the ferroelectric dominant phase diagram to the paraelectric dominant phase diagram are determined for the ferroelectric nanowire. In addition, the polarizations of the surface shell and the core are illustrated in detail by modifying the TIM parameters.
Odintsov, S D
2015-01-01
We study mimetic $F(R)$ gravity with potential and Lagrange multiplier constraint. In the context of these theories, we introduce a reconstruction technique which enables us to realize arbitrary cosmologies, given the Hubble rate and an arbitrarily chosen $F(R)$ gravity. We exemplify our method by realizing cosmologies that are in concordance with current observations (Planck data) and also well known bouncing cosmologies. The attribute of our method is that the $F(R)$ gravity can be arbitrarily chosen, so we can have the appealing features of the mimetic approach combined with the known features of some $F(R)$ gravities, which unify early-time with late-time acceleration. Moreover, we study the existence and the stability of de Sitter points in the context of mimetic $F(R)$ gravity. In the case of unstable de Sitter points, it is demonstrated that graceful exit from inflation occurs. We also study the Einstein frame counterpart theory of the Jordan frame mimetic $F(R)$ gravity, we discuss the general propert...
Quark-hadron phase transition and strangeness conservation constraints
Saeed-Uddin
1999-01-01
The implications of the strangeness conservation in a hadronic resonance gas (HRG) on the expected phase transition to the quark gluon plasma (QGP) are investigated. It is assumed that under favourable conditions a first order hadron-quark matter phase transition may occur in the hot hadronic matter such as those produced in the ultra-relativistic heavy-ion collisions at CERN and BNL. It is however shown that the criteria of strict strangeness conservation in the HRG may not permit the occurrence of a strict first order equilibrium quark-hadron phase transition unlike a previous study. This emerges as a consequence of the application of a realistic equation of state (EOS) for the HRG and QGP phases, which account for the finite-size effect arising from the short range hard-core hadronic repulsion in the HRG phase and the perturbative QCD interactions in the QGP phase. For a first order hadron-quark matter phase transition to occur one will therefore require large fluctuations in the critical thermal parameters, which might arise due to superheating, supercooling or other nonequlibrium effects. We also discuss a scenario proposed earlier, leading to a possible strangeness separation process during hadronization.
Ab initio theory of helix <-> coil phase transition
DEFF Research Database (Denmark)
Yakubovich, Alexander V.; Solov'yov, Ilia; Solov'yov, Andrey V.
2008-01-01
In this paper, we suggest a theoretical method based on the statistical mechanics for treating the alpha-helix <-> random coil transition in alanine polypeptides. We consider this process as a first-order phase transition and develop a theory which is free of model parameters and is based solely ...... twisting. The suggested theory is general and with some modification can be applied for the description of phase transitions in other complex molecular systems (e.g. proteins, DNA, nanotubes, atomic clusters, fullerenes).......In this paper, we suggest a theoretical method based on the statistical mechanics for treating the alpha-helix random coil transition in alanine polypeptides. We consider this process as a first-order phase transition and develop a theory which is free of model parameters and is based solely...... on fundamental physical principles. It describes essential thermodynamical properties of the system such as heat capacity, the phase transition temperature and others from the analysis of the polypeptide potential energy surface calculated as a function of two dihedral angles, responsible for the polypeptide...
Pressure-induced phase transitions of indium selenide
Rasmussen, Anya Marie
In2Se3 has potential as a phase-change material for memory applications. Understanding its phase diagram is important to achieve controlled switching between phases. Pressure-dependent phase transitions of In2Se3 bulk powders and nanowire samples were studied at room temperature and at elevated temperatures using synchrotron x-ray diffraction and diamond-anvil cells (DACs). alpha-In2Se3 transforms into the beta phase at 0.7 GPa, an order of magnitude lower than phase-transition critical pressures in typical semiconductors. The bulk moduli are reported and the c/a ratio for the beta phase is shown to have a highly nonlinear dependence on pressure. gamma-In2Se3, metastable under ambient conditions, transforms into to the high-pressure beta phase between 2.8 GPa and 3.2 GPa in bulk powder samples and at slightly higher pressures, between 3.2 GPa and 3.7 GPa in nanowire samples. While the gamma phase bulk modulus is similar to that of the beta phase, the decrease due to pressure in the unit cell parameter ratio, c/a, is less than half the decrease seen in the beta phase. Using high-temperature DACs, we investigated how elevated temperatures and pressures affect the crystal structure of In 2Se3. From these measurements, the high-pressure beta phase was found to be metastable. The high-pressure beta phase transitions into the high-temperature beta phase at temperatures above 380 °C.
Extended ensemble theory, spontaneous symmetry breaking, and phase transitions
Xiao, Ming-wen
2006-09-01
In this paper, as a personal review, we suppose a possible extension of Gibbs ensemble theory so that it can provide a reasonable description of phase transitions and spontaneous symmetry breaking. The extension is founded on three hypotheses, and can be regarded as a microscopic edition of the Landau phenomenological theory of phase transitions. Within its framework, the stable state of a system is determined by the evolution of order parameter with temperature according to such a principle that the entropy of the system will reach its minimum in this state. The evolution of order parameter can cause a change in representation of the system Hamiltonian; different phases will realize different representations, respectively; a phase transition amounts to a representation transformation. Physically, it turns out that phase transitions originate from the automatic interference among matter waves as the temperature is cooled down. Typical quantum many-body systems are studied with this extended ensemble theory. We regain the Bardeen Cooper Schrieffer solution for the weak-coupling superconductivity, and prove that it is stable. We find that negative-temperature and laser phases arise from the same mechanism as phase transitions, and that they are unstable. For the ideal Bose gas, we demonstrate that it will produce Bose Einstein condensation (BEC) in the thermodynamic limit, which confirms exactly Einstein's deep physical insight. In contrast, there is no BEC either within the phonon gas in a black body or within the ideal photon gas in a solid body. We prove that it is not admissible to quantize the Dirac field by using Bose Einstein statistics. We show that a structural phase transition belongs physically to the BEC happening in configuration space, and that a double-well anharmonic system will undergo a structural phase transition at a finite temperature. For the O(N)-symmetric vector model, we demonstrate that it will yield spontaneous symmetry breaking and produce
Inhomogeneous field configurations and the electroweak phase transition
Jungnickel, D U; Jungnickel, Dirk-Uwe; Walliser, Dirk
1994-01-01
We investigate the effects of inhomogeneous scalar field configurations on the electroweak phase transition. For this purpose we calculate the leading perturbative correction to the wave function correction term $Z(\\vph,T)$, i.e., the kinetic term in the effective action, for the electroweak Standard Model at finite temperature and the top quark self--mass. Our finding for the fermionic contribution to $Z(\\vph,T)$ is infra--red finite and disagrees with other recent results. In general, neither the order of the phase transition nor the temperature at which it occurs change, once $Z(\\vph,T)$ is included. But a non--vanishing, positive (negative) $Z(\\vph,T)$ enhances (decreases) the critical droplet surface tension and the strength of the phase transition. We find that in the range of parameter space, which allows for a first--order phase transition, the wave function correction term is negative --- indicating a weaker phase transition --- and especially for small field values so large that perturbation theory ...
New insight into the Berezinskii-Kosterlitz-Thouless phase transition
Gerber, Urs; Rejón-Barrera, Fernando G
2014-01-01
We investigate the 2d XY model by using the constraint angle action, which belongs to the class of topological lattice actions. These actions violate important features usually demanded for a lattice action, such as the correct classical continuum limit and the applicability of perturbation theory. Nevertheless, they still lead to the same universal quantum continuum limit and show excellent scaling behavior. By using the constraint angle action we gain new insight into the Berezinskii-Kosterlitz-Thouless phase transition of the 2d XY model. This phase transition is of special interest since it is one of the few examples of a phase transition beyond second order. It is of infinite order and therefore an essential phase transition. In particular, we observe an excellent scaling behavior of the helicity modulus, which characterizes this phase transition. We also observe that the mechanism of (un)binding vortex--anti-vortex pairs follows the usual pattern, although free vortices do not require any energy in the ...
A comparison of observables for solid-solid phase transitions
Energy Technology Data Exchange (ETDEWEB)
Smilowitz, Laura B [Los Alamos National Laboratory; Henson, Bryan F [Los Alamos National Laboratory; Romero, Jerry J [Los Alamos National Laboratory
2009-01-01
The study of solid-solid phase transformations is hindered by the difficulty of finding a volumetric probe to use as a progress variable. Solids are typically optically opaque and heterogeneous. Over the past several years, second harmonic generation (SHG) has been used as a kinetic probe for a solid-solid phase transition in which the initial and final phases have different symmetries. Bulk generation of SHG is allowed by symmetry only in noncentrosymmetric crystallographic space groups. For the organic energetic nitramine octahydro-1,3 ,5,7 -tetranitro-1,3 ,5,7 -tatrazocine (HMX), the beta phase is centro symmetric (space group P2{sub 1}/c) and the delta phase iS noncentrosymmetric (space group P6{sub 1}22) making SHG an extremely sensitive, essentially zero background probe of the phase change progress. We have used SHG as a tool to follow the progress of the transformation from beta to delta phase during the solid-solid transformation. However, kinetic models of the transformation derived using different observables from several other groups have differed, showing later onset for the phase change and faster progression to completion. In this work, we have intercompared several techniques to understand these differences. The three techniques discussed are second harmonic generation, Raman spectroscopy, and differential scanning calorimetry (DSC). The progress of the beta to delta phase transition in HMX observed with each of these different probes will be discussed and advantages and disadvantages of each technique described. This paper compares several different observables for use in measuring the kinetics of solid-solid phase transitions. Relative advantages and disadvantages for each technique are described and a direct comparison of results is made for the beta to delta polymorphic phase transition of the energetic nitramine, octahydro-1,3,5,7-tetranitro-1,3,5,7-tatrazocine.
