WorldWideScience

Sample records for cosmic ray induced

  1. Calculation of cosmic ray induced single event upsets: Program CRUP (Cosmic Ray Upset Program)

    Science.gov (United States)

    Shapiro, P.

    1983-09-01

    This report documents PROGRAM CRUP, COSMIC RAY UPSET PROGRAM. The computer program calculates cosmic ray induced single-event error rates in microelectronic circuits exposed to several representative cosmic-ray environments.

  2. Regional cosmic ray induced ionization and geomagnetic field changes

    Directory of Open Access Journals (Sweden)

    G. A. Kovaltsov

    2007-08-01

    Full Text Available Cosmic ray induced ionization (CRII is an important factor of outer space influences on atmospheric properties. Variations of CRII are caused by two different processes – solar activity variations, which modulate the cosmic ray flux in interplanetary space, and changes of the geomagnetic field, which affects the cosmic ray access to Earth. Migration of the geomagnetic dipole axis may greatly alter CRII in some regions on a time scale of centuries and longer. Here we present a study of CRII regional effects of the geomagnetic field changes during the last millennium for two regions: Europe and the Far East. We show that regional effects of the migration of the geomagnetic dipole axis may overcome global changes due to solar activity variations.

  3. Cosmic-ray induced diffusion in interstellar ices

    CERN Document Server

    Kalvans, Juris

    2014-01-01

    Cosmic rays are able to heat interstellar dust grains. This may enhance molecule mobility in icy mantles that have accumulated on the grains in dark cloud cores. A three-phase astrochemical model was used to investigate the molecule mobility in interstellar ices. Specifically, diffusion through pores in ice between the subsurface mantle and outer surface, assisted by whole-grain heating, was considered. It was found that the pores can serve as an efficient transport route for light species. The diffusion of chemical radicals from the mantle to the outer surface are most effective. These species accumulate in the mantle because of photodissociation by the cosmic-ray induced photons. The faster diffusion of hydrogen within the warm ice enhances the hydrogenation of radicals on pore surfaces. The overall result of the whole grain heating-induced radial diffusion in ice are higher abundances of the ice species whose synthesis involve light radicals. Examples of stable species synthesized this way include the comp...

  4. Cosmic Rays Induced Background Radiation on Board of Commercial Flights

    CERN Document Server

    Pinilla, S; Núñez, L A

    2015-01-01

    The aim of this work is to determine the total integrated flux of cosmic radiation which a commercial aircraft is exposed to along specific flight trajectories. To study the radiation background during a flight and its modulation by effects such as altitude, latitude, exposure time and transient magnetospheric events, we perform simulations based on Magnetocosmics and CORSIKA codes, the former designed to calculate the geomagnetic effects on cosmic rays propagation and the latter allows us to simulate the development of extended air showers in the atmosphere. In this first work, by considering the total flux of cosmic rays from 5 GeV to 1 PeV, we obtained the expected integrated flux of secondary particles on board of a commercial airplane during the Bogot\\'a-Buenos Aires trip by point-to-point numerical integration.

  5. Latitudinal dependence of low cloud amount on cosmic ray induced ionization

    DEFF Research Database (Denmark)

    Usoskin, I.G.; Marsh, N.; Kovaltsov, G.A.;

    2004-01-01

    A significant correlation between the annual cosmic ray flux and the amount of low clouds has recently been found for the past 20 years. However, of the physical explanations suggested, none has been quantitatively verified in the atmosphere by a combination of modelling and experiment. Here we...... study the relation between the global distributions of the observed low cloud amount and the calculated tropospheric ionization induced by cosmic rays. We find that the time evolution of the low cloud amount can be decomposed into a long-term trend and inter-annual variations, the latter depicting...... dependence gives strong support for the hypothesis that the cosmic ray induced ionization modulates cloud properties....

  6. Disentangling cosmic-ray and dark matter induced gamma-rays in galaxy clusters?

    CERN Document Server

    Maurin, D; Nezri, E; Pointecouteau, E

    2012-01-01

    Galaxy clusters are among the best targets for indirect dark matter detection in gamma-rays, despite the large astrophysical background expected from these objects. Detection is now within reach of current observatories (Fermi-LAT or Cerenkov telescopes), however, assessing the origin of this signal might be difficult. We investigate whether the `number of stacked objects - flux' dependence (log N-log F) could be a signature of the dominant process at stake. We use the CLUMPY code to integrate the signal from decaying/annihilating DM and cosmic rays along the line of sight. We assume the standard NFW profile for the dark matter density and rely on a parametrised emissivity for the cosmic-ray component. In this context, the consequences of stacking are explored using the MCXC meta-catalog of galaxy clusters. The log N-log F power-law behaviour may be a clear signature to disentangle decaying dark matter from cosmic-ray induced gamma-rays (and DM annihilation), contrarily to DM annihilation that has the same sl...

  7. Cosmic rays on earth.

    Science.gov (United States)

    Allkofer, O. C.; Grieder, P. K. F.

    Contents: Cosmic rays in the atmosphere: Charged hadron data. Neutron data. Gamma-ray data. Electron data. Muon data. Data on nuclei. Data on antiparticles. Cosmic rays at sea level: Muon data. Charged hadron data.Neutron data. Electron data. Gamma-ray data. Data on nuclei. Cosmic rays underground: Muon data. Neutrino data.

  8. Galactic cosmic ray-induced radiation dose on terrestrial exoplanets.

    Science.gov (United States)

    Atri, Dimitra; Hariharan, B; Grießmeier, Jean-Mathias

    2013-10-01

    This past decade has seen tremendous advancements in the study of extrasolar planets. Observations are now made with increasing sophistication from both ground- and space-based instruments, and exoplanets are characterized with increasing precision. There is a class of particularly interesting exoplanets that reside in the habitable zone, which is defined as the area around a star where the planet is capable of supporting liquid water on its surface. Planetary systems around M dwarfs are considered to be prime candidates to search for life beyond the Solar System. Such planets are likely to be tidally locked and have close-in habitable zones. Theoretical calculations also suggest that close-in exoplanets are more likely to have weaker planetary magnetic fields, especially in the case of super-Earths. Such exoplanets are subjected to a high flux of galactic cosmic rays (GCRs) due to their weak magnetic moments. GCRs are energetic particles of astrophysical origin that strike the planetary atmosphere and produce secondary particles, including muons, which are highly penetrating. Some of these particles reach the planetary surface and contribute to the radiation dose. Along with the magnetic field, another factor governing the radiation dose is the depth of the planetary atmosphere. The higher the depth of the planetary atmosphere, the lower the flux of secondary particles will be on the surface. If the secondary particles are energetic enough, and their flux is sufficiently high, the radiation from muons can also impact the subsurface regions, such as in the case of Mars. If the radiation dose is too high, the chances of sustaining a long-term biosphere on the planet are very low. We have examined the dependence of the GCR-induced radiation dose on the strength of the planetary magnetic field and its atmospheric depth, and found that the latter is the decisive factor for the protection of a planetary biosphere.

  9. Cosmic-ray induced gamma-ray emission from the starburst galaxy NGC 253

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xilu; Fields, Brian D. [Department of Astronomy, MC-221, 1002 W. Green Street, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States)

    2014-05-09

    Cosmic rays in galaxies interact with the interstellar medium and give us a direct view of nuclear and particle interactions in the cosmos. For example, cosmic-ray proton interactions with interstellar hydrogen produce gamma rays via PcrPism→π{sup 0}→γγ. For a 'normal' star-forming galaxy like the Milky Way, most cosmic rays escape the Galaxy before such collisions, but in starburst galaxies with dense gas and huge star formation rate, most cosmic rays do suffer these interactions [1,2]. We construct a 'thick-target' model for starburst galaxies, in which cosmic rays are accelerated by supernovae, and escape is neglected. This model gives an upper limit to the gamma-ray emission. Only two free parameters are involved in the model: cosmic-ray proton acceleration energy rate from supernova and the proton injection spectral index. The pionic gamma-radiation is calculated from 10 MeV to 10 TeV for the starburst galaxy NGC 253, and compared to Fermi and HESS data. Our model fits NGC 253 well, suggesting that cosmic rays in this starburst are in the thick target limit, and that this galaxy is a gamma-ray calorimeter.

  10. ALICE Cosmic Ray Detector

    CERN Multimedia

    Fernandez Tellez, A; Martinez Hernandez, M; Rodriguez Cahuantzi, M

    2013-01-01

    The ALICE underground cavern provides an ideal place for the detection of high energy atmospheric muons coming from cosmic ray showers. ACORDE detects cosmic ray showers by triggering the arrival of muons to the top of the ALICE magnet.

  11. Galactic cosmic ray induced radiation dose on terrestrial exoplanets

    CERN Document Server

    Atri, Dimitra; Griessmeier, Jean-Mathias

    2013-01-01

    This past decade has seen tremendous advancements in the study of extrasolar planets. Observations are now made with increasing sophistication from both ground and space based instruments, and exoplanets are characterized with increasing precision. There is a class of particularly interesting exoplanets, falling in the habitable zone, which is defined as the area around a star where the planet is capable of supporting liquid water on its surface. Theoretical calculations also suggest that close-in exoplanets are more likely to have weaker planetary magnetic fields, especially in case of super earths. Such exoplanets are subjected to a high flux of Galactic Cosmic Rays (GCRs) due to their weak magnetic moments. GCRs are energetic particles of astrophysical origin, which strike the planetary atmosphere and produce secondary particles, including muons, which are highly penetrating. Some of these particles reach the planetary surface and contribute to the radiation dose. Along with the magnetic field, another fac...

  12. Antarctic Cosmic Ray Astronomy

    Science.gov (United States)

    Duldig, Marc

    Cosmic ray observations related to Antarctica commenced in the austral summer of 1947-48 from sub-Antarctic Heard and Macquarie Islands and from the HMAS Wyatt Earp. Muon telescope observations from Mawson station Antarctica commenced in 1955. The International Geophysical Year was the impetus for the installation of a number of neutron monitors around Antarctica observing the lowest energy cosmic rays accessible by ground based instruments. In 1971 a new observatory was built at Mawson including the only underground muon telescope system at polar latitudes in either hemisphere. In the 1980s the South Pole Air Shower Experiment (SPASE) opened the highest energy cosmic ray window over Antarctica and this was followed by the in-ice neutrino experiment AMANDA. Over more than half a century cosmic ray astronomy has been undertaken from Antarctica and its surrounding regions and these observations have been critical to our growing understanding of nearby astrophysical structures. For example the Parker spiral magnetic field of the sun was confirmed through Mawson observations of a Solar flare induced Ground Level Enahncement in 1960 long before spacecraft were able to directly observe the interplanetary magnetic field. A summary of the Antarctic instrumental developments and the scientific advances that resulted will be presented.

  13. High energy cosmic rays

    CERN Document Server

    Stanev, Todor

    2010-01-01

    Offers an accessible text and reference (a cosmic-ray manual) for graduate students entering the field and high-energy astrophysicists will find this an accessible cosmic-ray manual Easy to read for the general astronomer, the first part describes the standard model of cosmic rays based on our understanding of modern particle physics. Presents the acceleration scenario in some detail in supernovae explosions as well as in the passage of cosmic rays through the Galaxy. Compares experimental data in the atmosphere as well as underground are compared with theoretical models

  14. Cosmic-ray-induced dissociation and reactions in warm interstellar ices

    CERN Document Server

    Kalvans, Juris

    2014-01-01

    Context. Cosmic ray particles that hit interstellar grains in dark molecular cores may induce whole-grain heating. The high temperature of a CR-heated grain allows energy barriers for bulk diffusion and reactions to be overcome. Additionally, ice molecules are destroyed by direct cosmic-ray induced dissociation. Aims. We provide a justified estimate of the significance of cosmic-ray induced surface-mantle diffusion, chemical reactions in ice, and dissociation of ice species in a star-forming interstellar cloud core. Methods. We considered a gas clump in a collapsing low-mass prestellar core and during the initial stages of protostellar envelope heating with a three-phase chemical kinetics model. The model includes a proper treatment of the stochastic aspect of whole-grain heating and new experimental data for dissociation. Results. We found that the cosmic-ray-induced effects are mostly limited to an increase in abundance for carbon-chain species. The effect on major species abundances is a few percentage poi...

  15. Cosmic-ray induced background intercomparison with actively shielded HPGe detectors at underground locations

    CERN Document Server

    Szücs, T; Reinhardt, T P; Schmidt, K; Takács, M P; Wagner, A; Wagner, L; Weinberger, D; Zuber, K

    2015-01-01

    The main background above 3\\,MeV for in-beam nuclear astrophysics studies with $\\gamma$-ray detectors is caused by cosmic-ray induced secondaries. The two commonly used suppression methods, active and passive shielding, against this kind of background were formerly considered only as alternatives in nuclear astrophysics experiments. In this work the study of the effects of active shielding against cosmic-ray induced events at a medium deep location is performed. Background spectra were recorded with two actively shielded HPGe detectors. The experiment was located at 148\\,m below the surface of the Earth in the Reiche Zeche mine in Freiberg, Germany. The results are compared to data with the same detectors at the Earth's surface, and at depths of 45\\,m and 1400\\,m, respectively.

  16. Cosmic rays on earth

    Energy Technology Data Exchange (ETDEWEB)

    Allkofer, O.C.; Grieder, P.K.F.

    1984-01-01

    A data collection is presented that covers cosmic rays on earth. Included are all relevant data on flux and intensity measurements, energy spectra, and related data of all primary and secondary components of the cosmic radiation at all levels in the atmosphere, at sea level and underground. In those cases where no useful experimental data have been available, theoretical predictions were substituted.

  17. Magnetowave Induced Plasma Wakefield Acceleration for Ultra High Energy Cosmic Rays

    CERN Document Server

    Chang, Feng-Yin; Lin, Guey-Lin; Reil, Kevin; Sydora, Richard

    2007-01-01

    Magnetowave induced plasma wakefield acceleration (MPWA) in a relativistic astrophysical outflow has been proposed as a viable mechanism for the acceleration of cosmic particles to ultra high energies. Here we present simulation results that clearly demonstrate the viability of this mechanism for the first time. We invoke the high frequency and high speed whistler mode for the driving pulse. The plasma wakefield so induced validates precisely the theoretical prediction. We show that under appropriate conditions, the plasma wakefield maintains very high coherence and can sustain high-gradient acceleration over a macroscopic distance. Invoking gamma ray burst (GRB) as the source, we show that MPWA production of ultra high energy cosmic rays (UHECR) beyond ZeV 10^21 eV is possible.

  18. Eleventh European Cosmic Ray Symposium

    Science.gov (United States)

    1988-08-01

    The biannual Symposium includes all aspects of cosmic ray research. The scientific program was organized under three main headings: cosmic rays in the heliosphere, cosmic rays in the interstellar and extragalactic space, and properties of high-energy interactions as studied by cosmic rays. Selected short communications out of 114 contributed papers were indexed separately for the INIS database.

  19. Highest Energy Cosmic Rays

    CERN Document Server

    Frampton, Paul H

    1998-01-01

    It is proposed that the highest energy $\\sim 10^{20}$eV cosmic ray primaries are protons, decay products of a long-lived progenitor whose high kinetic energy arises from decay of a distant (cosmological) superheavy particle, G. Such a scenario can occur in e.g. SU(15) grand unification and in some preon models, but is more generic; if true, these unusual cosmic rays provide a window into new physics.

  20. Cosmic Rays: What Gamma Rays Can Say

    OpenAIRE

    2014-01-01

    We will review the main channels of gamma ray emission due to the acceleration and propagation of cosmic rays, discussing the cases of both galactic and extra-galactic cosmic rays and their connection with gamma rays observations.

  1. Search for cosmic-ray induced $\\gamma$-ray emission in Galaxy Clusters

    CERN Document Server

    :,; Ajello, M; Albert, A; Allafort, A; Atwood, W B; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Bechtol, K; Bellazzini, R; Bloom, E D; Bonamente, E; Bottacini, E; Brandt, T J; Bregeon, J; Brigida, M; Bruel, P; Buehler, R; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Cavazzuti, E; Chaves, R C G; Chiang, J; Chiaro, G; Ciprini, S; Claus, R; Cohen-Tanugi, J; Conrad, J; D'Ammando, F; de Angelis, A; de Palma, F; Dermer, C D; Digel, S W; Drell, P S; Drlica-Wagner, A; Favuzzi, C; Franckowiak, A; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Germani, S; Giglietto, N; Giordano, F; Giroletti, M; Godfrey, G; Gomez-Vargas, G A; Grenier, I A; Guiriec, S; Gustafsson, M; Hadasch, D; Hayashida, M; Hewitt, J; Hughes, R E; Jeltema, T E; Jóhannesson, G; Johnson, A S; Kamae, T; Kataoka, J; Knödlseder, J; Kuss, M; Lande, J; Larsson, S; Latronico, L; Garde, M Llena; Longo, F; Loparco, F; Lovellette, M N; Lubrano, P; Mayer, M; Mazziotta, M N; McEnery, J E; Michelson, P F; Mitthumsiri, W; Mizuno, T; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nemmen, R; Nuss, E; Ohsugi, T; Orienti, M; Orlando, E; Ormes, J F; Perkins, J S; Pesce-Rollins, M; Piron, F; Pivato, G; Rainò, S; Rando, R; Razzano, M; Razzaque, S; Reimer, A; Reimer, O; Ruan, J; Sánchez-Conde, M; Schulz, A; Sgrò, C; Siskind, E J; Spandre, G; Spinelli, P; Storm, E; Strong, A W; Suson, D J; Takahashi, H; Thayer, J G; Thayer, J B; Thompson, D J; Tibaldo, L; Tinivella, M; Torres, D F; Troja, E; Uchiyama, Y; Usher, T L; Vandenbroucke, J; Vianello, G; Vitale, V; Winer, B L; Wood, K S; Zimmer, S; Pfrommer, C; Pinzke, A

    2013-01-01

    Current theories predict relativistic hadronic particle populations in clusters of galaxies in addition to the already observed relativistic leptons. In these scenarios hadronic interactions give rise to neutral pions which decay into $\\gamma$ rays, that are potentially observable with the Large Area Telescope (LAT) on board the Fermi space telescope. We present a joint likelihood analysis searching for spatially extended $\\gamma$-ray emission at the locations of 50 galaxy clusters in 4 years of Fermi-LAT data under the assumption of the universal cosmic-ray model proposed by Pinzke & Pfrommer (2010). We find an excess at a significance of $2.7\\,\\sigma$, which upon closer inspection is however correlated to individual excess emission towards three galaxy clusters: Abell 400, Abell 1367 and Abell 3112. We discuss these cases in detail and conservatively attribute the emission to unmodeled background (for example, radio galaxies within the clusters). Through the combined analysis of 50 clusters we exclude h...

  2. Fermi Large Area Telescope Observations of the Cosmic-Ray Induced

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, A.

    2012-02-29

    We report on measurements of the cosmic-ray induced {gamma}-ray emission of Earth's atmosphere by the Large Area Telescope onboard the Fermi Gamma-ray Space Telescope. The LAT has observed the Earth during its commissioning phase and with a dedicated Earth-limb following observation in September 2008. These measurements yielded {approx} 6.4 x 10{sup 6} photons with energies > 100 MeV and {approx} 250 hours total livetime for the highest quality data selection. This allows the study of the spatial and spectral distributions of these photons with unprecedented detail. The spectrum of the emission - often referred to as Earth albedo gamma-ray emission - has a power-law shape up to 500 GeV with spectral index {Lambda} = 2.79 {+-} 0.06.

  3. Cosmic Rays and Climate

    CERN Document Server

    Kirkby, Jasper

    2007-01-01

    Among the most puzzling questions in climate change is that of solar-climate variability, which has attracted the attention of scientists for more than two centuries. Until recently, even the existence of solar-climate variability has been controversial—perhaps because the observations had largely involved correlations between climate and the sunspot cycle that had persisted for only a few decades. Over the last few years, however, diverse reconstructions of past climate change have revealed clear associations with cosmic ray variations recorded in cosmogenic isotope archives, providing persuasive evidence for solar or cosmic ray forcing of the climate. However, despite the increasing evidence of its importance, solar-climate variability is likely to remain controversial until a physical mechanism is established. Although this remains a mystery, observations suggest that cloud cover may be influenced by cosmic rays, which are modulated by the solar wind and, on longer time scales, by the geomagnetic fiel...

  4. Magnetowave Induced Plasma Wakefield Acceleration for Ultra High Energy Cosmic Rays

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Feng-Yin; /Taiwan, Natl. Chiao Tung U. /Taiwan, Natl. Taiwan U.; Chen, Pisin; /Taiwan, Natl. Taiwan U. /KIPAC, Menlo Park /SLAC; Lin, Guey-Lin; /Taiwan, Natl. Chiao Tung U. /Taiwan, Natl. Taiwan U.; Noble, Robert; /SLAC; Sydora, Richard; /Alberta U.

    2009-10-17

    Magnetowave induced plasma wakefield acceleration (MPWA) in a relativistic astrophysical outflow has been proposed as a viable mechanism for the acceleration of cosmic particles to ultrahigh energies. Here we present simulation results that clearly demonstrate the viability of this mechanism for the first time. We invoke the high frequency and high speed whistler mode for the driving pulse. The plasma wakefield obtained in the simulations compares favorably with our newly developed relativistic theory of the MPWA. We show that, under appropriate conditions, the plasma wakefield maintains very high coherence and can sustain high-gradient acceleration over hundreds of plasma skin depths. Invoking active galactic nuclei as the site, we show that MPWA production of ultrahigh energy cosmic rays beyond ZeV (10{sup 21} eV) is possible.

  5. Search for cosmic-ray-induced gamma-ray emission in galaxy clusters

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, M.; Buehler, R. [Deutsches Elektronen Synchrotron DESY, D-15738 Zeuthen (Germany); Ajello, M. [Space Sciences Laboratory, 7 Gauss Way, University of California, Berkeley, CA 94720-7450 (United States); Albert, A. [Department of Physics, Center for Cosmology and Astro-Particle Physics, The Ohio State University, Columbus, OH 43210 (United States); Allafort, A.; Bechtol, K.; Bloom, E. D.; Bottacini, E. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Atwood, W. B. [Santa Cruz Institute for Particle Physics, Department of Physics and Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064 (United States); Baldini, L. [Università di Pisa and Istituto Nazionale di Fisica Nucleare, Sezione di Pisa I-56127 Pisa (Italy); Ballet, J. [Laboratoire AIM, CEA-IRFU/CNRS/Université Paris Diderot, Service d' Astrophysique, CEA Saclay, F-91191 Gif sur Yvette (France); Barbiellini, G. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34127 Trieste (Italy); Bastieri, D.; Buson, S. [Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova (Italy); Bellazzini, R.; Bregeon, J. [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Bonamente, E. [Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, I-06123 Perugia (Italy); Brandt, T. J. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Brigida, M. [Dipartimento di Fisica " M. Merlin" dell' Università e del Politecnico di Bari, I-70126 Bari (Italy); Bruel, P., E-mail: olr@slac.stanford.edu, E-mail: zimmer@fysik.su.se, E-mail: conrad@fysik.su.se, E-mail: apinzke@fysik.su.se, E-mail: christoph.pfrommer@h-its.org [Laboratoire Leprince-Ringuet, École polytechnique, CNRS/IN2P3, F-91128 Palaiseau (France); Collaboration: Fermi-LAT Collaboration; and others

    2014-05-20

    Current theories predict relativistic hadronic particle populations in clusters of galaxies in addition to the already observed relativistic leptons. In these scenarios hadronic interactions give rise to neutral pions which decay into γ rays that are potentially observable with the Large Area Telescope (LAT) on board the Fermi space telescope. We present a joint likelihood analysis searching for spatially extended γ-ray emission at the locations of 50 galaxy clusters in four years of Fermi-LAT data under the assumption of the universal cosmic-ray (CR) model proposed by Pinzke and Pfrommer. We find an excess at a significance of 2.7σ, which upon closer inspection, however, is correlated to individual excess emission toward three galaxy clusters: A400, A1367, and A3112. We discuss these cases in detail and conservatively attribute the emission to unmodeled background systems (for example, radio galaxies within the clusters).Through the combined analysis of 50 clusters, we exclude hadronic injection efficiencies in simple hadronic models above 21% and establish limits on the CR to thermal pressure ratio within the virial radius, R {sub 200}, to be below 1.25%-1.4% depending on the morphological classification. In addition, we derive new limits on the γ-ray flux from individual clusters in our sample.

  6. Search for Cosmic-Ray-Induced Gamma-Ray Emission in Galaxy Clusters

    Science.gov (United States)

    Ackermann, M.; Ajello, M.; Albert, A.; Allafort, A.; Atwood, W. B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Bloom, E. D.; Bonamente, E.; Bottacini, E.; Brandt, T. J.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caraveo, P. A.; Cavazzuti, E.; Chaves, R. C. G.; Kuss, M.; Pesce-Rollins, M.; Sgro, C.; Spandre, G.; Tinivella, M.

    2014-01-01

    Current theories predict relativistic hadronic particle populations in clusters of galaxies in addition to the already observed relativistic leptons. In these scenarios hadronic interactions give rise to neutral pions which decay into gamma rays that are potentially observable with the Large Area Telescope (LAT) on board the Fermi space telescope. We present a joint likelihood analysis searching for spatially extended gamma-ray emission at the locations of 50 galaxy clusters in four years of Fermi-LAT data under the assumption of the universal cosmic-ray (CR) model proposed by Pinzke & Pfrommer. We find an excess at a significance of 2.7 delta, which upon closer inspection, however, is correlated to individual excess emission toward three galaxy clusters: A400, A1367, and A3112. We discuss these cases in detail and conservatively attribute the emission to unmodeled background systems (for example, radio galaxies within the clusters).Through the combined analysis of 50 clusters, we exclude hadronic injection efficiencies in simple hadronic models above 21% and establish limits on the CR to thermal pressure ratio within the virial radius, R(sub 200), to be below 1.25%-1.4% depending on the morphological classification. In addition, we derive new limits on the gamma-ray flux from individual clusters in our sample.

  7. Cosmic rays and climate

    CERN Multimedia

    2009-01-01

    Inside the new chamber the CLOUD team will be able to recreate the conditions of any part of the atmosphere, from the polar stratosphere to the low level tropics (top). The new chamber safely in position in the East hall. Once carefully cleaned the chamber will be turned sideways onto its legs ready for the beam of 'cosmic rays' (bottom).

  8. Frontiers in Cosmic Rays

    CERN Document Server

    Anchordoqui, Luis A; Ringwald, Andreas; Anchordoqui, Luis A.; Dermer, Charles D.; Ringwald, Andreas

    2004-01-01

    This rapporteur review covers selected results presented in the Parallel Session HEA2 (High Energy Astrophysics 2) of the 10th Marcel Grossmann Meeting on General Relativity, held in Rio de Janeiro, Brazil, July 2003. The subtopics are: ultra high energy cosmic ray anisotropies, the possible connection of these energetic particles with powerful gamma ray bursts, and new exciting scenarios with a strong neutrino-nucleon interaction in the atmosphere.

  9. Lookup tables to compute high energy cosmic ray induced atmospheric ionization and changes in atmospheric chemistry

    OpenAIRE

    Atri, Dimitra; Melott, Adrian L.; Thomas, Brian C

    2008-01-01

    A variety of events such as gamma-ray bursts and supernovae may expose the Earth to an increased flux of high-energy cosmic rays, with potentially important effects on the biosphere. Existing atmospheric chemistry software does not have the capability of incorporating the effects of substantial cosmic ray flux above 10 GeV . An atmospheric code, the NASA-Goddard Space Flight Center two-dimensional (latitude, altitude) time-dependent atmospheric model (NGSFC), is used to study atmospheric chem...

  10. Probing Atmospheric Electric Fields through Radio Emission from Cosmic-Ray-Induced Air Showers

    Science.gov (United States)

    Scholten, Olaf; Trinh, Gia; Buitink, Stijn; Corstanje, Arthur; Ebert, Ute; Enriquez, Emilio; Falcke, Heino; Hoerandel, Joerg; Nelles, Anna; Schellart, Pim; Rachen, Joerg; Rutjes, Casper; ter Veen, Sander; Rossetto, Laura; Thoudam, Satyendra

    2016-04-01

    Energetic cosmic rays impinging on the atmosphere create a particle avalanche called an extensive air shower. In the leading plasma of this shower electric currents are induced that generate coherent radio wave emission that has been detected with LOFAR, a large and dense array of simple radio antennas primarily developed for radio-astronomy observations. Our measurements are performed in the 30-80 MHz frequency band. For fair weather conditions the observations are in excellent agreement with model calculations. However, for air showers measured under thunderstorm conditions we observe large differences in the intensity and polarization patterns from the predictions of fair weather models. We will show that the linear as well as the circular polarization of the radio waves carry clear information on the magnitude and orientation of the electric fields at different heights in the thunderstorm clouds. We will show that from the measured data at LOFAR the thunderstorm electric fields can be reconstructed. We thus have established the measurement of radio emission from extensive air showers induced by cosmic rays as a new tool to probe the atmospheric electric fields present in thunderclouds in a non-intrusive way. In part this presentation is based on the work: P. Schellart et al., Phys. Rev. Lett. 114, 165001 (2015).

  11. Cosmic Rays at Earth

    Science.gov (United States)

    Grieder, P. K. F.

    In 1912 Victor Franz Hess made the revolutionary discovery that ionizing radiation is incident upon the Earth from outer space. He showed with ground-based and balloon-borne detectors that the intensity of the radiation did not change significantly between day and night. Consequently, the sun could not be regarded as the sources of this radiation and the question of its origin remained unanswered. Today, almost one hundred years later the question of the origin of the cosmic radiation still remains a mystery. Hess' discovery has given an enormous impetus to large areas of science, in particular to physics, and has played a major role in the formation of our current understanding of universal evolution. For example, the development of new fields of research such as elementary particle physics, modern astrophysics and cosmology are direct consequences of this discovery. Over the years the field of cosmic ray research has evolved in various directions: Firstly, the field of particle physics that was initiated by the discovery of many so-called elementary particles in the cosmic radiation. There is a strong trend from the accelerator physics community to reenter the field of cosmic ray physics, now under the name of astroparticle physics. Secondly, an important branch of cosmic ray physics that has rapidly evolved in conjunction with space exploration concerns the low energy portion of the cosmic ray spectrum. Thirdly, the branch of research that is concerned with the origin, acceleration and propagation of the cosmic radiation represents a great challenge for astrophysics, astronomy and cosmology. Presently very popular fields of research have rapidly evolved, such as high-energy gamma ray and neutrino astronomy. In addition, high-energy neutrino astronomy may soon initiate as a likely spin-off neutrino tomography of the Earth and thus open a unique new branch of geophysical research of the interior of the Earth. Finally, of considerable interest are the biological

  12. Cosmic rays and molecular clouds

    OpenAIRE

    2012-01-01

    This paper deals with the cosmic-ray penetration into molecular clouds and with the related gamma--ray emission. High energy cosmic rays interact with the dense gas and produce neutral pions which in turn decay into two gamma rays. This makes molecular clouds potential sources of gamma rays, especially if they are located in the vicinity of a powerful accelerator that injects cosmic rays in the interstellar medium. The amplitude and duration in time of the cosmic--ray overdensity around a giv...

  13. Dual Phase Cosmic Rays

    CERN Document Server

    Shurtleff, Richard

    2008-01-01

    A calculation based on flat spacetime symmetries shows how there can be two quantum phases. For one, extreme phase change determines a conventional classical trajectory and four-momentum, i.e. mass times four-velocity. The other phase occurs in an effective particle state, with the effective energy and momentum being the rate of change of the phase with respect to time and distance. A cosmic ray proton moves along a classical trajectory, but exists in an effective particle state with an effective energy that depends on the local gravitational potential. Assumptions are made so that a cosmic ray proton in an ultra-high energy state detected near the Earth was in a much less energetic state in interstellar space. A 300 EeV proton incident on the Earth was a 2 PeV proton in interstellar space. The model predicts such protons are in states with even more energy near the Sun than when near the Earth.

  14. Cosmic rays and climate

    CERN Document Server

    CERN. Geneva

    2009-01-01

    The current understanding of climate change in the industrial age is that it is predominantly caused by anthropogenic greenhouse gases, with relatively small natural contributions due to solar irradiance and volcanoes. However, palaeoclimatic reconstructions show that the climate has frequently varied on 100-year time scales during the Holocene (last 10 kyr) by amounts comparable to the present warming - and yet the mechanism or mechanisms are not understood. Some of these reconstructions show clear associations with solar variability, which is recorded in the light radio-isotope archives that measure past variations of cosmic ray intensity. However, despite the increasing evidence of its importance, solar-climate variability is likely to remain controversial until a physical mechanism is established. Estimated changes of solar irradiance on these time scales appear to be too small to account for the climate observations. This raises the question of whether cosmic rays may directly affect the climate, provi...

  15. Cosmic Rays in Thunderstorms

    Science.gov (United States)

    Buitink, Stijn; Scholten, Olaf; van den Berg, Ad; Ebert, Ute

    2013-04-01

    Cosmic Rays in Thunderstorms Cosmic rays are protons and heavier nuclei that constantly bombard the Earth's atmosphere with energies spanning a vast range from 109 to 1021 eV. At typical altitudes up to 10-20 km they initiate large particle cascades, called extensive air showers, that contain millions to billions of secondary particles depending on their initial energy. These particles include electrons, positrons, hadrons and muons, and are concentrated in a compact particle front that propagates at relativistic speed. In addition, the shower leaves behind a trail of lower energy electrons from ionization of air molecules. Under thunderstorm conditions these electrons contribute to the electrical and ionization processes in the cloud. When the local electric field is strong enough the secondary electrons can create relativistic electron run-away avalanches [1] or even non-relativistic avalanches. Cosmic rays could even trigger lightning inception. Conversely, strong electric fields also influence the development of the air shower [2]. Extensive air showers emit a short (tens of nanoseconds) radio pulse due to deflection of the shower particles in the Earth's magnetic field [3]. Antenna arrays, such as AERA, LOFAR and LOPES detect these pulses in a frequency window of roughly 10-100 MHz. These systems are also sensitive to the radiation from discharges associated to thunderstorms, and provide a means to study the interaction of cosmic ray air showers and the electrical processes in thunderstorms [4]. In this presentation we discuss the involved radiation mechanisms and present analyses of thunderstorm data from air shower arrays [1] A. Gurevich et al., Phys. Lett. A 165, 463 (1992) [2] S. Buitink et al., Astropart. Phys. 33, 1 (2010) [3] H. Falcke et al., Nature 435, 313 (2005) [4] S. Buitink et al., Astron. & Astrophys. 467, 385 (2007)

  16. Cosmic ray modulation

    Science.gov (United States)

    Agarwal Mishra, Rekha; Mishra, Rajesh Kumar

    2016-07-01

    Propagation of cosmic rays to and inside the heliosphere, encounter an outward moving solar wind with cyclic magnetic field fluctuation and turbulence, causing convection and diffusion in the heliosphere. Cosmic ray counts from the ground ground-based neutron monitors at different cut of rigidity show intensity changes, which are anti-correlated with sunspot numbers. They also lose energy as they propagate towards the Earth and experience various types of modulations due to different solar activity indices. In this work, we study the first three harmonics of cosmic ray intensity on geo-magnetically quiet days over the period 1965-2014 for Beijing, Moscow and Tokyo neutron monitoring stations located at different cut off rigidity. The amplitude of first harmonic remains high for low cutoff rigidity as compared to high cutoff rigidity on quiet days. The diurnal amplitude significantly decreases during solar activity minimum years. The diurnal time of maximum significantly shifts to an earlier time as compared to the corotational direction having different cutoff rigidities. The time of maximum for first harmonic significantly shifts towards later hours and for second harmonic it shifts towards earlier hours at low cutoff rigidity station as compared to the high cut off rigidity station on quiet days. The amplitude of second/third harmonics shows a good positive correlation with solar wind velocity, while the others (i.e. amplitude and phase) have no significant correlation on quiet days. The amplitude and direction of the anisotropy on quiet days does not show any significant dependence on high-speed solar wind streams for these neutron monitoring stations of different cutoff rigidity threshold. Keywords: cosmic ray, cut off rigidity, quiet days, harmonics, amplitude, phase.

  17. Can periodicity in low altitude cloud cover be induced by cosmic ray variability in the extragalactic shock model?

    CERN Document Server

    Atri, Dimitra; Melott, Adrian L; Kansas, University of; University, Washburn

    2010-01-01

    Variation in high energy cosmic rays (HECRs) has been proposed to explain a 62 My periodicity in terrestrial fossil biodiversity. It has been suggested that the infall of our galaxy toward the Virgo cluster could generate an extragalactic shock, accelerating charged particles and exposing the earth to a flux of high energy cosmic rays (HECRs). The oscillation of the Sun perpendicular to the galactic plane could induce 62 My periodicity in the HECR flux on the Earth, with a magnitude much higher than the Galactic cosmic ray change we see in a solar cycle. This mechanism could potentially explain the observed 62 My periodicity in terrestrial biodiversity over the past 500 My. In addition to direct effects on life from secondaries, HECRs induced air showers ionize the atmosphere leading to changes in atmospheric chemistry and microphysical processes that can lead to cloud formation including low altitude cloud cover. An increase in ionization changes the global electric circuit which could enhance the formation ...

  18. Galactic Cosmic-Ray Induced Production of Lithium in the Small Magellanic Cloud

    CERN Document Server

    Ćiprijanović, A

    2016-01-01

    Recently, the first lithium detection outside of the Milky Way was made in low-metallicity gas of the Small Magellanic Cloud, which was at the level of the expected primordial value. Part of the observed lithium in any environment has primordial origin, but there is always some post-BBN (Big Bang Nucleosynthesis) contamination, since lithium can also be produced in cosmic-ray interactions with the interstellar medium. Using the fact that processes involving cosmic rays produce lithium, but also gamma rays through neutral pion decay, we use the Small Magellanic Cloud gamma-ray observations by Fermi-LAT to make predictions on the amount of lithium in this galaxy that was produced by galactic cosmic rays accelerated in supernova remnants. By including both fusion processes, as well as spallation of heavier nuclei, we find that galactic cosmic rays could produce a very small amount of lithium. In the case of 6Li isotope (which should only be produced by cosmic rays) we can only explain 0.16% of the measured abund...

  19. Advantages of passive detectors for the determination of the cosmic ray induced neutron environment

    CERN Document Server

    Hajek, M; Schoner, W; Vana, N

    2002-01-01

    Due to the pronounced energy dependence of the neutron quality factor, accurate assessment of the biologically relevant dose requires knowledge of the spectral neutron fluence rate. Bonner sphere spectrometers (BSSs) are the only instruments which provide a sufficient response over practically the whole energy range of the cosmic ray induced neutron component. Measurements in a 62 MeV proton beam at Paul Scherrer Institute, Switzerland, and in the CERN-EU high-energy reference field led to the assumption that conventional active devices for the detection of thermal neutrons inside the BSS, e.g. /sup 6/LiI(Eu) scintillators, also respond to charged particles when used in high-energy mixed radiation fields. The effects of these particles cannot be suppressed by amplitude discrimination and are subsequently misinterpreted as neutron radiation. In contrast, paired TLD-600 and TLD-700 thermoluminescence dosemeters allow the determination of a net thermal neutron signal. (12 refs).

  20. Simulations of reflected radio signals from cosmic ray induced air showers

    CERN Document Server

    Alvarez-Muñiz, Jaime; García-Fernández, Daniel; Schoorlemmer, Harm; Zas, Enrique

    2015-01-01

    We present the calculation of coherent radio pulses emitted by extensive air showers induced by ultra-high energy cosmic rays accounting for reflection on the Earth's surface. Results have been obtained with a simulation program that calculates the contributions from shower particles after reflection at a surface plane. The properties of the radiation are discussed in detail emphasizing the effects of reflection. The shape of the frequency spectrum is shown to be closely related to the angle of the observer with respect to shower axis, becoming hardest in the Cherenkov direction. The intensity of the flux at a fixed observation angle is shown to scale with the square of the primary particle energy to very good accuracy indicating the coherent aspect of the emission. The simulation methods of this paper provide the foundations for energy reconstruction of experiments looking at the Earth from balloons and satellites. They can also be used in dedicated studies of existing and future experimental proposals.

  1. Cosmic Ray transport in turbulent magnetic field

    CERN Document Server

    Yan, Huirong

    2013-01-01

    Cosmic ray (CR) transport and acceleration is determined by the properties of magnetic turbulence. Recent advances in MHD turbulence call for revisions in the paradigm of cosmic ray transport. We use the models of magnetohydrodynamic turbulence that were tested in numerical simulation, in which turbulence is injected at large scale and cascades to to small scales. We shall address the issue of the transport of CRs, both parallel and perpendicular to the magnetic field. We shall demonstrate compressible fast modes are dominant cosmic ray scatterer from both quasilinear and nonlinear theories. We shall also show that the self-generated wave growth by CRs are constrained by preexisting turbulence and discuss the process in detail in the context of shock acceleration at supernova remnants and their implications. In addition, we shall dwell on the nonlinear growth of kinetic gyroresonance instability of cosmic rays induced by large scale compressible turbulence. This gyroresonance of cosmic rays on turbulence is d...

  2. Accelerator Measurements of Magnetically Induced Radio Emission from Particle Cascades with Applications to Cosmic-Ray Air Showers.

    Science.gov (United States)

    Belov, K; Mulrey, K; Romero-Wolf, A; Wissel, S A; Zilles, A; Bechtol, K; Borch, K; Chen, P; Clem, J; Gorham, P W; Hast, C; Huege, T; Hyneman, R; Jobe, K; Kuwatani, K; Lam, J; Liu, T C; Nam, J; Naudet, C; Nichol, R J; Rauch, B F; Rotter, B; Saltzberg, D; Schoorlemmer, H; Seckel, D; Strutt, B; Vieregg, A G; Williams, C

    2016-04-08

    For 50 years, cosmic-ray air showers have been detected by their radio emission. We present the first laboratory measurements that validate electrodynamics simulations used in air shower modeling. An experiment at SLAC provides a beam test of radio-frequency (rf) radiation from charged particle cascades in the presence of a magnetic field, a model system of a cosmic-ray air shower. This experiment provides a suite of controlled laboratory measurements to compare to particle-level simulations of rf emission, which are relied upon in ultrahigh-energy cosmic-ray air shower detection. We compare simulations to data for intensity, linearity with magnetic field, angular distribution, polarization, and spectral content. In particular, we confirm modern predictions that the magnetically induced emission in a dielectric forms a cone that peaks at the Cherenkov angle and show that the simulations reproduce the data within systematic uncertainties.

  3. Accelerator Measurements of Magnetically Induced Radio Emission from Particle Cascades with Applications to Cosmic-Ray Air Showers

    Science.gov (United States)

    Belov, K.; Mulrey, K.; Romero-Wolf, A.; Wissel, S. A.; Zilles, A.; Bechtol, K.; Borch, K.; Chen, P.; Clem, J.; Gorham, P. W.; Hast, C.; Huege, T.; Hyneman, R.; Jobe, K.; Kuwatani, K.; Lam, J.; Liu, T. C.; Nam, J.; Naudet, C.; Nichol, R. J.; Rauch, B. F.; Rotter, B.; Saltzberg, D.; Schoorlemmer, H.; Seckel, D.; Strutt, B.; Vieregg, A. G.; Williams, C.; T-510 Collaboration

    2016-04-01

    For 50 years, cosmic-ray air showers have been detected by their radio emission. We present the first laboratory measurements that validate electrodynamics simulations used in air shower modeling. An experiment at SLAC provides a beam test of radio-frequency (rf) radiation from charged particle cascades in the presence of a magnetic field, a model system of a cosmic-ray air shower. This experiment provides a suite of controlled laboratory measurements to compare to particle-level simulations of rf emission, which are relied upon in ultrahigh-energy cosmic-ray air shower detection. We compare simulations to data for intensity, linearity with magnetic field, angular distribution, polarization, and spectral content. In particular, we confirm modern predictions that the magnetically induced emission in a dielectric forms a cone that peaks at the Cherenkov angle and show that the simulations reproduce the data within systematic uncertainties.

  4. Cosmic ray driven Galactic winds

    Science.gov (United States)

    Recchia, S.; Blasi, P.; Morlino, G.

    2016-11-01

    The escape of cosmic rays from the Galaxy leads to a gradient in the cosmic ray pressure that acts as a force on the background plasma, in the direction opposite to the gravitational pull. If this force is large enough to win against gravity, a wind can be launched that removes gas from the Galaxy, thereby regulating several physical processes, including star formation. The dynamics of these cosmic ray driven winds is intrinsically non-linear in that the spectrum of cosmic rays determines the characteristics of the wind (velocity, pressure, magnetic field) and in turn the wind dynamics affects the cosmic ray spectrum. Moreover, the gradient of the cosmic ray distribution function causes excitation of Alfvén waves, that in turn determines the scattering properties of cosmic rays, namely their diffusive transport. These effects all feed into each other so that what we see at the Earth is the result of these non-linear effects. Here, we investigate the launch and evolution of such winds, and we determine the implications for the spectrum of cosmic rays by solving together the hydrodynamical equations for the wind and the transport equation for cosmic rays under the action of self-generated diffusion and advection with the wind and the self-excited Alfvén waves.

  5. Cosmic ray: Studying the origin

    Energy Technology Data Exchange (ETDEWEB)

    Szabelski, J. [Cosmic Ray Laboratory, Soltan Institute for Nuclear Studies, Lodz (Poland)

    1997-12-31

    Investigations of the origin of cosmic rays are presented. Different methods are discussed: studies of cosmic gamma rays of energy from 30 MeV to about 10{sup 15} eV (since photons point to their places of origin), studies of the mass composition of cosmic rays (because it reflects source morphology), and studies of cosmic rays with energy above 1O{sup 19} eV (for these are the highest energies observed in nature). (author) 101 refs, 19 figs, 7 tabs

  6. Short- and Medium-Term Induced Ionization in the Earth Atmosphere by Galactic and Solar Cosmic Rays

    Directory of Open Access Journals (Sweden)

    Alexander Mishev

    2013-01-01

    Full Text Available The galactic cosmic rays are the main source of ionization in the troposphere of the Earth. Solar energetic particles of MeV energies cause an excess of ionization in the atmosphere, specifically over polar caps. The ionization effect during the major ground level enhancement 69 on January 20, 2005 is studied at various time scales. The estimation of ion rate is based on a recent numerical model for cosmic-ray-induced ionization. The ionization effect in the Earth atmosphere is obtained on the basis of solar proton energy spectra, reconstructed from GOES 11 measurements and subsequent full Monte Carlo simulation of cosmic-ray-induced atmospheric cascade. The evolution of atmospheric cascade is performed with CORSIKA 6.990 code using FLUKA 2011 and QGSJET II hadron interaction models. The atmospheric ion rate is explicitly obtained for various latitudes, namely, 40°N, 60°N and 80°N. The time evolution of obtained ion rates is presented. The short- and medium-term ionization effect is compared with the average effect due to galactic cosmic rays. It is demonstrated that ionization effect is significant only in subpolar and polar atmosphere during the major ground level enhancement of January 20, 2005. It is negative in troposphere at midlatitude, because of the accompanying Forbush effect.

  7. Cosmic Ray ^3He Measurements

    OpenAIRE

    Mewaldt, R. A.

    1985-01-01

    Cosmic ray ^3He/^4He observations, including a new measurement at ~65 MeV/nucleon from ISEE-3, are compared with interstellar propagation and solar modulation models in an effort to understand the origin of cosmic ray He nuclei.

  8. Modeling high-energy cosmic ray induced terrestrial muon flux: A lookup table

    CERN Document Server

    Atri, Dimitra

    2010-01-01

    On geological timescales, the Earth is likely to be exposed to an increased flux of high energy cosmic rays (HECRs) from astrophysical sources such as nearby supernovae, gamma ray bursts or by galactic shocks. Typical cosmic ray energies may be much higher than the ~ 1 GeV flux which normally dominates. These high-energy particles strike the Earth's atmosphere initiating an extensive air shower. As the air shower propagates deeper, it ionizes the atmosphere by producing charged secondary particles. Secondary particles such as muons and thermal neutrons produced as a result of nuclear interactions are able to reach the ground, enhancing the radiation dose. Muons contribute 85% to the radiation dose from cosmic rays. This enhanced dose could be potentially harmful to the biosphere. This mechanism has been discussed extensively in literature but has never been quantified. Here, we have developed a lookup table that can be used to quantify this effect by modeling terrestrial muon flux from any arbitrary cosmic ra...

  9. Measurement of the Cosmic Ray and Neutrino-Induced Muon Flux at the Sudbury Neutrino Observatory

    Science.gov (United States)

    SNO collaboration; Aharmim, B.; Ahmed, S. N.; Andersen, T. C.; Anthony, A. E.; Barros, N.; Beier, E. W.; Bellerive, A.; Beltran, B.; Bergevin, M.; Biller, S. D.; Boudjemline, K.; Boulay, M. G.; Burritt, T. H.; Cai, B.; Chan, Y. D.; Chen, M.; Chon, M. C.; Cleveland, B. T.; Cox-Mobrand, G. A.; Currat, C. A.; Dai, X.; Dalnoki-Veress, F.; Deng, H.; Detwiler, J.; Doe, P. J.; Dosanjh, R. S.; Doucas, G.; Drouin, P.-L.; Duncan, F. A.; Dunford, M.; Elliott, S. R.; Evans, H. C.; Ewan, G. T.; Farine, J.; Fergani, H.; Fleurot, F.; Ford, R. J.; Formaggio, J. A.; Gagnon, N.; Goon, J. TM.; Grant, D. R.; Guillian, E.; Habib, S.; Hahn, R. L.; Hallin, A. L.; Hallman, E. D.; Hargrove, C. K.; Harvey, P. J.; Harvey, P. J.; Heeger, K. M.; Heintzelman, W. J.; Heise, J.; Helmer, R. L.; Hemingway, R. J.; Henning, R.; Hime, A.; Howard, C.; Howe, M. A.; Huang, M.; Jamieson, B.; Jelley, N. A.; Klein, J. R.; Kos, M.; Kruger, A.; Kraus, C.; Krauss, C. B.; Kutter, T.; Kyba, C. C. M.; Lange, R.; Law, J.; Lawson, I. T.; Lesko, K. T.; Leslie, J. R.; Levine, I.; Loach, J. C.; Luoma, S.; MacLellan, R.; Majerus, S.; Mak, H. B.; Maneira, J.; Marino, A. D.; Martin, R.; McCauley, N.; McDonald, A. B.; McGee, S.; Mifflin, C.; Miller, M. L.; Monreal, B.; Monroe, J.; Noble, A. J.; Oblath, N. S.; Okada, C. E.; O'Keeffe, H. M.; Opachich, Y.; Orebi Gann, G. D.; Oser, S. M.; Ott, R. A.; Peeters, S. J. M.; Poon, A. W. P.; Prior, G.; Rielage, K.; Robertson, B. C.; Robertson, R. G. H.; Rollin, E.; Schwendener, M. H.; Secrest, J. A.; Seibert, S. R.; Simard, O.; Simpson, J. J.; Sinclair, D.; Skensved, P.; Smith, M. W. E.; Sonley, T. J.; Steiger, T. D.; Stonehill, L. C.; Tagg, N.; Tesic, G.; Tolich, N.; Tsui, T.; Van de Water, R. G.; VanDevender, B. A.; Virtue, C. J.; Waller, D.; Waltham, C. E.; Wan Chan Tseung, H.; Wark, D. L.; Watson, P.; Wendland, J.; West, N.; Wilkerson, J. F.; Wilson, J. R.; Wouters, J. M.; Wright, A.; Yeh, M.; Zhang, F.; Zuber, K.

    2009-07-10

    Results are reported on the measurement of the atmospheric neutrino-induced muon flux at a depth of 2 kilometers below the Earth's surface from 1229 days of operation of the Sudbury Neutrino Observatory (SNO). By measuring the flux of through-going muons as a function of zenith angle, the SNO experiment can distinguish between the oscillated and un-oscillated portion of the neutrino flux. A total of 514 muon-like events are measured between -1 {le} cos {theta}{sub zenith} 0.4 in a total exposure of 2.30 x 10{sup 14} cm{sup 2} s. The measured flux normalization is 1.22 {+-} 0.09 times the Bartol three-dimensional flux prediction. This is the first measurement of the neutrino-induced flux where neutrino oscillations are minimized. The zenith distribution is consistent with previously measured atmospheric neutrino oscillation parameters. The cosmic ray muon flux at SNO with zenith angle cos {theta}{sub zenith} > 0.4 is measured to be (3.31 {+-} 0.01 (stat.) {+-} 0.09 (sys.)) x 10{sup -10} {micro}/s/cm{sup 2}.

  10. Measurement of the Cosmic Ray and Neutrino-Induced Muon Flux at the Sudbury Neutrino Observatory

    Energy Technology Data Exchange (ETDEWEB)

    SNO collaboration; Aharmim, B.; Ahmed, S.N.; Andersen, T.C.; Anthony, A.E.; Barros, N.; Beier, E.W.; Bellerive, A.; Beltran, B.; Bergevin, M.; Biller, S.D.; Boudjemline, K.; Boulay, M.G.; Burritt, T.H.; Cai, B.; Chan, Y.D.; Chen, M.; Chon, M.C.; Cleveland, B.T.; Cox-Mobrand, G.A.; Currat, C.A.; Dai, X.; Dalnoki-Veress, F.; Deng, H.; Detwiler, J.; Doe, P.J.; Dosanjh, R.S.; Doucas, G.; Drouin, P.-L.; Duncan, F.A.; Dunford, M.; Elliott, S.R.; Evans, H.C.; Ewan, G.T.; Farine, J.; Fergani, H.; Fleurot, F.; Ford, R.J.; Formaggio, J.A.; Gagnon, N.; Goon, J.TM.; Grant, D.R.; Guillian, E.; Habib, S.; Hahn, R.L.; Hallin, A.L.; Hallman, E.D.; Hargrove, C.K.; Harvey, P.J.; Harvey, P.J.; Heeger, K.M.; Heintzelman, W.J.; Heise, J.; Helmer, R.L.; Hemingway, R.J.; Henning, R.; Hime, A.; Howard, C.; Howe, M.A.; Huang, M.; Jamieson, B.; Jelley, N.A.; Klein, J.R.; Kos, M.; Kruger, A.; Kraus, C.; Krauss, C.B.; Kutter, T.; Kyba, C.C.M.; Lange, R.; Law, J.; Lawson, I.T.; Lesko, K.T.; Leslie, J.R.; Levine, I.; Loach, J.C.; Luoma, S.; MacLellan, R.; Majerus, S.; Mak, H.B.; Maneira, J.; Marino, A.D.; Martin, R.; McCauley, N.; McDonald, A.B.; McGee, S.; Mifflin, C.; Miller, M.L.; Monreal, B.; Monroe, J.; Noble, A.J.; Oblath, N.S.; Okada, C.E.; O?Keeffe, H.M.; Opachich, Y.; Orebi Gann, G.D.; Oser, S.M.; Ott, R.A.; Peeters, S.J.M.; Poon, A.W.P.; Prior, G.; Rielage, K.; Robertson, B.C.; Robertson, R.G.H.; Rollin, E.; Schwendener, M.H.; Secrest, J.A.; Seibert, S.R.; Simard, O.; Simpson, J.J.; Sinclair, D.; Skensved, P.; Smith, M.W.E.; Sonley, T.J.; Steiger, T.D.; Stonehill, L.C.; Tagg, N.; Tesic, G.; Tolich, N.; Tsui, T.; Van de Water, R.G.; VanDevender, B.A.; Virtue, C.J.; Waller, D.; Waltham, C.E.; Wan Chan Tseung, H.; Wark, D.L.; Watson, P.; Wendland, J.; West, N.; Wilkerson, J.F.; Wilson, J.R.; Wouters, J.M.; Wright, A.; Yeh, M.; Zhang, F.; Zuber, K.

    2009-02-16

    Results are reported on the measurement of the atmospheric neutrino-induced muon flux at a depth of 2 kilometers below the Earth's surface from 1229 days of operation of the Sudbury Neutrino Observatory (SNO). By measuring the flux of through-going muons as a function of zenith angle, the SNO experiment can distinguish between the oscillated and un-oscillated portion of the neutrino flux. A total of 514 muon-like events are measured between -1 {le} cos {theta}{sub zenith} 0.4 in a total exposure of 2.30 x 10{sup 14} cm{sup 2} s. The measured flux normalization is 1.22 {+-} 0.09 times the Bartol three-dimensional flux prediction. This is the first measurement of the neutrino-induced flux where neutrino oscillations are minimized. The zenith distribution is consistent with previously measured atmospheric neutrino oscillation parameters. The cosmic ray muon flux at SNO with zenith angle cos {theta}{sub zenith} > 0.4 is measured to be (3.31 {+-} 0.01 (stat.) {+-} 0.09 (sys.)) x 10{sup -10} {micro}/s/cm{sup 2}.

  11. Cosmic Ray Interaction Models: an Overview

    Directory of Open Access Journals (Sweden)

    Ostapchenko Sergey

    2016-01-01

    Full Text Available I review the state-of-the-art concerning the treatment of high energy cosmic ray interactions in the atmosphere, discussing in some detail the underlying physical concepts and the possibilities to constrain the latter by current and future measurements at the Large Hadron Collider. The relation of basic characteristics of hadronic interactions tothe properties of nuclear-electromagnetic cascades induced by primary cosmic rays in the atmosphere is addressed.

  12. Cosmic Ray Antimatter

    CERN Document Server

    CERN. Geneva

    2017-01-01

    Over the last decade, space-born experiments have delivered new measurements of high energy cosmic-ray (CR) antiprotons and positrons, opening new frontiers in energy reach and precision. While being a promising discovery tool for new physics or exotic astrophysical phenomena, an irreducible background of antimatter comes from CR collisions with interstellar matter in the Galaxy. Understanding this irreducible source or constraining it from first principles is an interesting challenge: a game of hide-and-seek where the objective is to identify the laws of basic particle physics among the forest of astrophysical uncertainties. I describe an attempt to obtain such understanding, combining information from a zoo of CR species including massive nuclei and relativistic radioisotopes. I show that: (i) CR antiprotons most likely come from CR-gas collisions; (ii) positron data is consistent with, and suggestive of the same astrophysical production mechanism responsible for antiprotons and dominated by proton-proton c...

  13. Acceleration of cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Berezhko, E [Yu.G. Shafer Institute of Cosmophysical Research and Aeronomy, 31 Lenin Ave., 677980 Yakutsk (Russian Federation)], E-mail: berezhko@ikfia.ysn.ru

    2008-07-15

    Cosmic ray (CR) origin problem is briefly discussed. It is argued that CRs with energies up to 10{sup 17} eV are produced in galactic supernova remnants, whereas ultra high energy CRs are extragalactic. CR composition strongly changes within the transition from galactic to extragalactic CR component, therefore precise measurements of CR composition at energies 10{sup 17} - 10{sup 19} eV are needed for the reliable determination of this transition. The possible sources of extragalactic CRs are briefly discussed. It is argued that CR acceleration at the shock created by the expanding cocoons around active galactic nuclei has to be considered as a prime candidate for the sources of extragalactic CRs.

  14. Cosmic ray synergies

    CERN Multimedia

    Laëtitia Pedroso

    2010-01-01

    In laboratories, cosmic rays have been the subject of scientific research for many years. A more recent development is their appearance in schools, as educational tools. A recent workshop at CERN, organised by ASPERA in collaboration with EPPOG and EPPCN, had the goal of bringing together ideas and initiatives with a view to setting up a future common project.   Presentation at the workshop on 15 October. In research, as in education, you can sometimes get things done more rapidly and easily by joining forces. For roughly the past decade, physicists have been taking their particle detectors to secondary schools. “The challenge now is to bring all of these existing projects together in a network,” says Arnaud Marsollier, in charge of communication for the ASPERA network and organiser of the workshop. The workshop held on Friday, 15 October was attended by representatives of major European educational projects and members of the European Particle Physics Communication Network...

  15. Measuring the Cosmic Ray Muon-Induced Fast Neutron Spectrum by (n,p) Isotope Production Reactions in Underground Detectors

    CERN Document Server

    Galbiati, C; Galbiati, Cristiano; Beacom, John. F.

    2005-01-01

    While cosmic ray muons themselves are relatively easy to veto in underground detectors, their interactions with nuclei create more insidious backgrounds via: (i) the decays of long-lived isotopes produced by muon-induced spallation reactions inside the detector, (ii) spallation reactions initiated by fast muon-induced neutrons entering from outside the detector, and (iii) nuclear recoils initiated by fast muon-induced neutrons entering from outside the detector. These backgrounds, which are difficult to veto or shield against, are very important for solar, reactor, dark matter, and other underground experiments, especially as increased sensitivity is pursued. We used fluka to calculate the production rates and spectra of all prominent secondaries produced by cosmic ray muons, in particular focusing on secondary neutrons, due to their importance. Since the neutron spectrum is steeply falling, the total neutron production rate is sensitive just to the relatively soft neutrons, and not to the fast-neutron compon...

