Cosmic Strings with Small Tension
Halyo, Edi
2009-01-01
We describe cosmic F--term strings with exponentially small tension which are D3 branes wrapped on deformed $A_3$ singularities. We show that brane instanton effects which can be calculated after a geometric transition give rise to an exponentially small volume for the node on which the D3 branes wrap leading to a string with small tension. We generalize our description to the case of non--Abelian cosmic strings and argue that these strings are stable against monopole--anti monopole pair creation.
Evading the pulsar constraints on the cosmic string tension in supergravity inflation
Energy Technology Data Exchange (ETDEWEB)
Kamada, Kohei [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Miyamoto, Yuhei [Tokyo Univ. (Japan). Dept. of Physics; Tokyo Univ. (JP). Research Center for the Early Universe (RESCEU); Yokoyama, Jun' ichi [Tokyo Univ. (JP). Research Center for the Early Universe (RESCEU); Tokyo Univ., Kashiwa, Chiba (JP). Inst. for the Physics and Mathematics of the Universe (IPMU)
2012-04-15
The cosmic string is a useful probe of the early Universe and may give us a clue to physics at high energy scales where any artificial particle accelerators cannot reach. Although one of the most promising tools is the cosmic microwave background, the constraint from gravitational waves is becoming so stringent that one may not hope to detect its signatures in the cosmic microwave background. In this paper, we construct a scenario that contains cosmic strings observable in the cosmic microwave background while evading the constraint imposed by the recent pulsar timing data. We argue that cosmic strings with relatively large tension are allowed by delaying the onset of the scaling regime. We also show that this scenario is naturally realized in the context of chaotic inflation in supergravity, where the phase transition is governed by the Hubble induced mass.
Vachaspati, Tanmay; Steer, Daniele
2015-01-01
This article, written for Scolarpedia, provides a brief introduction into the subject of cosmic strings, together with a review of their main properties, cosmological evolution and observational signatures.
Predicted Constraints on Cosmic String Tension from Planck and Future CMB Polarization Measurements
Foreman, Simon; Scott, Douglas
2011-01-01
We perform a Fisher matrix calculation of the predicted uncertainties on estimates of the cosmic string tension Gmu from upcoming observational data (namely, cosmic microwave background power spectra from the Planck satellite and an idealized future polarization experiment). We employ simulations that are more general than others commonly used in the literature, leaving the mean velocity of strings, correlation length of the string network, and "wiggliness" (which parametrizes smaller-scale structure along the strings) as free parameters that can be observationally measured. In a new code, StringFast, we implement a method for efficient computation of the C_l spectra induced by a network of strings, which is fast enough to be used in Markov Chain Monte Carlo analyses of future data. Performing a calculation with the string parameters left free results in projected constraints on Gmu that are larger than those obtained by fixing their values a priori, typically by a factor of ~2-7. We also find that if Gmu is ...
Supermassive cosmic string compactifications
Energy Technology Data Exchange (ETDEWEB)
Blanco-Pillado, Jose J.; Reina, Borja; Sousa, Kepa; Urrestilla, Jon, E-mail: josejuan.blanco@ehu.es, E-mail: borja.reina@ehu.es, E-mail: kepa.sousa@ehu.es, E-mail: jon.urrestilla@ehu.es [Department of Theoretical Physics and History of Science, University of the Basque Country UPV/EHU, 48080 Bilbao (Spain)
2014-06-01
The space-time dimensions transverse to a static straight cosmic string with a sufficiently large tension (supermassive cosmic strings) are compact and typically have a singularity at a finite distance form the core. In this paper, we discuss how the presence of multiple supermassive cosmic strings in the 4d Abelian-Higgs model can induce the spontaneous compactification of the transverse space and explicitly construct solutions where the gravitational background becomes regular everywhere. We discuss the embedding of this model in N = 1 supergravity and show that some of these solutions are half-BPS, in the sense that they leave unbroken half of the supersymmetries of the model.
Supermassive Cosmic String Compactifications
Blanco-Pillado, Jose J; Sousa, Kepa; Urrestilla, Jon
2014-01-01
The space-time dimensions transverse to a static straight cosmic string with a sufficiently large tension (supermassive cosmic strings) are compact and typically have a singularity at a finite distance form the core. In this paper, we discuss how the presence of multiple supermassive cosmic strings in the 4D Abelian-Higgs model can induce the spontaneous compactification of the transverse space and explicitly construct solutions where the gravitational background becomes regular everywhere. We discuss the embedding of this model in N=1 supergravity and show that some of these solutions are half-BPS, in the sense that they leave unbroken half of the supersymmetries of the model.
The circular loop equation of a cosmic string with time-varying tension in de Sitter spacetimes
Liu, Yunqi; Cheng, Hongbo(Department of Physics, East China University of Science and Technology, Shanghai 200237, China)
2008-01-01
In this work the equation of circular loops of cosmic string possessing time-dependent tension is studied in the de Sitter spacetime. We find that the cosmic string loops with initial radius $r(t_{0})>0.707L$, L de Sitter radius, should not collapse to form a black holes. It is also found that in the case of $r(t_{0})
A disintegrating cosmic string
Griffiths, J B
2002-01-01
We present a simple sandwich gravitational wave of the Robinson-Trautman family. This is interpreted as representing a shock wave with a spherical wavefront which propagates into a Minkowski background minus a wedge. (i.e. the background contains a cosmic string.) The deficit angle (the tension) of the string decreases through the gravitational wave, which then ceases. This leaves an expanding spherical region of Minkowski space behind it. The decay of the cosmic string over a finite interval of retarded time may be considered to generate the gravitational wave.
Cosmic Strings and Superstrings
Copeland, Edmund J
2009-01-01
Cosmic strings are predicted by many field-theory models, and may have been formed at a symmetry-breaking transition early in the history of the universe, such as that associated with grand unification. They could have important cosmological effects. Scenarios suggested by fundamental string theory or M-theory, in particular the popular idea of brane inflation, also strongly suggest the appearance of similar structures. Here we review the reasons for postulating the existence of cosmic strings or superstrings, the various possible ways in which they might be detected observationally, and the special features that might discriminate between ordinary cosmic strings and superstrings.
CMB Constraints on Cosmic Strings and Superstrings
Charnock, Tom; Copeland, Edmund J; Moss, Adam
2016-01-01
We present the first complete MCMC analysis of cosmological models with evolving cosmic (super)string networks, using the Unconnected Segment Model in the unequal-time correlator formalism. For ordinary cosmic string networks, we derive joint constraints on {\\Lambda}CDM and string network parameters, namely the string tension G{\\mu}, the loop-chopping efficiency c_r and the string wiggliness {\\alpha}. For cosmic superstrings, we obtain joint constraints on the fundamental string tension G{\\mu}_F, the string coupling g_s, the self-interaction coefficient c_s, and the volume of compact extra dimensions w. This constitutes the most comprehensive CMB analysis of {\\Lambda}CDM cosmology + strings to date. For ordinary cosmic string networks our updated constraint on the string tension is, in relativistic units, G{\\mu}<1.1x10^-7, while for cosmic superstrings our constraint on the fundamental string tension is G{\\mu}_F<2.8x10^-8, both obtained using Planck2015 temperature and polarisation data.
Coulomb string tension, asymptotic string tension, and the gluon chain
Greensite, Jeff; Szczepaniak, Adam P.
2015-02-01
We compute, via numerical simulations, the nonperturbative Coulomb potential of pure SU(3) gauge theory in Coulomb gauge. We find that the Coulomb potential scales nicely in accordance with asymptotic freedom, that the Coulomb potential is linear in the infrared, and that the Coulomb string tension is about four times larger than the asymptotic string tension. We explain how it is possible that the asymptotic string tension can be lower than the Coulomb string tension by a factor of four.
CMB distortions from superconducting cosmic strings
Tashiro, Hiroyuki; Sabancilar, Eray; Vachaspati, Tanmay
2012-05-01
We reconsider the effect of electromagnetic radiation from superconducting strings on cosmic microwave background μ and y distortions and derive present (COBE-FIRAS) and future (PIXIE) constraints on the string tension, μs, and electric current, I. We show that absence of distortions of the cosmic microwave background in PIXIE will impose strong constraints on μs and I, leaving the possibility of light strings (Gμs≲10-18) or relatively weak currents (I≲10TeV).
Stable charged cosmic strings.
Weigel, H; Quandt, M; Graham, N
2011-03-11
We study the quantum stabilization of a cosmic string by a heavy fermion doublet in a reduced version of the standard model. We show that charged strings, obtained by populating fermionic bound state levels, become stable if the electroweak bosons are coupled to a fermion that is less than twice as heavy as the top quark. This result suggests that extraordinarily large fermion masses or unrealistic couplings are not required to bind a cosmic string in the standard model. Numerically we find the most favorable string profile to be a simple trough in the Higgs vacuum expectation value of radius ≈10(-18) m. The vacuum remains stable in our model, because neutral strings are not energetically favored.
Canny Algorithm, Cosmic Strings and the Cosmic Microwave Background
Danos, Rebecca J.; Brandenberger, Robert H.
We describe a new code to search for signatures of cosmic strings in cosmic microwave anisotropy maps. The code implements the Canny algorithm, an edge detection algorithm designed to search for the lines of large gradients in maps. Such a gradient signature which is coherent in position-space is produced by cosmic strings via the Kaiser-Stebbins effect. We test the power of our new code to set limits on the tension of the cosmic strings by analyzing simulated data, with and without cosmic strings. We compare maps with a pure Gaussian scale-invariant power spectrum with maps which have a contribution of a distribution of cosmic strings obeying a scaling solution. The maps have angular scale and angular resolution comparable to what current and future ground-based small-scale cosmic microwave anisotropy experiments will achieve. We present tests of the codes, indicate the limits on the string tension which could be set with the current code, and describe various ways to refine the analysis. Our results indicate that when applied to the data of ongoing cosmic microwave experiments such as the South Pole Telescope project, the sensitivity of our method to the presence of cosmic strings will be more than an order of magnitude better than the limits from existing analyses.
Primordial anisotropies from cosmic strings during inflation
Jazayeri, Sadra; Sadr, Alireza Vafaei; Firouzjahi, Hassan
2017-07-01
In this work, we study the imprint of an individual primordial cosmic string within a Hubble patch on the inflationary power spectrum. A straight cosmic string induces two distinct contributions to the curvature perturbations power spectrum. The first type of correction respects the translation invariance while violating isotropy. This generates quadrupolar statistical anisotropy in cosmic microwave background maps, which is constrained by the Planck data. The second contribution breaks both homogeneity and isotropy, generating a dipolar power asymmetry in the variance of temperature fluctuations with its amplitude falling on small scales. We show that the strongest constraint on the tension of primordial cosmic strings is obtained from the quadrupolar anisotropy and argue that the mass scale of the underlying theory responsible for the formation of the string cannot be much higher than the grand unified theory scale. The predictions for the diagonal and off-diagonal components of the cosmic microwave background angular power spectrum induced by the string are presented.
Electromagnetic radiation of superconducting cosmic strings
Rogozin, D. A.; Zadorozhna, L. V.
2013-12-01
Cosmic strings are relics of the early Universe which can be formed during the phase transitions of fields with spontaneously broken symmetry in the early Universe. Their existence finds support in modern superstrings theories, both in compactification models and in theories with extended additional dimensions. Strings can hold currents, effectively become electrically superconducting wires of astrophysical dimensions. Superconducting cosmic strings can serve as powerful sources of non-thermal radiation in wide energy range. Mechanisms of radiation are synchrotron, synchrotron self-Compton and inverse-Compton on CMB photons radiation of electrons accelerated by bow shock wave, created by magnetosphere of relativistically moving string in intergalactic medium (IGM). Expected fluxes of radiation from the shocked plasma around superconducting cosmic strings are calculated for strings with various tensions and for different cases of their location. Possibilities of strings detection by existing facilities are estimated.
Sjodin, K R P; Vickers, J A
2001-01-01
The field equations for a time dependent cylindrical cosmic string coupled togravity are reformulated in terms of geometrical variables defined on a2+1-dimensional spacetime by using the method of Geroch decomposition. Unlikethe 4-dimensional spacetime the reduced case is asymptotically flat. Anumerical method for solving the field equations which involves conformallycompactifying the space and including null infinity as part of the grid isdescribed. It is shown that the code reproduces the results of a number ofvacuum solutions with one or two degrees of freedom. In the final section theinteraction between the cosmic string and a pulse of gravitational radiation isbriefly described. This will be fully analysed in the sequel.
Vanchurin, V
2005-01-01
We investigate the evolution of finite loops and infinite strings as a part of a complete cosmic string network. We give dynamical arguments showing that the structures on infinite strings should obey a scaling law. We perform a simulation of the network which uses functional forms for the string position and thus is exact to the limits of computer arithmetic. The effective box size of our simulation is at least two orders of magnitude larger than what was previously reached. Our results confirm that the wiggles on the strings obey a scaling law described by universal power spectrum. The average distance between long strings also scales accurately with the time. Production functions of string loops do not show scaling. With low intercommutation probability p the true scaling régime is not reached until very late cosmic times, which makes it difficult to simulate such evolutions. Via the expansion of the box technique, we were able to reach scaling with a wide range of p. The physical correlation ...
A Bayesian framework for cosmic string searches in CMB maps
Ciuca, Razvan; Hernández, Oscar F.
2017-08-01
There exists various proposals to detect cosmic strings from Cosmic Microwave Background (CMB) or 21 cm temperature maps. Current proposals do not aim to find the location of strings on sky maps, all of these approaches can be thought of as a statistic on a sky map. We propose a Bayesian interpretation of cosmic string detection and within that framework, we derive a connection between estimates of cosmic string locations and cosmic string tension Gμ. We use this Bayesian framework to develop a machine learning framework for detecting strings from sky maps and outline how to implement this framework with neural networks. The neural network we trained was able to detect and locate cosmic strings on noiseless CMB temperature map down to a string tension of Gμ=5 ×10-9 and when analyzing a CMB temperature map that does not contain strings, the neural network gives a 0.95 probability that Gμ<=2.3×10-9.
Blanco-Pillado, Jose J; Shlaer, Benjamin
2015-01-01
We analyze the shapes of cosmic string loops found in large-scale simulations of an expanding-universe string network. The simulation does not include gravitational back reaction, but we model that process by smoothing the loop using Lorentzian convolution. We find that loops at formation consist of generally straight segments separated by kinks. We do not see cusps or any cusp-like structure at the scale of the entire loop, although we do see very small regions of string that move with large Lorentz boosts. However, smoothing of the string almost always introduces two cusps on each loop. The smoothing process does not lead to any significant fragmentation of loops that were in non-self-intersecting trajectories before smoothing.
Effects of Cosmic Strings on Free Streaming
Takahashi, T; Takahashi, Tomo; Yamaguchi, Masahide
2006-01-01
We study the effect of free streaming in a universe with cosmic strings with time-varying tension as well as with constant tension. Although current cosmological observations suggest that fluctuation seeded by cosmic strings cannot be the primary source of cosmic density fluctuation, some contributions from them are still allowed. Since cosmic strings actively produce isocurvature fluctuation, the damping of small scale structure via free streaming by dark matter particles with large velocity dispersion at the epoch of radiation-matter equality is less efficient than that in models with conventional adiabatic fluctuation. We discuss its implications to the constraints on the properties of particles such as massive neutrinos and warm dark matter.
Cosmic Strings and Quintessence
Institute of Scientific and Technical Information of China (English)
段一士; 任继荣; 杨捷
2003-01-01
Using torsion two-form we present a new Lorentz gauge invariant U (1) topological field theory in Riemann-Cartan space-time manifold U4. By virtue of the decomposition theory of U(1) gauge potential and the φ-mapping topological current theory, it is proven that the U(1) complex scalar field φ(x) can be looked upon as the order parameter field in our Universe, and a set of zero points of φ(x) create the cosmic strings as the space-time defects in the early Universe. In the standard cosmology, this complex scalar order parameter field possesses negative pressure, provides an accelerating expansion of Universe, and be able to explain the inflation in the early Universe. Therefore this complex scalar field is not only the order parameter field created the cosmic strings in the early universe, but also reasonably behaves as the quintessence, the dark energy.
Cosmic string loop microlensing
Bloomfield, Jolyon K.; Chernoff, David F.
2014-06-01
Cosmic superstring loops within the galaxy microlens background point sources lying close to the observer-string line of sight. For suitable alignments, multiple paths coexist and the (achromatic) flux enhancement is a factor of two. We explore this unique type of lensing by numerically solving for geodesics that extend from source to observer as they pass near an oscillating string. We characterize the duration of the flux doubling and the scale of the image splitting. We probe and confirm the existence of a variety of fundamental effects predicted from previous analyses of the static infinite straight string: the deficit angle, the Kaiser-Stebbins effect, and the scale of the impact parameter required to produce microlensing. Our quantitative results for dynamical loops vary by O(1) factors with respect to estimates based on infinite straight strings for a given impact parameter. A number of new features are identified in the computed microlensing solutions. Our results suggest that optical microlensing can offer a new and potentially powerful methodology for searches for superstring loop relics of the inflationary era.
Clément, G
1995-01-01
We construct regular multi-wormhole solutions to a gravitating \\sigma model in three space-time dimensions, and extend these solutions to cylindrical traversable wormholes in four and five dimensions. We then discuss the possibility of identifying wormhole mouths in pairs to give rise to Wheeler wormholes. Such an identification is consistent with the original field equations only in the absence of the \\sigma-model source, but with possible naked cosmic string sources. The resulting Wheeler wormhole space-times are flat outside the sources and may be asymptotically Minkowskian.
Gravitational Waves and Light Cosmic Strings
Depies, Matthew R
2009-01-01
Gravitational wave signatures from cosmic strings are analyzed numerically. Cosmic string networks form during phase transistions in the early universe and these networks of long cosmic strings break into loops that radiate energy in the form of gravitational waves until they decay. The gravitational waves come in the form of harmonic modes from individual string loops, a "confusion noise" from galactic loops, and a stochastic background of gravitational waves from a network of loops. In this study string loops of larger size $\\alpha$ and lower string tensions $G\\mu$ (where $\\mu$ is the mass per unit length of the string) are investigated than in previous studies. Several detectors are currently searching for gravitational waves and a space based satellite, the Laser Interferometer Space Antenna (LISA), is in the final stages of pre-flight. The results for large loop sizes ($\\alpha=0.1$) put an upper limit of about $G\\mu<10^{-9}$ and indicate that gravitational waves from string loops down to $G\\mu \\approx...
Racetrack Inflation and Cosmic Strings
Brax, Philippe; Davis, Anne-Christine; Davis, Stephen C; Jeannerot, Rachel; Postma, Marieke
2008-01-01
We consider the coupling of racetrack inflation to matter fields as realised in the D3/D7 brane system. In particular, we investigate the possibility of cosmic string formation in this system. We find that string formation before or at the onset of racetrack inflation is possible, but they are then inflated away. Furthermore, string formation at the end of inflation is prevented by the presence of the moduli sector. As a consequence, no strings survive racetrack inflation.
CMB Distortions from Superconducting Cosmic Strings
Tashiro, Hiroyuki; Vachaspati, Tanmay
2012-01-01
We reconsider the effect of electromagnetic radiation from superconducting strings on cosmic microwave background (CMB) mu- and y-distortions and derive present (COBE-FIRAS) and future (PIXIE) constraints on the string tension, mu_s, and electric current, I. We show that absence of distortions of the CMB in PIXIE will impose strong constraints on mu_s and I, leaving the possibility of light strings (G mu_s < 10^{-18}) or relatively weak currents (I < 10 TeV).
Cosmic String Detection via Microlensing of Stars
Chernoff, David F
2007-01-01
Cosmic superstrings are produced towards the end of the brane inflation. If the string tension is low enough, loops tend to be relatively long-lived. The resultant string network is expected to contain many loops which are smaller than typical Galactic scales. Cosmic expansion damps the center of mass motion of the loops which then cluster like cold dark matter. Loops will lens stars within the galaxy and local group. We explore microlensing of stars as a tool to detect and to characterize some of the fundamental string and string network properties, including the dimensionless string tension $G \\mu/c^2$ and the density of string loops within the Galaxy. As $G \\mu \\to 0$ the intrinsic microlensing rate diverges as $1/\\sqrt{G \\mu}$ but experimental detection will be limited by shortness of the lensing timescale and/or smallness of the bending angle which each vary $\\propto G \\mu$. We find that detection is feasible for a range of tensions. As an illustration, the planned optical astrometric survey mission, Gai...
Reconnection of Colliding Cosmic Strings
Hanany, A; Hanany, Amihay; Hashimoto, Koji
2005-01-01
For vortex strings in the Abelian Higgs model and D-strings in superstring theory, both of which can be regarded as cosmic strings, we give analytical study of reconnection (recombination, inter-commutation) when they collide, by using effective field theories on the strings. First, for the vortex strings, via a string sigma model, we verify analytically that the reconnection is classically inevitable for small collision velocity and small relative angle. Evolution of the shape of the reconnected strings provides an upper bound on the collision velocity in order for the reconnection to occur. These analytical results are in agreement with previous numerical results. On the other hand, reconnection of the D-strings is not classical but probabilistic. We show that a quantum calculation of the reconnection probability using a D-string action reproduces the nonperturbative nature of the worldsheet results by Jackson, Jones and Polchinski. The difference on the reconnection -- classically inevitable for the vortex...
Bukenov, A K; Polikarpov, M I; Polley, L; Wiese, U J
1992-01-01
We develop a formalism for the quantization of topologically stable excitations in the 4-dimensional abelian lattice gauge theory. The excitations are global and local (Abrikosov-Nielsen-Olesen) strings and monopoles. The operators of creation and annihilation of string states are constructed; the string Green functions are represented as a path integral over random surfaces. Topological excitations play an important role in the early universe. In the broken symmetry phase of the $U(1)$ spin model, closed global cosmic strings arise, while in the Higgs phase of the noncompact gauge-Higgs model, local cosmic strings are present. The compact gauge-Higgs model also involves monopoles. Then the strings can break if their ends are capped by monopoles. The topology of the Euclidean string world sheets are studied by numerical simulations.
Test particle trajectories near cosmic strings
Indian Academy of Sciences (India)
Farook Rahaman; Subenoy Chakraborty; K Maity
2002-01-01
We present a detailed analysis of the motion of test particle in the gravitational ﬁeld of cosmic strings in different situations using the Hamilton–Jacobi (H–J) formalism. We have discussed the trajectories near static cosmic string, cosmic string in Brans–Dicke theory and cosmic string in dilaton gravity.
Dynamic Cosmic Strings Numerical evolution of excited Cosmic Strings
Sperhake, U; Vickers, J A
2001-01-01
An implicit, fully characteristic, numerical scheme for solving the field equations of a cosmic string coupled to gravity is described. The inclusion of null infinity as part of the numerical grid allows us to apply suitable boundary conditions on the metric and matter fields to suppress unphysical divergent solutions. The code is tested by comparing the results with exact solutions, checking that static cosmic string initial data remain constant when evolved and undertaking a time dependent convergence analysis of the code. It is shown that the code is accurate, stable and exhibits clear second order convergence. The code is used to analyse the interaction between a Weber--Wheeler pulse of gravitational radiation with the string. The interaction causes the string to oscillate at frequencies inversely proportional to the masses of the scalar and vector fields of the string. After the pulse has largely radiated away the string continues to ring but the oscillations slowly decay and eventually the variables ret...
Improving cosmic string network simulations
Hindmarsh, Mark; Rummukainen, Kari; Tenkanen, Tuomas V. I.; Weir, David J.
2014-08-01
In real-time lattice simulations of cosmic strings in the Abelian Higgs model, the broken translational invariance introduces lattice artifacts; relativistic strings therefore decelerate and radiate. We introduce two different methods to construct a moving string on the lattice, and study in detail the lattice effects on moving strings. We find that there are two types of lattice artifact: there is an effective maximum speed with which a moving string can be placed on the lattice, and a moving string also slows down, with the deceleration approximately proportional to the exponential of the velocity. To mitigate this, we introduce and study an improved discretization, based on the tree-level Lüscher-Weisz action, which is found to reduce the deceleration by an order of magnitude, and to increase the string speed limit by an amount equivalent to halving the lattice spacing. The improved algorithm is expected to be very useful for 3D simulations of cosmic strings in the early Universe, where one wishes to simulate as large a volume as possible.
Improving cosmic string network simulations
Hindmarsh, Mark; Tenkanen, Tuomas V I; Weir, David J
2014-01-01
In real-time lattice simulations of cosmic strings in the Abelian Higgs model, the broken translational invariance introduces lattice artefacts; relativistic strings therefore decelerate and radiate. We introduce two different methods to construct a moving string on the lattice, and study in detail the lattice effects on moving strings. We find that there are two types of lattice artefact: there is an effective maximum speed with which a moving string can be placed on the lattice, and a moving string also slows down, with the deceleration approximately proportional to the exponential of the velocity. To mitigate this, we introduce and study an improved discretisation, based on the tree-level L\\"{u}scher-Weisz action, which is found to reduce the deceleration by an order of magnitude, and to increase the string speed limit by an amount equivalent to halving the lattice spacing. The improved algorithm is expected to be very useful for 3D simulations of cosmic strings in the early universe, where one wishes to s...
Lake, Matthew J
2015-01-01
We outline a model of abelian-Higgs strings with variable scalar and vector core radii. In general, the functions determining the time and position-dependent core widths may be expressed as arbitrary left or right movers, of which the usual constant values are a particular solution. In this case the string may carry momentum, even if the embedding of its central axis remains fixed, and the resulting objects resemble "necklaces". Some possible astrophysical applications of lumpy strings, including as potential engines for anomalous gamma ray bursts, are also discussed.
Cosmic D--term Strings as Wrapped D3 Branes
Halyo, E
2004-01-01
We describe cosmic D--term strings as D3 branes wrapped on a resolved conifold. The matter content that gives rise to D--term strings is shown to describe the world--volume theory of a space--filling D3 brane transverse to the conifold which itself is a wrapped D5 brane. We show that, in this brane theory, the tension of the wrapped D3 brane mathces that of the D--term string. We argue that there is a new type of cosmic string which arises from fractional D1 branes on the world--volume of a fractional D3 brane.
Dirac Born Infeld (DBI) Cosmic Strings
Babichev, Eugeny; Caprini, Chiara; Martin, Jerome; Steer, Daniele A
2009-01-01
Motivated by brane physics, we consider the non-linear Dirac-Born-Infeld (DBI) extension of the Abelian-Higgs model and study the corresponding cosmic string configurations. The model is defined by a potential term, assumed to be of the mexican hat form, and a DBI action for the kinetic terms. We show that it is a continuous deformation of the Abelian-Higgs model, with a single deformation parameter depending on a dimensionless combination of the scalar coupling constant, the vacuum expectation value of the scalar field at infinity, and the brane tension. By means of numerical calculations, we investigate the profiles of the corresponding DBI-cosmic strings and prove that they have a core which is narrower than that of Abelian-Higgs strings. We also show that the corresponding action is smaller than in the standard case suggesting that their formation could be favoured in brane models. Moreover we show that the DBI-cosmic string solutions are non-pathological everywhere in parameter space. Finally, in the lim...
Fireballs from Superconducting Cosmic Strings
Gruzinov, Andrei
2016-01-01
Thermalized fireballs should be created by cusp events on superconducting cosmic strings. This simple notion allows to reliably estimate particle emission from the cusps in a given background magnetic field. With plausible assumptions about intergalactic magnetic fields, the cusp events can produce observable fluxes of high-energy photons and neutrinos with unique signatures.
Fireballs from superconducting cosmic strings
Gruzinov, Andrei; Vilenkin, Alexander
2017-01-01
Thermalized fireballs should be created by cusp events on superconducting cosmic strings. This simple notion allows to reliably estimate particle emission from the cusps in a given background magnetic field. With plausible assumptions about intergalactic magnetic fields, the cusp events can produce observable fluxes of high-energy photons and neutrinos with unique signatures.
Scaling properties of cosmic (super)string networks
Martins, C J A P
2013-01-01
I use a combination of state-of-the-art numerical simulations and analytic modelling to discuss the scaling properties of cosmic defect networks, including superstrings. Particular attention is given to the role of extra degrees of freedom in the evolution of these networks. Compared to the 'plain vanilla' case of Goto-Nambu strings, three such extensions play important but distinct roles in the network dynamics: the presence of charges/currents on the string worldsheet, the existence of junctions, and the possibility of a hierarchy of string tensions. I also comment on insights gained from studying simpler defect networks, including Goto-Nambu strings themselves, domain walls and semilocal strings.
Wavelet-Bayesian inference of cosmic strings embedded in the cosmic microwave background
McEwen, J D; Peiris, H V; Wiaux, Y; Ringeval, C; Bouchet, F R
2016-01-01
Cosmic strings are a well-motivated extension to the standard cosmological model and could induce a subdominant component in the anisotropies of the cosmic microwave background (CMB), in addition to the standard inflationary component. The detection of strings, while observationally challenging, would provide a direct probe of physics at very high energy scales. We develop a new framework for cosmic string inference, constructing a Bayesian analysis in wavelet space where the string-induced CMB component has distinct statistical properties to the standard inflationary component. Our wavelet-Bayesian framework provides a principled approach to compute the posterior distribution of the string tension $G\\mu$ and the Bayesian evidence ratio comparing the string model to the standard inflationary model. Furthermore, we present a technique to recover an estimate of any string-induced CMB map embedded in observational data. Using Planck-like simulations we demonstrate the application of our framework and evaluate it...
Cosmic Strings and the Origin of Globular Clusters
Barton, Alistair; Lin, Ling
2015-01-01
We hypothesize that cosmic string loops are the seeds about which globular clusters accrete. Fixing the cosmic string tension by demanding that the peak in the distribution of masses of objects accreting onto string loops agrees with the peak in the observed mass distribution of globular clusters in our Milky Way galaxy, we then compute the expected number density and mass function of globular clusters, and compare with observations. Our hypothesis naturally explains why globular clusters are the oldest and most dense objects in a galaxy, and why they are found in the halo of the galaxy.
Exploring cosmic strings: Observable effects and cosmological constraints
Sabancilar, Eray
Observation of cosmic (super)strings can serve as a useful hint to understand the fundamental theories of physics, such as grand unified theories (GUTs) and/or superstring theory. In this regard, I present new mechanisms to produce particles from cosmic (super)strings, and discuss their cosmological and observational effects in this dissertation. The first chapter is devoted to a review of the standard cosmology, cosmic (super)strings and cosmic rays. The second chapter discusses the cosmological effects of moduli. Moduli are relatively light, weakly coupled scalar fields, predicted in supersymmetric particle theories including string theory. They can be emitted from cosmic (super)string loops in the early universe. Abundance of such moduli is constrained by diffuse gamma ray background, dark matter, and primordial element abundances. These constraints put an upper bound on the string tension as strong as Gmu ≲ 10-28 for a wide range of modulus mass m. If the modulus coupling constant is stronger than gravitational strength, modulus radiation can be the dominant energy loss mechanism for the loops. Furthermore, modulus lifetimes become shorter for stronger coupling. Hence, the constraints on string tension Gmu and modulus mass m are significantly relaxed for strongly coupled moduli predicted in superstring theory. Thermal production of these particles and their possible effects are also considered. In the third chapter, moduli emitted from cosmic string cusps are studied. Highly boosted modulus bursts emanating from cusps subsequently decay into gluons and generate hadronic cascades which in turn produce large number of neutrinos. For reasonable values of the modulus mass and coupling constant, observable ultra high energy neutrino fluxes can be produced for a wide range of string tension Gmu. The fourth chapter discusses cosmic rays produced by the charged particles ejected from cusps of superconducting cosmic strings. In many particle physics theories, cosmic
On the Properties of Cosmic String Loops
Casper, Paul Henry
1996-01-01
When coupled with the prevailing ideas of cosmology, the standard model of particle physics implies that the early universe underwent a sequence of phase transitions. Such phase transitions can lead to topological defects such as magnetic monopoles, domain walls and cosmic strings. The formation and subsequent evolution of a network of cosmic strings may have played a key role in the development of the early universe. One of the most crucial elements in the evolution of the cosmic string network is the formation and decay of closed loops of cosmic string. After formation, the loops lose their energy by emitting gravitational radiation. This provides the primary energy loss mechanism for the cosmic string network. In addition, the cosmic string loops may display a number of observable features through which the cosmic string model may be constrained. In this dissertation a number of the key properties of cosmic string loops are investigated. A general method for determining the rates at which cosmic string loops radiate both energy and linear momentum is developed and implemented. Exact solutions for the radiation rates of a several new classes of loops are derived and used to test the validity of using the piecewise linear method on smooth loop trajectories. A large set of representative loop trajectories is produced using the method of loop fragmentation. These trajectories are analyzed to provide useful information on the properties of realistic cosmic string loops. The fraction of cosmic string loops which would collapse to form black holes is determined and used to place a new observational limit on the mass per unit length of cosmic strings.
Solution for a local straight cosmic string in the braneworld gravity
Energy Technology Data Exchange (ETDEWEB)
Abdalla, M.C.B.; Carlesso, P.F. [UNESP, Universidade Estadual Paulista, Instituto de Fisica Teorica, Rua Dr. Bento Teobaldo Ferraz 271, Bloco II, Barra-Funda, Caixa Postal 70532-2, Sao Paulo, SP (Brazil); Hoff da Silva, J.M. [UNESP, Universidade Estadual Paulista, Departamento de Fisica e Quimica, Guaratingueta, SP (Brazil)
2015-09-15
In this work we deal with the spacetime shaped by a straight cosmic string, emerging from local gauge theories, in the braneworld gravity context. We search for physical consequences of string features due to the modified gravitational scenario encoded in the projected gravitational equations. It is shown that cosmic strings in braneworld gravity may present significant differences when compared to the general relativity predictions, since its linear density is modified and the deficit angle produced by the cosmic string is attenuated. Furthermore, the existence of cosmic strings in that scenario requires a strong restriction to the braneworld tension: λ ≥ 3 x 10{sup -17}, in Planck units. (orig.)
Dynamical String Tension in String Theory with Spacetime Weyl Invariance
Bars, Itzhak; Turok, Neil
2014-01-01
The fundamental string length, which is an essential part of string theory, explicitly breaks scale invariance. However, in field theory we demonstrated recently that the gravitational constant, which is directly related to the string length, can be promoted to a dynamical field if the standard model coupled to gravity (SM+GR) is lifted to a locally scale (Weyl) invariant theory. The higher gauge symmetry reveals previously unknown field patches whose inclusion turn the classically conformally invariant SM+GR into a geodesically complete theory with new cosmological and possibly further physical consequences. In this paper this concept is extended to string theory by showing how it can be Weyl lifted with a local scale symmetry acting on target space background fields. In this process the string tension (fundamental string length) is promoted to a dynamical field, in agreement with the parallel developments in field theory. We then propose a string theory in a geodesically complete cosmological stringy backgr...
Evolution of a Non-Abelian Cosmic String Network
McGraw, P N
1998-01-01
We describe a numerical simulation of the evolution of an $S_3$ cosmic string network which takes fully into account the non-commutative nature of the cosmic string fluxes and the topological obstructions which hinder strings from moving past each other or intercommuting. The influence of initial conditions, string tensions, and other parameters on the network's evolution is explored. In a broad range of regimes, the total energy density as a function of time exhibits a familiar power-law behavior, and we do not find strong support for a string-dominated cosmological scenario. However, the speed of the network's collapse (coefficient of the power law) can vary quite a bit, as can the qualitative features of the network. There is a surprisingly strong dependence on the statistical properties of the initial conditions. The results give some insight as to which processes play the most important roles in the evolution of a non-Abelian network.
Cold, warm, and composite (cool) cosmic string models
Carter, B
1994-01-01
The dynamical behaviour of a cosmic string is strongly affected by any reduction of the effective string tension $T$ below the constant value $T=m^2$ say that characterizes the simple, longitudinally Lorentz invariant, Goto Nambu string model in terms of a fixed mass scale $m$ whose magnitude depends on that of the Higgs field responsible for the existence of the string. Such a reduction occurs in the standard "hot" cosmic string model in which the effect of thermal perturbations of a simple Goto Nambu model is expressed by the formula $T^2=m^2(m^2-2\\pi\\Theta^2/3)$, where $\\Theta$ is the string temperature. A qualitatively similar though analytically more complicated tension reduction phenomenon occurs in "cold" conducting cosmic string models where the role of the temperature is played by an effective chemical potential $\\mu$ that is constructed as the magnitude of the phase $\\phi$ of a bosonic condensate of the kind whose existence was first proposed by Witten. The present article describes the construction...
Gravitational phase operator and cosmic strings
Anandan, Jeeva S
1996-01-01
A quantum equivalence principle is formulated by means of a gravitational phase operator which is an element of the Poincare group. This is applied to the spinning cosmic string which suggests that it may contain gravitational torsion. A new exact solution of the Einstein- Cartan-Sciama-Kibble equations for the gravitational field with torsion is obtained everywhere for a cosmic string with uniform energy density, spin density and flux. A novel effect due to the quantized gravitational field of the cosmic string on the wave function of a particle outside the string is used to show that spacetime points are not meaningful in quantum gravity.
Radiation from cosmic string standing waves
Olum; Blanco-Pillado
2000-05-01
We have simulated large-amplitude standing waves on an Abelian-Higgs cosmic string in classical lattice field theory. The radiation rate falls exponentially with wavelength, as one would expect from the field profile around a gauge string. Our results agree with those of Moore and Shellard, but not with those of Vincent, Antunes, and Hindmarsh. The radiation rate falls too rapidly to sustain a scaling solution via direct radiation of particles from string length. There is thus reason to doubt claims of strong constraints on cosmic string theories from cosmic ray observations.
Observational constraints on the types of cosmic strings
Energy Technology Data Exchange (ETDEWEB)
Sazhina, Olga S.; Sazhin, Mikhail V. [Moscow M.V. Lomonosov State University, Sternberg Astronomical Institute (SAI MSU), Moscow (Russian Federation); Scognamiglio, Diana [University of Naples Federico II, Naples (Italy)
2014-08-15
This paper is aimed at setting observational limits to the number of cosmic strings (Nambu-Goto, Abelian-Higgs, semilocal) and other topological defects (textures). Radio maps of CMB anisotropy, provided by the space mission Planck for various frequencies, were filtered and then processed by the method of convolution with modified Haar functions (MHF) to search for cosmic string candidates. This method was designed to search for solitary strings, without additional assumptions as regards the presence of networks of such objects. The sensitivity of the MHF method is δT ∼ 10 μK in a background of δT ∼ 100 μK. The comparison of these with previously known results on search string network shows that strings can only be semilocal in the range of 1 / 5, with the upper restriction on individual string tension (linear density) of Gμ/c{sup 2} ≤ 7.36 x 10{sup -7}. The texture model is also legal. There are no strings with Gμ/c{sup 2} > 7.36 x 10{sup -7}. However, a comparison with the data for the search of non-Gaussian signals shows that the presence of several (up to three) Nambu-Goto strings is also possible. For Gμ/c{sup 2} ≤ 4.83 x 10{sup -7} the MHF method is ineffective because of unverifiable spurious string candidates. Thus the existence of strings with tensions Gμ/c{sup 2} ≤ 4.83 x 10{sup -7} is not prohibited but it is beyond the Planck data possibilities. The same string candidates have been found in the WMAP 9-year data. Independence of Planck and WMAP data sets serves as an additional argument to consider those string candidates as very promising. However, the final proof should be given by optical deep surveys. (orig.)
Cosmological constraints on strongly coupled moduli from cosmic strings
Sabancilar, Eray
2010-06-01
Cosmic (super)string loops emit moduli as they oscillate under the effect of their tension. Abundance of such moduli is constrained by diffuse gamma ray background, dark matter, and primordial element abundances if their lifetime is of the order of the relevant cosmic time. It is shown that the constraints on string tension Gμ and modulus mass m are significantly relaxed for moduli coupling to matter stronger than gravitational strength which appears to be quite generic in large volume and warped compactification scenarios in string theory. It is also shown that thermal production of strongly coupled moduli is not efficient, hence free from constraints. In particular, the strongly coupled moduli in warped and large volume compactification scenarios and the radial modulus in the Randall-Sundrum model are found to be free from the constraints when their coupling constant is sufficiently large.
Constraints on cosmic strings from the LIGO-Virgo gravitational-wave detectors.
Aasi, J; Abadie, J; Abbott, B P; Abbott, R; Abbott, T; Abernathy, M R; Accadia, T; Acernese, F; Adams, C; Adams, T; Adhikari, R X; Affeldt, C; Agathos, M; Aggarwal, N; Aguiar, O D; Ajith, P; Allen, B; Allocca, A; Amador Ceron, E; Amariutei, D; Anderson, R A; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C; Areeda, J; Ast, S; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Austin, L; Aylott, B E; Babak, S; Baker, P T; Ballardin, G; Ballmer, S W; Barayoga, J C; Barker, D; Barnum, S H; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barton, M A; Bartos, I; Bassiri, R; Basti, A; Batch, J; Bauchrowitz, J; Bauer, Th S; Bebronne, M; Behnke, B; Bejger, M; Beker, M G; Bell, A S; Bell, C; Belopolski, I; Bergmann, G; Berliner, J M; Bersanetti, D; Bertolini, A; Bessis, D; Betzwieser, J; Beyersdorf, P T; Bhadbhade, T; Bilenko, I A; Billingsley, G; Birch, J; Bitossi, M; Bizouard, M A; Black, E; Blackburn, J K; Blackburn, L; Blair, D; Blom, M; Bock, O; Bodiya, T P; Boer, M; Bogan, C; Bond, C; Bondu, F; Bonelli, L; Bonnand, R; Bork, R; Born, M; Boschi, V; Bose, S; Bosi, L; Bowers, J; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brannen, C A; Brau, J E; Breyer, J; Briant, T; Bridges, D O; Brillet, A; Brinkmann, M; Brisson, V; Britzger, M; Brooks, A F; Brown, D A; Brown, D D; Brückner, F; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cadonati, L; Cagnoli, G; Calderón Bustillo, J; Calloni, E; Camp, J B; Campsie, P; Cannon, K C; Canuel, B; Cao, J; Capano, C D; Carbognani, F; Carbone, L; Caride, S; Castiglia, A; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C; Cesarini, E; Chakraborty, R; Chalermsongsak, T; Chao, S; Charlton, P; Chassande-Mottin, E; Chen, X; Chen, Y; Chincarini, A; Chiummo, A; Cho, H S; Chow, J; Christensen, N; Chu, Q; Chua, S S Y; Chung, S; Ciani, G; Clara, F; Clark, D E; Clark, J A; Cleva, F; Coccia, E; Cohadon, P-F; Colla, A; Colombini, M; Constancio, M; Conte, A; Conte, R; Cook, D; Corbitt, T R; Cordier, M; Cornish, N; Corsi, A; Costa, C A; Coughlin, M W; Coulon, J-P; Countryman, S; Couvares, P; Coward, D M; Cowart, M; Coyne, D C; Craig, K; Creighton, J D E; Creighton, T D; Crowder, S G; Cumming, A; Cunningham, L; Cuoco, E; Dahl, K; Dal Canton, T; Damjanic, M; Danilishin, S L; D'Antonio, S; Danzmann, K; Dattilo, V; Daudert, B; Daveloza, H; Davier, M; Davies, G S; Daw, E J; Day, R; Dayanga, T; De Rosa, R; Debreczeni, G; Degallaix, J; Del Pozzo, W; Deleeuw, E; Deléglise, S; Denker, T; Dent, T; Dereli, H; Dergachev, V; DeRosa, R; DeSalvo, R; Dhurandhar, S; Di Fiore, L; Di Lieto, A; Di Palma, I; Di Virgilio, A; Díaz, M; Dietz, A; Dmitry, K; Donovan, F; Dooley, K L; Doravari, S; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Dumas, J-C; Dwyer, S; Eberle, T; Edwards, M; Effler, A; Ehrens, P; Eichholz, J; Eikenberry, S S; Endrőczi, G; Essick, R; Etzel, T; Evans, K; Evans, M; Evans, T; Factourovich, M; Fafone, V; Fairhurst, S; Fang, Q; Farinon, S; Farr, B; Farr, W; Favata, M; Fazi, D; Fehrmann, H; Feldbaum, D; Ferrante, I; Ferrini, F; Fidecaro, F; Finn, L S; Fiori, I; Fisher, R; Flaminio, R; Foley, E; Foley, S; Forsi, E; Fotopoulos, N; Fournier, J-D; Franco, S; Frasca, S; Frasconi, F; Frede, M; Frei, M; Frei, Z; Freise, A; Frey, R; Fricke, T T; Fritschel, P; Frolov, V V; Fujimoto, M-K; Fulda, P; Fyffe, M; Gair, J; Gammaitoni, L; Garcia, J; Garufi, F; Gehrels, N; Gemme, G; Genin, E; Gennai, A; Gergely, L; Ghosh, S; Giaime, J A; Giampanis, S; Giardina, K D; Giazotto, A; Gil-Casanova, S; Gill, C; Gleason, J; Goetz, E; Goetz, R; Gondan, L; González, G; Gordon, N; Gorodetsky, M L; Gossan, S; Goßler, S; Gouaty, R; Graef, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greenhalgh, R J S; Gretarsson, A M; Griffo, C; Groot, P; Grote, H; Grover, K; Grunewald, S; Guidi, G M; Guido, C; Gushwa, K E; Gustafson, E K; Gustafson, R; Hall, B; Hall, E; Hammer, D; Hammond, G; Hanke, M; Hanks, J; Hanna, C; Hanson, J; Harms, J; Harry, G M; Harry, I W; Harstad, E D; Hartman, M T; Haughian, K; Hayama, K; Heefner, J; Heidmann, A; Heintze, M; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hodge, K A; Holt, K; Holtrop, M; Hong, T; Hooper, S; Horrom, T; Hosken, D J; Hough, J; Howell, E J; Hu, Y; Hua, Z; Huang, V; Huerta, E A; Hughey, B; Husa, S; Huttner, S H; Huynh, M; Huynh-Dinh, T; Iafrate, J; Ingram, D R; Inta, R; Isogai, T; Ivanov, A; Iyer, B R; Izumi, K; Jacobson, M; James, E; Jang, H; Jang, Y J; Jaranowski, P; Jiménez-Forteza, F; Johnson, W W; Jones, D; Jones, D I; Jones, R; Jonker, R J G; Ju, L; K, Haris; Kalmus, P; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Kasprzack, M; Kasturi, R; Katsavounidis, E; Katzman, W; Kaufer, H; Kaufman, K; Kawabe, K; Kawamura, S; Kawazoe, F; Kéfélian, F; Keitel, D; Kelley, D B; Kells, W; Keppel, D G; Khalaidovski, A; Khalili, F Y; Khazanov, E A; Kim, B K; Kim, C
2014-04-01
Cosmic strings can give rise to a large variety of interesting astrophysical phenomena. Among them, powerful bursts of gravitational waves (GWs) produced by cusps are a promising observational signature. In this Letter we present a search for GWs from cosmic string cusps in data collected by the LIGO and Virgo gravitational wave detectors between 2005 and 2010, with over 625 days of live time. We find no evidence of GW signals from cosmic strings. From this result, we derive new constraints on cosmic string parameters, which complement and improve existing limits from previous searches for a stochastic background of GWs from cosmic microwave background measurements and pulsar timing data. In particular, if the size of loops is given by the gravitational backreaction scale, we place upper limits on the string tension Gμ below 10(-8) in some regions of the cosmic string parameter space.
