WorldWideScience

Sample records for cosmic rays measurements

  1. Cosmic Ray ^3He Measurements

    OpenAIRE

    Mewaldt, R. A.

    1985-01-01

    Cosmic ray ^3He/^4He observations, including a new measurement at ~65 MeV/nucleon from ISEE-3, are compared with interstellar propagation and solar modulation models in an effort to understand the origin of cosmic ray He nuclei.

  2. PRECISE COSMIC RAYS MEASUREMENTS WITH PAMELA

    Directory of Open Access Journals (Sweden)

    A. Bruno

    2013-12-01

    Full Text Available The PAMELA experiment was launched on board the Resurs-DK1 satellite on June 15th 2006. The apparatus was designed to conduct precision studies of charged cosmic radiation over a wide energy range, from tens of MeV up to several hundred GeV, with unprecedented statistics. In five years of continuous data taking in space, PAMELA accurately measured the energy spectra of cosmic ray antiprotons and positrons, as well as protons, electrons and light nuclei, sometimes providing data in unexplored energetic regions. These important results have shed new light in several astrophysical fields like: an indirect search for Dark Matter, a search for cosmological antimatter (anti-Helium, and the validation of acceleration, transport and secondary production models of cosmic rays in the Galaxy. Some of the most important items of Solar and Magnetospheric physics were also investigated. Here we present the most recent results obtained by the PAMELA experiment.

  3. Cosmic ray composition measurements and cosmic ray background free gamma-ray observations with Cherenkov telescopes

    CERN Document Server

    Neronov, A; Vovk, Ie; Mirzoyan, R

    2016-01-01

    Muon component of extensive air showers (EAS) initiated by cosmic ray particles carries information on the primary particle identity. We show that the muon content of EAS could be measured in a broad energy range from 10-100 TeV up to ultra-high-energy cosmic ray range using wide field-of-view imaging atmospheric Cherenkov telescopes observing strongly inclined or nearly horizontal EAS from the ground of from high altitude. Cherenkov emission from muons in such EAS forms a distinct component (halo or tail) of the EAS image in the telescope camera. We show that detection of the muon signal could be used to measure composition of the cosmic ray spectrum in the energy ranges of the knee, the ankle and of the Galactic-to-extragalactic transition. It could also be used to veto the cosmic ray background in gamma-ray observations. This technique provides a possibility for up to two orders of magnitude improvement of sensitivity for gamma-ray flux in the energy band above 10 PeV, compared to KASCADE-Grande, and an or...

  4. Cosmic Rays: studies and measurements before 1912

    Energy Technology Data Exchange (ETDEWEB)

    De Angelis, Alessandro [INFN and Università di Udine, Via delle Scienze 206, I-33100 Udine (Italy); LIP/IST Lisboa (Portugal)

    2013-06-15

    The discovery of cosmic rays, a milestone in science, was based on the work by scientists in Europe and the New World and took place during a period characterised by nationalism and lack of communication. Many scientists that took part in this research a century ago were intrigued by the penetrating radiation and tried to understand the origin of it. Several important contributions to the discovery of the origin of cosmic rays have been forgotten; historical, political and personal facts might have contributed to their substantial disappearance from the history of science.

  5. Measurement of cosmic ray chemical composition at Mt. Chacaltaya

    Energy Technology Data Exchange (ETDEWEB)

    Ogio, S.; Kakimoto, F.; Harada, D.; Tokunou, H.; Burgoa, O.; Tsunesada, Y. [Institute of Technology, Dept. of Physics, Tokuo (Japan); Shirasaki, Y. [National Space Development Agency of Japan, Tsukuba (Japan); Gotoh, E.; Nakatani, H.; Shimoda, S.; Nishi, K.; Tajima, N.; Yamada, Y. [The Institute of Physical and Chemical Research, Wako, Saitama (Japan); Kaneko, T. [Okayama University, Dept. of Physics, Oakayama (Japan); Matsubara, Y. [Nagoya University, Solar-Terrestrial Environment Laboratory, Nagoya, Aichi (Japan); Miranda, P.; Velarde, A. [Universidad Mayor de San Andres, Institute de Investigaciones Fisicas, La Paz (Bolivia); Mizumoto, T. [National Astronomical Observatory, Mitaka, Tokyo (Japan); Yoshii, H.; Morizawa, A. [Ehime University, Dept. of Physics, Matsuyama, Ehime (Japan); Murakami, K. [Nagoya University of Foreign Studies, Nissin, Aichi (Japan); Toyoda, Y. [Fukui University of Technology, Faculty of General Education, Fukui (Japan)

    2001-10-01

    BASJE group has measured the chemical composition of primary cosmic rays with energies around the knee with several methods. These measurements show that the averaged mass number of cosmic ray particles increases with energy up to the knee. In order to measure the chemical composition in much wider energy range, it was started a new experiment at Mt. Chacaltaya in 2000.

  6. Cosmic ray measurements around the knee

    Science.gov (United States)

    Chiavassa, Andrea

    2016-07-01

    Primary cosmic rays of energy greater than ˜ 1014 eV must be studied by indirect experiments measuring the particles generated in the EAS (Extensive Air Shower) development in atmosphere. These experiments are mainly limited by the systematic errors due to their energy calibration. I will discuss the main sources of these errors: the choice of the hadronic interaction model and of the mass of the primary particle (that cannot be measured on a event by event basis). I will then summarize some recent measurements of the all particle spectrum, and I will show that, keeping into account the differences due to the energy calibration, they all agree on the spectral shape. Then I will describe the measurements of the light and heavy primaries mass groups spectra, discussing the claimed features. Using a simple calculation of the elemental spectra (based on the hypothesis that the knee energies follow a Peter's cycle) I will try to discuss if all these results can be interpreted in a common picture.

  7. Direct Measurements, Acceleration and Propagation of Cosmic Rays

    CERN Document Server

    Blasi, Pasquale

    2008-01-01

    This paper summarizes highlights of the OG1 session of the 30th International Cosmic Ray Conference, held in Merida (Yucatan, Mexico). The subsessions (OG1.1, OG1.2, OG1.3, OG1.4 and OG1.5) summarized here were mainly devoted to direct measurements, acceleration and propagation of cosmic rays.

  8. Measurement of cosmic rays with LOFAR

    Science.gov (United States)

    Rossetto, L.; Buitink, S.; Corstanje, A.; Enriquez, J. E.; Falcke, H.; Hörandel, J. R.; Nelles, A.; Rachen, J. P.; Schellart, P.; Scholten, O.; ter Veen, S.; Thoudam, S.; Trinh, T. N. G.

    2016-05-01

    The LOw Frequency ARay (LOFAR) is a multipurpose radio-antenna array aimed to detect radio signals in the 10 - 240 MHz frequency range, covering a large surface in Northern Europe with a higher density in the Northern Netherlands. Radio emission in the atmosphere is produced by cosmic-ray induced air showers through the interaction of charged particles with the Earth magnetic field. The detection of radio signals allows to reconstruct several properties of the observed cascade. We review here all important results achieved in the last years. We proved that the radio-signal distribution at ground level is described by a two-dimensional pattern, which is well fitted by a double Gaussian function. The radio-signal arrival time and polarization have been measured, thus providing additional information on the extensive air shower geometry, and on the radio emission processes. We also showed that the radio signal reaches ground in a thin, curved wavefront which is best parametrized by a hyperboloid shape centred around the shower axis. Radio emission has also been studied under thunderstorm conditions and compared to fair weather conditions. Moreover, by using a hybrid reconstruction technique, we performed mass composition measurements in the energy range 1017 - 1018 eV.

  9. Measurements at LHC and their relevance for cosmic ray physics

    CERN Document Server

    CERN. Geneva

    2016-01-01

    Many LHC measurements are already used to improve hadronic interaction models used in cosmic ray analyses. This already had a positive effect on the model dependence of crucial data analyses. Some of the data and the model tuning is reviewed. However, the LHC still has a lot more potential to provide crucial information. Since the start of Run2 the highest accelerator beam energies are reached and no further increase can be expected for a long time. First data of Run2 are published and the fundamental performance of cosmic ray hadronic interaction models can be scrutinized. The relevance of LHC data in general for cosmic ray data analyses is demonstrated.

  10. Review and interpretation of recent cosmic ray beryllium isotope measurements

    Energy Technology Data Exchange (ETDEWEB)

    Buffington, A.

    1978-04-26

    Be/sup 10/ has long been of interest for cosmic ray propagation, because its radioactive decay half-life is well matched to the expected cosmic ray age. Recent beryllium isotope measurements from satellites and balloons have covered an energy range from about 30 to 300 MeV/nucleon/sup 1-3/. At the lowest energies, most of the Be/sup 10/ is absent, indicating a cosmic ray lifetime of order 2 x 10/sup 7/ years and the rather low average density of 0.2 atoms/cc traversed by the cosmic rays. At higher energies, a greater proportion of Be/sup 10/ is observed, indicating a somewhat shorter lifetime. These experiments will be reviewed and then compared with a new experiment covering from 100 to 1000 Mev/nucleon/sup 4/. Although improved experiments will be necessary to realize the full potential of cosmic ray beryllium isotope measurements, these first results are already disclosing interesting and unexpected facts about cosmic ray acceleration and propagation.

  11. High-energy cosmic rays measured with KASCADE-Grande

    CERN Document Server

    Haungs, A; Arteaga-Velazquez, J C; Bekk, K; Bertaina, M; Bluemer, J; Bozdog, H; Brancus, I M; Cantoni, E; Chiavassa, A; Cossavella, F; Curcio, C; Daumiller, K; de Souza, V; Di Pierro, F; Doll, P; Engel, R; Engler, J; Fuchs, B; Fuhrmann, D; Gils, H J; Glasstetter, R; Grupen, C; Heck, D; Hoerandel, J R; Huber, D; Huege, T; Kampert, K -H; Kang, D; Klages, H O; Link, K; Luczak, P; Ludwig, M; Mathes, H J; Mayer, H J; Melissas, M; Milke, J; Mitrica, B; Morello, C; Oehlschlaeger, J; Ostapchenko, S; Palmieri, N; Petcu, M; Pierog, T; Rebel, H; Roth, M; Schieler, H; Schoo, S; Schroeder, F G; Sima, O; Toma, G; Trinchero, G C; Ulrich, H; Weindl, A; Wochele, D; Wochele, J

    2013-01-01

    The detection of high-energy cosmic rays above a few hundred TeV is realized by the observation of extensive air-showers. By using the multi-detector setup of KASCADE-Grande, energy spectrum, elemental composition, and anisotropies of high-energy cosmic rays in the energy range from below the knee up to 2 EeV are investigated. In addition, the large high-quality data set permits distinct tests of the validity of hadronic interaction models used in interpreting air-shower measurements. After more than 16 years, the KASCADE-Grande experiment terminated measurements end of 2012. This contribution will give an overview of the main results of the data analysis achieved so far, and will report about the status of KCDC, the KASCADE Cosmic-ray Data Center, where via a web-based interface the data will be made available for the interested public.

  12. Cosmic-ray composition measurements and cosmic ray background-free γ -ray observations with Cherenkov telescopes

    Science.gov (United States)

    Neronov, Andrii; Semikoz, Dmitri V.; Vovk, Ievgen; Mirzoyan, Razmik

    2016-12-01

    The muon component of extensive air showers (EAS) initiated by cosmic-ray particles carries information on the primary particle identity. We show that the muon content of EAS could be measured in a broad energy range from 10-100 TeV up to ultra-high-energy cosmic-ray range using wide field-of-view imaging atmospheric Cherenkov telescopes observing strongly inclined or nearly horizontal EAS from the ground of from high altitude. Cherenkov emission from muons in such EAS forms a distinct component (halo or tail) of the EAS image in the telescope camera. We show that detection of the muon signal could be used to measure composition of the cosmic-ray spectrum in the energy ranges of the knee, the ankle and of the Galactic-to-extragalactic transition. It could also be used to veto the cosmic-ray background in gamma-ray observations. This technique provides a possibility for up to 2 orders of magnitude improvement of sensitivity for γ -ray flux in the energy band above 10 PeV, compared to KASCADE-Grande, and an order-of-magnitude improvement of sensitivity in the multi-EeV energy band, compared to Pierre Auger Observatory.

  13. Measurement of camera image sensor depletion thickness with cosmic rays

    CERN Document Server

    Vandenbroucke, J; Bravo, S; Jensen, K; Karn, P; Meehan, M; Peacock, J; Plewa, M; Ruggles, T; Santander, M; Schultz, D; Simons, A L; Tosi, D

    2015-01-01

    Camera image sensors can be used to detect ionizing radiation in addition to optical photons. In particular, cosmic-ray muons are detected as long, straight tracks passing through multiple pixels. The distribution of track lengths can be related to the thickness of the active (depleted) region of the camera image sensor through the known angular distribution of muons at sea level. We use a sample of cosmic-ray muon tracks recorded by the Distributed Electronic Cosmic-ray Observatory to measure the thickness of the depletion region of the camera image sensor in a commercial smart phone, the HTC Wildfire S. The track length distribution prefers a cosmic-ray muon angular distribution over an isotropic distribution. Allowing either distribution, we measure the depletion thickness to be between 13.9~$\\mu$m and 27.7~$\\mu$m. The same method can be applied to additional models of image sensor. Once measured, the thickness can be used to convert track length to incident polar angle on a per-event basis. Combined with ...

  14. CMS (LHC) Measurements and Unusual Cosmic Ray Events

    CERN Document Server

    Norbeck, E

    2010-01-01

    At the LHC, for the first time, laboratory energies are sufficiently large to reproduce the kind of reactions that occur when energetic cosmic rays strike the top of the atmospheric. The reaction products of interest for cosmic ray studies are produced at small angles, even with colliding beams. Most of the emphasis at the LHC is on rare processes that are studied with detectors at large angles. It is precision measurements at large angles that are expected to lead to discoveries of Higgs bosons and super symmetric particles. CMS currently has two small angle detectors, CASTOR and a Zero Degree Calorimeter (ZDC). CASTOR, at 0.7 degrees down to 0.08 degrees, is designed to study "Centauro "and "long penetrating" events, observed in VHE cosmic-ray data. As a general purpose detector it also makes measurements of reactions products at forward angles from p-p collisions, which provide input for cosmic ray shower codes. The ZDC is small, 9 cm. wide, between the incoming and outgoing beam pipes out at a distance of...

  15. CMS (LHC) Measurements and Unusual Cosmic Ray Events

    CERN Document Server

    Norbeck, E

    2010-01-01

    At the LHC, for the first time, laboratory energies are sufficiently large to reproduce the kind of reactions that occur when energetic cosmic rays strike the top of the atmosphere. The reaction products of interest for cosmic ray studies are produced at small angles, even with colliding beams. Most of the emphasis at the LHC is on rare processes that are studied with detectors at large angles. It is precision measurements at large angles that are expected to lead to discoveries of Higgs bosons and super symmetric particles. CMS currently has two small angle detectors, CASTOR and a Zero Degree Calorimeter (ZDC). CASTOR, at 0.7º down to 0.08º, is designed to study "Centauro" and "long penetrating" events, observed in VHE cosmic-ray data. As a general purpose detector it also makes measurements of reaction products at forward angles from p-p collisions, which provide input for cosmic ray shower codes. The ZDC is small, 9 cm. wide, between the incoming and outgoing beam pipes out at a distance of 140 m. The ZD...

  16. Measurement of cosmic-ray muons with the Distributed Electronic Cosmic-ray Observatory, a network of smartphones

    Science.gov (United States)

    Vandenbroucke, J.; BenZvi, S.; Bravo, S.; Jensen, K.; Karn, P.; Meehan, M.; Peacock, J.; Plewa, M.; Ruggles, T.; Santander, M.; Schultz, D.; Simons, A. L.; Tosi, D.

    2016-04-01

    Solid-state camera image sensors can be used to detect ionizing radiation in addition to optical photons. We describe the Distributed Electronic Cosmic-ray Observatory (DECO), an app and associated public database that enables a network of consumer devices to detect cosmic rays and other ionizing radiation. In addition to terrestrial background radiation, cosmic-ray muon candidate events are detected as long, straight tracks passing through multiple pixels. The distribution of track lengths can be related to the thickness of the active (depleted) region of the camera image sensor through the known angular distribution of muons at sea level. We use a sample of candidate muon events detected by DECO to measure the thickness of the depletion region of the camera image sensor in a particular consumer smartphone model, the HTC Wildfire S. The track length distribution is fit better by a cosmic-ray muon angular distribution than an isotropic distribution, demonstrating that DECO can detect and identify cosmic-ray muons despite a background of other particle detections. Using the cosmic-ray distribution, we measure the depletion thickness to be 26.3 ± 1.4 μm. With additional data, the same method can be applied to additional models of image sensor. Once measured, the thickness can be used to convert track length to incident polar angle on a per-event basis. Combined with a determination of the incident azimuthal angle directly from the track orientation in the sensor plane, this enables direction reconstruction of individual cosmic-ray events using a single consumer device. The results simultaneously validate the use of cell phone camera image sensors as cosmic-ray muon detectors and provide a measurement of a parameter of camera image sensor performance which is not otherwise publicly available.

  17. Cosmic ray detection based measurement systems: a preliminary study

    Science.gov (United States)

    Bodini, I.; Bonomi, G.; Cambiaghi, D.; Magalini, A.; Zenoni, A.

    2007-11-01

    Cosmic rays, mostly composed of high energy muons, continuously hit the Earth's surface (at sea level the rate is about 10 000 m-2 min-1). Various technologies are adopted for their detection and are widespread in the field of particle and nuclear physics. In this paper, cosmic ray muon detection techniques are assessed for measurement applications in engineering, where these methods could be suitable for several applications, with specific reference to situations where environmental conditions are weakly controlled and/or where the parts to be measured are hardly accessible. Since cosmic ray showering phenomena show statistical nature, the Monte Carlo technique has been adopted to numerically simulate a particular application, where a set of muon detectors are employed for alignment measurements on an industrial press. An analysis has been performed to estimate the expected measurement uncertainty and system resolution, which result to be strongly dependent on the dimensions and geometry of the set-up, on the presence of materials interposed between detectors and, ultimately, on the elapsed time available for the data taking.

  18. Atmospheric ionization and cosmic rays: studies and measurements before 1912

    CERN Document Server

    De Angelis, Alessandro

    2012-01-01

    The discovery of cosmic rays, a milestone in science, was based on the work by scientists in Europe and the New World and took place during a period characterised by nationalism and lack of communication. Many scientists that took part in this research a century ago were intrigued by the penetrating radiation and tried to understand the origin of it. Several important contributions to the discovery of the origin of cosmic rays have been forgotten; historical, political and personal facts might have contributed to their substantial disappearance from the history of science.

  19. Cosmic rays on earth

    Energy Technology Data Exchange (ETDEWEB)

    Allkofer, O.C.; Grieder, P.K.F.

    1984-01-01

    A data collection is presented that covers cosmic rays on earth. Included are all relevant data on flux and intensity measurements, energy spectra, and related data of all primary and secondary components of the cosmic radiation at all levels in the atmosphere, at sea level and underground. In those cases where no useful experimental data have been available, theoretical predictions were substituted.

  20. Near-realtime cosmic ray measurements for space weather applications

    Energy Technology Data Exchange (ETDEWEB)

    Steigies, Christian [Christian-Albrechts-Universitaet zu Kiel (Germany)

    2014-07-01

    In its FP7 program the European Commission has funded the creation of scientific databases. One successful project is the Neutron Monitor database NMDB which provides near-realtime access to ground-based Neutron Monitor measurements. In its beginning NMDB hosted only data from European and Asian participants, but it has recently grown to also include data from North American stations. We are currently working on providing also data from stations in Australia, South Africa, and Tibet. With the increased coverage of stations the accuracy of the NMDB applications to issue an alert of a ground level enhancement (GLE) or to predict the arrival of a coronal mass ejection (CME) is constantly improving. Besides the Cosmic Ray community and Airlines, that want to calculate radiation doses on flight routes, NMDB has also attracted users from outside the core field, for example hydrologists who compare local Neutron measurements with data from NMDB to determine soil humidity. By providing access to data from 50 stations, NMDB includes already data from the majority of the currently operating stations. However, in the future we want to include data from the few remaining stations, as well as historical data from stations that have been shut down.

  1. Calibrating Momentum Measurements Of The CMS Detector Using Cosmic Ray Muons

    Science.gov (United States)

    Zaleski, Shawn

    2017-01-01

    We report results on the muon momentum calibration using cosmic-ray data taken by the Compact Muon Solenoid (CMS) experiment during run 2 at the Large Hadron Collider (LHC). The momentum scale of high-pT muons is sensitive to a possible bias on the curvature coming from the alignment of the muon system. Cosmic rays are a source of high-pT muons that can be used to measure the momentum scale of muons with pT > 200 GeV. The present talk describes the method used to measure the momentum scale from cosmic data and the measurement using the 2016 cosmic data is presented.

  2. Measurement of Cosmic Ray Flux in China JinPing underground Laboratory

    CERN Document Server

    Wu, Yu-Cheng; Yue, Qian; LI, Yuan-Jing; Cheng, Jian-Ping; Kang, Ke-Jun; Chen, Yun-Hua; Li, Jin; Li, Jian-Min; Li, Yu-Lan; Liu, Shu-Kui; Ma, Hao; Ren, Jin-Bao; Shen, Man-Bin; Wang, Ji-Min; Wu, Shi-Yong; Xue, Tao; YI, Nan; Zeng, Xiong-Hui; Zeng, Zhi; Zhu, Zhong-Hua

    2013-01-01

    China JinPing underground Laboratory (CJPL) is the deepest underground laboratory presently running in the world. In such a deep underground laboratory, the cosmic ray flux is a very important and necessary parameter for rare event experiments. A plastic scintillator telescope system has been set up to measure the cosmic ray flux. The performance of the telescope system has been studied using the cosmic ray on the ground laboratory near CJPL. Based on the underground experimental data taken from November 2010 to December 2011 in CJPL, which has effective live time of 171 days, the cosmic ray muon flux in CJPL is measured to be (2.0+-0.4)*10^(-10)/(cm^2)/(s). The ultra-low cosmic ray background guarantees CJPL's ideal environment for dark matter experiment.

  3. Measurement of cosmic ray flux in the China JinPing underground laboratory

    Science.gov (United States)

    Wu, Yu-Cheng; Hao, Xi-Qing; Yue, Qian; Li, Yuan-Jing; Cheng, Jian-Ping; Kang, Ke-Jun; Chen, Yun-Hua; Li, Jin; Li, Jian-Min; Li, Yu-Lan; Liu, Shu-Kui; Ma, Hao; Ren, Jin-Bao; Shen, Man-Bin; Wang, Ji-Min; Wu, Shi-Yong; Xue, Tao; Yi, Nan; Zeng, Xiong-Hui; Zeng, Zhi; Zhu, Zhong-Hua

    2013-08-01

    The China JinPing underground Laboratory (CJPL) is the deepest underground laboratory running in the world at present. In such a deep underground laboratory, the cosmic ray flux is a very important and necessary parameter for rare-event experiments. A plastic scintillator telescope system has been set up to measure the cosmic ray flux. The performance of the telescope system has been studied using the cosmic rays on the ground laboratory near the CJPL. Based on the underground experimental data taken from November 2010 to December 2011 in the CJPL, which has an effective live time of 171 days, the cosmic ray muon flux in the CJPL is measured to be (2.0±0.4)×10-10/(cm2·s). The ultra-low cosmic ray background guarantees an ideal environment for dark matter experiments at the CJPL.

  4. Measurement of cosmic ray flux in the China JinPing underground laboratory

    Institute of Scientific and Technical Information of China (English)

    WU Yu-Cheng; HAO Xi-Qing; YUE Qian; LI Yuan-Jing; CHENG Jian-Ping; KANG Ke-Jun; CHEN Yun-Hua

    2013-01-01

    The China JinPing underground Laboratory (CJPL) is the deepest undcrground laboratory running in the world at present.In such a deep underground laboratory,the cosmic ray flux is a very important and necessary parameter for rare-event experiments.A plastic scintillator telescope system has been set up to measure the cosmic ray flux.The performance of the telescope system has been studied using the cosmic rays on the ground laboratory near the CJPL.Based on the underground experimental data taken from November 2010 to December 2011 in the CJPL,which has an effective live time of 171 days,the cosmic ray muon flux in the CJPL is measured to be (2.0±0.4) ×10-10/(cm2s).The ultra-low cosmic ray background guarantees an ideal environment for dark matter experiments at the CJPL.

  5. The H.E.S.S. measurement of the cosmic-ray electron spectrum

    Science.gov (United States)

    Egberts, Kathrin; Abramowski, A.; Acero, F.; Aharonian, F.; Akhperjanian, A. G.; Anton, G.; Barres de Almeida, U.; Bazer-Bachi, A. R.; Becherini, Y.; Behera, B.; Bernlühr, K.; Bochow, A.; Boisson, C.; Bolmont, J.; Borrel, V.; Brucker, J.; Brun, F.; Brun, P.; Bühler, R.; Bulik, T.; Büsching, I.; Boutelier, T.; Chadwick, P. M.; Charbonnier, A.; Chaves, R. C. G.; Cheesebrough, A.; Conrad, J.; Chounet, L.-M.; Clapson, A. C.; Coignet, G.; Dalton, M.; Daniel, M. K.; Davids, I. D.; Degrange, B.; Deil, C.; Dickinson, H. J.; Domainko, A. Djannati-Ataü W.; Drury, L. O'c.; Dubois, F.; Dubus, G.; Dyks, J.; Dyrda, M.; Egberts, K.; Eger, P.; Espigat, P.; Fallon, L.; Farnier, C.; Fegan, S.; Feinstein, F.; Fernandes, M. V.; Fiasson, A.; Fürster, A.; Fontaine, G.; Füssling, M.; Gabici, S.; Gallant, Y. A.; Gérard, L.; Gerbig, D.; Giebels, B.; Glicenstein, J. F.; Glück, B.; Goret, P.; Güring, D.; Hampf, D.; Hauser, M.; Heinz, S.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hinton, J. A.; Hoffmann, A.; Hofmann, W.; Hofverberg, P.; Holleran, M.; Hoppe, S.; Horns, D.; Jacholkowska, A.; de Jager, O. C.; Jahn, C.; Jung, I.; Katarzynski, K.; Katz, U.; Kaufmann, S.; Kerschhaggl, M.; Khangulyan, D.; Khálifi, B.; Keogh, D.; Klochkov, D.; Kluzniak, W.; Kneiske, T.; Komin, Nu.; Kosack, K.; Kossakowski, R.; Lamanna, G.; Lenain, J.-P.; Lohse, T.; Lu, C.-C.; Marandon, V.; Marcowith, A.; Masbou, J.; Maurin, D.; McComb, T. J. L.; Medina, M. C.; Méhault, J.; Moderski, R.; Moulin, E.; Naumann-Godo, M.; de Naurois, M.; Nedbal, D.; Nekrassov, D.; Nguyen, N.; Nicholas, B.; Niemiec, J.; Nolan, S. J.; Ohm, S.; Olive, J.-F.; de Ona Wilhelmi, E.; Opitz, B.; Orford, K. J.; Ostrowski, M.; Panter, M.; Paz Arribas, M.; Pedaletti, G.; Pelletier, G.; Petrucci, P.-O.; Pita, S.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raubenheimer, B. C.; Raue, M.; Rayner, S. M.; Reimer, O.; Renaud, M.; de Los Reyes, R.; Rieger, F.; Ripken, J.; Rob, L.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Ruppel, J.; Ryde, F.; Sahakian, V.; Santangelo, A.; Schlickeiser, R.; Schück, F. M.; Schünwald, A.; Schwanke, U.; Schwarzburg, S.; Schwemmer, S.; Shalchi, A.; Sushch, I.; Sikora, M.; Skilton, J. L.; Sol, H.; Stawarz, L.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Szostek, A.; Tam, P. H.; Tavernet, J.-P.; Terrier, R.; Tibolla, O.; Tluczykont, M.; Valerius, K.; van Eldik, C.; Vasileiadis, G.; Venter, C.; Venter, L.; Vialle, J. P.; Viana, A.; Vincent, P.; Vivier, M.; Vülk, H. J.; Volpe, F.; Vorobiov, S.; Wagner, S. J.; Ward, M.; Zdziarski, A. A.; Zech, A.; Zechlin, H.-S.

    The measurement of very-high-energy cosmic-ray electrons is intrinsically difficult due to their very steep spectrum with low fluxes and an enormous background of hadronic cosmic rays. The large collection areas needed for such a measurement can be provided by ground-based imaging atmospheric Cherenkov telescopes. The High Energy Stereoscopic System (H.E.S.S.) has performed the first ground-based cosmic-ray electron measurement and thereby extended the measured range of the spectrum to several TeV.

  6. Cosmic rays on earth.

    Science.gov (United States)

    Allkofer, O. C.; Grieder, P. K. F.

    Contents: Cosmic rays in the atmosphere: Charged hadron data. Neutron data. Gamma-ray data. Electron data. Muon data. Data on nuclei. Data on antiparticles. Cosmic rays at sea level: Muon data. Charged hadron data.Neutron data. Electron data. Gamma-ray data. Data on nuclei. Cosmic rays underground: Muon data. Neutrino data.

  7. Direct Measurements of Cosmic Rays (up to ~TeV and beyond)

    Science.gov (United States)

    Coutu, Stéphane; Cabezas, Denis; Salinas, C. J. Solano; Xoxocotzi, Reyna

    2009-04-01

    The objective of this paper is to provide a brief overview of selected experimental measurements in the field of cosmic rays. Galactic cosmic rays are composed of primary and secondary particles. Primary cosmic rays are thought to be energized by supernova shocks within our Galaxy. The cosmic rays that eventually arrive at the Earth are mainly protons and atomic nuclei, but also contain electrons. Secondary cosmic rays are produced in collisions of primary particles with the diffuse interstellar gas and are scarce but carry important information on the Galactic propagation of the primary particles. The secondary component includes a small fraction of antimatter particles, antiprotons and positrons; these may also come from unusual sources and could possibly provide a window into new physics. For example, in the Galactic halo there could take place annihilations of heavy supersymmetric dark matter particles, which could lead to positrons or antiprotons.

  8. Measuring the cosmic-ray acceleration efficiency of a supernova remnant.

    Science.gov (United States)

    Helder, E A; Vink, J; Bassa, C G; Bamba, A; Bleeker, J A M; Funk, S; Ghavamian, P; van der Heyden, K J; Verbunt, F; Yamazaki, R

    2009-08-07

    Cosmic rays are the most energetic particles arriving at Earth. Although most of them are thought to be accelerated by supernova remnants, the details of the acceleration process and its efficiency are not well determined. Here we show that the pressure induced by cosmic rays exceeds the thermal pressure behind the northeast shock of the supernova remnant RCW 86, where the x-ray emission is dominated by synchrotron radiation from ultrarelativistic electrons. We determined the cosmic-ray content from the thermal Doppler broadening measured with optical spectroscopy, combined with a proper-motion study in x-rays. The measured postshock proton temperature, in combination with the shock velocity, does not agree with standard shock heating, implying that >50% of the postshock pressure is produced by cosmic rays.

  9. Ultrahigh energy cosmic ray composition from surface air shower and underground muon measurements at Soudan 2

    Science.gov (United States)

    Longley, N. P.; Bode, C. R.; Border, P. M.; Courant, H.; Demuth, D. M.; Gray, R. N.; Johns, K.; Kasahara, S. M.; Lowe, M. J.; Marshak, M. L.; Miller, W. H.; Mualem, L.; Peterson, E. A.; Roback, D. M.; Ruddick, K.; Schmid, D. J.; Schub, M. H.; Shupe, M. A.; Vassiliev, V.; Villaume, G.; Werkema, S. J.; Ayres, D. S.; Fields, T. H.; Gallagher, H. M.; Goodman, M. C.; Lopez, F. V.; May, E. N.; Price, L. E.; Seidlein, R. V.; Thron, J. L.; Trost, H.-J.; Uretsky, J. L.; Allison, W. W.; Barr, G. D.; Brooks, C. B.; Cobb, J. H.; Giller, G. L.; Stassinakis, A.; Thomson, M. A.; West, N.; Wielgosz, U.; Alner, G. J.; Cockerill, D. J.; Cotton, R. J.; Garcia-Garcia, C.; Litchfield, P. J.; Pearce, G. F.; Ewen, B.; Kafka, T.; Kochocki, J.; Leeson, W.; Mann, W. A.; Milburn, R. H.; Napier, A.; Oliver, W.; Saitta, B.; Schneps, J.; Sundaralingam, N.; Barrett, W. L.

    1995-09-01

    The Soudan 2 experiment has performed time-coincident cosmic ray air shower and underground muon measurements. Comparisons to Monte Carlo predictions show that such measurements can make statistically significant tests of the primary composition in the knee region of the cosmic ray spectrum. The results do not support any significant increase in the average primary mass with energy in the range of ~104 TeV per nucleus. Some systematic uncertainties remain, however, particularly in the Monte Carlo modeling of the cosmic ray shower.

  10. Cosmic Ray Measurements by Scintillators with Metal Resistor Semiconductor Avalanche Photo Diodes

    Science.gov (United States)

    Blanco, Francesco; La Rocca, Paola; Riggi, Francesco; Akindinov, Alexandre; Mal'kevich, Dmitry

    2008-01-01

    An educational set-up for cosmic ray physics experiments is described. The detector is based on scintillator tiles with a readout through metal resistor semiconductor (MRS) avalanche photo diode (APD) arrays. Typical measurements of the cosmic angular distribution at sea level and a study of the East-West asymmetry obtained by such a device are…

  11. Cosmic Ray Measurements by Scintillators with Metal Resistor Semiconductor Avalanche Photo Diodes

    Science.gov (United States)

    Blanco, Francesco; La Rocca, Paola; Riggi, Francesco; Akindinov, Alexandre; Mal'kevich, Dmitry

    2008-01-01

    An educational set-up for cosmic ray physics experiments is described. The detector is based on scintillator tiles with a readout through metal resistor semiconductor (MRS) avalanche photo diode (APD) arrays. Typical measurements of the cosmic angular distribution at sea level and a study of the East-West asymmetry obtained by such a device are…

  12. ALICE Cosmic Ray Detector

    CERN Multimedia

    Fernandez Tellez, A; Martinez Hernandez, M; Rodriguez Cahuantzi, M

    2013-01-01

    The ALICE underground cavern provides an ideal place for the detection of high energy atmospheric muons coming from cosmic ray showers. ACORDE detects cosmic ray showers by triggering the arrival of muons to the top of the ALICE magnet.

  13. Precise measurement of cosmic ray fluxes with the AMS-02 experiment

    Energy Technology Data Exchange (ETDEWEB)

    Vecchi, Manuela, E-mail: manuela.vecchi@ifsc.usp.br [Instituto de Física de São Carlos, Universidade de São Paulo, CP 369, 13560-970, São Carlos, SP (Brazil)

    2015-12-17

    The AMS-02 detector is a large acceptance magnetic spectrometer operating onboard the International Space Station since May 2011. The main goals of the detector are the search for antimatter and dark matter in space, as well as the measurement of cosmic ray composition and flux. In this document we present precise measurements of cosmic ray positrons, electrons and protons, collected during the first 30 months of operations.

  14. Measurements of cosmic-ray energy spectra with the 2nd CREAM flight

    CERN Document Server

    Maestro, P; Allison, P; Bagliesi, M G; Barbier, L; Beatty, J J; Bigongiari, G; Brandt, T J; Childers, J T; Conklin, N B; Coutu, S; DuVernois, M A; Ganel, O; Han, J H; Jeon, J A; Kim, K C; Lee, M H; Malinine, A; Marrocchesi, P S; Minnick, S; Mognet, S I; Nam, S W; Nutter, S; Park, I H; Park, N H; Seo, E S; Sina, R; Walpole, P; Wu, J; Yang, J; Yoon, Y S; Zei, R; Zinn, S Y; 10.1016/j.nuclphysbps.2009.09.045

    2010-01-01

    During its second Antarctic flight, the CREAM (Cosmic Ray Energetics And Mass) balloon experiment collected data for 28 days, measuring the charge and the energy of cosmic rays (CR) with a redundant system of particle identification and an imaging thin ionization calorimeter. Preliminary direct measurements of the absolute intensities of individual CR nuclei are reported in the elemental range from carbon to iron at very high energy.

  15. The WiZard Collaboration cosmic ray muon measurements in the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Circella, M. E-mail: marco.circella@ba.infn.it; Ambriola, M.L.; Barbiellini, G.; Bartalucci, S.; Bellotti, R.; Bergstroem, D.; Bidoli, V.; Boezio, M.; Bravar, U.; Cafagna, F.; Carlson, P.; Casolino, M.; Ciacio, F.; Circella, M.; De Marzo, C.N.; De Pascale, M.P.; Finetti, N.; Francke, T.; Grinstein, S.; Hof, M.; Khalchukov, F.; Kremer, J.; Menn, W.; Mitchell, J.W.; Morselli, A.; Ormes, J.F.; Papini, P.; Piccardi, S.; Picozza, P.; Ricci, M.; Schiavon, P.; Simon, M.; Sparvoli, R.; Spillantini, P.; Stephens, S.A.; Stochaj, S.J.; Streitmatter, R.E.; Suffert, M.; Vacchi, A.; Zampa, N

    2000-05-01

    Balloon-borne experiments allow cosmic ray measurements to be performed over large ranges of atmospheric depths. The WiZard Collaboration is involved in a long-range investigation of the cosmic ray muon fluxes in the atmosphere. In this paper, we will discuss the relevance of such measurements to the atmospheric neutrino calculations and will review the results reported by the Collaboration, with particular emphasis on those coming from the latest flight CAPRICE98.

  16. Air Shower Events of High-Energy Cosmic Rays Measured at Seoul, South Korea

    Science.gov (United States)

    Cho, Wooram; Shin, Jae-Ik; Kim, Hongki; Lee, Seulgi; Lim, Sunin; Nam, Sinwoo; Yang, Jongmann; Cheon, Byunggu; Bang, Hyungchan; Kwon, Youngjoon

    2011-09-01

    The COsmic ray Research and Education Array (COREA) collaboration has installed an array of six detector stations at two high schools in and near Seoul, Korea for measurement of air-shower events from high-energy cosmic rays. Three stations are installed at each site, where each station consists of four plastic scintillation detectors covering an area of 2m2. In this presentation, we report the currenst status of the COREA project, describing the experimental equipment and measurement of coincident events.

  17. The Cosmic Ray Energy Spectrum and Related Measurements with the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, : J.; Abreu, P.; Aglietta, M.; Aguirre, C.; Ahn, E.J.; Allard, D.; Allekotte, I.; Allen, J.; Alvarez-Muniz, J.; Ambrosio, M.; Anchordoqui, L.

    2009-06-01

    These are presentations to be presented at the 31st International Cosmic Ray Conference, in Lodz, Poland during July 2009. It consists of the following presentations: (1) Measurement of the cosmic ray energy spectrum above 10{sup 18} eV with the Pierre Auger Observatory; (2) The cosmic ray flux observed at zenith angles larger than 60 degrees with the Pierre Auger Observatory; (3) Energy calibration of data recorded with the surface detectors of the Pierre Auger Observatory; (4) Exposure of the Hybrid Detector of The Pierre Auger Observatory; and (5) Energy scale derived from Fluorescence Telescopes using Cherenkov Light and Shower Universality.

  18. Measurement of the cosmic ray muon charge ratio with the OPERA detector

    CERN Document Server

    Mauri, N

    2010-01-01

    The OPERA detector at the Gran Sasso underground laboratory (LNGS) was used to measure the cosmic ray muon charge ratio Rμ = Nμ+/Nμ− in the TeV energy region. We analyzed 403069 cosmic ray muons corresponding to 113.4 days of livetime during the 2008 CNGS run. We computed separately the muon charge ratio for single and for multiple muon events in order to select different energy regions of the primary cosmic ray spectrum and to test the Rμ dependence on the primary composition. Rμ is also shown as a function of the Òvertical surface energyÓ Eμ cos !. A Þt to a simpliÞed model of muon pro- duction in atmosphere allowed the determination of the pion and kaon charge ratios weighted by the cosmic ray energy spectrum.

  19. Measurement of angular distribution of cosmic-ray muon fluence rate

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jeng-Wei [Institute of Nuclear Engineering and Science, Natioanl Tsing Hua University, 101 Sec. 2, Kung Fu Road, Hsinchu 30013, Taiwan (China); Chen, Yen-Fu [Department of Engineering and System Science, Natioanl Tsing Hua University, 101 Sec. 2, Kung Fu Road, Hsinchu 30013, Taiwan (China); Sheu, Rong-Jiun [National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 30013, Taiwan (China); Jiang, Shiang-Huei, E-mail: Shjiang@mx.nthu.edu.t [Institute of Nuclear Engineering and Science, Natioanl Tsing Hua University, 101 Sec. 2, Kung Fu Road, Hsinchu 30013, Taiwan (China); Department of Engineering and System Science, Natioanl Tsing Hua University, 101 Sec. 2, Kung Fu Road, Hsinchu 30013, Taiwan (China)

    2010-07-21

    In this work a Berkeley Lab cosmic ray detector was used to measure the angular distribution of the cosmic-ray muon fluence rate. Angular response functions of the detector at each measurement orientation were calculated by using the FLUKA Monte Carlo code, where no energy attenuation was taken into account. Coincidence counting rates were measured at ten orientations with equiangular intervals. The muon angular fluence rate spectrum was unfolded from the measured counting rates associated with the angular response functions using both the MAXED code and the parameter adjusting method.

  20. Calibration approaches of cosmic-ray neutron sensing for soil moisture measurement in cropped fields

    Directory of Open Access Journals (Sweden)

    C. A. Rivera Villarreyes

    2013-04-01

    Full Text Available Measurement of soil moisture at the plot or hill-slope scale is an important link between local vadose-zone hydrology and catchment hydrology. This study evaluates the applicability of the cosmic-ray neutron sensing for soil moisture in cropped fields. Measurements of cosmic-ray neutrons (fast neutrons were performed at a lowland farmland in Bornim (Brandenburg, Germany cropped with sunflower and winter rye. Three field calibration approaches and four different ways of integration the soil moisture profile to an integral value for cosmic-ray neutron sensing were evaluated in this study. The cosmic-ray sensing (CRS probe was calibrated against a network of classical point-scale soil moisture measurements. A large CRS parameter variability was observed by choosing calibration periods within the different growing stages of sunflower and winter rye. Therefore, it was not possible to identify a single set of parameters perfectly estimating soil moisture for both sunflower and winter rye periods. On the other hand, CRS signal and its parameter variability could be understood by some crop characteristics and by predicting the attenuated neutrons by crop presence. This study proves the potentiality of the cosmic-ray neutron sensing at the field scale; however, its calibration needs to be adapted for seasonal vegetation in cropped fields.

  1. High energy cosmic rays

    CERN Document Server

    Stanev, Todor

    2010-01-01

    Offers an accessible text and reference (a cosmic-ray manual) for graduate students entering the field and high-energy astrophysicists will find this an accessible cosmic-ray manual Easy to read for the general astronomer, the first part describes the standard model of cosmic rays based on our understanding of modern particle physics. Presents the acceleration scenario in some detail in supernovae explosions as well as in the passage of cosmic rays through the Galaxy. Compares experimental data in the atmosphere as well as underground are compared with theoretical models

  2. Elemental energy spectra of cosmic rays measured by CREAM-II

    CERN Document Server

    Maestro, P; Allison, P; Bagliesi, M G; Barbier, L; Beatty, J J; Bigongiari, G; Brandt, T J; Childers, J T; Conklin, N B; Coutu, S; DuVernois, M A; Ganel, O; Han, J H; Jeon, J A; Kim, K C; Lee, M H; Malinine, A; Marrocchesi, P S; Minnick, S; Mognet, S I; Nam, S W; Nutter, S; Park, I H; Park, N H; Seo, E S; Sina, R; Walpole, P; Wu, J; Yang, J; Yoon, Y S; Zei, R; Zinn, S Y

    2010-01-01

    We present new measurements of the energy spectra of cosmic-ray (CR) nuclei from the second flight of the balloon-borne experiment CREAM (Cosmic Ray Energetics And Mass). The instrument (CREAM-II) was comprised of detectors based on different techniques (Cherenkov light, specific ionization in scintillators and silicon sensors) to provide a redundant charge identification and a thin ionization calorimeter capable of measuring the energy of cosmic rays up to several hundreds of TeV. The data analysis is described and the individual energy spectra of C, O, Ne, Mg, Si and Fe are reported up to ~ 10^14 eV. The spectral shape looks nearly the same for all the primary elements and can be expressed as a power law in energy E^{-2.66+/-0.04}. The nitrogen absolute intensity in the energy range 100-800 GeV/n is also measured.

  3. Cosmic-Ray Positron Fraction Measurement with the AMS-02 Detector

    CERN Document Server

    AUTHOR|(CDS)2079577

    The study of Cosmic-Rays has proved to be of utmost importance in the understanding of the processes that govern our galaxy and has became a privileged field for the discovery of new physics. The current availability of precision measurements in a number of recent experiments such as PAMELA or Fermi, and in particular AMS-02, has provided a unique opportunity to challenge the theoretical framework that builds our comprehension of Nature. Certainly, the recent advent of new data on Cosmic-Ray electrons and positrons has raised disagreements with our current knowledge of production and propagation of Cosmic-Rays. The observation of an excess in the Cosmic-Ray electron spectrum has triggered enormous efforts to understand the origin of this anomaly, both from the theoretical and experimental points of view. In this context, AMS is a long awaited program, that among other objectives, will provide the most accurate measurement of the Cosmic-Ray electron spectrum, making possible to investigate a fundamental open q...

  4. Design, construction, characterization and use of a detector to measure time of flight of cosmic rays

    Science.gov (United States)

    Araujo, A. C.; Félix, J.

    2016-10-01

    In the study of cosmic rays, measurements of time of flight and momentum have been used to identify incident particles from its physical properties, like mass. In this poster we present the design, construction, characterization, and operation of a detector to measure time of flight of cosmic rays. The device is comprised of three plates of plastic scintillator arranged in vertical straight line, they are coupled to one photomultiplier tube. The analogical output has been connected to a data acquisition system to obtain the number of digital pulses per millisecond. We present preliminary results.

  5. Precise Measurement of Cosmic-Ray Proton and Helium Spectra with the BESS Spectrometer

    CERN Document Server

    Sanuki, T; Matsumoto, H; Seo, E S; Wang, J Z; Abe, K; Anraku, K; Asaoka, Y; Fujikawa, M; Imori, M; Maeno, T; Makida, Y; Matsui, N; Matsunaga, H; Mitchell, J; Mitsui, T; Moiseev, A; Nishimura, J; Nozaki, M; Orito, S; Ormes, J F; Saeki, T; Sasaki, M; Shikaze, Y; Sonoda, T; Streitmatter, R E; Suzuki, J; Tanaka, K; Ueda, I; Yajima, N; Yamagami, T; Yamamoto, A; Yoshida, T; Yoshimura, K

    2000-01-01

    We report cosmic-ray proton and helium spectra in energy ranges of 1 to 120GeV and 1 to 54 GeV/nucleon, respectively, measured by a balloon flight of theBESS spectrometer in 1998. The magnetic-rigidity of the cosmic-rays wasreliably determined by highly precise measurement of the circular track in auniform solenoidal magnetic field of 1 Tesla. Those spectra were determinedwithin overall uncertainties of +-5 0.000000or protons and +- 10 0.000000or helium nucleiincluding statistical and systematic errors.

  6. Cosmic rays and climate

    CERN Document Server

    CERN. Geneva

    2009-01-01

    The current understanding of climate change in the industrial age is that it is predominantly caused by anthropogenic greenhouse gases, with relatively small natural contributions due to solar irradiance and volcanoes. However, palaeoclimatic reconstructions show that the climate has frequently varied on 100-year time scales during the Holocene (last 10 kyr) by amounts comparable to the present warming - and yet the mechanism or mechanisms are not understood. Some of these reconstructions show clear associations with solar variability, which is recorded in the light radio-isotope archives that measure past variations of cosmic ray intensity. However, despite the increasing evidence of its importance, solar-climate variability is likely to remain controversial until a physical mechanism is established. Estimated changes of solar irradiance on these time scales appear to be too small to account for the climate observations. This raises the question of whether cosmic rays may directly affect the climate, provi...

  7. Cosmic ray abundance measurements with the CAKE balloon experiment

    CERN Document Server

    Cecchini, S; Giacomelli, G; Manzoor, S; Medinaceli, E; Patrizii, L; Togo, V

    2005-01-01

    We present the results from the CAKE (Cosmic Abundance below Knee Energy) balloon experiment which uses nuclear track detectors. The final experiment goal is the determination of the charge spectrum of CR nuclei with Z $>$ 30 in the primary cosmic radiation. The detector, which has a geometric acceptance of $\\sim$ 1.7 m$^2$sr, was exposed in a trans-mediterranean stratospheric balloon flight. Calibrations of the detectors used (CR39 and Lexan), scanning strategies and algorithms for tracking particles in an automatic mode are presented. The present status of the results is discussed

  8. Measurement of the cosmic ray energy spectrum using hybrid events of the Pierre Auger Observatory

    NARCIS (Netherlands)

    Settimo, Mariangela; Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E.J.; Albuquerque, IFM; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A; Anchordoqui, L.; Andring, S.; Anticic, T.; Aramo, C.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Badescu, A.M.; Barber, K.B.; Barbosa, A.F.; Bardenet, R.; Baughman, B.; Bauml, J.; Baus, C.; Beatty, J.J.; Becker, K.H.; Belletoile, A.; Bellido, J.A.; BenZvi, S.; Berat, C.; Bertou, X.; Biermann, P.L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blumer, H.; Bohacova, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Boroda, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W.C.; Bruijn, R.; Buchholz, P.; Bueno, A.; Buroker, L.; Burton, R.E.; Cabellero-Mora, K.S.; Caccianiga, B.; Caramete, L.; Caruso, R.; Castellina, A.; Catalano, O.; Cataldi, G.; Cazon, L.; Cester, R.; Chauvin, J.; Cheng, S.H.; Chiavassa, A.; Chinellato, J.A.; Chirinos Diaz, J.; Chudoba, J.; Cilmo, M.; Clay, R.W.; Cocciolo, G.; Collica, L.; Coluccia, M.R.; Conceicao, R.; Contreras, F.; Cook, H.; Cooper, M.J.; Coppens, J.; Cordier, A.; Coutu, S.; Covault, C.E.; Creusot, A.; Criss, A.; Cronin, J.; Curutiu, A.; Dagoret-Campagne, S.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B.R.; de Almeida, R.M.; De Domenico, M.; De Donato, C.; de Jong, S.J.; De La Vega, G.; de Mello Junior, W.J.M.; de Mello Neto, J.R.T.; De Mitri, I.; de Souza, V.; de Vries, K.D.; del Peral, L.; del Rio, M.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Diaz Castro, M.L.; Diep, P.N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J.C.; Dong, PN; Dorofeev, A.; dos Anjos, JC; Dova, M.T.; D'Urso, D.; Dutan, I.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C.O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A.C.; Fazzini, N.; Ferguson, A.P.; Fick, B.; Figueira, J.M.; Filevich, A.; Filevich, A.; Fliescher, S.; Fracchiolla, C.E.; Fraenkel, E.D.; Fratu, O.; Frohlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R.F.; Gambetta, S.; Garcia, B.; Garcia Roca, S.T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gemmeke, H.; Ghia, P.L.; Giller, M.; Gitto, J.; Glass, H.; Gold, M.S.; Golup, G.; Gomez Albarracin, F.; Gomez Berisso, M.; Gomez Vitale, P.F.; Goncalves, P.; Gonzalez, J.G.; Gookin, B.; Gorgi, A.; Gouffon, P.; Grashorn, E.; Grebe, S.; Griffith, N.; Grillo, A.F.; Guardincerri, Y.; Guarino, F.; Guedes, G.P.; Hansen, P.; Harari, D.; Harrison, T.A.; Harton, J.L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A.E.; Hill, G.C.; Hojvat, C.; Hollon, N.; Holmes, V.C.; Homola, P.; Horandel, J.R.; Horvath, P.; Hrabovsky, M.; Huber, D.; Huege, T.; Insolia, A.; Ionita, F.; Italiano, A.; Jansen, S.; Jarne, C.; Jiraskova, S.; Josebachuili, M.; Kadija, K.; Kampert, K.H.; Karhan, P.; Kasper, P.; Katkov, I.; Kegl, B.; Keilhauer, B.; Keivani, A.; Kelley, J.L.; Kemp, E.; Kieckhafer, R.M.; Klages, H.O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Koang, D.H.; Kotera, K.; Krohm, N.; Kromer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kulbartz, J.K.; Kunka, N.; La Rosa, G.; Lachaud, C.; LaHurd, D.; Latronico, L.; Lauer, R.; Lautridou, P.; Le Coz, S.; Leao, M.S.A.B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M.A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lopez, R.; Lopez Aguera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M.C.; Macolino, C.; Maldera, S.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A.G.; Marin, J.; Marin, V.; Maris, I.C.; Marquez Falcon, H.R.; Marsella, G.; Martello, D.; Martinez, H.; Martinez Bravo, O.; Martraire, D.; Masias Meza, [No Value; Mathes, H.J.; Matthews, J.; Matthews, J.A.J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mazur, P.O.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Mertsch, P.; Messina, S.; Meurer, C.; Meyhandan, R.; Mi'canovi'c, S.; Micheletti, M.I.; Minaya, I.A.; Miramonti, L.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, J.C.; Mostafa, M.; Moura, C.A.; Muller, M.A.; Muller, G.; Munchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J.L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nhung, P.T.; Niechciol, M.; Niemietz, L.; Nierstenhoefer, N.; Nitz, D.; Nosek, D.; Nozka, L.; Oehlschlager, J.; Olinto, A.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parizot, E.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; Pekala, J.; Pelayo, R.; Pepe, I.M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrolini, A.; Petrov, Y.; Pfendner, C.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez, G.; Rouille-d'Orfeuil, B.; Roulet, E.; Rovero, A.C.; Ruhle, C.; Saftoiu, A.; Salamida, F.; Salazar, H.; Salesa Greus, F.; Salina, G.; Sanchez, F.; Santo, C.E.; Santos, E.; Santos, E.M.; Sarazin, F.; Sarkar, B.; Sarkar, S.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Scholten, O.; Schoorlemmer, H.; Schovancova, J.; Schovanek, P.; Schroder, F.; Schuster, D.; Sciutto, S.J.; Scuderi, M.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R.C.; Sidelnik, I.; Sigl, G.; Silva Lopez, H.H.; Sima, O.; Smialkowski, A.; Smida, R.; Snow, G.R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Srivastava, Y.N.; Stanic, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijarvi, T.; Supanitsky, A.D.; Susa, T.; Sutherland, M.S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Tapia, A.; Tartare, M.; Tascau, O.; Tcaciuc, R.; Thao, N.T.; Thomas, D.; Tiffenberg, J.; Timmermans, C.; Tkaczyk, W.; Todero Peixoto, C.J.; Toma, G.; Tomankova, L.; Tome, B.; Tonachini, A.; Torralba Elipe, G.; Travnicek, P.; Tridapalli, D.B.; Tristram, G.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdes Galicia, J.F.; Valino, I.; Valore, L.; van Aar, G.; van den Berg, A.M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cardenas, B.; Vazquez, JR; Vazquez, R.A.; Veberic, D.; Verzi, V.; Vicha, J.; Videla, M.; Villasenor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Walz, D.; Watson, A.A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Westerhoff, S.; Whelan, B.J.; Widom, A.; Wieczorek, G.; Wiencke, L.; Wilczynska, B.; Wilczynski, H.; Will, M.; Williams, C.; Winchen, T.; Wommer, M.; Wundheiler, B.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano Garcia, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.; Martin, L.

    2012-01-01

    The energy spectrum of ultra-high energy cosmic rays above 10(18)eV is measured using the hybrid events collected by the Pierre Auger Observatory between November 2005 and September 2010. The large exposure of the Observatory allows the measurement of the main features of the energy spectrum with hi

  9. Energy spectrum of cosmic ray protons and helium nuclei measured by the ARGO-YBJ experiment

    Energy Technology Data Exchange (ETDEWEB)

    Mari, S.M. [Dipartimento di Matematica e Fisica - Università degli Studi Roma TRE, via della Vasca Navale 84, 00146 Roma (Italy); Istituto Nazionale di Fisica Nucleare - Sezione di Roma TRE, via della Vasca Navale 84, 00146 Roma (Italy); Montini, P., E-mail: paolo.montini@roma3.infn.it [Istituto Nazionale di Fisica Nucleare - Sezione di Roma TRE, via della Vasca Navale 84, 00146 Roma (Italy)

    2014-04-01

    The ARGO-YBJ experiment is a full-coverage air shower detector operating at the Yangbajing International Cosmic Ray Observatory (Tibet, PR China, 4300 m a.s.l.). The detector was in stable data taking in its full configuration from November 2007 to February 2013. More than 5×10{sup 11} events have been collected and reconstructed. Due to its characteristics (full-coverage, high segmentation, high altitude operation) the ARGO-YBJ experiment is able to investigate the cosmic ray energy spectrum in a wide energy range and offer the possibility of measuring the cosmic ray light component spectrum down to the TeV region, where direct balloon-borne measurements are available. In this work we present the measurement of the proton and helium spectra in the energy range 1–300 TeV by using a large data sample collected between January 2008 and December 2011. - Highlights: • We have measured the light component spectrum of cosmic rays. • The measurement has been performed by the full coverage high altitude ARGO-YBJ experiment. • The measurement covers the energy range 1–300 TeV where direct measurements are available.

  10. The All Particle Cosmic-Ray Energy Spectrum Measured with HAWC

    Science.gov (United States)

    Hampel-Arias, Zigfried; HAWC Collaboration

    2016-03-01

    We present results of a measurement of the all-particle cosmic-ray energy spectrum above 10 TeV with the High-Altitude Water Cherenkov (HAWC) Observatory. HAWC is a ground based air shower array deployed on the slopes of Volcán Sierra Negra in the state of Puebla, México. It comprises 300 large light-tight water tanks covering an area of 20,000 square meters. Each tank is instrumented with four photomultipliers to detect particles from extensive air showers produced by gamma rays and cosmic rays upon entering the Earth's atmosphere. HAWC is optimized for the detection of gamma-ray induced air showers, yet the background flux of hadronic air showers is four orders of magnitude greater, allowing for a detailed study of the cosmic-ray flux in the TeV energy range. The primary cosmic-ray energy is determined with a maximum likelihood approach using the particle density as a function of distance to the shower core. Introducing quality cuts to isolate events with shower cores landing on the array, the reconstructed energy distribution is unfolded iteratively. We will report on the energy resolution of the technique and the results of the unfolding.

  11. Cosmic-Ray Detectors With Interdigitated Electrodes

    Science.gov (United States)

    Cunningham, Thomas J.; Mazed, Mohammed; Holtzman, Melinda J.; Fossum, Eric R.

    1995-01-01

    Detectors measure both positions of incidence and energies of incident charged particles. Stack of detector wafers intercept cosmic ray. Measure positions of incidence to determine cosmic-ray trajectory and charge generated within them (proportional to cosmic-ray energy dissipated within them). Interdigital electrode pattern repeated over many rows and columns on tops of detector wafers in stack. Electrode pattern defines pixels within which points of incidence of incident cosmic rays located.

  12. Charge spectrum of galactic cosmic ray nuclei as measured in meteorite olivines

    Energy Technology Data Exchange (ETDEWEB)

    Aleksandrov, Andrei B; Bagulya, Aleksandr V; Vladimirov, Mikhail S; Goncharova, Lyudmila A; Konovalova, Nina S; Okat' eva, Natal' ya M; Polukhina, Natal' ya G; Rusetskii, Aleksei S; Starkov, Nikolai I [P N Lebedev Physical Institute, Russian Academy of Sciences, Moscow (Russian Federation); Ivliev, Aleksandr I; Kalinina, Galina V; Kashkarov, Leonid L [V.I. Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, Moscow (Russian Federation)

    2010-11-15

    This paper presents experimental results on galactic cosmic ray nuclei in olivine crystals from the Marjalahti and Eagle Station pallasites. The charge spectrum of the nuclei is measured to be in good agreement with the experimental data from the HEAO-3 and ARIEL-6 satellite missions. (instruments and methods of investigation)

  13. LOPES 3D - vectorial measurements of radio emission from cosmic ray induced air showers

    CERN Document Server

    Apel, W D; Bähren, L; Bekk, K; Bertaina, M; Biermann, P L; Blümer, J; Bozdog, H; Brancus, I M; Chiavassa, A; Daumiller, K; de Souza, V; Di Pierro, F; Doll, P; Engel, R; Falcke, H; Fuchs, B; Fuhrmann, D; Gemmeke, H; Grupen, C; Haungs, A; Heck, D; Hörandel, J R; Horneffer, A; Huber, D; Huege, T; Isar, P G; Kampert, K -H; Kang, D; Krömer, O; Kuijpers, J; Link, K; Luczak, P; Ludwig, M; Mathes, H J; Melissas, M; Morello, C; Oehlschläger, J; Palmieri, N; Pierog, T; Rautenberg, J; Rebel, H; Roth, M; Rühle, C; Saftoiu, A; Schieler, H; Schmidt, A; Schröder, F G; Sima, O; Toma, G; Trinchero, G C; Weindl, A; Wochele, J; Zabierowski, J; Zensus, J A

    2013-01-01

    LOPES 3D is able to measure all three components of the electric field vector of the radio emission from air showers. This allows a better comparison with emission models. The measurement of the vertical component increases the sensitivity to inclined showers. By measuring all three components of the electric field vector LOPES 3D demonstrates by how much the reconstruction accuracy of primary cosmic ray parameters increases. Thus LOPES 3D evaluates the usefulness of vectorial measurements for large scale applications.

  14. All-particle cosmic ray energy spectrum measured with 26 IceTop stations

    CERN Document Server

    Abbasi, R; Abu-Zayyad, T; Ackermann, M; Adams, J; Aguilar, J A; Ahlers, M; Altmann, D; Andeen, K; Auffenberg, J; Bai, X; Baker, M; Barwick, S W; Baum, V; Bay, R; Alba, J L Bazo; Beattie, K; Beatty, J J; Bechet, S; Becker, J K; Becker, K -H; Bell, M; Benabderrahmane, M L; BenZvi, S; Berdermann, J; Berghaus, P; Berley, D; Bernardini, E; Bertrand, D; Besson, D Z; Bindig, D; Bissok, M; Blaufuss, E; Blumenthal, J; Boersma, D J; Bohm, C; Bose, D; Böser, S; Botner, O; Brayeur, L; Brown, A M; Buitink, S; Caballero-Mora, K S; Carson, M; Casier, M; Chirkin, D; Christy, B; Clevermann, F; Cohen, S; Cowen, D F; Silva, A H Cruz; D'Agostino, M V; Danninger, M; Daughhetee, J; Davis, J C; De Clercq, C; Degner, T; Descamps, F; Desiati, P; de Vries-Uiterweerd, G; DeYoung, T; Díaz-Vélez, J C; Dreyer, J; Dumm, J P; Dunkman, M; Eisch, J; Ellsworth, R W; Engdegård, O; Euler, S; Evenson, P A; Fadiran, O; Fazely, A R; Fedynitch, A; Feintzeig, J; Feusels, T; Filimonov, K; Finley, C; Fischer-Wasels, T; Flis, S; Franckowiak, A; Franke, R; Gaisser, T K; Gallagher, J; Gerhardt, L; Gladstone, L; Glüsenkamp, T; Goldschmidt, A; Goodman, J A; Góra, D; Grant, D; Groß, A; Grullon, S; Gurtner, M; Ha, C; Ismail, A Haj; Hallgren, A; Halzen, F; Han, K; Hanson, K; Heimann, P; Heinen, D; Helbing, K; Hellauer, R; Hickford, S; Hill, G C; Hoffman, K D; Hoffmann, B; Homeier, A; Hoshina, K; Huelsnitz, W; Hulth, P O; Hultqvist, K; Hussain, S; Ishihara, A; Jacobi, E; Jacobsen, J; Japaridze, G S; Johansson, H; Kappes, A; Karg, T; Karle, A; Kiryluk, J; Kislat, F; Klein, S R; Klepser, S; Köhne, J -H; Kohnen, G; Kolanoski, H; Köpke, L; Kopper, S; Koskinen, D J; Kowalski, M; Krasberg, M; Kroll, G; Kunnen, J; Kurahashi, N; Kuwabara, T; Labare, M; Laihem, K; Landsman, H; Larson, M J; Lauer, R; Lünemann, J; Madsen, J; Maruyama, R; Mase, K; Matis, H S; Meagher, K; Merck, M; Mészáros, P; Meures, T; Miarecki, S; Middell, E; Milke, N; Miller, J; Montaruli, T; Morse, R; Movit, S M; Nahnhauer, R; Nam, J W; Naumann, U; Nowicki, S C; Nygren, D R; Odrowski, S; Olivas, A; Olivo, M; O'Murchadha, A; Panknin, S; Paul, L; Heros, C Pérez de los; Pieloth, D; Posselt, J; Price, P B; Przybylski, G T; Rawlins, K; Redl, P; Resconi, E; Rhode, W; Ribordy, M; Richman, M; Riedel, B; Rodrigues, J P; Rothmaier, F; Rott, C; Ruhe, T; Rutledge, D; Ruzybayev, B; Ryckbosch, D; Sander, H -G; Santander, M; Sarkar, S; Schatto, K; Scheel, M; Schmidt, T; Schöneberg, S; Schönwald, A; Schukraft, A; Schulte, L; Schultes, A; Schulz, O; Schunck, M; Seckel, D; Semburg, B; Seo, S H; Sestayo, Y; Seunarine, S; Silvestri, A; Smith, M W E; Spiczak, G M; Spiering, C; Stamatikos, M; Stanev, T; Stezelberger, T; Stokstad, R G; Stößl, A; Strahler, E A; Ström, R; Stüer, M; Sullivan, G W; Taavola, H; Taboada, I; Tamburro, A; Ter-Antonyan, S; Tilav, S; Toale, P A; Toscano, S; Tosi, D; van Eijndhoven, N; Van Overloop, A; van Santen, J; Vehring, M; Voge, M; Walck, C; Waldenmaier, T; Wallraff, M; Walter, M; Wasserman, R; Weaver, Ch; Wendt, C; Westerhoff, S; Whitehorn, N; Wiebe, K; Wiebusch, C H; Williams, D R; Wischnewski, R; Wissing, H; Wolf, M; Wood, T R; Woschnagg, K; Xu, C; Xu, D L; Xu, X W; Yanez, J P; Yodh, G; Yoshida, S; Zarzhitsky, P; Zoll, M

    2012-01-01

    We report on a measurement of the cosmic ray energy spectrum with the IceTop air shower array, the surface component of the IceCube Neutrino Observatory at the South Pole. The data used in this analysis were taken between June and October, 2007, with 26 surface stations operational at that time, corresponding to about one third of the final array. The fiducial area used in this analysis was 0.122 km^2. The analysis investigated the energy spectrum from 1 to 100 PeV measured for three different zenith angle ranges between 0{\\deg} and 46{\\deg}. Because of the isotropy of cosmic rays in this energy range the spectra from all zenith angle intervals have to agree. The cosmic-ray energy spectrum was determined under different assumptions on the primary mass composition. Good agreement of spectra in the three zenith angle ranges was found for the assumption of pure proton and a simple two-component model. For zenith angles {\\theta} < 30{\\deg}, where the mass dependence is smallest, the knee in the cosmic ray ener...

  15. All-particle cosmic ray energy spectrum measured with 26 IceTop stations

    Science.gov (United States)

    Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Altmann, D.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Baum, V.; Bay, R.; Bazo Alba, J. L.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker, J. K.; Becker, K.-H.; Bell, M.; Benabderrahmane, M. L.; BenZvi, S.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Bose, D.; Böser, S.; Botner, O.; Brayeur, L.; Brown, A. M.; Buitink, S.; Caballero-Mora, K. S.; Carson, M.; Casier, M.; Chirkin, D.; Christy, B.; Clevermann, F.; Cohen, S.; Cowen, D. F.; Cruz Silva, A. H.; D'Agostino, M. V.; Danninger, M.; Daughhetee, J.; Davis, J. C.; De Clercq, C.; Degner, T.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; DeYoung, T.; Díaz-Vélez, J. C.; Dreyer, J.; Dumm, J. P.; Dunkman, M.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feintzeig, J.; Feusels, T.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Flis, S.; Franckowiak, A.; Franke, R.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Goodman, J. A.; Góra, D.; Grant, D.; Groß, A.; Grullon, S.; Gurtner, M.; Ha, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Heereman, D.; Heimann, P.; Heinen, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Hoffmann, B.; Homeier, A.; Hoshina, K.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jacobi, E.; Jacobsen, J.; Japaridze, G. S.; Johansson, H.; Kappes, A.; Karg, T.; Karle, A.; Kiryluk, J.; Kislat, F.; Klein, S. R.; Klepser, S.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krasberg, M.; Kroll, G.; Kunnen, J.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Laihem, K.; Landsman, H.; Larson, M. J.; Lauer, R.; Lünemann, J.; Madsen, J.; Maruyama, R.; Mase, K.; Matis, H. S.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Miarecki, S.; Middell, E.; Milke, N.; Miller, J.; Montaruli, T.; Morse, R.; Movit, S. M.; Nahnhauer, R.; Nam, J. W.; Naumann, U.; Nowicki, S. C.; Nygren, D. R.; Odrowski, S.; Olivas, A.; Olivo, M.; O'Murchadha, A.; Panknin, S.; Paul, L.; Pérez de los Heros, C.; Pieloth, D.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Richman, M.; Riedel, B.; Rodrigues, J. P.; Rothmaier, F.; Rott, C.; Ruhe, T.; Rutledge, D.; Ruzybayev, B.; Ryckbosch, D.; Sander, H.-G.; Santander, M.; Sarkar, S.; Schatto, K.; Scheel, M.; Schmidt, T.; Schöneberg, S.; Schönwald, A.; Schukraft, A.; Schulte, L.; Schultes, A.; Schulz, O.; Schunck, M.; Seckel, D.; Semburg, B.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Silvestri, A.; Smith, M. W. E.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Strahler, E. A.; Ström, R.; Stüer, M.; Sullivan, G. W.; Taavola, H.; Taboada, I.; Tamburro, A.; Ter-Antonyan, S.; Tilav, S.; Toale, P. A.; Toscano, S.; Tosi, D.; van Eijndhoven, N.; Van Overloop, A.; van Santen, J.; Vehring, M.; Voge, M.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Walter, M.; Wasserman, R.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, C.; Xu, D. L.; Xu, X. W.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; Zoll, M.

    2013-04-01

    We report on a measurement of the cosmic ray energy spectrum with the IceTop air shower array, the surface component of the IceCube Neutrino Observatory at the South Pole. The data used in this analysis were taken between June and October, 2007, with 26 surface stations operational at that time, corresponding to about one third of the final array. The fiducial area used in this analysis was 0.122 km2. The analysis investigated the energy spectrum from 1 to 100 PeV measured for three different zenith angle ranges between 0° and 46°. Because of the isotropy of cosmic rays in this energy range the spectra from all zenith angle intervals have to agree. The cosmic-ray energy spectrum was determined under different assumptions on the primary mass composition. Good agreement of spectra in the three zenith angle ranges was found for the assumption of pure proton and a simple two-component model. For zenith angles θ < 30°, where the mass dependence is smallest, the knee in the cosmic ray energy spectrum was observed at about 4 PeV, with a spectral index above the knee of about -3.1. Moreover, an indication of a flattening of the spectrum above 22 PeV was observed.

  16. Cosmic Rays and Particle Physics

    Science.gov (United States)

    Gaisser, Thomas K.; Engel, Ralph; Resconi, Elisa

    2016-06-01

    Preface to the first edition; Preface to the second edition; 1. Cosmic rays; 2. Cosmic ray data; 3. Particle physics; 4. Hadronic interactions and accelerator data; 5. Cascade equations; 6. Atmospheric muons and neutrinos; 7. Neutrino masses and oscillations; 8. Muons and neutrinos underground; 9. Cosmic rays in the Galaxy; 10. Extragalactic propagation of cosmic rays; 11. Astrophysical - rays and neutrinos; 12. Acceleration; 13. Supernovae in the Milky Way; 14. Astrophysical accelerators and beam dumps; 15. Electromagnetic cascades; 16. Extensive air showers; 17. Very high energy cosmic rays; 18. Neutrino astronomy; A.1. Units, constants and definitions; A.2. References to flux measurements; A.3. Particle flux, density, and interaction cross section; A.4. Fundamentals of scattering theory; A.5. Regge amplitude; A.6. Glauber model of nuclear cross sections; A.7. Earth's atmosphere; A.8. Longitudinal development of air showers; A.9. Secondary positrons and electrons; A.10. Liouville's theorem and cosmic ray propagation; A.11. Cosmology and distances measures; A.12. The Hillas splitting algorithm; References; Index.

  17. Measurement of cosmic-ray air showers with the Tunka Radio Extension (Tunka-Rex)

    CERN Document Server

    Bezyazeekov, P A; Gress, O A; Haungs, A; Hiller, R; Huege, T; Kazarina, Y; Kleifges, M; Konstantinov, E N; Korosteleva, E E; Kostunin, D; Krömer, O; Kuzmichev, L A; Levinson, E; Lubsandorzhiev, N; Mirgazov, R R; Monkhoev, R; Pakhorukov, A; Pankov, L; Prosin, V V; Rubtsov, G I; Rühle, C; Schröder, F G; Wischnewski, R; Zagorodnikov, A

    2015-01-01

    Tunka-Rex is a radio detector for cosmic-ray air showers in Siberia, triggered by Tunka-133, a co-located air-Cherenkov detector. The main goal of Tunka-Rex is the cross-calibration of the two detectors by measuring the air-Cherenkov light and the radio signal emitted by the same air showers. This way we can explore the precision of the radio-detection technique, especially for the reconstruction of the primary energy and the depth of the shower maximum. The latter is sensitive to the mass of the primary cosmic-ray particles. In this paper we describe the detector setup and explain how electronics and antennas have been calibrated. The analysis of data of the first season proves the detection of cosmic-ray air showers and therefore, the functionality of the detector. We confirm the expected dependence of the detection threshold on the geomagnetic angle and the correlation between the energy of the primary cosmic-ray particle and the radio amplitude. Furthermore, we compare reconstructed amplitudes of radio pu...

  18. Exploring the potential of the cosmic-ray neutron method to measure interception storage dynamics

    Science.gov (United States)

    Jakobi, Jannis; Bogena, Heye; Huisman, Johan Alexander; Diekkrüger, Bernd; Vereecken, Harry

    2017-04-01

    Cosmic-ray neutron soil moisture probes are an emerging technology that relies on the negative correlation between near-surface fast neutron counts and soil moisture content. Hydrogen atoms in the soil, which are mainly present as water, moderate the secondary neutrons on the way back to the surface. Any application of this method needs to consider the sensitivity of the neutron counts to additional sources of hydrogen (e.g. above- and below-ground biomass, humidity of the lower atmosphere, lattice water of the soil minerals, organic matter and water in the litter layer, intercepted water in the canopy, and soil organic matter). In this study, we analyzed the effects of canopy-intercepted water on the cosmic-ray neutron counts. For this, an arable field cropped with sugar beet was instrumented with several cosmic-ray neutron probes and a wireless sensor network with more than 140 in-situ soil moisture sensors. Additionally rainfall interception was estimated using a new approach coupling throughfall measurements and leaf wetness sensors. The derived interception storage was used to correct for interception effects on cosmic ray neutrons to enhance soil water content prediction. Furthermore, the potential for a simultaneous prediction of above- and below-ground biomass, soil moisture and interception was tested.

  19. Study of solar activity by measuring cosmic rays with a water Cherenkov detector

    Energy Technology Data Exchange (ETDEWEB)

    Bahena Bias, Angelica [Facultad de ciencias FIsico-Matematicas, Universidad Michoacana de San Nicolas de Hidalgo, Avenida Francisco J. Mujica S/N Ciudad Universitaria C.P. 58030 Morelia, Michoacan (Mexico); Villasenor, Luis, E-mail: anbahena@ifm.umich.mx, E-mail: villasen@ifm.umich.mx [Instituto de Fisica y Matematicas, Universidad Michoacana de San Nicolas de Hidalgo, Avenida Francisco J. Mujica S/N Ciudad Universitaria C.P. 58030 Morelia, Michoacan (Mexico)

    2011-04-01

    We report on an indirect study of solar activity by using the Forbush effect which consists on the anti-correlation between the intensity of solar activity and the intensity of secondary cosmic radiation detected at ground level at the Earth. We have used a cylindrical water Cherenkov detector to measure the rate of arrival of secondary cosmic rays in Morelia Mich., Mexico, at 1950 m.a.s.l. We describe the analysis required to unfold the effect of atmospheric pressure and the search for Forbush decreases in our data, the latter correspond to more than one year of continuous data collection.

  20. Eleventh European Cosmic Ray Symposium

    Science.gov (United States)

    1988-08-01

    The biannual Symposium includes all aspects of cosmic ray research. The scientific program was organized under three main headings: cosmic rays in the heliosphere, cosmic rays in the interstellar and extragalactic space, and properties of high-energy interactions as studied by cosmic rays. Selected short communications out of 114 contributed papers were indexed separately for the INIS database.

  1. Fixed target measurements at LHCb for cosmic rays physics arXiv

    CERN Document Server

    Graziani, Giacomo

    The LHCb experiment has the unique possibility, among the LHC experiments, to be operated in fixed target mode, using its internal gas target. The energy scale achievable at the LHC, combined with the LHCb forward geometry and detector capabilities, allow to explore particle production in a wide Bjorken-$x$ range at the $\\sqrt{s_{\\scriptscriptstyle\\rm NN}} \\sim 100$ GeV energy scale, providing novel inputs to nuclear and cosmic ray physics. The first measurement of antiproton production in collisions of LHC protons on helium nuclei at rest is presented. The knowledge of this cross-section is of great importance for the study of the cosmic antiproton flux, and the LHCb results are expected to improve the interpretation of the recent high-precision measurements of cosmic antiprotons performed by the space-borne PAMELA and AMS-02 experiments.

  2. Highest Energy Cosmic Rays

    CERN Document Server

    Frampton, Paul H

    1998-01-01

    It is proposed that the highest energy $\\sim 10^{20}$eV cosmic ray primaries are protons, decay products of a long-lived progenitor whose high kinetic energy arises from decay of a distant (cosmological) superheavy particle, G. Such a scenario can occur in e.g. SU(15) grand unification and in some preon models, but is more generic; if true, these unusual cosmic rays provide a window into new physics.

  3. Cosmic-ray positron fraction measurement from 1 to 30 GeV with AMS-01

    CERN Document Server

    Aguilar, M; Allaby, James V; Alpat, B; Ambrosi, G; Anderhub, H; Ao, L; Arefev, A; Azzarello, P; Baldini, L; Basile, M; Barancourt, D; Barão, F; Barbier, G; Barreira, G; Battiston, R; Becker, R; Becker, U; Bellagamba, L; Bene, P; Berdugo, J; Berges, P; Bertucci, B; Biland, A; Blasko, S; Bölla, G; Boschini, M; Bourquin, M; Brocco, L; Bruni, G; Buénerd, M; Burger, J D; Burger, W J; Cai, X D; Camps, C; Cannarsa, P; Capell, M; Cardano, F; Casadei, D; Casaus, J; Castellini, G; Chang, Y H; Chen, H F; Chen, H S; Chen, Z G; Chernoplekov, N A; Tzi Hong Chiueh; Cho, K; Choi, M J; Choi, Y Y; Cindolo, F; Commichau, V; Contin, A; Cortina, E; Cristinziani, M; Dai, T S; Delgado, C; Difalco, S; Djambazov, L; D'Antone, I; Dong, Z R; Emonet, P; Engelberg, J; Eppling, F J; Eronen, T; Esposito, G; Extermann, P; Favier, Jean; Fiandrini, E; Fisher, P H; Flügge, G; Fouque, N; Galaktionov, Yu; Gast, H; Gervasi, M; Giusti, P; Grandi, D; Grimm, O; Gu, W Q; Hangarter, K; Hasan, A; Hermel, V; Hofer, H; Hungerford, W; Jongmanns, M; Karlamaa, K; Karpinski, W; Kenney, G; Kim, D H; Kim, G N; Kim, K S; Kim, M Y; Klimentov, A; Kossakowski, R; Kounine, A; Koutsenko, V F; Kraeber, M; Laborie, G; Laitinen, T; Lamanna, G; Lanciotti, E; Laurenti, G; Lebedev, A; Lechanoine-Leluc, C; Lee, M W; Lee, S C; Levi, G; Liu, C L; Liu, H T; Lu, G; Lü, Y S; Lübelsmeyer, K; Luckey, D; Lustermann, W; Maña, C; Margotti, A; Mayet, F; McNeil, R R; Meillon, B; Menichelli, M; Mihul, A; Mujunen, A; Oliva, A; Olzem, J; Palmonari, F; Park, H B; Park, W H; Pauluzzi, M; Pauss, F; Perrin, E; Pesci, A; Pevsner, A; Pilo, F; Pimenta, M; Plyaskin, V; Pozhidaev, V; Pohl, M; Produit, N; Rancoita, P G; Rapin, D; Raupach, F; Ren, D; Ren, Z; Ribordy, M; Richeux, J P; Riihonen, E; Ritakari, J; Ro, S; Röser, U; Rossin, C; Sagdeev, R; Santos, D; Sartorelli, G; Sbarra, C; Schael, S; Schultzvon Dratzig, A; Schwering, G; Seo, E S; Shin, J W; Shoumilov, E; Shoutko, V; Siedenburg, T; Siedling, R; Son, D; Song, T; Spinella, F; Steuer, M; Sun, G S; Suter, H; Tang, X W; Ting, Samuel C C; Ting, S M; Tornikoski, M; Torsti, J; Trumper, J; Ulbricht, J; Urpo, S; Valtonen, E; Vandenhirtz, J; Velikhov, E P; Verlaat, B; Vetlitskii, I; Vezzu, F; Vialle, J P; Viertel, G; Vite, D; Von Gunten, H; Waldmeier-Wicki, S; Wallraff, W; Wang, B C; Wang, J Z; Wiik, K; Williams, C; Wu, S X; Xia, P C; Xu, S; Yan, J L; Yan, L G; Yang, C G; Yang, J; Yang, M; Ye, S W; Xu, Z Z; Zhang, H Y; Zhang, Z P; Zhao, D X; Zhou, Y; Zhu, G Y; Zhu, W Z; Zhuang, H L; Zichichi, A; Zimmermann, B; Zuccon, P

    2007-01-01

    A measurement of the cosmic ray positron fraction e+/(e+ + e-) in the energy range of 1-30 GeV is presented. The measurement is based on data taken by the AMS-01 experiment during its 10 day Space Shuttle flight in June 1998. A proton background suppression on the order of 10^6 is reached by identifying converted bremsstrahlung photons emitted from positrons.

  4. Cosmic-ray positron fraction measurement from 1 to 30 GeV with AMS-01

    Science.gov (United States)

    AMS-01 Collaboration; Aguilar, M.; Alcaraz, J.; Allaby, J.; Alpat, B.; Ambrosi, G.; Anderhub, H.; Ao, L.; Arefiev, A.; Azzarello, P.; Baldini, L.; Basile, M.; Barancourt, D.; Barao, F.; Barbier, G.; Barreira, G.; Battiston, R.; Becker, R.; Becker, U.; Bellagamba, L.; Béné, P.; Berdugo, J.; Berges, P.; Bertucci, B.; Biland, A.; Blasko, S.; Boella, G.; Boschini, M.; Bourquin, M.; Brocco, L.; Bruni, G.; Buénerd, M.; Burger, J. D.; Burger, W. J.; Cai, X. D.; Camps, C.; Cannarsa, P.; Capell, M.; Cardano, F.; Casadei, D.; Casaus, J.; Castellini, G.; Chang, Y. H.; Chen, H. F.; Chen, H. S.; Chen, Z. G.; Chernoplekov, N. A.; Chiueh, T. H.; Cho, K.; Choi, M. J.; Choi, Y. Y.; Cindolo, F.; Commichau, V.; Contin, A.; Cortina-Gil, E.; Cristinziani, M.; Dai, T. S.; Delgado, C.; Difalco, S.; Djambazov, L.; D'Antone, I.; Dong, Z. R.; Emonet, P.; Engelberg, J.; Eppling, F. J.; Eronen, T.; Esposito, G.; Extermann, P.; Favier, J.; Fiandrini, E.; Fisher, P. H.; Flügge, G.; Fouque, N.; Galaktionov, Yu.; Gast, H.; Gervasi, M.; Giusti, P.; Grandi, D.; Grimm, O.; Gu, W. Q.; Hangarter, K.; Hasan, A.; Hermel, V.; Hofer, H.; Hungerford, W.; Jongmanns, M.; Karlamaa, K.; Karpinski, W.; Kenney, G.; Kim, D. H.; Kim, G. N.; Kim, K. S.; Kim, M. Y.; Klimentov, A.; Kossakowski, R.; Kounine, A.; Koutsenko, V.; Kraeber, M.; Laborie, G.; Laitinen, T.; Lamanna, G.; Lanciotti, E.; Laurenti, G.; Lebedev, A.; Lechanoine-Leluc, C.; Lee, M. W.; Lee, S. C.; Levi, G.; Liu, C. L.; Liu, H. T.; Lu, G.; Lu, Y. S.; Lübelsmeyer, K.; Luckey, D.; Lustermann, W.; Maña, C.; Margotti, A.; Mayet, F.; McNeil, R. R.; Meillon, B.; Menichelli, M.; Mihul, A.; Mujunen, A.; Oliva, A.; Olzem, J.; Palmonari, F.; Park, H. B.; Park, W. H.; Pauluzzi, M.; Pauss, F.; Perrin, E.; Pesci, A.; Pevsner, A.; Pilo, F.; Pimenta, M.; Plyaskin, V.; Pojidaev, V.; Pohl, M.; Produit, N.; Rancoita, P. G.; Rapin, D.; Raupach, F.; Ren, D.; Ren, Z.; Ribordy, M.; Richeux, J. P.; Riihonen, E.; Ritakari, J.; Ro, S.; Roeser, U.; Rossin, C.; Sagdeev, R.; Santos, D.; Sartorelli, G.; Sbarra, C.; Schael, S.; Schultz von Dratzig, A.; Schwering, G.; Seo, E. S.; Shin, J. W.; Shoumilov, E.; Shoutko, V.; Siedenburg, T.; Siedling, R.; Son, D.; Song, T.; Spinella, F.; Steuer, M.; Sun, G. S.; Suter, H.; Tang, X. W.; Ting, Samuel C. C.; Ting, S. M.; Tornikoski, M.; Torsti, J.; Trümper, J.; Ulbricht, J.; Urpo, S.; Valtonen, E.; Vandenhirtz, J.; Velikhov, E.; Verlaat, B.; Vetlitsky, I.; Vezzu, F.; Vialle, J. P.; Viertel, G.; Vité, D.; von Gunten, H.; Waldmeier Wicki, S.; Wallraff, W.; Wang, B. C.; Wang, J. Z.; Wiik, K.; Williams, C.; Wu, S. X.; Xia, P. C.; Xu, S.; Yan, J. L.; Yan, L. G.; Yang, C. G.; Yang, J.; Yang, M.; Ye, S. W.; Xu, Z. Z.; Zhang, H. Y.; Zhang, Z. P.; Zhao, D. X.; Zhou, Y.; Zhu, G. Y.; Zhu, W. Z.; Zhuang, H. L.; Zichichi, A.; Zimmermann, B.; Zuccon, P.

    2007-03-01

    A measurement of the cosmic ray positron fraction e/(e+e) in the energy range of 1 30 GeV is presented. The measurement is based on data taken by the AMS-01 experiment during its 10 day Space Shuttle flight in June 1998. A proton background suppression on the order of 106 is reached by identifying converted bremsstrahlung photons emitted from positrons.

  5. Cosmic ray research in Hanoi: The Auger experiment and measurements made at home

    Energy Technology Data Exchange (ETDEWEB)

    Pham Ngoc Dinh; Nguyen Tien Dung; Bui Duc Hieu; Nguyen Phuc; Pham Trung Phuong; Darriulat, Pierre; Dang Quang Thieu; Thuan Vo Van

    2003-07-14

    The VATLY is a new laboratory in Hanoi dedicated to research in the field of comic ray physics. Its various activities are briefly reviewed. The vertical cosmic muon flux has been measured using a segmented scintillator hodoscope and the results have been published in Ref. [1]. An orientable scintillation telescope has been constructed for measurement of the zenith angle dependence of the muon flux, of which preliminary results are reported here. They are in good agreement with the predictions of air shower model.

  6. Measurement of the Energy Spectrum of Cosmic Rays with the Pierre Auger Observatory

    Science.gov (United States)

    Verzi, Valerio

    The energy spectrum of high-energy cosmic rays measured with the Pierre Auger Observatory is presented. The measurement is based on data collected until 31 December 2012 and extends over three orders of magnitude in energy from 3 × 1017 eV up to the very end of the spectrum. The spectral features are presented together with a detailed description of the recent improvements in determination of the energy scale.