  16. Cosmic rays and global warming

    Energy Technology Data Exchange (ETDEWEB)

    Erlykin, A.D. [P.N. Lebedev Physical Institute, Moscow (Russian Federation); Sloan, T. [Lancaster University (United Kingdom); Wolfendale, A.W. [Durham University (United Kingdom)

    2010-07-01

    The possible effects of cosmic rays on clouds could contribute to global warming. The argument is that the observed increased solar activity during the last century caused a decrease in the ionization due to cosmic rays since the lower energy cosmic particles are deflected by the magnetic field created by the increasing solar wind. This would lead to a decrease in cloud cover allowing more heating of the earth by the sun. Meteorological data combined to solar activity observations and simulations show that any effect of solar activity on clouds and the climate is likely to be through irradiance rather than cosmic rays. Since solar irradiance transfers 8 orders of magnitude more energy to the atmosphere than cosmic rays it is more plausible that this can produce a real effect. The total contribution of variable solar activity to global warming is shown to be less than 14% of the total temperature rise. (A.C.)

  17. Cosmic ray driven Galactic winds

    CERN Document Server

    Recchia, S; Morlino, G

    2016-01-01

    The escape of cosmic rays from the Galaxy leads to a gradient in the cosmic ray pressure that acts as a force on the background plasma, in the direction opposite to the gravitational pull. If this force is large enough to win against gravity, a wind can be launched that removes gas from the Galaxy, thereby regulating several physical processes, including star formation. The dynamics of these cosmic ray driven winds is intrinsically non-linear in that the spectrum of cosmic rays determines the characteristics of the wind (velocity, pressure, magnetic field) and in turn the wind dynamics affects the cosmic ray spectrum. Moreover, the gradient of the cosmic ray distribution function causes excitation of Alfven waves, that in turn determine the scattering properties of cosmic rays, namely their diffusive transport. These effects all feed into each other so that what we see at the Earth is the result of these non-linear effects. Here we investigate the launch and evolution of such winds, and we determine the impli...

  18. Cosmic rays, clouds, and climate

    DEFF Research Database (Denmark)

    Marsh, N.; Svensmark, Henrik

    2000-01-01

    cloud radiative properties. Thus, a moderate influence on atmospheric aerosol distributions from cosmic ray ionisation would have a strong influence on the Earth's radiation budget. Historical evidence over the past 1000 years indicates that changes in climate have occurred in accord with variability...... in the Earth's radiation budget through trapping outgoing radiation and reflecting incoming radiation. If a physical link between these two features can be established, it would provide a mechanism linking solar activity and Earth's climate. Recent satellite observations have further revealed a correlation...... in cosmic ray intensities. Such changes are in agreement with the sign of cloud radiative forcing associated with cosmic ray variability as estimated from satellite observations....

  19. LOPES 3D - vectorial measurements of radio emission from cosmic ray induced air showers

    CERN Document Server

    Apel, W D; Bähren, L; Bekk, K; Bertaina, M; Biermann, P L; Blümer, J; Bozdog, H; Brancus, I M; Chiavassa, A; Daumiller, K; de Souza, V; Di Pierro, F; Doll, P; Engel, R; Falcke, H; Fuchs, B; Fuhrmann, D; Gemmeke, H; Grupen, C; Haungs, A; Heck, D; Hörandel, J R; Horneffer, A; Huber, D; Huege, T; Isar, P G; Kampert, K -H; Kang, D; Krömer, O; Kuijpers, J; Link, K; Luczak, P; Ludwig, M; Mathes, H J; Melissas, M; Morello, C; Oehlschläger, J; Palmieri, N; Pierog, T; Rautenberg, J; Rebel, H; Roth, M; Rühle, C; Saftoiu, A; Schieler, H; Schmidt, A; Schröder, F G; Sima, O; Toma, G; Trinchero, G C; Weindl, A; Wochele, J; Zabierowski, J; Zensus, J A

    2013-01-01

    LOPES 3D is able to measure all three components of the electric field vector of the radio emission from air showers. This allows a better comparison with emission models. The measurement of the vertical component increases the sensitivity to inclined showers. By measuring all three components of the electric field vector LOPES 3D demonstrates by how much the reconstruction accuracy of primary cosmic ray parameters increases. Thus LOPES 3D evaluates the usefulness of vectorial measurements for large scale applications.

  20. Probing Atmospheric Electric Fields in Thunderstorms through Radio Emission from Cosmic-Ray-Induced Air Showers

    CERN Document Server

    Schellart, P; Buitink, S; Corstanje, A; Enriquez, J E; Falcke, H; Hörandel, J R; Nelles, A; Rachen, J P; Rossetto, L; Scholten, O; ter Veen, S; Thoudam, S; Ebert, U; Koehn, C; Rutjes, C; Alexov, A; Anderson, J M; Avruch, I M; Bentum, M J; Bernardi, G; Best, P; Bonafede, A; Breitling, F; Broderick, J W; Brüggen, M; Butcher, H R; Ciardi, B; de Geus, E; de Vos, M; Duscha, S; Eislöffel, J; Fallows, R A; Frieswijk, W; Garrett, M A; Grießmeier, J; Gunst, A W; Heald, G; Hessels, J W T; Hoeft, M; Holties, H A; Juette, E; Kondratiev, V I; Kuniyoshi, M; Kuper, G; Mann, G; McFadden, R; McKay-Bukowski, D; McKean, J P; Mevius, M; Moldon, J; Norden, M J; Orru, E; Paas, H; Pandey-Pommier, M; Pizzo, R; Polatidis, A G; Reich, W; Röttgering, H; Scaife, A M M; Schwarz, D J; Serylak, M; Smirnov, O; Steinmetz, M; Swinbank, J; Tagger, M; Tasse, C; Toribio, M C; van Weeren, R J; Vermeulen, R; Vocks, C; Wise, M W; Wucknitz, O; Zarka, P

    2015-01-01

    We present measurements of radio emission from cosmic ray air showers that took place during thunderstorms. The intensity and polarization patterns of these air showers are radically different from those measured during fair-weather conditions. With the use of a simple two-layer model for the atmospheric electric field, these patterns can be well reproduced by state-of-the-art simulation codes. This in turn provides a novel way to study atmospheric electric fields.

  1. A Study of Cosmic Ray Secondaries Induced by the Mir Space Station Using AMS-01

    CERN Document Server

    Aguilar, M A; Allaby, James V; Alpat, B; Ambrosi, G; Anderhub, H; Ao, L; Arefev, A; Azzarello, P; Babucci, E; Baldini, L; Basile, M; Barancourt, D; Barão, F; Barbier, G; Barreira, G; Battiston, R; Becker, R; Becker, U; Bellagamba, L; Bene, P; Berdugo, J; Berges, P; Bertucci, B; Biland, A; Bizzaglia, S; Blasko, S; Bölla, G; Boschini, M; Bourquin, Maurice; Brocco, L; Bruni, G; Buénerd, M; Burger, J D; Burger, W J; Cai, X D; Camps, C; Cannarsa, P; Capell, M; Carosi, G; Casadei, D; Casaus, J; Castellini, G; Cecchi, C; Chang, Y H; Chen, H F; Chen, H S; Chen, Z G; Chernoplekov, N A; Tzi Hong Chiueh; Cho, K; Choi, M J; Choi, Y Y; Chuang, Y L; Cindolo, F; Commichau, V; Contin, A; Cortina, E; Cristinziani, M; Da Cunha, J P; Dai, T S; Delgado, C; Demirkoz, B; Deus, J D; Dinu, N; Djambazov, L; D'Antone, I; Dong, Z R; Emonet, P; Engelberg, J; Eppling, F J; Eronen, T; Esposito, G; Extermann, P; Favier, Jean; Fiandrini, E; Fisher, P H; Flügge, G; Fouque, N; Galaktionov, Yu; Gervasi, M; Giusti, P; Grandi, D; Grimm, O; Gu, W Q; Hangarter, K; Hasan, A; Henning, R; Hermel, V; Hofer, H; Huang, M A; Hungerford, W; Ionica, M; Ionica, R; Jongmanns, M; Karlamaa, K; Karpinski, W; Kenney, G; Kenny, J; Kim, D H; Kim, G N; Kim, K S; Kim, M Y; Klimentov, A; Kossakowski, R; Koutsenko, V F; Kraeber, M; Laborie, G; Laitinen, T; Lamanna, G; Lanciotti, E; Laurenti, G; Lebedev, A; Lechanoine-Leluc, C; Lee, M W; Lee, S C; Levi, G; Levchenko, P M; Liu, C L; Liu, H T; Lopes, I; Lu, G; Lü, Y S; Lübelsmeyer, K; Luckey, D; Lustermann, W; Maña, C; Margotti, A; Mayet, F; McNeil, R R; Meillon, B; Menichelli, M; Mihul, A; Monreal, B; Mourao, A; Mujunen, A; Palmonari, F; Papi, A; Park, H B; Park, W H; Pauluzzi, M; Pauss, Felicitas; Perrin, E; Pesci, A; Pevsner, A; Pimenta, M; Plyaskin, V; Pozhidaev, V; Pohl, M; Postolache, V; Rancoita, P G; Rapin, D; Raupach, F; Ren, D; Ren, Z; Ribordy, M; Richeux, J P; Riihonen, E; Ritakari, J; Ro, S; Röser, U; Rossin, C; Sagdeev, R; Santos, D; Sartorelli, G; Sbarra, C; Schael, S; Schultzvon Dratzig, A; Schwering, G; Scolieri, G; Seo, E S; Shin, J W; Shoumilov, E; Shoutko, V; Siedling, R; Son, D; Song, T; Steuer, M; Sun, G S; Suter, H; Tang, X W; Ting, Samuel C C; Ting, S M; Tornikoski, M; Torsti, J; Trumper, J; Ulbricht, J; Urpo, S; Valtonen, E; Vandenhirtz, J; Velcea, F; Velikhov, E P; Verlaat, B; Vetlitskii, I; Vezzu, F; Vialle, J P; Viertel, Gert M; Vitè, Davide F; Von Gunten, H P; Waldmeier-Wicki, S; Wallraff, W; Wang, B C; Wang, J Z; Wang, Y H; Wiik, K; Williams, C; Wu, S X; Xia, P C; Yan, J L; Yan, L G; Yang, C G; Yang, J; Yang, M; Ye, S W; Yeh, P; Xu, Z Z; Zhang, H Y; Zhang, Z P; Zhao, D X; Zhu, G Y; Zhu, W Z; Zhuang, H L; Zichichi, A; Zimmermann, B; Zuccon, P

    2004-01-01

    The Alpha Magnetic Spectrometer (AMS-02) is a high energy particle physics experiment that will study cosmic rays in the $\\sim 100 \\mathrm{MeV}$ to $1 \\mathrm{TeV}$ range and will be installed on the International Space Station (ISS) for at least 3 years. A first version of AMS-02, AMS-01, flew aboard the space shuttle \\emph{Discovery} from June 2 to June 12, 1998, and collected $10^8$ cosmic ray triggers. Part of the \\emph{Mir} space station was within the AMS-01 field of view during the four day \\emph{Mir} docking phase of this flight. We have reconstructed an image of this part of the \\emph{Mir} space station using secondary $\\pi^-$ and $\\mu^-$ emissions from primary cosmic rays interacting with \\emph{Mir}. This is the first time this reconstruction was performed in AMS-01, and it is important for understanding potential backgrounds during the 3 year AMS-02 mission.

  2. Cosmic Rays and Particle Physics

    Science.gov (United States)

    Gaisser, Thomas K.; Engel, Ralph; Resconi, Elisa

    2016-06-01

    Preface to the first edition; Preface to the second edition; 1. Cosmic rays; 2. Cosmic ray data; 3. Particle physics; 4. Hadronic interactions and accelerator data; 5. Cascade equations; 6. Atmospheric muons and neutrinos; 7. Neutrino masses and oscillations; 8. Muons and neutrinos underground; 9. Cosmic rays in the Galaxy; 10. Extragalactic propagation of cosmic rays; 11. Astrophysical - rays and neutrinos; 12. Acceleration; 13. Supernovae in the Milky Way; 14. Astrophysical accelerators and beam dumps; 15. Electromagnetic cascades; 16. Extensive air showers; 17. Very high energy cosmic rays; 18. Neutrino astronomy; A.1. Units, constants and definitions; A.2. References to flux measurements; A.3. Particle flux, density, and interaction cross section; A.4. Fundamentals of scattering theory; A.5. Regge amplitude; A.6. Glauber model of nuclear cross sections; A.7. Earth's atmosphere; A.8. Longitudinal development of air showers; A.9. Secondary positrons and electrons; A.10. Liouville's theorem and cosmic ray propagation; A.11. Cosmology and distances measures; A.12. The Hillas splitting algorithm; References; Index.

  3. Cosmic ray driven outflows

    CERN Document Server

    Hanasz, Michal; Naab, Thorsten; Gawryszczak, Artur; Kowalik, Kacper; Wóltański, Dominik

    2013-01-01

    We present simulations of the magnetized interstellar medium (ISM) in models of massive star forming (40 Msun / yr) disk galaxies with high gas surface densities (~100 Msun / pc^2) similar to observed star forming high-redshift disks. We assume that type II supernovae deposit 10 per cent of their energy into the ISM as cosmic rays and neglect the additional deposition of thermal energy or momentum. With a typical Galactic diffusion coefficient for CRs (3e28 cm^2 / s) we demonstrate that this process alone can trigger the local formation of a strong low density galactic wind maintaining vertically open field lines. Driven by the additional pressure gradient of the relativistic fluid the wind speed can exceed 1000 km/s, much higher than the escape velocity of the galaxy. The global mass loading, i.e. the ratio of the gas mass leaving the galactic disk in a wind to the star formation rate becomes of order unity once the system has settled into an equilibrium. We conclude that relativistic particles accelerated i...

  4. Cosmic Ray Helium Hardening

    CERN Document Server

    Ohira, Yutaka

    2010-01-01

    Recent observations by CREAM, ATIC-2 and PAMELA experiments suggest that (1) the spectrum of cosmic ray (CR) helium is harder than that of CR proton below the knee $10^15 eV$ and (2) all CR spectra become hard at $\\gtrsim 10^{11} eV/n$. We propose a new picture that higher energy CRs are generated in more helium-rich region to explain the hardening (1) without introducing different sources for CR helium. The helium to proton ratio at $\\sim 100$ TeV exceeds the Big Bang abundance $Y=0.25$ by several times, and the different spectrum is not reproduced within the diffusive shock acceleration theory. We argue that CRs are produced in the chemically enriched region, such as a superbubble, and the outward-decreasing abundance naturally leads to the hard spectrum of CR helium when escaping from the supernova remnant (SNR) shock. We provide a simple analytical spectrum that also fits well the hardening (2) because of the decreasing Mach number in the hot superbubble with $\\sim 10^6$ K. Our model predicts hard and con...

  5. Cosmic ray-driven winds in the Galactic environment and the cosmic ray spectrum

    Science.gov (United States)

    Recchia, S.; Blasi, P.; Morlino, G.

    2017-09-01

    Cosmic rays escaping the Galaxy exert a force on the interstellar medium directed away from the Galactic disc. If this force is larger than the gravitational pull due to the mass embedded in the Galaxy, then galactic winds may be launched. Such outflows may have important implications for the history of star formation of the host galaxy, and in turn affect in a crucial way the transport of cosmic rays, both due to advection with the wind and to the excitation of waves by the same cosmic rays, through streaming instability. The possibility to launch cosmic ray-induced winds and the properties of such winds depend on environmental conditions, such as the density and temperature of the plasma at the base of the wind and the gravitational potential, especially the one contributed by the dark matter halo. In this paper, we make a critical assessment of the possibility to launch cosmic ray-induced winds for a Milky Way-like galaxy and how the properties of the wind depend upon the conditions at the base of the wind. Special attention is devoted to the implications of different conditions for wind launching on the spectrum of cosmic rays observed at different locations in the disc of the galaxy. We also comment on how cosmic ray-induced winds compare with recent observations of Oxygen absorption lines in quasar spectra and emission lines from blank sky, as measured by XMM-Newton/EPIC-MOS.

  6. Cosmic rays from thermal sources

    CERN Document Server

    Wlodarczyk, Z

    2007-01-01

    The energy spectrum of cosmic rays (CR) exhibits very characteristic power-like behavior with the "knee" structure. We consider a generalized statistical model for the production process of cosmic rays which accounts for such behavior in a natural way either by assuming the existence of temperature fluctuations in the source of CR, or by assuming specific temperature distribution of the CR sources. Both possibilities yield the so called Tsallis statistics and lead to the power-like distribution.

  7. Cosmic rays and Earth's climate

    DEFF Research Database (Denmark)

    Svensmark, Henrik

    2000-01-01

    During the last solar cycle the Earth's cloud cover underwent a modulation in phase with the cosmic ray flux. Assuming that there is a causal relationship between the two, it is expected and found that the Earth's temperature follows more closely decade variations in cosmic ray flux than other...... solar activity parameters. If the relationship is real the state of the Heliosphere affects the Earth's climate....

  8. Accelerator measurements of magnetically-induced radio emission from particle cascades with applications to cosmic-ray air showers

    CERN Document Server

    Belov, K; Romero-Wolf, A; Wissel, S A; Zilles, A; Bechtol, K; Borch, K; Chen, P; Clem, J; Gorham, P W; Hast, C; Huege, T; Hyneman, R; Jobe, K; Kuwatani, K; Lam, J; Liu, T; Nam, J; Naudet, C; Nichol, R; Rauch, B F; Rotter, B; Saltzberg, D; Schoorlemmer, H; Seckel, D; Strutt, B; Vieregg, A G; Williams, C

    2015-01-01

    An experiment at SLAC provides the first beam test of radio-frequency (RF) radiation from a charged particle cascade in the presence of a magnetic field (up to $\\sim$1~kG), a model system for RF emission from a cosmic-ray air shower. This experiment provides a suite of controlled laboratory measurements to compare to particle-level simulations of RF emission, which are relied upon in ultra-high-energy cosmic-ray air shower detection. We compare simulations to data for intensity, linearity with magnetic field, angular distribution, polarization, and spectral content. In particular, we confirm recent predictions that the magnetically induced emission forms a beam that peaks at the Cherenkov angle and show that the simulations reproduce the data within systematic uncertainties.

  9. Cosmic-ray-induced sup 6 sup 3 Ni -A potential confounder of fast-neutron-induced sup 6 sup 3 Ni in copper samples from Hiroshima

    CERN Document Server

    Rühm, W; Wallner, A; Fästermann, T; Knie, K; Heisinger, B; Nolte, E; Korschinek, G; Marchetti, A A; Martinelli, R E; Carroll, K L

    2003-01-01

    Recently, the determination of sup 6 sup 3 Ni in copper samples has been suggested as a means to assess fast-neutron fluences in Hiroshima and Nagasaki. In those samples, sup 6 sup 3 Ni (half-life: 100.07 years) was produced by MeV neutrons from the A-bomb explosions via the reaction sup 6 sup 3 Cu(n,p) sup 6 sup 3 Ni. For large distances from the hypocenters, cosmic-ray-induced production of sup 6 sup 3 Ni might also be important and, therefore, it is calculated here. The effective probability f sup * which is required to quantify the cosmic-ray-induced production by stopped muons, was measured, and a value of (12.6 +-1.6)% obtained. The cross-section for the cosmic-ray-induced production by fast muons was measured to be (0.64 +-0.33) mb, at a muon energy of 100 GeV. To validate the proposed method, cosmic-ray-induced production of sup 3 sup 2 P in sulfur and of sup 3 sup 9 Ar in granite was also calculated, and reasonable agreement with literature values was found. Our estimates indicate that as many as (4 ...

  10. Vibrational excitation induced by electron beam and cosmic rays in normal and superconductive aluminum bars

    CERN Document Server

    Bassan, M; Cavallari, G; Coccia, E; D'Antonio, S; Fafone, V; Foggetta, L G; Ligi, C; Marini, A; Mazzitelli, G; Modestino, G; Pizzella, G; Quintieri, L; Ronga, F; Valente, P; Vinko, S M

    2011-01-01

    We report new measurements of the acoustic excitation of an Al5056 superconductive bar when hit by an electron beam, in a previously unexplored temperature range, down to 0.35 K. These data, analyzed together with previous results of the RAP experiment obtained for T > 0.54 K, show a vibrational response enhanced by a factor 4.9 with respect to that measured in the normal state. This enhancement explains the anomalous large signals due to cosmic rays previously detected in the NAUTILUS gravitational wave detector.

  11. Cosmic Ray Origins: An Introduction

    Science.gov (United States)

    Blandford, Roger; Simeon, Paul; Yuan, Yajie

    2014-11-01

    Physicists have pondered the origin of cosmic rays for over a hundred years. However the last few years have seen an upsurge in the observation, progress in the theory and a genuine increase in the importance attached to the topic due to its intimate connection to the indirect detection of evidence for dark matter. The intent of this talk is to set the stage for the meeting by reviewing some of the basic features of the entire cosmic ray spectrum from GeV to ZeV energy and some of the models that have been developed. The connection will also be made to recent developments in understanding general astrophysical particle acceleration in pulsar wind nebulae, relativistic jets and gamma ray bursts. The prospects for future discoveries, which may elucidate the origin of cosmic rays, are bright.

  12. Cosmic Ray Origins: An Introduction

    Energy Technology Data Exchange (ETDEWEB)

    Blandford, Roger; Simeon, Paul; Yuan, Yajie

    2014-11-15

    Physicists have pondered the origin of cosmic rays for over a hundred years. However the last few years have seen an upsurge in the observation, progress in the theory and a genuine increase in the importance attached to the topic due to its intimate connection to the indirect detection of evidence for dark matter. The intent of this talk is to set the stage for the meeting by reviewing some of the basic features of the entire cosmic ray spectrum from GeV to ZeV energy and some of the models that have been developed. The connection will also be made to recent developments in understanding general astrophysical particle acceleration in pulsar wind nebulae, relativistic jets and gamma ray bursts. The prospects for future discoveries, which may elucidate the origin of cosmic rays, are bright.

  13. Cosmic Ray Origins: An Introduction

    CERN Document Server

    Blandford, Roger; Yuan, Yajie

    2014-01-01

    Physicists have pondered the origin of cosmic rays for over a hundred years. However the last few years have seen an upsurge in the observation, progress in the theory and a genuine increase in the importance attached to the topic due to its intimate connection to the indirect detection of evidence for dark matter. The intent of this talk is to set the stage for the meeting by reviewing some of the basic features of the entire cosmic ray spectrum from GeV to ZeV energy and some of the models that have been developed. The connection will also be made to recent developments in understanding general astrophysical particle acceleration in pulsar wind nebulae, relativistic jets and gamma ray bursts. The prospects for future discoveries, which may elucidate the origin of cosmic rays, are bright.

  14. Cosmic Ray Interactions in Shielding Materials

    Energy Technology Data Exchange (ETDEWEB)

    Aguayo Navarrete, Estanislao; Kouzes, Richard T.; Ankney, Austin S.; Orrell, John L.; Berguson, Timothy J.; Troy, Meredith D.

    2011-09-08

    This document provides a detailed study of materials used to shield against the hadronic particles from cosmic ray showers at Earth’s surface. This work was motivated by the need for a shield that minimizes activation of the enriched germanium during transport for the MAJORANA collaboration. The materials suitable for cosmic-ray shield design are materials such as lead and iron that will stop the primary protons, and materials like polyethylene, borated polyethylene, concrete and water that will stop the induced neutrons. The interaction of the different cosmic-ray components at ground level (protons, neutrons, muons) with their wide energy range (from kilo-electron volts to giga-electron volts) is a complex calculation. Monte Carlo calculations have proven to be a suitable tool for the simulation of nucleon transport, including hadron interactions and radioactive isotope production. The industry standard Monte Carlo simulation tool, Geant4, was used for this study. The result of this study is the assertion that activation at Earth’s surface is a result of the neutronic and protonic components of the cosmic-ray shower. The best material to shield against these cosmic-ray components is iron, which has the best combination of primary shielding and minimal secondary neutron production.

  15. Cosmic Ray Energetics and Mass

    CERN Document Server

    Baylon cardiel, J L; Wallace, K C; Anderson, T B; Copley, M

    The cosmic-ray energetics and mass (CREAM) investigation is designed to measure cosmic-ray composition to the supernova energy scale of 10$^{15}$ eV in a series of ultra long duration balloon (ULDB) flights. The first flight is planned to be launched from Antarctica in December 2004. The goal is to observe cosmic-ray spectral features and/or abundance changes that might signify a limit to supernova acceleration. The particle ($\\{Z}$) measurements will be made with a timing-based charge detector and a pixelated silicon charge detector to minimize the effect of backscatter from the calorimeter. The particle energy measurements will be made with a transition radiation detector (TRD) for $\\{Z}$ > 3 and a sampling tungsten/scintillator calorimeter for $\\{Z}$ $\\geq$1 particles, allowing inflight cross calibration of the two detectors. The status of the payload construction and flight preparation are reported in this paper.

  16. Aligned interactions in cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Kempa, J., E-mail: kempa@pw.plock.pl [Warsaw University of Technology Branch Plock (Poland)

    2015-12-15

    The first clean Centauro was found in cosmic rays years many ago at Mt Chacaltaya experiment. Since that time, many people have tried to find this type of interaction, both in cosmic rays and at accelerators. But no one has found a clean cases of this type of interaction.It happened finally in the last exposure of emulsion at Mt Chacaltaya where the second clean Centauro has been found. The experimental data for both the Centauros and STRANA will be presented and discussed in this paper. We also present our comments to the intriguing question of the existence of a type of nuclear interactions at high energy with alignment.

  17. Cosmic rays and hadronic interactions

    Directory of Open Access Journals (Sweden)

    Lipari Paolo

    2015-01-01

    Full Text Available The study of cosmic rays, and more in general of the “high energy universe” is at the moment a vibrant field that, thanks to the observations by several innovative detectors for relativistic charged particles, gamma–rays, and neutrinos continue to generate surprising and exciting results. The progress in the field is rapid but many fundamental problems remain open. There is an intimate relation between the study of the high energy universe and the study of the properties of hadronic interactions. High energy cosmic rays can only be studied detecting the showers they generate in the atmosphere, and for the interpretation of the data one needs an accurate modeling of the collisions between hadrons. Also the study of cosmic rays inside their sources and in the Galaxy requires a precise description of hadronic interactions. A program of experimental studies at the LHC and at lower energy, designed to address the most pressing problems, could significantly reduce the existing uncertainties and is very desirable. Such an experimental program would also have a strong intrinsic scientific interest, allowing the broadening and deepening of our understanding of Quantum Chromo Dynamics in the non–perturbative regime, the least understood sector of the Standard Model of particle physics. It should also be noted that the cosmic ray spectrum extends to particles with energy E ∼ 1020 eV, or a nucleon–nucleon c.m. energy √s ≃ 430 TeV, 30 times higher than the current LHC energy. Cosmic ray experiments therefore offer the possibility to perform studies on the properties of hadronic interactions that are impossible at accelerators.

  18. The Cosmic Ray Electron Excess

    Science.gov (United States)

    Chang, J.; Adams, J. H.; Ahn, H. S.; Bashindzhagyan, G. L.; Christl, M.; Ganel, O.; Guzik, T. G.; Isbert, J.; Kim, K. C.; Kuznetsov, E. N.; Panasyuk, M. I.; Panov, A. D.; Schmidt, W. K. H.; Seo, E. S.; Sokolskaya, N. V.; Watts, J. W.; Wefel, J. P.; Wu, J.; Zatsepin, V. I.

    2008-01-01

    This slide presentation reviews the possible sources for the apparent excess of Cosmic Ray Electrons. The presentation reviews the Advanced Thin Ionization Calorimeter (ATIC) instrument, the various parts, how cosmic ray electrons are measured, and shows graphs that review the results of the ATIC instrument measurement. A review of Cosmic Ray Electrons models is explored, along with the source candidates. Scenarios for the excess are reviewed: Supernova remnants (SNR) Pulsar Wind nebulae, or Microquasars. Each of these has some problem that mitigates the argument. The last possibility discussed is Dark Matter. The Anti-Matter Exploration and Light-nuclei Astrophysics (PAMELA) mission is to search for evidence of annihilations of dark matter particles, to search for anti-nuclei, to test cosmic-ray propagation models, and to measure electron and positron spectra. There are slides explaining the results of Pamela and how to compare these with those of the ATIC experiment. Dark matter annihilation is then reviewed, which represent two types of dark matter: Neutralinos, and kaluza-Kline (KK) particles, which are next explained. The future astrophysical measurements, those from GLAST LAT, the Alpha Magnetic Spectrometer (AMS), and HEPCAT are reviewed, in light of assisting in finding an explanation for the observed excess. Also the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) could help by revealing if there are extra dimensions.

  19. Cosmic Rays and Radiative Instabilities

    CERN Document Server

    Hartquist, T W; Falle, S A E G; Pittard, J M; Van Loo, S

    2011-01-01

    In the absence of magnetic fields and cosmic rays, radiative cooling laws with a range of dependences on temperature affect the stability of interstellar gas. For about four and a half decades, astrophysicists have recognised the importance of the thermal instablity for the formation of clouds in the interstellar medium. Even in the past several years, many papers have concerned the role of the thermal instability in the production of molecular clouds. About three and a half decades ago, astrophysicists investigating radiative shocks noticed that for many cooling laws such shocks are unstable. Attempts to address the effects of cosmic rays on the stablity of radiative media that are initially uniform or that have just passed through shocks have been made. The simplest approach to such studies involves the assumption that the cosmic rays behave as a fluid. Work based on such an approach is described. Cosmic rays have no effect on the stability of initially uniform, static media with respect to isobaric perturb...

  20. Cosmology, Relativity and Cosmic Rays

    Science.gov (United States)

    López, Rebeca; Martínez, Humberto; Zepeda, Arnulfo

    2009-04-01

    This is a short review of the evolution of ideas and concepts about the Universe. It is based on the introductory talk given on the 25 of July 2008 within the Third School on Cosmic Rays and Astrophysics held in Arequipa, Peru.

  1. Surprising results from cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Wilk, G. [Soltan Institute for Nuclear Studies, Warsaw (Poland); Wlodarczyk, Z. [Institute for Physics, Pedagogical University, Kielce (Poland)

    1996-10-01

    A number of seemingly exotic phenomena seen in the highest cosmic-ray experiments are briefly discussed. We argue that they indicate existence of non-statistical fluctuations and strong correlations in the fragmentation region of multiparticle production processes unaccessible to the present accelerators. (author) 12 refs, 3 figs

  2. Cosmic-Ray Detectors With Interdigitated Electrodes

    Science.gov (United States)

    Cunningham, Thomas J.; Mazed, Mohammed; Holtzman, Melinda J.; Fossum, Eric R.

    1995-01-01

    Detectors measure both positions of incidence and energies of incident charged particles. Stack of detector wafers intercept cosmic ray. Measure positions of incidence to determine cosmic-ray trajectory and charge generated within them (proportional to cosmic-ray energy dissipated within them). Interdigital electrode pattern repeated over many rows and columns on tops of detector wafers in stack. Electrode pattern defines pixels within which points of incidence of incident cosmic rays located.

  3. Final Report for NA-22/DTRA Cosmic Ray Project

    Energy Technology Data Exchange (ETDEWEB)

    Wurtz, Ron E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chapline, George F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Glenn, Andrew M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Nakae, Les F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pawelczak, Iwona A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sheets, Steven A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-07-21

    The primary objective of this project was to better understand the time-correlations between the muons and neutrons produced as a result of high energy primary cosmic ray particles hitting the atmosphere, and investigate whether these time correlations might be useful in connection with the detection of special nuclear materials. During the course of this project we did observe weak correlations between secondary cosmic ray muons and cosmic ray induced fast neutrons. We also observed strong correlations between tertiary neutrons produced in a Pb pile by secondary cosmic rays and minimum ionizing particles produced in association with the tertiary neutrons.

  4. Cosmic Ray elimination using the Wavelet Transform

    Science.gov (United States)

    Orozco-Aguilera, M. T.; Cruz, J.; Altamirano, L.; Serrano, A.

    2009-11-01

    In this work, we present a method for the automatic cosmic ray elimination in a single CCD exposure using the Wavelet Transform. The proposed method can eliminate cosmic rays of any shape or size. With this method we can eliminate over 95% of cosmic rays in a spectral image.

  5. COSMIC RAY ELIMINATION USING THE WAVELET TRANSFORM

    Directory of Open Access Journals (Sweden)

    M. T. Orozco-Aguilera

    2009-01-01

    Full Text Available In this work, we present a method for the automatic cosmic ray elimination in a single CCD exposure using the Wavelet Transform. The proposed method can eliminate cosmic rays of any shape or size. With this method we can eliminate over 95% of cosmic rays in a spectral image.

  6. Microphysics of cosmic ray driven plasma instabilities

    CERN Document Server

    Bykov, A M; Malkov, M A; Osipov, S M

    2013-01-01

    Energetic nonthermal particles (cosmic rays, CRs) are accelerated in supernova remnants, relativistic jets and other astrophysical objects. The CR energy density is typically comparable with that of the thermal components and magnetic fields. In this review we discuss mechanisms of magnetic field amplification due to instabilities induced by CRs. We derive CR kinetic and magnetohydrodynamic equations that govern cosmic plasma systems comprising the thermal background plasma, comic rays and fluctuating magnetic fields to study CR-driven instabilities. Both resonant and non-resonant instabilities are reviewed, including the Bell short-wavelength instability, and the firehose instability. Special attention is paid to the longwavelength instabilities driven by the CR current and pressure gradient. The helicity production by the CR current-driven instabilities is discussed in connection with the dynamo mechanisms of cosmic magnetic field amplification.

  7. Galactic cosmic ray propagation models using Picard

    CERN Document Server

    Kissmann, Ralf; Strong, Andrew W

    2015-01-01

    We present results obtained from our newly developed Galactic cosmic-ray transport code PICARD, that solves the cosmic-ray transport equation. This code allows for the computation of cosmic-ray spectra and the resulting gamma-ray emission. Relying on contemporary numerical solvers allows for efficient computation of models with deca-parsec resolution. PICARD can handle locally anisotropic spatial diffusion acknowledging a full diffusion tensor. We used this framework to investigate the transition from axisymmetric to spiral-arm cosmic-ray source distributions. Wherever possible we compare model predictions with constraining observables in cosmic-ray astrophysics.

  8. Neutralino Clumps and Cosmic Rays

    CERN Document Server

    Salati, P

    2007-01-01

    The halo of the Miky Way might contain numerous and dense substructures inside which the putative weakly interacting massive particles (suggested as the main constituent of the astronomical dark matter) would produce a stronger annihilation signal than in the smooth regions. The closer the nearest clump, the larger the positron and antiproton cosmic ray fluxes at the Earth. But the actual distribution of these substructures is not known. The predictions on the antimatter yields at the Earth are therefore affected by a kind of cosmic variance whose analysis is the subject of this contribution. The statistical tools to achieve that goal are presented and Monte Carlo simulations are compared to analytic results.

  9. Global diffusion of cosmic rays

    CERN Document Server

    Snodin, A P; Sarson, G R; Bushby, P J; Rodrigues, L F S

    2015-01-01

    The propagation of charged particles, including cosmic rays, in a partially ordered magnetic field is characterized by a diffusion tensor whose components depend on the particle's Larmor radius $R_L$ and the degree of order in the magnetic field. This prescription relies explicitly on the assumption of a scale separation between random and mean magnetic fields, which usually applies in laboratory plasmas, but not in most astrophysical environments such as the interstellar medium (ISM). Direct estimates of the cosmic-ray diffusion tensor from test particle simulations have explored the range of particle energies corresponding to $10^{-2} \\lesssim R_L/l_c \\lesssim 10^{3}$, where $l_c$ is the magnetic correlation length. Modern simulations of the ISM have numerical resolution of order 1 pc, so the Larmor radius of the cosmic ray particles that dominate in their energy density is at least $10^{6}$ times smaller than the numerically resolved scales of the random magnetic field. Large-scale simulations of cosmic ra...

  10. Cosmic rays and particle physics

    CERN Document Server

    Gaisser, Thomas K; Resconi, Elisa

    2016-01-01

    Fully updated for the second edition, this book introduces the growing and dynamic field of particle astrophysics. It provides an overview of high-energy nuclei, photons and neutrinos, including their origins, their propagation in the cosmos, their detection on Earth and their relation to each other. Coverage is expanded to include new content on high energy physics, the propagation of protons and nuclei in cosmic background radiation, neutrino astronomy, high-energy and ultra-high-energy cosmic rays, sources and acceleration mechanisms, and atmospheric muons and neutrinos. Readers are able to master the fundamentals of particle astrophysics within the context of the most recent developments in the field. This book will benefit graduate students and established researchers alike, equipping them with the knowledge and tools needed to design and interpret their own experiments and, ultimately, to address a number of questions concerning the nature and origins of cosmic particles that have arisen in recent resea...

  11. Measurement of Cosmic-ray Muons and Muon-induced Neutrons in the Aberdeen Tunnel Underground Laboratory

    CERN Document Server

    Blyth, S C; Chen, X C; Chu, M C; Cui, K X; Hahn, R L; Ho, T H; Hsiung, Y B; Hu, B Z; Kwan, K K; Kwok, M W; Kwok, T; Lau, Y P; Leung, J K C; Leung, K Y; Lin, G L; Lin, Y C; Luk, K B; Luk, W H; Ngai, H Y; Ngan, S Y; Pun, C S J; Shih, K; Tam, Y H; Tsang, R H M; Wang, C H; Wong, C M; Wong, H L; Wong, K K; Yeh, M; Zhang, B J

    2015-01-01

    We measured the muon flux and the production rate of muon-induced neutrons at a depth of 611 meters water equivalent. Our apparatus comprises of three layers of crossed plastic scintillator hodoscopes for tracking the incident cosmic-ray muons, and 760 L of gadolinium-doped liquid scintillator for both neutron production and detection targets. The vertical muon intensity was measured to be $I_{\\mu}$ = (5.7 $\\pm$ 0.6) $\\times$ 10$^{-6}$ cm$^{-2}$ s$^{-1}$ sr$^{-1}$. The muon-induced neutron yield in the liquid scintillator was determined to be $Y_{n}$ = (1.19 $\\pm$ 0.08(stat.) $\\pm$ 0.21(syst.)) $\\times$ 10$^{-4}$ neutrons / ($\\mu$ g cm$^{-2}$). A fitting to recently measured neutron yields at different depths gave a muon energy dependence of $\\left\\langle E_{\\mu} \\right\\rangle^{0.76 \\pm 0.03}$ for scintillator targets.

  12. About cosmic gamma ray lines

    Science.gov (United States)

    Diehl, Roland

    2017-06-01

    Gamma ray lines from cosmic sources convey the action of nuclear reactions in cosmic sites and their impacts on astrophysical objects. Gamma rays at characteristic energies result from nuclear transitions following radioactive decays or high-energy collisions with excitation of nuclei. The gamma-ray line from the annihilation of positrons at 511 keV falls into the same energy window, although of different origin. We present here the concepts of cosmic gamma ray spectrometry and the corresponding instruments and missions, followed by a discussion of recent results and the challenges and open issues for the future. Among the lessons learned are the diffuse radioactive afterglow of massive-star nucleosynthesis in 26Al and 60Fe gamma rays, which is now being exploited towards the cycle of matter driven by massive stars and their supernovae; large interstellar cavities and superbubbles have been recognised to be of key importance here. Also, constraints on the complex processes making stars explode as either thermonuclear or core-collapse supernovae are being illuminated by gamma-ray lines, in this case from shortlived radioactivities from 56Ni and 44Ti decays. In particular, the three-dimensionality and asphericities that have recently been recognised as important are enlightened in different ways through such gamma-ray line spectroscopy. Finally, the distribution of positron annihilation gamma ray emission with its puzzling bulge-dominated intensity disctribution is measured through spatially-resolved spectra, which indicate that annihilation conditions may differ in different parts of our Galaxy. But it is now understood that a variety of sources may feed positrons into the interstellar medium, and their characteristics largely get lost during slowing down and propagation of positrons before annihilation; a recent microquasar flare was caught as an opportunity to see positrons annihilate at a source.

  13. Biological implications of high-energy cosmic ray induced muon flux in the extragalactic shock model

    CERN Document Server

    Atri, Dimitra

    2011-01-01

    A ~ 62 My periodicity in fossil biodiversity has been observed in independent studies of paleobiology databases going back 542 My. The period and phase of this biodiversity cycle coincides with the motion of our solar system in the galactic disk that oscillates perpendicular to the galactic plane with an amplitude of about 70 parsecs and a period of 63.6 My. Our Galaxy is falling toward the Virgo cluster due to its gravitational pull, forming a galactic shock at the north end of our galaxy due to this motion, capable of accelerating particles and exposing our galaxy's northern side to a higher flux of cosmic rays. These high-energy particles strike the Earth's atmosphere initiating extensive air showers, ionizing the atmosphere by producing charged secondary particles. Secondary particles such as muons produced as a result of nuclear interactions are able to reach the ground, enhancing the biological radiation dose, causing DNA damage and increasing mutation rates, which can have serious biological implicatio...

  14. First upper limits on the radar cross section of cosmic-ray induced extensive air showers

    Science.gov (United States)

    Abbasi, R. U.; Abe, M.; Abou Bakr Othman, M.; Abu-Zayyad, T.; Allen, M.; Anderson, R.; Azuma, R.; Barcikowski, E.; Belz, J. W.; Bergman, D. R.; Besson, D.; Blake, S. A.; Byrne, M.; Cady, R.; Chae, M. J.; Cheon, B. G.; Chiba, J.; Chikawa, M.; Cho, W. R.; Farhang-Boroujeny, B.; Fujii, T.; Fukushima, M.; Gillman, W. H.; Goto, T.; Hanlon, W.; Hanson, J. C.; Hayashi, Y.; Hayashida, N.; Hibino, K.; Honda, K.; Ikeda, D.; Inoue, N.; Ishii, T.; Ishimori, R.; Ito, H.; Ivanov, D.; Jayanthmurthy, C.; Jui, C. C. H.; Kadota, K.; Kakimoto, F.; Kalashev, O.; Kasahara, K.; Kawai, H.; Kawakami, S.; Kawana, S.; Kawata, K.; Kido, E.; Kim, H. B.; Kim, J. H.; Kim, J. H.; Kitamura, S.; Kitamura, Y.; Kunwar, S.; Kuzmin, V.; Kwon, Y. J.; Lan, J.; Lim, S. I.; Lundquist, J. P.; Machida, K.; Martens, K.; Matsuda, T.; Matsuyama, T.; Matthews, J. N.; Minamino, M.; Mukai, K.; Myers, I.; Nagasawa, K.; Nagataki, S.; Nakamura, T.; Nonaka, T.; Nozato, A.; Ogio, S.; Ogura, J.; Ohnishi, M.; Ohoka, H.; Oki, K.; Okuda, T.; Ono, M.; Oshima, A.; Ozawa, S.; Park, I. H.; Prohira, S.; Pshirkov, M. S.; Rezazadeh-Reyhani, A.; Rodriguez, D. C.; Rubtsov, G.; Ryu, D.; Sagawa, H.; Sakurai, N.; Sampson, A. L.; Scott, L. M.; Schurig, D.; Shah, P. D.; Shibata, F.; Shibata, T.; Shimodaira, H.; Shin, B. K.; Smith, J. D.; Sokolsky, P.; Springer, R. W.; Stokes, B. T.; Stratton, S. R.; Stroman, T. A.; Suzawa, T.; Takai, H.; Takamura, M.; Takeda, M.; Takeishi, R.; Taketa, A.; Takita, M.; Tameda, Y.; Tanaka, H.; Tanaka, K.; Tanaka, M.; Thomas, S. B.; Thomson, G. B.; Tinyakov, P.; Tkachev, I.; Tokuno, H.; Tomida, T.; Troitsky, S.; Tsunesada, Y.; Tsutsumi, K.; Uchihori, Y.; Udo, S.; Urban, F.; Vasiloff, G.; Venkatesh, S.; Wong, T.; Yamane, R.; Yamaoka, H.; Yamazaki, K.; Yang, J.; Yashiro, K.; Yoneda, Y.; Yoshida, S.; Yoshii, H.; Zollinger, R.; Zundel, Z.

    2017-01-01

    TARA (Telescope Array Radar) is a cosmic ray radar detection experiment colocated with Telescope Array, the conventional surface scintillation detector (SD) and fluorescence telescope detector (FD) near Delta, Utah, U.S.A. The TARA detector combines a 40 kW, 54.1 MHz VHF transmitter and high-gain transmitting antenna which broadcasts the radar carrier over the SD array and within the FD field of view, towards a 250 MS/s DAQ receiver. TARA has been collecting data since 2013 with the primary goal of observing the radar signatures of extensive air showers (EAS). Simulations indicate that echoes are expected to be short in duration (∼ 10 μs) and exhibit rapidly changing frequency, with rates on the order 1 MHz/μs. The EAS radar cross-section (RCS) is currently unknown although it is the subject of over 70 years of speculation. A novel signal search technique is described in which the expected radar echo of a particular air shower is used as a matched filter template and compared to waveforms obtained by triggering the radar DAQ using the Telescope Array fluorescence detector. No evidence for the scattering of radio frequency radiation by EAS is obtained to date. We report the first quantitative RCS upper limits using EAS that triggered the Telescope Array Fluorescence Detector.

  15. First Upper Limits on the Radar Cross Section of Cosmic-Ray Induced Extensive Air Showers

    CERN Document Server

    Abbasi, R U; Othman, M Abou Bakr; Abu-Zayyad, T; Allen, M; Anderson, R; Azuma, R; Barcikowski, E; Belz, J W; Bergman, D R; Besson, D; Blake, S A; Byrne, M; Cady, R; Chae, M J; Cheon, B G; Chiba, J; Chikawa, M; Cho, W R; Farhang-Boroujeny, B; Fujii, T; Fukushima, M; Gillman, W H; Goto, T; Hanlon, W; Hanson, J C; Hayashi, Y; Hayashida, N; Hibino, K; Honda, K; Ikeda, D; Inoue, N; Ishii, T; Ishimori, R; Ito, H; Ivanov, D; Jayanthmurthy, C; Jui, C C H; Kadota, K; Kakimoto, F; Kalashev, O; Kasahara, K; Kawai, H; Kawakami, S; Kawana, S; Kawata, K; Kido, E; Kim, H B; Kim, J H; Kitamura, S; Kitamura, Y; Kunwar, S; Kuzmin, V; Kwon, Y J; Lan, J; Lim, S I; Lundquist, J P; Machida, K; Martens, K; Matsuda, T; Matsuyama, T; Matthews, J N; Minamino, M; Mukai, K; Myers, I; Nagasawa, K; Nagataki, S; Nakamura, T; Nonaka, T; Nozato, A; Ogio, S; Ogura, J; Ohnishi, M; Ohoka, H; Oki, K; Okuda, T; Ono, M; Oshima, A; Ozawa, S; Park, I H; Prohira, S; Pshirkov, M S; Rezazadeh-Reyhani, A; Rodriguez, D C; Rubtsov, G; Ryu, D; Sagawa, H; Sakurai, N; Sampson, A L; Scott, L M; Schurig, D; Shah, P D; Shibata, F; Shibata, T; Shimodaira, H; Shin, B K; Smith, J D; Sokolsky, P; Springer, R W; Stokes, B T; Stratton, S R; Stroman, T A; Suzawa, T; Takai, H; Takamura, M; Takeda, M; Takeishi, R; Taketa, A; Takita, M; Tameda, Y; Tanaka, H; Tanaka, K; Tanaka, M; Thomas, S B; Thomson, G B; Tinyakov, P; Tkachev, I; Tokuno, H; Tomida, T; Troitsky, S; Tsunesada, Y; Tsutsumi, K; Uchihori, Y; Udo, S; Urban, F; Vasiloff, G; Venkatesh, S; Wong, T; Yamane, R; Yamaoka, H; Yamazaki, K; Yang, J; Yashiro, K; Yoneda, Y; Yoshida, S; Yoshii, H; Zollinger, R; Zundel, Z

    2016-01-01

    TARA (Telescope Array Radar) is a cosmic ray radar detection experiment colocated with Telescope Array, the conventional surface scintillation detector (SD) and fluorescence telescope detector (FD) near Delta, Utah, U.S.A. The TARA detector combines a 40 kW, 54.1 MHz VHF transmitter and high-gain transmitting antenna which broadcasts the radar carrier over the SD array and within the FD field of view, towards a 250 MS/s DAQ receiver. TARA has been collecting data since 2013 with the primary goal of observing the radar signatures of extensive air showers (EAS). Simulations indicate that echoes are expected to be short in duration (~10 microseconds) and exhibit rapidly changing frequency, with rates on the order of 1 MHz/microsecond. The EAS radar cross-section (RCS) is currently unknown although it is the subject of over 70 years of speculation. A novel signal search technique is described in which the expected radar echo of a particular air shower is used as a matched filter template and compared to waveforms...

  16. Aerosols Produced by Cosmic Rays

    DEFF Research Database (Denmark)

    Enghoff, Martin Andreas Bødker

    , it will be possible to develop the experiment to cover additional processes involved in the route to cloud droplet formation. The experiment will be conducted at the Danish National Space Center where a clean room facility has been provided. It comprises a 7 m3 reaction chamber across which an electric field......Satellite observations have shown that the Earth’s cloud cover is strongly correlated with the galactic cosmic ray flux. While this correlation is indicative of a possible physical connection, there is currently no confirmation that a physical mechanism exists. We are therefore setting up...... mechanism linking cosmic rays to clouds and climate is currently speculative, there have been various suggestions of the role atmospheric ions may play; these involve any one of a number of processes from the nucleation of aerosols up to the collection processes of cloud droplets. We have chosen to start...

  17. Charged Cosmic Rays and Neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Kachelrieß, M.

    2013-04-15

    High-energy neutrino astronomy has grown up, with IceCube as one of its main experiments having sufficient sensitivity to test “vanilla” models of astrophysical neutrinos. I review predictions of neutrino fluxes as well as the status of cosmic ray physics. I comment also briefly on an improvement of the Fermi-LAT limit for cosmogenic neutrinos and on the two neutrino events presented by IceCube first at “Neutrino 2012”.

  18. Cosmic ray physics with the ALEPH detector

    CERN Document Server

    Besier, H; Kempa, J; Luitz, S; Maggi, M; Maier, D; Misiejuk, A; Müller, A S; Putzer, A; Rensch, B; Sander, H G; Schmeling, S; Schmelling, M; Schreiber, V; Wachsmuth, H W; Ziegler, T; Zuber, K

    2000-01-01

    ALEPH is one of the four detectors at the Large Electron-Positron Collider (LEP) at a depth of about 320 m.w.e. Its hadron calorimeter and scintillator arrays installed at distances up to about 1 km away from ALEPH are used to measure cosmic muon induced time coincidences over large distances. The aim of this experiment (CosmoALEPH) is (1) to study the muon component above 70 GeV of extensive air showers (EAS) and (2) to test the feasibility of searching for time correlations over even larger distances (up to 8 km) between the four LEP detectors. Layout and first results of CosmoALEPH are presented demonstrating the potential for cosmic ray physics in the LEP tunnel. The multiplicity distribution of muons in cosmic events recorded in ALEPH's tracking detector is presented. (28 refs).

  19. Cosmic ray air showers from sphalerons

    Science.gov (United States)

    Brooijmans, Gustaaf; Schichtel, Peter; Spannowsky, Michael

    2016-10-01

    The discovery of the Higgs boson marks a key ingredient to establish the electroweak structure of the Standard Model. Its non-abelian gauge structure gives rise to, yet unobserved, non-perturbative baryon and lepton number violating processes. We propose to use cosmic ray air showers, as measured, for example, at the Pierre Auger Observatory, to set a limit on the hadronic production cross section of sphalerons. We identify several observables to discriminate between sphaleron and QCD induced air showers.

  20. Antennas for the Detection of Radio Emission Pulses from Cosmic-Ray induced Air Showers at the Pierre Auger Observatory

    CERN Document Server

    Abreu, P; Ahlers, M; Ahn, E J; Albuquerque, I F M; Allard, D; Allekotte, I; Allen, J; Allison, P; Almela, A; Castillo, J Alvarez; Alvarez-Muñiz, J; Batista, R Alves; Ambrosio, M; Aminaei, A; Anchordoqui, L; Andringa, S; Antičić, T; Aramo, C; Arganda, E; Arqueros, F; Asorey, H; Assis, P; Aublin, J; Ave, M; Avenier, M; Avila, G; Badescu, A M; Balzer, M; Barber, K B; Barbosa, A F; Bardenet, R; Barroso, S L C; Baughman, B; Bäuml, J; Baus, C; Beatty, J J; Becker, K H; Bellétoile, A; Bellido, J A; BenZvi, S; Berat, C; Bertou, X; Biermann, P L; Billoir, P; Blanco, F; Blanco, M; Bleve, C; Blümer, H; Boh\\'{čová, M; Boncioli, D; Bonifazi, C; Bonino, R; Borodai, N; Brack, J; Brancus, I; Brogueira, P; Brown, W C; Bruijn, R; Buchholz, P; Bueno, A; Buroker, L; Burton, R E; Caballero-Mora, K S; Caccianiga, B; Caramete, L; Caruso, R; Castellina, A; Catalano, O; Cataldi, G; Cazon, L; Cester, R; Chauvin, J; Cheng, S H; Chiavassa, A; Chinellato, J A; Diaz, J Chirinos; Chudoba, J; Cilmo, M; Clay, R W; Cocciolo, G; Collica, L; Coluccia, M R; Conceição, R; Contreras, F; Cook, H; Cooper, M J; Coppens, J; Cordier, A; Coutu, S; Covault, C E; Creusot, A; Criss, A; Cronin, J; Curutiu, A; Dagoret-Campagne, S; Dallier, R; Daniel, B; Dasso, S; Daumiller, K; Dawson, B R; de Almeida, R M; De Domenico, M; De Donato, C; de Jong, S J; De La Vega, G; Junior, W J M de Mello; Neto, J R T de Mello; De Mitri, I; de Souza, V; de Vries, K D; del Peral, L; del Río, M; Deligny, O; Dembinski, H; Dhital, N; Di Giulio, C; Castro, M L Díaz; Diep, P N; Diogo, F; Dobrigkeit, C; Docters, W; D'Olivo, J C; Dong, P N; Dorofeev, A; Anjos, J C dos; Dova, M T; D'Urso, D; Dutan, I; Ebr, J; Engel, R; Erdmann, M; Escobar, C O; Espadanal, J; Etchegoyen, A; Luis, P Facal San; Falcke, H; Farrar, G; Fauth, A C; Fazzini, N; Ferguson, A P; Fick, B; Figueira, J M; Filevich, A; Filipčič, A; Fliescher, S; Fracchiolla, C E; Fraenkel, E D; Fratu, O; Fröhlich, U; Fuchs, B; Gaior, R; Gamarra, R F; Gambetta, S; García, B; Roca, S T Garcia; Garcia-Gamez, D; Garcia-Pinto, D; Bravo, A Gascon; Gemmeke, H; Ghia, P L; Giller, M; Gitto, J; Glass, H; Gold, M S; Golup, G; Albarracin, F Gomez; Berisso, M Gómez; Vitale, P F Gómez; Gonçalves, P; Gonzalez, J G; Gookin, B; Gorgi, A; Gouffon, P; Grashorn, E; Grebe, S; Griffith, N; Grigat, M; Grillo, A F; Guardincerri, Y; Guarino, F; Guedes, G P; Hansen, P; Harari, D; Harrison, T A; Harton, J L; Haungs, A; Hebbeker, T; Heck, D; Herve, A E; Hojvat, C; Hollon, N; Holmes, V C; Homola, P; Hörandel, J R; Horvath, P; Hrabovský, M; Huber, D; Huege, T; Insolia, A; Ionita, F; Italiano, A; Jansen, S; Jarne, C; Jiraskova, S; Josebachuili, M; Kadija, K; Kampert, K H; Karhan, P; Kasper, P; Katkov, I; Kégl, B; Keilhauer, B; Keivani, A; Kelley, J L; Kemp, E; Kieckhafer, R M; Klages, H O; Kleifges, M; Kleinfeller, J; Knapp, J; Koang, D -H; Kotera, K; Krohm, N; Krömer, O; Kruppke-Hansen, D; Kuempel, D; Kulbartz, J K; Kunka, N; La Rosa, G; Lachaud, C; LaHurd, D; Latronico, L; Lauer, R; Lautridou, P; Coz, S Le; Leão, M S A B; Lebrun, D; Lebrun, P; de Oliveira, M A Leigui; Letessier-Selvon, A; Lhenry-Yvon, I; Link, K; López, R; Agüera, A Lopez; Louedec, K; Bahilo, J Lozano; Lu, L; Lucero, A; Ludwig, M; Lyberis, H; Maccarone, M C; Macolino, C; Maldera, S; Maller, J; Mandat, D; Mantsch, P; Mariazzi, A G; Marin, J; Marin, V; Maris, I C; Falcon, H R Marquez; Marsella, G; Martello, D; Martin, L; Martinez, H; Bravo, O Martínez; Martraire, D; Meza, J J Masías; Mathes, H J; Matthews, J; Matthews, J A J; Matthiae, G; Maurel, D; Maurizio, D; Mazur, P O; Medina-Tanco, G; Melissas, M; Melo, D; Menichetti, E; Menshikov, A; Mertsch, P; Meurer, C; Meyhandan, R; Mićanović, S; Micheletti, M I; Minaya, I A; Miramonti, L; Molina-Bueno, L; Mollerach, S; Monasor, M; Ragaigne, D Monnier; Montanet, F; Morales, B; Morello, C; Moreno, E; Moreno, J C; Mostafá, M; Moura, C A; Muller, M A; Müller, G; Münchmeyer, M; Mussa, R; Navarra, G; Navarro, J L; Navas, S; Necesal, P; Nellen, L; Nelles, A; Neuser, J; Nhung, P T; Niechciol, M; Niemietz, L; Nierstenhoefer, N; Nitz, D; Nosek, D; Nožka, L; Oehlschläger, J; Olinto, A; Ortiz, M; Pacheco, N; Selmi-Dei, D Pakk; Palatka, M; Pallotta, J; Palmieri, N; Parente, G; Parizot, E; Parra, A; Pastor, S; Paul, T; Pech, M; Pȩkala, J; Pelayo, R; Pepe, I M; Perrone, L; Pesce, R; Petermann, E; Petrera, S; Petrolini, A; Petrov, Y; Pfendner, C; Piegaia, R; Pierog, T; Pieroni, P; Pimenta, M; Pirronello, V; Platino, M; Plum, M; Ponce, V H; Pontz, M; Porcelli, A; Privitera, P; Prouza, M; Quel, E J; Querchfeld, S; Rautenberg, J; Ravel, O; Ravignani, D; Revenu, B; Ridky, J; Riggi, S; Risse, M; Ristori, P; Rivera, H; Rizi, V; Roberts, J; de Carvalho, W Rodrigues; Rodriguez, G; Cabo, I Rodriguez; Martino, J Rodriguez; Rojo, J Rodriguez; Rodríguez-Frías, M D; Ros, G; Rosado, J; Rossler, T; Roth, M; Rouillé-d'Orfeuil, B; Roulet, E; Rovero, A C; Rühle, C; Saftoiu, A; Salamida, F; Salazar, H; Greus, F Salesa; Salina, G; Sánchez, F; Santo, C E; Santos, E; Santos, E M; Sarazin, F; Sarkar, B; Sarkar, S; Sato, R; Scharf, N; Scherini, V; Schieler, H; Schiffer, P; Schmidt, A; Scholten, O; Schoorlemmer, H; Schovancova, J; Schovánek, P; Schröder, F; Schulte, S; Schuster, D; Sciutto, S J; Scuderi, M; Segreto, A; Settimo, M; Shadkam, A; Shellard, R C; Sidelnik, I; Sigl, G; Lopez, H H Silva; Sima, O; Śmia\\lkowski, A; Šmída, R; Snow, G R; Sommers, P; Sorokin, J; Spinka, H; Squartini, R; Srivastava, Y N; Stanic, S; Stapleton, J; Stasielak, J; Stephan, M; Stutz, A; Suarez, F; Suomijärvi, T; Supanitsky, A D; Šuša, T; Sutherland, M S; Swain, J; Szadkowski, Z; Szuba, M; Tapia, A; Tartare, M; Taşcău, O; Tcaciuc, R; Thao, N T; Thomas, D; Tiffenberg, J; Timmermans, C; Tkaczyk, W; Peixoto, C J Todero; Toma, G; Tomankova, L; Tomé, B; Tonachini, A; Travnicek, P; Tridapalli, D B; Tristram, G; Trovato, E; Tueros, M; Ulrich, R; Unger, M; Urban, M; Galicia, J F Valdés; Valiño, I; Valore, L; van Aar, G; Berg, A M van den; van Vliet, A; Varela, E; Cárdenas, B Vargas; Vázquez, J R; Vázquez, R A; Veberič, D; Verzi, V; Vicha, J; Videla, M; Villaseñor, L; Wahlberg, H; Wahrlich, P; Wainberg, O; Walz, D; Watson, A A; Weber, M; Weidenhaupt, K; Weindl, A; Werner, F; Westerhoff, S; Whelan, B J; Widom, A; Wieczorek, G; Wiencke, L; Wilczyńska, B; Wilczyński, H; Will, M; Williams, C; Winchen, T; Wommer, M; Wundheiler, B; Yamamoto, T; Yapici, T; Younk, P; Yuan, G; Yushkov, A; Garcia, B Zamorano; Zas, E; Zavrtanik, D; Zavrtanik, M; Zaw, I; Zepeda, A; Zhou, J; Zhu, Y; Silva, M Zimbres; Ziolkowski, M; Charrier, D; Denis, L; Hilgers, G; Mohrmann, L; Philipps, B; Seeger, O

    2012-01-01

    The Pierre Auger Observatory is exploring the potential of the radio detection technique to study extensive air showers induced by ultra-high energy cosmic rays. The Auger Engineering Radio Array (AERA) addresses both technological and scientific aspects of the radio technique. A first phase of AERA has been operating since September 2010 with detector stations observing radio signals at frequencies between 30 and 80 MHz. In this paper we present comparative studies to identify and optimize the antenna design for the final configuration of AERA consisting of 160 individual radio detector stations. The transient nature of the air shower signal requires a detailed description of the antenna sensor. As the ultra-wideband reception of pulses is not widely discussed in antenna literature, we review the relevant antenna characteristics and enhance theoretical considerations towards the impulse response of antennas including polarization effects and multiple signal reflections. On the basis of the vector effective l...