Constraints on cosmic (super)strings from the LIGO-Virgo gravitational-wave detectors
Aasi, J; Abbott, B P; Abbott, R; Abbott, T; Abernathy, M R; Accadia, T; Acernese, F; Adams, C; Adams, T; Adhikari, R X; Affeldt, C; Agathos, M; Aggarwal, N; Aguiar, O D; Ajith, P; Allen, B; Allocca, A; Ceron, E Amador; Amariutei, D; Anderson, R A; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C; Areeda, J; Ast, S; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Austin, L; Aylott, B E; Babak, S; Baker, P T; Ballardin, G; Ballmer, S W; Barayoga, J C; Barker, D; Barnum, S H; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barton, M A; Bartos, I; Bassiri, R; Basti, A; Batch, J; Bauchrowitz, J; Bauer, Th S; Bebronne, M; Behnke, B; Bejger, M; Beker, M G; Bell, A S; Bell, C; Belopolski, I; Bergmann, G; Berliner, J M; Bersanetti, D; Bertolini, A; Bessis, D; Betzwieser, J; Beyersdorf, P T; Bhadbhade, T; Bilenko, I A; Billingsley, G; Birch, J; Bitossi, M; Bizouard, M A; Black, E; Blackburn, J K; Blackburn, L; Blair, D; Blom, M; Bock, O; Bodiya, T P; Boer, M; Bogan, C; Bond, C; Bondu, F; Bonelli, L; Bonnand, R; Bork, R; Born, M; Boschi, V; Bose, S; Bosi, L; Bowers, J; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brannen, C A; Brau, J E; Breyer, J; Briant, T; Bridges, D O; Brillet, A; Brinkmann, M; Brisson, V; Britzger, M; Brooks, A F; Brown, D A; Brown, D D; Brückner, F; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cadonati, L; Cagnoli, G; Bustillo, J Calderón; Calloni, E; Camp, J B; Campsie, P; Cannon, K C; Canuel, B; Cao, J; Capano, C D; Carbognani, F; Carbone, L; Caride, S; Castiglia, A; Caudill, S; Cavagliá, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C; Cesarini, E; Chakraborty, R; Chalermsongsak, T; Chao, S; Charlton, P; Chassande-Mottin, E; Chen, X; Chen, Y; Chincarini, A; Chiummo, A; Cho, H S; Chow, J; Christensen, N; Chu, Q; Chua, S S Y; Chung, S; Ciani, G; Clara, F; Clark, D E; Clark, J A; Cleva, F; Coccia, E; Cohadon, P -F; Colla, A; Colombini, M; Constancio, M; Conte, A; Conte, R; Cook, D; Corbitt, T R; Cordier, M; Cornish, N; Corsi, A; Costa, C A; Coughlin, M W; Coulon, J -P; Countryman, S; Couvares, P; Coward, D M; Cowart, M; Coyne, D C; Craig, K; Creighton, J D E; Creighton, T D; Crowder, S G; Cumming, A; Cunningham, L; Cuoco, E; Dahl, K; Canton, T Dal; Damjanic, M; Danilishin, S L; D'Antonio, S; Danzmann, K; Dattilo, V; Daudert, B; Daveloza, H; Davier, M; Davies, G S; Daw, E J; Day, R; Dayanga, T; De Rosa, R; Debreczeni, G; Degallaix, J; Del Pozzo, W; Deleeuw, E; Deléglise, S; Denker, T; Dent, T; Dereli, H; Dergachev, V; DeRosa, R; DeSalvo, R; Dhurandhar, S; Di Fiore, L; Di Lieto, A; Di Palma, I; Di Virgilio, A; Díaz, M; Dietz, A; Dmitry, K; Donovan, F; Dooley, K L; Doravari, S; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Dumas, J -C; Dwyer, S; Eberle, T; Edwards, M; Effler, A; Ehrens, P; Eichholz, J; Eikenberry, S S; Endröczi, G; Essick, R; Etzel, T; Evans, K; Evans, M; Evans, T; Factourovich, M; Fafone, V; Fairhurst, S; Fang, Q; Farinon, S; Farr, B; Farr, W; Favata, M; Fazi, D; Fehrmann, H; Feldbaum, D; Ferrante, I; Ferrini, F; Fidecaro, F; Finn, L S; Fiori, I; Fisher, R; Flaminio, R; Foley, E; Foley, S; Forsi, E; Fotopoulos, N; Fournier, J -D; Franco, S; Frasca, S; Frasconi, F; Frede, M; Frei, M; Frei, Z; Freise, A; Frey, R; Fricke, T T; Fritschel, P; Frolov, V V; Fujimoto, M -K; Fulda, P; Fyffe, M; Gair, J; Gammaitoni, L; Garcia, J; Garufi, F; Gehrels, N; Gemme, G; Genin, E; Gennai, A; Gergely, L; Ghosh, S; Giaime, J A; Giampanis, S; Giardina, K D; Giazotto, A; Gil-Casanova, S; Gill, C; Gleason, J; Goetz, E; Goetz, R; Gondan, L; González, G; Gordon, N; Gorodetsky, M L; Gossan, S; Goßler, S; Gouaty, R; Graef, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greenhalgh, R J S; Gretarsson, A M; Griffo, C; Groot, P; Grote, H; Grover, K; Grunewald, S; Guidi, G M; Guido, C; Gushwa, K E; Gustafson, E K; Gustafson, R; Hall, B; Hall, E; Hammer, D; Hammond, G; Hanke, M; Hanks, J; Hanna, C; Hanson, J; Harms, J; Harry, G M; Harry, I W; Harstad, E D; Hartman, M T; Haughian, K; Hayama, K; Heefner, J; Heidmann, A; Heintze, M; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hodge, K A; Holt, K; Holtrop, M; Hong, T; Hooper, S; Horrom, T; Hosken, D J; Hough, J; Howell, E J; Hu, Y; Hua, Z; Huang, V; Huerta, E A; Hughey, B; Husa, S; Huttner, S H; Huynh, M; Huynh-Dinh, T; Iafrate, J; Ingram, D R; Inta, R; Isogai, T; Ivanov, A; Iyer, B R; Izumi, K; Jacobson, M; James, E; Jang, H; Jang, Y J; Jaranowski, P; Jiménez-Forteza, F; Johnson, W W; Jones, D; Jones, D I; Jones, R; Jonker, R J G; Ju, L; K, Haris; Kalmus, P; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Kasprzack, M; Kasturi, R; Katsavounidis, E; Katzman, W; Kaufer, H; Kaufman, K; Kawabe, K; Kawamura, S; Kawazoe, F; Kéfélian, F; Keitel, D; Kelley, D B; Kells, W; Keppel, D G; Khalaidovski, A; Khalili, F Y; Khazanov, E A; Kim, B K; Kim, C; Kim, K; Kim, N; Kim, W; Kim, Y -M; King, E J; King, P J; Kinzel, D L; Kissel, J S; Klimenko, S; Kline, J; Koehlenbeck, S; Kokeyama, K; Kondrashov, V; Koranda, S; Korth, W Z; Kowalska, I; Kozak, D; Kremin, A; Kringel, V; Królak, A; Kucharczyk, C; Kudla, S; Kuehn, G; Kumar, A; Kumar, P; Kumar, R; Kurdyumov, R; Kwee, P; Landry, M; Lantz, B; Larson, S; Lasky, P D; Lawrie, C; Lazzarini, A; Roux, A Le; Leaci, P; Lebigot, E O; Lee, C -H; Lee, H K; Lee, H M; Lee, J; Leonardi, M; Leong, J R; Leroy, N; Letendre, N; Levine, B; Lewis, J B; Lhuillier, V; Li, T G F; Lin, A C; Littenberg, T B; Litvine, V; Liu, F; Liu, H; Liu, Y; Liu, Z; Lloyd, D; Lockerbie, N A; Lockett, V; Lodhia, D; Loew, K; Logue, J; Lombardi, A L; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J; Luan, J; Lubinski, M J; Lück, H; Lundgren, A P; Macarthur, J; Macdonald, E; Machenschalk, B; MacInnis, M; Macleod, D M; Magana-Sandoval, F; Mageswaran, M; Mailand, K; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Manca, G M; Mandel, I; Mandic, V; Mangano, V; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A; Maros, E; Marque, J; Martelli, F; Martin, I W; Martin, R M; Martinelli, L; Martynov, D; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Matichard, F; Matone, L; Matzner, R A; Mavalvala, N; May, G; Mazumder, N; Mazzolo, G; McCarthy, R; McClelland, D E; McGuire, S C; McIntyre, G; McIver, J; Meacher, D; Meadors, G D; Mehmet, M; Meidam, J; Meier, T; Melatos, A; Mendell, G; Mercer, R A; Meshkov, S; Messenger, C; Meyer, M S; Miao, H; Michel, C; Mikhailov, E E; Milano, L; Miller, J; Minenkov, Y; Mingarelli, C M F; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moe, B; Mohan, M; Mohapatra, S R P; Mokler, F; Moraru, D; Moreno, G; Morgado, N; Mori, T; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, C L; Mueller, G; Mukherjee, S; Mullavey, A; Munch, J; Murphy, D; Murray, P G; Mytidis, A; Nagy, M F; Kumar, D Nanda; Nardecchia, I; Nash, T; Naticchioni, L; Nayak, R; Necula, V; Nelemans, G; Neri, I; Neri, M; Newton, G; Nguyen, T; Nishida, E; Nishizawa, A; Nitz, A; Nocera, F; Nolting, D; Normandin, M E; Nuttall, L K; Ochsner, E; O'Dell, J; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Oppermann, P; O'Reilly, B; Larcher, W Ortega; O'Shaughnessy, R; Osthelder, C; Ott, C D; Ottaway, D J; Ottens, R S; Ou, J; Overmier, H; Owen, B J; Padilla, C; Pai, A; Palomba, C; Pan, Y; Pankow, C; Paoletti, F; Paoletti, R; Papa, M A; Paris, H; Pasqualetti, A; Passaquieti, R; Passuello, D; Pedraza, M; Peiris, P; Penn, S; Perreca, A; Phelps, M; Pichot, M; Pickenpack, M; Piergiovanni, F; Pierro, V; Pinard, L; Pindor, B; Pinto, I M; Pitkin, M; Poeld, J; Poggiani, R; Poole, V; Poux, C; Predoi, V; Prestegard, T; Price, L R; Prijatelj, M; Principe, M; Privitera, S; Prix, R; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; Quetschke, V; Quintero, E; Quitzow-James, R; Raab, F J; Rabeling, D S; Rácz, I; Radkins, H; Raffai, P; Raja, S; Rajalakshmi, G; Rakhmanov, M; Ramet, C; Rapagnani, P; Raymond, V; Re, V; Reed, C M; Reed, T; Regimbau, T; Reid, S; Reitze, D H; Ricci, F; Riesen, R; Riles, K; Robertson, N A; Robinet, F; Rocchi, A; Roddy, S; Rodriguez, C; Rodruck, M; Roever, C; Rolland, L; Rollins, J G; Romano, R; Romanov, G; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Salemi, F; Sammut, L; Sandberg, V; Sanders, J; Sannibale, V; Santiago-Prieto, I; Saracco, E; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Savage, R; Schilling, R; Schnabel, R; Schofield, R M S; Schreiber, E; Schuette, D; Schulz, B; Schutz, B F; Schwinberg, P; Scott, J; Scott, S M; Seifert, F; Sellers, D; Sengupta, A S; Sentenac, D; Sergeev, A; Shaddock, D; Shah, S; Shahriar, M S; Shaltev, M; Shapiro, B; Shawhan, P; Shoemaker, D H; Sidery, T L; Siellez, K; Siemens, X; Sigg, D; Simakov, D; Singer, A; Singer, L; Sintes, A M; Skelton, G R; Slagmolen, B J J; Slutsky, J; Smith, J R; Smith, M R; Smith, R J E; Smith-Lefebvre, N D; Soden, K; Son, E J; Sorazu, B; Souradeep, T; Sperandio, L; Staley, A; Steinert, E; Steinlechner, J; Steinlechner, S; Steplewski, S; Stevens, D; Stochino, A; Stone, R; Strain, K A; Straniero, N; Strigin, S; Stroeer, A S; Sturani, R; Stuver, A L; Summerscales, T Z; Susmithan, S; Sutton, P J; Swinkels, B; Szeifert, G; Tacca, M; Talukder, D; Tang, L; Tanner, D B; Tarabrin, S P; Taylor, R; ter Braack, A P M; Thirugnanasambandam, M P; Thomas, M; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Tiwari, V; Tokmakov, K V; Tomlinson, C; Toncelli, A; Tonelli, M; Torre, O; Torres, C V; Torrie, C I; Travasso, F; Traylor, G; Tse, M; Ugolini, D; Unnikrishnan, C S; Vahlbruch, H; Vajente, G; Vallisneri, M; Brand, J F J van den; Broeck, C Van Den; van der Putten, S; van der Sluys, M V; van Heijningen, J; van Veggel, A A; Vass, S; Vasúth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Verma, S; Vetrano, F; Viceré, A; Vincent-Finley, R; Vinet, J -Y; Vitale, S; Vlcek, B; Vo, T; Vocca, H; Vorvick, C; Vousden, W D; Vrinceanu, D; Vyachanin, S P; Wade, A; Wade, L; Wade, M; Waldman, S J; Walker, M; Wallace, L; Wan, Y; Wang, J; Wang, M; Wang, X; Wanner, A; Ward, R L; Was, M; Weaver, B; Wei, L -W; Weinert, M; Weinstein, A J; Weiss, R; Welborn, T; Wen, L; Wessels, P; West, M; Westphal, T; Wette, K; Whelan, J T; Whitcomb, S E; White, D J; Whiting, B F; Wibowo, S; Wiesner, K; Wilkinson, C; Williams, L; Williams, R; Williams, T; Willis, J L; Willke, B; Wimmer, M; Winkelmann, L; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Worden, J; Yablon, J; Yakushin, I; Yamamoto, H; Yancey, C C; Yang, H; Yeaton-Massey, D; Yoshida, S; Yum, H; Yvert, M; Zadrożny, A; Zanolin, M; Zendri, J -P; Zhang, F; Zhang, L; Zhao, C; Zhu, H; Zhu, X J; Zotov, N; Zucker, M E; Zweizig, J
2013-01-01
Cosmic string cusps produce powerful bursts of gravitational waves (GWs). These bursts provide the most promising observational signature of cosmic strings. In this letter we report stringent limits on cosmic string models obtained from the analysis of 625 days of observation with the LIGO and Virgo GW detectors. A significant fraction of the cosmic string parameter space is ruled out. This result complements and improves existing limits from searches for a stochastic background of GWs using cosmic microwave background and pulsar timing data. In particular, if the size of loops is given by gravitational back-reaction, we place upper limits on the string tension $G\\mu$ below $10^{-8}$ in some regions of the cosmic string parameter space.
Constraints on Cosmic Strings from the LIGO-Virgo Gravitational-Wave Detectors
Aasi, J.; Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Accadia, T.; Acernese, F.; Adams, C.; Adams, T.; Adhikari, R. X.; Affeldt, C.; Agathos, M.; Aggarwal, N.; Aguiar, O. D.; Ajith, P.; Allen, B.; Allocca, A.; Amador Ceron, E.; Amariutei, D.; Anderson, R. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C.; Areeda, J.; Ast, S.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Austin, L.; Aylott, B. E.; Babak, S.; Baker, P. T.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barker, D.; Barnum, S. H.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J.; Bauchrowitz, J.; Bauer, Th. S.; Bebronne, M.; Behnke, B.; Bejger, M.; Beker, M. G.; Bell, A. S.; Bell, C.; Belopolski, I.; Bergmann, G.; Berliner, J. M.; Bersanetti, D.; Bertolini, A.; Bessis, D.; Betzwieser, J.; Beyersdorf, P. T.; Bhadbhade, T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Blom, M.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogan, C.; Bond, C.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, S.; Bosi, L.; Bowers, J.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brannen, C. A.; Brau, J. E.; Breyer, J.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brückner, F.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Calderón Bustillo, J.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannon, K. C.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Carbone, L.; Caride, S.; Castiglia, A.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, X.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Chow, J.; Christensen, N.; Chu, Q.; Chua, S. S. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, D. E.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Colombini, M.; Constancio, M.; Conte, A.; Conte, R.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Coulon, J.-P.; Countryman, S.; Couvares, P.; Coward, D. M.; Cowart, M.; Coyne, D. C.; Craig, K.; Creighton, J. D. E.; Creighton, T. D.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dahl, K.; Canton, T. Dal; Damjanic, M.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daudert, B.; Daveloza, H.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; Dayanga, T.; De Rosa, R.; Debreczeni, G.; Degallaix, J.; Del Pozzo, W.; Deleeuw, E.; Deléglise, S.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; DeRosa, R.; DeSalvo, R.; Dhurandhar, S.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Virgilio, A.; Díaz, M.; Dietz, A.; Dmitry, K.; Donovan, F.; Dooley, K. L.; Doravari, S.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Dumas, J.-C.; Dwyer, S.; Eberle, T.; Edwards, M.; Effler, A.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Endrőczi, G.; Essick, R.; Etzel, T.; Evans, K.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W.; Favata, M.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Ferrante, I.; Ferrini, F.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R.; Flaminio, R.; Foley, E.; Foley, S.; Forsi, E.; Fotopoulos, N.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fujimoto, M.-K.; Fulda, P.; Fyffe, M.; Gair, J.; Gammaitoni, L.; Garcia, J.; Garufi, F.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; Gergely, L.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gil-Casanova, S.; Gill, C.; Gleason, J.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gordon, N.; Gorodetsky, M. L.; Gossan, S.; Goßler, S.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Griffo, C.; Groot, P.; Grote, H.; Grover, K.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hall, B.; Hall, E.; Hammer, D.; Hammond, G.; Hanke, M.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hartman, M. T.; Haughian, K.; Hayama, K.; Heefner, J.; Heidmann, A.; Heintze, M.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Holtrop, M.; Hong, T.; Hooper, S.; Horrom, T.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hu, Y.; Hua, Z.; Huang, V.; Huerta, E. A.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh, M.; Huynh-Dinh, T.
2014-04-01
Cosmic strings can give rise to a large variety of interesting astrophysical phenomena. Among them, powerful bursts of gravitational waves (GWs) produced by cusps are a promising observational signature. In this Letter we present a search for GWs from cosmic string cusps in data collected by the LIGO and Virgo gravitational wave detectors between 2005 and 2010, with over 625 days of live time. We find no evidence of GW signals from cosmic strings. From this result, we derive new constraints on cosmic string parameters, which complement and improve existing limits from previous searches for a stochastic background of GWs from cosmic microwave background measurements and pulsar timing data. In particular, if the size of loops is given by the gravitational backreaction scale, we place upper limits on the string tension Gμ below 10-8 in some regions of the cosmic string parameter space.
Constraints on Cosmic Strings from the LIGO-Virgo Gravitational-Wave Detectors
Aasi, J.; Abadie, J.; Abbott, B.P.; Abbott, R.; Abbott, T.; Abernathy, M.R.; Accadia, T.; Adams, C.; Adams, T.; Adhikari, R.X.; Affeldt, C.; Agathos, M.; Aggarwal, N.; Aguiar, O.D.; Ajith, P.; Allen, B.; Allocca, A.; Ceron, E.A.; Amariutei, D.; Anderson, S.B.; Blackburn, L.; Camp, J.B.; Gehrels, N.; Graff, P.B.; Kanner, J.B.
2014-01-01
Cosmic strings can give rise to a large variety of interesting astrophysical phenomena. Among them, powerful bursts of gravitational waves (GWs) produced by cusps are a promising observational signature. In this Letter we present a search for GWs from cosmic string cusps in data collected by the LIGO and Virgo gravitational wave detectors between 2005 and 2010, with over 625 days of live time. We find no evidence of GW signals from cosmic strings. From this result, we derive new constraints on cosmic string parameters, which complement and improve existing limits from previous searches for a stochastic background of GWs from cosmic microwave background measurements and pulsar timing data. In particular, if the size of loops is given by the gravitational backreaction scale, we place upper limits on the string tension (Newton's Constant x mass per unit length) below 10(exp -8) in some regions of the cosmic string parameter space.
Supermassive screwed cosmic string in dilaton gravity
Energy Technology Data Exchange (ETDEWEB)
Bezerra, V B [Departamento de Fisica, Universidade Federal da ParaIba, 58059-970, Joao Pessoa, PB (Brazil); Ferreira, Cristine N [Nucleo de Fisica, Centro Federal de Educacao Tecnologica de Campos, Rua Dr Siqueira, 273-Parque Dom Bosco, 28030-130, Campos dos Goytacazes, RJ (Brazil); Cuesta, H J Mosquera [Instituto de Cosmologia, Relatividade e AstrofIsica (ICRA-BR), Centro Brasileiro de Pesquisas Fisicas, Rua Dr Xavier Sigaud 150, Urca 22290-180, Rio de Janeiro, RJ (Brazil)
2006-06-21
The early universe might have undergone phase transitions at energy scales much higher than the one corresponding to the grand unified theories (GUT) scales. At these higher energy scales, the transition at which gravity separated from all other interactions, the so-called Planck era, more massive strings called supermassive cosmic strings could have been produced, with energy of about 10{sup 19} GeV. The dynamics of strings formed with this energy scale cannot be described by means of the weak-field approximation, as in the standard procedure for ordinary GUT cosmic strings. As suggested by string theories, at this extreme energy, gravity may be transmitted by some kind of scalar field (usually called the dilaton) in addition to the tensor field of Einstein's theory of gravity. It is then permissible to tackle the issue regarding the dynamics of supermassive cosmic strings within this framework. With this aim, we obtain the gravitational field of a supermassive screwed cosmic string in a scalar-tensor theory of gravity. We show that for the supermassive configuration, exact solutions of scalar-tensor screwed cosmic strings can be found in connection with the Bogomol'nyi limit. We show that the generalization of Bogomol'nyi arguments to the Brans-Dicke theory is possible when torsion is present and we obtain an exact solution in this supermassive regime, with the dilaton solution obtained by consistency with internal constraints.
Dynamical simulation of non-abelian cosmic strings
McGraw, P
1996-01-01
We describe a method for simulating the dynamics of an S_3 cosmic string network. We use a lattice Monte Carlo to generate initial conditions for the network, which subsequently is allowed to relax continuously according to a simplified model of string dynamics. The dynamics incorporates some novel features which, to our knowledge, have not been studied in previous numerical simulations: The existence of two types of string which may have different tensions, and the possibility that two non-commuting strings may intersect. Simulation of the non-commuting fluxes presents a computational challenge as it requires a rather complex gauge-fixing procedure. The flux definitions change as strings change their positions and orientations relative to each other and must be carefully updated as the network evolves. The method is described here in some detail, with results to be presented elsewhere.
Evolution of a non-Abelian cosmic string network
Energy Technology Data Exchange (ETDEWEB)
McGraw, P. [California Institute of Technology, Pasadena, California 91125 (United States)]|[Institute of Field Physics, Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27599 (United States)
1998-03-01
We describe a numerical simulation of the evolution of an S{sub 3} cosmic string network which takes fully into account the noncommutative nature of the cosmic string fluxes and the topological obstructions which hinder strings from moving past each other or intercommuting. The influence of initial conditions, string tensions, and other parameters on the network{close_quote}s evolution is explored. Contrary to some previous suggestions, we find no strong evidence of the {open_quotes}freezing{close_quotes} required for a string-dominated cosmological scenario. Instead, the results in a broad range of regimes are consistent with the familiar scaling law, i.e., a constant number of strings per horizon volume. The size of this number, however, can vary quite a bit, as can other overall features. There is a surprisingly strong dependence on the statistical properties of the initial conditions. We also observe a rich variety of interesting new structures, such as light string webs stretched between heavier strings, which are not seen in Abelian networks. {copyright} {ital 1998} {ital The American Physical Society}
Statistics of Peculiar Velocities from Cosmic Strings
Moessner, R.
1995-01-01
We calculate the probability distribution of a single component of peculiar velocities due to cosmic strings, smoothed over regions with a radius of several $h^{-1}$ Mpc. The probability distribution is shown to be Gaussian to good accuracy, in agreement with the distribution of peculiar velocities deduced from the 1.9 Jy IRAS redshift survey. Using the normalization of parameters of the cosmic string model from CMB measurements, we show that the rms values for peculiar velocities inferred fr...
Students' difficulties with tension in massless strings
Flores-García, S.; Alfaro-Avena, L. L.; Chávez-Pierce, J. E.; Luna-González, J.; González-Quezada, M. D.
2010-12-01
Many students enrolled in introductory mechanics courses have difficulties with understanding the concept of static equilibrium. Some of these difficulties are related to the concept of force in the context of tension in massless strings. We identify three kinds of misconceptions: Students' beliefs that the angle of the string and proximity to the object are related to the tension. Students also use incorrect compensation arguments to reason about situations where both the angle and proximity change simultaneously. These difficulties were identified during investigations conducted in laboratory and lecture sessions at three universities in the United States and Mexico.
Cosmic R-string in thermal history
Energy Technology Data Exchange (ETDEWEB)
Kamada, Kohei [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Kobayashi, Tatsuo [Kyoto Univ. (Japan). Dept. of Physics; Ohashi, Keisuke [Osaka City Univ. (Japan). Dept. of Mathematics and Physics; Ookouchi, Yutaka [Kyoto Univ. (Japan). Dept. of Physics; Kyoto Univ. (Japan). The Hakubi Center for Advanced Research
2013-03-15
We study stabilization of an unstable cosmic string associated with spontaneously broken U(1){sub R} symmetry, which otherwise causes a dangerous roll-over process. We demonstrate that in a gauge mediation model, messengers can receive enough corrections from the thermal plasma of the supersymmetric standard model particles to stabilize the unstable modes of the string.
Cosmic Strings Stabilized by Quantum Fluctuations
Weigel, H.
2017-03-01
Fermion quantum corrections to the energy of cosmic strings are computed. A number of rather technical tools are needed to formulate this correction, and isospin and gauge invariance are employed to verify consistency of these tools. These corrections must also be included when computing the energy of strings that are charged by populating fermion bound states in its background. It is found that charged strings are dynamically stabilized in theories similar to the standard model of particle physics.
Cosmic Strings Stabilized by Quantum Fluctuations
Weigel, H
2016-01-01
We compute fermion quantum corrections to the energy of cosmic strings. A number of rather technical tools is needed to formulate this correction and we employ isospin and gauge invariance to verify consistency of these tools. These corrections must also be included when computing the energy of strings that are charged by populating fermion bound states in its background. We find that charged strings are dynamically stabilized in theories similar to the standard model of particle physics.
New CMB constraints for Abelian Higgs cosmic strings
Lizarraga, Joanes; Daverio, David; Hindmarsh, Mark; Kunz, Martin
2016-01-01
We present cosmic microwave background (CMB) power spectra from recent numerical simulations of cosmic strings in the Abelian Higgs model and compare them to CMB power spectra measured by Planck. We obtain revised constraints on the cosmic string tension parameter $G\\mu$. For example, in the $\\Lambda$CDM model with the addition of strings and no primordial tensor perturbations, we find $G\\mu < 2.0 \\times 10^{-7}$ at 95% confidence, about 20% lower than the value obtained from previous simulations, which had 1/64 of the spatial volume. We investigate the source of the difference, showing that the main cause is an improved treatment of the string evolution across the radiation-matter transition. The increased computational volume also makes possible to simulate fully the physical equations of motion, in which the string cores shrink in comoving coordinates. This, and the larger dynamic range, changes the amplitude of the power spectra by only about 10%, demonstrating that field theory simulations of cosmic s...
Wave diffraction by a cosmic string
Fernández-Núñez, Isabel
2016-01-01
We show that if a cosmic string exists, it may be identified through characteristic diffraction pattern in the energy spectrum of the observed signal. In particular, if the string is on the line of sight, the wave field is shown to fit the Cornu spiral. We suggest a simple procedure, based on Keller's geometrical theory of diffraction, which allows to explain wave effects in conical spacetime of a cosmic string in terms of interference of four characteristic rays. Our results are supposed to be valid for scalar massless waves, including gravitational waves, electromagnetic waves, or even sound in case of condensed matter systems with analogous topological defects.
Wave diffraction by a cosmic string
Fernández-Núñez, Isabel; Bulashenko, Oleg
2016-08-01
We show that if a cosmic string exists, it may be identified through characteristic diffraction pattern in the energy spectrum of the observed signal. In particular, if the string is on the line of sight, the wave field is shown to fit the Cornu spiral. We suggest a simple procedure, based on Keller's geometrical theory of diffraction, which allows to explain wave effects in conical spacetime of a cosmic string in terms of interference of four characteristic rays. Our results are supposed to be valid for scalar massless waves, including gravitational waves, electromagnetic waves, or even sound in case of condensed matter systems with analogous topological defects.
Cosmic Acceleration and the String Coupling
Ellis, Jonathan Richard; Nanopoulos, Dimitri V; Ellis, John
2005-01-01
In the context of a cosmological string model describing the propagation of strings in a time-dependent Robertson-Walker background space-time, we show that the asymptotic acceleration of the Universe can be identified with the square of the string coupling. This allows for a direct measurement of the ten-dimensional string coupling using cosmological data. We conjecture that this is a generic feature of a class of non-critical string models that approach asymptotically a conformal (critical) sigma model whose target space is a four-dimensional space-time with a dilaton background that is linear in sigma-model time. The relation between the cosmic acceleration and the string coupling does not apply in critical strings with constant dilaton fields in four dimensions.
Planck 2013 results. XXV. Searches for cosmic strings and other topological defects
DEFF Research Database (Denmark)
Planck Collaboration,; Ade, P. A. R.; Aghanim, N.
2013-01-01
-Goto cosmic strings, as well as field theory strings for which radiative effects are important, thus spanning the range of theoretical uncertainty in strings models. We have added the angular power spectrum from strings to that for a simple adiabatic model, with the extra fraction defined as $f_{10......Planck data have been used to provide stringent new constraints on cosmic strings and other defects. We describe forecasts of the CMB power spectrum induced by cosmic strings, calculating these from network models and simulations using line-of-sight Boltzmann solvers. We have studied Nambu......}$ at multipole $\\ell=10$. This parameter has been added to the standard six parameter fit using COSMOMC with flat priors. For the Nambu-Goto string model, we have obtained a constraint on the string tension of $G\\mu/c^2
Wave diffraction by a cosmic string
Energy Technology Data Exchange (ETDEWEB)
Fernández-Núñez, Isabel [Departament de Física Quàntica i Astrofísica, Facultat de Física, Universitat de Barcelona, Martí i Franquès 1, E-08028 Barcelona (Spain); Institut de Ciències del Cosmos (ICCUB), Facultat de Física, Universitat de Barcelona, Martí i Franquès 1, E-08028 Barcelona (Spain); Bulashenko, Oleg, E-mail: oleg.bulashenko@ub.edu [Departament de Física Quàntica i Astrofísica, Facultat de Física, Universitat de Barcelona, Martí i Franquès 1, E-08028 Barcelona (Spain)
2016-08-26
We show that if a cosmic string exists, it may be identified through characteristic diffraction pattern in the energy spectrum of the observed signal. In particular, if the string is on the line of sight, the wave field is shown to fit the Cornu spiral. We suggest a simple procedure, based on Keller's geometrical theory of diffraction, which allows to explain wave effects in conical spacetime of a cosmic string in terms of interference of four characteristic rays. Our results are supposed to be valid for scalar massless waves, including gravitational waves, electromagnetic waves, or even sound in case of condensed matter systems with analogous topological defects. - Highlights: • Gravitational waves could help us to reveal cosmic strings – topological defects of early Universe. • Wave diffraction in conical spacetime of a cosmic string is solved analytically. • The Cornu spiral is shown to appear when the string is on the line of sight. • For a string located within our galaxy, the highest amplification would occur at a frequency range of LIGO detector.
Remarks on Cosmic Strings and Quantum Gravity
Anandan, Jeeva S
1999-01-01
A quantum equivalence principle is formulated by means of a gravitational phase operator which is an element of the Poincare group. This is applied to the spinning cosmic string which suggests that it may, but not necessarily, contain gravitational torsion. A new exact solution of the Einstein- Cartan-Sciama-Kibble equations for the gravitational field with torsion is obtained everywhere for a cosmic string with uniform energy density, spin density and flux. The quantization condition for fluxoid due to London and DeWitt is generalized to include the spin flux. A novel effect due to the quantized gravitational field of the cosmic string on the wave function of a particle outside the string is used to show that spacetime points are not meaningful in quantum gravity.
Searching for Cosmic Strings in CMB Anisotropy Maps using Wavelets and Curvelets
Hergt, Lukas; Brandenberger, Robert; Kacprzak, Tomasz; Refregier, Alexandre
2016-01-01
We use wavelet and curvelet transforms to extract signals of cosmic strings from cosmic microwave background (CMB) temperature anisotropy maps, and to study the limits on the cosmic string tension which various ongoing CMB temperature anisotropy experiments will be able to achieve. We construct sky maps with size and angular resolution corresponding to various experiments. These maps contain the signals of a scaling solution of long string segments with a given string tension $G \\mu$, the contribution of the dominant Gaussian primordial cosmological fluctuations, and pixel by pixel white noise with an amplitude corresponding to the instrumental noise of the various experiments. In the case that we include white noise, we find that the curvelets are more powerful than wavelets. For maps with Planck specification, we obtain bounds on the string tension comparable to what was obtained by the Planck collaboration. Experiments with better angular resolution such as the South Pole Telescope third generation (SPT-3G...
The thin string limit of Cosmic Strings coupled to gravity
Sjodin, K R P
2001-01-01
The thin string limit of Cosmic Strings is investigated using a description in terms of Colombeau's theory of nonlinear generalised functions. It is shown that in this description the energy-momentum tensor has a well defined thin string limit. Furthermore the deficit angle of the conical spacetime that one obtains in the limit may be given in terms of the distributional energy-momentum tensor. On the other hand it is only in the special case of critical coupling that the energy-momentum tensor defined in the Colombeau algebra is associated to a conventional distribution. The asymptotics of both the matter and gravitational field are investigated in the thin string limit and it is shown how this leads to the `conical approximation' which is valid outside the inner core of the string.
Cosmic D-strings as Axionic D-term Strings
Blanco-Pillado, J J; Redi, M; Blanco-Pillado, Jose J.; Dvali, Gia; Redi, Michele
2005-01-01
In this work we derive non-singular BPS string solutions from an action that captures the essential features of a D-brane-anti-D-brane system compactified to four dimensions. The model we consider is a supersymmetric abelian Higgs model with a D-term potential coupled to an axion-dilaton multiplet. The strings in question are axionic D-term strings which we identify with the D-strings of type II string theory. In this picture the Higgs field represents the open string tachyon of the D-Dbar pair and the axion is dual to a Ramond Ramond form. The crucial term allowing the existence of non-singular BPS strings is the Fayet-Iliopoulos term, which is related to the tensions of the D-string and of the parent branes. Despite the presence of the axion, the strings are BPS and carry finite energy, due to the fact that the space gets very slowly decompactified away from the core, screening the long range axion field (or equivalently the theory approaches an infinitely weak 4D coupling). Within our 4D effective action w...
Closed timelike geodesics in a gas of cosmic strings
Grøn, Ø; Gron, Oyvind; Johannesen, Steinar
2007-01-01
We find a class of solutions of Einstein's field equations representing spacetime outside a spinning cosmic string surrounded by a gas of non-spinning cosmic strings, and show that there exist closed timelike geodesics in this spacetime.
Tangled up in Spinning Cosmic Strings
Slagter, Reinoud Jan
2015-01-01
It is known for a long time that the space time around a spinning cylindrical symmetric compact object such as the cosmic string, show un-physical behavior, i.e., they would possess closed time like curves (CTC). This controversy with Hawking's chronology protection conjecture is unpleasant but can be understood if one solves the coupled scalar-gauge field equations and the matching conditions at the core of the string. A new interior numerical solution is found of a self gravitating spinning cosmic string with a U(1) scalar gauge field and the matching on the exterior space time is revealed. It is conjectured that the experience of CTC's close to the core of the string is exceedingly unlikely. It occurs when the causality breaking boundary, $r_\\mu$, approaches the boundary of the cosmic string, $r_{CS}$. Then the metric components become singular and the proper time on the core of the string stops flowing. Further, we expect that the angular momentum $J$ will decrease due to the emission of gravitational ene...
Thin shells joining local cosmic string geometries
Energy Technology Data Exchange (ETDEWEB)
Eiroa, Ernesto F. [Universidad de Buenos Aires, Ciudad Universitaria Pabellon I, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina); Instituto de Astronomia y Fisica del Espacio (IAFE, CONICET-UBA), Buenos Aires (Argentina); Rubin de Celis, Emilio; Simeone, Claudio [Universidad de Buenos Aires, Ciudad Universitaria Pabellon I, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina); Ciudad Universitaria Pabellon I, IFIBA-CONICET, Buenos Aires (Argentina)
2016-10-15
In this article we present a theoretical construction of spacetimes with a thin shell that joins two different local cosmic string geometries. We study two types of global manifolds, one representing spacetimes with a thin shell surrounding a cosmic string or an empty region with Minkowski metric, and the other corresponding to wormholes which are not symmetric across the throat located at the shell. We analyze the stability of the static configurations under perturbations preserving the cylindrical symmetry. For both types of geometries we find that the static configurations can be stable for suitable values of the parameters. (orig.)
Current discontinuities on superconducting cosmic strings
Energy Technology Data Exchange (ETDEWEB)
Troyan, E., E-mail: et@iaaru.astronautiko.org; Vlasov, Yu. V. [Moscow Institute of Physics and Technology (Russian Federation)
2011-07-15
The propagation of current perturbations on superconducting cosmic strings is considered. The conditions for the existence of discontinuities similar to shock waves have been found. The formulas relating the string parameters and the discontinuity propagation speed are derived. The current growth law in a shock wave is deduced. The propagation speeds of shock waves with arbitrary amplitudes are calculated. The reason why there are no shock waves in the case of time-like currents (in the 'electric' regime) is explained; this is attributable to the shock wave instability with respect to perturbations of the string world sheet.
Inflation and cosmic (super)strings: implications of their intimate relation revisited
Sakellariadou, Mairi
2013-01-01
We briefly discuss constraints on supersymmetric hybrid inflation models and examine the consistency of brane inflation models. We then address the implications for inflationary scenarios resulting from the strong constraints on the cosmic (super)string tension imposed from the most recent cosmic microwave background temperature anisotropies data.
Cosmic R-string, R-tube and vacuum instability
Energy Technology Data Exchange (ETDEWEB)
Eto, Minoru [Yamagata Univ. (Japan). Dept. of Physics; Hamada, Yuta; Kobayashi, Tatsuo [Kyoto Univ. (Japan). Dept. of Physics; Kamada, Kohei [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Ohashi, Keisuke [Osaka City Univ. (Japan). Dept. of Mathematics and Physics; Ookouchi, Yutaka [Kyoto Univ. (Japan). Dept. of Physics; Kyoto Univ. (Japan). The Hakubi Center for Advanced Research
2012-11-15
We show that a cosmic string associated with spontaneous U(1) R symmetry breaking gives a constraint for supersymmetric model building. In some models, the string can be viewed as a tube-like domain wall with a winding number interpolating a false vacuum and a true vacuum. Such string causes inhomogeneous decay of the false vacuum to the true vacuum via rapid expansion of the radius of the tube and hence its formation would be inconsistent with the present Universe. However, we demonstrate that there exist metastable solutions which do not expand rapidly. Furthermore, when the true vacua are degenerate, the structure inside the tube becomes involved. As an example, we show a ''bamboo''-like solution, which suggests a possibility observing an information of true vacua from outside of the tube through the shape and the tension of the tube.
Disruption of Cosmic String Wakes by Gaussian Fluctuations
Brandenberger, Robert H; da Cunha, Disrael C N
2015-01-01
We study the stability of cosmic string wakes against the disruption by the dominant Gaussian fluctuations which are present in cosmological models. We find that for a string tension given by $G \\mu = 10^{-7}$ wakes remain locally stable until a redshift of $z = 6$, and for a value of $G \\mu = 10^{-14}$ they are stable beyond a redshift of $z = 20$. We study a global stability criterion which shows that wakes created by strings at times after $t_{eq}$ are identifiable up to the present time, independent of the value of $G \\mu$. Taking into account our criteria it is possible to develop strategies to search for the distinctive position space signals in cosmological maps which are induced by wakes.
Cosmic R-string, R-tube and Vacuum Instability
Eto, Minoru; Kamada, Kohei; Kobayashi, Tatsuo; Ohashi, Keisuke; Ookouchi, Yutaka
2012-01-01
We show that a cosmic string associated with spontaneous $U(1)_R$ symmetry breaking gives a constraint for supersymmetric model building. In some models, the string can be viewed as a tube-like domain wall with a winding number interpolating a false vacuum and a true vacuum. Such string causes inhomogeneous decay of the false vacuum to the true vacuum via rapid expansion of the radius of the tube and hence its formation would be inconsistent with the present Universe. However, we demonstrate that there exist metastable solutions which do not expand rapidly. Furthermore, when the true vacua are degenerate, the structure inside the tube becomes involved. As an example, we show a "bamboo"-like solution, which suggests a possibility observing an information of true vacua from outside of the tube through the shape and the tension of the tube.
Cosmological constant influence on cosmic string spacetime
Abbassi, Amir H; 10.1103/physRevD.67.103504
2008-01-01
We investigate the line element of spacetime around a linear cosmic string in the presence of a cosmological constant. We obtain the metric and argue that it should be discarded because of asymptotic considerations. Then a time dependent and consistent form of the metric is obtained and its properties are discussed.
Cosmic strings in axionic-dilatonic gravity
Santos, Caroline
2001-05-01
We first consider local cosmic strings in dilaton-axion gravity and show that they are singular solutions. Then we take a supermassive Higgs limit and present expressions for the fields at far distances from the core by applying a Pecci-Quinn and a duality transformation to the dilatonic Melvin's magnetic universe.
Cosmic strings in axionic-dilatonic gravity
Santos, C
2001-01-01
We first consider local cosmic strings in dilaton-axion gravity and show that they are singular solutions. Then we take a supermassive Higgs limit and present expressions for the fields at far distances from the core by applying a Pecci-Quinn and a duality transformation to the dilatonic Melvin's magnetic universe.
Non static cosmic strings in Lyra geometry
Rahaman, Farook
2007-01-01
The gravitational field of both local and global non static cosmic strings in the context of Lyra geometry are investigated. Local strings are characterized by having an energy momentum tensor whose only non null components are $T_{tt} = T_{zz}$ . As linearized Einstein equations are formally analogous to the Maxwell equations, the exterior solution does not depend on the radial distribution of the source and hence a Dirac d function was used to approximate the radial distribution of the energy momentum tensor for a local cosmic string along the z-axis: $T_{ab} = \\delta(x) \\delta(y)diag (\\sigma, 0, 0, \\sigma) $, $\\sigma $being the energy density of the string [A.Vilenkin. Phys.Rep.(1985)121,263]. For a global string, the energy momentum tensor components are calculated from the action density for a complex scalar field y along with a Maxican hat potential. The gravitational field of the global string is shown to be attractive in nature.
Ray trajectories for a spinning cosmic string and a manifestation of self-cloaking
Energy Technology Data Exchange (ETDEWEB)
Anderson, Tom H., E-mail: T.H.Anderson@sms.ed.ac.u [School of Mathematics and Maxwell Institute for Mathematical Sciences, University of Edinburgh, Edinburgh EH9 3JZ (United Kingdom); Mackay, Tom G., E-mail: T.Mackay@ed.ac.u [School of Mathematics and Maxwell Institute for Mathematical Sciences, University of Edinburgh, Edinburgh EH9 3JZ (United Kingdom); NanoMM - Nanoengineered Metamaterials Group, Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802-6812 (United States); Lakhtakia, Akhlesh, E-mail: akhlesh@psu.ed [NanoMM - Nanoengineered Metamaterials Group, Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802-6812 (United States)
2010-10-18
A study of ray trajectories was undertaken for the Tamm medium which represents the spacetime of a zero-tension cosmic spinning string, under the geometric-optics approximation. Our numerical studies revealed that: (i) rays never cross the string's boundary; (ii) the Tamm medium supports evanescent waves in regions of phase space that correspond to those regions of the string's spacetime which could support closed timelike curves; and (iii) a spinning string can be slightly visible while a non-spinning string is almost perfectly invisible.
Cosmic string formation by flux trapping
Blanco-Pillado, Jose J; Vilenkin, Alexander
2007-01-01
We study the formation of cosmic strings by confining a stochastic magnetic field into flux tubes in a numerical simulation. We use overdamped evolution in a potential that is minimized when the flux through each face in the simulation lattice is a multiple of the fundamental flux quantum. When the typical number of flux quanta through a correlation-length-sized region is initially about 1, we find a string network similar to that generated by the Kibble-Zurek mechanism. With larger initial flux, the loop distribution and the Brownian shape of the infinite strings remain unchanged, but the fraction of length in infinite strings is increased. A 2D slice of the network exhibits bundles of strings pointing in the same direction, as in earlier 2D simulations. We find, however, that strings belonging to the same bundle do not stay together in 3D for much longer than the correlation length. As the initial flux per correlation length is decreased, there is a point at which infinite strings disappear, as in the Haged...
Scattering off an SO(10) cosmic string
Davis, A C; Davis, A C; Jeannerot, R
1995-01-01
The scattering of fermions from the abelian string arising during the phase transition SO(10) \\rightarrow SU(5) \\times Z_2 induced by the Higgs in the 126 representation is studied. Elastic cross-sections and baryon number violating cross-sections due to the coupling to gauge fields in the core of the string are computed by both a first quantised method and a perturbative second quantised method. The elastic cross-sections are found to be Aharonov-Bohm type. However, there is a marked asymmetry between the scattering cross-sections for left and right handed fields. The catalysis cross-sections are small, depending on the grand unified scale. If cosmic strings were observed our results could help tie down the underlying gauge group.
Cosmic String Created from Vacuum Fluctuaions
Popov, Arkadii
1998-01-01
The possibility of the cosmic string creation by the vacuum fluctuations of quantum fields in the self-consistent semiclassical theory of gravity is discussed. We use the approximate method for obtaining vacuum expectation value of the renormalized stress-energy tensor of conformally invariant quantum fields in static cylindrically symmetric spacetimes. We have obtained the particular solutions of Einstein equations for the different boundary conditions at the cylinder symmetry axis.
Cosmic strings and baryon decay catalysis
Gregory, Ruth; Perkins, W. B.; Davis, A.-C.; Brandenberger, R. H.
1989-01-01
Cosmic strings, like monopoles, can catalyze proton decay. For integer charged fermions, the cross section for catalysis is not amplified, unlike in the case of monopoles. The catalysis processes are reviewed both in the free quark and skyrmion pictures and the implications for baryogenesis are discussed. A computation of the cross section for monopole catalyzed skyrmion decay is presented using classical physics. Also discussed are some effects which can screen catalysis processes.
Cosmological constant influence on cosmic string spacetime
Abbassi, Amir H.; Abbassi, Amir M.; Razmi, H.
2003-05-01
We investigate the line element of spacetime around a linear cosmic string in the presence of a cosmological constant. We obtain a static form of the metric and argue that it should be discarded because of asymptotic considerations. Then a time dependent and consistent form of the metric is obtained and its properties are discussed. This may be considered an example of a preferred frame in physics.
Cosmic strings and baryon decay catalysis
Energy Technology Data Exchange (ETDEWEB)
Gregory, R.; Perkins, W.B.; Davis, A.C.; Brandenberger, R.H. (Fermi National Accelerator Lab., Batavia, IL (USA); Cambridge Univ. (UK); Brown Univ., Providence, RI (USA). Dept. of Physics)
1989-09-01
Cosmic strings, like monopoles, can catalyze proton decay. For integer charged fermions, the cross section for catalysis is not amplified, unlike in the case of monopoles. We review the catalysis processes both in the free quark and skyrmion pictures and discuss the implications for baryogenesis. We present a computation of the cross section for monopole catalyzed skyrmion decay using classical physics. We also discuss some effects which can screen catalysis processes. 32 refs., 1 fig.
Cosmic strings and baryon decay catalysis
Energy Technology Data Exchange (ETDEWEB)
Gregory, R.; Perkins, W.B.; Davis, A.C.; Brandenberger, R.H. (Fermi National Accelerator Lab., Batavia, IL (USA); Cambridge Univ. (UK); Brown Univ., Providence, RI (USA). Dept. of Physics)
1989-09-01
Cosmic strings, like monopoles, can catalyze proton decay. For integer charged fermions, the cross section for catalysis is not amplified, unlike in the case of monopoles. We review the catalysis processes both in the free quark and skyrmion pictures and discuss the implications for baryogenesis. We present a computation of the cross section for monopole catalyzed skyrmion decay using classical physics. We also discuss some effects which can screen catalysis processes. 32 refs., 1 fig.
An Extension of Multiple Cosmic String Solution A Proposal
Hortacsu, M
1996-01-01
We extend the work done for cosmic strings and show that for a more general class of locally flat metrics the one loop calculation do not introduce any new divergences to the VEV of the energy of a scalar particle. We explicitly perform the calculation for the configuration where we have one cosmic string in the presence of a dipole made out of cosmic strings.
Warped Angle-deficit of a 5 Dimensional Cosmic String
Slagter, Reinoud Jan; Masselink, Derk
2011-01-01
We present a cosmic string on a warped five dimensional space time in Einstein-Yang-Mills theory. Four-dimensional cosmic strings show some serious problems concerning the mechanism of string smoothing related to the string mass per unit length, $G\\mu \\approx 10^{-6}$. A warped cosmic string could overcome this problem and also the superstring requirement that $G\\mu$ must be of order 1, which is far above observational bounds. Also the absence of observational evidence of axially symmetric le...
First LIGO search for gravitational wave bursts from cosmic (super)strings
Abbott, B. P.; Abbott, R.; Adhikari, R.; Ajith, P.; Allen, B.; Allen, G.; Amin, R. S.; Anderson, S. B.; Anderson, W. G.; Arain, M. A.; Araya, M.; Armandula, H.; Armor, P.; Aso, Y.; Aston, S.; Aufmuth, P.; Aulbert, C.; Babak, S.; Baker, P.; Ballmer, S.; Barker, C.; Barker, D.; Barr, B.; Barriga, P.; Barsotti, L.; Barton, M. A.; Bartos, I.; Bassiri, R.; Bastarrika, M.; Behnke, B.; Benacquista, M.; Betzwieser, J.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley, G.; Biswas, R.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.; Bodiya, T. P.; Bogue, L.; Bork, R.; Boschi, V.; Bose, S.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Bridges, D. O.; Brinkmann, M.; Brooks, A. F.; Brown, D. A.; Brummit, A.; Brunet, G.; Bullington, A.; Buonanno, A.; Burmeister, O.; Byer, R. L.; Cadonati, L.; Camp, J. B.; Cannizzo, J.; Cannon, K. C.; Cao, J.; Cardenas, L.; Caride, S.; Castaldi, G.; Caudill, S.; Cavaglià, M.; Cepeda, C.; Chalermsongsak, T.; Chalkley, E.; Charlton, P.; Chatterji, S.; Chelkowski, S.; Chen, Y.; Christensen, N.; Chung, C. T. Y.; Clark, D.; Clark, J.; Clayton, J. H.; Cokelaer, T.; Colacino, C. N.; Conte, R.; Cook, D.; Corbitt, T. R. C.; Cornish, N.; Coward, D.; Coyne, D. C.; Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Culter, R. M.; Cumming, A.; Cunningham, L.; Danilishin, S. L.; Danzmann, K.; Daudert, B.; Davies, G.; Daw, E. J.; Debra, D.; Degallaix, J.; Dergachev, V.; Desai, S.; Desalvo, R.; Dhurandhar, S.; Díaz, M.; Dietz, A.; Donovan, F.; Dooley, K. L.; Doomes, E. E.; Drever, R. W. P.; Dueck, J.; Duke, I.; Dumas, J.-C.; Dwyer, J. G.; Echols, C.; Edgar, M.; Effler, A.; Ehrens, P.; Espinoza, E.; Etzel, T.; Evans, M.; Evans, T.; Fairhurst, S.; Faltas, Y.; Fan, Y.; Fazi, D.; Fehrmann, H.; Finn, L. S.; Flasch, K.; Foley, S.; Forrest, C.; Fotopoulos, N.; Franzen, A.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T.; Fritschel, P.; Frolov, V. V.; Fyffe, M.; Galdi, V.; Garofoli, J. A.; Gholami, I.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Goda, K.; Goetz, E.; Goggin, L. M.; González, G.; Gorodetsky, M. L.; Goßler, S.; Gouaty, R.; Grant, A.; Gras, S.; Gray, C.; Gray, M.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Grimaldi, F.; Grosso, R.; Grote, H.; Grunewald, S.; Guenther, M.; Gustafson, E. K.; Gustafson, R.; Hage, B.; Hallam, J. M.; Hammer, D.; Hammond, G. D.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Haughian, K.; Hayama, K.; Heefner, J.; Heng, I. S.; Heptonstall, A.; Hewitson, M.; Hild, S.; Hirose, E.; Hoak, D.; Hodge, K. A.; Holt, K.; Hosken, D. J.; Hough, J.; Hoyland, D.; Hughey, B.; Huttner, S. H.; Ingram, D. R.; Isogai, T.; Ito, M.; Ivanov, A.; Johnson, B.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kanner, J.; Kasprzyk, D.; Katsavounidis, E.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Keppel, D. G.; Khalaidovski, A.; Khalili, F. Y.; Khan, R.; Khazanov, E.; King, P.; Kissel, J. S.; Klimenko, S.; Kokeyama, K.; Kondrashov, V.; Kopparapu, R.; Koranda, S.; Kozak, D.; Krishnan, B.; Kumar, R.; Kwee, P.; Lam, P. K.; Landry, M.; Lantz, B.; Lazzarini, A.; Lei, H.; Lei, M.; Leindecker, N.; Leonor, I.; Li, C.; Lin, H.; Lindquist, P. E.; Littenberg, T. B.; Lockerbie, N. A.; Lodhia, D.; Longo, M.; Lormand, M.; Lu, P.; Lubiński, M.; Lucianetti, A.; Lück, H.; Machenschalk, B.; Macinnis, M.; Mageswaran, M.; Mailand, K.; Mandel, I.; Mandic, V.; Márka, S.; Márka, Z.; Markosyan, A.; Markowitz, J.; Maros, E.; Martin, I. W.; Martin, R. M.; Marx, J. N.; Mason, K.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McHugh, M.; McIntyre, G.; McKechan, D. J. A.; McKenzie, K.; Mehmet, M.; Melatos, A.; Melissinos, A. C.; Menéndez, D. F.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miller, J.; Minelli, J.; Mino, Y.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Miyakawa, O.; Moe, B.; Mohanty, S. D.; Mohapatra, S. R. P.; Moreno, G.; Morioka, T.; Mors, K.; Mossavi, K.; Mowlowry, C.; Mueller, G.; Müller-Ebhardt, H.; Muhammad, D.; Mukherjee, S.; Mukhopadhyay, H.; Mullavey, A.; Munch, J.; Murray, P. G.; Myers, E.; Myers, J.; Nash, T.; Nelson, J.; Newton, G.; Nishizawa, A.; Numata, K.; O'Dell, J.; O'Reilly, B.; O'Shaughnessy, R.; Ochsner, E.; Ogin, G. H.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pan, Y.; Pankow, C.; Papa, M. A.; Parameshwaraiah, V.; Patel, P.; Pedraza, M.; Penn, S.; Perreca, A.; Pierro, V.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Plissi, M. V.; Postiglione, F.; Principe, M.; Prix, R.; Prokhorov, L.; Punken, O.; Quetschke, V.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raics, Z.; Rainer, N.; Rakhmanov, M.; Raymond, V.; Reed, C. M.; Reed, T.; Rehbein, H.; Reid, S.
2009-09-01
We report on a matched-filter search for gravitational wave bursts from cosmic string cusps using LIGO data from the fourth science run (S4) which took place in February and March 2005. No gravitational waves were detected in 14.9 days of data from times when all three LIGO detectors were operating. We interpret the result in terms of a frequentist upper limit on the rate of gravitational wave bursts and use the limits on the rate to constrain the parameter space (string tension, reconnection probability, and loop sizes) of cosmic string models. Many grand unified theory-scale models (with string tension Gμ/c2≈10-6) can be ruled out at 90% confidence for reconnection probabilities p≤10-3 if loop sizes are set by gravitational back reaction.
Ultrahigh-energy particles from cosmic strings
Energy Technology Data Exchange (ETDEWEB)
Bhattacharjee, P. (Chicago Univ., IL (USA). Astronomy and Astrophysics Center Fermi National Accelerator Lab., Batavia, IL (USA))
1991-02-01
The idea of production of ultrahigh-energy particles in the present universe due to annihilation or collapse of topological defects is discussed. Topological defects, formed in symmetry-breaking phase transitions in the early universe, can survive till today owing to their topological stability. However, under certain circumstances, topological defects may be physically destroyed. When topological defects are destroyed, the energy contained in the defects can be released in the form of massive gauge- and Higgs bosons of the underlying spontaneously broken gauge theory. Subsequent decay of these massive particles can give rise to energetic particles ranging up to an energy on the order of the mass of the original particles released from the defects. This may give us a natural'' mechanism of production of extremely energetic cosmic ray particles in the universe today, without the need for any acceleration mechanism. To illustrate this idea, I describe in detail the calculation of the expected ultrahigh-energy proton spectrum due to a specific process which involves collapse or multiple self-intersections of a class of closed cosmic string loops formed in a phase transition at a grand unification energy scale. I discuss the possibility that some of the highest-energy cosmic ray particles are of this origin. By comparing with the observational results on the ultrahigh-energy cosmic rays, we derive an upper limit to the average fraction of the total energy in all primary'' cosmic string loops that may be released in the form of particles due to collapse or multiple self-intersections of these loops. No nuclei such as {alpha}'s or Fe's are in the spectrum. 43 refs., 3 figs.
Cosmic string with a light massive neutrino
Energy Technology Data Exchange (ETDEWEB)
Albrecht, A.; Stebbins, A. (NASA/Fermilab Astrophysics Center, Fermi National Accelerator Laboratory, Box 500, Batavia, Illinois 60510-0500 (United States))
1992-11-02
We have estimated the power spectra of density fluctuations produced by cosmic strings with neutrino hot dark matter (HDM). Normalizing at 8[ital h][sup [minus]1] Mpc [where [ital h]=[ital H][sub 0]/(100 km/sec Mpc) and [ital H][sub 0] is the Hubble constant] we find that the spectrum has more power on small ([approx lt]10[ital h][sup [minus]2] Mpc) scales than HDM+ inflation, less than cold dark matter (CDM) + inflation, and significantly less than CDM + strings. With HDM, large wakes ([similar to]20[ital h][sup [minus]2] Mpc) give significant contribution to the power on the galaxy scale and may give rise to large sheets of galaxies.