  7. Cosmic Rays: What Gamma Rays Can Say

    OpenAIRE

    2014-01-01

    We will review the main channels of gamma ray emission due to the acceleration and propagation of cosmic rays, discussing the cases of both galactic and extra-galactic cosmic rays and their connection with gamma rays observations.

  8. Direct detection of cosmic rays: through a new era of precision measurements of particle fluxes

    CERN Document Server

    Mocchiutti, Emiliano

    2014-01-01

    In the last years the direct measurement of cosmic rays received a push forward by the possibility of conducting experiments on board long duration balloon flights, satellites and on the International Space Station. The increase in the collected statistics and the technical improvements in the construction of the detectors permit the fluxes measurement to be performed at higher energies with a reduced discrepancy among different experiments respect to the past. However, high statistical precision is not always associated to the needed precision in the estimation of systematics; features in the particle spectra can be erroneously introduced or hidden. A review and a comparison of the latest experimental results on direct cosmic rays measurements will be presented with particular emphasis on their similarities and discrepancies.

  9. Amplitude calibration of a digital radio antenna array for measuring cosmic ray air showers

    CERN Document Server

    Nehls, S; Arts, M J; Bluemer, J; Bozdog, H; van Cappellen, W A; Falcke, H; Haungs, A; Horneffer, A; Huege, T; Isar, P G; Krömer, O

    2008-01-01

    Radio pulses are emitted during the development of air showers, where air showers are generated by ultra-high energy cosmic rays entering the Earth's atmosphere. These nanosecond short pulses are presently investigated by various experiments for the purpose of using them as a new detection technique for cosmic particles. For an array of 30 digital radio antennas (LOPES experiment) an absolute amplitude calibration of the radio antennas including the full electronic chain of the data acquisition system is performed, in order to estimate absolute values of the electric field strength for these short radio pulses. This is mandatory, because the measured radio signals in the MHz frequency range have to be compared with theoretical estimates and with predictions from Monte Carlo simulations to reconstruct features of the primary cosmic particle. A commercial reference radio emitter is used to estimate frequency dependent correction factors for each single antenna of the radio antenna array. The expected received p...

  10. The Tunka radio extension (Tunka-Rex): Radio measurements of cosmic rays in Siberia

    Science.gov (United States)

    Schröder, F. G.; Bezyazeekov, P. A.; Budnev, N. M.; Gress, O. A.; Haungs, A.; Hiller, R.; Huege, T.; Kazarina, Y.; Kleifges, M.; Konstantinov, E. N.; Korosteleva, E. E.; Kostunin, D.; Krömer, O.; Kuzmichev, L. A.; Lubsandorzhiev, N.; Mirgazov, R. R.; Monkhoev, R.; Pakhorukov, A.; Pankov, L.; Prosin, V. V.; Rubtsov, G. I.; Wischnewski, R.; Zagorodnikov, A.

    2016-07-01

    The Tunka observatory is located close to Lake Baikal in Siberia, Russia. Its main detector, Tunka-133, is an array of photomultipliers measuring Cherenkov light of air showers initiated by cosmic rays in the energy range of approximately 1016 -1018 eV. In the last years, several extensions have been built at the Tunka site, e.g., a scintillator array named Tunka-Grande, a sophisticated air-Cherenkov-detector prototype named HiSCORE, and the radio extension Tunka-Rex. Tunka-Rex started operation in October 2012 and currently features 44 antennas distributed over an area of about 3km2, which measure the radio emission of the same air showers detected by Tunka-133 and Tunka-Grande. Tunka-Rex is a technological demonstrator that the radio technique can provide an economic extension of existing air-shower arrays. The main scientific goal is the cross-calibration with the air-Cherenkov measurements. By this cross-calibration, the precision for the reconstruction of the energy and mass of the primary cosmic-ray particles can be determined. Finally, Tunka-Rex can be used for cosmic-ray physics at energies close to 1 EeV, where the standard Tunka-133 analysis is limited by statistics. In contrast to the air-Cherenkov measurements, radio measurements are not limited to dark, clear nights and can provide an order of magnitude larger exposure.

  11. Measuring TeV cosmic rays at the High Altitude Water Cherenkov Observatory

    Directory of Open Access Journals (Sweden)

    BenZvi Segev

    2015-01-01

    Full Text Available The High-Altitude Water Cherenkov Observatory, or HAWC, is an air shower array designed to observe cosmic rays and gamma rays between 100 GeV and 100 TeV. HAWC, located between the peaks Sierra Negra and Pico de Orizaba in central Mexico, will be completed in the spring of 2015. However, the observatory has been collecting data in a partial configuration since mid-2013. With only part of the final array in data acquisition, HAWC has already accumulated a data set of nearly 100 billion air showers. These events are used to calibrate the detector angular reconstruction using the shadow of the Moon, and to measure the anisotropy in the arrival directions of cosmic rays above 1 TeV. Using data recorded between June 2013 and July 2014, we have observed a significant 10−4 anisotropy consisting of three statistically significant “hotspots” in the cosmic ray flux. We will discuss these first results from HAWC and compare them to previous measurements of anisotropy in the northern and southern sky.

  12. Measuring TeV cosmic rays at the High Altitude Water Cherenkov Observatory

    Science.gov (United States)

    BenZvi, Segev

    2015-12-01

    The High-Altitude Water Cherenkov Observatory, or HAWC, is an air shower array designed to observe cosmic rays and gamma rays between 100 GeV and 100 TeV. HAWC, located between the peaks Sierra Negra and Pico de Orizaba in central Mexico, will be completed in the spring of 2015. However, the observatory has been collecting data in a partial configuration since mid-2013. With only part of the final array in data acquisition, HAWC has already accumulated a data set of nearly 100 billion air showers. These events are used to calibrate the detector angular reconstruction using the shadow of the Moon, and to measure the anisotropy in the arrival directions of cosmic rays above 1 TeV. Using data recorded between June 2013 and July 2014, we have observed a significant 10-4 anisotropy consisting of three statistically significant "hotspots" in the cosmic ray flux. We will discuss these first results from HAWC and compare them to previous measurements of anisotropy in the northern and southern sky.

  13. Measurement of the cosmic rays light component (p+He) primary spectrum with ARGO-YBJ

    Energy Technology Data Exchange (ETDEWEB)

    Panico, B., E-mail: beatrice.panico@roma2.infn.it [Dipartimento di Fisica, Universita Roma ' Tor Vergata' , Via della Ricerca Scientifica 1, Roma (Italy); INFN, Sezione Roma Tor Vergata, Via della Ricerca Scientifica 1, Roma (Italy); Di Sciascio, G. [INFN, Sezione Roma Tor Vergata, Via della Ricerca Scientifica 1, Roma (Italy)

    2012-11-11

    The ARGO-YBJ experiment, located at the Yangbajing Cosmic Ray Laboratory (Tibet, 4300 m a.s.l., 606 g/cm{sup 2}) has an high segmentation that allows the detection of air showers with greater detail and lower energy threshold (a few hundred GeV) compared to other EAS arrays. The spectrum of the primary cosmic ray light (p+He) component in the energy range {approx}10-100TeV is measured selecting quasi-vertical showers ({theta}<15 Degree-Sign ) with the reconstructed core position located in a 40 Multiplication-Sign 40 m{sup 2} fiducial area. The results are compared with other measurements carried out with direct methods.

  14. MEASUREMENTS OF COSMIC-RAY HYDROGEN AND HELIUM ISOTOPES WITH THE PAMELA EXPERIMENT

    Energy Technology Data Exchange (ETDEWEB)

    Adriani, O.; Bongi, M. [University of Florence, Department of Physics, I-50019 Sesto Fiorentino, Florence (Italy); Barbarino, G. C. [University of Naples “Federico II,” Department of Physics, I-80126 Naples (Italy); Bazilevskaya, G. A. [Lebedev Physical Institute, RU-119991, Moscow (Russian Federation); Bellotti, R.; Bruno, A. [University of Bari, Department of Physics, I-70126 Bari (Italy); Boezio, M.; Bonvicini, V.; Formato, V. [INFN, Sezione di Trieste, I-34149 Trieste (Italy); Bogomolov, E. A. [Ioffe Physical Technical Institute, RU-194021 St. Petersburg (Russian Federation); Bottai, S. [INFN, Sezione di Florence, I-50019 Sesto Fiorentino, Florence (Italy); Cafagna, F. [INFN, Sezione di Bari, I-70126 Bari (Italy); Campana, D. [INFN, Sezione di Naples, I-80126 Naples (Italy); Carlson, P. [KTH, Department of Physics, and the Oskar Klein Centre for Cosmoparticle Physics, AlbaNova University Centre, SE-10691 Stockholm (Sweden); Casolino, M.; Santis, C. De [University of Rome “Tor Vergata,” Department of Physics, I-00133 Rome (Italy); Castellini, G. [IFAC, I-50019 Sesto Fiorentino, Florence (Italy); Donato, C. De; Simone, N. De; Felice, V. Di [INFN, Sezione di Rome “Tor Vergata,” I-00133 Rome (Italy); and others

    2016-02-10

    The cosmic-ray hydrogen and helium ({sup 1}H, {sup 2}H, {sup 3}He, {sup 4}He) isotopic composition has been measured with the satellite-borne experiment PAMELA, which was launched into low-Earth orbit on board the Resurs-DK1 satellite on 2006 June 15. The rare isotopes {sup 2}H and {sup 3}He in cosmic rays are believed to originate mainly from the interaction of high-energy protons and helium with the galactic interstellar medium. The isotopic composition was measured between 100 and 1100 MeV/n for hydrogen and between 100 and 1400 MeV/n for helium isotopes using two different detector systems over the 23rd solar minimum from 2006 July to 2007 December.

  15. Measurement of ultra-high energy cosmic rays: An experimental summary and prospects

    Directory of Open Access Journals (Sweden)

    Fukushima M.

    2013-06-01

    Full Text Available Measurements of Ultra-High Energy Cosmic Rays achieved remarkable progress in the last 10 years. Physicists, gathered from around the world in the symposium UHECR-2012 held at CERN on February 13-16 2012, reported their most up-to-date observations, discussed the meaning of their findings, and identified remaining problems and future challenges in this field. This paper is a part of the symposium proceedings on the experimental summary and future prospects of the UHECR study.

  16. The spectrum of high-energy cosmic rays measured with KASCADE-Grande

    CERN Document Server

    Apel, W D; Bekk, K; Bertaina, M; Bluemer, J; Bozdog, H; Brancus, I M; Buchholz, P; Cantoni, E; Chiavassa, A; Cossavella, F; Daumiller, K; de Souza, V; Di Pierro, F; Doll, P; Engel, R; Engler, J; Finger, M; Fuhrmann, D; Ghia, P L; Gils, H J; Glasstetter, R; Grupen, C; Haungs, A; Heck, D; Hoerandel, J R; Huber, D; Huege, T; Kampert, K -H; Kang, D; Kickelbick, D; Klages, H O; Link, K; Luczak, P; Ludwig, M; Mathes, H J; Mayer, H J; Melissas, M; Milke, J; Mitrica, B; Morello, C; Navarra, G; Oehlschlaeger, J; Ostapchenko, S; Over, S; Palmieri, N; Petcu, M; Pierog, T; Rebel, H; Roth, M; Schieler, H; Schroeder, F G; Sima, O; Toma, G; Trinchero, G C; Ulrich, H; Weindl, A; Wochele, J; Wommer, M; Zabierowski, J

    2012-01-01

    The energy spectrum of cosmic rays between 10**16 eV and 10**18 eV, derived from measurements of the shower size (total number of charged particles) and the total muon number of extensive air showers by the KASCADE-Grande experiment, is described. The resulting all-particle energy spectrum exhibits strong hints for a hardening of the spectrum at approximately 2x10**16 eV and a significant steepening at c. 8x10**16 eV. These observations challenge the view that the spectrum is a single power law between knee and ankle. Possible scenarios generating such features are discussed in terms of astrophysical processes that may explain the transition region from galactic to extragalactic origin of cosmic rays.

  17. Measurement of separate cosmic-ray electron and positron spectra with the Fermi Large Area Telescope

    CERN Document Server

    Ackermann, M; Allafort, A; Baldini, L; Barbiellini, G; Bastieri, D; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bouvier, A; Bregeon, J; Brigida, M; Bruel, P; Buehler, R; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cecchi, C; Charles, E; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Conrad, J; Cutini, S; de Angelis, A; de Palma, F; Dermer, C D; Digel, S W; Silva, E do Couto e; Drell, P S; Drlica-Wagner, A; Favuzzi, C; Fegan, S J; Ferrara, E C; Focke, W B; Fortin, P; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Germani, S; Giglietto, N; Giommi, P; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Grenier, I A; Grove, J E; Guiriec, S; Gustafsson, M; Hadasch, D; Harding, A K; Hayashida, M; Hughes, R E; Jóhannesson, G; Johnson, A S; Kamae, T; Katagiri, H; Kataoka, J; Knödlseder, J; Kuss, M; Lande, J; Latronico, L; Lemoine-Goumard, M; Garde, M Llena; Longo, F; Loparco, F; Lovellette, M N; Lubrano, P; Madejski, G M; Mazziotta, M N; McEnery, J E; Michelson, P F; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nakamori, T; Nolan, P L; Norris, J P; Nuss, E; Ohno, M; Ohsugi, T; Okumura, A; Omodei, N; Ormes, E Orlando J F; Ozaki, M; Paneque, D; Parent, D; Pesce-Rollins, M; Pierbattista, M; Piron, F; Pivato, G; Porter, T A; Rainò, S; Rando, R; Razzano, M; Razzaque, S; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Romani, R W; Roth, M; Sadrozinski, H F -W; Sbarra, C; Schalk, T L; Sgrò, C; Siskind, E J; Spandre, G; Spinelli, P; Strong, A W; Takahashi, H; Takahashi, T; Tanaka, T; Thayer, J G; Thayer, J B; Tibaldo, L; Tinivella, M; Torres, D F; Tosti, G; Troja, E; Uchiyama, Y; Usher, T L; Vandenbroucke, J; Vasileiou, V; Vianello, G; Vitale, V; Waite, A P; Winer, B L; Wood, K S; Wood, M; Yang, Z; Zimmer, S

    2011-01-01

    We measured separate cosmic-ray electron and positron spectra with the Fermi Large Area Telescope. Because the instrument does not have an onboard magnet, we distinguish the two species by exploiting the Earth's shadow, which is offset in opposite directions for opposite charges due to the Earth's magnetic field. We estimate and subtract the cosmic-ray proton background using two different methods that produce consistent results. We report the electron-only spectrum, the positron-only spectrum, and the positron fraction between 20 GeV and 200 GeV. We confirm that the fraction rises with energy in the 20--100 GeV range and determine for the first time that it continues to rise between 100 and 200 GeV.

  18. Cosmic Ray Energetics and Mass

    CERN Document Server

    Baylon cardiel, J L; Wallace, K C; Anderson, T B; Copley, M

    The cosmic-ray energetics and mass (CREAM) investigation is designed to measure cosmic-ray composition to the supernova energy scale of 10$^{15}$ eV in a series of ultra long duration balloon (ULDB) flights. The first flight is planned to be launched from Antarctica in December 2004. The goal is to observe cosmic-ray spectral features and/or abundance changes that might signify a limit to supernova acceleration. The particle ($\\{Z}$) measurements will be made with a timing-based charge detector and a pixelated silicon charge detector to minimize the effect of backscatter from the calorimeter. The particle energy measurements will be made with a transition radiation detector (TRD) for $\\{Z}$ > 3 and a sampling tungsten/scintillator calorimeter for $\\{Z}$ $\\geq$1 particles, allowing inflight cross calibration of the two detectors. The status of the payload construction and flight preparation are reported in this paper.

  19. Cosmic Rays and Climate

    CERN Document Server

    Kirkby, Jasper

    2007-01-01

    Among the most puzzling questions in climate change is that of solar-climate variability, which has attracted the attention of scientists for more than two centuries. Until recently, even the existence of solar-climate variability has been controversial—perhaps because the observations had largely involved correlations between climate and the sunspot cycle that had persisted for only a few decades. Over the last few years, however, diverse reconstructions of past climate change have revealed clear associations with cosmic ray variations recorded in cosmogenic isotope archives, providing persuasive evidence for solar or cosmic ray forcing of the climate. However, despite the increasing evidence of its importance, solar-climate variability is likely to remain controversial until a physical mechanism is established. Although this remains a mystery, observations suggest that cloud cover may be influenced by cosmic rays, which are modulated by the solar wind and, on longer time scales, by the geomagnetic fiel...

  20. Perspectives of the GAMMA-400 space observatory for high-energy gamma rays and cosmic rays measurements

    Science.gov (United States)

    Topchiev, N. P.; Galper, A. M.; Bonvicini, V.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Bakaldin, A. V.; Bergstrom, L.; Berti, E.; Bigongiari, G.; Bobkov, S. G.; Boezio, M.; Bogomolov, E. A.; Bonechi, S.; Bongi, M.; Bottai, S.; Castellini, G.; Cattaneo, P. W.; Cumani, P.; Dalkarov, O. D.; Dedenko, G. L.; De Donato, C.; Dogiel, V. A.; Finetti, N.; Gorbunov, M. S.; Gusakov, Yu V.; Hnatyk, B. I.; Kadilin, V. V.; Kaplin, V. A.; Kaplun, A. A.; Kheymits, M. D.; Korepanov, V. E.; Larsson, J.; Leonov, A. A.; Loginov, V. A.; Longo, F.; Maestro, P.; Marrocchesi, P. S.; Men'shenin, A. L.; Mikhailov, V. V.; Mocchiutti, E.; Moiseev, A. A.; Mori, N.; Moskalenko, I. V.; Naumov, P. Yu; Papini, P.; Pearce, M.; Picozza, P.; Rappoldi, A.; Ricciarini, S.; Runtso, M. F.; Ryde, F.; Serdin, O. V.; Sparvoli, R.; Spillantini, P.; Stozhkov, Yu I.; Suchkov, S. I.; Taraskin, A. A.; Tavani, M.; Tiberio, A.; Tyurin, E. M.; Ulanov, M. V.; Vacchi, A.; Vannuccini, E.; Vasilyev, G. I.; Yurkin, Yu T.; Zampa, N.; Zirakashvili, V. N.; Zverev, V. G.

    2016-02-01

    The GAMMA-400 gamma-ray telescope is intended to measure the fluxes of gamma-rays and cosmic-ray electrons and positrons in the energy range from 100 MeV to several TeV. Such measurements concern the following scientific tasks: investigation of point sources of gamma-rays, studies of the energy spectra of Galactic and extragalactic diffuse emission, studies of gamma-ray bursts and gamma-ray emission from the Sun, as well as high precision measurements of spectra of high-energy electrons and positrons. Also the GAMMA- 400 instrument provides the possibility for protons and nuclei measurements up to knee. But the main goal for the GAMMA-400 mission is to perform a sensitive search for signatures of dark matter particles in high-energy gamma-ray emission. To fulfill these measurements the GAMMA-400 gamma-ray telescope possesses unique physical characteristics in comparison with previous and present experiments. The major advantage of the GAMMA-400 instrument is excellent angular and energy resolution for gamma-rays above 10 GeV. The GAMMA-400 experiment will be installed onboard of the Navigator space platform, manufactured by the NPO Lavochkin Association. The expected orbit will be a highly elliptical orbit (with apogee 300.000 km and perigee 500 km) with 7 days orbital period. An important profit of such an orbit is the fact that the full sky coverage will always be available for gamma ray astronomy.

  1. Cosmic Ray Antimatter

    CERN Document Server

    CERN. Geneva

    2017-01-01

    Over the last decade, space-born experiments have delivered new measurements of high energy cosmic-ray (CR) antiprotons and positrons, opening new frontiers in energy reach and precision. While being a promising discovery tool for new physics or exotic astrophysical phenomena, an irreducible background of antimatter comes from CR collisions with interstellar matter in the Galaxy. Understanding this irreducible source or constraining it from first principles is an interesting challenge: a game of hide-and-seek where the objective is to identify the laws of basic particle physics among the forest of astrophysical uncertainties. I describe an attempt to obtain such understanding, combining information from a zoo of CR species including massive nuclei and relativistic radioisotopes. I show that: (i) CR antiprotons most likely come from CR-gas collisions; (ii) positron data is consistent with, and suggestive of the same astrophysical production mechanism responsible for antiprotons and dominated by proton-proton c...

  2. Acceleration of cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Berezhko, E [Yu.G. Shafer Institute of Cosmophysical Research and Aeronomy, 31 Lenin Ave., 677980 Yakutsk (Russian Federation)], E-mail: berezhko@ikfia.ysn.ru

    2008-07-15

    Cosmic ray (CR) origin problem is briefly discussed. It is argued that CRs with energies up to 10{sup 17} eV are produced in galactic supernova remnants, whereas ultra high energy CRs are extragalactic. CR composition strongly changes within the transition from galactic to extragalactic CR component, therefore precise measurements of CR composition at energies 10{sup 17} - 10{sup 19} eV are needed for the reliable determination of this transition. The possible sources of extragalactic CRs are briefly discussed. It is argued that CR acceleration at the shock created by the expanding cocoons around active galactic nuclei has to be considered as a prime candidate for the sources of extragalactic CRs.

  3. MONITORING SHORT-TERM COSMIC-RAY SPECTRAL VARIATIONS USING NEUTRON MONITOR TIME-DELAY MEASUREMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Ruffolo, D.; Sáiz, A.; Mangeard, P.-S.; Kamyan, N.; Muangha, P. [Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400 (Thailand); Nutaro, T.; Rujiwarodom, M.; Tooprakai, P. [Thailand Center of Excellence in Physics, CHE, Ministry of Education, Bangkok 10400 (Thailand); Sumran, S.; Chaiwattana, C.; Gasiprong, N.; Channok, C.; Wuttiya, C. [Department of Physics, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190 (Thailand); Asavapibhop, B. [Department of Physics, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand); Bieber, J. W.; Clem, J.; Evenson, P. [Bartol Research Institute, Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Munakata, K., E-mail: david.ruf@mahidol.ac.th [Physics Department, Shinshu University, Matsumoto, Nagano 390-8621 (Japan)

    2016-01-20

    Neutron monitors (NMs) are ground-based detectors of cosmic-ray showers that are widely used for high-precision monitoring of changes in the Galactic cosmic-ray (GCR) flux due to solar storms and solar wind variations. In the present work, we show that a single neutron monitor station can also monitor short-term changes in the GCR spectrum, avoiding the systematic uncertainties in comparing data from different stations, by means of NM time-delay histograms. Using data for 2007–2014 from the Princess Sirindhorn Neutron Monitor, a station at Doi Inthanon, Thailand, with the world’s highest vertical geomagnetic cutoff rigidity of 16.8 GV, we have developed an analysis of time-delay histograms that removes the chance coincidences that can dominate conventional measures of multiplicity. We infer the “leader fraction” L of neutron counts that do not follow a previous neutron count in the same counter from the same atmospheric secondary, which is inversely related to the actual multiplicity and increases for increasing GCR spectral index. After correction for atmospheric pressure and water vapor, we find that L indicates substantial short-term GCR spectral hardening during some but not all Forbush decreases in GCR flux due to solar storms. Such spectral data from Doi Inthanon provide information about cosmic-ray energies beyond the Earth’s maximum geomagnetic cutoff, extending the reach of the worldwide NM network and opening a new avenue in the study of short-term GCR decreases.

  4. Monitoring Short-term Cosmic-ray Spectral Variations Using Neutron Monitor Time-delay Measurements

    Science.gov (United States)

    Ruffolo, D.; Sáiz, A.; Mangeard, P.-S.; Kamyan, N.; Muangha, P.; Nutaro, T.; Sumran, S.; Chaiwattana, C.; Gasiprong, N.; Channok, C.; Wuttiya, C.; Rujiwarodom, M.; Tooprakai, P.; Asavapibhop, B.; Bieber, J. W.; Clem, J.; Evenson, P.; Munakata, K.

    2016-01-01

    Neutron monitors (NMs) are ground-based detectors of cosmic-ray showers that are widely used for high-precision monitoring of changes in the Galactic cosmic-ray (GCR) flux due to solar storms and solar wind variations. In the present work, we show that a single neutron monitor station can also monitor short-term changes in the GCR spectrum, avoiding the systematic uncertainties in comparing data from different stations, by means of NM time-delay histograms. Using data for 2007-2014 from the Princess Sirindhorn Neutron Monitor, a station at Doi Inthanon, Thailand, with the world’s highest vertical geomagnetic cutoff rigidity of 16.8 GV, we have developed an analysis of time-delay histograms that removes the chance coincidences that can dominate conventional measures of multiplicity. We infer the “leader fraction” L of neutron counts that do not follow a previous neutron count in the same counter from the same atmospheric secondary, which is inversely related to the actual multiplicity and increases for increasing GCR spectral index. After correction for atmospheric pressure and water vapor, we find that L indicates substantial short-term GCR spectral hardening during some but not all Forbush decreases in GCR flux due to solar storms. Such spectral data from Doi Inthanon provide information about cosmic-ray energies beyond the Earth’s maximum geomagnetic cutoff, extending the reach of the worldwide NM network and opening a new avenue in the study of short-term GCR decreases.

  5. Measurement of the Cosmic Ray Energy Spectrum with ARGO-YBJ

    CERN Document Server

    ,

    2014-01-01

    The ARGO-YBJ detector, located at high altitude in the Cosmic Ray Observatory of Yangbajing in Tibet (4300 m asl, about 600 g/cm2 of atmospheric depth) provides the opportunity to study, with unprecedented resolution, the cosmic ray physics in the primary energy region between 10^{12} and 10^{16} eV. The preliminary results of the measurement of all-particle and light-component (i.e. protons and helium) energy spectra between approximately 5 TeV and 5 PeV are reported and discussed. The study of such energy region is particularly interesting because not only it allows a better understanding of the so called 'knee' of the energy spectrum and of its origin, but also provides a powerful cross-check among very different experimental techniques. The comparison between direct measurements by balloons/satellites and the results by surface detectors, implying the knowledge of shower development in the atmosphere, also allows to test the hadronic interaction models currently used for understanding particle and cosmic ...

  6. Antarctic Cosmic Ray Astronomy

    Science.gov (United States)

    Duldig, Marc

    Cosmic ray observations related to Antarctica commenced in the austral summer of 1947-48 from sub-Antarctic Heard and Macquarie Islands and from the HMAS Wyatt Earp. Muon telescope observations from Mawson station Antarctica commenced in 1955. The International Geophysical Year was the impetus for the installation of a number of neutron monitors around Antarctica observing the lowest energy cosmic rays accessible by ground based instruments. In 1971 a new observatory was built at Mawson including the only underground muon telescope system at polar latitudes in either hemisphere. In the 1980s the South Pole Air Shower Experiment (SPASE) opened the highest energy cosmic ray window over Antarctica and this was followed by the in-ice neutrino experiment AMANDA. Over more than half a century cosmic ray astronomy has been undertaken from Antarctica and its surrounding regions and these observations have been critical to our growing understanding of nearby astrophysical structures. For example the Parker spiral magnetic field of the sun was confirmed through Mawson observations of a Solar flare induced Ground Level Enahncement in 1960 long before spacecraft were able to directly observe the interplanetary magnetic field. A summary of the Antarctic instrumental developments and the scientific advances that resulted will be presented.

  7. Cosmic rays and climate

    CERN Multimedia

    2009-01-01

    Inside the new chamber the CLOUD team will be able to recreate the conditions of any part of the atmosphere, from the polar stratosphere to the low level tropics (top). The new chamber safely in position in the East hall. Once carefully cleaned the chamber will be turned sideways onto its legs ready for the beam of 'cosmic rays' (bottom).

  8. Frontiers in Cosmic Rays

    CERN Document Server

    Anchordoqui, Luis A; Ringwald, Andreas; Anchordoqui, Luis A.; Dermer, Charles D.; Ringwald, Andreas

    2004-01-01

    This rapporteur review covers selected results presented in the Parallel Session HEA2 (High Energy Astrophysics 2) of the 10th Marcel Grossmann Meeting on General Relativity, held in Rio de Janeiro, Brazil, July 2003. The subtopics are: ultra high energy cosmic ray anisotropies, the possible connection of these energetic particles with powerful gamma ray bursts, and new exciting scenarios with a strong neutrino-nucleon interaction in the atmosphere.

  9. The energy spectrum of cosmic-ray electrons measured with H.E.S.S.

    Energy Technology Data Exchange (ETDEWEB)

    Egberts, Kathrin

    2009-03-30

    The spectrum of cosmic-ray electrons has so far been measured using balloon and satellite-based instruments. At TeV energies, however, the sensitivity of such instruments is very limited due to the low flux of electrons at very high energies and small detection areas of balloon/satellite based experiments. The very large collection area of ground-based imaging atmospheric Cherenkov telescopes gives them a substantial advantage over balloon/ satellite based instruments when detecting very-high-energy electrons (> 300 GeV). By analysing data taken by the High Energy Stereoscopic System (H.E.S.S.), this work extends the known electron spectrum up to 4 TeV - a range that is not accessible to direct measurements. However, in contrast to direct measurements, imaging atmospheric Cherenkov telescopes such as H.E.S.S. detect air showers that cosmic-ray electrons initiate in the atmosphere rather than the primary particle. Thus, the main challenge is to differentiate between air showers initiated by electrons and those initiated by the hadronic background. A new analysis technique was developed that determines the background with the support of the machine-learning algorithm Random Forest. It is shown that this analysis technique can also be applied in other areas such as the analysis of diffuse {gamma} rays from the Galactic plane. (orig.)

  10. Measurement of the Anisotropy of Cosmic Ray Arrival Directions with IceCube

    DEFF Research Database (Denmark)

    IceCube Collaboration, The; Abbasi, R.; Abdou, Y.

    2010-01-01

    with 1320 digital optical sensors distributed over 22 strings at depths between 1450 and 2450 meters inside the Antarctic ice. IceCube is a neutrino detector, but the data are dominated by a large background of cosmic ray muons. Therefore, the background data are suitable for high-statistics studies...... of cosmic rays in the Southern sky. The data include 4.3 billion muons produced by downgoing cosmic ray interactions in the atmosphere; these events were reconstructed with a median angular resolution of 3 degrees and a median energy of $\\sim20$ TeV. Their arrival direction distribution exhibits...

  11. The Cosmic Ray Electron Excess

    Science.gov (United States)

    Chang, J.; Adams, J. H.; Ahn, H. S.; Bashindzhagyan, G. L.; Christl, M.; Ganel, O.; Guzik, T. G.; Isbert, J.; Kim, K. C.; Kuznetsov, E. N.; Panasyuk, M. I.; Panov, A. D.; Schmidt, W. K. H.; Seo, E. S.; Sokolskaya, N. V.; Watts, J. W.; Wefel, J. P.; Wu, J.; Zatsepin, V. I.

    2008-01-01

    This slide presentation reviews the possible sources for the apparent excess of Cosmic Ray Electrons. The presentation reviews the Advanced Thin Ionization Calorimeter (ATIC) instrument, the various parts, how cosmic ray electrons are measured, and shows graphs that review the results of the ATIC instrument measurement. A review of Cosmic Ray Electrons models is explored, along with the source candidates. Scenarios for the excess are reviewed: Supernova remnants (SNR) Pulsar Wind nebulae, or Microquasars. Each of these has some problem that mitigates the argument. The last possibility discussed is Dark Matter. The Anti-Matter Exploration and Light-nuclei Astrophysics (PAMELA) mission is to search for evidence of annihilations of dark matter particles, to search for anti-nuclei, to test cosmic-ray propagation models, and to measure electron and positron spectra. There are slides explaining the results of Pamela and how to compare these with those of the ATIC experiment. Dark matter annihilation is then reviewed, which represent two types of dark matter: Neutralinos, and kaluza-Kline (KK) particles, which are next explained. The future astrophysical measurements, those from GLAST LAT, the Alpha Magnetic Spectrometer (AMS), and HEPCAT are reviewed, in light of assisting in finding an explanation for the observed excess. Also the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) could help by revealing if there are extra dimensions.

  12. The pinching method for Galactic cosmic ray positrons: Implications in the light of precision measurements

    Science.gov (United States)

    Boudaud, M.; Bueno, E. F.; Caroff, S.; Genolini, Y.; Poulin, V.; Poireau, V.; Putze, A.; Rosier, S.; Salati, P.; Vecchi, M.

    2017-09-01

    Context. Two years ago, the Ams-02 collaboration released the most precise measurement of the cosmic ray positron flux. In the conventional approach, in which positrons are considered as purely secondary particles, the theoretical predictions fall way below the data above 10 GeV. One suggested explanation for this anomaly is the annihilation of dark matter particles, the so-called weakly interactive massive particles (WIMPs), into standard model particles. Most analyses have focused on the high-energy part of the positron spectrum, where the anomaly lies, disregarding the complicated GeV low-energy region where Galactic cosmic ray transport is more difficult to model and solar modulation comes into play. Aims: Given the high quality of the latest measurements by Ams-02, it is now possible to systematically re-examine the positron anomaly over the entire energy range, this time taking into account transport processes so far neglected, such as Galactic convection or diffusive re-acceleration. These might impact somewhat on the high-energy positron flux so that a complete and systematic estimate of the secondary component must be performed and compared to the Ams-02 measurements. The flux yielded by WIMPs also needs to be re-calculated more accurately to explore how dark matter might source the positron excess. Methods: We devise a new semi-analytical method to take into account transport processes thus far neglected, but important below a few GeV. It is essentially based on the pinching of inverse Compton and synchrotron energy losses from the magnetic halo, where they take place, inside the Galactic disc. The corresponding energy loss rate is artificially enhanced by the so-called pinching factor, which needs to be calculated at each energy. We have checked that this approach reproduces the results of the Green function method at the per mille level. This new tool is fast and allows one to carry out extensive scans over the cosmic ray propagation parameters. Results

  13. On noise treatment in radio measurements of cosmic ray air showers

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, F.G., E-mail: frank.schroeder@kit.edu [Karlsruhe Institute of Technology (KIT) - Campus North, Institut fuer Kernphysik (Germany); Apel, W.D. [Karlsruhe Institute of Technology (KIT) - Campus North, Institut fuer Kernphysik (Germany); Arteaga, J.C. [Karlsruhe Institute of Technology (KIT) - Campus South, Institut fuer Experimentelle Kernphysik (Germany); Asch, T. [Karlsruhe Institute of Technology (KIT) - Campus North, Institut fuer Prozessdatenverarbeitung und Elektronik (Germany); Baehren, L. [Radboud University Nijmegen, Department of Astrophysics (Netherlands); Bekk, K. [Karlsruhe Institute of Technology (KIT) - Campus North, Institut fuer Kernphysik (Germany); Bertaina, M. [Dipartimento di Fisica Generale dell& #x27; Universita, Torino (Italy); Biermann, P.L. [Max-Planck-Institut fuer Radioastronomie, Bonn (Germany); Bluemer, J. [Karlsruhe Institute of Technology (KIT) - Campus North, Institut fuer Kernphysik (Germany); Karlsruhe Institute of Technology (KIT) - Campus South, Institut fuer Experimentelle Kernphysik (Germany); Bozdog, H. [Karlsruhe Institute of Technology (KIT) - Campus North, Institut fuer Kernphysik (Germany); Brancus, I.M. [National Institute of Physics and Nuclear Engineering, Bucharest (Romania); Buchholz, P. [Universitaet Siegen, Fachbereich Physik (Germany); Buitink, S. [Radboud University Nijmegen, Department of Astrophysics (Netherlands); Cantoni, E. [Dipartimento di Fisica Generale dell& #x27; Universita, Torino (Italy); INAF Torino, Istituto di Fisica dello Spazio Interplanetario (Italy); and others

    2012-01-11

    Precise measurements of the radio emission by cosmic ray air showers require an adequate treatment of noise. Unlike to usual experiments in particle physics, where noise always adds to the signal, radio noise can in principle decrease or increase the signal if it interferes by chance destructively or constructively. Consequently, noise cannot simply be subtracted from the signal, and its influence on amplitude and time measurement of radio pulses must be studied with care. First, noise has to be determined consistently with the definition of the radio signal which typically is the maximum field strength of the radio pulse. Second, the average impact of noise on radio pulse measurements at individual antennas is studied for LOPES. It is shown that a correct treatment of noise is especially important at low signal-to-noise ratios: noise can be the dominant source of uncertainty for pulse height and time measurements, and it can systematically flatten the slope of lateral distributions. The presented method can also be transferred to other experiments in radio and acoustic detection of cosmic rays and neutrinos.

  14. Cosmic Rays at Earth

    Science.gov (United States)

    Grieder, P. K. F.

    In 1912 Victor Franz Hess made the revolutionary discovery that ionizing radiation is incident upon the Earth from outer space. He showed with ground-based and balloon-borne detectors that the intensity of the radiation did not change significantly between day and night. Consequently, the sun could not be regarded as the sources of this radiation and the question of its origin remained unanswered. Today, almost one hundred years later the question of the origin of the cosmic radiation still remains a mystery. Hess' discovery has given an enormous impetus to large areas of science, in particular to physics, and has played a major role in the formation of our current understanding of universal evolution. For example, the development of new fields of research such as elementary particle physics, modern astrophysics and cosmology are direct consequences of this discovery. Over the years the field of cosmic ray research has evolved in various directions: Firstly, the field of particle physics that was initiated by the discovery of many so-called elementary particles in the cosmic radiation. There is a strong trend from the accelerator physics community to reenter the field of cosmic ray physics, now under the name of astroparticle physics. Secondly, an important branch of cosmic ray physics that has rapidly evolved in conjunction with space exploration concerns the low energy portion of the cosmic ray spectrum. Thirdly, the branch of research that is concerned with the origin, acceleration and propagation of the cosmic radiation represents a great challenge for astrophysics, astronomy and cosmology. Presently very popular fields of research have rapidly evolved, such as high-energy gamma ray and neutrino astronomy. In addition, high-energy neutrino astronomy may soon initiate as a likely spin-off neutrino tomography of the Earth and thus open a unique new branch of geophysical research of the interior of the Earth. Finally, of considerable interest are the biological

  15. Cosmic rays and molecular clouds

    OpenAIRE

    2012-01-01

    This paper deals with the cosmic-ray penetration into molecular clouds and with the related gamma--ray emission. High energy cosmic rays interact with the dense gas and produce neutral pions which in turn decay into two gamma rays. This makes molecular clouds potential sources of gamma rays, especially if they are located in the vicinity of a powerful accelerator that injects cosmic rays in the interstellar medium. The amplitude and duration in time of the cosmic--ray overdensity around a giv...

  16. KASCADE-Grande measurements of energy spectra for elemental groups of cosmic rays

    CERN Document Server

    :,; Arteaga-Velàzquez, J C; Bekk, K; Bertaina, M; Blümer, J; Bozdog, H; Brancus, I M; Cantoni, E; Chiavassa, A; Cossavella, F; Daumiller, K; de Souza, V; Di Pierro, F; Doll, P; Engel, R; Engler, J; Finger, M; Fuchs, B; Fuhrmann, D; Gils, H J; Glasstetter, R; Grupen, C; Haungs, A; Heck, D; Hörandel, J R; Huber, D; Huege, T; Kampert, K -H; Kang, D; Klages, H O; Link, K; Łuczak, P; Ludwig, M; Mathes, H J; Mayer, H J; Melissas, M; Milke, J; Mitrica, B; Morello, C; Oehlschläger, J; Ostapchenko, S; Palmieri, N; Petcu, M; Pierog, T; Rebel, H; Roth, M; Schieler, H; Schoo, S; Schröder, F G; Sima, O; Toma, G; Trinchero, G C; Ulrich, H; Weindl, A; Wochele, J; Wommer, M; Zabierowski, J

    2013-01-01

    The KASCADE-Grande air shower experiment [W. Apel, et al. (KASCADE-Grande collaboration), Nucl. Instrum. Methods A 620 (2010) 202] consists of, among others, a large scintillator array for measurements of charged particles, Nch, and of an array of shielded scintillation counters used for muon counting, Nmu. KASCADE-Grande is optimized for cosmic ray measurements in the energy range 10 PeV to about 2000 PeV, where exploring the composition is of fundamental importance for understanding the transition from galactic to extragalactic origin of cosmic rays. Following earlier studies of the all-particle and the elemental spectra reconstructed in the knee energy range from KASCADE data [T. Antoni, et al. (KASCADE collaboration), Astropart. Phys. 24 (2005) 1], we have now extended these measurements to beyond 200 PeV. By analysing the two-dimensional shower size spectrum Nch vs. Nmu for nearly vertical events, we reconstruct the energy spectra of different mass groups by means of unfolding methods over an energy rang...

  17. KASCADE-Grande measurements of energy spectra for elemental groups of cosmic rays

    CERN Document Server

    Fuhrmann, D; Arteaga-Velazquez, J C; Bekk, K; Bertaina, M; Bluemer, J; Bozdog, H; Brancus, I M; Cantoni, E; Chiavassa, A; Cossavella, F; Curcio, C; Daumiller, K; de Souza, V; Di Pierro, F; Doll, P; Engel, R; Engler, J; Fuchs, B; Gils, H J; Glasstetter, R; Grupen, C; Haungs, A; Heck, D; Hoerandel, J R; Huber, D; Huege, T; Kampert, K -H; Kang, D; Klages, H O; Link, K; Luczak, P; Ludwig, M; Mathes, H J; Mayer, H J; Melissas, M; Milke, J; Mitrica, B; Morello, C; Oehlschlaeger, J; Ostapchenko, S; Palmieri, N; Petcu, M; Pierog, T; Rebel, H; Roth, M; Schieler, H; Schoo, S; Schroeder, F G; Sima, O; Toma, G; Trinchero, G C; Ulrich, H; Weindl, A; Wochele, D; Wochele, J

    2013-01-01

    The KASCADE-Grande experiment, located at KIT-Karlsruhe, Germany, consists of a large scintillator array for measurements of charged particles, N_ch, and of an array of shielded scintillation counters used for muon counting, N_mu. KASCADE-Grande is optimized for cosmic ray measurements in the energy range 10 PeV to 1000 PeV, thereby enabling the verification of a knee in the iron spectrum expected at approximately 100 PeV. Exploring the composition in this energy range is of fundamental importance for understanding the transition from galactic to extragalactic cosmic rays. Following earlier studies of elemental spectra reconstructed in the knee energy range from KASCADE data, we have now extended these measurements to beyond 100 PeV. By analysing the two-dimensional shower size spectrum N_ch vs. N_mu, we reconstruct the energy spectra of different mass groups by means of unfolding methods. The procedure and its results, giving evidence for a knee-like structure in the spectrum of iron nuclei, will be presente...

  18. Dual Phase Cosmic Rays

    CERN Document Server

    Shurtleff, Richard

    2008-01-01

    A calculation based on flat spacetime symmetries shows how there can be two quantum phases. For one, extreme phase change determines a conventional classical trajectory and four-momentum, i.e. mass times four-velocity. The other phase occurs in an effective particle state, with the effective energy and momentum being the rate of change of the phase with respect to time and distance. A cosmic ray proton moves along a classical trajectory, but exists in an effective particle state with an effective energy that depends on the local gravitational potential. Assumptions are made so that a cosmic ray proton in an ultra-high energy state detected near the Earth was in a much less energetic state in interstellar space. A 300 EeV proton incident on the Earth was a 2 PeV proton in interstellar space. The model predicts such protons are in states with even more energy near the Sun than when near the Earth.

  19. Calibration of the CMS Drift Tube Chambers and Measurement of the Drift Velocity with Cosmic Rays

    CERN Document Server

    INSPIRE-00165402; Khachatryan, V; Sirunyan, A M; Adam, W; Arnold, B; Bergauer, H; Bergauer, T; Dragicevic, M; Eichberger, M; Erö, J; Friedl, M; Frühwirth, R; Ghete, V M; Hammer, J; Hänsel, S; Hoch, M; Hörmann, N; Hrubec, J; Jeitler, M; Kasieczka, G; Kastner, K; Krammer, M; Liko, D; Magrans de Abril, I; Mikulec, I; Mittermayr, F; Neuherz, B; Oberegger, M; Padrta, M; Pernicka, M; Rohringer, H; Schmid, S; Schöfbeck, R; Schreiner, T; Stark, R; Steininger, H; Strauss, J; Taurok, A; Teischinger, F; Themel, T; Uhl, D; Wagner, P; Waltenberger, W; Walzel, G; Widl, E; Wulz, C E; Chekhovsky, V; Dvornikov, O; Emeliantchik, I; Litomin, A; Makarenko, V; Marfin, I; Mossolov, V; Shumeiko, N; Solin, A; Stefanovitch, R; Suarez Gonzalez, J; Tikhonov, A; Fedorov, A; Karneyeu, A; Korzhik, M; Panov, V; Zuyeuski, R; Kuchinsky, P; Beaumont, W; Benucci, L; Cardaci, M; De Wolf, E A; Delmeire, E; Druzhkin, D; Hashemi, M; Janssen, X; Maes, T; Mucibello, L; Ochesanu, S; Rougny, R; Selvaggi, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Adler, V; Beauceron, S; Blyweert, S; D'Hondt, J; De Weirdt, S; Devroede, O; Heyninck, J; Kalogeropoulos, A; Maes, J; Maes, M; Mozer, M U; Tavernier, S; Van Doninck, W; Van Mulders, P; Villella, I; Bouhali, O; Chabert, E C; Charaf, O; Clerbaux, B; De Lentdecker, G; Dero, V; Elgammal, S; Gay, A P R; Hammad, G H; Marage, P E; Rugovac, S; Vander Velde, C; Vanlaer, P; Wickens, J; Grunewald, M; Klein, B; Marinov, A; Ryckbosch, D; Thyssen, F; Tytgat, M; Vanelderen, L; Verwilligen, P; Basegmez, S; Bruno, G; Caudron, J; Delaere, C; Demin, P; Favart, D; Giammanco, A; Grégoire, G; Lemaitre, V; Militaru, O; Ovyn, S; Piotrzkowski, K; Quertenmont, L; Schul, N; Beliy, N; Daubie, E; Alves, G A; Pol, M E; Souza, M H G; Carvalho, W; De Jesus Damiao, D; De Oliveira Martins, C; Fonseca De Souza, S; Mundim, L; Oguri, V; Santoro, A; Silva Do Amaral, S M; Sznajder, A; Fernandez Perez Tomei, T R; Ferreira Dias, M A; Gregores, E M; Novaes, S F; Abadjiev, K; Anguelov, T; Damgov, J; Darmenov, N; Dimitrov, L; Genchev, V; Iaydjiev, P; Piperov, S; Stoykova, S; Sultanov, G; Trayanov, R; Vankov, I; Dimitrov, A; Dyulendarova, M; Kozhuharov, V; Litov, L; Marinova, E; Mateev, M; Pavlov, B; Petkov, P; Toteva, Z; Chen, G M; Chen, H S; Guan, W; Jiang, C H; Liang, D; Liu, B; Meng, X; Tao, J; Wang, J; Wang, Z; Xue, Z; Zhang, Z; Ban, Y; Cai, J; Ge, Y; Guo, S; Hu, Z; Mao, Y; Qian, S J; Teng, H; Zhu, B; Avila, C; Baquero Ruiz, M; Carrillo Montoya, C A; Gomez, A; Gomez Moreno, B; Ocampo Rios, A A; Osorio Oliveros, A F; Reyes Romero, D; Sanabria, J C; Godinovic, N; Lelas, K; Plestina, R; Polic, D; Puljak, I; Antunovic, Z; Dzelalija, M; Brigljevic, V; Duric, S; Kadija, K; Morovic, S; Fereos, R; Galanti, M; Mousa, J; Papadakis, A; Ptochos, F; Razis, P A; Tsiakkouri, D; Zinonos, Z; Hektor, A; Kadastik, M; Kannike, K; Müntel, M; Raidal, M; Rebane, L; Anttila, E; Czellar, S; Härkönen, J; Heikkinen, A; Karimäki, V; Kinnunen, R; Klem, J; Kortelainen, M J; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Nysten, J; Tuominen, E; Tuominiemi, J; Ungaro, D; Wendland, L; Banzuzi, K; Korpela, A; Tuuva, T; Nedelec, P; Sillou, D; Besancon, M; Chipaux, R; Dejardin, M; Denegri, D; Descamps, J; Fabbro, B; Faure, J L; Ferri, F; Ganjour, S; Gentit, F X; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Lemaire, M C; Locci, E; Malcles, J; Marionneau, M; Millischer, L; Rander, J; Rosowsky, A; Rousseau, D; Titov, M; Verrecchia, P; Baffioni, S; Bianchini, L; Bluj, M; Busson, P; Charlot, C; Dobrzynski, L; Granier de Cassagnac, R; Haguenauer, M; Miné, P; Paganini, P; Sirois, Y; Thiebaux, C; Zabi, A; Agram, J L; Besson, A; Bloch, D; Bodin, D; Brom, J M; Conte, E; Drouhin, F; Fontaine, J C; Gelé, D; Goerlach, U; Gross, L; Juillot, P; Le Bihan, A C; Patois, Y; Speck, J; Van Hove, P; Baty, C; Bedjidian, M; Blaha, J; Boudoul, G; Brun, H; Chanon, N; Chierici, R; Contardo, D; Depasse, P; Dupasquier, T; El Mamouni, H; Fassi, F; Fay, J; Gascon, S; Ille, B; Kurca, T; Le Grand, T; Lethuillier, M; Lumb, N; Mirabito, L; Perries, S; Vander Donckt, M; Verdier, P; Djaoshvili, N; Roinishvili, N; Roinishvili, V; Amaglobeli, N; Adolphi, R; Anagnostou, G; Brauer, R; Braunschweig, W; Edelhoff, M; Esser, H; Feld, L; Karpinski, W; Khomich, A; Klein, K; Mohr, N; Ostaptchouk, A; Pandoulas, D; Pierschel, G; Raupach, F; Schael, S; Schultz von Dratzig, A; Schwering, G; Sprenger, D; Thomas, M; Weber, M; Wittmer, B; Wlochal, M; Actis, O; Altenhöfer, G; Bender, W; Biallass, P; Erdmann, M; Fetchenhauer, G; Frangenheim, J; Hebbeker, T; Hilgers, G; Hinzmann, A; Hoepfner, K; Hof, C; Kirsch, M; Klimkovich, T; Kreuzer, P; Lanske, D; Merschmeyer, M; Meyer, A; Philipps, B; Pieta, H; Reithler, H; Schmitz, S A; Sonnenschein, L; Sowa, M; Steggemann, J; Szczesny, H; Teyssier, D; Zeidler, C; Bontenackels, M; Davids, M; Duda, M; Flügge, G; Geenen, H; Giffels, M; Haj Ahmad, W; Hermanns, T; Heydhausen, D; Kalinin, S; Kress, T; Linn, A; Nowack, A; Perchalla, L; Poettgens, M; Pooth, O; Sauerland, P; Stahl, A; Tornier, D; Zoeller, M H; Aldaya Martin, M; Behrens, U; Borras, K; Campbell, A; Castro, E; Dammann, D; Eckerlin, G; Flossdorf, A; Flucke, G; Geiser, A; Hatton, D; Hauk, J; Jung, H; Kasemann, M; Katkov, I; Kleinwort, C; Kluge, H; Knutsson, A; Kuznetsova, E; Lange, W; Lohmann, W; Mankel, R; Marienfeld, M; Meyer, A B; Miglioranzi, S; Mnich, J; Ohlerich, M; Olzem, J; Parenti, A; Rosemann, C; Schmidt, R; Schoerner-Sadenius, T; Volyanskyy, D; Wissing, C; Zeuner, W D; Autermann, C; Bechtel, F; Draeger, J; Eckstein, D; Gebbert, U; Kaschube, K; Kaussen, G; Klanner, R; Mura, B; Naumann-Emme, S; Nowak, F; Pein, U; Sander, C; Schleper, P; Schum, T; Stadie, H; Steinbrück, G; Thomsen, J; Wolf, R; Bauer, J; Blüm, P; Buege, V; Cakir, A; Chwalek, T; De Boer, W; Dierlamm, A; Dirkes, G; Feindt, M; Felzmann, U; Frey, M; Furgeri, A; Gruschke, J; Hackstein, C; Hartmann, F; Heier, S; Heinrich, M; Held, H; Hirschbuehl, D; Hoffmann, K H; Honc, S; Jung, C; Kuhr, T; Liamsuwan, T; Martschei, D; Mueller, S; Müller, Th; Neuland, M B; Niegel, M; Oberst, O; Oehler, A; Ott, J; Peiffer, T; Piparo, D; Quast, G; Rabbertz, K; Ratnikov, F; Ratnikova, N; Renz, M; Saout, C; Sartisohn, G; Scheurer, A; Schieferdecker, P; Schilling, F P; Schott, G; Simonis, H J; Stober, F M; Sturm, P; Troendle, D; Trunov, A; Wagner, W; Wagner-Kuhr, J; Zeise, M; Zhukov, V; Ziebarth, E B; Daskalakis, G; Geralis, T; Karafasoulis, K; Kyriakis, A; Loukas, D; Markou, A; Markou, C; Mavrommatis, C; Petrakou, E; Zachariadou, A; Gouskos, L; Katsas, P; Panagiotou, A; Evangelou, I; Kokkas, P; Manthos, N; Papadopoulos, I; Patras, V; Triantis, F A; Bencze, G; Boldizsar, L; Debreczeni, G; Hajdu, C; Hernath, S; Hidas, P; Horvath, D; Krajczar, K; Laszlo, A; Patay, G; Sikler, F; Toth, N; Vesztergombi, G; Beni, N; Christian, G; Imrek, J; Molnar, J; Novak, D; Palinkas, J; Szekely, G; Szillasi, Z; Tokesi, K; Veszpremi, V; Kapusi, A; Marian, G; Raics, P; Szabo, Z; Trocsanyi, Z L; Ujvari, B; Zilizi, G; Bansal, S; Bawa, H S; Beri, S B; Bhatnagar, V; Jindal, M; Kaur, M; Kaur, R; Kohli, J M; Mehta, M Z; Nishu, N; Saini, L K; Sharma, A; Singh, A; Singh, J B; Singh, S P; Ahuja, S; Arora, S; Bhattacharya, S; Chauhan, S; Choudhary, B C; Gupta, P; Jain, S; Jha, M; Kumar, A; Ranjan, K; Shivpuri, R K; Srivastava, A K; Choudhury, R K; Dutta, D; Kailas, S; Kataria, S K; Mohanty, A K; Pant, L M; Shukla, P; Topkar, A; Aziz, T; Guchait, M; Gurtu, A; Maity, M; Majumder, D; Majumder, G; Mazumdar, K; Nayak, A; Saha, A; Sudhakar, K; Banerjee, S; Dugad, S; Mondal, N K; Arfaei, H; Bakhshiansohi, H; Fahim, A; Jafari, A; Mohammadi Najafabadi, M; Moshaii, A; Paktinat Mehdiabadi, S; Rouhani, S; Safarzadeh, B; Zeinali, M; Felcini, M; Abbrescia, M; Barbone, L; Chiumarulo, F; Clemente, A; Colaleo, A; Creanza, D; Cuscela, G; De Filippis, N; De Palma, M; De Robertis, G; Donvito, G; Fedele, F; Fiore, L; Franco, M; Iaselli, G; Lacalamita, N; Loddo, F; Lusito, L; Maggi, G; Maggi, M; Manna, N; Marangelli, B; My, S; Natali, S; Nuzzo, S; Papagni, G; Piccolomo, S; Pierro, G A; Pinto, C; Pompili, A; Pugliese, G; Rajan, R; Ranieri, A; Romano, F; Roselli, G; Selvaggi, G; Shinde, Y; Silvestris, L; Tupputi, S; Zito, G; Abbiendi, G; Bacchi, W; Benvenuti, A C; Boldini, M; Bonacorsi, D; Braibant-Giacomelli, S; Cafaro, V D; Caiazza, S S; Capiluppi, P; Castro, A; Cavallo, F R; Codispoti, G; Cuffiani, M; D'Antone, I; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Giordano, V; Giunta, M; Grandi, C; Guerzoni, M; Marcellini, S; Masetti, G; Montanari, A; Navarria, F L; Odorici, F; Pellegrini, G; Perrotta, A; Rossi, A M; Rovelli, T; Siroli, G; Torromeo, G; Travaglini, R; Albergo, S; Costa, S; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Broccolo, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Frosali, S; Gallo, E; Genta, C; Landi, G; Lenzi, P; Meschini, M; Paoletti, S; Sguazzoni, G; Tropiano, A; Benussi, L; Bertani, M; Bianco, S; Colafranceschi, S; Colonna, D; Fabbri, F; Giardoni, M; Passamonti, L; Piccolo, D; Pierluigi, D; Ponzio, B; Russo, A; Fabbricatore, P; Musenich, R; Benaglia, A; Calloni, M; Cerati, G B; D'Angelo, P; De Guio, F; Farina, F M; Ghezzi, A; Govoni, P; Malberti, M; Malvezzi, S; Martelli, A; Menasce, D; Miccio, V; Moroni, L; Negri, P; Paganoni, M; Pedrini, D; Pullia, A; Ragazzi, S; Redaelli, N; Sala, S; Salerno, R; Tabarelli de Fatis, T; Tancini, V; Taroni, S; Buontempo, S; Cavallo, N; Cimmino, A; De Gruttola, M; Fabozzi, F; Iorio, A O M; Lista, L; Lomidze, D; Noli, P; Paolucci, P; Sciacca, C; Azzi, P; Bacchetta, N; Barcellan, L; Bellan, P; Bellato, M; Benettoni, M; Biasotto, M; Bisello, D; Borsato, E; Branca, A; Carlin, R; Castellani, L; Checchia, P; Conti, E; Dal Corso, F; De Mattia, M; Dorigo, T; Dosselli, U; Fanzago, F; Gasparini, F; Gasparini, U; Giubilato, P; Gonella, F; Gresele, A; Gulmini, M; Kaminskiy, A; Lacaprara, S; Lazzizzera, I; Margoni, M; Maron, G; Mattiazzo, S; Mazzucato, M; Meneghelli, M; Meneguzzo, A T; Michelotto, M; Montecassiano, F; Nespolo, M; Passaseo, M; Pegoraro, M; Perrozzi, L; Pozzobon, N; Ronchese, P; Simonetto, F; Toniolo, N; Torassa, E; Tosi, M; Triossi, A; Vanini, S; Ventura, S; Zotto, P; Zumerle, G; Baesso, P; Berzano, U; Bricola, S; Necchi, M M; Pagano, D; Ratti, S P; Riccardi, C; Torre, P; Vicini, A; Vitulo, P; Viviani, C; Aisa, D; Aisa, S; Babucci, E; Biasini, M; Bilei, G M; Caponeri, B; Checcucci, B; Dinu, N; Fanò, L; Farnesini, L; Lariccia, P; Lucaroni, A; Mantovani, G; Nappi, A; Piluso, A; Postolache, V; Santocchia, A; Servoli, L; Tonoiu, D; Vedaee, A; Volpe, R; Azzurri, P; Bagliesi, G; Bernardini, J; Berretta, L; Boccali, T; Bocci, A; Borrello, L; Bosi, F; Calzolari, F; Castaldi, R; Dell'Orso, R; Fiori, F; Foà, L; Gennai, S; Giassi, A; Kraan, A; Ligabue, F; Lomtadze, T; Mariani, F; Martini, L; Massa, M; Messineo, A; Moggi, A; Palla, F; Palmonari, F; Petragnani, G; Petrucciani, G; Raffaelli, F; Sarkar, S; Segneri, G; Serban, A T; Spagnolo, P; Tenchini, R; Tolaini, S; Tonelli, G; Venturi, A; Verdini, P G; Baccaro, S; Barone, L; Bartoloni, A; Cavallari, F; Dafinei, I; Del Re, D; Di Marco, E; Diemoz, M; Franci, D; Longo, E; Organtini, G; Palma, A; Pandolfi, F; Paramatti, R; Pellegrino, F; Rahatlou, S; Rovelli, C; Alampi, G; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Biino, C; Borgia, M A; Botta, C; Cartiglia, N; Castello, R; Cerminara, G; Costa, M; Dattola, D; Dellacasa, G; Demaria, N; Dughera, G; Dumitrache, F; Graziano, A; Mariotti, C; Marone, M; Maselli, S; Migliore, E; Mila, G; Monaco, V; Musich, M; Nervo, M; Obertino, M M; Oggero, S; Panero, R; Pastrone, N; Pelliccioni, M; Romero, A; Ruspa, M; Sacchi, R; Solano, A; Staiano, A; Trapani, P P; Trocino, D; Vilela Pereira, A; Visca, L; Zampieri, A; Ambroglini, F; Belforte, S; Cossutti, F; Della Ricca, G; Gobbo, B; Penzo, A; Chang, S; Chung, J; Kim, D H; Kim, G N; Kong, D J; Park, H; Son, D C; Bahk, S Y; Song, S; Jung, S Y; Hong, B; Kim, H; Kim, J H; Lee, K S; Moon, D H; Park, S K; Rhee, H B; Sim, K S; Kim, J; Choi, M; Hahn, G; Park, I C; Choi, S; Choi, Y; Goh, J; Jeong, H; Kim, T J; Lee, J; Lee, S; Janulis, M; Martisiute, D; Petrov, P; Sabonis, T; Castilla Valdez, H; Sánchez Hernández, A; Carrillo Moreno, S; Morelos Pineda, A; Allfrey, P; Gray, R N C; Krofcheck, D; Bernardino Rodrigues, N; Butler, P H; Signal, T; Williams, J C; Ahmad, M; Ahmed, I; Ahmed, W; Asghar, M I; Awan, M I M; Hoorani, H R; Hussain, I; Khan, W A; Khurshid, T; Muhammad, S; Qazi, S; Shahzad, H; Cwiok, M; Dabrowski, R; Dominik, W; Doroba, K; Konecki, M; Krolikowski, J; Pozniak, K; Romaniuk, Ryszard; Zabolotny, W; Zych, P; Frueboes, T; Gokieli, R; Goscilo, L; Górski, M; Kazana, M; Nawrocki, K; Szleper, M; Wrochna, G; Zalewski, P; Almeida, N; Antunes Pedro, L; Bargassa, P; David, A; Faccioli, P; Ferreira Parracho, P G; Freitas Ferreira, M; Gallinaro, M; Guerra Jordao, M; Martins, P; Mini, G; Musella, P; Pela, J; Raposo, L; Ribeiro, P Q; Sampaio, S; Seixas, J; Silva, J; Silva, P; Soares, D; Sousa, M; Varela, J; Wöhri, H K; Altsybeev, I; Belotelov, I; Bunin, P; Ershov, Y; Filozova, I; Finger, M; Finger, M., Jr.; Golunov, A; Golutvin, I; Gorbounov, N; Kalagin, V; Kamenev, A; Karjavin, V; Konoplyanikov, V; Korenkov, V; Kozlov, G; Kurenkov, A; Lanev, A; Makankin, A; Mitsyn, V V; Moisenz, P; Nikonov, E; Oleynik, D; Palichik, V; Perelygin, V; Petrosyan, A; Semenov, R; Shmatov, S; Smirnov, V; Smolin, D; Tikhonenko, E; Vasil'ev, S; Vishnevskiy, A; Volodko, A; Zarubin, A; Zhiltsov, V; Bondar, N; Chtchipounov, L; Denisov, A; Gavrikov, Y; Gavrilov, G; Golovtsov, V; Ivanov, Y; Kim, V; Kozlov, V; Levchenko, P; Obrant, G; Orishchin, E; Petrunin, A; Shcheglov, Y; Shchetkovskiy, A; Sknar, V; Smirnov, I; Sulimov, V; Tarakanov, V; Uvarov, L; Vavilov, S; Velichko, G; Volkov, S; Vorobyev, A; Andreev, Yu; Anisimov, A; Antipov, P; Dermenev, A; Gninenko, S; Golubev, N; Kirsanov, M; Krasnikov, N; Matveev, V; Pashenkov, A; Postoev, V E; Solovey, A; Toropin, A; Troitsky, S; Baud, A; Epshteyn, V; Gavrilov, V; Ilina, N; Kaftanov, V; Kolosov, V; Kossov, M; Krokhotin, A; Kuleshov, S; Oulianov, A; Safronov, G; Semenov, S; Shreyber, I; Stolin, V; Vlasov, E; Zhokin, A; Boos, E; Dubinin, M; Dudko, L; Ershov, A; Gribushin, A; Klyukhin, V; Kodolova, O; Lokhtin, I; Petrushanko, S; Sarycheva, L; Savrin, V; Snigirev, A; Vardanyan, I; Dremin, I; Kirakosyan, M; Konovalova, N; Rusakov, S V; Vinogradov, A; Akimenko, S; Artamonov, A; Azhgirey, I; Bitioukov, S; Burtovoy, V; Grishin, V; Kachanov, V; Konstantinov, D; Krychkine, V; Levine, A; Lobov, I; Lukanin, V; Mel'nik, Y; Petrov, V; Ryutin, R; Slabospitsky, S; Sobol, A; Sytine, A; Tourtchanovitch, L; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Djordjevic, M; Jovanovic, D; Krpic, D; Maletic, D; Puzovic, J; Smiljkovic, N; Aguilar-Benitez, M; Alberdi, J; Alcaraz Maestre, J; Arce, P; Barcala, J M; Battilana, C; Burgos Lazaro, C; Caballero Bejar, J; Calvo, E; Cardenas Montes, M; Cepeda, M; Cerrada, M; Chamizo Llatas, M; Clemente, F; Colino, N; Daniel, M; De La Cruz, B; Delgado Peris, A; Diez Pardos, C; Fernandez Bedoya, C; Fernández Ramos, J P; Ferrando, A; Flix, J; Fouz, M C; Garcia-Abia, P; Garcia-Bonilla, A C; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Marin, J; Merino, G; Molina, J; Molinero, A; Navarrete, J J; Oller, J C; Puerta Pelayo, J; Romero, L; Santaolalla, J; Villanueva Munoz, C; Willmott, C; Yuste, C; Albajar, C; Blanco Otano, M; de Trocóniz, J F; Garcia Raboso, A; Lopez Berengueres, J O; Cuevas, J; Fernandez Menendez, J; Gonzalez Caballero, I; Lloret Iglesias, L; Naves Sordo, H; Vizan Garcia, J M; Cabrillo, I J; Calderon, A; Chuang, S H; Diaz Merino, I; Diez Gonzalez, C; Duarte Campderros, J; Fernandez, M; Gomez, G; Gonzalez Sanchez, J; Gonzalez Suarez, R; Jorda, C; Lobelle Pardo, P; Lopez Virto, A; Marco, J; Marco, R; Martinez Rivero, C; Martinez Ruiz del Arbol, P; Matorras, F; Rodrigo, T; Ruiz Jimeno, A; Scodellaro, L; Sobron Sanudo, M; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Albert, E; Alidra, M; Ashby, S; Auffray, E; Baechler, J; Baillon, P; Ball, A H; Bally, S L; Barney, D; Beaudette, F; Bellan, R; Benedetti, D; Benelli, G; Bernet, C; Bloch, P; Bolognesi, S; Bona, M; Bos, J; Bourgeois, N; Bourrel, T; Breuker, H; Bunkowski, K; Campi, D; Camporesi, T; Cano, E; Cattai, A; Chatelain, J P; Chauvey, M; Christiansen, T; Coarasa Perez, J A; Conde Garcia, A; Covarelli, R; Curé, B; De Roeck, A; Delachenal, V; Deyrail, D; Di Vincenzo, S; Dos Santos, S; Dupont, T; Edera, L M; Elliott-Peisert, A; Eppard, M; Favre, M; Frank, N; Funk, W; Gaddi, A; Gastal, M; Gateau, M; Gerwig, H; Gigi, D; Gill, K; Giordano, D; Girod, J P; Glege, F; Gomez-Reino Garrido, R; Goudard, R; Gowdy, S; Guida, R; Guiducci, L; Gutleber, J; Hansen, M; Hartl, C; Harvey, J; Hegner, B; Hoffmann, H F; Holzner, A; Honma, A; Huhtinen, M; Innocente, V; Janot, P; Le Godec, G; Lecoq, P; Leonidopoulos, C; Loos, R; Lourenço, C; Lyonnet, A; Macpherson, A; Magini, N; Maillefaud, J D; Maire, G; Mäki, T; Malgeri, L; Mannelli, M; Masetti, L; Meijers, F; Meridiani, P; Mersi, S; Meschi, E; Meynet Cordonnier, A; Moser, R; Mulders, M; Mulon, J; Noy, M; Oh, A; Olesen, G; Onnela, A; Orimoto, T; Orsini, L; Perez, E; Perinic, G; Pernot, J F; Petagna, P; Petiot, P; Petrilli, A; Pfeiffer, A; Pierini, M; Pimiä, M; Pintus, R; Pirollet, B; Postema, H; Racz, A; Ravat, S; Rew, S B; Rodrigues Antunes, J; Rolandi, G; Rovere, M; Ryjov, V; Sakulin, H; Samyn, D; Sauce, H; Schäfer, C; Schlatter, W D; Schröder, M; Schwick, C; Sciaba, A; Segoni, I; Sharma, A; Siegrist, N; Siegrist, P; Sinanis, N; Sobrier, T; Sphicas, P; Spiga, D; Spiropulu, M; Stöckli, F; Traczyk, P; Tropea, P; Troska, J; Tsirou, A; Veillet, L; Veres, G I; Voutilainen, M; Wertelaers, P; Zanetti, M; Bertl, W; Deiters, K; Erdmann, W; Gabathuler, K; Horisberger, R; Ingram, Q; Kaestli, H C; König, S; Kotlinski, D; Langenegger, U; Meier, F; Renker, D; Rohe, T; Sibille, J; Starodumov, A; Betev, B; Caminada, L; Chen, Z; Cittolin, S; Da Silva Di Calafiori, D R; Dambach, S; Dissertori, G; Dittmar, M; Eggel, C; Eugster, J; Faber, G; Freudenreich, K; Grab, C; Hervé, A; Hintz, W; Lecomte, P; Luckey, P D; Lustermann, W; Marchica, C; Milenovic, P; Moortgat, F; Nardulli, A; Nessi-Tedaldi, F; Pape, L; Pauss, F; Punz, T; Rizzi, A; Ronga, F J; Sala, L; Sanchez, A K; Sawley, M C; Sordini, V; Stieger, B; Tauscher, L; Thea, A; Theofilatos, K; Treille, D; Trüb, P; Weber, M; Wehrli, L; Weng, J; Zelepoukine, S; Amsler, C; Chiochia, V; De Visscher, S; Regenfus, C; Robmann, P; Rommerskirchen, T; Schmidt, A; Tsirigkas, D; Wilke, L; Chang, Y H; Chen, E A; Chen, W T; Go, A; Kuo, C M; Li, S W; Lin, W; Bartalini, P; Chang, P; Chao, Y; Chen, K F; Hou, W S; Hsiung, Y; Lei, Y J; Lin, S W; Lu, R S; Schümann, J; Shiu, J G; Tzeng, Y M; Ueno, K; Velikzhanin, Y; Wang, C C; Wang, M; Adiguzel, A; Ayhan, A; Azman Gokce, A; Bakirci, M N; Cerci, S; Dumanoglu, I; Eskut, E; Girgis, S; Gurpinar, E; Hos, I; Karaman, T; Kayis Topaksu, A; Kurt, P; Önengüt, G; Önengüt Gökbulut, G; Ozdemir, K; Ozturk, S; Polatöz, A; Sogut, K; Tali, B; Topakli, H; Uzun, D; Vergili, L N; Vergili, M; Akin, I V; Aliev, T; Bilmis, S; Deniz, M; Gamsizkan, H; Guler, A M; Öcalan, K; Serin, M; Sever, R; Surat, U E; Zeyrek, M; Deliomeroglu, M; Demir, D; Gülmez, E; Halu, A; Isildak, B; Kaya, M; Kaya, O; Ozkorucuklu, S; Sonmez, N; Levchuk, L; Lukyanenko, S; Soroka, D; Zub, S; Bostock, F; Brooke, J J; Cheng, T L; Cussans, D; Frazier, R; Goldstein, J; Grant, N; Hansen, M; Heath, G P; Heath, H F; Hill, C; Huckvale, B; Jackson, J; Mackay, C K; Metson, S; Newbold, D M; Nirunpong, K; Smith, V J; Velthuis, J; Walton, R; Bell, K W; Brew, C; Brown, R M; Camanzi, B; Cockerill, D J A; Coughlan, J A; Geddes, N I; Harder, K; Harper, S; Kennedy, B W; Murray, P; Shepherd-Themistocleous, C H; Tomalin, I R; Williams, J H; Womersley, W J; Worm, S D; Bainbridge, R; Ball, G; Ballin, J; Beuselinck, R; Buchmuller, O; Colling, D; Cripps, N; Davies, G; Della Negra, M; Foudas, C; Fulcher, J; Futyan, D; Hall, G; Hays, J; Iles, G; Karapostoli, G; MacEvoy, B C; Magnan, A M; Marrouche, J; Nash, J; Nikitenko, A; Papageorgiou, A; Pesaresi, M; Petridis, K; Pioppi, M; Raymond, D M; Rompotis, N; Rose, A; Ryan, M J; Seez, C; Sharp, P; Sidiropoulos, G; Stettler, M; Stoye, M; Takahashi, M; Tapper, A; Timlin, C; Tourneur, S; Vazquez Acosta, M; Virdee, T; Wakefield, S; Wardrope, D; Whyntie, T; Wingham, M; Cole, J E; Goitom, I; Hobson, P R; Khan, A; Kyberd, P; Leslie, D; Munro, C; Reid, I D; Siamitros, C; Taylor, R; Teodorescu, L; Yaselli, I; Bose, T; Carleton, M; Hazen, E; Heering, A H; Heister, A; John, J St; Lawson, P; Lazic, D; Osborne, D; Rohlf, J; Sulak, L; Wu, S; Andrea, J; Avetisyan, A; Bhattacharya, S; Chou, J P; Cutts, D; Esen, S; Kukartsev, G; Landsberg, G; Narain, M; Nguyen, D; Speer, T; Tsang, K V; Breedon, R; Calderon De La Barca Sanchez, M; Case, M; Cebra, D; Chertok, M; Conway, J; Cox, P T; Dolen, J; Erbacher, R; Friis, E; Ko, W; Kopecky, A; Lander, R; Lister, A; Liu, H; Maruyama, S; Miceli, T; Nikolic, M; Pellett, D; Robles, J; Searle, M; Smith, J; Squires, M; Stilley, J; Tripathi, M; Vasquez Sierra, R; Veelken, C; Andreev, V; Arisaka, K; Cline, D; Cousins, R; Erhan, S; Hauser, J; Ignatenko, M; Jarvis, C; Mumford, J; Plager, C; Rakness, G; Schlein, P; Tucker, J; Valuev, V; Wallny, R; Yang, X; Babb, J; Bose, M; Chandra, A; Clare, R; Ellison, J A; Gary, J W; Hanson, G; Jeng, G Y; Kao, S C; Liu, F; Liu, H; Luthra, A; Nguyen, H; Pasztor, G; Satpathy, A; Shen, B C; Stringer, R; Sturdy, J; Sytnik, V; Wilken, R; Wimpenny, S; Branson, J G; Dusinberre, E; Evans, D; Golf, F; Kelley, R; Lebourgeois, M; Letts, J; Lipeles, E; Mangano, B; Muelmenstaedt, J; Norman, M; Padhi, S; Petrucci, A; Pi, H; Pieri, M; Ranieri, R; Sani, M; Sharma, V; Simon, S; Würthwein, F; Yagil, A; Campagnari, C; D'Alfonso, M; Danielson, T; Garberson, J; Incandela, J; Justus, C; Kalavase, P; Koay, S A; Kovalskyi, D; Krutelyov, V; Lamb, J; Lowette, S; Pavlunin, V; Rebassoo, F; Ribnik, J; Richman, J; Rossin, R; Stuart, D; To, W; Vlimant, J R; Witherell, M; Apresyan, A; Bornheim, A; Bunn, J; Chiorboli, M; Gataullin, M; Kcira, D; Litvine, V; Ma, Y; Newman, H B; Rogan, C; Timciuc, V; Veverka, J; Wilkinson, R; Yang, Y; Zhang, L; Zhu, K; Zhu, R Y; Akgun, B; Carroll, R; Ferguson, T; Jang, D W; Jun, S Y; Paulini, M; Russ, J; Terentyev, N; Vogel, H; Vorobiev, I; Cumalat, J P; Dinardo, M E; Drell, B R; Ford, W T; Heyburn, B; Luiggi Lopez, E; Nauenberg, U; Stenson, K; Ulmer, K; Wagner, S R; Zang, S L; Agostino, L; Alexander, J; Blekman, F; Cassel, D; Chatterjee, A; Das, S; Gibbons, L K; Heltsley, B; Hopkins, W; Khukhunaishvili, A; Kreis, B; Kuznetsov, V; Patterson, J R; Puigh, D; Ryd, A; Shi, X; Stroiney, S; Sun, W; Teo, W D; Thom, J; Vaughan, J; Weng, Y; Wittich, P; Beetz, C P; Cirino, G; Sanzeni, C; Winn, D; Abdullin, S; Afaq, M A; Albrow, M; Ananthan, B; Apollinari, G; Atac, M; Badgett, W; Bagby, L; Bakken, J A; Baldin, B; Banerjee, S; Banicz, K; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Biery, K; Binkley, M; Bloch, I; Borcherding, F; Brett, A M; Burkett, K; Butler, J N; Chetluru, V; Cheung, H W K; Chlebana, F; Churin, I; Cihangir, S; Crawford, M; Dagenhart, W; Demarteau, M; Derylo, G; Dykstra, D; Eartly, D P; Elias, J E; Elvira, V D; Evans, D; Feng, L; Fischler, M; Fisk, I; Foulkes, S; Freeman, J; Gartung, P; Gottschalk, E; Grassi, T; Green, D; Guo, Y; Gutsche, O; Hahn, A; Hanlon, J; Harris, R M; Holzman, B; Howell, J; Hufnagel, D; James, E; Jensen, H; Johnson, M; Jones, C D; Joshi, U; Juska, E; Kaiser, J; Klima, B; Kossiakov, S; Kousouris, K; Kwan, S; Lei, C M; Limon, P; Lopez Perez, J A; Los, S; Lueking, L; Lukhanin, G; Lusin, S; Lykken, J; Maeshima, K; Marraffino, J M; Mason, D; McBride, P; Miao, T; Mishra, K; Moccia, S; Mommsen, R; Mrenna, S; Muhammad, A S; Newman-Holmes, C; Noeding, C; O'Dell, V; Prokofyev, O; Rivera, R; Rivetta, C H; Ronzhin, A; Rossman, P; Ryu, S; Sekhri, V; Sexton-Kennedy, E; Sfiligoi, I; Sharma, S; Shaw, T M; Shpakov, D; Skup, E; Smith, R P; Soha, A; Spalding, W J; Spiegel, L; Suzuki, I; Tan, P; Tanenbaum, W; Tkaczyk, S; Trentadue, R; Uplegger, L; Vaandering, E W; Vidal, R; Whitmore, J; Wicklund, E; Wu, W; Yarba, J; Yumiceva, F; Yun, J C; Acosta, D; Avery, P; Barashko, V; Bourilkov, D; Chen, M; Di Giovanni, G P; Dobur, D; Drozdetskiy, A; Field, R D; Fu, Y; Furic, I K; Gartner, J; Holmes, D; Kim, B; Klimenko, S; Konigsberg, J; Korytov, A; Kotov, K; Kropivnitskaya, A; Kypreos, T; Madorsky, A; Matchev, K; Mitselmakher, G; Pakhotin, Y; Piedra Gomez, J; Prescott, C; Rapsevicius, V; Remington, R; Schmitt, M; Scurlock, B; Wang, D; Yelton, J; Ceron, C; Gaultney, V; Kramer, L; Lebolo, L M; Linn, S; Markowitz, P; Martinez, G; Rodriguez, J L; Adams, T; Askew, A; Baer, H; Bertoldi, M; Chen, J; Dharmaratna, W G D; Gleyzer, S V; Haas, J; Hagopian, S; Hagopian, V; Jenkins, M; Johnson, K F; Prettner, E; Prosper, H; Sekmen, S; Baarmand, M M; Guragain, S; Hohlmann, M; Kalakhety, H; Mermerkaya, H; Ralich, R; Vodopiyanov, I; Abelev, B; Adams, M R; Anghel, I M; Apanasevich, L; Bazterra, V E; Betts, R R; Callner, J; Castro, M A; Cavanaugh, R; Dragoiu, C; Garcia-Solis, E J; Gerber, C E; Hofman, D J; Khalatian, S; Mironov, C; Shabalina, E; Smoron, A; Varelas, N; Akgun, U; Albayrak, E A; Ayan, A S; Bilki, B; Briggs, R; Cankocak, K; Chung, K; Clarida, W; Debbins, P; Duru, F; Ingram, F D; Lae, C K; McCliment, E; Merlo, J P; Mestvirishvili, A; Miller, M J; Moeller, A; Nachtman, J; Newsom, C R; Norbeck, E; Olson, J; Onel, Y; Ozok, F; Parsons, J; Schmidt, I; Sen, S; Wetzel, J; Yetkin, T; Yi, K; Barnett, B A; Blumenfeld, B; Bonato, A; Chien, C Y; Fehling, D; Giurgiu, G; Gritsan, A V; Guo, Z J; Maksimovic, P; Rappoccio, S; Swartz, M; Tran, N V; Zhang, Y; Baringer, P; Bean, A; Grachov, O; Murray, M; Radicci, V; Sanders, S; Wood, J S; Zhukova, V; Bandurin, D; Bolton, T; Kaadze, K; Liu, A; Maravin, Y; Onoprienko, D; Svintradze, I; Wan, Z; Gronberg, J; Hollar, J; Lange, D; Wright, D; Baden, D; Bard, R; Boutemeur, M; Eno, S C; Ferencek, D; Hadley, N J; Kellogg, R G; Kirn, M; Kunori, S; Rossato, K; Rumerio, P; Santanastasio, F; Skuja, A; Temple, J; Tonjes, M B; Tonwar, S C; Toole, T; Twedt, E; Alver, B; Bauer, G; Bendavid, J; Busza, W; Butz, E; Cali, I A; Chan, M; D'Enterria, D; Everaerts, P; Gomez Ceballos, G; Hahn, K A; Harris, P; Jaditz, S; Kim, Y; Klute, M; Lee, Y J; Li, W; Loizides, C; Ma, T; Miller, M; Nahn, S; Paus, C; Roland, C; Roland, G; Rudolph, M; Stephans, G; Sumorok, K; Sung, K; Vaurynovich, S; Wenger, E A; Wyslouch, B; Xie, S; Yilmaz, Y; Yoon, A S; Bailleux, D; Cooper, S I; Cushman, P; Dahmes, B; De Benedetti, A; Dolgopolov, A; Dudero, P R; Egeland, R; Franzoni, G; Haupt, J; Inyakin, A; Klapoetke, K; Kubota, Y; Mans, J; Mirman, N; Petyt, D; Rekovic, V; Rusack, R; Schroeder, M; Singovsky, A; Zhang, J; Cremaldi, L M; Godang, R; Kroeger, R; Perera, L; Rahmat, R; Sanders, D A; Sonnek, P; Summers, D; Bloom, K; Bockelman, B; Bose, S; Butt, J; Claes, D R; Dominguez, A; Eads, M; Keller, J; Kelly, T; Kravchenko, I; Lazo-Flores, J; Lundstedt, C; Malbouisson, H; Malik, S; Snow, G R; Baur, U; Iashvili, I; Kharchilava, A; Kumar, A; Smith, K; Strang, M; Alverson, G; Barberis, E; Boeriu, O; Eulisse, G; Govi, G; McCauley, T; Musienko, Y; Muzaffar, S; Osborne, I; Paul, T; Reucroft, S; Swain, J; Taylor, L; Tuura, L; Anastassov, A; Gobbi, B; Kubik, A; Ofierzynski, R A; Pozdnyakov, A; Schmitt, M; Stoynev, S; Velasco, M; Won, S; Antonelli, L; Berry, D; Hildreth, M; Jessop, C; Karmgard, D J; Kolberg, T; Lannon, K; Lynch, S; Marinelli, N; Morse, D M; Ruchti, R; Slaunwhite, J; Warchol, J; Wayne, M; Bylsma, B; Durkin, L S; Gilmore, J; Gu, J; Killewald, P; Ling, T Y; Williams, G; Adam, N; Berry, E; Elmer, P; Garmash, A; Gerbaudo, D; Halyo, V; Hunt, A; Jones, J; Laird, E; Marlow, D; Medvedeva, T; Mooney, M; Olsen, J; Piroué, P; Stickland, D; Tully, C; Werner, J S; Wildish, T; Xie, Z; Zuranski, A; Acosta, J G; Bonnett Del Alamo, M; Huang, X T; Lopez, A; Mendez, H; Oliveros, S; Ramirez Vargas, J E; Santacruz, N; Zatzerklyany, A; Alagoz, E; Antillon, E; Barnes, V E; Bolla, G; Bortoletto, D; Everett, A; Garfinkel, A F; Gecse, Z; Gutay, L; Ippolito, N; Jones, M; Koybasi, O; Laasanen, A T; Leonardo, N; Liu, C; Maroussov, V; Merkel, P; Miller, D H; Neumeister, N; Sedov, A; Shipsey, I; Yoo, H D; Zheng, Y; Jindal, P; Parashar, N; Cuplov, V; Ecklund, K M; Geurts, F J M; Liu, J H; Maronde, D; Matveev, M; Padley, B P; Redjimi, R; Roberts, J; Sabbatini, L; Tumanov, A; Betchart, B; Bodek, A; Budd, H; Chung, Y S; de Barbaro, P; Demina, R; Flacher, H; Gotra, Y; Harel, A; Korjenevski, S; Miner, D C; Orbaker, D; Petrillo, G; Vishnevskiy, D; Zielinski, M; Bhatti, A; Demortier, L; Goulianos, K; Hatakeyama, K; Lungu, G; Mesropian, C; Yan, M; Atramentov, O; Bartz, E; Gershtein, Y; Halkiadakis, E; Hits, D; Lath, A; Rose, K; Schnetzer, S; Somalwar, S; Stone, R; Thomas, S; Watts, T L; Cerizza, G; Hollingsworth, M; Spanier, S; Yang, Z C; York, A; Asaadi, J; Aurisano, A; Eusebi, R; Golyash, A; Gurrola, A; Kamon, T; Nguyen, C N; Pivarski, J; Safonov, A; Sengupta, S; Toback, D; Weinberger, M; Akchurin, N; Berntzon, L; Gumus, K; Jeong, C; Kim, H; Lee, S W; Popescu, S; Roh, Y; Sill, A; Volobouev, I; Washington, E; Wigmans, R; Yazgan, E; Engh, D; Florez, C; Johns, W; Pathak, S; Sheldon, P; Andelin, D; Arenton, M W; Balazs, M; Boutle, S; Buehler, M; Conetti, S; Cox, B; Hirosky, R; Ledovskoy, A; Neu, C; Phillips II, D; Ronquest, M; Yohay, R; Gollapinni, S; Gunthoti, K; Harr, R; Karchin, P E; Mattson, M; Sakharov, A; Anderson, M; Bachtis, M; Bellinger, J N; Carlsmith, D; Crotty, I; Dasu, S; Dutta, S; Efron, J; Feyzi, F; Flood, K; Gray, L; Grogg, K S; Grothe, M; Hall-Wilton, R; Jaworski, M; Klabbers, P; Klukas, J; Lanaro, A; Lazaridis, C; Leonard, J; Loveless, R; Magrans de Abril, M; Mohapatra, A; Ott, G; Polese, G; Reeder, D; Savin, A; Smith, W H; Sourkov, A; Swanson, J; Weinberg, M; Wenman, D; Wensveen, M; White, A

    2010-01-01

    This paper describes the calibration procedure for the drift tubes of the CMS barrel muon system and reports the main results obtained with data collected during a high statistics cosmic ray data-taking period. The main goal of the calibration is to determine, for each drift cell, the minimum time delay for signals relative to the trigger, accounting for the drift velocity within the cell. The accuracy of the calibration procedure is influenced by the random arrival time of cosmic muons. A more refined analysis of the drift velocity was performed during the offline reconstruction phase, which takes into account this feature of cosmic ray events.