Beam Combining by Phase Transition Nonlinear Media
1990-02-01
use the Redlich Kwong equation of state for the media we consider. This equation of state can be written RT a p - -b -FT(p.-’ + b)p ; 2-I M (2-1) where...as ac 3 dg-A7 C VA/\\CIIJT (6) The Redlich - Kwong equation of state; i.e., _ RT T-1/2 v-P v(v+P) (7) can be used to compute aP/lT, where the relevant...practical the application of nonlinear phase conjugate techniques to the beam combining of multiple lasers with a coherence characteristic of a
Sheykhi, A.; Naeimipour, F.; Zebarjad, S. M.
2015-06-01
Considering the Lagrangian of the logarithmic nonlinear electrodynamics in the presence of a scalar dilaton field, we obtain a new class of topological black hole solutions of Einstein-dilaton gravity with two Liouville-type dilaton potentials. Black hole horizons and cosmological horizons, in these spacetimes, can be a two-dimensional positive, zero, or negative constant curvature surface. We find that the behavior of the electric field crucially depends on the dilaton coupling constant α . For small α , the electric field diverges near the origin, although its divergency is weaker than the linear Maxwell field. However, with increasing α , the behavior of the electric field, near the origin, approaches to that of the Maxwell field. We also study casual structure, asymptotic behavior, and physical properties of the solutions. We find that, depending on the model parameters, the topological dilaton black holes may have one or two horizons, and even in some cases we encounter a naked singularity without horizon. We compute the conserved and thermodynamic quantities of the spacetime and investigate that these quantities satisfy the first law of thermodynamics. We also probe thermal stability in the canonical and grand canonical ensembles and disclose the effects of the dilaton field as well as nonlinear parameter on the thermal stability of the solutions. Finally, we investigate thermodynamical geometry of the obtained solutions by introducing a new metric and studying the phase transition points due to the divergency of the Ricci scalar. We find that the dilaton field affects the phase transition points of the system.
THE NEXT GENERATION TRANSIT SURVEY PROTOTYPING PHASE
Directory of Open Access Journals (Sweden)
J. McCormac
2014-01-01
Full Text Available El Next Generation Transit Survey (NGTS es un nuevo sondeo d e exoplanetas transitantes de campo amplio que tiene como objetivo descubrir exoplanetas del tama ̃no d e Neptuno y super-Tierras entorno a estrellas brillantes ( V < 13 cercanas. NGTS consiste de un arreglo de 12 telescopios o perados rob ́oticamente observando en la banda de 600 − 900 nm. NGTS sondear ́a m ́as de cinco veces el n ́umero de estre llas, con V < 13, que Kepler y por lo tanto proveer ́a los objetivos m ́as brillantes para s er caracterizados con instrumentaci ́on existente y futura (VLT, E-ELT y JWST. En 2009/10 un prototipo del NGTS f ue probado en La Palma, comprobando que un sistema as ́ı puede alcanzar nuestros objetivos de fot ometr ́ıa estelar esencialmente limitada s ́olo por el ruido blanco. Los resultados son resumidos aqu ́ı. NGTS se al imenta de la experiencia del proyecto SuperWASP, que, por muchos a ̃nos, ha liderado la detecci ́on terrestre d e exoplanetas transitantes.
Quantum phase transition in a common metal.
Yeh, A; Soh, Yeong-Ah; Brooke, J; Aeppli, G; Rosenbaum, T F; Hayden, S M
2002-10-03
The classical theory of solids, based on the quantum mechanics of single electrons moving in periodic potentials, provides an excellent description of substances ranging from semiconducting silicon to superconducting aluminium. Over the last fifteen years, it has become increasingly clear that there are substances for which the conventional approach fails. Among these are certain rare earth compounds and transition metal oxides, including high-temperature superconductors. A common feature of these materials is complexity, in the sense that they have relatively large unit cells containing heterogeneous mixtures of atoms. Although many explanations have been put forward for their anomalous properties, it is still possible that the classical theory might suffice. Here we show that a very common chromium alloy has some of the same peculiarities as the more exotic materials, including a quantum critical point, a strongly temperature-dependent Hall resistance and evidence for a 'pseudogap'. This implies that complexity is not a prerequisite for unconventional behaviour. Moreover, it should simplify the general task of explaining anomalous properties because chromium is a relatively simple system in which to work out in quantitative detail the consequences of the conventional theory of solids.
Non-equilibrium phase transitions in a liquid crystal
Dan, K.; Roy, M.; Datta, A.
2015-09-01
The present manuscript describes kinetic behaviour of the glass transition and non-equilibrium features of the "Nematic-Isotropic" (N-I) phase transition of a well known liquid crystalline material N-(4-methoxybenzylidene)-4-butylaniline from the effects of heating rate and initial temperature on the transitions, through differential scanning calorimetry (DSC), Fourier transform infrared and fluorescence spectroscopy. Around the vicinity of the glass transition temperature (Tg), while only a change in the baseline of the ΔCp vs T curve is observed for heating rate (β) > 5 K min-1, consistent with a glass transition, a clear peak for β ≤ 5 K min-1 and the rapid reduction in the ΔCp value from the former to the latter rate correspond to an order-disorder transition and a transition from ergodic to non-ergodic behaviour. The ln β vs 1000/T curve for the glass transition shows convex Arrhenius behaviour that can be explained very well by a purely entropic activation barrier [Dan et al., Eur. Phys. Lett. 108, 36007 (2014)]. Fourier transform infrared spectroscopy indicates sudden freezing of the out-of-plane distortion vibrations of the benzene rings around the glass transition temperature and a considerable red shift indicating enhanced coplanarity of the benzene rings and, consequently, enhancement in the molecular ordering compared to room temperature. We further provide a direct experimental evidence of the non-equilibrium nature of the N-I transition through the dependence of this transition temperature (TNI) and associated enthalpy change (ΔH) on the initial temperature (at fixed β-values) for the DSC scans. A plausible qualitative explanation based on Mesquita's extension of Landau-deGennes theory [O. N. de Mesquita, Braz. J. Phys. 28, 257 (1998)] has been put forward. The change in the molecular ordering from nematic to isotropic phase has been investigated through fluorescence anisotropy measurements where the order parameter, quantified by the
Non-equilibrium phase transitions in a liquid crystal.
Dan, K; Roy, M; Datta, A
2015-09-07
The present manuscript describes kinetic behaviour of the glass transition and non-equilibrium features of the "Nematic-Isotropic" (N-I) phase transition of a well known liquid crystalline material N-(4-methoxybenzylidene)-4-butylaniline from the effects of heating rate and initial temperature on the transitions, through differential scanning calorimetry (DSC), Fourier transform infrared and fluorescence spectroscopy. Around the vicinity of the glass transition temperature (Tg), while only a change in the baseline of the ΔCp vs T curve is observed for heating rate (β) > 5 K min(-1), consistent with a glass transition, a clear peak for β ≤ 5 K min(-1) and the rapid reduction in the ΔCp value from the former to the latter rate correspond to an order-disorder transition and a transition from ergodic to non-ergodic behaviour. The ln β vs 1000/T curve for the glass transition shows convex Arrhenius behaviour that can be explained very well by a purely entropic activation barrier [Dan et al., Eur. Phys. Lett. 108, 36007 (2014)]. Fourier transform infrared spectroscopy indicates sudden freezing of the out-of-plane distortion vibrations of the benzene rings around the glass transition temperature and a considerable red shift indicating enhanced coplanarity of the benzene rings and, consequently, enhancement in the molecular ordering compared to room temperature. We further provide a direct experimental evidence of the non-equilibrium nature of the N-I transition through the dependence of this transition temperature (TNI) and associated enthalpy change (ΔH) on the initial temperature (at fixed β-values) for the DSC scans. A plausible qualitative explanation based on Mesquita's extension of Landau-deGennes theory [O. N. de Mesquita, Braz. J. Phys. 28, 257 (1998)] has been put forward. The change in the molecular ordering from nematic to isotropic phase has been investigated through fluorescence anisotropy measurements where the order parameter, quantified by the
How tetraquarks can generate a second chiral phase transition
Pisarski, Robert D
2016-01-01
We consider how tetraquarks can affect the chiral phase transition in theories like QCD, with light quarks coupled to three colors. For two flavors the tetraquark field is an isosinglet, and its effect is minimal. For three flavors, however, the tetraquark field transforms in the same representation of the chiral symmetry group as the usual chiral order parameter, and so for very light quarks there may be two chiral phase transitions, which are both of first order. In QCD, results from the lattice indicate that any transition from the tetraquark condensate is a smooth crossover. In the plane of temperature and quark chemical potential, though, a crossover line for the tetraquark condensate is naturally related to the transition line for color superconductivity. For four flavors we suggest that a triquark field, antisymmetric in both flavor and color, combine to form hexaquarks.