Dark Energy Generated by Warped Cosmic Strings
Slagter, Reinoud Jan
2014-01-01
If we live on the weak brane in a warped 5D bulk spacetime, gravitational waves and brane fluctuations can be generated by a part of the 5D Weyl tensor and carries information of the gravitational field outside the brane. We consider the U(1) self-gravitating scalar-gauge field on the warped spacetime without bulk matter. It turns out that "branons" can be formed dynamically, due to the modified energy-momentum tensor components of the cosmic string. It turns out that the parameter $\\alpha$, i.e., the gauge-to-scalar mass, changes from a value $>1$ to a value $<1$ and the solution approaches a static global string by shedding off wave energy. It is the time-dependent part of the warp factor which triggers this extraordinary behavior.
Gravitating non-Abelian cosmic strings
de Pádua Santos, Antônio; Bezerra de Mello, Eugênio R.
2015-08-01
In this paper, we study regular cosmic string solutions of the non-Abelian Higgs model coupled with gravity. In order to develop this analysis, we constructed a set of coupled non-linear differential equations. Because there is no closed solution for this set of equations, we solve it numerically. The solutions we are interested in asymptote to a flat spacetime with a planar angle deficit. The model under consideration presents two bosonic sectors, besides the non-Abelian gauge field. The two bosonic sectors may present a direct coupling, so we investigate the relevance of this coupling on the system, specifically in the linear energy density of the string and on the planar angle deficit. We also analyze the behaviors of these quantities as a function of the energy scale where the gauge symmetry is spontaneously broken.
Rotation of galaxies as a signature of cosmic strings in weak lensing surveys
Thomas, Daniel B.; Contaldi, Carlo R.; Magueijo, Joao
2009-01-01
Vector perturbations sourced by topological defects can generate rotations in the lensing of background galaxies. This is a potential smoking gun for the existence of defects since rotation generates a curl-like component in the weak lensing signal which is not generated by standard density perturbations at linear order. This rotation signal is calculated as generated by cosmic strings. Future large scale weak lensing surveys should be able to detect this signal even for string tensions an or...
Thin shells joining local cosmic string geometries
Eiroa, Ernesto F; Simeone, Claudio
2016-01-01
In this article we present a theoretical construction of spacetimes with a thin shell that joins two different local cosmic string geometries. We study two types of global manifolds, one representing spacetimes with a standard thin shell and the other corresponding to wormholes which are not symmetric across the throat located at the shell. We analyze the stability of the static configurations under perturbations preserving the cylindrical symmetry. For both types of geometries we find that the static configurations can be stable for suitable values of the parameters.
Superconducting Cosmic String with Propagating Torsion
Ferreira, C N; Garcia de Andrade, L C
2000-01-01
We show that it is possible to construct a consistent model describing a current-carrying cosmic string endowed with torsion. The torsion contribution to the gravitational force and geodesics of a test-particle moving around the SCCS are analyzed. In particular, we point out two interesting astrophysical phenomena in which the higher magnitude force we derived may play a critical role: the dynamics of compact objects orbiting the torsioned SCCS and accretion of matter onto it. The deficit angle associated to the SCCS can be obtained and compared with data from the Cosmic Background Explorer (COBE) satellite. We also derived a value for the torsion contribution to matter density fluctuations in the early Universe.
Towards a metamaterial simulation of a spinning cosmic string
Energy Technology Data Exchange (ETDEWEB)
Mackay, Tom G., E-mail: T.Mackay@ed.ac.u [School of Mathematics and Maxwell Institute for Mathematical Sciences, University of Edinburgh, Edinburgh EH9 3JZ (United Kingdom)] [NanoMM-Nanoengineered Metamaterials Group, Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802-6812 (United States); Lakhtakia, Akhlesh, E-mail: akhlesh@psu.ed [NanoMM-Nanoengineered Metamaterials Group, Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802-6812 (United States)
2010-05-10
The spacetime metric of a spinning cosmic string may be formally represented in flat spacetime by a nonhomogeneous bianisotropic medium. The constitutive parameters of this bianisotropic medium can be established using a noncovariant formalism, thereby paving the way for laboratory simulations of a spinning cosmic string using metamaterial technology.
Cosmic string loop distribution on all length scales and at any redshift
Energy Technology Data Exchange (ETDEWEB)
Lorenz, Larissa; Ringeval, Christophe [Institute of Mathematics and Physics, Centre for Cosmology, Particle Physics and Phenomenology, Louvain University, 2 Chemin du Cyclotron, 1348 Louvain-la-Neuve (Belgium); Sakellariadou, Mairi, E-mail: larissa.lorenz@uclouvain.be, E-mail: christophe.ringeval@uclouvain.be, E-mail: mairi.sakellariadou@kcl.ac.uk [Department of Physics, King' s College, University of London, Strand, London WC2R 2LS (United Kingdom)
2010-10-01
We analytically derive the expected number density distribution of Nambu-Goto cosmic string loops at any redshift soon after the time of string formation to today. Our approach is based on the Polchinski-Rocha model of loop formation from long strings which we adjust to fit numerical simulations and complement by a phenomenological modelling of gravitational backreaction. Cosmological evolution drives the loop distribution towards scaling on all length scales in both the radiation and matter era. Memory of any reasonable initial loop distribution in the radiation era is shown to be erased well before Big Bang Nucleosynthesis. In the matter era, the loop distribution reaches full scaling, up to some residual loops from the radiation era which may be present for extremely low string tension. Finally, the number density of loops below the gravitational cutoff is shown to be scale independent, proportional to a negative power of the string tension and insensitive to the details of the backreaction modelling. As an application, we show that the energy density parameter of loops today cannot exceed 10{sup −5} for currently allowed string tension values, while the loop number density cannot be less than 10{sup −6} per Mpc{sup 3}. Our result should provide a more robust basis for studying the cosmological consequences of cosmic string loops.
The Spatial String Tension and Dimensional Reduction in QCD
Cheng, M; Van der Heide, J; Huebner, K; Karsch, F; Kaczmarek, O; Laermann, E; Liddle, J; Mawhinney, R D; Miao, C; Petreczky, P; Petrov, K; Schmidt, C; Söldner, W; Umeda, T
2008-01-01
We calculate the spatial string tension in (2+1) flavor QCD with physical strange quark mass and almost physical light quark masses using lattices with temporal extent N_tau=4,6 and 8. We compare our results on the spatial string tension with predictions of dimensionally reduced QCD. This suggests that also in the presence of light dynamical quarks dimensional reduction works well down to temperatures 1.5T_c.
Large-N string tension from rectangular Wilson loops
Lohmayer, Robert
2012-01-01
In pure SU(N) gauge theory in four dimensions, we determine the string tension at large N from smeared rectangular Wilson loops on the lattice. We learn how well loops of sizes barely on the strong-coupling side of the large-N transition in their eigenvalue distribution can be described by effective string theory.
Planck 2013 results. XXV. Searches for cosmic strings and other topological defects
Ade, P.A.R.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartlett, J.G.; Bartolo, N.; Battaner, E.; Battye, R.; Benabed, K.; Benoit, A.; Benoit-Levy, A.; Bernard, J.P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J.J.; Bonaldi, A.; Bonavera, L.; Bond, J.R.; Borrill, J.; Bouchet, F.R.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R.C.; Cardoso, J.F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, L.Y.; Chiang, H.C.; Christensen, P.R.; Church, S.; Clements, D.L.; Colombi, S.; Colombo, L.P.L.; Couchot, F.; Coulais, A.; Crill, B.P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R.D.; Davis, R.J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.M.; Desert, F.X.; Diego, J.M.; Dole, H.; Donzelli, S.; Dore, O.; Douspis, M.; Ducout, A.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Ensslin, T.A.; Eriksen, H.K.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-Heraud, Y.; Gonzalez-Nuevo, J.; Gorski, K.M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F.K.; Hanson, D.; Harrison, D.; Henrot-Versille, S.; Hernandez-Monteagudo, C.; Herranz, D.; Hildebrandt, S.R.; Hivon, E.; Hobson, M.; Holmes, W.A.; Hornstrup, A.; Hovest, W.; Huffenberger, K.M.; Jaffe, T.R.; Jaffe, A.H.; Jones, W.C.; Juvela, M.; Keihanen, E.; Keskitalo, R.; Kisner, T.S.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lahteenmaki, A.; Lamarre, J.M.; Lasenby, A.; Laureijs, R.J.; Lawrence, C.R.; Leahy, J.P.; Leonardi, R.; Lesgourgues, J.; Liguori, M.; Lilje, P.B.; Linden-Vornle, M.; Lopez-Caniego, M.; Lubin, P.M.; Macias-Perez, J.F.; Maffei, B.; Maino, D.; Mandolesi, N.; Maris, M.; Marshall, D.J.; Martin, P.G.; Martinez-Gonzalez, E.; Masi, S.; Matarrese, S.; Matthai, F.; Mazzotta, P.; McEwen, J.D.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschenes, M.A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Naselsky, P.; Natoli, P.; Netterfield, C.B.; Norgaard-Nielsen, H.U.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Oxborrow, C.A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Peiris, H.V.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G.W.; Prezeau, G.; Prunet, S.; Puget, J.L.; Rachen, J.P.; Rath, C.; Rebolo, R.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ringeval, C.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M.D.; Shellard, E.P.S.; Spencer, L.D.; Starck, J.L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.S.; Sygnet, J.F.; Tauber, J.A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Varis, J.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L.A.; Wandelt, B.D.; Yvon, D.; Zacchei, A.; Zonca, A.
2014-01-01
Planck data have been used to provide stringent new constraints on cosmic strings and other defects. We describe forecasts of the CMB power spectrum induced by cosmic strings, calculating these from network models and simulations using line-of-sight Boltzmann solvers. We have studied Nambu-Goto cosmic strings, as well as field theory strings for which radiative effects are important, thus spanning the range of theoretical uncertainty in strings models. We have added the angular power spectrum from strings to that for a simple adiabatic model, with the extra fraction defined as $f_{10}$ at multipole $\\ell=10$. This parameter has been added to the standard six parameter fit using COSMOMC with flat priors. For the Nambu-Goto string model, we have obtained a constraint on the string tension of $G\\mu/c^2 < 1.5 x 10^{-7}$ and $f_{10} < 0.015$ at 95% confidence that can be improved to $G\\mu/c^2 < 1.3 x 10^{-7}$ and $f_{10} < 0.010$ on inclusion of high-$\\ell$ CMB data. For the abelian-Higgs field theory ...
B polarization of cosmic microwave background as a tracer of strings
Seljak, U; Seljak, Uros; Slosar, Anze
2006-01-01
String models can produce successful inflationary scenarios in the context of brane collisions and in many of these models cosmic strings may also be produced. In scenarios such as KKLMMT the string contribution is naturally predicted to be well below the inflationary signal for cosmic microwave background (CMB) temperature anisotropies, in agreement with the existing limits. We find that for $B$ type polarization of CMB the situation is reversed and the dominant signal comes from vector modes generated by cosmic strings, which exceeds the gravity wave signal from both inflation and strings. The signal can be detected for a broad range of parameter space: future polarization experiments may be able to detect the string signal down to the string tension $G\\mu=10^{-9}$, although foregrounds and lensing are likely to worsen these limits. We argue that the optimal scale to search for the string signature is at $\\ell\\sim 1000$, but in models with high optical depth the signal from reionization peak at large scales...
Cosmic String Loops as the Seeds of Super-Massive Black Holes
Bramberger, Sebastian F; Jreidini, Paul; Quintin, Jerome
2015-01-01
Recent discoveries of super-massive black holes at high redshifts indicate a possible tension with the standard Lambda CDM paradigm of early universe cosmology which has difficulties in explaining the origin of the required nonlinear compact seeds which trigger the formation of these super-massive black holes. Here we show that cosmic string loops which result from a scaling solution of strings formed during a phase transition in the very early universe lead to an additional source of compact seeds. The number density of string-induced seeds dominates at high redshifts and can help trigger the formation of the observed super-massive black holes.
Gravitating non-Abelian cosmic strings
Santo, Antônio de Padua
2015-01-01
In this paper we study regular cosmic string solutions of the non-Abelian Higgs model coupled with the Einstein gravity. In order to do that, we constructed a set of coupled differential ordinary equation. Because there is no closed solution for this set of equations, we solve it numerically. The solutions that we are interested in asymptote to a flat space-time with a planar angle deficit. This model under consideration present two bosonic sectors, besides the non-Abelian gauge one, coupled minimally with the gravitational fields. The two bosonic sectors may present a direct coupling, which plays an important role on the behavior of the matter and gauge fields and also on the behavior on the geometry of the spacetime. We explicitly analyze the behaviors of the energy density and planar angle deficit as function of the energy scale where the gauge symmetry is spontaneously broken and the coupling interaction between the bosonic sectors.
Relativistic Landau Levels in the Rotating Cosmic String Spacetime
Cunha, M S; Christiansen, H R; Bezerra, V B
2016-01-01
We calculate the energy levels of a spinless massive and charged particle interacting with a stationary rotating cosmic string in a region with a static homogeneous magnetic field parallel to the string. First, we completely solve the Klein-Gordon equation in that particular spacetime, checking consistency in the non-relativistic limit and comparing with the static string case. We also solve the problem for a magnetized rotating cosmic string in order to find the Landau levels using rigid-wall boundary conditions, and discuss the possibility of these levels to be purely induced by spacetime rotation.
Adiabatic fluctuations from cosmic strings in a contracting universe
Brandenberger, Robert H; Yamaguchi, Masahide
2008-01-01
We show that adiabatic, super-Hubble, and almost scale invariant density fluctuations are produced by cosmic strings in a contracting universe. An essential point is that isocurvature perturbations produced by topological defects such as cosmic strings on super-Hubble scales lead to a source term which seeds the growth of curvature fluctuations on these scales. Once the symmetry has been restored at high temperatures, the isocurvature seeds disappear, and the fluctuations evolve as adiabatic ones in the expanding phase. Thus, cosmic strings may be resurrected as a mechanism for generating the primordial density fluctuations observed today.
The bispectrum of matter perturbations from cosmic strings
Regan, Donough
2014-01-01
We present the first calculation of the bispectrum of the matter perturbations induced by cosmic strings. The calculation is performed in two different ways: the first uses the unequal time correlators (UETCs) of the string network - computed using a Gaussian model previously employed for cosmic string power spectra. The second approach uses the wake model, where string density perturbations are concentrated in sheet-like structures whose surface density grows with time. The qualitative and quantitative agreement of the two gives confidence to the results. An essential ingredient in the UETC approach is the inclusion of compensation factors in the integration with the Green's function of the matter and radiation fluids, and we show that these compensation factors must be included in the wake model also. We also present a comparison of the UETCs computed in the Gaussian model, and those computed in the unconnected segment model (USM) used by the standard cosmic string perturbation package CMBACT. We compare nu...
Effect of a cosmic string on spin dynamics
Chowdhury, Debashree; Basu, B.
2014-12-01
In the present paper, we have investigated the role of the cosmic string on spin current and Hall electric field. Due to the background cosmic string, the modified electric field of the system generates renormalized spin-orbit coupling, which induces a modified non-Abelian gauge field. The defect causes a change in the Aharonov-Bohm and Aharonov-Casher phases appearing due to the modified electromagnetic field. In addition, for a time varying electric field we perform explicit analytic calculations to derive the exact form of spin electric field and spin current, which is defect parameter dependent and of oscillating type. Furthermore, in an asymmetric crystal within the Drude model approach we investigate the dependence of the cosmic string parameters on cosmic string induced Hall electric field.
Cosmic microwave background constraints for global strings and global monopoles
Lopez-Eiguren, Asier; Lizarraga, Joanes; Hindmarsh, Mark; Urrestilla, Jon
2017-07-01
We present the first cosmic microwave background (CMB) power spectra from numerical simulations of the global O(N) linear σ-model, with N=2,3, which have global strings and monopoles as topological defects. In order to compute the CMB power spectra we compute the unequal time correlators (UETCs) of the energy-momentum tensor, showing that they fall off at high wave number faster than naive estimates based on the geometry of the defects, indicating non-trivial (anti-)correlations between the defects and the surrounding Goldstone boson field. We obtain source functions for Einstein-Boltzmann solvers from the UETCs, using a recently developed method that improves the modelling at the radiation-matter transition. We show that the interpolation function that mimics the transition is similar to other defect models, but not identical, confirming the non-universality of the interpolation function. The CMB power spectra for global strings and global monopoles have the same overall shape as those obtained using the non-linear σ-model approximation, which is well captured by a large-N calculation. However, the amplitudes are larger than the large-N calculation would naively predict, and in the case of global strings much larger: a factor of 20 at the peak. Finally we compare the CMB power spectra with the latest CMB data in other to put limits on the allowed contribution to the temperature power spectrum at multipole l = 10 of 1.7% for global strings and 2.4% for global monopoles. These limits correspond to symmetry-breaking scales of 2.9× 1015 GeV (6.3× 1014 GeV with the expected logarithmic scaling of the effective string tension between the simulation time and decoupling) and 6.4× 1015 GeV respectively. The bound on global strings is a significant one for the ultra-light axion scenario with axion masses ma lesssim 10-28 eV . These upper limits indicate that gravitational waves from global topological defects will not be observable at the gravitational wave observatory
The Flow Around a Cosmic String, Part I: Hydrodynamic Solution
Beresnyak, Andrey
2015-01-01
Cosmic strings are linear topological defects which are hypothesized to be produced during inflation. Most searches for strings have been relying on the string's lensing of background galaxies or CMB. In this paper I obtained the solution for the supersonic flow of the collisional gas past the cosmic string which has two planar shocks with shock compression ratio that depend on the angle defect of the string and its speed. The shocks result in compression and heating of the gas and, given favorable condition, particle acceleration. The gas heating and overdensity in an unusual wedge shape can be detected by observing HI line at high redshifts. The particle acceleration can occur in present-day Universe when the string crosses the hot gas contained in galaxy clusters and, since the consequences of such collision persist for cosmological timescales, could be located by looking at the unusual large-scale radio sources situated on a single spatial plane.
Wakes in Dilatonic Current-Carrying Cosmic Strings
Oliveira, A L N
2003-01-01
In this work, we present the gravitational field generated by a cosmic string carrying a timelike current in the scalar-tensor gravities. The mechanism of formation and evolution of wakes is fully investigated in this framework. We show that the inclusion of electromagnetic properties for the string induces logarithmic divergences in the accretion problem.
Perturbations from cosmic strings in cold dark matter
Energy Technology Data Exchange (ETDEWEB)
Albrecht, A.; Stebbins, A.
1991-07-01
A systematic linear analysis of the perturbations induced by cosmic strings in cold dark matter is presented. The power spectrum is calculated and it is found that the strings produce a great deal of power on small scales. It is shown that the perturbations on interesting scales are the result of many uncorrelated string motions, which indicates a much more Gaussian distribution than was previously supposed.
Perturbations from cosmic strings in cold dark matter
Energy Technology Data Exchange (ETDEWEB)
Albrecht, A.; Stebbins, A. (NASA/Fermilab Astrophysics Center, P.O. Box 500, Batavia, Illinois 60510 (United States))
1992-04-06
We present a systematic linear analysis of the perturbations induced by cosmic strings in cold dark matter. We calculate the power spectrum and find that the strings produce a great deal of power on small scales. We show that the perturbations on interesting scales are the result of many uncorrelated string motions, which indicates a more Gaussian'' distribution than was previously supposed.
k-String tensions and their large-N dependence
Greensite, J.; Patella, A.
2011-01-01
We consider whether the 1/N corrections to k-string tensions must begin at order 1/N^2, as in the Sine Law, or whether odd powers of 1/N, as in Casimir Scaling, are also acceptable. The issue is important because different models of confinement differ in their predictions for the representation-dependence of k-string tensions, and corrections involving odd powers of 1/N would seem to be ruled out by the large-N expansion. We show, however, that k-string tensions may, in fact, have leading 1/N corrections, and consistency with the large-N expansion, in the open string sector, is achieved by an exact pairwise cancellation among terms involving odd powers of 1/N in particular combinations of Wilson loops. It is shown how these cancellations come about in a concrete example, namely, strong coupling lattice gauge theory with the heat-kernel action, in which k-string tensions follow the Casimir scaling rule.
Search for Cosmic Strings in the COSMOS Survey
Christiansen, J L; Goldman, J; Teng, I P W; Foley, M; Smoot, G F
2010-01-01
We search the COSMOS survey for pairs of galaxies consistent with the gravitational lensing signature of a cosmic string. The COSMOS survey imaged 1.64 square degrees using the Advanced Camera for Surveys (ACS) aboard the Hubble Space Telescope (HST). Our technique includes estimates of the efficiency for finding the lensed galaxy pair. We find no evidence for cosmic strings with a mass per unit length of G\\mu/c^2 < 3.0E-7 out to redshifts greater than 0.6 at 95% confidence. This corresponds to a global limit on Omega_string<0.0017.
Morganson, Eric; Treu, Tommaso; Schrabback, Tim; Blandford, Roger D
2009-01-01
We have searched 4.5 square degrees of archival HST/ACS images for cosmic strings, identifying close pairs of similar, faint galaxies and selecting groups whose alignment is consistent with gravitational lensing by a long, straight string. We find no evidence for cosmic strings in five large-area HST treasury surveys (covering a total of 2.22 square degrees), or in any of 346 multi-filter guest observer images (1.18 square degrees). Assuming that simulations ccurately predict the number of cosmic strings in the universe, this non-detection allows us to place upper limits on the unitless Universal cosmic string tension of G mu/c^2 < 2.3 x 10^-6, and cosmic string density of Omega_s < 2.1 x 10^-5 at the 95% confidence level (marginalising over the other parameter in each case). We find four dubious cosmic string candidates in 318 single filter guest observer images (1.08 square degrees), which we are unable to conclusively eliminate with existing data. The confirmation of any one of these candidates as co...
Exceptional Colloquium: The Rise, Fall, and Rebirth of Cosmic Strings
CERN. Geneva
2005-01-01
In the 1980s many people were excited by the concept that cosmic strings, as relics of the Grand Unified Era, could be responsible for the formation of cosmic structure. In the 1990s the cosmic string concept steadily lost ground to the Inflationary model both as a result of the difficulty of calculations and more definitively through observations of the CMB. About the time many expected the new WMAP data to deliver the coup de grace, the concepts of cosmic strings as major physical phenomena (not so important in structure formation) has begun a renaissance. This new interest is motivated by one of the original ideas that topological defects are inevitable in symmetry breaking by the Kibble (1976) mechanism and the introduction of new ideas such as brane-cosmology/inflation and the realization that cosmic strings may be the only acceptable such defect. We find ourselves back in the business of trying to detect or limit and understand cosmic strings once again for the insight and constraints they put on p...
k-string tensions and the 1/N expansion
Greensite, Jeff; Patella, Agostino
2011-01-01
We address the question of whether the large-N expansion in pure SU(N) gauge theories requires that k-string tensions must have a power series expansion in 1/N^2, as in the sine law, or whether 1/N contributions are also allowable, as in Casimir scaling. We find that k-string tensions may, in fact, have 1/N corrections, and consistency with the large-N expansion in the open-string sector depends crucially on an exact cancellation, which we will prove, among terms involving odd powers of 1/N in particular combinations of Wilson loops. It is shown how these cancellations are fulfilled, and consistency with the large-N expansion achieved, in a concrete example, namely, strong-coupling lattice gauge theory with the heat-kernel action. This is a model which has both a 1/N^2 expansion and Casimir scaling of the k-string tensions. Analysis of the closed string channel in this model confirms our conclusions, and provides further insights into the large-N dependence of energy eigenstates and eigenvalues.
Rotation of galaxies as a signature of cosmic strings in weak lensing surveys
Thomas, Daniel B; Magueijo, Joao
2009-01-01
Vector perturbations sourced by topological defects can generate rotations in the lensing of background galaxies. This is a potential smoking gun for the existence of defects since rotation generates a curl-like component in the weak lensing signal which is not generated by standard density perturbations at linear order. This rotation signal is calculated as generated by cosmic strings. Future large scale weak lensing surveys should be able to detect this signal even for string tensions an order of magnitude lower than current constraints.
Monopoles and string tension in SU(2) QCD
Shiba, H; Hiroshi Shiba; Tsuneo Suzuki
1994-01-01
Monopole and photon contributions to abelian Wilson loops are calculated using Monte-Carlo simulations of SU(2) QCD in the maximally abelian gauge. The string tension is well reproduced only by monopole contributions, whereas photons alone are responsible for the Coulomb coefficient of the abelian static potential.
Large Angular Scale Anisotropy in Cosmic Microwave Background Induced by Cosmic Strings
Energy Technology Data Exchange (ETDEWEB)
Allen, B.; Caldwell, R.R.; Shellard, E.P.; Stebbins, A.; Veeraraghavan, S. [Department of Physics, University of Wisconsin---Milwaukee, P.O. Box 413, Milwaukee, Wisconsin 53201 (United States)]|[University of Cambridge, Department of Applied Mathematics and Theoretical Physics, Silver Street, Cambridge CB3 9EW (United Kingdom)]|[NASA/Fermilab Astrophysics Center, P.O. Box 500, Batavia, Illinois 60510 (United States)]|[NASA/Goddard Space Flight Center, Greenbelt, Maryland 20771 (United States)
1996-10-01
We simulate the anisotropy in the cosmic microwave background (CMB) induced by cosmic strings. By numerically evolving a network of cosmic strings we generate full-sky CMB temperature anisotropy maps. Based on 192 maps, we compute the anisotropy power spectrum for multipole moments l{le}20. By comparing with the observed temperature anisotropy, we set the normalization for the cosmic string mass per unit length {mu}, obtaining {ital G}{mu}/{ital c}{sup 2}=1.05{sub {minus}0.20}{sup +0.35}{times}10{sup {minus}6}, which is consistent with all other observational constraints on cosmic strings. We demonstrate that the anisotropy pattern is consistent with a Gaussian random field on large angular scales. {copyright} {ital 1996 The American Physical Society.}
Cosmic Strings and Their Induced Non-Gaussianities in the Cosmic Microwave Background
Directory of Open Access Journals (Sweden)
Christophe Ringeval
2010-01-01
small fraction of the CMB angular power spectrum, cosmic strings could actually be the main source of its non-Gaussianities. In this paper, after having reviewed the basic cosmological properties of a string network, we present the signatures Nambu-Goto cosmic strings would induce in various observables ranging from the one-point function of the temperature anisotropies to the bispectrum and trispectrum. It is shown that string imprints are significantly different than those expected from the primordial type of non-Gaussianity and could therefore be easily distinguished.
Cosmic Super-Strings and Kaluza-Klein Modes
Dufaux, Jean-Francois
2011-01-01
Cosmic super-strings interact generically with a tower of relatively light and / or strongly coupled Kaluza-Klein (KK) modes associated with the geometry of the internal space. In this paper, we study the production of spin-2 KK particles by cusps on loops of cosmic F- and D-strings. We consider cosmic super-strings localized either at the bottom of a warped throat or in a flat internal space with large volume. The total energy emitted by cusps in KK modes is of the same order of magnitude in both cases, although the number of produced KK modes may differ significantly. The calculation lies within the regime of validity of the effective Nambu-Goto description, but the energy emitted in KK modes is comparable to the energy released in scalar and gauge fields by cusp annihilation on standard Abelian-Higgs cosmic strings. Nevertheless, KK emission by cosmic super-strings may have specific cosmological consequences. We show that it is constrained by the diffuse gamma ray background and by the photo-dissociation o...
Cosmic Super-Strings and Kaluza-Klein Modes
Dufaux, Jean-Francois
2012-01-01
Cosmic super-strings interact generically with a tower of relatively light and/or strongly coupled Kaluza-Klein (KK) modes associated with the geometry of the internal space. In this paper, we study the production of spin-2 KK particles by cusps on loops of cosmic F- and D-strings. We consider cosmic super-strings localized either at the bottom of a warped throat or in a flat internal space with large volume. The total energy emitted by cusps in KK modes is comparable in both cases, although the number of produced KK modes may differ significantly. We then show that KK emission is constrained by the photo-dissociation of light elements and by observations of the diffuse gamma ray background. We study the resulting constraints on the parameter space of cosmic super-strings and highlight their complementarity with the regions that can be probed by current and upcoming gravitational wave experiments. KK modes are also expected to play an important role in the friction-dominated epoch of cosmic super-string evolu...
Bosonic structure of realistic SO(10) supersymmetric cosmic strings
Allys, Erwan
2016-05-01
We study the bosonic structure of F -term Nambu-Goto cosmic strings forming in a realistic SO(10) implementation, assuming standard hybrid inflation. We describe the supersymmetric grand unified theory, and its spontaneous symmetry breaking scheme in parallel with the inflationary process. We also write the explicit tensor formulation of its scalar sector, focusing on the subrepresentations singlet under the standard model, which is sufficient to describe the string structure. We then introduce an ansatz for Abelian cosmic strings, discussing in details the hypothesis, and write down the field equations and boundary conditions. Finally, after doing a perturbative study of the model, we present and discuss the results obtained with numerical solutions of the string structure.
Light-Cone Fluctuations in the Cosmic String Spacetime
Mota, H F; Bessa, C H G; Bezerra, V B
2016-01-01
In this paper we consider light-cone fluctuations arising as a consequence of the nontrivial topology of the locally flat cosmic string spacetime. By setting the light-cone along the z-direction we are able to develop a full analysis to calculate the renormalized graviton two-point function, as well as the mean square fluctuation in the geodesic interval function and the time delay (or advance) in the propagation of a light-pulse. We found that all these expressions depend upon the parameter characterizing the conical topology of the cosmic string spacetime and vanish in the absence of it. We also point out that at large distances from the cosmic string the mean square fluctuation in the geodesic interval function is extremely small while in the opposite limit it logarithmically increases, improving the signal and thus, making possible the detection of such quantity.
Model dependence of baryon decay enhancement by cosmic strings
Fewster, C J
1993-01-01
Cosmic strings arising from GUTs can catalyse baryon decay processes with strong interaction cross sections. We examine the mechanism by which the cross section is enhanced and find that it depends strongly on the details of the distribution of gauge fields within the string core. We propose a calculational scheme for estimating wavefunction amplification factors and also a physical understanding of the nature of the enhancement process.
Effects of Inflation on a Cosmic String Loop Population
Avelino, P. P.; Martins, C. J. A. P.; Shellard, E. P. S.
2007-01-01
We study the evolution of simple cosmic string loop solutions in an inflationary universe. We show, for the particular case of circular loops, that periodic solutions do exist in a de Sitter universe, below a critical loop radius $R_c H=1/2$. On the other hand, larger loops freeze in comoving coordinates, and we explicitly show that they can survive more $e$-foldings of inflation than point-like objects. We discuss the implications of these findings for the survival of realistic cosmic string...
Relativistic Landau levels in the rotating cosmic string spacetime
Cunha, M. S.; Muniz, C. R.; Christiansen, H. R.; Bezerra, V. B.
2016-09-01
In the spacetime induced by a rotating cosmic string we compute the energy levels of a massive spinless particle coupled covariantly to a homogeneous magnetic field parallel to the string. Afterwards, we consider the addition of a scalar potential with a Coulomb-type and a linear confining term and completely solve the Klein-Gordon equations for each configuration. Finally, assuming rigid-wall boundary conditions, we find the Landau levels when the linear defect is itself magnetized. Remarkably, our analysis reveals that the Landau quantization occurs even in the absence of gauge fields provided the string is endowed with spin.
Relativistic Landau levels in the rotating cosmic string spacetime
Energy Technology Data Exchange (ETDEWEB)
Cunha, M.S. [Universidade Estadual do Ceara, Grupo de Fisica Teorica (GFT), Fortaleza, CE (Brazil); Muniz, C.R. [Universidade Estadual do Ceara, Faculdade de Educacao, Ciencias e Letras de Iguatu, Iguatu, CE (Brazil); Christiansen, H.R. [Instituto Federal de Ciencia, Educacao e Tecnologia, IFCE Departamento de Fisica, Sobral (Brazil); Bezerra, V.B. [Universidade Federal da Paraiba-UFPB, Departamento de Fisica, Caixa Postal 5008, Joao Pessoa, PB (Brazil)
2016-09-15
In the spacetime induced by a rotating cosmic string we compute the energy levels of a massive spinless particle coupled covariantly to a homogeneous magnetic field parallel to the string. Afterwards, we consider the addition of a scalar potential with a Coulomb-type and a linear confining term and completely solve the Klein-Gordon equations for each configuration. Finally, assuming rigid-wall boundary conditions, we find the Landau levels when the linear defect is itself magnetized. Remarkably, our analysis reveals that the Landau quantization occurs even in the absence of gauge fields provided the string is endowed with spin. (orig.)
The String and the Cosmic Bounce
Directory of Open Access Journals (Sweden)
Bozza V.
2014-04-01
Full Text Available String theory introduces a new fundamental scale (the string length that is expected to regularize the singularities of classical general relativity. In a cosmological context, the Big Bang is no longer regarded as the beginning of time, but just a transition between a Pre-Big Bang collapse phase and the current expansion. We will review old and recent attempts to build consistent bouncing cosmologies inspired to string theories, discussing their solved and unsolved problems, focussing on the observables that may distinguish them from standard inflationary scenarios.
Black strings, low viscosity fluids, and violation of cosmic censorship.
Lehner, Luis; Pretorius, Frans
2010-09-03
We describe the behavior of 5-dimensional black strings, subject to the Gregory-Laflamme instability. Beyond the linear level, the evolving strings exhibit a rich dynamics, where at intermediate stages the horizon can be described as a sequence of 3-dimensional spherical black holes joined by black string segments. These segments are themselves subject to a Gregory-Laflamme instability, resulting in a self-similar cascade, where ever-smaller satellite black holes form connected by ever-thinner string segments. This behavior is akin to satellite formation in low-viscosity fluid streams subject to the Rayleigh-Plateau instability. The simulation results imply that the string segments will reach zero radius in finite asymptotic time, whence the classical space-time terminates in a naked singularity. Since no fine-tuning is required to excite the instability, this constitutes a generic violation of cosmic censorship.
A possible origin of superconducting currents in cosmic strings
Chavez, H; Chavez, Helder; Masperi, Luis
2002-01-01
The scattering and capture of right-handed neutrinos by an Abelian cosmic string in the SO(10) grand unification model are considered. The scattering cross-section of neutrinos per unit length due to the interaction with the gauge and Higgs fields of the string is much larger in its scaling regime than in the friction one because of the larger infrared cutoff of the former.The probability of capture in a zero mode of the string accompanied by the emission of a gauge or Higgs boson shows a resonant peak for neutrino momentum of the order of its mass. Considering the decrease of number of strings per unit comoving volume in the scaling epoch the cosmological consequences of the superconducting strings formed in this regime will be much smaller than those which could be produced already in the friction one.
Cosmic string lens effects on CMB polarization patterns
Benabed, K.; Bernardeau, F.
2000-06-01
Extending the Kaiser-Stebbins mechanism we propose here a method for detecting relics of topological defects such as cosmic strings based on lens-induced small-scale B-type polarization in the cosmic microwave background. Models of inflation, in which large-scale structures of the Universe emerge from the inflaton fluctuations, do not exclude the formation of topological defects at the end of the inflationary phase. In such a case, we show that the lens effect of a string on the small-scale E-type polarization of the cosmic microwave background induces a significant amount of B-type polarization along the line of sight. The amplitude of the effect is estimated for different resolutions of cosmic microwave background experiments.
Axions from cosmic string and wall decay
Energy Technology Data Exchange (ETDEWEB)
Hagmann, C A
2010-03-10
If inflation occurred with a reheat temperature > T{sub PQ}, axions from the decay of global axion strings and domain walls would make an important contribution to the cosmological energy density, comparable to that from vacuum misalignment. Several groups have numerically studied the evolution of axion strings and walls in the past, however substantial uncertainties remain in their contribution to the present density {Omega}{sub a,string+wall} {approx} 1-100 (f{sub a}/10{sup 12} GeV){sup 7/6}, where f{sub a} is the axion decay constant. I will describe the numerical methods used in our simulations and show results for several string and wall configurations.
Cosmic String Universes Embedded with Viscosity
Institute of Scientific and Technical Information of China (English)
Koijam Manihar Singh; Kangujam Priyokumar Singh
2011-01-01
We study string cosmological models with attached particles in LRS BI type space time.The dynamical and physical properties of such universes are studied,and the possibility that during the evolution of the universe the strings disappear,leaving only the particles,is also discussed.It is found that bulk viscosity plays a large role in the evolution of the universe.In these models we find critical instances of when there was a “Bounce”.The studied models are found to be of an inflationary type,and since a desirable feature of a meaningful string cosmological model is the presence of an inflationary epoch in the very early stages of evolution,our models can be thought of as realistic universes.The origin of the universe and the early stages of formation are still interesting areas of research.The concept of string theory was developed to describe the events of the early stages of the evolution of the universe.The universe can be described as a collection of extended (non point) objects.Thus,“string dust” cosmology will provide us with a model to investigate the properties related to this fact.%We study string cosmological models with attached particles in LRS BI type space time. The dynamical and physical properties of such universes are studied, and the possibility that during the evolution of the universe the strings disappear, leaving only the particles, is also discussed. It is found that bulk viscosity plays a large role in the evolution of the universe. In these models we find critical instances of when there was a "Bounce". The studied models are found to be of an inflationary type, and since a desirable feature of a meaningful string cosmological model is the presence of an inflationary epoch in the very early stages of evolution, our models can be thought of as realistic universes.
Cosmic strings in an expanding spacetime
Energy Technology Data Exchange (ETDEWEB)
Stein-Schabes, J.A.; Burd, A.B.
1988-03-15
We study string solutions in an expanding Friedmann-Robertson-Walker (FRW) spacetime. The back reaction of the string on the spacetime has been ignored so that the background stays Friedmannian throughout the evolution. By numerically integrating the field equations in both radiation- and matter-dominated eras, we discover some new oscillatory solutions. The possible damping of these oscillations is discussed. For late times the solution becomes identical to the static one.
THE FLOW AROUND A COSMIC STRING. I. HYDRODYNAMIC SOLUTION
Energy Technology Data Exchange (ETDEWEB)
Beresnyak, Andrey [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Nordita, KTH Royal Institute of Technology and Stockholm University, SE-10691 (Sweden)
2015-05-10
Cosmic strings are linear topological defects which are hypothesized to be produced during inflation. Most searches for strings have relied on the string’s lensing of background galaxies or the cosmic microwave background. In this paper, I obtained a solution for the supersonic flow of collisional gas past the cosmic string which has two planar shocks with a shock compression ratio that depends on the angle defect of the string and its speed. The shocks result in the compression and heating of the gas and, given favorable conditions, particle acceleration. Gas heating and over-density in an unusual wedge shape can be detected by observing the Hi line at high redshifts. Particle acceleration can occur in the present-day universe when the string crosses the hot gas contained in galaxy clusters and, since the consequences of such a collision persist for cosmological timescales, could be located by looking at unusual large-scale radio sources situated on a single spatial plane.
New Solutions for Non-Abelian Cosmic Strings
Hindmarsh, Mark; Rummukainen, Kari; Weir, David J.
2016-12-01
We study the properties of classical vortex solutions in a non-Abelian gauge theory. A system of two adjoint Higgs fields breaks the SU(2) gauge symmetry to Z2 , producing 't Hooft-Polyakov monopoles trapped on cosmic strings, termed beads; there are two charges of monopole and two degenerate string solutions. The strings break an accidental discrete Z2 symmetry of the theory, explaining the degeneracy of the ground state. Further symmetries of the model, not previously appreciated, emerge when the masses of the two adjoint Higgs fields are degenerate. The breaking of the enlarged discrete symmetry gives rise to additional string solutions and splits the monopoles into four types of "semipole": kink solutions that interpolate between the string solutions, classified by a complex gauge-invariant magnetic flux and a Z4 charge. At special values of the Higgs self-couplings, the accidental symmetry broken by the string is continuous, giving rise to supercurrents on the strings. The SU(2) theory can be embedded in a wide class of grand unified theories (GUTs), including SO(10). We argue that semipoles and supercurrents are generic on GUT strings.
The regular cosmic string in Born-Infeld gravity
Energy Technology Data Exchange (ETDEWEB)
Ferraro, Rafael; Fiorini, Franco, E-mail: ferraro@iafe.uba.ar, E-mail: franco@iafe.uba.ar [Instituto de AstronomIa y Fisica del Espacio, Casilla de Correo 67, Sucursal 28, 1428 Buenos Aires (Argentina)
2011-09-22
It is shown that Born-Infeld gravity -a high energy deformation of Einstein gravity-removes the singularities of a cosmic string. The respective vacuum solution results to be free of conical singularity and closed timelike curves. The space ends at a minimal circle where the curvature invariants vanish; but this circle cannot be reached in a finite proper time.
Cosmic Microwave Background and Density Fluctuations from Strings plus Inflation
Contaldi, C; Magueijo, J; Contaldi, Carlo; Hindmarsh, Mark; Magueijo, Joao
1999-01-01
In cosmological models where local cosmic strings are formed at the end of a period of inflation, the perturbations are seeded both by the defects and by the quantum fluctuations. In a subset of these models, for example those based on $D$-term inflation, the amplitudes are similar. Using our recent calculations of structure formation with cosmic strings, we point out that in a flat cosmology with zero cosmological constant and 5% baryonic component, strings plus inflation fits the observational data much better than each component individually. The large-angle CMB spectrum is mildly tilted, for Harrison-Zeldovich inflationary fluctuations. It then rises to a thick Doppler bump, covering $\\ell=200-600$, modulated by soft secondary undulations. The standard CDM anti-biasing problem is cured, giving place to a slightly biased scenario of galaxy formation.
Cosmic strings in an expanding spacetime
Energy Technology Data Exchange (ETDEWEB)
Stein-Schabes, J.A.; Burd, A.B.
1987-04-01
We investigate the stability of a static, infinitely long and straight vacuum string solution under inhomogeneous axisymmetric time-dependent perturbations. We find it to be perturbatively stable. We further extend our work by finding a string solutions in an expanding Universe. The back reaction of the string on the gravitational field has been ignored. The background is assumed to be a Friedman-Robertson-Walker (FRW) cosmology. By numerically integrating the field equations in a radiation and matter dominated models, we discover oscillatory solutions. The possible damping of these oscillations is discussed. For late times the solution becomes identical to the static one studied in the first part of the paper. 19 refs., 8 figs.
Abelian cosmic string in the extended Starobinsky model of gravity
Graça, J P Morais
2016-01-01
We analyze numerically the behaviour of the solutions corresponding to an Abelian cosmic string taking into account an extension of the Starobinsky model, where the action of general relativity is replaced by $f(R) = R - 2\\Lambda + \\eta R^2 + \\rho R^m$, with $m > 2$. As an interesting result, we find that the angular deficit which characterizes the cosmic string decreases as the parameters $\\eta$ and $\\rho$ increase. We also find that the cosmic horizon due to the presence of a cosmological constant is affected in such a way that it can grows or shrinks, depending on the vacuum expectation value of the scalar field and on the value of the cosmological constant
New solutions for non-Abelian cosmic strings
Hindmarsh, Mark; Weir, David J
2016-01-01
We study the properties of classical vortex solutions in a non-Abelian gauge theory. A system of two adjoint Higgs fields breaks the SU(2) gauge symmetry to $Z_2$, producing 't Hooft-Polyakov monopoles trapped on cosmic strings, termed beads; there are two charges of monopole and two degenerate string solutions. The strings break an accidental discrete $Z_2$ symmetry of the theory, explaining the degeneracy of the ground state. Further symmetries of the model, not previously appreciated, emerge when the masses of the two adjoint Higgs fields are degenerate. The breaking of the enlarged discrete symmetry gives rise to additional string solutions and splits the monopoles into four types of `semipole': kink solutions that interpolate between the string solutions, classified by a complex gauge invariant magnetic flux and a $Z_4$ charge. At special values of the Higgs self-couplings, the accidental symmetry broken by the string is continuous, giving rise to supercurrents on the strings. The SU(2) theory can be emb...
CMB Anisotropy due to Cosmic Strings in an Accelerated Expanding Universe
Rokni, S Y; Bordbar, M R
2013-01-01
We want to find the cosmological constant influence on cosmic microwave background (CMB) anisotropy due to cosmic strings. Considering the space-time metric of a cosmic string under the effect of a positive cosmological constant, the CMB anisotropy is studied. The result shows that a positive cosmological constant (i.e. the presence of cosmic strings in an accelerated expanding universe) weakens the anisotropy so that more strong resolution is needed to detect the corresponding influences on the CMB power spectrum.
Variable Tension, Large Deflection Ideal String Model For Transverse Motions
Ciblak, Namik
2013-01-01
In this study a new approach to the problem of transverse vibrations of an ideal string is presented. Unlike previous studies, assumptions such as constant tension, inextensibility, constant crosssectional area, small deformations and slopes are all removed. The main result is that, despite such relaxations in the model, not only does the final equation remain linear, but, it is exactly the same equation obtained in classical treatments. First, an "infinitesimals" based analysis, similar to historical methods, is given. However, an alternative and much stronger approach, solely based on finite quantities, is also presented. Furthermore, it is shown that the same result can also be obtained by Lagrangian mechanics, which indicates the compatibility of the original method with those based on energy and variational principles. Another interesting result is the relation between the force distribution and string displacement in static cases, which states that the force distribution per length is proportional to th...
Cosmic string interactions induced by gauge and scalar fields
Kabat, Daniel
2012-01-01
We study the interaction between two parallel cosmic strings induced by gauge fields and by scalar fields with non-minimal couplings to curvature. For small deficit angles the gauge field behaves like a collection of non-minimal scalars with a specific value for the non-minimal coupling. We check this equivalence by computing the interaction energy between strings at first order in the deficit angles. This result provides another physical context for the "contact terms" which play an important role in the renormalization of black hole entropy due to a spin-1 field.
Gravitational smoothing of kinks on cosmic string loops
Wachter, Jeremy M
2016-01-01
We analyze the effect of gravitational back reaction on cosmic string loops with kinks, which is an important determinant of the shape, and thus the potential observability, of string loops which may exist in the universe today. Kinks are not rounded off, but may be straightened out. In some loops, symmetries prevent even this process, so that the loop evaporates in a self-similar fashion and the kinks are unchanged. As an example, we give results for the rectangular Garfinkle-Vachaspati loop.
D-term cosmic strings from N=2 Supergravity
Achúcarro, A; Esole, M; Van Proeyen, A; Van den Bergh, J; Achucarro, Ana; Bergh, Joris Van den; Celi, Alessio; Esole, Mboyo; Proeyen, Antoine Van
2006-01-01
We describe new half-BPS cosmic string solutions in N=2, d=4 supergravity coupled to one vector multiplet and one hypermultiplet. They are closely related to D-term strings in N=1 supergravity. Fields of the N=2 theory that are frozen in the solution contribute to the triplet moment map of the quaternionic isometries and leave their trace in N=1 as a constant Fayet-Iliopoulos term. The choice of U(1) gauging and of special geometry are crucial. The construction gives rise to a non-minimal Kaehler potential and can be generalized to higher dimensional quaternionic-Kaehler manifolds.
Gravitational Smoothing of Kinks on Cosmic String Loops
Wachter, Jeremy M.; Olum, Ken D.
2017-02-01
We analyze the effect of gravitational backreaction on cosmic string loops with kinks, which is an important determinant of the shape, and thus the potential observability, of string loops which may exist in the Universe today. Kinks are not rounded off, but may be straightened out. This means that backreaction will only cause loops with kinks to develop cusps after some potentially large fraction of their lifetimes. In some loops, symmetries prevent even this process, so that the loop evaporates in a self-similar fashion and the kinks are unchanged. As an example, we discuss backreaction on the rectangular Garfinkle-Vachaspati loop.
Dynamics of cosmic strings with higher-dimensional windings
Energy Technology Data Exchange (ETDEWEB)
Yamauchi, Daisuke [Research Center for the Early Universe, School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Lake, Matthew J. [The Institute for Fundamental Study, “The Tah Poe Academia Institute' , Naresuan University, Phitsanulok 65000 (Thailand); Thailand Center of Excellence in Physics, Ministry of Education,Bangkok 10400 (Thailand)
2015-06-11
We consider F-strings with arbitrary configurations in the Minkowski directions of a higher-dimensional spacetime, which also wrap and spin around S{sup 1} subcycles of constant radius in an arbitrary internal manifold, and determine the relation between the higher-dimensional and the effective four-dimensional quantities that govern the string dynamics. We show that, for any such configuration, the motion of the windings in the compact space may render the string effectively tensionless from a four-dimensional perspective, so that it remains static with respect to the large dimensions. Such a critical configuration occurs when (locally) exactly half the square of the string length lies in the large dimensions and half lies in the compact space. The critical solution is then seen to arise as a special case, in which the wavelength of the windings is equal to their circumference. As examples, long straight strings and circular loops are considered in detail, and the solutions to the equations of motion that satisfy the tensionless condition are presented. These solutions are then generalized to planar loops and arbitrary three-dimensional configurations. Under the process of dimensional reduction, in which higher-dimensional motion is equivalent to an effective worldsheet current (giving rise to a conserved charge), this phenomenon may be seen as the analogue of the tensionless condition which arises for superconducting and chiral-current carrying cosmic strings.
Cosmic microwave background experiments targeting the cosmic strings Doppler peak signal
Magueijo, J; Magueijo, Joao; Hobson, Mike
1996-01-01
We investigate which experiments are better suited to test the robust prediction that cosmic strings do not produce secondary Doppler peaks. We propose a statistic for detecting oscillations in the C^l spectrum, and study its statistical relevance given the truth of an inflationary competitor to cosmic strings. The analysis is performed for single-dish experiments and interferometers, subject to a variety of noise levels and scanning features. A high resolution of 0.2 degrees is found to be required for single-dish experiments with realistic levels of noise. Interferometers appear to be more suitable for detecting this signal.
Cosmic strings in f(R,L{sub m}) gravity
Energy Technology Data Exchange (ETDEWEB)
Harko, Tiberiu, E-mail: t.harko@ucl.ac.uk [Department of Mathematics, University College London, Gower Street, WC1E 6BT, London (United Kingdom); Lake, Matthew J., E-mail: matthewj@nu.ac.th [The Institute for Fundamental Study, “The Tah Poe Academia Institute”, Naresuan University, 65000, Phitsanulok (Thailand); Thailand Center of Excellence in Physics, Ministry of Education, 10400, Bangkok (Thailand)
2015-02-07
We consider Kasner-type static, cylindrically symmetric interior string solutions in the f(R,L{sub m}) theory of modified gravity. The physical properties of the string are described by an anisotropic energy-momentum tensor satisfying the condition T{sub t}{sup t}=T{sub z}{sup z}; that is, the energy density of the string along the z-axis is equal to minus the string tension. As a first step in our study we obtain the gravitational field equations in the f(R,L{sub m}) theory for a general static, cylindrically symmetric metric, and then for a Kasner-type metric, in which the metric tensor components have a power law dependence on the radial coordinate r. String solutions in two particular modified gravity models are investigated in detail. The first is the so-called “exponential” modified gravity, in which the gravitational action is proportional to the exponential of the sum of the Ricci scalar and matter Lagrangian, and the second is the “self-consistent model”, obtained by explicitly determining the gravitational action from the field equations under the assumption of a power law dependent matter Lagrangian. In each case, the thermodynamic parameters of the string, as well as the precise form of the matter Lagrangian, are explicitly obtained.
Cosmic strings in f(R,L{sub m}) gravity
Energy Technology Data Exchange (ETDEWEB)
Harko, Tiberiu [University College London, Department of Mathematics, London (United Kingdom); Lake, Matthew J. [Naresuan University, The Institute for Fundamental Study, ' ' The Tah Poe Academia Institute' ' , Phitsanulok (Thailand); Ministry of Education, Thailand Center of Excellence in Physics, Bangkok (Thailand)
2015-02-01
We consider Kasner-type static, cylindrically symmetric interior string solutions in the f(R,L{sub m}) theory of modified gravity. The physical properties of the string are described by an anisotropic energy-momentum tensor satisfying the condition T{sub t}{sup t} = T{sub z}{sup z}; that is, the energy density of the string along the z-axis is equal to minus the string tension. As a first step in our study we obtain the gravitational field equations in the f(R,L{sub m}) theory for a general static, cylindrically symmetric metric, and then for a Kasner-type metric, in which the metric tensor components have a power law dependence on the radial coordinate r. String solutions in two particular modified gravity models are investigated in detail. The first is the so-called ''exponential'' modified gravity, in which the gravitational action is proportional to the exponential of the sum of the Ricci scalar and matter Lagrangian, and the second is the ''self-consistent model'', obtained by explicitly determining the gravitational action from the field equations under the assumption of a power law dependent matter Lagrangian. In each case, the thermodynamic parameters of the string, as well as the precise form of the matter Lagrangian, are explicitly obtained. (orig.)