  20. Calibration of the CMS Drift Tube Chambers and Measurement of the Drift Velocity with Cosmic Rays

    CERN Document Server

    Chatrchyan, S; Sirunyan, A M; Adam, W; Arnold, B; Bergauer, H; Bergauer, T; Dragicevic, M; Eichberger, M; Erö, J; Friedl, M; Frühwirth, R; Ghete, V M; Hammer, J; Hänsel, S; Hoch, M; Hörmann, N; Hrubec, J; Jeitler, M; Kasieczka, G; Kastner, K; Krammer, M; Liko, D; Magrans de Abril, I; Mikulec, I; Mittermayr, F; Neuherz, B; Oberegger, M; Padrta, M; Pernicka, M; Rohringer, H; Schmid, S; Schöfbeck, R; Schreiner, T; Stark, R; Steininger, H; Strauss, J; Taurok, A; Teischinger, F; Themel, T; Uhl, D; Wagner, P; Waltenberger, W; Walzel, G; Widl, E; Wulz, C E; Chekhovsky, V; Dvornikov, O; Emeliantchik, I; Litomin, A; Makarenko, V; Marfin, I; Mossolov, V; Shumeiko, N; Solin, A; Stefanovitch, R; Suarez Gonzalez, J; Tikhonov, A; Fedorov, A; Karneyeu, A; Korzhik, M; Panov, V; Zuyeuski, R; Kuchinsky, P; Beaumont, W; Benucci, L; Cardaci, M; De Wolf, E A; Delmeire, E; Druzhkin, D; Hashemi, M; Janssen, X; Maes, T; Mucibello, L; Ochesanu, S; Rougny, R; Selvaggi, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Adler, V; Beauceron, S; Blyweert, S; D'Hondt, J; De Weirdt, S; Devroede, O; Heyninck, J; Kalogeropoulos, A; Maes, J; Maes, M; Mozer, M U; Tavernier, S; Van Doninck, W; Van Mulders, P; Villella, I; Bouhali, O; Chabert, E C; Charaf, O; Clerbaux, B; De Lentdecker, G; Dero, V; Elgammal, S; Gay, A P R; Hammad, G H; Marage, P E; Rugovac, S; Vander Velde, C; Vanlaer, P; Wickens, J; Grunewald, M; Klein, B; Marinov, A; Ryckbosch, D; Thyssen, F; Tytgat, M; Vanelderen, L; Verwilligen, P; Basegmez, S; Bruno, G; Caudron, J; Delaere, C; Demin, P; Favart, D; Giammanco, A; Grégoire, G; Lemaitre, V; Militaru, O; Ovyn, S; Piotrzkowski, K; Quertenmont, L; Schul, N; Beliy, N; Daubie, E; Alves, G A; Pol, M E; Souza, M H G; Carvalho, W; De Jesus Damiao, D; De Oliveira Martins, C; Fonseca De Souza, S; Mundim, L; Oguri, V; Santoro, A; Silva Do Amaral, S M; Sznajder, A; Fernandez Perez Tomei, T R; Ferreira Dias, M A; Gregores, E M; Novaes, S F; Abadjiev, K; Anguelov, T; Damgov, J; Darmenov, N; Dimitrov, L; Genchev, V; Iaydjiev, P; Piperov, S; Stoykova, S; Sultanov, G; Trayanov, R; Vankov, I; Dimitrov, A; Dyulendarova, M; Kozhuharov, V; Litov, L; Marinova, E; Mateev, M; Pavlov, B; Petkov, P; Toteva, Z; Chen, G M; Chen, H S; Guan, W; Jiang, C H; Liang, D; Liu, B; Meng, X; Tao, J; Wang, J; Wang, Z; Xue, Z; Zhang, Z; Ban, Y; Cai, J; Ge, Y; Guo, S; Hu, Z; Mao, Y; Qian, S J; Teng, H; Zhu, B; Avila, C; Baquero Ruiz, M; Carrillo Montoya, C A; Gomez, A; Gomez Moreno, B; Ocampo Rios, A A; Osorio Oliveros, A F; Reyes Romero, D; Sanabria, J C; Godinovic, N; Lelas, K; Plestina, R; Polic, D; Puljak, I; Antunovic, Z; Dzelalija, M; Brigljevic, V; Duric, S; Kadija, K; Morovic, S; Fereos, R; Galanti, M; Mousa, J; Papadakis, A; Ptochos, F; Razis, P A; Tsiakkouri, D; Zinonos, Z; Hektor, A; Kadastik, M; Kannike, K; Müntel, M; Raidal, M; Rebane, L; Anttila, E; Czellar, S; Härkönen, J; Heikkinen, A; Karimäki, V; Kinnunen, R; Klem, J; Kortelainen, M J; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Nysten, J; Tuominen, E; Tuominiemi, J; Ungaro, D; Wendland, L; Banzuzi, K; Korpela, A; Tuuva, T; Nedelec, P; Sillou, D; Besancon, M; Chipaux, R; Dejardin, M; Denegri, D; Descamps, J; Fabbro, B; Faure, J L; Ferri, F; Ganjour, S; Gentit, F X; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Lemaire, M C; Locci, E; Malcles, J; Marionneau, M; Millischer, L; Rander, J; Rosowsky, A; Rousseau, D; Titov, M; Verrecchia, P; Baffioni, S; Bianchini, L; Bluj, M; Busson, P; Charlot, C; Dobrzynski, L; Granier de Cassagnac, R; Haguenauer, M; Miné, P; Paganini, P; Sirois, Y; Thiebaux, C; Zabi, A; Agram, J L; Besson, A; Bloch, D; Bodin, D; Brom, J M; Conte, E; Drouhin, F; Fontaine, J C; Gelé, D; Goerlach, U; Gross, L; Juillot, P; Le Bihan, A C; Patois, Y; Speck, J; Van Hove, P; Baty, C; Bedjidian, M; Blaha, J; Boudoul, G; Brun, H; Chanon, N; Chierici, R; Contardo, D; Depasse, P; Dupasquier, T; El Mamouni, H; Fassi, F; Fay, J; Gascon, S; Ille, B; Kurca, T; Le Grand, T; Lethuillier, M; Lumb, N; Mirabito, L; Perries, S; Vander Donckt, M; Verdier, P; Djaoshvili, N; Roinishvili, N; Roinishvili, V; Amaglobeli, N; Adolphi, R; Anagnostou, G; Brauer, R; Braunschweig, W; Edelhoff, M; Esser, H; Feld, L; Karpinski, W; Khomich, A; Klein, K; Mohr, N; Ostaptchouk, A; Pandoulas, D; Pierschel, G; Raupach, F; Schael, S; Schultz von Dratzig, A; Schwering, G; Sprenger, D; Thomas, M; Weber, M; Wittmer, B; Wlochal, M; Actis, O; Altenhöfer, G; Bender, W; Biallass, P; Erdmann, M; Fetchenhauer, G; Frangenheim, J; Hebbeker, T; Hilgers, G; Hinzmann, A; Hoepfner, K; Hof, C; Kirsch, M; Klimkovich, T; Kreuzer, P; Lanske, D; Merschmeyer, M; Meyer, A; Philipps, B; Pieta, H; Reithler, H; Schmitz, S A; Sonnenschein, L; Sowa, M; Steggemann, J; Szczesny, H; Teyssier, D; Zeidler, C; Bontenackels, M; Davids, M; Duda, M; Flügge, G; Geenen, H; Giffels, M; Haj Ahmad, W; Hermanns, T; Heydhausen, D; Kalinin, S; Kress, T; Linn, A; Nowack, A; Perchalla, L; Poettgens, M; Pooth, O; Sauerland, P; Stahl, A; Tornier, D; Zoeller, M H; Aldaya Martin, M; Behrens, U; Borras, K; Campbell, A; Castro, E; Dammann, D; Eckerlin, G; Flossdorf, A; Flucke, G; Geiser, A; Hatton, D; Hauk, J; Jung, H; Kasemann, M; Katkov, I; Kleinwort, C; Kluge, H; Knutsson, A; Kuznetsova, E; Lange, W; Lohmann, W; Mankel, R; Marienfeld, M; Meyer, A B; Miglioranzi, S; Mnich, J; Ohlerich, M; Olzem, J; Parenti, A; Rosemann, C; Schmidt, R; Schoerner-Sadenius, T; Volyanskyy, D; Wissing, C; Zeuner, W D; Autermann, C; Bechtel, F; Draeger, J; Eckstein, D; Gebbert, U; Kaschube, K; Kaussen, G; Klanner, R; Mura, B; Naumann-Emme, S; Nowak, F; Pein, U; Sander, C; Schleper, P; Schum, T; Stadie, H; Steinbrück, G; Thomsen, J; Wolf, R; Bauer, J; Blüm, P; Buege, V; Cakir, A; Chwalek, T; De Boer, W; Dierlamm, A; Dirkes, G; Feindt, M; Felzmann, U; Frey, M; Furgeri, A; Gruschke, J; Hackstein, C; Hartmann, F; Heier, S; Heinrich, M; Held, H; Hirschbuehl, D; Hoffmann, K H; Honc, S; Jung, C; Kuhr, T; Liamsuwan, T; Martschei, D; Mueller, S; Müller, Th; Neuland, M B; Niegel, M; Oberst, O; Oehler, A; Ott, J; Peiffer, T; Piparo, D; Quast, G; Rabbertz, K; Ratnikov, F; Ratnikova, N; Renz, M; Saout, C; Sartisohn, G; Scheurer, A; Schieferdecker, P; Schilling, F P; Schott, G; Simonis, H J; Stober, F M; Sturm, P; Troendle, D; Trunov, A; Wagner, W; Wagner-Kuhr, J; Zeise, M; Zhukov, V; Ziebarth, E B; Daskalakis, G; Geralis, T; Karafasoulis, K; Kyriakis, A; Loukas, D; Markou, A; Markou, C; Mavrommatis, C; Petrakou, E; Zachariadou, A; Gouskos, L; Katsas, P; Panagiotou, A; Evangelou, I; Kokkas, P; Manthos, N; Papadopoulos, I; Patras, V; Triantis, F A; Bencze, G; Boldizsar, L; Debreczeni, G; Hajdu, C; Hernath, S; Hidas, P; Horvath, D; Krajczar, K; Laszlo, A; Patay, G; Sikler, F; Toth, N; Vesztergombi, G; Beni, N; Christian, G; Imrek, J; Molnar, J; Novak, D; Palinkas, J; Szekely, G; Szillasi, Z; Tokesi, K; Veszpremi, V; Kapusi, A; Marian, G; Raics, P; Szabo, Z; Trocsanyi, Z L; Ujvari, B; Zilizi, G; Bansal, S; Bawa, H S; Beri, S B; Bhatnagar, V; Jindal, M; Kaur, M; Kaur, R; Kohli, J M; Mehta, M Z; Nishu, N; Saini, L K; Sharma, A; Singh, A; Singh, J B; Singh, S P; Ahuja, S; Arora, S; Bhattacharya, S; Chauhan, S; Choudhary, B C; Gupta, P; Jain, S; Jain, S; Jha, M; Kumar, A; Ranjan, K; Shivpuri, R K; Srivastava, A K; Choudhury, R K; Dutta, D; Kailas, S; Kataria, S K; Mohanty, A K; Pant, L M; Shukla, P; Topkar, A; Aziz, T; Guchait, M; Gurtu, A; Maity, M; Majumder, D; Majumder, G; Mazumdar, K; Nayak, A; Saha, A; Sudhakar, K; Banerjee, S; Dugad, S; Mondal, N K; Arfaei, H; Bakhshiansohi, H; Fahim, A; Jafari, A; Mohammadi Najafabadi, M; Moshaii, A; Paktinat Mehdiabadi, S; Rouhani, S; Safarzadeh, B; Zeinali, M; Felcini, M; Abbrescia, M; Barbone, L; Chiumarulo, F; Clemente, A; Colaleo, A; Creanza, D; Cuscela, G; De Filippis, N; De Palma, M; De Robertis, G; Donvito, G; Fedele, F; Fiore, L; Franco, M; Iaselli, G; Lacalamita, N; Loddo, F; Lusito, L; Maggi, G; Maggi, M; Manna, N; Marangelli, B; My, S; Natali, S; Nuzzo, S; Papagni, G; Piccolomo, S; Pierro, G A; Pinto, C; Pompili, A; Pugliese, G; Rajan, R; Ranieri, A; Romano, F; Roselli, G; Selvaggi, G; Shinde, Y; Silvestris, L; Tupputi, S; Zito, G; Abbiendi, G; Bacchi, W; Benvenuti, A C; Boldini, M; Bonacorsi, D; Braibant-Giacomelli, S; Cafaro, V D; Caiazza, S S; Capiluppi, P; Castro, A; Cavallo, F R; Codispoti, G; Cuffiani, M; D'Antone, I; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Giordano, V; Giunta, M; Grandi, C; Guerzoni, M; Marcellini, S; Masetti, G; Montanari, A; Navarria, F L; Odorici, F; Pellegrini, G; Perrotta, A; Rossi, A M; Rovelli, T; Siroli, G; Torromeo, G; Travaglini, R; Albergo, S; Costa, S; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Broccolo, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Frosali, S; Gallo, E; Genta, C; Landi, G; Lenzi, P; Meschini, M; Paoletti, S; Sguazzoni, G; Tropiano, A; Benussi, L; Bertani, M; Bianco, S; Colafranceschi, S; Colonna, D; Fabbri, F; Giardoni, M; Passamonti, L; Piccolo, D; Pierluigi, D; Ponzio, B; Russo, A; Fabbricatore, P; Musenich, R; Benaglia, A; Calloni, M; Cerati, G B; D'Angelo, P; De Guio, F; Farina, F M; Ghezzi, A; Govoni, P; Malberti, M; Malvezzi, S; Martelli, A; Menasce, D; Miccio, V; Moroni, L; Negri, P; Paganoni, M; Pedrini, D; Pullia, A; Ragazzi, S; Redaelli, N; Sala, S; Salerno, R; Tabarelli de Fatis, T; Tancini, V; Taroni, S; Buontempo, S; Cavallo, N; Cimmino, A; De Gruttola, M; Fabozzi, F; Iorio, A O M; Lista, L; Lomidze, D; Noli, P; Paolucci, P; Sciacca, C; Azzi, P; Bacchetta, N; Barcellan, L; Bellan, P; Bellato, M; Benettoni, M; Biasotto, M; Bisello, D; Borsato, E; Branca, A; Carlin, R; Castellani, L; Checchia, P; Conti, E; Dal Corso, F; De Mattia, M; Dorigo, T; Dosselli, U; Fanzago, F; Gasparini, F; Gasparini, U; Giubilato, P; Gonella, F; Gresele, A; Gulmini, M; Kaminskiy, A; Lacaprara, S; Lazzizzera, I; Margoni, M; Maron, G; Mattiazzo, S; Mazzucato, M; Meneghelli, M; Meneguzzo, A T; Michelotto, M; Montecassiano, F; Nespolo, M; Passaseo, M; Pegoraro, M; Perrozzi, L; Pozzobon, N; Ronchese, P; Simonetto, F; Toniolo, N; Torassa, E; Tosi, M; Triossi, A; Vanini, S; Ventura, S; Zotto, P; Zumerle, G; Baesso, P; Berzano, U; Bricola, S; Necchi, M M; Pagano, D; Ratti, S P; Riccardi, C; Torre, P; Vicini, A; Vitulo, P; Viviani, C; Aisa, D; Aisa, S; Babucci, E; Biasini, M; Bilei, G M; Caponeri, B; Checcucci, B; Dinu, N; Fanò, L; Farnesini, L; Lariccia, P; Lucaroni, A; Mantovani, G; Nappi, A; Piluso, A; Postolache, V; Santocchia, A; Servoli, L; Tonoiu, D; Vedaee, A; Volpe, R; Azzurri, P; Bagliesi, G; Bernardini, J; Berretta, L; Boccali, T; Bocci, A; Borrello, L; Bosi, F; Calzolari, F; Castaldi, R; Dell'Orso, R; Fiori, F; Foà, L; Gennai, S; Giassi, A; Kraan, A; Ligabue, F; Lomtadze, T; Mariani, F; Martini, L; Massa, M; Messineo, A; Moggi, A; Palla, F; Palmonari, F; Petragnani, G; Petrucciani, G; Raffaelli, F; Sarkar, S; Segneri, G; Serban, A T; Spagnolo, P; Tenchini, R; Tolaini, S; Tonelli, G; Venturi, A; Verdini, P G; Baccaro, S; Barone, L; Bartoloni, A; Cavallari, F; Dafinei, I; Del Re, D; Di Marco, E; Diemoz, M; Franci, D; Longo, E; Organtini, G; Palma, A; Pandolfi, F; Paramatti, R; Pellegrino, F; Rahatlou, S; Rovelli, C; Alampi, G; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Biino, C; Borgia, M A; Botta, C; Cartiglia, N; Castello, R; Cerminara, G; Costa, M; Dattola, D; Dellacasa, G; Demaria, N; Dughera, G; Dumitrache, F; Graziano, A; Mariotti, C; Marone, M; Maselli, S; Migliore, E; Mila, G; Monaco, V; Musich, M; Nervo, M; Obertino, M M; Oggero, S; Panero, R; Pastrone, N; Pelliccioni, M; Romero, A; Ruspa, M; Sacchi, R; Solano, A; Staiano, A; Trapani, P P; Trocino, D; Vilela Pereira, A; Visca, L; Zampieri, A; Ambroglini, F; Belforte, S; Cossutti, F; Della Ricca, G; Gobbo, B; Penzo, A; Chang, S; Chung, J; Kim, D H; Kim, G N; Kong, D J; Park, H; Son, D C; Bahk, S Y; Song, S; Jung, S Y; Hong, B; Kim, H; Kim, J H; Lee, K S; Moon, D H; Park, S K; Rhee, H B; Sim, K S; Kim, J; Choi, M; Hahn, G; Park, I C; Choi, S; Choi, Y; Goh, J; Jeong, H; Kim, T J; Lee, J; Lee, S; Janulis, M; Martisiute, D; Petrov, P; Sabonis, T; Castilla Valdez, H; Sánchez Hernández, A; Carrillo Moreno, S; Morelos Pineda, A; Allfrey, P; Gray, R N C; Krofcheck, D; Bernardino Rodrigues, N; Butler, P H; Signal, T; Williams, J C; Ahmad, M; Ahmed, I; Ahmed, W; Asghar, M I; Awan, M I M; Hoorani, H R; Hussain, I; Khan, W A; Khurshid, T; Muhammad, S; Qazi, S; Shahzad, H; Cwiok, M; Dabrowski, R; Dominik, W; Doroba, K; Konecki, M; Krolikowski, J; Pozniak, K; Romaniuk, Ryszard; Zabolotny, W; Zych, P; Frueboes, T; Gokieli, R; Goscilo, L; Górski, M; Kazana, M; Nawrocki, K; Szleper, M; Wrochna, G; Zalewski, P; Almeida, N; Antunes Pedro, L; Bargassa, P; David, A; Faccioli, P; Ferreira Parracho, P G; Freitas Ferreira, M; Gallinaro, M; Guerra Jordao, M; Martins, P; Mini, G; Musella, P; Pela, J; Raposo, L; Ribeiro, P Q; Sampaio, S; Seixas, J; Silva, J; Silva, P; Soares, D; Sousa, M; Varela, J; Wöhri, H K; Altsybeev, I; Belotelov, I; Bunin, P; Ershov, Y; Filozova, I; Finger, M; Finger, M Jr; Golunov, A; Golutvin, I; Gorbounov, N; Kalagin, V; Kamenev, A; Karjavin, V; Konoplyanikov, V; Korenkov, V; Kozlov, G; Kurenkov, A; Lanev, A; Makankin, A; Mitsyn, V V; Moisenz, P; Nikonov, E; Oleynik, D; Palichik, V; Perelygin, V; Petrosyan, A; Semenov, R; Shmatov, S; Smirnov, V; Smolin, D; Tikhonenko, E; Vasil'ev, S; Vishnevskiy, A; Volodko, A; Zarubin, A; Zhiltsov, V; Bondar, N; Chtchipounov, L; Denisov, A; Gavrikov, Y; Gavrilov, G; Golovtsov, V; Ivanov, Y; Kim, V; Kozlov, V; Levchenko, P; Obrant, G; Orishchin, E; Petrunin, A; Shcheglov, Y; Shchetkovskiy, A; Sknar, V; Smirnov, I; Sulimov, V; Tarakanov, V; Uvarov, L; Vavilov, S; Velichko, G; Volkov, S; Vorobyev, A; Andreev, Yu; Anisimov, A; Antipov, P; Dermenev, A; Gninenko, S; Golubev, N; Kirsanov, M; Krasnikov, N; Matveev, V; Pashenkov, A; Postoev, V E; Solovey, A; Solovey, A; Toropin, A; Troitsky, S; Baud, A; Epshteyn, V; Gavrilov, V; Ilina, N; Kaftanov, V; Kolosov, V; Kossov, M; Krokhotin, A; Kuleshov, S; Oulianov, A; Safronov, G; Semenov, S; Shreyber, I; Stolin, V; Vlasov, E; Zhokin, A; Boos, E; Dubinin, M; Dudko, L; Ershov, A; Gribushin, A; Klyukhin, V; Kodolova, O; Lokhtin, I; Petrushanko, S; Sarycheva, L; Savrin, V; Snigirev, A; Vardanyan, I; Dremin, I; Kirakosyan, M; Konovalova, N; Rusakov, S V; Vinogradov, A; Akimenko, S; Artamonov, A; Azhgirey, I; Bitioukov, S; Burtovoy, V; Grishin, V; Kachanov, V; Konstantinov, D; Krychkine, V; Levine, A; Lobov, I; Lukanin, V; Mel'nik, Y; Petrov, V; Ryutin, R; Slabospitsky, S; Sobol, A; Sytine, A; Tourtchanovitch, L; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Djordjevic, M; Jovanovic, D; Krpic, D; Maletic, D; Puzovic, J; Smiljkovic, N; Aguilar-Benitez, M; Alberdi, J; Alcaraz Maestre, J; Arce, P; Barcala, J M; Battilana, C; Burgos Lazaro, C; Caballero Bejar, J; Calvo, E; Cardenas Montes, M; Cepeda, M; Cerrada, M; Chamizo Llatas, M; Clemente, F; Colino, N; Daniel, M; De La Cruz, B; Delgado Peris, A; Diez Pardos, C; Fernandez Bedoya, C; Fernández Ramos, J P; Ferrando, A; Flix, J; Fouz, M C; Garcia-Abia, P; Garcia-Bonilla, A C; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Marin, J; Merino, G; Molina, J; Molinero, A; Navarrete, J J; Oller, J C; Puerta Pelayo, J; Romero, L; Santaolalla, J; Villanueva Munoz, C; Willmott, C; Yuste, C; Albajar, C; Blanco Otano, M; de Trocóniz, J F; Garcia Raboso, A; Lopez Berengueres, J O; Cuevas, J; Fernandez Menendez, J; Gonzalez Caballero, I; Lloret Iglesias, L; Naves Sordo, H; Vizan Garcia, J M; Cabrillo, I J; Calderon, A; Chuang, S H; Diaz Merino, I; Diez Gonzalez, C; Duarte Campderros, J; Fernandez, M; Gomez, G; Gonzalez Sanchez, J; Gonzalez Suarez, R; Jorda, C; Lobelle Pardo, P; Lopez Virto, A; Marco, J; Marco, R; Martinez Rivero, C; Martinez Ruiz del Arbol, P; Matorras, F; Rodrigo, T; Ruiz Jimeno, A; Scodellaro, L; Sobron Sanudo, M; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Albert, E; Alidra, M; Ashby, S; Auffray, E; Baechler, J; Baillon, P; Ball, A H; Bally, S L; Barney, D; Beaudette, F; Bellan, R; Benedetti, D; Benelli, G; Bernet, C; Bloch, P; Bolognesi, S; Bona, M; Bos, J; Bourgeois, N; Bourrel, T; Breuker, H; Bunkowski, K; Campi, D; Camporesi, T; Cano, E; Cattai, A; Chatelain, J P; Chauvey, M; Christiansen, T; Coarasa Perez, J A; Conde Garcia, A; Covarelli, R; Curé, B; De Roeck, A; Delachenal, V; Deyrail, D; Di Vincenzo, S; Dos Santos, S; Dupont, T; Edera, L M; Elliott-Peisert, A; Eppard, M; Favre, M; Frank, N; Funk, W; Gaddi, A; Gastal, M; Gateau, M; Gerwig, H; Gigi, D; Gill, K; Giordano, D; Girod, J P; Glege, F; Gomez-Reino Garrido, R; Goudard, R; Gowdy, S; Guida, R; Guiducci, L; Gutleber, J; Hansen, M; Hartl, C; Harvey, J; Hegner, B; Hoffmann, H F; Holzner, A; Honma, A; Huhtinen, M; Innocente, V; Janot, P; Le Godec, G; Lecoq, P; Leonidopoulos, C; Loos, R; Lourenço, C; Lyonnet, A; Macpherson, A; Magini, N; Maillefaud, J D; Maire, G; Mäki, T; Malgeri, L; Mannelli, M; Masetti, L; Meijers, F; Meridiani, P; Mersi, S; Meschi, E; Meynet Cordonnier, A; Moser, R; Mulders, M; Mulon, J; Noy, M; Oh, A; Olesen, G; Onnela, A; Orimoto, T; Orsini, L; Perez, E; Perinic, G; Pernot, J F; Petagna, P; Petiot, P; Petrilli, A; Pfeiffer, A; Pierini, M; Pimiä, M; Pintus, R; Pirollet, B; Postema, H; Racz, A; Ravat, S; Rew, S B; Rodrigues Antunes, J; Rolandi, G; Rovere, M; Ryjov, V; Sakulin, H; Samyn, D; Sauce, H; Schäfer, C; Schlatter, W D; Schröder, M; Schwick, C; Sciaba, A; Segoni, I; Sharma, A; Siegrist, N; Siegrist, P; Sinanis, N; Sobrier, T; Sphicas, P; Spiga, D; Spiropulu, M; Stöckli, F; Traczyk, P; Tropea, P; Troska, J; Tsirou, A; Veillet, L; Veres, G I; Voutilainen, M; Wertelaers, P; Zanetti, M; Bertl, W; Deiters, K; Erdmann, W; Gabathuler, K; Horisberger, R; Ingram, Q; Kaestli, H C; König, S; Kotlinski, D; Langenegger, U; Meier, F; Renker, D; Rohe, T; Sibille, J; Starodumov, A; Betev, B; Caminada, L; Chen, Z; Cittolin, S; Da Silva Di Calafiori, D R; Dambach, S; Dissertori, G; Dittmar, M; Eggel, C; Eugster, J; Faber, G; Freudenreich, K; Grab, C; Hervé, A; Hintz, W; Lecomte, P; Luckey, P D; Lustermann, W; Marchica, C; Milenovic, P; Moortgat, F; Nardulli, A; Nessi-Tedaldi, F; Pape, L; Pauss, F; Punz, T; Rizzi, A; Ronga, F J; Sala, L; Sanchez, A K; Sawley, M C; Sordini, V; Stieger, B; Tauscher, L; Thea, A; Theofilatos, K; Treille, D; Trüb, P; Weber, M; Wehrli, L; Weng, J; Zelepoukine, S; Amsler, C; Chiochia, V; De Visscher, S; Regenfus, C; Robmann, P; Rommerskirchen, T; Schmidt, A; Tsirigkas, D; Wilke, L; Chang, Y H; Chen, E A; Chen, W T; Go, A; Kuo, C M; Li, S W; Lin, W; Bartalini, P; Chang, P; Chao, Y; Chen, K F; Hou, W S; Hsiung, Y; Lei, Y J; Lin, S W; Lu, R S; Schümann, J; Shiu, J G; Tzeng, Y M; Ueno, K; Velikzhanin, Y; Wang, C C; Wang, M; Adiguzel, A; Ayhan, A; Azman Gokce, A; Bakirci, M N; Cerci, S; Dumanoglu, I; Eskut, E; Girgis, S; Gurpinar, E; Hos, I; Karaman, T; Karaman, T; Kayis Topaksu, A; Kurt, P; Önengüt, G; Önengüt Gökbulut, G; Ozdemir, K; Ozturk, S; Polatöz, A; Sogut, K; Tali, B; Topakli, H; Uzun, D; Vergili, L N; Vergili, M; Akin, I V; Aliev, T; Bilmis, S; Deniz, M; Gamsizkan, H; Guler, A M; Öcalan, K; Serin, M; Sever, R; Surat, U E; Zeyrek, M; Deliomeroglu, M; Demir, D; Gülmez, E; Halu, A; Isildak, B; Kaya, M; Kaya, O; Ozkorucuklu, S; Sonmez, N; Levchuk, L; Lukyanenko, S; Soroka, D; Zub, S; Bostock, F; Brooke, J J; Cheng, T L; Cussans, D; Frazier, R; Goldstein, J; Grant, N; Hansen, M; Heath, G P; Heath, H F; Hill, C; Huckvale, B; Jackson, J; Mackay, C K; Metson, S; Newbold, D M; Nirunpong, K; Smith, V J; Velthuis, J; Walton, R; Bell, K W; Brew, C; Brown, R M; Camanzi, B; Cockerill, D J A; Coughlan, J A; Geddes, N I; Harder, K; Harper, S; Kennedy, B W; Murray, P; Shepherd-Themistocleous, C H; Tomalin, I R; Williams, J H; Womersley, W J; Worm, S D; Bainbridge, R; Ball, G; Ballin, J; Beuselinck, R; Buchmuller, O; Colling, D; Cripps, N; Davies, G; Della Negra, M; Foudas, C; Fulcher, J; Futyan, D; Hall, G; Hays, J; Iles, G; Karapostoli, G; MacEvoy, B C; Magnan, A M; Marrouche, J; Nash, J; Nikitenko, A; Papageorgiou, A; Pesaresi, M; Petridis, K; Pioppi, M; Raymond, D M; Rompotis, N; Rose, A; Ryan, M J; Seez, C; Sharp, P; Sidiropoulos, G; Stettler, M; Stoye, M; Takahashi, M; Tapper, A; Timlin, C; Tourneur, S; Vazquez Acosta, M; Virdee, T; Wakefield, S; Wardrope, D; Whyntie, T; Wingham, M; Cole, J E; Goitom, I; Hobson, P R; Khan, A; Kyberd, P; Leslie, D; Munro, C; Reid, I D; Siamitros, C; Taylor, R; Teodorescu, L; Yaselli, I; Bose, T; Carleton, M; Hazen, E; Heering, A H; Heister, A; John, J St; Lawson, P; Lazic, D; Osborne, D; Rohlf, J; Sulak, L; Wu, S; Andrea, J; Avetisyan, A; Bhattacharya, S; Chou, J P; Cutts, D; Esen, S; Kukartsev, G; Landsberg, G; Narain, M; Nguyen, D; Speer, T; Tsang, K V; Breedon, R; Calderon De La Barca Sanchez, M; Case, M; Cebra, D; Chertok, M; Conway, J; Cox, P T; Dolen, J; Erbacher, R; Friis, E; Ko, W; Kopecky, A; Lander, R; Lister, A; Liu, H; Maruyama, S; Miceli, T; Nikolic, M; Pellett, D; Robles, J; Searle, M; Smith, J; Squires, M; Stilley, J; Tripathi, M; Vasquez Sierra, R; Veelken, C; Andreev, V; Arisaka, K; Cline, D; Cousins, R; Erhan, S; Hauser, J; Ignatenko, M; Jarvis, C; Mumford, J; Plager, C; Rakness, G; Schlein, P; Tucker, J; Valuev, V; Wallny, R; Yang, X; Babb, J; Bose, M; Chandra, A; Clare, R; Ellison, J A; Gary, J W; Hanson, G; Jeng, G Y; Kao, S C; Liu, F; Liu, H; Luthra, A; Nguyen, H; Pasztor, G; Satpathy, A; Shen, B C; Stringer, R; Sturdy, J; Sytnik, V; Wilken, R; Wimpenny, S; Branson, J G; Dusinberre, E; Evans, D; Golf, F; Kelley, R; Lebourgeois, M; Letts, J; Lipeles, E; Mangano, B; Muelmenstaedt, J; Norman, M; Padhi, S; Petrucci, A; Pi, H; Pieri, M; Ranieri, R; Sani, M; Sharma, V; Simon, S; Würthwein, F; Yagil, A; Campagnari, C; D'Alfonso, M; Danielson, T; Garberson, J; Incandela, J; Justus, C; Kalavase, P; Koay, S A; Kovalskyi, D; Krutelyov, V; Lamb, J; Lowette, S; Pavlunin, V; Rebassoo, F; Ribnik, J; Richman, J; Rossin, R; Stuart, D; To, W; Vlimant, J R; Witherell, M; Apresyan, A; Bornheim, A; Bunn, J; Chiorboli, M; Gataullin, M; Kcira, D; Litvine, V; Ma, Y; Newman, H B; Rogan, C; Timciuc, V; Veverka, J; Wilkinson, R; Yang, Y; Zhang, L; Zhu, K; Zhu, R Y; Akgun, B; Carroll, R; Ferguson, T; Jang, D W; Jun, S Y; Paulini, M; Russ, J; Terentyev, N; Vogel, H; Vorobiev, I; Cumalat, J P; Dinardo, M E; Drell, B R; Ford, W T; Heyburn, B; Luiggi Lopez, E; Nauenberg, U; Stenson, K; Ulmer, K; Wagner, S R; Zang, S L; Agostino, L; Alexander, J; Blekman, F; Cassel, D; Chatterjee, A; Das, S; Gibbons, L K; Heltsley, B; Hopkins, W; Khukhunaishvili, A; Kreis, B; Kuznetsov, V; Patterson, J R; Puigh, D; Ryd, A; Shi, X; Stroiney, S; Sun, W; Teo, W D; Thom, J; Vaughan, J; Weng, Y; Wittich, P; Beetz, C P; Cirino, G; Sanzeni, C; Winn, D; Abdullin, S; Afaq, M A; Albrow, M; Ananthan, B; Apollinari, G; Atac, M; Badgett, W; Bagby, L; Bakken, J A; Baldin, B; Banerjee, S; Banicz, K; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Biery, K; Binkley, M; Bloch, I; Borcherding, F; Brett, A M; Burkett, K; Butler, J N; Chetluru, V; Cheung, H W K; Chlebana, F; Churin, I; Cihangir, S; Crawford, M; Dagenhart, W; Demarteau, M; Derylo, G; Dykstra, D; Eartly, D P; Elias, J E; Elvira, V D; Evans, D; Feng, L; Fischler, M; Fisk, I; Foulkes, S; Freeman, J; Gartung, P; Gottschalk, E; Grassi, T; Green, D; Guo, Y; Gutsche, O; Hahn, A; Hanlon, J; Harris, R M; Holzman, B; Howell, J; Hufnagel, D; James, E; Jensen, H; Johnson, M; Jones, C D; Joshi, U; Juska, E; Kaiser, J; Klima, B; Kossiakov, S; Kousouris, K; Kwan, S; Lei, C M; Limon, P; Lopez Perez, J A; Los, S; Lueking, L; Lukhanin, G; Lusin, S; Lykken, J; Maeshima, K; Marraffino, J M; Mason, D; McBride, P; Miao, T; Mishra, K; Moccia, S; Mommsen, R; Mrenna, S; Muhammad, A S; Newman-Holmes, C; Noeding, C; O'Dell, V; Prokofyev, O; Rivera, R; Rivetta, C H; Ronzhin, A; Rossman, P; Ryu, S; Sekhri, V; Sexton-Kennedy, E; Sfiligoi, I; Sharma, S; Shaw, T M; Shpakov, D; Skup, E; Smith, R P; Soha, A; Spalding, W J; Spiegel, L; Suzuki, I; Tan, P; Tanenbaum, W; Tkaczyk, S; Trentadue, R; Uplegger, L; Vaandering, E W; Vidal, R; Whitmore, J; Wicklund, E; Wu, W; Yarba, J; Yumiceva, F; Yun, J C; Acosta, D; Avery, P; Barashko, V; Bourilkov, D; Chen, M; Di Giovanni, G P; Dobur, D; Drozdetskiy, A; Field, R D; Fu, Y; Furic, I K; Gartner, J; Holmes, D; Kim, B; Klimenko, S; Konigsberg, J; Korytov, A; Kotov, K; Kropivnitskaya, A; Kypreos, T; Madorsky, A; Matchev, K; Mitselmakher, G; Pakhotin, Y; Piedra Gomez, J; Prescott, C; Rapsevicius, V; Remington, R; Schmitt, M; Scurlock, B; Wang, D; Yelton, J; Ceron, C; Gaultney, V; Kramer, L; Lebolo, L M; Linn, S; Markowitz, P; Martinez, G; Rodriguez, J L; Adams, T; Askew, A; Baer, H; Bertoldi, M; Chen, J; Dharmaratna, W G D; Gleyzer, S V; Haas, J; Hagopian, S; Hagopian, V; Jenkins, M; Johnson, K F; Prettner, E; Prosper, H; Sekmen, S; Baarmand, M M; Guragain, S; Hohlmann, M; Kalakhety, H; Mermerkaya, H; Ralich, R; Vodopiyanov, I; Abelev, B; Adams, M R; Anghel, I M; Apanasevich, L; Bazterra, V E; Betts, R R; Callner, J; Castro, M A; Cavanaugh, R; Dragoiu, C; Garcia-Solis, E J; Gerber, C E; Hofman, D J; Khalatian, S; Mironov, C; Shabalina, E; Smoron, A; Varelas, N; Akgun, U; Albayrak, E A; Ayan, A S; Bilki, B; Briggs, R; Cankocak, K; Chung, K; Clarida, W; Debbins, P; Duru, F; Ingram, F D; Lae, C K; McCliment, E; Merlo, J P; Mestvirishvili, A; Miller, M J; Moeller, A; Nachtman, J; Newsom, C R; Norbeck, E; Olson, J; Onel, Y; Ozok, F; Parsons, J; Schmidt, I; Sen, S; Wetzel, J; Yetkin, T; Yi, K; Barnett, B A; Blumenfeld, B; Bonato, A; Chien, C Y; Fehling, D; Giurgiu, G; Gritsan, A V; Guo, Z J; Maksimovic, P; Rappoccio, S; Swartz, M; Tran, N V; Zhang, Y; Baringer, P; Bean, A; Grachov, O; Murray, M; Radicci, V; Sanders, S; Wood, J S; Zhukova, V; Bandurin, D; Bolton, T; Kaadze, K; Liu, A; Maravin, Y; Onoprienko, D; Svintradze, I; Wan, Z; Gronberg, J; Hollar, J; Lange, D; Wright, D; Baden, D; Bard, R; Boutemeur, M; Eno, S C; Ferencek, D; Hadley, N J; Kellogg, R G; Kirn, M; Kunori, S; Rossato, K; Rumerio, P; Santanastasio, F; Skuja, A; Temple, J; Tonjes, M B; Tonwar, S C; Toole, T; Twedt, E; Alver, B; Bauer, G; Bendavid, J; Busza, W; Butz, E; Cali, I A; Chan, M; D'Enterria, D; Everaerts, P; Gomez Ceballos, G; Hahn, K A; Harris, P; Jaditz, S; Kim, Y; Klute, M; Lee, Y J; Li, W; Loizides, C; Ma, T; Miller, M; Nahn, S; Paus, C; Roland, C; Roland, G; Rudolph, M; Stephans, G; Sumorok, K; Sung, K; Vaurynovich, S; Wenger, E A; Wyslouch, B; Xie, S; Yilmaz, Y; Yoon, A S; Bailleux, D; Cooper, S I; Cushman, P; Dahmes, B; De Benedetti, A; Dolgopolov, A; Dudero, P R; Egeland, R; Franzoni, G; Haupt, J; Inyakin, A; Klapoetke, K; Kubota, Y; Mans, J; Mirman, N; Petyt, D; Rekovic, V; Rusack, R; Schroeder, M; Singovsky, A; Zhang, J; Cremaldi, L M; Godang, R; Kroeger, R; Perera, L; Rahmat, R; Sanders, D A; Sonnek, P; Summers, D; Bloom, K; Bockelman, B; Bose, S; Butt, J; Claes, D R; Dominguez, A; Eads, M; Keller, J; Kelly, T; Kravchenko, I; Lazo-Flores, J; Lundstedt, C; Malbouisson, H; Malik, S; Snow, G R; Baur, U; Iashvili, I; Kharchilava, A; Kumar, A; Smith, K; Strang, M; Alverson, G; Barberis, E; Boeriu, O; Eulisse, G; Govi, G; McCauley, T; Musienko, Y; Muzaffar, S; Osborne, I; Paul, T; Reucroft, S; Swain, J; Taylor, L; Tuura, L; Anastassov, A; Gobbi, B; Kubik, A; Ofierzynski, R A; Pozdnyakov, A; Schmitt, M; Stoynev, S; Velasco, M; Won, S; Antonelli, L; Berry, D; Hildreth, M; Jessop, C; Karmgard, D J; Kolberg, T; Lannon, K; Lynch, S; Marinelli, N; Morse, D M; Ruchti, R; Slaunwhite, J; Warchol, J; Wayne, M; Bylsma, B; Durkin, L S; Gilmore, J; Gu, J; Killewald, P; Ling, T Y; Williams, G; Adam, N; Berry, E; Elmer, P; Garmash, A; Gerbaudo, D; Halyo, V; Hunt, A; Jones, J; Laird, E; Marlow, D; Medvedeva, T; Mooney, M; Olsen, J; Piroué, P; Stickland, D; Tully, C; Werner, J S; Wildish, T; Xie, Z; Zuranski, A; Acosta, J G; Bonnett Del Alamo, M; Huang, X T; Lopez, A; Mendez, H; Oliveros, S; Ramirez Vargas, J E; Santacruz, N; Zatzerklyany, A; Alagoz, E; Antillon, E; Barnes, V E; Bolla, G; Bortoletto, D; Everett, A; Garfinkel, A F; Gecse, Z; Gutay, L; Ippolito, N; Jones, M; Koybasi, O; Laasanen, A T; Leonardo, N; Liu, C; Maroussov, V; Merkel, P; Miller, D H; Neumeister, N; Sedov, A; Shipsey, I; Yoo, H D; Zheng, Y; Jindal, P; Parashar, N; Cuplov, V; Ecklund, K M; Geurts, F J M; Liu, J H; Maronde, D; Matveev, M; Padley, B P; Redjimi, R; Roberts, J; Sabbatini, L; Tumanov, A; Betchart, B; Bodek, A; Budd, H; Chung, Y S; de Barbaro, P; Demina, R; Flacher, H; Gotra, Y; Harel, A; Korjenevski, S; Miner, D C; Orbaker, D; Petrillo, G; Vishnevskiy, D; Zielinski, M; Bhatti, A; Demortier, L; Goulianos, K; Hatakeyama, K; Lungu, G; Mesropian, C; Yan, M; Atramentov, O; Bartz, E; Gershtein, Y; Halkiadakis, E; Hits, D; Lath, A; Rose, K; Schnetzer, S; Somalwar, S; Stone, R; Thomas, S; Watts, T L; Cerizza, G; Hollingsworth, M; Spanier, S; Yang, Z C; York, A; Asaadi, J; Aurisano, A; Eusebi, R; Golyash, A; Gurrola, A; Kamon, T; Nguyen, C N; Pivarski, J; Safonov, A; Sengupta, S; Toback, D; Weinberger, M; Akchurin, N; Berntzon, L; Gumus, K; Jeong, C; Kim, H; Lee, S W; Popescu, S; Roh, Y; Sill, A; Volobouev, I; Washington, E; Wigmans, R; Yazgan, E; Engh, D; Florez, C; Johns, W; Pathak, S; Sheldon, P; Andelin, D; Arenton, M W; Balazs, M; Boutle, S; Buehler, M; Conetti, S; Cox, B; Hirosky, R; Ledovskoy, A; Neu, C; Phillips II, D; Ronquest, M; Yohay, R; Gollapinni, S; Gunthoti, K; Harr, R; Karchin, P E; Mattson, M; Sakharov, A; Anderson, M; Bachtis, M; Bellinger, J N; Carlsmith, D; Crotty, I; Dasu, S; Dutta, S; Efron, J; Feyzi, F; Flood, K; Gray, L; Grogg, K S; Grothe, M; Hall-Wilton, R; Jaworski, M; Klabbers, P; Klukas, J; Lanaro, A; Lazaridis, C; Leonard, J; Loveless, R; Magrans de Abril, M; Mohapatra, A; Ott, G; Polese, G; Reeder, D; Savin, A; Smith, W H; Sourkov, A; Swanson, J; Weinberg, M; Wenman, D; Wensveen, M; White, A

    2010-01-01

    This paper describes the calibration procedure for the drift tubes of the CMS barrel muon system and reports the main results obtained with data collected during a high statistics cosmic ray data-taking period. The main goal of the calibration is to determine, for each drift cell, the minimum time delay for signals relative to the trigger, accounting for the drift velocity within the cell. The accuracy of the calibration procedure is influenced by the random arrival time of cosmic muons. A more refined analysis of the drift velocity was performed during the offline reconstruction phase, which takes into account this feature of cosmic ray events.

  1. Cosmic Rays in Thunderstorms

    Science.gov (United States)

    Buitink, Stijn; Scholten, Olaf; van den Berg, Ad; Ebert, Ute

    2013-04-01

    Cosmic Rays in Thunderstorms Cosmic rays are protons and heavier nuclei that constantly bombard the Earth's atmosphere with energies spanning a vast range from 109 to 1021 eV. At typical altitudes up to 10-20 km they initiate large particle cascades, called extensive air showers, that contain millions to billions of secondary particles depending on their initial energy. These particles include electrons, positrons, hadrons and muons, and are concentrated in a compact particle front that propagates at relativistic speed. In addition, the shower leaves behind a trail of lower energy electrons from ionization of air molecules. Under thunderstorm conditions these electrons contribute to the electrical and ionization processes in the cloud. When the local electric field is strong enough the secondary electrons can create relativistic electron run-away avalanches [1] or even non-relativistic avalanches. Cosmic rays could even trigger lightning inception. Conversely, strong electric fields also influence the development of the air shower [2]. Extensive air showers emit a short (tens of nanoseconds) radio pulse due to deflection of the shower particles in the Earth's magnetic field [3]. Antenna arrays, such as AERA, LOFAR and LOPES detect these pulses in a frequency window of roughly 10-100 MHz. These systems are also sensitive to the radiation from discharges associated to thunderstorms, and provide a means to study the interaction of cosmic ray air showers and the electrical processes in thunderstorms [4]. In this presentation we discuss the involved radiation mechanisms and present analyses of thunderstorm data from air shower arrays [1] A. Gurevich et al., Phys. Lett. A 165, 463 (1992) [2] S. Buitink et al., Astropart. Phys. 33, 1 (2010) [3] H. Falcke et al., Nature 435, 313 (2005) [4] S. Buitink et al., Astron. & Astrophys. 467, 385 (2007)

  2. Cosmic ray modulation

    Science.gov (United States)

    Agarwal Mishra, Rekha; Mishra, Rajesh Kumar

    2016-07-01

    Propagation of cosmic rays to and inside the heliosphere, encounter an outward moving solar wind with cyclic magnetic field fluctuation and turbulence, causing convection and diffusion in the heliosphere. Cosmic ray counts from the ground ground-based neutron monitors at different cut of rigidity show intensity changes, which are anti-correlated with sunspot numbers. They also lose energy as they propagate towards the Earth and experience various types of modulations due to different solar activity indices. In this work, we study the first three harmonics of cosmic ray intensity on geo-magnetically quiet days over the period 1965-2014 for Beijing, Moscow and Tokyo neutron monitoring stations located at different cut off rigidity. The amplitude of first harmonic remains high for low cutoff rigidity as compared to high cutoff rigidity on quiet days. The diurnal amplitude significantly decreases during solar activity minimum years. The diurnal time of maximum significantly shifts to an earlier time as compared to the corotational direction having different cutoff rigidities. The time of maximum for first harmonic significantly shifts towards later hours and for second harmonic it shifts towards earlier hours at low cutoff rigidity station as compared to the high cut off rigidity station on quiet days. The amplitude of second/third harmonics shows a good positive correlation with solar wind velocity, while the others (i.e. amplitude and phase) have no significant correlation on quiet days. The amplitude and direction of the anisotropy on quiet days does not show any significant dependence on high-speed solar wind streams for these neutron monitoring stations of different cutoff rigidity threshold. Keywords: cosmic ray, cut off rigidity, quiet days, harmonics, amplitude, phase.

  3. Energy spectra of primary and secondary cosmic-ray nuclei measured with TRACER

    CERN Document Server

    Obermeier, A; Boyle, P; Höppner, Ch; Hörandel, J; Müller, D

    2011-01-01

    The TRACER cosmic-ray detector, first flown on long-duration balloon (LDB) in 2003 for observations of the major primary cosmic-ray nuclei from oxygen (Z=8) to iron (Z=26), has been upgraded to also measure the energies of the lighter nuclei, including the secondary species boron (Z=5). The instrument was used in another LDB flight in 2006. The properties and performance of the modified detector system are described, and the analysis of the data from the 2006 flight is discussed. The energy spectra of the primary nuclei carbon (Z=6), oxygen, and iron over the range from 1 GeV amu$^{-1}$ to 2 TeV amu$^{-1}$ are reported. The data for oxygen and iron are found to be in good agreement with the results of the previous TRACER flight. The measurement of the energy spectrum of boron also extends into the TeV amu$^{-1}$ region. The relative abundances of the primary nuclei, such as carbon, oxygen, and iron, above $\\sim10$ GeV amu$^{-1}$ are independent of energy, while the boron abundance, i.e. the B/C abundance rati...

  4. Implications of the Cosmic Ray Electron Spectrum and Anisotropy measured with Fermi-LAT

    CERN Document Server

    Di Bernardo, Giuseppe; Gaggero, Daniele; Grasso, Dario; Maccione, Luca; Mazziotta, Mario Nicola

    2010-01-01

    The Fermi Large Area Telescope (LAT) collaboration recently released the updated results of the measurement of the cosmic ray electron (CRE) spectrum and published its first constraints on the CRE anisotropy. With respect to the previous Fermi-LAT results, the CRE spectrum measurement was extended down from 20 to 7 GeV, thus providing a better lever arm to discriminate theoretical models. Here we show that the new data strengthen the evidence for the presence of two distinct electron and positron spectral components. Furthermore, we show that under such hypothesis most relevant CRE and positron data sets are remarkably well reproduced. Consistent fits of cosmic-ray nuclei and antiproton data, which are crucial to validate the adopted propagation setup(s) and to fix the solar modulation potential, are obtained for the Kraichnan and plain-diffusion propagation setups, while the Kolmogorov one is disfavored. We then confirm that nearby pulsars are viable source candidates of the required $e^\\pm$ extra-component....

  5. A Measurement Of The Ultra-high Energy Cosmic Ray Flux With The Hires Fadc Detector

    CERN Document Server

    Zech, A

    2004-01-01

    We have measured the ultra-high energy cosmic ray flux with the newer one of the two detectors of the High Resolution Fly's Eye experiment (HiRes) in monocular mode. An outline of the HiRes experiment is given here, followed by a description of the trigger and Flash ADC electronics of the HiRes-2 detector. The computer simulation of the experiment, which is needed for resolution studies and the calculation of the detector acceptance, is presented in detail. Different characteristics of the simulated events are compared to real data to test the performance of the Monte Carlo simulation. The calculation of the energy spectrum is described, together with studies of systematic uncertainties due to the cosmic ray composition and aerosol content of the atmosphere that are assumed in the simulation. Data collected with the HiRes- 2 detector between December 1999 and September 2001 are included in the energy spectrum presented here. We compare our result with previous measurements by other experiments.

  6. Implications of the cosmic ray electron spectrum and anisotropy measured with Fermi-LAT

    Energy Technology Data Exchange (ETDEWEB)

    Di Bernardo, Giuseppe [Gothenburg Univ. (Sweden). Dept. of Physics; Evoli, Carmelo [SISSA, Trieste (Italy); Gaggero, Daniele; Grasso, Dario [Pisa Univ. (Italy). Dipt. die Fisica; INFN, Pisa (Italy); Maccione, Luca [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Mazziotta, Mario Nicola [Istituto Nazionale di Fisica Nucleare, Bari (Italy)

    2010-11-15

    The Fermi Large Area Telescope (LAT) collaboration recently released the updated results of the measurement of the cosmic ray electron (CRE) spectrum and published its first constraints on the CRE anisotropy. With respect to the previous Fermi-LAT results, the CRE spectrum measurement was extended down from 20 to 7 GeV, thus providing a better lever arm to discriminate theoretical models. Here we show that the new data strengthen the evidence for the presence of two distinct electron and positron spectral components. Furthermore, we show that under such hypothesis most relevant CRE and positron data sets are remarkably well reproduced. Consistent fits of cosmic-ray nuclei and antiproton data, which are crucial to validate the adopted propagation setup(s) and to fix the solar modulation potential, are obtained for the Kraichnan and plain-diffusion propagation setups, while the Kolmogorov one is disfavored. We then confirm that nearby pulsars are viable source candidates of the required e{sup {+-}} extra-component. In that case, we show that the predicted CRE anisotropy is compatible with Fermi-LAT constraints and that a positive detection should be at hand of that observatory. Models assuming that only nearby supernova remnants contribute to the high energy tail of the observed CRE spectrum are in contrast with anisotropy limits. (orig.)

  7. On noise treatment in radio measurements of cosmic ray air showers

    CERN Document Server

    Schröder, F G; Arteaga, J C; Asch, T; Bähren, L; Bekk, K; Bertaina, M; Biermann, P L; Blümer, J; Bozdog, H; Brancus, I M; Buchholz, P; Buitink, S; Cantoni, E; Chiavassa, A; Daumiller, K; de Souza, V; Doll, P; Engel, R; Falcke, H; Finger, M; Fuhrmann, D; Gemmeke, H; Grupen, C; Haungs, A; Heck, D; Hörandel, J R; Horneffer, A; Huber, D; Huege, T; Isar, P G; Kampert, K -H; Kang, D; Krömer, O; Kuijpers, J; Lafebre, S; Link, K; Łuczak, P; Ludwig, M; Mathes, H J; Melissas, M; Morello, C; Nehls, S; Oehlschläger, J; Palmieri, N; Pierog, T; Rautenberg, J; Rebel, H; Roth, M; Rühle, C; Saftoiu, A; Schieler, H; Schmidt, A; Sima, O; Toma, G; Trinchero, G C; Weindl, A; Wochele, J; Wommer, M; Zabierowski, J

    2010-01-01

    Precise measurements of the radio emission by cosmic ray air showers require an adequate treatment of noise. Unlike to usual experiments in particle physics, where noise always adds to the signal, radio noise can in principle decrease or increase the signal if it interferes by chance destructively or constructively. Consequently, noise cannot simply be subtracted from the signal, and its influence on amplitude and time measurement of radio pulses must be studied with care. First, noise has to be determined consistently with the definition of the radio signal which typically is the maximum field strength of the radio pulse. Second, the average impact of noise on radio pulse measurements at individual antennas is studied for LOPES. It is shown that a correct treatment of noise is especially important at low signal-to-noise ratios: noise can be the dominant source of uncertainty for pulse height and time measurements, and it can systematically flatten the slope of lateral distributions. The presented method can ...

  8. Measurement of the cosmic-ray proton spectrum with the Fermi Large Area Telescope

    Science.gov (United States)

    Green, David; Fermi LAT Area Telescope Collaboration Collaboration

    2017-01-01

    We present the measurement of the cosmic-ray proton spectrum between 54 GeV and 9.5 TeV using 7 years of Pass 8 flight data from the Fermi Large Area Telescope (LAT). We developed a dedicated proton event selection with an acceptance of 0.25 m2 sr. Our analysis yields a large dataset with low statistical uncertainty and low residual contamination for a spectral measurement. The systematic errors associated with the acceptance, energy measurement, GEANT4 Monte-Carlo simulations are an order of magnitude larger than the statistical uncertainty. The event selection and spectral measurement of the proton analysis create the opportunity for additional proton analyses with the LAT, such as a dedicated proton anisotropy search.

  9. Cosmic-Ray Neutron Probe: Non-Invasive Measurement of Soil Water Content

    Science.gov (United States)

    Zreda, M.; Desilets, D.; Ferre, T. P.

    2005-12-01

    Water content measurement methods have been designed primarily for either highly accurate, small scale applications (time domain reflectometry, neutron probe) or for rapid estimation over very large areas (satellite imagery), but no established technique exists for the scale intermediate to point measurement and satellite images. We are developing a novel technique for soil water determination that operates on the horizontal scale of dekameters. This scale of operation makes the method an appealing tool for both direct measurement at relevant scales and for calibration of satellite remote sensors. The method is based on the same principle that underlies conventional neutron probes: thermalization of neutrons by hydrogen atoms. The standard neutron probe works by emitting fast neutrons from a source in the instrument, and measuring the flux of neutrons that are scattered back. Our new probe uses a similar detector, but has cosmic-ray neutrons as a source. Results from a series of laboratory and field experiments show that our cosmic-ray probe is capable of measuring changes of water content resulting from irrigation or infiltration after a storm event. Our sensitivity experiments indicate that that 1% change in volumetric water content corresponds to approximately 1% change in neutron flux. Neutron intensities are sensitive to water in the upper 10-50 cm of soil and over a footprint of 10-100 m in diameter. Both the depth and the footprint decrease with increasing soil water content. Coupling neutron detectors with various shielding materials (we used cadmium and polyethylene) changes the energy sensitivity of the instrument, and thereby also the sensitivity to water content. The maximum sensitivity of the instrument to water (or hydrogen) content is achieved by placing the instrument about 20 cm below the surface or about 100-200 m above the surface (in a balloon or an aircraft). Our new method has several useful features: it is non-invasive and non

  10. MCNPX simulation of influence of cosmic rays on low-activity spectrometric measurements

    Science.gov (United States)

    Šolc, Jaroslav; Kovář, Petr; Dryák, Pavel

    2014-02-01

    Germanium gamma spectrometers are effective instruments for low-activity measurement of a mixture of radionuclides in environmental samples, food samples, in materials released from nuclear facilities to the environment, etc. In such measurements cosmic rays have a significant contribution to the background signal. A Monte Carlo code MCNPXTM was used to calculate coaxial high-purity germanium (HPGe) detector pulse-height spectra caused by cosmic rays penetrating through shielding made of concrete and lead. Simulations were compared to two different measurements, one performed inside a 10 cm thick lead shielding and another done inside a larger chamber made of low-activity concrete and with several ceiling thicknesses. In the first experiment, a discrepancy was found between simulated and measured spectra by up to the factor of 4 at 2.62 MeV and slowly decreasing to unity at 13 MeV. It is assumed that the discrepancy between the measured and simulated spectra is caused by the simplification of muon energy losses treatment resulting in the underestimation of count rate in simulated pulse-height spectrum. Good agreement was obtained between simulation and measurement of differences of detector count rates in 662 keV and 1332 keV energy windows inside a concrete chamber with varying ceiling thickness. It is assumed that due to lower effective Z of concrete, delta electron bremsstrahlung has lower yield and the muon radiation energy losses start to be important at higher energies than in lead. As a result, the total contribution of these effects to the outputs of MCNPXTM simulations of concrete chamber is not dominant in the investigated energy windows and the simulation results are in a close agreement with the measurement.

  11. New physics, the cosmic ray spectrum knee, and $pp$ cross section measurements

    CERN Document Server

    Dixit, Aparna; McKay, Douglas W; Mukherjee, Parama

    2009-01-01

    We model new physics modifications to the total proton-proton cross section with an incoherent term that allows for missing energy above the scale of new physics. We explore the possibility that the new physics interaction alone can provide an explanation for the knee just above $10^6$ GeV in the cosmic ray spectrum. We add the constraint that the new physics must also be consistent with published $pp$ cross section measurements an order of magnitude and more above the knee. Allowing for the necessary rescaling of the cross section data in the light of the new physics, we find parameter ranges in several generic models that readily give good quality fits to recently published Tibet III spectrum analysis and to the rescaled direct cross section measurements. The rise in cross section required at energies above the knee is radical. Even before reaching design energy, the Large Hadron Collider can test this picture with total cross section measurements.

  12. Radio emission of energetic cosmic ray air showers: Polarization measurements with LOPES

    Energy Technology Data Exchange (ETDEWEB)

    Isar, P.G. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe (Germany)], E-mail: gina.isar@ik.fzk.de; Apel, W.D. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe (Germany); Arteaga, J.C. [Institut fuer Experimentelle Kernphysik, Universitaet Karlsruhe (Germany); Asch, T. [Inst. Prozessdatenverarbeitung und Elektronik, Forschungszentrum Karlsruhe (Germany); Auffenberg, J. [Fachbereich Physik, Universitaet Wuppertal (Germany); Badea, F. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe (Germany); Baehren, L. [Department of Astrophysics, Radboud University Nijmegen (Netherlands); Bekk, K. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe (Germany); Bertaina, M. [Dipartimento di Fisica Generale dell' Universita Torino (Italy); Biermann, P.L. [Max-Planck-Institut fuer Radioastronomie Bonn (Germany); Bluemer, J. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe (Germany); Institut fuer Experimentelle Kernphysik, Universitaet Karlsruhe (Germany); Bozdog, H. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe (Germany); Brancus, I.M. [National Institute of Physics and Nuclear Engineering Bucharest (Romania); Brueggemann, M.; Buchholz, P. [Fachbereich Physik, Universitaet Siegen (Germany); Buitink, S. [Department of Astrophysics, Radboud University Nijmegen (Netherlands); Cantoni, E. [Dipartimento di Fisica Generale dell' Universita Torino (Italy); Istituto di Fisica dello Spazio Interplanetario, INAF Torino (Italy); Chiavassa, A. [Dipartimento di Fisica Generale dell' Universita Torino (Italy); Cossavella, F. [Institut fuer Experimentelle Kernphysik, Universitaet Karlsruhe (Germany); Daumiller, K. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe (Germany)] (and others)

    2009-06-01

    LOPES is a radio antenna array co-located with the Karlsruhe Shower Core and Array DEtector, KASCADE-Grande in Forschungszentrum Karlsruhe, Germany, which provides well-calibrated trigger information and air shower parameters for primary energies up to 10{sup 18}eV. By the end of 2006, the radio antennas were re-configured to perform polarization measurements of the radio signal of cosmic ray air showers, recording in the same time both, the East-West and North-South polarization directions of the radio emission. The main goal of these measurements is to reconstruct the polarization characteristics of the emitted signal. This will allow a detailed comparison with theoretical predictions. The current status of these measurements is reported here.

  13. Measurement of natural radionuclides in phosphgypsum using an anti-cosmic gamma-ray spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Ferreux, Laurent [CEA, LIST, Laboratoire National Henri Becquerel, F-91191, Gif-sur-Yvette Cedex (France)], E-mail: laurent.ferreux@cea.fr; Moutard, Gerard; Branger, Thierry [CEA, LIST, Laboratoire National Henri Becquerel, F-91191, Gif-sur-Yvette Cedex (France)

    2009-05-15

    Gamma-ray spectrometry measurements have been carried out to determine the activity of natural radionuclides in a phosphogypsum sample included in a specific tight container. The gamma spectrometer includes an N-type coaxial high-purity germanium (HPGe) detector equipped with an anti-cosmic system. This measurement required the determination of linear attenuation coefficients of phosphogypsum to calculate self-absorption correction between efficiency calibration conditions and measurement ones. The results are given for the three natural chains and for {sup 40}K, in term of specific activity/g of dry material, ranging from a few Bq kg{sup -1} to a few hundreds Bq kg{sup -1}. The equilibrium within the different families and the {sup 235}U/{sup 238}U ratio are discussed.

  14. History of cosmic ray research in Finland

    Science.gov (United States)

    Usoskin, I. G.; Valtonen, E.; Vainio, R.; Tanskanen, P. J.; Aurela, A. M.

    2009-11-01

    The history of cosmic ray research in Finland can be traced back to the end of 1950s, when first ground-based cosmic ray measurements started in Turku. The first cosmic ray station was founded in Oulu in 1964 performing measurements of cosmic rays by a muon telescope, which was later complemented by a neutron monitor. Since the 1990s, several research centers and universities, such as The Finnish Meteorological Institute, Helsinki University of Technology, University of Oulu, University of Turku and University of Helsinki have been involved in space science projects, such as SOHO, AMS, Cluster, Cassini, BepiColombo, etc. At the same time, ground-based cosmic ray measurements have reached a new level, including a fully automatic on-line database in Oulu and a new muon measuring underground site in Pyhäsalmi. Research groups in Helsinki, Oulu and Turku have also extensive experience in theoretical investigations of different aspects of cosmic ray physics. Cosmic ray research has a 50-year long history in Finland, covering a wide range from basic long-running ground-based observations to high-technology space-borne instrumentation and sophisticated theoretical studies. Several generations of researchers have been involved in the study ensuring transfer of experience and building the recognized Finnish research school of cosmic ray studies.

  15. Cosmic ray energy spectrum measurement with the Antarctic Muon and Neutrino Detector Array (AMANDA)

    Science.gov (United States)

    Chirkin, Dmitry Aleksandrovich

    AMANDA-II is a neutrino telescope composed of 677 optical sensors organized along 19 strings buried deep in the Antarctic ice cap. It is designed to detect Cherenkov light produced by cosmic-ray- and neutrino-induced charged leptons. The majority of events recorded by AMANDA-II are caused by muons which are produced in the atmosphere by high-energy cosmic rays. The leading uncertainties in simulating such events come from the choice of the high-energy model used to describe the first interaction of the cosmic rays, uncertainties in our knowledge and implementation of the ice properties at the depth of the detector, and individual optical module sensitivities. Contributions from uncertainties in the atmospheric conditions and muon cross sections in ice are smaller. The downgoing muon simulation was substantially improved by using the extensive air shower generator CORSIKA to describe the shower development in the atmosphere, and by writing a new software package for the muon propagation (MMC), which reduced computational and algorithm errors below the level of uncertainties of the muon cross sections in ice. A method was developed that resulted in a flux measurement of cosmic rays with energies 1.5--200 TeV per nucleon (95% of primaries causing low-multiplicity events in AMANDA-II have energies in this range) independent of ice model and optical module sensitivities. Predictions of six commonly used high-energy interaction models (QGSJET, VENUS, NEXUS, DPMJET, HDPM, and SIBYLL) are compared to data. The best agreement with direct measurements is achieved with QGSJET, VENUS, and NEXUS. Assuming a power-law energy spectrum (phi0,i · E -gammai) for cosmic-ray components from hydrogen to iron (i = H,..., Fe) and their mass distribution according to Wiebel-South (Wiebel-South & Biermann, 1999), phi 0,i and gammai were corrected to achieve the best description of the data. For the hydrogen component, values of phi0,H = 0.106 +/- 0.007 m-2 sr-1s-1TeV-1 , gammaH = 2

  16. Measurement of the cosmic ray composition at the knee with the SPASE-2/AMANDA-B10 detectors

    CERN Document Server

    Ahrens, J; Andrés, E; Bai, X; Barwick, S W; Bay, R C; Becka, T; Becker, K H; Bernardini, E; Bertrand, D; Binon, F; Biron, A; Boersma, D J; Boser, S; Botner, O; Bouchta, A; Bouhali, O; Burgess, T; Carius, S; Castermans, T; Chirkin, D; Conrad, J; Cooley, J; Cowen, D F; Davour, A; De Clercq, C; De Young, T R; Desiati, P; Dewulf, J P; Dickinson, E; Ekstrom, P; Engel, R; Evenson, P; Feser, T; Gaisser, T K; Ganugapati, R; Gaug, M; Geenen, H; Gerhardt, L; Goldschmidt, A; Hallgren, A; Halzen, F; Hanson, K; Hardtke, R; Hauschildt, T; Hellwig, M; Herquet, P; Hill, G C; Hinton, J A; Hubert, D; Hughey, B; Hulth, P O; Hultqvist, K; Hundertmark, S; Jacobsen, J; Karle, A; Kim, J; Köpke, L; Kowalski, M; Kühn, K; Lamoureux, J I; Leich, H; Leuthold, M; Lindahl, P; Liubarsky, I; Lloyd Evans, J; Madsen, J; Mandli, K; Marciniewski, P; Martino, J R; Matis, H S; McParland, C P; Messarius, T; Miller, T C; Minaeva, Y; Miocinovic, P; Mock, P C; Morse, R; Nahnhauer, R; Neunhoffer, T; Niessen, P; Nygren, D R; Ogleman, H; Olbrechts, P; Pohl, A C; Porrata, R; Price, P B; Przybylski, G T; Rawlins, K; Resconi, E; Rhode, W; Ribordy, M; Richter, S; Rochester, K; Ross, D; Sander, H G; Schinarakis, K; Schlenstedt, S; Schmidt, T; Schneider, D; Schwarz, R; Silvestri, A; Solarz, M; Spiczak, G M; Spiering, C; Stamatikos, M; Stanev, T; Steele, D; Steffen, P; Stokstad, R G; Sulanke, K H; Taboada, I; Tilav, S; Wagner, W; Walck, C; Wang, Y R; Watson, A A; Wiebusch, C; Wiedemann, C; Wischnewski, R; Wissing, H; Woschnagg, K; Wu, W; Yodh, G; Young, S; Pérez de los Heros, C; 10.1016/j.astropartphys.2004.04.007

    2004-01-01

    The mass composition of high-energy cosmic rays at energies above 10 /sup 15/ eV can provide crucial information for the understanding of their origin. Air showers were measured simultaneously with the SPASE-2 air shower array and the AMANDA-B10 Cherenkov telescope at the South Pole. This combination has the advantage to sample almost all high-energy shower muons and is thus a new approach to the determination of the cosmic ray composition. The change in the cosmic ray mass composition was measured versus existing data from direct measurements at low energies. Our data show an increase of the mean log atomic mass by about 0.8 between 500 TeV and 5 PeV. This trend of an increasing mass through the "knee" region is robust against a variety of systematic effects.

  17. Astrophysical Sources of Cosmic Rays and Related Measurements with the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, : J.; Abreu, P.; Aglietta, M.; Aguirre, C.; Ahn, E.J.; Allard, D.; Allekotte, I.; Allen, J.; Alvarez-Muniz, J.; Ambrosio, M.; Anchordoqui, L.

    2009-06-01

    These are presentations to be presented at the 31st International Cosmic Ray Conference, in Lodz, Poland during July 2009. It consists of the following presentations: (1) Correlation of the highest energy cosmic rays with nearby extragalactic objects in Pierre Auger Observatory data; (2) Discriminating potential astrophysical sources of the highest energy cosmic rays with the Pierre Auger Observatory; (3) Intrinsic anisotropy of the UHECR from the Pierre Auger Observatory; (4) Ultra-high energy photon studies with the Pierre Auger Observatory; (5) Limits on the flux of diffuse ultra high energy neutrinos set using the Pierre Auger Observatory; (6) Search for sidereal modulation of the arrival directions of events recorded at the Pierre Auger Observatory; (7) Cosmic Ray Solar Modulation Studies in the Pierre Auger Observatory; (8) Investigation of the Displacement Angle of the Highest Energy Cosmic Rays Caused by the Galactic Magnetic Field; (9) Search for coincidences with astrophysical transients in Pierre Auger Observatory data; and (10) An alternative method for determining the energy of hybrid events at the Pierre Auger Observatory.

  18. Cosmic ray physics with ACORDE at LHC

    Energy Technology Data Exchange (ETDEWEB)

    Pagliarone, C [Universita degli Studi di Cassino and INFN Pisa, Largo B. Pontecorvo, 3 - Pisa (Italy); Fernandez-Tellez, A [Benemerita Universidad Autonoma de Puebla (BUAP), Puebla (Mexico)], E-mail: pagliarone@fnal.gov

    2008-05-15

    The use of large underground high-energy physics experiments, for comic ray studies, have been used, in the past, at CERN, in order to measure, precisely, the inclusive cosmic ray flux in the energy range from 2{center_dot}10{sup 10} to 2{center_dot} 10{sup 12} eV. ACORDE, ALICE Cosmic Rays DEtector, will act as Level 0 cosmic ray trigger and, together with other ALICE apparatus, will provide precise information on cosmic rays with primary energies around 10{sup 15} to 10{sup 17} eV. This paper reviews the main detector features, the present status, commissioning and integration with other apparatus. Finally, we discuss the ACORDE-ALICE cosmic ray physics program.

  19. Cosmic Ray Physics with ACORDE at LHC

    CERN Document Server

    Pagliarone, C.

    2008-01-01

    The use of large underground high-energy physics experiments, for comic ray studies, have been used, in the past, at CERN, in order to measure, precisely, the inclusive cosmic ray flux in the energy range from 2x10^10 - 2x10^12 eV. ACORDE, ALICE Cosmic Rays DEtector, will act as Level 0 cosmic ray trigger and, together with other ALICE apparatus, will provide precise information on cosmic rays with primary energies around 10^15 - 10^17 eV. This paper reviews the main detector features, the present status, commissioning and integration with other apparatus. Finally, we discuss the ACORDE-ALICE cosmic ray physics program.

  20. A combined interpretation of cosmic ray and antiproton high energy measurements

    Energy Technology Data Exchange (ETDEWEB)

    Evoli, C. [Scuola Internazionale Superiore di Studi Avanzati SISSA, Trieste (Italy); Gaggero, D. [Istituto Nazionale di Fisica Nucleare INFN, Sezione di Pisa (Italy); Dipartimento di Fisica ' ' E. Fermi' ' , Univ. di Pisa (Italy); Grasso, D. [Istituto Nazionale di Fisica Nucleare INFN, Sezione di Pisa (Italy); Maccione, L. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2009-09-15

    In the last months several ballon and satellite experiments improved significantly our knowledge of cosmic ray (CR) spectra at high energy. In particular CREAM allowed to measure B/C, C/O and N/O ratios up to 1 TeV/n and PAMELA the anti p/p ratio up to 100 GeV with unprecedented accuracy. These measurements offer a valuable probe of CR propagation properties. We performed a statistical analysis to test the compatibility of these results, as well as other most significant experimental data, with the predictions of a new numerical CR diffusion package (DRAGON). We found that above 1 GeV/n all data are consistent with a plain diffusion scenario and point to well defined ranges for the normalization and energy dependence of the diffusion coefficient. (orig.)

  1. Measurement of the cosmic ray energy spectrum with IceTop-73

    CERN Document Server

    ,

    2013-01-01

    We report on the measurement of the all-particle cosmic ray energy spectrum with the IceTop air shower array in the energy range from 1.58 PeV to 1.26 EeV. The IceTop air shower array is the surface component of the IceCube Neutrino Observatory at the geographical South Pole. The analysis was performed using only information from IceTop. The data used in this work were taken from June 1, 2010 to May 13, 2011. During that period the IceTop array consisted of 73 stations compared to 81 in its final configuration. The measured spectrum exhibits a clear deviation from a single power law above the knee around 4PeV and below 1EeV. We observe spectral hardening around 18 PeV and steepening around 130 PeV.

  2. Measurement of the cosmic ray energy spectrum with IceTop-73

    Science.gov (United States)

    Aartsen, M. G.; Abbasi, R.; Abdou, Y.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Altmann, D.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Bechet, S.; Becker Tjus, J.; Becker, K.-H.; Benabderrahmane, M. L.; BenZvi, S.; Berghaus, P.; Berley, D.; Bernardini, E.; Bernhard, A.; Bertrand, D.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohaichuk, S.; Bohm, C.; Bose, D.; Böser, S.; Botner, O.; Brayeur, L.; Bretz, H.-P.; Brown, A. M.; Bruijn, R.; Brunner, J.; Carson, M.; Casey, J.; Casier, M.; Chirkin, D.; Christov, A.; Christy, B.; Clark, K.; Clevermann, F.; Coenders, S.; Cohen, S.; Cowen, D. F.; Cruz Silva, A. H.; Danninger, M.; Daughhetee, J.; Davis, J. C.; De Clercq, C.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; Dunkman, M.; Eagan, R.; Eberhardt, B.; Eisch, J.; Ellsworth, R. W.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feintzeig, J.; Feusels, T.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Flis, S.; Franckowiak, A.; Frantzen, K.; Fuchs, T.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez, J. G.; Goodman, J. A.; Góra, D.; Grandmont, D. T.; Grant, D.; Groß, A.; Ha, C.; Haj Ismail, A.; Hallen, P.; Hallgren, A.; Halzen, F.; Hanson, K.; Heereman, D.; Heinen, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Homeier, A.; Hoshina, K.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jacobi, E.; Jacobsen, J.; Jagielski, K.; Japaridze, G. S.; Jero, K.; Jlelati, O.; Kaminsky, B.; Kappes, A.; Karg, T.; Karle, A.; Kelley, J. L.; Kiryluk, J.; Kläs, J.; Klein, S. R.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krasberg, M.; Krings, K.; Kroll, G.; Kunnen, J.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Landsman, H.; Larson, M. J.; Lesiak-Bzdak, M.; Leuermann, M.; Leute, J.; Lünemann, J.; Macíias, O.; Madsen, J.; Maggi, G.; Maruyama, R.; Mase, K.; Matis, H. S.; McNally, F.; Meagher, K.; Merck, M.; Meures, T.; Miarecki, S.; Middell, E.; Milke, N.; Miller, J.; Mohrmann, L.; Montaruli, T.; Morse, R.; Nahnhauer, R.; Naumann, U.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke, A.; Odrowski, S.; Olivas, A.; Omairat, A.; O'Murchadha, A.; Paul, L.; Pepper, J. A.; Pérez de los Heros, C.; Pfendner, C.; Pieloth, D.; Pinat, E.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Rädel, L.; Rameez, M.; Rawlins, K.; Redl, P.; Reimann, R.; Resconi, E.; Rhode, W.; Ribordy, M.; Richman, M.; Riedel, B.; Rodrigues, J. P.; Rott, C.; Ruhe, T.; Ruzybayev, B.; Ryckbosch, D.; Saba, S. M.; Salameh, T.; Sander, H.-G.; Santander, M.; Sarkar, S.; Schatto, K.; Scheriau, F.; Schmidt, T.; Schmitz, M.; Schoenen, S.; Schöneberg, S.; Schönwald, A.; Schukraft, A.; Schulte, L.; Schulz, O.; Seckel, D.; Sestayo, Y.; Seunarine, S.; Shanidze, R.; Sheremata, C.; Smith, M. W. E.; Soldin, D.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stasik, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Strahler, E. A.; Ström, R.; Sullivan, G. W.; Taavola, H.; Taboada, I.; Tamburro, A.; Tepe, A.; Ter-Antonyan, S.; Tešić, G.; Tilav, S.; Toale, P. A.; Toscano, S.; Unger, E.; Usner, M.; Vallecorsa, S.; van Eijndhoven, N.; Van Overloop, A.; van Santen, J.; Vehring, M.; Voge, M.; Vraeghe, M.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Weaver, Ch.; Wellons, M.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Williams, D. R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, C.; Xu, D. L.; Xu, X. W.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; Ziemann, J.; Zierke, S.; Zoll, M.

    2013-08-01

    We report on the measurement of the all-particle cosmic ray energy spectrum with the IceTop air shower array in the energy range from 1.58 PeV to 1.26 EeV. The IceTop air shower array is the surface component of the IceCube Neutrino Observatory at the geographical South Pole. The analysis was performed using only information from IceTop. The data used in this work were taken from June 1, 2010 to May 13, 2011. During that period the IceTop array consisted of 73 stations, compared to 81 in its final configuration. The measured spectrum exhibits a clear deviation from a single power law above the knee around 4 PeV and below 1 EeV. We observe spectral hardening around 18 PeV and steepening around 130 PeV.

  3. Measuring extensive air showers with Cherenkov light detectors of the Yakutsk array: the energy spectrum of cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, A A; Knurenko, S P; Sleptsov, I Ye [Shafer Institute for Cosmophysical Research and Aeronomy, Yakutsk 677980 (Russian Federation)], E-mail: ivanov@ikfia.ysn.ru

    2009-06-15

    The energy spectrum of cosmic rays in the range E{approx}10{sup 15} eV to 6x10{sup 19} eV is studied in this paper using air Cherenkov light detectors of the Yakutsk array. The total flux of photons produced by the relativistic electrons (including positrons as well, hereafter) of extensive air showers in the atmosphere is used as an energy estimator of the primary particle initiating a shower. The resultant differential flux of cosmic rays exhibits, in agreement with previous measurements, a knee and ankle feature at energies of 3x10{sup 15} and {approx}10{sup 19} eV, respectively. A comparison of observational data with simulations is made in the knee and ankle regions in order to choose the models of galactic and extragalactic components of cosmic rays that describe well the energy spectrum measured.

  4. Accelerator Measurements of Magnetically Induced Radio Emission from Particle Cascades with Applications to Cosmic-Ray Air Showers.

    Science.gov (United States)

    Belov, K; Mulrey, K; Romero-Wolf, A; Wissel, S A; Zilles, A; Bechtol, K; Borch, K; Chen, P; Clem, J; Gorham, P W; Hast, C; Huege, T; Hyneman, R; Jobe, K; Kuwatani, K; Lam, J; Liu, T C; Nam, J; Naudet, C; Nichol, R J; Rauch, B F; Rotter, B; Saltzberg, D; Schoorlemmer, H; Seckel, D; Strutt, B; Vieregg, A G; Williams, C

    2016-04-08

    For 50 years, cosmic-ray air showers have been detected by their radio emission. We present the first laboratory measurements that validate electrodynamics simulations used in air shower modeling. An experiment at SLAC provides a beam test of radio-frequency (rf) radiation from charged particle cascades in the presence of a magnetic field, a model system of a cosmic-ray air shower. This experiment provides a suite of controlled laboratory measurements to compare to particle-level simulations of rf emission, which are relied upon in ultrahigh-energy cosmic-ray air shower detection. We compare simulations to data for intensity, linearity with magnetic field, angular distribution, polarization, and spectral content. In particular, we confirm modern predictions that the magnetically induced emission in a dielectric forms a cone that peaks at the Cherenkov angle and show that the simulations reproduce the data within systematic uncertainties.

  5. Accelerator Measurements of Magnetically Induced Radio Emission from Particle Cascades with Applications to Cosmic-Ray Air Showers

    Science.gov (United States)

    Belov, K.; Mulrey, K.; Romero-Wolf, A.; Wissel, S. A.; Zilles, A.; Bechtol, K.; Borch, K.; Chen, P.; Clem, J.; Gorham, P. W.; Hast, C.; Huege, T.; Hyneman, R.; Jobe, K.; Kuwatani, K.; Lam, J.; Liu, T. C.; Nam, J.; Naudet, C.; Nichol, R. J.; Rauch, B. F.; Rotter, B.; Saltzberg, D.; Schoorlemmer, H.; Seckel, D.; Strutt, B.; Vieregg, A. G.; Williams, C.; T-510 Collaboration

    2016-04-01

    For 50 years, cosmic-ray air showers have been detected by their radio emission. We present the first laboratory measurements that validate electrodynamics simulations used in air shower modeling. An experiment at SLAC provides a beam test of radio-frequency (rf) radiation from charged particle cascades in the presence of a magnetic field, a model system of a cosmic-ray air shower. This experiment provides a suite of controlled laboratory measurements to compare to particle-level simulations of rf emission, which are relied upon in ultrahigh-energy cosmic-ray air shower detection. We compare simulations to data for intensity, linearity with magnetic field, angular distribution, polarization, and spectral content. In particular, we confirm modern predictions that the magnetically induced emission in a dielectric forms a cone that peaks at the Cherenkov angle and show that the simulations reproduce the data within systematic uncertainties.

  6. Cosmic ray driven Galactic winds

    Science.gov (United States)

    Recchia, S.; Blasi, P.; Morlino, G.

    2016-11-01

    The escape of cosmic rays from the Galaxy leads to a gradient in the cosmic ray pressure that acts as a force on the background plasma, in the direction opposite to the gravitational pull. If this force is large enough to win against gravity, a wind can be launched that removes gas from the Galaxy, thereby regulating several physical processes, including star formation. The dynamics of these cosmic ray driven winds is intrinsically non-linear in that the spectrum of cosmic rays determines the characteristics of the wind (velocity, pressure, magnetic field) and in turn the wind dynamics affects the cosmic ray spectrum. Moreover, the gradient of the cosmic ray distribution function causes excitation of Alfvén waves, that in turn determines the scattering properties of cosmic rays, namely their diffusive transport. These effects all feed into each other so that what we see at the Earth is the result of these non-linear effects. Here, we investigate the launch and evolution of such winds, and we determine the implications for the spectrum of cosmic rays by solving together the hydrodynamical equations for the wind and the transport equation for cosmic rays under the action of self-generated diffusion and advection with the wind and the self-excited Alfvén waves.

  7. Cosmic ray: Studying the origin

    Energy Technology Data Exchange (ETDEWEB)

    Szabelski, J. [Cosmic Ray Laboratory, Soltan Institute for Nuclear Studies, Lodz (Poland)

    1997-12-31

    Investigations of the origin of cosmic rays are presented. Different methods are discussed: studies of cosmic gamma rays of energy from 30 MeV to about 10{sup 15} eV (since photons point to their places of origin), studies of the mass composition of cosmic rays (because it reflects source morphology), and studies of cosmic rays with energy above 1O{sup 19} eV (for these are the highest energies observed in nature). (author) 101 refs, 19 figs, 7 tabs

  8. Radio emission of highly inclined cosmic ray air showers measured with LOPES

    CERN Document Server

    Petrovic, Jelena; Asch, T; Badea, F; Bähren, L; Bekk, K; Bercuci, A; Bertaina, M; Biermann, P L; Blumer, J; Bozdog, H; Brancus, I M; Bruggemann, M; Buchholz, P; Buitink, S; Butcher, H; Chiavassa, A; Cossavella, F; Daumiller, K; Di Pierro, F; Doll, P; Engel, R; Falcke, H; Gemmeke, H; Ghia, P L; Glasstetter, R; Grupen, C; Haungs, A; Heck, D; Hörandel, J R; Horneffer, A; Huege, T; Kampert, K H; Kolotaev, Yu; Krömer, O; Kuijpers, J; Lafebre, S; Mathes, H J; Mayer, H J; Meurer, C; Milke, J; Mitrica, B; Morello, C; Navarra, G; Nehls, S; Nigl, A; Obenland, R; Oehlschläger, J; Ostapchenko, S; Over, S; Petcu, M; Pierog, T; Plewnia, S; Rebel, H; Risse, A; Roth, M; Schieler, H; Sima, O; Singh, K; Stumpert, M; Toma, G; Trinchero, G C; Ulrich, H; Van Buren, J; Walkowiak, W; Weindl, A; Wochele, J; Zabierowski, J; Zensus, J A; Zimmermann, D

    2006-01-01

    LOPES-10 (the first phase of LOPES, consisting of 10 antennas) detected a significant number of cosmic ray air showers with a zenith angle larger than 50$^{\\circ}$, and many of these have very high radio field strengths. The most inclined event that has been detected with LOPES-10 has a zenith angle of almost 80$^{\\circ}$. This is proof that the new technique is also applicable for cosmic ray air showers with high inclinations, which in the case that they are initiated close to the ground, can be a signature of neutrino events.Our results indicate that arrays of simple radio antennas can be used for the detection of highly inclined air showers, which might be triggered by neutrinos. In addition, we found that the radio pulse height (normalized with the muon number) for highly inclined events increases with the geomagnetic angle, which confirms the geomagnetic origin of radio emission in cosmic ray air showers.

  9. Measurement of Cosmic Ray antiproton/proton flux ratio at TeV energies with ARGO-YBJ

    CERN Document Server

    Di Sciascio, G

    2011-01-01

    Cosmic ray antiprotons provide an important probe for the study of cosmic-ray propagation in the interstellar space and to investigate the existence of Galactic dark matter. The ARGO-YBJ experiment, located at the Yangbajing Cosmic Ray Laboratory (Tibet, P.R. China, 4300 m a.s.l., 606 g/cm$^2$), is the only experiment exploiting the full coverage approach at very high altitude presently at work. The ARGO-YBJ experiment is particularly effective in measuring the cosmic ray antimatter content via the observation of the cosmic rays Moon shadowing effect. Based on all the data recorded during the period from July 2006 through November 2009 and a full Monte Carlo simulation, we searched for the existence of the shadow produced by antiprotons at the few-TeV energy region. No evidence of the existence of antiprotons was found in this energy region. Upper limits to the antip/p flux ratio are set to 5 % at a median energy of 2 TeV and 6 % at 5 TeV with a confidence level of 90 %. In the few-TeV energy range this resul...

  10. Measurement of the ultra high energy cosmic ray flux from data of very inclined showers at the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Dembinski, Hans Peter

    2009-12-03

    This work describes the derivation of the energy dependent flux of ultra-high energy cosmic rays from data of very inclined air showers observed with the Pierre Auger Observatory. It focuses on the event class of very inclined air showers with zenith angles larger than 60 . The lateral ground profile of these showers is muon dominated and not radially symmetric around the shower axis due to geomagnetic deflections and other effects. The dependency of this profile on the direction, energy and mass of the cosmic ray is discussed with a mixture of detailed Monte-Carlo simulations and a simplified analytical model of the air shower cascade. It is found in agreement with other studies that the normalized shape of the muon density profile is approximately universal over the range of cosmic ray energies and masses measured at the Pierre Auger Observatory, that the amplitude of the profile is almost proportional to the cosmic ray energy, and that its shower-to-shower fluctuations are sensitive to the mass composition of the cosmic rays. (orig.)

  11. Design and construction of a Cherenkov imager for charge measurement of nuclear cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Bourrion, O; Bernard, C; Bondoux, D; Bouly, J L; Bouvier, J; Boyer, B; Brinet, M; Buenerd, M; Damieux, G; Derome, L; Eraud, L; Foglio, R; Fombaron, D; Grondin, D; Marton, M; Pelissier, A [Laboratoire de Physique Subatomique et de Cosmologie, Universite Joseph Fourier Grenoble 1, CNRS/IN2P3, Institut Polytechnique de Grenoble, 53, rue des Martyrs, Grenoble (France); Lee, M H; Lutz, L [University of Maryland, College Park MD 20742 (United States); Menchaca-Rocha, A [Instituto de Fisica, UNAM, A.P. 20-364, 01000 Mexico DF (Mexico); Perie, J N, E-mail: olivier.bourrion@lpsc.in2p3.fr [Universite de Toulouse, INSA, UPS, Mines Albi, ISAE, ICA (Institut Clement Ader), 133, avenue de Rangueil, F-31077 Toulouse (France)

    2011-06-15

    A proximity focusing Cherenkov imager called CHERCAM, has been built for the charge measurement of nuclear cosmic rays with the CREAM instrument. It consists of a silica aerogel radiator plane across from a detector plane equipped with 1,600 1'' diameter photomultipliers. The two planes are separated by a ring expansion gap. The Cherenkov light yield is proportional to the charge squared of the incident particle. The expected relative light collection accuracy is in the few percents range. It leads to an expected single element separation over the range of nuclear charge Z of main interest 1 {<=} Z{approx}<26. CHERCAM is designed to fly with the CREAM balloon experiment. The design of the instrument and the implemented technical solutions allowing its safe operation in high altitude conditions (radiations, low pressure, cold) are presented.