Disorienting the Chiral Condensate at the QCD Phase Transition
Rajagopal, K
1997-01-01
I sketch how long wavelength modes of the pion field can be amplified during the QCD phase transition. If nature had been kinder, and had made the pion mass significantly less than the critical temperature for the transition, then this phenomenon would have characterized the transition in thermal equilibrium. Instead, these long wavelength oscillations of the orientation of the chiral condensate can only arise out of equilibrium. There is a simple non-equilibrium mechanism, plausibly operational during heavy ion collisions, which naturally amplifies these oscillations. The characteristic signature of this phenomenon is large fluctuations in the ratio of the number of neutral pions to the total number of pions in regions of momentum space, that is in phase space in a detector. Detection in a heavy ion collision would imply an out of equilbrium chiral transition.
Phase transitions in the distribution of inelastically colliding inertial particles
Belan, Sergey; Falkovich, Gregory
2015-01-01
It was recently suggested that the sign of particle drift in inhomogeneous temperature or turbulence depends on the particle inertia: weakly inertial particles localize near minima of temperature or turbulence intensity (effects known as thermophoresis and turbophoresis), while strongly inertial particles fly away from minima in an unbounded space. The problem of a particle near minima of turbulence intensity is related to that of two particles in a random flow, so that the localization-delocalization transition in the former corresponds to the path-coalescence transition in the latter. The transition is signaled by the sign change of the Lyapunov exponent that characterizes the mean rate of particle approach to the minimum (which could be wall or another particle). Here we solve analytically this problem for inelastic collisions and derive the phase diagram for the transition in the inertia-inelasticity plane. An important feature of the phase diagram is the region of inelastic collapse: if the restitution c...
Characteristics of the chiral phase transition in nonlocal quark models
Dumm, D G
2004-01-01
The characteristics of the chiral phase transition are analyzed within the framework of chiral quark models with nonlocal interactions in the mean field approximation (MFA). In the chiral limit, we show that there is a region of low values of the chemical potential in which the transition is a second order one. In that region, it is possible to perform a Landau expansion and determine the critical exponents which, as expected, turn out to be the MFA ones. Our analysis also allows to obtain semi-analytical expressions for the transition curve and the location of the tricritical point. For the case of finite current quark masses, we study the behavior of various thermodynamical and chiral response functions across the phase transition.
Second- and First-Order Phase Transitions in CDT
Ambjorn, J; Jurkiewicz, J; Loll, R
2012-01-01
Causal Dynamical Triangulations (CDT) is a proposal for a theory of quantum gravity, which implements a path-integral quantization of gravity as the continuum limit of a sum over piecewise flat spacetime geometries. We use Monte Carlo simulations to analyse the phase transition lines bordering the physically interesting de Sitter phase of the four-dimensional CDT model. Using a range of numerical criteria, we present strong evidence that the so-called A-C transition is first order, while the B-C transition is second order. The presence of a second-order transition may be related to an ultraviolet fixed point of quantum gravity and thus provide the key to probing physics at and possibly beyond the Planck scale.
Nonequilibrium phase transition in a driven Potts model with friction.
Iglói, Ferenc; Pleimling, Michel; Turban, Loïc
2011-04-01
We consider magnetic friction between two systems of q-state Potts spins which are moving along their boundaries with a relative constant velocity ν. Due to the interaction between the surface spins there is a permanent energy flow and the system is in a steady state, which is far from equilibrium. The problem is treated analytically in the limit ν=∞ (in one dimension, as well as in two dimensions for large-q values) and for v and q finite by Monte Carlo simulations in two dimensions. Exotic nonequilibrium phase transitions take place, the properties of which depend on the type of phase transition in equilibrium. When this latter transition is of first order, a sequence of second- and first-order nonequilibrium transitions can be observed when the interaction is varied. ©2011 American Physical Society
Phase transitions in traffic flow on multilane roads.
Kerner, Boris S; Klenov, Sergey L
2009-11-01
Based on empirical and numerical analyses of vehicular traffic, the physics of spatiotemporal phase transitions in traffic flow on multilane roads is revealed. The complex dynamics of moving jams observed in single vehicle data measured by video cameras on American highways is explained by the nucleation-interruption effect in synchronized flow, i.e., the spontaneous nucleation of a narrow moving jam with the subsequent jam dissolution. We find that (i) lane changing, vehicle merging from on-ramps, and vehicle leaving to off-ramps result in different traffic phases-free flow, synchronized flow, and wide moving jams-occurring and coexisting in different road lanes as well as in diverse phase transitions between the traffic phases; (ii) in synchronized flow, the phase transitions are responsible for a non-regular moving jam dynamics that explains measured single vehicle data: moving jams emerge and dissolve randomly at various road locations in different lanes; (iii) the phase transitions result also in diverse expanded general congested patterns occurring at closely located bottlenecks.
Crystallite size and phase transition demeanor of ceramic steel
Energy Technology Data Exchange (ETDEWEB)
Gusain, Deepak; Srivastava, Varsha [Department of Chemistry, Indian Institute of Technology (Banaras Hindu University) Varanasi, Varanasi 221 005 (India); Singh, Vinay K. [Department of Ceramic Engineering, Indian Institute of Technology (Banaras Hindu University) Varanasi, Varanasi 221 005 (India); Chandra Sharma, Yogesh, E-mail: ysharma.apc@itbhu.ac.in [Department of Chemistry, Indian Institute of Technology (Banaras Hindu University) Varanasi, Varanasi 221 005 (India)
2014-06-01
Zirconia is an important oxide of zirconium used in variety of field ranging from dentistry, fuel cells, and thermal barrier coatings. Phase transition of zirconia is an important phenomenon controlling its fracture strength, low temperature degradability and ion conductivity. In the present study, effect of molar concentration of precursor and calcination temperature on phase transition and crystallite size of zirconia was investigated. All the samples were characterized by X-ray diffractometry (XRD), Differential Thermal Analysis/Thermogravimetric Analysis (DTA/TGA), Transmission electron microscopy (TEM), Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). In sample having lowest precursor concentration crystallite size of monoclinic zirconia was found to be lower than that of tetragonal zirconia, simultaneously with the higher proportion of tetragonal zirconia (67.62%) as compared to all other samples (42.75%–58.04%). In all cases, monoclinic to tetragonal phase transition occurs with raise of temperature but in the sample with lowest precursor concentration, tetragonal to monoclinic phase transition occurred on raising the temperature. - Graphical abstract: Display Omitted - Highlights: • Highest proportion of tetragonal phase at lowest precursor concentration. • Tetragonal phase's crystallite size decreased with rise of temperature. • Average particle size of all samples lies in the range of 13 nm–20 nm.
Universality of Holographic Phase Transitions and Holographic Quantum Liquids
Benincasa, Paolo
2009-01-01
We explore the phase structure for defect theories in full generality using the gauge/gravity correspondence. On the gravity side, the systems are constructed by introducing M (probe) D(p+4-2k)-branes in a background generated by N Dp-branes to obtain a codimension-k intersection. The dual gauge theory is a U(N) Supersymmetric Yang-Mills theory on a (1+p-k)-dimensional defect with both adjoint and fundamental degrees of freedom. We focus on the phase structure in the chemical potential versus temperature plane. We observe the existence of two universality classes for holographic gauge theories, which are identified by the order of the phase transition in the interior of the chemical potential/temperature plane. Specifically, all the sensible systems with no defect show a third order phase transition. Gauge theories on a defect with (p-1)-spatial directions are instead characterised by a second order phase transition. One can therefore state that the order of this phase transition is intimately related to the ...
Structural transitions in condensed colloidal virus phases
Schmidt, Nathan; Barr, Steve; Udit, Andrew; Gutierrez, Leonardo; Nguyen, Thanh; Finn, M. G.; Luijten, Erik; Wong, Gerard
2010-03-01
Analogous to monatomic systems colloidal phase behavior is entirely determined by the interaction potential between particles. This potential can be tuned using solutes such as multivalent salts and polymers with varying affinity for the colloids to create a hierarchy of attractions. Bacteriophage viruses are a naturally occurring type of colloidal particle with characteristics difficult to achieve by laboratory synthesis. They are monodisperse, nanometers in size, and have heterogeneous surface charge distributions. We use the MS2 and Qbeta bacteriophages (diameters 27-28nm) to understand the interplay between different attraction mechanisms on nanometer-sized colloids. Small Angle X-ray Scattering (SAXS) is used to characterize the inter-particle interaction between colloidal viruses using several polymer species and different salt types.