Rotating black holes pierced by a cosmic string
Kubiznak, David
2015-01-01
A rotating black hole threaded by an infinitely long cosmic string is studied in the framework of the Abelian Higgs model. We show that contrary to a common belief in the presence of rotation the backreaction of the string does not induce a simple conical deficit. This leads to new distinct features of the Kerr--string system such as modified ISCO or shifted ergosphere, though these effects are most likely outside the range of observational precision. For an extremal rotating black hole, the system exhibits a first-order phase transition for the gravitational Meissner effect: small black holes exhibit a flux-expelled solution, with the gauge and scalar field remaining identically in their false vacuum state on the event horizon, whereas the horizon of large black holes is pierced by the vortex. A brief review prepared for the MG14 Proceedings.
Quantum dynamics of scalar bosons in a cosmic string background
Energy Technology Data Exchange (ETDEWEB)
Castro, Luis B. [Universidade Federal do Maranhao, Departamento de Fisica, Sao Luis, MA (Brazil)
2015-06-15
The quantum dynamics of scalar bosons embedded in the background of a cosmic string is considered. In this work, scalar bosons are described by the Duffin-Kemmer-Petiau (DKP) formalism. In particular, the effects of this topological defect in the equation of motion, energy spectrum, and DKP spinor are analyzed and discussed in detail. The exact solutions for the DKP oscillator in this background are presented in closed form. (orig.)
Search for Cosmic Strings in the GOODS Survey
Christiansen, J L; James, K A; Goldman, J; Maruyama, D; Smoot, G F
2008-01-01
We search Hubble Space Telescope Treasury Program images collected as part of the Great Observatories Origins Deep Survey for pairs of galaxies consistent with the gravitational lensing signature of a cosmic string. Our technique includes estimates of the efficiency for finding the lensed galaxy pair. In the North (South) survey field we find no evidence out to a redshift of greater than 1 (0.5) for cosmic strings to a mass per unit length limit of $G\\mu<3.0x10^{-7}$ at 95% CL. In the combined 314.9 arcmin$^2$ of the North and South survey fields this corresponds to a limit on $\\Omega_{strings}<0.0056$. Our global limit on $G\\mu$ is more than an order of magnitude lower than searches for individual strings in CMB data. Our limit is higher than other CMB and gravitational wave searches, however we note that it is less model dependent than these other searches.
Fermionic condensate and the Casimir effect in cosmic string spacetime
Grigoryan, A Kh; Saharian, A A
2016-01-01
We investigate combined effects of nontrivial topology, induced by a cosmic string, and boundaries on the fermionic condensate and the vacuum expectation value (VEV) of the energy-momentum tensor for a massive fermionic field. As geometry of boundaries we consider two plates perpendicular to the string axis on which the field is constrained by the MIT bag boundary condition. By using the Abel-Plana type summation formula, the VEVs in the region between the plates are decomposed into the boundary-free and boundary-induced contributions for general case of the planar angle deficit. The boundary-induced parts in both the fermionic condensate and the energy-momentum tensor vanish on the cosmic string. Fermionic condensate is positive near the string and negative al large distances, whereas the vacuum energy density is negative everywhere. The radial stress is equal to the energy density. For a massless field, the boundary-induced contribution in the VEV of the energy-momentum tensor is different from zero in the ...
Possible imprints of cosmic strings in the shadows of galactic black holes
Tinchev, Vassil K
2013-01-01
We examine the shadow cast by the Kerr black hole pierced by a cosmic string. The observable images depend not only on the black hole spin parameter and the angle of inclination, but also on the deficit angle yielded by the cosmic string. The dependence of the observable characteristics of the shadow on the deficit angle is explored. The imprints in the black hole shadow left by the presence of a cosmic string can serve as method for observational detection of the cosmic strings.
Energy Technology Data Exchange (ETDEWEB)
Gasparini, Maria Alice; Marshall, Phil; Treu, Tommaso; /UC, Santa Barbara; Morganson, Eric; /KIPAC, Menlo Park; Dubath, Florian; /Santa Barbara, KITP
2007-11-14
We use current theoretical estimates for the density of long cosmic strings to predict the number of strong gravitational lensing events in astronomical imaging surveys as a function of angular resolution and survey area. We show that angular resolution is the single most important factor, and that interesting limits on the dimensionless string tension G{mu}/c{sup 2} can be obtained by existing and planned surveys. At the resolution of the Hubble Space Telescope (0'.14), it is sufficient to survey of order a square degree -- well within reach of the current HST archive -- to probe the regime G{mu}/c{sup 2} {approx} 10{sup -8}. If lensing by cosmic strings is not detected, such a survey would improve the limit on the string tension by an order of magnitude on that available from the cosmic microwave background. At the resolution (0'.028) attainable with the next generation of large ground based instruments, both in the radio and the infra-red with adaptive optics, surveying a sky area of order ten square degrees will allow us to probe the G{mu}/c{sup 2} {approx} 10{sup -9} regime. These limits will not be improved significantly by increasing the solid angle of the survey.
Abelian Higgs Cosmic Strings: Small Scale Structure and Loops
Hindmarsh, Mark; Bevis, Neil
2008-01-01
Classical lattice simulations of the Abelian Higgs model are used to investigate small scale structure and loop distributions in cosmic string networks. Use of the field theory ensures that the small-scale physics is captured correctly. The results confirm analytic predictions of Polchinski & Rocha [1] for the two-point correlation function of the string tangent vector, with a power law from length scales of order the string core width up to horizon scale with evidence to suggest that the small scale structure builds up from small scales. An analysis of the size distribution of string loops gives a very low number density, of order 1 per horizon volume, in contrast with Nambu-Goto simulations. Further, our loop distribution function does not support the detailed analytic predictions for loop production derived by Dubath et al. [2]. Better agreement to our data is found with a model based on loop fragmentation [3], coupled with a constant rate of energy loss into massive radiation. Our results show a stron...
Gravitational back reaction on piecewise linear cosmic string loops
Wachter, Jeremy M
2016-01-01
We calculate the metric and affine connection due to a piecewise linear cosmic string loop, and the effect of gravitational back reaction for the Garfinkle-Vachaspati loop with four straight segments. As expected, back reaction reduces the size of the loop, in accord with the energy going into gravitational waves. The "square" loop whose generators lie at right angles evaporates without changing shape, but in all other cases, the kinks become less sharp and segments between kinks become curved. If the loop is close to the square case, the loop will evaporate before its kinks are significantly changed; if it is far from square, the opening out of the kinks is much faster than evaporation of the loop. In more realistic loops, the curvature of the straight segments due to gravitational back reaction may lead to cusps which did not exist in the original shape with the bending of the string concentrated at kinks.
Non-Gaussian spectra and the search for cosmic strings
Magueijo, Joao; Lewin, Alex
1997-01-01
We present a new tool for relating theory and experiment suited for non-Gaussian theories: non-Gaussian spectra. It does for non-Gaussian theories what the angular power spectrum $C_\\ell$ does for Gaussian theories. We then show how previous studies of cosmic strings have over rated their non-Gaussian signature. More realistic maps are not visually stringy. However non-Gaussian spectra will accuse their stringiness. We finally summarise the steps of an undergoing experimental project aiming a...
Is it Really Naked? On Cosmic Censorship in String Theory
Energy Technology Data Exchange (ETDEWEB)
Frolov, A
2004-09-30
We investigate the possibility of cosmic censorship violation in string theory using a characteristic double-null code, which penetrates horizons and is capable of resolving the spacetime all the way to the singularity. We perform high-resolution numerical simulations of the evolution of negative mass initial scalar field profiles, which were argued to provide a counter example to cosmic censorship conjecture for AdS-asymptotic spacetimes in five-dimensional supergravity. In no instances formation of naked singularity is seen. Instead, numerical evidence indicates that black holes form in the collapse. Our results are consistent with earlier numerical studies, and explicitly show where the ''no black hole'' argument breaks.
On Bianchi-I cosmic strings coupled with Maxwell ﬁelds in bimetric relativity
Indian Academy of Sciences (India)
V Mahurpawar; S D Deo
2003-10-01
Axially symmetric Bianchi-I model is studied with source cosmic cloud strings coupled with electromagnetic ﬁeld in Rosen’s bimetric theory of relativity and observed that there is no contribution from cosmic strings and Maxwell ﬁelds in this theory.
Cosmic Strings as the Source of Small-Scale Microwave Background Anisotropy
Pogosian, Levon; Wasserman, Ira; Wyman, Mark
2008-01-01
Cosmic string networks generate cosmological perturbations actively throughout the history of the universe. Thus, the string sourced anisotropy of the cosmic microwave background is not affected by Silk damping as much as the anisotropy seeded by inflation. The spectrum of perturbations generated by strings does not match the observed CMB spectrum on large angular scales (l2000) will dominate over that created by the primary inflationary perturbations. This range of angular scales in the CMB is presently being measured by a number of experiments; their results will test this prediction of cosmic string networks soon.
SU(4) string tensions from the fat-center-vortices model
Deldar, S; Deldar, Sedigheh; Rafibakhsh, Shahnoosh
2004-01-01
Fat-Center-Vortices model has been applied to calculate potentials between static sources of various SU(4) representations. For intermediate distances, a linear potential is achieved. For this region string tensions agree better with flux tube counting than Casimir scaling especially for higher representations. In addition, our results confirm the existence of two different string tensions for non zero 4-ality representations at large distances. In this area zero 4-ality representations are screened.
Dp-brane Tension from Tachyons and B-field in Vacuum String Field Theory
Matlock, P; Viswanathan, K S; Yang, Y
2002-01-01
We consider tachyonic string-field fluctuations about a Dp-brane background in the geometrical (CFT) formulation of vacuum string field theory. We then extend this analysis to the case of a background B-field. We find that the standard results for D-brane tension are reproduced in both cases.
Gravitational backreaction on piecewise linear cosmic string loops
Wachter, Jeremy M.; Olum, Ken D.
2017-01-01
We calculate the metric and affine connection due to a piecewise linear cosmic string loop, and the effect of gravitational backreaction for the Garfinkle-Vachaspati loop with four straight segments. As expected, backreaction reduces the size of the loop, in accord with the energy going into gravitational waves. The "square" (maximally symmetric) loop evaporates without changing shape, but for all other loops in this class, the kinks become less sharp and segments between kinks become curved. If the loop is close to the square case, it will evaporate before its kinks are significantly changed; if it is far from square, the opening out of the kinks is much faster than evaporation of the loop.
Wedges, Cones, Cosmic Strings, and the Reality of Vacuum Energy
Fulling, S A; Truong, P N; Wagner, J
2012-01-01
One of J. Stuart Dowker's most significant achievements has been to observe that the theory of diffraction by wedges developed a century ago by Sommerfeld and others provided the key to solving two problems of great interest in general-relativistic quantum field theory during the last quarter of the twentieth century: the vacuum energy associated with an infinitely thin, straight cosmic string, and (after an interchange of time with a space coordinate) the apparent vacuum energy of empty space as viewed by an accelerating observer. In a sense the string problem is more elementary than the wedge, since Sommerfeld's technique was to relate the wedge problem to that of a conical manifold by the method of images. Indeed, Minkowski space, as well as all cone and wedge problems, are related by images to an infinitely sheeted master manifold, which we call Dowker space. We review the research in this area and exhibit in detail the vacuum expectation values of the energy density and pressure of a scalar field in Dowk...
The power spectra of CMB and density fluctuations seeded by local cosmic strings
Contaldi, C; Magueijo, J; Contaldi, Carlo; Hindmarsh, Mark; Magueijo, Joao
1999-01-01
We compute the power spectra in the cosmic microwave background and cold dark matter (CDM) fluctuations seeded by strings, using the largest string simulations performed so far to evaluate the two-point functions of their stress energy tensor. We find that local strings differ from global defects in that the scalar components of the stress-energy tensor dominate over vector and tensor components. This result has far reaching consequences. We find that cosmic strings exhibit a single Doppler peak of acceptable height at high although the CDM power spectrum in the ``standard'' cosmology (flat geometry, zero cosmological constant, 5% baryonic component) is the wrong shape to fit large scale structure data.
Black strings from minimal geometric deformation in a variable tension brane-world
Casadio, R.; Ovalle, J.; da Rocha, Roldão
2014-02-01
We study brane-world models with variable brane tension and compute corrections to the horizon of a black string along the extra dimension. The four-dimensional geometry of the black string on the brane is obtained by means of the minimal geometric deformation approach, and the bulk corrections are then encoded in additional terms involving the covariant derivatives of the variable brane tension. Our investigation shows that the variable brane tension strongly affects the shape and evolution of the black string horizon along the extra dimension, at least in a near-brane expansion. In particular, we apply our general analysis to a model motivated by the Eötvös branes, where the variable brane tension is related to the Friedmann-Robertson-Walker brane-world cosmology. We show that for some stages in the evolution of the universe, the black string warped horizon collapses to a point and the black string has correspondingly finite extent along the extra dimension. Furthermore, we show that in the minimal geometric deformation of a black hole on the variable tension brane, the black string has a throat along the extra dimension, whose area tends to zero as time goes to infinity.
SU( N ) gauge theories in 2+1 dimensions: glueball spectra and k-string tensions
Athenodorou, Andreas; Teper, Michael
2017-02-01
We calculate the low-lying glueball spectrum and various string tensions in SU( N ) lattice gauge theories in 2 + 1 dimensions, and extrapolate the results to the continuum limit. We do so for for the range N ∈ [2 , 16] so as to control the N -dependence with a useful precision. We observe a number of striking near-degeneracies in the various J PC sectors of the glueball spectrum, in particular between C = + and C = - states. We calculate the string tensions of flux tubes in a number of representations, and provide evidence that the leading correction to the N -dependence of the k-string tensions is ∝ 1 /N rather than ∝ 1 /N 2, and that the dominant binding of k fundamental flux tubes into a k-string is via pairwise interactions. We comment on the possible implications of our results for the dynamics of these gauge theories.
The Battle of the Bulge: Decay of the Thin, False Cosmic String
Lee, Bum-Hoon; MacKenzie, Richard; Paranjape, M B; Yajnik, U A; Yeom, Dong-han
2013-01-01
We consider the decay of cosmic strings that are trapped in the false vacuum in a theory of scalar electrodynamics in 3+1 dimensions. We restrict our analysis to the case of thin-walled cosmic strings which occur when large magnetic flux trapped inside the string. Thus the string looks like a tube of fixed radius, at which it is classically stable. The core of the string contains magnetic flux in the true vacuum, while outside the string, separated by a thin wall, is the false vacuum. The string decays by tunnelling to a configuration which is represented by a bulge, where the region of true vacuum within, is ostensibly enlarged. The bulge can be described as the meeting, of a kink soliton anti-soliton pair, along the length of the string. It can be described as a bulge appearing in the initial string, starting from the string of small, classically stable radius, expanding to a fat string of large, classically unstable (to expansion) radius and then returning back to the string of small radius along its lengt...
Ray trajectories for a spinning cosmic string and a manifestation of self-cloaking
Anderson, Tom H; Lakhtakia, Akhlesh
2010-01-01
A study of ray trajectories was undertaken for the Tamm medium which represents the spacetime of a cosmic spinning string, under the geometric-optics approximation. Our numerical studies revealed that: (i) rays never cross the string's boundary; (ii) the Tamm medium supports evanescent waves in regions of phase space that correspond to those regions of the string's spacetime which could support closed timelike curves; and (iii) a spinning string can be slightly visible while a non-spinning string is almost perfectly invisible.
Gravitational lensing by cosmic strings: what we learn from the CSL-1 case
Sazhin, M V; Capaccioli, M; Longo, G; Paolillo, M; Covone, G; Grogin, N A; Schreier, E J
2006-01-01
Cosmic strings were postulated by Kibble in 1976 and, from a theoretical point of view, their existence finds support in modern superstring theories, both in compactification models and in theories with extended additional dimensions. Their eventual discovery would lead to significant advances in both cosmology and fundamental physics. One of the most effective ways to detect cosmic strings is through their lensing signatures which appear to be significantly different from those introduced by standard lenses (id est, compact clumps of matter). In 2003, the discovery of the peculiar object CSL-1 (Sazhin et al.2003) raised the interest of the physics community since its morphology and spectral features strongly argued in favour of it being the first case of gravitational lensing by a cosmic string. In this paper we provide a detailed description of the expected observational effects of a cosmic string and show, by means of simulations, the lensing signatures produced on background galaxies. While high angular r...
Efficient synthesis of tension modulation in strings and membranes based on energy estimation.
Avanzini, Federico; Marogna, Riccardo; Bank, Balázs
2012-01-01
String and membrane vibrations cannot be considered as linear above a certain amplitude due to the variation in string or membrane tension. A relevant special case is when the tension is spatially constant and varies in time only in dependence of the overall string length or membrane surface. The most apparent perceptual effect of this tension modulation phenomenon is the exponential decay of pitch in time. Pitch glides due to tension modulation are an important timbral characteristic of several musical instruments, including the electric guitar and tom-tom drum, and many ethnic instruments. This paper presents a unified formulation to the tension modulation problem for one-dimensional (1-D) (string) and two-dimensional (2-D) (membrane) cases. In addition, it shows that the short-time average of the tension variation, which is responsible for pitch glides, is approximately proportional to the system energy. This proportionality allows the efficient physics-based sound synthesis of pitch glides. The proposed models require only slightly more computational resources than linear models as opposed to earlier tension-modulated models of higher complexity.
Wedges, cones, cosmic strings and their vacuum energy
Fulling, S. A.; Trendafilova, C. S.; Truong, P. N.; Wagner, J.
2012-09-01
One of J Stuart Dowker’s most significant achievements has been to observe that the theory of diffraction by wedges developed a century ago by Sommerfeld and others provided the key to solving two problems of great interest in general-relativistic quantum field theory during the last quarter of the 20th century: the vacuum energy associated with an infinitely thin, straight cosmic string, and (after an interchange of time with a space coordinate) the apparent vacuum energy of empty space as viewed by an accelerating observer. In a sense the string problem is more elementary than the wedge, since Sommerfeld’s technique was to relate the wedge problem to that of a conical manifold by the method of images. Indeed, Minkowski space, as well as all cone and wedge problems, are related by images to an infinitely sheeted master manifold, which we call Dowker space. We review the research in this area and exhibit in detail the vacuum expectation values of the energy density and pressure of a scalar field in Dowker space and the cone and wedge spaces that result from it. We point out that the (vanishing) vacuum energy of Minkowski space results, from the point of view of Dowker space, from the quantization of angular modes, in precisely the way that the Casimir energy of a toroidal closed universe results from the quantization of Fourier modes; we hope that this understanding dispels any lingering doubts about the reality of cosmological vacuum energy. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical in honour of Stuart Dowker’s 75th birthday devoted to ‘Applications of zeta functions and other spectral functions in mathematics and physics’.
Cosmic Superstring Gravitational Lensing Phenomena: Predictions for Networks of (p,q) Strings
Shlaer, Benjamin; Wyman, Mark
2005-01-01
The unique, conical spacetime created by cosmic strings brings about distinctive gravitational lensing phenomena. The variety of these distinctive phenomena is increased when the strings have non-trivial mutual interactions. In particular, when strings bind and create junctions, rather than intercommute, the resulting configurations can lead to novel gravitational lensing patterns. In this brief note, we use exact solutions to characterize these phenomena, the detection of which would be stro...
Early dark energy, the Hubble-parameter tension, and the string axiverse
Karwal, Tanvi
2016-01-01
Precise measurements of the cosmic microwave background (CMB) power spectrum are in excellent agreement with the predictions of the standard $\\Lambda$CDM cosmological model. However, there is some tension between the value of the Hubble parameter $H_0$ inferred from the CMB and that inferred from observations of the Universe at lower redshifts, and the unusually small value of the dark-energy density is a puzzling ingredient of the model. In this paper, we explore a scenario with a new exotic energy density that behaves like a cosmological constant at early times and then decays quickly at some critical redshift $z_c$. An exotic energy density like this is motivated by some string-axiverse-inspired scenarios for dark energy. By increasing the expansion rate at early times, the very precisely determined angular scale of the sound horizon at decoupling can be preserved with a larger Hubble constant. We find, however, that the Planck temperature power spectrum tightly constrains the magnitude of the early dark-e...
Electromagnetic vacuum fluctuations around a cosmic string in de Sitter spacetime
Saharian, A. A.; Manukyan, V. F.; Saharyan, N. A.
2017-07-01
The electromagnetic field correlators are evaluated around a cosmic string in background of (D+1)-dimensional dS spacetime assuming that the field is prepared in the Bunch-Davies vacuum state. The correlators are presented in the decomposed form where the string-induced topological parts are explicitly extracted. With this decomposition, the renormalization of the local vacuum expectation values (VEVs) in the coincidence limit is reduced to the one for dS spacetime in the absence of the cosmic string. The VEVs of the squared electric and magnetic fields, and of the vacuum energy density are investigated. Near the string they are dominated by the topological contributions and the effects induced by the background gravitational field are small. In this region, the leading terms in the topological contributions are obtained from the corresponding VEVs for a string on the Minkowski bulk multiplying by the conformal factor. At distances from the string larger than the curvature radius of the background geometry, the pure dS parts in the VEVs dominate. In this region, for spatial dimensions D>3, the influence of the gravitational field on the topological contributions is crucial and the corresponding behavior is essentially different from that for a cosmic string on the Minkowski bulk. There are well-motivated inflationary models which produce cosmic strings. We argue that, as a consequence of the quantum-to-classical transition of super-Hubble electromagnetic fluctuations during inflation, in the post-inflationary era these strings will be surrounded by large-scale stochastic magnetic fields. These fields could be among the distinctive features of the cosmic strings produced during the inflation and also of the corresponding inflationary models.
Zero modes on cosmic strings in an external magnetic field
Ferrer, F; Starkman, G D; Vachaspati, T; Ferrer, Francesc; Mathur, Harsh; Starkman, Glenn D.; Vachaspati, Tanmay
2006-01-01
A classical analysis suggests that an external magnetic field can cause trajectories of charge carriers on a superconducting domain wall or cosmic string to bend, thus expelling charge carriers with energy above the mass threshold into the bulk. We study this process by solving the Dirac equation for a fermion of mass $m_f$ and charge $e$, in the background of a domain wall and a magnetic field of strength $B$. We find that the modes of the charge carriers get shifted into the bulk, in agreement with classical expectations. However the dispersion relation for the zero modes changes dramatically -- instead of the usual linear dispersion relation, $\\omega_k =k$, the new dispersion relation is well fit by $\\omega \\approx m_f tanh(k/k_*)$ where $k_*=m_f$ for a thin wall in the weak field limit, and $k_*=eBw$ for a thick wall of width $w$. This result shows that the energy of the charge carriers on the domain wall remains below the threshold for expulsion even in the presence of an external magnetic field. If char...
Light deflection with torsion effects caused by a spinning cosmic string
Energy Technology Data Exchange (ETDEWEB)
Jusufi, Kimet [State University of Tetovo, Physics Department, Tetovo (Macedonia, The Former Yugoslav Republic of)
2016-06-15
Using a new geometrical method introduced by Werner, we find the deflection angle in the weak limit approximation by a spinning cosmic string in the context of the Einstein-Cartan (EC) theory of gravity. We begin by adopting the String-Randers optical metric, then we apply the Gauss-Bonnet theorem to the optical geometry and derive the leading terms of the deflection angle in the equatorial plane. Calculation shows that light deflection is affected by the intrinsic spin of the cosmic string and torsion. (orig.)
Self-interaction in the von Kármán cosmic string street configuration
Carvalho, J.; Furtado, C.; Moraes, F.
2008-11-01
We study the problem of electromagnetic self-interaction of line sources in the presence of an array of parallel cosmic strings akin to the von Kármán vortex street configuration. Keeping in mind possible applications in condensed matter physics we consider also a mixed array where both deficit angle and excess angle cosmic strings appear. We obtain explicit expressions for both the electric and magnetic self-energies for the cases studied and demonstrate that these results reproduce the known self-energies in the single-string limit.
Light deflection with torsion effects caused by a spinning cosmic string
Jusufi, Kimet
2016-06-01
Using a new geometrical method introduced by Werner, we find the deflection angle in the weak limit approximation by a spinning cosmic string in the context of the Einstein-Cartan (EC) theory of gravity. We begin by adopting the String-Randers optical metric, then we apply the Gauss-Bonnet theorem to the optical geometry and derive the leading terms of the deflection angle in the equatorial plane. Calculation shows that light deflection is affected by the intrinsic spin of the cosmic string and torsion.
Pajares, C; Vázquez, R A
2001-01-01
At high gluon or string densities, gluons' saturation or the strong interaction among strings, either forming colour ropes or giving rise to string's percolation, induces a strong suppression in the particle multiplicities produced at high energy. This suppression implies important modifications on cosmic ray shower development. In particular, it is shown that it affects the depth of maximum, the elongation rate, and the behaviour of the number of muons at energies around 10^{17}-10^{18} eV. The existing cosmic ray data point out in the same direction.
Light Deflection with Torsion Effects Caused by a Spinning Cosmic String
Jusufi, Kimet
2016-01-01
Using a new geometrical method introduced by Werner, we find the deflection angle in the weak limit approximation by a spinning cosmic string in the context of the Einstein-Cartan (EC) theory of gravity. We begin by adopting the String-Randers optical metric, then we apply the Gauss-Bonnet theorem to the optical geometry and derive the leading terms of the deflection angle in the equatorial plane. Calculations shows that light deflection is affected by the intrinsic spin of the cosmic string and torsion.
Harmonic Gravitational Wave Spectra of Cosmic String Loops in the Galaxy
DePies, Matthew R
2009-01-01
A new candidate source of gravitational radiation is described: the nearly-perfect harmonic series from individual loops of cosmic string. It is argued that theories with light cosmic strings give rise to a population of numerous long-lived stable loops, many of which cluster gravitationally in galaxy halos along with the dark matter. Each cosmic string loop produces a spectrum of discrete frequencies in a nearly perfect harmonic series, a fundamental mode and its integer multiples. The gravitational wave signal from cosmic string loops in our Galactic halo is analyzed numerically and it is found that the for light strings, the nearest loops typically produce strong signals which stand out above confusion noise from Galactic binaries. The total population of cosmic string loops in the Milky Way also produces a broad signal that acts as a confusion noise. Both signals are enhanced by the clustering of loops gravitationally bound to the Galaxy, which significantly decreases the average distance from the solar s...
The Effect of String Tension Variation on the Perceived Pitch of a Classical Guitar
Directory of Open Access Journals (Sweden)
Wanda Jadwiga Lewis
2014-09-01
Full Text Available Actual motion of a vibrating guitar string is a superposition of many possible shapes (modes in which it could vibrate. Each of these modes has a corresponding frequency, and the lowest frequency is associated with a shape idealised as a single wave, referred to as the fundamental mode. The other contributing modes, each with their own progressively higher frequency, are referred to as overtones, or harmonics. By attaching a string to a medium (a soundboard capable of a response to the vibrating string, sound waves are generated. The sound heard is dominated by the fundamental mode, ‘coloured’ by contributions from the overtones, as explained by the classical theory of vibration. The classical theory, however, assumes that the string tension remains constant during vibration, and this cannot be strictly true; when considering just the fundamental mode, string tension will reach two maximum changes, as it oscillates up and down. These changes, occurring twice during the fundamental period match the frequency of the octave higher, 1st overtone. It is therefore plausible to think that the changing tension effect, through increased force on the bridge and, therefore, greater soundboard deflection, could be amplifying the colouring effect of (at least the 1st overtone.In this paper, we examine the possible influence of string tension variation on tonal response of a classical guitar. We use a perturbation model based on the classical result for a string in general vibration in conjunction with a novel method of assessment of plucking force that incorporates the engineering concept of geometric stiffness, to assess the magnitude of the normal force exerted by the string on the bridge. The results of our model show that the effect of tension variation is significantly smaller than that due to the installed initial static tension, and affects predominantly the force contribution arising from the fundamental mode. We, therefore, conclude that string
Black Strings from Minimal Geometric Deformation in a Variable Tension Brane-World
Casadio, Roberto; da Rocha, Roldao
2013-01-01
We study brane-world models with variable brane tension and compute corrections to the horizon of a black string along the extra dimension. The four-dimensional geometry of the black string on the brane is obtained by means of the minimal geometric deformation approach, and the bulk corrections are then encoded in additional terms involving the covariant derivatives of the variable brane tension. Our investigation shows that the variable brane tension strongly affects the shape and evolution of the black string horizon along the extra dimension, at least in a near-brane expansion. In particular, we apply our general analysis to a model motivated by the E\\"otv\\"os branes, where the variable brane tension is related to the Friedmann-Robertson-Walker brane-world cosmology. We show that for some stages in the evolution of the universe, the black string warped horizon collapses to a point and the black string has correspondingly finite extent along the extra dimension. Furthermore, we show that in the minimal geom...
Spontaneous excitation of a static atom in a thermal bath in cosmic string spacetime
Cai, Huabing; Yu, Hongwei; Zhou, Wenting
2015-10-01
We study the average rate of change of energy for a static atom immersed in a thermal bath of electromagnetic radiation in the cosmic string spacetime and separately calculate the contributions of thermal fluctuations and radiation reaction. We find that the transition rates are crucially dependent on the atom-string distance and polarization of the atom and they in general oscillate as the atom-string distance varies. Moreover, the atomic transition rates in the cosmic string spacetime can be larger or smaller than those in Minkowski spacetime contingent upon the atomic polarization and position. In particular, when located on the string, ground-state atoms can make a transition to excited states only if they are polarizable parallel to the string, whereas ground-state atoms polarizable only perpendicular to the string are stable as if they were in a vacuum, even if they are immersed in a thermal bath. Our results suggest that the influence of a cosmic string is very similar to that of a reflecting boundary in Minkowski spacetime.
Spontaneous excitation of a static atom in a thermal bath in cosmic string spacetime
Cai, Huabing; Zhou, Wenting
2015-01-01
We study the average rate of change of energy for a static atom immersed in a thermal bath of electromagnetic radiation in the cosmic string spacetime and separately calculate the contributions of thermal fluctuations and radiation reaction. We find that the transition rates are crucially dependent on the atom-string distance and polarization of the atom and they in general oscillate as the atom-string distance varies. Moreover, the atomic transition rates in the cosmic string spacetime can be larger or smaller than those in Minkowski spacetime contingent upon the atomic polarization and position. In particular, when located on the string, ground-state atoms can make a transition to excited states only if they are polarizable parallel to the string, whereas ground state atoms polarizable only perpendicular to the string are stable as if they were in a vacuum, even if they are immersed in a thermal bath. Our results suggest that the influence of a cosmic string is very similar to that of a reflecting boundary ...
Searching for a Long Cosmic String through the Gravitational Lensing Effect
Shirasaki, Y.; Matsuzaki, Ei-ichi; Mizumoto, Yoshihiko; Kakimoto, Fumio; Ogio, Syoichi; Yasuda, Naoki; Tanaka, Masahiro; Yahagi, Hideki; Nagashima, Masahiro; Kosugi, George
2003-07-01
It has been suggested that cosmic strings produced at a phase transition in the early universe can be the origin of the extremely high energy cosmic rays (EHCR) observed by AGASA above 1020 eV. superheavy cosmic strings with linear mass density of 1022 g/cm can be indirectly observed through the gravitational lensing effect the distant galaxies. The lensing effect by a long straight object can be characterized by a line of double galaxies or quasars with angular separation of about 5 arcsec. We have searched for aligned double objects from the archived data taken by the Subaru Prime Fo cus Camera (Suprime-Cam). The SuprimeCam has a great advantage in observing the wide field of view (30×30 arcmin2 ) with high sensitivity (Rmethod of searching the objects lensed by cosmic strings, and present the observational result obtained by this method.
The dual formulation of cosmic strings and vortices
Lee, Ki-Myeong
1993-01-01
We study four dimensional systems of global, axionic and local strings. By using the path integral formalism, we derive the dual formulation of these systems, where Goldstone bosons, axions and missive vector bosons are described by antisymmetric tensor fields, and strings appear as a source for these tensor fields. We show also how magnetic monopoles attached to local strings are described in the dual formulation. We conclude with some remarks.
Confining k-string tensions with D-Branes in Super Yang-Mills theories
Ridgway, Jefferson M
2008-01-01
We discuss confining k strings in four dimensional gauge theories using D5 branes in AdS5xS5, and D3 branes in Klebanov-Strassler and Maldacena-Nunez backgrounds. We present two results: The first that confining k string tensions in N=4 can be calculated using D5 branes in AdS5xS5 with a cut-off in the bulk AdS. Using an embedding of R2 times S4 in S5, we show that the D5 brane replicates a string of rank k in the antisymmetric representation. The second result shows that the S-Dual calculation to hep-th/0111078 reproduces the action in the Klebanov-Strassler and Maldacena-Nunez backgrounds exactly, while providing a more natural manifestation of the string charge k.
Cosmic strings with twisted magnetic flux lines and wound-strings in extra dimensions
Lake, Matthew
2012-01-01
We consider a generalization of the Nielsen-Olesen ansatz, in the abelian-Higgs model, which describes strings with twisted magnetic flux lines in the vortex core. The solution does not possess cylindrical symmetry, which leads to the existence of components of conserved momentum, both around the core-axis and along the length of the string. In addition, we consider a model of F-strings with rotating, geodesic windings in the compact space of the Klebanov-Strassler geometry and determine matching conditions which ensure energy and momentum conservation when loops chop off from the long-string network. We find that the expressions for the constants of motion, which determine the macroscopic string dynamics, can be made to coincide with those for the twisted flux line string, suggesting that extra- dimensional effects for F-strings may be mimicked by field-theoretic structure in topological defects.
Energy Technology Data Exchange (ETDEWEB)
Allen, B. [Department of Physics, University of Wisconsin---Milwaukee, P.O. Box 413, Milwaukee, Wisconsin 53201 (United States); Caldwell, R.R. [Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19106 (United States); Dodelson, S.; Stebbins, A. [NASA/Fermilab Astrophysics Center, P.O. Box 500, Batavia, Illinois 60510 (United States); Knox, L. [Canadian Institute for Theoretical Astrophysics, Toronto, Ontario, M5S 3H8 (Canada); Shellard, E.P. [University of Cambridge, D.A.M.T.P. Silver Street, Cambridge CB3 9EW (United Kingdom)
1997-10-01
We have computed an estimate of the angular power spectrum of the cosmic microwave background induced by cosmic strings on angular scales {approx_gt}15{sup {prime}}, using a numerical simulation of a cosmic string network and have decomposed this pattern into scalar, vector, and tensor parts. The anisotropies from vector modes dominate except on very small angular scales, and we find no evidence for strong acoustic oscillations in the scalar anisotropy. The anisotropies generated after recombination are even more important than in adiabatic models. The total anisotropy on small scales is inconsistent with current measurements. The calculation has a number of uncertainties, the largest of which is due to finite temporal range. {copyright} {ital 1997} {ital The American Physical Society}
Cosmic String Helicity Constraints on Loop Configurations, and the Quantization of Baryon Number
Mendelson, T R
1999-01-01
We apply the concept of helicity from classical hydrodynamics to elucidate two problematical issues in cosmic string physics. Helicity, the space integral of the scalar product of a velocity-like field with its vorticity field (curl), can be defined for a complex scalar field in analogy with fluids. We dwell on the topological interpretation of helicity as related to the linking of field lines of the vorticity field. Earlier works failed to fully implement this interpretation for cosmic strings by missing a term connected with the linking of these lines inside the strings. As a result paradoxical conclusions were drawn: global cosmic string loops may not take on certain simple shapes, and baryon number is not quantized in integers in the presence of local cosmic strings in gauge theory. We show that both paradoxes are removed when internal contributions to helicity are properly taken into account. In particular, quantization of baryon number can be understood within a special case of the Glashow-Weinberg-Sala...
Relic Gravitational Waves from Cosmic Strings Updated Constraints and Opportunities for Detection
Caldwell, R R; Shellard, E P S
1996-01-01
We examine the spectrum of gravitational radiation emitted by a network of cosmic strings, with emphasis on the observational constraints and the opportunities for detection. The analysis improves over past work, as we use a phenomenological model for the radiation spectrum emitted by a cosmic string loop. This model attempts to include the effect of the gravitational back-reaction on the radiation emission by an individual loop with a high frequency cut-off in the spectrum. Comparison of the total spectrum due to a network of strings with the recently improved bound on the amplitude of a stochastic gravitational wave background, due to measurements of noise in pulsar signal arrival times, allows us to exclude a range of values of $\\mu$, the cosmic string linear mass density, for certain values of cosmic string and cosmological parameters. We find the conservative bound $G\\mu/c^2 < 5.4 (\\pm 1.1) \\times 10^{-6}$ which is consistent with all other limits. We consider variations of the standard cosmological s...
Battle of the bulge: Decay of the thin, false cosmic string
Lee, Bum-Hoon; Lee, Wonwoo; MacKenzie, Richard; Paranjape, M. B.; Yajnik, U. A.; Yeom, Dong-han
2013-11-01
We consider the decay of cosmic strings that are trapped in the false vacuum in a theory of scalar electrodynamics in 3+1 dimensions. This paper is the 3+1-dimensional generalization of the 2+1-dimensional decay of false vortices which we have recently completed . We restrict our analysis to the case of thin-walled cosmic strings which occur when large magnetic flux is trapped inside the string. Thus the string looks like a tube of fixed radius, at which it is classically stable. The core of the string contains magnetic flux in the true vacuum, while outside the string, separated by a thin wall, is the false vacuum. The string decays by tunneling to a configuration which is represented by a bulge, where the region of true vacuum within is ostensibly enlarged. The bulge can be described as the meeting of a kink soliton-antisoliton pair along the length of the string. It can be described as a bulge appearing in the initial string, starting from the string of small, classically stable radius, expanding to a fat string of large, classically unstable (to expansion) radius and then returning back to the string of small radius along its length. This configuration is the bounce point of a corresponding O(2) symmetric instanton, which we can determine numerically. Once the bulge appears it explodes in real time. The paired soliton and antisoliton recede from each other along the length of the string with a velocity that quickly approaches the speed of light, leaving behind a fat tube. At the same time the radius of the fat tube that is being formed expands (transversely) as it is no longer classically stable, converting false vacuum to the true vacuum with ever-diluting magnetic field within. The rate of this expansion is determined by the energy difference between the true vacuum and the false vacuum. Our analysis could be applied to a network of cosmic strings formed in the very early Universe or vortex lines in a superheated superconductor.
Induced fermionic currents in de Sitter spacetime in the presence of a compactified cosmic string
Mohammadi, A; Saharian, A A
2014-01-01
We investigate the vacuum fermionic currents in the geometry of a compactified cosmic string on background of de Sitter spacetime. The currents are induced by magnetic fluxes running along the cosmic string and enclosed by the compact dimension. We show that the vacuum charge and the radial component of the current density vanish. By using the Abel-Plana summation formula, the azimuthal and axial currents are explicitly decomposed into two parts: the first one corresponds to the geometry of a straight cosmic string and the second one is induced by the compactification of the string along its axis. For the axial current the first part vanishes and the corresponding topological part is an even periodic function of the magnetic flux along the string axis and an odd periodic function of the flux enclosed by the compact dimension with the periods equal to the flux quantum. The azimuthal current density is an odd periodic function of the flux along the string axis and an even periodic function of the flux enclosed ...
Baryon inhomogeneities due to cosmic string wakes at the quark–hadron transition
Indian Academy of Sciences (India)
Biswanath Layek; Soma Sanyal; Ajit M Srivastava
2003-05-01
Baryon inhomogeneities generated during the quark–hadron transition may alter the abundances of light elements if they persist up to the time of nucleosynthesis. These inhomogeneities survive up to the nucleosynthesis epoch if they are separated by a distance of at least a few metres. In this work we present a model where large sheets of these inhomogeneities separated by a distance of a few km are formed by cosmic string wakes during the quark–hadron transition. The effect of these sheets on nucleosynthesis will also put constraints on the various cosmic string parameters.
Implications of cosmic string-induced density ﬂuctuations at the quark–hadron transition
Indian Academy of Sciences (India)
Biswanath Layek; Soma Sanyal; Ajit M Srivastava
2003-11-01
We show that cosmic strings moving through the plasma at the time of a ﬁrst-order quark–hadron transition in the early universe generate baryon inhomogeneities, which can survive till the nucleosynthesis epoch. We ﬁnd out how these inhomogeneities actually affect the calculated values of the light element abundances. Recently a wealth of observational data from various experiments have helped to reduce the uncertainties in the values of these abundances. Using these we show that it is possible to derive constraints in the presence of cosmic strings during the quark–hadron transition.
Hassanabadi, Hassan
2016-01-01
In this paper, we study the covariant form of the non-relativistic Schrodinger-Pauli equation in the space-time generated by a cosmic string and discuss the solutions of this equation in present of interaction between the magnetic dipole momentum and electromagnetic field. We study the influence of the topology on this system. We obtain the solution of radial part as well as the energy levels. We consider all thermodynamic properties of neutral particle in magnetic cosmic string background by using an approach based on the partition function method.
Energy Technology Data Exchange (ETDEWEB)
Hassanabadi, H.; Hosseinpour, M. [Shahrood University of Technology, Physics Department, Shahrood (Iran, Islamic Republic of)
2016-10-15
In this paper, we study the covariant form of the non-relativistic Schroedinger-Pauli equation in the space-time generated by a cosmic string and discuss the solutions of this equation in the presence of interaction between the magnetic dipole momentum and electromagnetic field. We study the influence of the topology on this system. We obtain the solution of radial part as well as the energy levels. We consider all thermodynamic properties of a neutral particle in a magnetic cosmic string background by using an approach based on the partition function method. (orig.)
CMB and LSS Power Spectra From Local Cosmic String Seeded Struture Formation
Contaldi, C R; Magueijo, J; Contaldi, Carlo R.; Hindmarsh, Mark; Magueijo, Joao
1998-01-01
We evaluate the two point functions of the stress energy from the largest string simulations carried out so far. The two point functions are used to calculate the cosmic microwave background (CMB) and cold dark matter (CDM) power spectra from local cosmic string models for structure formation. We find that our spectra differ significantly from those previously calculated for both global and local defects. We find a higher Doppler peak at $l=400-600$ and a less severe bias problem than for global defects. Spectra were obtained for a variety of network energy-decay mechanisms.
Formation of Cosmic String network from black holes: Implications from liquid crystal experiments
Srivastava, A M
2006-01-01
We present observation of large, expanding string loops forming around a heated wire tip embedded in a nematic liquid crystal sample. Loops expand due to convective stretching. This observation leads to a new insight into phenomena which could occur in the early universe. We show that local heating of plasma in the early universe by evaporating primordial black holes can lead to formation of large, expanding cosmic string loops, just as observed in the liquid crystal experiment. Intercommutation of string loops from neighboring black holes can lead to percolation, thereby forming an infinite string network. This is remarkable as such an infinite string network is thought to arise only when the entire universe undergoes phase transition.
Eto, Minoru
2014-01-01
Dyonic non-Abelian local/semi-global vortex strings are studied in detail in supersymmetric/non-supersymmetric Yang-Mills-Higgs theories. While the BPS tension formula is known to be the same as that for the BPS dyonic instanton, we find that the non-BPS tension formula is approximated very well by the well-known tension formula of the BPS dyon. We show that this mysterious tension formula for the dyonic non-BPS vortex stings can be understood from the perspective of a low energy effective field theory. Furthermore, we propose an efficient method to obtain an effective theory of a single vortex string, which includes not only lower derivative terms but also all order derivative corrections by making use of the tension formula. We also find a novel dyonic vortex string whose internal orientation vectors rotate in time and spiral along the string axis.
Emergence of Fresnel diffraction zones in gravitational lensing by a cosmic string
Energy Technology Data Exchange (ETDEWEB)
Fernández-Núñez, Isabel [Departament de Física Quàntica i Astrofísica, Facultat de Física, Universitat de Barcelona, Martí i Franquès 1, E-08028 Barcelona (Spain); Institut de Ciències del Cosmos (ICCUB), Facultat de Física, Universitat de Barcelona, Martí i Franquès 1, E-08028 Barcelona (Spain); Bulashenko, Oleg, E-mail: oleg.bulashenko@ub.edu [Departament de Física Quàntica i Astrofísica, Facultat de Física, Universitat de Barcelona, Martí i Franquès 1, E-08028 Barcelona (Spain)
2017-06-09
The possibility to detect cosmic strings – topological defects of early Universe, by means of wave effects in gravitational lensing is discussed. To find the optimal observation conditions, we define the hyperbolic-shaped Fresnel observation zones associated with the diffraction maxima and analyse the frequency patterns of wave amplification corresponding to different alignments. In particular, we show that diffraction of gravitational waves by the string may lead to significant amplification at cosmological distances. The wave properties we found are quite different from what one would expect, for instance, from light scattered off a thin wire or slit, since a cosmic string, as a topological defect, gives no shadow at all. - Highlights: • Interference and diffraction of gravitational waves by a cosmic string are studied. • Uniform asymptotic theory of diffraction is applied for a finite distance source. • Hyperbolic-shaped Fresnel observation zones associated with maxima of diffraction. • Frequency patterns modulated by diffraction for different string alignments are given. • The method is applicable to condensed-matter defects and other types of waves.
All sky CMB map from cosmic strings integrated Sachs-Wolfe effect
Ringeval, Christophe
2012-01-01
By actively distorting the Cosmic Microwave Background (CMB) over our past light cone, cosmic strings are unavoidable sources of non-Gaussianity. Developing optimal estimators able to disambiguate a string signal from the primordial type of non-Gaussianity requires calibration over synthetic full sky CMB maps, which till now had been numerically unachievable at the resolution of modern experiments. In this paper, we provide the first high resolution full sky CMB map of the temperature anisotropies induced by a network of cosmic strings since the recombination. The map has about 200 million sub-arcminute pixels in the healpix format which is the standard in use for CMB analyses (Nside=4096). This premiere required about 800,000 cpu hours; it has been generated by using a massively parallel ray tracing method piercing through a thousands of state of art Nambu-Goto cosmic string numerical simulations which pave the comoving volume between the observer and the last scattering surface. We explicitly show how this ...
Improved calculation of the gravitational wave spectrum from kinks on infinite cosmic strings
Matsui, Yuka; Nitta, Daisuke; Kuroyanagi, Sachiko
2016-01-01
Gravitational wave observations provide unique opportunities to search for cosmic strings. One of the strongest sources of gravitational waves is discontinuities of cosmic strings, called kinks, which are generated at points of intersection. Kinks on infinite strings are known to generate a gravitational wave background over a wide range of frequencies. In this paper, we calculate the spectrum of the gravitational wave background by numerically solving the evolution equation for the distribution function of the kink sharpness. We find that the number of kinks for small sharpness is larger than the analytical estimate used in a previous work, which makes a difference in the spectral shape. Our numerical approach also helps to avoid the use of analytic approximations, and enables us to make a more precise prediction on the spectral amplitude for future gravitational wave experiments.
CMB power spectra from cosmic strings: predictions for the Planck satellite and beyond
Bevis, Neil; Kunz, Martin; Urrestilla, Jon
2010-01-01
We present a significant improvement over our previous calculations of the cosmic string contribution to cosmic microwave background (CMB) power spectra, with particular focus on sub-WMAP angular scales. These smaller scales are relevant for the now-operational Planck satellite and additional sub-orbital CMB projects that have even finer resolutions. We employ larger Abelian Higgs string simulations than before and we additionally model and extrapolate the statistical measures from our simulations to smaller length scales. We then use an efficient means of including the extrapolations into our Einstein-Boltzmann calculations in order to yield accurate results over the multipole range 2 3000 in the case of the temperature power spectrum, which then allows cautious extrapolation to even smaller scales. We find that a string contribution to the temperature power spectrum making up 10% of power at l=10 would be larger than the Silk-damped primary adiabatic contribution for l > 3500. Astrophysical contributions s...
Equatorial geodesics of dyonic Kerr-Newman black hole pierced by a cosmic string
Sharif, M.; Iftikhar, Sehrish
2016-12-01
This paper is devoted to study the circular geodesics of the dyonic Kerr-Newman black hole with a cosmic string passing through it. We investigate circular geodesics of null and timelike particle. In this context, we find the circular photon orbit as well as the innermost stable circular orbit. The angular velocity and time period for the timelike particle are calculated. The effect of electric and magnetic charge as well as of the cosmic string parameter on the effective potential is analyzed numerically. Finally, we discuss the role of these parameters on the energy extraction by the Penrose process. We conclude that the string parameter does not affect the gain energy of the particle but it decreases with respect to charge.
Lake, Matthew J
2015-01-01
The discovery of a large number of supermassive black holes at redshifts $z> 6$, when the Universe was only nine hundred million years old, has raised the fundamental question of how such massive compact objects could form in a (cosmologically) short time interval. Each of the proposed standard scenarios for black hole formation, involving rapid accretion of seed black holes, or black hole mergers, faces severe theoretical difficulties in explaining the short time formation of supermassive objects. In the present Letter, we propose an alternative scenario for the formation of supermassive black holes in the early Universe in which energy transfer from superconducting cosmic strings, piercing small seed black holes, is the main physical process leading to rapid mass increase. The increase in mass of a primordial seed black hole pierced by two antipodal strings is estimated and it is shown that this increases linearly in time. Due to the high energy transfer rate from the cosmic strings, we find that supermassi...
Quantum magnetic flux lines, BPS vortex zero modes, and one-loop string tension shifts
Alonso-Izquierdo, A.; Mateos Guilarte, J.; de la Torre Mayado, M.
2016-08-01
Spectral heat kernel/zeta function regularization procedures are employed in this paper to control the divergences arising from vacuum fluctuations of Bogomolnyi-Prasad-Sommerfield vortices in the Abelian Higgs model. Zero modes of vortex fluctuations are the source of difficulties appearing when the standard Gilkey-de Witt expansion is the tool used in the calculations of one-loop shifts of vortex masses and string tensions. A modified GdW expansion is developed to diminish the impact of the infrared divergences due to the vortex zero modes of fluctuation. With this new technique at our disposal we compute the one-loop vortex mass shifts in the planar AHM and the quantum corrections to the string tension of the magnetic flux tubes living in three dimensions. In both cases it is observed that weak repulsive forces surge between these classically noninteracting topological defects caused by vacuum quantum fluctuations.
Static quark potential and string tension for compact U(1) in (2+1) dimensions
Loan, M; Hamer, C; Loan, Mushtaq; Brunner, Michael; Hamer, Chris
2002-01-01
Compact U(1) lattice gauge theory in (2+1) dimensions is studied on anisotropic lattices using Standard Path Integral Monte Carlo techniques. We extract the static quark potential and the string tension from 1.0 <= Dtau <= 0.333 simulations at 1.0 <= beta <= 3.0. Estimating the actual value of the renormalization constant, (c = 44), we observe the evidence of scaling in the string tension for 1.4142 <= beta <= 2.5; with the asymptotic behaviour in the large-beta limit given by K sqrt(beta) = e^(-2.494 beta +2.29). Extrapolations are made to the extreme anisotropic or "Hamiltonian" limit, and comparisons are made with previous estimates obtained by various other methods in the Hamiltonian formulation.
Abelian Cosmic String in the Starobinsky model of gravity
Graça, J P Morais
2015-01-01
In this paper, I analyze numerically the behaviour of the solutions corresponding to an Abelian string in the framework of the Starobinsky model. The role played by the quadratic term in the Lagrangian density $f(R) = R + \\eta R^2$ of this model is emphasized and the results are compared with the corresponding ones obtained in the framework of Einstein's theory of gravity. I have found that the angular deficit generated by the string is lowered as the $\\eta$ parameter increases, allowing a well-behaved spacetime for a large range of values of the symmetry-breaking scale.
The Stability of D-term Cosmic Strings
Collinucci, A; Van Proeyen, A; Collinucci, Andres; Smyth, Paul; Proeyen, Antoine Van
2007-01-01
In this note, which is based on hep-th/0611111, we review the stability of the static, positive deficit angle D-term string solutions of D=4, N=1 supergravity with a constant Fayet-Iliopoulos term. We prove the semi-classical stability of this class of solutions using standard positive energy theorem techniques. In particular, we discuss how the negative deficit angle D-term string, which also solves the Killing spinor equations, violates the dominant energy condition and so is excluded from our arguments.
Isospin Invariance and the Vacuum Polarization Energy of Cosmic Strings
Weigel, H; Graham, N
2016-01-01
We corroborate the previously applied spectral approach to compute the vacuum polarization energy of string configurations in models similar to the standard model of particle physics. The central observation underlying this corroboration is the existence of a particular global isospin transformation of the string configuration. Under this transformation the single particle energies of the quantum fluctuations are invariant, while the inevitable implementation of regularization and renormalization requires operations that are not invariant. We verify numerically that all such variances eventually cancel, and that the vacuum polarization energy obtained in the spectral approach is indeed gauge invariant.