  12. A proposed method for measurement of cosmic-ray mass composition based on geomagnetic spectroscopy

    Science.gov (United States)

    Dey, Rajat K.; Dam, Sandip

    2017-02-01

    The effect of the geomagnetic Lorentz force on the muon component of extensive air shower (EAS) has been studied in a Monte Carlo generated simulated data sample. This geomagnetic field affects the paths of muons in an EAS, causing a local contrast or polar asymmetry in the abundance of positive and negative muons about the shower axis. The asymmetry can be approximately expressed as a function of transverse separation between the positive and negative muons barycentric positions in the EAS through opposite quadrants across the shower core in the shower front plane. In the present study, it is found that the transverse muon barycenter separation and its maximum value obtained from the polar variation of the parameter are higher for iron primaries than protons for highly inclined showers. Hence, in principle, these parameters can be exploited to the measurement of primary cosmic-ray mass composition. Possibility of practical realization of the proposed method in a real experiment is briefly discussed.

  13. Design and construction of a Cherenkov imager for charge measurement of nuclear cosmic rays

    CERN Document Server

    Bourrion, O; Bondoux, D; Bouly, J L; Bouvier, J; Boyer, B; Brinet, M; Buenerd, M; Damieux, G; Derome, L; Eraud, L; Foglio, R; Fombaron, D; Grondin, D; Lee, M H; Lutz, L; Marton, M; Menchaca-Rocha, A; Pelissier, A; Périé, J N; Putze, A; Roudier, S; Sallaz-Damaz, Y; Seo, E S; Scordilis, J P; Yoon, Y S

    2011-01-01

    A proximity focusing Cherenkov imager called CHERCAM, has been built for the charge measurement of nuclear cosmic rays with the CREAM instrument. It consists of a silica aerogel radiator plane across from a detector plane equipped with 1,600 1" diameter photomultipliers. The two planes are separated by a ring expansion gap. The Cherenkov light yield is proportional to the charge squared of the incident particle. The expected relative light collection accuracy is in the few percents range. It leads to an expected single element separation over the range of nuclear charge Z of main interest 1 < Z < 26. CHERCAM is designed to fly with the CREAM balloon experiment. The design of the instrument and the implemented technical solutions allowing its safe operation in high altitude conditions (radiations, low pressure, cold) are presented.

  14. A proposed method for measurement of cosmic-ray mass composition based on geomagnetic spectroscopy

    Science.gov (United States)

    Dey, Rajat K.; Dam, Sandip

    2017-01-01

    The effect of the geomagnetic Lorentz force on the muon component of extensive air shower (EAS) has been studied in a Monte Carlo generated simulated data sample. This geomagnetic field affects the paths of muons in an EAS, causing a local contrast or polar asymmetry in the abundance of positive and negative muons about the shower axis. The asymmetry can be approximately expressed as a function of transverse separation between the positive and negative muons barycentric positions in the EAS through opposite quadrants across the shower core in the shower front plane. In the present study, it is found that the transverse muon barycenter separation and its maximum value obtained from the polar variation of the parameter are higher for iron primaries than protons for highly inclined showers. Hence, in principle, these parameters can be exploited to the measurement of primary cosmic-ray mass composition. Possibility of practical realization of the proposed method in a real experiment is briefly discussed.

  15. High-energy cosmic-ray electrons - A new measurement using transition-radiation detectors

    Science.gov (United States)

    Hartmann, G.; Mueller, D.; Prince, T.

    1977-01-01

    A new detector for cosmic-ray electrons, consisting of a combination of a transition-radiation detector and a shower detector, has been constructed, calibrated at accelerator beams, and exposed in a balloon flight under 5 g/sq cm of atmosphere. The design of this instrument and the methods of data analysis are described. Preliminary results in the energy range 9-300 GeV are presented. The energy spectrum of electrons is found to be significantly steeper than that of protons, consistent with a long escape lifetime of cosmic rays in the galaxy.

  16. LHCf-measurement of forward neutral particle production for cosmic ray research

    CERN Multimedia

    Sako, T; Masuda, K; Ito, Y; Adriani, O; Papini, P; Tricomi, A; Perrot, A; Ricciarini, S B; D'alessandro, R; Yoshida, K

    2007-01-01

    An energy calibration experiment is under preparation for ultra high energy cosmic ray experiments in the energy range between 1017eV and 1020eV. Small calorimeters will be installed between the two beam pipes in the â€ワY vacuum chamber” 140m away from the interaction point IP1 of the Large Hadron Collider. Within an exposure time of a few hours at luminosity ~10$^{29}$ cm-2s-1, very important results will be obtained that will resolve long standing quests by the highest energy cosmic ray physics experiments.

  17. High energy physics in cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Lawrence W. [University of Michigan, Ann Arbor, Michigan (United States)

    2013-02-07

    In the first half-century of cosmic ray physics, the primary research focus was on elementary particles; the positron, pi-mesons, mu-mesons, and hyperons were discovered in cosmic rays. Much of this research was carried out at mountain elevations; Pic du Midi in the Pyrenees, Mt. Chacaltaya in Bolivia, and Mt. Evans/Echo Lake in Colorado, among other sites. In the 1960s, claims of the observation of free quarks, and satellite measurements of a significant rise in p-p cross sections, plus the delay in initiating accelerator construction programs for energies above 100 GeV, motivated the Michigan-Wisconsin group to undertake a serious cosmic ray program at Echo Lake. Subsequently, with the succession of higher energy accelerators and colliders at CERN and Fermilab, cosmic ray research has increasingly focused on cosmology and astrophysics, although some groups continue to study cosmic ray particle interactions in emulsion chambers.

  18. Anisotropy and Corotation of Galactic Cosmic Rays

    CERN Document Server

    Amenomori, M; Bi, X J; Chen, D; Cui, S W; Danzengluobu; Ding, L K; Ding, X H; Feng Cun Feng; Zhaoyang Feng; Feng, Z Y; Gao, X Y; Geng, Q X; Guo, H W; He, H H; He, M; Hibino, K; Hotta, N; Haibing, H; Hu, H B; Huang, J; Huang, Q; Jia, H Y; Kajino, F; Kasahara, K; Katayose, Y; Kato, C; Kawata, K; Labaciren; Le, G M; Li, A F; Li, J Y; Lou, Y Q; Lü, H; Lu, S L; Meng, X R; Mizutani, K; Mu, J; Munakata, K; Nagai, A; Nanjo, H; Nishizawa, M; Ohnishi, M; Ohta, I; Onuma, H; Ouchi, T; Ozawa, S; Ren, J R; Saitô, T; Saito, T Y; Sakata, M; Sako, T K; Sasaki, T; Shibata, M; Shiomi, A; Shirai, T; Sugimoto, H; Takita, M; Tan, Y H; Tateyama, N; Torii, S; Tsuchiya, H; Udo, S; Wang, B; Wang, H; Wang, X; Wang, Y G; Wu, H R; Xue Liang; Yamamoto, Y; Yan, C T; Yang, X C; Yasue, S; Ye, Z H; Yu, G C; Yuan, A F; Yuda, T; Zhang, H M; Zhang, J L; Zhang, N J; Zhang, X Y; Zhang, Y; Zhaxisangzhu; Zhou, X X

    2006-01-01

    The intensity of Galactic cosmic rays is nearly isotropic because of the influence of magnetic fields in the Milky Way. Here, we present two-dimensional high-precision anisotropy measurement for energies from a few to several hundred teraelectronvolts (TeV), using the large data sample of the Tibet Air Shower Arrays. Besides revealing finer details of the known anisotropies, a new component of Galactic cosmic ray anisotropy in sidereal time is uncovered around the Cygnus region direction. For cosmic-ray energies up to a few hundred TeV, all components of anisotropies fade away, showing a corotation of Galactic cosmic rays with the local Galactic magnetic environment. These results have broad implications for a comprehensive understanding of cosmic rays, supernovae, magnetic fields, and heliospheric and Galactic dynamic environments.

  19. Heavy precipitation episodes and cosmic rays variation

    Directory of Open Access Journals (Sweden)

    A. Mavrakis

    2006-01-01

    Full Text Available In this paper an attempt is made to investigate the possible temporal correlation between heavy precipitation episodes and cosmic rays' activity, on various time scales. Cosmic rays measurements are sparse and cover less extended periods than those of precipitation. Precipitation is largely influenced by local climatic and even physiographic conditions, while cosmic rays' distribution is far more uniform over an area. Thus, in an effort to cover a larger range of climatic characteristics, each cosmic rays station was correlated with several nearby precipitation stations. Selected statistical methods were employed for the data processing. The analysis was preformed on annual, seasonal, monthly and daily basis whenever possible. Wet and dry regions and/or seasons seem to present a different response of precipitation to cosmic rays variations. Also Forbush decreases in most cases will not lead to heavy precipitation, yet this might be sensitive to precipitable water availability.

  20. Status of cosmic-ray antideuteron searches

    CERN Document Server

    von Doetinchem, P; Boggs, S; Bufalino, S; Dal, L; Donato, F; Fornengo, N; Fuke, H; Grefe, M; Hailey, C; Hamilton, B; Ibarra, A; Mitchell, J; Mognet, I; Ong, R A; Pereira, R; Perez, K; Putze, A; Raklev, A; Salati, P; Sasaki, M; Tarle, G; Urbano, A; Vittino, A; Wild, S; Xue, W; Yoshimura, K

    2015-01-01

    The precise measurement of cosmic-ray antiparticles serves as important means for identifying the nature of dark matter. Recent years showed that identifying the nature of dark matter with cosmic-ray positrons and higher energy antiprotons is difficult, and has lead to a significantly increased interest in cosmic-ray antideuteron searches. Antideuterons may also be generated in dark matter annihilations or decays, offering a potential breakthrough in unexplored phase space for dark matter. Low-energy antideuterons are an important approach because the flux from dark matter interactions exceeds the background flux by more than two orders of magnitude in the low-energy range for a wide variety of models. This review is based on the "dbar14 - dedicated cosmic-ray antideuteron workshop", which brought together theorists and experimentalists in the field to discuss the current status, perspectives, and challenges for cosmic-ray antideuteron searches and discusses the motivation for antideuteron searches, the theor...

  1. Diffuse galactic continuum emission measured by COMPTEL and the cosmic-ray electron spectrum

    Science.gov (United States)

    Strong, A. W.; Diehl, R.; Schoenfelder, V.; Varendorff, M.; Youssefi, G.; Bloemen, H.; Hermsen, W.; De Vries, C.; Morris, D.; Stacy, J. G.

    1994-01-01

    Diffuse galactic continuum gamma-ray emission in the 0.75-30 MeV range from the inner Galaxy has been studied using data from COMPTEL on the Compton Gamma-Ray Observatory. Observations of the inner Galaxy from the Sky Survey have been used. The imaging properties of COMPTEL enable spatial analysis of the gamma-ray distribution using model fitting. A model based on atomic and molecular gas distributions in the Galaxy has been used to derive the emissivity spectrum of the gamma-ray emission and this spectrum is compared with theoretical estimates of bremsstrahlung emission from cosmic-ray electrons.

  2. About cosmic gamma ray lines

    Science.gov (United States)

    Diehl, Roland

    2017-06-01

    Gamma ray lines from cosmic sources convey the action of nuclear reactions in cosmic sites and their impacts on astrophysical objects. Gamma rays at characteristic energies result from nuclear transitions following radioactive decays or high-energy collisions with excitation of nuclei. The gamma-ray line from the annihilation of positrons at 511 keV falls into the same energy window, although of different origin. We present here the concepts of cosmic gamma ray spectrometry and the corresponding instruments and missions, followed by a discussion of recent results and the challenges and open issues for the future. Among the lessons learned are the diffuse radioactive afterglow of massive-star nucleosynthesis in 26Al and 60Fe gamma rays, which is now being exploited towards the cycle of matter driven by massive stars and their supernovae; large interstellar cavities and superbubbles have been recognised to be of key importance here. Also, constraints on the complex processes making stars explode as either thermonuclear or core-collapse supernovae are being illuminated by gamma-ray lines, in this case from shortlived radioactivities from 56Ni and 44Ti decays. In particular, the three-dimensionality and asphericities that have recently been recognised as important are enlightened in different ways through such gamma-ray line spectroscopy. Finally, the distribution of positron annihilation gamma ray emission with its puzzling bulge-dominated intensity disctribution is measured through spatially-resolved spectra, which indicate that annihilation conditions may differ in different parts of our Galaxy. But it is now understood that a variety of sources may feed positrons into the interstellar medium, and their characteristics largely get lost during slowing down and propagation of positrons before annihilation; a recent microquasar flare was caught as an opportunity to see positrons annihilate at a source.

  3. Measurement of the cosmic ray all-particle and light-component energy spectra with the ARGO-YBJ experiment

    Directory of Open Access Journals (Sweden)

    De Mitri I.

    2015-01-01

    Full Text Available The ARGO-YBJ detector, located at high altitude in the Cosmic Ray Observatory of YangBaJing in Tibet (4300 m asl, about 600 g/cm2 of atmospheric depth provides the opportunity for the study, with unprecedented resolution, of cosmic ray physics in the primary energy region between 1012 and 1016 eV. Preliminary results of the measurements of the all-particle and light-component (i.e. protons and helium energy spectra between approximately 5 TeV and 5 PeV are reported and discussed.

  4. The Mass Composition of Ultra-high Energy Cosmic Rays Measured by New Fluorescence Detectors in the Telescope Array Experiment

    Science.gov (United States)

    Fujii, Toshihiro

    The longitudinal development of an extensive air shower reaches its maximum at a depth, Xmax, that depends on the species of the primary cosmic ray. Using a technique based on Xmax, we measure the cosmic-ray mass composition from analyses of 3.7 years of monocular mode operations with the newly constructed fluorescence detectors of the Telescope Array experiment. The Xmax analysis shows our data to be consistent with a proton dominant composition at energies above 1018.0 eV.

  5. Measurement of the Cosmic Ray and Neutrino-Induced Muon Flux at the Sudbury Neutrino Observatory

    Science.gov (United States)

    SNO collaboration; Aharmim, B.; Ahmed, S. N.; Andersen, T. C.; Anthony, A. E.; Barros, N.; Beier, E. W.; Bellerive, A.; Beltran, B.; Bergevin, M.; Biller, S. D.; Boudjemline, K.; Boulay, M. G.; Burritt, T. H.; Cai, B.; Chan, Y. D.; Chen, M.; Chon, M. C.; Cleveland, B. T.; Cox-Mobrand, G. A.; Currat, C. A.; Dai, X.; Dalnoki-Veress, F.; Deng, H.; Detwiler, J.; Doe, P. J.; Dosanjh, R. S.; Doucas, G.; Drouin, P.-L.; Duncan, F. A.; Dunford, M.; Elliott, S. R.; Evans, H. C.; Ewan, G. T.; Farine, J.; Fergani, H.; Fleurot, F.; Ford, R. J.; Formaggio, J. A.; Gagnon, N.; Goon, J. TM.; Grant, D. R.; Guillian, E.; Habib, S.; Hahn, R. L.; Hallin, A. L.; Hallman, E. D.; Hargrove, C. K.; Harvey, P. J.; Harvey, P. J.; Heeger, K. M.; Heintzelman, W. J.; Heise, J.; Helmer, R. L.; Hemingway, R. J.; Henning, R.; Hime, A.; Howard, C.; Howe, M. A.; Huang, M.; Jamieson, B.; Jelley, N. A.; Klein, J. R.; Kos, M.; Kruger, A.; Kraus, C.; Krauss, C. B.; Kutter, T.; Kyba, C. C. M.; Lange, R.; Law, J.; Lawson, I. T.; Lesko, K. T.; Leslie, J. R.; Levine, I.; Loach, J. C.; Luoma, S.; MacLellan, R.; Majerus, S.; Mak, H. B.; Maneira, J.; Marino, A. D.; Martin, R.; McCauley, N.; McDonald, A. B.; McGee, S.; Mifflin, C.; Miller, M. L.; Monreal, B.; Monroe, J.; Noble, A. J.; Oblath, N. S.; Okada, C. E.; O'Keeffe, H. M.; Opachich, Y.; Orebi Gann, G. D.; Oser, S. M.; Ott, R. A.; Peeters, S. J. M.; Poon, A. W. P.; Prior, G.; Rielage, K.; Robertson, B. C.; Robertson, R. G. H.; Rollin, E.; Schwendener, M. H.; Secrest, J. A.; Seibert, S. R.; Simard, O.; Simpson, J. J.; Sinclair, D.; Skensved, P.; Smith, M. W. E.; Sonley, T. J.; Steiger, T. D.; Stonehill, L. C.; Tagg, N.; Tesic, G.; Tolich, N.; Tsui, T.; Van de Water, R. G.; VanDevender, B. A.; Virtue, C. J.; Waller, D.; Waltham, C. E.; Wan Chan Tseung, H.; Wark, D. L.; Watson, P.; Wendland, J.; West, N.; Wilkerson, J. F.; Wilson, J. R.; Wouters, J. M.; Wright, A.; Yeh, M.; Zhang, F.; Zuber, K.

    2009-07-10

    Results are reported on the measurement of the atmospheric neutrino-induced muon flux at a depth of 2 kilometers below the Earth's surface from 1229 days of operation of the Sudbury Neutrino Observatory (SNO). By measuring the flux of through-going muons as a function of zenith angle, the SNO experiment can distinguish between the oscillated and un-oscillated portion of the neutrino flux. A total of 514 muon-like events are measured between -1 {le} cos {theta}{sub zenith} 0.4 in a total exposure of 2.30 x 10{sup 14} cm{sup 2} s. The measured flux normalization is 1.22 {+-} 0.09 times the Bartol three-dimensional flux prediction. This is the first measurement of the neutrino-induced flux where neutrino oscillations are minimized. The zenith distribution is consistent with previously measured atmospheric neutrino oscillation parameters. The cosmic ray muon flux at SNO with zenith angle cos {theta}{sub zenith} > 0.4 is measured to be (3.31 {+-} 0.01 (stat.) {+-} 0.09 (sys.)) x 10{sup -10} {micro}/s/cm{sup 2}.

  6. Measurement of the Cosmic Ray and Neutrino-Induced Muon Flux at the Sudbury Neutrino Observatory

    Energy Technology Data Exchange (ETDEWEB)

    SNO collaboration; Aharmim, B.; Ahmed, S.N.; Andersen, T.C.; Anthony, A.E.; Barros, N.; Beier, E.W.; Bellerive, A.; Beltran, B.; Bergevin, M.; Biller, S.D.; Boudjemline, K.; Boulay, M.G.; Burritt, T.H.; Cai, B.; Chan, Y.D.; Chen, M.; Chon, M.C.; Cleveland, B.T.; Cox-Mobrand, G.A.; Currat, C.A.; Dai, X.; Dalnoki-Veress, F.; Deng, H.; Detwiler, J.; Doe, P.J.; Dosanjh, R.S.; Doucas, G.; Drouin, P.-L.; Duncan, F.A.; Dunford, M.; Elliott, S.R.; Evans, H.C.; Ewan, G.T.; Farine, J.; Fergani, H.; Fleurot, F.; Ford, R.J.; Formaggio, J.A.; Gagnon, N.; Goon, J.TM.; Grant, D.R.; Guillian, E.; Habib, S.; Hahn, R.L.; Hallin, A.L.; Hallman, E.D.; Hargrove, C.K.; Harvey, P.J.; Harvey, P.J.; Heeger, K.M.; Heintzelman, W.J.; Heise, J.; Helmer, R.L.; Hemingway, R.J.; Henning, R.; Hime, A.; Howard, C.; Howe, M.A.; Huang, M.; Jamieson, B.; Jelley, N.A.; Klein, J.R.; Kos, M.; Kruger, A.; Kraus, C.; Krauss, C.B.; Kutter, T.; Kyba, C.C.M.; Lange, R.; Law, J.; Lawson, I.T.; Lesko, K.T.; Leslie, J.R.; Levine, I.; Loach, J.C.; Luoma, S.; MacLellan, R.; Majerus, S.; Mak, H.B.; Maneira, J.; Marino, A.D.; Martin, R.; McCauley, N.; McDonald, A.B.; McGee, S.; Mifflin, C.; Miller, M.L.; Monreal, B.; Monroe, J.; Noble, A.J.; Oblath, N.S.; Okada, C.E.; O?Keeffe, H.M.; Opachich, Y.; Orebi Gann, G.D.; Oser, S.M.; Ott, R.A.; Peeters, S.J.M.; Poon, A.W.P.; Prior, G.; Rielage, K.; Robertson, B.C.; Robertson, R.G.H.; Rollin, E.; Schwendener, M.H.; Secrest, J.A.; Seibert, S.R.; Simard, O.; Simpson, J.J.; Sinclair, D.; Skensved, P.; Smith, M.W.E.; Sonley, T.J.; Steiger, T.D.; Stonehill, L.C.; Tagg, N.; Tesic, G.; Tolich, N.; Tsui, T.; Van de Water, R.G.; VanDevender, B.A.; Virtue, C.J.; Waller, D.; Waltham, C.E.; Wan Chan Tseung, H.; Wark, D.L.; Watson, P.; Wendland, J.; West, N.; Wilkerson, J.F.; Wilson, J.R.; Wouters, J.M.; Wright, A.; Yeh, M.; Zhang, F.; Zuber, K.

    2009-02-16

    Results are reported on the measurement of the atmospheric neutrino-induced muon flux at a depth of 2 kilometers below the Earth's surface from 1229 days of operation of the Sudbury Neutrino Observatory (SNO). By measuring the flux of through-going muons as a function of zenith angle, the SNO experiment can distinguish between the oscillated and un-oscillated portion of the neutrino flux. A total of 514 muon-like events are measured between -1 {le} cos {theta}{sub zenith} 0.4 in a total exposure of 2.30 x 10{sup 14} cm{sup 2} s. The measured flux normalization is 1.22 {+-} 0.09 times the Bartol three-dimensional flux prediction. This is the first measurement of the neutrino-induced flux where neutrino oscillations are minimized. The zenith distribution is consistent with previously measured atmospheric neutrino oscillation parameters. The cosmic ray muon flux at SNO with zenith angle cos {theta}{sub zenith} > 0.4 is measured to be (3.31 {+-} 0.01 (stat.) {+-} 0.09 (sys.)) x 10{sup -10} {micro}/s/cm{sup 2}.

  7. Astrophysical Sources of Cosmic Rays and Related Measurements with the Pierre Auger Observatory

    CERN Document Server

    Abraham, J; Aglietta, M; Aguirre, C; Ahn, E J; Allard, D; Allekotte, I; Allen, J; Alvarez-Muñiz, J; Ambrosio, M; Anchordoqui, L; Andringa, S; Anzalone, A; Aramo, C; Arganda, E; Argirò, S; Arisaka, K; Arneodo, F; Arqueros, F; Asch, T; Asorey, H; Assis, P; Aublin, J; Ave, M; Avila, G; Bäcker, T; Badagnani, D; Barber, K B; Barbosa-Ademarlaudo, F; Barroso, S L C; Baughman, B; Bauleo, P; Beatty, J J; Beau, T; Becker, B R; Becker, K H; Bellétoile, A; Bellido, J A; BenZvi, S; Bérat, C; Bernardini, P; Bertou, X; Biermann, P L; Billoir, P; Blanch-Bigas, O; Blanco, F; Bleve, C; Blümer, H; Boháčová, M; Boncioli, D; Bonifazi, C; Bonino, R; Borodai, N; Brack, J; Brogueira, P; Brown, W C; Bruijn, R; Buchholz, P; Bueno, A; Burton, R E; Busca, N G; Caballero-Mora, K S; Caramete, L; Caruso, R; Carvalho, W; Castellina, A; Catalano, O; Cazon, L; Cester, R; Chauvin, J; Chiavassa, A; Chinellato, J A; Chou, A; Chudoba, J; Chye, J; Clay, R W; Colombo, E; Conceição, R; Connolly, B; Contreras, F; Coppens, J; Cordier, A; Cotti, U; Coutu, S; Covault, C E; Creusot, A; Criss, A; Cronin, J; Curutiu, A; Dagoret-Campagne, S; Dallier, R; Daumiller, K; Dawson, B R; de Almeida, R M; De Domenico, M; De Donato, C; De Jong, S J; De La Vega, G; Junior, W J M de Mello; Neto, J R T de Mello; De Mitri, I; De Souza, V; de Vries, K D; Decerprit, G; Del Peral, L; Deligny, O; Della Selva, A; Fratte, C Delle; Dembinski, H; DiGiulio, C; Diaz, J C; Diep, P N; Dobrigkeit, C; D'Olivo, J C; Dong, P N; Dorofeev, A; Anjos, J C dos; Dova, M T; D'Urso, D; Dutan, I; Duvernois, M A; Engel, R; Erdmann, M; Escobar, C O; Etchegoyen, A; Luis, P Facal San; Falcke, H; Farrar, G; Fauth, A C; Fazzini, N; Ferrer, F; Ferrero, A; Fick, B; Filevich, A; Filipčič, A; Fleck, I; Fliescher, S; Fracchiolla, C E; Fraenkel, E D; Fulgione, W; Gamarra, R F; Gambetta, S; García, B; GarcíaGámez, D; Garcia-Pinto, D; Garrido, X; Gelmini, G; Gemmeke, H; Ghia, P L; Giaccari, U; Giller, M; Glass, H; Goggin, L M; Gold, M S; Golup, G; Albarracin, F Gomez; Berisso, M Gómez; Gonçalves, P; Amaral, M Gonçalves do; González, D; Gonzalez, J G; Góra, D; Gorgi, A; Gouffon, P; Gozzini, S R; Grashorn, E; Grebe, S; Grigat, M; Grillo, A F; Guardincerri, Y; Guarino, F; Guedes, G P; Gutiérrez, J; Hague, J D; Halenka, V; Hansen, P; Harari, D; Harmsma, S; Harton, J L; Haungs, A; Healy, M D; Hebbeker, T; Hebrero, G; Heck, D; Holmes, V C; Homola, P; Hörandel, J R; Horneffer, A; Hrabovský, M; Huege, T; Hussain, M; Iarlori, M; Insolia, A; Ionita, F; Italiano, A; Jiraskova, S; Kaducak, M; Kampert, K H; Karova, T; Kasper, P; Kégl, B; Keilhauer, B; Kemp, E; Kieckhafer, R M; Klages, H O; Kleifges, M; Kleinfeller, J; Knapik, R; Knapp, J; Koang, D -H; Krieger, A; Krömer, O; Kruppke-Hansen, D; Kühn, F; Kuempel, D; Kulbartz, K; Kunka, N; Kusenko, A; LaRosa, G; Lachaud, C; Lago, B L; Lautridou, P; Leão, M S A B; Lebrun, D; Lebrun, P; Lee, J; de Oliveira, M A Leigui; Lemiere, A; Letessier-Selvon, A A; Leuthold, M; Lhenry-Yvon, I; López, R; Agüera, A Lopez; Louedec, K; Bahilo, J Lozano; Lucero, A; Lyberis, H; Maccarone, M C; Macolino, C; Maldera, S; Mandat, D; Mantsch, P; Mariazzi, A G; Maris, I C; Falcon, H R Marquez; Martello, D; Bravo, O Martínez; Mathes, H J; Matthews, J; Matthews, J A J; Matthiae, G; Maurizio, D; Mazur, P O; McEwen, M; McNeil, R R; Medina-Tanco, G; Melissas, M; Melo, D; Menichetti, E; Menshikov, A; Meyhandan, R; Micheletti, M I; Miele, G; Miller, W; Miramonti, L; Mollerach, S; Monasor, M; Ragaigne, D Monnier; Montanet, F; Morales, B; Morello, C; Moreno, J C; Morris, C; Mostafá, M; Moura, C A; Müller, S; Muller, M A; Mussa, R; Navarra, G; Navarro, J L; Navas, S; Necesal, P; Nellen, L; Newman-Holmes, C; Newton, D; Nhung, P T; Nierstenhoefer, N; Nitz, D; Nosek, D; Nožka, L; Nyklicek, M; Oehlschläger, J; Olinto, A; Oliva, P; Olmos-Gilbaja, V M; Ortiz, M; Pacheco, N; Selmi-Dei, D Pakk; Palatka, M; Pallotta, J; Parente, G; Parizot, E; Parlati, S; Pastor, S; Patel, M; Paul, T; Pavlidou, V; Payet, K; Pech, M; Pȩkala, J; Pepe, I M; Perrone, L; Pesce, R; Petermann, E; Petrera, S; Petrinca, P; Petrolini, A; Petrov, Y; Petrovic, J; Pfendner, C; Piegaia, R; Pierog, T; Pimenta, M; Pinto, T; Pirronello, V; Pisanti, O; Platino, M; Pochon, J; Ponce, V H; Pontz, M; Privitera, P; Prouza, M; Quel, E J; Rautenberg, J; Ravel, O; Ravignani, D; Redondo, A; Revenu, B; Rezende, F A S; Rídky, J; Riggi, S; Risse, M; Rivière, C; Rizi, V; Robledo, C; Rodríguez, G; Martino, J Rodriguez; Rojo, J Rodriguez; Rodriguez-Cabo, I; Rodríguez-Frías, M D; Ros, G; Rosado, J; Rossler, T; Roth, M; Rouillé-d'Orfeuil, B; Roulet, E; Rovero, A C; Salamida, F; Salazar, H; Salina, G; Sánchez, F; Santander, M; Santo, C E; Santos, E M; Sarazin, F; Sarkar, S; Sato, R; Scharf, N; Scherini, V; Schieler, H; Schiffer, P; Schmidt, A; Schmidt, F; Schmidt, T; Scholten, O; Schoorlemmer, H; Schovancova, J; Schovánek, P; Schroeder, F; Schulte, S; Schüssler, F; Schuster, D; Sciutto, S J; Scuderi, M; Segreto, A; Semikoz, D; Settimo, M; Shellard, R C; Sidelnik, I; Siffert, B B; Sigl, G; Śmiałkowski, A; Šmída, R; Smith, B E; Snow, G R; Sommers, P; Sorokin, J; Spinka, H; Squartini, R; Strazzeri, E; Stutz, A; Suárez, F; Suomijärvi, T; Supanitsky, A D; Sutherland, M S; Swain, J; Szadkowski, Z; Tamashiro, A; Tamburro, A; Tarutina, T; Taşcuau, O; Tcaciuc, R; Tcherniakhovski, D; Tegolo, D; Thao, N T; Thomas, D; Ticona, R; Tiffenberg, J; Timmermans, C; Tkaczyk, W; Peixoto, C J Todero; Tomé, B; Tonachini, A; Torres, I; Travnicek, P; Tridapalli, D B; Tristram, G; Trovato, E; Tueros, M; Ulrich, R; Unger, M; Urban, M; Galicia, J F Valdés; Valiño, I; Valore, L; vandenBerg, A M; Vázquez, J R; Vázquez, R A; Veberič, D; Velarde, A; Venters, T; Verzi, V; Videla, M; Villaseñor, L; Vorobiov, S; Voyvodic, L; Wahlberg, H; Wahrlich, P; Wainberg, O; Warner, D; Watson, A A; Westerhoff, S; Whelan, B J; Wieczorek, G; Wiencke, L; Wilczyńska, B; Wilczyński, H; Wileman, C; Winnick, M G; Wu, H; Wundheiler, B; Yamamoto, T; Younk, P; Yuan, G; Yushkov, A; Zas, E; Zavrtanik, D; Zavrtanik, M; Zaw, I; Zepeda, A; Ziolkowski, M

    2009-01-01

    Studies of the correlations of ultra-high energy cosmic ray directions with extra-Galactic objects, of general anisotropy, of photons and neutrinos, and of other astrophysical effects, with the Pierre Auger Observatory. Contributions to the 31st ICRC, Lodz, Poland, July 2009.

  8. Radio emission of highly inclined cosmic ray air showers measured with LOPES - possibility for neutrino detection

    NARCIS (Netherlands)

    Petrovic, J.; Bähren, L.; Buitink, S.J.; Falcke, H.D.E.; Horneffer, K.H.A.; Kuijpers, J.M.E.; Lafebre, S.J.; Nigl, A.

    2006-01-01

    LOPES - LOFAR PrototypE Station (LOFAR - LOw Frequency ARray) is an array of dipole antennas used for the detection of radio emission from cosmic ray air showers. It is co-located and triggered by the KASCADE (KArlsruhe Shower Core and Array Detector) experiment, which also provides information abou

  9. Astrophysical Sources of Cosmic Rays and Related Measurements with the Pierre Auger Observatory

    NARCIS (Netherlands)

    Abraham, J.; Abreu, P.; Aglietta, M.; Aguirre, C.; Ahn, E. J.; Allard, D.; Allekotte, I.; Allen, J.; Alvarez-Muñiz, J.; Ambrosio, M.; Anchordoqui, L.; Andringa, S.; Anzalone, A.; Aramo, C.; Arganda, E.; Argirò, S.; Arisaka, K.; Arneodo, F.; Arqueros, F.; Asch, T.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avila, G.; Bäcker, T.; Badagnani, D.; Barber, K. B.; Barbosa, A. F.; Barroso, S. L. C.; Baughman, B.; Bauleo, P.; Beatty, J. J.; Beau, T.; Becker, B. R.; Becker, K. H.; Bellétoile, A.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bernardini, P.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanch-Bigas, O.; Blanco, F.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brogueira, P.; Brown, W. C.; Bruijn, R.; Buchholz, P.; Bueno, A.; Burton, R. E.; Busca, N. G.; Caballero-Mora, K. S.; Caramete, L.; Caruso, R.; Carvalho, W.; Castellina, A.; Catalano, O.; Cazon, L.; Cester, R.; Chauvin, J.; Chiavassa, A.; Chinellato, J. A.; Chou, A.; Chudoba, J.; Chye, J.; Clay, R. W.; Colombo, E.; Conceição, R.; Connolly, B.; Contreras, F.; Coppens, J.; Cordier, A.; Cotti, U.; Coutu, S.; Covault, C. E.; Creusot, A.; Criss, A.; Cronin, J.; Curutiu, A.; Dagoret-Campagne, S.; Dallier, R.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; De Donato, C.; de Jong, S. J.; De La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; Decerprit, G.; del Peral, L.; Deligny, O.; Della Selva, A.; Delle Fratte, C.; Dembinski, H.; DiGiulio, C.; Diaz, J. C.; Diep, P. N.; Dobrigkeit, C.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; D'Urso, D.; Dutan, I.; DuVernois, M. A.; Engel, R.; Erdmann, M.; Escobar, C. O.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferrer, F.; Ferrero, A.; Fick, B.; Filevich, A.; Filipčič, A.; Fleck, I.; Fliescher, S.; Fracchiolla, C. E.; Fraenkel, E. D.; Fulgione, W.; Gamarra, R. F.; Gambetta, S.; García, B.; GarcíaGámez, D.; Garcia-Pinto, D.; Garrido, X.; Gelmini, G.; Gemmeke, H.; Ghia, P. L.; Giaccari, U.; Giller, M.; Glass, H.; Goggin, L. M.; Gold, M. S.; Golup, G.; Gomez Albarracin, F.; Gómez Berisso, M.; Gonçalves, P.; Gonçalves do Amaral, M.; Gonzalez, D.; Gonzalez, J. G.; Góra, D.; Gorgi, A.; Gouffon, P.; Gozzini, S. R.; Grashorn, E.; Grebe, S.; Grigat, M.; Grillo, A. F.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Gutiérrez, J.; Hague, J. D.; Halenka, V.; Hansen, P.; Harari, D.; Harmsma, S.; Harton, J. L.; Haungs, A.; Healy, M. D.; Hebbeker, T.; Hebrero, G.; Heck, D.; Holmes, V. C.; Homola, P.; Hörandel, J. R.; Horneffer, A.; Hrabovský, M.; Huege, T.; Hussain, M.; Iarlori, M.; Insolia, A.; Ionita, F.; Italiano, A.; Jiraskova, S.; Kaducak, M.; Kampert, K. H.; Karova, T.; Kasper, P.; Kégl, B.; Keilhauer, B.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapik, R.; Knapp, J.; Koang, D. -H.; Krieger, A.; Krömer, O.; Kruppke-Hansen, D.; Kuehn, F.; Kuempel, D.; Kulbartz, K.; Kunka, N.; Kusenko, A.; LaRosa, G.; Lachaud, C.; Lago, B. L.; Lautridou, P.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Lee, J.; Leigui de Oliveira, M. A.; Lemiere, A.; Letessier-Selvon, A.; Leuthold, M.; Lhenry-Yvon, I.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lucero, A.; Lyberis, H.; Maccarone, M. C.; Macolino, C.; Maldera, S.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Maris, I. C.; Marquez Falcon, H. R.; Martello, D.; Martínez Bravo, O.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurizio, D.; Mazur, P. O.; McEwen, M.; McNeil, R. R.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Meyhandan, R.; Micheletti, M. I.; Miele, G.; Miller, W.; Miramonti, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, J. C.; Morris, C.; Mostafá, M.; Moura, C. A.; Mueller, S.; Muller, M. A.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Newman-Holmes, C.; Newton, D.; Nhung, P. T.; Nierstenhoefer, N.; Nitz, D.; Nosek, D.; Nožka, L.; Nyklicek, M.; Oehlschläger, J.; Olinto, A.; Oliva, P.; Olmos-Gilbaja, V. M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Parente, G.; Parizot, E.; Parlati, S.; Pastor, S.; Patel, M.; Paul, T.; Pavlidou, V.; Payet, K.; Pech, M.; Pȩkala, J.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrinca, P.; Petrolini, A.; Petrov, Y.; Petrovic, J.; Pfendner, C.; Piegaia, R.; Pierog, T.; Pimenta, M.; Pinto, T.; Pirronello, V.; Pisanti, O.; Platino, M.; Pochon, J.; Ponce, V. H.; Pontz, M.; Privitera, P.; Prouza, M.; Quel, E. J.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Redondo, A.; Revenu, B.; Rezende, F. A. S.; Ridky, J.; Riggi, S.; Risse, M.; Rivière, C.; Rizi, V.; Robledo, C.; Rodriguez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodriguez-Cabo, I.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouillé-d'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Salamida, F.; Salazar, H.; Salina, G.; Sánchez, F.; Santander, M.; Santo, C. E.; Santos, E. M.; Sarazin, F.; Sarkar, S.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Schmidt, F.; Schmidt, T.; Scholten, O.; Schoorlemmer, H.; Schovancova, J.; Schovánek, P.; Schroeder, F.; Schulte, S.; Schüssler, F.; Schuster, D.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Semikoz, D.; Settimo, M.; Shellard, R. C.; Sidelnik, I.; Siffert, B. B.; Sigl, G.; Śmiałkowski, A.; Šmída, R.; Smith, B. E.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Strazzeri, E.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Tamashiro, A.; Tamburro, A.; Tarutina, T.; Taşcuau, O.; Tcaciuc, R.; Tcherniakhovski, D.; Tegolo, D.; Thao, N. T.; Thomas, D.; Ticona, R.; Tiffenberg, J.; Timmermans, C.; Tkaczyk, W.; Todero Peixoto, C. J.; Tomé, B.; Tonachini, A.; Torres, I.; Travnicek, P.; Tridapalli, D. B.; Tristram, G.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; vandenBerg, A. M.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Velarde, A.; Venters, T.; Verzi, V.; Videla, M.; Villaseñor, L.; Vorobiov, S.; Voyvodic, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Warner, D.; Watson, A. A.; Westerhoff, S.; Whelan, B. J.; Wieczorek, G.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Wileman, C.; Winnick, M. G.; Wu, H.; Wundheiler, B.; Yamamoto, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Ziolkowski, M.

    2009-01-01

    Studies of the correlations of ultra-high energy cosmic ray directions with extra-Galactic objects, of general anisotropy, of photons and neutrinos, and of other astrophysical effects, with the Pierre Auger Observatory. Contributions to the 31st ICRC, Lodz, Poland, July 2009.

  10. Measurement of the Anisotropy of Cosmic-ray Arrival Directions with IceCube

    Science.gov (United States)

    Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Bay, R.; Bazo Alba, J. L.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker, J. K.; Becker, K.-H.; Benabderrahmane, M. L.; BenZvi, S.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bissok, M.; Blaufuss, E.; Boersma, D. J.; Bohm, C.; Böser, S.; Botner, O.; Bradley, L.; Braun, J.; Buitink, S.; Carson, M.; Chirkin, D.; Christy, B.; Clem, J.; Clevermann, F.; Cohen, S.; Colnard, C.; Cowen, D. F.; D'Agostino, M. V.; Danninger, M.; Davis, J. C.; De Clercq, C.; Demirörs, L.; Depaepe, O.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; DeYoung, T.; Díaz-Vélez, J. C.; Dierckxsens, M.; Dreyer, J.; Dumm, J. P.; Duvoort, M. R.; Ehrlich, R.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Feusels, T.; Filimonov, K.; Finley, C.; Foerster, M. M.; Fox, B. D.; Franckowiak, A.; Franke, R.; Gaisser, T. K.; Gallagher, J.; Geisler, M.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Goodman, J. A.; Grant, D.; Griesel, T.; Groß, A.; Grullon, S.; Gurtner, M.; Ha, C.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Helbing, K.; Herquet, P.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Homeier, A.; Hoshina, K.; Hubert, D.; Huelsnitz, W.; Hülß, J.-P.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jacobsen, J.; Japaridze, G. S.; Johansson, H.; Joseph, J. M.; Kampert, K.-H.; Karg, T.; Karle, A.; Kelley, J. L.; Kemming, N.; Kenny, P.; Kiryluk, J.; Kislat, F.; Klein, S. R.; Knops, S.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Koskinen, D. J.; Kowalski, M.; Kowarik, T.; Krasberg, M.; Krings, T.; Kroll, G.; Kuehn, K.; Kuwabara, T.; Labare, M.; Lafebre, S.; Laihem, K.; Landsman, H.; Lauer, R.; Lehmann, R.; Lennarz, D.; Lünemann, J.; Madsen, J.; Majumdar, P.; Marotta, A.; Maruyama, R.; Mase, K.; Matis, H. S.; Matusik, M.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Middell, E.; Milke, N.; Miller, J.; Montaruli, T.; Morse, R.; Movit, S. M.; Nahnhauer, R.; Nam, J. W.; Naumann, U.; Nießen, P.; Nygren, D. R.; Odrowski, S.; Olivas, A.; Olivo, M.; O'Murchadha, A.; Ono, M.; Panknin, S.; Paul, L.; Pérez de los Heros, C.; Petrovic, J.; Piegsa, A.; Pieloth, D.; Porrata, R.; Posselt, J.; Price, P. B.; Prikockis, M.; Przybylski, G. T.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Rizzo, A.; Rodrigues, J. P.; Roth, P.; Rothmaier, F.; Rott, C.; Roucelle, C.; Ruhe, T.; Rutledge, D.; Ruzybayev, B.; Ryckbosch, D.; Sander, H.-G.; Santander, M.; Sarkar, S.; Schatto, K.; Schlenstedt, S.; Schmidt, T.; Schukraft, A.; Schultes, A.; Schulz, O.; Schunck, M.; Seckel, D.; Semburg, B.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Silvestri, A.; Slipak, A.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stephens, G.; Stezelberger, T.; Stokstad, R. G.; Stoyanov, S.; Strahler, E. A.; Straszheim, T.; Sullivan, G. W.; Swillens, Q.; Taavola, H.; Taboada, I.; Tamburro, A.; Tarasova, O.; Tepe, A.; Ter-Antonyan, S.; Tilav, S.; Toale, P. A.; Toscano, S.; Tosi, D.; Turčan, D.; van Eijndhoven, N.; Vandenbroucke, J.; Van Overloop, A.; van Santen, J.; Voge, M.; Voigt, B.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Walter, M.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Wikström, G.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Wolf, M.; Woschnagg, K.; Xu, C.; Xu, X. W.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; IceCube Collaboration

    2010-08-01

    We report the first observation of an anisotropy in the arrival direction of cosmic rays with energies in the multi-TeV region in the Southern sky using data from the IceCube detector. Between 2007 June and 2008 March, the partially deployed IceCube detector was operated in a configuration with 1320 digital optical sensors distributed over 22 strings at depths between 1450 and 2450 m inside the Antarctic ice. IceCube is a neutrino detector, but the data are dominated by a large background of cosmic-ray muons. Therefore, the background data are suitable for high-statistics studies of cosmic rays in the southern sky. The data include 4.3 billion muons produced by downward-going cosmic-ray interactions in the atmosphere; these events were reconstructed with a median angular resolution of 3° and a median energy of ~20 TeV. Their arrival direction distribution exhibits an anisotropy in right ascension with a first-harmonic amplitude of (6.4 ± 0.2 stat. ± 0.8 syst.) × 10-4.

  11. Explanation of the local galactic cosmic ray energy spectra measured by Voyager 1. I. Protons

    Energy Technology Data Exchange (ETDEWEB)

    Schlickeiser, R.; Kempf, A. [Institut für Theoretische Physik, Lehrstuhl IV: Weltraum- und Astrophysik, Ruhr-Universität Bochum, D-44780 Bochum (Germany); Webber, W. R., E-mail: rsch@tp4.rub.de, E-mail: ank@tp4.rub.de, E-mail: bwebber@nmsu.edu [Department of Astronomy, New Mexico State University, Las Cruces, NM 88003 (United States)

    2014-05-20

    Almost exactly 100 yr after the original discovery of cosmic rays, the V1 spacecraft has observed, for the first time, the local interstellar medium energy spectra of cosmic ray H, He, C/O nuclei at nonrelativistic kinetic energies, after leaving the heliosphere modulation region on 2012 August 25. We explain these observations by modeling the propagation of these particles in the local Galactic environment with an updated steady-state spatial diffusion model including all particle momentum losses with the local interstellar gas (Coulomb/ionization, pion production, adiabatic deceleration, and fragmentation interactions). Excellent agreement with the V1 cosmic ray H observations is obtained if the solar system resides within a spatially homogeneous layer of distributed cosmic ray sources injecting the same momentum power law ∝p {sup –s} with s = 2.24 ± 0.12. The best fit to the V1 H observations also provides an estimate of the characteristic break kinetic energy T{sub C} = 116 ± 27 MeV, representing the transition from ionization/Coulomb energy losses at low energies to pion production and adiabatic deceleration losses in a Galactic wind at high energies. As the determined value is substantially smaller than 217 MeV in the absence of adiabatic deceleration, our results prove the existence of a Galactic wind in the local Galactic environment.

  12. MEASUREMENT OF THE ANISOTROPY OF COSMIC RAY ARRIVAL DIRECTIONS WITH ICECUBE

    Energy Technology Data Exchange (ETDEWEB)

    IceCube Collaboration; Abbasi, R.

    2010-05-17

    We report the first observation of an anisotropy in the arrival direction of cosmic rays with energies in the multi TeV region in the Southern sky using data from the IceCube detector. Between June 2007 and March 2008, the partially-deployed IceCube detector was operated in a configuration with 1320 digital optical sensors distributed over 22 strings at depths between 1450 and 2450 meters inside the Antarctic ice. IceCube is a neutrino detector, but the data are dominated by a large background of cosmic ray muons. Therefore, the background data are suitable for high-statistics studies of cosmic rays in the Southern sky. The data include 4.3 billion muons produced by downgoing cosmic ray interactions in the atmosphere; these events were reconstructed with a median angular resolution of 3 degrees and a median energy of ~;; 20 TeV. Their arrival direction distribution exhibits an anisotropy in right ascension with a first harmonic amplitude of (6.4 +- 0.2 stat. +- 0.8 syst.) x 10-4.

  13. Measurement of the energy spectrum of cosmic rays above 10(18) eV using the Pierre Auger Observatory

    NARCIS (Netherlands)

    Abraham, J.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Allard, D.; Allen, J.; Alvarez-Muniz, J.; Ambrosio, M.; Anchordoqui, L.; Andringa, S.; Anticic, T.; Anzalone, A.; Aramo, C.; Arganda, E.; Arisaka, K.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avila, G.; Baecker, T.; Badagnani, D.; Balzer, M.; Barber, K. B.; Barbosa, A. F.; Barroso, S. L. C.; Baughman, B.; Bauleo, P.; Beatty, J. J.; Becker, B. R.; Becker, K. H.; Belletoile, A.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bergmann, T.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanch-Bigas, O.; Blanco, F.; Blanco, M.; Bleve, C.; Bluemer, H.; Bohacova, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brogueira, P.; Brown, W. C.; Bruijn, R.; Buchholz, P.; Bueno, A.; Burton, R. E.; Busca, N. G.; Caballero-Mora, K. S.; Caramete, L.; Caruso, R.; Castellina, A.; Catalano, O.; Cataldi, G.; Cazon, L.; Cester, R.; Chauvin, J.; Chiavassa, A.; Chinellato, J. A.; Chou, A.; Chudoba, J.; Clay, R. W.; Colombo, E.; Coluccia, M. R.; Conceicao, R.; Contreras, F.; Cook, H.; Cooper, M. J.; Coppens, J.; Cordier, A.; Cotti, U.; Coutu, S.; Covault, C. E.; Creusot, A.; Criss, A.; Cronin, J.; Curutiu, A.; Dagoret-Campagne, S.; Dallier, R.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; De Donato, C.; de Jong, S. J.; De La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; de Vries, K. D.; Decerprit, G.; del Peral, L.; Deligny, O.; Della Selva, A.; Delle Fratte, C.; Dembinski, H.; Di Giulio, C.; Diaz, J. C.; Diaz Castro, M. L.; Diep, P. N.; Dobrigkeit, C.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; D'Urso, D.; Dutan, I.; DuVernois, M. A.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Etchegoyen, A.; San Luis, P. Facal; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferrero, A.; Fick, B.; Filevich, A.; Filipcic, A.; Fleck, I.; Fliescher, S.; Fracchiolla, C. E.; Fraenkel, E. D.; Froehlich, U.; Fulgione, W.; Gamarra, R. F.; Gambetta, S.; Garcia, B.; Garcia Gamez, D.; Garcia-Pinto, D.; Garrido, X.; Gelmini, G.; Gemmeke, H.; Ghia, P. L.; Giaccari, U.; Giller, M.; Glass, H.; Goggin, L. M.; Gold, M. S.; Golup, G.; Gomez Albarracin, F.; Gomez Berisso, M.; Goncalves, P.; Gonzalez, D.; Gonzalez, J. G.; Gora, D.; Gorgi, A.; Gouffon, P.; Gozzini, S. R.; Grashorn, E.; Grebe, S.; Grigat, M.; Grillo, A. F.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hague, J. D.; Halenka, V.; Hansen, P.; Harari, D.; Harmsma, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hojvat, C.; Holmes, V. C.; Homola, P.; Horandel, J. R.; Horneffer, A.; Hrabovsky, M.; Huege, T.; Hussain, M.; Iarlori, M.; Insolia, A.; Ionita, F.; Italiano, A.; Jiraskova, S.; Kadija, K.; Kaducak, M.; Kampert, K. H.; Karova, T.; Kasper, P.; Kegl, B.; Keilhauer, B.; Keivani, A.; Kelley, J.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapik, R.; Knapp, J.; Koang, D. -H.; Krieger, A.; Kroemer, O.; Kruppke-Hansen, D.; Kuehn, F.; Kuempel, D.; Kulbartz, K.; Kunka, N.; Kusenko, A.; La Rosa, G.; Lachaud, C.; Lago, B. L.; Lautridou, P.; Leao, M. S. A. B.; Lebrun, D.; Lebrun, P.; Lee, J.; Leigui de Oliveira, M. A.; Lemiere, A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Lopez, R.; Lopez Agueera, A.; Louedec, K.; Lozano Bahilo, J.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Macolino, C.; Maldera, S.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Maris, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martinez Bravo, O.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurizio, D.; Mazur, P. O.; McEwen, M.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Meurer, C.; Micanovic, S.; Micheletti, M. I.; Miller, W.; Miramonti, L.; Mollerach, S.; Monasor, M.; Ragaigne, D. Monnier; Montanet, F.; Morales, B.; Morello, C.; Moreno, E.; Moreno, J. C.; Morris, C.; Mostafa, M.; Mueller, S.; Muller, M. A.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nhung, P. T.; Nierstenhoefer, N.; Nitz, D.; Nosek, D.; Nozka, L.; Nyklicek, M.; Oehlschlaeger, J.; Olinto, A.; Oliva, P.; Olmos-Gilbaja, V. M.; Ortiz, M.; Pacheco, N.; Selmi-Dei, D. Pakk; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parizot, E.; Parlati, S.; Parra, A.; Parrisius, J.; Parsons, R. D.; Pastor, S.; Paul, T.; Pavlidou, V.; Payet, K.; Pech, M.; Pekala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrinca, P.; Petrolini, A.; Petrov, Y.; Petrovic, J.; Pfendner, C.; Piegaia, R.; Pierog, T.; Pimenta, M.; Pirronello, V.; Platino, M.; Ponce, V. H.; Pontz, M.; Privitera, P.; Prouza, M.; Quel, E. J.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Redondo, A.; Revenu, B.; Rezende, F. A. S.

    2010-01-01

    We report a measurement of the flux of cosmic rays with unprecedented precision and Statistics using the Pierre Auger Observatory Based on fluorescence observations in coincidence with at least one Surface detector we derive a spectrum for energies above 10(18) eV We also update the previously publi

  14. Cosmic ray synergies

    CERN Multimedia

    Laëtitia Pedroso

    2010-01-01

    In laboratories, cosmic rays have been the subject of scientific research for many years. A more recent development is their appearance in schools, as educational tools. A recent workshop at CERN, organised by ASPERA in collaboration with EPPOG and EPPCN, had the goal of bringing together ideas and initiatives with a view to setting up a future common project.   Presentation at the workshop on 15 October. In research, as in education, you can sometimes get things done more rapidly and easily by joining forces. For roughly the past decade, physicists have been taking their particle detectors to secondary schools. “The challenge now is to bring all of these existing projects together in a network,” says Arnaud Marsollier, in charge of communication for the ASPERA network and organiser of the workshop. The workshop held on Friday, 15 October was attended by representatives of major European educational projects and members of the European Particle Physics Communication Network...

  15. The HAWC Gamma-Ray Observatory: Observations of Cosmic Rays

    CERN Document Server

    Abeysekara, A U; Alvarez, C; Álvarez, J D; Arceo, R; Arteaga-Velázquez, J C; Solares, H A Ayala; Barber, A S; Baughman, B M; Bautista-Elivar, N; Belmont, E; BenZvi, S Y; Berley, D; Rosales, M Bonilla; Braun, J; Caballero-Lopez, R A; Caballero-Mora, K S; Carramiñana, A; Castillo, M; Cotti, U; Cotzomi, J; de la Fuente, E; De León, C; DeYoung, T; Hernandez, R Diaz; Díaz-Vélez, J C; Dingus, B L; DuVernois, M A; Ellsworth, R W; Fernandez, A; Fiorino, D W; Fraija, N; Galindo, A; Garfias, F; González, L X; González, M M; Goodman, J A; Grabski, V; Gussert, M; Hampel-Arias, Z; Hui, C M; Hüntemeyer, P; Imran, A; Iriarte, A; Karn, P; Kieda, D; Kunde, G J; Lara, A; Lauer, R J; Lee, W H; Lennarz, D; Vargas, H León; Linares, E C; Linnemann, J T; Longo, M; Luna-GarcIa, R; Marinelli, A; Martinez, H; Martinez, O; Martínez-Castro, J; Matthews, J A J; Miranda-Romagnoli, P; Moreno, E; Mostafá, M; Nava, J; Nellen, L; Newbold, M; Noriega-Papaqui, R; Oceguera-Becerra, T; Patricelli, B; Pelayo, R; Pérez-Pérez, E G; Pretz, J; Rivière, C; Rosa-González, D; Salazar, H; Salesa, F; Sanchez, F E; Sandoval, A; Santos, E; Schneider, M; Silich, S; Sinnis, G; Smith, A J; Sparks, K; Springer, R W; Taboada, I; Toale, P A; Tollefson, K; Torres, I; Ukwatta, T N; Villaseñor, L; Weisgarber, T; Westerhoff, S; Wisher, I G; Wood, J; Yodh, G B; Younk, P W; Zaborov, D; Zepeda, A; Zhou, H

    2013-01-01

    We describe measurements of GeV and TeV cosmic rays with the High-Altitude Water Cherenkov Gamma-Ray Observatory, or HAWC. The measurements include the observation of the shadow of the moon; the observation of small-scale and large-scale angular clustering of the TeV cosmic rays; the prospects for measurement of transient solar events with HAWC; and the observation of Forbush decreases with the HAWC engineering array and HAWC-30.

  16. Cosmic rays and global warming

    Energy Technology Data Exchange (ETDEWEB)

    Erlykin, A.D. [P.N. Lebedev Physical Institute, Moscow (Russian Federation); Sloan, T. [Lancaster University (United Kingdom); Wolfendale, A.W. [Durham University (United Kingdom)

    2010-07-01

    The possible effects of cosmic rays on clouds could contribute to global warming. The argument is that the observed increased solar activity during the last century caused a decrease in the ionization due to cosmic rays since the lower energy cosmic particles are deflected by the magnetic field created by the increasing solar wind. This would lead to a decrease in cloud cover allowing more heating of the earth by the sun. Meteorological data combined to solar activity observations and simulations show that any effect of solar activity on clouds and the climate is likely to be through irradiance rather than cosmic rays. Since solar irradiance transfers 8 orders of magnitude more energy to the atmosphere than cosmic rays it is more plausible that this can produce a real effect. The total contribution of variable solar activity to global warming is shown to be less than 14% of the total temperature rise. (A.C.)

  17. The Tunka Radio Extension (Tunka-Rex): Radio Measurements of Cosmic Rays in Siberia (PISA 2015)

    CERN Document Server

    Schröder, F G; Budnev, N M; Gress, O A; Haungs, A; Hiller, R; Huege, T; Kazarina, Y; Kleifges, M; Konstantinov, E N; Korosteleva, E E; Kostunin, D; Krömer, O; Kuzmichev, L A; Lubsandorzhiev, N; Mirgazov, R R; Monkhoev, R; Pakhorukov, A; Pankov, L; Prosin, V V; Rubtsov, G I; Wischnewski, R; Zagorodnikov, A

    2015-01-01

    The Tunka observatory is located close to Lake Baikal in Siberia, Russia. Its main detector, Tunka-133, is an array of photomultipliers measuring Cherenkov light of air showers initiated by cosmic rays in the energy range of approximately $10^{16}-10^{18}\\,$eV. In the last years, several extensions have been built at the Tunka site, e.g., a scintillator array named Tunka-Grande, a sophisticated air-Cherenkov-detector prototype named HiSCORE, and the radio extension Tunka-Rex. Tunka-Rex started operation in October 2012 and currently features 44 antennas distributed over an area of about $3\\,$km$^2$, which measure the radio emission of the same air showers detected by Tunka-133 and Tunka-Grande. Tunka-Rex is a technological demonstrator that the radio technique can provide an economic extension of existing air-shower arrays. The main scientific goal is the cross-calibration with the air-Cherenkov measurements. By this cross-calibration, the precision for the reconstruction of the energy and mass of the primary...

  18. The Cosmic-Ray Proton and Helium Spectra measured with the CAPRICE98 balloon experiment

    CERN Document Server

    Boezio, M; Schiavon, Paolo; Vacchi, A; Zampa, N; Bergström, D; Carlson, P J; Francke, T; Hansen, P; Mocchiutti, E; Suffert, Martin; Hof, M; Kremer, J; Menn, W; Simon, M; Ambriola, M; Bellotti, R; Cafagna, F; Ciacio, F; Circella, M; De Marzo, C N; Finetti, N; Papini, P; Piccardi, S; Spillantini, P; Vannuccini, E; Bartalucci, S; Ricci, M; Casolino, M; De Pascale, M P; Morselli, A; Picozza, P; Sparvoli, R; Mitchell, J W; Ormes, J F; Stephens, S A; Streitmatter, R E; Bravar, U; Stochaj, S J

    2003-01-01

    A new measurement of the primary cosmic-ray proton and helium fluxes from 3 to 350 GeV was carried out by the balloon-borne CAPRICE experiment in 1998. This experimental setup combines different detector techniques and has excellent particle discrimination capabilities allowing clear particle identification. Our experiment has the capability to determine accurately detector selection efficiencies and systematic errors associated with them. Furthermore, it can check for the first time the energy determined by the magnet spectrometer by using the Cherenkov angle measured by the RICH detector well above 20 GeV/n. The analysis of the primary proton and helium components is described here and the results are compared with other recent measurements using other magnet spectrometers. The observed energy spectra at the top of the atmosphere can be represented by (1.27+-0.09)x10^4 E^(-2.75+-0.02) particles (m^2 GeV sr s)^-1, where E is the kinetic energy, for protons between 20 and 350 GeV and (4.8+-0.8)x10^2 E^(-2.67+...

  19. Predicted CALET measurements of ultra-heavy cosmic ray relative abundances

    Science.gov (United States)

    Rauch, B. F.

    2014-05-01

    The CALorimetric Electron Telescope (CALET) is an imaging calorimeter under construction for launch to the ISS in 2014 for a planned 5 year mission. CALET consists of a charge detection module (CHD) with two segmented planes of 1 cm thick plastic scintillator, an imaging calorimeter (IMC) with a total of 3 radiation lengths (X∘) of tungsten plates read out with 8 planes of interleaved scintillating fibers, and a total absorption calorimeter (TASC) with 27 X∘ of lead tungstate (PWO) logs. The primary objectives of the instrument are to measure electron energy spectra from 1 GeV to 20 TeV, to detect gamma-rays above 10 GeV, and to measure the energy spectra of nuclei from protons through iron up to 1,000 TeV. In this paper we describe how the geomagnetic field at the 51.6° inclination orbit of the ISS can be used to allow CALET to measure the rare ultra-heavy (UH) cosmic ray (CR) abundances, which provide important clues for the CR source and acceleration mechanism. The CHD scintillator response is relatively insensitive to energy above minimum ionization, and the angle-dependent rigidity as a function of geomagnetic latitude can be exploited to discriminate particles above this energy threshold. Such events require corrections for trajectory in instrument that can be made with only the top 4 layers of the IMC, which allows for considerably greater geometric acceptance than for events that require passage through the TASC for energy determination. Using this approach CALET will be able to measure UH CR relative abundances over its expected mission with superior statistics to previous space instruments.

  20. Cosmic ray transport in astrophysical plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Schlickeiser, R. [Institut für Theoretische Physik, Lehrstuhl IV: Weltraum- & Astrophysik, Ruhr-Universität, Bochum (Germany)

    2015-09-15

    Since the development of satellite space technology about 50 years ago the solar heliosphere is explored almost routinely by several spacecrafts carrying detectors for measuring the properties of the interplanetary medium including energetic charged particles (cosmic rays), solar wind particle densities, and electromagnetic fields. In 2012, the Voyager 1 spacecraft has even left what could be described as the heliospheric modulation region, as indicated by the sudden disappearance of low energy heliospheric cosmic ray particles. With the available in-situ measurements of interplanetary turbulent electromagnetic fields and of the momentum spectra of different cosmic ray species in different interplanetary environments, the heliosphere is the best cosmic laboratory to test our understanding of the transport and acceleration of cosmic rays in space plasmas. I review both the historical development and the current state of various cosmic ray transport equations. Similarities and differences to transport theories for terrestrial fusion plasmas are highlighted. Any progress in cosmic ray transport requires a detailed understanding of the electromagnetic turbulence that is responsible for the scattering and acceleration of these particles.

  1. Cosmic ray driven Galactic winds

    CERN Document Server

    Recchia, S; Morlino, G

    2016-01-01

    The escape of cosmic rays from the Galaxy leads to a gradient in the cosmic ray pressure that acts as a force on the background plasma, in the direction opposite to the gravitational pull. If this force is large enough to win against gravity, a wind can be launched that removes gas from the Galaxy, thereby regulating several physical processes, including star formation. The dynamics of these cosmic ray driven winds is intrinsically non-linear in that the spectrum of cosmic rays determines the characteristics of the wind (velocity, pressure, magnetic field) and in turn the wind dynamics affects the cosmic ray spectrum. Moreover, the gradient of the cosmic ray distribution function causes excitation of Alfven waves, that in turn determine the scattering properties of cosmic rays, namely their diffusive transport. These effects all feed into each other so that what we see at the Earth is the result of these non-linear effects. Here we investigate the launch and evolution of such winds, and we determine the impli...

  2. Cosmic ray velocity and electric charge measurements with the AMS/RICH detector: prototype results

    CERN Document Server

    Arruda, Luísa; Gonçalves, Patrícia; Pereira, Rui

    2008-01-01

    The Alpha Magnetic Spectrometer (AMS) to be installed on the International Space Station (ISS) will measure charged cosmic ray spectra of elements up to iron, in the rigidity range from 1 GV to 1 TV, for at least three years. AMS is a large angular spectrometer composed of different subdetectors, including a proximity focusing Ring Imaging CHerenkov (RICH) detector. This will be equipped with a mixed radiator made of aerogel and sodium fluoride (NaF), a lateral conical mirror and a detection plane made of 680 photomultipliers coupled to light guides. The RICH detector allows measurements of particle's electric charge up to iron, and particle's velocity. Two possible methods for reconstructing the Cherenkov angle and the electric charge with the RICH will be discussed. A RICH prototype consisting of a detection matrix with 96 photomultipliers, a segment of a conical mirror and samples of the radiator materials was built and its performance was evaluated using ion beam data. Results from the last test beam perf...

  3. Cosmic rays, clouds, and climate

    DEFF Research Database (Denmark)

    Marsh, N.; Svensmark, Henrik

    2000-01-01

    cloud radiative properties. Thus, a moderate influence on atmospheric aerosol distributions from cosmic ray ionisation would have a strong influence on the Earth's radiation budget. Historical evidence over the past 1000 years indicates that changes in climate have occurred in accord with variability...... in the Earth's radiation budget through trapping outgoing radiation and reflecting incoming radiation. If a physical link between these two features can be established, it would provide a mechanism linking solar activity and Earth's climate. Recent satellite observations have further revealed a correlation...... in cosmic ray intensities. Such changes are in agreement with the sign of cloud radiative forcing associated with cosmic ray variability as estimated from satellite observations....

  4. Correlated measurements of secondary cosmic ray fluxes by the Aragats Space-Environmental Center monitors

    Energy Technology Data Exchange (ETDEWEB)

    Chilingarian, A. [Cosmic Ray Division, Alikhanyan Physics Institute, Alikhanyan Brother 2, Yerevan 36 (Armenia)]. E-mail: chili@crdlx5.yerphi.am; Arakelyan, K. [Cosmic Ray Division, Alikhanyan Physics Institute, Alikhanyan Brother 2, Yerevan 36 (Armenia); Avakyan, K. [Cosmic Ray Division, Alikhanyan Physics Institute, Alikhanyan Brother 2, Yerevan 36 (Armenia)] [and others

    2005-05-11

    The Aragats Space-Environmental Center provides monitoring of different species of secondary cosmic rays at two altitudes and with different energy thresholds. One-minute data is available on-line from http://crdlx5.yerphi.am/DVIN/index2.php. We present description of the main monitors along with data acquisition electronics. Also we demonstrate the sensitivity of the different species of secondary cosmic ray flux to geophysical conditions, taking as examples the extremely violent events of October-November 2003. We introduce correlation analysis of the different components of registered time-series as a new tool for the classification of the geoeffective (events on earth affected by solar activity) events and for the forecasting of the severity of the upcoming geomagnetic storm.

  5. Cosmic ray physics with ARGO-YBJ

    CERN Document Server

    ,

    2016-01-01

    The ARGO--YBJ experiment has been in stable data taking for more than five years at the Yangbajing cosmic ray observatory (Tibet, P.R. China, 4300 m a.s.l.). The detector collected about $5\\times10^{11}$ events in a wide energy range from few TeVs up to the PeV region. In this work we summarize the latest results in cosmic ray physics particularly focusing on the cosmic ray energy spectrum. The results of the measurement of the all-particle and proton plus helium energy spectra in the energy region between $10^{12} - 10^{16}$ eV are discussed. A precise measurement of the cosmic ray energy spectrum and composition in this energy region allows a better understanding of the origin of the knee and provides a powerful cross-check among different experimental techniques.

  6. Cosmic Connections:. from Cosmic Rays to Gamma Rays, Cosmic Backgrounds and Magnetic Fields

    Science.gov (United States)

    Kusenko, Alexander

    2013-12-01

    Combined data from gamma-ray telescopes and cosmic-ray detectors have produced some new surprising insights regarding intergalactic and galactic magnetic fields, as well as extragalactic background light. We review some recent advances, including a theory explaining the hard spectra of distant blazars and the measurements of intergalactic magnetic fields based on the spectra of distant sources. Furthermore, we discuss the possible contribution of transient galactic sources, such as past gamma-ray bursts and hypernova explosions in the Milky Way, to the observed ux of ultrahigh-energy cosmicrays nuclei. The need for a holistic treatment of gamma rays, cosmic rays, and magnetic fields serves as a unifying theme for these seemingly unrelated phenomena.

  7. Cosmic Ray Interaction Models: an Overview

    Directory of Open Access Journals (Sweden)

    Ostapchenko Sergey

    2016-01-01

    Full Text Available I review the state-of-the-art concerning the treatment of high energy cosmic ray interactions in the atmosphere, discussing in some detail the underlying physical concepts and the possibilities to constrain the latter by current and future measurements at the Large Hadron Collider. The relation of basic characteristics of hadronic interactions tothe properties of nuclear-electromagnetic cascades induced by primary cosmic rays in the atmosphere is addressed.

  8. The Cosmic Ray Lepton Puzzle

    CERN Document Server

    Brun, Pierre; Cirelli, Marco; Moulin, Emmanuel; Glicenstein, Jean-Francois; Iocco, Fabio; Pieri, Lidia

    2010-01-01

    Recent measurements of cosmic ray electrons and positrons by PAMELA, ATIC, Fermi and HESS have revealed interesting excesses and features in the GeV-TeV range. Many possible explanations have been suggested, invoking one or more nearby primary sources such as pulsars and supernova remnants, or dark matter. Based on the output of the TANGO in PARIS --Testing Astroparticle with the New GeV/TeV Observations in Positrons And electRons : Identifying the Sources-- workshop held in Paris in May 2009, we review here the latest experimental results and we discuss some virtues and drawbacks of the many theoretical interpretations proposed so far.

  9. Measuring TeV cosmic rays at the High Altitude Water Cherenkov Observatory

    OpenAIRE

    BenZvi Segev

    2015-01-01

    The High-Altitude Water Cherenkov Observatory, or HAWC, is an air shower array designed to observe cosmic rays and gamma rays between 100 GeV and 100 TeV. HAWC, located between the peaks Sierra Negra and Pico de Orizaba in central Mexico, will be completed in the spring of 2015. However, the observatory has been collecting data in a partial configuration since mid-2013. With only part of the final array in data acquisition, HAWC has already accumulated a data set of nearly 100 billion air sho...

  10. Electron lifetime measurement using cosmic ray muons at the MicroBooNE LArTPC

    Science.gov (United States)

    Meddage, Varuna Crishan; MicroBooNE Collaboration

    2017-01-01

    MicroBooNE, a 170 ton liquid argon time projection chamber (LArTPC) located on the Fermilab's Booster Neutrino Beamline (BNB), is designed to both probe neutrino physics phenomena and further develop the LArTPC detector technology. MicroBooNE is the largest currently operating LArTPC detector and began collecting data in Fall 2015. LArTPCs are imaging detectors that offer exceptional capabilities for studying neutrinos. A fundamental requirement for the performance of such detectors is to maintain electronegative contaminants such as oxygen and water at extremely low concentrations, which otherwise can absorb the ionization electrons. The impurity levels in liquid argon can be estimated from the drift electron lifetime as they are inversely proportional to each other. This talk presents a measurement of the drift electron lifetime using cosmic ray muon data collected by MicroBooNE. An interpretation of the observed drift electron lifetime as a function of time indicates that the electron attenuation due to impurities in the liquid argon is negligible during normal operations, implying that the argon purification and gas recirculation system in MicroBooNE is performing successfully.

  11. Modulation of Galactic Cosmic Rays in the Inner Heliosphere, Comparing with PAMELA Measurements

    Science.gov (United States)

    Qin, G.; Shen, Z.-N.

    2017-09-01

    We develop a numerical model to study the time-dependent modulation of galactic cosmic rays in the inner heliosphere. In the model, a time-delayed modified Parker heliospheric magnetic field (HMF) and a new diffusion coefficient model, NLGCE-F, from Qin & Zhang, are adopted. In addition, the latitudinal dependence of magnetic turbulence magnitude is assumed to be ∼ (1+{\\sin }2θ )/2 from the observations of Ulysses, and the radial dependence is assumed to be ∼ {r}S, where we choose an expression of S as a function of the heliospheric current sheet tilt angle. We show that the analytical expression used to describe the spatial variation of HMF turbulence magnitude agrees well with the Ulysses, Voyager 1, and Voyager 2 observations. By numerically calculating the modulation code, we get the proton energy spectra as a function of time during the recent solar minimum, it is shown that the modulation results are consistent with the Payload for Antimatter-Matter Exploration and Light-nuclei Astrophysics measurements.

  12. Measuring the radio emission of cosmic ray air showers with LOPES

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, F.G., E-mail: Frank.Schroeder@kit.ed [Institut fuer Kernphysik, Karlsruhe Institute of Technology (KIT) (Germany); Apel, W.D. [Institut fuer Kernphysik, Karlsruhe Institute of Technology (KIT) (Germany); Arteaga, J.C. [Institut fuer Experimentelle Kernphysik, Karlsruhe Institute of Technology (KIT) (Germany); Asch, T. [Institut fuer Prozessdatenverarbeitung und Elektronik, Karlsruhe Institute of Technology (KIT) (Germany); Badea, F. [Institut fuer Kernphysik, Karlsruhe Institute of Technology (KIT) (Germany); Baehren, L. [Department of Astrophysics, Radboud University Nijmegen (Netherlands); Bekk, K. [Institut fuer Kernphysik, Karlsruhe Institute of Technology (KIT) (Germany); Bertaina, M. [Dipartimento di Fisica Generale dell' Universita Torino (Italy); Biermann, P.L. [Max-Planck-Institut fuer Radioastronomie Bonn (Germany); Bluemer, J. [Institut fuer Kernphysik, Karlsruhe Institute of Technology (KIT) (Germany); Institut fuer Experimentelle Kernphysik, Karlsruhe Institute of Technology (KIT) (Germany); Bozdog, H. [Institut fuer Kernphysik, Karlsruhe Institute of Technology (KIT) (Germany); Brancus, I.M. [National Institute of Physics and Nuclear Engineering, Bucharest (Romania); Brueggemann, M.; Buchholz, P. [Fachbereich Physik, Universitaet Siegen (Germany); Buitink, S. [Department of Astrophysics, Radboud University Nijmegen (Netherlands); Cantoni, E. [Dipartimento di Fisica Generale dell' Universita Torino (Italy); Istituto di Fisica dello Spazio Interplanetario, INAF Torino (Italy); Chiavassa, A. [Dipartimento di Fisica Generale dell' Universita Torino (Italy); Cossavella, F. [Institut fuer Experimentelle Kernphysik, Karlsruhe Institute of Technology (KIT) (Germany); Daumiller, K. [Institut fuer Kernphysik, Karlsruhe Institute of Technology (KIT) (Germany); Souza, V. de [Institut fuer Experimentelle Kernphysik, Karlsruhe Institute of Technology (KIT) (Germany)

    2010-05-21

    When ultra high energy cosmic rays hit the atmosphere, they produce a shower of millions of secondary particles. Thereby the charged particles in the shower emit a radio pulse whilst deflected in the Earth's magnetic field. LOPES is a digital antenna array measuring these radio pulses in the frequency range from 40 to 80 MHz. It is located at the site of and triggered by the air shower experiment KASCADE-Grande at Karlsruhe Institute of Technology (KIT), Germany. In its present configuration, it consists of 15 east-west-polarized and 15 north-south-polarized, absolutely calibrated short dipole antennas, as well as 10 LPDAs (with two channels each). Furthermore, it serves as a test bench for technological developments, like new antenna types or a radio-based self-triggering (LOPES{sup STAR}). To achieve a good angular reconstruction and to digitally form a beam into the arrival direction of the shower, it has a precise time calibration.

  13. Cosmic Ray Measurements with LOPES: Status and Recent Results (ARENA 2012)

    CERN Document Server

    Schröder, F G; Arteaga, J C; Bähren, L; Bekk, K; Bertaina, M; Biermann, P L; Blümer, J; Bozdog, H; Brancus, I M; Chiavassa, A; Daumiller, K; de Souza, V; Di Pierro, F; Doll, P; Engel, R; Falcke, H; Fuchs, B; Fuhrmann, D; Gemmeke, H; Grupen, C; Haungs, A; Heck, D; Hörandel, J R; Horneffer, A; Huber, D; Huege, T; Isar, P G; Kampert, K -H; Kang, D; Krömer, O; Kuijpers, J; Link, K; Luczak, P; Ludwig, M; Mathes, H J; Melissas, M; Morello, C; Oehlschläger, J; Palmieri, N; Pierog, T; Rautenberg, J; Rebel, H; Roth, M; Rühle, C; Saftoiu, A; Schieler, H; Schmidt, A; Sima, O; Toma, G; Trinchero, G C; Weindl, A; Wochele, J; Zabierowski, J; Zensus, J A

    2012-01-01

    LOPES is a digital antenna array at the Karlsruhe Institute of Technology, Germany, for cosmic-ray air-shower measurements. Triggered by the co-located KASCADE-Grande air-shower array, LOPES detects the radio emission of air showers via digital radio interferometry. We summarize the status of LOPES and recent results. In particular, we present an update on the reconstruction of the primary-particle properties based on almost 500 events above 100 PeV. With LOPES, the arrival direction can be reconstructed with a precision of at least 0.65{\\deg}, and the energy with a precision of at least 20 %, which, however, does not include systematic uncertainties on the absolute energy scale. For many particle and astrophysics questions the reconstruction of the atmospheric depth of the shower maximum, Xmax, is important, since it yields information on the type of the primary particle and its interaction with the atmosphere. Recently, we found experimental evidence that the slope of the radio lateral distribution is indee...

  14. Cosmic ray driven outflows

    CERN Document Server

    Hanasz, Michal; Naab, Thorsten; Gawryszczak, Artur; Kowalik, Kacper; Wóltański, Dominik

    2013-01-01

    We present simulations of the magnetized interstellar medium (ISM) in models of massive star forming (40 Msun / yr) disk galaxies with high gas surface densities (~100 Msun / pc^2) similar to observed star forming high-redshift disks. We assume that type II supernovae deposit 10 per cent of their energy into the ISM as cosmic rays and neglect the additional deposition of thermal energy or momentum. With a typical Galactic diffusion coefficient for CRs (3e28 cm^2 / s) we demonstrate that this process alone can trigger the local formation of a strong low density galactic wind maintaining vertically open field lines. Driven by the additional pressure gradient of the relativistic fluid the wind speed can exceed 1000 km/s, much higher than the escape velocity of the galaxy. The global mass loading, i.e. the ratio of the gas mass leaving the galactic disk in a wind to the star formation rate becomes of order unity once the system has settled into an equilibrium. We conclude that relativistic particles accelerated i...

  15. Cosmic Ray Helium Hardening

    CERN Document Server

    Ohira, Yutaka

    2010-01-01

    Recent observations by CREAM, ATIC-2 and PAMELA experiments suggest that (1) the spectrum of cosmic ray (CR) helium is harder than that of CR proton below the knee $10^15 eV$ and (2) all CR spectra become hard at $\\gtrsim 10^{11} eV/n$. We propose a new picture that higher energy CRs are generated in more helium-rich region to explain the hardening (1) without introducing different sources for CR helium. The helium to proton ratio at $\\sim 100$ TeV exceeds the Big Bang abundance $Y=0.25$ by several times, and the different spectrum is not reproduced within the diffusive shock acceleration theory. We argue that CRs are produced in the chemically enriched region, such as a superbubble, and the outward-decreasing abundance naturally leads to the hard spectrum of CR helium when escaping from the supernova remnant (SNR) shock. We provide a simple analytical spectrum that also fits well the hardening (2) because of the decreasing Mach number in the hot superbubble with $\\sim 10^6$ K. Our model predicts hard and con...

  16. Measurement of the chemical composition of the ultra-high-energy cosmic rays with the Pierre Auger Observatory

    CERN Document Server

    Plum, Matthias

    2013-01-01

    The Pierre Auger Observatory infers the chemical composition of ultra-high-energy cosmic rays through two independent detection techniques. The Fluorescence Detector (FD) measures the longitudinal profile of high energy air showers and can determine the depth of the shower maximum $X_{max}$, which is sensitive to the chemical composition of the primary cosmic rays. Additionally, measurements by the Surface Detector (SD) provide independent experimental observables based on the muonic shower component to analyze the chemical composition. We present the results for the $X_{max}$ distributions and the mass composition results measured by the FD and the SD for the energies $E \\geq 10^{18}$\\,eV. The data will be compared with the expectations for proton and iron primaries according to different hadronic interaction models.

  17. Cosmic rays from thermal sources

    CERN Document Server

    Wlodarczyk, Z

    2007-01-01

    The energy spectrum of cosmic rays (CR) exhibits very characteristic power-like behavior with the "knee" structure. We consider a generalized statistical model for the production process of cosmic rays which accounts for such behavior in a natural way either by assuming the existence of temperature fluctuations in the source of CR, or by assuming specific temperature distribution of the CR sources. Both possibilities yield the so called Tsallis statistics and lead to the power-like distribution.

  18. Cosmic rays and Earth's climate

    DEFF Research Database (Denmark)

    Svensmark, Henrik

    2000-01-01

    During the last solar cycle the Earth's cloud cover underwent a modulation in phase with the cosmic ray flux. Assuming that there is a causal relationship between the two, it is expected and found that the Earth's temperature follows more closely decade variations in cosmic ray flux than other...... solar activity parameters. If the relationship is real the state of the Heliosphere affects the Earth's climate....

  19. Spaced-based Cosmic Ray Astrophysics

    Science.gov (United States)

    Seo, Eun-Suk

    2016-03-01

    The bulk of cosmic ray data has been obtained with great success by balloon-borne instruments, particularly with NASA's long duration flights over Antarctica. More recently, PAMELA on a Russian Satellite and AMS-02 on the International Space Station (ISS) started providing exciting measurements of particles and anti-particles with unprecedented precision upto TeV energies. In order to address open questions in cosmic ray astrophysics, future missions require spaceflight exposures for rare species, such as isotopes, ultra-heavy elements, and high (the ``knee'' and above) energies. Isotopic composition measurements up to about 10 GeV/nucleon that are critical for understanding interstellar propagation and origin of the elements are still to be accomplished. The cosmic ray composition in the knee (PeV) region holds a key to understanding the origin of cosmic rays. Just last year, the JAXA-led CALET ISS mission, and the DAMPE Chinese Satellite were launched. NASA's ISS-CREAM completed its final verification at GSFC, and was delivered to KSC to await launch on SpaceX. In addition, a EUSO-like mission for ultrahigh energy cosmic rays and an HNX-like mission for ultraheavy nuclei could accomplish a vision for a cosmic ray observatory in space. Strong support of NASA's Explorer Program category of payloads would be needed for completion of these missions over the next decade.

  20. Measurement of the mass composition of ultra-high energy cosmic rays with the Pierre Auger Observatory

    Science.gov (United States)

    Settimo, Mariangela; Pierre Auger Collaboration

    2016-05-01

    The understanding of the nature of ultra-high energy cosmic rays is one of the most intriguing open questions for current and future observatories. With its hybrid design and huge exposure, the Pierre Auger Observatory provides valuable statistical measurements of the chemical composition of cosmic rays with energies above 1017 eV, including the search for neutral primaries such as neutrinos and photons. We report on the most recent results which are based on the accurate measurement of the depth of the shower maximum, Xmax, by the fluorescence telescopes and on the shape of the signals recorded by the water-Cherenkov detectors. The interpretation of these results in terms of mass composition is also discussed related to the hadronic interaction models used to describe the development of air showers.

  1. A Cerenkov - Delta E/Delta X experiment for measuring cosmic-ray isotopes from neon through iron

    Science.gov (United States)

    Buffington, A.; Lau, K.; Schindler, S. M.; Stone, E. C.; Laursen, S.; Rasmussen, I. L.

    1983-01-01

    Cosmic-ray isotope masses are measured in a balloon-borne cosmic-ray experiment. Two Cerenkov counters and an NaI scintillator stack are used to determine changes in energy and in the Lorentz factor for a traversing or stopping particle. The mass is defined at the ratio of the change in energy to the change in the Lorentz factor. For incident elements from neon through iron, mass resolution better than 0.3 a.m.u. is expected, with incident Lorentz gammas ranging from 2.4 to 3.1, depending on the element. The mass resolution is approximately 0.2 a.m.u., measured for Mn-55 ions having an incident Lorentz factor of 2.75.

  2. Showering from high-energy cosmic rays. Can be measured in the high school science lab

    Science.gov (United States)

    Buisman, Henk; Wilke de Souza, Daniel; Steijger, Jos

    2014-09-01

    In particle physics a `shower' is the avalanche of secondary particles produced by an incoming particle with high energy. This production requires the interaction with mass. A shower produced by high-energy cosmic rays usually covers a wide area, on the order of a square kilometer. The secondary particles can be observed by using scintillators. In view of the large area affected and the relatively simple equipment needed, this is an ideal project to involve high-school students and their teachers. Showering can also be observed indoors, on a muchsmaller scale.

  3. Measurement of the energy spectrum of cosmic-ray induced neutrons aboard an ER-2 high-altitude airplane.

    Science.gov (United States)

    Goldhagen, P; Reginatto, M; Kniss, T; Wilson, J W; Singleterry, R C; Jones, I W; Van Steveninck, W

    2002-01-01

    Crews working on present-day jet aircraft are a large occupationally exposed group with a relatively high average effective dose from galactic cosmic radiation. Crews of future high-speed commercial aircraft flying at higher altitudes would be even more exposed. To help reduce the significant uncertainties in calculations of such exposures, the atmospheric ionizing radiation (AIR) project, an international collaboration of 15 laboratories, made simultaneous radiation measurements with 14 instruments on five flights of a NASA ER-2 high-altitude aircraft. The primary AIR instrument was a highly sensitive extended-energy multisphere neutron spectrometer with lead and steel shells placed within the moderators of two of its 14 detectors to enhance response at high energies. Detector responses were calculated for neutrons and charged hadrons at energies up to 100 GeV using MCNPX. Neutron spectra were unfolded from the measured count rates using the new MAXED code. We have measured the cosmic-ray neutron spectrum (thermal to >10 GeV), total neutron fluence rate, and neutron effective dose and dose equivalent rates and their dependence on altitude and geomagnetic cutoff. The measured cosmic-ray neutron spectra have almost no thermal neutrons, a large "evaporation" peak near 1 MeV and a second broad peak near 100 MeV which contributes about 69% of the neutron effective dose. At high altitude, geomagnetic latitude has very little effect on the shape of the spectrum, but it is the dominant variable affecting neutron fluence rate, which was eight times higher at the northernmost measurement location than it was at the southernmost. The shape of the spectrum varied only slightly with altitude from 21 km down to 12 km (56-201 g cm-2 atmospheric depth), but was significantly different on the ground. In all cases, ambient dose equivalent was greater than effective dose for cosmic-ray neutrons.

  4. Electron and positron fluxes in primary cosmic rays measured with the alpha magnetic spectrometer on the international space station.