Error-correcting codes and phase transitions
Manin, Yuri I
2009-01-01
The theory of error-correcting codes is concerned with constructing codes that optimize simultaneously transmission rate and relative minimum distance. These conflicting requirements determine an asymptotic bound, which is a continuous curve in the space of parameters. The main goal of this paper is to relate the asymptotic bound to phase diagrams of quantum statistical mechanical systems. We first identify the code parameters with Hausdorff and von Neumann dimensions, by considering fractals consisting of infinite sequences of code words. We then construct operator algebras associated to individual codes. These are Toeplitz algebras with a time evolution for which the KMS state at critical temperature gives the Hausdorff measure on the corresponding fractal. We extend this construction to algebras associated to limit points of codes, with non-uniform multi-fractal measures, and to tensor products over varying parameters.
Quantum decoherence of subcritical bubble in electroweak phase transition
Shiromizu, T
1995-01-01
In a weakly first order phase transition the typical scale of a subcritical bubble calculated in our previous papers turned out to be too small. At this scale quantum fluctuations may dominate and our previous classical result may be altered. So we examine the critical size of a subcritical bubble where quantum-to-classical transition occurs through quantum decoherence. We show that this critical size is almost equal to the typical scale which we previously obtained.
Lifshitz scaling effects on holographic paramagnetism/ferromagneism phase transition
Zhang, Cheng-Yuan; Jin, Yong-Yi; Chai, Yun-Tian; Hu, Mu-Hong; Zhang, Zhuo
2016-01-01
In the probe limit, we investigate holographic paramagnetism-ferromagnetism phase transition in the four-dimensional (4D) and five-dimensional(5D) Lifshitz black holes by means of numerical and semi-analytical methods, which is realized by introducing a massive 2-form field coupled to the Maxwell field. We find that the Lifshitz dynamical exponent $z$ contributes evidently to magnetic moment and hysteresis loop of single magnetic domain quantitatively not qualitatively. Concretely, in the case without external magnetic field, the spontaneous magnetization and ferromagnetic phase transition happen when the temperature gets low enough, and the critical exponent for the magnetic moment is always $1/2$, which is in agreement with the result from mean field theory. And the increasing $z$ enhances the phase transition and increases the DC resistivity which behaves as the colossal magnetic resistance effect in some materials. Furthermore, in the presence of the external magnetic field, the magnetic susceptibility sa...
Canonical Entropy and Phase Transition of Rotating Black Hole
Institute of Scientific and Technical Information of China (English)
ZHAO Ren; WU Yue-Qin; ZHANG Li-Chun
2008-01-01
Recently, the Hawking radiation of a black hole has been studied using the tunnel effect method. The radiation spectrum of a black hole is derived. By discussing the correction to spectrum of the rotating black hole, we obtain the canonical entropy. The derived canonical entropy is equal to the sum of Bekenstein-Hawking entropy and correction term. The correction term near the critical point is different from the one near others. This difference plays an important role in studying the phase transition of the black hole. The black hole thermal capacity diverges at the critical point. However, the canonical entropy is not a complex number at this point. Thus we think that the phase transition created by this critical point is the second order phase transition. The discussed black hole is a five-dimensional Kerr-AdS black hole. We provide a basis for discussing thermodynamic properties of a higher-dimensional rotating black hole.
Phase transition with an isospin dependent lattice gas model
Energy Technology Data Exchange (ETDEWEB)
Gulminelli, F. [Caen Univ., 14 (France). Lab. de Physique Corpusculaire; Chomaz, Ph. [Grand Accelerateur National d`Ions Lourds (GANIL), 14 - Caen (France)
1998-10-01
The nuclear liquid-gas phase transition is studied within an isospin dependent Lattice Gas Model in the canonical ensemble. Finite size effects on thermodynamical variables are analyzed by a direct calculation of the partition function, and it is shown that phase coexistence and phase transition are relevant concepts even for systems of a few tens of particles. Critical exponents are extracted from the behaviour of the fragment production yield as a function of temperature by means of a finite size scaling. The result is that in a finite system well defined critical signals can be found at supercritical (Kertesz line) as well as subcritical densities. For isospin asymmetric systems it is shown that, besides the modification of the critical temperature, isotopic distributions can provide an extra observable to identify and characterize the transition. (author) 21 refs.
Thermodynamics and Phase Transition in Rotational Kiselev Black Hole
Xu, Zhaoyi
2016-01-01
We calculate the thermodynamical features of rotational Kiselev black holes, specifically we use one order approximate of horizon to calculate thermodynamical features for all $\\omega$. The thermodynamics features include areas, entropies, horizon radii, surface gravities, surface temperatures, Komar energies and irreducible masses at the Cauchy horizon and Event horizon. At the same time the products of these features have been discussed. We find that the products are independent with mass of black hole and determined by $\\omega$ and $\\alpha$. The features in the situations of $\\omega=-2/3,1/3$ and $0$ (quintessence matter, radiation and dust) have been discussed in detail. We also generalize the Smarr mass formula and Christodoulou-Ruffini mass formula to these black holes. Finally we study the phase transition for black holes with different $\\omega$ and obtain the state equation. We analyze the phase transition for $\\omega=1/3$, and find that $\\alpha$ shifts the critical point of phase transition.
Optical Sensor for Characterizing the Phase Transition in Salted Solutions
Claverie, Rémy; Fontana, Marc D.; Duričković, Ivana; Bourson, Patrice; Marchetti, Mario; Chassot, Jean-Marie
2010-01-01
We propose a new optical sensor to characterize the solid-liquid phase transition in salted solutions. The probe mainly consists of a Raman spectrometer that extracts the vibrational properties from the light scattered by the salty medium. The spectrum of the O – H stretching band was shown to be strongly affected by the introduction of NaCl and the temperature change as well. A parameter SD defined as the ratio of the integrated intensities of two parts of this band allows to study the temperature and concentration dependences of the phase transition. Then, an easy and efficient signal processing and the exploitation of a modified Boltzmann equation give information on the phase transition. Validations were done on solutions with varying concentration of NaCl. PMID:22319327
A MATLAB GUI to study Ising model phase transition
Thornton, Curtislee; Datta, Trinanjan
We have created a MATLAB based graphical user interface (GUI) that simulates the single spin flip Metropolis Monte Carlo algorithm. The GUI has the capability to study temperature and external magnetic field dependence of magnetization, susceptibility, and equilibration behavior of the nearest-neighbor square lattice Ising model. Since the Ising model is a canonical system to study phase transition, the GUI can be used both for teaching and research purposes. The presence of a Monte Carlo code in a GUI format allows easy visualization of the simulation in real time and provides an attractive way to teach the concept of thermal phase transition and critical phenomena. We will also discuss the GUI implementation to study phase transition in a classical spin ice model on the pyrochlore lattice.
Phase transitions of black holes in massive gravity
Fernando, Sharmanthie
2016-01-01
In this paper we have studied thermodynamics of a black hole in massive gravity in the canonical ensemble. The massive gravity theory in consideration here has a massive graviton due to Lorentz symmetry breaking. The black hole studied here has a scalar charge due to the massive graviton and is asymptotically anti-de Sitter. We have computed various thermodynamical quantities such as temperature, specific heat and free energy. Both the local and global stability of the black hole are studied by observing the behavior of the specific heat and the free energy. We have observed that there is a first order phase transition between small and large black hole for a certain range of the scalar charge. This phase transition is similar to the liquid/gas phase transition at constant temperature for a Van der Waals fluid. The coexistence curves for the small and large black hole branches are also discussed in detail.
Gravitational radiation from first-order phase transitions
Energy Technology Data Exchange (ETDEWEB)
Child, Hillary L.; Giblin, John T. Jr., E-mail: childh@kenyon.edu, E-mail: giblinj@kenyon.edu [Department of Physics, Kenyon College, 201 North College Road, Gambier, OH 43022 (United States)
2012-10-01
It is believed that first-order phase transitions at or around the GUT scale will produce high-frequency gravitational radiation. This radiation is a consequence of the collisions and coalescence of multiple bubbles during the transition. We employ high-resolution lattice simulations to numerically evolve a system of bubbles using only scalar fields, track the anisotropic stress during the process and evolve the metric perturbations associated with gravitational radiation. Although the radiation produced during the bubble collisions has previously been estimated, we find that the coalescence phase enhances this radiation even in the absence of a coupled fluid or turbulence. We comment on how these simulations scale and propose that the same enhancement should be found at the Electroweak scale; this modification should make direct detection of a first-order electroweak phase transition easier.
Gravitational Radiation from First-Order Phase Transitions
Child, Hillary L
2012-01-01
It is believed that first order phase transitions at or around the GUT scale will produce high-frequency gravitational radiation. This radiation is a consequence of the collisions and coalescence of multiple bubbles during the transition. We employ high-resolution lattice simulations to numerically evolve a system of bubbles, track the anisotropic stress during the process and evolve the metric perturbations associated with gravitational radiation. Although the radiation produced during the bubble collisions has previously been estimated, we find that the coalescence phase that greatly enhances this radiation even in the absence of turbulence. We comment on how these simulations scale and propose that the same enhancement should be found at the Electroweak scale; this modification should make direct detection of a first-order electroweak phase transition easier.