Measuring CMB non-Gaussianity as a probe of Inflation and Cosmic Strings
Regan, D M
2011-01-01
The leading candidate for the very early universe is described by a period of rapid expansion known as inflation. While the standard paradigm invokes a single slow-rolling field, many different models may be constructed which fit the current observational evidence. In this work we outline theoretical and observational studies of non-Gaussian fluctuations produced by models of inflation and by cosmic strings - topological defects that may be generated in the very early universe during a phase transition. In particular, we consider the imprint of cosmic strings on the cosmic microwave background (CMB) and describe a formalism for the measurement of general four-point correlation functions, or trispectra, using the CMB. In addition we describe the application of our methodology to non-Gaussian signals imprinted in the large scale structure of the universe. Such deviations from Gaussianity are generally expressed in terms of the so-called bispectrum and trispectrum.
Dynamics of cosmic strings with higher-dimensional windings
Yamauchi, Daisuke
2014-01-01
We consider F-strings with arbitrary configurations in the Minkowski directions of a higher-dimensional spacetime, which also wrap and spin around $S^1$ subcycles of constant radius in an arbitrary internal manifold. We show that, for any such configuration, the motion of the windings in the compact space may render the string effectively tensionless from a four-dimensional perspective, so that it remains static with respect to the large dimensions. Such a critical configuration occurs when exactly half the square of the string length lies in the large dimensions and half lies in the compact space. As examples, long straight strings and circular loops are considered in detail, and the solutions to the equations of motion, that are compatible with the tensionless condition, are presented. The critical solution is then seen to arise as a special case, in which the wavelength of the windings is equal to their circumference. Under the process of dimensional reduction, in which higher-dimensional motion is equival...
Searching for a Long Cosmic String Through the Gravitational Lensing Effect
Shirasaki, Y; Mizumoto, Y; Kakimoto, F; Ogio, S; Yasuda, N; Tanaka, M; Yahagi, H; Nagashima, M; Kosugi, G; Shirasaki, Yuji; Matsuzaki, Ei-ichi; Mizumoto, Yoshihiko; Kakimoto, Fumio; Ogio, Syoichi; Yasuda, Naoki; Tanaka, Masahiro; Yahagi, Hideki; Nagashima, Masahiro; Kosugi, George
2003-01-01
It has been suggested that cosmic strings produced at a phase transition in the early universe can be the origin of the extremely high energy cosmic rays (EHCR) observed by AGASA above 10^20 eV. Superheavy cosmic strings with linear mass density of 10^22 g/cm can be indirectly observed through the gravitational lensing effect the distant galaxies. The lensing effect by a long straight object can be characterized by a line of double galaxies or quasars with angular separation of about 5 arcsec. We have searched for aligned double objects from the archived data taken by the Subaru Prime Focus Camera (Suprime-Cam). The Suprime-Cam has a great advantage in observing the wide field of view (30x30 arcmin^2) with high sensitivity (R<26 400s exposure), so it is suitable for this research. In this paper, we describe the result of simulation study for developing the method of searching the objects lensed by cosmic strings, and present the observational result obtained by this method.
First Structure Formation. II. Cosmic String plus Hot Dark Matter Models
Energy Technology Data Exchange (ETDEWEB)
Abel, T. [Laboratory for Computational Astrophysics, National Center for Supercomputing Applications, University of Illinois at Urbana--Champaign, 405 North Mathews Avenue, Urbana, IL 61801 (United States)]|[Max-Planck-Institut fuer Astrophysik, 85748 Garching (Germany); Stebbins, A. [NASA/Fermilab Astrophysics Center, Fermilab, Box 500, Batavia, IL 60510-0500 (United States); Anninos, P. [Laboratory for Computational Astrophysics, National Center for Supercomputing Applications, University of Illinois at Urbana--Champaign, 405 North Mathews Avenue, Urbana, IL 61801 (United States); Norman, M.L. [Laboratory for Computational Astrophysics, National Center for Supercomputing Applications, University of Illinois at Urbana--Champaign, 405 North Mathews Avenue, Urbana, IL 61801 (United States)]|[Max-Planck-Institut fuer Astrophysik, 85748 Garching (Germany)
1998-12-01
We examine the structure of baryonic wakes in the cosmological fluid that would form behind grand unified theory{endash}scale cosmic strings at early times (redshifts {ital z} {approx_gt} 100) in a neutrino-dominated universe. We show, using simple analytical arguments as well as one- and two-dimensional hydrodynamical simulations, that these wakes will {ital not} be able to form interesting cosmological objects before the neutrino component collapses. The width of the baryonic wakes ({approx_lt}10 kpc comoving) is smaller than the scale of wiggles on the strings and is probably not enhanced by the wiggliness of the string network. {copyright} {ital {copyright} 1998.} {ital The American Astronomical Society}
Formation of large-scale structure from cosmic strings and massive neutrinos
Scherrer, Robert J.; Melott, Adrian L.; Bertschinger, Edmund
1989-01-01
Numerical simulations of large-scale structure formation from cosmic strings and massive neutrinos are described. The linear power spectrum in this model resembles the cold-dark-matter power spectrum. Galaxy formation begins early, and the final distribution consists of isolated density peaks embedded in a smooth background, leading to a natural bias in the distribution of luminous matter. The distribution of clustered matter has a filamentary appearance with large voids.
Scattering and bound states for the Hulthen potential in a cosmic string background
Energy Technology Data Exchange (ETDEWEB)
Hosseinpour, Mansoureh; Hassanabadi, Hassan [Shahrood University of Technology, Physics Department, P. O. Box: 3619995161-316, Shahrood (Iran, Islamic Republic of); Andrade, Fabiano M. [Universidade Estadual de Ponta Grossa, Departamento de Matematica e Estatistica, Ponta Grossa, PR (Brazil); Silva, Edilberto O. [Universidade Federal do Maranhao, Departamento de Fisica, Sao Luis, MA (Brazil)
2017-05-15
In this work we study the Dirac equation with vector and scalar potentials in the spacetime generated by a cosmic string. Using an approximation for the centrifugal term, a solution for the radial differential equation is obtained. We consider the scattering states under the Hulthen potential and obtain the phase shifts. From the poles of the scattering S-matrix the states energies are determined as well. (orig.)
Salazar-Ramírez, M.; Ojeda-Guillén, D.; Mota, R. D.
2016-09-01
We study a relativistic quantum particle in cosmic string spacetime in the presence of a magnetic field and a Coulomb-type scalar potential. It is shown that the radial part of this problem possesses the su(1 , 1) symmetry. We obtain the energy spectrum and eigenfunctions of this problem by using two algebraic methods: the Schrödinger factorization and the tilting transformation. Finally, we give the explicit form of the relativistic coherent states for this problem.
PhD Thesis: String theory in the early universe
Gwyn, Rhiannon
2009-01-01
The intersection of string theory with cosmology is unavoidable in the early universe, and its exploration may shine light on both fields. In this thesis, three papers at this intersection are presented and reviewed, with the aim of providing a thorough and pedagogical guide to their results. First, we address the longstanding problem of finding a string theory realisation of the axion. Using warped compactifications in heterotic string theory, we show that the axion decay constant can be lowered to acceptable values by the warp factor. Next, we move to the subject of cosmic strings, whose network evolution could have important consequences for astrophysics and cosmology. In particular, there are quantitative differences between cosmic superstring networks and GUT cosmic string networks. We investigate the properties of cosmic superstring networks in warped backgrounds, giving the tension and properties of three-string junctions in these backgrounds. Finally, we examine the possibility that cosmic strings in ...
Alignment of Quasar Polarizations on Large Scales Explained by Warped Cosmic Strings
Slagter, Reinoud Jan
2016-01-01
The recently discovered alignment of quasar polarizations on very large scales could possibly explained by considering cosmic strings on a warped five dimensional spacetime. Compact objects, such as cosmic strings, could have tremendous mass in the bulk, while their warped manifestations in the brane can be consistent with general relativity in 4D. The self-gravitating cosmic string induces gravitational wavelike disturbances which could have effects felt on the brane, i.e., the massive effective 4D modes (Kaluza-Klein modes) of the perturbative 5D graviton. This effect is amplified by the time dependent part of the warp factor. Due to this warp factor, disturbances don't fade away during the expansion of the universe. From a non-linear perturbation analysis it is found that the effective Einstein 4D equations on an axially symmetric spacetime, contain a "back-reaction" term on the righthand side caused by the projected 5D Weyl tensor and can act as a dark energy term. The propagation equations to first order...
Energy Production in the Formation of a Finite Thickness Cosmic String
Brevik, I
2000-01-01
The classical electromagnetic modes outside a long, straight, superconducting cosmic string are calculated, assuming the string to be surrounded by a superconducting cylindric surface of radius R. Thereafter, by use of a Bogoliubov-type argument, the electromagnetic energy W produced per unit length in the lowest two modes is calculated when the string is formed "suddenly". The essential new element in the present analysis as compared with prior work of Parker [Phys. Rev. Lett. {\\bf 59}, 1369 (1987)] and Brevik and Toverud [Phys. Rev. D {\\bf 51}, 691 (1995)], is that the radius {\\it a} of the string is assumed finite, thus necessitating Neumann functions to be included in the fundamental modes. We find that the theory is changed significantly: W is now strongly concentrated in the lowest mode $(m,s)=(0,1)$, whereas the proportionality $W \\propto (G\\mu /t)^2$ that is characteristic for zero-width strings is found in the next mode (1,1). Here G is the gravitational constant,
Semiclassical models for uniform-density Cosmic Strings and Relativistic Stars
Campanelli, M; Campanelli, Manuela; Lousto, Carlos O.
1996-01-01
In this paper we show how quantum corrections, although perturbatively small, may play an important role in the analysis of the existence of some classical models. This, in fact, appears to be the case of static, uniform--density models of the interior metric of cosmic strings and neutron stars. We consider the fourth order semiclassical equations and first look for perturbative solutions in the coupling constants $\\alpha$ and $\\beta$ of the quadratic curvature terms in the effective gravitational Lagrangian. We find that there is not a consistent solution; neither for strings nor for spherical stars. We then look for non--perturbative solutions and find an explicit approximate metric for the case of straight cosmic strings. We finally analyse the contribution of the non--local terms to the renormalized energy--momentum tensor and the possibility of this terms to allow for a perturbative solution. We explicitly build up a particular renormalized energy--momentum tensor to fulfill that end. These state--depend...
Non-thermal Production of Neutralino Cold Dark Matter from Cosmic String Decays
Jeannerot, R; Brandenberger, R H
1999-01-01
We propose a mechanism of nonthermal production of a neutralino cold dark matter particle, $\\chi$, from the decay of cosmic strings which form from the spontaneous breaking of a U(1) gauge symmetry, such as $U_{B-L}(1)$, in an extension of the minimal supersymmetric standard model (MSSM). By explicit calculation, we point out that with a symmetry breaking scale $\\eta$ of around $10^8$ GeV, the decay of cosmic strings can give rise to $\\Omega_\\chi \\simeq 1$. This gives a new constraint on supersymmetric models. For example, the dark matter produced from strings will overclose the universe if $\\eta$ is near the electroweak symmetry breaking scale. To be consistent with $\\Omega_\\chi \\leq 1$, the mass of the new U(1) gauge boson must be much larger than the Fermi scale which makes it unobservable in upcoming accelerator experiments. In a supersymmetric model with an extra $U_{B-L}(1)$ symmetry, the requirement of provided neutrino masses are generated by the see-saw mechanism.
Models for Small-Scale Structure on Cosmic Strings: II. Scaling and its stability
Vieira, J P P; Shellard, E P S
2016-01-01
We make use of the formalism described in a previous paper [Martins {\\it et al.} Phys. Rev. D90 (2014) 043518] to address general features of wiggly cosmic string evolution. In particular, we highlight the important role played by poorly understood energy loss mechanisms and propose a simple ansatz which tackles this problem in the context of an extended velocity-dependent one-scale model. We find a general procedure to determine all the scaling solutions admitted by a specific string model and study their stability, enabling a detailed comparison with future numerical simulations. A simpler comparison with previous Goto-Nambu simulations supports earlier evidence that scaling is easier to achieve in the matter era than in the radiation era. In addition, we also find that the requirement that a scaling regime be stable seems to notably constrain the allowed range of energy loss parameters.
Propagation of cosmic rays through the atmosphere in the quark-gluon strings model
Erlykin, A. D.; Krutikova, N. P.; Shabelski, Y. M.
1985-01-01
The quark-gluon strings model succeeds in the description of multiple hadron production in the central rapidity region of nucleon-nucleon interctions. This model was developed for hadron-nucleus interactions and used for calculation of the cosmic ray propagation through the atmosphere. It is shown that at energies 10 to the 11th power to the 12th power eV, this model gives a satisfactory description of experimental data. But with the increase of the energy up to approximately 10 to the 14th power eV, results of calculations and of experiments begin to differ and this difference rises with the energy. It may indicate that the scaling violation in the fragmentation region of inclusive spectra for hadron-nucleus interactions is stronger than in the quark-gluon strings model.
Formation of large-scale structure from cosmic-string loops and cold dark matter
Melott, Adrian L.; Scherrer, Robert J.
1987-01-01
Some results from a numerical simulation of the formation of large-scale structure from cosmic-string loops are presented. It is found that even though G x mu is required to be lower than 2 x 10 to the -6th (where mu is the mass per unit length of the string) to give a low enough autocorrelation amplitude, there is excessive power on smaller scales, so that galaxies would be more dense than observed. The large-scale structure does not include a filamentary or connected appearance and shares with more conventional models based on Gaussian perturbations the lack of cluster-cluster correlation at the mean cluster separation scale as well as excessively small bulk velocities at these scales.
Non-Abelian cosmic strings in de Sitter and anti-de Sitter space
Santos, Antônio de Pádua; Bezerra de Mello, Eugênio R.
2016-09-01
In this paper we investigate the non-Abelian cosmic string in de Sitter and anti-de Sitter spacetimes. In order to do that we construct the complete set of equations of motion considering the presence of a cosmological constant. By using numerical analysis we provide the behavior of the Higgs and gauge fields and also of the metric tensor for specific values of the physical parameters of the theory. For the de Sitter case, we find the appearance of an horizon. This horizon is consequence of the presence of the cosmological constant, and its position strongly depends on the value of the gravitational coupling. In the anti-de Sitter case, we find that the system does not present horizons. In fact the new feature of this system is related with the behavior of the (00) and (z z ) components of the metric tensor. They present a strong increasing behavior for large distance from the string.
Scalar bosons under the influence of noninertial effects in the cosmic string spacetime
Energy Technology Data Exchange (ETDEWEB)
Santos, L.C.N.; Barros, C.C. [Universidade Federal de Santa Catarina, Dept. de Fisica, CFM, Florianopolis, SC (Brazil)
2017-03-15
In this paper we present two different classes of solutions for the Klein-Gordon equation in the presence of a scalar potential under the influence of noninertial effects in the cosmic string spacetime. We show that noninertial effects restrict the physical region of the spacetime where the particle can be placed, and furthermore that the energy levels are shifted by these effects. In addition, we show that the presence of a Coulomb-like scalar potential allows the formation of bound states when the Klein-Gordon equation is considered in this kind of spacetime. (orig.)
Scalar bosons under the influence of noninertial effects in the cosmic string spacetime
Santos, L C N
2016-01-01
In this paper we present two different classes of solutions for the Klein-Gordon equation in the presence of a scalar potential under the influence of noninertial effects in the cosmic string spacetime. We show that noninertial effects restrict the physical region of the spacetime where the particle can be placed, and furthermore that the energy levels are shifted by these effects. In addition, we show that the presence of a Coulomb-like scalar potential allows the formation bound states when the Klein-Gordon equation is considered in this kind of spacetime.
On quantum magnetic flux lines, BPS vortex zero modes, and one-loop string tension shifts
Alonso-Izquierdo, A; Mayado, M de la Torre
2016-01-01
Spectral heat kernel/zeta function regularization procedures are employed in this paper to control the divergences arising from vacuum fluctuations of Bogomolnyi-Prasad-Sommerfield vortices in the Abelian Higgs model. Zero modes of vortex fluctuations are the source of difficulties appearing when the standard Gilkey-de Witt expansion is performed. A modified GdW expansion is developed to diminish the impact of the infrared divergences due to the vortex zero modes. With this new technique at our disposal we compute the one-loop vortex mass shift in the planar AHM and the quantum corrections to the string tension of the magnetic flux tubes living in three dimensions. In both cases it is observed that weak repulsive forces surge between these classically non interacting topological defects caused by vacuum quantum fluctuations.
Vacuum structure and string tension in Yang-Mills dimeron ensembles
Zimmermann, Falk; Muller-Preussker, Michael
2012-01-01
We numerically simulate ensembles of SU(2) Yang-Mills dimeron solutions with a statistical weight determined by the classical action and perform a comprehensive analysis of their properties. In particular, we examine the extent to which these ensembles capture topological and confinement properties of the Yang-Mills vacuum. This further allows us to test the classic picture of meron-induced quark confinement as triggered by dimeron dissociation. At small bare couplings, spacial, topological-charge and color correlations among the dimerons generate a short-range order which screens topological charges. With increasing coupling this order weakens rapidly, however, in part because the dimerons gradually dissociate into their meron constituents. Monitoring confinement properties by evaluating Wilson-loop expectation values, we find the growing disorder due to these progressively liberated merons to generate a finite and (with the coupling) increasing string tension. The short-distance behavior of the static quark...
Bursts of gravitational radiation from superconducting cosmic strings and the neutrino mass spectrum
Energy Technology Data Exchange (ETDEWEB)
Mosquera Cuesta, Herman J. [Abdus Salam International Centre for Theoretical Physics, Trieste (Italy)]|[Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil). Lab. de Cosmologia e Fisica Experimental de Altas Energias; Morejon Gonzalez, Danays [Pontificia Univ. Catolica do Rio de Janeiro, RJ (Brazil)
2001-02-01
Berezinsky, Hnatyk and Vilenkin showed that superconducting cosmic strings could be central engines for cosmological gamma-ray bursts and for producing the neutrino component of ultra-high energy cosmic rays. A consequence of this mechanism would be that a detectable cusp-triggered gravitational wave burst should be release simultaneously with the {gamma}-ray surge. If contemporary measurements of both {gamma} and {nu} radiation could be made for any particular source, then the cosmological time-delay between them might be useful for putting unprecedently tight bounds on the neutrino mass spectrum. Such measurements could consistently verify or rule out the model since strictly correlated behaviour is expected for the duration of the event and for the time variability of the spectra. (author)
Boumali, Abdelmalek
2016-01-01
In this paper, the problem of a two-dimensional Duffin-Petiau-Kemmer (DKP) oscillator in the presence of a coulomb potential in the cosmic string background is solved. The eigensolutions of the problem in question have been found, and the influence of the cosmic string space-time on the eigenvalues has been analyzed.
Energy Technology Data Exchange (ETDEWEB)
Bakke, K., E-mail: kbakke@fisica.ufpb.br [Departamento de Física, Universidade Federal da Paraíba, Caixa Postal 5008, 58051-900, João Pessoa-PB (Brazil); Furtado, C., E-mail: furtado@fisica.ufpb.br [Departamento de Física, Universidade Federal da Paraíba, Caixa Postal 5008, 58051-900, João Pessoa-PB (Brazil); Belich, H., E-mail: belichjr@gmail.com [Departamento de Física e Química, Universidade Federal do Espírito Santo, Av. Fernando Ferrari, 514, Goiabeiras, 29060-900, Vitória, ES (Brazil)
2016-09-15
From the modified Maxwell theory coupled to gravity, we establish a possible scenario of the violation of the Lorentz symmetry and write an effective metric for the cosmic string spacetime. Then, we investigate the arising of an analogue of the Anandan quantum phase for a relativistic Dirac neutral particle with a permanent magnetic dipole moment in the cosmic string spacetime under Lorentz symmetry breaking effects. Besides, we analyse the influence of the effects of the Lorentz symmetry violation and the topology of the defect on the Aharonov–Casher geometric quantum phase in the nonrelativistic limit.
Bakke, K.; Furtado, C.; Belich, H.
2016-09-01
From the modified Maxwell theory coupled to gravity, we establish a possible scenario of the violation of the Lorentz symmetry and write an effective metric for the cosmic string spacetime. Then, we investigate the arising of an analogue of the Anandan quantum phase for a relativistic Dirac neutral particle with a permanent magnetic dipole moment in the cosmic string spacetime under Lorentz symmetry breaking effects. Besides, we analyse the influence of the effects of the Lorentz symmetry violation and the topology of the defect on the Aharonov-Casher geometric quantum phase in the nonrelativistic limit.
Fermionic vacuum polarization by a magnetic tube in the cosmic string spacetime
de Sousa, M S Maior; de Mello, E R Bezerra
2016-01-01
In this paper, we consider a charged massive fermionic quantum field in the idealized cosmic string spacetime and in the presence of a magnetic field confined in a cylindrical tube of finite radius. Three distinct configurations for the magnetic fields are taken into account: (i) a cylindrical shell of radius $a$, (ii) a magnetic field proportional to $1/r$ and (iii) a constant magnetic field. In these three cases, the axis of the infinitely long tube of radius $a$ coincides with the cosmic string. Our main objectives in this paper are to analyze the fermionic condensat (FC) e and the vacuum expectation value (VEV) of the fermionic energy-momentum tensor. In order to do that, we explicitly construct the complete set of normalized wave-functions for each configuration of magnetic field. We show that in the region outside the tube, the FC and the VEV of the energy-momentum tensor are decomposed into two parts: the first ones correspond to the zero-thickness magnetic flux contributions, and the seconds are induc...
Gravitating vortices, cosmic strings, and the K\\"ahler--Yang--Mills equations
Álvarez-Cónsul, Luis; García-Prada, Oscar
2015-01-01
In this work we study equations describing Abelian vortices on a Riemann surface with back reaction of the metric. The gravitating vortex equations are derived by dimensional reduction of the K\\"ahler--Yang--Mills equations on the product of the complex projective line with a Riemann surface, and inherit their moment map interpretation. Applying the general theory for the K\\"ahler--Yang--Mills equations, we give evidence of an analogue of the Donaldson--Uhlembeck--Yau Theorem for gravitating vortices --- commonly referred to as a Hitchin--Kobayashi correspondence. As a particular case of the gravitating vortex equations on $\\mathbb{P}^1$ we find the Einstein--Bogomol'nyi equations, whose solutions correspond to Nielsen--Olesen cosmic strings in the Bogomol'nyi phase. Using an existence theorem by Yisong Yang, our main result implies a Hitchin--Kobayashi correspondence for the Einstein--Bogomol'nyi equations. In particular, we prove a conjecture by Yang about the non-existence of cosmic strings on $\\mathbb{P}^...
On the gravitational, dilatonic, and axionic radiative damping of cosmic strings
Buonanno, Alessandra; Damour, Thibault
1999-07-01
We study the radiation reaction on cosmic strings due to the emission of dilatonic, gravitational and axionic waves. After verifying the (on average) conservative nature of the time-symmetric self-interactions, we concentrate on the finite radiation damping force associated with the half-retarded minus half-advanced ``reactive'' fields. We reexamine a recent proposal of using a ``local back reaction approximation'' for the reactive fields. Using dimensional continuation as a convenient technical tool, we find, contrary to previous claims, that this proposal leads to antidamping in the case of the axionic field, and to zero (integrated) damping in the case of the gravitational field. One gets normal positive damping only in the case of the dilatonic field. We propose to use a suitably modified version of the local dilatonic radiation reaction as a substitute for the exact (nonlocal) gravitational radiation reaction. The incorporation of such a local approximation to gravitational radiation reaction should allow one to complete, in a computationally nonintensive way, string network simulations and to give better estimates of the amount and spectrum of gravitational radiation emitted by a cosmologically evolving network of massive strings.
Belich, H
2015-01-01
The behaviour of a relativistic scalar particle subject to a scalar potential under the effects of the violation of the Lorentz symmetry in the cosmic string spacetime is discussed. It is considered two possible scenarios of the Lorentz symmetry breaking in the CPT-even gauge sector of the Standard Model Extension defined by a tensor $\\left(K_{F}\\right)_{\\mu\
The Hamiltonian approach to Yang-Mills (2+1): Expansion scheme and corrections to string tension
Energy Technology Data Exchange (ETDEWEB)
Karabali, Dimitra, E-mail: dimitra.karabali@lehman.cuny.ed [Department of Physics and Astronomy, Lehman College of the CUNY, Bronx, NY 10468 (United States); Nair, V.P., E-mail: vpn@sci.ccny.cuny.ed [Physics Department, City College of the CUNY, New York, NY 10031 (United States); Yelnikov, Alexandr, E-mail: yelnikov@yahoo.co [Physics Department, City College of the CUNY, New York, NY 10031 (United States)
2010-01-11
We carry out further analysis of the Hamiltonian approach to Yang-Mills theory in 2+1 dimensions which helps to place the calculation of the vacuum wave function and the string tension in the context of a systematic expansion scheme. The solution of the Schroedinger equation is carried out recursively. The computation of correlators is re-expressed in terms of a two-dimensional chiral boson theory. The effective action for this theory is calculated to first order in our expansion scheme and to the fourth order in a kinematic expansion parameter. The resulting corrections to the string tension are shown to be very small, in the range -0.3% to -2.8%, moving our prediction closer to the recent lattice estimates.
Gravitating Vortices, Cosmic Strings, and the Kähler-Yang-Mills Equations
Álvarez-Cónsul, Luis; Garcia-Fernandez, Mario; García-Prada, Oscar
2017-04-01
In this paper we construct new solutions of the Kähler-Yang-Mills equations, by applying dimensional reduction methods to the product of the complex projective line with a compact Riemann surface. The resulting equations, which we call gravitating vortex equations, describe abelian vortices on the Riemann surface with back reaction of the metric. As a particular case of these gravitating vortices on the Riemann sphere we find solutions of the Einstein-Bogomol'nyi equations, which physically correspond to Nielsen-Olesen cosmic strings in the Bogomol'nyi phase. We use this to provide a Geometric Invariant Theory interpretation of an existence result by Y. Yang for the Einstein-Bogomol'nyi equations, applying a criterion due to G. Székelyhidi.
Hawking radiation via tunneling from the spacetime of a spinning cosmic string black holes
Jusufi, Kimet
2015-01-01
In this paper, we study Hawking radiation as a massless particles tunneling process across the event horizon from the Schwarzschild and Reissner-Nordstr\\"om black holes pierced by an infinitely long spinning cosmic string and a global monopole. Applying the WKB approximation and using a generalized Painlev\\'e line element for stationary axisymmetric spacetimes, also by taking into account that the ADM mass of the black hole decreases due to the presence of topological defects, it is shown that the Hawking temperature remains unchanged for these black holes. The tunneling of charged massive particles from Reissner-Nordstr\\"om black holes is also studied, in both cases the tunneling rate is related to the change of the Bekenstein-Hawking entropy. The results extend the work of Parikh and Wilczek and are consistent with an underlying unitary theory.
Gravitating Vortices, Cosmic Strings, and the Kähler-Yang-Mills Equations
Álvarez-Cónsul, Luis; Garcia-Fernandez, Mario; García-Prada, Oscar
2016-09-01
In this paper we construct new solutions of the Kähler-Yang-Mills equations, by applying dimensional reduction methods to the product of the complex projective line with a compact Riemann surface. The resulting equations, which we call gravitating vortex equations, describe abelian vortices on the Riemann surface with back reaction of the metric. As a particular case of these gravitating vortices on the Riemann sphere we find solutions of the Einstein-Bogomol'nyi equations, which physically correspond to Nielsen-Olesen cosmic strings in the Bogomol'nyi phase. We use this to provide a Geometric Invariant Theory interpretation of an existence result by Y. Yang for the Einstein-Bogomol'nyi equations, applying a criterion due to G. Székelyhidi.
Fermionic vacuum polarization by an Abelian magnetic tube in the cosmic string spacetime
Maior de Sousa, M. S.; Ribeiro, R. F.; Bezerra de Mello, E. R.
2017-02-01
In this paper, we consider a charged massive fermionic quantum field in the idealized cosmic string spacetime and in the presence of a magnetic field confined in a cylindrical tube of finite radius. Three distinct configurations for the magnetic fields are taken into account: (i) a cylindrical shell of radius a , (ii) a magnetic field proportional to 1 /r , and (iii) a constant magnetic field. In these three cases, the axis of the infinitely long tube of radius a coincides with the cosmic string. Our main objectives in this paper are to analyze the fermionic condensate (FC) and the vacuum expectation value (VEV) of the fermionic energy-momentum tensor. In order to do that, we explicitly construct the complete set of normalized wave functions for each configuration of the magnetic field. We show that in the region outside the tube, the FC and the VEV of the energy-momentum tensor are decomposed into two parts: The first ones correspond to the zero-thickness magnetic flux contributions, and the second ones are induced by the nontrivial structure of the magnetic field, named core-induced contributions. The latter present specific forms depending on the magnetic field configuration considered. We also show that the VEV of the energy-momentum tensor is diagonal and obeys the conservation condition, and its trace is expressed in terms of the fermionic condensate. The zero-thickness contributions to the FC and VEV of the energy-momentum tensor depend only on the fractional part of the ration of the magnetic flux inside the tube by the quantum one. As to the core-induced contributions, they depend on the total magnetic flux inside the tube and, consequently, in general, are not a periodic function of the magnetic flux.
Belich, H.; Bakke, K.
2016-03-01
The behavior of a relativistic scalar particle subject to a scalar potential under the effects of the violation of the Lorentz symmetry in the cosmic string space-time is discussed. It is considered two possible scenarios of the Lorentz symmetry breaking in the CPT-even gauge sector of the Standard Model Extension defined by a tensor (KF)μναβ. Then, by introducing a scalar potential as a modification of the mass term of the Klein-Gordon equation, it is shown that the Klein-Gordon equation in the cosmic string space-time is modified by the effects of the Lorentz symmetry violation backgrounds and bound state solution to the Klein-Gordon equation can be obtained.
Binétruy, Pierre; Caprini, Chiara; Dufaux, Jean-François
2012-01-01
We review the main cosmological backgrounds of gravitational waves accessible to detectors in space sensitive to the range $10^{-4}$ to $10^{-1}$ Hz, with a special emphasis on those backgrounds due to phase transitions or networks of cosmic strings. We apply this to identify the scientific potential of the NGO/eLISA mission of ESA, regarding the detectability of such cosmological backgrounds.
Scattering and bound states of a spin--1/2 neutral particle in the cosmic string spacetime
Silva, Edilberto O; Filgueiras, Cleverson
2016-01-01
In this paper the relativistic quantum dynamics of a spin-1/2 neutral particle with a magnetic moment $\\mu$ in the cosmic string spacetime is reexamined by applying the von Neumann theory of self-adjoint extensions. Contrary to previous studies where the interaction between the spin and the line of charge were neglected, here we consider its effects. This interaction gives rise to a point interaction: $\\boldsymbol{\
Topological defects in alternative theories to cosmic inflation and string cosmology
Alexander, Stephon H. S.
The physics of the Early Universe is described in terms of the inflationary paradigm, which is based on a marriage between Einstein's general theory of relativity minimally coupled to quantum field theory. Inflation was posed to solve some of the outstanding problems of the Standard Big Bang Cosmology (SBB) such as the horizon, formation of structure and monopole problems. Despite its observational and theoretical successes, inflation is plagued with fine tuning and initial singularity problems. On the other hand, superstring/M theory, a theory of quantum gravity, possesses symmetries which naturally avoid space-time singularities. This thesis investigates alternative theories to cosmic inflation for solving the initial singularity, horizon and monopole problems, making use of topological defects. It was proposed by Dvali, Liu and Vaschaspati that the monopole problem can be solved without inflation if domain walls "sweep" up the monopoles in the early universe, thus reducing their number density significantly. Necessary for this mechanism to work is the presence of an attractive force between the monopole and the domain wall as well as a channel for the monopole's unwinding. We show numerically and analytically in two field theory models that for global defects the attraction is a universal result but the unwinding is model specific. The second part of this thesis investigates a string/M theory inspired model for solving the horizon problem. It was proposed by Moffat, Albrecht and Magueijo that the horizon problem is solved with a "phase transition" associated with a varying speed of light before the surface of last scattering. We provide a string/M theory mechanism based on assuming that our space-time is a D-3 brane probing a bulk supergravity black hole bulk background. This mechanism provides the necessary time variation of the velocity of light to solve the horizon problem. We suggest a mechanism which stablilizes the speed of light on the D-3 brane. We
Energy Technology Data Exchange (ETDEWEB)
Vieira, H.S., E-mail: horacio.santana.vieira@hotmail.com [Departamento de Física, Universidade Federal da Paraíba, Caixa Postal 5008, CEP 58051-970, João Pessoa, PB (Brazil); Centro de Ciências, Tecnologia e Saúde, Universidade Estadual da Paraíba, CEP 58233-000, Araruna, PB (Brazil); Bezerra, V.B., E-mail: valdir@fisica.ufpb.br [Departamento de Física, Universidade Federal da Paraíba, Caixa Postal 5008, CEP 58051-970, João Pessoa, PB (Brazil); Silva, G.V., E-mail: gislainevs@hotmail.com [Departamento de Física, Universidade Federal da Paraíba, Caixa Postal 5008, CEP 58051-970, João Pessoa, PB (Brazil)
2015-11-15
Charged massive scalar fields are considered in the gravitational and electromagnetic field produced by a dyonic black hole with a cosmic string along its axis of symmetry. Exact solutions of both angular and radial parts of the covariant Klein–Gordon equation in this background are obtained, and are given in terms of the confluent Heun functions. The role of the presence of the cosmic string in these solutions is showed up. From the radial solution, we obtain the exact wave solutions near the exterior horizon of the black hole, and discuss the Hawking radiation spectrum and the energy flux. -- Highlights: •A cosmic string is introduced along the axis of symmetry of the dyonic black hole. •The covariant Klein–Gordon equation for a charged massive scalar field in this background is analyzed. •Both angular and radial parts are transformed to a confluent Heun equation. •The resulting Hawking radiation spectrum and the energy flux are obtained.
Bianchi Type-V Bulk Viscous Cosmic String in f(R,T Gravity with Time Varying Deceleration Parameter
Directory of Open Access Journals (Sweden)
Bïnaya K. Bishi
2015-01-01
Full Text Available We study the Bianchi type-V string cosmological model with bulk viscosity in f(R,T theory of gravity by considering a special form and linearly varying deceleration parameter. This is an extension of the earlier work of Naidu et al., 2013, where they have constructed the model by considering a constant deceleration parameter. Here we find that the cosmic strings do not survive in both models. In addition we study some physical and kinematical properties of both models. We observe that in one of our models these properties are identical to the model obtained by Naidu et al., 2013, and in the other model the behavior of these parameters is different.
Background constraints in the infinite tension limit of the heterotic string
Azevedo, Thales; Jusinskas, Renann Lipinski
2016-08-01
In this work we investigate the classical constraints imposed on the supergravity and super Yang-Mills backgrounds in the α' → 0 limit of the heterotic string using the pure spinor formalism. Guided by the recently observed sectorization of the model, we show that all the ten-dimensional constraints are elegantly obtained from the single condition of nilpotency of the BRST charge.
PhD Thesis: String theory in the early universe
Gwyn, Rhiannon
2009-11-01
The intersection of string theory with cosmology is unavoidable in the early universe, and its exploration may shine light on both fields. In this thesis, three papers at this intersection are presented and reviewed, with the aim of providing a thorough and pedagogical guide to their results. First, we address the longstanding problem of finding a string theory realisation of the axion. Using warped compactifications in heterotic string theory, we show that the axion decay constant can be lowered to acceptable values by the warp factor. Next, we move to the subject of cosmic strings, whose network evolution could have important consequences for astrophysics and cosmology. In particular, there are quantitative differences between cosmic superstring networks and GUT cosmic string networks. We investigate the properties of cosmic superstring networks in warped backgrounds, giving the tension and properties of three-string junctions in these backgrounds. Finally, we examine the possibility that cosmic strings in heterotic string theory could be responsible for generating the galactic magnetic fields that seeded those observed today.
Smolyaninov, Igor I; Smolyaninov, Alexei I
2014-01-01
Cobalt nanoparticle-based ferrofluid in the presence of external magnetic field forms a self-assembled hyperbolic metamaterial. Wave equation describing propagation of extraordinary light inside the ferrofluid exhibits 2+1 dimensional Lorentz symmetry. The role of time in the corresponding effective 3D Minkowski spacetime is played by the spatial coordinate directed along the periodic nanoparticle chains aligned by the magnetic field. Here we present a microscopic study of point, linear and volume defects of the nanoparticle chain structure and demonstrate that they may exhibit strong similarities with such Minkowski spacetime defects as magnetic monopoles, cosmic strings and the recently proposed spacetime cloaks. Experimental observations of such defects are described.
Background constraints in the infinite tension limit of the heterotic string
Azevedo, Thales
2016-01-01
In this work we investigate the classical constraints imposed on the supergravity and super Yang-Mills backgrounds in the $\\alpha'\\to 0$ limit of the heterotic string using the pure spinor formalism. Guided by the recently observed sectorization of the model, we show that all the ten-dimensional constraints are elegantly obtained from the single condition of nilpotency of the BRST charge.
Bakke, K.
2015-07-01
The behaviour of the Landau-Aharonov-Casher system is discussed by showing a case where the external electric field cannot yield the Landau-Aharonov-Casher quantization under the influence of rotating effects in the cosmic string spacetime, but it can yield bound states solutions to the Schrödinger-Pauli equation analogous to having the Landau-Aharonov-Casher system confined to a hard-wall confining potential under the influence of rotating effects and the topology of the cosmic string spacetime (by assuming ω ρ≪1 and neglecting the effects of a gravitational self-force on the particle).
Dilaton and axion bremsstrahlung from collisions of cosmic (super)strings
Melkumova, E Y; Salehi, K
2007-01-01
We calculate dilaton and axion radiation generated in the collision of two straight initially unexcited strings and give a rough cosmological estimate of dilaton and axion densities produced via this mechanism in the early universe.
Dilaton and axion bremsstrahlung from collisions of cosmic (super)strings
Melkumova, E. Yu.; Gal'tsov, D. V.; Salehi, K.
2006-01-01
We calculate dilaton and axion radiation generated in the collision of two straight initially unexcited strings and give a rough cosmological estimate of dilaton and axion densities produced via this mechanism in the early universe.
Probing Cosmic Superstrings with Gravitational Waves
Sousa, Lara
2016-01-01
We compute the stochastic gravitational wave background generated by cosmic superstrings using a semi-analytical velocity-dependent model to describe their dynamics. We show that heavier string types may leave distinctive signatures on the stochastic gravitational wave background spectrum within the reach of present and upcoming gravitational wave detectors. We examine the physically motivated scenario in which the physical size of loops is determined by the gravitational backreaction scale and use NANOGRAV data to derive a conservative constraint of $G\\mu_F<3.2 \\times 10^{-9}$ on the tension of fundamental strings. We demonstrate that approximating the gravitational wave spectrum generated by cosmic superstring networks using the spectrum generated by ordinary cosmic strings with reduced intercommuting probability (which is often done in the literature) leads, in general, to weaker observational constraints on $G\\mu_F$. We show that the inclusion of heavier string types is required for a more accurate cha...
Abbasi, R; Ackermann, M; Adams, J; Aguilar, J A; Ahlers, M; Altmann, D; Andeen, K; Auffenberg, J; Bai, X; Baker, M; Barwick, S W; Baum, V; Bay, R; Beattie, K; Beatty, J J; Bechet, S; Tjus, J Becker; Becker, K -H; Bell, M; Benabderrahmane, M L; BenZvi, S; Berdermann, J; Berghaus, P; Berley, D; Bernardini, E; Bertrand, D; Besson, D Z; Bindig, D; Bissok, M; Blaufuss, E; Blumenthal, J; Boersma, D J; Bohm, C; Bose, D; Böser, S; Botner, O; Brayeur, L; Brown, A M; Bruijn, R; Brunner, J; Buitink, S; Caballero-Mora, K S; Carson, M; Casey, J; Casier, M; Chirkin, D; Christy, B; Clevermann, F; Cohen, S; Cowen, D F; Silva, A H Cruz; Danninger, M; Daughhetee, J; Davis, J C; De Clercq, C; Descamps, F; Desiati, P; de Vries-Uiterweerd, G; DeYoung, T; Díaz-Vélez, J C; Dreyer, J; Dumm, J P; Dunkman, M; Eagan, R; Eisch, J; Ellsworth, R W; Engdegård, O; Euler, S; Evenson, P A; Fadiran, O; Fazely, A R; Fedynitch, A; Feintzeig, J; Feusels, T; Filimonov, K; Finley, C; Fischer-Wasels, T; Flis, S; Franckowiak, A; Franke, R; Frantzen, K; Fuchs, T; Gaisser, T K; Gallagher, J; Gerhardt, L; Gladstone, L; Glüsenkamp, T; Goldschmidt, A; Goodman, J A; Góra, D; Grant, D; Groß, A; Grullon, S; Gurtner, M; Ha, C; Ismail, A Haj; Hallgren, A; Halzen, F; Hanson, K; Heereman, D; Heimann, P; Heinen, D; Helbing, K; Hellauer, R; Hickford, S; Hill, G C; Hoffman, K D; Hoffmann, R; Homeier, A; Hoshina, K; Huelsnitz, W; Hulth, P O; Hultqvist, K; Hussain, S; Ishihara, A; Jacobi, E; Jacobsen, J; Japaridze, G S; Jlelati, O; Johansson, H; Kappes, A; Karg, T; Karle, A; Kiryluk, J; Kislat, F; Kläs, J; Klein, S R; Köhne, J -H; Kohnen, G; Kolanoski, H; Köpke, L; Kopper, C; Kopper, S; Koskinen, D J; Kowalski, M; Krasberg, M; Kroll, G; Kunnen, J; Kurahashi, N; Kuwabara, T; Labare, M; Laihem, K; Landsman, H; Larson, M J; Lauer, R; Lesiak-Bzdak, M; Lünemann, J; Madsen, J; Maruyama, R; Mase, K; Matis, H S; McNally, F; Meagher, K; Merck, M; Mészáros, P; Meures, T; Miarecki, S; Middell, E; Milke, N; Miller, J; Mohrmann, L; Montaruli, T; Morse, R; Movit, S M; Nahnhauer, R; Naumann, U; Nowicki, S C; Nygren, D R; Obertacke, A; Odrowski, S; Olivas, A; Olivo, M; O'Murchadha, A; Panknin, S; Paul, L; Pepper, J A; Heros, C Pérez de los; Pieloth, D; Pirk, N; Posselt, J; Price, P B; Przybylski, G T; Rädel, L; Rawlins, K; Redl, P; Resconi, E; Rhode, W; Ribordy, M; Richman, M; Riedel, B; Rodrigues, J P; Rothmaier, F; Rott, C; Ruhe, T; Rutledge, D; Ruzybayev, B; Ryckbosch, D; Saba, S M; Salameh, T; Sander, H -G; Santander, M; Sarkar, S; Schatto, K; Scheel, M; Scheriau, F; Schmidt, T; Schmitz, M; Schoenen, S; Schöneberg, S; Schönherr, L; Schönwald, A; Schukraft, A; Schulte, L; Schulz, O; Seckel, D; Seo, S H; Sestayo, Y; Seunarine, S; Smith, M W E; Soiron, M; Soldin, D; Spiczak, G M; Spiering, C; Stamatikos, M; Stanev, T; Stasik, A; Stezelberger, T; Stokstad, R G; Stößl, A; Strahler, E A; Ström, R; Sullivan, G W; Taavola, H; Taboada, I; Tamburro, A; Ter-Antonyan, S; Tilav, S; Toale, P A; Toscano, S; Usner, M; van Eijndhoven, N; van der Drift, D; Van Overloop, A; van Santen, J; Vehring, M; Voge, M; Walck, C; Waldenmaier, T; Wallraff, M; Walter, M; Wasserman, R; Weaver, Ch; Wendt, C; Westerhoff, S; Whitehorn, N; Wiebe, K; Wiebusch, C H; Williams, D R; Wissing, H; Wolf, M; Wood, T R; Woschnagg, K; Xu, C; Xu, D L; Xu, X W; Yanez, J P; Yodh, G; Yoshida, S; Zarzhitsky, P; Ziemann, J; Zilles, A; Zoll, M
2012-01-01
The mass composition of high energy cosmic rays depends on their production, acceleration, and propagation. The study of cosmic ray composition can therefore reveal hints of the origin of these particles. At the South Pole, the IceCube Neutrino Observatory is capable of measuring two components of cosmic ray air showers in coincidence: the electromagnetic component at high altitude (2835 m) using the IceTop surface array, and the muonic component above ~1 TeV using the IceCube array. This unique detector arrangement provides an opportunity for precision measurements of the cosmic ray energy spectrum and composition in the region of the knee and beyond. We present the results of a neural network analysis technique to study the cosmic ray composition and the energy spectrum from 1 PeV to 30 PeV using data recorded using the 40-string/40-station configuration of the IceCube Neutrino Observatory.
IceCube Collaboration; Abbasi, R.; Abdou, Y.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Altmann, D.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Baum, V.; Bay, R.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker, J. K.; Becker, K.-H.; Bell, M.; Benabderrahmane, M. L.; BenZvi, S.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Bose, D.; Böser, S.; Botner, O.; Brayeur, L.; Brown, A. M.; Bruijn, R.; Brunner, J.; Buitink, S.; Caballero-Mora, K. S.; Carson, M.; Casey, J.; Casier, M.; Chirkin, D.; Christy, B.; Clevermann, F.; Cohen, S.; Cowen, D. F.; Silva, A. H. Cruz; Danninger, M.; Daughhetee, J.; Davis, J. C.; De Clercq, C.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; DeYoung, T.; Díaz-Vélez, J. C.; Dreyer, J.; Dumm, J. P.; Dunkman, M.; Eagan, R.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feintzeig, J.; Feusels, T.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Flis, S.; Franckowiak, A.; Franke, R.; Frantzen, K.; Fuchs, T.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Goodman, J. A.; Góra, D.; Grant, D.; Groß, A.; Grullon, S.; Gurtner, M.; Ha, C.; Ismail, A. Haj; Hallgren, A.; Halzen, F.; Hanson, K.; Heereman, D.; Heimann, P.; Heinen, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Homeier, A.; Hoshina, K.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jacobi, E.; Jacobsen, J.; Japaridze, G. S.; Jlelati, O.; Johansson, H.; Kappes, A.; Karg, T.; Karle, A.; Kiryluk, J.; Kislat, F.; Kläs, J.; Klein, S. R.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krasberg, M.; Kroll, G.; Kunnen, J.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Laihem, K.; Landsman, H.; Larson, M. J.; Lauer, R.; Lesiak-Bzdak, M.; Lünemann, J.; Madsen, J.; Maruyama, R.; Mase, K.; Matis, H. S.; McNally, F.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Miarecki, S.; Middell, E.; Milke, N.; Miller, J.; Mohrmann, L.; Montaruli, T.; Morse, R.; Movit, S. M.; Nahnhauer, R.; Naumann, U.; Nowicki, S. C.; Nygren, D. R.; Obertacke, A.; Odrowski, S.; Olivas, A.; Olivo, M.; O'Murchadha, A.; Panknin, S.; Paul, L.; Pepper, J. A.; de los Heros, C. Pérez; Pieloth, D.; Pirk, N.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Rädel, L.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Richman, M.; Riedel, B.; Rodrigues, J. P.; Rothmaier, F.; Rott, C.; Ruhe, T.; Rutledge, D.; Ruzybayev, B.; Ryckbosch, D.; Salameh, T.; Sander, H.-G.; Santander, M.; Sarkar, S.; Saba, S. M.; Schatto, K.; Scheel, M.; Scheriau, F.; Schmidt, T.; Schmitz, M.; Schoenen, S.; Schöneberg, S.; Schönherr, L.; Schönwald, A.; Schukraft, A.; Schulte, L.; Schulz, O.; Seckel, D.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Smith, M. W. E.; Soiron, M.; Soldin, D.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stasik, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Strahler, E. A.; Ström, R.; Sullivan, G. W.; Taavola, H.; Taboada, I.; Tamburro, A.; Ter-Antonyan, S.; Tilav, S.; Toale, P. A.; Toscano, S.; Usner, M.; van Eijndhoven, N.; van der Drift, D.; Van Overloop, A.; van Santen, J.; Vehring, M.; Voge, M.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Walter, M.; Wasserman, R.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Williams, D. R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, C.; Xu, D. L.; Xu, X. W.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; Ziemann, J.; Zilles, A.; Zoll, M.
2013-02-01
The mass composition of high energy cosmic rays depends on their production, acceleration, and propagation. The study of cosmic ray composition can therefore reveal hints of the origin of these particles. At the South Pole, the IceCube Neutrino Observatory is capable of measuring two components of cosmic ray air showers in coincidence: the electromagnetic component at high altitude (2835 m) using the IceTop surface array, and the muonic component above ˜1 TeV using the IceCube array. This unique detector arrangement provides an opportunity for precision measurements of the cosmic ray energy spectrum and composition in the region of the knee and beyond. We present the results of a neural network analysis technique to study the cosmic ray composition and the energy spectrum from 1 PeV to 30 PeV using data recorded using the 40-string/40-station configuration of the IceCube Neutrino Observatory.
Henrot-Versillé, Sophie; Leroy, Nicolas; Plaszczynski, Stéphane; Arnaud, Nicolas; Bizouard, Marie-Anne; Cavalier, Fabien; Christensen, Nelson; Couchot, François; Franco, Samuel; Hello, Patrice; Huet, Dominique; Kasprzack, Marie; Perdereau, Olivier; Spinelli, Marta; Tristram, Matthieu
2014-01-01
The production of a primordial stochastic gravitational-wave background by processes occuring in the early Universe is expected in a broad range of models. Observing this background would open a unique window onto the Universe's evolutionary history. Probes like the Cosmic Microwave Background (CMB) or the Baryon Acoustic Oscillations (BAO) can be used to set upper limits on the stochastic gravitational-wave background energy density $\\Omega_{GW}$ for frequencies above $10^{-15}$ Hz. We perform a profile likelihood analysis of the Planck CMB temperature anisotropies and gravitational lensing data combined with WMAP low-$\\ell$ polarization, BAO, South Pole Telescope and Atacama Cosmology Telescope data. We find that $\\Omega_{GW}h_{0}^{2} < 3.8 \\times 10^{-6}$ at 95\\% confidence level for adiabatic initial conditions which improves over the previous limit by a factor 2.3. Assuming that the primordial gravitational waves have been produced by a network of cosmic strings, we have derived exclusion limits in th...
Energy Technology Data Exchange (ETDEWEB)
Lu, Jianbo; Xu, Yanfeng; Wu, Yabo [Liaoning Normal University, Department of Physics, Dalian (China)
2015-10-15
Observations indicate that most of the universal matter is invisible and the gravitational constant G(t) maybe depends on time. A theory of the variational G (VG) is explored in this paper, naturally producing the useful dark components in the universe. We utilize the following observational data: lookback time data, model-independent gamma ray bursts, growth function of matter linear perturbations, type Ia supernovae data with systematic errors, CMB, and BAO, to restrict the unified model (UM) of dark components in VG theory. Using the best-fit values of the parameters with the covariance matrix, constraints on the variation of G are ((G)/(G{sub 0})){sub z=3.5} ≅ 1.0015{sub -0.0075}{sup +0.0071} and ((G)/(G)){sub today} ≅ -0.7252{sub -2.3645}{sup +2.3645} x 10{sup -13} year{sup -1}, with small uncertainties around the constants. The limit on the equation of state of dark matter is w{sub 0dm} = 0.0072{sub -0.0170}{sup +0.0170}, assuming w{sub 0de} = -1 in the unified model, and the dark energy is w{sub 0de} = -0.9986{sub -0.0011}{sup +0.0011}, assuming w{sub 0dm} = 0 a priori. The restrictions on the UM parameters are B{sub s} = 0.7442{sub -0.0132-0.0292}{sup +0.0137+0.0262} and α =0.0002{sub -0.0209-0.0422}{sup +0.0206+0.0441} with 1σ and 2σ confidence level. In addition, the effects of a cosmic string fluid on the unified model in VG theory are investigated. In this case it is found that the Λ CDM (Ω{sub s} = 0, β = 0, and α = 0) is included in this VG-UM model at 1σ confidence level, and larger errors are given: Ω{sub s} = -0.0106{sub -0.0305-0.0509}{sup +0.0312+0.0582} (dimensionless energy density of cosmic string), ((G)/(G{sub 0})){sub z=3.5} ≅ 1.0008{sub -0.0584}{sup +0.0620}, and ((G)/(G)){sub today} ≅ -0.3496{sub -26.3135}{sup +26.3135} x 10{sup -13} year{sup -1}. (orig.)