  1. Closing CMS to hunt cosmic rays

    CERN Multimedia

    Claudia Marcelloni

    2006-01-01

    Every second the Earth is bombarded by billions of cosmic rays and occasionally one of these cosmic particles will collide with the Earth's atmosphere generating a shower of particles known as an 'air shower'. This is similiar to the collisions and subsequent particle showers observed in accelerators such as the LHC. Here the CMS detector is closed so that systems can be tested using muon cosmic rays in the 'Cosmic Challenge'.

  2. Cosmic ray penetration in diffuse clouds

    CERN Document Server

    Morlino, G

    2015-01-01

    Cosmic rays are a fundamental source of ionization for molecular and diffuse clouds, influencing their chemical, thermal, and dynamical evolution. The amount of cosmic rays inside a cloud also determines the $\\gamma$-ray flux produced by hadronic collisions between cosmic rays and cloud material. We study the spectrum of cosmic rays inside and outside of a diffuse cloud, by solving the stationary transport equation for cosmic rays including diffusion, advection and energy losses due to ionization of neutral hydrogen atoms. We found that the cosmic ray spectrum inside a diffuse cloud differs from the one in the interstellar medium for energies smaller than $E_{br}\\approx 100$ MeV, irrespective of the model details. Below $E_{br}$, the spectrum is harder (softer) than that in the interstellar medium if the latter is a power law $\\propto p^{-s}$ with $s$ larger (smaller) than $\\sim0.42$.

  3. Cosmic ray physics goes to school

    CERN Multimedia

    2002-01-01

    With the help of a CERN physicist, German Schools bring the Largest Cosmic Ray Detector in Europe one step closer to reality   Eric Berthier and Robert Porret (CERN, ST/HM), Frej Torp and Christian Antfolk from the Polytechnics Arcada in Finland, and Karsten Eggert, physicist at CERN who initiated this project, during the installation of cosmic ray detectors in the Pays de Gex, at point 4. Niina Patrikainen and Frej Torp, Finnish students from Rovaniemi and Arcada Polytechnics, installing cosmic ray counters at the Fachhochschule in Duesseldorf. The science of cosmic ray detection is growing, literally. Cosmic rays, energetic particles from space, strike our planet all the time. They collide with the air molecules in our upper atmosphere and initiate large showers of elementary particles (mainly electrons, photons, hadrons and muons) which rain down upon the earth. The shower size and the particle density in the showers reflect the initial energy of the cosmic ray particle, a detail which makes d...

  4. Chemical and physical effects induced by heavy cosmic ray analogues on frozen methanol and water ice mixtures

    Science.gov (United States)

    de Barros, A. L. F.; da Silveira, E. F.; Rothard, H.; Langlinay, T.; Boduch, P.

    2014-09-01

    The chemical and physical effects induced by fast heavy-ion irradiation on a frozen mixture of methanol (CH3OH) and water (H2O) at 15 K are analysed. The laboratory experiment described here simulates the energy transfer processes that occur when cosmic rays bombard this particular ice mixture and helps to elucidate the understanding of the radiolysis of ices occurring in interstellar medium grains, at the surfaces of comets, and on icy Solar system bodies. Infrared spectroscopy (FTIR) was used before and during irradiation with a 40 MeV 58Ni11+ ion beam to determine the variation of the main absorption bands of methanol, water and products. In particular, the radiolysis of CH3OH:H2O (1:1) mixture leads to the formation of H2CO, CH4, CO, CO2, HCO and HCOOCH3. Their formation and dissociation cross-sections are determined. H2CO, CH4 and HCOOCH3 molecules have relatively high destruction cross-sections of around 9 × 10-13 cm2. Furthermore, atomic carbon, oxygen and hydrogen budgets are determined and used to verify the stoichiometry of the most abundant molecular species formed. Temperature effects are compared with irradiation effects, and the spectra of samples warmed-up to different temperatures are compared with those of the irradiated CH3OH:H2O mixtures. As an astrophysical application, the CH3OH:H2O dissociation cross-sections due to other ion beam projectiles and energies are predicted assuming validity of the Se3/2 power law; calculation of the integrated dissociation rates confirms the importance of nickel and some other heavy-ion constituents of cosmic rays in astrochemistry.

  5. ACORDE - A Cosmic Ray Detector for ALICE

    CERN Document Server

    INSPIRE-00247175; Pagliarone, C.

    2006-01-01

    ACORDE, the ALICE COsmic Ray DEtector is one of the ALICE detectors, presently under construction. It consists of an array of plastic scintillator counters placed on the three upper faces of the ALICE magnet. This array will act as Level 0 cosmic ray trigger and, together with other ALICE sub-detectors, will provide precise information on cosmic rays with primary energies around $10^{15-17}$ eV. In this paper we will describe the ACORDE detector, trigger design and electronics.

  6. Cosmic rays: extragalactic and Galactic

    CERN Document Server

    Istomin, Ya N

    2014-01-01

    From the analysis of the flux of high energy particles, $E>3\\cdot 10^{18}eV$, it is shown that the distribution of the power density of extragalactic rays over energy is of the power law, ${\\bar q}(E)\\propto E^{-2.7}$, with the same index of $2.7$ that has the distribution of Galactic cosmic rays before so called 'knee', $E3\\cdot 10^{15}eV$, from the Galaxy because of the dependence of the coefficient of diffusion of cosmic rays on energy, $D\\propto E^{0.7}$. The obtained index of the density distribution of particles over energy, $N(E)\\propto E^{-2.7-0.7/2}=E^{-3.05}$, for $E>3\\cdot 10^{15}eV$ agrees well with the observed one, $N(E)\\propto E^{-3.1}$. Estimated time of termination of the jet in the Galaxy is $4.2\\cdot 10^{4}$ years ago.

  7. Cosmic rays, clouds, and climate

    DEFF Research Database (Denmark)

    Marsh, N.; Svensmark, Henrik

    2000-01-01

    in the Earth's radiation budget through trapping outgoing radiation and reflecting incoming radiation. If a physical link between these two features can be established, it would provide a mechanism linking solar activity and Earth's climate. Recent satellite observations have further revealed a correlation...... between cosmic ray flux and low cloud top temperature. The temperature of a cloud depends on the radiation properties determined by its droplet distribution. Low clouds are warm (> 273 K) and therefore consist of liquid water droplets. At typical atmospheric supersaturations (similar to1%) a liquid cloud...

  8. International Conference on Cosmic Rays

    CERN Multimedia

    W.O. LOCK

    1964-01-01

    Towards the end of last year the 8th International conference on cosmic rays, held under the auspices of the International Union of Pure and Applied Physics (I.U.P.A.P.) and the Department of Atomic Energy of the Government of India, was held at Jaipur, India. Among the participants was W.O. Lock, head of CERN's Emulsion Group, who gave an invited talk on recent work in the field of what is normally known as high-energy physics — though in the context of this conference such energies seem quite low. In this article, Dr. Lock gives a general review of the conference and of the subjects discussed.

  9. Ground level cosmic ray observations

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, S.A. [Tata Institute of Fundamental Research, Bombay (International Commission on Radiation Units and Measurements); Grimani, C.; Brunetti, M.T.; Codino, A. [Perugia Univ. (Italy)]|[INFN, Perugia (Italy); Papini, P.; Massimo Brancaccio, F.; Piccardi, S. [Florence Univ. (Italy)]|[INFN, Florence (Italy); Basini, G.; Bongiorno, F. [INFN, Laboratori Nazionali di Frascati, Rome (Italy); Golden, R.L. [New Mexico State Univ., Las Cruces, NM (United States). Particle Astrophysics Lab.; Hof, M. [Siegen Univ. (Germany). Fachbereich Physik

    1995-09-01

    Cosmic rays at ground level have been collected using the NMSU/Wizard - MASS2 instrument. The 17-hr observation run was made on September 9. 1991 in Fort Sumner, New Mexico, Usa. Fort Sumner is located at 1270 meters a.s.l., corresponding to an atmospheric depth of about 887 g/cm{sup 2}. The geomagnetic cutoff is 4.5 GV/c. The charge ratio of positive and negative muons and the proton to muon ratio have been determined. These observations will also be compared with data collected at a higher latitude using the same basic apparatus.

  10. The Cosmic Ray Lepton Puzzle

    CERN Document Server

    Brun, Pierre; Cirelli, Marco; Moulin, Emmanuel; Glicenstein, Jean-Francois; Iocco, Fabio; Pieri, Lidia

    2010-01-01

    Recent measurements of cosmic ray electrons and positrons by PAMELA, ATIC, Fermi and HESS have revealed interesting excesses and features in the GeV-TeV range. Many possible explanations have been suggested, invoking one or more nearby primary sources such as pulsars and supernova remnants, or dark matter. Based on the output of the TANGO in PARIS --Testing Astroparticle with the New GeV/TeV Observations in Positrons And electRons : Identifying the Sources-- workshop held in Paris in May 2009, we review here the latest experimental results and we discuss some virtues and drawbacks of the many theoretical interpretations proposed so far.

  11. Dark Matter detection via lepton cosmic rays

    CERN Document Server

    Lineros, Roberto A

    2010-01-01

    Recent observations of lepton cosmic rays, coming from the PAMELA and FERMI experiments, have pushed our understanding of the interstellar medium and cosmic rays sources to unprecedented levels. The imprint of dark matter on lepton cosmic rays is the most exciting explanation of both PAMELA's positron excess and FERMI's total flux of electrons. Alternatively, supernovae are astrophysical objects with the same potential to explain these observations. In this work, we present an updated study of the astrophysical sources of lepton cosmic rays and the possible trace of a dark matter signal on the positron excess and total flux of electrons.

  12. Cosmic Ray Acceleration in Supernova Remnants

    CERN Document Server

    Blasi, Pasquale

    2010-01-01

    We review the main observational and theoretical facts about acceleration of Galactic cosmic rays in supernova remnants, discussing the arguments in favor and against a connection between cosmic rays and supernova remnants, the so-called supernova remnant paradigm for the origin of Galactic cosmic rays. Recent developments in the modeling of the mechanism of diffusive shock acceleration are discussed, with emphasis on the role of 1) magnetic field amplification, 2) acceleration of nuclei heavier than hydrogen, 3) presence of neutrals in the circumstellar environment. The status of the supernova-cosmic ray connection in the time of Fermi-LAT and Cherenkov telescopes is also discussed.

  13. On the possibility of galactic cosmic ray-induced radiolysis-powered life in subsurface environments in the Universe.

    Science.gov (United States)

    Atri, Dimitra

    2016-10-01

    Photosynthesis is a mechanism developed by terrestrial life to utilize the energy from photons of solar origin for biological use. Subsurface regions are isolated from the photosphere, and consequently are incapable of utilizing this energy. This opens up the opportunity for life to evolve alternative mechanisms for harvesting available energy. Bacterium Candidatus Desulforudis audaxviator, found 2.8 km deep in a South African mine, harvests energy from radiolysis, induced by particles emitted from radioactive U, Th and K present in surrounding rock. Another radiation source in the subsurface environments is secondary particles generated by galactic cosmic rays (GCRs). Using Monte Carlo simulations, it is shown that it is a steady source of energy comparable to that produced by radioactive substances, and the possibility of a slow metabolizing life flourishing on it cannot be ruled out. Two mechanisms are proposed through which GCR-induced secondary particles can be utilized for biological use in subsurface environments: (i) GCRs injecting energy in the environment through particle-induced radiolysis and (ii) organic synthesis from GCR secondaries interacting with the medium. Laboratory experiments to test these hypotheses are also proposed. Implications of these mechanisms on finding life in the Solar System and elsewhere in the Universe are discussed.

  14. Temporal signatures of the Cherenkov light induced by extensive air showers of cosmic rays detected with the Yakutsk array

    Science.gov (United States)

    Ivanov, A. A.; Timofeev, L. V.

    2016-05-01

    We analyze temporal characteristics of signals from the wide field-of-view (WFOV) Cherenkov telescope (CT) detecting extensive air showers (EAS) of cosmic rays (CRs) in coincidence with surface detectors of the Yakutsk array. Our aim is to reveal causal relationships between measured characteristics and physical properties of EAS.

  15. Temporal signatures of the Cherenkov light induced by extensive air showers of cosmic rays detected with the Yakutsk array

    CERN Document Server

    Ivanov, A A

    2016-01-01

    We analyze temporal characteristics of signals from the wide field-of-view (WFOV) Cherenkov telescope (CT) detecting extensive air showers (EAS) of cosmic rays (CR) in coincidence with surface detectors of the Yakutsk array. Our aim is to reveal causal relationships between measured characteristics and physical properties of EAS.

  16. Cosmic ray physics with ACORDE at LHC

    Energy Technology Data Exchange (ETDEWEB)

    Pagliarone, C [Universita degli Studi di Cassino and INFN Pisa, Largo B. Pontecorvo, 3 - Pisa (Italy); Fernandez-Tellez, A [Benemerita Universidad Autonoma de Puebla (BUAP), Puebla (Mexico)], E-mail: pagliarone@fnal.gov

    2008-05-15

    The use of large underground high-energy physics experiments, for comic ray studies, have been used, in the past, at CERN, in order to measure, precisely, the inclusive cosmic ray flux in the energy range from 2{center_dot}10{sup 10} to 2{center_dot} 10{sup 12} eV. ACORDE, ALICE Cosmic Rays DEtector, will act as Level 0 cosmic ray trigger and, together with other ALICE apparatus, will provide precise information on cosmic rays with primary energies around 10{sup 15} to 10{sup 17} eV. This paper reviews the main detector features, the present status, commissioning and integration with other apparatus. Finally, we discuss the ACORDE-ALICE cosmic ray physics program.

  17. Cosmic Ray Physics with ACORDE at LHC

    CERN Document Server

    Pagliarone, C.

    2008-01-01

    The use of large underground high-energy physics experiments, for comic ray studies, have been used, in the past, at CERN, in order to measure, precisely, the inclusive cosmic ray flux in the energy range from 2x10^10 - 2x10^12 eV. ACORDE, ALICE Cosmic Rays DEtector, will act as Level 0 cosmic ray trigger and, together with other ALICE apparatus, will provide precise information on cosmic rays with primary energies around 10^15 - 10^17 eV. This paper reviews the main detector features, the present status, commissioning and integration with other apparatus. Finally, we discuss the ACORDE-ALICE cosmic ray physics program.

  18. Cosmic ray escape from supernova remnants

    CERN Document Server

    Gabici, Stefano

    2011-01-01

    Galactic cosmic rays are believed to be accelerated at supernova remnants via diffusive shock acceleration. Though this mechanism gives fairly robust predictions for the spectrum of particles accelerated at the shock, the spectrum of the cosmic rays which are eventually injected in the interstellar medium is more uncertain and depends on the details of the process of particle escape from the shock. Knowing the spectral shape of these escaping particles is of crucial importance in order to assess the validity of the supernova remnant paradigm for cosmic ray origin. Moreover, after escaping from a supernova remnant, cosmic rays interact with the surrounding ambient gas and produce gamma rays in the vicinity of the remnant itself. The detection of this radiation can be used as an indirect proof of the fact that the supernova remnant was indeed accelerating cosmic rays in the past.

  19. The Telescope Array Ultra High Energy Cosmic Ray Obsrevatory

    Science.gov (United States)

    Matthews, John

    2016-07-01

    The Telescope Array measures the properties of ultra high energy cosmic ray induced extensive air showers. We do this using a variety of techniques including an array of scintillator detectors to sample the footprint of the air shower when it reaches the Earth's surface and telescopes to measure the fluorescence and Cerenkov light of the air shower. From this we determine the energy spectrum and chemical composition of the primary particles. We also search for sources of cosmic rays and anisotropy. We have found evidence of a possible source of ultra high energy cosmic rays in the northern sky. The experiment and its most recent measurements will be discussed.

  20. Some Aspects of Galactic Cosmic Ray Acceleration

    CERN Document Server

    Butt, Y M

    2003-01-01

    I give a synopsis of two aspects of the Galactic Cosmic Ray (GCR) acceleration problem: the importance of the medium energy gamma-ray window, and several specific astrophysical sources which merit further investigation.

  1. History of cosmic ray research in Finland

    Science.gov (United States)

    Usoskin, I. G.; Valtonen, E.; Vainio, R.; Tanskanen, P. J.; Aurela, A. M.

    2009-11-01

    The history of cosmic ray research in Finland can be traced back to the end of 1950s, when first ground-based cosmic ray measurements started in Turku. The first cosmic ray station was founded in Oulu in 1964 performing measurements of cosmic rays by a muon telescope, which was later complemented by a neutron monitor. Since the 1990s, several research centers and universities, such as The Finnish Meteorological Institute, Helsinki University of Technology, University of Oulu, University of Turku and University of Helsinki have been involved in space science projects, such as SOHO, AMS, Cluster, Cassini, BepiColombo, etc. At the same time, ground-based cosmic ray measurements have reached a new level, including a fully automatic on-line database in Oulu and a new muon measuring underground site in Pyhäsalmi. Research groups in Helsinki, Oulu and Turku have also extensive experience in theoretical investigations of different aspects of cosmic ray physics. Cosmic ray research has a 50-year long history in Finland, covering a wide range from basic long-running ground-based observations to high-technology space-borne instrumentation and sophisticated theoretical studies. Several generations of researchers have been involved in the study ensuring transfer of experience and building the recognized Finnish research school of cosmic ray studies.

  2. Cosmic-ray acceleration in supernova remnants

    NARCIS (Netherlands)

    Helder, E.A.

    2010-01-01

    Supernovae are among the most energetic events in the Universe. During the event, they expel their material with enormous speeds into the surroundings. In addition, supernovae are thought to transfer a sizable fraction of their energy into just a few particles: cosmic rays. These cosmic rays acquire

  3. The Pierre Auger Cosmic Ray Observatory

    NARCIS (Netherlands)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Al Samarai, I.; Albert, J. N.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muniz, J.; Batista, R. Alves; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Aramo, C.; Aranda, V. M.; Argiro, S.; Arisaka, K.; Arneodo, F.; Arqueros, F.; Asch, T.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Awal, N.; Badescu, A. M.; Balzer, M.; Barber, K. B.; Barbosa, A.; Barenthien, N.; Barkhausen, M.; Baeuml, J.; Baus, C.; Beatty, J.; Becker, K. H.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bergmann, T.; Bertaina, M. E.; Biermann, P. L.; Bilhaut, R.; Billoir, P.; Blaes, S. G.; Blanco, M.; Bleve, C.; Bluemer, H.; Bohacova, M.; Bolz, H.; Boncioli, D.; Bonifaz, C.; Bonino, R.; Boratav, M.; Borodai, N.; Bracci, F.; Brack, J.; Brancus, I.; Bridgeman, A.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Camin, D.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Castera, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Chiavassa, A.; Chinellato, J. A.; Chiosso, M.; Chudoba, J.; Cilmo, M.; Clark, P. D. J.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Coleman, A.; Collica, L.; Colombo, E.; Colonges, S.; Coluccia, M. R.; Conceicao, R.; Contreras, F.; Cooper, M. J.; Coppens, J.; Cordier, A.; Courty, B.; Coutu, S.; Covault, C. E.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; De Donato, C.; de Jong, S. J.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; de Vries, K. D.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Diaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, C.; Dolron, P.; Dorofeev, A.; Hasankiadeh, Q. Dorosti; Dova, M. T.; D'Urso, D.; Ebr, J.; Engel, R.; Epele, L. N.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fernandes, M.; Ferrero, A.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipcic, A.; Fox, B. D.; Fraenkel, E. D.; Fratu, O.; Freire, M. M.; Froehlich, U.; Fuchs, B.; Fulgione, W.; Fujii, T.; Garcia, B.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gate, F.; Geenen, H.; Gemmeke, H.; Genolini, B.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Gibbs, K.; Giller, M.; Giudice, N.; Glaser, C.; Glass, H.; Gomez Berisso, M.; Gomez Vitale, P. F.; Goncalves, P.; Gonzalez, J. G.; Gonzalez, N.; Gookin, B.; Gora, D.; Gordon, J.; Gorgi, A.; Gorham, P.; Gotink, W.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Grygar, J.; Guardone, N.; Guarino, F.; Guedes, G. P.; Guglielmi, L.; Habraken, R.; Hampel, M. R.; Hansen, P.; Harari, D.; Harmsma, S.; Harrison, T. A.; Hartmann, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hoerandel, J. R.; Horneffer, A.; Horvat, M.; Horvath, P.; Hrabovsky, M.; Huber, D.; Hucker, H.; Huege, T.; Iarlori, M.; Insolia, A.; Isar, P. G.; Jandt, I.; Jansen, S.; Jarne, C.; Johnsen, J. A.; Josebachuili, M.; Kaeaepae, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Kegl, B.; Keilhauer, B.; Keivani, A.; Kelley, J.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Kopmann, A.; Krause, R.; Krohm, N.; Kroemer, O.; Kuempel, D.; Kunka, N.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leao, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lopez, R.; Lopez Casado, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Malacari, M.; Maldera, S.; Mallamaci, M.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Maris, I. C.; Marsella, G.; Martello, D.; Martina, L.; Martinez, H.; Martinez, N.; Martinez Bravo, O.; Martraire, D.; Masias Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Meissner, R.; Melissas, M.; Mello, V. B. B.; Melo, D.; Menichetti, E.; Menshikov, A.; Messina, S.; Meyhandan, R.; Micanovic, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Montanet, F.; Morello, C.; Mostafa, M.; Moura, C. A.; Muller, M. A.; Mueller, G.; Mueller, S.; Muenchmeyer, M.; Mussa, R.; Navarra, G.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nguyen, P. H.; Nicotra, D.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nozka, L.; Ochilo, L.; Ohnuki, T.; Oikonomou, F.; Olinto, A.; Oliveira, M.; Olmos-Gilbaja, V. M.; Pacheco, N.; PakkSelmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Papenbreer, P.; Parente, G.; Parra, A.; Patel, M.; Paul, T.; Pech, M.; Pekala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Petermann, E.; Peters, C.; Petrera, S.; Petrinca, P.; Petrov, Y.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porcelli, A.; Porowski, C.; Porter, T.; Pouryamout, J.; Pouthas, J.; Prado, R. R.; Privitera, P.; Prouza, M.; Pryke, C. L.; Purrello, V.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Randriatoamanana, R.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenua, B.; Ridky, J.; Risse, M.; Ristori, P.; Rizi, V.; Robbins, S.; Roberts, M.; Rodrigues de Carvalho, W.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Rodriguez-Frias, M. D.; Rogozin, D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Roulet, E.; Rovero, A. C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Saleh, A.; Salesa Greus, F.; Salina, G.; Sanchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Schmidt, D.; Scholten, O.; Schoorlemmer, H.; Schovanek, P.; Schreuder, F.; Schroeder, F. G.; Schulz, A.; Schulz, J.; Schuessler, F.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Sequeiros, G.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Smialkowski, A.; Smida, R.; Smith, A. G. K.; Snow, G. R.; Sommers, P.; Sorokin, J.; Speelman, R.; Spinka, H.; Squartini, R.; Srivastava, Y. N.; Stanic, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijaervi, T.; Supanitsky, A. D.; Sutherland, M. S.; Sutter, M.; Swain, J.; Szadkowski, Z.; Szuba, M.; Taborda, O. A.; Tapia, A.; Tcherniakhovski, D.; Tepe, A.; Theodoro, V. M.; Timmermans, C.; Tkaczyk, W.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tome, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Trovato, E.; Trung, T. N.; Tunnicliffe, V.; Tusi, E.; Ulrich, R.; Unger, M.; Urban, M.; Valdes Galicia, J. F.; Valino, I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cardenas, B.; Varnav, D. M.; Varner, G.; Vasquez, R.; Vazquez, J. R.; Vazquez, R. A.; Veberic, D.; Verkooijen, H.; Verzi, V.; Vicha, J.; Videla, M.; Villasenor, L.; Vitali, G.; Vlcek, B.; Vorenholt, H.; Vorobiov, S.; Voyvodic, L.; Wahlberg, H.; Wainberg, O.; Walker, P.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Westerhoff, S.; Widom, A.; Wiebusch, C.; Wiencke, L.; Wijnen, T.; Wilczynska, B.; Wilczynski, H.; Wild, N.; Winchen, T.; Wittkowski, D.; Woerner, G.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zepeda, A.; Zhou, J.; Zhu, Y.; Silva, M. Zimbres; Zimmermann, B.; Ziolkowski, M.; Zuccarello, F.

    2015-01-01

    The Pierre Auger Observatory, located on a vast, high plain in western Argentina, is the world's largest cosmic ray observatory. The objectives of the Observatory are to probe the origin and characteristics of cosmic rays above 10(17) eV and to study the interactions of these, the most energetic par

  4. High energy physics in cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Lawrence W. [University of Michigan, Ann Arbor, Michigan (United States)

    2013-02-07

    In the first half-century of cosmic ray physics, the primary research focus was on elementary particles; the positron, pi-mesons, mu-mesons, and hyperons were discovered in cosmic rays. Much of this research was carried out at mountain elevations; Pic du Midi in the Pyrenees, Mt. Chacaltaya in Bolivia, and Mt. Evans/Echo Lake in Colorado, among other sites. In the 1960s, claims of the observation of free quarks, and satellite measurements of a significant rise in p-p cross sections, plus the delay in initiating accelerator construction programs for energies above 100 GeV, motivated the Michigan-Wisconsin group to undertake a serious cosmic ray program at Echo Lake. Subsequently, with the succession of higher energy accelerators and colliders at CERN and Fermilab, cosmic ray research has increasingly focused on cosmology and astrophysics, although some groups continue to study cosmic ray particle interactions in emulsion chambers.

  5. Anisotropy and Corotation of Galactic Cosmic Rays

    CERN Document Server

    Amenomori, M; Bi, X J; Chen, D; Cui, S W; Danzengluobu; Ding, L K; Ding, X H; Feng Cun Feng; Zhaoyang Feng; Feng, Z Y; Gao, X Y; Geng, Q X; Guo, H W; He, H H; He, M; Hibino, K; Hotta, N; Haibing, H; Hu, H B; Huang, J; Huang, Q; Jia, H Y; Kajino, F; Kasahara, K; Katayose, Y; Kato, C; Kawata, K; Labaciren; Le, G M; Li, A F; Li, J Y; Lou, Y Q; Lü, H; Lu, S L; Meng, X R; Mizutani, K; Mu, J; Munakata, K; Nagai, A; Nanjo, H; Nishizawa, M; Ohnishi, M; Ohta, I; Onuma, H; Ouchi, T; Ozawa, S; Ren, J R; Saitô, T; Saito, T Y; Sakata, M; Sako, T K; Sasaki, T; Shibata, M; Shiomi, A; Shirai, T; Sugimoto, H; Takita, M; Tan, Y H; Tateyama, N; Torii, S; Tsuchiya, H; Udo, S; Wang, B; Wang, H; Wang, X; Wang, Y G; Wu, H R; Xue Liang; Yamamoto, Y; Yan, C T; Yang, X C; Yasue, S; Ye, Z H; Yu, G C; Yuan, A F; Yuda, T; Zhang, H M; Zhang, J L; Zhang, N J; Zhang, X Y; Zhang, Y; Zhaxisangzhu; Zhou, X X

    2006-01-01

    The intensity of Galactic cosmic rays is nearly isotropic because of the influence of magnetic fields in the Milky Way. Here, we present two-dimensional high-precision anisotropy measurement for energies from a few to several hundred teraelectronvolts (TeV), using the large data sample of the Tibet Air Shower Arrays. Besides revealing finer details of the known anisotropies, a new component of Galactic cosmic ray anisotropy in sidereal time is uncovered around the Cygnus region direction. For cosmic-ray energies up to a few hundred TeV, all components of anisotropies fade away, showing a corotation of Galactic cosmic rays with the local Galactic magnetic environment. These results have broad implications for a comprehensive understanding of cosmic rays, supernovae, magnetic fields, and heliospheric and Galactic dynamic environments.

  6. Heavy precipitation episodes and cosmic rays variation

    Directory of Open Access Journals (Sweden)

    A. Mavrakis

    2006-01-01

    Full Text Available In this paper an attempt is made to investigate the possible temporal correlation between heavy precipitation episodes and cosmic rays' activity, on various time scales. Cosmic rays measurements are sparse and cover less extended periods than those of precipitation. Precipitation is largely influenced by local climatic and even physiographic conditions, while cosmic rays' distribution is far more uniform over an area. Thus, in an effort to cover a larger range of climatic characteristics, each cosmic rays station was correlated with several nearby precipitation stations. Selected statistical methods were employed for the data processing. The analysis was preformed on annual, seasonal, monthly and daily basis whenever possible. Wet and dry regions and/or seasons seem to present a different response of precipitation to cosmic rays variations. Also Forbush decreases in most cases will not lead to heavy precipitation, yet this might be sensitive to precipitable water availability.

  7. Cosmic Ray Removal in Fiber Spectroscopic Image

    Science.gov (United States)

    Bai, Zhongrui; Zhang, Haotong; Yuan, Hailong; Carlin, Jeffrey L.; Li, Guangwei; Lei, Yajuan; Dong, Yiqiao; Yang, Huiqin; Zhao, Yongheng; Cao, Zihuang

    2017-02-01

    Single-exposure spectra in large spectral surveys are valuable for time domain studies such as stellar variability, but there is no available method to eliminate cosmic rays for single-exposure, multi-fiber spectral images. In this paper, we describe a new method to detect and remove cosmic rays in multi-fiber spectroscopic single exposures. Through the use of two-dimensional profile fitting and a noise model that considers the position-dependent errors, we successfully detect as many as 80% of the cosmic rays and correct the cosmic ray polluted pixels to an average accuracy of 97.8%. Multiple tests and comparisons with both simulated data and real LAMOST data show that the method works properly in detection rate, false detection rate, and validity of cosmic ray correction.

  8. Status of cosmic-ray antideuteron searches

    CERN Document Server

    von Doetinchem, P; Boggs, S; Bufalino, S; Dal, L; Donato, F; Fornengo, N; Fuke, H; Grefe, M; Hailey, C; Hamilton, B; Ibarra, A; Mitchell, J; Mognet, I; Ong, R A; Pereira, R; Perez, K; Putze, A; Raklev, A; Salati, P; Sasaki, M; Tarle, G; Urbano, A; Vittino, A; Wild, S; Xue, W; Yoshimura, K

    2015-01-01

    The precise measurement of cosmic-ray antiparticles serves as important means for identifying the nature of dark matter. Recent years showed that identifying the nature of dark matter with cosmic-ray positrons and higher energy antiprotons is difficult, and has lead to a significantly increased interest in cosmic-ray antideuteron searches. Antideuterons may also be generated in dark matter annihilations or decays, offering a potential breakthrough in unexplored phase space for dark matter. Low-energy antideuterons are an important approach because the flux from dark matter interactions exceeds the background flux by more than two orders of magnitude in the low-energy range for a wide variety of models. This review is based on the "dbar14 - dedicated cosmic-ray antideuteron workshop", which brought together theorists and experimentalists in the field to discuss the current status, perspectives, and challenges for cosmic-ray antideuteron searches and discusses the motivation for antideuteron searches, the theor...

  9. Cosmic Connections:. from Cosmic Rays to Gamma Rays, Cosmic Backgrounds and Magnetic Fields

    Science.gov (United States)

    Kusenko, Alexander

    2013-12-01

    Combined data from gamma-ray telescopes and cosmic-ray detectors have produced some new surprising insights regarding intergalactic and galactic magnetic fields, as well as extragalactic background light. We review some recent advances, including a theory explaining the hard spectra of distant blazars and the measurements of intergalactic magnetic fields based on the spectra of distant sources. Furthermore, we discuss the possible contribution of transient galactic sources, such as past gamma-ray bursts and hypernova explosions in the Milky Way, to the observed ux of ultrahigh-energy cosmicrays nuclei. The need for a holistic treatment of gamma rays, cosmic rays, and magnetic fields serves as a unifying theme for these seemingly unrelated phenomena.

  10. Cosmic rays: a review for astrobiologists.

    Science.gov (United States)

    Ferrari, Franco; Szuszkiewicz, Ewa

    2009-05-01

    Cosmic rays represent one of the most fascinating research themes in modern astronomy and physics. Significant progress is being made toward an understanding of the astrophysics of the sources of cosmic rays and the physics of interactions in the ultrahigh-energy range. This is possible because several new experiments in these areas have been initiated. Cosmic rays may hold answers to a great number of fundamental questions, but they also shape our natural habitat and influence the radiation environment of our planet Earth. The importance of the study of cosmic rays has been acknowledged in many fields, including space weather science and astrobiology. Here, we concentrate on the astrobiological aspects of cosmic rays with regard to the enormous amount of new data available, some of which may, in fact, improve our knowledge about the radiation of cosmic origin on Earth. We focus on fluxes arriving at Earth and doses received, and will guide the reader through the wealth of scientific literature on cosmic rays. We have prepared a concise and self-contained source of data and recipes useful for performing interdisciplinary research in cosmic rays and their effects on life on Earth.

  11. Protostars: forge of cosmic rays?

    CERN Document Server

    Padovani, M; Hennebelle, P; Ferrière, K

    2016-01-01

    Galactic cosmic rays (CR) are particles presumably accelerated in supernova remnant shocks that propagate in the interstellar medium up to the densest parts of molecular clouds, losing energy as well as their ionisation efficiency because of the presence of magnetic fields and collisions with molecular hydrogen. Recent observations hint at high levels of ionisation and to the presence of synchrotron emission in protostellar systems, therefore leading to an apparent contradiction. We want to explain the origin of these CRs accelerated within young protostars as suggested by observations. Our modelling consists of a set of conditions that has to be satisfied in order to have an efficient CR acceleration through diffusive shock acceleration. We analyse three main acceleration sites, then we follow the propagation of these particles through the protostellar system up to the hot spot region. We find that jet shocks can be strong accelerators of CR protons, which can be boosted up to relativistic energies. Another ...

  12. Correlation between cosmic rays and ozone depletion.

    Science.gov (United States)

    Lu, Q-B

    2009-03-20

    This Letter reports reliable satellite data in the period of 1980-2007 covering two full 11-yr cosmic ray (CR) cycles, clearly showing the correlation between CRs and ozone depletion, especially the polar ozone loss (hole) over Antarctica. The results provide strong evidence of the physical mechanism that the CR-driven electron-induced reaction of halogenated molecules plays the dominant role in causing the ozone hole. Moreover, this mechanism predicts one of the severest ozone losses in 2008-2009 and probably another large hole around 2019-2020, according to the 11-yr CR cycle.

  13. Production of $^3$He in Rocks by Reactions Induced by Particles of the Nuclear-Active and Muon Components of Cosmic Rays: Geological and Petrological Implications

    CERN Document Server

    Nesterenok, A V

    2016-01-01

    The paper presents data on the production of the $^3$He nuclide in rocks under the effect of cosmic-ray particles. The origin of the nuclide in the ground in neutron- and proton-induced spallation reactions, reactions induced by high-energy muons, and negative muon capture reactions is analyzed. The cross sections of reactions producing $^3$He and $^3$H are calculated by means of numerical simulations with the GEANT4 simulation toolkit. The production rate of the $^3$He nuclide in the ground is evaluated for the average level of solar activity at high geomagnetic latitudes and at sea level. It is proved that the production of $^3$He in near-surface ground layers by spallation reactions induced by cosmic-ray protons may be approximately 10% of the total production rate of cosmogenic $^3$He. At depths of 10-50 m.w.e., the accumulation of $^3$He is significantly contributed by reactions induced by cosmic-ray muons. Data presented in the paper make it possible to calculate the accumulation rate of $^3$He in a roc...

  14. Modeling of ground albedo neutrons to investigate seasonal cosmic ray-induced neutron variations measured at high-altitude stations

    Science.gov (United States)

    Hubert, G.; Pazianotto, M. T.; Federico, C. A.

    2016-12-01

    This paper investigates seasonal cosmic ray-induced neutron variations measured over a long-term period (from 2011 to 2016) in both the high-altitude stations located in medium geomagnetic latitude and Antarctica (Pic-du-Midi and Concordia, respectively). To reinforce analysis, modeling based on ground albedo neutrons simulations of extensive air showers and the solar modulation potential was performed. Because the local environment is well known and stable over time in Antarctica, data were used to validate the modeling approach. A modeled scene representative to the Pic-du-Midi was simulated with GEANT4 for various hydrogen properties (composition, density, and wet level) and snow thickness. The orders of magnitudes of calculated thermal fluence rates are consistent with measurements obtained during summers and winters. These variations are dominant in the thermal domain (i.e., En 20 MeV) is weakly impacted. The role of hydrogen content on ground albedo neutron generation was investigated with GEANT4 simulations. These investigations focused to mountain environment; nevertheless, they demonstrate the complexity of the local influences on neutron fluence rates.

  15. Energy spectrum of cascade showers induced by cosmic ray muons in the range from 50 GeV to 5 TeV

    Science.gov (United States)

    Ashitkov, V. D.; Kirina, T. M.; Klimakov, A. P.; Kokoulin, R. P.; Petrukhin, A. A.; Yumatov, V. I.

    1985-01-01

    The energy spectrum of cascade showers induced by electromagnetic interactions of high energy muons of horizontal cosmic ray flux in iron absorber was measured. The total observation time exceeded 22,000 hours. Both the energy spectrum and angular distributions of cascade showers are fairly described in terms of the usual muon generation processes, with a single power index of the parent meson spectrum over the muon energy range from 150 GeV to 5 TeV.

  16. Beam-induced and cosmic-ray backgrounds observed in the ATLAS detector during the LHC 2012 proton-proton running period

    OpenAIRE

    Onofre, A.; Castro, Nuno Filipe Silva Fernandes; ATLAS Collaboration

    2016-01-01

    This paper discusses various observations on beam-induced and cosmic-ray backgrounds in the ATLAS detector during the LHC 2012 proton-proton run. Building on published results based on 2011 data, the correlations between background and residual pressure of the beam vacuum are revisited. Ghost charge evolution over 2012 and its role for backgrounds are evaluated. New methods to monitor ghost charge with beam-gas rates are presented and observations of LHC abort gap population by ghost charge a...

  17. Perturbations to aquatic photosynthesis due to high-energy cosmic ray induced muon flux in the extragalactic shock model

    CERN Document Server

    Rodriguez, Lien; Rodriguez, Oscar

    2013-01-01

    We modify a mathematical model of photosynthesis to quantify the perturbations that high energy muons could make on aquatic primary productivity. Then we apply this in the context of the extragalactic shock model, according to which Earth receives an enhanced dose of high-energy cosmic rays when it is at the galactic north. We obtain considerable reduction in the photosynthesis rates, consistent with potential drops in biodiversity.

  18. Cosmic-ray propagation in molecular clouds

    CERN Document Server

    Padovani, Marco

    2013-01-01

    Cosmic-rays constitute the main ionising and heating agent in dense, starless, molecular cloud cores. We reexamine the physical quantities necessary to determine the cosmic-ray ionisation rate (especially the cosmic ray spectrum at E < 1 GeV and the ionisation cross sections), and calculate the ionisation rate as a function of the column density of molecular hydrogen. Available data support the existence of a low-energy component (below about 100 MeV) of cosmic-ray electrons or protons responsible for the ionisation of diffuse and dense clouds. We also compute the attenuation of the cosmic-ray flux rate in a cloud core taking into account magnetic focusing and magnetic mirroring, following the propagation of cosmic rays along flux tubes enclosing different amount of mass and mass-to-flux ratios. We find that mirroring always dominates over focusing, implying a reduction of the cosmic-ray ionisation rate by a factor of 3-4 depending on the position inside the core and the magnetisation of the core.

  19. The Telescope Array RADAR (TARA) Project and the Search for the Radar Signature of Cosmic Ray Induced Extensive Air Showers

    Science.gov (United States)

    Prohira, Steven; TARA Collaboration; Telescope Array Collaboration

    2016-03-01

    The TARA (Telescope Array Radar) cosmic ray detector has been in operation since May 2013. It is the most ambitious effort to date to test an idea that originated in the 1940's: that ionization produced by cosmic ray extensive air showers should reflect electromagnetic radiation. The observation of this effect would open the possibility that remote-sensing radar technology could be used to detect and reconstruct extensive air showers, thus increasing the aperture available for the study of the highest-energy cosmic rays. TARA employs a bi-static radar configuration, consisting of a 25 kW, 5 MW ERP transmitter at 54.1 MHz broadcasting across the Telescope Array surface detector. 40 km distant, a set of log-periodic receiver antennas are read out by two independent data acquisition systems employing different techniques to select signals of the form expected for radar targets moving at close to the speed of light. In this talk, we describe the TARA detector and present the first quantitative limits on the radar cross-section of extensive air showers.

  20. Anisotropy and Corotation of Galactic Cosmic Rays

    Institute of Scientific and Technical Information of China (English)

    The Chinese collaboration team at YangBaJing Cosmi

    2007-01-01

    @@ Based on some 40 billion cosmic ray events collected from 1997 to 2005 by the Tibet Air Shower Array experiment (a major scientific collaboration between China and Japan) operating at the YangBaJing Cosmic Ray Observatory (90.522 E, 30. 102 N; 4300 m above sea level) near Lhasa in Tibet, a two-dimensiondl cosmic-ray intensity map in the sky was obtained with very high directional granularity and unprecedented precision in intensity at a level of 10-4.

  1. High-energy cosmic-ray acceleration

    CERN Document Server

    Bustamante, M; de Paula, W; Duarte Chavez, J A; Gago, A M; Hakobyan, H; Jez, P; Monroy Montañez, J A; Ortiz Velasquez, A; Padilla Cabal, F; Pino Rozas, M; Rodriguez Patarroyo, D J; Romeo, G L; Saldaña-Salazar , U J; Velasquez, M; von Steinkirch, M

    2010-01-01

    We briefly review the basics of ultrahigh-energy cosmic-ray acceleration. The Hillas criterion is introduced as a geometrical criterion that must be fulfilled by potential acceleration sites, and energy losses are taken into account in order to obtain a more realistic scenario. The different available acceleration mechanisms are presented, with special emphasis on Fermi shock acceleration and its prediction of a power-law cosmic-ray energy spectrum. We conclude that first-order Fermi acceleration, though not entirely satisfactory, is the most promising mechanism for explaining the ultra-high-energy cosmic-ray flux.

  2. Cosmic ray transport in astrophysical plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Schlickeiser, R. [Institut für Theoretische Physik, Lehrstuhl IV: Weltraum- & Astrophysik, Ruhr-Universität, Bochum (Germany)

    2015-09-15

    Since the development of satellite space technology about 50 years ago the solar heliosphere is explored almost routinely by several spacecrafts carrying detectors for measuring the properties of the interplanetary medium including energetic charged particles (cosmic rays), solar wind particle densities, and electromagnetic fields. In 2012, the Voyager 1 spacecraft has even left what could be described as the heliospheric modulation region, as indicated by the sudden disappearance of low energy heliospheric cosmic ray particles. With the available in-situ measurements of interplanetary turbulent electromagnetic fields and of the momentum spectra of different cosmic ray species in different interplanetary environments, the heliosphere is the best cosmic laboratory to test our understanding of the transport and acceleration of cosmic rays in space plasmas. I review both the historical development and the current state of various cosmic ray transport equations. Similarities and differences to transport theories for terrestrial fusion plasmas are highlighted. Any progress in cosmic ray transport requires a detailed understanding of the electromagnetic turbulence that is responsible for the scattering and acceleration of these particles.

  3. Measurement of the energy spectrum of cosmic-ray induced neutrons aboard an ER-2 high-altitude airplane.

    Science.gov (United States)

    Goldhagen, P; Reginatto, M; Kniss, T; Wilson, J W; Singleterry, R C; Jones, I W; Van Steveninck, W

    2002-01-01

    Crews working on present-day jet aircraft are a large occupationally exposed group with a relatively high average effective dose from galactic cosmic radiation. Crews of future high-speed commercial aircraft flying at higher altitudes would be even more exposed. To help reduce the significant uncertainties in calculations of such exposures, the atmospheric ionizing radiation (AIR) project, an international collaboration of 15 laboratories, made simultaneous radiation measurements with 14 instruments on five flights of a NASA ER-2 high-altitude aircraft. The primary AIR instrument was a highly sensitive extended-energy multisphere neutron spectrometer with lead and steel shells placed within the moderators of two of its 14 detectors to enhance response at high energies. Detector responses were calculated for neutrons and charged hadrons at energies up to 100 GeV using MCNPX. Neutron spectra were unfolded from the measured count rates using the new MAXED code. We have measured the cosmic-ray neutron spectrum (thermal to >10 GeV), total neutron fluence rate, and neutron effective dose and dose equivalent rates and their dependence on altitude and geomagnetic cutoff. The measured cosmic-ray neutron spectra have almost no thermal neutrons, a large "evaporation" peak near 1 MeV and a second broad peak near 100 MeV which contributes about 69% of the neutron effective dose. At high altitude, geomagnetic latitude has very little effect on the shape of the spectrum, but it is the dominant variable affecting neutron fluence rate, which was eight times higher at the northernmost measurement location than it was at the southernmost. The shape of the spectrum varied only slightly with altitude from 21 km down to 12 km (56-201 g cm-2 atmospheric depth), but was significantly different on the ground. In all cases, ambient dose equivalent was greater than effective dose for cosmic-ray neutrons.

  4. Beam-induced and cosmic-ray backgrounds observed in the ATLAS detector during the LHC 2012 proton-proton running period

    CERN Document Server

    Aad, Georges; Abdallah, Jalal; Abdinov, Ovsat; Abeloos, Baptiste; Aben, Rosemarie; Abolins, Maris; AbouZeid, Ossama; Abraham, Nicola; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Affolder, Tony; Agatonovic-Jovin, Tatjana; Agricola, Johannes; Aguilar-Saavedra, Juan Antonio; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Alkire, Steven Patrick; Allbrooke, Benedict; Allen, Benjamin William; Allport, Phillip; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Alvarez Gonzalez, Barbara; Άlvarez Piqueras, Damián; Alviggi, Mariagrazia; Amadio, Brian Thomas; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amram, Nir; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anders, John Kenneth; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Angelidakis, Stylianos; Angelozzi, Ivan; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Arabidze, Giorgi; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arduh, Francisco Anuar; Arduini, Gianluigi; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Armitage, Lewis James; Arnaez, Olivier; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Artz, Sebastian; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Augsten, Kamil; Avolio, Giuseppe; Axen, Bradley; Ayoub, Mohamad Kassem; Azuelos, Georges; Baak, Max; Baas, Alessandra; Baca, Matthew John; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Baines, John; Baker, Oliver Keith; Baldin, Evgenii; Balek, Petr; Balestri, Thomas; Balli, Fabrice; Balunas, William Keaton; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Barak, Liron; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barklow, Timothy; Barlow, Nick; Barnes, Sarah Louise; Barnett, Bruce; Barnett, Michael; Barnovska, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barranco Navarro, Laura; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Basalaev, Artem; Bassalat, Ahmed; Basye, Austin; Bates, Richard; Batista, Santiago Juan; Batley, Richard; Battaglia, Marco; Bauce, Matteo; Bauer, Florian; Bawa, Harinder Singh; Beacham, James Baker; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Bechtle, Philip; Beck, Hans~Peter; Becker, Kathrin; Becker, Maurice; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bednyakov, Vadim; Bedognetti, Matteo; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Janna Katharina; Belanger-Champagne, Camille; Bell, Andrew Stuart; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Belyaev, Nikita; Benary, Odette; Benchekroun, Driss; Bender, Michael; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez, Jose; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Bensinger, James; Bentvelsen, Stan; Beresford, Lydia; Beretta, Matteo; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Beringer, Jürg; Berlendis, Simon; Bernard, Nathan Rogers; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertram, Iain Alexander; Bertsche, Carolyn; Bertsche, David; Besjes, Geert-Jan; Bessidskaia Bylund, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethke, Siegfried; Bevan, Adrian John; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Biedermann, Dustin; Bielski, Rafal; Biesuz, Nicolo Vladi; Biglietti, Michela

    2016-01-01

    This paper discusses various observations on beam-induced and cosmic-ray backgrounds in the ATLAS detector during the LHC 2012 proton-proton run. Building on published results based on 2011 data, the correlations between background and residual pressure of the beam vacuum are revisited. Ghost charge evolution over 2012 and its role for backgrounds are evaluated. New methods to monitor ghost charge with beam-gas rates are presented and observations of LHC abort gap population by ghost charge are discussed in detail. Fake jets from colliding bunches and from ghost charge are analysed with improved methods, showing that ghost charge in individual radio-frequency buckets of the LHC can be resolved. Some results of two short periods of dedicated cosmic-ray background data-taking are shown; in particular cosmic-ray muon induced fake jet rates are compared to Monte Carlo simulations and to the fake jet rates from beam background. A thorough analysis of a particular LHC fill, where abnormally high background was obse...

  5. Beam-induced and cosmic-ray backgrounds observed in the ATLAS detector during the LHC 2012 proton-proton running period