Graceful Exit and Energy Conditions in String Cosmology
Brustein, Ram; Brustein, Ram; Madden, Richard
1997-01-01
String cosmology solutions are examined in a generalized phase-space including sources representing arbitrary corrections to lowest order string-dilaton-gravity effective action. We find a set of necessary conditions for a graceful exit transition from a dilaton-driven inflationary phase to a radiation dominated era. We show that sources allowing such a transition have to violate energy conditions similar to those appearing in singularity theorems of general relativity. Since familiar classical sources, excepting spatial curvature, obey these energy conditions we conclude that a generic graceful exit in string cosmology requires a new effective phase of matter. Our results clarify and generalize previous analyses and enable us to critically reexamine proposed non-singular cosmologies.
Phase transition in aluminous silica in the lowermost mantle
Tronnes, R. G.; Andrault, D.; Konopkova, Z.; Morgenroth, W.; Liermann, H.
2012-12-01
Lower mantle basaltic lithologies contain 35-40% Mg-perovskite, 20-30% Ca-perovskite, 15-25% Al-rich phases (NAL and Ca-ferrite phases) and 15-20% silica-dominated phases. The Fe-rich Mg-perovskite makes basaltic material denser than peridotite throughout the lower mantle below 720 km depth, with important implications for mantle dynamics. Partial separation of subducted basaltic crust from depleted lithosphere might occur within the strongly heterogeneous D" zone. Further details on phase transitions and equation of states for the various minerals, however, are needed for more complete insights. The silica-dominated phases have considerable solubility of alumina [1]. We investigated silica with 4 and 6 wt% alumina to 120 GPa, using LH-DAC at the Extreme Conditions Beamline (P02.2) at PETRA-III, DESY. Powdered glass mixed with 10-15 wt% Pt-powder was compressed and heated in NaCl pressure media in Re-gaskets. The transition from the CaCl2-structured phase to seifertite (alpha-PbO2-structure) occurs at about 116 GPa at 2500 K. This is intermediate between the transition pressures of about 122 GPa and 100-113 GPa reported for similar temperatures for pure SiO2 [2] and a basalt composition [1], respectively. The CaCl2-structured silica phase crystallized along with seifertite, consistent with a binary phase loop trending towards lower pressure with increasing Al-content. The presence of an Al-rich Ca-ferrite phase (near the MgAl2O4-NaAlSiO4-join) in basaltic material indicates that the Al-solubility limits for the silica-dominated phases in basaltic compositions may be similar to those in the binary system SiO2-AlO1.5. Based on the X-ray pattern refinement, our samples show no significant volume change across the transition. Even so, the transition could be associated with a significant density change if the Al substitution mechanisms are different in CaCl2-structured phase and seifertite. The most likely situation is that Al-substitution occurs via O-vacancies in the
Guan, Shu-Hui; Liu, Zhi-Pan
2016-02-14
Structural inhomogeneity is ubiquitous in solid crystals and plays critical roles in phase nucleation and propagation. Here, we develop a heterogeneous solid-solid phase transition theory for predicting the prevailing heterophase junctions, the metastable states governing microstructure evolution in solids. Using this theory and first-principles pathway sampling simulation, we determine two types of heterophase junctions pertaining to metal α-ω phase transition at different pressures and predict the reversibility of transformation only at low pressures, i.e. below 7 GPa. The low-pressure transformation is dominated by displacive Martensitic mechanism, while the high-pressure one is controlled by the reconstructive mechanism. The mechanism of α-ω phase transition is thus highly pressure-sensitive, for which the traditional homogeneous model fails to explain the experimental observations. The results provide the first atomic-level evidence on the coexistence of two different solid phase transition mechanisms in one system.
Phase transition of lipid-like monolayer characterized by second harmonic generation
Institute of Scientific and Technical Information of China (English)
于安池; 常青; 赵新生; 周晴中; 李东; 黄岩谊; 程天蓉; 黄春辉
1999-01-01
Phase transition of a lipid-like hemicyanine compound characterized by second harmonic generation is studied carefully. The phase transition is assigned as the first order transition between solid state and liquid state. The transition temperature increases with an increase in the surface molecular concentration. A monolayer structure parameter a which is very sensitive to the phase transition is introduced.
Studies of phase transitions in the aripiprazole solid dosage form.
Łaszcz, Marta; Witkowska, Anna
2016-01-05
Studies of the phase transitions in an active substance contained in a solid dosage form are very complicated but essential, especially if an active substance is classified as a BCS Class IV drug. The purpose of this work was the development of sensitive methods for the detection of the phase transitions in the aripiprazole tablets containing initially its form III. Aripiprazole exhibits polymorphism and pseudopolymorphism. Powder diffraction, Raman spectroscopy and differential scanning calorimetry methods were developed for the detection of the polymorphic transition between forms III and I as well as the phase transition of form III into aripiprazole monohydrate in tablets. The study involved the initial 10 mg and 30 mg tablets, as well as those stored in Al/Al blisters, a triplex blister pack and HDPE bottles (with and without desiccant) under accelerated and long term conditions. The polymorphic transition was not observed in the initial and stored tablets but it was visible on the DSC curve of the Abilify(®) 10 mg reference tablets. The formation of the monohydrate was observed in the diffractograms and Raman spectra in the tablets stored under accelerated conditions. The monohydrate phase was not detected in the tablets stored in the Al/Al blisters under long term conditions. The results showed that the Al/Al blisters can be recommended as the packaging of the aripiprazole tablets containing form III.
Chern-Simons diffusion rate across different phase transitions
Rougemont, Romulo
2016-01-01
We investigate how the dimensionless ratio given by the Chern-Simons diffusion rate $\\Gamma_{\\textrm{CS}}$ divided by the product of the entropy density $s$ and temperature $T$ behaves across different kinds of phase transitions in the class of bottom-up non-conformal Einstein-dilaton holographic models originally proposed by Gubser and Nellore. By tuning the dilaton potential, one is able to holographically mimic a first order, a second order, or a crossover transition. In a first order phase transition, $\\Gamma_{\\textrm{CS}}/sT$ jumps at the critical temperature (as previously found in the holographic literature), while in a second order phase transition it develops an infinite slope. On the other hand, in a crossover, $\\Gamma_{\\textrm{CS}}/sT$ behaves smoothly, although displaying a fast variation around the pseudo-critical temperature. Furthermore, we also find that $\\Gamma_{\\textrm{CS}}/sT$ increases by orders of magnitude below the critical temperature in a second order phase transition and in a crossov...
Exploring first-order phase transitions with population annealing
Barash, Lev Yu.; Weigel, Martin; Shchur, Lev N.; Janke, Wolfhard
2017-03-01
Population annealing is a hybrid of sequential and Markov chain Monte Carlo methods geared towards the efficient parallel simulation of systems with complex free-energy landscapes. Systems with first-order phase transitions are among the problems in computational physics that are difficult to tackle with standard methods such as local-update simulations in the canonical ensemble, for example with the Metropolis algorithm. It is hence interesting to see whether such transitions can be more easily studied using population annealing. We report here our preliminary observations from population annealing runs for the two-dimensional Potts model with q > 4, where it undergoes a first-order transition.
Crystal-liquid-gas phase transitions and thermodynamic similarity
Skripov, Vladimir P; Schmelzer, Jurn W P
2006-01-01
Professor Skripov obtained worldwide recognition with his monograph ""Metastable liquids"", published in English by Wiley & Sons. Based upon this work and another monograph published only in Russia, this book investigates the behavior of melting line and the properties of the coexisting crystal and liquid phase of simple substances across a wide range of pressures, including metastable states of the coexisting phases. The authors derive new relations for the thermodynamic similarity for liquid-vapour phase transition, as well as describing solid-liquid, liquid-vapor and liquid-liquid phase tra
Beyond nuclear "pasta" : Phase transitions and neutrino opacity of new "pasta" phases
Alcain, P. N.; Giménez Molinelli, P. A.; Dorso, C. O.
2014-12-01
In this work, we focus on different length scales within the dynamics of nucleons in conditions according to the neutron star crust, with a semiclassical molecular dynamics model, studying isospin symmetric matter at subsaturation densities. While varying the temperature, we find that a solid-liquid phase transition exists, which can be also characterized with a morphology transition. For higher temperatures, above this phase transition, we study the neutrino opacity, and find that in the liquid phase, the scattering of low momenta neutrinos remain high, even though the morphology of the structures differ significatively from those of the traditional nuclear pasta.
Chiral phase transition in QED$_3$ at finite temperature
Wei, Wei; Zong, Hong-Shi
2016-01-01
Chiral phase transition in (2+1)-dimensional quantum electrodynamics (QED$_3$) at finite temperature is investigated in the framework of truncated Dyson-Schwinger equations (DSEs). We go beyond the widely used instantaneous approximation and adopt a method that retains the full frequency dependence of the fermion self-energy. We also take further step to include the effects of wave-function renormalizations and introduce a minimal dressing of the bare vertex. Finally, with the more complete solutions of the truncated DSEs, we revisit the study of chiral phase transition in finite-temperature QED$_3$.