Interactions of cosmic superstrings
Energy Technology Data Exchange (ETDEWEB)
Jackson, Mark G.; /Fermilab
2007-06-01
We develop methods by which cosmic superstring interactions can be studied in detail. These include the reconnection probability and emission of radiation such as gravitons or small string loops. Loop corrections to these are discussed, as well as relationships to (p; q)-strings. These tools should allow a phenomenological study of string models in anticipation of upcoming experiments sensitive to cosmic string radiation.
Rotating Space Elevator: Classical and Statistical Mechanics of cosmic scale spinning strings
Knudsen, Steven; Golubovic, Leonardo
2009-03-01
We introduce a novel and unique nonlinear dynamical system, the Rotating Space Elevator (RSE). The RSE is a multiply rotating system of cables (strings) reaching beyond the Earth geo-synchronous satellite orbit. Strikingly, objects sliding along the RSE cable do not require internal engines or propulsion to be transported far away from the Earth's surface. The RSE action employs, in a very fundamental way, basic natural phenomena -- gravitation and inertial forces. The RSE exhibits interesting nonlinear dynamics and statistical physics phenomena. Its kinetic phase diagram involves both chaotic and quasi-periodic states of motion separated by a morphological phase transition that occurs with changing the RSE angular frequency.
Self-similar motion of a Nambu-Goto string
Igata, Takahisa; Houri, Tsuyoshi; Harada, Tomohiro
2016-09-01
We study the self-similar motion of a string in a self-similar spacetime by introducing the concept of a self-similar string, which is defined as the world sheet to which a homothetic vector field is tangent. It is shown that in Nambu-Goto theory, the equations of motion for a self-similar string reduce to those for a particle. Moreover, under certain conditions such as the hypersurface orthogonality of the homothetic vector field, the equations of motion for a self-similar string simplify to the geodesic equations on a (pseudo)Riemannian space. As a concrete example, we investigate a self-similar Nambu-Goto string in a spatially flat Friedmann-Lemaître-Robertson-Walker expanding universe with self-similarity and obtain solutions of open and closed strings, which have various nontrivial configurations depending on the rate of the cosmic expansion. For instance, we obtain a circular solution that evolves linearly in the cosmic time while keeping its configuration by the balance between the effects of the cosmic expansion and string tension. We also show the instability for linear radial perturbation of the circular solutions.
Scattering and Bound States of a Spin-1/2 Neutral Particle in the Cosmic String Spacetime
Directory of Open Access Journals (Sweden)
Fabiano M. Andrade
2017-01-01
Full Text Available In this paper the relativistic quantum dynamics of a spin-1/2 neutral particle with a magnetic moment μ in the cosmic string spacetime is reexamined by applying the von Neumann theory of self-adjoint extensions. Contrary to previous studies where the interaction between the spin and the line of charge is neglected, here we consider its effects. This interaction gives rise to a point interaction: ∇·E=(2λ/αδ(r/r. Due to the presence of the Dirac delta function, by applying an appropriated boundary condition provided by the theory of self-adjoint extensions, irregular solutions for the Hamiltonian are allowed. We address the scattering problem obtaining the phase shift, S-matrix, and the scattering amplitude. The scattering amplitude obtained shows a dependency with energy which stems from the fact that the helicity is not conserved in this system. Examining the poles of the S-matrix we obtain an expression for the bound states. The presence of bound states for this system has not been discussed before in the literature.
Dvali, Gia; Van Proeyen, A; Dvali, Gia; Van Proeyen, Antoine
2004-01-01
We study the embedding of cosmic strings, related to the Abrikosov-Nielsen-Olesen vortex solution, into d=4, N=1 supergravity. We find that the local cosmic string solution which saturates the BPS bound of supergravity with the D-term potential for the Higgs field and with the constant Fayet--Iliopoulos term, has 1/2 of supersymmetry unbroken. We observe an interesting relation between the gravitino supersymmetry transformation, positive energy condition and the deficit angle of the cosmic string. We argue that the string solutions with the magnetic flux with F-term potential cannot be supersymmetric, which leads us to a conjecture that D1-strings of string theory in the effective 4d supergravity may be described by the D-term strings, which we study in this paper.
Gravitational Waves from Abelian Gauge Fields and Cosmic Strings at Preheating
Dufaux, Jean-Francois; Garcia-Bellido, Juan
2010-01-01
Primordial gravitational waves provide a very important stochastic background that could be detected soon with interferometric gravitational wave antennas or indirectly via the induced patterns in the polarization anisotropies of the cosmic microwave background. The detection of these waves will open a new window into the early Universe, and therefore it is important to characterize in detail all possible sources of primordial gravitational waves. In this paper we develop theoretical and numerical methods to study the production of gravitational waves from out-of-equilibrium gauge fields at preheating. We then consider models of preheating after hybrid inflation, where the symmetry breaking field is charged under a local U(1) symmetry. We analyze in detail the dynamics of the system in both momentum and configuration space, and show that gauge fields leave specific imprints in the resulting gravitational wave spectra, mainly through the appearence of new peaks at characteristic frequencies that are related to...
牵张设备远程智能化监控系统的研究%The Research of a Intelligent Monitor Control System for Tension String Equipment
Institute of Scientific and Technical Information of China (English)
陈惠贤; 孙立州; 刘文邦; 张斌
2011-01-01
Taking the tension stringing equipment as study object, using wireless GPRS technology, MSP430 technology, state monitoring, signal processing, information technology and theory, the remote wireless monitoring and management system of tension stringing equipment was researched and developed. Intelligent, network-based control is realized in traditional tension stringing equipment.%以牵张设备为研究对象,利用无线通讯GPRS技术、MSP430单片机技术、状态监测、信号处理、信息化技术与理论,研究与开发了牵张设备远程无线监测管理控制系统,使传统的牵张设备现场液压控制实现了智能化、网络化控制.
Bianchi type-VIh string cloud cosmological models with bulk viscosity
Tripathy, Sunil K.; Behera, Dipanjali
2010-11-01
String cloud cosmological models are studied using spatially homogeneous and anisotropic Bianchi type VIh metric in the frame work of general relativity. The field equations are solved for massive string cloud in presence of bulk viscosity. A general linear equation of state of the cosmic string tension density with the proper energy density of the universe is considered. The physical and kinematical properties of the models have been discussed in detail and the limits of the anisotropic parameter responsible for different phases of the universe are explored.
Gasperini, Maurizio
2011-03-01
Preface; Acknowledgements; Notation, units and conventions; 1. A short review of standard and inflationary cosmology; 2. The basic string cosmology equations; 3. Conformal invariance and string effective action; 4. Duality symmetries and cosmological solutions; 5. Inflationary kinematics; 6. The string phase; 7. The cosmic background of relic gravitational waves; 8. Scalar perturbations and the anisotropy of the CMB radiation; 9. Dilaton phenomenology; 10. Elements of brane cosmology; Index.
Sakellariadou, Mairi
2008-08-28
Cosmic superstrings are expected to be formed at the end of brane inflation, within the context of brane-world cosmological models inspired from string theory. By studying the properties of cosmic superstring networks and comparing their phenomenological consequences against observational data, we aim to pin down the successful and natural inflationary model and get an insight into the stringy description of our Universe.
Bekenstein Entropy is String Entropy
Halyo, Edi
2009-01-01
We argue that Bekenstein entropy can be interpreted as the entropy of an effective string with a rescaled tension. Using the AdS/CFT correspondence we show that the Bekenstein entropy on the boundary CFT is given by the entropy of a string at the stretched horizon of the AdS black hole in the bulk. The gravitationally redshifted tension and energy of the string match those required to reproduce Bekenstein entropy.
Clancy, Dominic; Feinstein, Alexander; Lidsey, James E.; Tavakol, Reza
1999-04-01
Global symmetries of the string effective action are employed to generate tilted, homogeneous Bianchi type VIh string cosmologies from a previously known stiff perfect fluid solution to Einstein gravity. The dilaton field is not constant on the surfaces of homogeneity. The future asymptotic state of the models is interpreted as a plane wave and is itself an exact solution to the string equations of motion to all orders in the inverse string tension. An inhomogeneous generalization of the Bianchi type III model is also found.
Savvidy, G K
1998-01-01
We discuss the basic properties of the gonihedric string and the problem of its formulation in continuum. We propose a generalization of the Dirac equation and of the corresponding gamma matrices in order to describe the gonihedric string. The wave function and the Dirac matrices are infinite-dimensional. The spectrum of the theory consists of particles and antiparticles of increasing half-integer spin lying on quasilinear trajectories of different slope. Explicit formulas for the mass spectrum allow to compute the string tension and thus demonstrate the string character of the theory.
Perturbations from strings don't look like strings
Energy Technology Data Exchange (ETDEWEB)
Albrecht, A.; Stebbins, A.
1991-08-01
A systematic analysis is challenging popular ideas about perturbation from cosmic strings. One way in which the picture has changed is reviewed. It is concluded that, while the scaling properties of cosmic strings figure significantly in the analysis, care must be taken when thinking in terms of single time snapshots. The process of seeding density perturbations is not fundamentally localized in time, and this fact can wash out many of the details which appear in a single snapshot.
Classical theory of radiating strings
Copeland, Edmund J.; Haws, D.; Hindmarsh, M.
1990-01-01
The divergent part of the self force of a radiating string coupled to gravity, an antisymmetric tensor and a dilaton in four dimensions are calculated to first order in classical perturbation theory. While this divergence can be absorbed into a renormalization of the string tension, demanding that both it and the divergence in the energy momentum tensor vanish forces the string to have the couplings of compactified N = 1 D = 10 supergravity. In effect, supersymmetry cures the classical infinities.
Self--gravitating cosmic rings
Clément, Gérard
1998-01-01
The classical Einstein--Maxwell field equations admit static horizonless wormhole solutions with only a circular cosmic string singularity. We show how to extend these static solutions to exact rotating asymptotically flat solutions. For a suitable range of parameter values, these solutions describe charged or neutral rotating closed cosmic strings, with a perimeter of the order of their Schwarzschild radius.
Lectures on string/brane cosmology
Quevedo, Fernando
2002-01-01
An overview is presented of some cosmological aspects of string theory. Recent developments are emphasised, especially the attempts to derive inflation or alternatives to inflation from the dynamics of branes in string theory. Time dependent backgrounds with potential cosmological implications, such as those provided by negative tension branes and S-branes and the rolling string tachyon are also discussed.
On the formation of non-topological string networks
Achucarro, A; Borrill, J; Liddle, AR
1998-01-01
We review recent simulations of the formation of a particular class of non-topological defects known as semilocal strings during a phase transition. Semilocal strings have properties that are intermediate between topological cosmic strings and stable electroweak strings, and therefore the observatio
Soft theorems from string theory
Energy Technology Data Exchange (ETDEWEB)
Di Vecchia, Paolo [The Niels Bohr Institute, University of Copenhagen (Denmark); Nordita, KTH Royal Institute of Technology and Stockholm University (Sweden); Marotta, Raffaele [Istituto Nazionale di Fisica Nucleare, Sezione di Napoli (Italy); Complesso Universitario di Monte S. Angelo, Napoli (Italy); Mojaza, Matin [Nordita, KTH Royal Institute of Technology and Stockholm University (Sweden)
2016-04-15
Soft behaviour of closed string amplitudes involving dilatons, gravitons and anti-symmetric tensors, is studied in the framework of bosonic string theory. The leading double soft limit of gluons is analysed as well, starting from scattering amplitudes computed in the open bosonic string. Field theory expressions are then obtained by sending the string tension to infinity. The presented results have been derived in the papers of Ref [1]. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Bell's Inequalities, Superquantum Correlations, and String Theory
Directory of Open Access Journals (Sweden)
Lay Nam Chang
2011-01-01
We argue that string theory, viewed as a quantum theory with two deformation parameters, the string tension α ' , and the string coupling constant g s , is such a superquantum theory that transgresses the usual quantum violations of Bell's inequalities. We also discuss the ℏ → ∞ limit of quantum mechanics in this context. As a superquantum theory, string theory should display distinct experimentally observable supercorrelations of entangled stringy states.
Discussing on formula of tri-axial tension strength of casing string%关于“套管柱三轴抗拉强度公式”的讨论
Institute of Scientific and Technical Information of China (English)
韩志勇
2011-01-01
The formula of calculation tri-axial tension strength of casing string given by SY/T5322-2000 design method of casing string strength and SY/T 5724-2008 structure and strength design of casing string is incorrect, which has a plus sign "+" instead of minus sign "-" in the radical of it. This conclusion can be obtained by theoretical derivation and comparing with the theory of two-axial stress ellipse. Another mistake is that the method of calculating axial force is incorrect. It is very important that two kinds of axial forces of actual axial force and effective axial force must be correctly distinguished and used in the combinational strength design of casing string. The actual axial force calculated by pressure-area method must be used when tri-axial stress strength theory is used to the combinational strength design of casing string, but the effective axial force is calculated by buoyancy-factor method in the two standards, so that the confusion and mistake are made.%从公式的理论推导和与双向应力椭圆理论对比两个方面都可以证明,SY/T 5322-2000套管柱强度设计方法和SY/T 5724-2008套管柱结构与强度设计中给出的三轴抗拉强度计算公式是错误的,错在把根号内的“-”号写成了“+”号,其另一个与三轴应力抗拉强度公式有关的错误是轴向力计算方法不正确.在套管柱组合强度设计中正确区别和应用真实轴向力和有效轴向力极其重要,当采用三轴应力强度理论时,只能使用压力面积法计算的真实轴向力,而两个标准中使用浮力系数法计算的有效轴向力,从而导致了混乱,出现错误.
Peebles, P. J. E.; Silk, Joseph
1988-10-01
A system of assigning odds to the basic elements of cosmological theories is proposed in order to evaluate the strengths and weaknesses of the theories. A figure of merit for the theories is obtained by counting and weighing the plausibility of each of the basic elements that is not substantially supported by observation or mature fundamental theory. The magnetized strong model is found to be the most probable. In order of decreasing probability, the ranking for the rest of the models is: (1) the magnetized string model with no exotic matter and the baryon adiabatic model; (2) the hot dark matter model and the model of cosmic string loops; (3) the canonical cold dark matter model, the cosmic string loops model with hot dark matter, and the baryonic isocurvature model; and (4) the cosmic string loops model with no exotic matter.
Scaling from gauge and scalar radiation in Abelian-Higgs string networks
Hindmarsh, Mark; Lizarraga, Joanes; Urrestilla, Jon; Daverio, David; Kunz, Martin
2017-07-01
We investigate cosmic string networks in the Abelian Higgs model using data from a campaign of large-scale numerical simulations on lattices of up to 409 63 grid points. We observe scaling or self-similarity of the networks over a wide range of scales and estimate the asymptotic values of the mean string separation in horizon length units ξ ˙ and of the mean square string velocity v¯2 in the continuum and large time limits. The scaling occurs because the strings lose energy into classical radiation of the scalar and gauge fields of the Abelian Higgs model. We quantify the energy loss with a dimensionless radiative efficiency parameter and show that it does not vary significantly with lattice spacing or string separation. This implies that the radiative energy loss underlying the scaling behavior is not a lattice artifact, and justifies the extrapolation of measured network properties to large times for computations of cosmological perturbations. We also show that the core growth method, which increases the defect core width with time to extend the dynamic range of simulations, does not introduce significant systematic error. We compare ξ ˙ and v¯2 to values measured in simulations using the Nambu-Goto approximation, finding that the latter underestimate the mean string separation by about 25%, and overestimate v¯2 by about 10%. The scaling of the string separation implies that string loops decay by the emission of massive radiation within a Hubble time in field theory simulations, in contrast to the Nambu-Goto scenario which neglects this energy loss mechanism. String loops surviving for only one Hubble time emit much less gravitational radiation than in the Nambu-Goto scenario and are consequently subject to much weaker gravitational wave constraints on their tension.
Introduction to the relativistic string theory
Barbashov, B M
1990-01-01
This book presents a systematic and detailed account of the classical and quantum theory of the relativistic string and some of its modifications. Main attention is paid to the first-quantized string theory with possible applications to the string models of hadrons as well as to the superstring approach to unifications of all the fundamental interactions in the elementary particle physics and to the "cosmic" strings. Some new aspects are provided such as the consideration of the string in an external electromagnetic field and in the space-time of constant curvature (the de Sitter universe), th
Abbasi, R; Abdou, Yasser; Ackermann, M.; Adams, J; Aguilar, JA; Ahlers, M.; Altmann, D.; Andeen, K.; Auffenberg, J.; BAI, X.; Baker, M.; Barwick, SW; Baum, V.; Bay, R.; Beattie, K.
2012-01-01
The mass composition of high energy cosmic rays depends on their production, acceleration, and propagation. The study of cosmic ray composition can therefore reveal hints of the origin of these particles. At the South Pole, the IceCube Neutrino Observatory is capable of measuring two components of cosmic ray air showers in coincidence: the electromagnetic component at high altitude (2835 m) using the IceTop surface array, and the muonic component above ~1 TeV using the IceCube array. This uni...
Schulz, Marc Daniel; Dusuel, Sébastien; Vidal, Julien
2016-11-01
We discuss the emergence of bound states in the low-energy spectrum of the string-net Hamiltonian in the presence of a string tension. In the ladder geometry, we show that a single bound state arises either for a finite tension or in the zero-tension limit depending on the theory considered. In the latter case, we perturbatively compute the binding energy as a function of the total quantum dimension. We also address this issue in the honeycomb lattice where the number of bound states in the topological phase depends on the total quantum dimension. Finally, the internal structure of these bound states is analyzed in the zero-tension limit.
Schulz, M D; Vidal, J
2016-01-01
We discuss the emergence of bound states in the low-energy spectrum of the string-net Hamiltonian in the presence of a string tension. In the ladder geometry, we show that a single bound state arises either for a finite tension or in the zero-tension limit depending on the theory considered. In the latter case, we perturbatively compute the binding energy as a function of the total quantum dimension. We also address this issue in the honeycomb lattice where the number of bound states in the topological phase depends on the total quantum dimension. Finally, the internal structure of these bound states is analyzed in the zero-tension limit.
Bianchi type IX string cosmological model in general relativity
Indian Academy of Sciences (India)
Raj Bali; Shuchi Dave
2001-04-01
We have investigated Bianchi type IX string cosmological models in general relativity. To get a determinate solution, we have assumed a condition ρ= i.e. rest energy density for a cloud of strings is equal to the string tension density. The various physical and geometrical aspects of the models are also discussed.
Marino Beiras, Marcos
2001-01-01
We give an overview of the relations between matrix models and string theory, focusing on topological string theory and the Dijkgraaf--Vafa correspondence. We discuss applications of this correspondence and its generalizations to supersymmetric gauge theory, enumerative geometry and mirror symmetry. We also present a brief overview of matrix quantum mechanical models in superstring theory.
Indian Academy of Sciences (India)
C P Burgess
2004-12-01
The inflationary paradigm provides a robust description of the peculiar initial conditions which are required for the success of the hot Big Bang model of cosmology, as well as of the recent precision measurements of temperature fluctuations within the cosmic microwave background. Furthermore, the success of this description indicates that inflation is likely to be associated with physics at energies considerably higher than the weak scale, for which string theory is arguably our most promising candidate. These observations strongly motivate a detailed search for inflation within string theory, although it has (so far) proven to be a hunt for a fairly elusive quarry. This article summarizes some of the recent efforts along these lines, and draws some speculative conclusions as to what the difficulty in finding inflation might mean.
Institute of Scientific and Technical Information of China (English)
赵全江; 刘文勋; 黄欲成
2015-01-01
With the increase of voltage level, the length and weight of tension insulator string increase significantly, especially UHV transmission line, tension insulator string may have a serious effect on conductor stress and sag calculation of isolated span. A new method based on basic theory and calculation formula of wire mechanics is proposed, which assumes that the tension insulator string is equivalent to catenary, and gives advice on the conductor stress and sag calculation of UHV transmission line isolated span.%随着电压等级的提高，耐张绝缘子串长度和重量显著增加，特别是特高压输电线路，耐张绝缘子串会对孤立档导线的应力、弧垂计算产生严重影响。基于电线力学的基本理论和计算公式，提出一种将耐张绝缘子串等效为悬链线的孤立档计算方法，对特高压输电线路孤立档导线的应力、弧垂设计给出建议。
Kleman, Maurice
2011-01-01
The continuous 1D defects of an isotropic homogeneous material in an Euclidean 3D space are classified by a construction method, the Volterra process (VP). We employ the same method to classify the continuous 2D defects (which we call \\textit{cosmic forms}) of a vacuum in a 4D maximally symmetric spacetime. These defects fall into three different classes: i)- $m$-forms, akin to 3D space disclinations, related to ordinary rotations and analogous to Kibble's global cosmic strings (except that being continuous any deficit angle is allowed); ii)- $t$-forms, related to Lorentz boosts (hyperbolic rotations); iii)- $r$-forms, never been considered so far, related to null rotations. A detailed account of their metrics is presented. Their inner structure in many cases appears as a non-singular \\textit{core} separated from the outer part by a timelike hypersurface with distributional curvature and/or torsion, yielding new types of geometrical interactions with cosmic dislocations and other cosmic disclinations. Whereas...
ON FINITE DIFFERENCES ON A STRING PROBLEM
Directory of Open Access Journals (Sweden)
J. M. Mango
2014-01-01
Full Text Available This study presents an analysis of a one-Dimensional (1D time dependent wave equation from a vibrating guitar string. We consider the transverse displacement of a plucked guitar string and the subsequent vibration motion. Guitars are known for production of great sound in form of music. An ordinary string stretched between two points and then plucked does not produce quality sound like a guitar string. A guitar string produces loud and unique sound which can be organized by the player to produce music. Where is the origin of guitar sound? Can the contribution of each part of the guitar to quality sound be accounted for, by mathematically obtaining the numerical solution to wave equation describing the vibration of the guitar string? In the present sturdy, we have solved the wave equation for a vibrating string using the finite different method and analyzed the wave forms for different values of the string variables. The results show that the amplitude (pitch or quality of the guitar wave (sound vary greatly with tension in the string, length of the string, linear density of the string and also on the material of the sound board. The approximate solution is representative; if the step width; ∂x and ∂t are small, that is <0.5.
Gravitational correction to fuzzy string in metastable brane configuration
Energy Technology Data Exchange (ETDEWEB)
Kasai, Aya [Department of Physics, Kyushu University, Fukuoka 810-8581 (Japan); Ookouchi, Yutaka [Department of Physics, Kyushu University, Fukuoka 810-8581 (Japan); Faculty of Arts and Science, Kyushu University, Fukuoka 819-0395 (Japan)
2015-06-16
We study dynamics of a cosmic string in a metastable brane configuration in Type IIA string theory. We first discuss a decay process of the cosmic string via a fuzzy brane (equivalently bubble/string bound state) by neglecting gravitational corrections in ten-dimension. We find that depending on the strength of the magnetic field induced on the bubble, the decay rate can be either larger or smaller than that of O(4) symmetric bubble. Then, we investigate gravitational corrections to the fuzzy brane by using the extremal black NS-five brane solution, which makes the lifetime of the metastable state longer.
Duodenal parasites test; Giardia - string test ... may be a sign parasite infection such as giardia . ... Elsevier; 2017:chap 58. Hill DR, Nash TE. Giardia lamblia. In: Bennett JE, Dolin R, Blaser MJ, ...
Worldsheet electromagnetism and the superstring tension
Energy Technology Data Exchange (ETDEWEB)
Townsend, P.K. (DAMTP, Univ. Cambridge (United Kingdom))
1992-03-05
A superstring action, invariant under the symmetries corresponding to a free differential N=1 superalgebra, is constructed. Its worldsheet fields include an electromagnetic gauge potential. Its equations of motion are those of the Green-Schwarz superstring but with the string tension given by the circulation of the worldsheet electric field around the string. (orig.).
Horizon Thermodynamics and Gravitational Tension
Widom, A; Srivastava, Y N
2016-01-01
We consider the thermodynamics of a horizon surface from the viewpoint of the vacuum tension $\\tau =(c^4/4G )$. Numerically, $\\tau \\approx 3.026\\times 10^{43}$ Newton. In order of magnitude, this is the tension that has been proposed for microscopic string models of gravity. However, after decades of hard work on string theory models of gravity, there is no firm scientific evidence that such models of gravity apply empirically. Our purpose is thereby to discuss the gravitational tension in terms of the conventional Einstein general theory of relativity that apparently does explain much and maybe all of presently known experimental gravity data. The central result is that matter on the horizon surface is bound by the entropy-area law by tension in the closely analogous sense that the Wilson action-area law also describes a surface confinement.
Thermodynamical string fragmentation
Fischer, Nadine; Sjöstrand, Torbjörn
2017-01-01
The observation of heavy-ion-like behaviour in pp collisions at the LHC suggests that more physics mechanisms are at play than traditionally assumed. The introduction e.g. of quark-gluon plasma or colour rope formation can describe several of the observations, but as of yet there is no established paradigm. In this article we study a few possible modifications to the Pythia event generator, which describes a wealth of data but fails for a number of recent observations. Firstly, we present a new model for generating the transverse momentum of hadrons during the string fragmentation process, inspired by thermodynamics, where heavier hadrons naturally are suppressed in rate but obtain a higher average transverse momentum. Secondly, close-packing of strings is taken into account by making the temperature or string tension environment-dependent. Thirdly, a simple model for hadron rescattering is added. The effect of these modifications is studied, individually and taken together, and compared with data mainly from the LHC. While some improvements can be noted, it turns out to be nontrivial to obtain effects as big as required, and further work is called for.
Thermodynamical String Fragmentation
Fischer, Nadine
2016-01-01
The observation of heavy-ion-like behaviour in pp collisions at the LHC suggests that more physics mechanisms are at play than traditionally assumed. The introduction e.g. of quark-gluon plasma or colour rope formation can describe several of the observations, but as of yet there is no established paradigm. In this article we study a few possible modifications to the Pythia event generator, which describes a wealth of data but fails for a number of recent observations. Firstly, we present a new model for generating the transverse momentum of hadrons during the string fragmentation process, inspired by thermodynamics, where heavier hadrons naturally are suppressed in rate but obtain a higher average transverse momentum. Secondly, close-packing of strings is taken into account by making the temperature or string tension environment-dependent. Thirdly, a simple model for hadron rescattering is added. The effect of these modifications is studied, individually and taken together, and compared with data mainly from...
Energy Technology Data Exchange (ETDEWEB)
Engquist, J. [Institute for Theoretical Physics and Spinoza Institute, Utrecht University (Netherlands); Sundell, P. [INFN, Pisa (Italy); Scuola Normale Superiore, Pisa (Italy); Tamassia, L. [Instituut voor Theoretische Fysica, Katholieke Universiteit Leuven, Celestijnenlaan 200D, 3001 Leuven (Belgium)
2007-05-15
The group theoretical structure underlying physics in anti de Sitter (AdS) spacetime is intrinsically different with respect to the flat case, due to the presence of special ultra-short representations, named singletons, that do not admit a flat space limit. The purpose of this collaboration is to exploit this feature in the study of string and brane dynamics in AdS spacetime, in particular while trying to establish a connection between String Theory in AdS backgrounds (in the tensionless limit) and Higher-Spin Gauge Theory. (orig.)
Amplitudes for left-handed strings
Siegel, W
2015-01-01
We consider a class of string-like models introduced previously where all modes are left-handed, all states are massless, T-duality is manifest, and only a finite number of orders in the string tension can appear. These theories arise from standard string theories by a singular gauge limit and associated change in worldsheet boundary conditions. In this paper we show how to calculate amplitudes by using the gauge parameter as an infrared regulator. The amplitudes produce the Cachazo-He-Yuan delta-functions after some modular integration; the Mason-Skinner string-like action and amplitudes arise from the zero-tension (infinite-slope) limit. However, without the limit the amplitudes have the same problems as found in the Mason-Skinner formalism.
Generalised hyperbolicity in spacetimes with string-like singularities
Sanchez, Yafet Sanchez
2016-01-01
In this paper we present well-posedness results of the wave equation in $H^{1}$ for spacetimes that contain string-like singularities. These results extend a framework able to characterise gravitational singularities as obstruction to the dynamics of test fields rather than point particles. In particular, we discuss spacetimes with cosmic strings and the relation of our results to the Strong Cosmic Censorship Conjecture.
Subleading Soft Factor for String Disk Amplitudes
Schwab, Burkhard U W
2014-01-01
We investigate the behavior of superstring disk scattering amplitudes in the presence of a soft external momentum at finite string tension. We prove that there are no $\\alpha'$-corrections to the field theory form of the subleading soft factor $S^{(1)}$. At the end of this work, we also comment on the possibility to find the corresponding subleading soft factors in closed string theory using our result and the KLT relations.
Ibáñez, Luis E
2015-01-01
This chapter reviews a number of topics in the field of string phenomenology, focusing on orientifold/F-theory models yielding semirealistic low-energy physics. The emphasis is on the extraction of the low-energy effective action and possible tests of specific models at the LHC.
Semiclassical string spectrum in a string model dual to large N QCD
Pons, J M; Talavera, P
2004-01-01
We explore the string spectrum in the Witten QCD model by considering classical string configurations, thereby obtaining energy formulas for quantum states with large excitation quantum numbers representing glueballs and Kaluza-Klein states. In units of the string tension, the energies of all states increase as the 't Hooft coupling $\\lambda $ is decreased, except the energies of glueballs corresponding to strings lying on the horizon, which remain constant. We argue that some string solutions can be extrapolated to the small $\\lambda $ regime. We also find the classical mechanics description of supergravity glueballs in terms of point-like string configurations oscillating in the radial direction, and reproduce the glueball energy formula previously obtained by solving the equation for the dilaton fluctuation.
Hoover, Todd F.
2010-01-01
The "Magic" String is a discrepant event that includes a canister with what appears to be the end of two strings protruding from opposite sides of it. Due to the way the strings are attached inside the canister, it appears as if the strings can magically switch the way they are connected. When one string end is pulled, the observer's expectation…
Stability of string defects in models of non-Abelian symmetry breaking
Thatcher, M J
1999-01-01
In this paper we describe a new type of topological defect, called a homilia string, which is stabilized via interactions with the string network. Using analytical and numerical techniques, we investigate the stability and dynamics of homilia strings, and their implications for cosmology. In SU(N) models of symmetry breaking, monopoles are identified with the intersection of two homilia strings. Due to repulsive forces, the homilia strings seperate, resulting in monopole annihilation. Homilia string loops cannot stabilize as vortons, which circumvents the adverse cosmological consequences of stable loops. In principle, measurments of the cosmic microwave background can distinguish between the smaller fluctuations induced by a homilia string network and those due to primordial cosmic strings.
Academic Training: String Theory for Pedestrians
2007-01-01
2006-2007 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 29, 30, 31 January 2007, from 11:00 to 12:00 Main Auditorium, bldg. 500 on 29 and 30 January, TH Auditorium, Bldg 4, 3-006, on 31 January String Theory for Pedestrians B. ZWIEBACH, MIT, Cambridge, USA In this 3-lecture series I will discuss the basics of string theory, some physical applications, and the outlook for the future. I will begin with the main concepts of the classical theory and the application to the study of cosmic superstrings. Then I will turn to the quantum theory and discuss applications to the investigation of hadronic spectra and the recently discovered quark-gluon plasma. I will conclude with a sketch of string models of particle physics and showing some avenues that may lead to a complete formulation of string theory.
Highly excited strings I: Generating function
Skliros, Dimitri P.; Copeland, Edmund J.; Saffin, Paul M.
2017-03-01
This is the first of a series of detailed papers on string amplitudes with highly excited strings (HES). In the present paper we construct a generating function for string amplitudes with generic HES vertex operators using a fixed-loop momentum formalism. We generalise the proof of the chiral splitting theorem of D'Hoker and Phong to string amplitudes with arbitrary HES vertex operators (with generic KK and winding charges, polarisation tensors and oscillators) in general toroidal compactifications E =R D - 1 , 1 ×T Dcr - D (with generic constant Kähler and complex structure target space moduli, background Kaluza-Klein (KK) gauge fields and torsion). We adopt a novel approach that does not rely on a ;reverse engineering; method to make explicit the loop momenta, thus avoiding a certain ambiguity pointed out in a recent paper by Sen, while also keeping the genus of the worldsheet generic. This approach will also be useful in discussions of quantum gravity and in particular in relation to black holes in string theory, non-locality and breakdown of local effective field theory, as well as in discussions of cosmic superstrings and their phenomenological relevance. We also discuss the manifestation of wave/particle (or rather wave/string) duality in string theory.
Highly excited strings I: Generating function
Directory of Open Access Journals (Sweden)
Dimitri P. Skliros
2017-03-01
Full Text Available This is the first of a series of detailed papers on string amplitudes with highly excited strings (HES. In the present paper we construct a generating function for string amplitudes with generic HES vertex operators using a fixed-loop momentum formalism. We generalise the proof of the chiral splitting theorem of D'Hoker and Phong to string amplitudes with arbitrary HES vertex operators (with generic KK and winding charges, polarisation tensors and oscillators in general toroidal compactifications E=RD−1,1×TDcr−D (with generic constant Kähler and complex structure target space moduli, background Kaluza–Klein (KK gauge fields and torsion. We adopt a novel approach that does not rely on a “reverse engineering” method to make explicit the loop momenta, thus avoiding a certain ambiguity pointed out in a recent paper by Sen, while also keeping the genus of the worldsheet generic. This approach will also be useful in discussions of quantum gravity and in particular in relation to black holes in string theory, non-locality and breakdown of local effective field theory, as well as in discussions of cosmic superstrings and their phenomenological relevance. We also discuss the manifestation of wave/particle (or rather wave/string duality in string theory.
Confining strings in supersymmetric theories with Higgs branches
Shifman, M.; Tallarita, Gianni; Yung, Alexei
2015-03-01
We study flux tubes (strings) on the Higgs branches in supersymmetric gauge theories. In generic vacua on the Higgs branches, strings were shown to develop long-range "tails" associated with massless fields, a characteristic feature of the Higgs branch (the only exception is the vacuum at the base of the Higgs branch). A natural infrared regularization for the above tails is provided by a finite string length L . We perform a numerical study of these strings in generic vacua. We focus on the simplest example of strings in N =1 supersymmetric QED with the Fayet-Iliopoulos term. In particular, we examine the accuracy of a logarithmic approximation (proposed earlier by Evlampiev and Yung) for the tension of such string solutions. In the Evlampiev-Yung formula, the dependence of tension on the string length is logarithmic, and the dependence on the geodesic length from the base of the Higgs branch is quadratic. We observe a remarkable agreement of our numerical results for the string tension with the Evlampiev-Yung analytic expression.
Confining Strings in Supersymmetric Theories with Higgs Branches
Shifman, Mikhail; Yung, Alexei
2014-01-01
We study flux tubes (strings) on the Higgs branches in supersymmetric gauge theories. In generic vacua on the Higgs branches strings were shown to develop long-range "tails" associated with massless fields, a characteristic feature of the Higgs branch (the only exception is the vacuum at the base of the Higgs branch). A natural infrared regularization for the above tails is provided by a finite string length L. We perform a numerical study of these strings in generic vacua. We focus on the simplest example of strings in N=1 supersymmetric QED with the Fayet-Iliopoulos term. In particular, we examine the accuracy of a logarithmic approximation (proposed earlier by Evlampiev and Yung) for the tension of such string solutions. In the Evlampiev-Yung formula the dependence of tension on the string length is logarithmic and the dependence on the geodesic length from the base of the Higgs branch is quadratic. We observe a remarkable agreement of our numerical results for the string tension with the Evlampiev-Yung an...
The Universe as a Cosmic String
Niedermann, Florian; Hofmann, Stefan; Khoury, Justin
2014-01-01
The cosmology of brane induced gravity in six infinite dimensions is investigated. It is shown that a brane with FRW symmetries necessarily acts as a source of cylindrically symmetric gravitational waves, so called Einstein-Rosen waves. Their existence essentially distinguishes this model from its codimension-one counterpart and necessitates to solve the non-linear system of bulk and brane-matching equations. A numerical analysis is performed and two qualitatively different and dynamically separated classes of cosmologies are derived: degravitating solutions for which the Hubble parameter settles to zero despite the presence of a non-vanishing energy density on the brane and super-accelerating solutions for which Hubble grows unbounded. The parameter space of both the stable and unstable regime is derived and observational consequences are discussed: It is argued that the degravitating regime does not allow for a phenomenologically viable cosmology. On the other hand, the super-accelerating solutions are pote...
EDITORIAL: Focus issue on string cosmology Focus issue on string cosmology
Balasubramanian, V.; Moniz, P. R. L. V.
2011-08-01
String cosmology is a grand opportunity. The field involves elements of a promising framework, string theory, that brings together gravity and quantum mechanics and attempts to unify all the interactions. Confirming the concepts of string theory is presently beyond the reach of ground-based laboratories but the heavens may provide a setting for testing the string theoretic framework. Specifically, as cosmology develops into a rigorous, data-driven scientific discipline, windows into earlier epochs and higher energies are becoming available. If string theory controlled the evolution of the very early universe it is conceivable that it might have left imprints that are still detectable today. With this possibility in mind, this focus issue of Classical and Quantum Gravity appraises recent applications of string-theoretic and string-inspired ideas to the cosmos. The contents of this issue span the following areas: (1) Inflationary scenarios within different kinds of string-theoretic sectors (C P Burgess and L McAllister; M Cicoli and F Quevedo) (2) Alternatives to conventional inflation and dark matter/energy models with novel dynamics or matter content (J-L Lehners; M Trodden and K Hinterbichler) (3) Cosmic scenarios arising from the landscape of string vacua (M Kleban; B Freivogel) (4) Dynamical mechanisms determining the number of dimensions and resolving cosmic singularities (R H Brandenberger; B Craps and O Evnin) (5) Possible subsequent consequences of an early stringy phase (E J Copeland, L Pogosian and T Vachaspati; A Mazumdar) (6) Whether an observational `window' might be accessible (D J Mulryne and J Ward). The articles in this issue also survey a number of potentially promising directions for the future.
Sucker rod string design of the pumping systems
Directory of Open Access Journals (Sweden)
Chun Hua Liu
2015-08-01
Full Text Available The existing design of sucker rod string mainly focuses on the simplifying assumptions that rod string was exposed to simple tension loading. And its goal was to have equal modified stress at the top of each taper. The improved rod design was to have the same degree of safety at each section, and it used a dynamic force distribution that was proportional along the whole string. However, the available procedures did not provide the desired accuracy of its pertinent analysis, and the operators could not identify the specific phenomena that occur in CBM wells. In this paper, the mathematical models of rod loads and string length were developed based on the cyclic nature of rod string loading; the fatigue endurance method is used to design the single rod string; and the tapered rod string is designed to have an equal equivalent stress at the top of each section. Its application characteristics are demonstrated by the example of CBM wells in Ordos Basin. The interpretations of results show that the previous design gave the single rods a larger diameter and the top rods in the string a greater percent than the proposed method. The calculation should concern about inertial, vibration and friction forces to illustrate the elastic force waves travelling in the rod material with the speed of sound. The single string should be designed using fatigue endurance ratings due to asymmetric pulsating tension of rod loading; and the tapered string should involve a balanced design by setting the fatigue endurance at each section equal. A shorter stroke length gives a greater rod taper percentage and an increased load capacity results to an enhanced rod diameter. The rod diameter increases with the pump size and load capacity for the single string, and the rod taper percentage of the top rod strings increases with plunger diameter for the tapered string. The proposed research improves efficiency of the pumping system, assures good operating conditions, and reduces
Robust Tensioned Kevlar Suspension Design
Young, Joseph B.; Naylor, Bret J.; Holmes, Warren A.
2012-01-01
One common but challenging problem in cryogenic engineering is to produce a mount that has excellent thermal isolation but is also rigid. Such mounts can be achieved by suspending the load from a network of fibers or strings held in tension. Kevlar fibers are often used for this purpose owing to their high strength and low thermal conductivity. A suite of compact design elements has been developed to improve the reliability of suspension systems made of Kevlar.
Ristad, E S; Ristad, Eric Sven; Yianilos, Peter N.
1996-01-01
In many applications, it is necessary to determine the similarity of two strings. A widely-used notion of string similarity is the edit distance: the minimum number of insertions, deletions, and substitutions required to transform one string into the other. In this report, we provide a stochastic model for string edit distance. Our stochastic model allows us to learn a string edit distance function from a corpus of examples. We illustrate the utility of our approach by applying it to the difficult problem of learning the pronunciation of words in conversational speech. In this application, we learn a string edit distance with one fourth the error rate of the untrained Levenshtein distance. Our approach is applicable to any string classification problem that may be solved using a similarity function against a database of labeled prototypes. Keywords: string edit distance, Levenshtein distance, stochastic transduction, syntactic pattern recognition, prototype dictionary, spelling correction, string correction, ...
String and string-inspired phenomenology
López, J L
1994-01-01
In these lectures I review the progress made over the last few years in the subject of string and string-inspired phenomenology. I take a practical approach, thereby concentrating more on explicit examples rather than on formal developments. Topics covered include: introduction to string theory the free-fermionic formulation and its general features, generic conformal field theory properties, SU(5)\\times U(1) GUT and string model-building, supersymmetry breaking, the bottom-up approach to string-inspired models, radiative electroweak symmetry breaking, the determination of the allowed parameter space of supergravity models and the experimental constraints on this class of models, and prospects for direct and indirect tests of string-inspired models. (Lectures delivered at the XXII ITEP International Winter School of Physics, Moscow, Russia, February 22 -- March 2, 1994)
String Breaking in Four Dimensional Lattice QCD
Duncan, A; Thacker, H
2001-01-01
Virtual quark pair screening leads to breaking of the string between fundamental representation quarks in QCD. For unquenched four dimensional lattice QCD, this (so far elusive) phenomenon is studied using the recently developed truncated determinant algorithm (TDA). The dynamical configurations were generated on an Athlon 650 MHz PC. Quark eigenmodes up to 420 MeV are included exactly in these TDA studies performed at low quark mass on large coarse (but O($a^2$) improved) lattices. A study of Wilson line correlators in Coulomb gauge extracted from an ensemble of 1000 two-flavor dynamical configurations reveals evidence for flattening of the string tension at distances R $\\geq$ approximately 1 fm.
String Fluid from Unstable D-branes
Gibbons, G W; Yi, P; Gibbons, Gary; Hori, Kentaro; Yi, Piljin
2001-01-01
We consider Sen's effective action for unstable D-branes, and study its classical dynamics exactly. In the true vacuum, the Hamiltonian dynamics remains well-defined despite a vanishing action, and is that of massive relativistic string fluid of freely moving electric flux lines. The energy(tension) density equals the flux density in the local co-moving frame. Furthermore, a finite dual Lagrangian exists and is related to the Nielsen-Olesen field theory of ``dual'' strings, supplemented by a crucial constraint. We conclude with discussion on the endpoint of tachyon condensation.
Butterfly Tachyons in Vacuum String Field Theory
Matlock, P
2003-01-01
We use geometrical conformal field theory methods to investigate tachyon fluctuations about the butterfly projector state in Vacuum String Field Theory. We find that the on-shell condition for the tachyon field is equivalent to the requirement that the quadratic term in the string-field action vanish on shell. This further motivates the interpretation of the butterfly state as a D-brane. We begin a calculation of the tension of the butterfly, and conjecture that this will match the case of the sliver and further strengthen this interpretation.
Dando, O; Dando, Owen; Gregory, Ruth
1998-01-01
We examine the field equations of a self-gravitating global string in low energy superstring gravity, allowing for an arbitrary coupling of the global string to the dilaton. Massive and massless dilatons are considered. For the massive dilaton the spacetime is similar to the recently discovered non-singular time-dependent Einstein self-gravitating global string, but the massless dilaton generically gives a singular spacetime, even allowing for time-dependence. We also demonstrate a time-dependent non-singular string/anti-string configuration, in which the string pair causes a compactification of two of the spatial dimensions, albeit on a very large scale.
Closed String Amplitudes from Gauge Fixed String Field Theory
Drukker, Nadav
2002-01-01
Closed string diagrams are derived from cubic open string field theory using a gauge fixed kinetic operator. The basic idea is to use a string propagator that does not generate a boundary to the world sheet. Using this propagator and the closed string vertex, the moduli space of closed string surfaces is covered, so closed string scattering amplitudes should be reproduced. This kinetic operator could be a gauge fixed form of the string field theory action around the closed string vacuum.
Closed String Amplitudes from Gauge Fixed String Field Theory
Drukker, Nadav
2002-01-01
Closed string diagrams are derived from cubic open string field theory using a gauge fixed kinetic operator. The basic idea is to use a string propagator that does not generate a boundary to the world sheet. Using this propagator and the closed string vertex, the moduli space of closed string surfaces is covered, so closed string scattering amplitudes should be reproduced. This kinetic operator could be a gauge fixed form of the string field theory action around the closed string vacuum.
Primordial magnetic fields from the string network
Horiguchi, Kouichirou; Ichiki, Kiyotomo; Sugiyama, Naoshi
2016-08-01
Cosmic strings are a type of cosmic defect formed by a symmetry-breaking phase transition in the early universe. Individual strings would have gathered to build a network, and their dynamical motion would induce scalar-, vector-, and tensor-type perturbations. In this paper, we focus on the vector mode perturbations arising from the string network based on the one scale model and calculate the time evolution and the power spectrum of the associated magnetic fields. We show that the relative velocity between photon and baryon fluids induced by the string network can generate magnetic fields over a wide range of scales based on standard cosmology. We obtain the magnetic field spectrum before recombination as aB(k,z)~4×10Gμ/1k)3.5 gauss on super-horizon scales, and aB(k,z)~2.4×10Gμ/1k)2.5 gauss on sub-horizon scales in co-moving coordinates. This magnetic field grows up to the end of recombination, and has a final amplitude of approximately B~10Gμ gauss at the k~1 Mpc scale today. This field might serve as a seed for cosmological magnetic fields.
Primordial magnetic fields from the string network
Horiguchi, Kouichirou; Sugiyama, Naoshi
2016-01-01
Cosmic strings are a type of cosmic defect formed by a symmetry-breaking phase transition in the early universe. Individual strings would have gathered to build a network, and their dynamical motion would induce scalar--, vector-- and tensor--type perturbations. In this paper, we focus on the vector mode perturbations arising from the string network based on the one scale model and calculate the time evolution and the power spectrum of the associated magnetic fields. We show that the relative velocity between photon and baryon fluids induced by the string network can generate magnetic fields over a wide range of scales based on standard cosmology. We obtain the magnetic field spectrum before recombination as $a^2B(k,z)\\sim4\\times10^{-16}G\\mu/((1+z)/1000)^{4.25}(k/{\\rm Mpc}^{-1})^{3.5}$ Gauss on super-horizon scales, and $a^2B(k,z)\\sim2.4\\times10^{-17}G\\mu/((1+z)/1000)^{3.5}(k/{\\rm Mpc}^{-1})^{2.5}$ Gauss on sub-horizon scales in co-moving coordinates. This magnetic field grows up to the end of recombination, ...
2015-10-01
UNCLASSIFIED AD-E403 689 Technical Report ARWSE-TR-14026 STD ::STRING APPEND Tom Nealis...DATES COVERED (From – To) 4. TITLE AND SUBTITLE STD ::STRING APPEND 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...two or more strings together while developing a C++ application is a very common task. For std ::strings, there are two primary ways to achieve the
Conlon, Joseph
2016-01-01
Is string theory a fraud or one of the great scientific advances? Why do so many physicists work on string theory if it cannot be tested? This book provides insight into why such a theory, with little direct experimental support, plays such a prominent role in theoretical physics. The book gives a modern and accurate account of string theory and science, explaining what string theory is, why it is regarded as so promising, and why it is hard to test.
Ooguri, H; Ooguri, Hirosi; Yin, Zheng
1996-01-01
These lecture notes are based on a course on string theories given by Hirosi Ooguri in the first week of TASI 96 Summer School at Boulder, Colorado. It is an introductory course designed to provide students with minimum knowledge before they attend more advanced courses on non-perturbative aspects of string theories in the School. The course consists of five lectures: 1. Bosonic String, 2. Toroidal Compactifications, 3. Superstrings, 4. Heterotic Strings, and 5. Orbifold Compactifications.
[The string of Einthoven's string galvanometer].
Wyers, P J
1996-01-01
The Dutch physiologist Willem Einthoven (1860-1927) published in 1901 his construction of a string galvanometer. With this apparatus he opened the era for electrocardiography. As the quality of his instrument largely depended on the string of the string galvanometer it is surprising to note that in his publications Einthoven never mentioned the exact way of producing the string. However, Einthoven's hand written laboratory notes are preserved at the Museum Boerhaave in Leiden. From these notes it comes clear what problems Einthoven had with the string. To get a very thin thread of quarts he first used the method of shooting the thread as was described by Boys (1887), later the blowing method of Nichols (1894). The silvering of the thread was done first chemically, later by cathode spray. In all cases premature breaking of the thread was a nuisance. Because of these failures Einthoven might have decided not to publish any details.
Fingerprints in Compressed Strings
DEFF Research Database (Denmark)
Bille, Philip; Cording, Patrick Hagge; Gørtz, Inge Li
2013-01-01
The Karp-Rabin fingerprint of a string is a type of hash value that due to its strong properties has been used in many string algorithms. In this paper we show how to construct a data structure for a string S of size N compressed by a context-free grammar of size n that answers fingerprint queries...
The series of String-Math conferences has developed into a central event on the interface between mathematics and physics related to string theory, quantum field theory and neighboring subjects. The conference will take place from July 24-28 in the main building of Hamburg university. The String-Math conference is organised by the University of Hamburg jointly with DESY Hamburg.
Cardona, Biel; Pons, Josep M
2016-01-01
We construct the canonical action of a Carroll string doing the Carroll limit of a canonical relativistic string. We also study the Killing symmetries of the Carroll string, which close under an infinite dimensional algebra. The tensionless limit and the Carroll $p$-brane action are also discussed.
Hadronic density of states from string theory.
Pando Zayas, Leopoldo A; Vaman, Diana
2003-09-12
We present an exact calculation of the finite temperature partition function for the hadronic states corresponding to a Penrose-Güven limit of the Maldacena-Nùñez embedding of the N=1 super Yang-Mills (SYM) into string theory. It is established that the theory exhibits a Hagedorn density of states. We propose a semiclassical string approximation to the finite temperature partition function for confining gauge theories admitting a supergravity dual, by performing an expansion around classical solutions characterized by temporal windings. This semiclassical approximation reveals a hadronic energy density of states of a Hagedorn type, with the coefficient determined by the gauge theory string tension as expected for confining theories. We argue that our proposal captures primarily information about states of pure N=1 SYM theory, given that this semiclassical approximation does not entail a projection onto states of large U(1) charge.
Construction and cosmic-ray test of the new inner drift chamber for BESIII
Xie, Yong-ji; Qin, Zhong-hua; Ma, Xiao-yan; Zhang, Jian; Wu, Ling-hui; Xie, Wan; Dong, Ming-yi; Dong, Jing; Ji, Xiao-lu; Jiang, Xiao-shan; Ou-yang, Qun; Zhu, Ke-jun; Chen, Yuan-bo
2016-09-01
A new inner drift chamber has been built which can replace the aged part of the BESIII drift chamber when needed. The design of the new inner drift chamber can minimize the ineffective area in the very forward and backward region and hence reduce the background event rate. With this design, the new inner drift chamber is expected to have a longer lifetime and improved performance due to the lower occupancy. The endplates and the cylinder were machined with high precision. Wire stringing was performed after the mechanical structure was assembled, and good quality of wire stringing was ensured by measurement of the tension and leakage current of the wires. After completion of the physical construction of the new chamber, a cosmic-ray test was carried out to test its performance. The results of the cosmic-ray test show that the new inner chamber achieves a spatial resolution of 127 μm and a dE/dx resolution of 6.4%, which satisfies the design specifications.
String Models for the Heavy Quark-Antiquark Bound States.
Tse, Sze-Man
1988-12-01
The heavy quark-antiquark bound state is examined in the phenomenological string models. Specifically, the Nambu-Goto model and the Polyakov's smooth string model are studied in the large-D limit, D being the number of transverse space-time dimensions. The static potential V(R) is extracted in both models in the large-D limit. In the former case, this amounts to the usual saddle point calculation. In the latter case, the renormalized, physical string tension is expressed in terms of the bare string tension and the extrinsic curvature coupling. A systematic loop expansion of V(R) is developed and carried out explicitly to one loop order, with the two loops result presented without detail. For large separations R, the potential is linear in R with corrections of order 1/R. The coefficient of the 1/R Luscher term has the universal value -piD/24 to any finite order in the loop expansion. For very small separations R, the potential V(R) is also proportional to 1/R with a coefficient twice that of Luscher's term. The corrections are logarithmically small. Polyakov's smooth string model is extended to the finite temperature situation. The temperature dependence of the string tension is investigated in the large-D limit. The effective string tension is calculated to the second order in the loop expansion. At low temperature, it differs from that of the Nambu-Goto model only by terms that fall exponentially with inverse temperature. Comparison of the potential V(R) in the smooth string model with lattice gauge calculation and hadron spectroscopy data yields a consistent result.