    Science.gov (United States)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Abeloos, B.; Aben, R.; Abolins, M.; AbouZeid, O. S.; Abraham, N. L.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Affolder, A. A.; Agatonovic-Jovin, T.; Agricola, J.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Alconada Verzini, M. J.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allen, B. W.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Alvarez Gonzalez, B.; Álvarez Piqueras, D.; Alviggi, M. G.; Amadio, B. T.; Amako, K.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amram, N.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Arabidze, G.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arduh, F. A.; Arduini, G.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Armitage, L. J.; Arnaez, O.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Artz, S.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baak, M. A.; Baas, A. E.; Baca, M. J.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Baines, J. T.; Baker, O. K.; Baldin, E. M.; Balek, P.; Balestri, T.; Balli, F.; Balunas, W. K.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barranco Navarro, L.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Basye, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, M.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bedognetti, M.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, J. K.; Belanger-Champagne, C.; Bell, A. S.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Belyaev, N. L.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez, J.; Benitez Garcia, J. A.; Benjamin, D. P.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Beringer, J.; Berlendis, S.; Bernard, N. R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertram, I. A.; Bertsche, C.; Bertsche, D.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.; Betancourt, C.; Bethke, S.; Bevan, A. J.; Bhimji, W.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Biedermann, D.; Bielski, R.; Biesuz, N. V.; Biglietti, M.; Bilbao De Mendizabal, J.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biondi, S.; Bjergaard, D. M.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J.-B.; Blanco, J. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blum, W.; Blumenschein, U.; Blunier, S.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Boerner, D.; Bogaerts, J. A.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Bortfeldt, J.; Bortoletto, D.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Bossio Sola, J. D.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Boutle, S. K.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Breaden Madden, W. D.; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Broughton, J. H.; Bruce, R.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Bruni, A.; Bruni, G.; Brunt, BH; Bruschi, M.; Bruscino, N.; Bryant, P.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Budagov, I. A.; Buehrer, F.; Bugge, M. K.; Bulekov, O.; Bullock, D.; Burckhart, H.; Burdin, S.; Burgard, C. D.; Burghgrave, B.; Burka, K.; Burke, S.; Burmeister, I.; Busato, E.; Büscher, D.; Büscher, V.; Bussey, P.; Butler, J. M.; Butt, A. I.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Buzykaev, A. R.; Cabrera Urbán, S.; Caforio, D.; Cairo, V. M.; Cakir, O.; Calace, N.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Caloba, L. P.; Calvet, D.; Calvet, S.; Calvet, T. P.; Camacho Toro, R.; Camarda, S.; Camarri, P.; Cameron, D.; Caminal Armadans, R.; Camincher, C.; Campana, S.; Campanelli, M.; Campoverde, A.; Canale, V.; Canepa, A.; Cano Bret, M.; Cantero, J.; Cantrill, R.; Cao, T.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Carbone, R. M.; Cardarelli, R.; Cardillo, F.; Carli, T.; Carlino, G.; Carminati, L.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Casolino, M.; Casper, D. W.; Castaneda-Miranda, E.; Castelli, A.; Castillo Gimenez, V.; Castro, N. F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caudron, J.; Cavaliere, V.; Cavallaro, E.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerda Alberich, L.; Cerio, B. C.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cerv, M.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chalupkova, I.; Chan, S. K.; Chan, Y. L.; Chang, P.; Chapman, J. D.; Charlton, D. G.; Chatterjee, A.; Chau, C. C.; Chavez Barajas, C. A.; Che, S.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, K.; Chen, S.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, H. J.; Cheng, Y.; Cheplakov, A.; Cheremushkina, E.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Chevalier, L.; Chiarella, V.; Chiarelli, G.; Chiodini, G.; Chisholm, A. S.; Chitan, A.; Chizhov, M. V.; Choi, K.; Chomont, A. R.; Chouridou, S.; Chow, B. K. B.; Christodoulou, V.; Chromek-Burckhart, D.; Chudoba, J.; Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Ciapetti, G.; Ciftci, A. K.; Cinca, D.; Cindro, V.; Cioara, I. A.; Ciocio, A.; Cirotto, F.; Citron, Z. H.; Ciubancan, M.; Clark, A.; Clark, B. L.; Clark, M. R.; Clark, P. J.; Clarke, R. N.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coffey, L.; Colasurdo, L.; Cole, B.; Cole, S.; Colijn, A. P.; Collot, J.; Colombo, T.; Compostella, G.; Conde Muiño, P.; Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Consorti, V.; Constantinescu, S.; Conta, C.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Crawley, S. J.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Crispin Ortuzar, M.; Cristinziani, M.; Croft, V.; Crosetti, G.; Cuhadar Donszelmann, T.; Cummings, J.; Curatolo, M.; Cúth, J.; Cuthbert, C.; Czirr, H.; Czodrowski, P.; D'Auria, S.; D'Onofrio, M.; Da Cunha Sargedas De Sousa, M. J.; Da Via, C.; Dabrowski, W.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Dandoy, J. R.; Dang, N. P.; Daniells, A. C.; Dann, N. S.; Danninger, M.; Dano Hoffmann, M.; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J.; Dattagupta, A.; Davey, W.; David, C.; Davidek, T.; Davies, M.; Davison, P.; Davygora, Y.; Dawe, E.; Dawson, I.; Daya-Ishmukhametova, R. K.; De, K.; de Asmundis, R.; De Benedetti, A.; De Castro, S.; De Cecco, S.; De Groot, N.; de Jong, P.; De la Torre, H.; De Lorenzi, F.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Vivie De Regie, J. B.; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dedovich, D. V.; Deigaard, I.; Del Peso, J.; Del Prete, T.; Delgove, D.; Deliot, F.; Delitzsch, C. M.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delsart, P. A.; Deluca, C.; DeMarco, D. A.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Denysiuk, D.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Dette, K.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; Di Ciaccio, A.; Di Ciaccio, L.; Di Clemente, W. K.; Di Donato, C.; Di Girolamo, A.; Di Girolamo, B.; Di Micco, B.; Di Nardo, R.; Di Simone, A.; Di Sipio, R.; Di Valentino, D.; Diaconu, C.; Diamond, M.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Diglio, S.; Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; do Vale, M. A. B.; Dobos, D.; Dobre, M.; Doglioni, C.; Dohmae, T.; Dolejsi, J.; Dolezal, Z.; Dolgoshein, B. A.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.; Dris, M.; Du, Y.; Duarte-Campderros, J.; Duchovni, E.; Duckeck, G.; Ducu, O. A.; Duda, D.; Dudarev, A.; Duflot, L.; Duguid, L.; Dührssen, M.; Dunford, M.; Duran Yildiz, H.; Düren, M.; Durglishvili, A.; Duschinger, D.; Dutta, B.; Dyndal, M.; Eckardt, C.; Ecker, K. M.; Edgar, R. C.; Edson, W.; Edwards, N. C.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; El Kacimi, M.; Ellajosyula, V.; Ellert, M.; Elles, S.; Ellinghaus, F.; Elliot, A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Endo, M.; Ennis, J. S.; Erdmann, J.; Ereditato, A.; Ernis, G.; Ernst, J.; Ernst, M.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Esposito, B.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Fabbri, F.; Fabbri, L.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farina, C.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Faucci Giannelli, M.; Favareto, A.; Fawcett, W. J.; Fayard, L.; Fedin, O. L.; Fedorko, W.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.; Feremenga, L.; Fernandez Martinez, P.; Fernandez Perez, S.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, A.; Fischer, C.; Fischer, J.; Fisher, W. C.; Flaschel, N.; Fleck, I.; Fleischmann, P.; Fletcher, G. T.; Fletcher, G.; Fletcher, R. R. M.; Flick, T.; Floderus, A.; Flores Castillo, L. R.; Flowerdew, M. J.; Forcolin, G. T.; Formica, A.; Forti, A.; Foster, A. G.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Francis, D.; Franconi, L.; Franklin, M.; Frate, M.; Fraternali, M.; Freeborn, D.; Fressard-Batraneanu, S. M.; Friedrich, F.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fusayasu, T.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gach, G. P.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, L. G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Gao, J.; Gao, Y.; Gao, Y. S.; Garay Walls, F. M.; García, C.; García Navarro, J. E.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gascon Bravo, A.; Gatti, C.; Gaudiello, A.; Gaudio, G.; Gaur, B.; Gauthier, L.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Gecse, Z.; Gee, C. N. P.; Geich-Gimbel, Ch.; Geisler, M. P.; Gemme, C.; Genest, M. H.; Geng, C.; Gentile, S.; George, S.; Gerbaudo, D.; Gershon, A.; Ghasemi, S.; Ghazlane, H.; Ghneimat, M.; Giacobbe, B.; Giagu, S.; Giannetti, P.; Gibbard, B.; Gibson, S. M.; Gignac, M.; Gilchriese, M.; Gillam, T. P. S.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giorgi, F. M.; Giorgi, F. M.; Giraud, P. F.; Giromini, P.; Giugni, D.; Giuli, F.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Goblirsch-Kolb, M.; Godlewski, J.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gonçalo, R.; Goncalves Pinto Firmino Da Costa, J.; Gonella, L.; Gongadze, A.; González de la Hoz, S.; Gonzalez Parra, G.; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Goudet, C. R.; Goujdami, D.; Goussiou, A. G.; Govender, N.; Gozani, E.; Graber, L.; Grabowska-Bold, I.; Gradin, P. O. J.; Grafström, P.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Gratchev, V.; Gray, H. M.; Graziani, E.; Greenwood, Z. D.; Grefe, C.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Grevtsov, K.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Groh, S.; Grohs, J. P.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Guan, L.; Guan, W.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Guo, Y.; Gupta, S.; Gustavino, G.; Gutierrez, P.; Gutierrez Ortiz, N. G.; Gutschow, C.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haddad, N.; Hadef, A.; Haefner, P.; Hageböck, S.; Hajduk, Z.; Hakobyan, H.; Haleem, M.; Haley, J.; Hall, D.; Halladjian, G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamilton, A.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Haney, B.; Hanke, P.; Hanna, R.; Hansen, J. B.; Hansen, J. D.; Hansen, M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harrington, R. D.; Harrison, P. F.; Hartjes, F.; Hasegawa, M.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauser, R.; Hauswald, L.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, A. D.; Hayden, D.; Hays, C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, J. J.; Heinrich, L.; Heinz, C.; Hejbal, J.; Helary, L.; Hellman, S.; Helsens, C.; Henderson, J.; Henderson, R. C. W.; Heng, Y.; Henkelmann, S.; Henriques Correia, A. M.; Henrot-Versille, S.; Herbert, G. H.; Hernández Jiménez, Y.; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Hetherly, J. W.; Hickling, R.; Higón-Rodriguez, E.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hinman, R. R.; Hirose, M.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hohlfeld, M.; Hohn, D.; Holmes, T. R.; Homann, M.; Hong, T. M.; Hooberman, B. H.; Hopkins, W. H.; Horii, Y.; Horton, A. J.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howard, J.; Howarth, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hrynevich, A.; Hsu, C.; Hsu, P. J.; Hsu, S.-C.; Hu, D.; Hu, Q.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Hülsing, T. A.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Ideal, E.; Idrissi, Z.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Ince, T.; Introzzi, G.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Irles Quiles, A.; Isaksson, C.; Ishino, M.; Ishitsuka, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Ito, F.; Ponce, J. M. Iturbe; Iuppa, R.; Ivarsson, J.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jabbar, S.; Jackson, B.; Jackson, M.; Jackson, P.; Jain, V.; Jakobi, K. B.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jamin, D. O.; Jana, D. K.; Jansen, E.; Jansky, R.; Janssen, J.; Janus, M.; Jarlskog, G.; Javadov, N.; Javůrek, T.; Jeanneau, F.; Jeanty, L.; Jejelava, J.; Jeng, G.-Y.; Jennens, D.; Jenni, P.; Jentzsch, J.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, H.; Jiang, Y.; Jiggins, S.; Jimenez Pena, J.; Jin, S.; Jinaru, A.; Jinnouchi, O.; Johansson, P.; Johns, K. A.; Johnson, W. J.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, S.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Jovicevic, J.; Ju, X.; Juste Rozas, A.; Köhler, M. K.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kahn, S. J.; Kajomovitz, E.; Kalderon, C. W.; Kaluza, A.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kaneti, S.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kaplan, L. S.; Kapliy, A.; Kar, D.; Karakostas, K.; Karamaoun, A.; Karastathis, N.; Kareem, M. J.; Karentzos, E.; Karnevskiy, M.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kasahara, K.; Kashif, L.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Kato, C.; Katre, A.; Katzy, J.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kazama, S.; Kazanin, V. F.; Keeler, R.; Kehoe, R.; Keller, J. S.; Kempster, J. J.; Kentaro, K.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khalil-zada, F.; Khandanyan, H.; Khanov, A.; Kharlamov, A. G.; Khoo, T. J.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kido, S.; Kim, H. Y.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kind, O. M.; King, B. T.; King, M.; King, S. B.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kiss, F.; Kiuchi, K.; Kivernyk, O.; Kladiva, E.; Klein, M. H.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klioutchnikova, T.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Knapik, J.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koffas, T.; Koffeman, E.; Kogan, L. A.; Koi, T.; Kolanoski, H.; Kolb, M.; Koletsou, I.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Köpke, L.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Kortner, O.; Kortner, S.; Kosek, T.; Kostyukhin, V. V.; Kotwal, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kouskoura, V.; Koutsman, A.; Kowalewska, A. B.; Kowalewski, R.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J. K.; Kravchenko, A.; Kretz, M.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka, K.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumnack, N.; Kruse, A.; Kruse, M. C.; Kruskal, M.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuechler, J. T.; Kuehn, S.; Kugel, A.; Kuger, F.; Kuhl, A.; Kuhl, T.; Kukhtin, V.; Kukla, R.; Kulchitsky, Y.; Kuleshov, S.; Kuna, M.; Kunigo, T.; Kupco, A.; Kurashige, H.; Kurochkin, Y. A.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; Kyriazopoulos, D.; La Rosa, A.; La Rosa Navarro, J. L.; La Rotonda, L.; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lammers, S.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lang, V. S.; Lange, J. C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Lasagni Manghi, F.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Lazovich, T.; Lazzaroni, M.; Le Dortz, O.; Le Guirriec, E.; Le Menedeu, E.; Le Quilleuc, E. P.; LeBlanc, M.; LeCompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, S. C.; Lee, L.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehan, A.; Lehmann Miotto, G.; Lei, X.; Leight, W. A.; Leisos, A.; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Leontsinis, S.; Lerner, G.; Leroy, C.; Lesage, A. A. J.; Lester, C. G.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Leyko, A. M.; Leyton, M.; Li, B.; Li, H.; Li, H. L.; Li, L.; Li, L.; Li, Q.; Li, S.; Li, X.; Li, Y.; Liang, Z.; Liao, H.; Liberti, B.; Liblong, A.; Lichard, P.; Lie, K.; Liebal, J.; Liebig, W.; Limbach, C.; Limosani, A.; Lin, S. C.; Lin, T. H.; Lindquist, B. E.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, B.; Liu, D.; Liu, H.; Liu, H.; Liu, J.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, M.; Liu, Y. L.; Liu, Y.; Livan, M.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lo Sterzo, F.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Loebinger, F. K.; Loevschall-Jensen, A. E.; Loew, K. M.; Loginov, A.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.; Long, J. D.; Long, R. E.; Longo, L.; Looper, K. A.; Lopes, L.; Lopez Mateos, D.; Lopez Paredes, B.; Lopez Paz, I.; Lopez Solis, A.; Lorenz, J.; Martinez, N. Lorenzo; Losada, M.; Lösel, P. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lu, H.; Lu, N.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luedtke, C.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Lynn, D.; Lysak, R.; Lytken, E.; Lyubushkin, V.; Ma, H.; Ma, L. L.; Ma, Y.; Maccarrone, G.; Macchiolo, A.; Macdonald, C. M.; Maček, B.; Machado Miguens, J.; Madaffari, D.; Madar, R.; Maddocks, H. J.; Mader, W. F.; Madsen, A.; Maeda, J.; Maeland, S.; Maeno, T.; Maevskiy, A.; Magradze, E.; Mahlstedt, J.; Maiani, C.; Maidantchik, C.; Maier, A. A.; Maier, T.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandelli, B.; Mandelli, L.; Mandić, I.; Maneira, J.; Filho, L. Manhaes de Andrade; Manjarres Ramos, J.; Mann, A.; Mansoulie, B.; Mantifel, R.; Mantoani, M.; Manzoni, S.; Mapelli, L.; Marceca, G.; March, L.; Marchiori, G.; Marcisovsky, M.; Marjanovic, M.; Marley, D. E.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Marti, L. F.; Marti-Garcia, S.; Martin, B.; Martin, T. A.; Martin, V. J.; dit Latour, B. Martin; Martinez, M.; Martin-Haugh, S.; Martoiu, V. S.; Martyniuk, A. C.; Marx, M.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massa, L.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Mattmann, J.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Mazza, S. M.; McFadden, N. C.; McGoldrick, G.; McKee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McClymont, L. I.; McFarlane, K. W.; Mcfayden, J. A.; Mchedlidze, G.; McMahon, S. J.; McPherson, R. A.; Medinnis, M.; Meehan, S.; Mehlhase, S.; Mehta, A.; Meier, K.; Meineck, C.; Meirose, B.; Mellado Garcia, B. R.; Meloni, F.; Mengarelli, A.; Menke, S.; Meoni, E.; Mercurio, K. M.; Mergelmeyer, S.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Theenhausen, H. Meyer Zu; Middleton, R. P.; Miglioranzi, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milesi, M.; Milic, A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mistry, K. P.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.; Mjörnmark, J. U.; Moa, T.; Mochizuki, K.; Mohapatra, S.; Mohr, W.; Molander, S.; Moles-Valls, R.; Monden, R.; Mondragon, M. C.; Mönig, K.; Monk, J.; Monnier, E.; Montalbano, A.; Montejo Berlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Mori, D.; Mori, T.; Morii, M.; Morinaga, M.; Morisbak, V.; Moritz, S.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Mortensen, S. S.; Morvaj, L.; Mosidze, M.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Muanza, S.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, R. S. P.; Mueller, T.; Muenstermann, D.; Mullen, P.; Mullier, G. A.; Munoz Sanchez, F. J.; Murillo Quijada, J. A.; Murray, W. J.; Musheghyan, H.; Muskinja, M.; Myagkov, A. G.; Myska, M.; Nachman, B. P.; Nackenhorst, O.; Nadal, J.; Nagai, K.; Nagai, R.; Nagano, K.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Namasivayam, H.; Naranjo Garcia, R. F.; Narayan, R.; Narrias Villar, D. I.; Naryshkin, I.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Nef, P. D.; Negri, A.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nguyen, D. H.; Nickerson, R. B.; Nicolaidou, R.; Nicquevert, B.; Nielsen, J.; Nikiforov, A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, J. K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nooney, T.; Norberg, S.; Nordberg, M.; Norjoharuddeen, N.; Novgorodova, O.; Nowak, S.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nurse, E.; Nuti, F.; O'grady, F.; O'Neil, D. C.; O'Rourke, A. A.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.; Ochoa-Ricoux, J. P.; Oda, S.; Odaka, S.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Oleiro Seabra, L. F.; Olivares Pino, S. A.; Oliveira Damazio, D.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onogi, K.; Onyisi, P. U. E.; Oram, C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Orr, R. S.; Osculati, B.; Ospanov, R.; Garzon, G. Otero y.; Otono, H.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Ovcharova, A.; Owen, M.; Owen, R. E.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pacheco Pages, A.; Padilla Aranda, C.; Pagáčová, M.; Pagan Griso, S.; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Palestini, S.; Palka, M.; Pallin, D.; Palm, M.; Palma, A.; Panagiotopoulou, E. St.; Pandini, C. E.; Panduro Vazquez, J. G.; Pani, P.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Paredes Hernandez, D.; Parker, A. J.; Parker, M. A.; Parker, K. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pascuzzi, V. R.; Pasqualucci, E.; Passaggio, S.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Patel, N. D.; Pater, J. R.; Pauly, T.; Pearce, J.; Pearson, B.; Pedersen, L. E.; Pedersen, M.; Pedraza Lopez, S.; Pedro, R.; Peleganchuk, S. V.; Pelikan, D.; Penc, O.; Peng, C.; Peng, H.; Penwell, J.; Peralva, B. S.; Perego, M. M.; Perepelitsa, D. V.; Perez Codina, E.; Perini, L.; Pernegger, H.; Perrella, S.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petroff, P.; Petrolo, E.; Petrov, M.; Petrucci, F.; Pettersson, N. E.; Peyaud, A.; Pezoa, R.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Piccinini, M.; Pickering, M. A.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pin, A. W. J.; Pina, J.; Pinamonti, M.; Pinfold, J. L.; Pingel, A.; Pires, S.; Pirumov, H.; Pitt, M.; Plazak, L.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Plucinski, P.; Pluth, D.; Poettgen, R.; Poggioli, L.; Pohl, D.; Polesello, G.; Poley, A.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Pozo Astigarraga, M. E.; Pralavorio, P.; Pranko, A.; Prell, S.; Price, D.; Price, L. E.; Primavera, M.; Prince, S.; Proissl, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Puddu, D.; Puldon, D.; Purohit, M.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Quayle, W. B.; Queitsch-Maitland, M.; Quilty, D.; Raddum, S.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Raine, J. A.; Rajagopalan, S.; Rammensee, M.; Rangel-Smith, C.; Ratti, M. G.; Rauscher, F.; Rave, S.; Ravenscroft, T.; Raymond, M.; Read, A. L.; Readioff, N. P.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Rehnisch, L.; Reichert, J.; Reisin, H.; Rembser, C.; Ren, H.; Rescigno, M.; Resconi, S.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter, S.; Richter-Was, E.; Ricken, O.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rieger, J.; Rifki, O.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Ristić, B.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Rizzi, C.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Roda, C.; Rodina, Y.; Rodriguez Perez, A.; Rodriguez Rodriguez, D.; Roe, S.; Rogan, C. S.; RØhne, O.; Romaniouk, A.; Romano, M.; Romano Saez, S. M.; Romero Adam, E.; Rompotis, N.; Ronzani, M.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, P.; Rosenthal, O.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rosten, J. H. N.; Rosten, R.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rubinskiy, I.; Rud, V. I.; Rudolph, M. S.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Ruschke, A.; Russell, H. L.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryu, S.; Ryzhov, A.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Saha, P.; Sahinsoy, M.; Saimpert, M.; Saito, T.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salamon, A.; Salazar Loyola, J. E.; Salek, D.; Sales De Bruin, P. H.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sammel, D.; Sampsonidis, D.; Sanchez, A.; Sánchez, J.; Sanchez Martinez, V.; Sandaker, H.; Sandbach, R. L.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandoval, C.; Sandstroem, R.; Sankey, D. P. C.; Sannino, M.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; Santoyo Castillo, I.; Sapp, K.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sasaki, O.; Sasaki, Y.; Sato, K.; Sauvage, G.; Sauvan, E.; Savage, G.; Savard, P.; Sawyer, C.; Sawyer, L.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella, M.; Scarfone, V.; Schaarschmidt, J.; Schacht, P.; Schaefer, D.; Schaefer, R.; Schaeffer, J.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Schiavi, C.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitz, S.; Schneider, B.; Schnellbach, Y. J.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schopf, E.; Schorlemmer, A. L. S.; Schott, M.; Schovancova, J.; Schramm, S.; Schreyer, M.; Schuh, N.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwarz, T. A.; Schwegler, Ph.; Schweiger, H.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Schwindt, T.; Sciolla, G.; Scuri, F.; Scutti, F.; Searcy, J.; Seema, P.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekhon, K.; Sekula, S. J.; Seliverstov, D. M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Sessa, M.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shaikh, N. W.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shaw, S. M.; Shcherbakova, A.; Shehu, C. Y.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shiyakova, M.; Shmeleva, A.; Shoaleh Saadi, D.; Shochet, M. J.; Shojaii, S.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Sicho, P.; Sidebo, P. E.; Sidiropoulou, O.; Sidorov, D.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simon, D.; Simon, M.; Sinervo, P.; Sinev, N. B.; Sioli, M.; Siragusa, G.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skinner, M. B.; Skottowe, H. P.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Slovak, R.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, M. N. K.; Smith, R. W.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snidero, G.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Soh, D. A.; Sokhrannyi, G.; Solans Sanchez, C. A.; Solar, M.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Son, H.; Song, H. Y.; Sood, A.; Sopczak, A.; Sopko, V.; Sorin, V.; Sosa, D.; Sotiropoulou, C. L.; Soualah, R.; Soukharev, A. M.; South, D.; Sowden, B. C.; Spagnolo, S.; Spalla, M.; Spangenberg, M.; Spanò, F.; Sperlich, D.; Spettel, F.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; St. Denis, R. D.; Stabile, A.; Stahlman, J.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, G. H.; Stark, J.; Staroba, P.; Starovoitov, P.; Stärz, S.; Staszewski, R.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Subramaniam, R.; Suchek, S.; Sugaya, Y.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Susinno, G.; Sutton, M. R.; Suzuki, S.; Svatos, M.; Swiatlowski, M.; Sykora, I.; Sykora, T.; Ta, D.; Taccini, C.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tam, J. Y. C.; Tan, K. G.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tannenwald, B. B.; Tapia Araya, S.; Tapprogge, S.; Tarem, S.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Tavares Delgado, A.; Tayalati, Y.; Taylor, A. C.; Taylor, G. N.; Taylor, P. T. E.; Taylor, W.; Teischinger, F. A.; Teixeira-Dias, P.; Temming, K. K.; Temple, D.; Ten Kate, H.; Teng, P. K.; Teoh, J. J.; Tepel, F.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Theveneaux-Pelzer, T.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, E. N.; Thompson, P. D.; Thompson, R. J.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Thomson, M.; Tibbetts, M. J.; Ticse Torres, R. E.; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tipton, P.; Tisserant, S.; Todome, K.; Todorov, T.; Todorova-Nova, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Tong, B.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Trefzger, T.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Trofymov, A.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; Truong, L.; Trzebinski, M.; Trzupek, A.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsui, K. M.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tudorache, A.; Tudorache, V.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turecek, D.; Turgeman, D.; Turra, R.; Turvey, A. J.; Tuts, P. M.; Tyndel, M.; Ucchielli, G.; Ueda, I.; Ueno, R.; Ughetto, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Unverdorben, C.; Urban, J.; Urquijo, P.; Urrejola, P.; Usai, G.; Usanova, A.; Vacavant, L.; Vacek, V.; Vachon, B.; Valderanis, C.; Valdes Santurio, E.; Valencic, N.; Valentinetti, S.; Valero, A.; Valery, L.; Valkar, S.; Vallecorsa, S.; Valls Ferrer, J. A.; Van Den Wollenberg, W.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; van Eldik, N.; van Gemmeren, P.; Van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vanguri, R.; Vaniachine, A.; Vankov, P.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vasquez, J. G.; Vazeille, F.; Vazquez Schroeder, T.; Veatch, J.; Veloce, L. M.; Veloso, F.; Veneziano, S.; Ventura, A.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Viazlo, O.; Vichou, I.; Vickey, T.; Boeriu, O. E. Vickey; Viehhauser, G. H. A.; Viel, S.; Vigani, L.; Vigne, R.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Vittori, C.; Vivarelli, I.; Vlachos, S.; Vlasak, M.; Vogel, M.; Vokac, P.; Volpi, G.; Volpi, M.; von der Schmitt, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vuillermet, R.; Vukotic, I.; Vykydal, Z.; Wagner, P.; Wagner, W.; Wahlberg, H.; Wahrmund, S.; Wakabayashi, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wallangen, V.; Wang, C.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, K.; Wang, R.; Wang, S. M.; Wang, T.; Wang, T.; Wang, X.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Washbrook, A.; Watkins, P. M.; Watson, A. T.; Watson, I. J.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, S.; Weber, M. S.; Weber, S. W.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten, J.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Wessels, M.; Wetter, J.; Whalen, K.; Whallon, N. L.; Wharton, A. M.; White, A.; White, M. J.; White, R.; White, S.; Whiteson, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wildauer, A.; Wilk, F.; Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, J. A.; Wingerter-Seez, I.; Winklmeier, F.; Winston, O. J.; Winter, B. T.; Wittgen, M.; Wittkowski, J.; Wollstadt, S. J.; Wolter, M. W.; Wolters, H.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wu, M.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yakabe, R.; Yamaguchi, D.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, S.; Yamanaka, T.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, Y.; Yang, Z.; Yao, W.-M.; Yap, Y. C.; Yasu, Y.; Yatsenko, E.; Yau Wong, K. H.; Ye, J.; Ye, S.; Yeletskikh, I.; Yen, A. L.; Yildirim, E.; Yorita, K.; Yoshida, R.; Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef, S.; Yu, D. R.; Yu, J.; Yu, J. M.; Yu, J.; Yuan, L.; Yuen, S. P. Y.; Yusuff, I.; Zabinski, B.; Zaidan, R.; Zaitsev, A. M.; Zakharchuk, N.; Zalieckas, J.; Zaman, A.; Zambito, S.; Zanello, L.; Zanzi, D.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zeng, J. C.; Zeng, Q.; Zengel, K.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zhang, D.; Zhang, F.; Zhang, G.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, R.; Zhang, R.; Zhang, X.; Zhang, Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, C.; Zhou, L.; Zhou, L.; Zhou, M.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, S.; Zinonos, Z.; Zinser, M.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; zur Nedden, M.; Zurzolo, G.; Zwalinski, L.

    2016-05-01

    This paper discusses various observations on beam-induced and cosmic-ray backgrounds in the ATLAS detector during the LHC 2012 proton-proton run. Building on published results based on 2011 data, the correlations between background and residual pressure of the beam vacuum are revisited. Ghost charge evolution over 2012 and its role for backgrounds are evaluated. New methods to monitor ghost charge with beam-gas rates are presented and observations of LHC abort gap population by ghost charge are discussed in detail. Fake jets from colliding bunches and from ghost charge are analysed with improved methods, showing that ghost charge in individual radio-frequency buckets of the LHC can be resolved. Some results of two short periods of dedicated cosmic-ray background data-taking are shown; in particular cosmic-ray muon induced fake jet rates are compared to Monte Carlo simulations and to the fake jet rates from beam background. A thorough analysis of a particular LHC fill, where abnormally high background was observed, is presented. Correlations between backgrounds and beam intensity losses in special fills with very high β* are studied.

  6. Cosmic ray penetration in diffuse clouds

    CERN Document Server

    Morlino, G; Krause, J

    2015-01-01

    Cosmic rays are a fundamental source of ionization for molecular and diffuse clouds, influencing their chemical, thermal, and dynamical evolution. The amount of cosmic rays inside a cloud also determines the $\\gamma$-ray flux produced by hadronic collisions between cosmic rays and cloud material. We study the spectrum of cosmic rays inside and outside of a diffuse cloud, by solving the stationary transport equation for cosmic rays including diffusion, advection and energy losses due to ionization of neutral hydrogen atoms. We found that the cosmic ray spectrum inside a diffuse cloud differs from the one in the interstellar medium (ISM) for energies smaller than $E_{br}\\approx 100$ MeV, irrespective of the model details. Below $E_{br}$, the spectrum is harder (softer) than that in the ISM if the latter is a power law $\\propto p^{-s}$ with $s$ larger (smaller) than $\\sim0.42$. As a consequence also the ionization rate due to CRs is strongly affected. Assuming an average Galactic spectrum similar to the one infe...

  7. Solar Modulation of Cosmic Rays

    CERN Document Server

    Potgieter, Marius

    2013-01-01

    This is an overview of the solar modulation of cosmic rays in the heliosphere. It is a broad topic with numerous intriguing aspects so that a research framework has to be chosen to concentrate on. The review focuses on the basic paradigms and departure points without presenting advanced theoretical or observational details for which there exists a large number of comprehensive reviews. Instead, emphasis is placed on numerical modeling which has played an increasingly signi?cant role as computational resources have become more abundant. A main theme is the progress that has been made over the years. The emphasis is on the global features of CR modulation and on the causes of the observed 11-year and 22-year cycles and charge-sign dependent modulation. Illustrative examples of some of the theoretical and observational milestones are presented, without attempting to review all details or every contribution made in this ?eld of research. Controversial aspects are discussed where appro- priate, with accompanying c...

  8. Measurement of the energy spectrum of cosmic-ray induced neutrons aboard an ER-2 high-altitude airplane

    CERN Document Server

    Goldhagen, P E; Kniss, T; Reginatto, M; Singleterry, R C; Van Steveninck, W; Wilson, J W

    2002-01-01

    Crews working on present-day jet aircraft are a large occupationally exposed group with a relatively high average effective dose from galactic cosmic radiation. Crews of future high-speed commercial aircraft flying at higher altitudes would be even more exposed. To help reduce the significant uncertainties in calculations of such exposures, the atmospheric ionizing radiation (AIR) project, an international collaboration of 15 laboratories, made simultaneous radiation measurements with 14 instruments on five flights of a NASA ER-2 high-altitude aircraft. The primary AIR instrument was a highly sensitive extended-energy multisphere neutron spectrometer with lead and steel shells placed within the moderators of two of its 14 detectors to enhance response at high energies. Detector responses were calculated for neutrons and charged hadrons at energies up to 100 GeV using MCNPX. Neutron spectra were unfolded from the measured count rates using the new MAXED code. We have measured the cosmic-ray neutron spectrum (t...

  9. Cosmic ray physics with ARGO-YBJ

    CERN Document Server

    ,

    2016-01-01

    The ARGO--YBJ experiment has been in stable data taking for more than five years at the Yangbajing cosmic ray observatory (Tibet, P.R. China, 4300 m a.s.l.). The detector collected about $5\\times10^{11}$ events in a wide energy range from few TeVs up to the PeV region. In this work we summarize the latest results in cosmic ray physics particularly focusing on the cosmic ray energy spectrum. The results of the measurement of the all-particle and proton plus helium energy spectra in the energy region between $10^{12} - 10^{16}$ eV are discussed. A precise measurement of the cosmic ray energy spectrum and composition in this energy region allows a better understanding of the origin of the knee and provides a powerful cross-check among different experimental techniques.

  10. A Simplified Model for the Acceleration of Cosmic Ray Particles

    Science.gov (United States)

    Gron, Oyvind

    2010-01-01

    Two important questions concerning cosmic rays are: Why are electrons in the cosmic rays less efficiently accelerated than nuclei? How are particles accelerated to great energies in ultra-high energy cosmic rays? In order to answer these questions we construct a simple model of the acceleration of a charged particle in the cosmic ray. It is not…

  11. Monte Carlo transport simulation for a long counter neutron detector employed as a cosmic rays induced neutron monitor at ground level

    Energy Technology Data Exchange (ETDEWEB)

    Pazianotto, Mauricio Tizziani; Carlson, Brett Vern [Instituto Tecnologico de Aeronautica (ITA), Sao Jose dos Campos, SP (Brazil); Federico, Claudio Antonio; Goncalez, Odair Lelis [Centro Tecnico Aeroespacial (CTA), Sao Jose dos Campos, SP (Brazil). Instituto de Estudos Avancados

    2011-07-01

    Full text: Great effort is required to understand better the cosmic radiation (CR) dose received by sensitive equipment, on-board computers and aircraft crew members at Brazil airspace, because there is a large area of South America and Brazil subject to the South Atlantic Anomaly (SAA). High energy neutrons are produced by interactions between primary cosmic ray and atmospheric atoms, and also undergo moderation resulting in a wider spectrum of energy ranging from thermal energies (0:025eV ) to energies of several hundreds of MeV. Measurements of the cosmic radiation dose on-board aircrafts need to be followed with an integral flow monitor on the ground level in order to register CR intensity variations during the measurements. The Long Counter (LC) neutron detector was designed as a directional neutron flux meter standard because it presents fairly constant response for energy under 10MeV. However we would like to use it as a ground based neutron monitor for cosmic ray induced neutron spectrum (CRINS) that presents an isotropic fluency and a wider spectrum of energy. The LC was modeled and tested using a Monte Carlo transport simulation for irradiations with known neutron sources ({sup 241}Am-Be and {sup 251}Cf) as a benchmark. Using this geometric model its efficiency was calculated to CRINS isotropic flux, introducing high energy neutron interactions models. The objective of this work is to present the model for simulation of the isotropic neutron source employing the MCNPX code (Monte Carlo N-Particle eXtended) and then access the LC efficiency to compare it with experimental results for cosmic ray neutrons measures on ground level. (author)

  12. Longevity and Highest-Energy Cosmic Rays

    CERN Document Server

    Frampton, Paul H; Ng, Y J; Frampton, Paul H.; Keszthelyi, Bettina

    1999-01-01

    It is proposed that the highest energy $\\sim 10^{20}$eV cosmic ray primaries are protons, decay products of a long-lived progenitor which has propagated from typically $\\sim 100$Mpc. Such a scenario can occur in e.g. SU(15) grand unification and in some preon models, but is more generic; if true, these unusual cosmic rays provide a window into new physics.

  13. Cosmic ray test of INO RPC stack

    Energy Technology Data Exchange (ETDEWEB)

    Bhuyan, M. [Department of High Energy Physics, Tata Institute of Fundamental Research, Mumbai 400005 (India); Datar, V.M. [Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Kalmani, S.D.; Lahamge, S.M.; Mondal, N.K.; Nagaraj, P.; Pal, S.; Reddy, L.V.; Redij, A.; Samuel, D.; Saraf, M.N. [Department of High Energy Physics, Tata Institute of Fundamental Research, Mumbai 400005 (India); Satyanarayana, B., E-mail: bsn@tifr.res.in [Department of High Energy Physics, Tata Institute of Fundamental Research, Mumbai 400005 (India); Shinde, R.R.; Verma, P. [Department of High Energy Physics, Tata Institute of Fundamental Research, Mumbai 400005 (India)

    2012-01-01

    The India-based Neutrino Observatory (INO) collaboration is planning to build a 50 kt magnetised iron calorimeter (ICAL) detector using glass Resistive Plate Chambers (RPCs) as active detector elements. A stack of 12 such glass RPCs of 1 m Multiplication-Sign 1 m in area is tracking cosmic ray muons for over three years. In this paper, we will review the constructional aspects of the stack and discuss the performance of the RPCs using this cosmic ray data.

  14. Are there strangelets in cosmic rays?

    CERN Document Server

    Rybczynski, M; Wilk, G

    2004-01-01

    Assuming that cosmic rays entering the Earth's atmosphere contain a small admixture of nuggets of strange quark matter in form of strangelets one can explain a number of apparently "strange" effects observed in different cosmic rays experiments. We shall demonstrate here that the mass spectrum of such strangelets filles the "nuclear desert" gap existing between the heaviest elements observed in Universe and the next "nuclear-like objects" represented by neutron and strange stars.

  15. Recent developments in cosmic ray physics

    Energy Technology Data Exchange (ETDEWEB)

    Blasi, P. [INAF/Osservatorio Astrofisico di Arcetri, Largo E. Fermi, 5 50125 Firenze (Italy); Gran Sasso Science Institute (INFN), Viale F. Crispi 6, 60100 L' Aquila (Italy)

    2014-11-15

    The search for a theory of the origin of cosmic rays that may be considered as a standard, agreeable model is still ongoing. On one hand, much circumstantial evidence exists of the fact that supernovae in our Galaxy play a crucial role in producing the bulk of cosmic rays observed on Earth. On the other hand, important questions about their ability to accelerate particles up to the knee remain unanswered. The common interpretation of the knee as a feature coinciding with the maximum energy of the light component of cosmic rays and a transition to a gradually heavier mass composition is mainly based on KASCADE results. Some recent data appear to question this finding: YAC1 – Tibet Array and ARGO-YBJ find a flux reduction in the light component at ∼ 700 TeV, appreciably below the knee. Whether the maximum energy of light nuclei is as high as 3000 TeV or rather as low as a few hundred TeV has very important consequences on the supernova remnant paradigm for the origin of cosmic rays, as well on the crucial issue of the transition from Galactic to extragalactic cosmic rays. In such a complex phenomenological situation, it is important to have a clear picture of what is really known and what is not. Here I will discuss some solid and less solid aspects of the theory (or theories) for the origin of cosmic rays and the implications for future searches in this field.

  16. Spaced-based Cosmic Ray Astrophysics

    Science.gov (United States)

    Seo, Eun-Suk

    2016-03-01

    The bulk of cosmic ray data has been obtained with great success by balloon-borne instruments, particularly with NASA's long duration flights over Antarctica. More recently, PAMELA on a Russian Satellite and AMS-02 on the International Space Station (ISS) started providing exciting measurements of particles and anti-particles with unprecedented precision upto TeV energies. In order to address open questions in cosmic ray astrophysics, future missions require spaceflight exposures for rare species, such as isotopes, ultra-heavy elements, and high (the ``knee'' and above) energies. Isotopic composition measurements up to about 10 GeV/nucleon that are critical for understanding interstellar propagation and origin of the elements are still to be accomplished. The cosmic ray composition in the knee (PeV) region holds a key to understanding the origin of cosmic rays. Just last year, the JAXA-led CALET ISS mission, and the DAMPE Chinese Satellite were launched. NASA's ISS-CREAM completed its final verification at GSFC, and was delivered to KSC to await launch on SpaceX. In addition, a EUSO-like mission for ultrahigh energy cosmic rays and an HNX-like mission for ultraheavy nuclei could accomplish a vision for a cosmic ray observatory in space. Strong support of NASA's Explorer Program category of payloads would be needed for completion of these missions over the next decade.

  17. Reminiscences of cosmic ray research in Mexico

    Science.gov (United States)

    Pérez-Peraza, Jorge

    2009-11-01

    Cosmic ray research in Mexico dates from the early 1930s with the work of the pioneering physicist, Manuel Sandoval Vallarta and his students from Mexico. Several experiments of international significance were carried out during that period in Mexico: they dealt with the geomagnetic latitude effect, the north-south and west-east asymmetry of cosmic ray intensity, and the sign of the charge of cosmic rays. The international cosmic ray community has met twice in Mexico for the International Cosmic Ray Conferences (ICRC): the fourth was held in Guanajuato in 1955, and the 30th took place in Mérida, in 2007. In addition, an international meeting on the Pierre Auger Collaboration was held in Morelia in 1999, and the International Workshop on Observing UHE Cosmic Rays took place in Metepec in 2000. A wide range of research topics has been developed, from low-energy Solar Energetic Particles (SEP) to the UHE. Instrumentation has evolved since the early 1950s, from a Simpson type neutron monitor installed in Mexico City (2300 m asl) to a solar neutron telescope and an EAS Cherenkov array, (within the framework of the Auger International Collaboration), both at present operating on Mt. Sierra La Negra in the state of Puebla (4580 m asl). Research collaboration has been undertaken with many countries; in particular, the long-term collaboration with Russian scientists has been very fruitful.

  18. News from Cosmic Gamma-ray Line Observations

    CERN Document Server

    Diehl, Roland

    2016-01-01

    The measurement of gamma rays at MeV energies from cosmic radioactivities is one of the key tools for nuclear astrophysics, in its study of nuclear reactions and how they shape objects such as massive stars and supernova explosions. Additionally, the unique gamma-ray signature from the annihilation of positrons falls into this same astronomical window, and positrons are often produced from radioactive beta decays. Nuclear gamma-ray telescopes face instrumental challenges from penetrating gamma rays and cosmic-ray induced backgrounds. But the astrophysical benefits of such efforts are underlined by the discoveries of nuclear gamma~rays from the brightest of the expected sources. In recent years, both thermonuclear and core-collapse supernova radioactivity gamma~rays have been measured in spectral detail, and complement conventional supernova observations with measurements of origins in deep supernova interiors, from the decay of $^{56}$Ni, $^{56}$Co, and $^{44}$Ti. The diffuse afterglow in gamma rays of radioa...

  19. Cosmic ray effects in microcalorimeter arrays

    Energy Technology Data Exchange (ETDEWEB)

    Stahle, C.K. E-mail: cak@lheapop.gsfc.nasa.gov; Boyce, K.R.; Brown, G.V.; Cottam, J.; Figueroa-Feliciano, E.; Galeazzi, M.; Kelley, R.L.; McCammon, D.; Porter, F.S.; Szymkowiak, A.E.; Tillotson, W.A

    2004-03-11

    We have identified signals resulting from cosmic rays and environmental gamma rays depositing energy in the pixels and in the silicon frame of the Astro-E2/X-Ray Spectrometer microcalorimeter array. Coincidences between pixels and between the array and an anti-coincidence detector determined the nature of the events. Pulse shapes and amplitudes from the cosmic ray events helped refine the thermal model of the array chip. We discuss how future arrays can be optimized either for the greatest background rejection or for the highest source count rates.

  20. Development of the cosmic ray techniques

    Science.gov (United States)

    Rossi, B.

    1982-12-01

    It has been found that most advances of cosmic-ray physics have been directly related to the development of observational techniques. The history of observational techniques is discussed, taking into account ionization chambers, refinements applied to ionization chambers to make them suitable for an effective use in the study of cosmic radiation, the Wulf-type electrometer, the electrometer designed by Millikan and Neher, the Geiger-Mueller counter, the experiment of Bothe and Kolhoerster, the coincidence circuit, and a cosmic-ray 'telescope'. Attention is given to a magnetic lens for cosmic rays, a triangular arrangement of Geiger-Mueller counters used to demonstrate the production of a secondary radiation, a stereoscopic cloud-chamber photograph of showers, the cloud-chamber picture which provided the first evidence of the positive electron, and arrangements for studying photon components, mu-mesons, and air showers.

  1. Recent results form measurements of the energy spectrum of cosmic-ray induced neutrons aboard an ER-2 airplane and on the ground.

    Science.gov (United States)

    Goldhagen, P; Clem, J M; Wilson, J W

    2003-01-01

    Crews of future high-altitude commercial aircraft may be significantly exposed to atmospheric cosmic radiation from galactic cosmic rays (GCR). To help determine such exposures, the Atmospheric Ionizing Radiation Project, an international collaboration of 15 laboratories, made simultaneous radiation measurements with 14 instruments on a NASA ER-2 high-altitude aircraft. The primary instrument was a sensitive extended-energy multisphere neutron spectrometer, which was also used to make measurements on the ground. Its detector responses were calculated for neutrons and charged hadrons at energies up to 100 GeV using the radiation transport code MCNPX. We have now recalculated the detector responses including the effects of the airplane structure. We are also using new FLUKA calculations of GCR-induced hadron spectra in the atmosphere to correct for spectrometer counts produced by charged hadrons. Neutron spectra are unfolded from the corrected measured count rates using the MAXED code. Results for the measured cosmic-ray neutron spectrum (thermal to >10 GeV), total neutron fluence rate, and neutron dose equivalent and effective dose rates, and their dependence on altitude and geomagnetic cutoff generally agree well with results from recent calculations of GCR-induced neutron spectra.

  2. Spiral arms as cosmic ray source distributions

    Science.gov (United States)

    Werner, M.; Kissmann, R.; Strong, A. W.; Reimer, O.

    2015-04-01

    The Milky Way is a spiral galaxy with (or without) a bar-like central structure. There is evidence that the distribution of suspected cosmic ray sources, such as supernova remnants, are associated with the spiral arm structure of galaxies. It is yet not clearly understood what effect such a cosmic ray source distribution has on the particle transport in our Galaxy. We investigate and measure how the propagation of Galactic cosmic rays is affected by a cosmic ray source distribution associated with spiral arm structures. We use the PICARD code to perform high-resolution 3D simulations of electrons and protons in galactic propagation scenarios that include four-arm and two-arm logarithmic spiral cosmic ray source distributions with and without a central bar structure as well as the spiral arm configuration of the NE2001 model for the distribution of free electrons in the Milky Way. Results of these simulation are compared to an axisymmetric radial source distribution. Also, effects on the cosmic ray flux and spectra due to different positions of the Earth relative to the spiral structure are studied. We find that high energy electrons are strongly confined to their sources and the obtained spectra largely depend on the Earth's position relative to the spiral arms. Similar finding have been obtained for low energy protons and electrons albeit at smaller magnitude. We find that even fractional contributions of a spiral arm component to the total cosmic ray source distribution influences the spectra on the Earth. This is apparent when compared to an axisymmetric radial source distribution as well as with respect to the Earth's position relative to the spiral arm structure. We demonstrate that the presence of a Galactic bar manifests itself as an overall excess of low energy electrons at the Earth. Using a spiral arm geometry as a cosmic ray source distributions offers a genuine new quality of modeling and is used to explain features in cosmic ray spectra at the Earth

  3. Cosmic ray composition measurements and cosmic ray background free gamma-ray observations with Cherenkov telescopes

    CERN Document Server

    Neronov, A; Vovk, Ie; Mirzoyan, R

    2016-01-01

    Muon component of extensive air showers (EAS) initiated by cosmic ray particles carries information on the primary particle identity. We show that the muon content of EAS could be measured in a broad energy range from 10-100 TeV up to ultra-high-energy cosmic ray range using wide field-of-view imaging atmospheric Cherenkov telescopes observing strongly inclined or nearly horizontal EAS from the ground of from high altitude. Cherenkov emission from muons in such EAS forms a distinct component (halo or tail) of the EAS image in the telescope camera. We show that detection of the muon signal could be used to measure composition of the cosmic ray spectrum in the energy ranges of the knee, the ankle and of the Galactic-to-extragalactic transition. It could also be used to veto the cosmic ray background in gamma-ray observations. This technique provides a possibility for up to two orders of magnitude improvement of sensitivity for gamma-ray flux in the energy band above 10 PeV, compared to KASCADE-Grande, and an or...

  4. The HAWC Gamma-Ray Observatory: Observations of Cosmic Rays

    CERN Document Server

    Abeysekara, A U; Alvarez, C; Álvarez, J D; Arceo, R; Arteaga-Velázquez, J C; Solares, H A Ayala; Barber, A S; Baughman, B M; Bautista-Elivar, N; Belmont, E; BenZvi, S Y; Berley, D; Rosales, M Bonilla; Braun, J; Caballero-Lopez, R A; Caballero-Mora, K S; Carramiñana, A; Castillo, M; Cotti, U; Cotzomi, J; de la Fuente, E; De León, C; DeYoung, T; Hernandez, R Diaz; Díaz-Vélez, J C; Dingus, B L; DuVernois, M A; Ellsworth, R W; Fernandez, A; Fiorino, D W; Fraija, N; Galindo, A; Garfias, F; González, L X; González, M M; Goodman, J A; Grabski, V; Gussert, M; Hampel-Arias, Z; Hui, C M; Hüntemeyer, P; Imran, A; Iriarte, A; Karn, P; Kieda, D; Kunde, G J; Lara, A; Lauer, R J; Lee, W H; Lennarz, D; Vargas, H León; Linares, E C; Linnemann, J T; Longo, M; Luna-GarcIa, R; Marinelli, A; Martinez, H; Martinez, O; Martínez-Castro, J; Matthews, J A J; Miranda-Romagnoli, P; Moreno, E; Mostafá, M; Nava, J; Nellen, L; Newbold, M; Noriega-Papaqui, R; Oceguera-Becerra, T; Patricelli, B; Pelayo, R; Pérez-Pérez, E G; Pretz, J; Rivière, C; Rosa-González, D; Salazar, H; Salesa, F; Sanchez, F E; Sandoval, A; Santos, E; Schneider, M; Silich, S; Sinnis, G; Smith, A J; Sparks, K; Springer, R W; Taboada, I; Toale, P A; Tollefson, K; Torres, I; Ukwatta, T N; Villaseñor, L; Weisgarber, T; Westerhoff, S; Wisher, I G; Wood, J; Yodh, G B; Younk, P W; Zaborov, D; Zepeda, A; Zhou, H

    2013-01-01

    We describe measurements of GeV and TeV cosmic rays with the High-Altitude Water Cherenkov Gamma-Ray Observatory, or HAWC. The measurements include the observation of the shadow of the moon; the observation of small-scale and large-scale angular clustering of the TeV cosmic rays; the prospects for measurement of transient solar events with HAWC; and the observation of Forbush decreases with the HAWC engineering array and HAWC-30.

  5. Jupiter as a Giant Cosmic Ray Detector

    CERN Document Server

    Rimmer, Paul B; Helling, Christiane

    2014-01-01

    We explore the feasibility of using the atmosphere of Jupiter to detect Ultra-High-Energy Cosmic Rays (UHECR's). The large surface area of Jupiter allows us to probe cosmic rays of higher energies than previously accessible. Cosmic ray extensive air showers in Jupiter's atmosphere could in principle be detected by the Large Area Telescope (LAT) on the Fermi observatory. In order to be observed, these air showers would need to be oriented toward the Earth, and would need to occur sufficiently high in the atmosphere that the gamma rays can penetrate. We demonstrate that, under these assumptions, Jupiter provides an effective cosmic ray "detector" area of $3.3 \\times 10^7$ km$^2$. We predict that Fermi-LAT should be able to detect events of energy $>10^{21}$ eV with fluence $10^{-7}$ erg cm$^{-2}$ at a rate of about one per month. The observed number of air showers may provide an indirect measure of the flux of cosmic rays $\\gtrsim 10^{20}$ eV. Extensive air showers also produce a synchrotron signature that may ...

  6. Stopping Cooling Flows with Cosmic Ray Feedback

    CERN Document Server

    Mathews, William G

    2009-01-01

    Multi-Gyr two-dimensional calculations describe the gasdynamical evolution of hot gas in the Virgo cluster resulting from intermittent cavities formed with cosmic rays. Without cosmic rays, the gas evolves into a cooling flow, depositing about 85 solar masses per year of cold gas in the cluster core -- such uninhibited cooling conflicts with X-ray spectra and many other observations. When cosmic rays are produced or deposited 10 kpc from the cluster center in bursts of about 10^{59} ergs lasting 20 Myrs and spaced at intervals of 200 Myrs, the central cooling rate is greatly reduced to 0.1 - 1 solar masses per year, consistent with observations. After cosmic rays diffuse through the cavity walls, the ambient gas density is reduced and is buoyantly transported 30-70 kpc out into the cluster. Cosmic rays do not directly heat the gas and the modest shock heating around young cavities is offset by global cooling as the cluster gas expands. After several Gyrs the hot gas density and temperature profiles remain sim...

  7. Cosmic-Ray Observations with HAWC30

    Science.gov (United States)

    Fiorino, Daniel

    2013-04-01

    The High-Altitude Water Cherenkov (HAWC) Observatory is a TeV gamma-ray and cosmic-ray detector currently under construction at an altitude of 4100 meters on the slope of Volc'an Sierra Negra near Puebla, Mexico. HAWC is an extensive air-shower array comprising 300 optically-isolated water Cherenkov detectors. Each detector contains 200,000 liters of filtered water and four upward-facing photomultiplier tubes. Since September 2012, 30 water Cherenkov detectors have been instrumented and operated in data acquisition. With 10 percent of the detector complete and six months of operation, the event statistics are already sufficient to perform detailed studies of cosmic rays observed at the site. We will report on cosmic-ray observations with HAWC30, in particular the detection and study of the shadow of the moon. From these observations, we infer the pointing accuracy of the detector and our angular resolution of the detector reconstruction.

  8. Molecular Clouds as Cosmic-Ray Barometers

    CERN Document Server

    Casanova, S; Fukui, Y; Gabici, S; Jones, D I; Kawamura, A; Onishi, T; Rowell, G; Torii, K; Yamamoto, H

    2009-01-01

    It is generally assumed that the flux of cosmic-rays observed at the top of the Earth's atmosphere is representative of the flux in the Galaxy at large. The advent of high sensitivity, high resolution gamma-ray detectors, together with a knowledge of the distribution of the atomic hydrogen and especially of the molecular hydrogen in the Galaxy on sub-degree scales, as provided by the NANTEN survey, creates a unique opportunity to explore the flux of cosmic rays in the Galaxy. We present a methodology which aims to provide a test bed for current and future gamma-ray observatories to explore the cosmic ray flux at various positions in our Galaxy. In particular, for a distribution of molecular clouds and local cosmic ray density as measured at the Earth, we estimate the expected GeV to TeV gamma-ray signal, which can then be compared with observations. An observed gamma-ray flux less than predicted would imply a CR density in specific regions of the Galaxy less than that observed at Earth, and vice versa. The me...

  9. Tracks of cosmic rays in plastics.

    Science.gov (United States)

    Fleischer, R L; Price, P B; Walker, R M; Filz, R C; Fukui, K; Friedlander, M W; Holeman, E; Rajan, R S; Tamhane, A S

    1967-01-13

    Cosmic ray nuclei have been observed with the use of plastic trackdetecting solids in satellites and high-altitude balloon flights. Nuclear emulsions in the stacks of plastic sheets allowed the positive identification of cosmic raynuclei as light as nitrogen. The most striking new information was the failure to observe relativistic iron nuclei, a result which has led to an advance in the understanding of track registration criteria.

  10. Polycyclic aromatic hydrocarbon processing by cosmic rays

    CERN Document Server

    Micelotta, E R; Tielens, A G G M

    2010-01-01

    Context: Cosmic rays are present in almost all phases of the ISM. PAHs and cosmic rays represent an abundant and ubiquitous component of the interstellar medium. However, the interaction between them has never before been fully investigated. Aims: To study the effects of cosmic ray ion (H, He, CNO and Fe-Co-Ni) and electron bombardment of PAHs in galactic and extragalactic environments. Methods: We calculate the nuclear and electronic interactions for collisions between PAHs and cosmic ray ions and electrons with energies between 5 MeV/nucleon and 10 GeV, above the threshold for carbon atom loss, in normal galaxies, starburst galaxies and cooling flow galaxy clusters. Results: The timescale for PAH destruction by cosmic ray ions depends on the electronic excitation energy Eo and on the amount of energy available for dissociation. Small PAHs are destroyed faster, with He and the CNO group being the more effective projectiles. For electron collisions, the lifetime is independent of the PAH size and varies with ...

  11. LHCf sheds new light on cosmic rays

    CERN Multimedia

    Anaïs Schaeffer

    2011-01-01

    The energy spectrum of the single photon obtained using data from the LHCf experiment has turned out to be very different from that predicted by the theoretical models used until now to describe the interactions between very high-energy cosmic rays and the earth's atmosphere. The consequences of this discrepancy for cosmic ray studies could be significant.   Artistic impression of cosmic rays entering Earth's atmosphere. (Credit: Asimmetrie/Infn). It took physicists by surprise when analysis of the data collected by the two LHCf calorimeters in 2010 showed that high-energy cosmic rays don't interact with the atmosphere in the manner predicted by theory. The LHCf detectors, set up 140 metres either side of the ATLAS interaction point, are dedicated to the study of the secondary particles emitted at very small angles during proton-proton collisions in the LHC, with energies comparable to cosmic rays entering the earth's atmosphere at 2.5x1016 eV. The aim of the experiment is to r...

  12. High Energy Cosmic Electrons: Messengers from Nearby Cosmic Ray Sources or Dark Matter?

    Science.gov (United States)

    Moiseev, Alexander

    2011-01-01

    This slide presentation reviews the recent discoveries by the Large Area Telescope (LAT) and the Gamma-ray Burst Monitor (GBM) on board the Fermi Gamma-Ray Telescope in reference to high energy cosmic electrons, and whether their source is cosmic rays or dark matter. Specific interest is devoted to Cosmic Ray electrons anisotropy,

  13. One century of cosmic rays – A particle physicist's view

    Directory of Open Access Journals (Sweden)

    Sutton Christine

    2015-01-01

    Full Text Available Experiments on cosmic rays and the elementary particles share a common history that dates back to the 19th century. Following the discovery of radioactivity in the 1890s, the paths of the two fields intertwined, especially during the decades after the discovery of cosmic rays. Experiments demonstrated that the primary cosmic rays are positively charged particles, while other studies of cosmic rays revealed various new sub-atomic particles, including the first antiparticle. Techniques developed in common led to the birth of neutrino astronomy in 1987 and the first observation of a cosmic γ-ray source by a ground-based cosmic-ray telescope in 1989.

  14. He-3 in galactic cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Mewaldt, R.A.

    1986-12-01

    Cosmic-ray He-3/He-4 observations, including a new measurement around 65 MeV per nucleon from ISEE-3, are compared with interstellar propagation and solar modulation calculations in an effort to understand the origin of cosmic-ray He nuclei. A survey of spacecraft and balloon observations of the He-3/He-4 ratio shows improved consistency among measurements in the 50-300 MeV per nucleon energy range when a previously neglected contribution from atmospheric secondary He-3 is taken into account. These low-energy observations imply a mean escape length of 6-8 g/sq cm in the standard leaky box model for cosmic-ray propagation in the Galaxy, a value consistent with that derived from studies of heavier nuclei. No evidence is found for an excess of low-energy He-3 such as that reported at high energies. 42 references.

  15. Cosmic ray antiprotons at high energies

    Science.gov (United States)

    Winkler, Martin Wolfgang

    2017-02-01

    Cosmic ray antiprotons provide a powerful tool to probe dark matter annihilations in our galaxy. The sensitivity of this important channel is, however, diluted by sizable uncertainties in the secondary antiproton background. In this work, we improve the calculation of secondary antiproton production with a particular focus on the high energy regime. We employ the most recent collider data and identify a substantial increase of antiproton cross sections with energy. This increase is driven by the violation of Feynman scaling as well as by an enhanced strange hyperon production. The updated antiproton production cross sections are made publicly available for independent use in cosmic ray studies. In addition, we provide the correlation matrix of cross section uncertainties for the AMS-02 experiment. At high energies, the new cross sections improve the compatibility of the AMS-02 data with a pure secondary origin of antiprotons in cosmic rays.

  16. High Energy Cosmic Rays From Supernovae

    CERN Document Server

    Morlino, Giovanni

    2016-01-01

    Cosmic rays are charged relativistic particles that reach the Earth with extremely high energies, providing striking evidence of the existence of effective accelerators in the Universe. Below an energy around $\\sim 10^{17}$ eV cosmic rays are believed to be produced in the Milky Way while above that energy their origin is probably extragalactic. In the early '30s supernovae were already identified as possible sources for the Galactic component of cosmic rays. After the '70s this idea has gained more and more credibility thanks to the the development of the diffusive shock acceleration theory, which provides a robust theoretical framework for particle energization in astrophysical environments. Afterwards, mostly in recent years, much observational evidence has been gathered in support of this framework, converting a speculative idea in a real paradigm. In this Chapter the basic pillars of this paradigm will be illustrated. This includes the acceleration mechanism, the non linear effects produced by accelerate...

  17. Cosmic-ray diffusion in magnetized turbulence

    CERN Document Server

    Tautz, R C

    2015-01-01

    The problem of cosmic-ray scattering in the turbulent electromagnetic fields of the interstellar medium and the solar wind is of great importance due to the variety of applications of the resulting diffusion coefficients. Examples are diffusive shock acceleration, cosmic-ray observations, and, in the solar system, the propagation of coronal mass ejections. In recent years, it was found that the simple diffusive motion that had been assumed for decades is often in disagreement both with numerical and observational results. Here, an overview is given of the interaction processes of cosmic rays and turbulent electromagnetic fields. First, the formation of turbulent fields due to plasma instabilities is treated, where especially the non-linear behavior of the resulting unstable wave modes is discussed. Second, the analytical and the numerical side of high-energy particle propagation will be reviewed by presenting non-linear analytical theories and Monte-Carlo simulations. For the example of the solar wind, the im...

  18. Origin of the Cosmic Ray Spectral Hardening

    CERN Document Server

    Tomassetti, N

    2012-01-01

    Recent data from ATIC, CREAM and PAMELA indicate that the cosmic ray energy spectra of protons and nuclei exhibit a remarkable hardening at energies above 100 GeV per nucleon. We propose that the hardening is an interstellar propagation effect that originates from a spatial change of the cosmic ray transport properties in different regions of the Galaxy. The key hypothesis is that the diffusion coefficient is not separable into energy and space variables as usually assumed. Under this scenario, we can reproduce well the observational data. Our model has several implications for the cosmic ray acceleration/propagation physics and can be tested by ongoing experiments such as AMS or Fermi/LAT.

  19. Low cloud properties influenced by cosmic rays

    DEFF Research Database (Denmark)

    Marsh, Nigel; Svensmark, Henrik

    2000-01-01

    The influence of solar variability on climate is currently uncertain. Recent observations have indicated a possible mechanism via the influence of solar modulated cosmic rays on global cloud cover. Surprisingly the influence of solar variability is strongest in low clouds (less than or equal to3 ......), which points to a microphysical mechanism involving aerosol formation that is enhanced by ionization due to cosmic rays. If confirmed it suggests that the average state of the heliosphere is important for climate on Earth.......The influence of solar variability on climate is currently uncertain. Recent observations have indicated a possible mechanism via the influence of solar modulated cosmic rays on global cloud cover. Surprisingly the influence of solar variability is strongest in low clouds (less than or equal to3 km...

  20. Thirty-Year Periodicity of Cosmic Rays

    Directory of Open Access Journals (Sweden)

    Jorge Pérez-Peraza

    2012-01-01

    Full Text Available Cosmogenic isotopes have frequently been employed as proxies of ancient cosmic ray fluxes. On the basis of periodicities of the 10Be time series (using data from both the South and North Poles and the 14C time series (with data from Intercal-98, we offer evidence of the existence of cosmic ray fluctuations with a periodicity of around 30 years. Results were obtained by using the wavelet transformation spectral technique, signal reconstruction by autoregressive spectral analysis (ARMA, and the Lomb-Scargle periodogram method. This 30-year periodicity seems to be significant in nature because several solar and climatic indexes exhibit the same modulation, which may indicate that the 30-year frequency of cosmic rays is probably a modulator agent for terrestrial phenomena, reflecting the control source, namely, solar activity.

  1. Does electromagnetic radiation accelerate galactic cosmic rays

    Science.gov (United States)

    Eichler, D.

    1977-01-01

    The 'reactor' theories of Tsytovich and collaborators (1973) of cosmic-ray acceleration by electromagnetic radiation are examined in the context of galactic cosmic rays. It is shown that any isotropic synchrotron or Compton reactors with reasonable astrophysical parameters can yield particles with a maximum relativistic factor of only about 10,000. If they are to produce particles with higher relativistic factors, the losses due to inverse Compton scattering of the electromagnetic radiation in them outweigh the acceleration, and this violates the assumptions of the theory. This is a critical restriction in the context of galactic cosmic rays, which have a power-law spectrum extending up to a relativistic factor of 1 million.

  2. A mechanism for inducing climatic variations through ozone destruction: Screening of galactic cosmic rays by solar and terrestrial magnetic fields

    Science.gov (United States)

    Chamberlain, J. W.

    1976-01-01

    A perturbation analysis, allowing for temperature and opacity feedbacks, is developed to calculate depletions in the O3 abundance and reductions of stratospheric solar heating that result from increases in NOx concentration. A pair of perturbation coefficients give the reduction in O3 and temperature through the stratosphere for a specified NOx increase. This type of analysis illustrates the tendency for various levels to self-heal when a perturbation occurs. Physical arguments indicate that the expected sign of the climatic effect is correct, with colder surface temperatures produced by reduced magnetic shielding. In addition, four qualitative reasons are suggested for thinking that significant ozone reductions by cosmic ray influxes will lead to an increased terrestrial albedo from stratospheric condensation. In this view, long-term (approximately 10,000 years) climatic changes have resulted from secular geomagnetic variations while shorter (approximately 100 years) excursions are related to changes in solar activity.

  3. On the possibility of cosmic ray-induced ionizing radiation-powered life in subsurface environments in the Universe

    CERN Document Server

    Atri, Dimitra

    2015-01-01

    Photosynthesis is a highly efficient mechanism developed by terrestrial life to utilize the energy from photons of solar origin for biological use. Subsurface regions are isolated from the photosphere, and consequently are incapable of utilizing this energy. This opens up the opportunity for life to cultivate alternative mechanisms in order to take advantage of other available energy sources. Studies have shown that in subsurface environments, life can use energy generated from geochemical and geothermal processes to sustain a minimal metabolism. Another mechanism is radiolysis, in which particles emitted by radioactive substances are indirectly utilized for metabolism. One such example is the bacterium fueled by radiation, found 2 miles deep in a South African mine, which consumes hydrogen formed from particles emitted by radioactive U, Th and K present in rock. An additional source of radiation in the subsurface environments is secondary particles, such as muons generated by Galactic Cosmic Rays (GCRs). It ...

  4. Solar induced long- and short-term variations of the cosmic ray intensity in the past, and predictions and opportunities for the future

    Science.gov (United States)

    McCracken, K. G.; McDonald, F. B.; Beer, J.

    2009-12-01

    The cosmogenic radionuclide data from the past 10,000 years, and the instrumental cosmic ray data since 1936 provide detailed information on the possible consequences of the present long and deep solar minimum. Furthermore, the cosmic ray transport equation has been used to estimate the strength of the interplanetary magnetic field (IMF) throughout the past 10,000 years. This paper presents a series of figures that document the behavior of both the cosmic radiation and the IMF at Earth in the past. In particular, the 11-year cycles in both quantities for the past 600 years are displayed; and estimates given of the cosmic ray spectrum at Earth for situations that history tells us may occur in the near future. Over the longer term, a minimum of the Hallstatt cycle (2200 yr periodicity) of solar activity occurred ~500 years ago and the Sun is now on a steadily rising plane of activity. The historic record shows that the cosmic ray intensity has decreased extremely rapidly after earlier prolonged deep minima and this suggests rapid and large changes in the heliospheric conditions that we may see replicated. The paper will also display data from the deep, isolated solar minimum of 1956 that exhibited unusual low energy cosmic ray fluxes, and a highly anomalous cosmic ray gradient in the inner heliosphere. Paleo-cosmic ray evidence will also be displayed of an episode of intense solar energetic particle (SEP) events in the interval of reduced solar activity, 1892-1900, that may possibly be repeated. If the present long, deep solar minimum is a precursor to a “Grand Minimum” such as the Dalton minimum, it will provide a much improved insight into the spectrum of the cosmic radiation in interstellar space, and to the cosmic ray modulation process in the heliosphere. With this in mind, the paper suggests key measurements, and speculates on experimental conditions that may be markedly different from those encountered in the instrumental era.