Computational diagnostics for detecting phase transitions during nanoindentation
Energy Technology Data Exchange (ETDEWEB)
Lee, S.M.; Hoover, C.G.; Kallman, J.S.; De Groot, A.J. (Lawrence Livermore National Lab., CA (United States)); Hoover, W.G. (Lawrence Livermore National Lab., CA (United States) California Univ., Livermore, CA (United States). Div. of Applied Science); Wooten, F. (California Univ., Livermore, CA (United States). Div. of Applied Science)
1992-12-01
We study nanoindenmtion of silicon using nonequilibrium molecular dynamics simulations. with up to a million particles. Both crystalline and amorphous silicon samples are considered. We use compumtional diffraction pattems as a diagnostic tool for detecting phase transitions resulting from structural changes. Simulations of crystalline samples show a transition to the amorphous phase in a region a few atomic layers thick surrounding the lateral faces of the indenter, as has been suggested by experimental results. Our simulation results provide estimates for the yield strength (nanohardness) of silicon for a range of temperatures.
Distribution of current in nonequilibrium diffusive systems and phase transitions
Bodineau, T.; Derrida, B.
2005-12-01
We consider diffusive lattice gases on a ring and analyze the stability of their density profiles conditionally to a current deviation. Depending on the current, one observes a phase transition between a regime where the density remains constant and another regime where the density becomes time dependent. Numerical data confirm this phase transition. This time dependent profile persists in the large drift limit and allows one to understand on physical grounds the results obtained earlier for the totally asymmetric exclusion process on a ring.
Hadronic multiplicity distribution and dynamical fluctuations under QGP phase transitions
Institute of Scientific and Technical Information of China (English)
杨纯斌; 鄢文标; 蔡勖
1999-01-01
Hadronic multiplicity distributions in small bins are studied within the Ginzburg-Landau description for quark-hadron phase transitions. Direct comparison of the distributions with Poisson ones （with the same averages） is made in the light of dynamical factors dq for the distributions and ratios Dq≡dq/d1. Scaling behavior between Dq’ s is found, which can be used to detect the formation of quark-gluon plasma. The same method can be used in the analysis of other processes without phase transition.
The liquid to vapor phase transition in excited nuclei
Energy Technology Data Exchange (ETDEWEB)
Elliott, J.B.; Moretto, L.G.; Phair, L.; Wozniak, G.J.; Beaulieu, L.; Breuer, H.; Korteling, R.G.; Kwiatkowski, K.; Lefort, T.; Pienkowski, L.; Ruangma, A.; Viola, V.E.; Yennello, S.J.
2001-05-08
For many years it has been speculated that excited nuclei would undergo a liquid to vapor phase transition. For even longer, it has been known that clusterization in a vapor carries direct information on the liquid-vapor equilibrium according to Fisher's droplet model. Now the thermal component of the 8 GeV/c pion + 197 Au multifragmentation data of the ISiS Collaboration is shown to follow the scaling predicted by Fisher's model, thus providing the strongest evidence yet of the liquid to vapor phase transition.
Hadron-quark phase transition in dense stars
Energy Technology Data Exchange (ETDEWEB)
Grassi, F.
1987-10-01
An equation of state is computed for a plasma of one flavor quarks interacting through some phenomenological potential, at zero temperature. Assuming that the confining potential is scalar and color-independent, it is shown that the quarks undergo a first-order mass phase transition. In addition, due to the way screening is introduced, all the thermodynamic quantities computed are independent of the actual shape of the interquark potential. This equation of state is then generalized to a several quark flavor plasma and applied to the study of the hadron-quark phase transition inside a neutron star. 45 refs., 4 figs.
Antiferrodistortive phase transition in EuTiO3
Goian, V.; Kamba, S.; Pacherova, O.; Drahokoupil, J.; Palatinus, L; Dusek, M.; Rohlicek, J.; Savinov, M.; Laufek, F.; Schranz, W.; Fuith, A; Kachlik, M.; Maca, K.; Shkabko, A.; Sagarna, L.
2012-01-01
X-ray diffraction, dynamical mechanical analysis and infrared reflectivity studies revealed an antiferrodistortive phase transition in EuTiO3 ceramics. Near 300K the perovskite structure changes from cubic Pm-3m to tetragonal I4/mcm due to antiphase tilting of oxygen octahedra along the c axis (a0a0c- in Glazer notation). The phase transition is analogous to SrTiO3. However, some ceramics as well as single crystals of EuTiO3 show different infrared reflectivity spectra bringing evidence of a ...
Thermodynamics, Phase Transition and Quasinormal modes with Weyl corrections
Mahapatra, Subhash
2016-01-01
We study charged black holes in D dimensional AdS space, in the presence of four derivative Weyl correction. We obtain the black hole solution perturbatively up to first as well as second order in the Weyl coupling, and show that first law of black hole thermodynamics is satisfied in all dimensions. We study its thermodynamic phase transition and then calculate the quasinormal frequencies of the massless scalar field perturbation. We find that, here too, the quasinormal frequencies capture the essence of black hole phase transition. Few subtleties near the second order critical point are discussed.
The liquid to vapor phase transition in excited nuclei
Elliott, J B; Phair, L; Wozniak, G J; Lefort, T; Beaulieu, L; Kwiatkowski, K K; Hsi, W C; Pienkowski, L; Breuer, H; Korteling, R G; Laforest, R; Martin, E; Ramakrishnan, E; Rowland, D; Ruangma, A; Viola, V E; Winchester, E M; Yennello, S J
2002-01-01
For many years it has been speculated that excited nuclei would undergo a liquid to vapor phase transition. For even longer, it has been known that clusterization in a vapor carries direct information on the liquid- vapor equilibrium according to Fisher's droplet model. Now the thermal component of the 8 GeV/c pion + 197Au multifragmentation data of the ISiS Collaboration is shown to follow the scaling predicted by Fisher's model, thus providing the strongest evidence yet of the liquid to vapor phase transition.
Detection of phase transition via convolutional neural network
Tanaka, Akinori
2016-01-01
We design a Convolutional Neural Network (CNN) which studies correlation between discretized inverse temperature and spin configuration of 2D Ising model and show that it can find a feature of the phase transition without teaching any a priori information for it. We also define a new order parameter via the CNN and show that it provides well approximated critical inverse temperature. In addition, we compare the activation functions for convolution layer and find that the Rectified Linear Unit (ReLU) is important to detect the phase transition of 2D Ising model.
Quantum phase transition between cluster and antiferromagnetic states
Son, Wonmin; Fazio, Rosario; Hamma, Alioscia; Pascazio, Saverio; Vedral, Vlatko
2011-01-01
We study a Hamiltonian system describing a three spin-1/2 cluster-like interaction competing with an Ising-like exchange. We show that the ground state in the cluster phase possesses symmetry protected topological order. A continuous quantum phase transition occurs as result of the competition between the cluster and Ising terms. At the critical point the Hamiltonian is self-dual. The geometric entanglement is also studied. Our findings in one dimension corroborate the analysis of the two dimensional generalization of the system, indicating, at a mean field level, the presence of a direct transition between an antiferromagnetic and a valence bond solid ground state.
Background field functional renormalization group for absorbing state phase transitions.
Buchhold, Michael; Diehl, Sebastian
2016-07-01
We present a functional renormalization group approach for the active to inactive phase transition in directed percolation-type systems, in which the transition is approached from the active, finite density phase. By expanding the effective potential for the density field around its minimum, we obtain a background field action functional, which serves as a starting point for the functional renormalization group approach. Due to the presence of the background field, the corresponding nonperturbative flow equations yield remarkably good estimates for the critical exponents of the directed percolation universality class, even in low dimensions.
Phase transitions in antiferromagnets with a NaCl structure
Energy Technology Data Exchange (ETDEWEB)
Kassan-Ogly, F.A. [Institute of Metal Physics, Ural Division, Russian Academy of Sciences, ul. S.Kovalevskoi 18, Ekaterinburg 620219 (Russian Federation)]. E-mail: felix.kassan-ogly@imp.uran.ru; Filippov, B.N. [Institute of Metal Physics, Ural Division, Russian Academy of Sciences, ul. S.Kovalevskoi 18, Ekaterinburg 620219 (Russian Federation)
2006-05-15
A revised derivation scheme of possible magnetic structures in an FCC lattice with the nearest- and next-nearest-neighbor interactions taken into account is proposed. A model of simultaneous magnetic and structural phase transitions of the first order is developed for antiferromagnets with a NaCl structure and with a strong cubic magnetic anisotropy on the base of synthesis of magnetic modified 6-state Potts model and theoretical models of structural phase transitions in cubic crystals. It is shown that the high-temperature diffuse magnetic scattering of neutrons transforms into magnetic Bragg reflections below Neel point.
Phase transitions in antiferromagnets with a NaCl structure
Kassan-Ogly, F. A.; Filippov, B. N.
2006-05-01
A revised derivation scheme of possible magnetic structures in an FCC lattice with the nearest- and next-nearest-neighbor interactions taken into account is proposed. A model of simultaneous magnetic and structural phase transitions of the first order is developed for antiferromagnets with a NaCl structure and with a strong cubic magnetic anisotropy on the base of synthesis of magnetic modified 6-state Potts model and theoretical models of structural phase transitions in cubic crystals. It is shown that the high-temperature diffuse magnetic scattering of neutrons transforms into magnetic Bragg reflections below Néel point.