    Science.gov (United States)

    Aguilar, M; Aisa, D; Alvino, A; Ambrosi, G; Andeen, K; Arruda, L; Attig, N; Azzarello, P; Bachlechner, A; Barao, F; Barrau, A; Barrin, L; Bartoloni, A; Basara, L; Battarbee, M; Battiston, R; Bazo, J; Becker, U; Behlmann, M; Beischer, B; Berdugo, J; Bertucci, B; Bigongiari, G; Bindi, V; Bizzaglia, S; Bizzarri, M; Boella, G; de Boer, W; Bollweg, K; Bonnivard, V; Borgia, B; Borsini, S; Boschini, M J; Bourquin, M; Burger, J; Cadoux, F; Cai, X D; Capell, M; Caroff, S; Casaus, J; Cascioli, V; Castellini, G; Cernuda, I; Cervelli, F; Chae, M J; Chang, Y H; Chen, A I; Chen, H; Cheng, G M; Chen, H S; Cheng, L; Chikanian, A; Chou, H Y; Choumilov, E; Choutko, V; Chung, C H; Clark, C; Clavero, R; Coignet, G; Consolandi, C; Contin, A; Corti, C; Coste, B; Cui, Z; Dai, M; Delgado, C; Della Torre, S; Demirköz, M B; Derome, L; Di Falco, S; Di Masso, L; Dimiccoli, F; Díaz, C; von Doetinchem, P; Du, W J; Duranti, M; D'Urso, D; Eline, A; Eppling, F J; Eronen, T; Fan, Y Y; Farnesini, L; Feng, J; Fiandrini, E; Fiasson, A; Finch, E; Fisher, P; Galaktionov, Y; Gallucci, G; García, B; García-López, R; Gast, H; Gebauer, I; Gervasi, M; Ghelfi, A; Gillard, W; Giovacchini, F; Goglov, P; Gong, J; Goy, C; Grabski, V; Grandi, D; Graziani, M; Guandalini, C; Guerri, I; Guo, K H; Habiby, M; Haino, S; Han, K C; He, Z H; Heil, M; Hoffman, J; Hsieh, T H; Huang, Z C; Huh, C; Incagli, M; Ionica, M; Jang, W Y; Jinchi, H; Kanishev, K; Kim, G N; Kim, K S; Kirn, Th; Kossakowski, R; Kounina, O; Kounine, A; Koutsenko, V; Krafczyk, M S; Kunz, S; La Vacca, G; Laudi, E; Laurenti, G; Lazzizzera, I; Lebedev, A; Lee, H T; Lee, S C; Leluc, C; Li, H L; Li, J Q; Li, Q; Li, Q; Li, T X; Li, W; Li, Y; Li, Z H; Li, Z Y; Lim, S; Lin, C H; Lipari, P; Lippert, T; Liu, D; Liu, H; Lomtadze, T; Lu, M J; Lu, Y S; Luebelsmeyer, K; Luo, F; Luo, J Z; Lv, S S; Majka, R; Malinin, A; Mañá, C; Marín, J; Martin, T; Martínez, G; Masi, N; Maurin, D; Menchaca-Rocha, A; Meng, Q; Mo, D C; Morescalchi, L; Mott, P; Müller, M; Ni, J Q; Nikonov, N; Nozzoli, F; Nunes, P; Obermeier, A; Oliva, A; Orcinha, M; Palmonari, F; Palomares, C; Paniccia, M; Papi, A; Pedreschi, E; Pensotti, S; Pereira, R; Pilo, F; Piluso, A; Pizzolotto, C; Plyaskin, V; Pohl, M; Poireau, V; Postaci, E; Putze, A; Quadrani, L; Qi, X M; Rancoita, P G; Rapin, D; Ricol, J S; Rodríguez, I; Rosier-Lees, S; Rozhkov, A; Rozza, D; Sagdeev, R; Sandweiss, J; Saouter, P; Sbarra, C; Schael, S; Schmidt, S M; Schuckardt, D; Schulz von Dratzig, A; Schwering, G; Scolieri, G; Seo, E S; Shan, B S; Shan, Y H; Shi, J Y; Shi, X Y; Shi, Y M; Siedenburg, T; Son, D; Spada, F; Spinella, F; Sun, W; Sun, W H; Tacconi, M; Tang, C P; Tang, X W; Tang, Z C; Tao, L; Tescaro, D; Ting, Samuel C C; Ting, S M; Tomassetti, N; Torsti, J; Türkoğlu, C; Urban, T; Vagelli, V; Valente, E; Vannini, C; Valtonen, E; Vaurynovich, S; Vecchi, M; Velasco, M; Vialle, J P; Wang, L Q; Wang, Q L; Wang, R S; Wang, X; Wang, Z X; Weng, Z L; Whitman, K; Wienkenhöver, J; Wu, H; Xia, X; Xie, M; Xie, S; Xiong, R Q; Xin, G M; Xu, N S; Xu, W; Yan, Q; Yang, J; Yang, M; Ye, Q H; Yi, H; Yu, Y J; Yu, Z Q; Zeissler, S; Zhang, J H; Zhang, M T; Zhang, X B; Zhang, Z; Zheng, Z M; Zhuang, H L; Zhukov, V; Zichichi, A; Zimmermann, N; Zuccon, P; Zurbach, C

    2014-09-19

    Precision measurements by the Alpha Magnetic Spectrometer on the International Space Station of the primary cosmic-ray electron flux in the range 0.5 to 700 GeV and the positron flux in the range 0.5 to 500 GeV are presented. The electron flux and the positron flux each require a description beyond a single power-law spectrum. Both the electron flux and the positron flux change their behavior at ∼30  GeV but the fluxes are significantly different in their magnitude and energy dependence. Between 20 and 200 GeV the positron spectral index is significantly harder than the electron spectral index. The determination of the differing behavior of the spectral indices versus energy is a new observation and provides important information on the origins of cosmic-ray electrons and positrons.

  5. Electron and Positron Fluxes in Primary Cosmic Rays Measured with the Alpha Magnetic Spectrometer on the International Space Station

    CERN Document Server

    Aguilar, M; Alvino, A; Ambrosi, G; Andeen, K; Arruda, L; Attig, N; Azzarello, P; Bachlechner, A; Barao, F; Barrau, A; Barrin, L; Bartoloni, A; Basara, L; Battarbee, M; Battiston, R; Bazo, J; Becker, U; Behlmann, M; Beischer, B; Berdugo, J; Bertucci, B; Bigongiari, G; Bindi, V; Bizzaglia, S; Bizzarri, M; Boella, G; de Boer, W; Bollweg, K; Bonnivard, V; Borgia, B; Borsini, S; Boschini, M J; Bourquin, M; Burger, J; Cadoux, F; Cai, X D; Capell, M; Caroff, S; Casaus, J; Cascioli, V; Castellini, G; Cernuda, I; Cervelli, F; Chae, M J; Chang, Y H; Chen, A I; Chen, H; Cheng, G M; Chen, H S; Cheng, L; Chikanian, A; Chou, H Y; Choumilov, E; Choutko, V; Chung, C H; Clark, C; Clavero, R; Coignet, G; Consolandi, C; Contin, A; Corti, C; Coste, B; Cui, Z; Dai, M; Delgado, C; Della Torre, S; Demirköz, M B; Derome, L; Di Falco, S; Di Masso, L; Dimiccoli, F; Díaz, C; von Doetinchem, P; Du, W J; Duranti, M; D’Urso, D; Eline, A; Eppling, F J; Eronen, T; Fan, Y Y; Farnesini, L; Feng, J; Fiandrini, E; Fiasson, A; Finch, E; Fisher, P; Galaktionov, Y; Gallucci, G; García, B; García-López, R; Gast, H; Gebauer, I; Gervasi, M; Ghelfi, A; Gillard, W; Giovacchini, F; Goglov, P; Gong, J; Goy, C; Grabski, V; Grandi, D; Graziani, M; Guandalini, C; Guerri, I; Guo, K H; Habiby, M; Haino, S; Han, K C; He, Z H; Heil, M; Hoffman, J; Hsieh, T H; Huang, Z C; Huh, C; Incagli, M; Ionica, M; Jang, W Y; Jinchi, H; Kanishev, K; Kim, G N; Kim, K S; Kirn, Th; Kossakowski, R; Kounina, O; Kounine, A; Koutsenko, V; Krafczyk, M S; Kunz, S; La Vacca, G; Laudi, E; Laurenti, G; Lazzizzera, I; Lebedev, A; Lee, H T; Lee, S C; Leluc, C; Li, H L; Li, J Q; Li, Q; Li, Q; Li, T X; Li, W; Li, Y; Li, Z H; Li, Z Y; Lim, S; Lin, C H; Lipari, P; Lippert, T; Liu, D; Liu, H; Lomtadze, T; Lu, M J; Lu, Y S; Luebelsmeyer, K; Luo, F; Luo, J Z; Lv, S S; Majka, R; Malinin, A; Mañá, C; Marín, J; Martin, T; Martínez, G; Masi, N; Maurin, D; Menchaca-Rocha, A; Meng, Q; Mo, D C; Morescalchi, L; Mott, P; Müller, M; Ni, J Q; Nikonov, N; Nozzoli, F; Nunes, P; Obermeier, A; Oliva, A; Orcinha, M; Palmonari, F; Palomares, C; Paniccia, M; Papi, A; Pedreschi, E; Pensotti, S; Pereira, R; Pilo, F; Piluso, A; Pizzolotto, C; Plyaskin, V; Pohl, M; Poireau, V; Postaci, E; Putze, A; Quadrani, L; Qi, X M; Rancoita, P G; Rapin, D; Ricol, J S; Rodríguez, I; Rosier-Lees, S; Rozhkov, A; Rozza, D; Sagdeev, R; Sandweiss, J; Saouter, P; Sbarra, C; Schael, S; Schmidt, S M; Schuckardt, D; Schulz von Dratzig, A; Schwering, G; Scolieri, G; Seo, E S; Shan, B S; Shan, Y H; Shi, J Y; Shi, X Y; Shi, Y M; Siedenburg, T; Son, D; Spada, F; Spinella, F; Sun, W; Sun, W H; Tacconi, M; Tang, C P; Tang, X W; Tang, Z C; Tao, L; Tescaro, D; Ting, Samuel C C; Ting, S M; Tomassetti, N; Torsti, J; Türkoğlu, C; Urban, T; Vagelli, V; Valente, E; Vannini, C; Valtonen, E; Vaurynovich, S; Vecchi, M; Velasco, M; Vialle, J P; Wang, L Q; Wang, Q L; Wang, R S; Wang, X; Wang, Z X; Weng, Z L; Whitman, K; Wienkenhöver, J; Wu, H; Xia, X; Xie, M; Xie, S; Xiong, R Q; Xin, G M; Xu, N S; Xu, W; Yan, Q; Yang, J; Yang, M; Ye, Q H; Yi, H; Yu, Y J; Yu, Z Q; Zeissler, S; Zhang, J H; Zhang, M T; Zhang, X B; Zhang, Z; Zheng, Z M; Zhuang, H L; Zhukov, V; Zichichi, A; Zimmermann, N; Zuccon, P; Zurbach, C

    2014-01-01

    Precision measurements by the Alpha Magnetic Spectrometer on the International Space Station of the primary cosmic-ray electron flux in the range 0.5 to 700 GeV and the positron flux in the range 0.5 to 500 GeV are presented. The electron flux and the positron flux each require a description beyond a single power-law spectrum. Both the electron flux and the positron flux change their behavior at ∼30  GeV but the fluxes are significantly different in their magnitude and energy dependence. Between 20 and 200 GeV the positron spectral index is significantly harder than the electron spectral index. The determination of the differing behavior of the spectral indices versus energy is a new observation and provides important information on the origins of cosmic-ray electrons and positrons.

  6. Electron and Positron Fluxes in Primary Cosmic Rays Measured with the Alpha Magnetic Spectrometer on the International Space Station

    Science.gov (United States)

    Aguilar, M.; Aisa, D.; Alvino, A.; Ambrosi, G.; Andeen, K.; Arruda, L.; Attig, N.; Azzarello, P.; Bachlechner, A.; Barao, F.; Barrau, A.; Barrin, L.; Bartoloni, A.; Basara, L.; Battarbee, M.; Battiston, R.; Bazo, J.; Becker, U.; Behlmann, M.; Beischer, B.; Berdugo, J.; Bertucci, B.; Bigongiari, G.; Bindi, V.; Bizzaglia, S.; Bizzarri, M.; Boella, G.; de Boer, W.; Bollweg, K.; Bonnivard, V.; Borgia, B.; Borsini, S.; Boschini, M. J.; Bourquin, M.; Burger, J.; Cadoux, F.; Cai, X. D.; Capell, M.; Caroff, S.; Casaus, J.; Cascioli, V.; Castellini, G.; Cernuda, I.; Cervelli, F.; Chae, M. J.; Chang, Y. H.; Chen, A. I.; Chen, H.; Cheng, G. M.; Chen, H. S.; Cheng, L.; Chikanian, A.; Chou, H. Y.; Choumilov, E.; Choutko, V.; Chung, C. H.; Clark, C.; Clavero, R.; Coignet, G.; Consolandi, C.; Contin, A.; Corti, C.; Coste, B.; Cui, Z.; Dai, M.; Delgado, C.; Della Torre, S.; Demirköz, M. B.; Derome, L.; Di Falco, S.; Di Masso, L.; Dimiccoli, F.; Díaz, C.; von Doetinchem, P.; Du, W. J.; Duranti, M.; D'Urso, D.; Eline, A.; Eppling, F. J.; Eronen, T.; Fan, Y. Y.; Farnesini, L.; Feng, J.; Fiandrini, E.; Fiasson, A.; Finch, E.; Fisher, P.; Galaktionov, Y.; Gallucci, G.; García, B.; García-López, R.; Gast, H.; Gebauer, I.; Gervasi, M.; Ghelfi, A.; Gillard, W.; Giovacchini, F.; Goglov, P.; Gong, J.; Goy, C.; Grabski, V.; Grandi, D.; Graziani, M.; Guandalini, C.; Guerri, I.; Guo, K. H.; Habiby, M.; Haino, S.; Han, K. C.; He, Z. H.; Heil, M.; Hoffman, J.; Hsieh, T. H.; Huang, Z. C.; Huh, C.; Incagli, M.; Ionica, M.; Jang, W. Y.; Jinchi, H.; Kanishev, K.; Kim, G. N.; Kim, K. S.; Kirn, Th.; Kossakowski, R.; Kounina, O.; Kounine, A.; Koutsenko, V.; Krafczyk, M. S.; Kunz, S.; La Vacca, G.; Laudi, E.; Laurenti, G.; Lazzizzera, I.; Lebedev, A.; Lee, H. T.; Lee, S. C.; Leluc, C.; Li, H. L.; Li, J. Q.; Li, Q.; Li, Q.; Li, T. X.; Li, W.; Li, Y.; Li, Z. H.; Li, Z. Y.; Lim, S.; Lin, C. H.; Lipari, P.; Lippert, T.; Liu, D.; Liu, H.; Lomtadze, T.; Lu, M. J.; Lu, Y. S.; Luebelsmeyer, K.; Luo, F.; Luo, J. Z.; Lv, S. S.; Majka, R.; Malinin, A.; Mañá, C.; Marín, J.; Martin, T.; Martínez, G.; Masi, N.; Maurin, D.; Menchaca-Rocha, A.; Meng, Q.; Mo, D. C.; Morescalchi, L.; Mott, P.; Müller, M.; Ni, J. Q.; Nikonov, N.; Nozzoli, F.; Nunes, P.; Obermeier, A.; Oliva, A.; Orcinha, M.; Palmonari, F.; Palomares, C.; Paniccia, M.; Papi, A.; Pedreschi, E.; Pensotti, S.; Pereira, R.; Pilo, F.; Piluso, A.; Pizzolotto, C.; Plyaskin, V.; Pohl, M.; Poireau, V.; Postaci, E.; Putze, A.; Quadrani, L.; Qi, X. M.; Rancoita, P. G.; Rapin, D.; Ricol, J. S.; Rodríguez, I.; Rosier-Lees, S.; Rozhkov, A.; Rozza, D.; Sagdeev, R.; Sandweiss, J.; Saouter, P.; Sbarra, C.; Schael, S.; Schmidt, S. M.; Schuckardt, D.; von Dratzig, A. Schulz; Schwering, G.; Scolieri, G.; Seo, E. S.; Shan, B. S.; Shan, Y. H.; Shi, J. Y.; Shi, X. Y.; Shi, Y. M.; Siedenburg, T.; Son, D.; Spada, F.; Spinella, F.; Sun, W.; Sun, W. H.; Tacconi, M.; Tang, C. P.; Tang, X. W.; Tang, Z. C.; Tao, L.; Tescaro, D.; Ting, Samuel C. C.; Ting, S. M.; Tomassetti, N.; Torsti, J.; Türkoǧlu, C.; Urban, T.; Vagelli, V.; Valente, E.; Vannini, C.; Valtonen, E.; Vaurynovich, S.; Vecchi, M.; Velasco, M.; Vialle, J. P.; Wang, L. Q.; Wang, Q. L.; Wang, R. S.; Wang, X.; Wang, Z. X.; Weng, Z. L.; Whitman, K.; Wienkenhöver, J.; Wu, H.; Xia, X.; Xie, M.; Xie, S.; Xiong, R. Q.; Xin, G. M.; Xu, N. S.; Xu, W.; Yan, Q.; Yang, J.; Yang, M.; Ye, Q. H.; Yi, H.; Yu, Y. J.; Yu, Z. Q.; Zeissler, S.; Zhang, J. H.; Zhang, M. T.; Zhang, X. B.; Zhang, Z.; Zheng, Z. M.; Zhuang, H. L.; Zhukov, V.; Zichichi, A.; Zimmermann, N.; Zuccon, P.; Zurbach, C.; AMS Collaboration

    2014-09-01

    Precision measurements by the Alpha Magnetic Spectrometer on the International Space Station of the primary cosmic-ray electron flux in the range 0.5 to 700 GeV and the positron flux in the range 0.5 to 500 GeV are presented. The electron flux and the positron flux each require a description beyond a single power-law spectrum. Both the electron flux and the positron flux change their behavior at ˜30 GeV but the fluxes are significantly different in their magnitude and energy dependence. Between 20 and 200 GeV the positron spectral index is significantly harder than the electron spectral index. The determination of the differing behavior of the spectral indices versus energy is a new observation and provides important information on the origins of cosmic-ray electrons and positrons.

  7. Accelerator measurements of magnetically-induced radio emission from particle cascades with applications to cosmic-ray air showers

    CERN Document Server

    Belov, K; Romero-Wolf, A; Wissel, S A; Zilles, A; Bechtol, K; Borch, K; Chen, P; Clem, J; Gorham, P W; Hast, C; Huege, T; Hyneman, R; Jobe, K; Kuwatani, K; Lam, J; Liu, T; Nam, J; Naudet, C; Nichol, R; Rauch, B F; Rotter, B; Saltzberg, D; Schoorlemmer, H; Seckel, D; Strutt, B; Vieregg, A G; Williams, C

    2015-01-01

    An experiment at SLAC provides the first beam test of radio-frequency (RF) radiation from a charged particle cascade in the presence of a magnetic field (up to $\\sim$1~kG), a model system for RF emission from a cosmic-ray air shower. This experiment provides a suite of controlled laboratory measurements to compare to particle-level simulations of RF emission, which are relied upon in ultra-high-energy cosmic-ray air shower detection. We compare simulations to data for intensity, linearity with magnetic field, angular distribution, polarization, and spectral content. In particular, we confirm recent predictions that the magnetically induced emission forms a beam that peaks at the Cherenkov angle and show that the simulations reproduce the data within systematic uncertainties.

  8. Calculation of cosmic ray induced single event upsets: Program CRUP (Cosmic Ray Upset Program)

    Science.gov (United States)

    Shapiro, P.

    1983-09-01

    This report documents PROGRAM CRUP, COSMIC RAY UPSET PROGRAM. The computer program calculates cosmic ray induced single-event error rates in microelectronic circuits exposed to several representative cosmic-ray environments.

  9. Measurement of hydrogen, helium, carbon and oxygen cosmic ray primaries: Preliminary results from the CREAM II experiment

    Science.gov (United States)

    Mognet, S. A. Isaac

    The direct measurement of the energy spectrum and composition of the incoming cosmic-ray flux at multi-TeV energies is of great interest. A feature located somewhere between 1000-10,000 TeV in the all-particle spectrum, referred to as the 'knee' characterized by a steepening of the power-law flux, has been observed by ground-based detectors for many years. It is believed to be related to an upper limit or change in efficiency of the Galactic accelerators of cosmic rays and/or properties of the propagation of cosmic rays in the Galaxy. Presented here is a preliminary analysis of the flux of primary H, He, C and O cosmic-ray species measured using the CREAM II instrument. This analysis is conducted using the Penn State-built Timing Charge Detector, distinct from other charge detectors used in alternative published CREAM II results. The second Antarctic flight of the CREAM instrument had a ~ 28 day flight in the 2005-2006 Antarctic flight season. The instrument was launched on December 16 th 2005 from Williams Field near McMurdo Station, Antarctica. The analysis presented here used events collected throughout the flight to calibrate the charge response of the Timing Charge Detector. High-energy events collected during the entire flight time (except for the first ~ 3.5 days which were used for high-voltage tuning) are also analyzed here. Also presented in this thesis is a novel optical simulation of the Timing Charge Detector used in the various flights of the CREAM instrument. The model suggests fundamental limitations on the timing resolution of the detector arising purely from photon propagation physics in the scintillation and light- guide elements.

  10. Cosmic Ray Origins: An Introduction

    Science.gov (United States)

    Blandford, Roger; Simeon, Paul; Yuan, Yajie

    2014-11-01

    Physicists have pondered the origin of cosmic rays for over a hundred years. However the last few years have seen an upsurge in the observation, progress in the theory and a genuine increase in the importance attached to the topic due to its intimate connection to the indirect detection of evidence for dark matter. The intent of this talk is to set the stage for the meeting by reviewing some of the basic features of the entire cosmic ray spectrum from GeV to ZeV energy and some of the models that have been developed. The connection will also be made to recent developments in understanding general astrophysical particle acceleration in pulsar wind nebulae, relativistic jets and gamma ray bursts. The prospects for future discoveries, which may elucidate the origin of cosmic rays, are bright.

  11. Cosmic Ray Origins: An Introduction

    Energy Technology Data Exchange (ETDEWEB)

    Blandford, Roger; Simeon, Paul; Yuan, Yajie

    2014-11-15

    Physicists have pondered the origin of cosmic rays for over a hundred years. However the last few years have seen an upsurge in the observation, progress in the theory and a genuine increase in the importance attached to the topic due to its intimate connection to the indirect detection of evidence for dark matter. The intent of this talk is to set the stage for the meeting by reviewing some of the basic features of the entire cosmic ray spectrum from GeV to ZeV energy and some of the models that have been developed. The connection will also be made to recent developments in understanding general astrophysical particle acceleration in pulsar wind nebulae, relativistic jets and gamma ray bursts. The prospects for future discoveries, which may elucidate the origin of cosmic rays, are bright.

  12. Cosmic Ray Origins: An Introduction

    CERN Document Server

    Blandford, Roger; Yuan, Yajie

    2014-01-01

    Physicists have pondered the origin of cosmic rays for over a hundred years. However the last few years have seen an upsurge in the observation, progress in the theory and a genuine increase in the importance attached to the topic due to its intimate connection to the indirect detection of evidence for dark matter. The intent of this talk is to set the stage for the meeting by reviewing some of the basic features of the entire cosmic ray spectrum from GeV to ZeV energy and some of the models that have been developed. The connection will also be made to recent developments in understanding general astrophysical particle acceleration in pulsar wind nebulae, relativistic jets and gamma ray bursts. The prospects for future discoveries, which may elucidate the origin of cosmic rays, are bright.

  13. Fermi LAT Results and Perspectives in Measurements of High Energy Galactic Cosmic Rays

    Science.gov (United States)

    Moiseev, Alexander

    2010-01-01

    Real breakthrough during last 1-1.5 years in cosmic ray electrons: ATIC, HESS, Pamela, and finally Fermi-LAT. New quality data have made it possible to start quantitative modeling. With the new data more puzzles than before on CR electrons origin. Need "multi-messenger" campaign: electrons, positrons, gammas, X-ray, radio, neutrino... It is viable that we are dealing with at least two distinct mechanisms of "primary" electron (both signs) production: a softer spectrum of negative electrons, and a harder spectrum of both e(+)+e(-). Exotic (e.g. DM) origin is not ruled out. Upper limits on CR electrons anisotropy are set. Good perspectives to have the Fermi LAT results on proton spectrum and positron fraction.

  14. The PAMELA experiment on satellite and its capability in cosmic rays measurements

    CERN Document Server

    Adriani, O; Barbarino, G C; Barbier, L M; Bartalucci, S; Bazilevskaja, G; Bellotti, R; Bertazzoni, S; Bidoli, V; Boezio, M; Bogomolov, E A; Bonechi, L; Bonvicini, V; Boscherini, M; Bravar, U; Cafagna, F; Campana, D; Carlson, Per J; Casolino, M; Castellano, M; Castellini, G; Christian, E R; Ciacio, F; Circella, M; D'Alessandro, R; De Marzo, C N; De Pascale, M P; Finetti, N; Furano, G; Gabbanini, A; Galper, A M; Giglietto, N; Grandi, M; Grigorieva, A; Guarino, F; Hof, M; Koldashov, S V; Korotkov, M G; Krizmanic, J F; Krutkov, S; Lund, J; Marangelli, B; Marino, L; Menn, W; Mikhailov, V V; Mirizzi, N; Mitchell, J W; Mocchiutti, E; Moiseev, A A; Morselli, A; Mukhametshin, R; Ormes, J F; Osteria, G; Ozerov, J V; Papini, P; Pearce, M; Perego, A; Piccardi, S; Picozza, P; Ricci, M; Salsano, A; Schiavon, Paolo; Scian, G; Simon, M; Sparvoli, R; Spataro, B; Spillantini, P; Spinelli, P; Stephens, S A; Stochaj, S J; Stozhkov, Yu I; Straulino, S; Streitmatter, R E; Taccetti, F; Tesi, M; Vacchi, A; Vannuccini, E; Vasiljev, G; Vignoli, V; Voronov, S A; Yurkin, Y; Zampa, G; Zampa, N

    2002-01-01

    The PAMELA equipment will be assembled in 2001 and installed on board the Russian satellite Resurs. PAMELA is conceived mainly to study the antiproton and positron fluxes in cosmic rays up to high energy (190 GeV for p-bar and 270 GeV for e sup +) and to search antinuclei, up to 30 GeV/n, with a sensitivity of 10 sup - sup 7 in the He-bar/He ratio. The PAMELA telescope consists of: a magnetic spectrometer made up of a permanent magnet system equipped with double sided microstrip silicon detectors; a transition radiation detector made up of active layers of proportional straw tubes interleaved with carbon fibre radiators; and a silicon-tungsten imaging calorimeter made up of layers of tungsten absorbers and silicon detector planes. A time-of-flight system and anti-coincidence counters complete the PAMELA equipment. In the past years, tests have been done on each subdetector of PAMELA; the main results are presented and their implications on the anti-particles identification capability in cosmic rays are discus...

  15. The PAMELA experiment on satellite and its capability in cosmic rays measurements

    Energy Technology Data Exchange (ETDEWEB)

    Adriani, O.; Ambriola, M.; Barbarino, G.; Barbier, L.M.; Bartalucci, S.; Bazilevskaja, G.; Bellotti, R.; Bertazzoni, S.; Bidoli, V.; Boezio, M.; Bogomolov, E.; Bonechi, L.; Bonvicini, V.; Boscherini, M.; Bravar, U.; Cafagna, F.; Campana, D.; Carlson, P.; Casolino, M.; Castellano, M.; Castellini, G.; Christian, E.R.; Ciacio, F.; Circella, M.; D' Alessandro, R.; De Marzo, C.N.; De Pascale, M.P.; Finetti, N.; Furano, G.; Gabbanini, A.; Galper, A.M.; Giglietto, N.; Grandi, M.; Grigorjeva, A.; Guarino, F.; Hof, M.; Koldashov, S.V.; Korotkov, M.G.; Krizmanic, J.F.; Krutkov, S.; Lund, J.; Marangelli, B.; Marino, L.; Menn, W.; Mikhailov, V.V.; Mirizzi, N.; Mitchell, J.W.; Mocchiutti, E.; Moiseev, A.A.; Morselli, A.; Mukhametshin, R.; Ormes, J.F.; Osteria, G.; Ozerov, J.V.; Papini, P.; Pearce, M.; Perego, A.; Piccardi, S.; Picozza, P.; Ricci, M.; Salsano, A.; Schiavon, P.; Scian, G.; Simon, M.; Sparvoli, R.; Spataro, B.; Spillantini, P.; Spinelli, P.; Stephens, S.A.; Stochaj, S.J.; Stozhkov, Y.; Straulino, S. E-mail: straulino@fi.infi.it; Streitmatter, R.E.; Taccetti, F.; Tesi, M.; Vacchi, A.; Vannuccini, E.; Vasiljev, G.; Vignoli, V.; Voronov, S.A.; Yurkin, Y.; Zampa, G.; Zampa, N

    2002-02-01

    The PAMELA equipment will be assembled in 2001 and installed on board the Russian satellite Resurs. PAMELA is conceived mainly to study the antiproton and positron fluxes in cosmic rays up to high energy (190 GeV for p-bar and 270 GeV for e{sup +}) and to search antinuclei, up to 30 GeV/n, with a sensitivity of 10{sup -7} in the He-bar/He ratio. The PAMELA telescope consists of: a magnetic spectrometer made up of a permanent magnet system equipped with double sided microstrip silicon detectors; a transition radiation detector made up of active layers of proportional straw tubes interleaved with carbon fibre radiators; and a silicon-tungsten imaging calorimeter made up of layers of tungsten absorbers and silicon detector planes. A time-of-flight system and anti-coincidence counters complete the PAMELA equipment. In the past years, tests have been done on each subdetector of PAMELA; the main results are presented and their implications on the anti-particles identification capability in cosmic rays are discussed here.

  16. Measurement of the energy spectrum of cosmic-ray induced neutrons aboard an ER-2 high-altitude airplane

    CERN Document Server

    Goldhagen, P E; Kniss, T; Reginatto, M; Singleterry, R C; Van Steveninck, W; Wilson, J W

    2002-01-01

    Crews working on present-day jet aircraft are a large occupationally exposed group with a relatively high average effective dose from galactic cosmic radiation. Crews of future high-speed commercial aircraft flying at higher altitudes would be even more exposed. To help reduce the significant uncertainties in calculations of such exposures, the atmospheric ionizing radiation (AIR) project, an international collaboration of 15 laboratories, made simultaneous radiation measurements with 14 instruments on five flights of a NASA ER-2 high-altitude aircraft. The primary AIR instrument was a highly sensitive extended-energy multisphere neutron spectrometer with lead and steel shells placed within the moderators of two of its 14 detectors to enhance response at high energies. Detector responses were calculated for neutrons and charged hadrons at energies up to 100 GeV using MCNPX. Neutron spectra were unfolded from the measured count rates using the new MAXED code. We have measured the cosmic-ray neutron spectrum (t...

  17. Land surface model performance using cosmic-ray and point-scale soil moisture measurements for calibration

    Science.gov (United States)

    Iwema, Joost; Rosolem, Rafael; Rahman, Mostaquimur; Blyth, Eleanor; Wagener, Thorsten

    2017-06-01

    At very high resolution scale (i.e. grid cells of 1 km2), land surface model parameters can be calibrated with eddy-covariance flux data and point-scale soil moisture data. However, measurement scales of eddy-covariance and point-scale data differ substantially. In our study, we investigated the impact of reducing the scale mismatch between surface energy flux and soil moisture observations by replacing point-scale soil moisture data with observations derived from Cosmic-Ray Neutron Sensors (CRNSs) made at larger spatial scales. Five soil and evapotranspiration parameters of the Joint UK Land Environment Simulator (JULES) were calibrated against point-scale and Cosmic-Ray Neutron Sensor soil moisture data separately. We calibrated the model for 12 sites in the USA representing a range of climatic, soil, and vegetation conditions. The improvement in latent heat flux estimation for the two calibration solutions was assessed by comparison to eddy-covariance flux data and to JULES simulations with default parameter values. Calibrations against the two soil moisture products alone did show an advantage for the cosmic-ray technique. However, further analyses of two-objective calibrations with soil moisture and latent heat flux showed no substantial differences between both calibration strategies. This was mainly caused by the limited effect of calibrating soil parameters on soil moisture dynamics and surface energy fluxes. Other factors that played a role were limited spatial variability in surface fluxes implied by soil moisture spatio-temporal stability, and data quality issues.

  18. Sensitivity of YAC to measure the light-component spectrum of primary cosmic rays at the "knee" energies

    CERN Document Server

    Zhai, L M; Chen, D; Shibata, M; Katayose, Y; Zhang, Ying; Liu, J S; Chen, Xu; Hu, X B; Lin, Y H

    2016-01-01

    A new air-shower core-detector array (YAC : Yangbajing Air-shower Core-detector array) has been developed to measure the primary cosmic-ray composition at the "knee" energies in Tibet, China, focusing mainly on the light components. The prototype experiment (YAC-I) consisting of 16 detectors has been constructed and operated at Yangbajing (4300 m a.s.l.) in Tibet since May 2009. YAC-I is installed in the Tibet-III AS array and operates together. In this paper, we performed a Monte Carlo simulation to check the sensitivity of YAC-I+Tibet-III array to the cosmic-ray light component of cosmic rays around the knee energies, taking account of the observation conditions of actual YAC-I+Tibet-III array. The selection of light component from others was made by use of an artificial neural network (ANN). The simulation shows that the light-component spectrum estimated by our methods can well reproduce the input ones within 10\\% error, and there will be about 30\\% systematic errors mostly induced by the primary and inte...

  19. Spiral arms as cosmic ray source distributions

    Science.gov (United States)

    Werner, M.; Kissmann, R.; Strong, A. W.; Reimer, O.

    2015-04-01

    The Milky Way is a spiral galaxy with (or without) a bar-like central structure. There is evidence that the distribution of suspected cosmic ray sources, such as supernova remnants, are associated with the spiral arm structure of galaxies. It is yet not clearly understood what effect such a cosmic ray source distribution has on the particle transport in our Galaxy. We investigate and measure how the propagation of Galactic cosmic rays is affected by a cosmic ray source distribution associated with spiral arm structures. We use the PICARD code to perform high-resolution 3D simulations of electrons and protons in galactic propagation scenarios that include four-arm and two-arm logarithmic spiral cosmic ray source distributions with and without a central bar structure as well as the spiral arm configuration of the NE2001 model for the distribution of free electrons in the Milky Way. Results of these simulation are compared to an axisymmetric radial source distribution. Also, effects on the cosmic ray flux and spectra due to different positions of the Earth relative to the spiral structure are studied. We find that high energy electrons are strongly confined to their sources and the obtained spectra largely depend on the Earth's position relative to the spiral arms. Similar finding have been obtained for low energy protons and electrons albeit at smaller magnitude. We find that even fractional contributions of a spiral arm component to the total cosmic ray source distribution influences the spectra on the Earth. This is apparent when compared to an axisymmetric radial source distribution as well as with respect to the Earth's position relative to the spiral arm structure. We demonstrate that the presence of a Galactic bar manifests itself as an overall excess of low energy electrons at the Earth. Using a spiral arm geometry as a cosmic ray source distributions offers a genuine new quality of modeling and is used to explain features in cosmic ray spectra at the Earth

  20. Jupiter as a Giant Cosmic Ray Detector

    CERN Document Server

    Rimmer, Paul B; Helling, Christiane

    2014-01-01

    We explore the feasibility of using the atmosphere of Jupiter to detect Ultra-High-Energy Cosmic Rays (UHECR's). The large surface area of Jupiter allows us to probe cosmic rays of higher energies than previously accessible. Cosmic ray extensive air showers in Jupiter's atmosphere could in principle be detected by the Large Area Telescope (LAT) on the Fermi observatory. In order to be observed, these air showers would need to be oriented toward the Earth, and would need to occur sufficiently high in the atmosphere that the gamma rays can penetrate. We demonstrate that, under these assumptions, Jupiter provides an effective cosmic ray "detector" area of $3.3 \\times 10^7$ km$^2$. We predict that Fermi-LAT should be able to detect events of energy $>10^{21}$ eV with fluence $10^{-7}$ erg cm$^{-2}$ at a rate of about one per month. The observed number of air showers may provide an indirect measure of the flux of cosmic rays $\\gtrsim 10^{20}$ eV. Extensive air showers also produce a synchrotron signature that may ...

  1. Cosmic ray-driven winds in the Galactic environment and the cosmic ray spectrum

    Science.gov (United States)

    Recchia, S.; Blasi, P.; Morlino, G.

    2017-09-01

    Cosmic rays escaping the Galaxy exert a force on the interstellar medium directed away from the Galactic disc. If this force is larger than the gravitational pull due to the mass embedded in the Galaxy, then galactic winds may be launched. Such outflows may have important implications for the history of star formation of the host galaxy, and in turn affect in a crucial way the transport of cosmic rays, both due to advection with the wind and to the excitation of waves by the same cosmic rays, through streaming instability. The possibility to launch cosmic ray-induced winds and the properties of such winds depend on environmental conditions, such as the density and temperature of the plasma at the base of the wind and the gravitational potential, especially the one contributed by the dark matter halo. In this paper, we make a critical assessment of the possibility to launch cosmic ray-induced winds for a Milky Way-like galaxy and how the properties of the wind depend upon the conditions at the base of the wind. Special attention is devoted to the implications of different conditions for wind launching on the spectrum of cosmic rays observed at different locations in the disc of the galaxy. We also comment on how cosmic ray-induced winds compare with recent observations of Oxygen absorption lines in quasar spectra and emission lines from blank sky, as measured by XMM-Newton/EPIC-MOS.

  2. Solar modulation of Cosmic Rays as Measured by A Muon Detector at Mid-latitude site during November- December 2013.

    Science.gov (United States)

    Maghrabi, Abdullrahman; Alghamdi, Abdullrahman; otabi, Rkan Al; Almotery, Mohammed; Garawi, Mohammed

    2014-05-01

    Between November and December 2013 three Forbush decreases (FDs) with amplitudes between 4-6 % have been observed by cosmic ray monitors around the world. In this paper, the response of a cosmic ray muon detector (area of 0.25 m2) to these events will be given. This detector was locally constructed and is in operation since September 20013. Interplanetary data, interplanetary magnetic fields, solar x-ray fluxes, and solar energetic particles were used to characterize the solar and interplanetary conditions causing the FDs. Cosmic ray data from twenty-two ground-based stations were used to investigate these FDs and compare them with our data.

  3. Aligned interactions in cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Kempa, J., E-mail: kempa@pw.plock.pl [Warsaw University of Technology Branch Plock (Poland)

    2015-12-15

    The first clean Centauro was found in cosmic rays years many ago at Mt Chacaltaya experiment. Since that time, many people have tried to find this type of interaction, both in cosmic rays and at accelerators. But no one has found a clean cases of this type of interaction.It happened finally in the last exposure of emulsion at Mt Chacaltaya where the second clean Centauro has been found. The experimental data for both the Centauros and STRANA will be presented and discussed in this paper. We also present our comments to the intriguing question of the existence of a type of nuclear interactions at high energy with alignment.

  4. Measurement of cosmic-ray neutron dose onboard a polar route flight from New York to Seoul.

    Science.gov (United States)

    Yasuda, Hiroshi; Lee, Jaejin; Yajima, Kazuaki; Hwang, Jung A; Sakai, Kazuo

    2011-07-01

    Exposure to cosmic radiation in operation of a jet aircraft is considered to be a part of the occupational exposure. Cosmic radiation doses received in aviation are generally evaluated by numerical model simulations. The precision of the model calculation should be verified by measurements. From the viewpoint of radiological protection, neutrons are the most contributing radiation component and have to be precisely measured. Neutron measurements were thus performed in a long-haul flight using a relatively new transportable neutron monitor (WENDI-II) which responds fairly well to the cosmic-ray neutrons. The in-flight measurement was carried out on 5-6 November 2009 on a polar route flight from New York/John F. Kennedy airport to Seoul/Incheon airport. The flying time was ~14 h. The observations obtained as 1 cm ambient dose equivalent were compared with model calculations using a computer program developed by the authors for the calculation of aviation route doses 'JISCARD EX'. Good agreements between the measured and calculated values were observed over the polar route where the geomagnetic cut-off rigidity is the lowest.

  5. Molecular Clouds as Cosmic-Ray Barometers

    CERN Document Server

    Casanova, S; Fukui, Y; Gabici, S; Jones, D I; Kawamura, A; Onishi, T; Rowell, G; Torii, K; Yamamoto, H

    2009-01-01

    It is generally assumed that the flux of cosmic-rays observed at the top of the Earth's atmosphere is representative of the flux in the Galaxy at large. The advent of high sensitivity, high resolution gamma-ray detectors, together with a knowledge of the distribution of the atomic hydrogen and especially of the molecular hydrogen in the Galaxy on sub-degree scales, as provided by the NANTEN survey, creates a unique opportunity to explore the flux of cosmic rays in the Galaxy. We present a methodology which aims to provide a test bed for current and future gamma-ray observatories to explore the cosmic ray flux at various positions in our Galaxy. In particular, for a distribution of molecular clouds and local cosmic ray density as measured at the Earth, we estimate the expected GeV to TeV gamma-ray signal, which can then be compared with observations. An observed gamma-ray flux less than predicted would imply a CR density in specific regions of the Galaxy less than that observed at Earth, and vice versa. The me...

  6. He-3 in galactic cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Mewaldt, R.A.

    1986-12-01

    Cosmic-ray He-3/He-4 observations, including a new measurement around 65 MeV per nucleon from ISEE-3, are compared with interstellar propagation and solar modulation calculations in an effort to understand the origin of cosmic-ray He nuclei. A survey of spacecraft and balloon observations of the He-3/He-4 ratio shows improved consistency among measurements in the 50-300 MeV per nucleon energy range when a previously neglected contribution from atmospheric secondary He-3 is taken into account. These low-energy observations imply a mean escape length of 6-8 g/sq cm in the standard leaky box model for cosmic-ray propagation in the Galaxy, a value consistent with that derived from studies of heavier nuclei. No evidence is found for an excess of low-energy He-3 such as that reported at high energies. 42 references.

  7. Measurement of cosmic-ray antiproton spectrum at solar minimum with a long-duration balloon flight in Antarctica

    CERN Document Server

    Abe, K; Haino, S; Hams, T; Hasegawa, M; Horikoshi, A; Kim, K C; Kusumoto, A; Lee, M H; Makida, Y; Matsuda, S; Matsukawa, Y; Mitchell, J W; Nishimura, J; Nozaki, M; Orito, R; Ormes, J F; Sakai, K; Sasaki, M; Seo, E S; Shinoda, R; Streitmatter, R E; Suzuki, J; Tanaka, K; Thakur, N; Yamagami, T; Yamamoto, A; Yoshida, T; Yoshimura, K

    2011-01-01

    The energy spectrum of cosmic-ray antiprotons has been measured in the range 0.17 to 3.5 GeV, based on 7886 antiprotons collected by the BESS-Polar II instrument during a long-duration flight over Antarctica in the solar minimum period of December 2007 through January 2008. The antiproton spectrum measured by BESS-Polar II shows good consistency with secondary antiproton calculations. Cosmologically primary antiprotons have been searched for by comparing the observed and calculated antiproton spectra. The BESS-Polar II result shows no evidence of primary antiprotons originating from the evaporation of PBH.

  8. Measurement of the Cosmic-Ray Antiproton Spectrum at Solar Minimum with a Long-Duration Balloon Flight over Antarctica

    Science.gov (United States)

    Abe, K.; Fuke, H.; Haino, S.; Hams, T.; Hasegawa, M.; Horikoshi, A.; Kim, K. C.; Kusumoto, A.; Lee, M. H.; Makida, Y.; Matsuda, S.; Matsukawa, Y.; Mitchell, J. W.; Nishimura, J.; Nozaki, M.; Orito, R.; Ormes, J. F.; Sakai, K.; Sasaki, M.; Seo, E. S.; Shinoda, R.; Streitmatter, R. E.; Suzuki, J.; Tanaka, K.; Thakur, N.

    2012-01-01

    The energy spectrum of cosmic-ray antiprotons (p-bar's) from 0.17 to 3.5 GeV has been measured using 7886 p-bar's detected by BESS-Polar II during a long-duration flight over Antarctica near solar minimum in December 2007 and January 2008. This shows good consistency with secondary p-bar calculations. Cosmologically primary p-bar's have been investigated by comparing measured and calculated p-bar spectra. BESS-Polar II data.show no evidence of primary p-bar's from the evaporation of primordial black holes.

  9. The cosmic-ray and gas content of the Cygnus region as measured in gamma rays by the Fermi Large Area Telescope

    CERN Document Server

    ,

    2011-01-01

    The Cygnus region hosts a giant molecular-cloud complex which actively forms massive stars. Interactions of cosmic rays with interstellar gas and radiation fields make it shine at gamma-ray energies. Several gamma-ray pulsars and other energetic sources are seen in this direction. In this paper we analyse the gamma-ray emission measured by the Fermi Large Area Telescope in the energy range from 100 MeV to 100 GeV in order to probe the gas and cosmic-ray content over the scale of the whole Cygnus complex. The signal from bright pulsars is largely reduced by selecting photons in their off-pulse phase intervals. We compare the diffuse gamma-ray emission with interstellar gas maps derived from radio/mm-wave lines and visual extinction data, and a global model of the region, including other pulsars and gamma-ray sources, is sought. The integral HI emissivity and its spectral energy distribution are both consistent within the systematics with LAT measurements in the interstellar space near the solar system. The ave...

  10. Cosmic rays and hadronic interactions

    Directory of Open Access Journals (Sweden)

    Lipari Paolo

    2015-01-01

    Full Text Available The study of cosmic rays, and more in general of the “high energy universe” is at the moment a vibrant field that, thanks to the observations by several innovative detectors for relativistic charged particles, gamma–rays, and neutrinos continue to generate surprising and exciting results. The progress in the field is rapid but many fundamental problems remain open. There is an intimate relation between the study of the high energy universe and the study of the properties of hadronic interactions. High energy cosmic rays can only be studied detecting the showers they generate in the atmosphere, and for the interpretation of the data one needs an accurate modeling of the collisions between hadrons. Also the study of cosmic rays inside their sources and in the Galaxy requires a precise description of hadronic interactions. A program of experimental studies at the LHC and at lower energy, designed to address the most pressing problems, could significantly reduce the existing uncertainties and is very desirable. Such an experimental program would also have a strong intrinsic scientific interest, allowing the broadening and deepening of our understanding of Quantum Chromo Dynamics in the non–perturbative regime, the least understood sector of the Standard Model of particle physics. It should also be noted that the cosmic ray spectrum extends to particles with energy E ∼ 1020 eV, or a nucleon–nucleon c.m. energy √s ≃ 430 TeV, 30 times higher than the current LHC energy. Cosmic ray experiments therefore offer the possibility to perform studies on the properties of hadronic interactions that are impossible at accelerators.

  11. Cosmic Rays and Radiative Instabilities

    CERN Document Server

    Hartquist, T W; Falle, S A E G; Pittard, J M; Van Loo, S

    2011-01-01

    In the absence of magnetic fields and cosmic rays, radiative cooling laws with a range of dependences on temperature affect the stability of interstellar gas. For about four and a half decades, astrophysicists have recognised the importance of the thermal instablity for the formation of clouds in the interstellar medium. Even in the past several years, many papers have concerned the role of the thermal instability in the production of molecular clouds. About three and a half decades ago, astrophysicists investigating radiative shocks noticed that for many cooling laws such shocks are unstable. Attempts to address the effects of cosmic rays on the stablity of radiative media that are initially uniform or that have just passed through shocks have been made. The simplest approach to such studies involves the assumption that the cosmic rays behave as a fluid. Work based on such an approach is described. Cosmic rays have no effect on the stability of initially uniform, static media with respect to isobaric perturb...

  12. Cosmology, Relativity and Cosmic Rays

    Science.gov (United States)

    López, Rebeca; Martínez, Humberto; Zepeda, Arnulfo

    2009-04-01

    This is a short review of the evolution of ideas and concepts about the Universe. It is based on the introductory talk given on the 25 of July 2008 within the Third School on Cosmic Rays and Astrophysics held in Arequipa, Peru.

  13. Surprising results from cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Wilk, G. [Soltan Institute for Nuclear Studies, Warsaw (Poland); Wlodarczyk, Z. [Institute for Physics, Pedagogical University, Kielce (Poland)

    1996-10-01

    A number of seemingly exotic phenomena seen in the highest cosmic-ray experiments are briefly discussed. We argue that they indicate existence of non-statistical fluctuations and strong correlations in the fragmentation region of multiparticle production processes unaccessible to the present accelerators. (author) 12 refs, 3 figs

  14. Cosmic Ray elimination using the Wavelet Transform

    Science.gov (United States)

    Orozco-Aguilera, M. T.; Cruz, J.; Altamirano, L.; Serrano, A.

    2009-11-01

    In this work, we present a method for the automatic cosmic ray elimination in a single CCD exposure using the Wavelet Transform. The proposed method can eliminate cosmic rays of any shape or size. With this method we can eliminate over 95% of cosmic rays in a spectral image.

  15. COSMIC RAY ELIMINATION USING THE WAVELET TRANSFORM

    Directory of Open Access Journals (Sweden)

    M. T. Orozco-Aguilera

    2009-01-01

    Full Text Available In this work, we present a method for the automatic cosmic ray elimination in a single CCD exposure using the Wavelet Transform. The proposed method can eliminate cosmic rays of any shape or size. With this method we can eliminate over 95% of cosmic rays in a spectral image.

  16. Measurement of Cosmic-Ray Antiproton Spectrum at Solar Minimum with a Long-Duration Balloon Flight in Antarctica

    Science.gov (United States)

    Abe, K.; Fuke, H.; Haino, S.; Hams, T.; Hasegawa, M.; Horikoshi, A.; Kim, K. C.; Kusumoto, A.; Lee, M. H.; Makida, Y.; Matsuda, S.; Matsukawa, Y.; Mitchell, J. W.; Nishimura, J.; Nozaki, M.; Orito, R.; Ormes, J. F.; Sakai, K.; Sasaki, M.; Seo, E. S.; Shinoda, R.; Streitmatter, R. E.; Suzuki, J.; Tanaka, K.; Thakur, N.

    2011-01-01

    The energy spectrum of cosmic-ray antiprotons (p(raised bar)'s) collected by the BESS-Polar II instrument during a long-duration flight over Antarctica in the solar minimum period of December 2007 through January 2008. The p(raised bar) spectrum measured by BESS-Polar II shows good consistency with secondary p(raised bar) calculations. Cosmologically primary p(raised bar)'s have been searched for by comparing the observed and calculated p(raised bar) spectra. The BESSPolar II result shows no evidence of primary p(raised bar)'s originating from the evaporation of PBH.

  17. Measurement of the energy spectrum of cosmic rays with the 26 station configuration of the IceTop detector

    Energy Technology Data Exchange (ETDEWEB)

    Kislat, Fabian

    2011-09-27

    IceTop is an instrument at the geographic South Pole designed to detect cosmic ray air showers, particle cascades in the atmosphere initiated by high-energy cosmic rays. It is the surface component of the IceCube neutrino telescope. Since its completion in December 2010, IceTop consists of 81 detector stations covering an area of one square kilometer on the ice surface above IceCube. Each IceTop station consists of two ice-filled tanks in which the Cherenkov light emitted by charged air shower particles is measured. In this dissertation, an analysis of data taken in 2007 with 26 IceTop stations operational at that time is presented. First, properties of air showers like core position, direction and shower size were reconstructed from the measured signals. The core position can be determined to an accuracy of up to 6m and a direction resolution of up to 0.3 is achieved. The shower size is a measure of the energy of the primary particle and a resolution of up to 10% is achieved at high energies. In the next step the relation between primary energy and shower size, as well as resolution and efficiency are determined from Monte Carlo simulations of air showers and the IceTop detector. Here, an assumption was made about the chemical composition of cosmic rays. The informations obtained in these simulations are then used to unfold the spectrum of measured shower sizes in order to obtain the all-particle cosmic ray energy spectrum. This is done independently for particles from three different zenith angle intervals. The result of the unfolding depends on the assumed primary composition. Due to the isotropy of cosmic rays, results obtained in different zenith angle intervals must agree. While with the chosen analysis technique a simultaneous determination of primary particle mass and energy is limited due to systematic uncertainties, it has already been shown that the requirement of isotropy can be used to constrain the range of possible assumptions on the chemical

  18. Galactic cosmic ray propagation models using Picard

    CERN Document Server

    Kissmann, Ralf; Strong, Andrew W

    2015-01-01

    We present results obtained from our newly developed Galactic cosmic-ray transport code PICARD, that solves the cosmic-ray transport equation. This code allows for the computation of cosmic-ray spectra and the resulting gamma-ray emission. Relying on contemporary numerical solvers allows for efficient computation of models with deca-parsec resolution. PICARD can handle locally anisotropic spatial diffusion acknowledging a full diffusion tensor. We used this framework to investigate the transition from axisymmetric to spiral-arm cosmic-ray source distributions. Wherever possible we compare model predictions with constraining observables in cosmic-ray astrophysics.

  19. Neutralino Clumps and Cosmic Rays

    CERN Document Server

    Salati, P

    2007-01-01

    The halo of the Miky Way might contain numerous and dense substructures inside which the putative weakly interacting massive particles (suggested as the main constituent of the astronomical dark matter) would produce a stronger annihilation signal than in the smooth regions. The closer the nearest clump, the larger the positron and antiproton cosmic ray fluxes at the Earth. But the actual distribution of these substructures is not known. The predictions on the antimatter yields at the Earth are therefore affected by a kind of cosmic variance whose analysis is the subject of this contribution. The statistical tools to achieve that goal are presented and Monte Carlo simulations are compared to analytic results.

  20. Global diffusion of cosmic rays

    CERN Document Server

    Snodin, A P; Sarson, G R; Bushby, P J; Rodrigues, L F S

    2015-01-01

    The propagation of charged particles, including cosmic rays, in a partially ordered magnetic field is characterized by a diffusion tensor whose components depend on the particle's Larmor radius $R_L$ and the degree of order in the magnetic field. This prescription relies explicitly on the assumption of a scale separation between random and mean magnetic fields, which usually applies in laboratory plasmas, but not in most astrophysical environments such as the interstellar medium (ISM). Direct estimates of the cosmic-ray diffusion tensor from test particle simulations have explored the range of particle energies corresponding to $10^{-2} \\lesssim R_L/l_c \\lesssim 10^{3}$, where $l_c$ is the magnetic correlation length. Modern simulations of the ISM have numerical resolution of order 1 pc, so the Larmor radius of the cosmic ray particles that dominate in their energy density is at least $10^{6}$ times smaller than the numerically resolved scales of the random magnetic field. Large-scale simulations of cosmic ra...

  1. The Elemental Composition of High-Energy Cosmic Rays: Measurements with TRACER

    CERN Document Server

    Boyle, P J

    2008-01-01

    TRACER ('Transition Radiation Array for Cosmic Energetic Radiation') is a balloon borne instrument that has been developed to directly measure the composition and energy spectra of individual heavy elements up to 10^15 eV per particle. TRACER achieves a large geometric factor (5 m^2 sr) through the use of a Transition Radiation Detector utilizing arrays of single wire proportional tubes. TRACER has measured the energy spectra of the elements O, Ne, Mg, Si, S, Ar, Ca, and Fe. The energy spectra reach energies in excess of 10^14 eV per particle and exhibit nearly the same spectral index (2.65 +/- 0.05) for all elements.

  2. Cosmic ray muons in the deep ocean

    Science.gov (United States)

    Dumand Collaboration; Babson, J.; Barish, B.; Becker-Szenzy, R.; Bradner, H.; Cady, R.; Clem, J.; Dye, S.; Gaidos, J.; Gorham, P.; Grieder, P.; Kitamura, T.; Kropp, W.; Learned, J.; Matsuno, S.; March, R.; Mitsui, K.; O'Conner, D.; Ohashi, Y.; Okada, A.; Peterson, V.; Price, L.; Reines, F.; Roberts, A.; Roos, C.; Sobel, H.; Stenger, V.; Webster, M.; Wilson, C.

    1990-03-01

    A measurement of cosmic ray muon flux was obtained at ocean depths ranging from 2 km to 4 km at 500 m intervals off the West Coast of the Big Island of Hawaii. A brief description of the experiment and the results will be presented in this paper.

  3. Cosmic ray muons in the deep ocean

    Energy Technology Data Exchange (ETDEWEB)

    Babson, J.; Becker-Szenzy, R.; Cady, R.; Dye, S.; Gorham, P.; Learned, J.; Matsuno, S.; O' Conner, D.; Peterson, V.; Roberts, A.; Stenger, V. (Hawaii Univ., Honolulu (USA)); Barish, B. (California Inst. of Tech., Pasadena (USA)); Bradner, H. (California Univ., San Diego, La Jolla (USA)); Clem, J.; Roos, C.; Webster, M. (Vanderbilt Univ., Nashville, TN (USA)); Gaidos, J.; Wilson, C. (Purdue Univ., Lafayette, IN (USA)); Grieder, P. (Bern Univ. (Switzerland)); Kitamura, T.; Mitsui, K.; Ohashi, Y.; Okada, A. (Tokyo Univ. (Japan). Inst. for Cosmic Ray Research); Kropp, W.; Price, L.; Reines, F.; Sobel, H. (California Univ., Irvine (USA)); March, R. (Wisconsin Univ., Madison (USA)); DUMAND Collaboration

    1990-03-01

    A measurement of cosmic ray muon flux was obtained at ocean depths ranging from 2 km to 4 km at 500 m intervals off the West Coast of the Big Island of Hawaii. A brief description of the experiment and the results will be presented in this paper. (orig.).

  4. Cosmic rays and particle physics

    CERN Document Server

    Gaisser, Thomas K; Resconi, Elisa

    2016-01-01

    Fully updated for the second edition, this book introduces the growing and dynamic field of particle astrophysics. It provides an overview of high-energy nuclei, photons and neutrinos, including their origins, their propagation in the cosmos, their detection on Earth and their relation to each other. Coverage is expanded to include new content on high energy physics, the propagation of protons and nuclei in cosmic background radiation, neutrino astronomy, high-energy and ultra-high-energy cosmic rays, sources and acceleration mechanisms, and atmospheric muons and neutrinos. Readers are able to master the fundamentals of particle astrophysics within the context of the most recent developments in the field. This book will benefit graduate students and established researchers alike, equipping them with the knowledge and tools needed to design and interpret their own experiments and, ultimately, to address a number of questions concerning the nature and origins of cosmic particles that have arisen in recent resea...

  5. Measurement of the cosmic ray antiproton/proton flux ratio at TeV energies with the ARGO-YBJ detector

    CERN Document Server

    ,

    2012-01-01

    Cosmic ray antiprotons provide an important probe to study the cosmic ray propagation in the interstellar space and to investigate the existence of dark matter. Acting the Earth-Moon system as a magnetic spectrometer, paths of primary antiprotons are deflected in the opposite sense with respect to those of the protons in their way to the Earth. This effect allows, in principle, the search for antiparticles in the direction opposite to the observed deficit of cosmic rays due to the Moon (the so-called `Moon shadow'). The ARGO-YBJ experiment, located at the Yangbajing Cosmic Ray Laboratory (Tibet, P.R. China, 4300 m a.s.l., 606 g/cm$^2$), is particularly effective in measuring the cosmic ray antimatter content via the observation of the cosmic rays shadowing effect due to: (1) good angular resolution, pointing accuracy and long-term stability; (2) low energy threshold; (3) real sensitivity to the geomagnetic field. Based on all the data recorded during the period from July 2006 through November 2009 and on a fu...

  6. Cosmic Ray measurements in the region 1–100 TeV: Combined proton and helium spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Mari, S.M. [Dipartimento di Fisica “E. Amaldi” – Università degli Studi “Roma TRE” Via della Vasca Navale 84, 00146 Roma (Italy); INFN – Sezione di Roma TRE, Via della Vasca Navale 84, 00146 Roma (Italy); Montini, P., E-mail: montini@fis.uniroma3.it [Dipartimento di Fisica “E. Amaldi” – Università degli Studi “Roma TRE” Via della Vasca Navale 84, 00146 Roma (Italy); INFN – Sezione di Roma TRE, Via della Vasca Navale 84, 00146 Roma (Italy)

    2013-06-15

    The ARGO-YBJ experiment, located in the Yangbajing Cosmic Ray observatory (4300 m a.s.l. Tibet, P.R. China), detects Extensive Air Showers in a wide energy range by means of a full-coverage detector based on RPC chambers. In this work recent results about the measurement of the combined proton and helium spectrum in the energy range 5–250 TeV are presented. The ARGO-YBJ results are therefore the first indirect measurements at these energies with ground-based detectors. The measured spectrum can be compared to direct measurements in the same energy region. The data show a good agreement with recent direct measurements and suggest that the spectrum is harder than in the low energy region.

  7. Analysis of the new INTEGRAL Earth observations to measure the cosmic X-ray background

    CERN Document Server

    Türler, M; Pavan, L; Ferrigno, C; Bordas, P

    2013-01-01

    A new series of Earth occultation observations has been started in 2012 to refine the determination of the cosmic X-ray background by the INTEGRAL mission. We show here that the new detector lightcurves in the 3 to 160 keV range differ from the ones obtained in 2006. Instead of the expected modulation induced by the passage of the Earth through the field of view of the JEM-X, IBIS/ISGRI and SPI instruments, we record unrelated variability on shorter timescales. We discuss the differences obtained with the datasets of 2006 and 2012 in view of the changes in pointing direction, spacecraft orbit and solar cycle phase. We conclude that the Earth occultation signal in 2012 is likely blended by radioactive decay resulting from the activation of the spacecraft when crossing the proton radiation belt at perigee passage. The observed variability, on the other hand, results most likely from the current solar maximum. In addition to a variable particle environment from inhomogeneities of the solar wind, we also find evi...

  8. Unified interpretation of cosmic-ray nuclei and antiproton recent measurements

    CERN Document Server

    Di Bernardo, Giuseppe; Gaggero, Daniele; Grasso, Dario; Maccione, Luca

    2009-01-01

    We use our numerical code, DRAGON, to study the implications and the impact of recent CREAM and PAMELA data on our knowledge of the propagation properties of cosmic ray nuclei with energy $\\gtrsim 1 \\GeV/{\\rm n}$ in the Galaxy. We will show that B/C (as well as N/O and C/O) and ${\\bar p}/p$ data (especially including recent PAMELA results) can consistently be matched within a unique diffusion-reacceleration model. The requirement that light nuclei and $\\bar p$ data are both reproduced within experimental uncertainties places stringent limits on suitable propagation parameters. In particular, we find the allowed range of the diffusion coefficient spectral index to be $0.38 < \\delta < 0.57$ at 95% confidence level and that Kraichnan type diffusion is significantly favored respect to Kolmogorov. While some amount of reacceleration is required to account for low energy data, only a limited range of values of the Alfv\\`en velocity ($v_A \\simeq 15 \\km \\s^{-1}$) is allowed. Furthermore, we do not need to intro...

  9. From CREAM to ISS-CREAM: A Next Step in the Direct Measurement of Cosmic Rays

    Science.gov (United States)

    Angelaszek, David; Iss-Cream Collaboration

    2015-04-01

    The balloon-borne Cosmic Ray Energetics and Mass (CREAM) Experiment has carried out six successful ?ights around the continent of Antarctica for a total exposure of over 160 days. The CREAM Data Acquisition (CDAQ) software system, utilized on all six balloon missions, is a crucial component of the CREAM instrument that facilitates data-taking, monitoring, commanding and calibration of the entire apparatus. Currently, a CREAM payload is being developed for integration on the International Space Station (ISS) in the spring of 2015. The shift from a balloon-borne experiment to a space mission required numerous hardware modifications and introduces a new command and data handling environment. New operational considerations are also needed to accommodate a multi-year mission. These hardware, environmental and operational modifications must be accommodated in CDAQ. The nature of these modifications and how they are reflected in the CDAQ software are discussed here. This work was supported by NASA Headquarters under the NASA Earth and Space Science Fellowship Program-Grant NNX12AL57H, NASA Grant NNX11AC52G and their predecessors.

  10. Fitting the Low Energy Spectra of Cosmic Ray Primary Nuclei from C to Fe as Measured on Voyager 1

    CERN Document Server

    Webber, W R

    2016-01-01

    The intensities of the low energy part of the spectra of primary cosmic ray nuclei including C, O, Ne, Mg, Si and Fe measured by Voyager 1 beyond the heliopause are deficient relative to the spectra measured at energies above ~100 MeV/nuc as calculated using a standard Leaky Box Model with the path length a function of rigidity. Modifications to the normal exponential distribution of path lengths at a single rigidity as is used in a simple LBM will provide a good fit to this new Voyager 1 data at low energies. These modifications, sometimes called a truncation, lead to a deficiency of short path lengths relative to an exponential distribution. This deficiency in the intensities can be described by a truncation parameter = 0.12. This modification can be produced in several ways including a non-uniform local distribution of cosmic ray sources. A uniform source distribution in the galactic plane that is deficient in sources within 0.2-0.4 Kpc of the Sun is indicated by the data. Further studies of these low ener...

  11. The EEE Project: a sparse array of telescopes for the measurement of cosmic ray muons

    Science.gov (United States)

    La Rocca, P.; Abbrescia, M.; Avanzini, C.; Baldini, L.; Baldini Ferroli, R.; Batignani, G.; Bencivenni, G.; Bossini, E.; Chiavassa, A.; Cicalò, C.; Cifarelli, L.; Coccetti, F.; Coccia, E.; Corvaglia, A.; De Gruttola, D.; De Pasquale, S.; Di Giovanni, A.; D'Incecco, M.; Dreucci, M.; Fabbri, F. L.; Fattibene, E.; Ferraro, A.; Frolov, V.; Galeotti, P.; Garbini, M.; Gemme, G.; Gnesi, I.; Grazzi, S.; Gustavino, C.; Hatzifotiadou, D.; Liciulli, F.; Maggiora, A.; Maragoto Rodriguez, O.; Maron, G.; Martelli, B.; Mazziotta, M. N.; Miozzi, S.; Nania, R.; Noferini, F.; Nozzoli, F.; Panareo, M.; Panetta, M.; Paoletti, R.; Park, W.; Perasso, L.; Pilo, F.; Piragino, G.; Riggi, F.; Righini, G. C.; Rizzi, M.; Sartorelli, G.; Scapparone, E.; Schioppa, M.; Scribano, A.; Selvi, M.; Serci, S.; Siddi, E.; Squarcia, S.; Stori, L.; Taiuti, M.; Terreni, G.; Visnyei, O. B.; Vistoli, M. C.; Votano, L.; Williams, M. C. S.; Zani, S.; Zichichi, A.; Zuyeuski, R.

    2016-12-01

    The Extreme Energy Events (EEE) Project is meant to be the most extensive experiment to detect secondary cosmic particles in Italy. To this aim, more than 50 telescopes have been built at CERN and installed in high schools distributed all over the Italian territory. Each EEE telescope comprises three large area Multigap Resistive Plate Chambers (MRPCs) and is capable of reconstructing the trajectories of the charged particles traversing it with a good angular resolution. The excellent performance of the EEE telescopes allows a large variety of studies, from measuring the local muon flux in a single telescope, to detecting extensive air showers producing time correlations in the same metropolitan area, to searching for large-scale correlations between showers detected in telescopes tens, hundreds or thousands of kilometers apart. In addition to its scientific goal, the EEE Project also has an educational and outreach objective, its aim being to motivate young people by involving them directly in a real experiment. High school students and teachers are involved in the construction, testing and start-up of the EEE telescope in their school, then in its maintenance and data-acquisition, and later in the analysis of the data. During the last couple of years a great boost has been given to the EEE Project through the organization of simultaneous and centralized data taking with the whole telescope array. The raw data from all telescopes are transferred to CNAF (Bologna), where they are reconstructed and stored. The data are currently being analyzed, looking at various topics: variation of the rate of cosmic muons with time, upward going muons, muon lifetime, search for anisotropies in the muon angular distribution and for time coincidences between stations. In this paper an overall description of the experiment is given, including the design, construction and performance of the telescopes. The operation of the whole array is also presented by showing the most recent

  12. Reconstruction of the energy and depth of maximum of cosmic-ray air-showers from LOPES radio measurements

    CERN Document Server

    Apel, W D; Bähren, L; Bekk, K; Bertaina, M; Biermann, P L; Blümer, J; Bozdog, H; Brancus, I M; Cantoni, E; Chiavassa, A; Daumiller, K; de Souza, V; Di Pierro, F; Doll, P; Engel, R; Falcke, H; Fuchs, B; Fuhrmann, D; Gemmeke, H; Grupen, C; Haungs, A; Heck, D; Hörandel, J R; Horneffer, A; Huber, D; Huege, T; Isar, P G; Kampert, K -H; Kang, D; Krömer, O; Kuijpers, J; Link, K; Łuczak, P; Ludwig, M; Mathes, H J; Melissas, M; Morello, C; Oehlschläger, J; Palmieri, N; Pierog, T; Rautenberg, J; Rebel, H; Roth, M; Rühle, C; Saftoiu, A; Schieler, H; Schmidt, A; Schröder, F G; Sima, O; Toma, G; Trinchero, G C; Weindl, A; Wochele, J; Zabierowski, J; Zensus, J A

    2014-01-01

    LOPES is a digital radio interferometer located at Karlsruhe Institute of Technology (KIT), Germany, which measures radio emission from extensive air showers at MHz frequencies in coincidence with KASCADE-Grande. In this article, we explore a method (slope method) which leverages the slope of the measured radio lateral distribution to reconstruct crucial attributes of primary cosmic rays. First, we present an investigation of the method on the basis of pure simulations. Second, we directly apply the slope method to LOPES measurements. Applying the slope method to simulations, we obtain uncertainties on the reconstruction of energy and depth of shower maximum Xmax of 13% and 50 g/cm^2, respectively. Applying it to LOPES measurements, we are able to reconstruct energy and Xmax of individual events with upper limits on the precision of 20-25% for the primary energy and 95 g/cm^2 for Xmax, despite strong human-made noise at the LOPES site.

  13. A database of charged cosmic rays

    Science.gov (United States)

    Maurin, D.; Melot, F.; Taillet, R.

    2014-09-01

    Aims: This paper gives a description of a new online database and associated online tools (data selection, data export, plots, etc.) for charged cosmic-ray measurements. The experimental setups (type, flight dates, techniques) from which the data originate are included in the database, along with the references to all relevant publications. Methods: The database relies on the MySQL5 engine. The web pages and queries are based on PHP, AJAX and the jquery, jquery.cluetip, jquery-ui, and table-sorter third-party libraries. Results: In this first release, we restrict ourselves to Galactic cosmic rays with Z ≤ 30 and a kinetic energy per nucleon up to a few tens of TeV/n. This corresponds to more than 200 different sub-experiments (i.e., different experiments, or data from the same experiment flying at different times) in as many publications. Conclusions: We set up a cosmic-ray database (CRDB) and provide tools to sort and visualise the data. New data can be submitted, providing the community with a collaborative tool to archive past and future cosmic-ray measurements. http://lpsc.in2p3.fr/crdb; Contact: crdatabase@lpsc.in2p3.fr

  14. Aerosols Produced by Cosmic Rays

    DEFF Research Database (Denmark)

    Enghoff, Martin Andreas Bødker

    , it will be possible to develop the experiment to cover additional processes involved in the route to cloud droplet formation. The experiment will be conducted at the Danish National Space Center where a clean room facility has been provided. It comprises a 7 m3 reaction chamber across which an electric field......Satellite observations have shown that the Earth’s cloud cover is strongly correlated with the galactic cosmic ray flux. While this correlation is indicative of a possible physical connection, there is currently no confirmation that a physical mechanism exists. We are therefore setting up...... mechanism linking cosmic rays to clouds and climate is currently speculative, there have been various suggestions of the role atmospheric ions may play; these involve any one of a number of processes from the nucleation of aerosols up to the collection processes of cloud droplets. We have chosen to start...

  15. New insights from cosmic gamma rays

    CERN Document Server

    Diehl, Roland

    2016-01-01

    The measurement of gamma rays from cosmic sources at MeV energies is one of the key tools for nuclear astrophysics, in its study of nuclear reactions and their impacts on objects and phenomena throughout the universe. Gamma rays trace nuclear processes most directly, as they originate from nuclear transitions following radioactive decays or high-energy collisions with excitation of nuclei. Additionally, the unique gamma-ray signature from the annihilation of positrons falls into this astronomical window and is discussed here: Cosmic positrons are often produced from beta-decays, thus also of nuclear physics origins. The nuclear reactions leading to radioactive isotopes occur inside stars and stellar explosions, which therefore constitute the main objects of such studies. In recent years, both thermonuclear and core-collapse supernova radioactivities have been measured, and complement conventional supernova observations with measurements of their prime energy sources. The diffuse radioactive afterglow of massi...

  16. Charged Cosmic Rays and Neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Kachelrieß, M.

    2013-04-15

    High-energy neutrino astronomy has grown up, with IceCube as one of its main experiments having sufficient sensitivity to test “vanilla” models of astrophysical neutrinos. I review predictions of neutrino fluxes as well as the status of cosmic ray physics. I comment also briefly on an improvement of the Fermi-LAT limit for cosmogenic neutrinos and on the two neutrino events presented by IceCube first at “Neutrino 2012”.

  17. Electron and Positron Fluxes in Primary Cosmic Rays Measured with the Alpha Magnetic Spectrometer on the International Space Station

    Science.gov (United States)

    Gast, Henning

    2016-07-01

    Precision measurements by the Alpha Magnetic Spectrometer on the International Space Station of the primary cosmic-ray electron flux in the range 0.5 to 700 GeV and the positron flux in the range 0.5 to 500 GeV are presented. The electron flux and the positron flux each require a description beyond a single power-law spectrum. Both the electron flux and the positron flux change their behavior at ˜30 GeV but the fluxes are significantly different in their magnitude and energy dependence. Between 20 and 200 GeV the positron spectral index is significantly harder than the electron spectral index. The results show, for the first time, that neither e+ nor e- can be described by a single power law above 27.2 and 52.3 GeV, respectively. The determination of the differing behavior of the spectral indices versus energy is a new observation and provides important information on the origins of cosmic-ray electrons and positrons. The dependence of the electron and positron fluxes on time will also be discussed.

  18. Measurement of Cosmic-ray Muons and Muon-induced Neutrons in the Aberdeen Tunnel Underground Laboratory

    CERN Document Server

    Blyth, S C; Chen, X C; Chu, M C; Cui, K X; Hahn, R L; Ho, T H; Hsiung, Y B; Hu, B Z; Kwan, K K; Kwok, M W; Kwok, T; Lau, Y P; Leung, J K C; Leung, K Y; Lin, G L; Lin, Y C; Luk, K B; Luk, W H; Ngai, H Y; Ngan, S Y; Pun, C S J; Shih, K; Tam, Y H; Tsang, R H M; Wang, C H; Wong, C M; Wong, H L; Wong, K K; Yeh, M; Zhang, B J

    2015-01-01

    We measured the muon flux and the production rate of muon-induced neutrons at a depth of 611 meters water equivalent. Our apparatus comprises of three layers of crossed plastic scintillator hodoscopes for tracking the incident cosmic-ray muons, and 760 L of gadolinium-doped liquid scintillator for both neutron production and detection targets. The vertical muon intensity was measured to be $I_{\\mu}$ = (5.7 $\\pm$ 0.6) $\\times$ 10$^{-6}$ cm$^{-2}$ s$^{-1}$ sr$^{-1}$. The muon-induced neutron yield in the liquid scintillator was determined to be $Y_{n}$ = (1.19 $\\pm$ 0.08(stat.) $\\pm$ 0.21(syst.)) $\\times$ 10$^{-4}$ neutrons / ($\\mu$ g cm$^{-2}$). A fitting to recently measured neutron yields at different depths gave a muon energy dependence of $\\left\\langle E_{\\mu} \\right\\rangle^{0.76 \\pm 0.03}$ for scintillator targets.

  19. A measurement of the cosmic-ray muon flux with a module of the NESTOR neutrino telescope

    Science.gov (United States)

    Nestor Collaboration; Aggouras, G.; Anassontzis, E. G.; Ball, A. E.; Bourlis, G.; Chinowsky, W.; Fahrun, E.; Grammatikakis, G.; Green, C.; Grieder, P.; Katrivanos, P.; Koske, P.; Leisos, A.; Markopoulos, E.; Minkowsky, P.; Nygren, D.; Papageorgiou, K.; Przybylski, G.; Resvanis, L. K.; Siotis, I.; Sopher, J.; Staveris-Polikalas, A.; Tsagli, V.; Tsirigotis, A.; Zhukov, V. A.

    2005-05-01

    A module of the NESTOR underwater neutrino telescope was deployed at a depth of 3800 m in order to test the overall detector performance and particularly that of the data acquisition systems. A prolonged period of running under stable operating conditions made it possible to measure the cosmic ray muon flux, I0·cosα(θ), as a function of the zenith angle θ. Measured values of index α and the vertical intensity I0 α=4.7±0.5(stat)±0.2(syst)I0=9.0×10-9±0.7×10-9(stat)±0.4×10-9(syst)cm-2s-1sr-1 are in good agreement with previous measurements and phenomenological predictions.

  20. Measurements of cosmic-ray secondary nuclei at high energies with the first flight of the CREAM balloon-borne experiment

    CERN Document Server

    Ahn, H S; Bagliesi, M G; Beatty, J J; Bigongiari, G; Boyle, P J; Brandt, T J; Childers, J T; Conklin, N B; Coutu, S; Duvernois, M A; Ganel, O; Han, J H; Hyun, H J; Jeon, J A; Kim, K C; Lee, J K; Lee, M H; Lutz, L; Maestro, P; Malinin, A; Marrocchesi, P S; Minnick, S A; Mognet, S I; Nam, S; Nutter, S L; Park, I H; Park, N H; Seo, E S; Sina, R; Swordy, S P; Wakely, S P; Wu, J; Yang, J; Yoon, Y S; Zei, R; Zinn, S Y

    2008-01-01

    We present new measurements of heavy cosmic-ray nuclei at high energies per- formed during the first flight of the balloon-borne cosmic-ray experiment CREAM (Cosmic-Ray Energetics And Mass). This instrument uses multiple charge detectors and a transition radiation detector to provide the first high accuracy measurements of the relative abundances of elements from boron to oxygen up to energies around 1 TeV/n. The data agree with previous measurements at lower energies and show a relatively steep decline (~E$^-0.6$ to E$^-0.5$) at high energies. They further show the source abundance of nitrogen relative to oxygen is ~10% in the TeV/n region.

  1. Closing CMS to hunt cosmic rays

    CERN Multimedia

    Claudia Marcelloni

    2006-01-01

    Every second the Earth is bombarded by billions of cosmic rays and occasionally one of these cosmic particles will collide with the Earth's atmosphere generating a shower of particles known as an 'air shower'. This is similiar to the collisions and subsequent particle showers observed in accelerators such as the LHC. Here the CMS detector is closed so that systems can be tested using muon cosmic rays in the 'Cosmic Challenge'.

  2. Cosmic ray measurements in the knee region: new perspectives for simultaneous air-borne and ground-based observations

    Energy Technology Data Exchange (ETDEWEB)

    Marrocchesi, P.S. [Physics Dept., Univ. of Siena and INFN, 56 via Roma, 53100 Siena (Italy)]. E-mail: marrocchesi@pi.infn.it

    2006-01-15

    Direct measurements of cosmic ray composition and energy spectra in the knee region (10{sup 15} to 10{sup 16} eV) represent a real challenge for balloon and space borne experiments due to their limited exposure. On the other hand, ground-based extensive air shower arrays (EAS) can provide a measurement of the primary particle energy but fail to identify unambiguously its nature. The possibility to couple a large area instrument in flight, dedicated to the charge identification of the primary nucleus, with a ground array is explored. This task is within the reach of today detector technologies but requires a formidable step in the current development of stratospheric airship platforms capable of maintaining a long-duration stationary position above the EAS array.

  3. Measurement of the energy spectrum of cosmic rays above 10{sup 18} eV using the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, J. [National Technological University, Faculty Mendoza (CONICET/CNEA), Mendoza (Argentina); Abreu, P. [LIP and Instituto Superior Tecnico, Lisboa (Portugal); Aglietta, M. [Istituto di Fisica dello Spazio Interplanetario (INAF), Universita di Torino and Sezione INFN, Torino (Italy); Ahn, E.J. [Fermilab, Batavia, IL (United States); Allard, D. [Laboratoire AstroParticule et Cosmologie (APC), Universite Paris 7, CNRS-IN2P3, Paris (France); Allen, J. [New York University, New York, NY (United States); Alvarez-Muniz, J. [Universidad de Santiago de Compostela (Spain); Ambrosio, M. [Universita di Napoli ' Federico II' and Sezione INFN, Napoli (Italy); Anchordoqui, L. [University of Wisconsin, Milwaukee, WI (United States); Andringa, S. [LIP and Instituto Superior Tecnico, Lisboa (Portugal); Anticic, T. [Rudjer Boskovic Institute, 10000 Zagreb (Croatia); Anzalone, A. [Istituto di Astrofisica Spaziale e Fisica Cosmica di Palermo (INAF), Palermo (Italy); Aramo, C. [Universita di Napoli ' Federico II' and Sezione INFN, Napoli (Italy); Arganda, E. [Universidad Complutense de Madrid, Madrid (Spain); Arisaka, K. [University of California, Los Angeles, CA (United States); Arqueros, F. [Universidad Complutense de Madrid, Madrid (Spain); Asorey, H. [Centro Atomico Bariloche and Instituto Balseiro (CNEA-UNCuyo-CONICET), San Carlos de Bariloche (Argentina); Assis, P. [LIP and Instituto Superior Tecnico, Lisboa (Portugal); Aublin, J. [Laboratoire de Physique Nucleaire et de Hautes Energies (LPNHE), Universites Paris 6 et Paris 7, CNRS-IN2P3, Paris (France); Ave, M. [Karlsruhe Institute of Technology - Campus North - Institut fuer Kernphysik, Karlsruhe (Germany); University of Chicago, Enrico Fermi Institute, Chicago, IL (United States)

    2010-03-08

    We report a measurement of the flux of cosmic rays with unprecedented precision and statistics using the Pierre Auger Observatory. Based on fluorescence observations in coincidence with at least one surface detector we derive a spectrum for energies above 10{sup 18} eV. We also update the previously published energy spectrum obtained with the surface detector array. The two spectra are combined addressing the systematic uncertainties and, in particular, the influence of the energy resolution on the spectral shape. The spectrum can be described by a broken power law E{sup -g}amma with index gamma=3.3 below the ankle which is measured at log{sub 10}(E{sub ankle}/eV)=18.6. Above the ankle the spectrum is described by a power law with index 2.6 followed by a flux suppression, above about log{sub 10}(E/eV)=19.5, detected with high statistical significance.

  4. Measurement of integrated flux of cosmic ray muons at sea level using the INO-ICAL prototype detector

    Energy Technology Data Exchange (ETDEWEB)

    Pal, S.; Acharya, B.S.; Majumder, G.; Mondal, N.K.; Samuel, D.; Satyanarayana, B., E-mail: sumanta@tifr.res.in, E-mail: acharya@tifr.res.in, E-mail: gobinda@tifr.res.in, E-mail: nkm@tifr.res.in, E-mail: samuel@tifr.res.in, E-mail: bsn@tifr.res.in [Department of High Energy Physics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005 (India)

    2012-07-01

    The India-based Neutrino Observatory (INO) collaboration is planning to set-up a magnetized Iron-CALorimeter (ICAL) to study atmospheric neutrino oscillations with precise measurements of oscillations parameters. The ICAL uses 50 kton iron as target mass and about 28800 Resistive Plate Chambers (RPC) of 2 m × 2 m in area as active detector elements. As part of its R and D program, a prototype detector stack comprising 12 layers of RPCs of 1 m × 1 m in area has been set-up at Tata Institute of Fundamental Research (TIFR) to study the detector parameters using cosmic ray muons. We present here a study of muon flux measurement at sea level and lower latitude. (Site latitude: 18°54'N, longitude: 72°48'E.)

  5. Measurement of the energy spectrum of cosmic rays above 1018 eV using the Pierre Auger Observatory

    Science.gov (United States)

    Abraham, J.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Allard, D.; Allen, J.; Alvarez-Muñiz, J.; Ambrosio, M.; Anchordoqui, L.; Andringa, S.; Antičić, T.; Anzalone, A.; Aramo, C.; Arganda, E.; Arisaka, K.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avila, G.; Bäcker, T.; Badagnani, D.; Balzer, M.; Barber, K. B.; Barbosa, A. F.; Barroso, S. L. C.; Baughman, B.; Bauleo, P.; Beatty, J. J.; Becker, B. R.; Becker, K. H.; Bellétoile, A.; Bellido, J. A.; Benzvi, S.; Berat, C.; Bergmann, T.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanch-Bigas, O.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brogueira, P.; Brown, W. C.; Bruijn, R.; Buchholz, P.; Bueno, A.; Burton, R. E.; Busca, N. G.; Caballero-Mora, K. S.; Caramete, L.; Caruso, R.; Castellina, A.; Catalano, O.; Cataldi, G.; Cazon, L.; Cester, R.; Chauvin, J.; Chiavassa, A.; Chinellato, J. A.; Chou, A.; Chudoba, J.; Clay, R. W.; Colombo, E.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cook, H.; Cooper, M. J.; Coppens, J.; Cordier, A.; Cotti, U.; Coutu, S.; Covault, C. E.; Creusot, A.; Criss, A.; Cronin, J.; Curutiu, A.; Dagoret-Campagne, S.; Dallier, R.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; de Domenico, M.; de Donato, C.; de Jong, S. J.; de La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; de Mitri, I.; de Souza, V.; de Vries, K. D.; Decerprit, G.; Del Peral, L.; Deligny, O.; Della Selva, A.; Delle Fratte, C.; Dembinski, H.; di Giulio, C.; Diaz, J. C.; Díaz Castro, M. L.; Diep, P. N.; Dobrigkeit, C.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; Dos Anjos, J. C.; Dova, M. T.; D'Urso, D.; Dutan, I.; Duvernois, M. A.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferrero, A.; Fick, B.; Filevich, A.; Filipčič, A.; Fleck, I.; Fliescher, S.; Fracchiolla, C. E.; Fraenkel, E. D.; Fröhlich, U.; Fulgione, W.; Gamarra, R. F.; Gambetta, S.; García, B.; García Gámez, D.; Garcia-Pinto, D.; Garrido, X.; Gelmini, G.; Gemmeke, H.; Ghia, P. L.; Giaccari, U.; Giller, M.; Glass, H.; Goggin, L. M.; Gold, M. S.; Golup, G.; Gomez Albarracin, F.; Gómez Berisso, M.; Gonçalves, P.; Gonzalez, D.; Gonzalez, J. G.; Góra, D.; Gorgi, A.; Gouffon, P.; Gozzini, S. R.; Grashorn, E.; Grebe, S.; Grigat, M.; Grillo, A. F.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hague, J. D.; Halenka, V.; Hansen, P.; Harari, D.; Harmsma, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hojvat, C.; Holmes, V. C.; Homola, P.; Hörandel, J. R.; Horneffer, A.; Hrabovský, M.; Huege, T.; Hussain, M.; Iarlori, M.; Insolia, A.; Ionita, F.; Italiano, A.; Jiraskova, S.; Kadija, K.; Kaducak, M.; Kampert, K. H.; Karova, T.; Kasper, P.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kelley, J.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapik, R.; Knapp, J.; Koang, D.-H.; Krieger, A.; Krömer, O.; Kruppke-Hansen, D.; Kuehn, F.; Kuempel, D.; Kulbartz, K.; Kunka, N.; Kusenko, A.; La Rosa, G.; Lachaud, C.; Lago, B. L.; Lautridou, P.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Lee, J.; Leigui de Oliveira, M. A.; Lemiere, A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Macolino, C.; Maldera, S.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Maris, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martínez Bravo, O.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurizio, D.; Mazur, P. O.; McEwen, M.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Meurer, C.; Mičanović, S.; Micheletti, M. I.; Miller, W.; Miramonti, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, E.; Moreno, J. C.; Morris, C.; Mostafá, M.; Mueller, S.; Muller, M. A.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nhung, P. T.; Nierstenhoefer, N.; Nitz, D.; Nosek, D.; Nožka, L.; Nyklicek, M.; Oehlschläger, J.; Olinto, A.; Oliva, P.; Olmos-Gilbaja, V. M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parizot, E.; Parlati, S.; Parra, A.; Parrisius, J.; Parsons, R. D.; Pastor, S.; Paul, T.; Pavlidou, V.; Payet, K.; Pech, M.; Pȩkala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrinca, P.; Petrolini, A.; Petrov, Y.; Petrovic, J.; Pfendner, C.; Piegaia, R.; Pierog, T.; Pimenta, M.; Pirronello, V.; Platino, M.; Ponce, V. H.; Pontz, M.; Privitera, P.; Prouza, M.; Quel, E. J.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Redondo, A.; Revenu, B.; Rezende, F. A. S.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivière, C.; Rizi, V.; Robledo, C.; Rodriguez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodriguez-Cabo, I.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouillé-D'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Salamida, F.; Salazar, H.; Salina, G.; Sánchez, F.; Santander, M.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, S.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Schmidt, F.; Schmidt, T.; Scholten, O.; Schoorlemmer, H.; Schovancova, J.; Schovánek, P.; Schroeder, F.; Schulte, S.; Schüssler, F.; Schuster, D.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Semikoz, D.; Settimo, M.; Shellard, R. C.; Sidelnik, I.; Siffert, B. B.; Sigl, G.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Stasielak, J.; Stephan, M.; Strazzeri, E.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Šuša, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Tamashiro, A.; Tamburro, A.; Tapia, A.; Tarutina, T.; Taşcău, O.; Tcaciuc, R.; Tcherniakhovski, D.; Tegolo, D.; Thao, N. T.; Thomas, D.; Tiffenberg, J.; Timmermans, C.; Tkaczyk, W.; Todero Peixoto, C. J.; Tomé, B.; Tonachini, A.; Travnicek, P.; Tridapalli, D. B.; Tristram, G.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van den Berg, A. M.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Venters, T.; Verzi, V.; Videla, M.; Villaseñor, L.; Vorobiov, S.; Voyvodic, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Warner, D.; Watson, A. A.; Westerhoff, S.; Whelan, B. J.; Wieczorek, G.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Williams, C.; Winchen, T.; Winnick, M. G.; Wundheiler, B.; Yamamoto, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Ziolkowski, M.; Pierre Auger Collaboration

    2010-03-01

    We report a measurement of the flux of cosmic rays with unprecedented precision and statistics using the Pierre Auger Observatory. Based on fluorescence observations in coincidence with at least one surface detector we derive a spectrum for energies above 1018 eV. We also update the previously published energy spectrum obtained with the surface detector array. The two spectra are combined addressing the systematic uncertainties and, in particular, the influence of the energy resolution on the spectral shape. The spectrum can be described by a broken power law E- with index γ=3.3 below the ankle which is measured at log(E/eV)=18.6. Above the ankle the spectrum is described by a power law with index 2.6 followed by a flux suppression, above about log(E/eV)=19.5, detected with high statistical significance.