  5. The Cosmic-Ray Dominated Region of Protoplanetary Disks

    NARCIS (Netherlands)

    Molano, G. Chaparro; Kamp, I.; Torres, Diego F.; Reimer, Olaf

    2013-01-01

    - We investigate the chemical evolution in the midplane of protoplanetary disks in the region 1 AU ≤ r ≤ 10 AU, focusing on cosmic ray induced processes. These processes drive the chemical pathways of formation of gas phase molecules which later can be adsorbed onto the surface of grains

  6. The Cosmic-Ray Dominated Region of Protoplanetary Disks

    NARCIS (Netherlands)

    Molano, G. Chaparro; Kamp, I.

    2013-01-01

    We investigate the chemical evolution in the midplane of protoplanetary disks in the region 1 AU ≤ r ≤ 10 AU, focusing on cosmic ray induced processes. These processes drive the chemical pathways of formation of gas phase molecules which later can be adsorbed onto the surface of grains. We improve o

  7. Cosmic Rays: studies and measurements before 1912

    Energy Technology Data Exchange (ETDEWEB)

    De Angelis, Alessandro [INFN and Università di Udine, Via delle Scienze 206, I-33100 Udine (Italy); LIP/IST Lisboa (Portugal)

    2013-06-15

    The discovery of cosmic rays, a milestone in science, was based on the work by scientists in Europe and the New World and took place during a period characterised by nationalism and lack of communication. Many scientists that took part in this research a century ago were intrigued by the penetrating radiation and tried to understand the origin of it. Several important contributions to the discovery of the origin of cosmic rays have been forgotten; historical, political and personal facts might have contributed to their substantial disappearance from the history of science.

  8. Cosmic rays from trans-relativistic supernovae

    CERN Document Server

    Budnik, R; MacFadyen, A; Waxman, E

    2007-01-01

    We derive constraints which must be satisfied by the sources of ~10^{15} to ~10^{18} eV cosmic rays, under the assumption that the sources are Galactic. We show that while these constraints are not satisfied by ordinary supernovae, which are believed to be the sources of 10^{-2}, of the explosion energy in mildly relativistic, \\gamma\\beta>1, ejecta. Galactic TRSNe may therefore be the sources of cosmic rays with energies up to ~10^{18} eV.

  9. Constraints on high energy interaction models from LHC and cosmic ray data

    Directory of Open Access Journals (Sweden)

    Ostapchenko Sergey

    2016-01-01

    Full Text Available Predictions of popular cosmic ray interaction models for some basic characteristics of cosmic ray-induced extensive air showers are analyzed in view of experimental data on proton-proton collisions, obtained at the Large Hadron Collider. The differences between the results are traced down to different approaches for the treatment of hadronic interactions, implemented in those models. Potential measurements by LHC and cosmic ray experiments, which could be able to discriminate between the alternative approaches, are proposed.

  10. Constraints on high energy interaction models from LHC and cosmic ray data

    Science.gov (United States)

    Ostapchenko, Sergey

    2016-10-01

    Predictions of popular cosmic ray interaction models for some basic characteristics of cosmic ray-induced extensive air showers are analyzed in view of experimental data on proton-proton collisions, obtained at the Large Hadron Collider. The differences between the results are traced down to different approaches for the treatment of hadronic interactions, implemented in those models. Potential measurements by LHC and cosmic ray experiments, which could be able to discriminate between the alternative approaches, are proposed.

  11. The energy spectrum of cosmic-ray induced neutrons measured on an airplane over a wide range of altitude and latitude.

    Science.gov (United States)

    Goldhagen, P; Clem, J M; Wilson, J W

    2004-01-01

    Crews of high-altitude aircraft are exposed to radiation from galactic cosmic rays (GCRs). To help determine such exposures, the Atmospheric Ionizing Radiation Project, an international collaboration of 15 laboratories, made simultaneous radiation measurements with 14 instruments on a NASA ER-2 high-altitude airplane. The primary instrument was a sensitive extended-energy multisphere neutron spectrometer. Its detector responses were calculated for energies up to 100 GeV using the radiation transport code MCNPX 2.5.d with improved nuclear models and including the effects of the airplane structure. New calculations of GCR-induced particle spectra in the atmosphere were used to correct for spectrometer counts produced by protons, pions and light nuclear ions. Neutron spectra were unfolded from the corrected measured count rates using the deconvolution code MAXED 3.1. The results for the measured cosmic-ray neutron spectrum (thermal to >10 GeV), total neutron fluence rate, and neutron dose equivalent and effective dose rates, and their dependence on altitude and geomagnetic cut-off agree well with results from recent calculations of GCR-induced neutron spectra.

  12. PRECISE COSMIC RAYS MEASUREMENTS WITH PAMELA

    Directory of Open Access Journals (Sweden)

    A. Bruno

    2013-12-01

    Full Text Available The PAMELA experiment was launched on board the Resurs-DK1 satellite on June 15th 2006. The apparatus was designed to conduct precision studies of charged cosmic radiation over a wide energy range, from tens of MeV up to several hundred GeV, with unprecedented statistics. In five years of continuous data taking in space, PAMELA accurately measured the energy spectra of cosmic ray antiprotons and positrons, as well as protons, electrons and light nuclei, sometimes providing data in unexplored energetic regions. These important results have shed new light in several astrophysical fields like: an indirect search for Dark Matter, a search for cosmological antimatter (anti-Helium, and the validation of acceleration, transport and secondary production models of cosmic rays in the Galaxy. Some of the most important items of Solar and Magnetospheric physics were also investigated. Here we present the most recent results obtained by the PAMELA experiment.

  13. Propagation of Cosmic Rays: Nuclear Physics in Cosmic-ray Studies

    Science.gov (United States)

    Moskalenko, Igor V.; Strong, Andrew W.; Mashnik, Stepan G.

    2004-01-01

    The nuclei fraction in cosmic rays (CR) far exceeds the fraction of other CR species, such as antiprotons, electrons, and positrons. Thus the majority of information obtained from CR studies is based on interpretation of isotopic abundances using CR propagation models where the nuclear data and isotopic production cross sections in p- and alpha-induced reactions are the key elements. This paper presents an introduction to the astrophysics of CR and diffuse gamma-rays and dimsses some of the puzzles that have emerged recently due to more precise data and improved propagation models. Merging with cosmology and particle physics, astrophysics of CR has become a very dynamic field with a large potential of breakthrough and discoveries in the near fume. Exploiting the data collected by the CR experiments to the fullest requires accurate nuclear cross sections.

  14. A database of charged cosmic rays

    Science.gov (United States)

    Maurin, D.; Melot, F.; Taillet, R.

    2014-09-01

    Aims: This paper gives a description of a new online database and associated online tools (data selection, data export, plots, etc.) for charged cosmic-ray measurements. The experimental setups (type, flight dates, techniques) from which the data originate are included in the database, along with the references to all relevant publications. Methods: The database relies on the MySQL5 engine. The web pages and queries are based on PHP, AJAX and the jquery, jquery.cluetip, jquery-ui, and table-sorter third-party libraries. Results: In this first release, we restrict ourselves to Galactic cosmic rays with Z ≤ 30 and a kinetic energy per nucleon up to a few tens of TeV/n. This corresponds to more than 200 different sub-experiments (i.e., different experiments, or data from the same experiment flying at different times) in as many publications. Conclusions: We set up a cosmic-ray database (CRDB) and provide tools to sort and visualise the data. New data can be submitted, providing the community with a collaborative tool to archive past and future cosmic-ray measurements. http://lpsc.in2p3.fr/crdb; Contact: crdatabase@lpsc.in2p3.fr

  15. Cosmic Rays Accelerated at Cosmological Shock Waves

    Indian Academy of Sciences (India)

    Renyi Ma; Dongsu Ryu; Hyesung Kang

    2011-03-01

    Based on hydrodynamic numerical simulations and diffusive shock acceleration model, we calculated the ratio of cosmic ray (CR) to thermal energy. We found that the CR fraction can be less than ∼ 0.1 in the intracluster medium, while it would be of order unity in the warm-hot intergalactic medium.

  16. Cosmic Ray Origin, Acceleration and Propagation

    CERN Document Server

    Baring, M G

    1999-01-01

    This paper summarizes highlights of the OG3.1, 3.2 and 3.3 sessions of the XXVIth International Cosmic Ray Conference in Salt Lake City, which were devoted to issues of origin/composition, acceleration and propagation.

  17. Cosmic ray muons in the deep ocean

    Science.gov (United States)

    Dumand Collaboration; Babson, J.; Barish, B.; Becker-Szenzy, R.; Bradner, H.; Cady, R.; Clem, J.; Dye, S.; Gaidos, J.; Gorham, P.; Grieder, P.; Kitamura, T.; Kropp, W.; Learned, J.; Matsuno, S.; March, R.; Mitsui, K.; O'Conner, D.; Ohashi, Y.; Okada, A.; Peterson, V.; Price, L.; Reines, F.; Roberts, A.; Roos, C.; Sobel, H.; Stenger, V.; Webster, M.; Wilson, C.

    1990-03-01

    A measurement of cosmic ray muon flux was obtained at ocean depths ranging from 2 km to 4 km at 500 m intervals off the West Coast of the Big Island of Hawaii. A brief description of the experiment and the results will be presented in this paper.

  18. Cosmic ray muons in the deep ocean

    Energy Technology Data Exchange (ETDEWEB)

    Babson, J.; Becker-Szenzy, R.; Cady, R.; Dye, S.; Gorham, P.; Learned, J.; Matsuno, S.; O' Conner, D.; Peterson, V.; Roberts, A.; Stenger, V. (Hawaii Univ., Honolulu (USA)); Barish, B. (California Inst. of Tech., Pasadena (USA)); Bradner, H. (California Univ., San Diego, La Jolla (USA)); Clem, J.; Roos, C.; Webster, M. (Vanderbilt Univ., Nashville, TN (USA)); Gaidos, J.; Wilson, C. (Purdue Univ., Lafayette, IN (USA)); Grieder, P. (Bern Univ. (Switzerland)); Kitamura, T.; Mitsui, K.; Ohashi, Y.; Okada, A. (Tokyo Univ. (Japan). Inst. for Cosmic Ray Research); Kropp, W.; Price, L.; Reines, F.; Sobel, H. (California Univ., Irvine (USA)); March, R. (Wisconsin Univ., Madison (USA)); DUMAND Collaboration

    1990-03-01

    A measurement of cosmic ray muon flux was obtained at ocean depths ranging from 2 km to 4 km at 500 m intervals off the West Coast of the Big Island of Hawaii. A brief description of the experiment and the results will be presented in this paper. (orig.).

  19. Recent developments in cosmic ray physics

    CERN Document Server

    Blasi, P

    2014-01-01

    The search for a theory of the origin of cosmic rays that may be considered as a standard, agreeable model is still ongoing. On one hand, much circumstantial evidence exists of the fact that supernovae in our Galaxy play a crucial role in producing the bulk of cosmic rays observed on Earth. On the other hand, important questions about their ability to accelerate particles up to the knee remain unanswered. The common interpretation of the knee as a feature coinciding with the maximum energy of the light component of cosmic rays and a transition to a gradually heavier mass composition is mainly based on KASCADE results. Some recent data appear to question this finding: YAC1 - Tibet Array and ARGO-YBJ find a flux reduction in the light component at $\\sim 700$ TeV, appreciably below the knee. Whether the maximum energy of light nuclei is as high as $3000$ TeV or rather as low as a few hundred TeV has very important consequences on the supernova remnant paradigm for the origin of cosmic rays, as well on the crucia...

  20. Spiral Arms as Cosmic Ray Source Distributions

    CERN Document Server

    Werner, M; Strong, A W; Reimer, O

    2014-01-01

    There is evidence that the distribution of suspected cosmic ray sources are associated with the spiral arm structure of galaxies. It is yet not clearly understood what effect such a cosmic ray source distribution has on the particle transport in our Galaxy. We use the PICARD code to perform high-resolution 3D simulations of electrons and protons in galactic propagation scenarios that include four-arm and two-arm logarithmic spiral cosmic ray source distributions with and without a central bar structure as well as the spiral arm configuration of the NE2001 model for the distribution of free electrons in the Milky Way. Results of these simulation are compared to an axisymmetric radial source distribution. Also, effects on the cosmic ray flux and spectra due to different positions of the Earth relative to the spiral structure are studied. We find that high energy electrons are strongly confined to their sources and the obtained spectra largely depend on the Earth's position relative to the spiral arms. Similar f...

  1. Extensive Air Showers and Cosmic Ray Physics above 1017 eV

    Science.gov (United States)

    Bertaina, Mario

    2016-07-01

    Cosmic Rays above 1017 eV allow studying hadronic interactions at energies that can not be attained at accelerators yet. At the same time hadronic interaction models have to be applied to the cosmic-ray induced air-shower cascades in atmosphere to infer the nature of cosmic rays. The reliability of air-shower simulations has become the source of one of the largest systematic uncertainty in the interpretation of cosmic-ray data due to the uncertainties in modeling the hadronic interaction driving the air-shower development. This paper summarises in the first part the recent results on the cosmic ray energy spectrum, composition and anisotropy from the knee region to the GZK cutoff [1, 2] of the spectrum by means of ground-based experiments. Most of the information reported in this contribution is taken from [3-5]. Aspects interconnecting cosmic ray and particle physics are reviewed in the second part of the paper.

  2. A Tale of cosmic rays narrated in γ rays by Fermi

    Energy Technology Data Exchange (ETDEWEB)

    Tibaldo, Luigi, E-mail: ltibaldo@slac.stanford.edu [Kavli Institute for Particle Astrophysics and Cosmology, SLAC National Accelerator Laboratory, Menlo Park (United States)

    2014-07-01

    Because cosmic rays are charged particles scrambled by magnetic fields, combining direct measurements with other observations is crucial to understanding their origin and propagation. As energetic particles traverse matter and electromagnetic fields, they leave marks in the form of neutral interaction products. Among those, γ rays trace interactions of nuclei that inelastically collide with interstellar gas, as well as of leptons that undergo Bremsstrahlung and inverse-Compton scattering. Data collected by the Fermi large area telescope (LAT) are therefore telling the story of cosmic rays along their journey from sources through their home galaxies. Supernova remnants emerge as a notable γ -ray source population, and older remnants interacting with interstellar matter finally show strong evidence of the presence of accelerated nuclei. Yet the maximum energy attained by shock accelerators is poorly constrained by observations. Cygnus X, a massive star-forming region established by the LAT as housing cosmic-ray sources, provides a test case to study the impact of wind-driven turbulence on the early propagation. Interstellar emission resulting from the large-scale propagation of cosmic rays in the Milky Way is revealed in unprecedented detail that challenges some of the simple assumptions used for the modeling. Moreover, the cosmic-ray induced γ -ray luminosities of galaxies-scale quasi-linearly with their massive-star formation rates: the overall normalization of that relation below the calorimetric limit suggests that for most systems, a substantial fraction of energy in cosmic rays escapes into the intergalactic medium. The nuclear production models and the distribution of target gas and radiation fields, not determined precisely enough yet, are key to exploiting the full potential of γ - ray data. Nevertheless, data being collected by Fermi and complementary multiwavelength/multi messenger observations are bringing ever closer to solving the cosmic-ray mystery

  3. Isotopic Composition of Cosmic Rays:. Results from the Cosmic Ray Isotope Spectrometer on the Ace Spacecraft

    Science.gov (United States)

    Israel, M. H.

    Over the past seven years the Cosmic Ray Isotope Spectrometer (CRIS) on the ACE spacecraft has returned data with an unprecedented combination of excellent mass resolution and high statistics, describing the isotopic composition of elements from lithium through nickel in the energy interval ~ 50 to 500 MeV/nucleon. These data have demonstrated: * The time between nucleosynthesis and acceleration of the cosmic-ray nuclei is at least 105 years. The supernova in which nucleosynthesis takes place is thus not the same supernova that accelerates a heavy nucleus to cosmic-ray energy. * The mean confinement time of cosmic rays in the Galaxy is 15 Myr. * The isotopic composition of the cosmic-ray source is remarkably similar to that of solar system. The deviations that are observed, particularly at 22Ne and 58Fe, are consistent with a model in which the cosmic-ray source is OB associations in which the interstellar medium has solar-system composition enriched by roughly 20% admixture of ejecta from Wolf-Rayet stars and supernovae. * Cosmic-ray secondaries that decay only by electron capture provide direct evidence for energy loss of cosmic rays as they penetrate the solar system. This invited overview paper at ECRS 19 was largely the same as an invited paper presented a month earlier at the 8th Nuclei in the Cosmos Conference in Vancouver. The proceedings of that conference will be published shortly by Elsevier as a special edition of Nuclear Physics A. For further summary of results from CRIS, the reader is referred to URL and links on that page to CRIS and to Science News.

  4. Heliospheric Impact on Cosmic Rays Modulation

    Science.gov (United States)

    Tiwari, Bhupendra Kumar

    2016-07-01

    Heliospheric Impact on Cosmic RaysModulation B. K. Tiwari Department of Physics, A. P. S. University, Rewa (M.P.), btiwari70@yahoo.com Cosmic rays (CRs) flux at earth is modulated by the heliosphereric magnetic field and the structure of the heliosphere, controls by solar outputs and their variability. Sunspots numbers (SSN) is often treated as a primary indicator of solar activity (SA). GCRs entering the helioshphere are affected by the interplanetary magnetic field (IMF) and solar wind speed, their modulation varies with the varying solar activity. The observation based on data recoded from Omniweb data Centre for solar- interplanetary activity indices and monthly mean count rate of cosmic ray intensity (CRI) data from neutron monitors of different cut-off rigidities(Rc) (Moscow Rc=2.42Gv and Oulu Rc=0.80Gv). During minimum solar activity periodof solar cycle 23/24, the sun is remarkably quiet, weakest strength of the IMF and least dense and slowest, solar wind speed, whereas, in 2003, highest value of yearly averaged solar wind speed (~568 Km/sec) associated with several coronal holes, which generate high speed wind stream has been recorded. It is observed that GCRs fluxes reduces and is high anti-correlated with SSN (0.80) and IMF (0.86). CRI modulation produces by a strong solar flare, however, CME associated solar flare produce more disturbance in the interplanetary medium as well as in geomagnetic field. It is found that count rate of cosmic ray intensity and solar- interplanetary parameters were inverse correlated and solar indices were positive correlated. Keywords- Galactic Cosmic rays (GCRs), Sunspot number (SSN), Solar activity (SA), Coronal Mass Ejection (CME), Interplanetary magnetic field (IMF)

  5. Impact of Cosmic Ray Transport on Galactic Winds

    Science.gov (United States)

    Farber, Ryan; Ruszkowski, Mateusz; Yang, Hsiang-Yi Karen; Gould Zweibel, Ellen

    2017-08-01

    Despite playing a fundamental role in galaxy evolution, the physical mechanisms responsible for driving galactic winds remain unclear. The role of cosmic rays generated by supernovae and young stars has very recently begun to receive significant attention due to the realization that cosmic rays can efficiently accelerate galactic winds. Microscopic cosmic ray transport processes are fundamental for determining the efficiency of cosmic ray wind driving. Previous studies focused on modeling of cosmic ray transport either via constant diffusion coefficient or via streaming proportional to the Alfv{é}n speed. However, in predominantly neutral gas, cosmic rays can propagate faster than in the ionized medium and the effective transport can be substantially larger, i.e., cosmic rays are decoupled from the gas. We perform three-dimensional magneto-hydrodynamical simulations of patches of galactic disks including the effects of cosmic rays. Our simulations include the decoupling of cosmic rays in the neutral ISM phases. We find that, compared to the ordinary diffusive cosmic ray transport case, accounting for the decoupling leads to significantly different wind properties such as the cosmic ray spatial distribution, wind speed, density, and temperature. These results have implications for the magnetization of the circumgalactic medium and the pollution of the circumgalactic medium with cosmic rays.

  6. Cosmic Rays Astrophysics: The Discipline, Its Scope, and Its Applications

    Science.gov (United States)

    Barghouty, A. F.

    2009-01-01

    This slide presentation gives an overview of the discipline surrounding cosmic ray astrophysics. It includes information on recent assertions surrounding cosmic rays, exposure levels, and a short history with specific information on the origin, acceleration, transport, and modulation of cosmic rays.

  7. Re-evaluation of cosmic ray cutoff terminology

    Science.gov (United States)

    Cooke, D. J.; Humble, J. E.; Shea, M. A.; Smart, D. F.; Lund, N.; Rasmussen, I. L.; Byrnak, B.; Goret, P.; Petrou, N.

    1985-01-01

    The study of cosmic ray access to locations inside the geomagnetic field has evolved in a manner that has led to some misunderstanding and misapplication of the terminology originally developed to describe particle access. This paper presents what is believed to be a useful set of definitions for cosmic ray cutoff terminology for use in theoretical and experimental cosmic ray studies.

  8. Cosmic ray propagation with CRPropa 3

    Science.gov (United States)

    Alves Batista, R.; Erdmann, M.; Evoli, C.; Kampert, K.-H.; Kuempel, D.; Mueller, G.; Sigl, G.; Van Vliet, A.; Walz, D.; Winchen, T.

    2015-05-01

    Solving the question of the origin of ultra-high energy cosmic rays (UHECRs) requires the development of detailed simulation tools in order to interpret the experimental data and draw conclusions on the UHECR universe. CRPropa is a public Monte Carlo code for the galactic and extragalactic propagation of cosmic ray nuclei above ∼ 1017 eV, as well as their photon and neutrino secondaries. In this contribution the new algorithms and features of CRPropa 3, the next major release, are presented. CRPropa 3 introduces time-dependent scenarios to include cosmic evolution in the presence of cosmic ray deflections in magnetic fields. The usage of high resolution magnetic fields is facilitated by shared memory parallelism, modulated fields and fields with heterogeneous resolution. Galactic propagation is enabled through the implementation of galactic magnetic field models, as well as an efficient forward propagation technique through transformation matrices. To make use of the large Python ecosystem in astrophysics CRPropa 3 can be steered and extended in Python.

  9. Resolving photons from cosmic ray in DAMPE

    Science.gov (United States)

    Xu, Zunlei; Chang, Jin; Li, Xiang; Dong, TieKuang; Zang, Jingjing

    2016-07-01

    The Dark Matter Particle Explorer(DAMPE), which took to the skies on 17 December, is designed for high energy cosmic ray ion detection. The proportion of photons in the cosmic ray is very small, so it's difficult to distinguish between photons and 'background', but necessary for any DAMPE gamma-ray science goals.The paper present a algorithm to identify photons from 'background' mainly by the tracker/converter, which promote pair conversion and measure the directions of incident particles, and an anticoincidence detector,featuring an array of plastic scintillator to detect the charged particles.The method has been studied by simulating using the GEANT4 Monte Carlo simulation code and adjusted by the BeamTest at CERN in December,2014.In addition,DAMPE photon detection capabilities can be checked using the flight data.

  10. New insights from cosmic gamma rays

    CERN Document Server

    Diehl, Roland

    2016-01-01

    The measurement of gamma rays from cosmic sources at MeV energies is one of the key tools for nuclear astrophysics, in its study of nuclear reactions and their impacts on objects and phenomena throughout the universe. Gamma rays trace nuclear processes most directly, as they originate from nuclear transitions following radioactive decays or high-energy collisions with excitation of nuclei. Additionally, the unique gamma-ray signature from the annihilation of positrons falls into this astronomical window and is discussed here: Cosmic positrons are often produced from beta-decays, thus also of nuclear physics origins. The nuclear reactions leading to radioactive isotopes occur inside stars and stellar explosions, which therefore constitute the main objects of such studies. In recent years, both thermonuclear and core-collapse supernova radioactivities have been measured, and complement conventional supernova observations with measurements of their prime energy sources. The diffuse radioactive afterglow of massi...

  11. Ionization and heating by X-rays and cosmic rays*

    Directory of Open Access Journals (Sweden)

    Güdel Manuel

    2015-01-01

    Full Text Available High-energy radiation from the central T Tauri and protostars plays an important role in shaping protoplanetary disks and influences their evolution. Such radiation, in particular X-rays and extreme-ultraviolet (EUV radiation, is predominantly generated in unstable stellar magnetic fields (e.g., the stellar corona, but also in accretion hot spots. Even jets may produce X-ray emission. Cosmic rays, i.e., high-energy particles either from the interstellar space or from the star itself, are of crucial importance. Both highenergy photons and particles ionize disk gas and lead to heating. Ionization and heating subsequently drive chemical networks, and the products of these processes are accessible through observations of molecular line emission. Furthermore, ionization supports the magnetorotational instability and therefore drives disk accretion, while heating of the disk surface layers induces photoevaporative flows. Both processes are crucial for the dispersal of protoplanetary disks and therefore critical for the time scales of planet formation. This chapter introduces the basic physics of ionization and heating starting from a quantum mechanical viewpoint, then discusses relevant processes in astrophysical gases and their applications to protoplanetary disks, and finally summarizes some properties of the most important high-energy sources for protoplanetary disks.

  12. Measurement of cosmic rays with LOFAR

    Science.gov (United States)

    Rossetto, L.; Buitink, S.; Corstanje, A.; Enriquez, J. E.; Falcke, H.; Hörandel, J. R.; Nelles, A.; Rachen, J. P.; Schellart, P.; Scholten, O.; ter Veen, S.; Thoudam, S.; Trinh, T. N. G.

    2016-05-01

    The LOw Frequency ARay (LOFAR) is a multipurpose radio-antenna array aimed to detect radio signals in the 10 - 240 MHz frequency range, covering a large surface in Northern Europe with a higher density in the Northern Netherlands. Radio emission in the atmosphere is produced by cosmic-ray induced air showers through the interaction of charged particles with the Earth magnetic field. The detection of radio signals allows to reconstruct several properties of the observed cascade. We review here all important results achieved in the last years. We proved that the radio-signal distribution at ground level is described by a two-dimensional pattern, which is well fitted by a double Gaussian function. The radio-signal arrival time and polarization have been measured, thus providing additional information on the extensive air shower geometry, and on the radio emission processes. We also showed that the radio signal reaches ground in a thin, curved wavefront which is best parametrized by a hyperboloid shape centred around the shower axis. Radio emission has also been studied under thunderstorm conditions and compared to fair weather conditions. Moreover, by using a hybrid reconstruction technique, we performed mass composition measurements in the energy range 1017 - 1018 eV.

  13. New insights from cosmic gamma rays

    Science.gov (United States)

    Roland, Diehl

    2016-04-01

    The measurement of gamma rays from cosmic sources at ~MeV energies is one of the key tools for nuclear astrophysics, in its study of nuclear reactions and their impacts on objects and phenomena throughout the universe. Gamma rays trace nuclear processes most directly, as they originate from nuclear transitions following radioactive decays or high-energy collisions with excitation of nuclei. Additionally, the unique gamma-ray signature from the annihilation of positrons falls into this astronomical window and is discussed here: Cosmic positrons are often produced from β-decays, thus also of nuclear physics origins. The nuclear reactions leading to radioactive isotopes occur inside stars and stellar explosions, which therefore constitute the main objects of such studies. In recent years, both thermonuclear and core-collapse supernova radioactivities have been measured though 56Ni, 56Co, and 44Ti lines, and a beginning has thus been made to complement conventional supernova observations with such measurements of the prime energy sources of supernova light created in their deep interiors. The diffuse radioactive afterglow of massive-star nucleosynthesis in gamma rays is now being exploited towards astrophysical studies on how massive stars feed back their energy and ejecta into interstellar gas, as part of the cosmic cycle of matter through generations of stars enriching the interstellar gas and stars with metals. Large interstellar cavities and superbubbles have been recognised to be the dominating structures where new massive-star ejecta are injected, from 26Al gamma-ray spectroscopy. Also, constraints on the complex interiors of stars derive from the ratio of 60Fe/26Al gamma rays. Finally, the puzzling bulge-dominated intensity distribution of positron annihilation gamma rays is measured in greater detail, but still not understood; a recent microquasar flare provided evidence that such objects may be prime sources for positrons in interstellar space, rather than

  14. Long-lived staus from cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Ahlers, M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Illana, J.I.; Masip, M. [Granada Univ. (Spain). CAFPE y Dept. de Fisica Teorica y del Cosmos; Meloni, D. [Univ. degli Studi di Roma La Spienza (Italy). Dipt. di Fisica; INFN, Roma (Italy)

    2007-05-15

    The collision of a high energy cosmic ray with a nucleon in the upper atmosphere could produce long-lived heavy particles. Such particles would be very penetrating, since the energy loss in matter scales as the inverse mass, and could reach a neutrino telescope like IceCube from large zenith angles. Here we study this possibility and focus on the long-lived stau of SUSY models with a gravitino LSP. The signal would be a pair of muon-like parallel tracks separated by 50 meters along the detector. We evaluate the background of muon pairs and show that any events from zenith angles above 80. could be explained by the production of these heavy particles by cosmic rays. (orig.)

  15. Cosmic Ray physics with ARGO-YBJ

    Energy Technology Data Exchange (ETDEWEB)

    Iacovacci, M. [Dipartimento di Fisica dell' Università di Napoli ”Federico II” and INFN Napoli, Complesso Universitario MSA, Via Cintia, 80126 Napoli (Italy)

    2013-06-15

    The ARGO-YBJ experiment has been in stable data taking from November 2007 till February 2013 at the Yang-BaJing Cosmic Ray Laboratory (Tibet, P.R.China, 4300 m a.s.l.). It exploits the full coverage and the high altitude to detect air showers with an energy threshold as low as a few hundred GeV. The detector is made of a single layer of RPCs operated in streamer mode, fully instrumenting a central carpet of about 5800 m{sup 2}. A guard ring extends the partially instrumented area to about 11,000 m{sup 2}. The main results so far achieved on Cosmic Ray physics are reported.

  16. The glacial cycles and cosmic rays

    CERN Document Server

    Kirkby, Jasper; Müller, R A

    2004-01-01

    The cause of the glacial cycles remains a mystery. The origin is widely accepted to be astronomical since paleoclimatic archives contain strong spectral components that match the frequencies of Earth's orbital modulation. Milankovitch insolation theory contains similar frequencies and has become established as the standard model of the glacial cycles. However, high precision paleoclimatic data have revealed serious discrepancies with the Milankovitch model that fundamentally challenge its validity and re-open the question of what causes the glacial cycles. We propose here that the ice ages are initially driven not by insolation cycles but by cosmic ray changes, probably through their effect on clouds. This conclusion is based on a wide range of evidence, including results presented here on speleothem growth in caves in Austria and Oman, and on a record of cosmic ray flux over the past 220 kyr obtained from the 10Be composition of deep-ocean sediments.

  17. The Pierre Auger Cosmic Ray Observatory

    CERN Document Server

    ,

    2015-01-01

    The Pierre Auger Observatory, located on a vast, high plain in western Argentina, is the world's largest cosmic ray observatory. The objectives of the Observatory are to probe the origin and characteristics of cosmic rays above $10^{17}$ eV and to study the interactions of these, the most energetic particles observed in nature. The Auger design features an array of 1660 water-Cherenkov particle detector stations spread over 3000 km$^2$ overlooked by 24 air fluorescence telescopes. In addition, three high elevation fluorescence telescopes overlook a 23.5 km$^2$, 61 detector infill array. The Observatory has been in successful operation since completion in 2008 and has recorded data from an exposure exceeding 40,000 km$^2$ sr yr. This paper describes the design and performance of the detectors, related subsystems and infrastructure that make up the Auger Observatory.

  18. Ultra High Energy Cosmic Rays: Strangelets?

    Institute of Scientific and Technical Information of China (English)

    徐仁新; 吴飞

    2003-01-01

    The conjecture that ultra-high-energy cosmic rays (UHECRs) are actually strangelets is discussed. Besides the reason that strangelets can do as cosmic rays beyond the Greisen-Zatsepin-Kuzmin-cutoff, another argument to support the conjecture is addressed by the study of formation of Te V-scale microscopic black holes when UHECRs bombarding bare strange stars. It is proposed that the exotic quark surface of a bare strange star could be an effective astro-laboratory in the investigations of the extra dimensions and of the detection of ultra-high-energy neutrino fluxes. The flux of neutrinos (and other point-like particles) with energy larger than 2.3 × 1020 eV could be expected to be smaller than 10-26 cm-2 s-1 if there are two extra spatial dimensions.

  19. Are ultrahigh energy cosmic rays heavy nuclei?

    Energy Technology Data Exchange (ETDEWEB)

    Mikhailov, A.A. [Yu.G. Shafer Institute of Cosmophysical Research and Aeronomy, 31 Lenin Ave., 677980 Yakutsk (Russian Federation)

    2008-01-15

    A new approach to estimate the composition of cosmic rays is proposed. It is found that the zenith angle distributions and muon components of extensive air showers observed by the Yakutsk and AGASA arrays for energies E>10{sup 19} eV and E>4x10{sup 19} eV differ from each other. It is suggested that the primary cosmic rays at E>4x10{sup 19}eV are heavier than those at E{approx}10{sup 19} eV. In our method we selected one variant to estimate the shower energy from two variants, as suggested by physicists of the SUGAR array. According to the 'Hillas-E' model, the SUGAR array has detected 8 showers with energy E>10{sup 20} eV.

  20. Cosmic Ray Electron Science with GLAST

    Energy Technology Data Exchange (ETDEWEB)

    Ormes, J.F.; /Denver U.; Moiseev, Alexander; /NASA, Goddard

    2007-10-17

    Cosmic ray electrons at high energy carry information about their sources, their diffusion in local magnetic fields and their interactions with the photon fields through which they travel. The spectrum of the particles is affected by inverse Compton losses and synchrotron losses, the rates of which are proportional to the square of the particle's energy making the spectra very steep. However, GLAST will be able to make unique and very high statistics measurements of electrons from {approx}20 to {approx}700 GeV that will allow us to search for anisotropies in arrival direction and spectral features associated with some dark matter candidates. Complementary information on electrons of still higher energy will be required to see effects of possible individual cosmic ray sources.

  1. The Pierre Auger Cosmic Ray Observatory

    Science.gov (United States)

    Pierre Auger Collaboration

    2015-10-01

    The Pierre Auger Observatory, located on a vast, high plain in western Argentina, is the world's largest cosmic ray observatory. The objectives of the Observatory are to probe the origin and characteristics of cosmic rays above 1017 eV and to study the interactions of these, the most energetic particles observed in nature. The Auger design features an array of 1660 water Cherenkov particle detector stations spread over 3000 km2 overlooked by 24 air fluorescence telescopes. In addition, three high elevation fluorescence telescopes overlook a 23.5 km2, 61-detector infilled array with 750 m spacing. The Observatory has been in successful operation since completion in 2008 and has recorded data from an exposure exceeding 40,000 km2 sr yr. This paper describes the design and performance of the detectors, related subsystems and infrastructure that make up the Observatory.

  2. Cosmic ray acceleration at modified shocks

    CERN Document Server

    Meli, A; Dimitrakoudis, S

    2007-01-01

    The non-linear back reaction of accelerated cosmic rays at the shock fronts, leads to the formation of a smooth precursor with a length scale corresponding to the diffusive scale of the energetic particles. Past works claimed that shocklets could be created in the precursor region of a specific shock width, which might energize few thermal particles to sufficient acceleration and furthermore this precursor region may act as confining large angle scatterer for very high energy cosmic rays. On the other hand, it has been shown that the smoothing of the shock front could lower the acceleration efficiency. These controversies motivated us to investigate numerically by Monte Carlo simulations the particle acceleration efficiency in oblique modified shocks. The results show flatter spectra compared to the spectra of the pressumed sharp discontinuity shock fronts. The findings are in accordance with theoretical predictions, since the scattering inside the precursor confines high energy particles to further scatterin...

  3. Solar cosmic rays fundamentals and applications

    CERN Document Server

    Miroshnichenko, Leonty

    2015-01-01

    The book summarizes the results of solar cosmic ray (SCR) investigations since 1942. The present monograph, unlike the reviews published earlier, treats the problem in self-contained form, in all its associations—from fundamental astrophysical aspects to geophysical, aeronautical and cosmonautical applications. It includes a large amount of new data, accumulated during the last several decades of space research. As a result of the "information burst" in space physics, there are a lot of new interesting theoretical concepts, models and ideas that deserve attention. The author gives an extensive bibliography, which covers non-partially the main achievements and failures in this field. The book will be helpful for a wide audience of space physicists and it will be relevant to graduate and postgraduate courses. The book will serve as a reference work for researchers and students in solar physics and astrophysical plasma physics, as well as in cosmic rays physics, astroparticle physics, space science, solar-terr...

  4. Astroparticle Physics: Detectors for Cosmic Rays

    Science.gov (United States)

    Salazar, Humberto; Villaseñor, Luis

    2006-09-01

    We describe the work that we have done over the last decade to design and construct instruments to measure properties of cosmic rays in Mexico. We describe the measurement of the muon lifetime and the ratio of positive to negative muons in the natural background of cosmic ray muons at 2000 m.a.s.l. Next we describe the detection of decaying and crossing muons in a water Cherenkov detector as well as a technique to separate isolated particles. We also describe the detection of isolated muons and electrons in a liquid scintillator detector and their separation. Next we describe the detection of extensive air showers (EAS) with a hybrid detector array consisting of water Cherenkov and liquid scintillator detectors, located at the campus of the University of Puebla. Finally we describe work in progress to detect EAS at 4600 m.a.s.l. with a water Cherenkov detector array and a fluorescence telescope at the Sierra Negra mountain.

  5. Analyses of cosmic ray induced-neutron based on spectrometers operated simultaneously at mid-latitude and Antarctica high-altitude stations during quiet solar activity

    Science.gov (United States)

    Hubert, G.

    2016-10-01

    In this paper are described a new neutron spectrometer which operate in the Concordia station (Antarctica, Dome C) since December 2015. This instrument complements a network including neutron spectrometers operating in the Pic-du-Midi and the Pico dos Dias. Thus, this work present an analysis of cosmic ray induced-neutron based on spectrometers operated simultaneously in the Pic-du-Midi and the Concordia stations during a quiet solar activity. The both high station platforms allow for investigating the long period dynamics to analyze the spectral variation and effects of local and seasonal changes, but also the short term dynamics during solar flare events. A first part is devoted to analyze the count rates, the spectrum and the neutron fluxes, implying cross-comparisons between data obtained in the both stations. In a second part, measurements analyses were reinforced by modeling based on simulations of atmospheric cascades according to primary spectra which only depend on the solar modulation potential.

  6. Cosmic-ray knee and flux of secondaries from interactions of cosmic rays with dark matter

    CERN Document Server

    Masip, Manuel

    2009-01-01

    We discuss possible implications of a large interaction cross section between cosmic rays and dark matter particles due to new physics at the TeV scale. In particular, in models with extra dimensions and a low fundamental scale of gravity the cross section grows very fast at transplanckian energies. We argue that the knee observed in the cosmic ray flux could be caused by such interactions. We show that this hypothesis implies a well defined flux of secondary gamma rays that seems consistent with MILAGRO observations.

  7. Ultrahigh Energy Cosmic Rays: New Physics or Old Physics?

    CERN Document Server

    Stecker, F W

    2004-01-01

    We consider the advantages of and the problems associated with hypotheses to explain the origin of ulthrahigh energy cosmic rays (UHECR: E > 10 EeV) and the "trans GZK" cosmic rays (TGZK: E > 100 EeV), both through "old physics" (acceleration in cosmic sources) and "new physics" (new particles, topological defects, fat neutrino cross sections, Lorentz invariance violation).

  8. Longevity and Highest-Energy Cosmic Rays

    Science.gov (United States)

    Frampton, Paul H.; Keszthelyi, Bettina; Ng, Y. Jack

    It is proposed that the highest energy ~1020 eV cosmic ray primaries are protons which are decay products of a superheavy particle, G. The protons may be decay products either directly of a nearby (galactic) G or of a long-lived intermediate particle X which arises from decay of a distant (cosmological) G, then decays in or near our Galaxy. Such scenarios can occur in e.g. SU(15) grand unification and in some preon models.

  9. Cosmic ray test station for ATLAS RPC

    CERN Document Server

    Pietra, M Della; Canale, V; Caprio, M A; Carlino, G; Conventi, F; De Asmundis, R; Iengo, P; Patricelli, S; Romanó, L; Sekhniaidze, G; Della Volpe, D

    2003-01-01

    We describe the facility for RPC test with cosmic rays, designed and built at the laboratory of INFN and University of Naples. Trigger and tracking systems consist of a scintillator hodoscope and two drift chambers with track reconstruction resolution of similar to 400 mum. Trigger is provided by the twofold coincidence of scintillators covering a surface of 1 m**2. Two step motors move chambers synchronously along the station for RPC scanning. Up to eight RPCs can be tested simultaneously.

  10. Cosmic Ray Data in TRT Barrel

    CERN Multimedia

    M. Hance

    "I had a great day in August when I went into SR1," said Daniel Froidevaux, former project leader of the ATLAS Transition Radiation Tracker, "not only had all SCT barrels arrived at CERN, but there were cosmic ray tracks seen in the TRT!" Daniel's excitement was mirrored by the rest of the TRT collaboration when, on July 29, the first cosmic ray tracks were seen in the barrel. Along with many others in the community, Daniel was quick to point out that this is the cumulative result of years of R&D, test beam work, and an intense installation and integration schedule. Indeed, the cosmic ray readout is only possible through the coordination of many efforts, from detector mechanics to module assembly, power and high voltage control, cooling, gas systems, electronics and cabling, data acquisition, and monitoring. "Many people have worked very hard on the the TRT, some of them for more than 10 years," said Brig Williams, the leader of the UPenn group responsible for much of the TRT front end electronics. He ...

  11. High energy cosmic ray and neutrino astronomy

    CERN Document Server

    Waxman, E

    2011-01-01

    Cosmic-rays with energies exceeding 10^{19} eV are referred to as Ultra High Energy Cosmic Rays (UHECRs). The sources of these particles and their acceleration mechanism are unknown, and for many years have been the issue of much debate. The first part of this review describes the main constraints, that are implied by UHECR observations on the properties of candidate UHECR sources, the candidate sources, and the related main open questions. In order to address the challenges of identifying the UHECR sources and of probing the physical mechanisms driving them, a "multi-messenger" approach will most likely be required, combining electromagnetic, cosmic-ray and neutrino observations. The second part of the review is devoted to a discussion of high energy neutrino astronomy. It is shown that detectors, which are currently under construction, are expected to reach the effective mass required for the detection of high energy extra-Galactic neutrino sources, and may therefore play a key role in the near future in re...

  12. Electrons and Positrons in Cosmic Rays

    CERN Document Server

    Panov, A D

    2013-01-01

    This review concentrates on the results obtained, over the last ten years, on the astrophysics of high-energy cosmic ray electrons and positrons. The anomalies, observed in the data of recent experiments (possible bump in the electron spectrum and the PAMELA anomaly in the positron fraction) are discussed through the systematic use of simple analytical solutions of the transport equations for cosmic ray electrons. Three main ways of explaining the origin of the anomalies are considered: the conservative way supposing the positrons to be pure secondary particles; the nearby sources like pulsars origin; and the dark matter origin. This review discusses, also, the inability to select the pulsars model or the dark matter model to explain the electron anomalies on the basis of the electron spectra with the usual large energy binning ($\\gtrsim15%$). It is argued that the signature of nearby pulsars origin of the anomalies against the dark matter origin could be the fine structure of the cosmic ray electron spectrum...

  13. Solar panels as cosmic-ray detectors

    CERN Document Server

    Stella, Carlo; Assis, Pedro; Brogueira, Pedro; Santo, Catarina Espirito; Goncalves, Patricia; Pimenta, Mario; De Angelis, Alessandro

    2014-01-01

    Due to fundamental limitations of accelerators, only cosmic rays can give access to centre-of- mass energies more than one order of magnitude above those reached at the LHC. In fact, extreme energy cosmic rays (1018 eV - 1020 eV) are the only possibility to explore the 100 TeV energy scale in the years to come. This leap by one order of magnitude gives a unique way to open new horizons: new families of particles, new physics scales, in-depth investigations of the Lorentz symmetries. However, the flux of cosmic rays decreases rapidly, being less than one particle per square kilometer per year above 1019 eV: one needs to sample large surfaces. A way to develop large-effective area, low cost, detectors, is to build a solar panel-based device which can be used in parallel for power generation and Cherenkov light detection. Using solar panels for Cherenkov light detection would combine power generation and a non-standard detection device.

  14. Cosmic X-ray background and solitars.

    Science.gov (United States)

    Chiu, H.-Y.

    In this paper the authors has examined the observational consequences of a class of new astronomical objects proposed by Friedberg, Lee and Pang, called solitars which are degenerate vacuum states embedded with particles. A study is made to include finite temperature effect and pair creation. Quark is believed to be the only species that can exist in the interior of solitars. Massive quark solitars are primarily X-ray emitters and may account for the large unexplained thermal component of the cosmic X-ray background.

  15. Stable laws and cosmic ray physics

    Science.gov (United States)

    Genolini, Y.; Salati, P.; Serpico, P. D.; Taillet, R.

    2017-03-01

    Context. In the new "precision era" for cosmic ray astrophysics, scientists making theoretical predictions cannot content themselves with average trends, but need to correctly take into account intrinsic uncertainties. The space-time discreteness of the cosmic ray sources, together with a substantial ignorance of their precise epochs and locations (with the possible exception of the most recent and close ones) play an important role in this sense. Aims: We elaborate a statistical theory to deal with this problem, relating the composite probability P(Ψ) to obtain a flux Ψ at the Earth and the single-source probability p(ψ) to contribute with a flux ψ. The main difficulty arises from the fact that p(ψ) is a "heavy tail" distribution, characterized by power-law or broken power-law behavior up to very large fluxes, for which the central limit theorem does not hold, and leading to distributions different from Gaussian. The functional form of the distribution for the aggregated flux is nonetheless unchanged by its own convolution, that is, it belongs to the so-called stable laws class. Methods: We analytically discuss the regime of validity of the stable laws associated with the distributions arising in cosmic ray astrophysics, as well as the limitations to the treatment imposed by causal considerations and partial source catalog knowledge. We validate our results with extensive Monte Carlo simulations, for different regimes of propagation parameters and energies. Results: We find that relatively simple recipes provide a satisfactory description of the probability P(Ψ). We also find that a naive Gaussian fit to simulation results would underestimate the probability of very large fluxes, that is, several times above the average, while overestimating the probability of relatively milder excursions. At large energies, large flux fluctuations are prevented by causal considerations, while at low energies, a partial knowledge of the recent and nearby population of

  16. Atmospheric effects of stellar cosmic rays on Earth-like exoplanets orbiting M-dwarfs

    Science.gov (United States)

    Tabataba-Vakili, F.; Grenfell, J. L.; Grießmeier, J.-M.; Rauer, H.

    2016-01-01

    M-dwarf stars are generally considered favourable for rocky planet detection. However, such planets may be subject to extreme conditions due to possible high stellar activity. The goal of this work is to determine the potential effect of stellar cosmic rays on key atmospheric species of Earth-like planets orbiting in the habitable zone of M-dwarf stars and show corresponding changes in the planetary spectra. We build upon the cosmic rays model scheme of previous works, who considered cosmic ray induced NOx production, by adding further cosmic ray induced production mechanisms (e.g. for HOx) and introducing primary protons of a wider energy range (16 MeV-0.5 TeV). Previous studies suggested that planets in the habitable zone that are subject to strong flaring conditions have high atmospheric methane concentrations, while their ozone biosignature is completely destroyed. Our current study shows, however, that adding cosmic ray induced HOx production can cause a decrease in atmospheric methane abundance of up to 80%. Furthermore, the cosmic ray induced HOx molecules react with NOx to produce HNO3, which produces strong HNO3 signals in the theoretical spectra and reduces NOx-induced catalytic destruction of ozone so that more than 25% of the ozone column remains. Hence, an ozone signal remains visible in the theoretical spectrum (albeit with a weaker intensity) when incorporating the new cosmic ray induced NOx and HOx schemes, even for a constantly flaring M-star case. We also find that HNO3 levels may be high enough to be potentially detectable. Since ozone concentrations, which act as the key shield against harmful UV radiation, are affected by cosmic rays via NOx-induced catalytic destruction of ozone, the impact of stellar cosmic rays on surface UV fluxes is also studied.

  17. Ultra-high energy cosmic ray escape from gamma-ray bursts, and the cosmic ray-neutrino connection

    Energy Technology Data Exchange (ETDEWEB)

    Baerwald, Philipp; Bustamante, Mauricio; Huemmer, Svenja; Winter, Walter [Institut fuer Theoretische Physik und Astrophysik, Universitaet Wuerzburg, 97074 Wuerzburg (Germany); Spector, Amyad; Waxman, Eli [Physics Faculty, Weizman Institute of Science, POB 26, Rehovot (Israel)

    2013-07-01

    Recent IceCube searches for GRB neutrinos have strongly constrained current models predicting GRBs as the source of UHECR. We show that updated calculations based on the connection of gamma-rays and neutrinos give significantly lower neutrino bounds [Phys. Rev. Lett. 108 (2012) 231101]. However additional constraints from the theoretical connection of cosmic rays to neutrinos, based on the assumption that UHECR escape as neutrons, still persist. We therefore explore the possibility of having an additional direct cosmic ray escape component which circumvents these constraints. We show that it is possible to distinguish three distinct regimes with this approach, with the standard (one neutrino per cosmic ray) escape via neutrons only accounting for a small range in the parameter space. Moreover we show how this additional component could improve cosmic ray predictions.

  18. The intergalactic propagation of ultrahigh energy cosmic ray nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, Dan; /Fermilab; Sarkar, Subir; /Oxford U., Theor. Phys.; Taylor, Andrew M.; /Oxford U.

    2006-08-01

    We investigate the propagation of ultra-high energy cosmic ray nuclei (A = 1-56) from cosmologically distant sources through the cosmic radiation backgrounds. Various models for the injected composition and spectrum and of the cosmic infrared background are studied using updated photodisintegration cross-sections. The observational data on the spectrum and the composition of ultra-high energy cosmic rays are jointly consistent with a model where all of the injected primary cosmic rays are iron nuclei (or a mixture of heavy and light nuclei).

  19. Key scientific problems from Cosmic Ray History

    Science.gov (United States)

    Lev, Dorman

    2016-07-01

    Recently was published the monograph "Cosmic Ray History" by Lev Dorman and Irina Dorman (Nova Publishers, New York). What learn us and what key scientific problems formulated the Cosmic Ray History? 1. As many great discoveries, the phenomenon of cosmic rays was discovered accidentally, during investigations that sought to answer another question: what are sources of air ionization? This problem became interesting for science about 230 years ago in the end of the 18th century, when physics met with a problem of leakage of electrical charge from very good isolated bodies. 2. At the beginning of the 20th century, in connection with the discovery of natural radioactivity, it became apparent that this problem is mainly solved: it was widely accepted that the main source of the air ionization were α, b, and γ - radiations from radioactive substances in the ground (γ-radiation was considered as the most important cause because α- and b-radiations are rapidly absorbed in the air). 3. The general accepted wrong opinion on the ground radioactivity as main source of air ionization, stopped German meteorologist Franz Linke to made correct conclusion on the basis of correct measurements. In fact, he made 12 balloon flights in 1900-1903 during his PhD studies at Berlin University, carrying an electroscope to a height of 5500 m. The PhD Thesis was not published, but in Thesis he concludes: "Were one to compare the presented values with those on ground, one must say that at 1000 m altitude the ionization is smaller than on the ground, between 1 and 3 km the same amount, and above it is larger with values increasing up to a factor of 4 (at 5500 m). The uncertainties in the observations only allow the conclusion that the reason for the ionization has to be found first in the Earth." Nobody later quoted Franz Linke and although he had made the right measurements, he had reached the wrong conclusions, and the discovery of CR became only later on about 10 years. 4. Victor Hess, a

  20. Cosmic-ray exposure ages of chondrules

    Science.gov (United States)

    Roth, Antoine S. G.; Metzler, Knut; Baumgartner, Lukas P.; Leya, Ingo

    2016-07-01

    If chondrules were exposed to cosmic rays prior to meteorite compaction, they should retain an excess of cosmogenic noble gases. Beyersdorf-Kuis et al. (2015) showed that such excesses can be detected provided that the chemical composition of each individual chondrule is precisely known. However, their study was limited to a few samples as they had to be irradiated in a nuclear reactor for instrumental neutron activation analysis. We developed a novel analytical protocol that combines the measurements of He and Ne isotopic concentrations with a fast method to correct for differences in chemical composition using micro X-ray computed tomography. Our main idea is to combine noble gas, nuclear track, and petrography data for numerous chondrules to understand the precompaction exposure history of the chondrite parent bodies. Here, we report our results for a total of 77 chondrules and four matrix samples from NWA 8276 (L3.00), NWA 8007 (L3.2), and Bjurböle (L/LL4). All chondrules from the same meteorite have within uncertainty identical 21Ne exposure ages, and all chondrules from Bjurböle have within uncertainty identical 3He exposure ages. However, most chondrules from NWA 8276 and a few from NWA 8007 show small but resolvable differences in 3He exposure age that we attribute to matrix contamination and/or gas loss. The finding that none of the chondrules has noble gas excesses is consistent with the uniform track density found for each meteorite. We conclude that the studied chondrules did not experience a precompaction exposure longer than a few Ma assuming present-day flux of galactic cosmic rays. A majority of chondrules from L and LL chondrites thus rapidly accreted and/or was efficiently shielded from cosmic rays in the solar nebula.

  1. The basis for cosmic ray feedback: Written on the wind.

    Science.gov (United States)

    Zweibel, Ellen G

    2017-05-01

    Star formation and supermassive black hole growth in galaxies appear to be self-limiting. The mechanisms for self-regulation are known as feedback. Cosmic rays, the relativistic particle component of interstellar and intergalactic plasma, are among the agents of feedback. Because cosmic rays are virtually collisionless in the plasma environments of interest, their interaction with the ambient medium is primarily mediated by large scale magnetic fields and kinetic scale plasma waves. Because kinetic scales are much smaller than global scales, this interaction is most conveniently described by fluid models. In this paper, I discuss the kinetic theory and the classical theory of cosmic ray hydrodynamics (CCRH) which follows from assuming cosmic rays interact only with self-excited waves. I generalize CCRH to generalized cosmic ray hydrodynamics, which accommodates interactions with extrinsic turbulence, present examples of cosmic ray feedback, and assess where progress is needed.

  2. Are cosmic rays effective for ionization of the solar nebula?

    Science.gov (United States)

    Dolginov, A. Z.; Stepinski, T. F.

    1993-01-01

    In this paper, we argue that the effectiveness of cosmic rays to ionize the bulk of the nebular gas may be further impaired by the influence of the magnetic field on the propagation of cosmic rays. When cosmic rays enter the nebular disk they ionize the gas and make the dynamo generation of magnetic fields possible. However, once magnetic fields are embedded in the nebular gas, the upcoming cosmic rays can no longer penetrate directly into the nebular disk because they start to interact with the magnetic field and lose their energy before propagating significantly toward the midplane. That, in turn, undercuts the ionization source within the bulk of the gas stopping the dynamo action. Nebular dynamo models ignored this back reaction of magnetic fields on cosmic rays. We calculate this back reaction effect, but for the sake of mathematical simplicity, we ignore the effect of magnetic field weakening due to diminishing ionization by cosmic rays.

  3. Detecting cosmic rays with the LOFAR radio telescope

    CERN Document Server

    Schellart, P; Buitink, S; Corstanje, A; Enriquez, J E; Falcke, H; Frieswijk, W; Hörandel, J R; Horneffer, A; James, C W; Krause, M; Mevius, M; Scholten, O; ter Veen, S; Thoudam, S; Akker, M van den; Alexov, A; Anderson, J; Avruch, I M; Bähren, L; Beck, R; Bell, M E; Bennema, P; Bentum, M J; Bernardi, G; Best, P; Bregman, J; Breitling, F; Brentjens, M; Broderick, J; Brüggen, M; Ciardi, B; Coolen, A; de Gasperin, F; de Geus, E; de Jong, A; de Vos, M; Duscha, S; Eislöffel, J; Fallows, R A; Ferrari, C; Garrett, M A; Grießmeier, J; Grit, T; Hamaker, J P; Hassall, T E; Heald, G; Hessels, J W T; Hoeft, M; Holties, H A; Iacobelli, M; Juette, E; Karastergiou, A; Klijn, W; Kohler, J; Kondratiev, V I; Kramer, M; Kuniyoshi, M; Kuper, G; Maat, P; Macario, G; Mann, G; Markoff, S; McKay-Bukowski, D; McKean, J P; Miller-Jones, J C A; Mol, J D; Mulcahy, D D; Munk, H; Nijboer, R; Norden, M J; Orru, E; Overeem, R; Paas, H; Pandey-Pommier, M; Pizzo, R; Polatidis, A G; Renting, A; Romein, J W; Röttgering, H; Schoenmakers, A; Schwarz, D; Sluman, J; Smirnov, O; Sobey, C; Stappers, B W; Steinmetz, M; Swinbank, J; Tang, Y; Tasse, C; Toribio, C; van Leeuwen, J; van Nieuwpoort, R; van Weeren, R J; Vermaas, N; Vermeulen, R; Vocks, C; Vogt, C; Wijers, R A M J; Wijnholds, S J; Wise, M W; Wucknitz, O; Yatawatta, S; Zarka, P; Zensus, A

    2013-01-01

    The low frequency array (LOFAR), is the first radio telescope designed with the capability to measure radio emission from cosmic-ray induced air showers in parallel with interferometric observations. In the first $\\sim 2\\,\\mathrm{years}$ of observing, 405 cosmic-ray events in the energy range of $10^{16} - 10^{18}\\,\\mathrm{eV}$ have been detected in the band from $30 - 80\\,\\mathrm{MHz}$. Each of these air showers is registered with up to $\\sim1000$ independent antennas resulting in measurements of the radio emission with unprecedented detail. This article describes the dataset, as well as the analysis pipeline, and serves as a reference for future papers based on these data. All steps necessary to achieve a full reconstruction of the electric field at every antenna position are explained, including removal of radio frequency interference, correcting for the antenna response and identification of the pulsed signal.

  4. Cosmic-ray Acceleration and Propagation

    CERN Document Server

    Caprioli, Damiano

    2015-01-01

    The origin of cosmic rays (CRs) has puzzled scientists since the pioneering discovery by Victor Hess in 1912. In the last decade, however, modern supercomputers have opened a new window on the processes regulating astrophysical collisionless plasmas, allowing the study of CR acceleration via first-principles kinetic simulations. At the same time, a new-generation of X-ray and $\\gamma$-ray telescopes has been collecting evidence that Galactic CRs are accelerated in the blast waves of supernova remnants (SNRs). I present state-of-the-art particle-in-cells simulations of non-relativistic shocks, in which ion and electron acceleration efficiency and magnetic field amplification are studied in detail as a function of the shock parameters. I then discuss the theoretical and observational counterparts of these findings, comparing them with predictions of diffusive shock acceleration theory and with multi-wavelength observations of young SNRs. I especially outline some major open questions, such as the possible cause...

  5. Bremsstrahlung Energy Losses for Cosmic Ray Electrons and Positrons

    CERN Document Server

    Widom, A; Srivastava, R

    2015-01-01

    Recently cosmic ray electrons and positrons, i.e. cosmic ray charged leptons, have been observed. To understand the distances from our solar system to the sources of such lepton cosmic rays, it is important to understand energy losses from cosmic electrodynamic fields. Energy losses for ultra-relativistic electrons and/or positrons due to classical electrodynamic bremsstrahlung are computed. The energy losses considered are (i) due to Thompson scattering from fluctuating electromagnetic fields in the background cosmic thermal black body radiation and (ii) due to the synchrotron radiation losses from quasi-static domains of cosmic magnetic fields. For distances to sources of galactic length proportions, the lepton cosmic ray energy must be lass than about a TeV.