Plasticity and beyond microstructures, crystal-plasticity and phase transitions
Hackl, Klaus
2014-01-01
The book presents the latest findings in experimental plasticity, crystal plasticity, phase transitions, advanced mathematical modeling of finite plasticity and multi-scale modeling. The associated algorithmic treatment is mainly based on finite element formulations for standard (local approach) as well as for non-standard (non-local approach) continua and for pure macroscopic as well as for directly coupled two-scale boundary value problems. Applications in the area of material design/processing are covered, ranging from grain boundary effects in polycrystals and phase transitions to deep-drawing of multiphase steels by directly taking into account random microstructures.
Topological conditions for discrete symmetry breaking and phase transitions
Energy Technology Data Exchange (ETDEWEB)
Baroni, Fabrizio; Casetti, Lapo [Dipartimento di Fisica, Universita di Firenze, via G. Sansone 1, I-50019 Sesto Fiorentino (Finland) (Italy)
2006-01-20
In the framework of a recently proposed topological approach to phase transitions, some sufficient conditions ensuring the presence of the spontaneous breaking of a Z{sub 2} symmetry and of a symmetry-breaking phase transition are introduced and discussed. A very simple model, which we refer to as the hypercubic model, is introduced and solved. The main purpose of this model is that of illustrating the content of the sufficient conditions, but it is interesting also in itself due to its simplicity. Then some mean-field models already known in the literature are discussed in the light of the sufficient conditions introduced here.
Pressure Induced Phase Transition in TiB
Institute of Scientific and Technical Information of China (English)
李凤英; 陈良辰; 王莉君; 顾惠成; 王汝菊; 车荣钲; 沈中毅
2001-01-01
In situ high pressure x-ray diffraction and electrical resistance experiments on TiB have been carried out by using a diamond anvil cell device. The results revealed that the sample undergoes a first-order phase transition at pressures of 3.5 - 5.0 Gpa and 4.0 - 5.5 Gpa for the x-ray diffraction and electrical resistance experiments, respectively. The parameters of the state equation are calculated before and after the phase transition and compared with the values calculated by Mohn et al. [J. Phys. C: Solid State Phys. 21(1988)2829] using the augmented spherical wave method.
Self-aggregation of vapor-liquid phase transition
Institute of Scientific and Technical Information of China (English)
无
2003-01-01
The concept of the molecular free path is introduced to derive a criterion distinguishing active molecules from inactive molecules in liquid phase. Based on molecular self-aggregation theory a concept of the critical aggregation concentration (CAC) of active molecules is proposed to describe the physical configuration before the formation of the nuclei in the process of vapor-liquid phase transition. All active molecules exist in the form of the monomer when the concentration of active molecules is lower than CAC, while the active molecules will generate aggregation once the concentration of the active molecules reaches CAC. However, these aggregates with the aggregation number N smaller than 5 can steadily exist in bulk phase. The other excess active molecules can only produce infinite aggregation and form a critical nucleus of vapor-liquid phase transition. Without outer perturbation the state point of CAC corresponds to the critical superheated or supercooled state in the process of vapor-liquid phase transition. With the aggregate property, the interfacial tension between the bulk phase and the tiny new phase is predicted and a correction is made for the classical nucleation rate in a quite good agreement with experimental results.
Domain structure and phase transition in Sc-doped zirconia
Brunauer, G.; Boysen, H.; Frey, F.; Ehrenberg, H.
2002-01-01
The temperature dependence of the domain structure associated with the ferroelastic phase transition (Fm↔R bar 3 m) in ZrO2 doped with 11% Sc2O3 has been determined from a peak shape analysis of high-resolution synchrotron x-ray powder diffraction data. In the temperature region of coexisting phases the observed characteristic anisotropic broadening and asymmetry of the lines is modelled by three different phases: a main rhombohedral phase, a distorted rhombohedral phase with a smaller c/a ratio, and a cubic phase. The latter two are assigned to the internal structure of the domain walls between two adjacent twin domains. The size and amount of the cubic phase show an initially slow increase with temperature followed by a very steep increase and a slow one after that. The size of the (main) rhombohedral domains remains nearly constant, while (micro-) strain in the distorted regions gradually decreases.
The electroweak phase transition in models with gauge singlets
Energy Technology Data Exchange (ETDEWEB)
Ahriche, A.
2007-04-18
A strong first order phase transition is needed for generating the baryon asymmetry; and also to save it during the electroweak phase transition (EWPT). However this condition is not fulfilled within the Standard Model (SM), but in its extensions. It is widely believed that the existence of singlet scalars in some Standard Model extensions can easily make the EWPT strongly first order. In this work, we will examine the strength of the EWPT in the simplest extension of the SM with a real gauge singlet using the sphaleron energy at the critical temperature. We find that the phase transition is stronger by adding a singlet; and also that the criterion for a strong phase transition {omega}(T{sub c})/T{sub c} >or similar 1, where {omega} = (v{sup 2} + (x - x{sub 0}){sup 2}){sup (}1)/(2) and x(x{sub 0}) is the singlet vacuum expectation value in the broken (symmetric) phase, is not valid for models containing singlets, even though often used in the literature. The usual condition v{sub c}/T{sub c} >or similar 1 is more meaningful, and it is satisfied for the major part of the parameter space for physically allowed Higgs masses. Then it is convenient to study the EWPT in models with singlets that couple only to the Higgs doublets, by replacing the singlets by their vevs. (orig.)
Phase transitions in traffic flow on multilane roads
Kerner, Boris S.; Klenov, Sergey L.
2009-11-01
Based on empirical and numerical analyses of vehicular traffic, the physics of spatiotemporal phase transitions in traffic flow on multilane roads is revealed. The complex dynamics of moving jams observed in single vehicle data measured by video cameras on American highways is explained by the nucleation-interruption effect in synchronized flow, i.e., the spontaneous nucleation of a narrow moving jam with the subsequent jam dissolution. We find that (i) lane changing, vehicle merging from on-ramps, and vehicle leaving to off-ramps result in different traffic phases—free flow, synchronized flow, and wide moving jams—occurring and coexisting in different road lanes as well as in diverse phase transitions between the traffic phases; (ii) in synchronized flow, the phase transitions are responsible for a non-regular moving jam dynamics that explains measured single vehicle data: moving jams emerge and dissolve randomly at various road locations in different lanes; (iii) the phase transitions result also in diverse expanded general congested patterns occurring at closely located bottlenecks.
Zipf's law emerges asymptotically during phase transitions in communicative systems
Khomtchouk, Bohdan B
2016-01-01
Zipf's law predicts a power-law relationship between word rank and frequency in language communication systems, and is widely reported in texts yet remains enigmatic as to its origins. Computer simulations have shown that language communication systems emerge at an abrupt phase transition in the fidelity of mappings between symbols and objects. Since the phase transition approximates the Heaviside or step function, we show that Zipfian scaling emerges asymptotically at high rank based on the Laplace transform which yields $(1/r)(1-e^{-r})$, where $r$ denotes rank. We thereby demonstrate that Zipf's law gradually emerges from the moment of phase transition in communicative systems. We show that this power-law scaling behavior explains the emergence of natural languages at phase transitions. We find that the emergence of Zipf's law during language communication suggests that the use of rare words in a lexicon (i.e., high $r$) is critical for the construction of an effective communicative system at the phase tra...
Electric field driven mesoscale phase transition in polarized colloids
Khusid, Boris; Elele, Ezinwa; Lei, Qian
2016-11-01
A mesoscale phase transition in a polarized suspension was reported by Kumar, Khusid, Acrivos, PRL95, 2005 and Agarwal, Yethiraj, PRL102, 2009. Following the application of a strong AC field, particles aggregated head-to-tail into chains that bridged the interelectrode gap and then formed a cellular pattern, in which large particle-free domains were enclosed by particle-rich thin walls. Cellular structures were not observed in numerous simulations of field induced phase transitions in a polarized suspension. A requirement for matching the particle and fluid densities to avoid particle settling limits terrestrial experiments to negatively polarized particles. We present data on the phase diagram and kinetics of the phase transition in a neutrally buoyant, negatively polarized suspension subjected to a combination of AC and DC. Surprisingly, a weak DC component drastically speeds up the formation of a cellular pattern but does not affect its key characteristic. However, the application of a strong DC field destroys the cellular pattern, but it restores as the DC field strength is reduced. We also discuss the design of experiments to study phase transitions in a suspension of positively polarized, non-buoyancy-matched particles in the International Space Station. Supported by NASA's Physical Science Research Program, NNX13AQ53G.
Phase transition and surface sublimation of a mobile Potts model.