  6. Cosmic ray penetration in diffuse clouds

    CERN Document Server

    Morlino, G

    2015-01-01

    Cosmic rays are a fundamental source of ionization for molecular and diffuse clouds, influencing their chemical, thermal, and dynamical evolution. The amount of cosmic rays inside a cloud also determines the $\\gamma$-ray flux produced by hadronic collisions between cosmic rays and cloud material. We study the spectrum of cosmic rays inside and outside of a diffuse cloud, by solving the stationary transport equation for cosmic rays including diffusion, advection and energy losses due to ionization of neutral hydrogen atoms. We found that the cosmic ray spectrum inside a diffuse cloud differs from the one in the interstellar medium for energies smaller than $E_{br}\\approx 100$ MeV, irrespective of the model details. Below $E_{br}$, the spectrum is harder (softer) than that in the interstellar medium if the latter is a power law $\\propto p^{-s}$ with $s$ larger (smaller) than $\\sim0.42$.

  7. Measurements of cosmic-ray proton and helium spectra from the BESS-Polar long-duration balloon flights over Antarctica

    CERN Document Server

    Abe, K; Haino, S; Hams, T; Hasegawa, M; Horikoshi, A; Itazaki, A; Kim, K C; Kumazawa, T; Kusumoto, A; Lee, M H; Makida, Y; Matsuda, S; Matsukawa, Y; Matsumoto, K; Mitchell, J W; Myers, Z; Nishimura, J; Nozaki, M; Orito, R; Ormes, J F; Picot-Clemente, N; Sakai, K; Sasaki, M; Seo, E S; Shikaze, Y; Shinoda, R; Streitmatter, R E; Suzuki, J; Takasugi, Y; Takeuchi, K; Tanaka, K; Thakur, N; Yamagami, T; Yamamoto, A; Yoshida, T; Yoshimura, K

    2015-01-01

    The BESS-Polar Collaboration measured the energy spectra of cosmic-ray protons and helium during two long-duration balloon flights over Antarctica in December 2004 and December 2007, at substantially different levels of solar modulation. Proton and helium spectra probe the origin and propagation history of cosmic rays in the galaxy, and are essential to calculations of the expected spectra of cosmic-ray antiprotons, positrons, and electrons from interactions of primary cosmic-ray nuclei with the interstellar gas, and to calculations of atmospheric muons and neutrinos. We report absolute spectra at the top of the atmosphere for cosmic-ray protons in the kinetic energy range 0.2-160 GeV and helium nuclei 0.2-80 GeV/nucleon. The corresponding magnetic rigidity ranges are 0.6-160 GV for protons and 1.3-160 GV for helium. These spectra are compared to measurements from previous BESS flights and from AMS-01, ATIC-2, PAMELA, and AMS-02. We also report the ratio of the proton and helium fluxes from 1.3 GV to 160 GV a...

  8. Resolving photons from cosmic ray in DAMPE

    Science.gov (United States)

    Xu, Zunlei; Chang, Jin; Li, Xiang; Dong, TieKuang; Zang, Jingjing

    2016-07-01

    The Dark Matter Particle Explorer(DAMPE), which took to the skies on 17 December, is designed for high energy cosmic ray ion detection. The proportion of photons in the cosmic ray is very small, so it's difficult to distinguish between photons and 'background', but necessary for any DAMPE gamma-ray science goals.The paper present a algorithm to identify photons from 'background' mainly by the tracker/converter, which promote pair conversion and measure the directions of incident particles, and an anticoincidence detector,featuring an array of plastic scintillator to detect the charged particles.The method has been studied by simulating using the GEANT4 Monte Carlo simulation code and adjusted by the BeamTest at CERN in December,2014.In addition,DAMPE photon detection capabilities can be checked using the flight data.

  9. The Energy Spectrum of Cosmic Rays above 10$^{17.2}$ eV Measured by the Fluorescence Detectors of the Telescope Array Experiment in Seven Years

    CERN Document Server

    ,

    2015-01-01

    The Telescope Array (TA) experiment is the largest detector to observe ultra-high-energy cosmic rays in the northern hemisphere. The fluorescence detectors at southern two stations of TA are newly constructed and have now completed seven years of steady operation. One advantage of monocular analysis of the fluorescence detectors is a lower energy threshold for cosmic rays than that of other techniques like stereoscopic observations or coincidences with the surface detector array, allowing the measurement of an energy spectrum covering three orders of magnitude in energy. Analyzing data collected during those seven years, we report the energy spectrum of cosmic rays covering a broad range of energies above 10$^{17.2}$ eV measured by the fluorescence detectors and a comparison with previously published results.

  10. Measurement of the Radiation Energy in the Radio Signal of Extensive Air Showers as a Universal Estimator of Cosmic-Ray Energy

    CERN Document Server

    Aab, Alexander; Aglietta, Marco; Ahn, Eun-Joo; Samarai, Imen Al; Albuquerque, Ivone; Allekotte, Ingomar; Allison, Patrick; Almela, Alejandro; Castillo, Jesus Alvarez; Alvarez-Muñiz, Jaime; Batista, Rafael Alves; Ambrosio, Michelangelo; Aminaei, Amin; Anastasi, Gioacchino Alex; Anchordoqui, Luis; Andringa, Sofia; Aramo, Carla; Arqueros, Fernando; Arsene, Nicusor; Asorey, Hernán Gonzalo; Assis, Pedro; Aublin, Julien; Avila, Gualberto; Awal, Nafiun; Badescu, Alina Mihaela; Baus, Colin; Beatty, Jim; Becker, Karl Heinz; Bellido, Jose A; Berat, Corinne; Bertaina, Mario Edoardo; Bertou, Xavier; Biermann, Peter; Billoir, Pierre; Blaess, Simon G; Blanco, Alberto; Blanco, Miguel; Blazek, Jiri; Bleve, Carla; Blümer, Hans; Boháčová, Martina; Boncioli, Denise; Bonifazi, Carla; Borodai, Nataliia; Brack, Jeffrey; Brancus, Iliana; Bretz, Thomas; Bridgeman, Ariel; Brogueira, Pedro; Buchholz, Peter; Bueno, Antonio; Buitink, Stijn; Buscemi, Mario; Caballero-Mora, Karen S; Caccianiga, Barbara; Caccianiga, Lorenzo; Candusso, Marina; Caramete, Laurentiu; Caruso, Rossella; Castellina, Antonella; Cataldi, Gabriella; Cazon, Lorenzo; Cester, Rosanna; Chavez, Alan G; Chiavassa, Andrea; Chinellato, Jose Augusto; Chudoba, Jiri; Cilmo, Marco; Clay, Roger W; Cocciolo, Giuseppe; Colalillo, Roberta; Coleman, Alan; Collica, Laura; Coluccia, Maria Rita; Conceição, Ruben; Contreras, Fernando; Cooper, Mathew J; Cordier, Alain; Coutu, Stephane; Covault, Corbin; Cronin, James; Dallier, Richard; Daniel, Bruno; Dasso, Sergio; Daumiller, Kai; Dawson, Bruce R; de Almeida, Rogerio M; de Jong, Sijbrand J; De Mauro, Giuseppe; Neto, Joao de Mello; De Mitri, Ivan; de Oliveira, Jaime; de Souza, Vitor; del Peral, Luis; Deligny, Olivier; Dhital, Niraj; Di Giulio, Claudio; Di Matteo, Armando; Diaz, Johana Chirinos; Castro, Mary Lucia Díaz; Diogo, Francisco; Dobrigkeit, Carola; Docters, Wendy; D'Olivo, Juan Carlos; Dorofeev, Alexei; Hasankiadeh, Qader Dorosti; Anjos, Rita dos; Dova, Maria Teresa; Ebr, Jan; Engel, Ralph; Erdmann, Martin; Erfani, Mona; Escobar, Carlos O; Espadanal, Joao; Etchegoyen, Alberto; Falcke, Heino; Fang, Ke; Farrar, Glennys; Fauth, Anderson; Fazzini, Norberto; Ferguson, Andrew P; Fick, Brian; Figueira, Juan Manuel; Filevich, Alberto; Filipčič, Andrej; Fratu, Octavian; Freire, Martín Miguel; Fujii, Toshihiro; García, Beatriz; Garcia-Gamez, Diego; Garcia-Pinto, Diego; Gate, Florian; Gemmeke, Hartmut; Gherghel-Lascu, Alexandru; Ghia, Piera Luisa; Giaccari, Ugo; Giammarchi, Marco; Giller, Maria; Głas, Dariusz; Glaser, Christian; Glass, Henry; Golup, Geraldina; Berisso, Mariano Gómez; Vitale, Primo F Gómez; González, Nicolás; Gookin, Ben; Gordon, Jacob; Gorgi, Alessio; Gorham, Peter; Gouffon, Philippe; Griffith, Nathan; Grillo, Aurelio; Grubb, Trent D; Guarino, Fausto; Guedes, Germano; Hampel, Matías Rolf; Hansen, Patricia; Harari, Diego; Harrison, Thomas A; Hartmann, Sebastian; Harton, John; Haungs, Andreas; Hebbeker, Thomas; Heck, Dieter; Heimann, Philipp; Herve, Alexander E; Hill, Gary C; Hojvat, Carlos; Hollon, Nicholas; Holt, Ewa; Homola, Piotr; Hörandel, Jörg; Horvath, Pavel; Hrabovský, Miroslav; Huber, Daniel; Huege, Tim; Insolia, Antonio; Isar, Paula Gina; Jandt, Ingolf; Jansen, Stefan; Jarne, Cecilia; Johnsen, Jeffrey A; Josebachuili, Mariela; Kääpä, Alex; Kambeitz, Olga; Kampert, Karl Heinz; Kasper, Peter; Katkov, Igor; Keilhauer, Bianca; Kemp, Ernesto; Kieckhafer, Roger; Klages, Hans; Kleifges, Matthias; Kleinfeller, Jonny; Krause, Raphael; Krohm, Nicole; Kuempel, Daniel; Mezek, Gasper Kukec; Kunka, Norbert; Awad, Alaa Metwaly Kuotb; LaHurd, Danielle; Latronico, Luca; Lauer, Robert; Lauscher, Markus; Lautridou, Pascal; Coz, Sandra Le; Lebrun, Didier; Lebrun, Paul; de Oliveira, Marcelo Augusto Leigui; Letessier-Selvon, Antoine; Lhenry-Yvon, Isabelle; Link, Katrin; Lopes, Luis; López, Rebeca; Casado, Aida López; Louedec, Karim; Lucero, Agustin; Malacari, Max; Mallamaci, Manuela; Maller, Jennifer; Mandat, Dusan; Mantsch, Paul; Mariazzi, Analisa; Marin, Vincent; Mariş, Ioana; Marsella, Giovanni; Martello, Daniele; Martinez, Humberto; Bravo, Oscar Martínez; Martraire, Diane; Meza, Jimmy Masías; Mathes, Hermann-Josef; Mathys, Sebastian; Matthews, James; Matthews, John; Matthiae, Giorgio; Maurizio, Daniela; Mayotte, Eric; Mazur, Peter; Medina, Carlos; Medina-Tanco, Gustavo; Meissner, Rebecca; Mello, Victor; Melo, Diego; Menshikov, Alexander; Messina, Stefano; Micheletti, Maria Isabel; Middendorf, Lukas; Minaya, Ignacio A; Miramonti, Lino; Mitrica, Bogdan; Molina-Bueno, Laura; Mollerach, Silvia; Montanet, François; Morello, Carlo; Mostafá, Miguel; Moura, Celio A; Muller, Marcio Aparecido; Müller, Gero; Müller, Sarah; Navas, Sergio; Necesal, Petr; Nellen, Lukas; Nelles, Anna; Neuser, Jens; Nguyen, Phong H; Niculescu-Oglinzanu, Mihai; Niechciol, Marcus; Niemietz, Lukas; Niggemann, Tim; Nitz, Dave; Nosek, Dalibor; Novotny, Vladimir; Nožka, Lyberis; Núñez, Luis; Ochilo, Livingstone; Oikonomou, Foteini; Olinto, Angela; Pacheco, Noelia; Selmi-Dei, Daniel Pakk; Palatka, Miroslav; Pallotta, Juan; Papenbreer, Philipp; Parente, Gonzalo; Parra, Alejandra; Paul, Thomas; Pech, Miroslav; Pękala, Jan; Pelayo, Rodrigo; Pepe, Iuri; Perrone, Lorenzo; Petermann, Emily; Peters, Christine; Petrera, Sergio; Petrov, Yevgeniy; Phuntsok, Jamyang; Piegaia, Ricardo; Pierog, Tanguy; Pieroni, Pablo; Pimenta, Mário; Pirronello, Valerio; Platino, Manuel; Plum, Matthias; Porcelli, Alessio; Porowski, Czeslaw; Prado, Raul Ribeiro; Privitera, Paolo; Prouza, Michael; Quel, Eduardo J; Querchfeld, Sven; Quinn, Sean; Rautenberg, Julian; Ravel, Olivier; Ravignani, Diego; Reinert, Darius; Revenu, Benoît; Ridky, Jan; Risse, Markus; Ristori, Pablo; Rizi, Vincenzo; de Carvalho, Washington Rodrigues; Rojo, Jorge Rubén Rodriguez; Rodríguez-Frías, Maria Dolores; Rogozin, Dmytro; Rosado, Jaime; Roth, Markus; Roulet, Esteban; Rovero, Adrian; Saffi, Steven J; Saftoiu, Alexandra; Salazar, Humberto; Saleh, Ahmed; Greus, Francisco Salesa; Salina, Gaetano; Gomez, Jose Sanabria; Sánchez, Federico; Sanchez-Lucas, Patricia; Santos, Edivaldo Moura; Santos, Eva; Sarazin, Fred; Sarkar, Biswaijt; Sarmento, Raul; Sarmiento-Cano, Christian; Sato, Ricardo; Scarso, Carlos; Schauer, Markus; Scherini, Viviana; Schieler, Harald; Schmidt, David; Scholten, Olaf; Schoorlemmer, Harm; Schovánek, Petr; Schröder, Frank G; Schulz, Alexander; Schulz, Johannes; Schumacher, Johannes; Sciutto, Sergio; Segreto, Alberto; Settimo, Mariangela; Shadkam, Amir; Shellard, Ronald C; Sigl, Guenter; Sima, Octavian; Śmiałkowski, Andrzej; Šmída, Radomir; Snow, Gregory; Sommers, Paul; Sonntag, Sebastian; Sorokin, J; Squartini, Ruben; Srivastava, Yogendra N; Stanca, Denis; Stanič, Samo; Stapleton, James; Stasielak, Jaroslaw; Stephan, Maurice; Stutz, Anne; Suarez, Federico; Durán, Mauricio Suarez; Suomijärvi, Tiina; Supanitsky, A Daniel; Sutherland, Michael; Swain, John; Szadkowski, Zbigniew; Taborda, Oscar Alejandro; Tapia, Alex; Tepe, Andreas; Theodoro, Vanessa Menezes; Timmermans, Charles; Peixoto, Carlos J Todero; Toma, Gabriel; Tomankova, Lenka; Tomé, Bernardo; Tonachini, Aurelio; Elipe, Guillermo Torralba; Machado, Diego Torres; Travnicek, Petr; Trini, Marta; Ulrich, Ralf; Unger, Michael; Urban, Martin; Galicia, Jose F Valdés; Valiño, Ines; Valore, Laura; van Aar, Guus; van Bodegom, Patrick; Berg, Ad M van den; van Velzen, Sjoert; van Vliet, Arjen; Varela, Enrique; Cárdenas, Bernardo Vargas; Varner, Gary; Vasquez, Rafael; Vázquez, Jose R; Vázquez, Ricardo; Veberič, Darko; Verzi, Valerio; Vicha, Jakub; Videla, Mariela; Villaseñor, Luis; Vlcek, Brian; Vorobiov, Serguei; Wahlberg, Hernan; Wainberg, Oscar; Walz, David; Watson, Alan; Weber, Marc; Weidenhaupt, Klaus; Weindl, Andreas; Welling, Christoph; Werner, Felix; Widom, Allan; Wiencke, Lawrence; Wilczyński, Henryk; Winchen, Tobias; Wittkowski, David; Wundheiler, Brian; Wykes, Sarka; Yang, Lili; Yapici, Tolga; Yushkov, Alexey; Zas, Enrique; Zavrtanik, Danilo; Zavrtanik, Marko; Zepeda, Arnulfo; Zimmermann, Benedikt; Ziolkowski, Michael; Zuccarello, Francesca

    2016-01-01

    We measure the energy emitted by extensive air showers in the form of radio emission in the frequency range from 30 to 80 MHz. Exploiting the accurate energy scale of the Pierre Auger Observatory, we obtain a radiation energy of 15.8 \\pm 0.7 (stat) \\pm 6.7 (sys) MeV for cosmic rays with an energy of 1 EeV arriving perpendicularly to a geomagnetic field of 0.24 G, scaling quadratically with the cosmic-ray energy. A comparison with predictions from state-of-the-art first-principle calculations shows agreement with our measurement. The radiation energy provides direct access to the calorimetric energy in the electromagnetic cascade of extensive air showers. Comparison with our result thus allows the direct calibration of any cosmic-ray radio detector against the well-established energy scale of the Pierre Auger Observatory.

  11. Measurement of the Radiation Energy in the Radio Signal of Extensive Air Showers as a Universal Estimator of Cosmic-Ray Energy.

    Science.gov (United States)

    Aab, A; Abreu, P; Aglietta, M; Ahn, E J; Al Samarai, I; Albuquerque, I F M; Allekotte, I; Allison, P; Almela, A; Alvarez Castillo, J; Alvarez-Muñiz, J; Alves Batista, R; Ambrosio, M; Aminaei, A; Anastasi, G A; Anchordoqui, L; Andringa, S; Aramo, C; Arqueros, F; Arsene, N; Asorey, H; Assis, P; Aublin, J; Avila, G; Awal, N; Badescu, A M; Baus, C; Beatty, J J; Becker, K H; Bellido, J A; Berat, C; Bertaina, M E; Bertou, X; Biermann, P L; Billoir, P; Blaess, S G; Blanco, A; Blanco, M; Blazek, J; Bleve, C; Blümer, H; Boháčová, M; Boncioli, D; Bonifazi, C; Borodai, N; Brack, J; Brancus, I; Bretz, T; Bridgeman, A; Brogueira, P; Buchholz, P; Bueno, A; Buitink, S; Buscemi, M; Caballero-Mora, K S; Caccianiga, B; Caccianiga, L; Candusso, M; Caramete, L; Caruso, R; Castellina, A; Cataldi, G; Cazon, L; Cester, R; Chavez, A G; Chiavassa, A; Chinellato, J A; Chudoba, J; Cilmo, M; Clay, R W; Cocciolo, G; Colalillo, R; Coleman, A; Collica, L; Coluccia, M R; Conceição, R; Contreras, F; Cooper, M J; Cordier, A; Coutu, S; Covault, C E; Cronin, J; Dallier, R; Daniel, B; Dasso, S; Daumiller, K; Dawson, B R; de Almeida, R M; de Jong, S J; De Mauro, G; de Mello Neto, J R T; De Mitri, I; de Oliveira, J; de Souza, V; Del Peral, L; Deligny, O; Dhital, N; Di Giulio, C; Di Matteo, A; Diaz, J C; Díaz Castro, M L; Diogo, F; Dobrigkeit, C; Docters, W; D'Olivo, J C; Dorofeev, A; Dorosti Hasankiadeh, Q; Dos Anjos, R C; Dova, M T; Ebr, J; Engel, R; Erdmann, M; Erfani, M; Escobar, C O; Espadanal, J; Etchegoyen, A; Falcke, H; Fang, K; Farrar, G; Fauth, A C; Fazzini, N; Ferguson, A P; Fick, B; Figueira, J M; Filevich, A; Filipčič, A; Fratu, O; Freire, M M; Fujii, T; García, B; Garcia-Gamez, D; Garcia-Pinto, D; Gate, F; Gemmeke, H; Gherghel-Lascu, A; Ghia, P L; Giaccari, U; Giammarchi, M; Giller, M; Głas, D; Glaser, C; Glass, H; Golup, G; Gómez Berisso, M; Gómez Vitale, P F; González, N; Gookin, B; Gordon, J; Gorgi, A; Gorham, P; Gouffon, P; Griffith, N; Grillo, A F; Grubb, T D; Guarino, F; Guedes, G P; Hampel, M R; Hansen, P; Harari, D; Harrison, T A; Hartmann, S; Harton, J L; Haungs, A; Hebbeker, T; Heck, D; Heimann, P; Herve, A E; Hill, G C; Hojvat, C; Hollon, N; Holt, E; Homola, P; Hörandel, J R; Horvath, P; Hrabovský, M; Huber, D; Huege, T; Insolia, A; Isar, P G; Jandt, I; Jansen, S; Jarne, C; Johnsen, J A; Josebachuili, M; Kääpä, A; Kambeitz, O; Kampert, K H; Kasper, P; Katkov, I; Keilhauer, B; Kemp, E; Kieckhafer, R M; Klages, H O; Kleifges, M; Kleinfeller, J; Krause, R; Krohm, N; Kuempel, D; Kukec Mezek, G; Kunka, N; Kuotb Awad, A W; LaHurd, D; Latronico, L; Lauer, R; Lauscher, M; Lautridou, P; Le Coz, S; Lebrun, D; Lebrun, P; Leigui de Oliveira, M A; Letessier-Selvon, A; Lhenry-Yvon, I; Link, K; Lopes, L; López, R; López Casado, A; Louedec, K; Lucero, A; Malacari, M; Mallamaci, M; Maller, J; Mandat, D; Mantsch, P; Mariazzi, A G; Marin, V; Mariş, I C; Marsella, G; Martello, D; Martinez, H; Martínez Bravo, O; Martraire, D; Masías Meza, J J; Mathes, H J; Mathys, S; Matthews, J; Matthews, J A J; Matthiae, G; Maurizio, D; Mayotte, E; Mazur, P O; Medina, C; Medina-Tanco, G; Meissner, R; Mello, V B B; Melo, D; Menshikov, A; Messina, S; Micheletti, M I; Middendorf, L; Minaya, I A; Miramonti, L; Mitrica, B; Molina-Bueno, L; Mollerach, S; Montanet, F; Morello, C; Mostafá, M; Moura, C A; Muller, M A; Müller, G; Müller, S; Navas, S; Necesal, P; Nellen, L; Nelles, A; Neuser, J; Nguyen, P H; Niculescu-Oglinzanu, M; Niechciol, M; Niemietz, L; Niggemann, T; Nitz, D; Nosek, D; Novotny, V; Nožka, L; Núñez, L A; Ochilo, L; Oikonomou, F; Olinto, A; Pacheco, N; Pakk Selmi-Dei, D; Palatka, M; Pallotta, J; Papenbreer, P; Parente, G; Parra, A; Paul, T; Pech, M; Pȩkala, J; Pelayo, R; Pepe, I M; Perrone, L; Petermann, E; Peters, C; Petrera, S; Petrov, Y; Phuntsok, J; Piegaia, R; Pierog, T; Pieroni, P; Pimenta, M; Pirronello, V; Platino, M; Plum, M; Porcelli, A; Porowski, C; Prado, R R; Privitera, P; Prouza, M; Quel, E J; Querchfeld, S; Quinn, S; Rautenberg, J; Ravel, O; Ravignani, D; Reinert, D; Revenu, B; Ridky, J; Risse, M; Ristori, P; Rizi, V; Rodrigues de Carvalho, W; Rodriguez Rojo, J; Rodríguez-Frías, M D; Rogozin, D; Rosado, J; Roth, M; Roulet, E; Rovero, A C; Saffi, S J; Saftoiu, A; Salazar, H; Saleh, A; Salesa Greus, F; Salina, G; Sanabria Gomez, J D; Sánchez, F; Sanchez-Lucas, P; Santos, E; Santos, E M; Sarazin, F; Sarkar, B; Sarmento, R; Sarmiento-Cano, C; Sato, R; Scarso, C; Schauer, M; Scherini, V; Schieler, H; Schmidt, D; Scholten, O; Schoorlemmer, H; Schovánek, P; Schröder, F G; Schulz, A; Schulz, J; Schumacher, J; Sciutto, S J; Segreto, A; Settimo, M; Shadkam, A; Shellard, R C; Sigl, G; Sima, O; Śmiałkowski, A; Šmída, R; Snow, G R; Sommers, P; Sonntag, S; Sorokin, J; Squartini, R; Srivastava, Y N; Stanca, D; Stanič, S; Stapleton, J; Stasielak, J; Stephan, M; Stutz, A; Suarez, F; Suarez Durán, M; Suomijärvi, T; Supanitsky, A D; Sutherland, M S; Swain, J; Szadkowski, Z; Taborda, O A; Tapia, A; Tepe, A; Theodoro, V M; Timmermans, C; Todero Peixoto, C J; Toma, G; Tomankova, L; Tomé, B; Tonachini, A; Torralba Elipe, G; Torres Machado, D; Travnicek, P; Trini, M; Ulrich, R; Unger, M; Urban, M; Valdés Galicia, J F; Valiño, I; Valore, L; van Aar, G; van Bodegom, P; van den Berg, A M; van Velzen, S; van Vliet, A; Varela, E; Vargas Cárdenas, B; Varner, G; Vasquez, R; Vázquez, J R; Vázquez, R A; Veberič, D; Verzi, V; Vicha, J; Videla, M; Villaseñor, L; Vlcek, B; Vorobiov, S; Wahlberg, H; Wainberg, O; Walz, D; Watson, A A; Weber, M; Weidenhaupt, K; Weindl, A; Welling, C; Werner, F; Widom, A; Wiencke, L; Wilczyński, H; Winchen, T; Wittkowski, D; Wundheiler, B; Wykes, S; Yang, L; Yapici, T; Yushkov, A; Zas, E; Zavrtanik, D; Zavrtanik, M; Zepeda, A; Zimmermann, B; Ziolkowski, M; Zuccarello, F

    2016-06-17

    We measure the energy emitted by extensive air showers in the form of radio emission in the frequency range from 30 to 80 MHz. Exploiting the accurate energy scale of the Pierre Auger Observatory, we obtain a radiation energy of 15.8±0.7(stat)±6.7(syst)  MeV for cosmic rays with an energy of 1 EeV arriving perpendicularly to a geomagnetic field of 0.24 G, scaling quadratically with the cosmic-ray energy. A comparison with predictions from state-of-the-art first-principles calculations shows agreement with our measurement. The radiation energy provides direct access to the calorimetric energy in the electromagnetic cascade of extensive air showers. Comparison with our result thus allows the direct calibration of any cosmic-ray radio detector against the well-established energy scale of the Pierre Auger Observatory.

  12. Measurement of the Radiation Energy in the Radio Signal of Extensive Air Showers as a Universal Estimator of Cosmic-Ray Energy

    Science.gov (United States)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Al Samarai, I.; Albuquerque, I. F. M.; Allekotte, I.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anastasi, G. A.; Anchordoqui, L.; Andringa, S.; Aramo, C.; Arqueros, F.; Arsene, N.; Asorey, H.; Assis, P.; Aublin, J.; Avila, G.; Awal, N.; Badescu, A. M.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blaess, S. G.; Blanco, A.; Blanco, M.; Blazek, J.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Borodai, N.; Brack, J.; Brancus, I.; Bretz, T.; Bridgeman, A.; Brogueira, P.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Cordier, A.; Coutu, S.; Covault, C. E.; Cronin, J.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; de Jong, S. J.; De Mauro, G.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; del Peral, L.; Deligny, O.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Díaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dorofeev, A.; Dorosti Hasankiadeh, Q.; dos Anjos, R. C.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fratu, O.; Freire, M. M.; Fujii, T.; García, B.; Garcia-Gamez, D.; Garcia-Pinto, D.; Gate, F.; Gemmeke, H.; Gherghel-Lascu, A.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Głas, D.; Glaser, C.; Glass, H.; Golup, G.; Gómez Berisso, M.; Gómez Vitale, P. F.; González, N.; Gookin, B.; Gordon, J.; Gorgi, A.; Gorham, P.; Gouffon, P.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Hartmann, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Jandt, I.; Jansen, S.; Jarne, C.; Johnsen, J. A.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Keilhauer, B.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Kuempel, D.; Kukec Mezek, G.; Kunka, N.; Kuotb Awad, A. W.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lopes, L.; López, R.; López Casado, A.; Louedec, K.; Lucero, A.; Malacari, M.; Mallamaci, M.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marsella, G.; Martello, D.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Meissner, R.; Mello, V. B. B.; Melo, D.; Menshikov, A.; Messina, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Montanet, F.; Morello, C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Müller, S.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nguyen, P. H.; Niculescu-Oglinzanu, M.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, L.; Núñez, L. A.; Ochilo, L.; Oikonomou, F.; Olinto, A.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; PÈ©kala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Petermann, E.; Peters, C.; Petrera, S.; Petrov, Y.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porcelli, A.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Reinert, D.; Revenu, B.; Ridky, J.; Risse, M.; Ristori, P.; Rizi, V.; Rodrigues de Carvalho, W.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Rogozin, D.; Rosado, J.; Roth, M.; Roulet, E.; Rovero, A. C.; Saffi, S. J.; Saftoiu, A.; Salazar, H.; Saleh, A.; Salesa Greus, F.; Salina, G.; Sanabria Gomez, J. D.; Sánchez, F.; Sanchez-Lucas, P.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sarmiento-Cano, C.; Sato, R.; Scarso, C.; Schauer, M.; Scherini, V.; Schieler, H.; Schmidt, D.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schulz, J.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sonntag, S.; Sorokin, J.; Squartini, R.; Srivastava, Y. N.; Stanca, D.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suarez Durán, M.; Suomijärvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Taborda, O. A.; Tapia, A.; Tepe, A.; Theodoro, V. M.; Timmermans, C.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Trini, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vasquez, R.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Vlcek, B.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Welling, C.; Werner, F.; Widom, A.; Wiencke, L.; Wilczyński, H.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yang, L.; Yapici, T.; Yushkov, A.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zepeda, A.; Zimmermann, B.; Ziolkowski, M.; Zuccarello, F.; Pierre Auger Collaboration

    2016-06-01

    We measure the energy emitted by extensive air showers in the form of radio emission in the frequency range from 30 to 80 MHz. Exploiting the accurate energy scale of the Pierre Auger Observatory, we obtain a radiation energy of 15.8 ±0.7 (stat)±6.7 (syst) MeV for cosmic rays with an energy of 1 EeV arriving perpendicularly to a geomagnetic field of 0.24 G, scaling quadratically with the cosmic-ray energy. A comparison with predictions from state-of-the-art first-principles calculations shows agreement with our measurement. The radiation energy provides direct access to the calorimetric energy in the electromagnetic cascade of extensive air showers. Comparison with our result thus allows the direct calibration of any cosmic-ray radio detector against the well-established energy scale of the Pierre Auger Observatory.

  13. A re-consideration of the HEAO-1 A2 Measurements of the Cosmic X-ray Background Surface Brightness

    Science.gov (United States)

    Jahoda, K.

    2005-12-01

    The HEAO-1 A2 experiment was designed to make high precision and low systematics measurements of the Cosmic X-ray Background from 0.1 - 60 keV. No subsequent experiment has been capable of similarly clean separation of cosmic and instrumental background. Most more recent measurements of the 2-10 keV surface brightness are 20% higher than values derived from the spectral parameterization of the 3-50 keV spectrum given in the original A2 analysis of Marshall et al. (1980, ApJ 235, 4 (M80)). A recent analysis of archival A2 data by Revnivtsev et al. (astro-ph/0412304 (R05)) finds a surface brightness 15-20% higher than M80, an uncomfortably large discrepancy for data taken from a single experiment. We present a third analysis of the A2 data and identify two effects neglected in the comparison of previous A2 results: (a) the extrapolation of the M80 parameterization below 3 keV fails to describe the data; (b) R05 uses an unabsorbed, and high, value for the flux from the Crab nebula plus pulsar which results in a high value for the inferred count rate to CXB surface brightness conversion. Correcting for these effects, our best estimate of the 2-10 keV surface brightness is 1.84 × 10-11 ergs cm-2 s-1 deg-2 on a flux scale where the (absorbed) 2-10 Crab flux is 2.32 × 10-8 ergs cm-2 s-1. This value is only about 10% below the average compiled by Moretti et al. (2003, ApJ, 588, 696). We discuss how well the X-ray brightness of the Crab, to which this measurement is normalized, is known. This research made use of data from the High Energy Astrophysics Science Archive Research Center (HEASARC), provided by NASA's Goddard Space Flight Center.

  14. Cosmic ray physics goes to school

    CERN Multimedia

    2002-01-01

    With the help of a CERN physicist, German Schools bring the Largest Cosmic Ray Detector in Europe one step closer to reality   Eric Berthier and Robert Porret (CERN, ST/HM), Frej Torp and Christian Antfolk from the Polytechnics Arcada in Finland, and Karsten Eggert, physicist at CERN who initiated this project, during the installation of cosmic ray detectors in the Pays de Gex, at point 4. Niina Patrikainen and Frej Torp, Finnish students from Rovaniemi and Arcada Polytechnics, installing cosmic ray counters at the Fachhochschule in Duesseldorf. The science of cosmic ray detection is growing, literally. Cosmic rays, energetic particles from space, strike our planet all the time. They collide with the air molecules in our upper atmosphere and initiate large showers of elementary particles (mainly electrons, photons, hadrons and muons) which rain down upon the earth. The shower size and the particle density in the showers reflect the initial energy of the cosmic ray particle, a detail which makes d...

  15. Measurement of the cosmic ray spectrum above 4 x 10(18) eV using inclined events detected with the Pierre Auger Observatory

    NARCIS (Netherlands)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Al Samarai, I.; Albuquerque, I. F. M.; Allekotte, I.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muniz, J.; Batista, R. Alves; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Aramo, C.; Aranda, V. M.; Arqueros, F.; Arsene, N.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Awal, N.; Badescu, A. M.; Barber, K. B.; Baeuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blaess, S. G.; Blanco, A.; Blanco, M.; Bleve, C.; Bluemer, H.; Bohacova, M.; Boncioli, D.; Bonifazi, C.; Borodai, N.; Brack, J.; Brancus, I.; Bridgeman, A.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceicao, R.; Contreras, F.; Cooper, M. J.; Cordier, A.; Coutu, S.; Covault, C. E.; Cronin, J.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; de Jong, S. J.; De Mauro, G.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; del Pera, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Diaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dorofeev, A.; Dorosti Hasankiadeh, Q.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fernandes, M.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipcic, A.; Fox, B. D.; Fratu, O.; Freire, M. M.; Fuchs, B.; Fujii, T.; Garcia, B.; Garcia-Pinto, D.; Gate, F.; Gemmeke, H.; Gherghel-Lascu, A.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Glas, D.; Glaser, C.; Glass, H.; Golup, G.; Gomez Berisso, M.; Gomez Vitale, P. F.; Gonzalez, N.; Gookin, B.; Gordon, J.; Gorgi, A.; Gorham, P.; Gouffon, P.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Hartmann, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hoerandel, J. R.; Horvath, P.; Hrabovsky, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Jandt, I.; Jansen, S.; Jarne, C.; Johnsen, J. A.; Josebachuili, M.; Kaapa, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Kegl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Kroemer, O.; Kuempe, D.; Kunka, N.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lopes, L.; Lopez, R.; Lopez Casado, A.; Louedec, K.; Lu, L.; Lucero, A.; Malacari, M.; Maldera, S.; Mallamaci, M.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Maris, I. C.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martinez Bravo, O.; Martraire, D.; Masias Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maure, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Meissner, R.; Mello, V. B. B.; Melo, D.; Menshikov, A.; Messina, S.; Meyhandan, R.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Montanet, F.; Morello, C.; Mostafa, M.; Moura, C. A.; Muller, M. A.; Mueller, G.; Mueller, S.; Mussa, R.; Navarra, G.; Navas, S.; Necesa, P.; Nellen, L.; Nelles, A.; Neuser, J.; Newton, D.; Nguyen, P. H.; Niculescu-Oglinzanu, M.; Niechcio, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nozka, L.; Ochilo, L.; Oikonomou, F.; Olinto, A.; Olmos-Gilbaja, V. M.; Pacheco, N.; Selmi-Dei, D. Pakk; Palatka, M.; Pallotta, J.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; Pekala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Petermann, E.; Peters, C.; Petrera, S.; Petrov, Y.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porcelli, A.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Purrello, V.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rizi, V.; Rodrigues de Carvalho, W.; Fernandez, G. Rodriguez; Rodriguez Rojo, J.; Rodriguez-Frias, M. D.; Rogozin, D.; Rosado, J.; Roth, M.; Rouletl, E.; Rovero, A. C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Saleh, A.; Salesa Greus, F.; Salina, G.; Sanchez, F.; Sanchez-Lucas, P.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scarso, C.; Schauer, M.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, D.; Scholten, O.; Schoorlemmer, H.; Schovanek, P.; Schroeder, F. G.; Schulz, A.; Schulz, J.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Smialkowski, A.; Smida, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Squartini, R.; Srivastava, Y. N.; Stanca, D.; Stanic, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijarvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Taborda, O. A.; Tapia, A.; Tepe, A.; Theodoro, V. M.; Timmermans, C.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tome, B.; Tonachini, A.; Elipe, G. Torralba; Torres Machado, D.; Travnicek, P.; Ulrich, R.; Unger, M.; Urban, M.; Valdes Galicia, J. F.; Valino, I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cardenas, B.; Varner, G.; Vasquez, R.; Vazquez, J. R.; Vazquez, R. A.; Veberic, D.; Verzi, V.; Vicha, J.; Videla, M.; Villasenor, L.; Vlcek, B.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Widom, A.; Wiencke, L.; Wilczynski, H.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yang, L.; Yapici, T.; Yushkov, A.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zepeda, A.; Zhu, Y.; Zimmermann, B.; Ziolkowski, M.; Zuccarello, F.

    2015-01-01

    A measurement of the cosmic-ray spectrum for energies exceeding 4x10(18) eV is presented, which is based on the analysis of showers with zenith angles greater than 60 degrees detected with the Pierre Auger Observatory between 1 January 2004 and 31 December 2013. The measured spectrum confirms a flux

  16. Measurement of the cosmic ray spectrum above 4 x 10(18) eV using inclined events detected with the Pierre Auger Observatory

    NARCIS (Netherlands)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Al Samarai, I.; Albuquerque, I. F. M.; Allekotte, I.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muniz, J.; Batista, R. Alves; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Aramo, C.; Aranda, V. M.; Arqueros, F.; Arsene, N.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Awal, N.; Badescu, A. M.; Barber, K. B.; Baeuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blaess, S. G.; Blanco, A.; Blanco, M.; Bleve, C.; Bluemer, H.; Bohacova, M.; Boncioli, D.; Bonifazi, C.; Borodai, N.; Brack, J.; Brancus, I.; Bridgeman, A.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceicao, R.; Contreras, F.; Cooper, M. J.; Cordier, A.; Coutu, S.; Covault, C. E.; Cronin, J.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; de Jong, S. J.; De Mauro, G.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; del Pera, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Diaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dorofeev, A.; Dorosti Hasankiadeh, Q.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fernandes, M.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipcic, A.; Fox, B. D.; Fratu, O.; Freire, M. M.; Fuchs, B.; Fujii, T.; Garcia, B.; Garcia-Pinto, D.; Gate, F.; Gemmeke, H.; Gherghel-Lascu, A.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Glas, D.; Glaser, C.; Glass, H.; Golup, G.; Gomez Berisso, M.; Gomez Vitale, P. F.; Gonzalez, N.; Gookin, B.; Gordon, J.; Gorgi, A.; Gorham, P.; Gouffon, P.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Hartmann, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hoerandel, J. R.; Horvath, P.; Hrabovsky, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Jandt, I.; Jansen, S.; Jarne, C.; Johnsen, J. A.; Josebachuili, M.; Kaapa, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Kegl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Kroemer, O.; Kuempe, D.; Kunka, N.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lopes, L.; Lopez, R.; Lopez Casado, A.; Louedec, K.; Lu, L.; Lucero, A.; Malacari, M.; Maldera, S.; Mallamaci, M.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Maris, I. C.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martinez Bravo, O.; Martraire, D.; Masias Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maure, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Meissner, R.; Mello, V. B. B.; Melo, D.; Menshikov, A.; Messina, S.; Meyhandan, R.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Montanet, F.; Morello, C.; Mostafa, M.; Moura, C. A.; Muller, M. A.; Mueller, G.; Mueller, S.; Mussa, R.; Navarra, G.; Navas, S.; Necesa, P.; Nellen, L.; Nelles, A.; Neuser, J.; Newton, D.; Nguyen, P. H.; Niculescu-Oglinzanu, M.; Niechcio, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nozka, L.; Ochilo, L.; Oikonomou, F.; Olinto, A.; Olmos-Gilbaja, V. M.; Pacheco, N.; Selmi-Dei, D. Pakk; Palatka, M.; Pallotta, J.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; Pekala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Petermann, E.; Peters, C.; Petrera, S.; Petrov, Y.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porcelli, A.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Purrello, V.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rizi, V.; Rodrigues de Carvalho, W.; Fernandez, G. Rodriguez; Rodriguez Rojo, J.; Rodriguez-Frias, M. D.; Rogozin, D.; Rosado, J.; Roth, M.; Rouletl, E.; Rovero, A. C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Saleh, A.; Salesa Greus, F.; Salina, G.; Sanchez, F.; Sanchez-Lucas, P.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scarso, C.; Schauer, M.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, D.; Scholten, O.; Schoorlemmer, H.; Schovanek, P.; Schroeder, F. G.; Schulz, A.; Schulz, J.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Smialkowski, A.; Smida, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Squartini, R.; Srivastava, Y. N.; Stanca, D.; Stanic, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijarvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Taborda, O. A.; Tapia, A.; Tepe, A.; Theodoro, V. M.; Timmermans, C.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tome, B.; Tonachini, A.; Elipe, G. Torralba; Torres Machado, D.; Travnicek, P.; Ulrich, R.; Unger, M.; Urban, M.; Valdes Galicia, J. F.; Valino, I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cardenas, B.; Varner, G.; Vasquez, R.; Vazquez, J. R.; Vazquez, R. A.; Veberic, D.; Verzi, V.; Vicha, J.; Videla, M.; Villasenor, L.; Vlcek, B.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Widom, A.; Wiencke, L.; Wilczynski, H.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yang, L.; Yapici, T.; Yushkov, A.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zepeda, A.; Zhu, Y.; Zimmermann, B.; Ziolkowski, M.; Zuccarello, F.

    2015-01-01

    A measurement of the cosmic-ray spectrum for energies exceeding 4x10(18) eV is presented, which is based on the analysis of showers with zenith angles greater than 60 degrees detected with the Pierre Auger Observatory between 1 January 2004 and 31 December 2013. The measured spectrum confirms a flux

  17. Cosmic ray physics with the ALEPH detector

    CERN Document Server

    Besier, H; Kempa, J; Luitz, S; Maggi, M; Maier, D; Misiejuk, A; Müller, A S; Putzer, A; Rensch, B; Sander, H G; Schmeling, S; Schmelling, M; Schreiber, V; Wachsmuth, H W; Ziegler, T; Zuber, K

    2000-01-01

    ALEPH is one of the four detectors at the Large Electron-Positron Collider (LEP) at a depth of about 320 m.w.e. Its hadron calorimeter and scintillator arrays installed at distances up to about 1 km away from ALEPH are used to measure cosmic muon induced time coincidences over large distances. The aim of this experiment (CosmoALEPH) is (1) to study the muon component above 70 GeV of extensive air showers (EAS) and (2) to test the feasibility of searching for time correlations over even larger distances (up to 8 km) between the four LEP detectors. Layout and first results of CosmoALEPH are presented demonstrating the potential for cosmic ray physics in the LEP tunnel. The multiplicity distribution of muons in cosmic events recorded in ALEPH's tracking detector is presented. (28 refs).

  18. Measurement of the cosmic ray muon spectrum and charge ratio in the atmosphere from ground level to balloon altitudes

    Energy Technology Data Exchange (ETDEWEB)

    Basini, G.; Bongiorno, F. [INFN, Laboratori Nazionali di Frascati, Rome (Italy); Bellotti, R.; Cafagna, F.; Circella, M.; De Cataldo, G.; De Marzo, C.N. [Bari Univ. (Italy)]|[INFN, Bari (Italy); Brunetti, M.T.; Codini, A. [Perugia Univ. (Italy)]|[INFN, Perugia (Italy); De Pascale, M.P. [Rome Univ. `Tor Vergata` (Italy)]|[INFN, Rome (Italy)

    1995-09-01

    A measurement of the cosmic ray muon flux in the atmosphere has been carried out from the data collected by the MASS2 (Matter Antimatter Spectrometer System) apparatus during the ascent of the 1991 flight. The experiment was performed on September 23, 1991 from Fort Sumner, New Mexico (USA) at a geomagnetic cutoff of about 4.5 GV/c. The negative muon spectrum has been determined in different depth ranges in the momentum interval 0.33-40 GeV/c with higher statistics and better background rejection than reported before. Taking advantage of the high geomagnetic cutoff and of the high performances of the instrument, the positive muon spectrum has also been determined and the altitude dependence of the muon charge ratio has been investigated in the 0.33-1.5 GeV/c momentum range.

  19. Scintillation Detector for the Measurement of Ultra-Heavy Cosmic Rays on the Super-TIGER Experiment

    Science.gov (United States)

    Link, Jason

    2011-01-01

    We discuss the design and construction of the scintillation detectors for the Super-TIGER experiment. Super-TIGER is a large-area (5.4sq m) balloon-borne experiment designed to measure the abundances of cosmic-ray nuclei between Z= 10 and Z=56. It is based on the successful TIGER experiment that flew in Antarctica in 2001 and 2003. Super-TIGER has three layers of scintillation detectors, two Cherenkov detectors and a scintillating fiber hodoscope. The scintillation detector employs four wavelength shifter bars surrounding the edges of the scintillator to collect the light from particles traversing the detector. PMTs are optically coupled at both ends of the bars for light collection. We report on laboratory performance of the scintillation counters using muons. In addition we discuss the design challenges and detector response over this broad charge range including the effect of scintilator saturation.

  20. Solar cosmic ray measurements at high heliocentric latitudes. [proposed space missions of solar probes to study solar physics

    Science.gov (United States)

    Anderson, K. A.

    1976-01-01

    A brief review is presented of what might result from a program of solar cosmic ray observations on 'out-of-the-ecliptic' spacecraft. The following topics are discussed: (1) The magnetic fields of the sun at high latitudes, (2) propagation of fast charged particles in the solar corona and in interplanetary space at high latitudes, (3) origin of interplanetary particle populations and the solar wind, (4) other particle phenomena in interplanetary space (e.g., acceleration of shock waves), and (5) effect of spacecraft mission characteristics on solar cosmic ray studies at high latitudes. Maps of polar coronal magnetic fields are shown.

  1. ACORDE - A Cosmic Ray Detector for ALICE

    CERN Document Server

    INSPIRE-00247175; Pagliarone, C.

    2006-01-01

    ACORDE, the ALICE COsmic Ray DEtector is one of the ALICE detectors, presently under construction. It consists of an array of plastic scintillator counters placed on the three upper faces of the ALICE magnet. This array will act as Level 0 cosmic ray trigger and, together with other ALICE sub-detectors, will provide precise information on cosmic rays with primary energies around $10^{15-17}$ eV. In this paper we will describe the ACORDE detector, trigger design and electronics.

  2. Cosmic rays: extragalactic and Galactic

    CERN Document Server

    Istomin, Ya N

    2014-01-01

    From the analysis of the flux of high energy particles, $E>3\\cdot 10^{18}eV$, it is shown that the distribution of the power density of extragalactic rays over energy is of the power law, ${\\bar q}(E)\\propto E^{-2.7}$, with the same index of $2.7$ that has the distribution of Galactic cosmic rays before so called 'knee', $E3\\cdot 10^{15}eV$, from the Galaxy because of the dependence of the coefficient of diffusion of cosmic rays on energy, $D\\propto E^{0.7}$. The obtained index of the density distribution of particles over energy, $N(E)\\propto E^{-2.7-0.7/2}=E^{-3.05}$, for $E>3\\cdot 10^{15}eV$ agrees well with the observed one, $N(E)\\propto E^{-3.1}$. Estimated time of termination of the jet in the Galaxy is $4.2\\cdot 10^{4}$ years ago.

  3. Calibration of a non-invasive cosmic-ray probe for wide area snow water equivalent measurement

    Science.gov (United States)

    Sigouin, Mark J. P.; Si, Bing C.

    2016-06-01

    Measuring snow water equivalent (SWE) is important for many hydrological purposes such as modelling and flood forecasting. Measurements of SWE are also crucial for agricultural production in areas where snowmelt runoff dominates spring soil water recharge. Typical methods for measuring SWE include point measurements (snow tubes) and large-scale measurements (remote sensing). We explored the potential of using the cosmic-ray soil moisture probe (CRP) to measure average SWE at a spatial scale between those provided by snow tubes and remote sensing. The CRP measures above-ground moderated neutron intensity within a radius of approximately 300 m. Using snow tubes, surveys were performed over two winters (2013/2014 and 2014/2015) in an area surrounding a CRP in an agricultural field in Saskatoon, Saskatchewan, Canada. The raw moderated neutron intensity counts were corrected for atmospheric pressure, water vapour, and temporal variability of incoming cosmic-ray flux. The mean SWE from manually measured snow surveys was adjusted for differences in soil water storage before snowfall between both winters because the CRP reading appeared to be affected by soil water below the snowpack. The SWE from the snow surveys was negatively correlated with the CRP-measured moderated neutron intensity, giving Pearson correlation coefficients of -0.90 (2013/2014) and -0.87 (2014/2015). A linear regression performed on the manually measured SWE and moderated neutron intensity counts for 2013/2014 yielded an r2 of 0.81. Linear regression lines from the 2013/2014 and 2014/2015 manually measured SWE and moderated neutron counts were similar; thus differences in antecedent soil water storage did not appear to affect the slope of the SWE vs. neutron relationship. The regression equation obtained from 2013/2014 was used to model SWE using the moderated neutron intensity data for 2014/2015. The CRP-estimated SWE for 2014/2015 was similar to that of the snow survey, with an root

  4. Cluster Properties and Lorentz Angle Measurement in the 4-Layer Pixel Detector Using Cosmic Rays

    CERN Document Server

    The ATLAS collaboration

    2015-01-01

    The 4-layer Pixel Detector with the recently installed innermost layer called IBL saw its first data during the 2014 fall cosmic run. This note shows cluster properties and Lorentz angle fits for IBL sensors as well as old barrel layer sensors.

  5. Cosmic rays, clouds, and climate

    DEFF Research Database (Denmark)

    Marsh, N.; Svensmark, Henrik

    2000-01-01

    in the Earth's radiation budget through trapping outgoing radiation and reflecting incoming radiation. If a physical link between these two features can be established, it would provide a mechanism linking solar activity and Earth's climate. Recent satellite observations have further revealed a correlation...... between cosmic ray flux and low cloud top temperature. The temperature of a cloud depends on the radiation properties determined by its droplet distribution. Low clouds are warm (> 273 K) and therefore consist of liquid water droplets. At typical atmospheric supersaturations (similar to1%) a liquid cloud...

  6. International Conference on Cosmic Rays

    CERN Multimedia

    W.O. LOCK

    1964-01-01

    Towards the end of last year the 8th International conference on cosmic rays, held under the auspices of the International Union of Pure and Applied Physics (I.U.P.A.P.) and the Department of Atomic Energy of the Government of India, was held at Jaipur, India. Among the participants was W.O. Lock, head of CERN's Emulsion Group, who gave an invited talk on recent work in the field of what is normally known as high-energy physics — though in the context of this conference such energies seem quite low. In this article, Dr. Lock gives a general review of the conference and of the subjects discussed.

  7. Ground level cosmic ray observations

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, S.A. [Tata Institute of Fundamental Research, Bombay (International Commission on Radiation Units and Measurements); Grimani, C.; Brunetti, M.T.; Codino, A. [Perugia Univ. (Italy)]|[INFN, Perugia (Italy); Papini, P.; Massimo Brancaccio, F.; Piccardi, S. [Florence Univ. (Italy)]|[INFN, Florence (Italy); Basini, G.; Bongiorno, F. [INFN, Laboratori Nazionali di Frascati, Rome (Italy); Golden, R.L. [New Mexico State Univ., Las Cruces, NM (United States). Particle Astrophysics Lab.; Hof, M. [Siegen Univ. (Germany). Fachbereich Physik

    1995-09-01

    Cosmic rays at ground level have been collected using the NMSU/Wizard - MASS2 instrument. The 17-hr observation run was made on September 9. 1991 in Fort Sumner, New Mexico, Usa. Fort Sumner is located at 1270 meters a.s.l., corresponding to an atmospheric depth of about 887 g/cm{sup 2}. The geomagnetic cutoff is 4.5 GV/c. The charge ratio of positive and negative muons and the proton to muon ratio have been determined. These observations will also be compared with data collected at a higher latitude using the same basic apparatus.

  8. New insights from cosmic gamma rays

    Science.gov (United States)

    Roland, Diehl

    2016-04-01

    The measurement of gamma rays from cosmic sources at ~MeV energies is one of the key tools for nuclear astrophysics, in its study of nuclear reactions and their impacts on objects and phenomena throughout the universe. Gamma rays trace nuclear processes most directly, as they originate from nuclear transitions following radioactive decays or high-energy collisions with excitation of nuclei. Additionally, the unique gamma-ray signature from the annihilation of positrons falls into this astronomical window and is discussed here: Cosmic positrons are often produced from β-decays, thus also of nuclear physics origins. The nuclear reactions leading to radioactive isotopes occur inside stars and stellar explosions, which therefore constitute the main objects of such studies. In recent years, both thermonuclear and core-collapse supernova radioactivities have been measured though 56Ni, 56Co, and 44Ti lines, and a beginning has thus been made to complement conventional supernova observations with such measurements of the prime energy sources of supernova light created in their deep interiors. The diffuse radioactive afterglow of massive-star nucleosynthesis in gamma rays is now being exploited towards astrophysical studies on how massive stars feed back their energy and ejecta into interstellar gas, as part of the cosmic cycle of matter through generations of stars enriching the interstellar gas and stars with metals. Large interstellar cavities and superbubbles have been recognised to be the dominating structures where new massive-star ejecta are injected, from 26Al gamma-ray spectroscopy. Also, constraints on the complex interiors of stars derive from the ratio of 60Fe/26Al gamma rays. Finally, the puzzling bulge-dominated intensity distribution of positron annihilation gamma rays is measured in greater detail, but still not understood; a recent microquasar flare provided evidence that such objects may be prime sources for positrons in interstellar space, rather than

  9. Mass composition studies of Ultra High Energy cosmic rays through the measurement of the Muon Production Depths at the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Collica, Laura [Univ. of Milan (Italy); Paris Diderot Univ. (France)

    2014-01-01

    The Pierre Auger Observatory (Auger) in Argentina studies Ultra High Energy Cosmic Rays (UHECRs) physics. The flux of cosmic rays at these energies (above 1018 eV) is very low (less than 100 particle/km2-year) and UHECR properties must be inferred from the measurements of the secondary particles that the cosmic ray primary produces in the atmosphere. These particles cascades are called Extensive Air Showers (EAS) and can be studied at ground by deploying detectors covering large areas. The EAS physics is complex, and the properties of secondary particles depend strongly on the first interaction, which takes place at an energy beyond the ones reached at accelerators. As a consequence, the analysis of UHECRs is subject to large uncertainties and hence many of their properties, in particular their composition, are still unclear. Two complementary techniques are used at Auger to detect EAS initiated by UHE- CRs: a 3000 km2 surface detector (SD) array of water Cherenkov tanks which samples particles at ground level and fluorescence detectors (FD) which collect the ultraviolet light emitted by the de-excitation of nitrogen nuclei in the atmosphere, and can operate only in clear, moonless nights. Auger is the largest cosmic rays detector ever built and it provides high-quality data together with unprecedented statistics. The main goal of this thesis is the measurement of UHECR mass composition using data from the SD of the Pierre Auger Observatory. Measuring the cosmic ray composition at the highest energies is of fundamental importance from the astrophysical point of view, since it could discriminate between different scenarios of origin and propagation of cosmic rays. Moreover, mass composition studies are of utmost importance for particle physics. As a matter of fact, knowing the composition helps in exploring the hadronic interactions at ultra-high energies, inaccessible to present accelerator experiments.

  10. Astroparticle Physics: Detectors for Cosmic Rays

    Science.gov (United States)

    Salazar, Humberto; Villaseñor, Luis

    2006-09-01

    We describe the work that we have done over the last decade to design and construct instruments to measure properties of cosmic rays in Mexico. We describe the measurement of the muon lifetime and the ratio of positive to negative muons in the natural background of cosmic ray muons at 2000 m.a.s.l. Next we describe the detection of decaying and crossing muons in a water Cherenkov detector as well as a technique to separate isolated particles. We also describe the detection of isolated muons and electrons in a liquid scintillator detector and their separation. Next we describe the detection of extensive air showers (EAS) with a hybrid detector array consisting of water Cherenkov and liquid scintillator detectors, located at the campus of the University of Puebla. Finally we describe work in progress to detect EAS at 4600 m.a.s.l. with a water Cherenkov detector array and a fluorescence telescope at the Sierra Negra mountain.

  11. Dark Matter detection via lepton cosmic rays

    CERN Document Server

    Lineros, Roberto A

    2010-01-01

    Recent observations of lepton cosmic rays, coming from the PAMELA and FERMI experiments, have pushed our understanding of the interstellar medium and cosmic rays sources to unprecedented levels. The imprint of dark matter on lepton cosmic rays is the most exciting explanation of both PAMELA's positron excess and FERMI's total flux of electrons. Alternatively, supernovae are astrophysical objects with the same potential to explain these observations. In this work, we present an updated study of the astrophysical sources of lepton cosmic rays and the possible trace of a dark matter signal on the positron excess and total flux of electrons.

  12. Cosmic Ray Acceleration in Supernova Remnants

    CERN Document Server

    Blasi, Pasquale

    2010-01-01

    We review the main observational and theoretical facts about acceleration of Galactic cosmic rays in supernova remnants, discussing the arguments in favor and against a connection between cosmic rays and supernova remnants, the so-called supernova remnant paradigm for the origin of Galactic cosmic rays. Recent developments in the modeling of the mechanism of diffusive shock acceleration are discussed, with emphasis on the role of 1) magnetic field amplification, 2) acceleration of nuclei heavier than hydrogen, 3) presence of neutrals in the circumstellar environment. The status of the supernova-cosmic ray connection in the time of Fermi-LAT and Cherenkov telescopes is also discussed.

  13. Cosmic ray air showers from sphalerons

    Science.gov (United States)

    Brooijmans, Gustaaf; Schichtel, Peter; Spannowsky, Michael

    2016-10-01

    The discovery of the Higgs boson marks a key ingredient to establish the electroweak structure of the Standard Model. Its non-abelian gauge structure gives rise to, yet unobserved, non-perturbative baryon and lepton number violating processes. We propose to use cosmic ray air showers, as measured, for example, at the Pierre Auger Observatory, to set a limit on the hadronic production cross section of sphalerons. We identify several observables to discriminate between sphaleron and QCD induced air showers.

  14. The Non-Imaging CHErenkov Array (NICHE): A TA/TALE extension to measure the flux and composition of Very-High Energy Cosmic Rays

    Science.gov (United States)

    Bergman, Douglas; Krizmanic, John; Sokolsky, Pierre

    2013-04-01

    Co-sited with TA/TALE, the Non-Imaging CHErenkov Array (NICHE) will measure the flux and nuclear composition of cosmic rays from below 10^16 eV to over 10^18 eV in its initial deployment. Furthermore, the low-energy reach can be lowered below the cosmic ray knee via counter redeployment or additional counters. NICHE uses easily deployable detectors to measure the amplitude and time-spread of the air-shower Cherenkov signal to achieve an event-by-event measurement of Xmax and energy, each with excellent resolution. NICHE will have sufficient area and angular acceptance to have significant overlap with the TA/TALE detectors to allow for energy cross-calibration. Simulated NICHE performance has shown that the array has the ability to distinguish between several different composition models as well as measure the end of Galactic cosmic ray spectrum. In this talk, the NICHE design, array performance, and status will be discussed as well as NICHE's ability to measure the cosmic ray nuclear composition as a function of energy.

  15. The Heliosphere as Seen in TeV Cosmic Rays

    Science.gov (United States)

    Zhang, Ming; Pogorelov, Nikolai

    2016-11-01

    Measurements from several cosmic-ray air shower experiments reveal that the anisotropy of TeV cosmic-ray flux does not agree with a dipole pattern commonly expected from the Compton-Getting effect or from the diffusion of cosmic rays in Galactic magnetic fields. TeV cosmic-ray anisotropy maps often show fine features, some of which are slightly time-dependent. Because the size of the heliosphere is larger than the gyroradius of TeV cosmic rays in the interstellar magnetic field, the electric and magnetic fields of the heliosphere may distort the pattern of cosmic-ray anisotropy that one would see in the local interstellar medium without the presence of the heliosphere. We have developed a method of mapping cosmic-ray anisotropy using Liouville's theorem. In this paper, we show how to use cosmic-ray anisotropy features to determine the direction of the local interstellar magnetic field, the hydrogen deflection plane, the size and shape of the heliotail, and the geometry of the heliosphere bow wave.

  16. Anisotropy and chemical composition of ultra-high energy cosmic rays using arrival directions measured by the Pierre Auger Observatory

    NARCIS (Netherlands)

    Abreu, P.; Aglietta, M.; Ahn, E. J.; Albuquerque, J. F. M.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Alvarez Castilo, J.; Alvarez-Muniz, J.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Anticic, T.; Anzalone, A.; Aramo, C.; Arganda, E.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, Ni.; Avila, G.; Baecker, T.; Balzer, M.; Barber, K. B.; Barbosa, A. F.; Bardenet, R.; Barroso, S. L. C.; Baughman, B.; Baeuml, J.; Beatty, J. J.; Becker, B. R.; Becker, K. H.; Belletoile, A.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Bluemer, H.; Bohacova, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brogueira, P.; Brown, W. C.; Bruijn, R.; Buchholz, P.; Bueno, A.; Burton, R. E.; Caballero-Mora, K. S.; Caramete, L.; Caruso, R.; Castellina, A.; Catalano, O.; Cataldi, G.; Cazon, L.; Cester, R.; Chauvin, J.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chou, A.; Chudoba, J.; Clay, R. W.; Coluccia, M. R.; Conceicao, R.; Contreras, F.; Cook, H.; Cooper, M. J.; Coppens, J.; Cordier, A.; Cotti, U.; Coutu, S.; Covault, C. E.; Creusot, A.; Criss, A.; Cronin, J.; Curutiu, A.; Dagoret-Campagne, S.; Dallier, R.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; De Donato, C.; de Jong, S. J.; De La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; de Vries, K. D.; Decerprit, G.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Diaz, J. C.; Diaz Castro, M. L.; Diep, P. N.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; D'Urso, D.; Dutan, I.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Etchegoyen, A.; Luis, P. Facal San; Tapia, I. Fajardo; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Ferrero, A.; Fick, B.; Filevich, A.; Filipcic, A.; Fliescher, S.; Fracchiolla, C. E.; Fraenkel, E. D.; Froehlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R. F.; Gambetta, S.; Garcia, B.; Garcia Gamez, D.; Garcia-Pinto, D.; Gascon, A.; Gemmeke, H.; Gesterling, K.; Ghia, P. L.; Giaccari, U.; Giller, M.; Glass, H.; Gold, M. S.; Golup, G.; Gomez Albarracin, F.; Gomez Berisso, M.; Goncalves, P.; Gonzalez, D.; Gonzalez, J. G.; Gookin, B.; Gora, D.; Gorgi, A.; Gouffon, P.; Gozzini, S. R.; Grashorn, E.; Grebe, S.; Griffith, N.; Grigat, M.; Grillo, A. F.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Guzman, A.; Hague, J. D.; Hansen, P.; Harari, D.; Harmsma, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hojvat, C.; Hollon, N.; Holmes, V. C.; Homola, P.; Hoerandel, J. R.; Horneffer, A.; Hrabovsky, M.; Huege, T.; Insolia, A.; Ionita, F.; Italiano, A.; Jarne, C.; Jiraskova, S.; Kadija, K.; Kampert, K. H.; Karhan, P.; Kasper, P.; Kegl, B.; Keilhauer, B.; Keivani, A.; Kelley, J. L.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Koang, D. -H.; Kotera, K.; Krohm, N.; Kroemer, O.; Kruppke-Hansen, D.; Kuehn, F.; Kuempel, D.; Kulbartz, J. K.; Kunka, N.; La Rosa, G.; Lachaud, C.; Lautridou, P.; Leao, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Lemiere, A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lopez, R.; Lopez Agueera, A.; Louedec, K.; Lozano Bahilo, J.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Macolino, C.; Maldera, S.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, J.; Marin, V.; Maris, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martinez, H.; Martinez Bravo, O.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurizio, D.; Mazur, P. O.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Mertsch, P.; Meurer, C.; Micanovic, S.; Micheletti, M. I.; Miller, W.; Miramonti, L.; Mollerach, S.; Monasor, M.; Ragaigne, D. Monnier; Montanet, F.; Morales, B.; Morello, C.; Moreno, E.; Moreno, J. C.; Morris, C.; Mostafa, M.; Moura, C. A.; Mueller, S.; Muller, M. A.; Mueller, G.; Muenchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Nhung, P. T.; Niemietz, L.; Nierstenhoefer, N.; Nitz, D.; Nosek, D.; Nozka, L.; Nyklicek, M.; Oehlschlaeger, J.; Olinto, A.; Oliva, P.; Olmos-Gilbaja, V. M.; Ortiz, M.; Pacheco, N.; Selmi-Dei, D. Pakk; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parizot, E.; Parra, A.; Parsons, R. D.; Pastor, S.; Paul, T.; Pech, M.; Pekala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrinca, P.; Petrolini, A.; Petrov, Y.; Petrovic, J.; Pfendner, C.; Phan, N.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Ponce, V. H.; Pontz, M.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rizi, V.; Roberts, J.; Robledo, C.; Rodrigues de Carvalho, W.; Rodriguez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodriguez-Cabo, I.; Rodriguez-Frias, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouille-d'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Ruehle, C.; Salamida, F.; Salazar, H.; Salina, G.; Sanchez, F.; Santander, M.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarkar, S.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Schmidt, F.; Schmidt, T.; Scholten, O.; Schoorlemmer, H.; Schovancova, J.; Schovanek, P.; Schroeder, F.; Schulte, S.; Schuster, D.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Silva Lopez, H. H.; Smialkowski, A.; Smida, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Stapleton, J.; Stasielak, J.; Stephan, M.; Strazzeri, E.; Stutz, A.; Suarez, F.; Suomijaervi, T.; Supanitsky, A. D.; Susa, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Tamashiro, A.; Tapia, A.; Tartare, M.; Tascau, O.; Ruiz, C. G. Tavera; Tcaciuc, R.; Tegolo, D.; Thao, N. T.; Thomas, D.; Tiffenberg, J.; Timmermans, C.; Tiwari, D. K.; Tkaczyk, W.; Todero Peixoto, C. J.; Tome, B.; Tonachini, A.; Travnicek, P.; Tridapalli, D. B.; Tristram, G.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdes Galicia, J. F.; Valino, I.; Valore, L.; van den Berg, A. M.; Varela, E.; Vargas Cardenas, B.; Vazquez, J. R.; Vazquez, R. A.; Veberic, D.; Verzi, V.; Vicha, J.; Videla, M.; Villasenor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Warner, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Westerhoff, S.; Whelan, B. J.; Wieczorek, G.; Wiencke, L.; Wilczynska, B.; Wilczynski, H.; Will, M.; Williams, C.; Winchen, T.; Winders, L.; Winnick, M. G.; Wommer, M.; Wundheiler, B.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Ziolkowski, M.; Martin, L.

    2011-01-01

    The Pierre Auger Collaboration has reported. evidence for anisotropy in the distribution of arrival directions of the cosmic rays with energies E > E(th) = 5.5 x 10(19) eV. These show a correlation with the distribution of nearby extragalactic objects, including an apparent excess around the directi

  17. The Telescope Array Ultra High Energy Cosmic Ray Obsrevatory

    Science.gov (United States)

    Matthews, John

    2016-07-01

    The Telescope Array measures the properties of ultra high energy cosmic ray induced extensive air showers. We do this using a variety of techniques including an array of scintillator detectors to sample the footprint of the air shower when it reaches the Earth's surface and telescopes to measure the fluorescence and Cerenkov light of the air shower. From this we determine the energy spectrum and chemical composition of the primary particles. We also search for sources of cosmic rays and anisotropy. We have found evidence of a possible source of ultra high energy cosmic rays in the northern sky. The experiment and its most recent measurements will be discussed.

  18. Cosmic Ray Electron Science with GLAST

    Energy Technology Data Exchange (ETDEWEB)

    Ormes, J.F.; /Denver U.; Moiseev, Alexander; /NASA, Goddard

    2007-10-17

    Cosmic ray electrons at high energy carry information about their sources, their diffusion in local magnetic fields and their interactions with the photon fields through which they travel. The spectrum of the particles is affected by inverse Compton losses and synchrotron losses, the rates of which are proportional to the square of the particle's energy making the spectra very steep. However, GLAST will be able to make unique and very high statistics measurements of electrons from {approx}20 to {approx}700 GeV that will allow us to search for anisotropies in arrival direction and spectral features associated with some dark matter candidates. Complementary information on electrons of still higher energy will be required to see effects of possible individual cosmic ray sources.

  19. Measurement of the Radiation Energy in the Radio Signal of Extensive Air Showers as a Universal Estimator of Cosmic-Ray Energy

    NARCIS (Netherlands)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Al Samarai, I.; Albuquerque, I. F. M.; Allekotte, I.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muniz, J.; Batista, R. Alves; Ambrosio, M.; Aminaei, A.; Anastasi, G. A.; Anchordoqui, L.; Andringa, S.; Aramo, C.; Arqueros, F.; Arsene, N.; Asorey, H.; Assis, P.; Aublin, J.; Avila, G.; Awal, N.; Badescu, A. M.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blaess, S. G.; Blanco, A.; Blanco, M.; Blazek, J.; Bleve, C.; Bluemer, H.; Bohacova, M.; Boncioli, D.; Bonifazi, C.; Borodai, N.; Brack, J.; Brancus, I.; Bretz, T.; Bridgeman, A.; Brogueira, P.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceicao, R.; Contreras, F.; Cooper, M. J.; Cordier, A.; Coutu, S.; Covault, C. E.; Cronin, J.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; de Jong, S. J.; De Mauro, G.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; del Peral, L.; Deligny, O.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Diaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dorofeev, A.; Hasankiadeh, Q. Dorosti; dos Anjos, R. C.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipcic, A.; Fratu, O.; Freire, M. M.; Fujii, T.; Garcia, B.; Garcia-Gamez, D.; Garcia-Pinto, D.; Gate, F.; Gemmeke, H.; Gherghel-Lascu, A.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Glas, D.; Glaser, C.; Glass, H.; Golup, G.; Gomez Berisso, M.; Gomez Vitale, P. F.; Gonzalez, N.; Gookin, B.; Gordon, J.; Gorgi, A.; Gorham, P.; Gouffon, P.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Hartmann, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Horandel, J. R.; Horvath, P.; Hrabovsky, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Jandt, I.; Jansen, S.; Jarne, C.; Johnsen, J. A.; Josebachuili, M.; Kaeaepae, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Keilhauer, B.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Kuempel, D.; Mezek, G. Kukec; Kunka, N.; Awad, A. W. Kuotb; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lopes, L.; Lopez, R.; Lopez Casado, A.; Louedec, K.; Lucero, A.; Malacari, M.; Mallamaci, M.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Maris, I. C.; Marsella, G.; Martello, D.; Martinez, H.; Martinez Bravo, O.; Martraire, D.; Masias Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Meissner, R.; Mello, V. B. B.; Melo, D.; Menshikov, A.; Messina, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Montanet, F.; Morello, C.; Mostafa, M.; Moura, C. A.; Muller, M. A.; Mueller, G.; Mueller, S.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nguyen, P. H.; Niculescu-Oglinzanu, M.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nozka, L.; Nunez, L. A.; Ochilo, L.; Oikonomou, F.; Olinto, A.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; Pekala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Petermann, E.; Peters, C.; Petrera, S.; Petrov, Y.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porcelli, A.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Reinert, D.; Revenu, B.; Ridky, J.; Risse, M.; Ristori, P.; Rizi, V.; Rodrigues de Carvalho, W.; Rodriguez Rojo, J.; Rodriguez-Frias, M. D.; Rogozin, D.; Rosado, J.; Roth, M.; Roulet, E.; Rovero, A. C.; Saffi, S. J.; Saftoiu, A.; Salazar, H.; Saleh, A.; Greus, F. Salesa; Salina, G.; Sanabria Gomez, J. D.; Sanchez, F.; Sanchez-Lucas, P.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sarmiento-Cano, C.; Sato, R.; Scarso, C.; Schauer, M.; Scherini, V.; Schieler, H.; Schmidt, D.; Scholten, O.; Schoorlemmer, H.; Schovanek, P.; Schroeder, F. G.; Schulz, A.; Schulz, J.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sigl, G.; Sima, O.; Smialkowski, A.; Smida, R.; Snow, G. R.; Sommers, P.; Sonntag, S.; Sorokin, J.; Squartini, R.; Srivastava, Y. N.; Stanca, D.; Stanic, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suarez Duran, M.; Suomijarvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Taborda, O. A.; Tapia, A.; Tepe, A.; Theodoro, V. M.; Timmermans, C.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tome, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Trini, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdes Galicia, J. F.; Valino, I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cardenas, B.; Varner, G.; Vasquez, R.; Vazquez, J. R.; Vazquez, R. A.; Veberic, D.; Verzi, V.; Vicha, J.; Videla, M.; Villasenor, L.; Vlcek, B.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Welling, C.; Werner, F.; Widom, A.; Wiencke, L.; Wilczynski, H.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yang, L.; Yapici, T.; Yushkov, A.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zepeda, A.; Zimmermann, B.; Ziolkowski, M.; Zuccarello, F.

    2016-01-01

    We measure the energy emitted by extensive air showers in the form of radio emission in the frequency range from 30 to 80 MHz. Exploiting the accurate energy scale of the Pierre Auger Observatory, we obtain a radiation energy of 15.8 +/- 0.7 (stat) +/- 6.7 (syst) MeV for cosmic rays with an energy o

  20. Measurement of the cosmic-ray energy spectrum above $10^{16}$ eV with the LOFAR Radboud Air Shower Array

    CERN Document Server

    Thoudam, S; Corstanje, A; Enriquez, J E; Falcke, H; Hörandel, J R; Nelles, A; Rachen, J P; Rossetto, L; Schellart, P; Scholten, O; ter Veen, S; Trinh, T N G; van Kessel, L

    2015-01-01

    The energy reconstruction of extensive air showers measured with the LOFAR Radboud Air Shower Array (LORA) is presented in detail. LORA is a particle detector array located in the center of the LOFAR radio telescope in the Netherlands. The aim of this work is to provide an accurate and independent energy measurement for the air showers measured through their radio signal with the LOFAR antennas. The energy reconstruction is performed using a parameterized relation between the measured shower size and the cosmic-ray energy obtained from air shower simulations. In order to illustrate the capabilities of LORA, the all-particle cosmic-ray energy spectrum has been reconstructed, assuming that cosmic rays are composed only of protons or iron nuclei in the energy range between $\\sim2\\times10^{16}$ and $2\\times10^{18}$ eV. The results are compatible with literature values and a changing mass composition in the transition region from a galactic to an extragalactic origin of cosmic rays.

  1. Measurement of the Radiation Energy in the Radio Signal of Extensive Air Showers as a Universal Estimator of Cosmic-Ray Energy

    NARCIS (Netherlands)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Al Samarai, I.; Albuquerque, I.F.M.; Allekotte, I.; Buitink, S.; Docters, W.; Dorosti Hasankiadeh, Q.; Messina, S.; Scholten, O.; van den Berg, A.M.

    2016-01-01

    We measure the energy emitted by extensive air showers in the form of radio emission in the frequency range from 30 to 80 MHz. Exploiting the accurate energy scale of the Pierre Auger Observatory, we obtain a radiation energy of 15.8 +/- 0.7 (stat) +/- 6.7 (syst) MeV for cosmic rays with an energy o

  2. Cosmic ray escape from supernova remnants

    CERN Document Server

    Gabici, Stefano

    2011-01-01

    Galactic cosmic rays are believed to be accelerated at supernova remnants via diffusive shock acceleration. Though this mechanism gives fairly robust predictions for the spectrum of particles accelerated at the shock, the spectrum of the cosmic rays which are eventually injected in the interstellar medium is more uncertain and depends on the details of the process of particle escape from the shock. Knowing the spectral shape of these escaping particles is of crucial importance in order to assess the validity of the supernova remnant paradigm for cosmic ray origin. Moreover, after escaping from a supernova remnant, cosmic rays interact with the surrounding ambient gas and produce gamma rays in the vicinity of the remnant itself. The detection of this radiation can be used as an indirect proof of the fact that the supernova remnant was indeed accelerating cosmic rays in the past.

  3. Some Aspects of Galactic Cosmic Ray Acceleration

    CERN Document Server

    Butt, Y M

    2003-01-01

    I give a synopsis of two aspects of the Galactic Cosmic Ray (GCR) acceleration problem: the importance of the medium energy gamma-ray window, and several specific astrophysical sources which merit further investigation.

  4. Cosmic-ray acceleration in supernova remnants

    NARCIS (Netherlands)

    Helder, E.A.

    2010-01-01

    Supernovae are among the most energetic events in the Universe. During the event, they expel their material with enormous speeds into the surroundings. In addition, supernovae are thought to transfer a sizable fraction of their energy into just a few particles: cosmic rays. These cosmic rays acquire

  5. The Pierre Auger Cosmic Ray Observatory

    NARCIS (Netherlands)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Al Samarai, I.; Albert, J. N.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muniz, J.; Batista, R. Alves; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Aramo, C.; Aranda, V. M.; Argiro, S.; Arisaka, K.; Arneodo, F.; Arqueros, F.; Asch, T.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Awal, N.; Badescu, A. M.; Balzer, M.; Barber, K. B.; Barbosa, A.; Barenthien, N.; Barkhausen, M.; Baeuml, J.; Baus, C.; Beatty, J.; Becker, K. H.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bergmann, T.; Bertaina, M. E.; Biermann, P. L.; Bilhaut, R.; Billoir, P.; Blaes, S. G.; Blanco, M.; Bleve, C.; Bluemer, H.; Bohacova, M.; Bolz, H.; Boncioli, D.; Bonifaz, C.; Bonino, R.; Boratav, M.; Borodai, N.; Bracci, F.; Brack, J.; Brancus, I.; Bridgeman, A.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Camin, D.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Castera, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Chiavassa, A.; Chinellato, J. A.; Chiosso, M.; Chudoba, J.; Cilmo, M.; Clark, P. D. J.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Coleman, A.; Collica, L.; Colombo, E.; Colonges, S.; Coluccia, M. R.; Conceicao, R.; Contreras, F.; Cooper, M. J.; Coppens, J.; Cordier, A.; Courty, B.; Coutu, S.; Covault, C. E.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; De Donato, C.; de Jong, S. J.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; de Vries, K. D.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Diaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, C.; Dolron, P.; Dorofeev, A.; Hasankiadeh, Q. Dorosti; Dova, M. T.; D'Urso, D.; Ebr, J.; Engel, R.; Epele, L. N.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fernandes, M.; Ferrero, A.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipcic, A.; Fox, B. D.; Fraenkel, E. D.; Fratu, O.; Freire, M. M.; Froehlich, U.; Fuchs, B.; Fulgione, W.; Fujii, T.; Garcia, B.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gate, F.; Geenen, H.; Gemmeke, H.; Genolini, B.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Gibbs, K.; Giller, M.; Giudice, N.; Glaser, C.; Glass, H.; Gomez Berisso, M.; Gomez Vitale, P. F.; Goncalves, P.; Gonzalez, J. G.; Gonzalez, N.; Gookin, B.; Gora, D.; Gordon, J.; Gorgi, A.; Gorham, P.; Gotink, W.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Grygar, J.; Guardone, N.; Guarino, F.; Guedes, G. P.; Guglielmi, L.; Habraken, R.; Hampel, M. R.; Hansen, P.; Harari, D.; Harmsma, S.; Harrison, T. A.; Hartmann, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hoerandel, J. R.; Horneffer, A.; Horvat, M.; Horvath, P.; Hrabovsky, M.; Huber, D.; Hucker, H.; Huege, T.; Iarlori, M.; Insolia, A.; Isar, P. G.; Jandt, I.; Jansen, S.; Jarne, C.; Johnsen, J. A.; Josebachuili, M.; Kaeaepae, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Kegl, B.; Keilhauer, B.; Keivani, A.; Kelley, J.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Kopmann, A.; Krause, R.; Krohm, N.; Kroemer, O.; Kuempel, D.; Kunka, N.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leao, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lopez, R.; Lopez Casado, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Malacari, M.; Maldera, S.; Mallamaci, M.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Maris, I. C.; Marsella, G.; Martello, D.; Martina, L.; Martinez, H.; Martinez, N.; Martinez Bravo, O.; Martraire, D.; Masias Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Meissner, R.; Melissas, M.; Mello, V. B. B.; Melo, D.; Menichetti, E.; Menshikov, A.; Messina, S.; Meyhandan, R.; Micanovic, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Montanet, F.; Morello, C.; Mostafa, M.; Moura, C. A.; Muller, M. A.; Mueller, G.; Mueller, S.; Muenchmeyer, M.; Mussa, R.; Navarra, G.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nguyen, P. H.; Nicotra, D.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nozka, L.; Ochilo, L.; Ohnuki, T.; Oikonomou, F.; Olinto, A.; Oliveira, M.; Olmos-Gilbaja, V. M.; Pacheco, N.; PakkSelmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Papenbreer, P.; Parente, G.; Parra, A.; Patel, M.; Paul, T.; Pech, M.; Pekala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Petermann, E.; Peters, C.; Petrera, S.; Petrinca, P.; Petrov, Y.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porcelli, A.; Porowski, C.; Porter, T.; Pouryamout, J.; Pouthas, J.; Prado, R. R.; Privitera, P.; Prouza, M.; Pryke, C. L.; Purrello, V.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Randriatoamanana, R.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenua, B.; Ridky, J.; Risse, M.; Ristori, P.; Rizi, V.; Robbins, S.; Roberts, M.; Rodrigues de Carvalho, W.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Rodriguez-Frias, M. D.; Rogozin, D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Roulet, E.; Rovero, A. C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Saleh, A.; Salesa Greus, F.; Salina, G.; Sanchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Schmidt, D.; Scholten, O.; Schoorlemmer, H.; Schovanek, P.; Schreuder, F.; Schroeder, F. G.; Schulz, A.; Schulz, J.; Schuessler, F.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Sequeiros, G.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Smialkowski, A.; Smida, R.; Smith, A. G. K.; Snow, G. R.; Sommers, P.; Sorokin, J.; Speelman, R.; Spinka, H.; Squartini, R.; Srivastava, Y. N.; Stanic, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijaervi, T.; Supanitsky, A. D.; Sutherland, M. S.; Sutter, M.; Swain, J.; Szadkowski, Z.; Szuba, M.; Taborda, O. A.; Tapia, A.; Tcherniakhovski, D.; Tepe, A.; Theodoro, V. M.; Timmermans, C.; Tkaczyk, W.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tome, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Trovato, E.; Trung, T. N.; Tunnicliffe, V.; Tusi, E.; Ulrich, R.; Unger, M.; Urban, M.; Valdes Galicia, J. F.; Valino, I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cardenas, B.; Varnav, D. M.; Varner, G.; Vasquez, R.; Vazquez, J. R.; Vazquez, R. A.; Veberic, D.; Verkooijen, H.; Verzi, V.; Vicha, J.; Videla, M.; Villasenor, L.; Vitali, G.; Vlcek, B.; Vorenholt, H.; Vorobiov, S.; Voyvodic, L.; Wahlberg, H.; Wainberg, O.; Walker, P.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Westerhoff, S.; Widom, A.; Wiebusch, C.; Wiencke, L.; Wijnen, T.; Wilczynska, B.; Wilczynski, H.; Wild, N.; Winchen, T.; Wittkowski, D.; Woerner, G.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zepeda, A.; Zhou, J.; Zhu, Y.; Silva, M. Zimbres; Zimmermann, B.; Ziolkowski, M.; Zuccarello, F.

    2015-01-01

    The Pierre Auger Observatory, located on a vast, high plain in western Argentina, is the world's largest cosmic ray observatory. The objectives of the Observatory are to probe the origin and characteristics of cosmic rays above 10(17) eV and to study the interactions of these, the most energetic par

  6. AMS results on positrons and antiprotons in cosmic rays

    Science.gov (United States)

    Kounine, Andrei; AMS Collaboration

    2017-01-01

    AMS-02 is a particle physics detector collecting data on the International Space Station since May 2011. Precision measurements of charged cosmic ray particles have been performed by AMS using a data sample of 85 billion cosmic ray events collected during the first five years of operations on the Station. The latest AMS results on the fluxes and flux ratios of the cosmic ray particles are presented with the emphasis on the measurements of positrons and antiprotons. They show unique features that require accurate theoretical interpretation as to their origin, be it from dark matter collisions or new astrophysical sources. On behalf of AMS.

  7. Cosmic Ray Removal in Fiber Spectroscopic Image

    Science.gov (United States)

    Bai, Zhongrui; Zhang, Haotong; Yuan, Hailong; Carlin, Jeffrey L.; Li, Guangwei; Lei, Yajuan; Dong, Yiqiao; Yang, Huiqin; Zhao, Yongheng; Cao, Zihuang

    2017-02-01

    Single-exposure spectra in large spectral surveys are valuable for time domain studies such as stellar variability, but there is no available method to eliminate cosmic rays for single-exposure, multi-fiber spectral images. In this paper, we describe a new method to detect and remove cosmic rays in multi-fiber spectroscopic single exposures. Through the use of two-dimensional profile fitting and a noise model that considers the position-dependent errors, we successfully detect as many as 80% of the cosmic rays and correct the cosmic ray polluted pixels to an average accuracy of 97.8%. Multiple tests and comparisons with both simulated data and real LAMOST data show that the method works properly in detection rate, false detection rate, and validity of cosmic ray correction.

  8. Cosmic Ray transport in turbulent magnetic field

    CERN Document Server

    Yan, Huirong

    2013-01-01

    Cosmic ray (CR) transport and acceleration is determined by the properties of magnetic turbulence. Recent advances in MHD turbulence call for revisions in the paradigm of cosmic ray transport. We use the models of magnetohydrodynamic turbulence that were tested in numerical simulation, in which turbulence is injected at large scale and cascades to to small scales. We shall address the issue of the transport of CRs, both parallel and perpendicular to the magnetic field. We shall demonstrate compressible fast modes are dominant cosmic ray scatterer from both quasilinear and nonlinear theories. We shall also show that the self-generated wave growth by CRs are constrained by preexisting turbulence and discuss the process in detail in the context of shock acceleration at supernova remnants and their implications. In addition, we shall dwell on the nonlinear growth of kinetic gyroresonance instability of cosmic rays induced by large scale compressible turbulence. This gyroresonance of cosmic rays on turbulence is d...

  9. Cosmic rays: a review for astrobiologists.

    Science.gov (United States)

    Ferrari, Franco; Szuszkiewicz, Ewa

    2009-05-01

    Cosmic rays represent one of the most fascinating research themes in modern astronomy and physics. Significant progress is being made toward an understanding of the astrophysics of the sources of cosmic rays and the physics of interactions in the ultrahigh-energy range. This is possible because several new experiments in these areas have been initiated. Cosmic rays may hold answers to a great number of fundamental questions, but they also shape our natural habitat and influence the radiation environment of our planet Earth. The importance of the study of cosmic rays has been acknowledged in many fields, including space weather science and astrobiology. Here, we concentrate on the astrobiological aspects of cosmic rays with regard to the enormous amount of new data available, some of which may, in fact, improve our knowledge about the radiation of cosmic origin on Earth. We focus on fluxes arriving at Earth and doses received, and will guide the reader through the wealth of scientific literature on cosmic rays. We have prepared a concise and self-contained source of data and recipes useful for performing interdisciplinary research in cosmic rays and their effects on life on Earth.