  6. Galactic Cosmic Rays and the Environment

    Science.gov (United States)

    Castagnoli, G. Cini

    SH.3.6.14 Galactic Cosmic Rays and the Environment G. Cini Castagnoli, G. Bonino, P. Della Monica, C. Taricco Istituto di Cosmogeofisica, CNR, Corso Fiume 4, 10133 Torino, Italy and Dipartimento di Fisica Generale, Università di Torino, Via P. Giuria 1, 10125 Torino Recently Svensmark and Friis-Christensen (1997) reported an indication that the Galactic Cosmic Rays (GCR) modulated by the solar wind may contribute to the variations in the formation of clouds, which in turn should follow the 11 y solar cycle. On the other hand experiments, conducted in vitro, on the variations of δ3C in symbiont bearing 1 foraminifera have shown that the carbon isotope fractionation from sea water, of the calcite of their shells, depends mainly on the photosynthetic activity (primary productivity) of the symbionts and therefore from the illumination level of their habitat. We have measured and analyzed (Cini Castagnoli et al., 1999) the δ3C profile of G. ruber in an Ionian sea 1 shallow water core very precisely dated. This allows us to acquire information on the ambient light level (connected to the solar irradiance modulation and to the cloud coverage) of the Gallipoli terrace in the past Millenium. The record (1205-1975 AD) of 200 points with time resolution 3.87 years shows a highly significant 11 y cyclicity covariant with Sunspots of amplitude 0.04 ‰ . A test for determining the δ3C-irradiance relation has been 1 13 performed by studying variations of δ C and the percentage annual number of rainy days during the last century in this region. Our results agree with the expectations on the basis of experiments performed in vitro on G. sacculifer ( on G. ruber is not available). The amplitude of the 11 y δ3C signal turns out to be of the order of 1.5 W/m2. This value seems to be 1 quite high (although of the same order) to be directly induced solely by changes in the solar constant, if in past times they were similar to those measured in space during solar cycles 22-23. The

  7. Observations of cosmic gamma ray bursts with WATCH on EURECA

    DEFF Research Database (Denmark)

    Brandt, Søren; Lund, N.; Castro-Tirado, A. J.

    1995-01-01

    19 Cosmic Gamma-Ray Bursts were detected by the WATCH wide field X-ray monitor during the 11 months flight of EURECA. The identification of the bursts were complicated by a high frequency of background of events caused by high energy cosmic ray interactions in the detector and by low energy, trap...

  8. Celestial messengers. Cosmic rays. The story of a scientific adventure

    Energy Technology Data Exchange (ETDEWEB)

    Bertolotti, Mario [Roma Univ. (Italy). Dipt. die Scienze di Base e Applicate per l' Ingegneria (SBAI)

    2013-07-01

    The book describes from a historical point of view how cosmic rays were discovered. The book describes the research in cosmic rays. The main focus is on how the knowledge was gained, describing the main experiments and the conclusions drawn. Biographical sketches of main researchers are provided. Cosmic rays have an official date of discovery which is linked to the famous balloon flights of the Austrian physicist Hess in 1912. The year 2012 can therefore be considered the centenary of the discovery.

  9. New approach to cosmic ray investigations above the knee

    Science.gov (United States)

    Bogdanov, A. G.; Kokoulin, R. P.; Petrukhin, A. A.

    2016-05-01

    It is assumed that at energies around the knee the nucleus-nucleus interaction is drastically changed due to production of blobs of quark-gluon matter with very large orbital momentum. This approach allows explain all so-called unusual events observed in cosmic rays and gives a new connection between results of EAS investigations and energy spectrum and mass composition of primary cosmic rays. To check this approach, the experiments in cosmic rays and at LHC are proposed.

  10. Supernova-Remnant Origin of Cosmic Rays?

    CERN Document Server

    Butt, Y M; Romero, G E; Dame, T M; Combi, J A; Butt, Yousaf M.; Torres, Diego F.; Romero, Gustavo E.; Dame, Thomas M.; Combi, Jorge A.

    2002-01-01

    It is thought that Galactic cosmic ray (CR) nuclei are gradually accelerated to high energies (up to ~300 TeV/nucleon, where 1TeV=10^12eV) in the expanding shock-waves connected with the remnants of powerful supernova explosions. However, this conjecture has eluded direct observational confirmation^1,2 since it was first proposed in 1953 (ref. 3). Enomoto et al.^4 claim to have finally found definitive evidence that corroborates this model, proposing that the very-high-energy, TeV-range, gamma-rays from the supernova remnant (SNR) RX J1713.7-3946 are due to the interactions of energetic nuclei in this region. Here we argue that their claim is not supported by the existing multiwavelength spectrum of this source. The search for the origin(s) of Galactic cosmic ray nuclei may be closing in on the long-suspected supernova-remnant sources, but it is not yet over.

  11. Origin and propagation of galactic cosmic rays

    Science.gov (United States)

    Cesarsky, Catherine J.; Ormes, Jonathan F.

    1987-01-01

    The study of systematic trends in elemental abundances is important for unfolding the nuclear and/or atomic effects that should govern the shaping of source abundances and in constraining the parameters of cosmic ray acceleration models. In principle, much can be learned about the large-scale distributions of cosmic rays in the galaxy from all-sky gamma ray surveys such as COS-B and SAS-2. Because of the uncertainties in the matter distribution which come from the inability to measure the abundance of molecular hydrogen, the results are somewhat controversial. The leaky-box model accounts for a surprising amount of the data on heavy nuclei. However, a growing body of data indicates that the simple picture may have to be abandoned in favor of more complex models which contain additional parameters. Future experiments on the Spacelab and space station will hopefully be made of the spectra of individual nuclei at high energy. Antiprotons must be studied in the background free environment above the atmosphere with much higher reliability and presion to obtain spectral information.

  12. Cosmic rays from active galactic nuclei

    CERN Document Server

    Berezhko, E G

    2008-01-01

    Cosmic ray (CR) acceleration at the shock created by the expanding cocoons around active galactic nuclei (AGNs) is studied. It is shown that above the energy $10^{18}$ eV the overall energy spectrum of CRs, produced during the AGN evolution and released in the intergalactic space, has the form $N\\propto \\epsilon^{-\\gamma}$, with $\\gamma\\approx 2.6$, which extends up to $\\epsilon_{max}\\sim 10^{20}$ eV. It is concluded that cocoons shocks have to be considered as a main source of extragalactic CRs, which together with Galactic supernova remnants provide the observed CR spectrum.

  13. Cosmic Ray Acceleration by Supernova Shocks

    CERN Document Server

    Berezhko, E G

    2008-01-01

    We analyse the results of recent measurements of nonthermal emission from individual supernova remnants (SNRs) and their correspondence to the nonlinear kinetic theory of cosmic ray (CR) acceleration in SNRs. It is shown that the theory fits these data in a satisfactory way and provides the strong evidences for the efficient CR production in SNRs accompanied by significant magnetic field amplification. Magnetic field amplification leads to considerable increase of CR maximum energy so that the spectrum of CRs accelerated in SNRs is consistent with the requirements for the formation of Galactic CR spectrum up to the energy ~10^17 eV.

  14. Low cloud properties influenced by cosmic rays

    CERN Document Server

    Marsh, N D; Marsh, Nigel D; Svensmark, Henrik

    2000-01-01

    The influence of solar variability on climate is currently uncertain. Recent observations have indicated a possible mechanism via the influence of solar modulated cosmic rays on global cloud cover. Here we show that the influence of solar variability is strongest in low clouds (<= 3.2km). These are liquid water clouds which points to a microphysical mechanism involving enhanced aerosol formation. If confirmed it suggests that the average state of the Heliosphere is important for climate on Earth. The estimated response in low clouds due to a doubling of solar activity is a 1.4 W/m2 warming.

  15. Theory Summary: Very High Energy Cosmic Rays

    Directory of Open Access Journals (Sweden)

    Sarkar Subir

    2013-06-01

    Full Text Available This is a summary of ISVHECRI 2012 from a theorist’s perspective. A hundred years after their discovery, there is renewed interest in very high energy cosmic raysand their interactions which can provide unique information on new physics well beyond the Standard Model if only we knew how to unambiguously decipher the experimental data. While the observational situation has improved dramatically on the past decade with regard to both improved statistics and better understood systematics, the long standing questions regarding the origin of cosmic rays remain only partially answered, while further questions have been raised by new data. A recent development discussed at this Symposium is the advent of forward physics data from several experiments at the LHC, which have broadly vindicated the air shower simulation Monte Carlos currently in use and reduced their uncertainties further. Nevertheless there is still a major extrapolation required to interpret the highest energy air showers observed which appear to be undergoing a puzzling change in their elemental composition, even casting doubt on whether the much vaunted GZK cutoff has indeedbeen observed. The situation is further compounded by the apparent disagreement between Auger and Telescope Array data. A crucial diagnostic will be provided by the detection of the accompanying ultra-high energy cosmic neutrinos — two intriguing events have recently been recorded by IceCube.

  16. Acoustic instability driven by cosmic-ray streaming

    Science.gov (United States)

    Begelman, Mitchell C.; Zweibel, Ellen G.

    1994-01-01

    We study the linear stability of compressional waves in a medium through which cosmic rays stream at the Alfven speed due to strong coupling with Alfven waves. Acoustic waves can be driven unstable by the cosmic-ray drift, provided that the streaming speed is sufficiently large compared to the thermal sound speed. Two effects can cause instability: (1) the heating of the thermal gas due to the damping of Alfven waves driven unstable by cosmic-ray streaming; and (2) phase shifts in the cosmic-ray pressure perturbation caused by the combination of cosmic-ray streaming and diffusion. The instability does not depend on the magnitude of the background cosmic-ray pressure gradient, and occurs whether or not cosmic-ray diffusion is important relative to streaming. When the cosmic-ray pressure is small compared to the gas pressure, or cosmic-ray diffusion is strong, the instability manifests itself as a weak overstability of slow magnetosonic waves. Larger cosmic-ray pressure gives rise to new hybrid modes, which can be strongly unstable in the limits of both weak and strong cosmic-ray diffusion and in the presence of thermal conduction. Parts of our analysis parallel earlier work by McKenzie & Webb (which were brought to our attention after this paper was accepted for publication), but our treatment of diffusive effects, thermal conduction, and nonlinearities represent significant extensions. Although the linear growth rate of instability is independent of the background cosmic-ray pressure gradient, the onset of nonlinear eff ects does depend on absolute value of DEL (vector differential operator) P(sub c). At the onset of nonlinearity the fractional amplitude of cosmic-ray pressure perturbations is delta P(sub C)/P(sub C) approximately (kL) (exp -1) much less than 1, where k is the wavenumber and L is the pressure scale height of the unperturbed cosmic rays. We speculate that the instability may lead to a mode of cosmic-ray transport in which plateaus of uniform cosmic-ray

  17. The contribution of cosmic rays to global warming

    CERN Document Server

    Sloan, Terry

    2011-01-01

    A search has been made for a contribution of the changing cosmic ray intensity to the global warming observed in the last century. The cosmic ray intensity shows a strong 11 year cycle due to solar modulation and the overall rate has decreased since 1900. These changes in cosmic ray intensity are compared to those of the mean global surface temperature to attempt to quantify any link between the two. It is shown that, if such a link exists, the changing cosmic ray intensity contributes less than 8% to the increase in the mean global surface temperature observed since 1900.

  18. Galactic cosmic rays on extrasolar Earth-like planets I. Cosmic ray flux

    CERN Document Server

    Grießmeier, J -M; Stadelmann, A; Grenfell, J L; Atri, D

    2015-01-01

    (abridged abstract) Theoretical arguments indicate that close-in terrestial exoplanets may have weak magnetic fields, especially in the case of planets more massive than Earth (super-Earths). Planetary magnetic fields, however, constitute one of the shielding layers that protect the planet against cosmic-ray particles. In particular, a weak magnetic field results in a high flux of Galactic cosmic rays that extends to the top of the planetary atmosphere. We wish to quantify the flux of Galactic cosmic rays to an exoplanetary atmosphere as a function of the particle energy and of the planetary magnetic moment. We numerically analyzed the propagation of Galactic cosmic-ray particles through planetary magnetospheres. We evaluated the efficiency of magnetospheric shielding as a function of the particle energy (in the range 16 MeV $\\le$ E $\\le$ 524 GeV) and as a function of the planetary magnetic field strength (in the range 0 ${M}_\\oplus$ $\\le$ {M} $\\le$ 10 ${M}_\\oplus$). Combined with the flux outside the planeta...

  19. Transition from Galactic to extragalactic cosmic rays and cosmic ray anisotropy

    Directory of Open Access Journals (Sweden)

    Sigl G.

    2013-06-01

    Full Text Available This talk based on results of ref. [1], where we constrain the energy at which the transition from Galactic to extragalactic cosmic rays occurs by computing the anisotropy at Earth of cosmic rays emitted by Galactic sources. Since the diffusion approximation starts to loose its validity for E/Z ≳ 10(16−17 eV, we propagate individual cosmic rays using Galactic magnetic field models and taking into account both their regular and turbulent components. The turbulent field is generated on a nested grid which allows spatial resolution down to fractions of a parsec. If the primary composition is mostly light or intermediate around E ∼ 1018 eV, the transition at the ankle is ruled out, except in the unlikely case of an extreme Galactic magnetic field with strength >10 μG. Therefore, the fast rising proton contribution suggested by KASCADE-Grande data between 1017 eV and 1018 eV should be of extragalactic origin. In case heavy nuclei dominate the flux at E > 1018 eV, the transition energy can be close to the ankle, if Galactic cosmic rays are produced by sufficiently frequent transients as e.g. magnetars.

  20. Cosmic rays in a galactic breeze

    Science.gov (United States)

    Taylor, Andrew M.; Giacinti, Gwenael

    2017-01-01

    Motivated by the discovery of the nonthermal Fermi bubble features both below and above the Galactic plane, we investigate a scenario in which these bubbles are formed through galacto-centric outflow. Cosmic rays (CR) both diffusing and advecting within a galactic breeze outflow, interacting with the ambient gas present, give rise to γ -ray emission, providing an approximately flat surface brightness profile of this emission, as observed. Applying the same outflow profile further out within the disk, the resultant effects on the observable CR spectral properties are determined. A hardening in the spectra due to the competition of advective and diffusive propagation within a particular energy range is noted, even in the limiting case of equal CR diffusion coefficients in the disk and halo. It is postulated that this hardening effect may relate to the observed hardening feature in the CR spectrum at a rigidity of ≈200 GV .

  1. Cosmic Rays in a Galactic Breeze

    CERN Document Server

    Taylor, Andrew M

    2016-01-01

    Motivated by the discovery of the non-thermal Fermi bubble features both below and above the Galactic plane, we investigate a scenario in which these bubbles are formed through Galacto-centric outflow. Cosmic rays (CR) both diffusing and advecting within a Galactic breeze outflow, interacting with the ambient gas present, give rise to gamma-ray emission, providing an approximately flat surface brightness profile of this emission, as observed. Applying the same outflow profile further out within the disk, the resultant effects on the observable CR spectral properties are determined. A hardening in the spectra due to the competition of advective and diffusive propagation within a particular energy range is noted, even in the limiting case of equal CR diffusion coefficients in the disk and halo. It is postulated that this hardening effect may relate to the observed hardening feature in the CR spectrum at a rigidity of $\\approx 200$ GV.

  2. CREAM: High Energy Frontier of Cosmic Ray Elemental Spectra

    Science.gov (United States)

    Seo, Eun-Suk

    The balloon-borne Cosmic Ray Energetics And Mass (CREAM) experiment was flown for 161 days in six flights over Antarctica. High energy cosmic-ray data were collected over a wide energy range from 10 (10) to 10 (15) eV at an average altitude of 38.5 km with 3.9 g/cm (2) atmospheric overburden. Cosmic-ray elements from protons (Z = 1) to iron nuclei (Z = 26) are separated with excellent charge resolution. Building on success of the balloon flights, the payload is being reconfigured for exposure on the International Space Station (ISS). This ISS-CREAM instrument is configured with the CREAM calorimeter for energy measurements, and four finely segmented Silicon Charge Detector layers for precise charge measurements. In addition, the Top and Bottom Counting Detectors (TCD and BCD) and Boronated Scintillator Detector (BSD) have been newly developed. The TCD and BCD are scintillator based segmented detectors to separate electrons from nuclei using the shower profile differences, while BSD distinguishes electrons from nuclei by detecting thermal neutrons that are dominant in nuclei induced showers. An order of magnitude increase in data collecting power is possible by utilizing the ISS to reach the highest energies practical with direct measurements. The project status including results from on-going analysis of existing data and future plans will be discussed.

  3. Transition from galactic to extragalactic cosmic rays

    CERN Document Server

    Berezinsky, V

    2007-01-01

    The transition from galactic to extragalactic cosmic rays is discussed. One of critical indications for transition is given by the Standard Model of Galactic cosmic rays, according to which the maximum energy of acceleration for iron nuclei is of order of $E_{\\rm Fe}^{\\rm max} \\approx 1\\times 10^{17}$ eV. At $E > E_{\\rm Fe}^{\\rm max}$ the spectrum is predicted to be very steep and thus the Standard Model favours the transition at energy not much higher than $E_{\\rm Fe}^{\\rm max}$. As observations are concerned there are two signatures of transition: change of energy spectra and elongation rate (depth of shower maximum in the atmosphere $X_{\\rm max}$ as function of energy). Three models of transition are discussed: dip-based model, mixed composition model and ankle model. In the latter model the transition occurs at the observed spectral feature, ankle, which starts at $E_a \\approx 1\\times 10^{19}$ eV and is characterised by change of mass compostion from galactic iron to extragalactic protons. In the dip mode...

  4. Cosmic ray studies with the MINOS detectors

    Science.gov (United States)

    Habig, Alec; Minos Collaboration

    2008-11-01

    The MINOS experiment uses two layered scintillator and steel detectors along with a muon neutrino beam to search for νμ disappearance, and thus neutrino oscillations. The Far Detector ('FD') is situated in a former iron mine in the Soudan Underground Mine State Park in Northeastern MN, 700 m (2070 mwe) below the surface. This 5.4 kt steel/scintillator calorimeter measures the neutrino flux after they have traveled the 735 km baseline. It also detects atmospheric neutrinos at a rate of several per week, and is the first magnetized atmospheric neutrino detector, able to discriminate between νμ and νμ on an event-by-event basis. The similar 1 kt Near Detector ('ND') is 100 m (220 mwe) underground at Fermilab. This poster discusses the science being done with the high energy cosmic ray muons which penetrate the rock overburden and are seen by the detectors. The typical surface energy of those seen at the FD are ~1 TeV (coming from ~8 TeV primary cosmic rays) and ~110 GeV at the ND (~900 GeV primaries).

  5. Optical and Ionization Basic Cosmic Ray Detector

    Science.gov (United States)

    Felix, Julian; Andrade, Diego A.; Araujo, Aurora C.; Arceo, Luis; Cervantes, Carlos A.; Molina, Jorge A.; Palacios, Luz R.

    2014-03-01

    There are drift tubes, operating in the Geiger mode, to detect ionization radiation and there are Cerenkov radiation detectors based on photomultiplier tubes. Here is the design, the construction, the operation and the characterization of a hybrid detector that combines both a drift tube and a Cerenkov detector, used mainly so far to detect cosmic rays. The basic cell is a structural Aluminum 101.6 cm-long, 2.54 cm X 2.54 cm-cross section, 0.1 cm-thick tube, interiorly polished to mirror and slightly covered with TiCO2, and filed with air, and Methane-Ar at different concentrations. There is a coaxial 1 mil Tungsten wire Au-coated at +700 to +1200 Volts electronically instrumented to read out in both ends; and there is in each end of the Aluminum tube a S10362-11-100U Hamamatsu avalanche photodiode electronically instrumented to be read out simultaneously with the Tungsten wire signal. This report is about the technical operation and construction details, the characterization results and potential applications of this hybrid device as a cosmic ray detector element. CONACYT, Mexico.

  6. Stable laws and cosmic ray physics

    CERN Document Server

    Genolini, Yoann; Serpico, Pasquale; Taillet, Richard

    2016-01-01

    In the new precision era for cosmic ray astrophysics, theoretical predictions cannot content themselves with average trends, but need to correctly take into account intrinsic uncertainties. The space-time discreteness of the cosmic ray sources, joined with a substantial ignorance of their precise epochs and locations (with the possible exception of the most recent and close ones) plays an important role in this sense. We elaborate a statistical theory to deal with this problem, relating the composite probability P({\\Psi}) to obtain a flux {\\Psi} at the Earth to the single-source probability p({\\psi}) to contribute with a flux {\\psi}. The main difficulty arises since p({\\psi}) is a fat tail distribution, characterized by power-law or broken power-law behaviour up to very large fluxes for which central limit theorem does not hold, and leading to well-known stable laws as opposed to Gaussian distributions. We find that relatively simple recipes provide a satisfactory description of the probability P({\\Psi}). We ...

  7. Measuring the cosmic-ray acceleration efficiency of a supernova remnant.

    Science.gov (United States)

    Helder, E A; Vink, J; Bassa, C G; Bamba, A; Bleeker, J A M; Funk, S; Ghavamian, P; van der Heyden, K J; Verbunt, F; Yamazaki, R

    2009-08-07

    Cosmic rays are the most energetic particles arriving at Earth. Although most of them are thought to be accelerated by supernova remnants, the details of the acceleration process and its efficiency are not well determined. Here we show that the pressure induced by cosmic rays exceeds the thermal pressure behind the northeast shock of the supernova remnant RCW 86, where the x-ray emission is dominated by synchrotron radiation from ultrarelativistic electrons. We determined the cosmic-ray content from the thermal Doppler broadening measured with optical spectroscopy, combined with a proper-motion study in x-rays. The measured postshock proton temperature, in combination with the shock velocity, does not agree with standard shock heating, implying that >50% of the postshock pressure is produced by cosmic rays.

  8. A cosmic ray-climate link and cloud observations

    Directory of Open Access Journals (Sweden)

    Dunne Eimear M.

    2012-11-01

    Full Text Available Despite over 35 years of constant satellite-based measurements of cloud, reliable evidence of a long-hypothesized link between changes in solar activity and Earth’s cloud cover remains elusive. This work examines evidence of a cosmic ray cloud link from a range of sources, including satellite-based cloud measurements and long-term ground-based climatological measurements. The satellite-based studies can be divided into two categories: (1 monthly to decadal timescale analysis and (2 daily timescale epoch-superpositional (composite analysis. The latter analyses frequently focus on sudden high-magnitude reductions in the cosmic ray flux known as Forbush decrease events. At present, two long-term independent global satellite cloud datasets are available (ISCCP and MODIS. Although the differences between them are considerable, neither shows evidence of a solar-cloud link at either long or short timescales. Furthermore, reports of observed correlations between solar activity and cloud over the 1983–1995 period are attributed to the chance agreement between solar changes and artificially induced cloud trends. It is possible that the satellite cloud datasets and analysis methods may simply be too insensitive to detect a small solar signal. Evidence from ground-based studies suggests that some weak but statistically significant cosmic ray-cloud relationships may exist at regional scales, involving mechanisms related to the global electric circuit. However, a poor understanding of these mechanisms and their effects on cloud makes the net impacts of such links uncertain. Regardless of this, it is clear that there is no robust evidence of a widespread link between the cosmic ray flux and clouds.

  9. Cosmic Rays in Magnetospheres of the Earth and other Planets

    CERN Document Server

    Dorman, Lev

    2009-01-01

    This monograph describes the behaviour of cosmic rays in the magnetosphere of the Earth and of some other planets. Recently this has become an important topic both theoretically, because it is closely connected with the physics of the Earth’s magnetosphere, and practically, since cosmic rays determine a significant part of space weather effects on satellites and aircraft. The book contains eight chapters, dealing with – The history of the discovery of geomagnetic effects caused by cosmic rays and their importance for the determination of the nature of cosmic rays or gamma rays – The first explanations of geomagnetic effects within the framework of the dipole approximation of the Earth’s magnetic field – Trajectory computations of cutoff rigidities, transmittance functions, asymptotic directions, and acceptance cones in the real geomagnetic field taking into account higher harmonics – Cosmic ray latitude-longitude surveys on ships, trains, tracks, planes, balloons and satellites for determining the...

  10. Cosmic-ray-produced neon and helium in the summit lavas of Maui

    Science.gov (United States)

    Marti, K.; Craig, H.

    1987-01-01

    The identification of cosmic-ray-produced Ne-21c in addition to He-3c, components attributed to cosmic ray-induced spallation reactions, are reported in gases extracted by fusion of olivines and clinopyroxenes after vacuum-crushing. The observed (He-3/Ne-21)c ratios and the ratio of Ne-21c in olivine to that in clinopyroxene are consistent with an in situ origin of He-3c and Ne-21c by cosmic-ray spallation reactions. These components could be important for interpreting helium isotopic data in terrestrial reservoirs. Geophysical applications could include determinations of erosion rates and exposure histories of terrestrial rocks.

  11. Observations of cosmic gamma ray bursts with WATCH on EURECA

    DEFF Research Database (Denmark)

    Brandt, Søren; Lund, N.; Castro-Tirado, A. J.

    1995-01-01

    19 Cosmic Gamma-Ray Bursts were detected by the WATCH wide field X-ray monitor during the 11 months flight of EURECA. The identification of the bursts were complicated by a high frequency of background of events caused by high energy cosmic ray interactions in the detector and by low energy......, trapped particle streams. These background events may simulate the count rate increases characteristic of cosmic gamma bursts. For 12 of the detected events, their true cosmic nature have been confirmed through consistent localizations of the burst sources based on several independent WATCH data sets...

  12. Very-High-Energy Solar Gamma Rays From Cosmic-Ray Interactions

    Science.gov (United States)

    Zhou, Bei; Ng, Kenny; Beacom, John; Peter, Annika; Rott, Cartsen

    2017-01-01

    Cosmic-ray induced gamma rays from the Sun has been observed up to 100 GeV. However, there are no theoretical predictions beyond 10 GeV. We provide the first calculation of the hadronic disk component in TeV-PeV, where solar magnetic fields can be ignored. We also consider the leptonic gamma-ray halo, taking into account electrons from local pulsars. With Fermi and soon HAWC & LHAASO observations, our results provide new insights on local cosmic rays, solar magnetic fields, and solar dark matter studies. BZ is supported by OSU Fowler Fellowship. KN and FB are supported by NSF Grant PHY-1404311. AK is supported by NSF GRFP Grant No. DGE-1321846. CR is supported by the Korea Neutrino Research Center. KN is also supported by the OSU Presidential Fellowship.

  13. Low-energy cosmic rays in the Orion region

    DEFF Research Database (Denmark)

    Pohl, M.

    1998-01-01

    The recently observed nuclear gamma-ray line emission from the Orion complex implies a high flux of low-energy cosmic rays (LECR) with unusual abundance. This cosmic ray component would dominate the energy density, pressure, and ionising power of cosmic rays, and thus would have a strong impact...... sections, thus it depends only weakly on the LECR spectrum and not on any other parameter. Observations with HEPC will allow us to derive the bremsstrahlung spectrum over the weakly extended gamma-ray emission regions....

  14. CRIME - cosmic ray interactions in molecular environments

    CERN Document Server

    Krause, Julian; Gabici, Stefano

    2015-01-01

    Molecular clouds act as targets for cosmic rays (CR), revealing their presence through either gamma-ray emission due to proton-proton interactions, and/or through the ionization level in the cloud, produced by the CR flux. The ionization rate is a unique tool, to some extent complementary to the gamma-ray emission, in that it allows to constrain the CR spectrum especially for energies below the pion production rate ($\\approx 280$ MeV). Here we study the effect of ionization on $H_2$ clouds due to both CR protons and electrons, using the fully relativistic ionization cross sections, which is important to correctly account for the contribution due to relativistic CRs. The contribution to ionization due to secondary electrons is also included self-consistently. The whole calculation has been implemented into a numerical code which is publicly accessible through a web-interface. The code also include the calculation of gamma-ray emission once the CR spectrum

  15. The Heliosphere as Seen in TeV Cosmic Rays

    Science.gov (United States)

    Zhang, Ming; Pogorelov, Nikolai

    2016-11-01

    Measurements from several cosmic-ray air shower experiments reveal that the anisotropy of TeV cosmic-ray flux does not agree with a dipole pattern commonly expected from the Compton-Getting effect or from the diffusion of cosmic rays in Galactic magnetic fields. TeV cosmic-ray anisotropy maps often show fine features, some of which are slightly time-dependent. Because the size of the heliosphere is larger than the gyroradius of TeV cosmic rays in the interstellar magnetic field, the electric and magnetic fields of the heliosphere may distort the pattern of cosmic-ray anisotropy that one would see in the local interstellar medium without the presence of the heliosphere. We have developed a method of mapping cosmic-ray anisotropy using Liouville's theorem. In this paper, we show how to use cosmic-ray anisotropy features to determine the direction of the local interstellar magnetic field, the hydrogen deflection plane, the size and shape of the heliotail, and the geometry of the heliosphere bow wave.

  16. From cosmic ray source to the Galactic pool

    Science.gov (United States)

    Schure, K. M.; Bell, A. R.

    2014-01-01

    The Galactic cosmic ray spectrum is a remarkably straight power law. Our current understanding is that the dominant sources that accelerate cosmic rays up to the knee (3 × 1015 eV) or perhaps even the ankle (3 × 1018 eV), are young Galactic supernova remnants. In theory, however, there are various reasons why the spectrum may be different for different sources, and may not even be a power law if non-linear shock acceleration applies during the most efficient stages of acceleration. We show how the spectrum at the accelerator translates to the spectrum that makes up the escaping cosmic rays that replenish the Galactic pool of cosmic rays. We assume that cosmic ray confinement, and thus escape, is linked to the level of magnetic field amplification, and that the magnetic field is amplified by streaming cosmic rays according to the non-resonant hybrid or resonant instability. When a fixed fraction of the energy is transferred to cosmic rays, it turns out that a source spectrum that is flatter than E-2 will result in an E-2 escape spectrum, whereas a steeper source spectrum will result in an escape spectrum with equal steepening. This alleviates some of the concern that may arise from expected flat or concave cosmic ray spectra associated with non-linear shock modification.

  17. MAGIC contributions to the 32nd International Cosmic Ray Conference

    CERN Document Server

    Aleksić, J; Antonelli, L A; Antoranz, P; Asensio, M; Backes, M; Barrio, J A; Bastieri, D; González, J Becerra; Bednarek, W; Berdyugin, A; Berger, K; Bernardini, E; Biland, A; Blanch, O; Bock, R K; Boller, A; Bonnoli, G; Tridon, D Borla; Braun, I; Bretz, T; Cañellas, A; Carmona, E; Carosi, A; Colin, P; Colombo, E; Contreras, J L; Cortina, J; Cossio, L; Covino, S; Dazzi, F; De Angelis, A; De Caneva, G; del Pozo, E De Cea; De Lotto, B; Mendez, C Delgado; Ortega, A Diago; Doert, M; Domínguez, A; Prester, D Dominis; Dorner, D; Doro, M; Eisenacher, D; Elsaesser, D; Ferenc, D; Fonseca, M V; Font, L; Fruck, C; López, R J García; Garczarczyk, M; Garrido, D; Giavitto, G; Godinović, N; Hadasch, D; Häfner, D; Herrero, A; Hildebrand, D; Höhne-Mönch, D; Hose, J; Hrupec, D; Jogler, T; Kellermann, H; Klepser, S; Krähenbühl, T; Krause, J; Kushida, J; La Barbera, A; Lelas, D; Leonardo, E; Lindfors, E; Lombardi, S; López, M; López-Oramas, A; Lorenz, E; Makariev, M; Maneva, G; Mankuzhiyil, N; Mannheim, K; Maraschi, L; Marcote, B; Mariotti, M; Martínez, M; Mazin, D; Meucci, M; Miranda, J M; Mirzoyan, R; Moldón, J; Moralejo, A; Munar-Adrover, P; Nieto, D; Nilsson, K; Orito, R; Otte, N; Oya, I; Paneque, D; Paoletti, R; Pardo, S; Paredes, J M; Partini, S; Perez-Torres, M A; Persic, M; Peruzzo, L; Pilia, M; Pochon, J; Prada, F; Moroni, P G Prada; Prandini, E; Gimenez, I Puerto; Puljak, I; Reichardt, I; Reinthal, R; Rhode, W; Ribó, M; Rico, J; Rissi, M; Rügamer, S; Saggion, A; Saito, K; Saito, T Y; Salvati, M; Satalecka, K; Scalzotto, V; Scapin, V; Schultz, C; Schweizer, T; Shayduk, M; Shore, S N; Sillanpää, A; Sitarek, J; Snidaric, I; Sobczynska, D; Spanier, F; Spiro, S; Stamatescu, V; Stamerra, A; Steinke, B; Storz, J; Strah, N; Surić, T; Takalo, L; Takami, H; Tavecchio, F; Temnikov, P; Terzić, T; Tescaro, D; Teshima, M; Tibolla, O; Torres, D F; Treves, A; Uellenbeck, M; Vankov, H; Vogler, P; Wagner, R M; Weitzel, Q; Zabalza, V; Zandanel, F; Zanin, R

    2011-01-01

    Compilation of the papers contributed by the MAGIC collaboration to the 32nd International Cosmic Ray Conference, which took place between August 11 and 18, 2011 in Beijing, China. The papers are sorted in 6 categories: Overview and Highlight papers; Instrument, software and techniques; Galactic sources; Extragalactic sources; Multi-wavelength and joint campaigns; Fundamental physics, dark matter and cosmic rays.

  18. Direct Measurements, Acceleration and Propagation of Cosmic Rays

    CERN Document Server

    Blasi, Pasquale

    2008-01-01

    This paper summarizes highlights of the OG1 session of the 30th International Cosmic Ray Conference, held in Merida (Yucatan, Mexico). The subsessions (OG1.1, OG1.2, OG1.3, OG1.4 and OG1.5) summarized here were mainly devoted to direct measurements, acceleration and propagation of cosmic rays.

  19. Supernova Remnants as the Sources of Galactic Cosmic Rays

    NARCIS (Netherlands)

    Vink, J.

    2013-01-01

    The origin of cosmic rays holds still manymysteries hundred years after they were first discovered. Supernova remnants have for long been the most likely sources of Galactic cosmic rays. I discuss here some recent evidence that suggests that supernova remnants can indeed efficiently accelerate cosmi

  20. Study of cosmic ray nuclei detection by an image calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Casolino, M.; Sparvoli, R.; Morselli, A.; Picozza, P. [Rome Univ. `Tor Vergata` (Italy)]|[INFN, Sezione Univ. `Tor Vergata` Rome (Italy); Ozerov, Yu.V.; Zemskov, V.M.; Zverev, V.G.; Galper, A.M. [Moscow Engineering Physics Institute, Moscow (Russian Federation); Carlson, P. [Royal Institute of Technology, Stockholm (Sweden); Fuglesang, C. [ESA-EAC, Cologne (Germany)

    1995-09-01

    It is shown that a cosmic gamma-ray telescope made of a multilayer silicon tracker and a imaging CsI calorimeter, is capable of identifying cosmic ray nuclei. The telescope charge resolution is estimated around 4% independently of charge. Simulation methods are used to determine the telescope properties for nuclei detection.

  1. Measurement of cosmic ray chemical composition at Mt. Chacaltaya

    Energy Technology Data Exchange (ETDEWEB)

    Ogio, S.; Kakimoto, F.; Harada, D.; Tokunou, H.; Burgoa, O.; Tsunesada, Y. [Institute of Technology, Dept. of Physics, Tokuo (Japan); Shirasaki, Y. [National Space Development Agency of Japan, Tsukuba (Japan); Gotoh, E.; Nakatani, H.; Shimoda, S.; Nishi, K.; Tajima, N.; Yamada, Y. [The Institute of Physical and Chemical Research, Wako, Saitama (Japan); Kaneko, T. [Okayama University, Dept. of Physics, Oakayama (Japan); Matsubara, Y. [Nagoya University, Solar-Terrestrial Environment Laboratory, Nagoya, Aichi (Japan); Miranda, P.; Velarde, A. [Universidad Mayor de San Andres, Institute de Investigaciones Fisicas, La Paz (Bolivia); Mizumoto, T. [National Astronomical Observatory, Mitaka, Tokyo (Japan); Yoshii, H.; Morizawa, A. [Ehime University, Dept. of Physics, Matsuyama, Ehime (Japan); Murakami, K. [Nagoya University of Foreign Studies, Nissin, Aichi (Japan); Toyoda, Y. [Fukui University of Technology, Faculty of General Education, Fukui (Japan)

    2001-10-01

    BASJE group has measured the chemical composition of primary cosmic rays with energies around the knee with several methods. These measurements show that the averaged mass number of cosmic ray particles increases with energy up to the knee. In order to measure the chemical composition in much wider energy range, it was started a new experiment at Mt. Chacaltaya in 2000.

  2. Supernova Remnants as the Sources of Galactic Cosmic Rays

    NARCIS (Netherlands)

    J. Vink

    2012-01-01

    The origin of cosmic rays holds still manymysteries hundred years after they were first discovered. Supernova remnants have for long been the most likely sources of Galactic cosmic rays. I discuss here some recent evidence that suggests that supernova remnants can indeed efficiently accelerate cosmi

  3. Energetic-Particle Populations and Cosmic-Ray Entry.

    Science.gov (United States)

    1981-03-17

    H., E. Fl~ickiger. H. von Mandach , and M. Arens, Determina- tion of the ring current radii from cosmic ray neutron monitor data for the 17 December... Mandach , and M. Arens, Determination of the ring current radii from cosmic ray neutron monitor data for the 17 December 1971 magnetic storm, Planet. Space

  4. Measurements and Monte Carlo simulations of the spectral variations of the cosmic-ray-induced neutrons at the Pic du Midi over a 2-y period.

    Science.gov (United States)

    Cheminet, A; Hubert, G; Lacoste, V; Boscher, D

    2014-10-01

    In this paper, a Bonner Sphere Spectrometer extended to high energies (HERMEIS) was employed to measure continuously the cosmic-ray-induced neutron spectra over a long-term period (2 y) at mountain altitude and medium geomagnetic latitude (Pic du Midi de Bigorre in the French Pyrenees, +2885 m, 5.6 GV). The results showed 1-y sinusoidal oscillations in the integrated fluence rates. The amplitude of these oscillations depends on the neutron energetic domain. The fluence rate of thermal neutrons was 53 % higher in August than that in February. Those of epithermal neutrons with energies between 0.4 eV and 0.1 MeV and evaporation neutrons (from 0.1 to 20 MeV) were ∼25 % higher in the summer than those in the winter. Finally, the cascade neutron fluence rate (>20 MeV) remained quite the same (<10 % variation). To understand the effects of local and seasonal changes in the measurement environment, GEANT4 simulations were performed. The nature of rock and thickness of the snow cover during the winter period (given by meteorological data) were investigated. A reasonable agreement between experiments and calculations was found.

  5. Clusters of Galaxies Shock Waves and Cosmic Rays

    CERN Document Server

    Ryu, D; Ryu, Dongsu; Kang, Hyesung

    2002-01-01

    Recent observations of galaxy clusters in radio and X-ray indicate that cosmic rays and magnetic fields may be energetically important in the intracluster medium. According to the estimates based on theses observational studies, the combined pressure of these two components of the intracluster medium may range between $10% \\sim 100 %$ of gas pressure, although their total energy is probably time dependent. Hence, these non-thermal components may have influenced the formation and evolution of cosmic structures, and may provide unique and vital diagnostic information through various radiations emitted via their interactions with surrounding matter and cosmic background photons. We suggest that shock waves associated with cosmic structures, along with individual sources such as active galactic nuclei and radio galaxies, supply the cosmic rays and magnetic fields to the intracluster medium and to surrounding large scale structures. In order to study 1) the properties of cosmic shock waves emerging during the larg...

  6. Response of Atmospheric Biomarkers to NOx-induced Photochemistry Generated by Stellar Cosmic Rays for Earth-like Planets in the Habitable Zone of M-Dwarf Stars

    CERN Document Server

    Grenfell, John Lee; von Paris, Philip; Patzer, Beate; Lammer, Helmut; Stracke, Barbara; Gebauer, Stefanie; Schreier, Franz; Rauer, Heike

    2015-01-01

    Understanding whether M-dwarf stars may host habitable planets with Earth-like atmospheres and biospheres is a major goal in exoplanet research. If such planets exist, the question remains as to whether they could be identified via spectral signatures of biomarkers. Such planets may be exposed to extreme intensities of cosmic rays that could perturb their atmospheric photochemistry. Here, we consider stellar activity of M-dwarfs ranging from quiet up to strong flaring conditions and investigate one particular effect upon biomarkers, namely, the ability of secondary electrons caused by stellar cosmic rays to break up atmospheric molecular nitrogen (N2), which leads to production of nitrogen oxides in the planetary atmosphere, hence affecting biomarkers such as ozone. We apply a stationary model, that is, without a time-dependence, hence we are calculating the limiting case where the atmospheric chemistry response time of the biomarkers is assumed to be slow and remains constant compared with rapid forcing by t...

  7. Cosmic ray energetics and mass (CREAM) calibrating a cosmic ray calorimeter

    CERN Document Server

    Ganel, O; Ahn, S H; Alford, R; Kim, K C; Lee, M H; Liu, L; Lutz, L; Malinin, A; Schindhelm, E; Wang, J Z; Wu, J; Beatty, J J; Coutu, S; Minnick, S A; Nutter, S; Duvernois, M A; Choi, M J; Kim, H J; Kim, S K; Park, I H; Swordy, S P

    2002-01-01

    CREAM is slated to fly as the first NASA ultra long duration balloon (ULDB) payload in late 2003. On this 60-plus-day flight CREAM is expected to collect more direct high-energy cosmic ray events than the current world total. With three such flights CREAM is expected to have a proton energy reach above 5*10/sup 14/ eV, probing near 100 Te V for the predicted kink in the cosmic-ray proton spectrum. With a transition radiation detector (TRD) above a sampling tungsten /scintillator calorimeter, an in-flight cross-calibration of the absolute energy scale becomes possible with heavy ions. We report on results from a 2001 beam test of the calorimeter in an SPS beam at the European High Energy Physics lab (CERN) and on the planned in- flight calibration. (7 refs).

  8. Cosmic ray neon, Wolf-Rayet stars, and the superbubble origin of galactic cosmic rays

    CERN Document Server

    Binns, W R; Arnould, M; Cummings, A C; George, J S; Goriely, S; Israel, M H; Leske, R A; Mewaldt, R A; Meynet, G; Scott, L M; Stone, Edward C; Von Rosenvinge, T T

    2005-01-01

    The abundances of neon isotopes in the galactic cosmic rays (GCRs) are reported using data from the Cosmic Ray Isotope Spectrometer (CRIS) aboard the Advanced Composition Explorer (ACE). We compare our ACE-CRIS data for neon and refractory isotope ratios, and data from other experiments, with recent results from two-component Wolf-Rayet (WR) models. The three largest deviations of GCR isotope ratios from solar-system ratios predicted by these models are indeed present in the GCRs. Since WR stars are evolutionary products of OB stars, and most OB stars exist in OB associations that form superbubbles, the good agreement of these data with WR models suggests that superbubbles are the likely source of at least a substantial fraction of GCRs.

  9. Underground cosmic-ray experiment EMMA

    DEFF Research Database (Denmark)

    Kuusiniemi, P.; Bezrukov, L.; Enqvist, T.

    2013-01-01

    EMMA (Experiment with MultiMuon Array) is a new approach to study the composition of cosmic rays at the knee region (1 – 10 PeV). The array will measure the multiplicity and lateral distribution of the high-energy muon component of an air shower and its arrival direction on an event-by-event basis....... The array operates in the Pyhäsalmi Mine, Finland, at a depth of 75 metres (or 210 m.w.e) corresponding to the cut-off energy of approximately 50 GeV for vertical muons. The data recording with a partial array has started and preliminary results of the first test runs are presented....

  10. Cosmic Ray Spectrum in Supernova Remnant Shocks

    Science.gov (United States)

    Kang, H.

    2011-10-01

    We performed kinetic simulations of diffusive shock acceleration in Type Ia supernova remnants (SNRs) expanding into a uniform interstellar medium (ISM). The preshock gas temperature is the primary parameter that governs the cosmic ray (CR) acceleration, while magnetic field strength and CR injection rate are secondary parameters. SNRs in the hot ISM, with an injection fraction smaller than 10-4, are inefficient accelerators with less than 10 % energy getting converted to CRs. The shock structure is almost test-particle like and the ensuing CR spectrum can be steeper than E-2. Although the particles can be accelerated to the knee energy of 1015.5ZeV with amplified magnetic fields in the precursor, Alfvénic drift of scattering centers softens the source spectrum as steep as E-2.1 and reduces the CR acceleration efficiency.

  11. Global Atmospheric Models for Cosmic Ray Detectors

    CERN Document Server

    Will, Martin

    2014-01-01

    The knowledge of atmospheric parameters -- such as temperature, pressure, and humidity -- is very important for a proper reconstruction of air showers, especially with the fluorescence technique. The Global Data Assimilation System (GDAS) provides altitude-dependent profiles of these state variables of the atmosphere and several more. Every three hours, a new data set on 23 constant pressure level plus an additional surface values is available for the entire globe. These GDAS data are now used in the standard air shower reconstruction of the Pierre Auger Observatory. The validity of the data was verified by comparisons with monthly models that were averaged from on-site meteorological radio soundings and weather station measurements obtained at the Observatory in Malarg\\"ue. Comparisons of reconstructions using the GDAS data and the monthly models are also presented. Since GDAS is a global model, the data can potentially be used for other cosmic and gamma ray detectors. Several studies were already performed ...

  12. Ultra-High-Energy Cosmic Rays

    CERN Document Server

    Dova, M T

    2015-01-01

    The origin of the ultra high energy cosmic rays (UHECR) with energies above E > 10 17 eV, is still unknown. The discovery of their sources will reveal the engines of the most energetic astrophysical accelerators in the universe. This is a written version of a series of lectures devoted to UHECR at the 2013 CERN-Latin-American School of High-Energy Physics. We present anintroduction to acceleration mechanisms of charged particles to the highest energies in astrophysical objects, their propagation from the sources to Earth, and the experimental techniques for their detection. We also discuss some of the relevant observational results from Telescope Array and Pierre Auger Observatory. These experiments deal with particle interactions at energies orders of magnitude higher than achieved in terrestrial accelerators.

  13. Cosmic ray transport in MHD turbulence

    CERN Document Server

    Yan, Huirong

    2007-01-01

    Numerical simulations shed light onto earlier not trackable problem of magnetohydrodynamic (MHD) turbulence. They allowed to test the predictions of different models and choose the correct ones. Inevitably, this progress calls for revisions in the picture of cosmic ray (CR) transport. It also shed light on the problems with the present day numerical modeling of CR. In this paper we focus on the analytical way of describing CR propagation and scattering, which should be used in synergy with the numerical studies. In particular, we use recently established scaling laws for MHD modes to obtain the transport properties for CRs. We include nonlinear effects arising from large scale trapping, to remove the 90 degree divergence. We determine how the efficiency of the scattering and CR mean free path depend on the characteristics of ionized media, e.g. plasma $\\beta$, Coulomb collisional mean free path. Implications for particle transport in interstellar medium and solar corona are discussed. We also examine the perp...

  14. Cosmic Ray Spectrum in Supernova Remnant Shocks

    CERN Document Server

    Kang, Hyesung

    2011-01-01

    We performed kinetic simulations of diffusive shock acceleration in Type Ia supernova remnants (SNRs) expanding into a uniform interstellar medium (ISM). The preshock gas temperature is the primary parameter that governs the cosmic ray (CR) acceleration, while magnetic field strength and CR injection rate are secondary parameters. SNRs in the hot ISM, with an injection fraction smaller than 10^{-4}, are inefficient accelerators with less than 10 % energy getting converted to CRs. The shock structure is almost test-particle like and the ensuing CR spectrum can be steeper than E^{-2}. Although the particles can be accelerated to the knee energy of 10^{15.5}Z eV with amplified magnetic fields in the precursor, Alfv'enic drift of scattering centers softens the source spectrum as steep as E^{-2.1} and reduces the CR acceleration efficiency.

  15. Cosmic ray decreases and magnetic clouds

    Energy Technology Data Exchange (ETDEWEB)

    Cane, H.V. (NASA Goddard Space Flight Center, Greenbelt, MD (United States))

    1993-03-01

    A study has been made of energetic particle data, obtained from IMP 8, in conjunction with solar wind field and plasma data at the times of reported magnetic clouds. It is shown that magnetic clouds can cause a depression of the cosmic ray flux but high fields are required. A depression of 3% in a neutron monitor requires a field of about 25 nT. Such high fields are found only in a subset of coronal ejecta. The principal cause for Forbush decreases associated with energetic shocks is probably turbulence in the postshock region, although some shocks will be followed by an ejecta with a high field. Each event is different. The lower-energy particles can help in identifying the dominant processes in individual events. 19 refs., 5 figs.

  16. Cosmic-ray acceleration in young protostars

    CERN Document Server

    Padovani, Marco; Marcowith, Alexandre; Ferrière, Katia

    2015-01-01

    The main signature of the interaction between cosmic rays and molecular clouds is the high ionisation degree. This decreases towards the densest parts of a cloud, where star formation is expected, because of energy losses and magnetic effects. However recent observations hint to high levels of ionisation in protostellar systems, therefore leading to an apparent contradiction that could be explained by the presence of energetic particles accelerated within young protostars. Our modelling consists of a set of conditions that has to be satisfied in order to have an efficient particle acceleration through the diffusive shock acceleration mechanism. We find that jet shocks can be strong accelerators of protons which can be boosted up to relativistic energies. Another possibly efficient acceleration site is located at protostellar surfaces, where shocks caused by impacting material during the collapse phase are strong enough to accelerate protons. Our results demonstrate the possibility of accelerating particles du...

  17. Composition of UHE Cosmic Ray Primaries

    CERN Document Server

    Poirier, J; Gress, J; Lin, T F; Rösch, A

    2000-01-01

    Project GRAND presents results on the atomic composition of primary cosmic rays. This is accomplished by determining the average height of primary particles that cause extensive air showers detected by Project GRAND. Particles with a larger cross sectional area, such as iron nuclei, are likely to start an extensive air shower higher in the atmosphere whereas protons, with a smaller cross section, would pass through more air before interacting and thus start showers at lower heights. Such heights can be determined by extrapolating identified muon tracks backward (upward) to determine their height of origin (Gress et al., 1997). Since muons are from the top, hadronic part of the shower, they are a good estimator for the beginning of the shower. The data for this study were taken during the previous year with 20 million shower events.

  18. Low-energy cosmic ray protons from nuclear interactions of cosmic rays with the interstellar medium.

    Science.gov (United States)

    Wang, H. T.

    1973-01-01

    The intensity of low-energy (less than 100 MeV) protons from nuclear interactions of higher-energy (above 100 MeV) cosmic rays with the interstellar medium is calculated. The resultant intensity in the 10- to 100-MeV range is larger by a factor of 3-5 than the observed proton intensity near earth. The calculated intensity from nuclear interactions constitutes a lower limit on the actual proton intensity in interstellar space.

  19. LHCf experiment: forward physics at LHC for cosmic rays study

    Directory of Open Access Journals (Sweden)

    Del Prete M.

    2016-01-01

    Full Text Available The LHCf experiment, optimized for the study of forward physics at LHC, completes its main physics program in this year 2015, with the proton-proton collisions at the energy of 13 TeV. LHCf gives important results on the study of neutral particles at extreme pseudo-rapidity, both for proton-proton and for proton-ion interactions. These results are an important reference for tuning the models of the hadronic interaction currently used for the simulation of the atmospheric showers induced by very high energy cosmic rays. The results of this analysis and the future perspective are presented in this paper.

  20. A Study of the Link between Cosmic Rays and Clouds with a Cloud Chamber at the CERN PS

    CERN Multimedia

    Laakso, L K; Lehtipalo, K; Miettinen, P K; Duarte branco da silva santos, F; Stojkov, Y; Jud, W; Wurm, F; Pinterich, T; Dommen, J; Curtius, J; Kreissl, F C; Minginette, P; Azeredo lima, J M; Kulmala, M T; Petaja, T T; Schafer, M; Rodrigues tome, A; Viisanen, Y A; Onnela, A T O; Kristic, R; Ehrhart, S K; Amorim, A J; Maksumov, O; Kupc, A; Sitals, R P; Dunne, E M; Riipinen, I A; Downard, A J; Virtanen, A; Tsagkogeorgas, G; Schuchmann, S; Kvashnin, A; Hansel, A; Vrtala, A; Schallhart, S; Yan, C; Stratmann, F; Pinto mogo, S I; Makhmutov, V; Riccobono, F; Weingartner, E P; Kurten, C A; Rondo, L; Ruuskanen, T M; Laaksonen, A J; De menezes, L; Hauser, D; Kajos, M K; Schmitt, T M; Mathot, S; Wasem, A; Guida, R; Metzger, A E; Baltensperger, U; Kirkby, J; Duplissy, J; Franchin, A; Flagan, R C; Wex, H D

    2002-01-01

    Three recent independent observations suggest that galactic cosmic rays may exert a significant influence on the climate. Firstly, satellite data suggest a positive correlation between variations of cosmic ray intensity and the fraction of Earth covered by low clouds. Secondly, palaeoclimatic data provide extensive evidence for an association between cosmic ray intensity and climate over the last 10 kyr and at earlier times. Finally, the presence of ion-induced nucleation of new aerosol in the atmosphere is supported by recent observations. If cosmic rays do indeed enhance aerosol production and low cloud formation, this could exert a strong cooling influence on the radiative energy balance of Earth. Physical mechanisms by which cosmic rays may affect aerosol and clouds have been proposed and modelled, but definitive experiments are lacking. The aim of CLOUD is to investigate the nature and significance of cosmic ray-aerosol-cloud mechanisms under controlled laboratory conditions using the T11 beam at the CER...

  1. Biomarker Response to Galactic Cosmic Ray-Induced NOx and the Methane Greenhouse Effect in the Atmosphere of an Earthlike Planet Orbiting an M-Dwarf Star

    CERN Document Server

    Grenfell, J L; Patzer, B; Rauer, H; Segura, A; Stadelmann, A; Stracke, B; Titz, R; Von Paris, P; Grenfell, John Lee; Griessmeier, Jean-Mathias; Patzer, Beate; Rauer, Heike; Segura, Antigona; Stadelmann, Anja; Stracke, Barbara; Titz, Ruth; Paris, Philip von

    2007-01-01

    Planets orbiting in the habitable zone (HZ) of M-Dwarf stars are subject to high levels of galactic cosmic rays (GCRs) which produce nitrogen oxides in earthlike atmospheres. We investigate to what extent this NOx may modify biomarker compounds such as ozone (O3) and nitrous oxide (N2O), as well as related compounds such as water (H2O) (essential for life) and methane (CH4) (which has both abiotic and biotic sources) . Our model results suggest that such signals are robust, changing in the M-star world atmospheric column by up to 20% due to the GCR NOx effects compared to an M-star run without GCR effects and can therefore survive at least the effects of galactic cosmic rays. We have not however investigated stellar cosmic rays here. CH4 levels are about 10 times higher than on the Earth related to a lowering in hydroxyl (OH) in response to changes in UV. The increase is less than reported in previous studies. This difference arose partly because we used different biogenic input. For example, we employed 23% ...

  2. Cosmic rays, aerosol formation and cloud-condensation nuclei: sensitivities to model uncertainties

    Directory of Open Access Journals (Sweden)

    E. J. Snow-Kropla

    2011-01-01

    Full Text Available The flux of cosmic rays to the atmosphere has been observed to correlate with cloud and aerosol properties. One proposed mechanism for these correlations is the "ion-aerosol clear-air" mechanism where the cosmic rays modulate atmospheric ion concentrations, ion-induced nucleation of aerosols and cloud condensation nuclei (CCN concentrations. We use a global chemical transport model with online aerosol microphysics to explore the dependence of CCN concentrations on the cosmic-ray flux. Expanding upon previous work, we test the sensitivity of the cosmic-ray/CCN connection to several uncertain parameters in the model including primary emissions, Secondary Organic Aerosol (SOA condensation and charge-enhanced condensational growth. The sensitivity of CCN to cosmic rays increases when simulations are run with decreased primary emissions, but show location-dependent behavior from increased amounts of secondary organic aerosol and charge-enhanced growth. For all test cases, the change in the concentration of particles larger than 80 nm between solar minimum (high cosmic ray flux and solar maximum (low cosmic ray flux simulations is less than 0.2%. The change in the total number of particles larger than 10 nm was larger, but always less than 1%. The simulated change in the column-integrated Ångström exponent was negligible for all test cases. Additionally, we test the predicted aerosol sensitivity to week-long Forbush decreases of cosmic rays and find that the maximum change in aerosol properties for these cases is similar to steady-state aerosol differences between the solar maximum and solar minimum. These results provide evidence that the effect of cosmic rays on CCN and clouds through the ion-aerosol clear-sky mechanism is limited by dampening from aerosol processes.

  3. Cosmic rays, aerosol formation and cloud-condensation nuclei: sensitivities to model uncertainties

    Directory of Open Access Journals (Sweden)

    E. J. Snow-Kropla

    2011-04-01

    Full Text Available The flux of cosmic rays to the atmosphere has been reported to correlate with cloud and aerosol properties. One proposed mechanism for these correlations is the "ion-aerosol clear-air" mechanism where the cosmic rays modulate atmospheric ion concentrations, ion-induced nucleation of aerosols and cloud condensation nuclei (CCN concentrations. We use a global chemical transport model with online aerosol microphysics to explore the dependence of CCN concentrations on the cosmic-ray flux. Expanding upon previous work, we test the sensitivity of the cosmic-ray/CCN connection to several uncertain parameters in the model including primary emissions, Secondary Organic Aerosol (SOA condensation and charge-enhanced condensational growth. The sensitivity of CCN to cosmic rays increases when simulations are run with decreased primary emissions, but show location-dependent behavior from increased amounts of secondary organic aerosol and charge-enhanced growth. For all test cases, the change in the concentration of particles larger than 80 nm between solar minimum (high cosmic ray flux and solar maximum (low cosmic ray flux simulations is less than 0.2 %. The change in the total number of particles larger than 10 nm was larger, but always less than 1 %. The simulated change in the column-integrated Ångström exponent was negligible for all test cases. Additionally, we test the predicted aerosol sensitivity to week-long Forbush decreases of cosmic rays and find that the maximum change in aerosol properties for these cases is similar to steady-state aerosol differences between the solar maximum and solar minimum. These results provide evidence that the effect of cosmic rays on CCN and clouds through the ion-aerosol clear-sky mechanism is limited by dampening from aerosol processes.

  4. Gamma rays and the origin of Galactic Cosmic Rays

    Science.gov (United States)

    de Ona Wilhelmi, Emma

    2015-08-01

    Cosmic rays (CRs) are highly energetic nuclei (plus a small fraction of electrons) which fill the Galaxy and carry on average as much energy per unit volume as the energy density of starlight, the interstellar magnetic fields, or the kinetic energy density of interstellar gas. The CR spectrum extends as a featureless power-law up to ~2 PeV (the 'knee') and it is believed to be the result of acceleration of those CRs in Galactic Sources and later diffusion and convection in galactic magnetic fields. Those energetic CRs can interact with the surrounding medium via proton-proton collision resulting in secondary gamma-ray photons, observed from 100 MeV to a few tens of TeV. The results obtained by the current Cherenkov telescopes and gamma-ray satellites with the support of X-ray observations have discovered and identified more than 50 Galactic gamma-ray sources. Among them, the number of Supernova remnants (SNRs) and very-high-energy hard-spectrum sources (natural candidates to originate CRs) are steadily increasing. We expect to increase by a factor 10 at least this population of source with the future CTA experiment. I will review our current knowledge of Galactic gamma-ray sources and their connection with energetic CRs and the scientific prospects for CTA in this field. Those observations, together with a strong multi-wavelenght support from radio to hard X-rays, will finally allow us to establish the origin of the Galactic CRs.

  5. Cosmic-ray composition measurements and cosmic ray background-free γ -ray observations with Cherenkov telescopes

    Science.gov (United States)

    Neronov, Andrii; Semikoz, Dmitri V.; Vovk, Ievgen; Mirzoyan, Razmik

    2016-12-01

    The muon component of extensive air showers (EAS) initiated by cosmic-ray particles carries information on the primary particle identity. We show that the muon content of EAS could be measured in a broad energy range from 10-100 TeV up to ultra-high-energy cosmic-ray range using wide field-of-view imaging atmospheric Cherenkov telescopes observing strongly inclined or nearly horizontal EAS from the ground of from high altitude. Cherenkov emission from muons in such EAS forms a distinct component (halo or tail) of the EAS image in the telescope camera. We show that detection of the muon signal could be used to measure composition of the cosmic-ray spectrum in the energy ranges of the knee, the ankle and of the Galactic-to-extragalactic transition. It could also be used to veto the cosmic-ray background in gamma-ray observations. This technique provides a possibility for up to 2 orders of magnitude improvement of sensitivity for γ -ray flux in the energy band above 10 PeV, compared to KASCADE-Grande, and an order-of-magnitude improvement of sensitivity in the multi-EeV energy band, compared to Pierre Auger Observatory.

  6. Gamma ray astronomy and the origin of the light nuclei. [cosmic ray and interstellar gas reactions

    Science.gov (United States)

    Reeves, H.