Bianchi type-V string cosmological models in general relativity
Indian Academy of Sciences (India)
Anil Kumar Yadav; Vineet Kumar Yadav; Lallan Yadav
2011-04-01
Bianchi type-V string cosmological models in general relativity are investigated. To get the exact solution of Einstein’s ﬁeld equations, we have taken some scale transformations used by Camci et al [Astrophys. Space Sci. 275, 391 (2001)]. It is shown that Einstein’s ﬁeld equations are solvable for any arbitrary cosmic scale function. Solutions for particular forms of cosmic scale functions are also obtained. Some physical and geometrical aspects of the models are discussed.
Dando, Owen; Gregory, Ruth
1998-07-01
We examine the field equations of a self-gravitating global string in low energy superstring gravity, allowing for an arbitrary coupling of the global string to the dilaton. Massive and massless dilatons are considered. For the massive dilaton the spacetime is similar to the recently discovered non-singular time-dependent Einstein self-gravitating global string, but the massless dilaton generically gives a singular spacetime, even allowing for time dependence. We also demonstrate a time-dependent non-singular string-antistring configuration, in which the string pair causes a compactification of two of the spatial dimensions, albeit on a very large scale.
Doubled strings, negative strings and null waves
Blair, Chris D A
2016-01-01
We revisit the fundamental string (F1) solution in the doubled formalism. We show that the wave-like solution of double field theory (DFT) corresponding to the F1/pp-wave duality pair is more properly a solution of the DFT action coupled to a doubled sigma model action. The doubled string configuration which sources the pp-wave can be thought of as static gauge with the string oriented in a dual direction. We also discuss the DFT solution corresponding to a vibrating string, carrying both winding and momentum. We further show that the solution dual to the F1 in both time and space can be viewed as a "negative string" solution. Negative branes are closely connected to certain exotic string theories which involve unusual signatures for both spacetime and brane worldvolumes. In order to better understand this from the doubled point of view, we construct a variant of DFT suitable for describing theories in which the fundamental string has a Euclidean worldsheet, for which T-dualities appear to change the spacetim...
Kastor, David; Traschen, Jennie
2016-01-01
We show that asymptotically future deSitter (AFdS) spacetimes carry 'genuine' cosmic hair; information that is analogous to the mass and angular momentum of asymptotically flat spacetimes and that characterizes how an AFdS spacetime approaches its asymptotic form. We define new 'cosmological tension' charges associated with future asymptotic spatial translation symmetries, which are analytic continuations of the ADM mass and tensions of asymptotically planar AdS spacetimes, and which measure the leading anisotropic corrections to the isotropic, exponential deSitter expansion rate. A cosmological Smarr relation, holding for AFdS spacetimes having exact spatial translation symmetry, is derived. This formula relates cosmological tension, which is evaluated at future infinity, to properties of the cosmology at early times, together with a 'cosmological volume' contribution that is analogous to the thermodynamic volume of AdS black holes. Smarr relations for different spatial directions imply that the difference i...
Tachyon Condensation In String Field Theory
Möller, N
2003-01-01
In this thesis, we present some results that strongly support Sen's conjectures on tachyon condensation on a bosonic D-brane. Our main tool of analysis is level truncated open bosonic string field theory. We use level truncation to check that the energy difference between the local maximum and the local minimum of the open bosonic tachyon effective potential is equal to the tension of a space-filling D-brane (Sen's first conjecture). Our results prove this equality within a precision of about 0.1%. We then construct lump solutions of open bosonic string field theory, which are conjectured by Sen (third conjecture) to be D-branes of lower dimensions. We check that indeed the tensions of lumps of codimension one and two, coincide with the tensions of the respective D- branes within a precision of a few percent. We also give evidence for Sen's second conjecture; that in the nonperturbative tachyon vacuum all open string degrees of freedom must disappear. We show that this is guaranteed if we can write the identi...
Interacting Strings in Matrix String Theory
Bonelli, G.
1998-01-01
It is here explained how the Green-Schwarz superstring theory arises from Matrix String Theory. This is obtained as the strong YM-coupling limit of the theory expanded around its BPS instantonic configurations, via the identification of the interacting string diagram with the spectral curve of the relevant configuration. Both the GS action and the perturbative weight $g_s^{-\\chi}$, where $\\chi$ is the Euler characteristic of the world-sheet surface and $g_s$ the string coupling, are obtained.
Extracting the size of the cosmic electron-positron anomaly
Auchettl, Katie; Balázs, Csaba
2011-01-01
We isolated the anomalous part of the cosmic electron-positron flux within a Bayesian likelihood analysis. Using 219 recent cosmic ray spectral data points, we inferred the values of selected cosmic ray propagation parameters. In the context of the propagation model coded in GalProp, we found a significant tension between the electron positron related and the rest of the fluxes. Interpreting this tension as the presence of an anomalous component in the electron-positron related data, we calcu...
Cerenkov radiation from moving straight strings
Galtsov, D V; Salehi, K
2006-01-01
We study Cerenkov radiation from moving straight strings which glisse with respect to each other in such a way that the projected intersection point moves faster than light. To calculate this effect we develop classical perturbation theory for the system of Nambu-Goto strings interacting with dilaton, two-form and gravity. In the first order one encounters divergent self-action terms which are eliminated by classical renormalization of the string tension. Cerenkov radiation arises in the second order. It is generated by an effective source which contains contributions localized on the strings world-sheets and bulk contributions quadratic in the first order fields. In the ultra-relativistic limit radiation exhibits angular peaking on the Cerenkov cone in the forward direction of the fast string in the rest frame of another. The radiation spectrum then extends up to high frequencies proportional to square of the Lorentz-factor of the relative velocity. Gravitational radiation is absent since the 1+2 space-time ...
Galtsov, D V; Volkov, M S; Davydov, Evgeny A.; Gal'tsov, Dmitri V.; Volkov, Mikhail S.
2006-01-01
We present globally regular vortex-type solutions for a pure SU(2) Yang-Mills field coupled to gravity in 3+1 dimensions. These gravitating vortices are static, cylindrically symmetric and purely magnetic, and they support a non-zero chromo-magnetic flux through their cross section. In addition, they carry a constant non-Abelian current, and so in some sense they are analogs of the superconducting cosmic strings. They have a compact central core dominated by a longitudinal magnetic field and endowed with an approximately Melvin geometry. This magnetic field component gets color screened in the exterior part of the core, outside of which the fields approach exponentially fast those of the electrovacuum Bonnor solutions with a circular magnetic field. In the far field zone the solutions are not asymptotically flat but tend to vacuum Kasner metrics.
Boucher, Christina; Ma, Bin
2011-02-15
Given n strings s1, …, sn each of length ℓ and a nonnegative integer d, the CLOSEST STRING problem asks to find a center string s such that none of the input strings has Hamming distance greater than d from s. Finding a common pattern in many--but not necessarily all--input strings is an important task that plays a role in many applications in bioinformatics. Although the closest string model is robust to the oversampling of strings in the input, it is severely affected by the existence of outliers. We propose a refined model, the closest string with outliers (CSWO) problem, to overcome this limitation. This new model asks for a center string s that is within Hamming distance d to at least n - k of the n input strings, where k is a parameter describing the maximum number of outliers. A CSWO solution not only provides the center string as a representative for the set of strings but also reveals the outliers of the set.We provide fixed parameter algorithms for CSWO when d and k are parameters, for both bounded and unbounded alphabets. We also show that when the alphabet is unbounded the problem is W[1]-hard with respect to n - k, ℓ, and d. Our refined model abstractly models finding common patterns in several but not all input strings. We initialize the study of the computability of this model and show that it is sensitive to different parameterizations. Lastly, we conclude by suggesting several open problems which warrant further investigation.
Auchettl, Katie; Balazs, Csaba
2013-01-01
Via a Bayesian likelihood analysis using 219 recent cosmic ray spectral data points we extract the anomalous part of the cosmic $e^\\pm$ flux. First we show that a significant tension exists between the $e^\\pm$ related and the rest of the fluxes. Interpreting this tension as the presence of an anomalous component in the $e^\\pm$ related data, we then infer the values of selected cosmic ray propagation parameters excluding the anomalous data sample from the analysis. Based on these values we cal...
The energy and stability of D-term strings
Collinucci, A; Van Proeyen, A; Collinucci, Andr\\'es; Proeyen, Antoine Van; Smyth, Paul
2007-01-01
Cosmic strings derived from string theory, supergravity or any theory of choice should be stable if we hope to observe them. In this paper we consider D-term strings in D=4, N=1 supergravity with a constant Fayet-Iliopoulos term. We show that the positive deficit angle supersymmetric D-term string is non-perturbatively stable by using standard Witten-Nester techniques to prove a positive energy theorem. Particular attention is paid to the negative deficit angle D-term string, which is known to violate the dominant energy condition. Within the class of string solutions we consider, this violation implies that the negative deficit angle D-term string must have a naked pathology and therefore the positive energy theorem we prove does not apply to it. As an interesting aside, we show that the Witten-Nester charge calculates the total gravitational energy of the D-term string without the need for a cut-off, which may not have been expected.
A cosmic book. [of physics of early universe
Peebles, P. J. E.; Silk, Joseph
1988-01-01
A system of assigning odds to the basic elements of cosmological theories is proposed in order to evaluate the strengths and weaknesses of the theories. A figure of merit for the theories is obtained by counting and weighing the plausibility of each of the basic elements that is not substantially supported by observation or mature fundamental theory. The magnetized strong model is found to be the most probable. In order of decreasing probability, the ranking for the rest of the models is: (1) the magnetized string model with no exotic matter and the baryon adiabatic model; (2) the hot dark matter model and the model of cosmic string loops; (3) the canonical cold dark matter model, the cosmic string loops model with hot dark matter, and the baryonic isocurvature model; and (4) the cosmic string loops model with no exotic matter.
Doubled strings, negative strings and null waves
Energy Technology Data Exchange (ETDEWEB)
Blair, Chris D.A. [Theoretische Natuurkunde, Vrije Universiteit Brussel, and the International Solvay Institutes,Pleinlaan 2, B-1050 Brussels (Belgium)
2016-11-08
We revisit the fundamental string (F1) solution in the doubled formalism. We show that the wave-like solution of double field theory (DFT) corresponding to the F1/pp-wave duality pair is more properly a solution of the DFT action coupled to a doubled sigma model action. The doubled string configuration which sources the pp-wave can be thought of as static gauge with the string oriented in a dual direction. We also discuss the DFT solution corresponding to a vibrating string, carrying both winding and momentum. We further show that the solution dual to the F1 in both time and space can be viewed as a “negative string” solution. Negative branes are closely connected to certain exotic string theories which involve unusual signatures for both spacetime and brane worldvolumes. In order to better understand this from the doubled point of view, we construct a variant of DFT suitable for describing theories in which the fundamental string has a Euclidean worldsheet, for which T-dualities appear to change the spacetime signature.
Superconducting Electroweak Strings
Volkov, M S
2007-01-01
Classical solutions describing strings endowed with an electric charge and carrying a constant electromagnetic current are constructed within the bosonic sector of the Electroweak Theory. For any given ratio of the Higgs boson mass to W boson mass and for any Weinberg's angle, these strings comprise a family that can be parameterized by values of the current through their cross section, $I_3$, by their electric charge per unit string length, $I_0$, and by two integers. These parameters determine the electromagnetic and Z fluxes, as well as the angular momentum and momentum densities of the string. For $I_0\\to 0$ and $I_3\\to 0$ the solutions reduce to Z strings, or, for solutions with $I_0=\\pm I_3$, to the W-dressed Z strings whose existence was discussed some time ago.
Self-similar motion of a Nambu-Goto string
Igata, Takahisa; Harada, Tomohiro
2016-01-01
We study the self-similar motion of a string in a self-similar spacetime by introducing the concept of a self-similar string, which is defined as the world sheet to which a homothetic vector field is tangent. It is shown that in the Nambu-Goto theory, the equations of motion for a self-similar string reduce to those for a particle. Moreover, under certain conditions such as the hypersurface orthogonality of the homothetic vector field, the equations of motion for a self-similar string simplify to the geodesic equations on a (pseudo) Riemannian space. As a concrete example, we investigate a self-similar Nambu-Goto string in a spatially flat Friedmann-Lema\\^itre-Robertson-Walker expanding universe with self-similarity, and obtain solutions of open and closed strings, which have various nontrivial configurations depending on the rate of the cosmic expansion. For instance, we obtain a circular solution that evolves linearly in the cosmic time while keeping its configuration by the balance between the effects of t...
String Scale Cosmological Constant
Chalmers, Gordon
2006-01-01
The cosmological constant is an unexplained until now phenomena of nature that requires an explanation through string effects. The apparent discrepancy between theory and experiment is enourmous and has already been explained several times by the author including mechanisms. In this work the string theory theory of abolished string modes is documented and given perturbatively to all loop orders. The holographic underpinning is also exposed. The matching with the data of the LIGO and D0 experi...
Zimmerman Jones, Andrew
2010-01-01
Making Everything Easier!. String Theory for Dummies. Learn:. The basic concepts of this controversial theory;. How string theory builds on physics concepts;. The different viewpoints in the field;. String theory's physical implications. Andrew Zimmerman Jones. Physics Guide, About.com. with Daniel Robbins, PhD in Physics. Your plain-English guide to this complex scientific theory. String theory is one of the most complicated sciences being explored today. Not to worry though! This informative guide clearly explains the basics of this hot topic, discusses the theory's hypotheses and prediction
Optimal Packed String Matching
DEFF Research Database (Denmark)
Ben-Kiki, Oren; Bille, Philip; Breslauer, Dany
2011-01-01
In the packed string matching problem, each machine word accommodates – characters, thus an n-character text occupies n/– memory words. We extend the Crochemore-Perrin constantspace O(n)-time string matching algorithm to run in optimal O(n/–) time and even in real-time, achieving a factor – speedup...... over traditional algorithms that examine each character individually. Our solution can be efficiently implemented, unlike prior theoretical packed string matching work. We adapt the standard RAM model and only use its AC0 instructions (i.e., no multiplication) plus two specialized AC0 packed string...
Tseytlin, Arkady A
1992-01-01
Aspects of string cosmology for critical and non-critical strings are discussed emphasizing the necessity to account for the dilaton dynamics for a proper incorporation of ``large - small" duality. This drastically modifies the intuition one has with Einstein's gravity. For example winding modes, even though contribute to energy density, oppose expansion and if not annihilated will stop the expansion. Moreover we find that the radiation dominated era of the standard cosmology emerges quite naturally in string cosmology. Our analysis of non-critical string cosmology provides a reinterpretation of the (universal cover of the) recently studied two dimensional black hole solution as a conformal realization of cosmological solutions found previously by Mueller.
Batakis, Nikolaos A
2012-01-01
The prototype of a Taub string is formed by successive junctions of copies of Taub's space {\\cal T}, joined at their null boundaries \\Sigma to create the axially-symmetric Bianchi-type-XI (with compact SL sections of scale {\\rm L_o}) vacuum {\\cal B}^4_{\\rm T}= ...\\vee {\\cal T}\\vee {\\cal T}\\vee {\\cal T}\\vee..., which is a {\\em proper} one, namely a stable non-singular geodesically complete and globally fit solution of Einstein's vacuum equations without torsion and without a cosmological constant. Each {\\cal T} contributes to {\\cal B}^4_{\\rm T} with its entire life-span as a quantum of time \\delta t\\sim{\\rm L_ o} between two consecutive \\Sigma. The latter propagate as shock-wave fronts under string tension of Planck-scale strength \\kappa_{\\rm o}. The incurring dynamics entails stability and the foundation of hierarchy in {\\cal B}^4_{\\rm T}. Appropriate averaging of this dynamics generates {\\em effective} stress-energy content and torsion in a static \\bar{\\cal B}^4_{\\rm T} vacuum. With the latter as a ground st...
Kastor, David; Ray, Sourya; Traschen, Jennie
2017-02-01
We show that asymptotically future de Sitter (AFdS) spacetimes carry ‘genuine’ cosmic hair; information that is analogous to the mass and angular momentum of asymptotically flat spacetimes and that characterizes how an AFdS spacetime approaches its asymptotic form. We define new ‘cosmological tension’ charges associated with future asymptotic spatial translation symmetries, which are analytic continuations of the ADM mass and tensions of asymptotically planar AdS spacetimes, and which measure the leading anisotropic corrections to the isotropic, exponential de Sitter expansion rate. A cosmological Smarr relation, holding for AFdS spacetimes having exact spatial translation symmetry, is derived. This formula relates cosmological tension, which is evaluated at future infinity, to properties of the cosmology at early times, together with a ‘cosmological volume’ contribution that is analogous to the thermodynamic volume of AdS black holes. Smarr relations for different spatial directions imply that the difference in expansion rates between two directions at late times is related in a simple way to their difference at early times. Hence information about the very early universe can be inferred from cosmic hair, which is potentially observable in a late time de Sitter phase. Cosmological tension charges and related quantities are evaluated for Kasner–de Sitter spacetimes, which serve as our primary examples.
Kolmogorov Complexity, String Information, Panspermia and the Fermi Paradox
Gurzadyan, V G
2005-01-01
Bit strings rather than byte files can be a mode of transmission both for intelligent signals and for travels of extraterrestrial life. Kolmogorov complexity, i.e. the minimal length of a binary coded string completely defining a system, can then, due to its universality, become a key concept in the strategy of the search of extraterrestrials. Evaluating, for illustration, the Kolmogorov complexity of the human genome, one comes to an unexpected conclusion that a low complexity compressed string - analog of Noah's ark - will enable the recovery of the totality of terrestrial life. The recognition of bit strings of various complexity up to incompressible Martin-L\\"{o}f random sequences, will require a different strategy for the analysis of the cosmic signals. The Fermi paradox "Where is Everybody?" can be viewed under in the light of such information panspermia, i.e. a Universe full of traveling life streams.
Pitch glide effect induced by a nonlinear string-barrier interaction
Kartofelev, Dmitri; Stulov, Anatoli; Välimäki, Vesa
2015-10-01
Interactions of a vibrating string with its supports and other spatially distributed barriers play a significant role in the physics of many stringed musical instruments. It is well known that the tone of the string vibrations is determined by the string supports, and that the boundary conditions of the string termination may cause a short-lasting initial fundamental frequency shifting. Generally, this phenomenon is associated with the nonlinear modulation of the stiff string tension. The aim of this paper is to study the initial frequency glide phenomenon that is induced only by the string-barrier interaction, apart from other possible physical causes, and without the interfering effects of dissipation and dispersion. From a numerical simulation perspective, this highly nonlinear problem may present various difficulties, not the least of which is the risk of numerical instability. We propose a numerically stable and a purely kinematic model of the string-barrier interaction, which is based on the travelling wave solution of the ideal string vibration. The model is capable of reproducing the motion of the vibrating string exhibiting the initial fundamental frequency glide, which is caused solely by the complex nonlinear interaction of the string with its termination. The results presented in this paper can expand our knowledge and understanding of the timbre evolution and the physical principles of sound generation of numerous stringed instruments, such as lutes called the tambura, sitar and biwa.
Academic training : String Theory for Pedestrians
2007-01-01
LECTURE SERIES 29, 30, 31 January 2007 from 11.00 to 12.00 hrs Main Auditorium, bldg. 500 on 29 and 30 January TH Auditorium, Bldg 4, 3-006, on 31 January String Theory for Pedestrians B. ZWIEBACH/MIT, Cambridge, USA In this 3-lecture series I will discuss the basics of string theory, some physical applications, and the outlook for the future. Â I will begin with the main concepts of the classical theory and theÂ application to the study of cosmic superstrings.Â Then I will turnÂ to the quantum theory and discussÂ applications toÂ the investigation ofÂ hadronic spectra and theÂ recentlyÂ discovered quark-gluon plasma.Â Â I will concludeÂ with a sketch of string models of particle physicsÂ and showing some avenues that may lead to aÂ completeÂ formulation ofÂ string theory. Â
k-Strings as Fundamental Strings
Giataganas, Dimitrios
2015-01-01
It has been noticed that the k-string observables can be expressed in terms of the fundamental string ones. We identify a sufficient condition for a generic gravity dual background which when satisfied the mapping can be done. The condition is naturally related to a preserved quantity under the T-dualities acting on the Dp-brane describing the high representation Wilson loops. We also find the explicit relation between the observables of the heavy k-quark and the single quark states. As an application to our generic study and motivated by the fact that the anisotropic theories satisfy our condition, we compute the width of the k-string in these theories to find that the logarithmic broadening is still present, but the total result is affected by the anisotropy of the space.
k-strings as fundamental strings
Energy Technology Data Exchange (ETDEWEB)
Giataganas, Dimitrios [Department of Nuclear and Particle Physics, Faculty of Physics, University of Athens,Athens 15784 (Greece); Rudolf Peierls Centre for Theoretical Physics, University of Oxford,1 Keble Road, Oxford OX1 3NP (United Kingdom)
2015-05-26
It has been noticed that the k-string observables can be expressed in terms of the fundamental string ones. We identify a sufficient condition for a generic gravity dual background which when satisfied the mapping can be done. The condition is naturally related to a preserved quantity under the T-dualities acting on the Dp-brane describing the high representation Wilson loops. We also find the explicit relation between the observables of the heavy k-quark and the single quark states. As an application to our generic study and motivated by the fact that the anisotropic theories satisfy our condition, we compute the width of the k-string in these theories to find that the logarithmic broadening is still present, but the total result is affected by the anisotropy of the space.
de Boer, J.; de Medeiros, P.; El-Showk, S.; Sinkovics, A.
2008-01-01
We consider an open string version of the topological twist previously proposed for sigma-models with G(2) target spaces. We determine the cohomology of open strings states and relate these to geometric deformations of calibrated submanifolds and to flat or anti-self-dual connections on such submani
Magnetic string contribution to hadron dynamics in QCD
Simonov, YA; Tjon, JA
2000-01-01
The dynamics of a light quark in the field of a static source (heavy-light meson) is studied using the nonlinear Dirac equation, derived recently. Special attention is paid to the contribution of the magnetic correlators and it is found that it yields a significant increase of string tension at inte
A Map Between d = 3 and d = 4 Spacetime Dimensional k-strings Using Holography
Liu, Xiaolong; Stiffler, Kory
2009-11-01
We investigate k-string in d=3 and d=4 spacetime dimensions using holography. Exploiting the similarities between two supergravity backgrounds,Maldacena-Nunez background and Maldacena-Nastase background, we map calculations for k-strings between d = 3 and d = 4 spacetime dimensions. The specific calculations investigated are the usual lowest order tension term for the energy of k-strings and the first order, one loop corrections, the Luscher term. The tension term is proportional to L, the length between quark antiquark pairs and the Luscher term is the typical 1/L Coulombic correction.
Static potential for smooth strings in the large-D limit
Braaten, Eric; Tse, Sze-Man
1987-11-01
The static potential V(R) in Polyakov's model of smooth strings is studied in the large-D limit. The physical string tension is calculated analytically as a function of the bare string tension and the extrinsic curvature coupling. A systematic saddle-point method for computing the loop expansion of V(R) is developed and carried out explicitly to two loops. There are no corrections to the 1/R Luscher term to this order. The leading short-distance behavior of V(R) is also proportional to 1/R with twice the coefficient of the Luscher term.
2015-01-01
Welcome to String-Math 2015 at Sanya. The conference will be opened in December 31, 2015- January 4, 2016. String theory plays a central role in theoretical physics as a candidate for the quantum theory unifying gravity with other interactions. It has profound connections with broad branches of modern mathematics ever since the birth. In the last decades, the prosperous interaction, built upon the joint efforts from both mathematicians and physicists, has given rise to marvelous deep results in supersymmetric gauge theory, topological string, M-theory and duality on the physics side as well as in algebraic geometry, differential geometry, algebraic topology, representation theory and number theory on the mathematics side. The interplay is two-fold. The mathematics has provided powerful tools to fulfill the physical interconnection of ideas and clarify physical structures to understand the nature of string theory. On the other hand, ideas from string theory and quantum field theory have been a source of sign...
Non-Riemannian Cosmic Walls as Boundaries of Spinning Matter
Garcia de Andrade, L C
1998-01-01
An example is given of a plane topological defect solution of linearized Einstein-Cartan (EC) field equation representing a cosmic wall boundary of spinning matter. The source of Cartan torsion is composed of two orthogonal lines of static polarized spins bounded by the cosmic plane wall. The Kopczy\\'{n}ski- Obukhov - Tresguerres (KOT) spin fluid stress-energy current coincides with thin planar matter current in the static case. Our solution is similar to Letelier solution of Einstein equation for multiple cosmic strings. Due to this fact we suggest that the lines of spinning matter could be analogous to multiple cosmic spinning string solution in EC theory of gravity. When torsion is turned off a pure Riemannian cosmic wall is obtained.
Universality and string theory
Bachlechner, Thomas Christian
The first run at the Large Hadron Collider has deeply challenged conventional notions of naturalness, and CMB polarization experiments are about to open a new window to early universe cosmology. As a compelling candidate for the ultraviolet completion of the standard model, string theory provides a prime opportunity to study both early universe cosmology and particle physics. However, relating low energy observations to ultraviolet physics requires knowledge of the metastable states of string theory through the study of vacua. While it is difficult to directly obtain infrared data from explicit string theory constructions, string theory imposes constraints on low energy physics. The study of ensembles of low energy theories consistent with ultra-violet constraints provides insight on generic features we might expect to occur in string compactifications. In this thesis we present a statistical treatment of vacuum stability and vacuum properties in the context of random supergravity theories motivated by string theory. Early universe cosmology provides another avenue to high energy physics. From the low energy perspective large field inflation is typically considered highly unnatural: the scale relevant for the diameter of flat regions in moduli space is sub-Planckian in regions of perturbative control. To approach this problem, we consider generic Calabi-Yau compactifications of string theory and find that super-Planckian diameters of axion fundamental domains in fact arise generically. We further demonstrate that such super-Planckian flat regions are plausibly consistent with theWeak Gravity Conjecture.
Supersymmetry and String Theory
Dine, Michael
2016-01-01
Preface to the first edition; Preface to the second edition; A note on choice of metric; Text website; Part I. Effective Field Theory: The Standard Model, Supersymmetry, Unification: 1. Before the Standard Model; 2. The Standard Model; 3. Phenomenology of the Standard Model; 4. The Standard Model as an effective field theory; 5. Anomalies, instantons and the strong CP problem; 6. Grand unification; 7. Magnetic monopoles and solitons; 8. Technicolor: a first attempt to explain hierarchies; Part II. Supersymmetry: 9. Supersymmetry; 10. A first look at supersymmetry breaking; 11. The Minimal Supersymmetric Standard Model; 12. Supersymmetric grand unification; 13. Supersymmetric dynamics; 14. Dynamical supersymmetry breaking; 15. Theories with more than four conserved supercharges; 16. More supersymmetric dynamics; 17. An introduction to general relativity; 18. Cosmology; 19. Astroparticle physics and inflation; Part III. String Theory: 20. Introduction; 21. The bosonic string; 22. The superstring; 23. The heterotic string; 24. Effective actions in ten dimensions; 25. Compactification of string theory I. Tori and orbifolds; 26. Compactification of string theory II. Calabi-Yau compactifications; 27. Dynamics of string theory at weak coupling; 28. Beyond weak coupling: non-perturbative string theory; 29. Large and warped extra dimensions; 30. The landscape: a challenge to the naturalness principle; 31. Coda: where are we headed?; Part IV. The Appendices: Appendix A. Two-component spinors; Appendix B. Goldstone's theorem and the pi mesons; Appendix C. Some practice with the path integral in field theory; Appendix D. The beta function in supersymmetric Yang-Mills theory; References; Index.
1978-01-01
The fabric structure pictured is the Campus Center of La Verne College, La Verne, California. Unlike the facilities shown on the preceding pages, it is not air-supported. It is a "tension structure," its multi-coned fabric membrane supported by a network of cables attached to steel columns which function like circus tent poles. The spider-web in the accompanying photo is a computer graph of the tension pattern. The designers, Geiger-Berger Associates PC, of New York City, conducted lengthy computer analysis to determine the the best placement of columns and cables. The firm also served as structural engineering consultant on the Pontiac Silverdome and a number of other large fabric structures. Built by Birdair Structures, Inc., Buffalo, New York, the La Verne Campus Center was the first permanent facility in the United States enclosed by the space-spinoff fabric made of Owens-Corning Beta fiber glass coated with Du Pont Teflon TFE. The flexible design permits rearrangement of the interior to accommodate athletic events, student activities, theatrical productions and other recreational programs. Use of fabric covering reduced building cost 30 percent below conventional construction.
Searching for Long Strings in CMB Maps
Perivolaropoulos, L
1998-01-01
Using analytical methods and Monte Carlo simulations, we analyze new statistics designed to detect isolated step-like discontinuities which are coherent over large areas of Cosmic Microwave Background (CMB) pixel maps. Such coherent temperature discontinuities are predicted by the Kaiser-Stebbins effect to form due to long cosmic strings present in our present horizon. The background of the coherent step-like seed is assumed to be a scale invariant Gaussian random field which could have been produced by a superposition of seeds on smaller scales and/or by inflationary quantum fluctuations. We find that the proposed statistics can detect the presense of a coherent discontinuity at a sensitivity level almost an order of magnitude better compared to more conventional statistics like the skewness or the kurtosis.
Effective String Theory Simplified
Hellerman, Simeon; Maltz, Jonathan; Swanson, Ian
2014-01-01
In this set of notes we simplify the formulation of the Poincar\\'e invariant effective string theory in D dimensions by adding an intrinsic metric and embedding its dynamics into the Polyakov formalism. We apply this formalism to classify operators order by order in the inverse physical length of the string, in a fully gauge-invariant framework. We use this classification to discuss universality and nonuniversalty of observables up to and including next-to-next-to-leading order in the long string expansion.
Energy Technology Data Exchange (ETDEWEB)
Witten, Edward
2015-10-21
The Strings 2014 meeting was held at Princeton University June 23-27, 2014, co-sponsored by Princeton University and the Institute for Advanced Study. The goal of the meeting was to provide a stimulating and up-to-date overview of research in string theory and its relations to other areas of physics and mathematics, ranging from geometry to quantum field theory, condensed matter physics, and more. This brief report lists committee members and speakers but contains no scientific information. Note that the talks at Strings 2014 were videotaped and are available on the conference website: http://physics.princeton.edustrings2014/Talk_titles.shtml.
Ménard, B
2002-01-01
I present the current status of the cosmic magnification produced by systematic amplification of background sources by large-scale structures. After introducing its principle, I focus on its interests for cosmology and underline its complementary aspect to cosmic shear and galaxy auto-correlations. I finally discuss recent investigations using higher-order statistics.
International conference on string theory
2016-01-01
The Strings conference is an annual event that brings the entire string theory community together. Since the 1980s, it has grown to be the largest and most important conference in the field. The aim is to review recent developments in string theory and to stimulate scientific exchanges among the participants. This is the second Strings conference organised in Beijing, after Strings 2006. Following the tradition, besides scientific talks, the conference will also include some public lectures open to a general audience.
International conference on string theory
2017-01-01
The Strings 2017 conference is part of the "Strings" series of annual conferences, that bring the entire string theory community together. It will include reviews of major developments in the field, and specialized talks on specific topics. There will also be several public lectures given by conference participants, a pre-Strings school at the Technion, and a post-Strings workshop at the Weizmann Institute.
Supercritical N = 2 string theory
Hellerman, Simeon
2007-01-01
The N=2 string is examined in dimensions above the critical dimension (D=4) in a linear dilaton background. We demonstrate that string states in this background propagate in a single physical time dimension, as opposed to two such dimensions present when the dilaton gradient vanishes in D=4. We also find exact solutions describing dynamical dimensional reduction and transitions from N=2 string theory to bosonic string theory via closed-string tachyon condensation.
DEFF Research Database (Denmark)
Szklarczyk, Damian; Franceschini, Andrea; Wyder, Stefan;
2015-01-01
.0 of STRING covers more than 2000 organisms, which has necessitated novel, scalable algorithms for transferring interaction information between organisms. For this purpose, we have introduced hierarchical and self-consistent orthology annotations for all interacting proteins, grouping the proteins...
2008-01-01
String Theory supporters argue that the universe we live in has eleven dimensions, out of which three spacial dimensions and a temporal one, which define the void and the space-time environment we experience daily.
Katz, Sheldon; Klemm, Albrecht; Morrison, David R
2015-01-01
This volume contains the proceedings of the conference String-Math 2012, which was held July 16-21, 2012, at the Hausdorff Center for Mathematics, Universitat Bonn. This was the second in a series of annual large meetings devoted to the interface of mathematics and string theory. These meetings have rapidly become the flagship conferences in the field. Topics include super Riemann surfaces and their super moduli, generalized moonshine and K3 surfaces, the latest developments in supersymmetric and topological field theory, localization techniques, applications to knot theory, and many more. The contributors include many leaders in the field, such as Sergio Cecotti, Matthias Gaberdiel, Rahul Pandharipande, Albert Schwarz, Anne Taormina, Johannes Walcher, Katrin Wendland, and Edward Witten. This book will be essential reading for researchers and students in this area and for all mathematicians and string theorists who want to update themselves on developments in the math-string interface.
Aragone, C.
1986-12-01
An action is presented for the free bosonic string on external flat space in terms of an antisymmetric second-rank string background tensor which is classically equivalent to the Nambu-Goto action. Both action and field equations are entirely described in terms of 2D world-sheet forms, without any reference to a 2D metric tensor background. The analysis of its canonical formulation shows how the quadratic Virasoro constraints are generated in this case and what their connection with the Bianchi identities are. Since in the orthonormal gauge the reduced action coincides with the standard one, it has the same critical dimension D = 26. The existence of an interaction term of a purely geometric structure stemming in the extrinsic curvature is pointed out. Its action and the new string field equations are then derived. This polynomial antisymmetric string action is uniformly generalized in order to describe d Apartado 80659, Caracas 1080A, Venezuela.
String theory compactifications
Graña, Mariana
2017-01-01
The lectures in this book provide graduate students and non-specialist researchers with a concise introduction to the concepts and formalism required to reduce the ten-dimensional string theories to the observable four-dimensional space-time - a procedure called string compactification. The text starts with a very brief introduction to string theory, first working out its massless spectrum and showing how the condition on the number of dimensions arises. It then dwells on the different possible internal manifolds, from the simplest to the most relevant phenomenologically, thereby showing that the most elegant description is through an extension of ordinary Riemannian geometry termed generalized geometry, which was first introduced by Hitchin. Last but not least, the authors review open problems in string phenomenology, such as the embedding of the Standard Model and obtaining de Sitter solutions.
Dijkgraaf, Robbert; Verlinde, Erik; Verlinde, Herman
1997-02-01
Via compactification on a circle, the matrix mode] of M-theory proposed by Banks et a]. suggests a concrete identification between the large N limit of two-dimensional N = 8 supersymmetric Yang-Mills theory and type IIA string theory. In this paper we collect evidence that supports this identification. We explicitly identify the perturbative string states and their interactions, and describe the appearance of D-particle and D-membrane states.
Energy Technology Data Exchange (ETDEWEB)
Dijkgraaf, R. [Amsterdam Univ. (Netherlands). Dept. of Mathematics; Verlinde, E. [TH-Division, CERN, CH-1211 Geneva 23 (Switzerland)]|[Institute for Theoretical Physics, Universtity of Utrecht, 3508 TA Utrecht (Netherlands); Verlinde, H. [Institute for Theoretical Physics, University of Amsterdam, 1018 XE Amsterdam (Netherlands)
1997-09-01
Via compactification on a circle, the matrix model of M-theory proposed by Banks et al. suggests a concrete identification between the large N limit of two-dimensional N=8 supersymmetric Yang-Mills theory and type IIA string theory. In this paper we collect evidence that supports this identification. We explicitly identify the perturbative string states and their interactions, and describe the appearance of D-particle and D-membrane states. (orig.).
Frampton, Paul H
2015-01-01
In this note, I recollect a two-week period in September 1968 when I factorized the Veneziano model using string variables in Chicago. Professor Yoichiro Nambu went on to calculate the N-particle dual resonance model and then to factorize it on an exponential degeneracy of states. That was in 1968 and the following year 1969 he discovered the string action. I also include some other reminiscences of Nambu who passed away on July 5, 2105.
Dijkgraaf, R; Verlinde, Herman L
1997-01-01
Via compactification on a circle, the matrix model of M-theory proposed by Banks et al suggests a concrete identification between the large N limit of two-dimensional N=8 supersymmetric Yang-Mills theory and type IIA string theory. In this paper we collect evidence that supports this identification. We explicitly identify the perturbative string states and their interactions, and describe the appearance of D-particle and D-membrane states.
Itoyama, H
2016-01-01
This is a brief summary of an introductory lecture for students and scholars in general given by the author at Nambu Memorial Symposium which was held at Osaka City University on September 29, 2015. We review the invention of string theory by Professor Yoichiro Nambu following the discovery of the Veneziano amplitude. We also discuss Professor Nambu's proposal on string theory in the Schild gauge in 1976 which is related to the matrix model of Yang-Mills type.
Manipulating Strings in Python
Directory of Open Access Journals (Sweden)
William J. Turkel
2012-07-01
Full Text Available This lesson is a brief introduction to string manipulation techniques in Python. Knowing how to manipulate strings plays a crucial role in most text processing tasks. If you’d like to experiment with the following lessons, you can write and execute short programs as we’ve been doing, or you can open up a Python shell / Terminal to try them out on the command line.
Trzetrzelewski, Maciej
2016-11-01
Starting with a Nambu-Goto action, a Dirac-like equation can be constructed by taking the square-root of the momentum constraint. The eigenvalues of the resulting Hamiltonian are real and correspond to masses of the excited string. In particular there are no tachyons. A special case of radial oscillations of a closed string in Minkowski space-time admits exact solutions in terms of wave functions of the harmonic oscillator.
Energy Technology Data Exchange (ETDEWEB)
Ahlén, Olof, E-mail: olof.ahlen@aei.mpg.de [Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut), Am Mühlenberg 1, DE-14476 Potsdam (Germany)
2015-12-17
These proceedings from the second Caesar Lattes meeting in Rio de Janeiro 2015 are a brief introduction to how automorphic forms appear in the low energy effective action of maximally supersymmetric string theory. The explicit example of the R{sup 4}-interaction of type IIB string theory in ten dimensions is discussed. Its Fourier expansion is interpreted in terms of perturbative and non-perturbative contributions to the four graviton amplitude.
Higher-Spin Geometry and String Theory
Francia, D
2006-01-01
The theory of freely-propagating massless higher spins is usually formulated via gauge fields and parameters subject to trace constraints. We summarize a proposal allowing to forego them by introducing only a pair of additional fields in the Lagrangians. In this setting, external currents satisfy usual Noether-like conservation laws, the field equations can be nicely related to those emerging from Open String Field Theory in the low-tension limit, and if the additional fields are eliminated without reintroducing the constraints a geometric, non-local description of the theory manifests itself.
Optical Measurement of Cable and String Vibration
Directory of Open Access Journals (Sweden)
Y. Achkire
1998-01-01
Full Text Available This paper describes a non contacting measurement technique for the transverse vibration of small cables and strings using an analog position sensing detector. On the one hand, the sensor is used to monitor the cable vibrations of a small scale mock-up of a cable structure in order to validate the nonlinear cable dynamics model. On the other hand, the optical sensor is used to evaluate the performance of an active tendon control algorithm with guaranteed stability properties. It is demonstrated experimentally, that a force feedback control law based on a collocated force sensor measuring the tension in the cable is feasible and provides active damping in the cable.
String Mediated Supersymmetry Breaking
Energy Technology Data Exchange (ETDEWEB)
Brodie, John H
2001-07-25
We consider the 3+1 visible sector to live on a Hanany-Witten D-brane construction in type IIA string theory. The messenger sector consists of stretched strings from the visible brane to a hidden D6-brane in the extra spatial dimensions. In the open string channel supersymmetry is broken by gauge mediation while in the closed string channel supersymmetry is broken by gravity mediation. Hence, we call this kind of mediation ''string mediation''. We propose an extension of the Dimopoulos-Georgi theorem to brane models: only detached probe branes can break supersymmetry without generating a tachyon. Fermion masses are generated at one loop if the branes break a sufficient amount of the ten dimensional Lorentz group while scalar potentials are generated if there is a force between the visible brane and the hidden brane. Scalars can be lifted at two loops through a combination of brane bending and brane forces. We find a large class of stable non-supersymmetric brane configurations of ten dimensional string theory.
A class of exact classical solutions to string theory.
Coley, A A
2002-12-31
We show that the recently obtained class of spacetimes for which all of the scalar curvature invariants vanish (which can be regarded as generalizations of pp-wave spacetimes) are exact solutions in string theory to all perturbative orders in the string tension scale. As a result the spectrum of the theory can be explicitly obtained, and these spacetimes are expected to provide some hints for the study of superstrings on more general backgrounds. Since these Lorentzian spacetimes suffer no quantum corrections to all loop orders they may also offer insights into quantum gravity.
Cappelli, Andrea; Castellani, Elena; Colomo, Filippo; Di Vecchia, Paolo
2012-04-01
Part I. Overview: 1. Introduction and synopsis; 2. Rise and fall of the hadronic string G. Veneziano; 3. Gravity, unification, and the superstring J. H. Schwarz; 4. Early string theory as a challenging case study for philosophers E. Castellani; Part II. The Prehistory: The Analytic S-Matrix: 5. Introduction to Part II; 6. Particle theory in the sixties: from current algebra to the Veneziano amplitude M. Ademollo; 7. The path to the Veneziano model H. R. Rubinstein; 8. Two-component duality and strings P. G. O. Freund; 9. Note on the prehistory of string theory M. Gell-Mann; Part III. The Dual Resonance Model: 10. Introduction to Part III; 11. From the S-matrix to string theory P. Di Vecchia; 12. Reminiscence on the birth of string theory J. A. Shapiro; 13. Personal recollections D. Amati; 14. Early string theory at Fermilab and Rutgers L. Clavelli; 15. Dual amplitudes in higher dimensions: a personal view C. Lovelace; 16. Personal recollections on dual models R. Musto; 17. Remembering the 'supergroup' collaboration F. Nicodemi; 18. The '3-Reggeon vertex' S. Sciuto; Part IV. The String: 19. Introduction to Part IV; 20. From dual models to relativistic strings P. Goddard; 21. The first string theory: personal recollections L. Susskind; 22. The string picture of the Veneziano model H. B. Nielsen; 23. From the S-matrix to string theory Y. Nambu; 24. The analogue model for string amplitudes D. B. Fairlie; 25. Factorization in dual models and functional integration in string theory S. Mandelstam; 26. The hadronic origins of string theory R. C. Brower; Part V. Beyond the Bosonic String: 27. Introduction to Part V; 28. From dual fermion to superstring D. I. Olive; 29. Dual models with fermions: memoirs of an early string theorist P. Ramond; 30. Personal recollections A. Neveu; 31. Aspects of fermionic dual models E. Corrigan; 32. The dual quark models K. Bardakci and M. B. Halpern; 33. Remembering the dawn of relativistic strings J.-L. Gervais; 34. Early string theory in
A reflected wave superposition method for vibration and energy of a travelling string
Chen, E. W.; Luo, Q.; Ferguson, N. S.; Lu, Y. M.
2017-07-01
This paper considers the analytical free time domain response and energy in an axially translating and laterally vibrating string. The domain of the string is either a constant or variable length, dependent upon the general initial conditions. The translating tensioned strings possess either fixed-fixed or fixed-free boundaries. An alternative analytical solution using a reflected wave superposition method is presented for a finite translating string. Firstly, the cycles of vibration for both constant and variable length strings are provided, which for the latter are dependent upon the variable string length. Each cycle is divided into three time intervals according to the magnitude and the direction of the translating string velocity. Applying d'Alembert's method combined with the reflection properties, expressions for the reflected waves at the two boundaries are obtained. Subsequently, superposition of all of the incident and reflected waves provides results for the free vibration of the string over the three time intervals. The variation in the total mechanical energy of the string system is also shown. The accuracy and efficiency of the proposed method are confirmed numerically by comparison to simulations produced using a Newmark-Beta method solution and an existing state space function representation of the string dynamics.
Ghost Structure and Closed Strings in Vacuum String Field Theory
Gaiotto, D; Sen, A; Zwiebach, B; Gaiotto, Davide; Rastelli, Leonardo; Sen, Ashoke; Zwiebach, Barton
2001-01-01
We complete the construction of vacuum string field theory by proposing a canonical choice of ghost kinetic term -- a local insertion of the ghost field at the string midpoint with an infinite normalization. This choice, supported by level expansion studies in the Siegel gauge, allows a simple analytic treatment of the ghost sector of the string field equations. As a result, solutions are just projectors, such as the sliver, of an auxiliary CFT built by combining the matter part with a twisted version of the ghost conformal theory. Level expansion experiments lead to surprising new projectors -- butterfly surface states, whose analytical expressions are obtained. With the help of a suitable open-closed string vertex we define open-string gauge invariant operators parametrized by on-shell closed string states. We use regulated vacuum string field theory to sketch how pure closed string amplitudes on surfaces without boundaries arise as correlators of such gauge invariant operators.
Haghighat, Babak; Iqbal, Amer; Kozçaz, Can; Lockhart, Guglielmo; Vafa, Cumrun
2015-03-01
M2 branes suspended between adjacent parallel M5 branes lead to light strings, the `M-strings'. In this paper we compute the elliptic genus of M-strings, twisted by maximally allowed symmetries that preserve 2 d (2, 0) supersymmetry. In a codimension one subspace of parameters this reduces to the elliptic genus of the (4, 4) supersymmetric A n-1 quiver theory in 2 d. We contrast the elliptic genus of N M-strings with the (4, 4) sigma model on the N-fold symmetric product of . For N = 1 they are the same, but for N > 1 they are close, but not identical. Instead the elliptic genus of (4, 4) N M-strings is the same as the elliptic genus of (4, 0) sigma models on the N-fold symmetric product of , but where the right-moving fermions couple to a modification of the tangent bundle. This construction arises from a dual A n-1 quiver 6 d gauge theory with U(1) gauge groups. Moreover, we compute the elliptic genus of domain walls which separate different numbers of M2 branes on the two sides of the wall.
Haghighat, Babak; Kozcaz, Can; Lockhart, Guglielmo; Vafa, Cumrun
2013-01-01
M2 branes suspended between adjacent parallel M5 branes lead to light strings, the `M-strings'. In this paper we compute the elliptic genus of M-strings, twisted by maximally allowed symmetries that preserve 2d (2,0) supersymmetry. In a codimension one subspace of parameters this reduces to the elliptic genus of the (4,4) supersymmetric A_{n-1} quiver theory in 2d. We contrast the elliptic genus of N M-strings with the (4,4) sigma model on the N-fold symmetric product of R^4. For N=1 they are the same, but for N>1 they are close, but not identical. Instead the elliptic genus of (4,4) N M-strings is the same as the elliptic genus of (4,0) sigma models on the N-fold symmetric product of R^4, but where the right-moving fermions couple to a modification of the tangent bundle. This construction arises from a dual A_{n-1} quiver 6d gauge theory with U(1) gauge groups. Moreover we compute the elliptic genus of domain walls which separate different numbers of M2 branes on the two sides of the wall.
Energy Technology Data Exchange (ETDEWEB)
Amore, Paolo, E-mail: paolo.amore@gmail.com [Facultad de Ciencias, CUICBAS, Universidad de Colima, Bernal Díaz del Castillo 340, Colima, Colima (Mexico); Fernández, Francisco M., E-mail: fernande@quimica.unlp.edu.ar [INIFTA (UNLP, CCT La Plata-CONICET), División Química Teórica, Diag. 113 y 64 (S/N), Sucursal 4, Casilla de Correo 16, 1900 La Plata (Argentina); Garcia, Javier [INIFTA (UNLP, CCT La Plata-CONICET), División Química Teórica, Diag. 113 y 64 (S/N), Sucursal 4, Casilla de Correo 16, 1900 La Plata (Argentina); Gutierrez, German [Facultad de Ciencias, CUICBAS, Universidad de Colima, Bernal Díaz del Castillo 340, Colima, Colima (Mexico)
2014-04-15
We study both analytically and numerically the spectrum of inhomogeneous strings with PT-symmetric density. We discuss an exactly solvable model of PT-symmetric string which is isospectral to the uniform string; for more general strings, we calculate exactly the sum rules Z(p)≡∑{sub n=1}{sup ∞}1/E{sub n}{sup p}, with p=1,2,… and find explicit expressions which can be used to obtain bounds on the lowest eigenvalue. A detailed numerical calculation is carried out for two non-solvable models depending on a parameter, obtaining precise estimates of the critical values where pair of real eigenvalues become complex. -- Highlights: •PT-symmetric Hamiltonians exhibit real eigenvalues when PT symmetry is unbroken. •We study PT-symmetric strings with complex density. •They exhibit regions of unbroken PT symmetry. •We calculate the critical parameters at the boundaries of those regions. •There are exact real sum rules for some particular complex densities.
Perspectives on string phenomenology
Kane, Gordon; Kumar, Piyush
2015-01-01
The remarkable recent discovery of the Higgs boson at the CERN Large Hadron Collider completed the Standard Model of particle physics and has paved the way for understanding the physics which may lie beyond it. String/M theory has emerged as a broad framework for describing a plethora of diverse physical systems, which includes condensed matter systems, gravitational systems as well as elementary particle physics interactions. If string/M theory is to be considered as a candidate theory of Nature, it must contain an effectively four-dimensional universe among its solutions that is indistinguishable from our own. In these solutions, the extra dimensions of string/M Theory are “compactified” on tiny scales which are often comparable to the Planck length. String phenomenology is the branch of string/M theory that studies such solutions, relates their properties to data, and aims to answer many of the outstanding questions of particle physics beyond the Standard Model. This book contains perspectives on stri...
Asymptotic freedom in a string model of high temperature QCD
Awada, M
1995-01-01
Recently we have shown that a phase transition occurs in the leading and subleading approximation of the large N limit in rigid strings coupled to long range Kalb-Ramond interactions. The disordered phase is essentially the Nambu-Goto-Polyakov string theory while the ordered phase is a new theory. In this letter we compute the free energy per unit length of the interacting rigid string at finite temperature. We show that the mass of the winding states solves that of QCD strings in the limit of high temperature. We obtain a precise identification of the QCD coupling constant and those of the interacting rigid string. The relation we obtain is Ng_{QCD}^2 = ({8\\pi^2 (D-2)\\over 9})^2{1\\over 3\\kappa} where \\kappa = {D t \\alpha\\over \\pi \\mu_{c}} is the ratio of the extrinsic curvature coupling constant t, the Kalb-Ramond coupling constant \\alpha, and the critical string tension \\mu_{c}. The running beta function of \\kappa reproduces correctly the asymptotic behaviour of QCD.
Electromagnetic back-reaction from currents on a straight string
Wachter, Jeremy M
2014-01-01
Charge carriers moving at the speed of light along a straight, superconducting cosmic string carry with them a logarithmically divergent slab of electromagnetic field energy. Thus no finite local input can induce a current that travels unimpeded to infinity. Rather, electromagnetic back-reaction must damp this current asymptotically to nothing. We compute this back-reaction and find that the electromagnetic fields and currents decline exactly as rapidly as necessary to prevent a divergence. We briefly discuss the corresponding gravitational situation.
Electromagnetic backreaction from currents on a straight string
Wachter, Jeremy M.; Olum, Ken D.
2014-07-01
Charge carriers moving at the speed of light along a straight, superconducting cosmic string carry with them a logarithmically divergent slab of electromagnetic field energy. Thus, no finite local input can induce a current that travels unimpeded to infinity. Rather, electromagnetic backreaction must damp this current asymptotically to nothing. We compute this backreaction and find that the electromagnetic fields and currents decline exactly as rapidly as necessary to prevent a divergence. We briefly discuss the corresponding gravitational situation.
String Thermodynamics in D-Brane Backgrounds
Abel, S A; Kogan, I I; Rabinovici, Eliezer
1999-01-01
We discuss the thermal properties of string gases propagating in various D-brane backgrounds in the weak-coupling limit, and at temperatures close to the Hagedorn temperature. We determine, in the canonical ensemble, whether the Hagedorn temperature is limiting or non-limiting. This depends on the dimensionality of the D-brane, and the size of the compact dimensions. We find that in many cases the non-limiting behaviour manifest in the canonical ensemble is modified to a limiting behaviour in the microcanonical ensemble and show that, when there are different systems in thermal contact, the energy flows into open strings on the `limiting' D-branes of largest dimensionality. Such energy densities may eventually exceed the D-brane intrinsic tension. We discuss possible implications of this for the survival of Dp-branes with large values of p in an early cosmological Hagedorn regime. We also discuss the general phase diagram of the interacting theory, as implied by the holographic and black-hole/string correspon...