  10. Protostars: forge of cosmic rays?

    CERN Document Server

    Padovani, M; Hennebelle, P; Ferrière, K

    2016-01-01

    Galactic cosmic rays (CR) are particles presumably accelerated in supernova remnant shocks that propagate in the interstellar medium up to the densest parts of molecular clouds, losing energy as well as their ionisation efficiency because of the presence of magnetic fields and collisions with molecular hydrogen. Recent observations hint at high levels of ionisation and to the presence of synchrotron emission in protostellar systems, therefore leading to an apparent contradiction. We want to explain the origin of these CRs accelerated within young protostars as suggested by observations. Our modelling consists of a set of conditions that has to be satisfied in order to have an efficient CR acceleration through diffusive shock acceleration. We analyse three main acceleration sites, then we follow the propagation of these particles through the protostellar system up to the hot spot region. We find that jet shocks can be strong accelerators of CR protons, which can be boosted up to relativistic energies. Another ...

  11. Cosmic Rays. Citations from the NTIS data base

    Science.gov (United States)

    Carrigan, B.

    1980-04-01

    Measurement techniques, isotopic composition, distribution, intensity, anisotropy, and sources of cosmic rays are covered in the citations. This updated bibliography contains 75 abstracts, 22 of which are new entries to the previous edition.

  12. Spatial Dependent Diffusion of Cosmic Rays and the Excess of Primary Electrons Derived from High Precision Measurements by AMS-02

    CERN Document Server

    Jin, C; Hu, H B

    2016-01-01

    The precise spectra of Cosmic Ray (CR) electrons and positrons have been published by the measurement of AMS-02. It is reasonable to regard the difference between the electrons and positrons spectra ( $\\triangle \\Phi= \\Phi_{e^-}-\\Phi_{e^+}$ ) as being dominated by primary electrons. Noticing that the resulting electron spectrum shows no sign of spectral softening above 20 GeV, which is in contrast with the prediction of standard model. In this work, we generalize the analytic one dimensional two-halo model of diffusion to a three dimensional realistic calculation by implementing a spatial variant diffusion coefficients in DRAGON package. As a result, we can reproduce the spectral hardening of protons observed by several experiments, and predict an excess of high energy primary electrons which agrees with the measurement reasonably well. Unlike the break spectrum obtained for protons, the model calculation predicts a smooth electron excess and thus slightly over predicts the flux from tens of GeV to 100GeV. To...

  13. Modeling of ground albedo neutrons to investigate seasonal cosmic ray-induced neutron variations measured at high-altitude stations

    Science.gov (United States)

    Hubert, G.; Pazianotto, M. T.; Federico, C. A.

    2016-12-01

    This paper investigates seasonal cosmic ray-induced neutron variations measured over a long-term period (from 2011 to 2016) in both the high-altitude stations located in medium geomagnetic latitude and Antarctica (Pic-du-Midi and Concordia, respectively). To reinforce analysis, modeling based on ground albedo neutrons simulations of extensive air showers and the solar modulation potential was performed. Because the local environment is well known and stable over time in Antarctica, data were used to validate the modeling approach. A modeled scene representative to the Pic-du-Midi was simulated with GEANT4 for various hydrogen properties (composition, density, and wet level) and snow thickness. The orders of magnitudes of calculated thermal fluence rates are consistent with measurements obtained during summers and winters. These variations are dominant in the thermal domain (i.e., En 20 MeV) is weakly impacted. The role of hydrogen content on ground albedo neutron generation was investigated with GEANT4 simulations. These investigations focused to mountain environment; nevertheless, they demonstrate the complexity of the local influences on neutron fluence rates.

  14. Latest AMS Results on elementary particles in cosmic rays

    Science.gov (United States)

    Kounine, Andrei; AMS Collaboration

    2017-01-01

    AMS-02 is a particle physics detector collecting data on the International Space Station since May 2011. Precision measurements of all elementary charged cosmic ray particles have been performed by AMS using a data sample of 85 billion cosmic ray events collected during the first five years of operations on the Station. The latest AMS results on the fluxes and flux ratios of the elementary cosmic ray particles are presented. They show unique features that require accurate theoretical interpretation as to their origin, be it from dark matter collisions or new astrophysical sources. On behalf of the AMS Collaboration.

  15. Measuring the Cosmic Ray Muon-Induced Fast Neutron Spectrum by (n,p) Isotope Production Reactions in Underground Detectors

    CERN Document Server

    Galbiati, C; Galbiati, Cristiano; Beacom, John. F.

    2005-01-01

    While cosmic ray muons themselves are relatively easy to veto in underground detectors, their interactions with nuclei create more insidious backgrounds via: (i) the decays of long-lived isotopes produced by muon-induced spallation reactions inside the detector, (ii) spallation reactions initiated by fast muon-induced neutrons entering from outside the detector, and (iii) nuclear recoils initiated by fast muon-induced neutrons entering from outside the detector. These backgrounds, which are difficult to veto or shield against, are very important for solar, reactor, dark matter, and other underground experiments, especially as increased sensitivity is pursued. We used fluka to calculate the production rates and spectra of all prominent secondaries produced by cosmic ray muons, in particular focusing on secondary neutrons, due to their importance. Since the neutron spectrum is steeply falling, the total neutron production rate is sensitive just to the relatively soft neutrons, and not to the fast-neutron compon...

  16. Stable laws and cosmic ray physics

    Science.gov (United States)

    Genolini, Y.; Salati, P.; Serpico, P. D.; Taillet, R.

    2017-03-01

    sources plays an important role. A few proposals have been recently discussed in the literature to account for spectral breaks reported in cosmic ray data in terms of local contributions. We apply our newly developed theory to assess their probabilities, finding that they are relatively small, typically at the 0.1% level or smaller, never exceeding 1%. Conclusions: The use of heavy tail distributions is relevant in assessing how likely a measured cosmic ray flux is to depart from the average expectation in a given model. The existing mathematical theory leading to stable laws can be adapted to the case of interest via some recipes that closely reproduce numerical simulations and are relatively easy to implement.

  17. X-Ray Ccds for Space Applications: Calibration, Radiation Hardness, and Use for Measuring the Spectrum of the Cosmic X-Ray Background

    Science.gov (United States)

    Gendreau, Keith Charles

    1995-01-01

    This thesis has two distinct components. One concerns the physics of the high energy resolution X-ray charge coupled devices (CCD) detectors used to measure the cosmic X-ray background (XRB) spectrum. The other involves the measurements and analysis of the XRB spectrum and instrumental background with these detectors on board the advanced satellite for cosmology and astrophysics (ASCA). The XRB has a soft component and a hard component divided at ~2 keV. The hard component is extremely isotropic, suggesting a cosmological origin. The soft component is extremely anisotropic. A galactic component most likely dominates the soft band with X-ray line emission due to a hot plasma surrounding the solar system. ASCA is one of the first of a class of missions designed to overlap the hard and soft X-ray bands. The X-ray CCD's energy resolution allows us to spectrally separate the galactic and cosmological components. Also, the resolution offers the ability to test several specific cosmological models which would make up the XRB. I have concentrated on models for the XRB origin which include active galactic nuclei (AGN) as principal components. I use ASCA data to put spectral constraints on the AGN synthesis model for the XRB. The instrumental portion of this thesis concerns the development and calibration of the X-ray CCDs. I designed, built and operated an X-ray calibration facility for these detectors. It makes use of a reflection grating spectrometer to measure absolute detection efficiency, characteristic absorption edge strengths, and spectral redistribution in the CCD response function. Part of my thesis research includes a study of radiation damage mechanisms in CCDs. This work revealed radiation damage-induced degradation in the spectral response to X-rays. It also uncovered systematic effects which affect both data analysis and CCD design. I have developed a model involving trap energy levels in the CCD band gap structure. These traps reduce the efficiency in which

  18. Cosmic-ray propagation in molecular clouds

    CERN Document Server

    Padovani, Marco

    2013-01-01

    Cosmic-rays constitute the main ionising and heating agent in dense, starless, molecular cloud cores. We reexamine the physical quantities necessary to determine the cosmic-ray ionisation rate (especially the cosmic ray spectrum at E < 1 GeV and the ionisation cross sections), and calculate the ionisation rate as a function of the column density of molecular hydrogen. Available data support the existence of a low-energy component (below about 100 MeV) of cosmic-ray electrons or protons responsible for the ionisation of diffuse and dense clouds. We also compute the attenuation of the cosmic-ray flux rate in a cloud core taking into account magnetic focusing and magnetic mirroring, following the propagation of cosmic rays along flux tubes enclosing different amount of mass and mass-to-flux ratios. We find that mirroring always dominates over focusing, implying a reduction of the cosmic-ray ionisation rate by a factor of 3-4 depending on the position inside the core and the magnetisation of the core.

  19. First measurement of radioactive isotope production through cosmic-ray muon spallation in Super-Kamiokande IV

    CERN Document Server

    ,

    2016-01-01

    Cosmic-ray-muon spallation-induced radioactive isotopes with $\\beta$ decays are one of the major backgrounds for solar, reactor, and supernova relic neutrino experiments. Unlike in scintillator, production yields for cosmogenic backgrounds in water have not been exclusively measured before, yet they are becoming more and more important in next generation neutrino experiments designed to search for rare signals. We have analyzed the low-energy trigger data collected at Super-Kamiokande-IV in order to determine the production rates of $^{12}$B, $^{12}$N, $^{16}$N, $^{11}$Be, $^9$Li, $^8$He, $^9$C, $^8$Li, $^8$B and $^{15}$C. These rates were extracted from fits to time differences between parent muons and subsequent daughter $\\beta$'s by fixing the known isotope lifetimes. Since $^9$Li can fake an inverse-beta-decay reaction chain via a $\\beta + n$ cascade decay, producing an irreducible background with detected energy up to a dozen MeV, a dedicated study is needed for evaluating its impact on future measuremen...

  20. Anisotropy and Corotation of Galactic Cosmic Rays

    Institute of Scientific and Technical Information of China (English)

    The Chinese collaboration team at YangBaJing Cosmi

    2007-01-01

    @@ Based on some 40 billion cosmic ray events collected from 1997 to 2005 by the Tibet Air Shower Array experiment (a major scientific collaboration between China and Japan) operating at the YangBaJing Cosmic Ray Observatory (90.522 E, 30. 102 N; 4300 m above sea level) near Lhasa in Tibet, a two-dimensiondl cosmic-ray intensity map in the sky was obtained with very high directional granularity and unprecedented precision in intensity at a level of 10-4.

  1. High-energy cosmic-ray acceleration

    CERN Document Server

    Bustamante, M; de Paula, W; Duarte Chavez, J A; Gago, A M; Hakobyan, H; Jez, P; Monroy Montañez, J A; Ortiz Velasquez, A; Padilla Cabal, F; Pino Rozas, M; Rodriguez Patarroyo, D J; Romeo, G L; Saldaña-Salazar , U J; Velasquez, M; von Steinkirch, M

    2010-01-01

    We briefly review the basics of ultrahigh-energy cosmic-ray acceleration. The Hillas criterion is introduced as a geometrical criterion that must be fulfilled by potential acceleration sites, and energy losses are taken into account in order to obtain a more realistic scenario. The different available acceleration mechanisms are presented, with special emphasis on Fermi shock acceleration and its prediction of a power-law cosmic-ray energy spectrum. We conclude that first-order Fermi acceleration, though not entirely satisfactory, is the most promising mechanism for explaining the ultra-high-energy cosmic-ray flux.

  2. Cosmic Rays - A Word-Wide Student Laboratory

    Science.gov (United States)

    Adams, Mark

    2017-01-01

    The QuarkNet program has distributed hundreds of cosmic ray detectors for use in high schools and research facilities throughout the world over the last decade. Data collected by those students has been uploaded to a central server where web-based analysis tools enable users to characterize and to analyze everyone's cosmic ray data. Since muons rain down on everyone in the world, all students can participate in this free, high energy particle environment. Through self-directed inquiry students have designed their own experiments: exploring cosmic ray rates and air shower structure; and using muons to measure their speed, time dilation, lifetime, and affects on biological systems. We also plan to expand our annual International Muon Week project to create a large student-led collaboration where similar cosmic ray measurements are performed simultaneously throughout the world.

  3. Key scientific problems from Cosmic Ray History

    Science.gov (United States)

    Lev, Dorman

    2016-07-01

    Recently was published the monograph "Cosmic Ray History" by Lev Dorman and Irina Dorman (Nova Publishers, New York). What learn us and what key scientific problems formulated the Cosmic Ray History? 1. As many great discoveries, the phenomenon of cosmic rays was discovered accidentally, during investigations that sought to answer another question: what are sources of air ionization? This problem became interesting for science about 230 years ago in the end of the 18th century, when physics met with a problem of leakage of electrical charge from very good isolated bodies. 2. At the beginning of the 20th century, in connection with the discovery of natural radioactivity, it became apparent that this problem is mainly solved: it was widely accepted that the main source of the air ionization were α, b, and γ - radiations from radioactive substances in the ground (γ-radiation was considered as the most important cause because α- and b-radiations are rapidly absorbed in the air). 3. The general accepted wrong opinion on the ground radioactivity as main source of air ionization, stopped German meteorologist Franz Linke to made correct conclusion on the basis of correct measurements. In fact, he made 12 balloon flights in 1900-1903 during his PhD studies at Berlin University, carrying an electroscope to a height of 5500 m. The PhD Thesis was not published, but in Thesis he concludes: "Were one to compare the presented values with those on ground, one must say that at 1000 m altitude the ionization is smaller than on the ground, between 1 and 3 km the same amount, and above it is larger with values increasing up to a factor of 4 (at 5500 m). The uncertainties in the observations only allow the conclusion that the reason for the ionization has to be found first in the Earth." Nobody later quoted Franz Linke and although he had made the right measurements, he had reached the wrong conclusions, and the discovery of CR became only later on about 10 years. 4. Victor Hess, a

  4. Cosmic-ray exposure ages of chondrules

    Science.gov (United States)

    Roth, Antoine S. G.; Metzler, Knut; Baumgartner, Lukas P.; Leya, Ingo

    2016-07-01

    If chondrules were exposed to cosmic rays prior to meteorite compaction, they should retain an excess of cosmogenic noble gases. Beyersdorf-Kuis et al. (2015) showed that such excesses can be detected provided that the chemical composition of each individual chondrule is precisely known. However, their study was limited to a few samples as they had to be irradiated in a nuclear reactor for instrumental neutron activation analysis. We developed a novel analytical protocol that combines the measurements of He and Ne isotopic concentrations with a fast method to correct for differences in chemical composition using micro X-ray computed tomography. Our main idea is to combine noble gas, nuclear track, and petrography data for numerous chondrules to understand the precompaction exposure history of the chondrite parent bodies. Here, we report our results for a total of 77 chondrules and four matrix samples from NWA 8276 (L3.00), NWA 8007 (L3.2), and Bjurböle (L/LL4). All chondrules from the same meteorite have within uncertainty identical 21Ne exposure ages, and all chondrules from Bjurböle have within uncertainty identical 3He exposure ages. However, most chondrules from NWA 8276 and a few from NWA 8007 show small but resolvable differences in 3He exposure age that we attribute to matrix contamination and/or gas loss. The finding that none of the chondrules has noble gas excesses is consistent with the uniform track density found for each meteorite. We conclude that the studied chondrules did not experience a precompaction exposure longer than a few Ma assuming present-day flux of galactic cosmic rays. A majority of chondrules from L and LL chondrites thus rapidly accreted and/or was efficiently shielded from cosmic rays in the solar nebula.

  5. Cosmic Ray Acceleration by Supernova Shocks

    CERN Document Server

    Berezhko, E G

    2008-01-01

    We analyse the results of recent measurements of nonthermal emission from individual supernova remnants (SNRs) and their correspondence to the nonlinear kinetic theory of cosmic ray (CR) acceleration in SNRs. It is shown that the theory fits these data in a satisfactory way and provides the strong evidences for the efficient CR production in SNRs accompanied by significant magnetic field amplification. Magnetic field amplification leads to considerable increase of CR maximum energy so that the spectrum of CRs accelerated in SNRs is consistent with the requirements for the formation of Galactic CR spectrum up to the energy ~10^17 eV.

  6. Cosmic ray penetration in diffuse clouds

    CERN Document Server

    Morlino, G; Krause, J

    2015-01-01

    Cosmic rays are a fundamental source of ionization for molecular and diffuse clouds, influencing their chemical, thermal, and dynamical evolution. The amount of cosmic rays inside a cloud also determines the $\\gamma$-ray flux produced by hadronic collisions between cosmic rays and cloud material. We study the spectrum of cosmic rays inside and outside of a diffuse cloud, by solving the stationary transport equation for cosmic rays including diffusion, advection and energy losses due to ionization of neutral hydrogen atoms. We found that the cosmic ray spectrum inside a diffuse cloud differs from the one in the interstellar medium (ISM) for energies smaller than $E_{br}\\approx 100$ MeV, irrespective of the model details. Below $E_{br}$, the spectrum is harder (softer) than that in the ISM if the latter is a power law $\\propto p^{-s}$ with $s$ larger (smaller) than $\\sim0.42$. As a consequence also the ionization rate due to CRs is strongly affected. Assuming an average Galactic spectrum similar to the one infe...

  7. COSMOS: the COsmic-ray Soil Moisture Observing System

    Directory of Open Access Journals (Sweden)

    M. Zreda

    2012-11-01

    Full Text Available The newly-developed cosmic-ray method for measuring area-average soil moisture at the hectometer horizontal scale is being implemented in the COsmic-ray Soil Moisture Observing System (or the COSMOS. The stationary cosmic-ray soil moisture probe measures the neutrons that are generated by cosmic rays within air and soil and other materials, moderated by mainly hydrogen atoms located primarily in soil water, and emitted to the atmosphere where they mix instantaneously at a scale of hundreds of meters and whose density is inversely correlated with soil moisture. The COSMOS has already deployed more than 50 of the eventual 500 cosmic-ray probes, distributed mainly in the USA, each generating a time series of average soil moisture over its horizontal footprint, with similar networks coming into existence around the world. This paper is written to serve a community need to better understand this novel method and the COSMOS project. We describe the cosmic-ray soil moisture measurement method, the instrument and its calibration, the design, data processing and dissemination used in the COSMOS project, and give example time series of soil moisture obtained from COSMOS probes.

  8. Solar Modulation of Cosmic Rays

    CERN Document Server

    Potgieter, Marius

    2013-01-01

    This is an overview of the solar modulation of cosmic rays in the heliosphere. It is a broad topic with numerous intriguing aspects so that a research framework has to be chosen to concentrate on. The review focuses on the basic paradigms and departure points without presenting advanced theoretical or observational details for which there exists a large number of comprehensive reviews. Instead, emphasis is placed on numerical modeling which has played an increasingly signi?cant role as computational resources have become more abundant. A main theme is the progress that has been made over the years. The emphasis is on the global features of CR modulation and on the causes of the observed 11-year and 22-year cycles and charge-sign dependent modulation. Illustrative examples of some of the theoretical and observational milestones are presented, without attempting to review all details or every contribution made in this ?eld of research. Controversial aspects are discussed where appro- priate, with accompanying c...

  9. Measurement of the Cosmic Ray Energy Spectrum and Composition from 10^{17} to 10^{18.3} eV Using a Hybrid Fluorescence Technique

    CERN Document Server

    Abu-Zayyad, T; Bird, D J; Boyer, J; Cao, Z; Catanese, M; Chen, G F; Clay, R W; Covault, C E; Dai, H Y; Dawson, B R; Elbert, J W; Fick, B E; Fortson, Lucy F; Fowler, J W; Gibbs, K G; Glasmacher, M A K; Green, K D; Huang, A; Jui, C; Kidd, M J; Kieda, D B; Knapp, B C; Larsen, C G; Lee, W; Loh, E C; Mannel, E J; Matthews, J; Matthews, J N; Newport, B J; Nitz, D F; Ong, R A; Simpson, K M; Smith, J D; Sinclair, D; Sokolsky, P; Sommers, P; Song, C; Tang, J K K; Thomas, S B; Der Velde, J; Wiencke, L R; Wilkinson, C R; Yoshida, S; Zhang, X Z

    2001-01-01

    We study the spectrum and average mass composition of cosmic rays with primary energies between 10^{17} eV and 10^{18} eV using a hybrid detector consisting of the High Resolution Fly's Eye (HiRes) prototype and the MIA muon array. Measurements have been made of the change in the depth of shower maximum as a function of energy. A complete Monte Carlo simulation of the detector response and comparisons with shower simulations leads to the conclusion that the cosmic ray intensity is changing f rom a heavier to a lighter composition in this energy range. The spectrum is consistent with earlier Fly's Eye measurements and supports the previously found steepening near 4 \\times 10^{17} eV .

  10. The cosmic ray spectrum and composition measured by KASCADE-Grande between 10{sup 16} eV and 10{sup 18} eV

    Energy Technology Data Exchange (ETDEWEB)

    Bertaina, M., E-mail: bertaina@to.infn.it [Department of Physics, University of Torino and INFN, Torino (Italy); Apel, W.D. [Institut für Kernphysik, KIT – Karlsruher Institut für Technologie (Germany); Arteaga-Velázquez, J.C. [Institute of Physics and Mathematics, Universidad Michoacana de San Nicolas de Hidalgo, Morelia (Mexico); Bekk, K. [Institut für Kernphysik, KIT – Karlsruher Institut für Technologie (Germany); Blümer, J. [Institut für Kernphysik, KIT – Karlsruher Institut für Technologie (Germany); Institut für Experimentelle Kernphysik, KIT – Karlsruher Institut für Technologie (Germany); Bozdog, H. [Institut für Kernphysik, KIT – Karlsruher Institut für Technologie (Germany); Brancus, I.M. [Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest (Romania); Cantoni, E. [Department of Physics, University of Torino and INFN, Torino (Italy); Osservatorio Astrofisico di Torino, INAF Torino (Italy); Chiavassa, A. [Department of Physics, University of Torino and INFN, Torino (Italy); Cossavella, F. [Institut für Experimentelle Kernphysik, KIT – Karlsruher Institut für Technologie (Germany); Daumiller, K. [Institut für Kernphysik, KIT – Karlsruher Institut für Technologie (Germany); Souza, V. de [Universidade São Paulo, Instituto de Física de São Carlos (Brazil); and others

    2014-11-15

    The shape and composition of the primary spectrum of cosmic rays are key elements to understand the origin, acceleration and propagation of the Galactic cosmic rays. Besides the well known knee and ankle features, the recent results of KASCADE-Grande indicate that the measured energy spectrum exhibits also a less pronounced but still clear deviation from a single power law between the knee and the ankle, with a spectral hardening at 2 × 10{sup 16} eV and a steepening at 10{sup 17} eV. The average mass composition gets heavier after the knee till 10{sup 17} eV where a bending of the heavy component is observed. An indication of a hardening of the light component just above 10{sup 17} eV has been measured as well. In this paper the major results obtained so far by the KASCADE-Grande experiment are reviewed.

  11. A Simplified Model for the Acceleration of Cosmic Ray Particles

    Science.gov (United States)

    Gron, Oyvind

    2010-01-01

    Two important questions concerning cosmic rays are: Why are electrons in the cosmic rays less efficiently accelerated than nuclei? How are particles accelerated to great energies in ultra-high energy cosmic rays? In order to answer these questions we construct a simple model of the acceleration of a charged particle in the cosmic ray. It is not…

  12. The cosmic ray proton plus helium energy spectrum measured by the ARGO-YBJ experiment in the energy range 3-300 TeV

    CERN Document Server

    :,; Bernardini, P; Bi, X J; Cao, Z; Catalanotti, S; Chen, S Z; Chen, T L; Cui, S W; Dai, B Z; D'Amone, A; Danzengluobu,; De Mitri, I; Piazzoli, B D'Ettorre; Di Girolamo, T; Di Sciascio, G; Feng, C F; Feng, Zhaoyang; Feng, Zhenyong; Gou, Q B; Guo, Y Q; He, H H; Hu, Haibing; Hu, Hongbo; Iacovacci, M; Iuppa, R; Jia, H Y; Labaciren,; Li, H J; Liu, C; Liu, J; Liu, M Y; Lu, H; Ma, L L; Ma, X H; Mancarella, G; Mari, S M; Marsella, G; Mastroianni, S; Montini, P; Ning, C C; Perrone, L; Pistilli, P; Salvini, P; Santonico, R; Settanta, G; Shen, P R; Sheng, X D; Shi, F; Surdo, A; Tan, Y H; Vallania, P; Vernetto, S; Vigorito, C; Wang, H; Wu, C Y; Wu, H R; Xue, L; Yang, Q Y; Yang, X C; Yao, Z G; Yuan, A F; Zha, M; Zhang, H M; Zhang, L; Zhang, X Y; Zhang, Y; Zhao, J; Zhaxiciren,; Zhaxisangzhu,; Zhou, X X; Zhu, F R; Zhu, Q Q

    2015-01-01

    The ARGO-YBJ experiment is a full-coverage air shower detector located at the Yangbajing Cosmic Ray Observatory (Tibet, People's Republic of China, 4300 m a.s.l.). The high altitude, combined with the full-coverage technique, allows the detection of extensive air showers in a wide energy range and offer the possibility of measuring the cosmic ray proton plus helium spectrum down to the TeV region, where direct balloon/space-borne measurements are available. The detector has been in stable data taking in its full configuration from November 2007 to February 2013. In this paper the measurement of the cosmic ray proton plus helium energy spectrum is presented in the region 3-300 TeV by analyzing the full collected data sample. The resulting spectral index is $\\gamma = -2.64 \\pm 0.01$. These results demonstrate the possibility of performing an accurate measurement of the spectrum of light elements with a ground based air shower detector.

  13. Longevity and Highest-Energy Cosmic Rays

    CERN Document Server

    Frampton, Paul H; Ng, Y J; Frampton, Paul H.; Keszthelyi, Bettina

    1999-01-01

    It is proposed that the highest energy $\\sim 10^{20}$eV cosmic ray primaries are protons, decay products of a long-lived progenitor which has propagated from typically $\\sim 100$Mpc. Such a scenario can occur in e.g. SU(15) grand unification and in some preon models, but is more generic; if true, these unusual cosmic rays provide a window into new physics.

  14. Cosmic ray test of INO RPC stack

    Energy Technology Data Exchange (ETDEWEB)

    Bhuyan, M. [Department of High Energy Physics, Tata Institute of Fundamental Research, Mumbai 400005 (India); Datar, V.M. [Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Kalmani, S.D.; Lahamge, S.M.; Mondal, N.K.; Nagaraj, P.; Pal, S.; Reddy, L.V.; Redij, A.; Samuel, D.; Saraf, M.N. [Department of High Energy Physics, Tata Institute of Fundamental Research, Mumbai 400005 (India); Satyanarayana, B., E-mail: bsn@tifr.res.in [Department of High Energy Physics, Tata Institute of Fundamental Research, Mumbai 400005 (India); Shinde, R.R.; Verma, P. [Department of High Energy Physics, Tata Institute of Fundamental Research, Mumbai 400005 (India)

    2012-01-01

    The India-based Neutrino Observatory (INO) collaboration is planning to build a 50 kt magnetised iron calorimeter (ICAL) detector using glass Resistive Plate Chambers (RPCs) as active detector elements. A stack of 12 such glass RPCs of 1 m Multiplication-Sign 1 m in area is tracking cosmic ray muons for over three years. In this paper, we will review the constructional aspects of the stack and discuss the performance of the RPCs using this cosmic ray data.

  15. Are there strangelets in cosmic rays?

    CERN Document Server

    Rybczynski, M; Wilk, G

    2004-01-01

    Assuming that cosmic rays entering the Earth's atmosphere contain a small admixture of nuggets of strange quark matter in form of strangelets one can explain a number of apparently "strange" effects observed in different cosmic rays experiments. We shall demonstrate here that the mass spectrum of such strangelets filles the "nuclear desert" gap existing between the heaviest elements observed in Universe and the next "nuclear-like objects" represented by neutron and strange stars.

  16. Origin and propagation of galactic cosmic rays

    Science.gov (United States)

    Cesarsky, Catherine J.; Ormes, Jonathan F.

    1987-01-01

    The study of systematic trends in elemental abundances is important for unfolding the nuclear and/or atomic effects that should govern the shaping of source abundances and in constraining the parameters of cosmic ray acceleration models. In principle, much can be learned about the large-scale distributions of cosmic rays in the galaxy from all-sky gamma ray surveys such as COS-B and SAS-2. Because of the uncertainties in the matter distribution which come from the inability to measure the abundance of molecular hydrogen, the results are somewhat controversial. The leaky-box model accounts for a surprising amount of the data on heavy nuclei. However, a growing body of data indicates that the simple picture may have to be abandoned in favor of more complex models which contain additional parameters. Future experiments on the Spacelab and space station will hopefully be made of the spectra of individual nuclei at high energy. Antiprotons must be studied in the background free environment above the atmosphere with much higher reliability and presion to obtain spectral information.

  17. Cosmic ray antiproton measurements in the 4-19 GeV energy range using the NMSU/WiZard-matter antimatter superconducting spectrometer 2 (MASS2)

    Energy Technology Data Exchange (ETDEWEB)

    Basini, G.; Bongiorno, F. [INFN, Laboratori Nazionali di Frascati, Rome (Italy); Brunetti, M.T.; Codini, A.; Grimani, C. [Perugia Univ. (Italy)]|[INFN, Perugia (Italy); De Pascale, M.P. [Rome Univ. `Tor Vergata` (Italy)]|[INFN, Rome (Italy); Hof, M. [Siegen Univ. (Germany). Fachbereich Physik; Golden, R.L.; Stochaj, S.J. [New Mexico State Univ., Las Cruces, NM (United States). Particle Astrophysics Lab.; Brancaccio, F.M. [Florence Univ. (Italy)]|[INFN, Florence (Italy)

    1995-09-01

    The p/p-ratio from 4 to 19 GeV has been measured using the NMSU/WiZard balloon borne matter antimatter superconducting spectrometer (MASS2) instrument. This is the first confirmation of the cosmic ray antiproton component made in this energy range since their discovery in 1979. The MASS2 instrument is an updated version of the instrument flown in 1979. The p/p- ratio is 1.52x10{sup -}4.

  18. Recent developments in cosmic ray physics

    Energy Technology Data Exchange (ETDEWEB)

    Blasi, P. [INAF/Osservatorio Astrofisico di Arcetri, Largo E. Fermi, 5 50125 Firenze (Italy); Gran Sasso Science Institute (INFN), Viale F. Crispi 6, 60100 L' Aquila (Italy)

    2014-11-15

    The search for a theory of the origin of cosmic rays that may be considered as a standard, agreeable model is still ongoing. On one hand, much circumstantial evidence exists of the fact that supernovae in our Galaxy play a crucial role in producing the bulk of cosmic rays observed on Earth. On the other hand, important questions about their ability to accelerate particles up to the knee remain unanswered. The common interpretation of the knee as a feature coinciding with the maximum energy of the light component of cosmic rays and a transition to a gradually heavier mass composition is mainly based on KASCADE results. Some recent data appear to question this finding: YAC1 – Tibet Array and ARGO-YBJ find a flux reduction in the light component at ∼ 700 TeV, appreciably below the knee. Whether the maximum energy of light nuclei is as high as 3000 TeV or rather as low as a few hundred TeV has very important consequences on the supernova remnant paradigm for the origin of cosmic rays, as well on the crucial issue of the transition from Galactic to extragalactic cosmic rays. In such a complex phenomenological situation, it is important to have a clear picture of what is really known and what is not. Here I will discuss some solid and less solid aspects of the theory (or theories) for the origin of cosmic rays and the implications for future searches in this field.

  19. Reminiscences of cosmic ray research in Mexico

    Science.gov (United States)

    Pérez-Peraza, Jorge

    2009-11-01

    Cosmic ray research in Mexico dates from the early 1930s with the work of the pioneering physicist, Manuel Sandoval Vallarta and his students from Mexico. Several experiments of international significance were carried out during that period in Mexico: they dealt with the geomagnetic latitude effect, the north-south and west-east asymmetry of cosmic ray intensity, and the sign of the charge of cosmic rays. The international cosmic ray community has met twice in Mexico for the International Cosmic Ray Conferences (ICRC): the fourth was held in Guanajuato in 1955, and the 30th took place in Mérida, in 2007. In addition, an international meeting on the Pierre Auger Collaboration was held in Morelia in 1999, and the International Workshop on Observing UHE Cosmic Rays took place in Metepec in 2000. A wide range of research topics has been developed, from low-energy Solar Energetic Particles (SEP) to the UHE. Instrumentation has evolved since the early 1950s, from a Simpson type neutron monitor installed in Mexico City (2300 m asl) to a solar neutron telescope and an EAS Cherenkov array, (within the framework of the Auger International Collaboration), both at present operating on Mt. Sierra La Negra in the state of Puebla (4580 m asl). Research collaboration has been undertaken with many countries; in particular, the long-term collaboration with Russian scientists has been very fruitful.

  20. The KASCADE-Grande experiment: measurements of the all-particle energy spectrum of cosmic rays

    CERN Document Server

    Arteaga-Velázquez, J C; Bekk, K; Bertaina, M; Blümer, J; Bozdog, H; Brancus, I M; Buchholz, P; Cantoni, E; Chiavassa, A; Cossavella, F; Daumiller, K; de Souza, V; Di Pierro, F; Doll, P; Engel, R; Engler, J; Finger, M; Fuhrmann, D; Ghia, P L; Gils, H J; Glasstetter, R; Grupen, C; Haungs, A; Heck, D; Hörandel, J R; Huege, T; Isar, P G; Kampert, K -H; Kickelbick, D; Klages, H O; Link, K; Luczak, P; Ludwig, M; Mathes, H J; Mayer, H J; Melissas, M; Milke, J; Mitrica, B; Morello, C; Navarra, G; Nehls, S; Oehlschläger, J; Ostapchenko, S; Over, S; Palmieri, N; Petcu, M; Pierog, T; Rebel, H; Roth, M; Schieler, H; Schröder, F; Sima, O; Toma, G; Trinchero, G C; Ulrich, H; Weindl, A; Wochele, J; Wommer, M; Zabierowski, J

    2010-01-01

    The all-particle energy spectrum as measured by the KASCADE-Grande experiment for E = 10^{16} - 10^{18} eV is presented within the framework of the QGSJET II/FLUKA hadronic interaction models. Three different methods were applied based on the muon size and the total number of charged particles individually and in combination. From the study it is found that the spectrum cannot be completely described by a smooth power law due to the presence of characteristic features.

  1. Tidal Frequencies in the Time Series Measurements of Atmospheric Muon Flux from Cosmic Rays

    CERN Document Server

    Takai, H; Minelli, M; Sundermier, J; Winters, G; Russ, M K; Dodaro, J; Varshney, A; McIlwaine, C J; Tomaszewski, T; Tomaszewski, J; Warasila, W; McDermott, J; Khan, U; Chaves, K; Kassim, O; Ripka, J

    2016-01-01

    Tidal frequencies are detected in time series muon flux measurements performed over a period of eight years. Meson production and subsequent decay produce the muons that are observed at ground level. We interpret the periodic behavior as a consequence of high altitude density variations at the point of meson production. These variations are driven by solar thermal cycles. The detected frequencies are in good agreement with published tidal frequencies and suggest that muons can be a complementary probe to the study of atmospheric tides at altitudes between 20 to 60 km.

  2. News from Cosmic Gamma-ray Line Observations

    CERN Document Server

    Diehl, Roland

    2016-01-01

    The measurement of gamma rays at MeV energies from cosmic radioactivities is one of the key tools for nuclear astrophysics, in its study of nuclear reactions and how they shape objects such as massive stars and supernova explosions. Additionally, the unique gamma-ray signature from the annihilation of positrons falls into this same astronomical window, and positrons are often produced from radioactive beta decays. Nuclear gamma-ray telescopes face instrumental challenges from penetrating gamma rays and cosmic-ray induced backgrounds. But the astrophysical benefits of such efforts are underlined by the discoveries of nuclear gamma~rays from the brightest of the expected sources. In recent years, both thermonuclear and core-collapse supernova radioactivity gamma~rays have been measured in spectral detail, and complement conventional supernova observations with measurements of origins in deep supernova interiors, from the decay of $^{56}$Ni, $^{56}$Co, and $^{44}$Ti. The diffuse afterglow in gamma rays of radioa...

  3. Cosmic ray effects in microcalorimeter arrays

    Energy Technology Data Exchange (ETDEWEB)

    Stahle, C.K. E-mail: cak@lheapop.gsfc.nasa.gov; Boyce, K.R.; Brown, G.V.; Cottam, J.; Figueroa-Feliciano, E.; Galeazzi, M.; Kelley, R.L.; McCammon, D.; Porter, F.S.; Szymkowiak, A.E.; Tillotson, W.A

    2004-03-11

    We have identified signals resulting from cosmic rays and environmental gamma rays depositing energy in the pixels and in the silicon frame of the Astro-E2/X-Ray Spectrometer microcalorimeter array. Coincidences between pixels and between the array and an anti-coincidence detector determined the nature of the events. Pulse shapes and amplitudes from the cosmic ray events helped refine the thermal model of the array chip. We discuss how future arrays can be optimized either for the greatest background rejection or for the highest source count rates.

  4. Development of the cosmic ray techniques

    Science.gov (United States)

    Rossi, B.

    1982-12-01

    It has been found that most advances of cosmic-ray physics have been directly related to the development of observational techniques. The history of observational techniques is discussed, taking into account ionization chambers, refinements applied to ionization chambers to make them suitable for an effective use in the study of cosmic radiation, the Wulf-type electrometer, the electrometer designed by Millikan and Neher, the Geiger-Mueller counter, the experiment of Bothe and Kolhoerster, the coincidence circuit, and a cosmic-ray 'telescope'. Attention is given to a magnetic lens for cosmic rays, a triangular arrangement of Geiger-Mueller counters used to demonstrate the production of a secondary radiation, a stereoscopic cloud-chamber photograph of showers, the cloud-chamber picture which provided the first evidence of the positive electron, and arrangements for studying photon components, mu-mesons, and air showers.

  5. Recent results form measurements of the energy spectrum of cosmic-ray induced neutrons aboard an ER-2 airplane and on the ground.

    Science.gov (United States)

    Goldhagen, P; Clem, J M; Wilson, J W

    2003-01-01

    Crews of future high-altitude commercial aircraft may be significantly exposed to atmospheric cosmic radiation from galactic cosmic rays (GCR). To help determine such exposures, the Atmospheric Ionizing Radiation Project, an international collaboration of 15 laboratories, made simultaneous radiation measurements with 14 instruments on a NASA ER-2 high-altitude aircraft. The primary instrument was a sensitive extended-energy multisphere neutron spectrometer, which was also used to make measurements on the ground. Its detector responses were calculated for neutrons and charged hadrons at energies up to 100 GeV using the radiation transport code MCNPX. We have now recalculated the detector responses including the effects of the airplane structure. We are also using new FLUKA calculations of GCR-induced hadron spectra in the atmosphere to correct for spectrometer counts produced by charged hadrons. Neutron spectra are unfolded from the corrected measured count rates using the MAXED code. Results for the measured cosmic-ray neutron spectrum (thermal to >10 GeV), total neutron fluence rate, and neutron dose equivalent and effective dose rates, and their dependence on altitude and geomagnetic cutoff generally agree well with results from recent calculations of GCR-induced neutron spectra.

  6. Cosmic ray studies with the MINOS detectors

    Science.gov (United States)

    Habig, Alec; Minos Collaboration

    2008-11-01

    The MINOS experiment uses two layered scintillator and steel detectors along with a muon neutrino beam to search for νμ disappearance, and thus neutrino oscillations. The Far Detector ('FD') is situated in a former iron mine in the Soudan Underground Mine State Park in Northeastern MN, 700 m (2070 mwe) below the surface. This 5.4 kt steel/scintillator calorimeter measures the neutrino flux after they have traveled the 735 km baseline. It also detects atmospheric neutrinos at a rate of several per week, and is the first magnetized atmospheric neutrino detector, able to discriminate between νμ and νμ on an event-by-event basis. The similar 1 kt Near Detector ('ND') is 100 m (220 mwe) underground at Fermilab. This poster discusses the science being done with the high energy cosmic ray muons which penetrate the rock overburden and are seen by the detectors. The typical surface energy of those seen at the FD are ~1 TeV (coming from ~8 TeV primary cosmic rays) and ~110 GeV at the ND (~900 GeV primaries).

  7. Study on the Contribution of the Galactic Cosmic Rays to the Galactic Halo Magnetic Field

    CERN Document Server

    Qu, Xiao-bo; Xue, Liang; Liu, Cheng; Hu, Hong-bo

    2011-01-01

    Based on the measured cosmic ray anisotropy, a model was built to calculate the Galactic cosmic ray's contribution to the large scale Galactic magnetic field. The general agreement in the large scale structure of the Galactic magnetic field between the calculation and the observations is obtained. This result shows that the model is in the right approach in understanding the cosmic ray's contribution to the Galactic magnetic field, and in the mean while, it indicates that the observed anisotropy of cosmic rays on the earth is not just a local behavior in solar vicinity but represents a microcosm of the global anisotropy of the Galactic cosmic rays.

  8. Stopping Cooling Flows with Cosmic Ray Feedback

    CERN Document Server

    Mathews, William G

    2009-01-01

    Multi-Gyr two-dimensional calculations describe the gasdynamical evolution of hot gas in the Virgo cluster resulting from intermittent cavities formed with cosmic rays. Without cosmic rays, the gas evolves into a cooling flow, depositing about 85 solar masses per year of cold gas in the cluster core -- such uninhibited cooling conflicts with X-ray spectra and many other observations. When cosmic rays are produced or deposited 10 kpc from the cluster center in bursts of about 10^{59} ergs lasting 20 Myrs and spaced at intervals of 200 Myrs, the central cooling rate is greatly reduced to 0.1 - 1 solar masses per year, consistent with observations. After cosmic rays diffuse through the cavity walls, the ambient gas density is reduced and is buoyantly transported 30-70 kpc out into the cluster. Cosmic rays do not directly heat the gas and the modest shock heating around young cavities is offset by global cooling as the cluster gas expands. After several Gyrs the hot gas density and temperature profiles remain sim...

  9. Cosmic-Ray Observations with HAWC30

    Science.gov (United States)

    Fiorino, Daniel

    2013-04-01

    The High-Altitude Water Cherenkov (HAWC) Observatory is a TeV gamma-ray and cosmic-ray detector currently under construction at an altitude of 4100 meters on the slope of Volc'an Sierra Negra near Puebla, Mexico. HAWC is an extensive air-shower array comprising 300 optically-isolated water Cherenkov detectors. Each detector contains 200,000 liters of filtered water and four upward-facing photomultiplier tubes. Since September 2012, 30 water Cherenkov detectors have been instrumented and operated in data acquisition. With 10 percent of the detector complete and six months of operation, the event statistics are already sufficient to perform detailed studies of cosmic rays observed at the site. We will report on cosmic-ray observations with HAWC30, in particular the detection and study of the shadow of the moon. From these observations, we infer the pointing accuracy of the detector and our angular resolution of the detector reconstruction.

  10. Hunting for Cosmic-Ray Origins with SuperTIGER

    Science.gov (United States)

    Kohler, Susanna

    2016-11-01

    Illustration of cosmic-ray nuclei impacting Earths atmosphere and decaying into lighter particles. [ESA]The SuperTIGER (Trans-Iron Galactic Element Recorder) experiment flew over Antarctica for 55 days, collecting millions of galactic cosmic rays. What can it tell us about the origins of these high-energy particles?High-Energy ImpactsGalactic cosmic rays are immensely high-energy protons and atomic nuclei that impact our atmosphere, originating from outside of our solar system. Where do they come from, and how are they accelerated? These are both open topics of research.One of the leading theories is that cosmic-ray source material is primarily a mixture of material that has been ejected from massive stars either from supernovae or in stellar wind outflows and normal interstellar medium (ISM). This material is then accelerated to cosmic-ray energies by supernova shocks.Number of nuclei of each element detected by SuperTIGER. Note the change of scale between the two plots (click for a closer look)! [Murphy et al. 2016]How can we test this model? An important step is understanding the composition of galactic cosmic rays: what elemental nuclei are they made up of? If abundances are similar to solar-system abundances, then the material is likely mostly ISM. If the abundances of rarer heavy elements are high, however, then the material is more likely to have come from massive stars in star-forming regions.Balloon-Borne DetectionsEnter SuperTIGER, an experiment designed to collect cosmic rays and measure the abundances of the rare heavy elements those with atomic number between iron (Z=26) and zirconium (Z=40).The path that SuperTIGER took over Antarctica during its flight, with a different color denoting each circuit around the pole. Note where it got stuck in an eddy over the Transarctic Mountains at the end of its second circuit! [Columbia Scientific Balloon Facility]To gather galactic cosmic rays, the detector must be above the Earths atmosphere; interactions with

  11. Tracks of cosmic rays in plastics.

    Science.gov (United States)

    Fleischer, R L; Price, P B; Walker, R M; Filz, R C; Fukui, K; Friedlander, M W; Holeman, E; Rajan, R S; Tamhane, A S

    1967-01-13

    Cosmic ray nuclei have been observed with the use of plastic trackdetecting solids in satellites and high-altitude balloon flights. Nuclear emulsions in the stacks of plastic sheets allowed the positive identification of cosmic raynuclei as light as nitrogen. The most striking new information was the failure to observe relativistic iron nuclei, a result which has led to an advance in the understanding of track registration criteria.

  12. Identifying Galactic Cosmic Ray Origins With Super-TIGER

    Science.gov (United States)

    deNolfo, Georgia; Binns, W. R.; Israel, M. H.; Christian, E. R.; Mitchell, J. W.; Hams, T.; Link, J. T.; Sasaki, M.; Labrador, A. W.; Mewaldt, R. A.; Stone, E. C.; Waddington, C. J.; Wiedenbeck, M. E.

    2009-01-01

    Super-TIGER (Super Trans-Iron Galactic Element Recorder) is a new long-duration balloon-borne instrument designed to test and clarify an emerging model of cosmic-ray origins and models for atomic processes by which nuclei are selected for acceleration. A sensitive test of the origin of cosmic rays is the measurement of ultra heavy elemental abundances (Z > or equal 30). Super-TIGER is a large-area (5 sq m) instrument designed to measure the elements in the interval 30 TIGER builds on the heritage of the smaller TIGER, which produced the first well-resolved measurements of elemental abundances of the elements Ga-31, Ge-32, and Se-34. We present the Super-TIGER design, schedule, and progress to date, and discuss the relevance of UH measurements to cosmic-ray origins.

  13. Polycyclic aromatic hydrocarbon processing by cosmic rays

    CERN Document Server

    Micelotta, E R; Tielens, A G G M

    2010-01-01

    Context: Cosmic rays are present in almost all phases of the ISM. PAHs and cosmic rays represent an abundant and ubiquitous component of the interstellar medium. However, the interaction between them has never before been fully investigated. Aims: To study the effects of cosmic ray ion (H, He, CNO and Fe-Co-Ni) and electron bombardment of PAHs in galactic and extragalactic environments. Methods: We calculate the nuclear and electronic interactions for collisions between PAHs and cosmic ray ions and electrons with energies between 5 MeV/nucleon and 10 GeV, above the threshold for carbon atom loss, in normal galaxies, starburst galaxies and cooling flow galaxy clusters. Results: The timescale for PAH destruction by cosmic ray ions depends on the electronic excitation energy Eo and on the amount of energy available for dissociation. Small PAHs are destroyed faster, with He and the CNO group being the more effective projectiles. For electron collisions, the lifetime is independent of the PAH size and varies with ...

  14. Cosmic Ray Interactions in Shielding Materials

    Energy Technology Data Exchange (ETDEWEB)

    Aguayo Navarrete, Estanislao; Kouzes, Richard T.; Ankney, Austin S.; Orrell, John L.; Berguson, Timothy J.; Troy, Meredith D.

    2011-09-08

    This document provides a detailed study of materials used to shield against the hadronic particles from cosmic ray showers at Earth’s surface. This work was motivated by the need for a shield that minimizes activation of the enriched germanium during transport for the MAJORANA collaboration. The materials suitable for cosmic-ray shield design are materials such as lead and iron that will stop the primary protons, and materials like polyethylene, borated polyethylene, concrete and water that will stop the induced neutrons. The interaction of the different cosmic-ray components at ground level (protons, neutrons, muons) with their wide energy range (from kilo-electron volts to giga-electron volts) is a complex calculation. Monte Carlo calculations have proven to be a suitable tool for the simulation of nucleon transport, including hadron interactions and radioactive isotope production. The industry standard Monte Carlo simulation tool, Geant4, was used for this study. The result of this study is the assertion that activation at Earth’s surface is a result of the neutronic and protonic components of the cosmic-ray shower. The best material to shield against these cosmic-ray components is iron, which has the best combination of primary shielding and minimal secondary neutron production.

  15. LHCf sheds new light on cosmic rays

    CERN Multimedia

    Anaïs Schaeffer

    2011-01-01

    The energy spectrum of the single photon obtained using data from the LHCf experiment has turned out to be very different from that predicted by the theoretical models used until now to describe the interactions between very high-energy cosmic rays and the earth's atmosphere. The consequences of this discrepancy for cosmic ray studies could be significant.   Artistic impression of cosmic rays entering Earth's atmosphere. (Credit: Asimmetrie/Infn). It took physicists by surprise when analysis of the data collected by the two LHCf calorimeters in 2010 showed that high-energy cosmic rays don't interact with the atmosphere in the manner predicted by theory. The LHCf detectors, set up 140 metres either side of the ATLAS interaction point, are dedicated to the study of the secondary particles emitted at very small angles during proton-proton collisions in the LHC, with energies comparable to cosmic rays entering the earth's atmosphere at 2.5x1016 eV. The aim of the experiment is to r...

  16. COSMOS: The COsmic-ray Soil Moisture Observing System

    Directory of Open Access Journals (Sweden)

    M. Zreda

    2012-04-01

    Full Text Available Area-average soil moisture at the sub-kilometer scale is needed but until the advent of the cosmic-ray method (Zreda et al., 2008, it was difficult to measure. This new method is now being implemented routinely in the COsmic-ray Soil Moisture Observing System (or COSMOS. The stationary cosmic-ray soil moisture probe (sometimes called "neutronavka" measures the neutrons that are generated by cosmic rays within air and soil, moderated by mainly hydrogen atoms located primarily in soil water, and emitted to the atmosphere where they mix instantaneously at a scale of hundreds of meters and whose density is inversely correlated with soil moisture. COSMOS has already deployed 53 of the eventual 500 neutronavkas distributed mainly in the USA, each generating a time series of average soil moisture over its hectometer horizontal footprint, with similar networks coming into existence around the world. This paper is written to serve a community need to better understand this novel method and the COSMOS project. We describe the cosmic-ray soil moisture measurement method, the instrument and its calibration, the design, data processing and dissemination used in COSMOS, and give example time series of soil moisture obtained from COSMOS probes.

  17. High Energy Cosmic Electrons: Messengers from Nearby Cosmic Ray Sources or Dark Matter?

    Science.gov (United States)

    Moiseev, Alexander

    2011-01-01

    This slide presentation reviews the recent discoveries by the Large Area Telescope (LAT) and the Gamma-ray Burst Monitor (GBM) on board the Fermi Gamma-Ray Telescope in reference to high energy cosmic electrons, and whether their source is cosmic rays or dark matter. Specific interest is devoted to Cosmic Ray electrons anisotropy,

  18. Pinpointing cosmic ray propagation with the AMS-02 experiment

    Energy Technology Data Exchange (ETDEWEB)

    Pato, Miguel [Dipartimento di Fisica, Università degli Studi di Padova, via Marzolo 8, I-35131, Padova (Italy); Hooper, Dan [Center for Particle Astrophysics, Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Simet, Melanie, E-mail: pato@iap.fr, E-mail: dhooper@fnal.gov, E-mail: msimet@uchicago.edu [Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637 (United States)

    2010-06-01

    The Alpha Magnetic Spectrometer (AMS-02), which is scheduled to be deployed onboard the International Space Station later this year, will be capable of measuring the composition and spectra of GeV-TeV cosmic rays with unprecedented precision. In this paper, we study how the projected measurements from AMS-02 of stable secondary-to-primary and unstable ratios (such as boron-to-carbon and beryllium-10-to-beryllium-9) can constrain the models used to describe the propagation of cosmic rays throughout the Milky Way. We find that within the context of fairly simple propagation models, all of the model parameters can be determined with high precision from the projected AMS-02 data. Such measurements are less constraining in more complex scenarios, however, which allow for departures from a power-law form for the diffusion coefficient, for example, or for inhomogeneity or stochasticity in the distribution and chemical abundances of cosmic ray sources.

  19. One century of cosmic rays – A particle physicist's view

    Directory of Open Access Journals (Sweden)

    Sutton Christine

    2015-01-01

    Full Text Available Experiments on cosmic rays and the elementary particles share a common history that dates back to the 19th century. Following the discovery of radioactivity in the 1890s, the paths of the two fields intertwined, especially during the decades after the discovery of cosmic rays. Experiments demonstrated that the primary cosmic rays are positively charged particles, while other studies of cosmic rays revealed various new sub-atomic particles, including the first antiparticle. Techniques developed in common led to the birth of neutrino astronomy in 1987 and the first observation of a cosmic γ-ray source by a ground-based cosmic-ray telescope in 1989.

  20. Cosmic ray antiprotons at high energies

    Science.gov (United States)

    Winkler, Martin Wolfgang

    2017-02-01

    Cosmic ray antiprotons provide a powerful tool to probe dark matter annihilations in our galaxy. The sensitivity of this important channel is, however, diluted by sizable uncertainties in the secondary antiproton background. In this work, we improve the calculation of secondary antiproton production with a particular focus on the high energy regime. We employ the most recent collider data and identify a substantial increase of antiproton cross sections with energy. This increase is driven by the violation of Feynman scaling as well as by an enhanced strange hyperon production. The updated antiproton production cross sections are made publicly available for independent use in cosmic ray studies. In addition, we provide the correlation matrix of cross section uncertainties for the AMS-02 experiment. At high energies, the new cross sections improve the compatibility of the AMS-02 data with a pure secondary origin of antiprotons in cosmic rays.

  1. High Energy Cosmic Rays From Supernovae

    CERN Document Server

    Morlino, Giovanni

    2016-01-01

    Cosmic rays are charged relativistic particles that reach the Earth with extremely high energies, providing striking evidence of the existence of effective accelerators in the Universe. Below an energy around $\\sim 10^{17}$ eV cosmic rays are believed to be produced in the Milky Way while above that energy their origin is probably extragalactic. In the early '30s supernovae were already identified as possible sources for the Galactic component of cosmic rays. After the '70s this idea has gained more and more credibility thanks to the the development of the diffusive shock acceleration theory, which provides a robust theoretical framework for particle energization in astrophysical environments. Afterwards, mostly in recent years, much observational evidence has been gathered in support of this framework, converting a speculative idea in a real paradigm. In this Chapter the basic pillars of this paradigm will be illustrated. This includes the acceleration mechanism, the non linear effects produced by accelerate...

  2. Cosmic-ray diffusion in magnetized turbulence

    CERN Document Server

    Tautz, R C

    2015-01-01

    The problem of cosmic-ray scattering in the turbulent electromagnetic fields of the interstellar medium and the solar wind is of great importance due to the variety of applications of the resulting diffusion coefficients. Examples are diffusive shock acceleration, cosmic-ray observations, and, in the solar system, the propagation of coronal mass ejections. In recent years, it was found that the simple diffusive motion that had been assumed for decades is often in disagreement both with numerical and observational results. Here, an overview is given of the interaction processes of cosmic rays and turbulent electromagnetic fields. First, the formation of turbulent fields due to plasma instabilities is treated, where especially the non-linear behavior of the resulting unstable wave modes is discussed. Second, the analytical and the numerical side of high-energy particle propagation will be reviewed by presenting non-linear analytical theories and Monte-Carlo simulations. For the example of the solar wind, the im...

  3. Origin of the Cosmic Ray Spectral Hardening

    CERN Document Server

    Tomassetti, N

    2012-01-01

    Recent data from ATIC, CREAM and PAMELA indicate that the cosmic ray energy spectra of protons and nuclei exhibit a remarkable hardening at energies above 100 GeV per nucleon. We propose that the hardening is an interstellar propagation effect that originates from a spatial change of the cosmic ray transport properties in different regions of the Galaxy. The key hypothesis is that the diffusion coefficient is not separable into energy and space variables as usually assumed. Under this scenario, we can reproduce well the observational data. Our model has several implications for the cosmic ray acceleration/propagation physics and can be tested by ongoing experiments such as AMS or Fermi/LAT.

  4. Low cloud properties influenced by cosmic rays

    DEFF Research Database (Denmark)

    Marsh, Nigel; Svensmark, Henrik

    2000-01-01

    The influence of solar variability on climate is currently uncertain. Recent observations have indicated a possible mechanism via the influence of solar modulated cosmic rays on global cloud cover. Surprisingly the influence of solar variability is strongest in low clouds (less than or equal to3 ......), which points to a microphysical mechanism involving aerosol formation that is enhanced by ionization due to cosmic rays. If confirmed it suggests that the average state of the heliosphere is important for climate on Earth.......The influence of solar variability on climate is currently uncertain. Recent observations have indicated a possible mechanism via the influence of solar modulated cosmic rays on global cloud cover. Surprisingly the influence of solar variability is strongest in low clouds (less than or equal to3 km...

  5. Thirty-Year Periodicity of Cosmic Rays

    Directory of Open Access Journals (Sweden)

    Jorge Pérez-Peraza

    2012-01-01

    Full Text Available Cosmogenic isotopes have frequently been employed as proxies of ancient cosmic ray fluxes. On the basis of periodicities of the 10Be time series (using data from both the South and North Poles and the 14C time series (with data from Intercal-98, we offer evidence of the existence of cosmic ray fluctuations with a periodicity of around 30 years. Results were obtained by using the wavelet transformation spectral technique, signal reconstruction by autoregressive spectral analysis (ARMA, and the Lomb-Scargle periodogram method. This 30-year periodicity seems to be significant in nature because several solar and climatic indexes exhibit the same modulation, which may indicate that the 30-year frequency of cosmic rays is probably a modulator agent for terrestrial phenomena, reflecting the control source, namely, solar activity.

  6. Does electromagnetic radiation accelerate galactic cosmic rays

    Science.gov (United States)

    Eichler, D.

    1977-01-01

    The 'reactor' theories of Tsytovich and collaborators (1973) of cosmic-ray acceleration by electromagnetic radiation are examined in the context of galactic cosmic rays. It is shown that any isotropic synchrotron or Compton reactors with reasonable astrophysical parameters can yield particles with a maximum relativistic factor of only about 10,000. If they are to produce particles with higher relativistic factors, the losses due to inverse Compton scattering of the electromagnetic radiation in them outweigh the acceleration, and this violates the assumptions of the theory. This is a critical restriction in the context of galactic cosmic rays, which have a power-law spectrum extending up to a relativistic factor of 1 million.

  7. Anisotropy and chemical composition of ultra-high energy cosmic rays using arrival directions measured by the Pierre Auger Observatory

    CERN Document Server

    Abreu, P; Ahn, E J; Albuquerque, I F M; Allard, D; Allekotte, I; Allen, J; Allison, P; Castillo, J Alvarez; Alvarez-Muñiz, J; Ambrosio, M; Aminaei, A; Anchordoqui, L; Andringa, S; Antičić, T; Anzalone, A; Aramo, C; Arganda, E; Arqueros, F; Asorey, H; Assis, P; Aublin, J; Ave, M; Avenier, M; Avila, G; Bäcker, T; Balzer, M; Barber, K B; Barbosa, A F; Bardenet, R; Barroso, S L C; Baughman, B; Bäuml, J; Beatty, J J; Becker, B R; Becker, K H; Bellétoile, A; Bellido, J A; BenZvi, S; Berat, C; Bertou, X; Biermann, P L; Billoir, P; Blanco, F; Blanco, M; Bleve, C; Blümer, H; Boháčová, M; Boncioli, D; Bonifazi, C; Bonino, R; Borodai, N; Brack, J; Brogueira, P; Brown, W C; Bruijn, R; Buchholz, P; Bueno, A; Burton, R E; Caballero-Mora, K S; Caramete, L; Caruso, R; Castellina, A; Catalano, O; Cataldi, G; Cazon, L; Cester, R; Chauvin, J; Cheng, S H; Chiavassa, A; Chinellato, J A; Chou, A; Chudoba, J; Clay, R W; Coluccia, M R; Conceição, R; Contreras, F; Cook, H; Cooper, M J; Coppens, J; Cordier, A; Cotti, U; Coutu, S; Covault, C E; Creusot, A; Criss, A; Cronin, J; Curutiu, A; Dagoret-Campagne, S; Dallier, R; Dasso, S; Daumiller, K; Dawson, B R; de Almeida, R M; De Domenico, M; De Donato, C; de Jong, S J; De La Vega, G; Junior, W J M de Mello; Neto, J R T de Mello; De Mitri, I; de Souza, V; de Vries, K D; Decerprit, G; del Peral, L; Deligny, O; Dembinski, H; Dhital, N; Di Giulio, C; Diaz, J C; Castro, M L Díaz; Diep, P N; Dobrigkeit, C; Docters, W; D'Olivo, J C; Dong, P N; Dorofeev, A; Anjos, J C dos; Dova, M T; D'Urso, D; Dutan, I; Ebr, J; Engel, R; Erdmann, M; Escobar, C O; Etchegoyen, A; Luis, P Facal San; Tapia, I Fajardo; Falcke, H; Farrar, G; Fauth, A C; Fazzini, N; Ferguson, A P; Ferrero, A; Fick, B; Filevich, A; Filipčič, A; Fliescher, S; Fracchiolla, C E; Fraenkel, E D; Fröhlich, U; Fuchs, B; Gaior, R; Gamarra, R F; Gambetta, S; García, B; Gámez, D García; Garcia-Pinto, D; Gascon, A; Gemmeke, H; Gesterling, K; Ghia, P L; Giaccari, U; Giller, M; Glass, H; Gold, M S; Golup, G; Albarracin, F Gomez; Berisso, M Gómez; Gonçalves, P; Gonzalez, D; Gonzalez, J G; Gookin, B; Góra, D; Gorgi, A; Gouffon, P; Gozzini, S R; Grashorn, E; Grebe, S; Griffith, N; Grigat, M; Grillo, A F; Guardincerri, Y; Guarino, F; Guedes, G P; Guzman, A; Hague, J D; Hansen, P; Harari, D; Harmsma, S; Harton, J L; Haungs, A; Hebbeker, T; Heck, D; Herve, A E; Hojvat, C; Hollon, N; Holmes, V C; Homola, P; Hörandel, J R; Horneffer, A; Hrabovský, M; Huege, T; Insolia, A; Ionita, F; Italiano, A; Jarne, C; Jiraskova, S; Kadija, K; Kampert, K H; Karhan, P; Kasper, P; Kégl, B; Keilhauer, B; Keivani, A; Kelley, J L; Kemp, E; Kieckhafer, R M; Klages, H O; Kleifges, M; Kleinfeller, J; Knapp, J; Koang, D -H; Kotera, K; Krohm, N; Krömer, O; Kruppke-Hansen, D; Kuehn, F; Kuempel, D; Kulbartz, J K; Kunka, N; La Rosa, G; Lachaud, C; Lautridou, P; Leão, M S A B; Lebrun, D; Lebrun, P; de Oliveira, M A Leigui; Lemiere, A; Letessier-Selvon, A; Lhenry-Yvon, I; López, K Link R; Agüera, A Lopez; Louedec, K; Bahilo, J Lozano; Lucero, A; Ludwig, M; Lyberis, H; Maccarone, M C; Macolino, C; Maldera, S; Mandat, D; Mantsch, P; Mariazzi, A G; Marin, J; Marin, V; Maris, I C; Falcon, H R Marquez; Marsella, G; Martello, D; Martin, L; Martinez, H; Bravo, O Martínez; Mathes, H J; Matthews, J; Matthews, J A J; Matthiae, G; Maurizio, D; Mazur, P O; Medina-Tanco, G; Melissas, M; Melo, D; Menichetti, E; Menshikov, A; Mertsch, P; Meurer, C; Mićanović, S; Micheletti, M I; Miller, W; Miramonti, L; Mollerach, S; Monasor, M; Ragaigne, D Monnier; Montanet, F; Morales, B; Morello, C; Moreno, E; Moreno, J C; Morris, C; Mostafá, M; Moura, C A; Mueller, S; Muller, M A; Müller, G; Münchmeyer, M; Mussa, R; Navarra, G; Navarro, J L; Navas, S; Necesal, P; Nellen, L; Nelles, A; Nhung, P T; Niemietz, L; Nierstenhoefer, N; Nitz, D; Nosek, D; Nožka, L; Nyklicek, M; Oehlschläger, J; Olinto, A; Oliva, P; Olmos-Gilbaja, V M; Ortiz, M; Pacheco, N; Selmi-Dei, D Pakk; Palatka, M; Pallotta, J; Palmieri, N; Parente, G; Parizot, E; Parra, A; Parsons, R D; Pastor, S; Paul, T; Pech, M; Pȩkala, J; Pelayo, R; Pepe, I M; Perrone, L; Pesce, R; Petermann, E; Petrera, S; Petrinca, P; Petrolini, A; Petrov, Y; Petrovic, J; Pfendner, C; Phan, N; Piegaia, R; Pierog, T; Pieroni, P; Pimenta, M; Pirronello, V; Platino, M; Ponce, V H; Pontz, M; Privitera, P; Prouza, M; Quel, E J; Querchfeld, S; Rautenberg, J; Ravel, O; Ravignani, D; Revenu, B; Ridky, J; Riggi, S; Risse, M; Ristori, P; Rivera, H; Rizi, V; Roberts, J; Robledo, C; de Carvalho, W Rodrigues; Rodriguez, G; Martino, J Rodriguez; Rojo, J Rodriguez; Rodriguez-Cabo, I; Rodríguez-Frías, M D; Ros, G; Rosado, J; Rossler, T; Roth, M; Rouillé-d'Orfeuil, B; Roulet, E; Rovero, A C; Rühle, C; Salamida, F; Salazar, H; Salina, G; Sánchez, F; Santander, M; Santo, C E; Santos, E; Santos, E M; Sarazin, F; Sarkar, B; Sarkar, S; Sato, R; Scharf, N; Scherini, V; Schieler, H; Schiffer, P; Schmidt, A; Schmidt, F; Schmidt, T; Scholten, O; Schoorlemmer, H; Schovancova, J; Schovánek, P; Schröder, F; Schulte, S; Schuster, D; Sciutto, S J; Scuderi, M; Segreto, A; Settimo, M; Shadkam, A; Shellard, R C; Sidelnik, I; Sigl, G; Lopez, H H Silva; Śmiałkowski, A; Šmída, R; Snow, G R; Sommers, P; Sorokin, J; Spinka, H; Squartini, R; Stapleton, J; Stasielak, J; Stephan, M; Strazzeri, E; Stutz, A; Suarez, F; Suomijärvi, T; Supanitsky, A D; Šuša, T; Sutherland, M S; Swain, J; Szadkowski, Z; Szuba, M; Tamashiro, A; Tapia, A; Tartare, M; Taşcău, O; Ruiz, C G Tavera; Tcaciuc, R; Tegolo, D; Thao, N T; Thomas, D; Tiffenberg, J; Timmermans, C; Tiwari, D K; Tkaczyk, W; Peixoto, C J Todero; Tomé, B; Tonachini, A; Travnicek, P; Tridapalli, D B; Tristram, G; Trovato, E; Tueros, M; Ulrich, R; Unger, M; Urban, M; Galicia, J F Valdés; Valiño, I; Valore, L; Berg, A M van den; Varela, E; Cárdenas, B Vargas; Vázquez, J R; Vázquez, R A; Veberič, D; Verzi, V; Vicha, J; Videla, M; Villaseñor, L; Wahlberg, H; Wahrlich, P; Wainberg, O; Warner, D; Watson, A A; Weber, M; Weidenhaupt, K; Weindl, A; Westerhoff, S; Whelan, B J; Wieczorek, G; Wiencke, L; Wilczyńska, B; Wilczyński, H; Will, M; Williams, C; Winchen, T; Winders, L; Winnick, M G; Wommer, M; Wundheiler, B; Yamamoto, T; Yapici, T; Younk, P; Yuan, G; Yushkov, A; Zamorano, B; Zas, E; Zavrtanik, D; Zavrtanik, M; Zaw, I; Zepeda, A; Ziolkowski, M

    2011-01-01

    The Pierre Auger Collaboration has reported evidence for anisotropy in the distribution of arrival directions of the cosmic rays with energies $E>E_{th}=5.5\\times 10^{19}$ eV. These show a correlation with the distribution of nearby extragalactic objects, including an apparent excess around the direction of Centaurus A. If the particles responsible for these excesses at $E>E_{th}$ are heavy nuclei with charge $Z$, the proton component of the sources should lead to excesses in the same regions at energies $E/Z$. We here report the lack of anisotropies in these directions at energies above $E_{th}/Z$ (for illustrative values of $Z=6,\\ 13,\\ 26$). If the anisotropies above $E_{th}$ are due to nuclei with charge $Z$, and under reasonable assumptions about the acceleration process, these observations imply stringent constraints on the allowed proton fraction at the lower energies.

  8. Reconstruction of Longitudinal Profiles of Ultra-High Energy Cosmic Ray Showers from Fluorescence and Cherenkov Light Measurements

    CERN Document Server

    Unger, M; Engel, R; Schüssler, F; Ulrich, R

    2008-01-01

    We present a new method for the reconstruction of the longitudinal profile of extensive air showers induced by ultra-high energy cosmic rays. In contrast to the typically considered shower size profile, this method employs directly the ionization energy deposit of the shower particles in the atmosphere. Due to universality of the energy spectra of electrons and positrons, both fluorescence and Cherenkov light can be used simultaneously as signal to infer the shower profile from the detected light. The method is based on an analytic least-square solution for the estimation of the shower profile from the observed light signal. Furthermore, the extrapolation of the observed part of the profile with a Gaisser-Hillas function is discussed and the total statistical uncertainty of shower parameters like total energy and shower maximum is calculated.

  9. Measurement of the trailing edge of cosmic-ray track signals from a round-tube drift chamber

    CERN Document Server

    Abe, M; Odaka, S

    2000-01-01

    The trailing edge of tube drift-chamber signals for charged particles is expected to provide information concerning the particle passage time. This information may be useful for separating meaningful signals from overlapping garbage at high-rate experiments, such as the future LHC experiments. We carried out a cosmic-ray test using a small tube chamber in order to investigate the feasibility of this idea. We achieved a trailing-edge time resolution of 12 ns in rms by applying simple pulse shaping to eliminate a signal tail. A comparison with a Monte Carlo simulation indicates the importance of well-optimized signal shaping to achieve good resolution. The resolution may be further improved with better shaping.

  10. New measurement on photon yields from air and the application to the energy estimation of primary cosmic rays

    CERN Document Server

    Nagano, M; Sakaki, N; Ando, K

    2004-01-01

    The air fluorescence technique is used to detect ultra-high energy cosmic rays (UHECR), and to estimate their energy. Of fundamental importance is the photon yield due to excitation by electrons, in air of various densities and temperatures. After our previous report, the experiment has been continued using a Sr90 $\\beta$ source to study the pressure dependence of photon yields for radiation in nitrogen and dry air. The photon yields in 15 wave bands between 300 nm and 430 nm have been determined. The total photon yield between 300 nm and 406 nm (used in most experiments) in air excited by a 0.85 MeV electron is 3.81+-0.13 (+-13 % systematics) photons per meter at 1013 hPa and 20 $^{\\circ}$C. The air density and temperature dependencies of 15 wave bands are given for application to UHECR observations.

  11. Anisotropy and chemical composition of ultra-high energy cosmic rays using arrival directions measured by the Pierre Auger Observatory

    Science.gov (United States)

    Pierre Auger Collaboration; Abreu, P.; Aglietta, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Antičić, T.; Anzalone, A.; Aramo, C.; Arganda, E.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Bäcker, T.; Balzer, M.; Barber, K. B.; Barbosa, A. F.; Bardenet, R.; Barroso, S. L. C.; Baughman, B.; Bäuml, J.; Beatty, J. J.; Becker, B. R.; Becker, K. H.; Bellétoile, A.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brogueira, P.; Brown, W. C.; Bruijn, R.; Buchholz, P.; Bueno, A.; Burton, R. E.; Caballero-Mora, K. S.; Caramete, L.; Caruso, R.; Castellina, A.; Catalano, O.; Cataldi, G.; Cazon, L.; Cester, R.; Chauvin, J.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chou, A.; Chudoba, J.; Clay, R. W.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cook, H.; Cooper, M. J.; Coppens, J.; Cordier, A.; Cotti, U.; Coutu, S.; Covault, C. E.; Creusot, A.; Criss, A.; Cronin, J.; Curutiu, A.; Dagoret-Campagne, S.; Dallier, R.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; De Donato, C.; de Jong, S. J.; De La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; de Vries, K. D.; Decerprit, G.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Diaz, J. C.; Díaz Castro, M. L.; Diep, P. N.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; D'Urso, D.; Dutan, I.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Etchegoyen, A.; Facal San Luis, P.; Fajardo Tapia, I.; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Ferrero, A.; Fick, B.; Filevich, A.; Filipčič, A.; Fliescher, S.; Fracchiolla, C. E.; Fraenkel, E. D.; Fröhlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R. F.; Gambetta, S.; García, B.; García Gámez, D.; Garcia-Pinto, D.; Gascon, A.; Gemmeke, H.; Gesterling, K.; Ghia, P. L.; Giaccari, U.; Giller, M.; Glass, H.; Gold, M. S.; Golup, G.; Gomez Albarracin, F.; Gómez Berisso, M.; Gonçalves, P.; Gonzalez, D.; Gonzalez, J. G.; Gookin, B.; Góra, D.; Gorgi, A.; Gouffon, P.; Gozzini, S. R.; Grashorn, E.; Grebe, S.; Griffith, N.; Grigat, M.; Grillo, A. F.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Guzman, A.; Hague, J. D.; Hansen, P.; Harari, D.; Harmsma, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hojvat, C.; Hollon, N.; Holmes, V. C.; Homola, P.; Hörandel, J. R.; Horneffer, A.; Hrabovský, M.; Huege, T.; Insolia, A.; Ionita, F.; Italiano, A.; Jarne, C.; Jiraskova, S.; Kadija, K.; Kampert, K. H.; Karhan, P.; Kasper, P.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kelley, J. L.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Koang, D.-H.; Kotera, K.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuehn, F.; Kuempel, D.; Kulbartz, J. K.; Kunka, N.; La Rosa, G.; Lachaud, C.; Lautridou, P.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Lemiere, A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Aüera, A.; Louedec, K.; Lozano Bahilo, J.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Macolino, C.; Maldera, S.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, J.; Marin, V.; Maris, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurizio, D.; Mazur, P. O.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Mertsch, P.; Meurer, C.; Mićanović, S.; Micheletti, M. I.; Miller, W.; Miramonti, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, E.; Moreno, J. C.; Morris, C.; Mostafá, M.; Moura, C. A.; Mueller, S.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Nhung, P. T.; Niemietz, L.; Nierstenhoefer, N.; Nitz, D.; Nosek, D.; Nožka, L.; Nyklicek, M.; Oehlschläger, J.; Olinto, A.; Oliva, P.; Olmos-Gilbaja, V. M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parizot, E.; Parra, A.; Parsons, R. D.; Pastor, S.; Paul, T.; Pech, M.; Pȩkala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrinca, P.; Petrolini, A.; Petrov, Y.; Petrovic, J.; Pfendner, C.; Phan, N.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Ponce, V. H.; Pontz, M.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rizi, V.; Roberts, J.; Robledo, C.; Rodrigues de Carvalho, W.; Rodriguez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodriguez-Cabo, I.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouillé-d'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Rühle, C.; Salamida, F.; Salazar, H.; Salina, G.; Sánchez, F.; Santander, M.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarkar, S.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Schmidt, F.; Schmidt, T.; Scholten, O.; Schoorlemmer, H.; Schovancova, J.; Schovánek, P.; Schöder, F.; Schulte, S.; Schuster, D.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Silva Lopez, H. H.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Stapleton, J.; Stasielak, J.; Stephan, M.; Strazzeri, E.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Šuša, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Tamashiro, A.; Tapia, A.; Tartare, M.; Taşcąu, O.; Tavera Ruiz, C. G.; Tcaciuc, R.; Tegolo, D.; Thao, N. T.; Thomas, D.; Tiffenberg, J.; Timmermans, C.; Tiwari, D. K.; Tkaczyk, W.; Todero Peixoto, C. J.; Tomé, B.; Tonachini, A.; Travnicek, P.; Tridapalli, D. B.; Tristram, G.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van den Berg, A. M.; Varela, E.; Vargas Cáardenas, B.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Warner, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Westerhoff, S.; Whelan, B. J.; Wieczorek, G.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Winders, L.; Winnick, M. G.; Wommer, M.; Wundheiler, B.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Ziolkowski, M.

    2011-06-01

    The Pierre Auger Collaboration has reported evidence for anisotropy in the distribution of arrival directions of the cosmic rays with energies E > Eth = 5.5 × 1019 eV. These show a correlation with the distribution of nearby extragalactic objects, including an apparent excess around the direction of Centaurus A. If the particles responsible for these excesses at E > Eth are heavy nuclei with charge Z, the proton component of the sources should lead to excesses in the same regions at energies E/Z. We here report the lack of anisotropies in these directions at energies above Eth/Z (for illustrative values of Z = 6,13,26). If the anisotropies above Eth are due to nuclei with charge Z, and under reasonable assumptions about the acceleration process, these observations imply stringent constraints on the allowed proton fraction at the lower energies.

  12. First results from the microwave air yield beam experiment (MAYBE: Measurement of GHz radiation for ultra-high energy cosmic ray detection

    Directory of Open Access Journals (Sweden)

    Verzi V.

    2013-06-01

    Full Text Available We present measurements of microwave emission from an electron-beam induced air plasma performed at the 3 MeV electron Van de Graaff facility of the Argonne National Laboratory. Results include the emission spectrum between 1 and 15 GHz, the polarization of the microwave radiation and the scaling of the emitted power with respect to beam intensity. MAYBE measurements provide further insight on microwave emission from extensive air showers as a novel detection technique for Ultra-High Energy Cosmic Rays.

  13. Measurement of the cosmic ray spectrum above $4{\\times}10^{18}$ eV using inclined events detected with the Pierre Auger Observatory

    OpenAIRE

    The Pierre Auger Collaboration; Aab, Alexander; Abreu, Pedro; Aglietta, Marco; Ahn, Eun-Joo; Samarai, Imen Al; Albuquerque, Ivone; Allekotte, Ingomar; Allison, Patrick; Almela, Alejandro; Castillo, Jesus Alvarez; Alvarez-Muñiz, Jaime; Batista, Rafael Alves; Ambrosio, Michelangelo; Aminaei, Amin

    2016-01-01

    A measurement of the cosmic-ray spectrum for energies exceeding $4{\\times}10^{18}$ eV is presented, which is based on the analysis of showers with zenith angles greater than $60^{\\circ}$ detected with the Pierre Auger Observatory between 1 January 2004 and 31 December 2013. The measured spectrum confirms a flux suppression at the highest energies. Above $5.3{\\times}10^{18}$ eV, the "ankle", the flux can be described by a power law $E^{-\\gamma}$ with index $\\gamma=2.70 \\pm 0.02 \\,\\text{(stat)}...

  14. Beam Measurements of a CLOUD (Cosmics Leaving OUtdoor Droplets) Chamber

    CERN Document Server

    Kirkby, Jasper

    2001-01-01

    A striking correlation has recently been observed between global cloud cover and the flux of incident cosmic rays. The effect of natural variations in the cosmic ray flux is large, causing estimated changes in the Earth's energy radiation balance that are comparable to those attributed to greenhouse gases from the burning of fossil fuels since the Industrial Revolution. However a direct link between cosmic rays and cloud formation has not been unambiguously established. We therefore propose to experimentally measure cloud (water droplet) formation under controlled conditions in a test beam at CERN with a CLOUD chamber, duplicating the conditions prevailing in the troposphere. These data, which have never been previously obtained, will allow a detailed understanding of the possible effects of cosmic rays on clouds and confirm, or otherwise, a direct link between cosmic rays, global cloud cover and the Earth's climate. The measurements will, in turn, allow more reliable calculations to be made of the residual e...

  15. Precision Measurement of the Proton Flux in Primary Cosmic Rays from Rigidity 1 GV to 1.8 TV with the Alpha Magnetic Spectrometer on the International Space Station

    Science.gov (United States)

    Aguilar, M.; Aisa, D.; Alpat, B.; Alvino, A.; Ambrosi, G.; Andeen, K.; Arruda, L.; Attig, N.; Azzarello, P.; Bachlechner, A.; Barao, F.; Barrau, A.; Barrin, L.; Bartoloni, A.; Basara, L.; Battarbee, M.; Battiston, R.; Bazo, J.; Becker, U.; Behlmann, M.; Beischer, B.; Berdugo, J.; Bertucci, B.; Bigongiari, G.; Bindi, V.; Bizzaglia, S.; Bizzarri, M.; Boella, G.; de Boer, W.; Bollweg, K.; Bonnivard, V.; Borgia, B.; Borsini, S.; Boschini, M. J.; Bourquin, M.; Burger, J.; Cadoux, F.; Cai, X. D.; Capell, M.; Caroff, S.; Casaus, J.; Cascioli, V.; Castellini, G.; Cernuda, I.; Cerreta, D.; Cervelli, F.; Chae, M. J.; Chang, Y. H.; Chen, A. I.; Chen, H.; Cheng, G. M.; Chen, H. S.; Cheng, L.; Chou, H. Y.; Choumilov, E.; Choutko, V.; Chung, C. H.; Clark, C.; Clavero, R.; Coignet, G.; Consolandi, C.; Contin, A.; Corti, C.; Gil, E. Cortina; Coste, B.; Creus, W.; Crispoltoni, M.; Cui, Z.; Dai, Y. M.; Delgado, C.; Della Torre, S.; Demirköz, M. B.; Derome, L.; Di Falco, S.; Di Masso, L.; Dimiccoli, F.; Díaz, C.; von Doetinchem, P.; Donnini, F.; Du, W. J.; Duranti, M.; D'Urso, D.; Eline, A.; Eppling, F. J.; Eronen, T.; Fan, Y. Y.; Farnesini, L.; Feng, J.; Fiandrini, E.; Fiasson, A.; Finch, E.; Fisher, P.; Galaktionov, Y.; Gallucci, G.; García, B.; García-López, R.; Gargiulo, C.; Gast, H.; Gebauer, I.; Gervasi, M.; Ghelfi, A.; Gillard, W.; Giovacchini, F.; Goglov, P.; Gong, J.; Goy, C.; Grabski, V.; Grandi, D.; Graziani, M.; Guandalini, C.; Guerri, I.; Guo, K. H.; Haas, D.; Habiby, M.; Haino, S.; Han, K. C.; He, Z. H.; Heil, M.; Hoffman, J.; Hsieh, T. H.; Huang, Z. C.; Huh, C.; Incagli, M.; Ionica, M.; Jang, W. Y.; Jinchi, H.; Kanishev, K.; Kim, G. N.; Kim, K. S.; Kirn, Th.; Kossakowski, R.; Kounina, O.; Kounine, A.; Koutsenko, V.; Krafczyk, M. S.; La Vacca, G.; Laudi, E.; Laurenti, G.; Lazzizzera, I.; Lebedev, A.; Lee, H. T.; Lee, S. C.; Leluc, C.; Levi, G.; Li, H. L.; Li, J. Q.; Li, Q.; Li, Q.; Li, T. X.; Li, W.; Li, Y.; Li, Z. H.; Li, Z. Y.; Lim, S.; Lin, C. H.; Lipari, P.; Lippert, T.; Liu, D.; Liu, H.; Lolli, M.; Lomtadze, T.; Lu, M. J.; Lu, S. Q.; Lu, Y. S.; Luebelsmeyer, K.; Luo, J. Z.; Lv, S. S.; Majka, R.; Mañá, C.; Marín, J.; Martin, T.; Martínez, G.; Masi, N.; Maurin, D.; Menchaca-Rocha, A.; Meng, Q.; Mo, D. C.; Morescalchi, L.; Mott, P.; Müller, M.; Ni, J. Q.; Nikonov, N.; Nozzoli, F.; Nunes, P.; Obermeier, A.; Oliva, A.; Orcinha, M.; Palmonari, F.; Palomares, C.; Paniccia, M.; Papi, A.; Pauluzzi, M.; Pedreschi, E.; Pensotti, S.; Pereira, R.; Picot-Clemente, N.; Pilo, F.; Piluso, A.; Pizzolotto, C.; Plyaskin, V.; Pohl, M.; Poireau, V.; Postaci, E.; Putze, A.; Quadrani, L.; Qi, X. M.; Qin, X.; Qu, Z. Y.; Räihä, T.; Rancoita, P. G.; Rapin, D.; Ricol, J. S.; Rodríguez, I.; Rosier-Lees, S.; Rozhkov, A.; Rozza, D.; Sagdeev, R.; Sandweiss, J.; Saouter, P.; Sbarra, C.; Schael, S.; Schmidt, S. M.; von Dratzig, A. Schulz; Schwering, G.; Scolieri, G.; Seo, E. S.; Shan, B. S.; Shan, Y. H.; Shi, J. Y.; Shi, X. Y.; Shi, Y. M.; Siedenburg, T.; Son, D.; Spada, F.; Spinella, F.; Sun, W.; Sun, W. H.; Tacconi, M.; Tang, C. P.; Tang, X. W.; Tang, Z. C.; Tao, L.; Tescaro, D.; Ting, Samuel C. C.; Ting, S. M.; Tomassetti, N.; Torsti, J.; Türkoǧlu, C.; Urban, T.; Vagelli, V.; Valente, E.; Vannini, C.; Valtonen, E.; Vaurynovich, S.; Vecchi, M.; Velasco, M.; Vialle, J. P.; Vitale, V.; Vitillo, S.; Wang, L. Q.; Wang, N. H.; Wang, Q. L.; Wang, R. S.; Wang, X.; Wang, Z. X.; Weng, Z. L.; Whitman, K.; Wienkenhöver, J.; Wu, H.; Wu, X.; Xia, X.; Xie, M.; Xie, S.; Xiong, R. Q.; Xin, G. M.; Xu, N. S.; Xu, W.; Yan, Q.; Yang, J.; Yang, M.; Ye, Q. H.; Yi, H.; Yu, Y. J.; Yu, Z. Q.; Zeissler, S.; Zhang, J. H.; Zhang, M. T.; Zhang, X. B.; Zhang, Z.; Zheng, Z. M.; Zhuang, H. L.; Zhukov, V.; Zichichi, A.; Zimmermann, N.; Zuccon, P.; Zurbach, C.; AMS Collaboration

    2015-05-01

    A precise measurement of the proton flux in primary cosmic rays with rigidity (momentum/charge) from 1 GV to 1.8 TV is presented based on 300 million events. Knowledge of the rigidity dependence of the proton flux is important in understanding the origin, acceleration, and propagation of cosmic rays. We present the detailed variation with rigidity of the flux spectral index for the first time. The spectral index progressively hardens at high rigidities.

  16. Precision Measurement of the Proton Flux in Primary Cosmic Rays from Rigidity 1 GV to 1.8 TV with the Alpha Magnetic Spectrometer on the International Space Station.