    1978-01-01

    Nuclear reactions induced by the collisions of the protons and alphas of the galactic cosmic ray with heavy nuclei of the interstellar gas are responsible for the continuous production of the light elements lithium, beryllium, and boron in the galaxy. To better than one order of magnitude, the observed ratios of these abundances to hydrogen abundance and the nuclidic abundance ratios between themselves are accounted for by simply considering the effect of fast protons and alphas with a flux and an energy spectrum as observed in galactic cosmic rays, for a period comparable with the life of our galaxy. The role of gamma ray astronomy in solving problems that occur when accurate agreement is sought with increasingly accurate data is discussed.

  7. Prospects of detecting gamma-ray emission from galaxy clusters: cosmic rays and dark matter annihilations

    CERN Document Server

    Pinzke, Anders; Bergstrom, Lars

    2011-01-01

    We study the possibility for detecting gamma-ray emission in galaxy clusters. We consider 1) cosmic ray (CR) induced pion decay which is thought to dominate the astrophysical signal from clusters, 2) different representative benchmark models of supersymmetric dark matter (DM), and 3) leptophilic models of DM annihilation that include a Sommerfeld enhancement (SFE). To model DM annihilation, we consider hadronization of annihilating neutralinos, internal bremsstrahlung, and inverse Compton emission from the cosmic microwave background as well as from a realistic spatial and spectral distribution of dust and stellar light. We predict the Virgo and Fornax clusters to be the brightest DM sources and find a particularly low CR induced background for Fornax. For a minimum substructure mass given by the DM free-streaming scale, we find a substructure boost factor of more than 1000. Since the annihilation flux of substructures is mostly contributed by the regions around the virial radius, the resulting surface bright...

  8. Electron Heating, Magnetic Field Amplification, and Cosmic Ray Precursor Length at Supernova Remnant Shocks

    CERN Document Server

    Laming, J Martin; Ghavamian, Parviz; Rakowski, Cara

    2014-01-01

    We investigate the observability, by direct and indirect means, of a shock precursor arising from magnetic field amplification by cosmic rays. We estimate the depth of such a precursor under conditions of nonresonant amplification, which can provide magnetic field strengths comparable to those inferred for supernova remnants. Magnetic field generation occurs as the streaming cosmic rays induce a plasma return current, and may be quenched either by nonresonant or resonant channels. In the case of nonresonant saturation, the cosmic rays become magnetized and amplification saturates at higher magnetic fields. The precursor can extend out to $10^{17} - 10^{18}$ cm and is potentially detectable. If resonant saturation occurs, the cosmic rays are scattered by turbulence and the precursor length will likely be much smaller. The dependence of precursor length on shock velocity has implications for electron heating. In the case of resonant saturation, this dependence is similar to that in the more familiar resonantly ...

  9. Plasma effects on extragalactic ultra-high-energy cosmic ray hadron beams in cosmic voids

    Energy Technology Data Exchange (ETDEWEB)

    Krakau, Steffen; Schlickeiser, Reinhard [Institut fur Theoretische Physik, Lehrstuhl IV: Weltraum- und Astrophysik, Ruhr-Universitaet Bochum (Germany)

    2015-05-01

    The linear instability of an ultrarelativistic hadron beam (Γ{sub b} ∼ 10{sup 6}) in the unmagnetized intergalactic medium is investigated with respect to the excitation of collective electrostatic and aperiodic electromagnetic fluctuations. This analysis is important for the propagation of extragalactic ultrarelativistic cosmic rays (E > 10{sup 15} eV) from their distant sources to Earth. We calculate minimum instability growth times which are orders of magnitude shorter than the cosmic ray propagation time in the IGM. Due to nonlinear effects, especially the modulation instability, the cosmic ray beam stabilize and can propagate with nearly no energy loss through the intergalactic medium.

  10. From cosmic ray source to the Galactic pool

    CERN Document Server

    Schure, K M

    2013-01-01

    The Galactic cosmic ray spectrum is a remarkably straight power law. Our current understanding is that the dominant sources that accelerate cosmic rays up to the knee ($3 \\times 10^{15}$ eV) or perhaps even the ankle ($3 \\times 10^{18}$ eV), are young Galactic supernova remnants. In theory, however, there are various reasons why the spectrum may be different for different sources, and may not even be a power law if nonlinear shock acceleration applies during the most efficient stages of acceleration. We show how the spectrum at the accelerator translates to the spectrum that make up the escaping cosmic rays that replenish the Galactic pool of cosmic rays. We assume that cosmic ray confinement, and thus escape, is linked to the level of magnetic field amplification, and that the magnetic field is amplified by streaming cosmic rays according to the non-resonant hybrid or resonant instability. When a fixed fraction of the energy is transferred to cosmic rays, it turns out that a source spectrum that is flatter t...

  11. Astrophysical origins of ultrahigh energy cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Torres, Diego F [Lawrence Livermore National Laboratory, 7000 East Avenue, L-413, Livermore, CA 94550 (United States); Anchordoqui, Luis A [Department of Physics, Northeastern University, Boston, MA 02115 (United States)

    2004-09-01

    In the first part of this review we discuss the basic observational features at the end of the cosmic ray (CR) energy spectrum. We also present there the main characteristics of each of the experiments involved in the detection of these particles. We then briefly discuss the status of the chemical composition and the distribution of arrival directions of CRs. After that, we examine the energy losses during propagation, introducing the Greisen-Zaptsepin-Kuzmin (GZK) cutoff, and discuss the level of confidence with which each experiment has detected particles beyond the GZK energy limit. In the second part of the review, we discuss the astrophysical environments that are able to accelerate particles up to such high energies, including active galactic nuclei, large scale galactic wind termination shocks, relativistic jets and hot-spots of Fanaroff-Riley radio galaxies, pulsars, magnetars, quasar remnants, starbursts, colliding galaxies, and gamma ray burst fireballs. In the third part of the review we provide a brief summary of scenarios which try to explain the super-GZK events with the help of new physics beyond the standard model. In the last section, we give an overview on neutrino telescopes and existing limits on the energy spectrum and discuss some of the prospects for a new (multi-particle) astronomy. Finally, we outline how extraterrestrial neutrino fluxes can be used to probe new physics beyond the electroweak scale.

  12. The Cosmic Gamma-Ray Bursts

    CERN Document Server

    Djorgovski, S G; Kulkarni, S R; Sari, R; Bloom, J S; Galama, T J; Harrison, F A; Price, P A; Fox, D; Reichart, D; Yost, S; Berger, E; Diercks, A H; Goodrich, R; Chaffee, F H

    2001-01-01

    Cosmic gamma-ray bursts are one of the great frontiers of astrophysics today. They are a playground of relativists and observers alike. They may teach us about the death of stars and the birth of black holes, the physics in extreme conditions, and help us probe star formation in the distant and obscured universe. In this review we summarise some of the remarkable progress in this field over the past few years. While the nature of the GRB progenitors is still unsettled, it now appears likely that at least some bursts originate in explosions of very massive stars, or at least occur in or near the regions of massive star formation. The physics of the burst afterglows is reasonably well understood, and has been tested and confirmed very well by the observations. Bursts are found to be beamed, but with a broad range of jet opening angles; the mean gamma-ray energies after the beaming corrections are ~ 10^51 erg. Bursts are associated with faint ~ 25 mag) galaxies at cosmological redshifts, with ~ 1. The host gal...

  13. Protostellar Cosmic Rays and Extinct Radioactivities in Meteorites

    Energy Technology Data Exchange (ETDEWEB)

    Lee, T. [Institute of Earth Science, Academia Sinica, Taipei 115 (Taiwan); Shu, F.H.; Shang, H. [Department of Astronomy, University of California, Berkeley, Berkeley, CA 94720-3411 (United States); Glassgold, A.E. [Department of Physics, New York University, New York, NY 10003 (United States); Rehm, K.E. [Argonne National Laboratory, Argonne, IL 60439-4832 (United States)

    1998-10-01

    Calcium-aluminum{endash}rich inclusions (CAIs) and chondrules of chondritic meteorites may originate with the melting of dustballs launched by a magnetically driven bipolar outflow from the inner edge of the primitive solar nebula. Bombardment by protostellar cosmic rays may make the rock precursors of CAIs and chondrules radioactive, producing radionuclides found in meteorites that are difficult to obtain with other mechanisms. Reasonable scalings from the observed hard X-rays for the cosmic-ray protons released by flares in young stellar objects yield the correct amounts of {sup 41}Ca, {sup 53}Mn, and {sup 138}La inferred for meteorites, but proton- and {alpha}-induced transformations underproduce {sup 26}Al by a factor of about 20. The missing {sup 26}Al may be synthesized by {sup 3}He nuclei accelerated in impulsive flares reacting primarily with {sup 24}Mg, an abundant isotope in the target precursor rocks. The mechanism allows a simple explanation for the very different ratios of {sup 26}Al/{sup 27}Al inferred for normal CAIs, CAIs with fractionated and unidentified nuclear (FUN) anomalies, and chondrules. The overproduction of {sup 41}Ca by analogous {sup 3}He reactions and the case of {sup 60}Fe inferred for eucritic meteorites require special interpretations in this picture. {copyright} {ital {copyright} 1998.} {ital The American Astronomical Society}

  14. Effect of cosmic ray on global high cloud from MODIS

    Science.gov (United States)

    Kim, H.-S.; Choi, Y.-S.

    2012-04-01

    The Earth's climate is affected by not only internal forcings but also external forcings related with solar activities. The energetic particles called "cosmic rays" from outer space have been considered as a potentially important external climate forcing since the first report by Svensemark and Friis-Christensen (1997) which showed a significant correlation between cloudiness and cosmic ray. This correlation is a basis of a couple of hypotheses in microphysical processes: ion-aerosol clear-air mechanism and ion-aerosol near-cloud mechanism. These mechanisms have been either supported or objected by many successive studies, most of which correlated long-term trends of cloud and cosmic ray. However, it is most likely that such methodology is not suitable to find actual connection, because long-term trends of clouds may invite affection by many factors other than cosmic ray. It is therefore necessary to find the relation at shorter time scale, since cosmic ray affect the process of cloud formation in a moment. Here we show spatial distributions of correlation between global high cloud fraction data from MODIS and cosmic ray of neutron monitor data from McMurdo, Antarctic. We removed 3-month running means from the original data in order to get high frequency fluctuations. As results, positive correlations are dominant in the spatial distribution, especially over lands on the northern hemisphere and oceans on the Southern hemisphere. On the other hand, negative correlations exist over limited area including the Indian Ocean. According to the cross-correlation (with time lags), the areas with positive correlation is widely distributed at zero lag. At ±1 month lags, the signs of correlations become the opposite of that at zero lag. Furthermore, the correlation between relative high cloud amount to total cloud and cosmic ray shows similar distribution to the correlation between absolute high cloud amount and cosmic ray, implying stronger high cloud response to cosmic ray

  15. Markov Stochastic Technique to Determine Galactic Cosmic Ray Sources Distribution

    Indian Academy of Sciences (India)

    Ashraf Farahat

    2010-06-01

    A new numerical model of particle propagation in the Galaxy has been developed, which allows the study of cosmic-ray production and propagation in 2D. The model has been used to solve cosmic ray diffusive transport equation with a complete network of nuclear interactions using the time backward Markov stochastic process by tracing the particles’ trajectories starting from the Solar System back to their sources in the Galaxy. This paper describes a further development of the model to calculate the contribution of various galactic locations to the production of certain cosmic ray nuclei observed at the Solar System.

  16. AMS results on positrons and antiprotons in cosmic rays

    Science.gov (United States)

    Kounine, Andrei; AMS Collaboration

    2017-01-01

    AMS-02 is a particle physics detector collecting data on the International Space Station since May 2011. Precision measurements of charged cosmic ray particles have been performed by AMS using a data sample of 85 billion cosmic ray events collected during the first five years of operations on the Station. The latest AMS results on the fluxes and flux ratios of the cosmic ray particles are presented with the emphasis on the measurements of positrons and antiprotons. They show unique features that require accurate theoretical interpretation as to their origin, be it from dark matter collisions or new astrophysical sources. On behalf of AMS.

  17. Latest AMS Results on elementary particles in cosmic rays

    Science.gov (United States)

    Kounine, Andrei; AMS Collaboration

    2017-01-01

    AMS-02 is a particle physics detector collecting data on the International Space Station since May 2011. Precision measurements of all elementary charged cosmic ray particles have been performed by AMS using a data sample of 85 billion cosmic ray events collected during the first five years of operations on the Station. The latest AMS results on the fluxes and flux ratios of the elementary cosmic ray particles are presented. They show unique features that require accurate theoretical interpretation as to their origin, be it from dark matter collisions or new astrophysical sources. On behalf of the AMS Collaboration.

  18. Measurements at LHC and their relevance for cosmic ray physics

    CERN Document Server

    CERN. Geneva

    2016-01-01

    Many LHC measurements are already used to improve hadronic interaction models used in cosmic ray analyses. This already had a positive effect on the model dependence of crucial data analyses. Some of the data and the model tuning is reviewed. However, the LHC still has a lot more potential to provide crucial information. Since the start of Run2 the highest accelerator beam energies are reached and no further increase can be expected for a long time. First data of Run2 are published and the fundamental performance of cosmic ray hadronic interaction models can be scrutinized. The relevance of LHC data in general for cosmic ray data analyses is demonstrated.

  19. Observation of a rare cosmic ray event at mountain altitude

    Science.gov (United States)

    Basu, Basudhara; Raha, Sibaji; Saha, Swapan K.; Biswas, Sukumar; Dey, Sandhya; Maulik, Atanu; Mazumdar, Amal; Saha, Satyajit; Syam, Debapriyo

    2015-02-01

    Existence of strangelets in cosmic rays has been predicted even at mountain altitudes ∼ 3-4 km with extremely low abundance. We exposed an appropriate passive detector to cosmic rays at Darjeeling, India, at an atmospheric pressure of 765 hPa, as a pilot study to determine its suitability for the detection of strangelets in a large area detector array through long-term exposure. During the analysis we found a highly unusual event consisting of a cluster of six identical nuclear tracks. We argue that even the most mundane explanation of this event requires unusual physics, the first possible observation of multifragmentation involving cosmic rays.

  20. Restrictive scenarios from Lorentz Invariance Violation to cosmic rays propagation

    CERN Document Server

    Martínez-Huerta, H

    2016-01-01

    Lorentz Invariance Violation introduced as a generic modification to particle dispersion relations is used to study high energy cosmic ray attenuation processes. It is shown to reproduce the same physical effects for vacuum Cherenkov radiation, as in models with spontaneous breaking of Lorentz symmetry. This approximation is also implemented for the study of photon decay in vacuum, where stringent limits to the violation scale are derived from the direct observation of very high energy cosmic ray photon events on gamma telescopes. Photo production processes by cosmic ray primaries on photon background are also addressed, to show that Lorentz violation may turn off this attenuation process at energies above a well defined secondary threshold.

  1. Cosmic rays as regulators of molecular cloud properties

    CERN Document Server

    Padovani, Marco; Galli, Daniele

    2014-01-01

    Cosmic rays are the main agents in controlling the chemical evolution and setting the ambipolar diffusion time of a molecular cloud. We summarise the processes causing the energy degradation of cosmic rays due to their interaction with molecular hydrogen, focusing on the magnetic effects that influence their propagation. Making use of magnetic field configurations generated by numerical simulations, we show that the increase of the field line density in the collapse region results in a reduction of the cosmic-ray ionisation rate. As a consequence the ionisation fraction decreases, facilitating the decoupling between the gas and the magnetic field.

  2. Advanced applications of cosmic-ray muon radiography

    Science.gov (United States)

    Perry, John

    The passage of cosmic-ray muons through matter is dominated by the Coulomb interaction with electrons and atomic nuclei. The muon's interaction with electrons leads to continuous energy loss and stopping through the process of ionization. The muon's interaction with nuclei leads to angular diffusion. If a muon stops in matter, other processes unfold, as discussed in more detail below. These interactions provide the basis for advanced applications of cosmic-ray muon radiography discussed here, specifically: 1) imaging a nuclear reactor with near horizontal muons, and 2) identifying materials through the analysis of radiation lengths weighted by density and secondary signals that are induced by cosmic-ray muon trajectories. We have imaged a nuclear reactor, type AGN-201m, at the University of New Mexico, using data measured with a particle tracker built from a set of sealed drift tubes, the Mini Muon Tracker (MMT). Geant4 simulations were compared to the data for verification and validation. In both the data and simulation, we can identify regions of interest in the reactor including the core, moderator, and shield. This study reinforces our claims for using muon tomography to image reactors following an accident. Warhead and special nuclear materials (SNM) imaging is an important thrust for treaty verification and national security purposes. The differentiation of SNM from other materials, such as iron and aluminum, is useful for these applications. Several techniques were developed for material identification using cosmic-ray muons. These techniques include: 1) identifying the radiation length weighted by density of an object and 2) measuring the signals that can indicate the presence of fission and chain reactions. By combining the radiographic images created by tracking muons through a target plane with the additional fission neutron and gamma signature, we are able to locate regions that are fissionable from a single side. The following materials were imaged

  3. Fibre laser hydrophones for cosmic ray particle detection

    NARCIS (Netherlands)

    Buis, E.J.; Doppenberg, E.J.J.; Nieuwland, R.A.; Toet, P.M.

    2014-01-01

    The detection of ultra high energetic cosmic neutrinos provides a unique means to search for extragalactic sources that accelerate particles to extreme energies. It allows to study the neutrino component of the GZK cut-off in the cosmic ray energy spectrum and the search for neutrinos beyond this li

  4. Analysis of North Sky Cosmic Ray Anisotropy with Atmospheric Neutrinos

    Science.gov (United States)

    Wills, Elizabeth; IceCube Collaboration

    2017-01-01

    Since the discovery of Cosmic Ray anisotropy, no experiment has definitively discovered the source of this unexpected phenomenon. Studying the cosmic rays' neutral daughter particles with pointing capabilities, like neutrinos, could shed new light. This can be done at two levels; a source which produces cosmic rays must also produce high energy astrophysical neutrinos, and low energy atmospheric neutrinos are made when the cosmic rays interact with the atmosphere. This analysis focuses on atmospheric neutrinos detected by IceCube, a Cherenkov detector instrumenting a kilometer cubed of glacial ice at the South Pole. The anisotropy and its energy dependence have been studied in the Southern sky using atmospheric muons by IceCube. In the North, gamma ray detectors, such as HAWC, and Argo-YBJ, have observed this anisotropy in cosmic ray showers. Thus far, no single- detector full-sky map exists of the anisotropy. Using IceCube's neutrino data, we can complement these studies with an exploration of the northern sky anisotropy at higher energies of cosmic rays. This could bring us much closer to understanding the complete picture of this anisotropy across energy levels and the whole sky.

  5. Cosmic Ray Spectrum in Supernova Remnant Shocks

    CERN Document Server

    Kang, Hyesung

    2010-01-01

    We perform kinetic simulations of diffusive shock acceleration (DSA) in Type Ia supernova remnants (SNRs) expanding into a uniform interstellar medium (ISM). Bohm-like diffusion assumed, and simple models for Alfvenic drift and dissipation are adopted. Phenomenological models for thermal leakage injection are considered as well. We find that the preshock gas temperature is the primary parameter that governs the cosmic ray (CR) acceleration efficiency and energy spectrum, while the CR injection rate is a secondary parameter. For SNRs in the warm ISM, if the injection fraction is larger than 10^{-4}, the DSA is efficient enough to convert more than 20 % of the SN explosion energy into CRs and the accelerated CR spectrum exhibits a concave curvature flattening to E^{-1.6}. Such a flat source spectrum near the knee energy, however, may not be reconciled with the CR spectrum observed at Earth. On the other hand, SNRs in the hot ISM, with an injection fraction smaller than 10^{-4}, are inefficient accelerators with...

  6. Solar Cosmic Ray Acceleration and Propagation

    Science.gov (United States)

    Podgorny, I. M.; Podgorny, A. I.

    2016-05-01

    The GOES data for emission of flare protons with the energies of 10 - 100 MeV are analyzed. Proton fluxes of ~1032 accelerated particles take place at the current sheet decay. Proton acceleration in a flare occurs along a singular line of the current sheet by the Lorentz electric field, as in the pinch gas discharge. The duration of proton flux measured on the Earth orbit is by 2 - 3 orders of magnitude longer than the duration of flares. The high energy proton flux from the flares that appear on the western part of the solar disk arrives to Earth with the time of flight. These particles propagate along magnetic lines of the Archimedes spiral connecting the flare with the Earth. Protons from the flare on the eastern part of the solar disk begin to register with a delay of several hours. Such particles cannot get on the magnetic field line connecting the flare with the Earth. These protons reach the Earth, moving across the interplanetary magnetic field. The particles captured by the magnetic field in the solar wind are transported with solar wind and due to diffusion across the magnetic field. The patterns of solar cosmic rays generation demonstrated in this paper are not always observed in the small ('1 cm-2 s-1 ster-1) proton events.

  7. Maximum entropy analysis of cosmic ray composition

    CERN Document Server

    Nosek, Dalibor; Vícha, Jakub; Trávníček, Petr; Nosková, Jana

    2016-01-01

    We focus on the primary composition of cosmic rays with the highest energies that cause extensive air showers in the Earth's atmosphere. A way of examining the two lowest order moments of the sample distribution of the depth of shower maximum is presented. The aim is to show that useful information about the composition of the primary beam can be inferred with limited knowledge we have about processes underlying these observations. In order to describe how the moments of the depth of shower maximum depend on the type of primary particles and their energies, we utilize a superposition model. Using the principle of maximum entropy, we are able to determine what trends in the primary composition are consistent with the input data, while relying on a limited amount of information from shower physics. Some capabilities and limitations of the proposed method are discussed. In order to achieve a realistic description of the primary mass composition, we pay special attention to the choice of the parameters of the sup...

  8. Propagation of cosmic rays into diffuse clouds

    CERN Document Server

    Morlino, Giovanni

    2014-01-01

    We study the capability of low-energy cosmic rays (CR) to penetrate into diffuse clouds when they move from the hot ionized plasma to a cool cloud embedded in that plasma. The spectrum of CR inside a cloud can be remarkably different from the the one present in the hot interstellar medium because when CRs pass through a dense cloud of matter, they suffer energy losses due to ionization and nuclear interactions. Hence there is a net flux of CRs towards the cloud that can excite Alfv\\'en waves. In turn, self-excited Alfv\\'en waves enhances the diffusion of CRs near the edge of the cloud, forcing CRs to spend more time in this layer and increasing the amount of energy losses. The final effect is that the flux of CR entering into the cloud is strongly suppressed below an energy threshold whose value depends on ambient parameters. For the first time we use the full kinetic theory to describe this problem, coupling CRs and Alfv\\'en waves through the streaming instability, and including the damping of the waves due ...

  9. The ATLAS Trigger Commissioning with cosmic rays

    CERN Document Server

    Abolins, M; Adragna, P; Aielli, G; Aleksandrov, E; Aleksandrov, I; Aloisio, A; Alviggi, M G; Amorim, A; Anderson, K; Andrei, V; Anduaga, X; Antonelli, S; Aracena, I; Ask, S; Asquith, L; Avolio, G; Backlund, S; Badescu, E; Bahat Treidel, O; Baines, J; Barnett, B M; Barria, P; Bartoldus, R; Batreanu, S; Bauss, B; Beck, H P; Bee, C; Bell, P; Bell, W H; Bellagamba, L; Bellomo, M; Ben Ami, S; Bendel, M; Benhammou, Ya; Benslama, K; Berge, D; Berger, N; Berry, T; Bianco, M; Biglietti, M; Blair, R R; Bogaerts, A; Bohm, C; Bold, T; Booth, J R A; Boscherini, D; Bosman, M; Boyd, J; Brawn, I P; Brelier, B; Bressler, S; Bruni, A; Bruni, G; Buda, S; Burckhart-Chromek, D; Buttar, C; Camarri, P; Campanelli, M; Canale, V; Caprini, M; Caracinha, D; Cardarelli, R; Carlino, G; Casadei, D; Casado, M P; Cataldi, G; Cerri, A; Charlton, D G; Chiodini, G; Ciapetti, G; Cimino, D; Ciobotaru, M; Clements, D; Coccaro, A; Coluccia, M R; Conde-Muíño, P; Constantin, S; Conventi, F; Corso-Radu, A; Costa, M J; Coura Torres, R; Cranfield, R; Cranmer, K; Crone, G; Curtis, C J; Dam, M; Damazio, D; Davis, A O; Dawson, I; Dawson, J; De Almeida Simoes, J; De Cecco, S; De Pedis, D; De Santo, A; DeAsmundis, R; DellaPietra, M; DellaVolpe, D; Delsart, P A; Demers, S; Demirkoz, B; Di Mattia, A; Di Ciaccio, A; Di Girolamo, A; Dionisi, C; Djilkibaev, R; Dobinson, Robert W; Dobson, M; Dogaru, M; Dotti, A; Dova, M; Drake, G; Dufour, M -A; Eckweiler, S; Ehrenfeld, W; Eifert, T; Eisenhandler, E F; Ellis, Nick; Emeliyanov, D; Enoque Ferreira de Lima, D; Ermoline, Y; Eschrich, I; Etzion, E; Facius, K; Falciano, S; Farthouat, P; Faulkner, P J W F; Feng, E; Ferland, J; Ferrari, R; Ferrer, M L; Fischer, G; Fonseca-Martin, T; Francis, D; Fukunaga, C; Föhlisch, F; Gadomski, S; Garitaonandia Elejabarrieta, H; Gaudio, G; Gaumer, O; Gee, C N P; George, S; Geweniger, C; Giagu, S; Gillman, A R; Giusti, P; Goncalo, R; Gorini, B; Gorini, E; Gowdy, S; Grabowska-Bold, I; Grancagnolo, F; Grancagnolo, S; Green, B; Galllno, P; Haas, S; Haberichter, W; Hadavand, H; Haeberli, C; Haller, J; Hamilton, A; Hanke, P; Hansen, J R; Hasegawa, Y; Hauschild, M; Hauser, R; Head, S; Hellman, S; Hidvegi, A; Hillier, S J; Höcker, A; Hrynóva, T; Hughes-Jones, R; Huston, J; Iacobucci, G; Idarraga, J; Iengo, P; Igonkina, O; Ikeno, M; Inada, M; Ishino, M; Iwasaki, H; Izzo, V; Jain, V; Johansen, M; Johns, K; Joos, M; Kadosaka, T; Kajomovitz, E; Kama, S; Kanaya, N; Kawagoe, K; Kawamoto, T; Kazarov, A; Kehoe, R; Khoriauli, G; Kieft, G; Kilvington, G; Kirk, J; Kiyamura, H; Klofver, P; Klous, S; Kluge, E E; Kobayashi, T; Kolos, S; Kono, T; Konstantinidis, N; Korcyl, K; Kordas, K; Kotov, V; Krasznahorkay, A; Kubota, T; Kugel, A; Kuhn, D; Kurashige, H; Kurasige, H; Kuwabara, T; Kwee, R; Landon, M; Lankford, A; LeCompte, T; Leahu, L; Leahu, M; Ledroit, F; Lehmann-Miotto, G; Lei, X; Lellouch, D; Lendermann, V; Levinson, L; Leyton, M; Li, S; Liberti, B; Lifshitz, R; Lim, H; Lohse, T; Losada, M; Luci, C; Luminari, L; Lupu, N; Mahboubi, K; Mahout, G; Mapelli, L; Marchese, F; Martin, B; Martin, B T; Martínez, A; Marzano, F; Masik, J; McMahon, T; McPherson, R; Medinnis, M; Meessen, C; Meier, K; Meirosu, C; Messina, A; Migliaccio, A; Mikenberg, G; Mincer, A; Mineev, M; Misiejuk, A; Mönig, K; Monticelli, F; Moraes, A; Moreno, D; Morettini, P; Murillo Garcia, R; Nagano, K; Nagasaka, Y; Negri, A; Némethy, P; Neusiedl, A; Nisati, A; Niwa, T; Nomachi, M; Nomoto, H; Nozaki, M; Nozicka, M; Ochi, A; Ohm, C; Okumura, Y; Omachi, C; Osculati, B; Oshita, H; Osuna, C; Padilla, C; Panikashvili, N; Parodi, F; Pasqualucci, E; Pastore, F; Patricelli, S; Pauly, T; Pectu, M; Perantoni, M; Perera, V; Perera, V J O; Pérez, E; Pérez-Réale, V; Perrino, R; Pessoa Lima Junior, H; Petersen, J; Petrolo, E; Piegaia, R; Pilcher, J E; Pinto, F; Pinzon, G; Polini, A; Pope, B; Potter, C; Prieur, D P F; Primavera, M; Qian, W; Radescu, V; Rajagopalan, S; Renkel, P; Rescigno, M; Rieke, S; Risler, C; Riu, I; Robertson, S; Roda, C; Rodríguez, D; Rogriquez, Y; Roich, A; Romeo, G; Rosati, S; Ryabov, Yu; Ryan, P; Rühr, F; Sakamoto, H; Salamon, A; Salvatore, D; Sankey, D P C; Santamarina, C; Santamarina-Rios, C; Santonico, R; Sasaki, O; Scannicchio, D; Scannicchio, D A; Schiavi, C; Schlereth, J L; Schmitt, K; Scholtes, I; Schooltz, D; Schuler, G; Schultz-Coulon, H -C; Schäfer, U; Scott, W; Segura, E; Sekhniaidze, G; Shimbo, N; Sidoti, A; Silva, L; Silverstein, S; Siragusa, G; Sivoklokov, S; Sloper, J E; Smizanska, M; Solfaroli, E; Soloviev, I; Soluk, R; Spagnolo, S; Spila, F; Spiwoks, R; Staley, R J; Stamen, R; Stancu, S; Steinberg, P; Stelzer, J; Stradling, A; Strom, D; Strong, J; Su, D; Sugaya, Y; Sugimoto, T; Sushkov, S; Sutton, M; Szymocha, T; Takahashi, Y; Takeda, H; Takeshita, T; Tanaka, S; Tapprogge, S; Tarem, S; Tarem, Z; Teixeira-Dias, P; Thomas, J P; Tokoshuku, K; Tomoto, M; Torrence, E; Touchard, F

    2008-01-01

    The ATLAS detector at CERN's LHC will be exposed to proton-proton collisions from beams crossing at 40 MHz. At the design luminosity there are roughly 23 collisions per bunch crossing. ATLAS has designed a three-level trigger system to select potentially interesting events. The first-level trigger, implemented in custom-built electronics, reduces the incoming rate to less than 100 kHz with a total latency of less than 2.5$\\mu$s. The next two trigger levels run in software on commercial PC farms. They reduce the output rate to 100-200 Hz. In preparation for collision data-taking which is scheduled to commence in May 2008, several cosmic-ray commissioning runs have been performed. Among the first sub-detectors available for commissioning runs are parts of the barrel muon detector including the RPC detectors that are used in the first-level trigger. Data have been taken with a full slice of the muon trigger and readout chain, from the detectors in one sector of the RPC system, to the second-level trigger algorit...

  10. Cosmic-ray ionisation in collapsing clouds

    CERN Document Server

    Padovani, Marco; Galli, Daniele

    2013-01-01

    Cosmic rays (CR) play an important role in dense molecular cores, affecting their thermal and dynamical evolution and initiating the chemistry. Several studies have shown that the formation of protostellar discs in collapsing clouds is severely hampered by the braking torque exerted by the entrained magnetic field on the infalling gas, as long as the field remains frozen to the gas. We examine the possibility that the concentration and twisting of the field lines in the inner region of collapse can produce a significant reduction of the ionisation fraction. To check whether the CR ionisation rate (CRir) can fall below the critical value required to maintain good coupling, we first study the propagation of CRs in a model of a static magnetised cloud varying the relative strength of the toroidal/poloidal components and the mass-to-flux ratio. We then follow the path of CRs using realistic magnetic field configurations generated by numerical simulations of a rotating collapsing core. We find that an increment of...

  11. Cosmic ray measurements around the knee

    Science.gov (United States)

    Chiavassa, Andrea

    2016-07-01

    Primary cosmic rays of energy greater than ˜ 1014 eV must be studied by indirect experiments measuring the particles generated in the EAS (Extensive Air Shower) development in atmosphere. These experiments are mainly limited by the systematic errors due to their energy calibration. I will discuss the main sources of these errors: the choice of the hadronic interaction model and of the mass of the primary particle (that cannot be measured on a event by event basis). I will then summarize some recent measurements of the all particle spectrum, and I will show that, keeping into account the differences due to the energy calibration, they all agree on the spectral shape. Then I will describe the measurements of the light and heavy primaries mass groups spectra, discussing the claimed features. Using a simple calculation of the elemental spectra (based on the hypothesis that the knee energies follow a Peter's cycle) I will try to discuss if all these results can be interpreted in a common picture.

  12. Cosmic Ray Results from the CosmoALEPH Experiment

    CERN Document Server

    Grupen, C; Jost, B; Maciuc, F; Luitz, S; Mailov, A; Müller, A S; Putzer, A; Rensch, B; Sander, H G; Schmeling, S; Schmelling, M; Tcaciuc, R; Wachsmuth, H; Ziegler, T; Zuber, K

    2008-01-01

    CosmoALEPH is an experiment operated in conjunction with the ALEPH detector. The ALEPH experiment took data from 1989 until the year 2000 at the Large Electron Positron Collider (LEP) at CERN. It provides, among others, high resolution tracking and calorimetry. CosmoALEPH used this e+e− detector for cosmic ray studies. In addition, six scintillator telescopes were installed in the ALEPH pit and the LEP tunnel. The whole experiment operated underground at a vertical depth of 320 meter water equivalent. Data from ALEPH and the scintillator telescopes provide informaton on the lateral distribution of energetic cosmic ray muons in extensive air showers. The decoherence curve of these remnant air shower muons is sensitive to the chemical composition of primary cosmic rays and to the interaction characteristics of energetic hadrons in the atmosphere. An attempt is made to extract the various interdependencies in describing the propagation of primary and secondary cosmic rays through the atmosphere and the rock ov...

  13. Cosmic Rays. Citations from the NTIS data base

    Science.gov (United States)

    Carrigan, B.

    1980-04-01

    Measurement techniques, isotopic composition, distribution, intensity, anisotropy, and sources of cosmic rays are covered in the citations. This updated bibliography contains 75 abstracts, 22 of which are new entries to the previous edition.

  14. The 1953 Cosmic Ray Conference at Bagneres de Bigorre

    CERN Document Server

    Cronin, James W

    2011-01-01

    The cosmic ray conference at Bagn`eres de Bigorre in July, 1953 organized by Patrick Blackett and Louis Leprince-Ringuet was a seminal one. It marked the beginning of sub atomic physics and its shift from cosmic ray research to research at the new high energy accelerators. The knowledge of the heavy unstable particles found in the cosmic rays was essentially correct in fact and interpretation and defined the experiments that needed to be carried out with the new accelerators. A large fraction of the physicists who had been using cosmic rays for their research moved to the accelerators. This conference can be placed in importance in the same category as two other famous conferences, the Solvay congress of 1927 and the Shelter Island Conference of 1948.

  15. CORRELATIVE ANALYSIS OF COSMIC RAY INTENSITY AND SOLAR ACTIVITY PARAMETERS

    Directory of Open Access Journals (Sweden)

    M. ROY

    2014-02-01

    Full Text Available Incoming cosmic ray shows significant intensity modulation in association with different solar geo parameters during their passage through heliosphere. Cosmic ray intensity is found anticorrelated with solar activity parameters. Using pressure corrected data of Mcmurdo neutron monitor, modulation of cosmic ray is analyzed covering solar cycles 21, 22, 23 and 24 (from 1976 to 2013. Negative and high correlations are obtained with some time lag for most of the solar parameters. Difference in shapes of hysteresis curves CRI~SSN, CRI~SRF. CRI~CI and CRI~FI for odd and even cycles pointed out that different mechanisms convection and diffusion are the dominating factors to drift cosmic ray particles.

  16. Cosmic Rays - A Word-Wide Student Laboratory

    Science.gov (United States)

    Adams, Mark

    2017-01-01

    The QuarkNet program has distributed hundreds of cosmic ray detectors for use in high schools and research facilities throughout the world over the last decade. Data collected by those students has been uploaded to a central server where web-based analysis tools enable users to characterize and to analyze everyone's cosmic ray data. Since muons rain down on everyone in the world, all students can participate in this free, high energy particle environment. Through self-directed inquiry students have designed their own experiments: exploring cosmic ray rates and air shower structure; and using muons to measure their speed, time dilation, lifetime, and affects on biological systems. We also plan to expand our annual International Muon Week project to create a large student-led collaboration where similar cosmic ray measurements are performed simultaneously throughout the world.

  17. Cosmic rays score direct hits with Apollo crew

    CERN Multimedia

    1971-01-01

    Apollo 14 astronauts conduted experiments during the spaceflight to help scientists to understand why previous crews have seen flashes of light during missions, believed to be caused by cosmic rays (1 page).

  18. Extensive Air Showers and Cosmic Ray Physics above 1017 eV

    Directory of Open Access Journals (Sweden)

    Bertaina Mario

    2016-01-01

    Full Text Available Cosmic Rays above 1017 eV allow studying hadronic interactions at energies that can not be attained at accelerators yet. At the same time hadronic interaction models have to be applied to the cosmic-ray induced air-shower cascades in atmosphere to infer the nature of cosmic rays. The reliability of air-shower simulations has become the source of one of the largest systematic uncertainty in the interpretation of cosmic-ray data due to the uncertainties in modeling the hadronic interaction driving the air-shower development. This paper summarises in the first part the recent results on the cosmic ray energy spectrum, composition and anisotropy from the knee region to the GZK cutoff [1, 2] of the spectrum by means of ground-based experiments. Most of the information reported in this contribution is taken from [3–5]. Aspects interconnecting cosmic ray and particle physics are reviewed in the second part of the paper.

  19. THE COSMIC-RAY INTENSITY NEAR THE ARCHEAN EARTH

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, O.; Drake, J. J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Kota, J. [Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721-0092 (United States)

    2012-11-20

    We employ three-dimensional state-of-the-art magnetohydrodynamic models of the early solar wind and heliosphere and a two-dimensional model for cosmic-ray transport to investigate the cosmic-ray spectrum and flux near the Archean Earth. We assess how sensitive the cosmic-ray spectrum is to changes in the sunspot placement and magnetic field strength, the large-scale dipole magnetic field strength, the wind ram pressure, and the Sun's rotation period. Overall, our results confirm earlier work that suggested the Archean Earth would have experienced a greatly reduced cosmic-ray flux than is the case today. The cosmic-ray reduction for the early Sun is mainly due to the shorter solar rotation period and tighter winding of the Parker spiral, and to the different surface distribution of the more active solar magnetic field. These effects lead to a global reduction of the cosmic-ray flux at 1 AU by up to two orders of magnitude or more. Variations in the sunspot magnetic field have more effect on the flux than variations in the dipole field component. The wind ram pressure affects the cosmic-ray flux through its influence on the size of the heliosphere via the pressure balance with the ambient interstellar medium. Variations in the interstellar medium pressure experienced by the solar system in orbit through the Galaxy could lead to order of magnitude changes in the cosmic-ray flux at Earth on timescales of a few million years.

  20. The Cosmic Ray Intensity Near the Archean Earth

    CERN Document Server

    Cohen, O; Kota, J

    2012-01-01

    We employ three-dimensional state of the art magnetohydrodynamic models of the early solar wind and heliosphere and a two-dimensional model for cosmic ray transport to investigate the cosmic ray spectrum and flux near the Archean Earth. We assess how sensitive the cosmic ray spectrum is to changes in the sunspot placement and magnetic field strength, the large scale dipole magnetic field strength, the wind ram pressure, and the Sun's rotation period. Overall, our results confirm earlier work that suggested the Archean Earth would have experienced a greatly reduced cosmic ray flux than is the case today. The cosmic ray reduction for the early Sun is mainly due to the shorter solar rotation period and tighter winding of the Parker spiral, and to the different surface distribution of the more active solar magnetic field. These effects lead to a global reduction of the cosmic ray flux at 1AU by up to two orders of magnitude or more. Variations in the sunspot magnetic field have more effect on the flux than variat...

  1. The anisotropy of multi-TeV cosmic rays

    Science.gov (United States)

    Dingus, Brenda

    2013-02-01

    The arrival directions of cosmic rays will be isotropized by the deflection of these charged particles in the Galactic magnetic fields. For example, a 10 TeV proton in a typical Galactic field of 2 micro Gauss has a gyroradius of only 0.005 parsec (=1000 AU) which is much smaller than the distance to any postulated sources. However, observations of TeV cosmic rays by Milagro, Tibet III, ARGO, and IceCube, show anisotropies on both large and small angular scales. These observations require the detection of large numbers of cosmic rays because the anisotropies are less than a few parts in 1000. The large angular scale anisotropies, such as a dipole, could point to diffusion from a nearby source, but the smaller scale anisotropies of extent ~10 degrees are much more difficult to explain. Possibilities that have been explored in the literature include magnetic funneling of cosmic rays from nearby sources and acceleration by magnetic reconnection in the heliosphere's magnetotail. No matter what the mechanism, these observations provide new information about cosmic ray production, nearby magnetic fields, and how the cosmic rays observed at Earth are affected by their propagation.

  2. COSMOS: the COsmic-ray Soil Moisture Observing System

    Directory of Open Access Journals (Sweden)

    M. Zreda

    2012-11-01

    Full Text Available The newly-developed cosmic-ray method for measuring area-average soil moisture at the hectometer horizontal scale is being implemented in the COsmic-ray Soil Moisture Observing System (or the COSMOS. The stationary cosmic-ray soil moisture probe measures the neutrons that are generated by cosmic rays within air and soil and other materials, moderated by mainly hydrogen atoms located primarily in soil water, and emitted to the atmosphere where they mix instantaneously at a scale of hundreds of meters and whose density is inversely correlated with soil moisture. The COSMOS has already deployed more than 50 of the eventual 500 cosmic-ray probes, distributed mainly in the USA, each generating a time series of average soil moisture over its horizontal footprint, with similar networks coming into existence around the world. This paper is written to serve a community need to better understand this novel method and the COSMOS project. We describe the cosmic-ray soil moisture measurement method, the instrument and its calibration, the design, data processing and dissemination used in the COSMOS project, and give example time series of soil moisture obtained from COSMOS probes.

  3. Galactic cosmic-ray modulation near the heliopause

    Energy Technology Data Exchange (ETDEWEB)

    Guo, X.; Florinski, V. [Center for Space Plasma and Aeronomic Research, University of Alabama, Huntsville, AL 35899 (United States)

    2014-09-20

    We investigate the modulation of galactic cosmic rays in the inner and outer heliosheaths using three-dimensional numerical simulations. The model is based on the Parker transport equation integrated using a stochastic phase-space trajectory method. Integration is performed on a plasma background obtained from a global three-dimensional magnetohydrodynamic simulations. Our results predict a negligible amount of modulation in the outer heliosheath because of weak scattering of cosmic ray ions owing to very low levels of magnetic fluctuation power at wavenumbers relevant to the transport of cosmic rays with MeV to GeV energies. This means that the heliopause may be treated as a Dirichlet-type boundary for the purpose of energetic particle modeling. We present models with and without drift velocity to facilitate comparison with papers published earlier. We also attempt to reproduce the sudden step-like increases of cosmic-ray intensity observed by Voyager 1 before its encounter with the heliopause. Our results indicate that very slow cross-field diffusion in the outer heliosheath could produce a large gradient of cosmic rays inside the heliospheric boundary. The resulting large gradient in cosmic-ray intensity near the heliopause qualitatively agrees with recent Voyager 1 observations.

  4. Review and interpretation of recent cosmic ray beryllium isotope measurements

    Energy Technology Data Exchange (ETDEWEB)

    Buffington, A.

    1978-04-26

    Be/sup 10/ has long been of interest for cosmic ray propagation, because its radioactive decay half-life is well matched to the expected cosmic ray age. Recent beryllium isotope measurements from satellites and balloons have covered an energy range from about 30 to 300 MeV/nucleon/sup 1-3/. At the lowest energies, most of the Be/sup 10/ is absent, indicating a cosmic ray lifetime of order 2 x 10/sup 7/ years and the rather low average density of 0.2 atoms/cc traversed by the cosmic rays. At higher energies, a greater proportion of Be/sup 10/ is observed, indicating a somewhat shorter lifetime. These experiments will be reviewed and then compared with a new experiment covering from 100 to 1000 Mev/nucleon/sup 4/. Although improved experiments will be necessary to realize the full potential of cosmic ray beryllium isotope measurements, these first results are already disclosing interesting and unexpected facts about cosmic ray acceleration and propagation.

  5. Antarctic Radio Frequency Albedo and Implications for Cosmic Ray Reconstruction

    CERN Document Server

    Besson, D Z; Sullivan, M; Allison, P; Barwick, S W; Baughman, B M; Beatty, J J; Belov, K; Bevan, S; Binns, W R; Chen, C; Chen, P; Clem, J M; Connolly, A; De Marco, D; Dowkontt, P F; DuVernois, M; Goldstein, D; Gorham, P W; Grashorn, E W; Hill, B; Hoover, S; Huang, M; Israel, M H; Javaid, A; Kowalski, J; Learned, J; Liewer, K M; Matsuno, S; Mercurio, B C; Miki, C; Mottram, M; Nam, J; Naudet, C J; Nichol, R J; Palladino, K; Romero-Wolf, A; Ruckman, L; Saltzberg, D; Seckel, D; Shang, R Y; Stockham, M; Varner, G S; Vieregg, A G; Wang, Y

    2013-01-01

    From an elevation of ~38 km, the balloon-borne ANtarctic Impulsive Transient Antenna (ANITA) is designed to detect the up-coming radio frequency (RF) signal resulting from a sub-surface neutrino-nucleon collision. Although no neutrinos have been discovered thus far, ANITA is nevertheless the only experiment to self-trigger on radio frequency emissions from cosmic-ray induced atmospheric air showers. In the majority of those cases, down-coming RF signals are observed via their reflection from the Antarctic ice sheet and back up to the ANITA interferometer. Estimating the energy scale of the incident cosmic rays therefore requires an estimate of the fractional power reflected at the air-ice interface. Similarly, inferring the energy of neutrinos interacting in-ice from observations of the upwards-directed signal refracting out to ANITA also requires consideration of signal coherence across the interface. By comparing the direct Solar RF signal intensity measured with ANITA to the surface-reflected Solar signal ...

  6. Ultra High Energy Cosmic Rays & Super-heavy Dark Matter

    CERN Document Server

    Marzola, Luca

    2016-01-01

    We reanalyse the prospects for upcoming Ultra-High Energy Cosmic Ray experiments in connection with the phenomenology of Super-heavy Dark Matter. We identify a set of observables well suited to reveal a possible anisotropy in the High Energy Cosmic Ray flux induced by the decays of these particles, and quantify their performance via Monte Carlo simulations that mimic the outcome of near-future and next-generation experiments. The spherical and circular dipoles are able to tell isotropic and anisotropic fluxes apart at a confidence level as large as $4\\sigma$ or $5\\sigma$, depending on the Dark Matter profile. The forward-to-backward flux ratio yields a comparable result for relatively large opening angles of about 40~deg, but it is less performing once a very large number of events is considered. We also find that an actual experiment employing these observables and collecting 300~events at 60~EeV would have a $50\\%$ chance of excluding isotropy against Super-heavy Dark Matter at a significance of at least $3...

  7. Industrial radiography with cosmic-ray muons: A progress report

    Science.gov (United States)

    Gilboy, W. B.; Jenneson, P. M.; Simons, S. J. R.; Stanley, S. J.; Rhodes, D.

    2007-09-01

    Cosmic-ray produced muons arrive at the surface of the earth with enormous energies ranging up to 1012 GeV. There have been sporadic attempts to exploit their extreme penetration through matter to probe the internal structures of very large objects, including an Egyptian pyramid and a volcano but their very low intensity per unit area ( ≈1 cm-2 per min) generally restricts the practicably attainable spatial resolution to large dimensions. Nevertheless the more intense low energy region of the muon spectrum has recently been shown to be capable of detecting high-Z objects with dimensions of the order of 10 cm hidden inside large transport containers in measurement times of minutes. These various developments have encouraged further studies of potential industrial uses of cosmic-ray muons in industrial applications. In order to gain maximum benefit from the low muon flux large area detectors are required and plastic scintillators offer useful advantages in size, cost and simplicity. Scintillator slabs up to 1 m2 square and 76.2 mm thick are undergoing testing for applications in the nuclear industry. The most direct approach employs photomultiplier tubes at each corner to measure the relative sizes of muon induced pulses to determine the location of each muon track passing through the scintillator. The performance of this technique is reported and its imaging potential is assessed.

  8. Cosmic rays and space weather: effects on global climate change

    Directory of Open Access Journals (Sweden)

    L. I. Dorman

    2012-01-01

    Full Text Available We consider possible effects of cosmic rays and some other space factors on the Earth's climate change. It is well known that the system of internal and external factors formatting the climate is very unstable; decreasing planetary temperature leads to an increase of snow surface, and decrease of the total solar energy input into the system decreases the planetary temperature even more, etc. From this it follows that even energetically small factors may have a big influence on climate change. In our opinion, the most important of these factors are cosmic rays and cosmic dust through their influence on clouds, and thus, on climate.

  9. Atmospheric effects of stellar cosmic rays on Earth-like exoplanets orbiting M-dwarfs

    CERN Document Server

    Tabataba-Vakili, F; Grießmeier, J -M; Rauer, H

    2016-01-01

    M-dwarf stars are generally considered favourable for rocky planet detection. However, such planets may be subject to extreme conditions due to possible high stellar activity. The goal of this work is to determine the potential effect of stellar cosmic rays on key atmospheric species of Earth-like planets orbiting in the habitable zone of M-dwarf stars and show corresponding changes in the planetary spectra. We build upon the cosmic rays model scheme of Grenfell et al. (2012), who considered cosmic ray induced NOx production, by adding further cosmic ray induced production mechanisms (e.g. for HOx) and introducing primary protons of a wider energy range (16 MeV - 0.5 TeV). Previous studies suggested that planets in the habitable zone that are subject to strong flaring conditions have high atmospheric methane concentrations, while their ozone biosignature is completely destroyed. Our current study shows, however, that adding cosmic ray induced HOx production can cause a decrease in atmospheric methane abundanc...

  10. Measurement of cosmic-ray muons with the Distributed Electronic Cosmic-ray Observatory, a network of smartphones

    Science.gov (United States)

    Vandenbroucke, J.; BenZvi, S.; Bravo, S.; Jensen, K.; Karn, P.; Meehan, M.; Peacock, J.; Plewa, M.; Ruggles, T.; Santander, M.; Schultz, D.; Simons, A. L.; Tosi, D.

    2016-04-01

    Solid-state camera image sensors can be used to detect ionizing radiation in addition to optical photons. We describe the Distributed Electronic Cosmic-ray Observatory (DECO), an app and associated public database that enables a network of consumer devices to detect cosmic rays and other ionizing radiation. In addition to terrestrial background radiation, cosmic-ray muon candidate events are detected as long, straight tracks passing through multiple pixels. The distribution of track lengths can be related to the thickness of the active (depleted) region of the camera image sensor through the known angular distribution of muons at sea level. We use a sample of candidate muon events detected by DECO to measure the thickness of the depletion region of the camera image sensor in a particular consumer smartphone model, the HTC Wildfire S. The track length distribution is fit better by a cosmic-ray muon angular distribution than an isotropic distribution, demonstrating that DECO can detect and identify cosmic-ray muons despite a background of other particle detections. Using the cosmic-ray distribution, we measure the depletion thickness to be 26.3 ± 1.4 μm. With additional data, the same method can be applied to additional models of image sensor. Once measured, the thickness can be used to convert track length to incident polar angle on a per-event basis. Combined with a determination of the incident azimuthal angle directly from the track orientation in the sensor plane, this enables direction reconstruction of individual cosmic-ray events using a single consumer device. The results simultaneously validate the use of cell phone camera image sensors as cosmic-ray muon detectors and provide a measurement of a parameter of camera image sensor performance which is not otherwise publicly available.

  11. A Quantum Phase Transition in the Cosmic Ray Energy Distribution

    CERN Document Server

    Widom, A; Srivastava, Y

    2015-01-01

    We here argue that the "knee" of the cosmic ray energy distribution at $E_c \\sim 1$ PeV represents a second order phase transition of cosmic proportions. The discontinuity of the heat capacity per cosmic ray particle is given by $\\Delta c=0.450196\\ k_B$. However the idea of a deeper critical point singularity cannot be ruled out by present accuracy in neither theory nor experiment. The quantum phase transition consists of cosmic rays dominated by bosons for the low temperature phase E E_c$. The low temperature phase arises from those nuclei described by the usual and conventional collective boson models of nuclear physics. The high temperature phase is dominated by protons. The transition energy $E_c$ may be estimated in terms of the photo-disintegration of nuclei.

  12. Do cosmic ray air showers initiate lightning?: A statistical analysis of cosmic ray air showers and lightning mapping array data

    Science.gov (United States)

    Hare, B. M.; Dwyer, J. R.; Winner, L. H.; Uman, M. A.; Jordan, D. M.; Kotovsky, D. A.; Caicedo, J. A.; Wilkes, R. A.; Carvalho, F. L.; Pilkey, J. T.; Ngin, T. K.; Gamerota, W. R.; Rassoul, H. K.

    2017-08-01

    It has been argued in the technical literature, and widely reported in the popular press, that cosmic ray air showers (CRASs) can initiate lightning via a mechanism known as relativistic runaway electron avalanche (RREA), where large numbers of high-energy and low-energy electrons can, somehow, cause the local atmosphere in a thundercloud to transition to a conducting state. In response to this claim, other researchers have published simulations showing that the electron density produced by RREA is far too small to be able to affect the conductivity in the cloud sufficiently to initiate lightning. In this paper, we compare 74 days of cosmic ray air shower data collected in north central Florida during 2013-2015, the recorded CRASs having primary energies on the order of 1016 eV to 1018 eV and zenith angles less than 38°, with Lightning Mapping Array (LMA) data, and we show that there is no evidence that the detected cosmic ray air showers initiated lightning. Furthermore, we show that the average probability of any of our detected cosmic ray air showers to initiate a lightning flash can be no more than 5%. If all lightning flashes were initiated by cosmic ray air showers, then about 1.6% of detected CRASs would initiate lightning; therefore, we do not have enough data to exclude the possibility that lightning flashes could be initiated by cosmic ray air showers.

  13. Phantom Cosmic Ray Decreases and their Extraterrestrial Origins

    Science.gov (United States)

    Thomas, Simon; Owens, Mathew; Lockwood, Mike; Scott, Chris

    2014-05-01

    Galactic cosmic rays are extremely high energy charged particles accelerated at extra-solar sources such as supernovae, active galactic nuclei, quasars, and gamma-ray bursts. Upon arrival at Earth's atmosphere, they collide with air molecules to produce a shower of secondary particles. One product of this air shower is energetic neutrons, which can be detected at the Earth's surface. Neutron monitors have been routinely operating for more than half a century and have shown that the cosmic ray flux at the top of the atmosphere is modulated by the heliospheric magnetic field (HMF), both at solar cycle time scales and due to shorter-term HMF variations, such as result from coronal mass ejections (CMEs). When a CME passes over the Earth, the neutron monitor counts are reduced sharply and suddenly (in a matter of hours) due to the modulation of cosmic rays by the enhancement in the heliospheric magnetic field (HMF). Such a drop in neutron counts is known as a Forbush Decrease. We present examples of unusual Forbush Decreases where there is no disturbance in the HMF at Earth at the time, which we name 'Phantom Cosmic Ray Decreases' (PCRDs). For recent PCRD events, we examine STEREO in-situ data and in each case, we find a large CME in either STEREO-A or -B. We also study neutron counts for each event from a number of neutron monitors at different longitudes. Differences between the size of the cosmic ray decreases at different longitudes are shown to give information on the location of the cosmic ray modulation source. We thus propose that these PCRDs are caused by CMEs which have missed Earth but which are large and intense enough to block out galactic cosmic rays on trajectories toward Earth.

  14. Galactic origin of ultrahigh energy cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Mikhailov, A.A. [Yu.G. Shafer Institute of Cosmophysical Research and Aeronomy, 31 Lenin Ave., 677980 Yakutsk (Russian Federation)

    2009-05-15

    The arrival directions of ultrahigh energy extensive air showers (EAS) by Yakutsk, AGASA, P. Auger array data are analyzed. For the first time, the maps of equal exposition of celestial sphere for the distribution of particles by AGASA and P. Auger arrays data have been constructed. The large-scale anisotropy of cosmic particles at E>4x10{sup 19} eV by Yakutsk, AGASA and P. Auger array data has been detected. The problem of cosmic particle origin is discussed.

  15. Hunting for Cosmic-Ray Origins with SuperTIGER

    Science.gov (United States)

    Kohler, Susanna

    2016-11-01

    Illustration of cosmic-ray nuclei impacting Earths atmosphere and decaying into lighter particles. [ESA]The SuperTIGER (Trans-Iron Galactic Element Recorder) experiment flew over Antarctica for 55 days, collecting millions of galactic cosmic rays. What can it tell us about the origins of these high-energy particles?High-Energy ImpactsGalactic cosmic rays are immensely high-energy protons and atomic nuclei that impact our atmosphere, originating from outside of our solar system. Where do they come from, and how are they accelerated? These are both open topics of research.One of the leading theories is that cosmic-ray source material is primarily a mixture of material that has been ejected from massive stars either from supernovae or in stellar wind outflows and normal interstellar medium (ISM). This material is then accelerated to cosmic-ray energies by supernova shocks.Number of nuclei of each element detected by SuperTIGER. Note the change of scale between the two plots (click for a closer look)! [Murphy et al. 2016]How can we test this model? An important step is understanding the composition of galactic cosmic rays: what elemental nuclei are they made up of? If abundances are similar to solar-system abundances, then the material is likely mostly ISM. If the abundances of rarer heavy elements are high, however, then the material is more likely to have come from massive stars in star-forming regions.Balloon-Borne DetectionsEnter SuperTIGER, an experiment designed to collect cosmic rays and measure the abundances of the rare heavy elements those with atomic number between iron (Z=26) and zirconium (Z=40).The path that SuperTIGER took over Antarctica during its flight, with a different color denoting each circuit around the pole. Note where it got stuck in an eddy over the Transarctic Mountains at the end of its second circuit! [Columbia Scientific Balloon Facility]To gather galactic cosmic rays, the detector must be above the Earths atmosphere; interactions with

  16. ARGO-YBJ:丰富多彩的宇宙线观测%ARGO-YBJ: Fruitful Cosmic Ray Observations

    Institute of Scientific and Technical Information of China (English)

    曹臻

    2012-01-01

    Being smoothly operated for 5 years, the ARGO-YBJ experiment collected 0.4 trillion cosmic ray event samples. Many scientific goals have been achieved based on the very important data base. Here in this article, we summarize all major contributions to cosmic ray related researches, including conventional measurements such as cosmic ray energy spectrum, composition and anisotropy. The researches also cover many non-traditional topics such as the monitoring of solar activity using Galactic cosmic rays, forecasting large geomagnetic storms induced by huge flares of the sun, exploring the correlation between thunderstorms and extensives air shower of cosmic rays and so forth. With the progresses of the future experiment LHAASO, all researches reported in this paper will be greatly enhanced using the most sensitive new generation apparatus. Breakthrough may be expected in some of the topics.

  17. Cosmic-Ray Injection from Star-Forming Regions.

    Science.gov (United States)

    Carlson, Eric; Profumo, Stefano; Linden, Tim

    2016-09-01

    At present, all physical models of diffuse Galactic γ-ray emission assume that the distribution of cosmic-ray sources traces the observed populations of either OB stars, pulsars, or supernova remnants. However, since H_{2}-rich regions host significant star formation and numerous supernova remnants, the morphology of observed H_{2} gas (as traced by CO line surveys) should also provide a physically motivated, high-resolution tracer for cosmic-ray injection. We assess the impact of utilizing H_{2} as a tracer for cosmic-ray injection on models of diffuse Galactic γ-ray emission. We employ state-of-the-art 3D particle diffusion and gas density models, along with a physical model for the star-formation rate based on global Schmidt laws. Allowing a fraction, f_{H_{2}}, of cosmic-ray sources to trace the observed H_{2} density, we find that a theoretically well-motivated value f_{H_{2}}∼0.20-0.25 (i) provides a significantly better global fit to the diffuse Galactic γ-ray sky and (ii) highly suppresses the intensity of the residual γ-ray emission from the Galactic center region. Specifically, in models utilizing our best global fit values of f_{H_{2}}∼0.20-0.25, the spectrum of the galactic center γ-ray excess is drastically affected, and the morphology of the excess becomes inconsistent with predictions for dark matter annihilation.