Bailly-Reyre, A; Diep, H T; Kaufman, M
2015-10-01
We study in this paper the phase transition in a mobile Potts model by the use of Monte Carlo simulation. The mobile Potts model is related to a diluted Potts model, which is also studied here by a mean-field approximation. We consider a lattice where each site is either vacant or occupied by a q-state Potts spin. The Potts spin can move from one site to a nearby vacant site. In order to study the surface sublimation, we consider a system of Potts spins contained in a recipient with a concentration c defined as the ratio of the number of Potts spins N(s) to the total number of lattice sites N(L)=N(x)×N(y)×N(z). Taking into account the attractive interaction between the nearest-neighboring Potts spins, we study the phase transitions as functions of various physical parameters such as the temperature, the shape of the recipient, and the spin concentration. We show that as the temperature increases, surface spins are detached from the solid phase to form a gas in the empty space. Surface order parameters indicate different behaviors depending on the distance to the surface. At high temperatures, if the concentration is high enough, the interior spins undergo a first-order phase transition to an orientationally disordered phase. The mean-field results are shown as functions of temperature, pressure, and chemical potential, which confirm in particular the first-order character of the transition.
Matter, dark matter and gravitational waves from a GUT-scale U(1) phase transition
Energy Technology Data Exchange (ETDEWEB)
Domcke, Valerie
2013-09-15
The cosmological realization of the spontaneous breaking of B-L, the difference of baryon and lepton number, can generate the initial conditions for the hot early universe. In particular, we show that entropy, dark matter and a matter-antimatter asymmetry can be produced in accordance with current observations. If B-L is broken at the grand unification scale, F-term hybrid inflation can be realized in the false vacuum of unbroken B-L. The phase transition at the end of inflation, governed by tachyonic preheating, spontaneously breaks the U(1){sub B-L} symmetry and sets the initial conditions for the following perturbative reheating phase. We provide a detailed, time-resolved picture of the reheating process. The competition of cosmic expansion and entropy production leads to an intermediate plateau of constant temperature, which controls both the generated lepton asymmetry and the dark matter abundance. This enables us to establish relations between the neutrino and superparticle mass spectrum, rendering this mechanism testable. Moreover, we calculate the entire gravitational wave spectrum for this setup. This yields a promising possibility to probe cosmological B - L breaking with forthcoming gravitational wave detectors such as eLISA, advanced LIGO and BBO/DECIGO. The largest contribution is obtained from cosmic strings which is, for typical parameter values, at least eight orders of magnitude higher then the contribution from inflation. Finally, we study the possibility of realizing hybrid inflation in a superconformal framework. We find that superconformal D-term inflation is an interesting possibility generically leading to a two-field inflation model, but in its simplest version disfavoured by the recently published Planck data.
Testing loop quantum cosmology
Wilson-Ewing, Edward
2017-03-01
Loop quantum cosmology predicts that quantum gravity effects resolve the big-bang singularity and replace it by a cosmic bounce. Furthermore, loop quantum cosmology can also modify the form of primordial cosmological perturbations, for example by reducing power at large scales in inflationary models or by suppressing the tensor-to-scalar ratio in the matter bounce scenario; these two effects are potential observational tests for loop quantum cosmology. In this article, I review these predictions and others, and also briefly discuss three open problems in loop quantum cosmology: its relation to loop quantum gravity, the trans-Planckian problem, and a possible transition from a Lorentzian to a Euclidean space-time around the bounce point.
Two Phase Flow Mapping and Transition Under Microgravity Conditions
Parang, Masood; Chao, David F.
1998-01-01
In this paper, recent microgravity two-phase flow data for air-water, air-water-glycerin, and air- water-Zonyl FSP mixtures are analyzed for transition from bubbly to slug and from slug to annular flow. It is found that Weber number-based maps are inadequate to predict flow-pattern transition, especially over a wide range of liquid flow rates. It is further shown that slug to annular flow transition is dependent on liquid phase Reynolds number at high liquid flow rate. This effect may be attributed to growing importance of liquid phase inertia in the dynamics of the phase flow and distribution. As a result a new form of scaling is introduced to present data using liquid Weber number based on vapor and liquid superficial velocities and Reynolds number based on liquid superficial velocity. This new combination of the dimensionless parameters seem to be more appropriate for the presentation of the microgravity data and provides a better flow pattern prediction and should be considered for evaluation with data obtained in the future. Similarly, the analysis of bubble to slug flow transition indicates a strong dependence on both liquid inertia and turbulence fluctuations which seem to play a significant role on this transition at high values of liquid velocity. A revised mapping of data using a new group of dimensionless parameters show a better and more consistent description of flow transition over a wide range of liquid flow rates. Further evaluation of the proposed flow transition mapping will have to be made after a wider range of microgravity data become available.
Striped phases in the holographic insulator/superconductor transition
Erdmenger, Johanna; Pang, Da-Wei
2013-01-01
We study striped phases in holographic insulator/superconductor transition by considering a spatially modulated chemical potential in AdS soliton background. Generally striped phases can develop above a critical chemical potential. When the constant leading term in the chemical potential is set to zero, a discontinuity in the plot of charge density versus chemical potential is observed in the limit of large wave vector. We explain this discontinuity using an analytical approach. When the constant leading term in the chemical potential is present, the critical chemical potential is larger than in the case of a homogeneous chemical potential, which indicates that the spatially modulated chemical potential disfavors the phase transition. This behavior is also confirmed qualitatively by analytical calculations. We also calculate the grand canonical potential and find that the striped phase is favored.
Efimov-driven phase transitions of the unitary Bose gas.
Piatecki, Swann; Krauth, Werner
2014-03-20
Initially predicted in nuclear physics, Efimov trimers are bound configurations of three quantum particles that fall apart when any one of them is removed. They open a window into a rich quantum world that has become the focus of intense experimental and theoretical research, as the region of 'unitary' interactions, where Efimov trimers form, is now accessible in cold-atom experiments. Here we use a path-integral Monte Carlo algorithm backed up by theoretical arguments to show that unitary bosons undergo a first-order phase transition from a normal gas to a superfluid Efimov liquid, bound by the same effects as Efimov trimers. A triple point separates these two phases and another superfluid phase, the conventional Bose-Einstein condensate, whose coexistence line with the Efimov liquid ends in a critical point. We discuss the prospects of observing the proposed phase transitions in cold-atom systems.
The Noise-Sensitivity Phase Transition in Compressed Sensing
Donoho, David L; Montanari, Andrea
2010-01-01
Consider the noisy underdetermined system of linear equations: y=Ax0 + z0, with n x N measurement matrix A, n \\rhoMSE(\\delta). The phase boundary \\rho = \\rhoMSE(\\delta) is identical to the previously-known phase transition curve for equivalence of l1 - l0 minimization in the k-sparse noiseless case. Hence a single phase boundary describes the fundamental phase transitions both for the noiseless and noisy cases. Extensive computational experiments validate the predictions of this formalism, including the exis tence of game theoretical structures underlying it. Underlying our formalism is the AMP algorithm introduced earlier by the authors. Other papers by the authors detail expressions for the formal MSE of AMP and its close connection to l1-penalized reconstruction. Here we derive the minimax formal MSE of AMP and then read out results for l1-penalized reconstruction.
Theory of photoinduced phase transitions in itinerant electron systems
Energy Technology Data Exchange (ETDEWEB)
Yonemitsu, Kenji [Institute for Molecular Science, Graduate University for Advanced Studies, Okazaki, Aichi 444-8585 (Japan)], E-mail: kxy@ims.ac.jp; Nasu, Keiichiro [Solid State Theory Division, Institute of Materials Structure Science, KEK, Graduate University for Advanced Studies, CREST JST, Oho 1-1, Tsukuba, Ibaraki 305-0801 (Japan)], E-mail: knasu@post.kek.jp
2008-08-15
Theoretical progress in the research of photoinduced phase transitions is reviewed with closely related experiments. After a brief introduction of stochastic evolution in statistical systems and domino effects in localized electron systems, we treat photoinduced dynamics in itinerant-electron systems. Relevant interactions are required in the models to describe the fast and ultrafast charge-lattice-coupled dynamics after photoexcitations. First, we discuss neutral-ionic transitions in the mixed-stack charge-transfer complex, TTF-CA. When induced by intrachain charge-transfer photoexcitations, the dynamics of the ionic-to-neutral transition are characterized by a threshold behavior, while those of the neutral-to-ionic transition by an almost linear behavior. The difference originates from the different electron correlations in the neutral and ionic phases. Second, we deal with halogen-bridged metal complexes, which show metal, Mott insulator, charge-density-wave, and charge-polarization phases. The latter two phases have different broken symmetries. The charge-density-wave to charge-polarization transition is much more easily achieved than the reverse transition. This is clarified by considering microscopic charge-transfer processes. The transition from the charge-density-wave to Mott insulator phases and that from the Mott insulator to metal phases proceed much faster than those between the low-symmetry phases. Next, we discuss ultrafast, inverse spin-Peierls transitions in an organic radical crystal and alkali-TCNQ from the viewpoint of intradimer and interdimer charge-transfer excitations. Then, we study photogenerated electrons in the quantum paraelectric perovskite, SrTiO{sub 3}, which are assumed to couple differently with soft-anharmonic phonons and breathing-type high-energy phonons. The different electron-phonon couplings result in two types of polarons, a 'super-paraelectric large polaron' with a quasi-global parity violation, and an &apos