    Science.gov (United States)

    Aguilar, M; Aisa, D; Alpat, B; Alvino, A; Ambrosi, G; Andeen, K; Arruda, L; Attig, N; Azzarello, P; Bachlechner, A; Barao, F; Barrau, A; Barrin, L; Bartoloni, A; Basara, L; Battarbee, M; Battiston, R; Bazo, J; Becker, U; Behlmann, M; Beischer, B; Berdugo, J; Bertucci, B; Bigongiari, G; Bindi, V; Bizzaglia, S; Bizzarri, M; Boella, G; de Boer, W; Bollweg, K; Bonnivard, V; Borgia, B; Borsini, S; Boschini, M J; Bourquin, M; Burger, J; Cadoux, F; Cai, X D; Capell, M; Caroff, S; Casaus, J; Cascioli, V; Castellini, G; Cernuda, I; Cerreta, D; Cervelli, F; Chae, M J; Chang, Y H; Chen, A I; Chen, H; Cheng, G M; Chen, H S; Cheng, L; Chou, H Y; Choumilov, E; Choutko, V; Chung, C H; Clark, C; Clavero, R; Coignet, G; Consolandi, C; Contin, A; Corti, C; Cortina Gil, E; Coste, B; Creus, W; Crispoltoni, M; Cui, Z; Dai, Y M; Delgado, C; Della Torre, S; Demirköz, M B; Derome, L; Di Falco, S; Di Masso, L; Dimiccoli, F; Díaz, C; von Doetinchem, P; Donnini, F; Du, W J; Duranti, M; D'Urso, D; Eline, A; Eppling, F J; Eronen, T; Fan, Y Y; Farnesini, L; Feng, J; Fiandrini, E; Fiasson, A; Finch, E; Fisher, P; Galaktionov, Y; Gallucci, G; García, B; García-López, R; Gargiulo, C; Gast, H; Gebauer, I; Gervasi, M; Ghelfi, A; Gillard, W; Giovacchini, F; Goglov, P; Gong, J; Goy, C; Grabski, V; Grandi, D; Graziani, M; Guandalini, C; Guerri, I; Guo, K H; Haas, D; Habiby, M; Haino, S; Han, K C; He, Z H; Heil, M; Hoffman, J; Hsieh, T H; Huang, Z C; Huh, C; Incagli, M; Ionica, M; Jang, W Y; Jinchi, H; Kanishev, K; Kim, G N; Kim, K S; Kirn, Th; Kossakowski, R; Kounina, O; Kounine, A; Koutsenko, V; Krafczyk, M S; La Vacca, G; Laudi, E; Laurenti, G; Lazzizzera, I; Lebedev, A; Lee, H T; Lee, S C; Leluc, C; Levi, G; Li, H L; Li, J Q; Li, Q; Li, Q; Li, T X; Li, W; Li, Y; Li, Z H; Li, Z Y; Lim, S; Lin, C H; Lipari, P; Lippert, T; Liu, D; Liu, H; Lolli, M; Lomtadze, T; Lu, M J; Lu, S Q; Lu, Y S; Luebelsmeyer, K; Luo, J Z; Lv, S S; Majka, R; Mañá, C; Marín, J; Martin, T; Martínez, G; Masi, N; Maurin, D; Menchaca-Rocha, A; Meng, Q; Mo, D C; Morescalchi, L; Mott, P; Müller, M; Ni, J Q; Nikonov, N; Nozzoli, F; Nunes, P; Obermeier, A; Oliva, A; Orcinha, M; Palmonari, F; Palomares, C; Paniccia, M; Papi, A; Pauluzzi, M; Pedreschi, E; Pensotti, S; Pereira, R; Picot-Clemente, N; Pilo, F; Piluso, A; Pizzolotto, C; Plyaskin, V; Pohl, M; Poireau, V; Postaci, E; Putze, A; Quadrani, L; Qi, X M; Qin, X; Qu, Z Y; Räihä, T; Rancoita, P G; Rapin, D; Ricol, J S; Rodríguez, I; Rosier-Lees, S; Rozhkov, A; Rozza, D; Sagdeev, R; Sandweiss, J; Saouter, P; Sbarra, C; Schael, S; Schmidt, S M; Schulz von Dratzig, A; Schwering, G; Scolieri, G; Seo, E S; Shan, B S; Shan, Y H; Shi, J Y; Shi, X Y; Shi, Y M; Siedenburg, T; Son, D; Spada, F; Spinella, F; Sun, W; Sun, W H; Tacconi, M; Tang, C P; Tang, X W; Tang, Z C; Tao, L; Tescaro, D; Ting, Samuel C C; Ting, S M; Tomassetti, N; Torsti, J; Türkoğlu, C; Urban, T; Vagelli, V; Valente, E; Vannini, C; Valtonen, E; Vaurynovich, S; Vecchi, M; Velasco, M; Vialle, J P; Vitale, V; Vitillo, S; Wang, L Q; Wang, N H; Wang, Q L; Wang, R S; Wang, X; Wang, Z X; Weng, Z L; Whitman, K; Wienkenhöver, J; Wu, H; Wu, X; Xia, X; Xie, M; Xie, S; Xiong, R Q; Xin, G M; Xu, N S; Xu, W; Yan, Q; Yang, J; Yang, M; Ye, Q H; Yi, H; Yu, Y J; Yu, Z Q; Zeissler, S; Zhang, J H; Zhang, M T; Zhang, X B; Zhang, Z; Zheng, Z M; Zhuang, H L; Zhukov, V; Zichichi, A; Zimmermann, N; Zuccon, P; Zurbach, C

    2015-05-01

    A precise measurement of the proton flux in primary cosmic rays with rigidity (momentum/charge) from 1 GV to 1.8 TV is presented based on 300 million events. Knowledge of the rigidity dependence of the proton flux is important in understanding the origin, acceleration, and propagation of cosmic rays. We present the detailed variation with rigidity of the flux spectral index for the first time. The spectral index progressively hardens at high rigidities.

  17. Experimental Summary: Very High Energy Cosmic Rays and their Interactions

    Science.gov (United States)

    Kampert, Karl-Heinz

    2013-06-01

    The XVII International Symposium on Very High Energy Cosmic Ray Interactions, held in August of 2012 in Berlin, was the first one in the history of the Symposium,where a plethora of high precision LHC data with relevance for cosmic ray physics was presented. This report aims at giving a brief summary of those measurements andit discusses their relevance for observations of high energy cosmic rays. Enormous progress has been made also in air shower observations and in direct measurements of cosmic rays, exhibiting many more structure in the cosmic ray energy spectrum than just a simple power law with a knee and an ankle. At the highest energy, the flux suppression may not be dominated by the GZK-effect but by the limiting energy of a nearby source or source population. New projects and application of new technologies promise further advances also in the near future. We shall discuss the experimental and theoretical progress in the field and its prospects for coming years.

  18. Experimental Summary: Very High Energy Cosmic Rays and their Interactions

    Directory of Open Access Journals (Sweden)

    Kampert Karl-Heinz

    2013-06-01

    Full Text Available The XVII International Symposium on Very High Energy Cosmic Ray Interactions, held in August of 2012 in Berlin, was the first one in the history of the Symposium,where a plethora of high precision LHC data with relevance for cosmic ray physics was presented. This report aims at giving a brief summary of those measurements andit discusses their relevance for observations of high energy cosmic rays. Enormous progress has been made also in air shower observations and in direct measurements of cosmic rays, exhibiting many more structure in the cosmic ray energy spectrum than just a simple power law with a knee and an ankle. At the highest energy, the flux suppression may not be dominated by the GZK-effect but by the limiting energy of a nearby source or source population. New projects and application of new technologies promise further advances also in the near future. We shall discuss the experimental and theoretical progress in the field and its prospects for coming years.

  19. Underground cosmic-ray experiment EMMA

    DEFF Research Database (Denmark)

    Kuusiniemi, P.; Bezrukov, L.; Enqvist, T.

    2013-01-01

    EMMA (Experiment with MultiMuon Array) is a new approach to study the composition of cosmic rays at the knee region (1 – 10 PeV). The array will measure the multiplicity and lateral distribution of the high-energy muon component of an air shower and its arrival direction on an event-by-event basis....... The array operates in the Pyhäsalmi Mine, Finland, at a depth of 75 metres (or 210 m.w.e) corresponding to the cut-off energy of approximately 50 GeV for vertical muons. The data recording with a partial array has started and preliminary results of the first test runs are presented....

  20. Global Atmospheric Models for Cosmic Ray Detectors

    CERN Document Server

    Will, Martin

    2014-01-01

    The knowledge of atmospheric parameters -- such as temperature, pressure, and humidity -- is very important for a proper reconstruction of air showers, especially with the fluorescence technique. The Global Data Assimilation System (GDAS) provides altitude-dependent profiles of these state variables of the atmosphere and several more. Every three hours, a new data set on 23 constant pressure level plus an additional surface values is available for the entire globe. These GDAS data are now used in the standard air shower reconstruction of the Pierre Auger Observatory. The validity of the data was verified by comparisons with monthly models that were averaged from on-site meteorological radio soundings and weather station measurements obtained at the Observatory in Malarg\\"ue. Comparisons of reconstructions using the GDAS data and the monthly models are also presented. Since GDAS is a global model, the data can potentially be used for other cosmic and gamma ray detectors. Several studies were already performed ...

  1. Cosmic rays from trans-relativistic supernovae

    CERN Document Server

    Budnik, R; MacFadyen, A; Waxman, E

    2007-01-01

    We derive constraints which must be satisfied by the sources of ~10^{15} to ~10^{18} eV cosmic rays, under the assumption that the sources are Galactic. We show that while these constraints are not satisfied by ordinary supernovae, which are believed to be the sources of 10^{-2}, of the explosion energy in mildly relativistic, \\gamma\\beta>1, ejecta. Galactic TRSNe may therefore be the sources of cosmic rays with energies up to ~10^{18} eV.

  2. The Non-Imaging CHErenkov (NICHE) Array: A TA/TALE extension using Cherenkov radiation to measure Cosmic Ray Composition to sub-PeV energies

    Science.gov (United States)

    Krizmanic, John; Bergman, Douglas; Tsunesada, Yoshiki; Abu-Zayyad, Tareq; Belz, John; Thomson, Gordon

    2017-01-01

    Co-sited with the Telescope Array (TA) Low Energy (TALE) extension, the Non-Imaging CHErenkov (NICHE) Array will measure the flux and nuclear composition evolution of cosmic rays (CRs) from below 1 PeV to 1 EeV in its eventual full deployment. NICHE will co-measure CR air showers with TA/TALE and will initially be deployed to observe events simultaneously with the TALE telescopes acting in imaging-Cherenkov mode, providing the first hybrid-Cherenkov (simultaneous imaging and non-imaging Cherenkov) measurements of CRs in the Knee region of the CR energy spectrum. NICHE uses easily deployable detectors to measure the amplitude and time-spread of the air-shower Cherenkov signal to achieve an event-by-event measurement of Xmax and energy, each with excellent resolution. First generation detectors are under construction and will form an initial prototype array (jNICHE) that will be deployed in early 2017 at the TA/TALE site. In this talk, the NICHE design, array performance, jNICHE development, and status will be discussed as well as NICHE's ability to measure the cosmic ray nuclear composition as a function of energy.

  3. Radio detection of cosmic ray air showers with LOPES

    Energy Technology Data Exchange (ETDEWEB)

    Huege, T.; Apel, W.D. [IK, Forschungszentrum Karlsruhe, 76021 Karlsruhe (Germany); Asch, T. [IPE, Forschungszentrum Karlsruhe, 76021 Karlsruhe (Germany); Badea, A.F. [IK, Forschungszentrum Karlsruhe, 76021 Karlsruhe (Germany); Baehren, L. [ASTRON, 7990 AA Dwingeloo (Netherlands); Bekk, K. [IK, Forschungszentrum Karlsruhe, 76021 Karlsruhe (Germany); Bercuci, A. [Nat. Inst. of Physics and Nuclear Eng., 7690 Bucharest (Romania); Bertaina, M. [Dipartimento di Fisica Generale dell' Universita, 10125 Torino (Italy); Biermann, P.L. [Max-Planck-Institut fuer Radioastronomie, 53121 Bonn (Germany); Bluemer, J. [IK, Forschungszentrum Karlsruhe, 76021 Karlsruhe (Germany); IEKP, Universitaet Karlsruhe, 76021 Karlsruhe (Germany); Bozdog, H. [IK, Forschungszentrum Karlsruhe, 76021 Karlsruhe (Germany); Brancus, I.M. [Nat. Inst. of Physics and Nuclear Eng., 7690 Bucharest (Romania); Buitink, S. [Dpt. Astrophysics, Radboud Univ., 6525 ED Nijmegen (Netherlands); Brueggemann, M.; Buchholz, P. [Fachbereich Physik, Universitaet Siegen, 57072 Siegen (Germany); Butcher, H. [ASTRON, 7990 AA Dwingeloo (Netherlands); Chiavassa, A. [Dipartimento di Fisica Generale dell' Universita, 10125 Torino (Italy); Cossavella, F. [IEKP, Universitaet Karlsruhe, 76021 Karlsruhe (Germany); Daumiller, K. [IK, Forschungszentrum Karlsruhe, 76021 Karlsruhe (Germany); Di Pierro, F. [Dipartimento di Fisica Generale dell' Universita, 10125 Torino (Italy)] (and others)

    2007-03-15

    In the last few years, radio detection of cosmic ray air showers has experienced a true renaissance, becoming manifest in a number of new experiments and simulation efforts. In particular, the LOPES project has successfully implemented modern interferometric methods to measure the radio emission from extensive air showers. LOPES has confirmed that the emission is coherent and of geomagnetic origin, as expected by the geosynchrotron mechanism, and has demonstrated that a large scale application of the radio technique has great potential to complement current measurements of ultra-high energy cosmic rays. We describe the current status, most recent results and open questions regarding radio detection of cosmic rays and give an overview of ongoing research and development for an application of the radio technique in the framework of the Pierre Auger Observatory.

  4. Radio detection of cosmic ray air showers with LOPES

    CERN Document Server

    Huege, T; Asch, T; Badea, A F; Bähren, L; Bekk, K; Bercuci, A; Bertaina, M; Biermann, P L; Blumer, J; Bozdog, H; Brancus, I M; Buitink, S; Bruggemann, M; Buchholz, P; Butcher, H; Chiavassa, A; Cossavella, F; Daumiller, K; Di Pierro, F; Doll, P; Engel, R; Falcke, H; Gemmeke, H; Ghia, P L; Glasstetter, R; Grupen, C; Hakenjos, A; Haungs, A; Heck, D; Hörandel, J R; Horneffer, A; Isar, P G; Kampert, K H; Kolotaev, Yu; Krömer, O; Kuijpers, J; Lafebre, S; Mathes, H J; Mayer, H J; Meurer, C; Milke, J; Mitrica, B; Morello, C; Navarra, G; Nehls, S; Nigl, A; Obenland, R; Oehlschläger, J; Ostapchenko, S; Over, S; Petcu, M; Petrovic, J; Pierog, T; Plewnia, S; Rebel, H; Risse, A; Roth, M; Schieler, H; Sima, O; Singh, K; Stumpert, M; Toma, G; Trinchero, G C; Ulrich, H; Van Buren, J; Walkowiak, W; Weindl, A; Wochele, J; Zabierowski, J; Zensus, J A; Zimmermann, D; Huege, Tim; al, et

    2006-01-01

    In the last few years, radio detection of cosmic ray air showers has experienced a true renaissance, becoming manifest in a number of new experiments and simulation efforts. In particular, the LOPES project has successfully implemented modern interferometric methods to measure the radio emission from extensive air showers. LOPES has confirmed that the emission is coherent and of geomagnetic origin, as expected by the geosynchrotron mechanism, and has demonstrated that a large scale application of the radio technique has great potential to complement current measurements of ultra-high energy cosmic rays. We describe the current status, most recent results and open questions regarding radio detection of cosmic rays and give an overview of ongoing research and development for an application of the radio technique in the framework of the Pierre Auger Observatory.

  5. Indirect dark matter searches in gamma and cosmic rays

    Science.gov (United States)

    Conrad, Jan; Reimer, Olaf

    2017-03-01

    Dark matter candidates such as weakly interacting massive particles are predicted to annihilate or decay into Standard Model particles, leaving behind distinctive signatures in gamma rays, neutrinos, positrons, antiprotons, or even antinuclei. Indirect dark matter searches, and in particular those based on gamma-ray observations and cosmic-ray measurements, could detect such signatures. Here we review the strengths and limitations of this approach and look into the future of indirect dark matter searches.

  6. Atmospheric Radiation Modeling of Galactic Cosmic Rays Using LRO/CRaTER and the EMMREM Model with Comparisons to Balloon and Airline Based Measurements

    Science.gov (United States)

    Joyce, C. J.

    2016-12-01

    The current state of the Sun and solar wind, with uncommonly low densities and weak magnetic fields, has resulted in galactic cosmic ray fluxes that are elevated to levels higher than have ever before been observed in the space age. Given the continuing trend of declining solar activity, it is clear that accurate modeling of GCR radiation is becoming increasingly important in the field of space weather. Such modelling is essential not only in the planning of future manned space missions, but is also important for assessing the radiation risks to airline passengers, particularly given NASA's plans to develop supersonic aircraft that will fly at much higher altitudes than commercial aircraft and thus be more vulnerable to radiation from GCRs. We provide an analysis of the galactic cosmic ray radiation environment of Earth's atmosphere using measurements from the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) aboard the Lunar Reconnaissance Orbiter (LRO) together with the Badhwar-O'Neil model and dose lookup tables generated by the Earth-Moon-Mars Radiation Environment Module (EMMREM). Newly available measurements of atmospheric dose rates from instruments aboard commercial and research aircraft enable evaluation of the accuracy of the model in computing atmospheric dose rates. Additionally, a newly available dataset of balloon-based measurements, including simultaneous balloon launches from California and New Hampshire, provide an additional means of comparison to the model. When compared to the available observations of atmospheric radiation levels, the computed dose rates seem to be sufficiently accurate, falling within recommended radiation uncertainty limits.

  7. Measurement of secondary radiation due to cosmic rays at the Pfotzer maximum near the Tropic of Cancer during different seasons and year

    Science.gov (United States)

    Sarkar, Ritabrata; Sarathi Pal, Partha; Chakrabarti, Sandip Kumar; Bhowmick, Debashis; Bhattacharya, Arnab

    2016-07-01

    In an ongoing mission in Indian Centre for Space Physics, India, for the extraterrestrial X-ray observation, we send very light weight X-ray detectors in a quasi-regular basis from the region near the Tropic of Cancer on board small weather balloons. During its path through the atmosphere the payload measure the secondary radiation due to cosmic ray interaction with the atmosphere. We compare the data from different seasons of the year and over few years particularly at the Pfotzer maximum. We present the long duration variation of the location of the Pfotzer maximum, the radiation dose and the spectral properties of the secondary radiation at this region as well as the effect of the Solar condition during the observation.

  8. Cosmic ray injection spectrum at the galactic sources

    Science.gov (United States)

    Lagutin, Anatoly; Tyumentsev, Alexander; Volkov, Nikolay

    The spectra of cosmic rays measured at Earth are different from their source spectra. A key to understanding this difference, being crucial for solving the problem of cosmic-ray origin, is the determination of how cosmic-ray (CR) particles propagate through the turbulent interstellar medium (ISM). If the medium is a quasi-homogeneous the propagation process can be described by a normal diffusion model. However, during a last few decades many evidences, both from theory and observations, of the existence of multiscale structures in the Galaxy have been found. Filaments, shells, clouds are entities widely spread in the ISM. In such a highly non-homogeneous (fractal-like) ISM the normal diffusion model certainly is not kept valid. Generalization of this model leads to what is known as "anomalous diffusion". The main goal of the report is to retrieve the cosmic ray injection spectrum at the galactic sources in the framework of the anomalous diffusion (AD) model. The anomaly in this model results from large free paths ("Levy flights") of particles between galactic inhomogeneities. In order to evaluate the CR spectrum at the sources, we carried out new calculation of the CR spectra at Earth. AD equation in terms of fractional derivatives have been used to describe CR propagation from the nearby (r≤1 kpc) young (t≤ 1 Myr) and multiple old distant (r > 1 kpc) sources. The assessment of the key model parameters have been based on the results of the particles diffusion in the cosmic and laboratory plasma. We show that in the framework of the anomalous diffusion model the locally observed basic features of the cosmic rays (difference between spectral exponents of proton, He and other nuclei, "knee" problem, positron to electron ratio) can be explained if the injection spectrum at the main galactic sources of cosmic rays has spectral exponent p˜ 2.85. The authors acknowledge support from The Russian Foundation for Basic Research grant No. 14-02-31524.

  9. Microphysics of cosmic ray driven plasma instabilities

    CERN Document Server

    Bykov, A M; Malkov, M A; Osipov, S M

    2013-01-01

    Energetic nonthermal particles (cosmic rays, CRs) are accelerated in supernova remnants, relativistic jets and other astrophysical objects. The CR energy density is typically comparable with that of the thermal components and magnetic fields. In this review we discuss mechanisms of magnetic field amplification due to instabilities induced by CRs. We derive CR kinetic and magnetohydrodynamic equations that govern cosmic plasma systems comprising the thermal background plasma, comic rays and fluctuating magnetic fields to study CR-driven instabilities. Both resonant and non-resonant instabilities are reviewed, including the Bell short-wavelength instability, and the firehose instability. Special attention is paid to the longwavelength instabilities driven by the CR current and pressure gradient. The helicity production by the CR current-driven instabilities is discussed in connection with the dynamo mechanisms of cosmic magnetic field amplification.

  10. Atmospheric radiation modeling of galactic cosmic rays using LRO/CRaTER and the EMMREM model with comparisons to balloon and airline based measurements

    Science.gov (United States)

    Joyce, C. J.; Schwadron, N. A.; Townsend, L. W.; deWet, W. C.; Wilson, J. K.; Spence, H. E.; Tobiska, W. K.; Shelton-Mur, K.; Yarborough, A.; Harvey, J.; Herbst, A.; Koske-Phillips, A.; Molina, F.; Omondi, S.; Reid, C.; Reid, D.; Shultz, J.; Stephenson, B.; McDevitt, M.; Phillips, T.

    2016-09-01

    We provide an analysis of the galactic cosmic ray radiation environment of Earth's atmosphere using measurements from the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) aboard the Lunar Reconnaissance Orbiter (LRO) together with the Badhwar-O'Neil model and dose lookup tables generated by the Earth-Moon-Mars Radiation Environment Module (EMMREM). This study demonstrates an updated atmospheric radiation model that uses new dose tables to improve the accuracy of the modeled dose rates. Additionally, a method for computing geomagnetic cutoffs is incorporated into the model in order to account for location-dependent effects of the magnetosphere. Newly available measurements of atmospheric dose rates from instruments aboard commercial aircraft and high-altitude balloons enable us to evaluate the accuracy of the model in computing atmospheric dose rates. When compared to the available observations, the model seems to be reasonably accurate in modeling atmospheric radiation levels, overestimating airline dose rates by an average of 20%, which falls within the uncertainty limit recommended by the International Commission on Radiation Units and Measurements (ICRU). Additionally, measurements made aboard high-altitude balloons during simultaneous launches from New Hampshire and California provide an additional comparison to the model. We also find that the newly incorporated geomagnetic cutoff method enables the model to represent radiation variability as a function of location with sufficient accuracy.

  11. Cosmic Rays Accelerated at Cosmological Shock Waves

    Indian Academy of Sciences (India)

    Renyi Ma; Dongsu Ryu; Hyesung Kang

    2011-03-01

    Based on hydrodynamic numerical simulations and diffusive shock acceleration model, we calculated the ratio of cosmic ray (CR) to thermal energy. We found that the CR fraction can be less than ∼ 0.1 in the intracluster medium, while it would be of order unity in the warm-hot intergalactic medium.

  12. Cosmic Ray Origin, Acceleration and Propagation

    CERN Document Server

    Baring, M G

    1999-01-01

    This paper summarizes highlights of the OG3.1, 3.2 and 3.3 sessions of the XXVIth International Cosmic Ray Conference in Salt Lake City, which were devoted to issues of origin/composition, acceleration and propagation.

  13. Recent developments in cosmic ray physics

    CERN Document Server

    Blasi, P

    2014-01-01

    The search for a theory of the origin of cosmic rays that may be considered as a standard, agreeable model is still ongoing. On one hand, much circumstantial evidence exists of the fact that supernovae in our Galaxy play a crucial role in producing the bulk of cosmic rays observed on Earth. On the other hand, important questions about their ability to accelerate particles up to the knee remain unanswered. The common interpretation of the knee as a feature coinciding with the maximum energy of the light component of cosmic rays and a transition to a gradually heavier mass composition is mainly based on KASCADE results. Some recent data appear to question this finding: YAC1 - Tibet Array and ARGO-YBJ find a flux reduction in the light component at $\\sim 700$ TeV, appreciably below the knee. Whether the maximum energy of light nuclei is as high as $3000$ TeV or rather as low as a few hundred TeV has very important consequences on the supernova remnant paradigm for the origin of cosmic rays, as well on the crucia...

  14. Spiral Arms as Cosmic Ray Source Distributions

    CERN Document Server

    Werner, M; Strong, A W; Reimer, O

    2014-01-01

    There is evidence that the distribution of suspected cosmic ray sources are associated with the spiral arm structure of galaxies. It is yet not clearly understood what effect such a cosmic ray source distribution has on the particle transport in our Galaxy. We use the PICARD code to perform high-resolution 3D simulations of electrons and protons in galactic propagation scenarios that include four-arm and two-arm logarithmic spiral cosmic ray source distributions with and without a central bar structure as well as the spiral arm configuration of the NE2001 model for the distribution of free electrons in the Milky Way. Results of these simulation are compared to an axisymmetric radial source distribution. Also, effects on the cosmic ray flux and spectra due to different positions of the Earth relative to the spiral structure are studied. We find that high energy electrons are strongly confined to their sources and the obtained spectra largely depend on the Earth's position relative to the spiral arms. Similar f...

  15. Investigation of cosmic ray-cloud connections using MISR

    CERN Document Server

    Krissansen-Totton, Joshua

    2013-01-01

    Numerous empirical studies have analyzed International Satellite Cloud Climatology Project data and reached contradictory conclusions regarding the influence of solar-modulated galactic cosmic rays on cloud fraction and cloud properties. The Multiangle Imaging Spectroradiometer (MISR) instrument on the Terra satellite has been in continuous operation for 13 years and thus provides an independent (and previously unutilized) cloud data set to investigate purported solar-cloud links. Furthermore, unlike many previous solar-climate studies that report cloud fraction MISR measures albedo, which has clearer climatological relevance. Our long-term analysis of MISR data finds no statistically significant correlations between cosmic rays and global albedo or globally averaged cloud height, and no evidence for any regional or lagged correlations. Moreover, epoch superposition analysis of Forbush decreases reveals no detectable albedo response to cosmic ray decreases, thereby placing an upper limit on the possible influ...

  16. Cosmic rays,Climate and the CERN CLOUD Experiment

    CERN Document Server

    CERN. Geneva

    2011-01-01

    For more than two centuries, scientists have been puzzled by observations of solar-climate variability yet the lack of any established physical mechanism. Some recent observations, although disputed, suggest that clouds may be influenced by cosmic rays, which are modulated by the solar wind. The CLOUD experiment aims to settle the question of whether or not cosmic rays have a climatically-significant effect on clouds by carrying out a series of carefully-controlled measurements in a large cloud chamber exposed to a beam from the CERN PS. This talk will present the scientific motivation for CLOUD and the first results, which have recently been published in Nature (Kirkby et al. (2011). Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation. Nature 476, 429-433).

  17. Precision Cosmic Ray physics with space-born experiment

    Science.gov (United States)

    Incagli, Marco

    2016-07-01

    More than 100 years after their discoveries, cosmic rays have been extensively studied, both with balloon experiments and with ground observatories. More recently, the possibility of mounting detectors on satellites or on the International Space Station has allowed for a long duration (several years) continuous observation of primary cosmic rays, i.e. before their interaction with the earth atmosphere, thus opening a new regime of precision measurements. In this review, recent results from major space experiments, as Pamela, AMS02 and Fermi, as well as next generation experiments proposed for the International Space Station, for standalone satellites or for the yet to come Chinese Space Station, will be presented. The impact of these experiment on the knowledge of Cosmic Ray propagation will also be discussed.

  18. Long-term modulation of the cosmic ray fluctuation spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Starodubtsev, S.A.; Grigoryev, A.V. [Yu.G. Shafer Inst. of Cosmophysical Research and Aeronomy, SB RAS, Yakutsk (Russian Federation); Usoskin, I.G. [Sodankylae Geophysical Observatory, Univ. of Oulu (Finland); Mursula, K. [Dept. of Physical Sciences, Univ of Oulu (Finland)

    2006-07-01

    Here we study the power level of rapid cosmic ray fluctuations in the frequency range of 10{sup -4}-1.67 . 10{sup -3} Hz (periods from 10 min to about 3h), using measurements by space-borne instruments for the period since 1974. We find that the power level of these fluctuations varies over the solar cycle, but the phase of this variation depends on the energy of cosmic ray particles. While the power level of these fluctuations in the higher energy channels (corresponding to galactic cosmic rays) changes in phase with the solar cycle, the fluctuation level for lower energy channels (predominantly of solar/interplanetary origin) is roughly in an opposite phase with the solar cycle. The results prove conclusively that these fluctuations originate in the near-Earth space, excluding their atmospheric or magnetospheric origin. We present these new results and discuss a possible scenario explaining the observed energy-dependence. (orig.)

  19. Long-term modulation of the cosmic ray fluctuation spectrum

    Directory of Open Access Journals (Sweden)

    S. A. Starodubtsev

    2006-03-01

    Full Text Available Here we study the power level of rapid cosmic ray fluctuations in the frequency range of 10-4-1.67·10-3 Hz (periods from 10 min to about 3 h, using measurements by space-borne instruments for the period since 1974. We find that the power level of these fluctuations varies over the solar cycle, but the phase of this variation depends on the energy of cosmic ray particles. While the power level of these fluctuations in the higher energy channels (corresponding to galactic cosmic rays changes in phase with the solar cycle, the fluctuation level for lower energy channels (predominantly of solar/interplanetary origin is roughly in an opposite phase with the solar cycle. The results prove conclusively that these fluctuations originate in the near-Earth space, excluding their atmospheric or magnetospheric origin. We present these new results and discuss a possible scenario explaining the observed energy-dependence.

  20. Cosmic Rays from the Knee to the Ankle

    CERN Document Server

    Haungs, Andreas

    2015-01-01

    Investigations of the energy spectrum as well as the mass composition of cosmic rays in the energy range of PeVto EeV are important for understanding both, the origin of the galactic and the extragalactic cosmic rays. Recently, three modern experimental installations (KASCADE-Grande, IceTop, Tunka-133), dedicated to investigate this primary energy range, have published new results on the all-particle energy spectrum. In this short review these results are presented and the similarities and differences discussed. In addition, the effects of using different hadronic interaction models for interpreting the measured air-shower data will be examined. Finally, a brief discussion on the question if the present results are in agreement or in contradiction with astrophysical models for the transition from galactic to 10 pagesextragalactic origin of cosmic rays completes this paper.

  1. Cosmic ray composition investigations using ICE/ISEE-3

    Science.gov (United States)

    Wiedenbeck, Mark E.

    1992-01-01

    The analysis of data from the high energy cosmic experiment on ISEE-3 and associated modeling and interpretation activities are discussed. The ISEE-3 payload included two instruments capable of measuring the composition of heavy cosmic rays. The designs of these two instruments incorporated innovations which made it possible, for the first time, to measure isotopic as well as the chemical composition for a wide range of elements. As the result of the demonstrations by these two instruments of the capability to resolve individual cosmic ray isotopes, a new generation of detectors was developed using very similar designs, but having improved reliability and increased sensitive area. The composition measurements which were obtained from the ISEE-3 experiment are summarized.

  2. An orientable time of flight detector for cosmic rays

    CERN Document Server

    Iori, M

    2007-01-01

    Cosmic ray studies, in particular UHECR, can be in general supported by a directional, easy deployable, simple and robust detector. The design of this detector is based on the time of flight between two parallel tiles of scintillator, to distinguish particle passing through in opposite directions; by fine time resolution and pretty adjustable acceptance it is possible to select upward(left)/downward(right) cosmic rays. It has been developed for an array of detectors to measure upward $\\tau$ from Earth-Skimming neutrino events with energy above $10^8 GeV$. The properties and performances of the detector are discussed. Test results from a high noise environment are presented.

  3. Cosmic Ray Sun Shadow in Soudan 2 Underground Muon Flux

    CERN Document Server

    Allison, W W M; Ayres, D S; Barrett, W L; Bode, C; Border, P M; Brooks, C B; Cobb, J H; Cotton, R J; Courant, H; Demuth, D M; Fields, T H; Gallagher, H R; García-García, C; Goodman, M C; Gran, R; Joffe-Minor, T M; Kafka, T; Kasahara, S M; Leeson, W; Lichtfield, P J; Longley, N P; Mann, W A; Marshak, M L; Milburn, R H; Miller, W H; Mualem, L M; Napier, A; Oliver, W P; Pearce, G F; Peterson, E A; Petyt, D A; Price, L E; Ruddick, K; Sánchez, M; Schneps, J; Schub, M H; Seidlein, R; Stassinakis, A; Thron, J L; Vasilev, V; Villaume, G; Wakely, S P; West, N; Wall, D

    1999-01-01

    The absorption of cosmic rays by the sun produces a shadow at the earth. The angular offset and broadening of the shadow are determined by the magnitude and structure of the interplanetary magnetic field (IPMF) in the inner solar system. We report the first measurement of the solar cosmic ray shadow by detection of deep underground muon flux in observations made during the entire ten-year interval 1989 to 1998. The sun shadow varies significantly during this time, with a $3.3\\sigma$ shadow observed during the years 1995 to 1998.

  4. Is the Galactic Cosmic Ray Spectrum Constant in Time?

    CERN Document Server

    Eichler, David; Pohl, Martin

    2013-01-01

    The hypothesis is considered that the present Galactic cosmic ray spectrum is at present softer than its time average due to source intermittency. Measurements of muogenic nuclides underground could provide an independent measurement of the time averaged spectrum. Source intermittency could also account for the surprising low anisotropy reported by the IceCube collaboration. Predictions for Galactic emission of ultrahigh-energy quanta, such as UHE gamma rays and neutrinos, might be higher or lower than previously estimated.

  5. Isotopic Composition of Cosmic Rays:. Results from the Cosmic Ray Isotope Spectrometer on the Ace Spacecraft

    Science.gov (United States)

    Israel, M. H.

    Over the past seven years the Cosmic Ray Isotope Spectrometer (CRIS) on the ACE spacecraft has returned data with an unprecedented combination of excellent mass resolution and high statistics, describing the isotopic composition of elements from lithium through nickel in the energy interval ~ 50 to 500 MeV/nucleon. These data have demonstrated: * The time between nucleosynthesis and acceleration of the cosmic-ray nuclei is at least 105 years. The supernova in which nucleosynthesis takes place is thus not the same supernova that accelerates a heavy nucleus to cosmic-ray energy. * The mean confinement time of cosmic rays in the Galaxy is 15 Myr. * The isotopic composition of the cosmic-ray source is remarkably similar to that of solar system. The deviations that are observed, particularly at 22Ne and 58Fe, are consistent with a model in which the cosmic-ray source is OB associations in which the interstellar medium has solar-system composition enriched by roughly 20% admixture of ejecta from Wolf-Rayet stars and supernovae. * Cosmic-ray secondaries that decay only by electron capture provide direct evidence for energy loss of cosmic rays as they penetrate the solar system. This invited overview paper at ECRS 19 was largely the same as an invited paper presented a month earlier at the 8th Nuclei in the Cosmos Conference in Vancouver. The proceedings of that conference will be published shortly by Elsevier as a special edition of Nuclear Physics A. For further summary of results from CRIS, the reader is referred to URL and links on that page to CRIS and to Science News.

  6. The energy spectrum of cosmic-ray induced neutrons measured on an airplane over a wide range of altitude and latitude.

    Science.gov (United States)

    Goldhagen, P; Clem, J M; Wilson, J W

    2004-01-01

    Crews of high-altitude aircraft are exposed to radiation from galactic cosmic rays (GCRs). To help determine such exposures, the Atmospheric Ionizing Radiation Project, an international collaboration of 15 laboratories, made simultaneous radiation measurements with 14 instruments on a NASA ER-2 high-altitude airplane. The primary instrument was a sensitive extended-energy multisphere neutron spectrometer. Its detector responses were calculated for energies up to 100 GeV using the radiation transport code MCNPX 2.5.d with improved nuclear models and including the effects of the airplane structure. New calculations of GCR-induced particle spectra in the atmosphere were used to correct for spectrometer counts produced by protons, pions and light nuclear ions. Neutron spectra were unfolded from the corrected measured count rates using the deconvolution code MAXED 3.1. The results for the measured cosmic-ray neutron spectrum (thermal to >10 GeV), total neutron fluence rate, and neutron dose equivalent and effective dose rates, and their dependence on altitude and geomagnetic cut-off agree well with results from recent calculations of GCR-induced neutron spectra.

  7. Heliospheric Impact on Cosmic Rays Modulation

    Science.gov (United States)

    Tiwari, Bhupendra Kumar

    2016-07-01

    Heliospheric Impact on Cosmic RaysModulation B. K. Tiwari Department of Physics, A. P. S. University, Rewa (M.P.), btiwari70@yahoo.com Cosmic rays (CRs) flux at earth is modulated by the heliosphereric magnetic field and the structure of the heliosphere, controls by solar outputs and their variability. Sunspots numbers (SSN) is often treated as a primary indicator of solar activity (SA). GCRs entering the helioshphere are affected by the interplanetary magnetic field (IMF) and solar wind speed, their modulation varies with the varying solar activity. The observation based on data recoded from Omniweb data Centre for solar- interplanetary activity indices and monthly mean count rate of cosmic ray intensity (CRI) data from neutron monitors of different cut-off rigidities(Rc) (Moscow Rc=2.42Gv and Oulu Rc=0.80Gv). During minimum solar activity periodof solar cycle 23/24, the sun is remarkably quiet, weakest strength of the IMF and least dense and slowest, solar wind speed, whereas, in 2003, highest value of yearly averaged solar wind speed (~568 Km/sec) associated with several coronal holes, which generate high speed wind stream has been recorded. It is observed that GCRs fluxes reduces and is high anti-correlated with SSN (0.80) and IMF (0.86). CRI modulation produces by a strong solar flare, however, CME associated solar flare produce more disturbance in the interplanetary medium as well as in geomagnetic field. It is found that count rate of cosmic ray intensity and solar- interplanetary parameters were inverse correlated and solar indices were positive correlated. Keywords- Galactic Cosmic rays (GCRs), Sunspot number (SSN), Solar activity (SA), Coronal Mass Ejection (CME), Interplanetary magnetic field (IMF)

  8. Impact of Cosmic Ray Transport on Galactic Winds

    Science.gov (United States)

    Farber, Ryan; Ruszkowski, Mateusz; Yang, Hsiang-Yi Karen; Gould Zweibel, Ellen

    2017-08-01

    Despite playing a fundamental role in galaxy evolution, the physical mechanisms responsible for driving galactic winds remain unclear. The role of cosmic rays generated by supernovae and young stars has very recently begun to receive significant attention due to the realization that cosmic rays can efficiently accelerate galactic winds. Microscopic cosmic ray transport processes are fundamental for determining the efficiency of cosmic ray wind driving. Previous studies focused on modeling of cosmic ray transport either via constant diffusion coefficient or via streaming proportional to the Alfv{é}n speed. However, in predominantly neutral gas, cosmic rays can propagate faster than in the ionized medium and the effective transport can be substantially larger, i.e., cosmic rays are decoupled from the gas. We perform three-dimensional magneto-hydrodynamical simulations of patches of galactic disks including the effects of cosmic rays. Our simulations include the decoupling of cosmic rays in the neutral ISM phases. We find that, compared to the ordinary diffusive cosmic ray transport case, accounting for the decoupling leads to significantly different wind properties such as the cosmic ray spatial distribution, wind speed, density, and temperature. These results have implications for the magnetization of the circumgalactic medium and the pollution of the circumgalactic medium with cosmic rays.

  9. Cosmic Rays Astrophysics: The Discipline, Its Scope, and Its Applications

    Science.gov (United States)

    Barghouty, A. F.

    2009-01-01

    This slide presentation gives an overview of the discipline surrounding cosmic ray astrophysics. It includes information on recent assertions surrounding cosmic rays, exposure levels, and a short history with specific information on the origin, acceleration, transport, and modulation of cosmic rays.

  10. Re-evaluation of cosmic ray cutoff terminology

    Science.gov (United States)

    Cooke, D. J.; Humble, J. E.; Shea, M. A.; Smart, D. F.; Lund, N.; Rasmussen, I. L.; Byrnak, B.; Goret, P.; Petrou, N.

    1985-01-01

    The study of cosmic ray access to locations inside the geomagnetic field has evolved in a manner that has led to some misunderstanding and misapplication of the terminology originally developed to describe particle access. This paper presents what is believed to be a useful set of definitions for cosmic ray cutoff terminology for use in theoretical and experimental cosmic ray studies.

  11. Cosmic ray propagation with CRPropa 3

    Science.gov (United States)

    Alves Batista, R.; Erdmann, M.; Evoli, C.; Kampert, K.-H.; Kuempel, D.; Mueller, G.; Sigl, G.; Van Vliet, A.; Walz, D.; Winchen, T.

    2015-05-01

    Solving the question of the origin of ultra-high energy cosmic rays (UHECRs) requires the development of detailed simulation tools in order to interpret the experimental data and draw conclusions on the UHECR universe. CRPropa is a public Monte Carlo code for the galactic and extragalactic propagation of cosmic ray nuclei above ∼ 1017 eV, as well as their photon and neutrino secondaries. In this contribution the new algorithms and features of CRPropa 3, the next major release, are presented. CRPropa 3 introduces time-dependent scenarios to include cosmic evolution in the presence of cosmic ray deflections in magnetic fields. The usage of high resolution magnetic fields is facilitated by shared memory parallelism, modulated fields and fields with heterogeneous resolution. Galactic propagation is enabled through the implementation of galactic magnetic field models, as well as an efficient forward propagation technique through transformation matrices. To make use of the large Python ecosystem in astrophysics CRPropa 3 can be steered and extended in Python.

  12. Precision measurement of the proton and helium flux in primary cosmic rays with the Alpha Magnetic Spectrometer on the International Space Station

    Science.gov (United States)

    Heil, M.

    2016-11-01

    The precise measurements of the proton and helium flux in primary cosmic rays based on on data collected by the Alpha Magnetic Spectrometer during the first 30 months of operation (May 19, 2012 to November 26, 2013) onboard the International Space Station are presented. Knowledge of the rigidity dependence of the proton and helium flux is important in understanding the origin, acceleration, and propagation of cosmic rays in our galaxy. The high statistics of the measurements (300 mio. protons, 50 mio. helium) allow to study the detailed variations with rigidity of the fluxes spectral index. The spectral index of both the proton and the helium flux progressively hardens at rigidities larger than 100 GV. The rigidity dependence of the helium flux spectral index is similar to that of the proton spectral index though the magnitudes are different. Remarkably, the spectral index of the proton to helium flux ratio increases with rigidity up to 45 GV and then becomes constant; the flux ratio above 45 GV is well described by a single power law.

  13. Background suppression for a top quark mass measurement in the lepton+jets t anti t decay channel and alignment of the ATLAS silicon detectors with cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Goettfert, Tobias

    2010-01-21

    The investigation of top quark properties will be amongst the first measurements of observables of the Standard Model of particle physics at the Large Hadron Collider. This thesis deals with the suppression of background sources contributing to the event sample used for the determination of the top quark mass. Several techniques to reduce the contamination of the selected sample with events from W+jets production and combinatorial background from wrong jet associations are evaluated. The usage of the jet merging scales of a k{sub T} jet algorithm as event shapes is laid out and a multivariate technique (Fisher discriminant) is applied to discriminate signal from physics background. Several kinematic variables are reviewed upon their capability to suppress wrong jet associations. The second part presents the achievements on the alignment of the silicon part of the Inner Detector of the ATLAS experiment. A well-aligned tracking detector will be crucial for measurements that involve particle trajectories, e.g. for reliably identifying b-quark jets. Around 700,000 tracks from cosmic ray muons are used to infer the alignment of all silicon modules of ATLAS using the track-based local {chi}{sup 2} alignment algorithm. Various additions to the method that deal with the peculiarities of alignment with cosmic rays are developed and presented. The achieved alignment precision is evaluated and compared to previous results. (orig.)

  14. Design of a transition radiation detector for cosmic rays

    Science.gov (United States)

    Hartmann, G.; Mueller, D.; Prince, T.

    1975-01-01

    Transition radiation detectors consisting of sandwiches of plastic foam radiators and multiwire proportional chambers can be used to identify cosmic ray particles with energies gamma ? E/mc-squared is greater than 10 to the 3rd and to measure their energy in the region gamma is roughly equal to 10 to the 3rd

  15. On Anisotropy of Ultra-High Energy Cosmic-Rays

    CERN Document Server

    Kashti, Tamar

    2009-01-01

    We briefly summarize our study on anisotropy of Ultra-High Energy Cosmic-Rays (UHECRs), in which we define a statistics that measures the correlation between UHECRs and Large Scale Structure (LSS). We also comment here on recently published paper by Koers and Tinyakov that compared our statistics to improved KS statistics.

  16. Constraints on high energy interaction models from LHC and cosmic ray data

    Directory of Open Access Journals (Sweden)

    Ostapchenko Sergey

    2016-01-01

    Full Text Available Predictions of popular cosmic ray interaction models for some basic characteristics of cosmic ray-induced extensive air showers are analyzed in view of experimental data on proton-proton collisions, obtained at the Large Hadron Collider. The differences between the results are traced down to different approaches for the treatment of hadronic interactions, implemented in those models. Potential measurements by LHC and cosmic ray experiments, which could be able to discriminate between the alternative approaches, are proposed.

  17. Constraints on high energy interaction models from LHC and cosmic ray data

    Science.gov (United States)

    Ostapchenko, Sergey

    2016-10-01

    Predictions of popular cosmic ray interaction models for some basic characteristics of cosmic ray-induced extensive air showers are analyzed in view of experimental data on proton-proton collisions, obtained at the Large Hadron Collider. The differences between the results are traced down to different approaches for the treatment of hadronic interactions, implemented in those models. Potential measurements by LHC and cosmic ray experiments, which could be able to discriminate between the alternative approaches, are proposed.

  18. Cross-calibration of the Transition Radiation Detector of AMS-02 for an Energy Measurement of Cosmic-Ray Ions

    CERN Document Server

    Obermeier, Andreas

    2014-01-01

    Since May 2011 the AMS-02 experiment is installed on the International Space Station and is observing cosmic radiation. It consists of several state-of-the-art sub-detectors, which redundantly measure charge and energy of traversing particles. Due to the long exposure time of AMS-02 of many years the measurement of momentum for protons and ions is limited systematically by the spatial resolution and magnetic field strength of the silicon tracker. The maximum detectable rigidity for protons is about 1.8~TV, for helium about 3.6~TV. We investigate the possibility to extend the range of the energy measurement for heavy nuclei ($Z\\geq2$) with the transition radiation detector (TRD). The response function of the TRD shows a steep increase in signal from the level of ionization at a Lorentz factor $\\gamma$ of about 500 to $\\gamma\\approx20000$, where the transition radiation signal saturates. For heavy ions the signal fluctuations in the TRD are sufficiently small to allow an energy measurement with the TRD beyond t...

  19. A Tale of cosmic rays narrated in γ rays by Fermi

    Energy Technology Data Exchange (ETDEWEB)

    Tibaldo, Luigi, E-mail: ltibaldo@slac.stanford.edu [Kavli Institute for Particle Astrophysics and Cosmology, SLAC National Accelerator Laboratory, Menlo Park (United States)

    2014-07-01

    Because cosmic rays are charged particles scrambled by magnetic fields, combining direct measurements with other observations is crucial to understanding their origin and propagation. As energetic particles traverse matter and electromagnetic fields, they leave marks in the form of neutral interaction products. Among those, γ rays trace interactions of nuclei that inelastically collide with interstellar gas, as well as of leptons that undergo Bremsstrahlung and inverse-Compton scattering. Data collected by the Fermi large area telescope (LAT) are therefore telling the story of cosmic rays along their journey from sources through their home galaxies. Supernova remnants emerge as a notable γ -ray source population, and older remnants interacting with interstellar matter finally show strong evidence of the presence of accelerated nuclei. Yet the maximum energy attained by shock accelerators is poorly constrained by observations. Cygnus X, a massive star-forming region established by the LAT as housing cosmic-ray sources, provides a test case to study the impact of wind-driven turbulence on the early propagation. Interstellar emission resulting from the large-scale propagation of cosmic rays in the Milky Way is revealed in unprecedented detail that challenges some of the simple assumptions used for the modeling. Moreover, the cosmic-ray induced γ -ray luminosities of galaxies-scale quasi-linearly with their massive-star formation rates: the overall normalization of that relation below the calorimetric limit suggests that for most systems, a substantial fraction of energy in cosmic rays escapes into the intergalactic medium. The nuclear production models and the distribution of target gas and radiation fields, not determined precisely enough yet, are key to exploiting the full potential of γ - ray data. Nevertheless, data being collected by Fermi and complementary multiwavelength/multi messenger observations are bringing ever closer to solving the cosmic-ray mystery

  20. Galactic cosmic ray spectra during solar cycle 23 and 24. Measurement capabilities of the electron proton helium telescope on board SOHO

    Energy Technology Data Exchange (ETDEWEB)

    Kuehl, Patrick; Dresing, Nina; Gieseler, Jan; Heber, Bernd; Klassen, Andreas [Christian-Albrechts Universitaet zu Kiel (Germany)

    2016-07-01

    The solar modulation of galactic cosmic rays (GCR) can be studied in detail by long term variations of the GCR energy spectrum (e.g. on the scales of a solar cycle). With almost 20 years of data, the Electron Proton Helium INstrument (EPHIN) aboard SOHO is well suited for these kind of investigations. Although the design of the instrument is optimized to measure proton and helium isotope spectra up to 50 MeV/nucleon the capability exist that allow to determine energy spectra above 1.5 GeV/nucleon. Therefore we developed a sophisticated inversion method to calculate such proton spectra. The method relies on a GEANT4 Monte Carlo simulation of the instrument and a simplified spacecraft model that calculates the energy response function of EPHIN for electrons, protons and heavier ions. As a result we present galactic cosmic ray spectra from 1995 to 2015. For validation, the derived spectra are compared to AMS, BESS and PAMELA data. Furthermore we discuss the spectra with respect to the solar modulation.

  1. The COsmic-ray Soil Moisture Interaction Code (COSMIC for use in data assimilation

    Directory of Open Access Journals (Sweden)

    J. Shuttleworth

    2013-08-01

    Full Text Available Soil moisture status in land surface models (LSMs can be updated by assimilating cosmic-ray neutron intensity measured in air above the surface. This requires a fast and accurate model to calculate the neutron intensity from the profiles of soil moisture modeled by the LSM. The existing Monte Carlo N-Particle eXtended (MCNPX model is sufficiently accurate but too slow to be practical in the context of data assimilation. Consequently an alternative and efficient model is needed which can be calibrated accurately to reproduce the calculations made by MCNPX and used to substitute for MCNPX during data assimilation. This paper describes the construction and calibration of such a model, COsmic-ray Soil Moisture Interaction Code (COSMIC, which is simple, physically based and analytic, and which, because it runs at least 50 000 times faster than MCNPX, is appropriate in data assimilation applications. The model includes simple descriptions of (a degradation of the incoming high-energy neutron flux with soil depth, (b creation of fast neutrons at each depth in the soil, and (c scattering of the resulting fast neutrons before they reach the soil surface, all of which processes may have parameterized dependency on the chemistry and moisture content of the soil. The site-to-site variability in the parameters used in COSMIC is explored for 42 sample sites in the COsmic-ray Soil Moisture Observing System (COSMOS, and the comparative performance of COSMIC relative to MCNPX when applied to represent interactions between cosmic-ray neutrons and moist soil is explored. At an example site in Arizona, fast-neutron counts calculated by COSMIC from the average soil moisture profile given by an independent network of point measurements in the COSMOS probe footprint are similar to the fast-neutron intensity measured by the COSMOS probe. It was demonstrated that, when used within a data assimilation framework to assimilate COSMOS probe counts into the Noah land surface

  2. Balloon Measurements of Cosmic Ray Muon Spectra in the Atmosphere along with those of Primary Protons and Helium Nuclei over Mid-Latitude

    CERN Document Server

    Bellotti, R; Circella, M; De Marzo, C; Golden, R L; Stochaj, S J; De Pascale, M P; Morselli, A; Picozza, P; Stephens, S A; Hof, M; Menn, W; Simon, M; Mitchell, J W; Ormes, J F; Streitmatter, R E; Finetti, N; Grimani, C; Papini, P; Piccardi, S; Spillantini, P; Basini, G; Ricci, M

    1999-01-01

    We report here the measurements of the energy spectra of atmospheric muons and of the cosmic ray primary proton and helium nuclei in a single experiment. These were carried out using the MASS superconducting spectrometer in a balloon flight experiment in 1991. The relevance of these results to the atmospheric neutrino anomaly is emphasized. In particular, this approach allows uncertainties caused by the level of solar modulation, the geomagnetic cut-off of the primaries and possible experimental systematics to be decoupled in the comparison of calculated fluxes of muons to measured muon fluxes. The muon observations cover the momentum and depth ranges of 0.3-40 GeV/c and 5-886 g/cmsquared, respectively. The proton and helium primary measurements cover the rigidity range from 3 to 100 GV, in which both the solar modulation and the geomagnetic cut-off affect the energy spectra at low energies.

  3. Fragmentation cross-sections and model uncertainties in Cosmic Ray propagation physics

    CERN Document Server

    Tomassetti, Nicola

    2015-01-01

    Abundances and energy spectra of cosmic ray nuclei are being measured with high accuracy by the AMS experiment. These observations can provide tight constraints to the propagation models of galactic cosmic rays. In the view of the release of these data, I present an evaluation of the model uncertainties associated to the cross-sections for secondary production of Li-Be-B nuclei in cosmic rays. I discuss the role of cross section uncertainties in the calculation of the boron-to-carbon and beryllium-to-boron ratios, as well as their impact in the determination of the cosmic-ray transport parameters.

  4. Observing The Cosmic Ray Moon Shadow With VERITAS

    CERN Document Server

    Bird, Ralph

    2015-01-01

    The Earth is subjected to a uniform flux of very-high-energy (VHE, E > 100 GeV) cosmic rays unless they are obscured by an object, such as the Moon, in which case a deficit or shadow is created. Since cosmic rays are charged this deficit is deflected by the Earth's magnetic field, enabling the rigidity of the obstructed cosmic rays to be determined. Measurement of the relative deficits of different species enables the positron fraction and the antiproton ratio to be measured. The April 15, 2014 lunar eclipse was visible with the VERITAS Cherenkov telescopes, which allowed (with special UV bandpass filters) 74 minutes of direct observations of the Moon and the associated deficit in the cosmic-ray flux. The results of this observation are presented. In addition VERITAS has been conducting a series of observations by pointing close to a partially illuminated Moon, with a reduced photomultiplier tube high voltage and UV bandpass filters. We present the technique developed for these observations and their current ...

  5. The isotopes of neon in the galactic cosmic rays

    Science.gov (United States)

    Garcia-Munoz, M.; Simpson, J. A.; Wefel, J. P.

    1979-01-01

    The paper examines the results obtained by the University of Chicago instrument on board the IMP 7 satellite used to measure the abundances of Ne-20 and Ne-22 in the galactic cosmic rays during 1973-1977, over the general energy range of 60-230 MeV per nucleon. It is reported that the instrument shows a mass resolution of 0.7 amu(sigma) which was confirmed by calibrating a backup instrument at the LBL Bevalac with separated beams of neon isotopes. Through the use of standard solar modulation and cosmic-ray propagation models, the cosmic-ray source ratio inferred is Ne-22/Ne-20 = 0.38 = or -0.07 which is significantly greater than the present solar system ratio. It is concluded that propagation effects or cross-section uncertainties cannot account for such a large abundance of Ne-22, and thus this measurement provides evidence that the cosmic rays come from a source region where the Ne-22 abundance is substantially greater than in solar system material.

  6. Long-lived staus from cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Ahlers, M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Illana, J.I.; Masip, M. [Granada Univ. (Spain). CAFPE y Dept. de Fisica Teorica y del Cosmos; Meloni, D. [Univ. degli Studi di Roma La Spienza (Italy). Dipt. di Fisica; INFN, Roma (Italy)

    2007-05-15

    The collision of a high energy cosmic ray with a nucleon in the upper atmosphere could produce long-lived heavy particles. Such particles would be very penetrating, since the energy loss in matter scales as the inverse mass, and could reach a neutrino telescope like IceCube from large zenith angles. Here we study this possibility and focus on the long-lived stau of SUSY models with a gravitino LSP. The signal would be a pair of muon-like parallel tracks separated by 50 meters along the detector. We evaluate the background of muon pairs and show that any events from zenith angles above 80. could be explained by the production of these heavy particles by cosmic rays. (orig.)

  7. Cosmic Ray physics with ARGO-YBJ

    Energy Technology Data Exchange (ETDEWEB)

    Iacovacci, M. [Dipartimento di Fisica dell' Università di Napoli ”Federico II” and INFN Napoli, Complesso Universitario MSA, Via Cintia, 80126 Napoli (Italy)

    2013-06-15

    The ARGO-YBJ experiment has been in stable data taking from November 2007 till February 2013 at the Yang-BaJing Cosmic Ray Laboratory (Tibet, P.R.China, 4300 m a.s.l.). It exploits the full coverage and the high altitude to detect air showers with an energy threshold as low as a few hundred GeV. The detector is made of a single layer of RPCs operated in streamer mode, fully instrumenting a central carpet of about 5800 m{sup 2}. A guard ring extends the partially instrumented area to about 11,000 m{sup 2}. The main results so far achieved on Cosmic Ray physics are reported.

  8. The glacial cycles and cosmic rays

    CERN Document Server

    Kirkby, Jasper; Müller, R A

    2004-01-01

    The cause of the glacial cycles remains a mystery. The origin is widely accepted to be astronomical since paleoclimatic archives contain strong spectral components that match the frequencies of Earth's orbital modulation. Milankovitch insolation theory contains similar frequencies and has become established as the standard model of the glacial cycles. However, high precision paleoclimatic data have revealed serious discrepancies with the Milankovitch model that fundamentally challenge its validity and re-open the question of what causes the glacial cycles. We propose here that the ice ages are initially driven not by insolation cycles but by cosmic ray changes, probably through their effect on clouds. This conclusion is based on a wide range of evidence, including results presented here on speleothem growth in caves in Austria and Oman, and on a record of cosmic ray flux over the past 220 kyr obtained from the 10Be composition of deep-ocean sediments.

  9. The Pierre Auger Cosmic Ray Observatory

    CERN Document Server

    ,

    2015-01-01

    The Pierre Auger Observatory, located on a vast, high plain in western Argentina, is the world's largest cosmic ray observatory. The objectives of the Observatory are to probe the origin and characteristics of cosmic rays above $10^{17}$ eV and to study the interactions of these, the most energetic particles observed in nature. The Auger design features an array of 1660 water-Cherenkov particle detector stations spread over 3000 km$^2$ overlooked by 24 air fluorescence telescopes. In addition, three high elevation fluorescence telescopes overlook a 23.5 km$^2$, 61 detector infill array. The Observatory has been in successful operation since completion in 2008 and has recorded data from an exposure exceeding 40,000 km$^2$ sr yr. This paper describes the design and performance of the detectors, related subsystems and infrastructure that make up the Auger Observatory.

  10. Ultra High Energy Cosmic Rays: Strangelets?

    Institute of Scientific and Technical Information of China (English)

    徐仁新; 吴飞

    2003-01-01

    The conjecture that ultra-high-energy cosmic rays (UHECRs) are actually strangelets is discussed. Besides the reason that strangelets can do as cosmic rays beyond the Greisen-Zatsepin-Kuzmin-cutoff, another argument to support the conjecture is addressed by the study of formation of Te V-scale microscopic black holes when UHECRs bombarding bare strange stars. It is proposed that the exotic quark surface of a bare strange star could be an effective astro-laboratory in the investigations of the extra dimensions and of the detection of ultra-high-energy neutrino fluxes. The flux of neutrinos (and other point-like particles) with energy larger than 2.3 × 1020 eV could be expected to be smaller than 10-26 cm-2 s-1 if there are two extra spatial dimensions.

  11. Are ultrahigh energy cosmic rays heavy nuclei?

    Energy Technology Data Exchange (ETDEWEB)

    Mikhailov, A.A. [Yu.G. Shafer Institute of Cosmophysical Research and Aeronomy, 31 Lenin Ave., 677980 Yakutsk (Russian Federation)

    2008-01-15

    A new approach to estimate the composition of cosmic rays is proposed. It is found that the zenith angle distributions and muon components of extensive air showers observed by the Yakutsk and AGASA arrays for energies E>10{sup 19} eV and E>4x10{sup 19} eV differ from each other. It is suggested that the primary cosmic rays at E>4x10{sup 19}eV are heavier than those at E{approx}10{sup 19} eV. In our method we selected one variant to estimate the shower energy from two variants, as suggested by physicists of the SUGAR array. According to the 'Hillas-E' model, the SUGAR array has detected 8 showers with energy E>10{sup 20} eV.

  12. The Pierre Auger Cosmic Ray Observatory

    Science.gov (United States)

    Pierre Auger Collaboration

    2015-10-01

    The Pierre Auger Observatory, located on a vast, high plain in western Argentina, is the world's largest cosmic ray observatory. The objectives of the Observatory are to probe the origin and characteristics of cosmic rays above 1017 eV and to study the interactions of these, the most energetic particles observed in nature. The Auger design features an array of 1660 water Cherenkov particle detector stations spread over 3000 km2 overlooked by 24 air fluorescence telescopes. In addition, three high elevation fluorescence telescopes overlook a 23.5 km2, 61-detector infilled array with 750 m spacing. The Observatory has been in successful operation since completion in 2008 and has recorded data from an exposure exceeding 40,000 km2 sr yr. This paper describes the design and performance of the detectors, related subsystems and infrastructure that make up the Observatory.

  13. Cosmic ray acceleration at modified shocks

    CERN Document Server

    Meli, A; Dimitrakoudis, S

    2007-01-01

    The non-linear back reaction of accelerated cosmic rays at the shock fronts, leads to the formation of a smooth precursor with a length scale corresponding to the diffusive scale of the energetic particles. Past works claimed that shocklets could be created in the precursor region of a specific shock width, which might energize few thermal particles to sufficient acceleration and furthermore this precursor region may act as confining large angle scatterer for very high energy cosmic rays. On the other hand, it has been shown that the smoothing of the shock front could lower the acceleration efficiency. These controversies motivated us to investigate numerically by Monte Carlo simulations the particle acceleration efficiency in oblique modified shocks. The results show flatter spectra compared to the spectra of the pressumed sharp discontinuity shock fronts. The findings are in accordance with theoretical predictions, since the scattering inside the precursor confines high energy particles to further scatterin...

  14. Solar cosmic rays fundamentals and applications

    CERN Document Server

    Miroshnichenko, Leonty

    2015-01-01

    The book summarizes the results of solar cosmic ray (SCR) investigations since 1942. The present monograph, unlike the reviews published earlier, treats the problem in self-contained form, in all its associations—from fundamental astrophysical aspects to geophysical, aeronautical and cosmonautical applications. It includes a large amount of new data, accumulated during the last several decades of space research. As a result of the "information burst" in space physics, there are a lot of new interesting theoretical concepts, models and ideas that deserve attention. The author gives an extensive bibliography, which covers non-partially the main achievements and failures in this field. The book will be helpful for a wide audience of space physicists and it will be relevant to graduate and postgraduate courses. The book will serve as a reference work for researchers and students in solar physics and astrophysical plasma physics, as well as in cosmic rays physics, astroparticle physics, space science, solar-terr...

  15. Cosmic-ray knee and flux of secondaries from interactions of cosmic rays with dark matter

    CERN Document Server

    Masip, Manuel

    2009-01-01

    We discuss possible implications of a large interaction cross section between cosmic rays and dark matter particles due to new physics at the TeV scale. In particular, in models with extra dimensions and a low fundamental scale of gravity the cross section grows very fast at transplanckian energies. We argue that the knee observed in the cosmic ray flux could be caused by such interactions. We show that this hypothesis implies a well defined flux of secondary gamma rays that seems consistent with MILAGRO observations.

  16. The measurement of the cosmic ray primary energy spectrum at 10{sup 16}-10{sup 18} eV with the KASCADE-Grande experiment

    Energy Technology Data Exchange (ETDEWEB)

    Cantoni, Elena [Istituto di Fisica dello Spazio Interplanetario INAF, Torino (Italy); Dipartimento di Fisica Generale dell' Universita, Torino (Italy); Institut fuer Kernphysik, Karlsruher Institut fuer Technologie (Germany); Apel, W.D.; Arteaga-Velazquez, J.C.; Bekk, K. [Institut fuer Kernphysik, Karlsruher Institut fuer Technologie (Germany); Bertaina, M. [Dipartimento di Fisica Generale dell' Universita, Torino (Italy); Bluemer, J. [Institut fuer Kernphysik, Karlsruher Institut fuer Technologie (Germany); Institut fuer Experimentelle Kernphysik, Karlsruher Institut fuer Technologie (Germany); Bozdog, H. [Institut fuer Kernphysik, Karlsruher Institut fuer Technologie (Germany); Brancus, I.M. [National Institute of Physics and Nuclear Engineering, Bucharest (Romania); Buchholz, P. [Fachbereich Physik, Universitaet Siegen (Germany); Chiavassa, A. [Dipartimento di Fisica Generale dell' Universita, Torino (Italy); Cossavella, F. [Institut fuer Experimentelle Kernphysik, Karlsruher Institut fuer Technologie (Germany); Daumiller, K. [Institut fuer Kernphysik, Karlsruher Institut fuer Technologie (Germany); Souza, V. de [Institut fuer Experimentelle Kernphysik, Karlsruher Institut fuer Technologie (Germany); Di Pierro, F. [Dipartimento di Fisica Generale dell' Universita, Torino (Italy); Doll, P.; Engel, R.; Engler, J.; Finger, M. [Institut fuer Kernphysik, Karlsruher Institut fuer Technologie (Germany); Fuhrmann, D. [Fachbereich Physik, Universitaet Wuppertal (Germany); Ghia, P.L. [Istituto di Fisica dello Spazio Interplanetario INAF, Torino (Italy)

    2011-03-15

    The KASCADE-Grande experiment operates at Karlsruhe Institute of Technology (KIT) in Germany. It's aim is the study of the primary cosmic radiation, through Extensive Air Shower detection, in the range 10{sup 16}-10{sup 18} eV. Here, measurements are of main interest to understand the high energy evolution of cosmic radiation: a change in the slope of the heavy primary spectrum is expected (as measured at lower energies for lighter primaries) as a possible confirmation of the predicted astrophysical mechanisms; moreover, in this range the transition from galactic to extragalactic radiation is supposed to take place and the observations could clarify the features of this transition, putting the basis for the interpretation of the data at the highest energies. For these tasks KASCADE-Grande fulfills very well the requirements, both concerning the acceptance and the experimental performances. The experiment is constituted by two co-operating arrays of detectors: the KASCADE array, with its 252 detectors in a dense grid of 200x200 m{sup 2} and the Grande array, made of 37 detectors arranged on a wider area of 700x700 m{sup 2}. The Grande array samples the total charged particles size of the air shower, while the KASCADE array provides the muon size In this contribution, KASCADE-Grande measurement of the cosmic ray primary energy spectrum is presented. The exploited technique, calibrated with simulations, combines the charged particles component and muon component on a shower by shower basis, performing the energy estimation of each primary event. Other techniques are also performed, for a better evaluation of systematics and a check of consistency of the hadronic interaction model used in simulations.

  17. Ultrahigh Energy Cosmic Rays: New Physics or Old Physics?

    CERN Document Server

    Stecker, F W

    2004-01-01

    We consider the advantages of and the problems associated with hypotheses to explain the origin of ulthrahigh energy cosmic rays (UHECR: E > 10 EeV) and the "trans GZK" cosmic rays (TGZK: E > 100 EeV), both through "old physics" (acceleration in cosmic sources) and "new physics" (new particles, topological defects, fat neutrino cross sections, Lorentz invariance violation).

  18. Longevity and Highest-Energy Cosmic Rays

    Science.gov (United States)

    Frampton, Paul H.; Keszthelyi, Bettina; Ng, Y. Jack

    It is proposed that the highest energy ~1020 eV cosmic ray primaries are protons which are decay products of a superheavy particle, G. The protons may be decay products either directly of a nearby (galactic) G or of a long-lived intermediate particle X which arises from decay of a distant (cosmological) G, then decays in or near our Galaxy. Such scenarios can occur in e.g. SU(15) grand unification and in some preon models.

  19. Cosmic ray test station for ATLAS RPC

    CERN Document Server

    Pietra, M Della; Canale, V; Caprio, M A; Carlino, G; Conventi, F; De Asmundis, R; Iengo, P; Patricelli, S; Romanó, L; Sekhniaidze, G; Della Volpe, D

    2003-01-01

    We describe the facility for RPC test with cosmic rays, designed and built at the laboratory of INFN and University of Naples. Trigger and tracking systems consist of a scintillator hodoscope and two drift chambers with track reconstruction resolution of similar to 400 mum. Trigger is provided by the twofold coincidence of scintillators covering a surface of 1 m**2. Two step motors move chambers synchronously along the station for RPC scanning. Up to eight RPCs can be tested simultaneously.

  20. Cosmic Ray Data in TRT Barrel

    CERN Multimedia

    M. Hance

    "I had a great day in August when I went into SR1," said Daniel Froidevaux, former project leader of the ATLAS Transition Radiation Tracker, "not only had all SCT barrels arrived at CERN, but there were cosmic ray tracks seen in the TRT!" Daniel's excitement was mirrored by the rest of the TRT collaboration when, on July 29, the first cosmic ray tracks were seen in the barrel. Along with many others in the community, Daniel was quick to point out that this is the cumulative result of years of R&D, test beam work, and an intense installation and integration schedule. Indeed, the cosmic ray readout is only possible through the coordination of many efforts, from detector mechanics to module assembly, power and high voltage control, cooling, gas systems, electronics and cabling, data acquisition, and monitoring. "Many people have worked very hard on the the TRT, some of them for more than 10 years," said Brig Williams, the leader of the UPenn group responsible for much of the TRT front end electronics. He ...

  1. High energy cosmic ray and neutrino astronomy

    CERN Document Server

    Waxman, E

    2011-01-01

    Cosmic-rays with energies exceeding 10^{19} eV are referred to as Ultra High Energy Cosmic Rays (UHECRs). The sources of these particles and their acceleration mechanism are unknown, and for many years have been the issue of much debate. The first part of this review describes the main constraints, that are implied by UHECR observations on the properties of candidate UHECR sources, the candidate sources, and the related main open questions. In order to address the challenges of identifying the UHECR sources and of probing the physical mechanisms driving them, a "multi-messenger" approach will most likely be required, combining electromagnetic, cosmic-ray and neutrino observations. The second part of the review is devoted to a discussion of high energy neutrino astronomy. It is shown that detectors, which are currently under construction, are expected to reach the effective mass required for the detection of high energy extra-Galactic neutrino sources, and may therefore play a key role in the near future in re...

  2. Electrons and Positrons in Cosmic Rays

    CERN Document Server

    Panov, A D

    2013-01-01

    This review concentrates on the results obtained, over the last ten years, on the astrophysics of high-energy cosmic ray electrons and positrons. The anomalies, observed in the data of recent experiments (possible bump in the electron spectrum and the PAMELA anomaly in the positron fraction) are discussed through the systematic use of simple analytical solutions of the transport equations for cosmic ray electrons. Three main ways of explaining the origin of the anomalies are considered: the conservative way supposing the positrons to be pure secondary particles; the nearby sources like pulsars origin; and the dark matter origin. This review discusses, also, the inability to select the pulsars model or the dark matter model to explain the electron anomalies on the basis of the electron spectra with the usual large energy binning ($\\gtrsim15%$). It is argued that the signature of nearby pulsars origin of the anomalies against the dark matter origin could be the fine structure of the cosmic ray electron spectrum...

  3. Solar panels as cosmic-ray detectors

    CERN Document Server

    Stella, Carlo; Assis, Pedro; Brogueira, Pedro; Santo, Catarina Espirito; Goncalves, Patricia; Pimenta, Mario; De Angelis, Alessandro

    2014-01-01

    Due to fundamental limitations of accelerators, only cosmic rays can give access to centre-of- mass energies more than one order of magnitude above those reached at the LHC. In fact, extreme energy cosmic rays (1018 eV - 1020 eV) are the only possibility to explore the 100 TeV energy scale in the years to come. This leap by one order of magnitude gives a unique way to open new horizons: new families of particles, new physics scales, in-depth investigations of the Lorentz symmetries. However, the flux of cosmic rays decreases rapidly, being less than one particle per square kilometer per year above 1019 eV: one needs to sample large surfaces. A way to develop large-effective area, low cost, detectors, is to build a solar panel-based device which can be used in parallel for power generation and Cherenkov light detection. Using solar panels for Cherenkov light detection would combine power generation and a non-standard detection device.

  4. The Energy Spectrum of Ultra-High-Energy Cosmic Rays Measured by the Telescope Array FADC Fluorescence Detectors in Monocular Mode

    CERN Document Server

    Abu-Zayyad, T; Allen, M; Anderson, R; Azuma, R; Barcikowski, E; Belz, J W; Bergman, D R; Blake, S A; Cady, R; Cheon, B G; Chiba, J; Chikawa, M; Cho, E J; Cho, W R; Fujii, H; Fujii, T; Fukuda, T; Fukushima, M; Hanlon, W; Hayashi, K; Hayashi, Y; Hayashida, N; Hibino, K; Hiyama, K; Honda, K; Iguchi, T; Ikeda, D; Ikuta, K; Inoue, N; Ishii, T; Ishimori, R; Ito, H; Ivanov, D; Iwamoto, S; Jui, C C H; Kadota, K; Kakimoto, F; Kalashev, O; Kanbe, T; Kasahara, K; Kawai, H; Kawakami, S; Kawana, S; Kido, E; Kim, H B; Kim, H K; Kim, J H; Kitamoto, K; Kitamura, S; Kitamura, Y; Kobayashi, K; Kobayashi, Y; Kondo, Y; Kuramoto, K; Kuzmin, V; Kwon, Y J; Lan, J; Lim, S I; Lundquist, J P; Machida, S; Martens, K; Matsuda, T; Matsuura, T; Matsuyama, T; Matthews, J N; Myers, I; Minamino, M; Miyata, K; Murano, Y; Nagataki, S; Nakamura, T; Nam, S W; Nonaka, T; Ogio, S; Ogura, J; Ohnishi, M; Ohoka, H; Oki, K; Oku, D; Okuda, T; Ono, M; Oshima, A; Ozawa, S; Park, I H; Pshirkov, M S; Rodriguez, D C; Roh, S Y; Rubtsov, G; Ryu, D; Sagawa, H; Sakurai, N; Sampson, A L; Scott, L M; Shah, P D; Shibata, F; Shibata, T; Shimodaira, H; Shin, B K; Shin, J I; Shirahama, T; Smith, J D; Sokolsky, P; Sonley, T J; Springer, R W; Stokes, B T; Stratton, S R; Stroman, T A; Suzuki, S; Takahashi, Y; Takeda, M; Taketa, A; Takita, M; Tameda, Y; Tanaka, H; Tanaka, K; Tanaka, M; Thomas, S B; Thomson, G B; Tinyakov, P; Tkachev, I; Tokuno, H; Tomida, T; Troitsky, S; Tsunesada, Y; Tsutsumi, K; Tsuyuguchi, Y; Uchihori, Y; Udo, S; Ukai, H; Vasiloff, G; Wada, Y; Wong, T; Yamakawa, Y; Yamane, R; Yamaoka, H; Yamazaki, K; Yang, J; Yoneda, Y; Yoshida, S; Yoshii, H; Zollinger, R; Zundel, Z

    2013-01-01

    We present a measurement of the energy spectrum of ultra-high-energy cosmic rays performed by the Telescope Array experiment using monocular observations from its two new FADC-based fluorescence detectors. After a short description of the experiment, we describe the data analysis and event reconstruction procedures. Since the aperture of the experiment must be calculated by Monte Carlo simulation, we describe this calculation and the comparisons of simulated and real data used to verify the validity of the aperture calculation. Finally, we present the energy spectrum calculated from the merged monocular data sets of the two FADC-based detectors, and also the combination of this merged spectrum with an independent, previously published monocular spectrum measurement performed by Telescope Array's third fluorescence detector (Abu-Zayyad {\\it et al.}, {Astropart. Phys.} 39 (2012), 109). This combined spectrum corroborates the recently published Telescope Array surface detector spectrum (Abu-Zayyad {\\it et al.}, ...

  5. Cosmic X-ray background and solitars.

    Science.gov (United States)

    Chiu, H.-Y.

    In this paper the authors has examined the observational consequences of a class of new astronomical objects proposed by Friedberg, Lee and Pang, called solitars which are degenerate vacuum states embedded with particles. A study is made to include finite temperature effect and pair creation. Quark is believed to be the only species that can exist in the interior of solitars. Massive quark solitars are primarily X-ray emitters and may account for the large unexplained thermal component of the cosmic X-ray background.

  6. Solar Cosmic Ray Acceleration and Propagation

    Science.gov (United States)

    Podgorny, I. M.; Podgorny, A. I.

    2016-05-01

    The GOES data for emission of flare protons with the energies of 10 - 100 MeV are analyzed. Proton fluxes of ~1032 accelerated particles take place at the current sheet decay. Proton acceleration in a flare occurs along a singular line of the current sheet by the Lorentz electric field, as in the pinch gas discharge. The duration of proton flux measured on the Earth orbit is by 2 - 3 orders of magnitude longer than the duration of flares. The high energy proton flux from the flares that appear on the western part of the solar disk arrives to Earth with the time of flight. These particles propagate along magnetic lines of the Archimedes spiral connecting the flare with the Earth. Protons from the flare on the eastern part of the solar disk begin to register with a delay of several hours. Such particles cannot get on the magnetic field line connecting the flare with the Earth. These protons reach the Earth, moving across the interplanetary magnetic field. The particles captured by the magnetic field in the solar wind are transported with solar wind and due to diffusion across the magnetic field. The patterns of solar cosmic rays generation demonstrated in this paper are not always observed in the small ('1 cm-2 s-1 ster-1) proton events.

  7. 1912 – 2012: a century of studying cosmic rays

    CERN Multimedia

    Anaïs Schaeffer

    2012-01-01

    One year ago, the Alpha Magnetic Spectrometer was docked to the International Space Station. This state-of-the-art tool for studying cosmic rays has revolutionised methods of detecting cosmic radiation, which was discovered barely a century ago.   Victor Francis Hess (in the basket), back from his balloon flight in August 1912. Source: American Physical Society. Exactly one hundred years ago, the Austrian-American physicist Victor Francis Hess discovered cosmic rays. The researcher observed the phenomenon while on board a balloon; he found that at an altitude of 1,000 to 5,000 metres, the wires of his Wulf electrometer (a tool used to measure radiation) showed an increase in electrical charge. Hess had just proven the existence of ionising radiation coming from outside the Earth’s atmosphere. Twenty years or so later, the invention of the Geiger-Müller counter enabled physicists to study the properties of the rays more precisely. One century later, cosmic rays and the ques...

  8. Discrepant hardening observed in cosmic-ray elemental spectra

    CERN Document Server

    Ahn, H S; Bagliesi, M G; Beatty, J J; Bigongiari, G; Childers, J T; Conklin, N B; Coutu, S; DuVernois, M A; Ganel, O; Han, J H; Jeon, J A; Kim, K C; Lee, M H; Lutz, L; Maestro, P; Malinin, A; Marrocchesi, P S; Minnick, S; Mognet, S I; Nam, J; Nam, S; Nutter, S L; Park, I H; Park, N H; Seo, E S; Sina, R; Wu, J; Yang, J; Yoon, Y S; Zei, R; Zinn, S Y; 10.1088/2041-8205/714/1/L89

    2010-01-01

    The balloon-borne Cosmic Ray Energetics And Mass (CREAM) experiment launched five times from Antarctica has achieved a cumulative flight duration of about 156 days above 99.5% of the atmosphere. The instrument is configured with complementary and redundant particle detectors designed to extend direct measurements of cosmic-ray composition to the highest energies practical with balloon flights. All elements from protons to iron nuclei are separated with excellent charge resolution. Here we report results from the first two flights of ~70 days, which indicate hardening of the elemental spectra above ~200 GeV/nucleon and a spectral difference between the two most abundant species, protons and helium nuclei. These results challenge the view that cosmic-ray spectra are simple power laws below the so-called knee at ~1015 eV. This discrepant hardening may result from a relatively nearby source, or it could represent spectral concavity caused by interactions of cosmic rays with the accelerating shock. Other possible ...

  9. Where does the heliospheric modulation of galactic cosmic rays start?

    Science.gov (United States)

    Strauss, R. D.; Potgieter, M. S.

    2014-04-01

    The long outstanding question of where the heliospheric (solar) modulation of galactic cosmic rays actually begins, in terms of spatial position, as well as at what high kinetic energy, can now be answered. Both answers are possible by using the results of an advanced numerical model, together with appropriate observations. Voyager 1 has been exploring the outskirts of the heliosphere and is presently entering what can be called the very local interstellar medium. It has been generally expected, and accepted, that once the heliopause is crossed, the local interstellar spectrum (LIS) should be measured in situ by the Voyager spacecraft. However, we show that this may not be the case and that modulation effects on galactic cosmic rays can persist well beyond the heliopause. For example, proton observations at 100 MeV close to the heliopause can be lower by ∼25% to 40% than the LIS, depending on solar modulation conditions. It is also illustrated quantitatively that significant solar modulation diminishes above ∼50 GeV at Earth. It is found that cosmic ray observations above this energy contain less that 5% solar modulation effects and should therefore reflect the LIS for galactic cosmic rays. Input spectra, in other words the very LIS, for solar modulation models are now constrained by in situ observations and can therefore not any longer be treated arbitrarily. It is also possible for the first time to determine the lower limit of the very LIS from a few MeV/nuc to very high energies.

  10. Cosmic ray tests of large area Multigap Resistive Plate Chambers

    CERN Document Server

    An, S; Kim, J; Williams, M C S; Zichichi, A; Zuyeuski, R

    2007-01-01

    We have built Multigap Resistive Plate Chambers (MRPC) with six gas gaps and an active area of . The signals are generated on 2.5 cm wide copper pickup strips; these are read out at each end thus allowing the position of the hit along the strip to be obtained from the time difference. Using three of these chambers we have set up a cosmic tracking system in a similar manner as planned for the Extreme Energy Events (EEE) project. The details of the set-up are presented in this paper. In addition we discuss the time and position resolution of these MRPCs measured using cosmic rays.

  11. Radio Detection of Ultra-High Energy Cosmic Rays

    CERN Document Server

    Falcke, Heino

    2008-01-01

    The radio technique for the detection of cosmic particles has seen a major revival in recent years. New and planned experiments in the lab and the field, such as GLUE, Anita, LUNASKA, Codalema, LOPES as well as sophisticated Monte Carlo experiments have produced a wealth of new information and I review here briefly some of the main results with the main focus on air showers. Radio emission of ultra-high energy cosmic particles offers a number of interesting advantages. Since radio waves suffer no attenuation, radio measurements allow the detection of very distant or highly inclined showers, can be used day and night, and provide a bolometric measure of the leptonic shower component. The LOPES experiment has detected the radio emission from cosmic rays, confirmed the geosynchrotron effect for extensive air showers, and provided a good calibration fomula to convert the radio signal into primary particle energy. Moreover, Monte Carlo simulations suggest that also the shower maximum and the particle composition c...

  12. Ultra-high energy cosmic ray escape from gamma-ray bursts, and the cosmic ray-neutrino connection

    Energy Technology Data Exchange (ETDEWEB)

    Baerwald, Philipp; Bustamante, Mauricio; Huemmer, Svenja; Winter, Walter [Institut fuer Theoretische Physik und Astrophysik, Universitaet Wuerzburg, 97074 Wuerzburg (Germany); Spector, Amyad; Waxman, Eli [Physics Faculty, Weizman Institute of Science, POB 26, Rehovot (Israel)

    2013-07-01

    Recent IceCube searches for GRB neutrinos have strongly constrained current models predicting GRBs as the source of UHECR. We show that updated calculations based on the connection of gamma-rays and neutrinos give significantly lower neutrino bounds [Phys. Rev. Lett. 108 (2012) 231101]. However additional constraints from the theoretical connection of cosmic rays to neutrinos, based on the assumption that UHECR escape as neutrons, still persist. We therefore explore the possibility of having an additional direct cosmic ray escape component which circumvents these constraints. We show that it is possible to distinguish three distinct regimes with this approach, with the standard (one neutrino per cosmic ray) escape via neutrons only accounting for a small range in the parameter space. Moreover we show how this additional component could improve cosmic ray predictions.

  13. Understanding cosmic rays with Balloon and Space Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Picozza, P., E-mail: piergiorgio.picozza@roma2.infn.it [University of Rome Tor Vergata, Department of Physics, Via della Ricerca Scientifica 1, 00133 Rome (Italy); INFN, Sezione di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome (Italy); Di Felice, V. [INFN, Sezione di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome (Italy)

    2013-10-15

    Measurements of cosmic rays provide important information on their sources and on the mechanisms of acceleration and propagation of cosmic particles through the Galaxy. Positrons and antiprotons in cosmic rays are also the major candidates for searching signals from annihilation of dark matter and contributions from other exotic sources as nearby pulsars. Many balloon-borne experiments have been performed since the sixties, obtaining important results that strongly suggested the realization of the PAMELA and Fermi satellite missions, the latter mainly for gamma rays, and AMS-02 on the ISS. The precision of the measurements and the high statistics highlighted unexpected features in the cosmic particle energy spectra that are setting strong constraints to the nature of Dark Matter and are contributing to change our basic vision of their origin and propagation. The continuous particle detection in space experiments is allowing a constant monitoring of the solar activity and detailed study of the solar modulation for a long period, giving important improvements to the comprehension of the heliosphere mechanisms.

  14. Cosmological Cosmic Rays: Sharpening the Primordial Lithium Problem

    CERN Document Server

    Prodanovic, Tijana

    2007-01-01

    Cosmic structure formation leads to large-scale shocked baryonic flows which are expected to produce a cosmological population of structure-formation cosmic rays (SFCRs). Interactions between SFCRs and ambient baryons will produce lithium isotopes via \\alpha+\\alpha \\to ^{6,7}Li. This pre-Galactic (but non-primordial) lithium should contribute to the primordial 7Li measured in halo stars and must be subtracted in order to arrive to the true observed primordial lithium abundance. In this paper we point out that the recent halo star 6Li measurements can be used to place a strong constraint to the level of such contamination, because the exclusive astrophysical production of 6Li is from cosmic-ray interactions. We find that the putative 6Li plateau, if due to pre-Galactic cosmic-ray interactions, implies that SFCR-produced lithium represents Li_{SFCR}/Li_{plateau}\\approx 15% of the observed elemental Li plateau. Taking the remaining plateau Li to be cosmological 7Li, we find a revised (and slightly worsened) disc...

  15. Determining the Mass Composition of Cosmic Rays Using Shower Universality

    Science.gov (United States)

    Biscoveanu, Andrea; Mostafa, Miguel

    2016-03-01

    The mass composition of ultra-high energy cosmic rays is an important parameter for understanding their origin. Using both fluorescence and surface detectors, The Pierre Auger Observatory measures the depth of shower maximum, Xmax, from which the mass of the primary particle can be inferred. The surface detector measurement of Xmax is based on the principle of shower universality, and increases the number of cosmic rays by at least a factor of 10 with respect to the fluorescence detector measurement since it is not limited by the duty cycle of the fluorescence telescopes. We present an event-by-event comparison of the Xmax measurements from both types of detectors for energies above 10 18 . 8 eV, and a preliminary anisotropy study discriminating by the mass of the primary particle calculated using universality.

  16. An Educational Study of the Barometric Effect of Cosmic Rays with a Geiger Counter

    Science.gov (United States)

    Famoso, Barbara; La Rocca, Paola; Riggi, Francesco

    2005-01-01

    An educational study of the barometric effect of cosmic rays was carried out using an inexpensive experimental set-up that allowed for long-term monitoring of atmospheric pressure and cosmic ray flux as measured in a Geiger counter. The investigation was intended as a pilot study in view of ongoing involvements of high-school teams operating…

  17. Cosmic Rays Response of High-pressure Ionization Chamber

    Institute of Scientific and Technical Information of China (English)

    GAO; Fei; XIAO; Xue-fu; NI; Ning; ZHANG; Xi; HOU; Jin-bing; SONG; Ming-zhe; WANG; Hong-yu

    2013-01-01

    In order to study cosmic rays response characteristics of self-designed HPIC(high pressure ionization chamber),model JLZ-Ⅲ,the JLZ-Ⅲwas placed on a boat which is 3 meters much deeper and at least 1 kilometer away from land to measure air kerma rate in the open water in Miyun Reservoir(geomagnetic latitude 29°N,altitude 160 m),Beijing.The result was compared with the measurement

  18. The intergalactic propagation of ultrahigh energy cosmic ray nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, Dan; /Fermilab; Sarkar, Subir; /Oxford U., Theor. Phys.; Taylor, Andrew M.; /Oxford U.

    2006-08-01

    We investigate the propagation of ultra-high energy cosmic ray nuclei (A = 1-56) from cosmologically distant sources through the cosmic radiation backgrounds. Various models for the injected composition and spectrum and of the cosmic infrared background are studied using updated photodisintegration cross-sections. The observational data on the spectrum and the composition of ultra-high energy cosmic rays are jointly consistent with a model where all of the injected primary cosmic rays are iron nuclei (or a mixture of heavy and light nuclei).

  19. A cosmic ray-climate link and cloud observations

    CERN Document Server

    Laken, Benjamin A; Calogovic, Jasa; Dunne, Eimear M; 10.1051/swsc/2012018

    2012-01-01

    Despite over 35 years of constant satellite-based measurements of cloud, reliable evidence of a long-hypothesized link between changes in solar activity and Earth's cloud cover remains elusive. This work examines evidence of a cosmic ray cloud link from a range of sources, including satellite-based cloud measurements and long-term ground-based climatological measurements. The satellite-based studies can be divided into two categories: 1) monthly to decadal timescale correlations, and 2) daily timescale epoch-superpositional (com