Energy Technology Data Exchange (ETDEWEB)
Kiritsis, Elias [APC, Université Paris 7, CNRS/IN2P3, CEA/IRFU, Obs. de Paris, Sorbonne Paris Cité,Bâtiment Condorcet, F-75205, Paris Cedex 13 (UMR du CNRS 7164) (France); Theory Group, Physics Department, CERN,CH-1211, Geneva 23 (Switzerland); Crete Center for Theoretical Physics, Department of Physics, University of Crete,71003 Heraklion (Greece); Mazzanti, Liuba [Institute for Theoretical Physics and Spinoza Institute, Utrecht University,3508 TD Utrecht (Netherlands); Nitti, Francesco [APC, Université Paris 7, CNRS/IN2P3, CEA/IRFU, Obs. de Paris, Sorbonne Paris Cité,Bâtiment Condorcet, F-75205, Paris Cedex 13 (UMR du CNRS 7164) (France)
2014-02-19
We extend the holographic trailing string picture of a heavy quark to the case of a bulk geometry dual to a confining gauge theory. We compute the classical trailing confining string solution for a static as well as a uniformly moving quark. The trailing string is infinitely extended and approaches a confining horizon, situated at a critical value of the radial coordinate, along one of the space-time directions, breaking boundary rotational invariance. We compute the equations for the fluctuations around the classical solutions, which are used to obtain boundary force correlators controlling the Langevin dynamics of the quark. The imaginary part of the correlators has a non-trivial low-frequency limit, which gives rise to a viscous friction coefficient induced by the confining vacuum. The vacuum correlators are used to define finite-temperature dressed Langevin correlators with an appropriate high-frequency behavior.
Kiritsis, E; Nitti, F
2014-01-01
We extend the holographic trailing string picture of a heavy quark to the case of a bulk geometry dual to a confining gauge theory. We compute the classical trailing confining string solution for a static as well as a uniformly moving quark. The trailing string is infinitely extended and approaches a confining horizon, situated at a critical value of the radial coordinate, along one of the space-time directions, breaking boundary rotational invariance. We compute the equations for the fluctuations around the classical solutions, which are used to obtain boundary force correlators controlling the Langevin dynamics of the quark. The imaginary part of the correlators has a non-trivial low-frequency limit, which gives rise to a viscous friction coefficient induced by the confining vacuum. The vacuum correlators are used to define finite-temperature dressed Langevin correlators with an appropriate high-frequency behavior.
De Boer, J; Hori, K; Keurentjes, A; Morgan, J; Morrison, Douglas Robert Ogston; Sethi, S K; Boer, Jan de; Dijkgraaf, Robbert; Hori, Kentaro; Keurentjes, Arjan; Morgan, John; Morrison, David R.; Sethi, Savdeep
2002-01-01
We study string compactifications with sixteen supersymmetries. The moduli space for these compactifications becomes quite intricate in lower dimensions, partly because there are many different irreducible components. We focus primarily, but not exclusively, on compactifications to seven or more dimensions. These vacua can be realized in a number ways: the perturbative constructions we study include toroidal compactifications of the heterotic/type I strings, asymmetric orbifolds, and orientifolds. In addition, we describe less conventional M and F theory compactifications on smooth spaces. The last class of vacua considered are compactifications on singular spaces with non-trivial discrete fluxes. We find a number of new components in the string moduli space. Contained in some of these components are M theory compactifications with novel kinds of ``frozen'' singularities. We are naturally led to conjecture the existence of new dualities relating spaces with different singular geometries and fluxes. As our stu...
Evans, N
2003-01-01
String theory began life in the late 1960s as an attempt to understand the properties of nuclear matter such as protons and neutrons. Although it was not successful it has since developed a life of its own as a possible theory of everything - with the potential to incorporate quantum gravity as well as the other forces of nature. However, in a remarkable about face in the last five years, it has now been discovered that string theory and the standard theory of nuclear matter - QCD - might in fact describe the same physics. This is an exciting development that was the centre of discussion at a major workshop in Seattle in February. After spending 30 years as a possible theory of everything, string theory is returning to its roots to describe the interactions of quarks and gluons. (U.K.)
The Gravity of Dark Vortices: Effective Field Theory for Branes and Strings Carrying Localized Flux
Burgess, C P; Williams, M
2015-01-01
A Nielsen-Olesen vortex usually sits in an environment that expels the flux that is confined to the vortex, so flux is not present both inside and outside. We construct vortices for which this is not true, where the flux carried by the vortex also permeates the `bulk' far from the vortex. The idea is to mix the vortex's internal gauge flux with an external flux using off-diagonal kinetic mixing. Such `dark' vortices could play a phenomenological role in models with both cosmic strings and a dark gauge sector. When coupled to gravity they also provide explicit ultra-violet completions for codimension-two brane-localized flux, which arises in extra-dimensional models when the same flux that stabilizes extra-dimensional size is also localized on space-filling branes situated around the extra dimensions. We derive simple formulae for observables such as defect angle, tension, localized flux and on-vortex curvature when coupled to gravity, and show how all of these are insensitive to much of the microscopic detail...
Constraints on cosmic superstrings from Kaluza-Klein emission.
Dufaux, Jean-François
2012-07-01
Cosmic superstrings interact generically with a tower of light and/or strongly coupled Kaluza-Klein (KK) modes associated with the geometry of the internal space. We study the production of KK particles by cosmic superstring loops, and show that it is constrained by big bang nucleosynthesis. We study the resulting constraints in the parameter space of the underlying string theory model and highlight their complementarity with the regions that can be probed by current and upcoming gravitational wave experiments.
Matrix string partition function
Kostov, Ivan K; Kostov, Ivan K.; Vanhove, Pierre
1998-01-01
We evaluate quasiclassically the Ramond partition function of Euclidean D=10 U(N) super Yang-Mills theory reduced to a two-dimensional torus. The result can be interpreted in terms of free strings wrapping the space-time torus, as expected from the point of view of Matrix string theory. We demonstrate that, when extrapolated to the ultraviolet limit (small area of the torus), the quasiclassical expressions reproduce exactly the recently obtained expression for the partition of the completely reduced SYM theory, including the overall numerical factor. This is an evidence that our quasiclassical calculation might be exact.
Instability of colliding metastable strings
Energy Technology Data Exchange (ETDEWEB)
Hiramatsu, Takashi [Kyoto Univ. (Japan). Yukawa Inst. for Theoretical Physics; Eto, Minoru [Yamagata Univ. (Japan). Dept. of Physics; Kamada, Kohei [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Kobayashi, Tatsuo [Kyoto Univ. (Japan). Dept. of Physics; Ookouchi, Yutaka [Kyoto Univ. (Japan). Dept. of Physics; Kyoto Univ. (Japan). The Hakubi Center for Advanced Research
2013-04-15
We investigate the collision dynamics of two metastable strings which can be viewed as tube-like domain walls with winding numbers interpolating a false vacuum and a true vacuum. We find that depending on the relative angle and speed of two strings, instability of strings increases and the false vacuum is filled out by rapid expansion of the strings or of a remnant of the collision.
Embellished String Prints. Cover Story.
Smith, Mary Ruth
1999-01-01
Focuses on a printmaking activity in which students create embellished string prints using the relief process of string glued to chip board. Explains that string prints can easily be embellished with oil pastels. Provides a description of the procedure and a list of materials and methods. (CMK)
Cache-oblivious String Dictionaries
DEFF Research Database (Denmark)
Brodal, Gerth Stølting; Fagerberg, Rolf
2006-01-01
We present static cache-oblivious dictionary structures for strings which provide analogues of tries and suffix trees in the cache-oblivious model. Our construction takes as input either a set of strings to store, a single string for which all suffixes are to be stored, a trie, a compressed trie,...
Energy Technology Data Exchange (ETDEWEB)
Kneipp, Marco A.C. [Universidade do Estado, Rio de Janeiro, RJ (Brazil). Dept. de Fisica Teorica; Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil). Coordenacao de Teoria de Campos e Particulas
2004-12-01
We review some recent developments on BPS string solutions and monopole confinement in the Higgs (or color) superconducting phase of N = 2 and N = 4 super Yang-Mills theories. In particular, the monopole magnetic fluxes are shown to be always integer linear combinations of string fluxes. Moreover, a bound for the threshold length of the string breaking is obtained. When the gauge group SU(N) is broken to Z{sub N}, the BPS string tension satisfies the Casimir scaling law. Furthermore, in the SU(3) case the string solutions are such that they allow the formation of a confining system with three monopoles. (author)
Kneipp, Marco A C
2016-01-01
We consider a Yang-Mills-Higgs theory with the gauge group SU(3) broken to its center Z(3) by two scalar fields in the adjoint representation and obtain new Z(3) strings asymptotic configurations with the gauge field and magnetic field in the direction of the step operators.
2007-01-01
"How can the nature of basic particles be defined beyond the mechanisms presiding over their creation? Besides the standard model of particle physics - resulting from the postulations of quantum mechanics - contemporary science has pinned its hopes on the totally new unifying notion provided by the highly mathematical string theory."(2 pages)
Kneipp, Marco A. C.; Liebgott, Paulo J.
2016-12-01
We consider a Yang-Mills-Higgs theory with the gauge group SU (3) broken to its center Z3 by two scalar fields in the adjoint representation and obtain new Z3 strings asymptotic configurations with the gauge field and magnetic field in the direction of the step operators.
Energy Technology Data Exchange (ETDEWEB)
McAllister, Liam P.; Silverstein, Eva
2007-10-22
We give an overview of the status of string cosmology. We explain the motivation for the subject, outline the main problems, and assess some of the proposed solutions. Our focus is on those aspects of cosmology that benefit from the structure of an ultraviolet-complete theory.
Freidel, Laurent; Pranzetti, Daniele
2016-01-01
In this work we study canonical gravity in finite regions for which we introduce a generalisation of the Gibbons-Hawking boundary term including the Immirzi parameter. We study the canonical formulation on a spacelike hypersuface with a boundary sphere and show how the presence of this term leads to an unprecedented type of degrees of freedom coming from the restoration of the gauge and diffeomorphism symmetry at the boundary. In the presence of a loop quantum gravity state, these boundary degrees of freedom localize along a set of punctures on the boundary sphere. We demonstrate that these degrees of freedom are effectively described by auxiliary strings with a 3-dimensional internal target space attached to each puncture. We show that the string currents represent the local frame field, that the string angular momenta represent the area flux and that the string stress tensor represents the two dimensional metric on the boundary of the region of interest. Finally, we show that the commutators of these broken...
Music Educators Journal, 1979
1979-01-01
Seven string educators respond to questions about repertoire sources for novice players, the teaching of improvisation, weaknesses in current instructional materials, ensemble size, the integration of Suzuki's methods into traditional programs, the problems of a violinist teaching other instruments, and coordination of school and other youth…
Hypermultiplets and topological strings
Rocek, M.; Vafa, C.; Vandoren, S.
2007-01-01
The c-map relates classical hypermultiplet moduli spaces in compactifications of type II strings on a Calabi-Yau threefold to vector multiplet moduli spaces via a further compactification on a circle. We give an off-shell description of the c-map in N = 2 superspace. The superspace Lagrangian for th
Dark energy at early times, the Hubble parameter, and the string axiverse
Karwal, Tanvi; Kamionkowski, Marc
2016-11-01
Precise measurements of the cosmic microwave background (CMB) power spectrum are in excellent agreement with the predictions of the standard Λ CDM cosmological model. However, there is some tension between the value of the Hubble parameter H0 inferred from the CMB and that inferred from observations of the Universe at lower redshifts, and the unusually small value of the dark-energy density is a puzzling ingredient of the model. In this paper, we explore a scenario with a new exotic energy density that behaves like a cosmological constant at early times and then decays quickly at some critical redshift zc. An exotic energy density like this is motivated by some string-axiverse-inspired scenarios for dark energy. By increasing the expansion rate at early times, the very precisely determined angular scale of the sound horizon at decoupling can be preserved with a larger Hubble constant. We find, however, that the Planck temperature power spectrum tightly constrains the magnitude of the early dark-energy density and thus any shift in the Hubble constant obtained from the CMB. If the reionization optical depth is required to be smaller than the Planck 2016 2 σ upper bound τ ≲0.0774 , then early dark energy allows a Hubble-parameter shift of at most 1.6 km s-1 Mpc-1 (at zc≃1585 ), too small to fully alleviate the Hubble-parameter tension. Only if τ is increased by more than 5 σ can the CMB Hubble parameter be brought into agreement with that from local measurements. In the process, we derive strong constraints to the contribution of early dark energy at the time of recombination—it can never exceed ˜2 % of the radiation/matter density for 10 ≲zc≲1 05 .
New Developments in String Gravity and String Cosmology.A Summary Report
Sánchez, N G
2002-01-01
New Developments in String Gravity and String Cosmology are reported: 1-String driven cosmology and its Predictions. 2-The primordial gravitational wave background in string cosmology. 3-Non-singular string cosmologies from Exact Conformal Field Theories. 4-Quantum Field Theory, String Temperature and the String Phase of de Sitter space-time, 5-Hawking Radiation in String Theory and the String Phase of Black Holes. 6-New Dual Relation between Quantum Field Theory regimes and String regimes in Curved Backgrounds, and the 'QFT/String Tango'. 7- New Coherent String States and Minimal Uncertainty Principle in WZWN models
Institute of Scientific and Technical Information of China (English)
LIM; C.W.
2010-01-01
Nonlinear combination parametric resonance is investigated for an axially accelerating viscoelastic string.The governing equation of in-planar motion of the string is established by introducing a coordinate transform in the Eulerian equation of a string with moving boundaries.The string under investigation is constituted by the standard linear solid model in which the material,not partial,time derivative was used.The governing equation leads to the Mote model for transverse vibration by omitting the longitudinal component and higher order terms.The Kirchhoff model is derived from the Mote model by replacing the tension with the averaged tension over the string.The two models are respectively analyzed via the method of multiple scales for principal parametric resonance.The amplitudes and the existence conditions of steady-state response and its stability can be numerically determined.Numerical calculations demonstrate the effects of the string material parameters,the initial tension,and the axial speed fluctuation amplitude.The outcomes of the two models are qualitatively and quantitatively compared.
Dynamics of Bound Monopoles in Artificial Spin Ice: How to Store Energy in Dirac Strings.
Vedmedenko, E Y
2016-02-19
Dirac strings in spin ices are lines of reversed dipoles joining two quasiparticle excitations. These excitations behave as unbound emergent monopoles if the tension of Dirac strings vanishes. In this Letter, analytical and numerical analysis are used to study the dynamics of two-dimensional dipolar spin ices, artificially created analogs of bulk spin ice, in the regime of bound monopoles. It is shown that, in this regime, strings, rather than monopoles, are effective degrees of freedom explaining the finite-width band of Pauling states. A measurable prediction of path-time dependence of endpoints of a stretched and, then, released Dirac string is made and verified via simulations. It is shown that string dynamics is defined by the characteristic tension-to-mass ratio, which is determined by the fine structure constant and lattice dependent parameter. It is proposed to use string tension to achieve spontaneous magnetic currents. A concept of an energy storing device on the basis of this principle is proposed and illustrated by an experimental demonstration. A scheme of independent measurement at the nanoscale is proposed.
Variational principle and a perturbative solution of non-linear string equations in curved space
Roshchupkin, S N
1999-01-01
String dynamics in a curved space-time is studied on the basis of an action functional including a small parameter of rescaled tension constant. A rescaled slow worldsheet time $T=\\epsilon\\tau$ is introduced, and general covariant non-linear string equation are derived. It is shown that in the first order of an $\\epsilon $-expansion these equations are reduced to the known equation for geodesic derivation but complemented by a string oscillatory term. These equations are solved for the de Sitter and Friedmann -Robertson-Walker spaces. The primary string constraints are found to be split into a chain of perturbative constraints and their conservation and consistency are proved. It is established that in the proposed realization of the perturbative approach the string dynamics in the de Sitter space is stable for a large Hubble constant $H
Double-soft behavior for scalars and gluons from string theory
Energy Technology Data Exchange (ETDEWEB)
Vecchia, Paolo Di [The Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100 Copenhagen Ø (Denmark); Nordita, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, SE-10691 Stockholm (Sweden); Marotta, Raffaele [Instituto Nazionale di Fisica Nucleare, Sezione di Napoli, Complesso Universitario di Monte S. Angelo ed. 6, via Cintia, 80126, Napoli (Italy); Mojaza, Matin [Nordita, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, SE-10691 Stockholm (Sweden)
2015-12-22
We compute the leading double-soft behavior for gluons and for the scalars obtained by dimensional reduction of a higher dimensional pure gauge theory, from the scattering amplitudes of gluons and scalars living in the world-volume of a Dp-brane of the bosonic string. In the case of gluons, we compute both the double-soft behavior when the two soft gluons are contiguous as well as when they are not contiguous. From our results, that are valid in string theory, one can easily get the double-soft limit in gauge field theory by sending the string tension to infinity.
Kemp, Jonathan A
2017-01-01
The physics of wound and unwound strings on the electric guitar are presented here, and the pitch intervals produced by the movements of a Fender Stratocaster tremolo unit are explained. Predicted changes in pitch sensitivity of different strings are given, and experimentally verified, for changes in saddle height, the distance of string free to move behind the nut and ratio of diameters/masses of the core and windings of wound strings. Also, it is shown that changes to the gauge of strings (assuming the string tension is sufficient for linear behaviour and in absence of changes to other construction details) don't alter the pitch intervals produced by a given angle of tremolo arm use assuming the instrument is set up with the same sounding pitches and starting bridge angle. It is demonstrated that it not possible to equalise the relative sensitivity of unwound steel stings on a Fender Stratocaster type tremolo unit through string construction techniques. The ratio of core to winding mass in the string, on the other hand, was found to be a very powerful design parameter for choosing the sensitivity of the string to tremolo arm use and standard pitch bends. For instance, the pitch intervals produced by operation of tremolo arm for wound strings may be made to approximately match that for one of the unwound strings if they share very similar core gauges (assuming the winding masses are chosen to give approximately the same tension at their sounding pitches). Such a design, only available currently by custom order, also delivers the optimum equalisation in sensitivity of strings for standard string bends (due to these also being produced by altering the length of the string to generate changes in tension and therefore pitch).
Conformal invariance and microscopic sensitivity in cosmic inflation
Aalst, Ted Adrianus Franciscus van der
2012-01-01
Phenomenologically, cosmic inflation is a satisfying and well-tested description of the physics of the very early universe. During this epoch, the universe was dominated by high energy phenomena that can only be truly understood in a quantum gravity theory such as string theory. In this thesis we
Energy Technology Data Exchange (ETDEWEB)
Riordan, M. [Stanford University and the University of California, Santa Cruz (United States)]. E-mail: mriordan@ucsc.edu
2007-02-15
In the last few decades, however, physical theory has drifted away from the professional norms advocated by Newton and other enlightenment philosophers. A vast outpouring of hypotheses has occurred under the umbrella of what is widely called string theory. But string theory is not really a 'theory' at all - at least not in the strict sense that scientists generally use the term. It is instead a dense, weedy thicket of hypotheses and conjectures badly in need of pruning. That pruning, however, can come only from observation and experiment, to which string theory (a phrase I will grudgingly continue using) is largely inaccessible. String theory was invented in the 1970s in the wake of the Standard Model of particle physics. Encouraged by the success of gauge theories of the strong, weak and electromagnetic forces, theorists tried to extend similar ideas to energy and distance scales that are orders of magnitude beyond what can be readily observed or measured. The normal, healthy intercourse between theory and experiment - which had led to the Standard Model - has broken down, and fundamental physics now finds itself in a state of crisis. So it is refreshing to hear from a theorist - one who was deeply involved with string theory and championed it in his previous book, Three Roads to Quantum Gravity - that all is not well in this closeted realm. Smolin argues from the outset that viable hypotheses must lead to observable consequences by which they can be tested and judged. String theory by its very nature does not allow for such probing, according to Smolin, and therefore it must be considered as an unprovable conjecture. Towards the end of his book, Smolin suggests other directions fundamental physics can take, particularly in the realm of quantum gravity, to resolve its crisis and reconnect with the observable world. From my perspective, he leans a bit too heavily towards highly speculative ideas such as doubly special relativity, modified Newtonian
Postmodern string theory stochastic formulation
Aurilia, A
1994-01-01
In this paper we study the dynamics of a statistical ensemble of strings, building on a recently proposed gauge theory of the string geodesic field. We show that this stochastic approach is equivalent to the Carath\\'eodory formulation of the Nambu-Goto action, supplemented by an averaging procedure over the family of classical string world-sheets which are solutions of the equation of motion. In this new framework, the string geodesic field is reinterpreted as the Gibbs current density associated with the string statistical ensemble. Next, we show that the classical field equations derived from the string gauge action, can be obtained as the semi-classical limit of the string functional wave equation. For closed strings, the wave equation itself is completely analogous to the Wheeler-DeWitt equation used in quantum cosmology. Thus, in the string case, the wave function has support on the space of all possible spatial loop configurations. Finally, we show that the string distribution induces a multi-phase, or ...
A smoothly bouncing universe from String Theory
Cheung, Yeuk-Kwan E; Li, Shuyi; Li, Yunxuan; Zhu, Yiqing
2016-01-01
We report a stable bounce universe with a scale invariant spectrum of density perturbations from a string-based model with coupled scalar and tachyon fields. This model is free of ghosts and cosmic singularity, and does not violate the null energy condition. We analyse the parameter space for a successful single bounce to arrive at a radiation dominated universe that is compatible with CMB data. We show that this bounce universe model is a viable alternative to inflation, by showing that it can naturally produce enough e-foldings--in the pre-bounce contractional phase as well in the post bounce expanding phase--to solve the flatness problem, the horizon problem and the homogeneity problem of the Big Bang theory, resulting in the observed universe of current size.
Real topological string amplitudes
Narain, K. S.; Piazzalunga, N.; Tanzini, A.
2017-03-01
We discuss the physical superstring correlation functions in type I theory (or equivalently type II with orientifold) that compute real topological string amplitudes. We consider the correlator corresponding to holomorphic derivative of the real topological amplitude G_{χ } , at fixed worldsheet Euler characteristic χ. This corresponds in the low-energy effective action to N=2 Weyl multiplet, appropriately reduced to the orientifold invariant part, and raised to the power g' = -χ + 1. We show that the physical string correlator gives precisely the holomorphic derivative of topological amplitude. Finally, we apply this method to the standard closed oriented case as well, and prove a similar statement for the topological amplitude F_g.
Exploring String Theory Backgrounds
Williams, B P
2004-01-01
This thesis examines phenomenological and theoretical questions by exploring string theoretic backgrounds. Part I focuses on cosmology. First we propose that the induced metric along a brane moving through a curved bulk may be interpreted as the cosmology of the brane universe, providing a resolution to the apparent cosmological singularity on the brane. We then look at various decay channels of the certain meta-stable de Sitter vacua and show that there exist NS5-brane meditated decays which are much faster than decays to decompactification. Part II discusses a new class of nongeometric vacua in string theory. These backgrounds may be described locally as T2 fibrations. By enlarging the monodromy group of the fiber to include perturbative stringy duality symmetries we are able to explicitly construct nongeometric backgrounds.
Energy Technology Data Exchange (ETDEWEB)
Svrcek, Peter; /Stanford U., Phys. Dept. /SLAC; Witten, Edward; /Princeton, Inst. Advanced Study
2006-06-09
In the context of string theory, axions appear to provide the most plausible solution of the strong CP problem. However, as has been known for a long time, in many string-based models, the axion coupling parameter Fa is several orders of magnitude higher than the standard cosmological bounds. We re-examine this problem in a variety of models, showing that Fa is close to the GUT scale or above in many models that have GUT-like phenomenology, as well as some that do not. On the other hand, in some models with Standard Model gauge fields supported on vanishing cycles, it is possible for Fa to be well below the GUT scale.
Barrow, John D; Barrow, John D.; Dabrowski, Mariusz P.
1998-01-01
We investigate Bianchi type IX ''Mixmaster'' universes within the framework of the low-energy tree-level effective action for string theory, which (when the ''stringy'' 2-form axion potential vanishes) is formally the same as the Brans-Dicke action with $\\omega =-1$. We show that, unlike the case of general relativity in vacuum, there is no Mixmaster chaos in these string cosmologies. In the Einstein frame an infinite sequence of chaotic oscillations of the scale factors on approach to the initial singularity is impossible, as it was in general relativistic Mixmaster universes in the presence of stiff -fluid matter (or a massless scalar field). A finite sequence of oscillations of the scale factors approximated by Kasner metrics is possible, but it always ceases when all expansion rates become positive. In the string frame the evolution through Kasner epochs changes to a new form which reflects the duality symmetry of the theory. Again, we show that chaotic oscillations must end after a finite time. The need ...
On Exceptional Instanton Strings
Del Zotto, Michele
2016-01-01
According to a recent classification of 6d (1,0) theories within F-theory there are only 5 "pure" 6d gauge theories which have a UV superconformal fixed point. The corresponding gauge groups are $SU(3),SO(8),F_4,E_6,E_7$, and $E_8$. These exceptional models have BPS strings which are also instantons for the corresponding gauge groups. For $G$ simply-laced, we determine the 2d $\\mathcal{N}=(0,4)$ worldsheet theories of such BPS instanton strings by a simple geometric engineering argument. These are given by a twisted $S^2$ compactification of the 4d $\\mathcal{N}=2$ theories of type $H_2, D_4, E_6, E_7$ and $E_8$ (and their higher rank generalizations), where the 6d instanton number is mapped to the rank of the corresponding 4d SCFT. This determines their anomaly polynomials and, via topological strings, establishes an interesting relation among the corresponding $T^2 \\times S^2$ partition functions and the Hilbert series for moduli spaces of $G$ instantons. Such relations allow to bootstrap the corresponding e...
Skin tension related to tension reduction sutures.
Hwang, Kun; Kim, Han Joon; Kim, Kyung Yong; Han, Seung Ho; Hwang, Se Jin
2015-01-01
The aim of this study was to compare the skin tension of several fascial/subcutaneous tensile reduction sutures. Six upper limbs and 8 lower limbs of 4 fresh cadavers were used. At the deltoid area (10 cm below the palpable acromion) and lateral thigh (midpoint from the palpable greater trochanter to the lateral border of the patella), and within a 3 × 6-cm fusiform area of skin, subcutaneous tissue defects were created. At the midpoint of the defect, a no. 5 silk suture was passed through the dermis at a 5-mm margin of the defect, and the defect was approximated. The initial tension to approximate the margins was measured using a tensiometer.The tension needed to approximate skin without any tension reduction suture (S) was 6.5 ± 4.6 N (Newton). The tensions needed to approximate superficial fascia (SF) and deep fascia (DF) were 7.8 ± 3.4 N and 10.3 ± 5.1 N, respectively. The tension needed to approximate the skin after approximating the SF was 4.1 ± 3.4 N. The tension needed to approximate the skin after approximating the DF was 4.9 ± 4.0 N. The tension reduction effect of approximating the SF was 38.8 ± 16.4% (2.4 ± 1.5 N, P = 0.000 [ANOVA, Scheffé]). The tension reduction effect of approximating the DF was 25.2% ± 21.9% (1.5 ± 1.4 N, P = 0.001 [ANOVA, Scheffé]). The reason for this is thought to be that the SF is located closely to the skin unlike the DF. The results of this study might be a basis for tension reduction sutures.
Magueijo, J
1994-01-01
We propose to minimise the cosmic confusion between Gaussian and non Gaussian theories by investigating the structure in the m's for each multipole of the cosmic radiation temperature anisotropies. We prove that Gaussian theories are (nearly) the only theories which treat all the m's equally. Hence we introduce a set of invariant measures of ``m-preference'' to be seen as non-Gaussianity indicators. We then derive the distribution function for the quadrupole ``m-preference'' measure in Gaussian theories. A class of physically motivated toy non Gaussian theories is introduced as an example. We show how the quadrupole m-structure is crucial in reducing the confusion between these theories and Gaussian theories.
String Theory at LHC Using Top Quarks From String Balls
Nayak, Gouranga C
2009-01-01
According to string theory, string ball is a highly excited long string which decays to standard model particles at the Hagedorn temperature with thermal spectrum. If there are extra dimensions, the string scale can be ~TeV, and we should produce string balls at CERN LHC. In this paper we study top quark production from string balls at LHC and compare with the parton fusion results at NNLO using pQCD. We find significant top quark production from string balls at LHC which is comparable to standard model NNLO results. We also find that d\\sigma/dp_T of top quarks from string balls does not decrease significantly with increase in p_T, whereas it deceases sharply in case of standard model NNLO scenario. Hence, in the absence of black hole production at LHC, an enhancement in top quark cross section and its abnormal p_T distribution can be a signature of TeV scale string physics at LHC.
Maximal unbordered factors of random strings
DEFF Research Database (Denmark)
Cording, Patrick Hagge; Knudsen, Mathias Bæk Tejs
2016-01-01
A border of a string is a non-empty prefix of the string that is also a suffix of the string, and a string is unbordered if it has no border. Loptev, Kucherov, and Starikovskaya [CPM 2015] conjectured the following: If we pick a string of length n from a fixed alphabet uniformly at random...
Brane-world cosmology with black strings
Gergely, László Á.
2006-07-01
We consider the simplest scenario when black strings/cigars penetrate the cosmological brane. As a result, the brane has a Swiss-cheese structure, with Schwarzschild black holes immersed in a Friedmann-Lemaître-Robertson-Walker brane. There is no dark radiation in the model, the cosmological regions of the brane are characterized by a cosmological constant Λ and flat spatial sections. Regardless of the value of Λ, these brane-world universes forever expand and forever decelerate. The totality of source terms in the modified Einstein equation sum up to a dust, establishing a formal equivalence with the general relativistic Einstein-Straus model. However in this brane-world scenario with black strings the evolution of the cosmological fluid strongly depends on Λ. For Λ≤0 it has positive energy density ρ and negative pressure p and at late times it behaves as in the Einstein-Straus model. For (not too high) positive values of Λ the cosmological evolution begins with positive ρ and negative p, but this is followed by an epoch with both ρ and p positive. Eventually, ρ becomes negative, while p stays positive. A similar evolution is present for high positive values of Λ, however in this case the evolution ends in a pressure singularity, accompanied by a regular behavior of the cosmic acceleration. This is a novel type of singularity appearing in brane-worlds.
Tomaschitz, R
1998-01-01
A prerelativistic approach to particle dynamics is explored in an expanding Robertson-Walker cosmology. The receding galactic background provides a distinguished frame of reference and a unique cosmic time. In this context the relativistic, purely geometric space-time concept is criticized. Physical space is regarded as a permeable medium, the cosmic ether, which effects the world-lines of particles and rays. We study in detail a Robertson-Walker universe with linear expansion factor and negatively curved, open three-space; we choose the permeability tensor of the ether in such a way that the semiclassical approximation is exact. Galactic red-shifts depend on the refractive index of the ether. In the local Minkowskian limit the ether causes a time variation of mass, which scales inversely proportional to cosmic time. In the globally geodesic rest frames of galactic observers the ether manifests itself in an unbounded speed of signal transfer, in bifurcations of world-lines, and in time inversion effects.
Tachyon-Dilaton-induced Inflation as an alpha'-resummed String Background
Alexandre, Jean; Mavromatos, Nick E
2009-01-01
Within the framework of a novel functional method on the world-sheet of the string, we discuss simple but re-summed (in the Regge slope) inflationary scenarios in the context of closed Bosonic strings, living in four target-space dimensions, in the presence of non-trivial tachyon, dilaton and graviton cosmological backgrounds. The inflationary solutions are argued to guarantee the vanishing of the corresponding Weyl anomaly coefficients in a given world-sheet renormalization scheme, thereby ensuring conformal invariance of the corresponding sigma-model to all orders in the Regge slope. The key property is the requirement of "homogeneity" of the corresponding Weyl anomaly coefficients. Inflation entails appropriate relations between the dilaton and tachyon field configurations, whose form can lead to either a de Sitter vacuum, incompatible though (due to the cosmic horizons) with the perturbative string scattering amplitudes, or to cosmic space-times involving brief inflationary periods, interpolating smoothly...
Fast Searching in Packed Strings
DEFF Research Database (Denmark)
Bille, Philip
2009-01-01
Given strings P and Q the (exact) string matching problem is to find all positions of substrings in Q matching P. The classical Knuth-Morris-Pratt algorithm [SIAM J. Comput., 1977] solves the string matching problem in linear time which is optimal if we can only read one character at the time....... However, most strings are stored in a computer in a packed representation with several characters in a single word, giving us the opportunity to read multiple characters simultaneously. In this paper we study the worst-case complexity of string matching on strings given in packed representation. Let m...... algorithm using time O(n/log(sigma) n + m + occ) Here occ is the number of occurrences of P in Q. For m = o(n) this improves the O(n) bound...
Factorization of Chiral String Amplitudes
Huang, Yu-tin; Yuan, Ellis Ye
2016-01-01
We re-examine a closed-string model defined by altering the boundary conditions for one handedness of two-dimensional propagators in otherwise-standard string theory. We evaluate the amplitudes using Kawai-Lewellen-Tye factorization into open-string amplitudes. The only modification to standard string theory is effectively that the spacetime Minkowski metric changes overall sign in one open-string factor. This cancels all but a finite number of states: As found in earlier approaches, with enough supersymmetry (e.g., type II) the tree amplitudes reproduce those of the massless truncation of ordinary string theory. However, we now find for the other cases that additional fields, formerly thought to be auxiliary, describe new spin-2 states at the two adjacent mass levels (tachyonic and tardyonic). The tachyon is always a ghost, but can be avoided in the heterotic case.
Factorization of chiral string amplitudes
Huang, Yu-tin; Siegel, Warren; Yuan, Ellis Ye
2016-09-01
We re-examine a closed-string model defined by altering the boundary conditions for one handedness of two-dimensional propagators in otherwise-standard string theory. We evaluate the amplitudes using Kawai-Lewellen-Tye factorization into open-string amplitudes. The only modification to standard string theory is effectively that the spacetime Minkowski metric changes overall sign in one open-string factor. This cancels all but a finite number of states: as found in earlier approaches, with enough supersymmetry (e.g., type II) the tree amplitudes reproduce those of the massless truncation of ordinary string theory. However, we now find for the other cases that additional fields, formerly thought to be auxiliary, describe new spin-2 states at the two adjacent mass levels (tachyonic and tardyonic). The tachyon is always a ghost, but can be avoided in the heterotic case.
Quantum String Seal Is Insecure
Chau, H F
2006-01-01
A quantum string seal encodes the value of a (bit) string as a quantum state in such a way that everyone can extract a non-negligible amount of information on the string by a suitable measurement. Moreover, such measurement must disturb the quantum state and is likely to be detected by an authorized verifier. In this way, the intactness of the encoded quantum state plays the role of a wax seal in the digital world. Here I analyze the security of quantum string seal by studying the information disturbance tradeoff of a measurement. This information disturbance tradeoff analysis extends the earlier results of Bechmann-Pasquinucci et al. and Chau by concluding that all quantum string seals are insecure. Specifically, I find a way to obtain non-trivial information on the string that escapes the verifier's detection with probability at least one half.
Experimenting with string musical instruments
LoPresto, Michael C.
2012-03-01
What follows are several investigations involving string musical instruments developed for and used in a Science of Sound & Light course. The experiments make use of a guitar, orchestral string instruments and data collection and graphing software. They are designed to provide students with concrete examples of how mathematical formulae, when used in physics, represent reality that can actually be observed, in this case, the operation of string musical instruments.
End conditions of piano strings
Ege, Kerem
2011-01-01
The end conditions of piano strings can be approximated by the input admittance at the bridge. Proper measurements of this value are therefore required. A method of validation of admittance measurements on simple structures is proposed in this paper. High resolution signal analysis performed on string's vibrations yields an estimate for the input admittance. This method is implemented on a simplified device composed of a piano string coupled to a thin steel beam.
Strings and large scale magnetohydrodynamics
Olesen, P
1995-01-01
From computer simulations of magnetohydrodynamics one knows that a turbulent plasma becomes very intermittent, with the magnetic fields concentrated in thin flux tubes. This situation looks very "string-like", so we investigate whether strings could be solutions of the magnetohydrodynamics equations in the limit of infinite conductivity. We find that the induction equation is satisfied, and we discuss the Navier-Stokes equation (without viscosity) with the Lorentz force included. We argue that the string equations (with non-universal maximum velocity) should describe the large scale motion of narrow magnetic flux tubes, because of a large reparametrization (gauge) invariance of the magnetic and electric string fields.
Splitting strings on integrable backgrounds
Energy Technology Data Exchange (ETDEWEB)
Vicedo, Benoit
2011-05-15
We use integrability to construct the general classical splitting string solution on R x S{sup 3}. Namely, given any incoming string solution satisfying a necessary self-intersection property at some given instant in time, we use the integrability of the worldsheet {sigma}-model to construct the pair of outgoing strings resulting from a split. The solution for each outgoing string is expressed recursively through a sequence of dressing transformations, the parameters of which are determined by the solutions to Birkhoff factorization problems in an appropriate real form of the loop group of SL{sub 2}(C). (orig.)
Schomerus, Volker
2017-01-01
Since its conception in the 1960s, string theory has been hailed as one of the most promising routes we have to unify quantum mechanics and general relativity. This book provides a concise introduction to string theory explaining central concepts, mathematical tools and covering recent developments in physics including compactifications and gauge/string dualities. With string theory being a multidisciplinary field interfacing with high energy physics, mathematics and quantum field theory, this book is ideal for both students with no previous knowledge of the field and scholars from other disciplines who are looking for an introduction to basic concepts.
Non-Riemannian Cosmic Walls as Boundaries of Spinning Matter with Torsion
Garcia de Andrade, L. C.
An example of a plane topological defect solution of linearized Einstein-Cartan (EC) field equation representing a cosmic wall boundary of spinning matter is given. The source of Cartan torsion is composed of two orthogonal lines of static polarized spins bounded by the cosmic plane wall. The Kopczyński-Obukhov-Tresguerres (KOT) spin fluid stress-energy current coincides with thin planar matter current in the static case. Our solution is similar to the Letelier solution of Einstein equation for multiple cosmic strings. Due to this fact we suggest that the lines of spinning matter could be analogous to multiple cosmic spinning string solution in EC theory of gravity. When torsion is turned off, a pure Riemannian cosmic wall is obtained.
Split String Formalism and the Closed String Vacuum
Erler, T
2007-01-01
The split string formalism offers a simple template apon which we can build many generalizations of Schnabl's analytic solution of open string field theory. In this paper we explore two such generalizations: one which replaces the wedge state by an arbitrary function of wedge states, and another which generalizes the solution to conformal frames other than the sliver.
Generalised functions and distributional curvature of cosmic strings
Clarke, C J S; Wilson, J P
1996-01-01
A new method is presented for assigning distributional curvature, in an invariant manner, to a space-time of low differentiability, using the techniques of Colombeau's `new generalised functions'. The method is applied to show that curvature of a cone is equivalent to a delta function. The same is true under small enough perturbations.
String Field Theory Solution for Any Open String Background
Erler, Theodore
2014-01-01
We present an exact solution of open bosonic string field theory which can be used to describe any time-independent open string background. The solution generalizes an earlier construction of Kiermaier, Okawa, and Soler, and assumes the existence of boundary condition changing operators with nonsingular OPEs and vanishing conformal dimension. Our main observation is that boundary condition changing operators of this kind can describe nearly any open string background provided the background shift is accompanied by a timelike Wilson line of sufficient strength. As an application we analyze the tachyon lump describing the formation of a D$(p-1)$-brane in the string field theory of a D$p$-brane, for generic compactification radius. This not only provides a proof of Sen's second conjecture, but also gives explicit examples of higher energy solutions, confirming analytically that string field theory can "reverse" the direction of the worldsheet RG flow. We also find multiple D-brane solutions, demonstrating that s...
Guijosa, Alberto
2016-01-01
In the nearly twenty years that have elapsed since its discovery, the gauge-gravity correspondence has become established as an efficient tool to explore the physics of a large class of strongly-coupled field theories. A brief overview is given here of its formulation and a few of its applications, emphasizing attempts to emulate aspects of the strong-coupling regime of quantum chromodynamics (QCD). To the extent possible, the presentation is self-contained, and in particular, it does not presuppose knowledge of string theory.
Pokorski, Witold; Pokorski, Witold; Ross, Graham G.
1998-01-01
We consider the phenomenological implications of a class of compactified string theories which naturally reproduces the flavour multiplet structure of the Standard Model. The implications for gauge unification depends on which of three possibilities is realised for obtaining light Higgs multiplets. The more conventional one leads to predictions for the gauge couplings close to that of the MSSM but with an increased value of the unification scale. The other two cases offer a mechanism for bringing the prediction for the strong coupling into agreement with the measured value while still increasing the unification scale. The various possibilities lead to different expectations for the structure of the quark masses.
Energy Technology Data Exchange (ETDEWEB)
Kachru, Shamit; McAllister, Liam; Sundrum, Raman
2007-04-04
We study sequestering, a prerequisite for flavor-blind supersymmetry breaking in several high-scale mediation mechanisms, in compactifications of type IIB string theory. We find that although sequestering is typically absent in unwarped backgrounds, strongly warped compactifications do readily sequester. The AdS/CFT dual description in terms of conformal sequestering plays an important role in our analysis, and we establish how sequestering works both on the gravity side and on the gauge theory side. We pay special attention to subtle compactification effects that can disrupt sequestering. Our result is a step toward realizing an appealing pattern of soft terms in a KKLT compactification.
DEFF Research Database (Denmark)
Schäfer, Mirko; Greiner, Martin
Chaotic strings are coupled Tchebyscheff maps on a ring-network. With a well-specified empirical prescription they are able to explain the coupling constants of the standard model of elementary particle physics. This empirical relationship is tested further by introducing a tunable disorder to ch...... of the standard model of elementary particle physics. For the electromagnetic sector it is found that already a small disorder pushes the associated energy scale of the running coupling constant far away from the result without disorder....
Arnould, M; Arnould, Marcel; Prantzos, Nikos
1999-01-01
Radionuclides with half-lives ranging from some years to billions of years presumably synthesized outside of the solar system are now recorded in ``live'' or ``fossil'' form in various types of materials, like meteorites or the galactic cosmic rays. They bring specific astrophysical messages the deciphering of which is briefly reviewed here, with special emphasis on the contribution of Dave Schramm and his collaborators to this exciting field of research. Short-lived radionuclides are also present in the Universe today, as directly testified by the gamma-ray lines emitted by the de-excitation of their daughter products. A short review of recent developments in this field is also presented.
Arnould, Marcel; Prantzos, Nikos
1999-07-01
Radionuclides with half-lives ranging from some years to billions of years presumably synthesized outside of the solar system are now recorded in "live" or "fossil" form in various types of materials, like meteorites or the galactic cosmic rays. They bring specific astrophysical messages, the deciphering of which is briefly reviewed here, with special emphasis on the contribution of Dave Schramm and his collaborators to this exciting field of research. Short-lived radionuclides are also present in the Universe today, as directly testified by the γ-ray lines emitted by the de-excitation of their daughter products. A short review of recent developments in this field is also presented.
Axially symmetric anisotropic string cosmological models in Saez-Ballester theory of gravitation
Kanakavalli, T.; Rao, G. Ananda; Reddy, D. R. K.
2017-02-01
Field equations of a scalar-tensor theory of gravitation proposed by Saez and Ballester (Phys. Lett. A 113:467, 1986) are derived with the help of a spatially homogeneous axially symmetric anisotropic Bianchi type metric in the presence of cosmic string source. To obtain determinate solutions of the field equations we have used the fact that the scalar expansion is proportional to shear scalar and the equations of state which correspond to geometric, Takabayasi and massive strings. It is found that geometric and massive strings do not coexist with the Saez-Ballester Scalar field. However, Takabayasi string which survives has been determined. Also, physical discussion of the dynamical parameters of the model is presented.
Dynamical behavior and Jacobi stability analysis of wound strings
Energy Technology Data Exchange (ETDEWEB)
Lake, Matthew J. [Naresuan University, The Institute for Fundamental Study, ' ' The Tah Poe Academia Institute' ' , Phitsanulok (Thailand); Thailand Center of Excellence in Physics, Ministry of Education, Bangkok (Thailand); Harko, Tiberiu [Babes-Bolyai University, Department of Physics, Cluj-Napoca (Romania); University College London, Department of Mathematics, London (United Kingdom)
2016-06-15
We numerically solve the equations of motion (EOM) for two models of circular cosmic string loops with windings in a simply connected internal space. Since the windings cannot be topologically stabilized, stability must be achieved (if at all) dynamically. As toy models for realistic compactifications, we consider windings on a small section of R{sup 2}, which is valid as an approximation to any simply connected internal manifold if the winding radius is sufficiently small, and windings on an S{sup 2} of constant radius R. We then use Kosambi-Cartan-Chern (KCC) theory to analyze the Jacobi stability of the string equations and determine bounds on the physical parameters that ensure dynamical stability of the windings. We find that, for the same initial conditions, the curvature and topology of the internal space have nontrivial effects on the microscopic behavior of the string in the higher dimensions, but that the macroscopic behavior is remarkably insensitive to the details of the motion in the compact space. This suggests that higher-dimensional signatures may be extremely difficult to detect in the effective (3+1)-dimensional dynamics of strings compactified on an internal space, even if configurations with nontrivial windings persist over long time periods. (orig.)
Rapid cable tension estimation using dynamic and mechanical properties
Martínez-Castro, Rosana E.; Jang, Shinae; Christenson, Richard E.
2016-04-01
Main tension elements are critical to the overall stability of cable-supported bridges. A dependable and rapid determination of cable tension is desired to assess the state of a cable-supported bridge and evaluate its operability. A portable smart sensor setup is presented to reduce post-processing time and deployment complexity while reliably determining cable tension using dynamic characteristics extracted from spectral analysis. A self-recording accelerometer is coupled with a single-board microcomputer that communicates wirelessly with a remote host computer. The portable smart sensing device is designed such that additional algorithms, sensors and controlling devices for various monitoring applications can be installed and operated for additional structural assessment. The tension-estimating algorithms are based on taut string theory and expand to consider bending stiffness. The successful combination of cable properties allows the use of a cable's dynamic behavior to determine tension force. The tension-estimating algorithms are experimentally validated on a through-arch steel bridge subject to ambient vibration induced by passing traffic. The tension estimation is determined in well agreement with previously determined tension values for the structure.
Closed strings in Misner space
Berkooz, M; Rozali, M
2004-01-01
Misner space, also known as the Lorentzian orbifold $R^{1,1}/boost$, is one of the simplest examples of a cosmological singularity in string theory. In this work, the study of weakly coupled closed strings on this space is pursued in several directions: (i) physical states in the twisted sectors are found to come in two kinds: short strings, which wind along the compact space-like direction in the cosmological (Milne) region, and long strings, which wind along the compact time direction in the (Rindler) whiskers. The latter can be viewed as infinitely long static open strings, stretching from Rindler infinity to a finite radius and folding back onto themselves. (ii) As in the Schwinger effect, tunneling between these states corresponds to local pair production of winding strings. The tunneling rate approaches unity as the winding number $w$ gets large, as a consequence of the singular geometry. (iii) The one-loop string amplitude has singularities on the moduli space, associated to periodic closed string traj...
2001-01-01
String 2 is a series of superconducting magnets that are prototypes of those which will be installed in the LHC. It was cooled down to 1.9 Kelvin on September 14th. On Thursday last week, the dipoles of String 2 were successfully taken to nominal current, 11850 A.
Progress in string theory research
2016-01-01
At the first look, the String Theory seems just an interesting and non-trivial application of the quantum mechanics and the special relativity to vibrating strings. By itself, the quantization of relativistic strings does not call the attention of the particle physicist as a significant paradigm shift. However, when the string quantization is performed by applying the standard rules of the perturbative Quantum Field Theory, one discovers that the strings in certain states have the same physical properties as the gravity in the flat space-time. Chapter one of this book reviews the construction of the thermal bosonic string and D-brane in the framework of the Thermo Field Dynamics (TFD). It briefly recalls the wellknown light-cone quantization of the bosonic string in the conformal gauge in flat space-time, and gives a bird’s eye view of the fundamental concepts of the TFD. Chapter two examines a visual model inspired by string theory, on the system of interacting anyons. Chapter three investigate the late-ti...
Open string fields as matrices
Kishimoto, Isao; Masuda, Toru; Takahashi, Tomohiko; Takemoto, Shoko
2015-03-01
We show that the action expanded around Erler-Maccaferri's N D-brane solution describes the N+1 D-brane system where one D-brane disappears due to tachyon condensation. String fields on multi-branes can be regarded as block matrices of a string field on a single D-brane in the same way as matrix theories.
Open String Fields as Matrices
Kishimoto, Isao; Takahashi, Tomohiko; Takemoto, Shoko
2014-01-01
We show that the action expanded around Erler-Maccaferri's N D-branes solution describes the N+1 D-branes system where one D-brane disappears due to tachyon condensation. String fields on the multi-branes can be regarded as block matrices of a string field on a single D-brane in the same way as matrix theories.
Ng, Chiu-king
2010-01-01
When one end of a taut horizontal elastic string is shaken repeatedly up and down, a transverse wave (assume sine waveform) will be produced and travel along it. College students know this type of wave motion well. They know when the wave passes by, each element of the string will perform an oscillating up-down motion, which in mechanics is termed…
Experimenting with String Musical Instruments
LoPresto, Michael C.
2012-01-01
What follows are several investigations involving string musical instruments developed for and used in a "Science of Sound & Light" course. The experiments make use of a guitar, orchestral string instruments and data collection and graphing software. They are designed to provide students with concrete examples of how mathematical formulae, when…
S-matrix for strings on η-deformed AdS5 x S5
Arutyunov, G.E.; Borsato, R.; Frolov, S.
2013-01-01
We determine the bosonic part of the superstring sigma model Lagrangian on η-deformed AdS5 x S5, and use it to compute the perturbative world-sheet scattering matrix of bosonic particles of the model. We then compare it with the large string tension limit of the q-deformed S-matrix and find exact ag
S-matrix for strings on η-deformed AdS5 x S5
Arutyunov, Gleb; Borsato, Riccardo; Frolov, Sergey
2013-01-01
We determine the bosonic part of the superstring sigma model Lagrangian on η-deformed AdS5 × S5, and use it to compute the perturbative world-sheet scattering matrix of bosonic particles of the model. We then compare it with the large string tension limit of the q-deformed S-matrix and find exact ag
S-matrix for strings on $\\eta$-deformed AdS5 x S5
Arutyunov, Gleb; Frolov, Sergey
2014-01-01
We determine the bosonic part of the superstring sigma model Lagrangian on $\\eta$-deformed AdS5 x S5, and use it to compute the perturbative world-sheet scattering matrix of bosonic particles of the model. We then compare it with the large string tension limit of the q-deformed S-matrix and find exact agreement.
String dualities and superpotential
Energy Technology Data Exchange (ETDEWEB)
Ha, Tae-Won
2010-09-15
The main objective of this thesis is the computation of the superpotential induced by D5- branes in the type IIB string theory and by five-branes in the heterotic string theory. Both superpotentials have the same functional form which is the chain integral of the holomorphic three-form. Using relative (co)homology we can unify the flux and brane superpotential. The chain integral can be seen as an example of the Abel-Jacobi map. We discuss many structures such as mixed Hodge structure which allows for the computation of Picard-Fuchs differential equations crucial for explicit computations. We blow up the Calabi-Yau threefold along the submanifold wrapped by the brane to obtain geometrically more appropriate configuration. The resulting geometry is non-Calabi-Yau and we have a canonically given divisor. This blown-up geometry makes it possible to restrict our attention to complex structure deformations. However, the direct computation is yet very difficult, thus the main tool for computation will be the lift of the brane configuration to a F-theory compactification. In F-theory, since complex structure, brane and, if present, bundlemoduli are all contained in the complex structure moduli space of the elliptic Calabi-Yau fourfold, the computation can be dramatically simplified. The heterotic/F-theory duality is extended to include the blow-up geometry and thereby used to give the blow-up geometry amore physical meaning. (orig.)
String Mining in Bioinformatics
Abouelhoda, Mohamed; Ghanem, Moustafa
Sequence analysis is a major area in bioinformatics encompassing the methods and techniques for studying the biological sequences, DNA, RNA, and proteins, on the linear structure level. The focus of this area is generally on the identification of intra- and inter-molecular similarities. Identifying intra-molecular similarities boils down to detecting repeated segments within a given sequence, while identifying inter-molecular similarities amounts to spotting common segments among two or multiple sequences. From a data mining point of view, sequence analysis is nothing but string- or pattern mining specific to biological strings. For a long time, this point of view, however, has not been explicitly embraced neither in the data mining nor in the sequence analysis text books, which may be attributed to the co-evolution of the two apparently independent fields. In other words, although the word "data-mining" is almost missing in the sequence analysis literature, its basic concepts have been implicitly applied. Interestingly, recent research in biological sequence analysis introduced efficient solutions to many problems in data mining, such as querying and analyzing time series [49,53], extracting information from web pages [20], fighting spam mails [50], detecting plagiarism [22], and spotting duplications in software systems [14].