  18. The relation between post-shock temperature, cosmic-ray pressure, and cosmic-ray escape for non-relativistic shocks

    NARCIS (Netherlands)

    Vink, J.; Yamazaki, R.; Helder, E.A.; Schure, K.M.

    2010-01-01

    Supernova remnants (SNRs) are thought to be the dominant source of Galactic cosmic rays. This requires that at least 5% of the available energy is transferred to cosmic rays, implying a high cosmic-ray pressure downstream of SNR shocks. Recently, it has been shown that the downstream temperature in

  19. Winds, Clumps, and Interacting Cosmic Rays in M82

    CERN Document Server

    Yoast-Hull, Tova M; Gallagher, J S; Zweibel, Ellen G

    2013-01-01

    We construct a family of models for the evolution of energetic particles in the starburst galaxy M82 and compare them to observations to test the calorimeter assumption that all cosmic ray energy is radiated in the starburst region. Assuming constant cosmic ray acceleration efficiency with Milky Way parameters, we calculate the cosmic-ray proton and primary and secondary electron/positron populations as a function of energy. Cosmic rays are injected with Galactic energy distributions and electron-to-proton ratio via type II supernovae at the observed rate of 0.07/yr. From the cosmic ray spectra, we predict the radio synchrotron and \\gamma-ray spectra. To more accurately model the radio spectrum, we incorporate a multiphase interstellar medium in the starburst region of M82. Our model interstellar medium is highly fragmented with compact dense molecular clouds and dense photoionized gas, both embedded in a hot, low density medium in overall pressure equilibrium. The spectra predicted by this one-zone model are...

  20. WINDS, CLUMPS, AND INTERACTING COSMIC RAYS IN M82

    Energy Technology Data Exchange (ETDEWEB)

    Yoast-Hull, Tova M.; Everett, John E.; Zweibel, Ellen G. [Department of Physics, University of Wisconsin-Madison, WI (United States); Gallagher, J. S. III, E-mail: yoasthull@wisc.edu [Department of Astronomy, University of Wisconsin-Madison, WI (United States)

    2013-05-01

    We construct a family of models for the evolution of energetic particles in the starburst galaxy M82 and compare them to observations to test the calorimeter assumption that all cosmic ray energy is radiated in the starburst region. Assuming constant cosmic ray acceleration efficiency with Milky Way parameters, we calculate the cosmic-ray proton and primary and secondary electron/positron populations as a function of energy. Cosmic rays are injected with Galactic energy distributions and electron-to-proton ratio via Type II supernovae at the observed rate of 0.07 yr{sup -1}. From the cosmic ray spectra, we predict the radio synchrotron and {gamma}-ray spectra. To more accurately model the radio spectrum, we incorporate a multiphase interstellar medium in the starburst region of M82. Our model interstellar medium is highly fragmented with compact dense molecular clouds and dense photoionized gas, both embedded in a hot, low density medium in overall pressure equilibrium. The spectra predicted by this one-zone model are compared to the observed radio and {gamma}-ray spectra of M82. {chi}{sup 2} tests are used with radio and {gamma}-ray observations and a range of model predictions to find the best-fit parameters. The best-fit model yields constraints on key parameters in the starburst zone of M82, including a magnetic field strength of {approx}250 {mu}G and a wind advection speed in the range of 300-700 km s{sup -1}. We find that M82 is a good electron calorimeter but not an ideal cosmic-ray proton calorimeter and discuss the implications of our results for the astrophysics of the far-infrared-radio correlation in starburst galaxies.

  1. Cosmic Rays in Extragalactic Systems: Clusters and Beyond

    Science.gov (United States)

    Jones, Thomas

    The existence of cosmic rays (CRs) accelerated outside our galaxy is by now established fact. For instance, the angular and spectral distributions of ultra high energy CRs (UHECRs) above roughly an EeV point clearly to their extragalactic origins. Diffuse nonthermal radio emis-sions in clusters and along their perimeters reveal GeV electrons filling volumes sometimes approaching Mpc scales. The radiative lifetimes of those leptonic CRs are so short that they must be accelerated or produced as secondaries in situ. The dominant energy sources for such extragalactic CRs are not clearly established, although they are likely to be consequences of strucure formation. Large-scale shocks (including cluster accretion shocks) and turbulence in-duced by structure formation are strong candidates. There is also the possibility that CRs may be produced through structure formation process on still larger scales associated with cos-mic filaments, although current evidence for that is sketchy. The effectiveness of processes in these environments that might accelerate CRs depends sensitively on poorly understood "mi-crophysics" in very dilute and weakly magnetized plasmas. All of these CR populations have the potential to produce diagnostic gamma rays in the GeV to TeV range. Consequently, detec-tion or improved detection limits by current and coming gamma ray observatories can provide unique and crucial information about physical processes and conditions in these environments. My talk will outline the current status of these issues. This work is supported by the US NSF, NASA and by the Minnesota Supercomputing Institute.

  2. Cosmic-ray Propagation and Interactions in the Galaxy

    Energy Technology Data Exchange (ETDEWEB)

    Strong, Andrew W.; /Garching, Max Planck Inst., MPE; Moskalenko, Igor V.; /Stanford U., HEPL /KIPAC, Menlo Park; Ptuskin, Vladimir S.; /Troitsk, IZMIRAN

    2007-01-22

    We survey the theory and experimental tests for the propagation of cosmic rays in the Galaxy up to energies of 10{sup 15} eV. A guide to the previous reviews and essential literature is given, followed by an exposition of basic principles. The basic ideas of cosmic-ray propagation are described, and the physical origin of its processes are explained. The various techniques for computing the observational consequences of the theory are described and contrasted. These include analytical and numerical techniques. We present the comparison of models with data including direct and indirect--especially gamma-ray--observations, and indicate what we can learn about cosmic-ray propagation. Some particular important topics including electrons and antiparticles are chosen for discussion.

  3. Cosmological Simulations of Dwarf Galaxies with Cosmic Ray Feedback

    CERN Document Server

    Chen, Jingjing; Salem, Munier

    2016-01-01

    We perform zoom-in cosmological simulations of a suite of dwarf galaxies, examining the impact of cosmic-rays generated by supernovae, including the effect of diffusion. We first look at the effect of varying the uncertain cosmic ray parameters by repeatedly simulating a single galaxy. Then we fix the comic ray model and simulate five dwarf systems with virial masses range from 8-30 $\\times 10^{10}$ Msun. We find that including cosmic ray feedback (with diffusion) consistently leads to disk dominated systems with relatively flat rotation curves and constant star formation rates. In contrast, our purely thermal feedback case results in a hot stellar system and bursty star formation. The CR simulations very well match the observed baryonic Tully-Fisher relation, but have a lower gas fraction than in real systems. We also find that the dark matter cores of the CR feedback galaxies are cuspy, while the purely thermal feedback case results in a substantial core.

  4. Cosmic rays, geomagnetic field and climate changes

    Science.gov (United States)

    Shea, M.; Smart, D.

    The possibility of a connection between cosmic radiation and climate has intrigued scientists for the past several decades. The recent studies of Friis -Christensen and Svensmark has shown an observed variation of 3-4% of the global cloud cover between 1980 and 1995 that appeared to be directly correlated with the change in galactic cosmic radiation flux over the solar cycle. However, in studies of this type, not only the solar cycle modulation of cosmic radiation must be considered, but also the changes in the cosmic radiation impinging at the top of the atmosphere as a result of the long term evolution of the geomagnetic field. We present preliminary results of an on-going study of geomagnetic cutoff rigidities over a 400-year interval. These results show (1) the change in cutoff rigidity is sufficient large so that the change in cosmic radiation flux impacting the earth is approximately equal to the relative change in flux over a solar cycle, and (2) the changes in cutoff rigidity are non- uniform over the globe with both significant increases and decreases at mid-latitude locations.

  5. Cosmic ray injection spectrum at the galactic sources

    Science.gov (United States)

    Lagutin, Anatoly; Tyumentsev, Alexander; Volkov, Nikolay

    The spectra of cosmic rays measured at Earth are different from their source spectra. A key to understanding this difference, being crucial for solving the problem of cosmic-ray origin, is the determination of how cosmic-ray (CR) particles propagate through the turbulent interstellar medium (ISM). If the medium is a quasi-homogeneous the propagation process can be described by a normal diffusion model. However, during a last few decades many evidences, both from theory and observations, of the existence of multiscale structures in the Galaxy have been found. Filaments, shells, clouds are entities widely spread in the ISM. In such a highly non-homogeneous (fractal-like) ISM the normal diffusion model certainly is not kept valid. Generalization of this model leads to what is known as "anomalous diffusion". The main goal of the report is to retrieve the cosmic ray injection spectrum at the galactic sources in the framework of the anomalous diffusion (AD) model. The anomaly in this model results from large free paths ("Levy flights") of particles between galactic inhomogeneities. In order to evaluate the CR spectrum at the sources, we carried out new calculation of the CR spectra at Earth. AD equation in terms of fractional derivatives have been used to describe CR propagation from the nearby (r≤1 kpc) young (t≤ 1 Myr) and multiple old distant (r > 1 kpc) sources. The assessment of the key model parameters have been based on the results of the particles diffusion in the cosmic and laboratory plasma. We show that in the framework of the anomalous diffusion model the locally observed basic features of the cosmic rays (difference between spectral exponents of proton, He and other nuclei, "knee" problem, positron to electron ratio) can be explained if the injection spectrum at the main galactic sources of cosmic rays has spectral exponent p˜ 2.85. The authors acknowledge support from The Russian Foundation for Basic Research grant No. 14-02-31524.

  6. Ultra High Energy Comic Rays in the Cosmic Microwave Background

    CERN Document Server

    Hwang, W-Y Pauchy

    2011-01-01

    We consider the propagation of ultra high energy cosmic rays (UHECR), for energies greater than E > 10^{14} eV but less than E < 10^{26} eV, in the cosmic medium of the Cosmic Microwave Background (CMB). We find that the CMB plays a pivot role in this energy range. As example, the observed "knee(s)" and the "ankle" could be understood in reasonable terms. What we may observe at energy near 10^{25} eV (W^\\pm bursts or Z^0 bursts) is also briefly discussed.

  7. The Eddington Limit in Cosmic Rays: An Explanation for the Observed Faintness of Starbursting Galaxies

    CERN Document Server

    Socrates, A; Ramirez-Ruiz, E; Socrates, Aristotle; Davis, Shane W.; Ramirez-Ruiz, Enrico

    2006-01-01

    We show that the luminosity of a star forming galaxy is capped by the production and subsequent expulsion of cosmic rays from its interstellar medium. By defining an Eddington luminosity in cosmic rays, we show that the star formation rate of a given galaxy is limited by its mass content and the cosmic ray mean free path. When the cosmic ray luminosity and pressure reaches a critical value as a result of vigorous star formation, hydrostatic balance is lost, a cosmic ray-driven wind develops, and star formation is choked off. Cosmic ray pressure-driven winds are likely to produce wind velocities significantly in excess of the galactic escape velocity. It is possible that cosmic ray feedback results in the Faber-Jackson relation for a plausible set of input parameters that describe cosmic ray production and transport, which are calibrated by observations of the Milky Way's interstellar cosmic rays.

  8. A general detector testing system using cosmic rays

    CERN Document Server

    Zhu, Chengguang

    2013-01-01

    A cosmic ray hodoscope with two-dimensional spacial sensitivity and good time resolution has been developed. The system is designed to use the cosmic muons as probes to test the performances of charged particle sensitive detectors. This paper will present the structure of this system, the timing calibration and the resulted performance of this system. The results of the test of the prototype electron detector for LHAASO project are presented as well.

  9. Experimental Summary: Very High Energy Cosmic Rays and their Interactions

    Science.gov (United States)

    Kampert, Karl-Heinz

    2013-06-01

    The XVII International Symposium on Very High Energy Cosmic Ray Interactions, held in August of 2012 in Berlin, was the first one in the history of the Symposium,where a plethora of high precision LHC data with relevance for cosmic ray physics was presented. This report aims at giving a brief summary of those measurements andit discusses their relevance for observations of high energy cosmic rays. Enormous progress has been made also in air shower observations and in direct measurements of cosmic rays, exhibiting many more structure in the cosmic ray energy spectrum than just a simple power law with a knee and an ankle. At the highest energy, the flux suppression may not be dominated by the GZK-effect but by the limiting energy of a nearby source or source population. New projects and application of new technologies promise further advances also in the near future. We shall discuss the experimental and theoretical progress in the field and its prospects for coming years.

  10. COSMOS: The COsmic-ray Soil Moisture Observing System

    Directory of Open Access Journals (Sweden)

    M. Zreda

    2012-04-01

    Full Text Available Area-average soil moisture at the sub-kilometer scale is needed but until the advent of the cosmic-ray method (Zreda et al., 2008, it was difficult to measure. This new method is now being implemented routinely in the COsmic-ray Soil Moisture Observing System (or COSMOS. The stationary cosmic-ray soil moisture probe (sometimes called "neutronavka" measures the neutrons that are generated by cosmic rays within air and soil, moderated by mainly hydrogen atoms located primarily in soil water, and emitted to the atmosphere where they mix instantaneously at a scale of hundreds of meters and whose density is inversely correlated with soil moisture. COSMOS has already deployed 53 of the eventual 500 neutronavkas distributed mainly in the USA, each generating a time series of average soil moisture over its hectometer horizontal footprint, with similar networks coming into existence around the world. This paper is written to serve a community need to better understand this novel method and the COSMOS project. We describe the cosmic-ray soil moisture measurement method, the instrument and its calibration, the design, data processing and dissemination used in COSMOS, and give example time series of soil moisture obtained from COSMOS probes.

  11. Experimental Summary: Very High Energy Cosmic Rays and their Interactions

    Directory of Open Access Journals (Sweden)

    Kampert Karl-Heinz

    2013-06-01

    Full Text Available The XVII International Symposium on Very High Energy Cosmic Ray Interactions, held in August of 2012 in Berlin, was the first one in the history of the Symposium,where a plethora of high precision LHC data with relevance for cosmic ray physics was presented. This report aims at giving a brief summary of those measurements andit discusses their relevance for observations of high energy cosmic rays. Enormous progress has been made also in air shower observations and in direct measurements of cosmic rays, exhibiting many more structure in the cosmic ray energy spectrum than just a simple power law with a knee and an ankle. At the highest energy, the flux suppression may not be dominated by the GZK-effect but by the limiting energy of a nearby source or source population. New projects and application of new technologies promise further advances also in the near future. We shall discuss the experimental and theoretical progress in the field and its prospects for coming years.

  12. Cosmic Rays and Stochastic Magnetic Reconnection in the Heliotail

    CERN Document Server

    Desiati, P

    2012-01-01

    Galactic cosmic rays are believed to be generated by diffusive shock acceleration processes in Supernova Remnants, and the arrival direction is likely determined by the distribution of their sources throughout the Galaxy, in particular by the nearest and youngest ones. Transport to Earth through the interstellar medium is expected to affect the cosmic ray properties as well. However, the observed anisotropy of TeV cosmic rays and its energy dependence cannot be explained with diffusion models of particle propagation in the Galaxy. Within a distance of a few parsec, diffusion regime is not valid and particles with energy below about 100 TeV must be influenced by the heliosphere and its elongated tail. The observation of a highly significant localized excess region of cosmic rays from the apparent direction of the downstream interstellar flow at 1-10 TeV energies might provide the first experimental evidence that the heliotail can affect the transport of energetic particles. In particular, TeV cosmic rays propa...

  13. Biomarker response to galactic cosmic ray-induced NOx and the methane greenhouse effect in the atmosphere of an Earth-like planet orbiting an M dwarf star.

    Science.gov (United States)

    Grenfell, John Lee; Griessmeier, Jean-Mathias; Patzer, Beate; Rauer, Heike; Segura, Antigona; Stadelmann, Anja; Stracke, Barbara; Titz, Ruth; Von Paris, Philip

    2007-02-01

    Planets orbiting in the habitable zone of M dwarf stars are subject to high levels of galactic cosmic rays (GCRs), which produce nitrogen oxides (NOx) in Earth-like atmospheres. We investigate to what extent these NO(Mx) species may modify biomarker compounds such as ozone (O3) and nitrous oxide (N2O), as well as related compounds such as water (H2O) (essential for life) and methane (CH4) (which has both abiotic and biotic sources). Our model results suggest that such signals are robust, changing in the M star world atmospheric column due to GCR NOx effects by up to 20% compared to an M star run without GCR effects, and can therefore survive at least the effects of GCRs. We have not, however, investigated stellar cosmic rays here. CH4 levels are about 10 times higher on M star worlds than on Earth because of a lowering in hydroxyl (OH) in response to changes in the ultraviolet. The higher levels of CH4 are less than reported in previous studies. This difference arose partly because we used different biogenic input. For example, we employed 23% lower CH4 fluxes compared to those studies. Unlike on Earth, relatively modest changes in these fluxes can lead to larger changes in the concentrations of biomarker and related species on the M star world. We calculate a CH4 greenhouse heating effect of up to 4K. O3 photochemistry in terms of the smog mechanism and the catalytic loss cycles on the M star world differs considerably compared with that of Earth.

  14. Cosmic rays and terrestrial life: A brief review

    Science.gov (United States)

    Atri, Dimitra; Melott, Adrian L.

    2014-01-01

    “The investigation into the possible effects of cosmic rays on living organisms will also offer great interest.” - Victor F. Hess, Nobel Lecture, December 12, 1936 High-energy radiation bursts are commonplace in our Universe. From nearby solar flares to distant gamma ray bursts, a variety of physical processes accelerate charged particles to a wide range of energies, which subsequently reach the Earth. Such particles contribute to a number of physical processes occurring in the Earth system. A large fraction of the energy of charged particles gets deposited in the atmosphere, ionizing it, causing changes in its chemistry and affecting the global electric circuit. Remaining secondary particles contribute to the background dose of cosmic rays on the surface and parts of the subsurface region. Life has evolved over the past ∼3 billion years in presence of this background radiation, which itself has varied considerably during the period [1-3]. As demonstrated by the Miller-Urey experiment, lightning plays a very important role in the formation of complex organic molecules, which are the building blocks of more complex structures forming life. There is growing evidence of increase in the lightning rate with increasing flux of charged particles. Is there a connection between enhanced rate of cosmic rays and the origin of life? Cosmic ray secondaries are also known to damage DNA and cause mutations, leading to cancer and other diseases. It is now possible to compute radiation doses from secondary particles, in particular muons and neutrons. Have the variations in cosmic ray flux affected the evolution of life on earth? We describe the mechanisms of cosmic rays affecting terrestrial life and review the potential implications of the variation of high-energy astrophysical radiation on the history of life on earth.

  15. Observation of the Cosmic Ray Moon shadowing effect with the ARGO-YBJ experiment

    CERN Document Server

    Di Sciascio, G

    2011-01-01

    Cosmic rays are hampered by the Moon and a deficit in its direction is expected (the so-called \\emph{Moon shadow}). The Moon shadow is an important tool to determine the performance of an air shower array. In fact, the displacement of the shadow center, due to the bending effect of the Geomagnetic field on the propagation of cosmic rays, allows to set the energy scale of the primary particles inducing the showers observed by the detector. The shape of the shadow permits to determine the detector point spread function. The position of the deficit at high energy allows evaluating its pointing accuracy. Here we present the observation of the cosmic ray Moon shadowing effect carried out by the ARGO-YBJ experiment (Yangbajing Cosmic Ray Laboratory, Tibet, P.R. China, 4300 m a.s.l., 606 g/cm$^2$) in the multi-TeV energy region with high statistical significance (70 standard deviations). By means of an accurate Monte Carlo simulation of the cosmic rays propagation in the Earth-Moon system we have studied the role of...

  16. The Transport of Cosmic Rays Across Magnetic Fieldlines

    CERN Document Server

    Desiati, Paolo

    2014-01-01

    The long residence times and small anisotropies of cosmic rays suggest that they are well confined and well scattered by the Galactic magnetic field. Due to the disklike shape of the confinement volume, transport in the vertical direction, perpendicular to the mean Galactic magnetic field, is key to cosmic ray escape. It has long been recognized that this vertical transport depends both on the vertical component of the fieldlines themselves and on the extent to which the cosmic rays are tied to the fieldlines. In this paper we use magnetic fields with very simple spatial and temporal structure to isolate some important features of cross field transport. We show that even simple magnetic nonuniformities combined with pitch angle scattering can enhance cross field transport by several orders of magnitude, while pitch angle scattering is unnecessary for enhanced transport if the field is chaotic. Nevertheless, perpendicular transport is much less than parallel transport in all the cases we study. We apply the re...

  17. Cosmic Ray Small Scale Anisotropies and Local Turbulent Magnetic Fields

    CERN Document Server

    López-Barquero, Vanessa; Xu, S; Desiati, P; Lazarian, A

    2015-01-01

    Cosmic ray anisotropy is observed in a wide energy range and at different angular scales by a variety of experiments. However, a comprehensive and satisfactory explanation has been elusive for over a decade now. The arrival distribution of cosmic rays on Earth is the convolution of the distribution of their sources and of the effects of geometry and properties of the magnetic field through which particles propagate. It is generally believed that the anisotropy topology at the largest angular scale is adiabatically shaped by diffusion in the structured interstellar magnetic field. On the contrary, the medium and small angular scale structure could be an effect of non diffusive propagation of cosmic rays in perturbed magnetic fields. In particular, a possible explanation of the observed small scale anisotropy observed at TeV energy scale, may come from the effect of particle scattering in turbulent magnetized plasmas. We perform numerical integration of test particle trajectories in low-$\\beta$ compressible mag...

  18. A Cosmic Ray Resolution to the Superbubble Energy-Crisis

    CERN Document Server

    Butt, Yousaf M

    2008-01-01

    Superbubbles (SBs) are amongst the greatest injectors of energy into the Galaxy, and have been proposed to be the acceleration site of Galactic cosmic rays. They are thought to be powered by the fast stellar winds and powerful supernova explosions of massive stars in dense stellar clusters and associations. Observations of the SB 'DEM L192' in the neighboring Large Magellenic Cloud (LMC) galaxy show that it contains only about one-third the energy injected by its constituent stars via fast stellar winds and supernovae. It is not yet understood where the excess energy is going, thus, the so-called 'energy crisis'. We show here that it is very likely that a significant fraction of the unaccounted for energy is being taken up in accelerating cosmic rays, thus bolstering the argument for the SB origin of cosmic rays.

  19. Pinpointing cosmic ray propagation with the AMS-02 experiment

    Energy Technology Data Exchange (ETDEWEB)

    Pato, Miguel [Dipartimento di Fisica, Università degli Studi di Padova, via Marzolo 8, I-35131, Padova (Italy); Hooper, Dan [Center for Particle Astrophysics, Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Simet, Melanie, E-mail: pato@iap.fr, E-mail: dhooper@fnal.gov, E-mail: msimet@uchicago.edu [Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637 (United States)

    2010-06-01

    The Alpha Magnetic Spectrometer (AMS-02), which is scheduled to be deployed onboard the International Space Station later this year, will be capable of measuring the composition and spectra of GeV-TeV cosmic rays with unprecedented precision. In this paper, we study how the projected measurements from AMS-02 of stable secondary-to-primary and unstable ratios (such as boron-to-carbon and beryllium-10-to-beryllium-9) can constrain the models used to describe the propagation of cosmic rays throughout the Milky Way. We find that within the context of fairly simple propagation models, all of the model parameters can be determined with high precision from the projected AMS-02 data. Such measurements are less constraining in more complex scenarios, however, which allow for departures from a power-law form for the diffusion coefficient, for example, or for inhomogeneity or stochasticity in the distribution and chemical abundances of cosmic ray sources.

  20. Investigation of cosmic ray-cloud connections using MISR

    CERN Document Server

    Krissansen-Totton, Joshua

    2013-01-01

    Numerous empirical studies have analyzed International Satellite Cloud Climatology Project data and reached contradictory conclusions regarding the influence of solar-modulated galactic cosmic rays on cloud fraction and cloud properties. The Multiangle Imaging Spectroradiometer (MISR) instrument on the Terra satellite has been in continuous operation for 13 years and thus provides an independent (and previously unutilized) cloud data set to investigate purported solar-cloud links. Furthermore, unlike many previous solar-climate studies that report cloud fraction MISR measures albedo, which has clearer climatological relevance. Our long-term analysis of MISR data finds no statistically significant correlations between cosmic rays and global albedo or globally averaged cloud height, and no evidence for any regional or lagged correlations. Moreover, epoch superposition analysis of Forbush decreases reveals no detectable albedo response to cosmic ray decreases, thereby placing an upper limit on the possible influ...

  1. Can Cosmic Ray Catalysed Vacuum Decay Dominate Over Tunnelling?

    CERN Document Server

    Enqvist, Kari; Enqvist, Kari; Donald, John Mc

    1997-01-01

    We consider the question of whether cosmic ray catalysed false vacuum decay can be phenomenologically more important than spontaneous decay via quantum tunnelling. We extend the zero bubble wall width Landau-WKB analysis of catalysed false vacuum decay to include the leading order effects of finite wall width and derive an expression for the thin-wall bubble action. Using this we calculate the exponential suppression factor for the catalysed decay rate at the critical bubble energy, corresponding to the largest probability of catalysed decay. We show that, in general, cosmic ray catalysed decay is likely to be more important than spontaneous decay for sufficiently thin-walled bubbles (wall thickness less than about 30 % of the initial bubble radius), but that spontaneous decay will dominate for the case of thick-walled bubbles. Since any perturbative model with a cosmologically significant false vacuum decay rate will almost certainly produce thick-walled bubbles, we can conclude that cosmic ray catalysed fal...

  2. Restrictions from Lorentz invariance violation on cosmic ray propagation

    Science.gov (United States)

    Martínez-Huerta, H.; Pérez-Lorenzana, A.

    2017-03-01

    Lorentz invariance violation introduced as a generic modification to particle dispersion relations is used to study high energy cosmic ray attenuation processes. It is shown to reproduce the same physical effects for vacuum Cherenkov radiation, as in some particular models with spontaneous breaking of Lorentz symmetry. This approximation is also implemented for the study of photon decay in vacuum, where stringent limits to the violation scale are derived from the direct observation of very high energy cosmic ray photon events on gamma telescopes. Photo production processes by cosmic ray primaries on photon background are also addressed, to show that Lorentz violation may turn off this attenuation process at energies above a well-defined secondary threshold.

  3. Radio detection of cosmic ray air showers with LOPES

    Energy Technology Data Exchange (ETDEWEB)

    Huege, T.; Apel, W.D. [IK, Forschungszentrum Karlsruhe, 76021 Karlsruhe (Germany); Asch, T. [IPE, Forschungszentrum Karlsruhe, 76021 Karlsruhe (Germany); Badea, A.F. [IK, Forschungszentrum Karlsruhe, 76021 Karlsruhe (Germany); Baehren, L. [ASTRON, 7990 AA Dwingeloo (Netherlands); Bekk, K. [IK, Forschungszentrum Karlsruhe, 76021 Karlsruhe (Germany); Bercuci, A. [Nat. Inst. of Physics and Nuclear Eng., 7690 Bucharest (Romania); Bertaina, M. [Dipartimento di Fisica Generale dell' Universita, 10125 Torino (Italy); Biermann, P.L. [Max-Planck-Institut fuer Radioastronomie, 53121 Bonn (Germany); Bluemer, J. [IK, Forschungszentrum Karlsruhe, 76021 Karlsruhe (Germany); IEKP, Universitaet Karlsruhe, 76021 Karlsruhe (Germany); Bozdog, H. [IK, Forschungszentrum Karlsruhe, 76021 Karlsruhe (Germany); Brancus, I.M. [Nat. Inst. of Physics and Nuclear Eng., 7690 Bucharest (Romania); Buitink, S. [Dpt. Astrophysics, Radboud Univ., 6525 ED Nijmegen (Netherlands); Brueggemann, M.; Buchholz, P. [Fachbereich Physik, Universitaet Siegen, 57072 Siegen (Germany); Butcher, H. [ASTRON, 7990 AA Dwingeloo (Netherlands); Chiavassa, A. [Dipartimento di Fisica Generale dell' Universita, 10125 Torino (Italy); Cossavella, F. [IEKP, Universitaet Karlsruhe, 76021 Karlsruhe (Germany); Daumiller, K. [IK, Forschungszentrum Karlsruhe, 76021 Karlsruhe (Germany); Di Pierro, F. [Dipartimento di Fisica Generale dell' Universita, 10125 Torino (Italy)] (and others)

    2007-03-15

    In the last few years, radio detection of cosmic ray air showers has experienced a true renaissance, becoming manifest in a number of new experiments and simulation efforts. In particular, the LOPES project has successfully implemented modern interferometric methods to measure the radio emission from extensive air showers. LOPES has confirmed that the emission is coherent and of geomagnetic origin, as expected by the geosynchrotron mechanism, and has demonstrated that a large scale application of the radio technique has great potential to complement current measurements of ultra-high energy cosmic rays. We describe the current status, most recent results and open questions regarding radio detection of cosmic rays and give an overview of ongoing research and development for an application of the radio technique in the framework of the Pierre Auger Observatory.

  4. Radio detection of cosmic ray air showers with LOPES

    CERN Document Server

    Huege, T; Asch, T; Badea, A F; Bähren, L; Bekk, K; Bercuci, A; Bertaina, M; Biermann, P L; Blumer, J; Bozdog, H; Brancus, I M; Buitink, S; Bruggemann, M; Buchholz, P; Butcher, H; Chiavassa, A; Cossavella, F; Daumiller, K; Di Pierro, F; Doll, P; Engel, R; Falcke, H; Gemmeke, H; Ghia, P L; Glasstetter, R; Grupen, C; Hakenjos, A; Haungs, A; Heck, D; Hörandel, J R; Horneffer, A; Isar, P G; Kampert, K H; Kolotaev, Yu; Krömer, O; Kuijpers, J; Lafebre, S; Mathes, H J; Mayer, H J; Meurer, C; Milke, J; Mitrica, B; Morello, C; Navarra, G; Nehls, S; Nigl, A; Obenland, R; Oehlschläger, J; Ostapchenko, S; Over, S; Petcu, M; Petrovic, J; Pierog, T; Plewnia, S; Rebel, H; Risse, A; Roth, M; Schieler, H; Sima, O; Singh, K; Stumpert, M; Toma, G; Trinchero, G C; Ulrich, H; Van Buren, J; Walkowiak, W; Weindl, A; Wochele, J; Zabierowski, J; Zensus, J A; Zimmermann, D; Huege, Tim; al, et

    2006-01-01

    In the last few years, radio detection of cosmic ray air showers has experienced a true renaissance, becoming manifest in a number of new experiments and simulation efforts. In particular, the LOPES project has successfully implemented modern interferometric methods to measure the radio emission from extensive air showers. LOPES has confirmed that the emission is coherent and of geomagnetic origin, as expected by the geosynchrotron mechanism, and has demonstrated that a large scale application of the radio technique has great potential to complement current measurements of ultra-high energy cosmic rays. We describe the current status, most recent results and open questions regarding radio detection of cosmic rays and give an overview of ongoing research and development for an application of the radio technique in the framework of the Pierre Auger Observatory.

  5. Testing the proposed link between cosmic rays and cloud cover

    CERN Document Server

    Sloan, T

    2008-01-01

    A decrease in the globally averaged low level cloud cover, deduced from the ISCCP infra red data, as the cosmic ray intensity decreased during the solar cycle 22 was observed by two groups. The groups went on to hypothesise that the decrease in ionization due to cosmic rays causes the decrease in cloud cover, thereby explaining a large part of the presently observed global warming. We have examined this hypothesis to look for evidence to corroborate it. None has been found and so our conclusions are to doubt it. From the absence of corroborative evidence, we estimate that less than 23%, at the 95% confidence level, of the 11-year cycle change in the globally averaged cloud cover observed in solar cycle 22 is due to the change in the rate of ionization from the solar modulation of cosmic rays.

  6. Cosmic rays,Climate and the CERN CLOUD Experiment

    CERN Document Server

    CERN. Geneva

    2011-01-01

    For more than two centuries, scientists have been puzzled by observations of solar-climate variability yet the lack of any established physical mechanism. Some recent observations, although disputed, suggest that clouds may be influenced by cosmic rays, which are modulated by the solar wind. The CLOUD experiment aims to settle the question of whether or not cosmic rays have a climatically-significant effect on clouds by carrying out a series of carefully-controlled measurements in a large cloud chamber exposed to a beam from the CERN PS. This talk will present the scientific motivation for CLOUD and the first results, which have recently been published in Nature (Kirkby et al. (2011). Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation. Nature 476, 429-433).

  7. Identifying Galactic Cosmic Ray Origins With Super-TIGER

    Science.gov (United States)

    deNolfo, Georgia; Binns, W. R.; Israel, M. H.; Christian, E. R.; Mitchell, J. W.; Hams, T.; Link, J. T.; Sasaki, M.; Labrador, A. W.; Mewaldt, R. A.; Stone, E. C.; Waddington, C. J.; Wiedenbeck, M. E.

    2009-01-01

    Super-TIGER (Super Trans-Iron Galactic Element Recorder) is a new long-duration balloon-borne instrument designed to test and clarify an emerging model of cosmic-ray origins and models for atomic processes by which nuclei are selected for acceleration. A sensitive test of the origin of cosmic rays is the measurement of ultra heavy elemental abundances (Z > or equal 30). Super-TIGER is a large-area (5 sq m) instrument designed to measure the elements in the interval 30 TIGER builds on the heritage of the smaller TIGER, which produced the first well-resolved measurements of elemental abundances of the elements Ga-31, Ge-32, and Se-34. We present the Super-TIGER design, schedule, and progress to date, and discuss the relevance of UH measurements to cosmic-ray origins.

  8. Precision Cosmic Ray physics with space-born experiment

    Science.gov (United States)

    Incagli, Marco

    2016-07-01

    More than 100 years after their discoveries, cosmic rays have been extensively studied, both with balloon experiments and with ground observatories. More recently, the possibility of mounting detectors on satellites or on the International Space Station has allowed for a long duration (several years) continuous observation of primary cosmic rays, i.e. before their interaction with the earth atmosphere, thus opening a new regime of precision measurements. In this review, recent results from major space experiments, as Pamela, AMS02 and Fermi, as well as next generation experiments proposed for the International Space Station, for standalone satellites or for the yet to come Chinese Space Station, will be presented. The impact of these experiment on the knowledge of Cosmic Ray propagation will also be discussed.

  9. High-energy cosmic rays measured with KASCADE-Grande

    CERN Document Server

    Haungs, A; Arteaga-Velazquez, J C; Bekk, K; Bertaina, M; Bluemer, J; Bozdog, H; Brancus, I M; Cantoni, E; Chiavassa, A; Cossavella, F; Curcio, C; Daumiller, K; de Souza, V; Di Pierro, F; Doll, P; Engel, R; Engler, J; Fuchs, B; Fuhrmann, D; Gils, H J; Glasstetter, R; Grupen, C; Heck, D; Hoerandel, J R; Huber, D; Huege, T; Kampert, K -H; Kang, D; Klages, H O; Link, K; Luczak, P; Ludwig, M; Mathes, H J; Mayer, H J; Melissas, M; Milke, J; Mitrica, B; Morello, C; Oehlschlaeger, J; Ostapchenko, S; Palmieri, N; Petcu, M; Pierog, T; Rebel, H; Roth, M; Schieler, H; Schoo, S; Schroeder, F G; Sima, O; Toma, G; Trinchero, G C; Ulrich, H; Weindl, A; Wochele, D; Wochele, J

    2013-01-01

    The detection of high-energy cosmic rays above a few hundred TeV is realized by the observation of extensive air-showers. By using the multi-detector setup of KASCADE-Grande, energy spectrum, elemental composition, and anisotropies of high-energy cosmic rays in the energy range from below the knee up to 2 EeV are investigated. In addition, the large high-quality data set permits distinct tests of the validity of hadronic interaction models used in interpreting air-shower measurements. After more than 16 years, the KASCADE-Grande experiment terminated measurements end of 2012. This contribution will give an overview of the main results of the data analysis achieved so far, and will report about the status of KCDC, the KASCADE Cosmic-ray Data Center, where via a web-based interface the data will be made available for the interested public.

  10. Long-term modulation of the cosmic ray fluctuation spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Starodubtsev, S.A.; Grigoryev, A.V. [Yu.G. Shafer Inst. of Cosmophysical Research and Aeronomy, SB RAS, Yakutsk (Russian Federation); Usoskin, I.G. [Sodankylae Geophysical Observatory, Univ. of Oulu (Finland); Mursula, K. [Dept. of Physical Sciences, Univ of Oulu (Finland)

    2006-07-01

    Here we study the power level of rapid cosmic ray fluctuations in the frequency range of 10{sup -4}-1.67 . 10{sup -3} Hz (periods from 10 min to about 3h), using measurements by space-borne instruments for the period since 1974. We find that the power level of these fluctuations varies over the solar cycle, but the phase of this variation depends on the energy of cosmic ray particles. While the power level of these fluctuations in the higher energy channels (corresponding to galactic cosmic rays) changes in phase with the solar cycle, the fluctuation level for lower energy channels (predominantly of solar/interplanetary origin) is roughly in an opposite phase with the solar cycle. The results prove conclusively that these fluctuations originate in the near-Earth space, excluding their atmospheric or magnetospheric origin. We present these new results and discuss a possible scenario explaining the observed energy-dependence. (orig.)

  11. Long-term modulation of the cosmic ray fluctuation spectrum

    Directory of Open Access Journals (Sweden)

    S. A. Starodubtsev

    2006-03-01

    Full Text Available Here we study the power level of rapid cosmic ray fluctuations in the frequency range of 10-4-1.67·10-3 Hz (periods from 10 min to about 3 h, using measurements by space-borne instruments for the period since 1974. We find that the power level of these fluctuations varies over the solar cycle, but the phase of this variation depends on the energy of cosmic ray particles. While the power level of these fluctuations in the higher energy channels (corresponding to galactic cosmic rays changes in phase with the solar cycle, the fluctuation level for lower energy channels (predominantly of solar/interplanetary origin is roughly in an opposite phase with the solar cycle. The results prove conclusively that these fluctuations originate in the near-Earth space, excluding their atmospheric or magnetospheric origin. We present these new results and discuss a possible scenario explaining the observed energy-dependence.

  12. Cosmic Rays from the Knee to the Ankle

    CERN Document Server

    Haungs, Andreas

    2015-01-01

    Investigations of the energy spectrum as well as the mass composition of cosmic rays in the energy range of PeVto EeV are important for understanding both, the origin of the galactic and the extragalactic cosmic rays. Recently, three modern experimental installations (KASCADE-Grande, IceTop, Tunka-133), dedicated to investigate this primary energy range, have published new results on the all-particle energy spectrum. In this short review these results are presented and the similarities and differences discussed. In addition, the effects of using different hadronic interaction models for interpreting the measured air-shower data will be examined. Finally, a brief discussion on the question if the present results are in agreement or in contradiction with astrophysical models for the transition from galactic to 10 pagesextragalactic origin of cosmic rays completes this paper.

  13. Indirect dark matter searches in gamma and cosmic rays

    Science.gov (United States)

    Conrad, Jan; Reimer, Olaf

    2017-03-01

    Dark matter candidates such as weakly interacting massive particles are predicted to annihilate or decay into Standard Model particles, leaving behind distinctive signatures in gamma rays, neutrinos, positrons, antiprotons, or even antinuclei. Indirect dark matter searches, and in particular those based on gamma-ray observations and cosmic-ray measurements, could detect such signatures. Here we review the strengths and limitations of this approach and look into the future of indirect dark matter searches.

  14. Isotope selective photodissociation of N-2 by the interstellar radiation field and cosmic rays

    OpenAIRE

    Heays, Alan N.; Visser, Ruud; Gredel, Roland; Ubachs, Wim; Lewis, Brenton R.; Gibson, Stephen T.; van Dishoeck, Ewine F.

    2014-01-01

    Photodissociation of 14N2 and 14N15N occurs in interstellar clouds, circumstellar envelopes, protoplanetary discs, and other environments due to UV radiation from stellar sources and the presence of cosmic rays. This source of N atoms initiates the formation of complex N-bearing species and influences their isotopic composition. To study the photodissociation rates of 14N15N by UV continuum radiation and both isotopologues in a field of cosmic ray induced photons. To determine the effect of t...

  15. Constraining pion interactions at very high energies by cosmic ray data

    CERN Document Server

    Ostapchenko, Sergey

    2016-01-01

    We demonstrate that a substantial part of the present uncertainties in model predictions for the average maximum depth of cosmic ray-induced extensive air showers is related to very high energy pion-air collisions. Our analysis shows that the position of the maximum of the muon production profile in air showers is strongly sensitive to the properties of such interactions. Therefore, the measurements of the maximal muon production depth by cosmic ray experiments provide a unique opportunity to constrain the treatment of pion-air interactions at very high energies and to reduce thereby model-related uncertainties for the shower maximum depth.

  16. Consequences of parton's saturation and string's percolation on the developments of cosmic ray showers

    CERN Document Server

    Pajares, C; Vázquez, R A

    2001-01-01

    At high gluon or string densities, gluons' saturation or the strong interaction among strings, either forming colour ropes or giving rise to string's percolation, induces a strong suppression in the particle multiplicities produced at high energy. This suppression implies important modifications on cosmic ray shower development. In particular, it is shown that it affects the depth of maximum, the elongation rate, and the behaviour of the number of muons at energies around 10^{17}-10^{18} eV. The existing cosmic ray data point out in the same direction.

  17. Global simulations of galactic winds including cosmic ray streaming

    CERN Document Server

    Ruszkowski, Mateusz; Zweibel, Ellen

    2016-01-01

    Galactic outflows play an important role in galactic evolution. Despite their importance, a detailed understanding of the physical mechanisms responsible for the driving of these winds is lacking. In an effort to gain more insight into the nature of these flows, we perform global three-dimensional magneto-hydrodynamical simulations of an isolated Milky Way-size starburst galaxy. We focus on the dynamical role of cosmic rays injected by supernovae, and specifically on the impact of the streaming and anisotropic diffusion of cosmic rays along the magnetic fields. We find that these microphysical effects can have a significant effect on the wind launching and mass loading factors depending on the details of the plasma physics. Due to the cosmic ray streaming instability, cosmic rays propagating in the interstellar medium scatter on self-excited Alfven waves and couple to the gas. When the wave growth due to the streaming instability is inhibited by some damping process, such as the turbulent damping, the cosmic ...

  18. Ultrahigh Energy Cosmic Rays: Facts, Myths, and Legends

    CERN Document Server

    Anchordoqui, Luis Alfredo

    2013-06-27

    This is a written version of a series of lectures aimed at graduate students in astrophysics/particle theory/particle experiment. In the first part, we explain the important progress made in recent years towards understanding the experimental data on cosmic rays with energies > 10^8 GeV. We begin with a brief survey of the available data, including a description of the energy spectrum, mass composition, and arrival directions. At this point we also give a short overview of experimental techniques. After that, we introduce the fundamentals of acceleration and propagation in order to discuss the conjectured nearby cosmic ray sources, and emphasize some of the prospects for a new (multi-particle) astronomy. Next, we survey the state of the art regarding the ultrahigh energy cosmic neutrinos which should be produced in association with the observed cosmic rays. In the second part, we summarize the phenomenology of cosmic ray air showers. We explain the hadronic interaction models used to extrapolate results from ...

  19. The Model Dependence in Numeral Simulation of Extencive Air Shower Induced by Cosmic Rays%宇宙射线大气簇射数值模拟的模型依赖

    Institute of Scientific and Technical Information of China (English)

    兰小刚; 代伟

    2011-01-01

    The process of extensive air shower induced by cosmic rays has been simulated. By analyzing the multiplicity of secondary particles and the vertical development of extensive air shower, the model dependence in numeral simulation of extensive air shower induced by cosmic rays has been discussed. In the lower energy region, it shows a nice coincidence between simulated data and experimental ones. Meanwhile, with the increasing of energy, the discrepancy becomes more and more conspicuous.%利用CORSIKA模拟宇宙射线大气簇射过程,通过分析簇射产生次级粒子多重数分布以及簇射纵向发展情况,讨论了宇宙射线大气簇射数值模拟对强子相互作用模型的依赖情况.结果表明,在部分低能区数值模拟结果与实验观测结果吻合较好;但是在部分高能区,数值模拟结果与实验结果存在明显差异.

  20. Isotope selective photodissociation of N2 by the interstellar radiation field and cosmic rays

    CERN Document Server

    Heays, Alan N; Gredel, Roland; Ubachs, Wim; Lewis, Brenton R; Gibson, Stephen T; van Dishoeck, Ewine F

    2014-01-01

    Photodissociation of 14N2 and 14N15N occurs in interstellar clouds, circumstellar envelopes, protoplanetary discs, and other environments due to UV radiation from stellar sources and the presence of cosmic rays. This source of N atoms initiates the formation of complex N-bearing species and influences their isotopic composition. To study the photodissociation rates of 14N15N by UV continuum radiation and both isotopologues in a field of cosmic ray induced photons. To determine the effect of these on the isotopic composition of more complex molecules. High-resolution photodissociation cross sections of N2 are used from an accurate and comprehensive quantum- mechanical model of the molecule based on laboratory experiments. A similarly high-resolution spectrum of H2 emission following interactions with cosmic rays has been constructed. The spectroscopic data are used to calculate dissociation rates which are input into isotopically differentiated chemical models, describing an interstellar cloud and a protoplane...

  1. Exploring cosmic rays at the highest-energy frontier with the Pierre Auger Observatory

    Directory of Open Access Journals (Sweden)

    Dobrigkeit Carola

    2015-01-01

    Full Text Available The Pierre Auger Observatory studies the most energetic cosmic rays arriving at Earth, those with energies from 1017 eV up to 1020 eV and beyond. In continuous operation since 2004, the Observatory employs two complementary detection techniques for measuring air showers induced by those extremely energetic particles. For the past few years new detectors and techniques are being added in order to augment the sensitivity of the measurements. Data accumulated in ten years have led to major advances in our knowledge of the origin and nature of cosmic rays. We present a summary of the latest results for the spectrum of cosmic rays, their arrival directions and composition, as well as the challenges for the future operation of the Observatory.

  2. Impact of energetic cosmic-ray ions on astrophysical ice grains

    Energy Technology Data Exchange (ETDEWEB)

    Mainitz, Martin; Anders, Christian; Urbassek, Herbert M., E-mail: urbassek@rhrk.uni-kl.de

    2017-02-15

    Highlights: • We use the REAX potential to model dissociations and reactions. • An ice grain consisting of a mixture of small molecules is considered. • The passage of a cosmic-ray ion initiates an ion track. • The track induces a shock wave and disintegrates the grain. • Abundant fragments and reaction products are detected. - Abstract: Using molecular-dynamics simulation with REAX potentials, we study the consequences of cosmic-ray ion impact on ice grains. The grains are composed of a mixture of H{sub 2}O, CO{sub 2}, NH{sub 3}, and CH{sub 3}OH molecules. Due to the high energy deposition of the cosmic-ray ion, 5 keV/nm, a strong pressure wave runs through the grain, while the interior of the ion track gasifies. Abundant molecular dissociations occur; reactions of the fragments form a variety of novel molecular product species.

  3. Cosmic-Ray Modulation: an Ab Initio Approach

    Science.gov (United States)

    Engelbrecht, N. E.; Burger, R. A.

    2014-10-01

    A better understanding of cosmic-ray modulation in the heliosphere can only be gained through a proper understanding of the effects of turbulence on the diffusion and drift of cosmic rays. We present an ab initio model for cosmic-ray modulation, incorporating for the first time the results yielded by a two-component turbulence transport model. This model is solved for periods of minimum solar activity, utilizing boundary values chosen so that model results are in fair to good agreement with spacecraft observations of turbulence quantities, not only in the solar ecliptic plane but also along the out-of-ecliptic trajectory of the Ulysses spacecraft. These results are employed as inputs for modelled slab and 2D turbulence energy spectra. The latter spectrum is chosen based on physical considerations, with a drop-off at the very lowest wavenumbers commencing at the 2D outerscale. There currently exist no models or observations for this quantity, and it is the only free parameter in this study. The modelled turbulence spectra are used as inputs for parallel mean free path expressions based on those derived from quasi-linear theory and perpendicular mean free paths from extended nonlinear guiding center theory. Furthermore, the effects of turbulence on cosmic-ray drifts are modelled in a self-consistent way, employing a recently developed model for drift along the wavy current sheet. The resulting diffusion coefficients and drift expressions are applied to the study of galactic cosmic-ray protons and antiprotons using a three-dimensional, steady-state cosmic-ray modulation code, and sample solutions in fair agreement with multiple spacecraft observations are presented.

  4. Cosmic rays and stochastic magnetic reconnection in the heliotail

    Directory of Open Access Journals (Sweden)

    P. Desiati

    2012-06-01

    Full Text Available Galactic cosmic rays are believed to be generated by diffusive shock acceleration processes in Supernova Remnants, and the arrival direction is likely determined by the distribution of their sources throughout the Galaxy, in particular by the nearest and youngest ones. Transport to Earth through the interstellar medium is expected to affect the cosmic ray properties as well. However, the observed anisotropy of TeV cosmic rays and its energy dependence cannot be explained with diffusion models of particle propagation in the Galaxy. Within a distance of a few parsec, diffusion regime is not valid and particles with energy below about 100 TeV must be influenced by the heliosphere and its elongated tail. The observation of a highly significant localized excess region of cosmic rays from the apparent direction of the downstream interstellar flow at 1–10 TeV energies might provide the first experimental evidence that the heliotail can affect the transport of energetic particles. In particular, TeV cosmic rays propagating through the heliotail interact with the 100–300 AU wide magnetic field polarity domains generated by the 11 yr cycles. Since the strength of non-linear convective processes is expected to be larger than viscous damping, the plasma in the heliotail is turbulent. Where magnetic field domains converge on each other due to solar wind gradient, stochastic magnetic reconnection likely occurs. Such processes may be efficient enough to re-accelerate a fraction of TeV particles as long as scattering processes are not strong. Therefore, the fractional excess of TeV cosmic rays from the narrow region toward the heliotail direction traces sightlines with the lowest smearing scattering effects, that can also explain the observation of a harder than average energy spectrum.

  5. A Macroscopic Description of Coherent Geo-Magnetic Radiation from Cosmic Rays

    NARCIS (Netherlands)

    Scholten, O.; Werner, K.; Caballero, Rogelio; D'Olivo, Juan Carlos; Medina-Tanco, Gustavo; Nellen, Lukas; Sánchez, Federico A.; Valdés-Galicia, José F.

    2008-01-01

    In an air shower induced by a cosmic ray, due to the high velocities, most of the particles are concentrated in the relatively thin shower front, which, for obvious reasons, is called the 'pancake'. This pancake, which for the present discussion is assumed to be charge neutral, contains large

  6. Implementation of trigger for detection of ultra high energy cosmic rays with LOFAR

    NARCIS (Netherlands)

    Singh, K.; Bähren, L.; Falcke, H.; Horneffer, A.; Kooistra, E.; Scholten, O.

    2008-01-01

    Using all stations of LOFAR we are planning to explore the possibility of using Moon as a detector of ultra high energy (>10 21 eV) cosmic rays. The idea is to cover the whole visible lunar surface and to look for short pulses of Cherenkov radiation emitted by showers induced just below the surface

  7. A Macroscopic Description of Coherent Geo-Magnetic Radiation from Cosmic Rays

    NARCIS (Netherlands)

    Scholten, O.; Werner, K.; Caballero, Rogelio; D'Olivo, Juan Carlos; Medina-Tanco, Gustavo; Nellen, Lukas; Sánchez, Federico A.; Valdés-Galicia, José F.

    2008-01-01

    In an air shower induced by a cosmic ray, due to the high velocities, most of the particles are concentrated in the relatively thin shower front, which, for obvious reasons, is called the 'pancake'. This pancake, which for the present discussion is assumed to be charge neutral, contains large number

  8. Implementation of trigger for detection of ultra high energy cosmic rays with LOFAR

    NARCIS (Netherlands)

    Singh, K.; Bähren, L.; Falcke, H.; Horneffer, A.; Kooistra, E.; Scholten, O.

    2008-01-01

    Using all stations of LOFAR we are planning to explore the possibility of using Moon as a detector of ultra high energy (>10 21 eV) cosmic rays. The idea is to cover the whole visible lunar surface and to look for short pulses of Cherenkov radiation emitted by showers induced just below the surface

  9. Analysis of cosmic-ray events with ALICE at LHC

    Directory of Open Access Journals (Sweden)

    Rodríguez Cahuantzi M.

    2015-01-01

    Full Text Available ALICE is one of the four main experiments of the LHC at CERN. Located 40 meters underground, with 30 m of overburden rock, it can also operate to detect muons produced by cosmic-ray interactions in the atmosphere. An analysis of the data collected with cosmic-ray triggers from 2010 to 2013, corresponding to about 31 days of live time, is presented. Making use of the ability of the Time Projection Chamber (TPC to track large numbers of charged particles, a special emphasis is given to the study of muon bundles, and in particular to events with high-muon density.

  10. Atmospheric ionization and cosmic rays: studies and measurements before 1912

    CERN Document Server

    De Angelis, Alessandro

    2012-01-01

    The discovery of cosmic rays, a milestone in science, was based on the work by scientists in Europe and the New World and took place during a period characterised by nationalism and lack of communication. Many scientists that took part in this research a century ago were intrigued by the penetrating radiation and tried to understand the origin of it. Several important contributions to the discovery of the origin of cosmic rays have been forgotten; historical, political and personal facts might have contributed to their substantial disappearance from the history of science.

  11. Light Elements and Cosmic Rays in the Early Galaxy

    CERN Document Server

    Ramaty, R; Lingenfelter, R E

    1996-01-01

    We derive constraints on the cosmic rays responsible for the Be and part of the B observed in stars formed in the early Galaxy: the cosmic rays cannot be accelerated from the ISM; their energy spectrum must be relatively hard (the bulk of the nuclear reactions should occur at $>$30 MeV/nucl); and only 10$^{49}$ erg/SNII in high metallicity, accelerated particle kinetic energy could suffice to produce the Be and B. The reverse SNII shock could accelerate the particles.

  12. Primary Cosmic-Ray Spectra in the Knee Region

    Science.gov (United States)

    Ter-Antonyan, Samvel V.; Biermann, P. L.

    2003-07-01

    Using EAS inverse approach and KASCADE EAS data the primary energy spectra for different primary nuclei at energies 1015 - 1017 eV are obtained in the framework of multi-comp onent model of primary cosmic ray origin and QGSJET and SIBYLL interaction models. The rigidity-dep endent behavior of spectra is the same for two interaction models. The extrap olation of the obtained primary spectra in a 1017 - 1018 eV energy range displays a presence of the extragalactic component of primary cosmic rays.

  13. An orientable time of flight detector for cosmic rays

    CERN Document Server

    Iori, M

    2007-01-01

    Cosmic ray studies, in particular UHECR, can be in general supported by a directional, easy deployable, simple and robust detector. The design of this detector is based on the time of flight between two parallel tiles of scintillator, to distinguish particle passing through in opposite directions; by fine time resolution and pretty adjustable acceptance it is possible to select upward(left)/downward(right) cosmic rays. It has been developed for an array of detectors to measure upward $\\tau$ from Earth-Skimming neutrino events with energy above $10^8 GeV$. The properties and performances of the detector are discussed. Test results from a high noise environment are presented.

  14. Cosmic Ray Sun Shadow in Soudan 2 Underground Muon Flux

    CERN Document Server

    Allison, W W M; Ayres, D S; Barrett, W L; Bode, C; Border, P M; Brooks, C B; Cobb, J H; Cotton, R J; Courant, H; Demuth, D M; Fields, T H; Gallagher, H R; García-García, C; Goodman, M C; Gran, R; Joffe-Minor, T M; Kafka, T; Kasahara, S M; Leeson, W; Lichtfield, P J; Longley, N P; Mann, W A; Marshak, M L; Milburn, R H; Miller, W H; Mualem, L M; Napier, A; Oliver, W P; Pearce, G F; Peterson, E A; Petyt, D A; Price, L E; Ruddick, K; Sánchez, M; Schneps, J; Schub, M H; Seidlein, R; Stassinakis, A; Thron, J L; Vasilev, V; Villaume, G; Wakely, S P; West, N; Wall, D

    1999-01-01

    The absorption of cosmic rays by the sun produces a shadow at the earth. The angular offset and broadening of the shadow are determined by the magnitude and structure of the interplanetary magnetic field (IPMF) in the inner solar system. We report the first measurement of the solar cosmic ray shadow by detection of deep underground muon flux in observations made during the entire ten-year interval 1989 to 1998. The sun shadow varies significantly during this time, with a $3.3\\sigma$ shadow observed during the years 1995 to 1998.

  15. Observations of cosmic-ray modulations in the fall, 1984

    Science.gov (United States)

    Torsti, J. J.; Nieminen, M.; Valtonen, E.; Arvela, H.; Lumme, M.; Peltonen, J.; Vainikka, E.

    1985-01-01

    Modulation of cosmic-ray energy spectrum was studied by using the Turku double neutron monitor. The multiplicity region of detected neutrons produced by cosmic ray hadrons in the monitor was divided into seven categories corresponding to mean energies 0.1, 0.3, 1.0, 3.2, 8.6, 21, and 94 GeV of hadrons at sea level. Based on 24-hour frequencies, a statistical analysis showed that modulation of the intensity in all categories occurred during several periods in the fall 1984. The magnitude of the variation was a few per cent.

  16. Radio data and synchrotron emission in consistent cosmic ray models

    CERN Document Server

    Bringmann, Torsten; Lineros, Roberto A

    2011-01-01

    We consider the propagation of electrons in phenomenological two-zone diffusion models compatible with cosmic-ray nuclear data and compute the diffuse synchrotron emission resulting from their interaction with galactic magnetic fields. We find models in agreement not only with cosmic ray data but also with radio surveys at essentially all frequencies. Requiring such a globally consistent description strongly disfavors both a very large (L>15 kpc) and small (L<1 kpc) effective size of the diffusive halo. This has profound implications for, e.g., indirect dark matter searches.

  17. Are EeV cosmic rays isotropic at intermediate scales?

    CERN Document Server

    Zotov, M Yu

    2014-01-01

    We study anisotropy of cosmic rays in the energy range 0.2-1.4 EeV at intermediate angular scales using the public data set of the Pierre Auger Observatory. At certain scales, the analysis reveals a number of deviations from the isotropic distribution with the statistical significance above three standard deviations. It also demonstrates that the anisotropy evolves with energy. If confirmed with the complete Auger or Telescope Array data sets, the result can shed new light on the structure of galactic magnetic fields and the problem of transition from galactic to extragalactic cosmic rays.

  18. Response of the D0 calorimeter to cosmic ray muons

    Energy Technology Data Exchange (ETDEWEB)

    Kotcher, Jonathan [New York Univ. (NYU), NY (United States)

    1992-10-01

    The D0 Detector at the Fermi National Accelerator Laboratory is a large multi-purpose detector facility designed for the study of proton-antiproton collision products at the center-of-mass energy of 2 TeV. It consists of an inner tracking volume, hermetic uranium/liquid argon sampling calorimetry, and an outer 4π muon detector. In preparation for our first collider run, the collaboration organized a Cosmic Ray Commissioning Run, which took place from February - May of 1991. This thesis is a detailed study of the response of the central calorimeter to cosmic ray muons as extracted from data collected during this run.

  19. Response of the D0 calorimeter to cosmic ray muons

    Energy Technology Data Exchange (ETDEWEB)

    Kotcher, Jonathan [New York Univ. (NYU), NY (United States)

    1992-10-01

    The D0 Detector at the Fermi National Accelerator Laboratory is a large multipurpose detector facility designed for the study of proton-antiproton collision products at the center-of-mass energy of 2 TeV. It consists of an inner tracking volume, hermetic uranium/liquid argon sampling calorimetry, and an outer 4π muon detector. In preparation for our first collider run, the collaboration organized a Cosmic Ray Commissioning Run, which took place from February -May of 1991. This thesis is a detailed study of the response of the central calorimeter to cosmic ray muons as extracted from data collected during this run.

  20. Ultrahigh Energy Cosmic Rays and Black Hole Mergers

    CERN Document Server

    Kotera, Kumiko

    2016-01-01

    The recent detection of the gravitational wave source GW150914 by the LIGO collaboration motivates a speculative source for the origin of ultrahigh energy cosmic rays as a possible byproduct of the immense energies achieved in black hole mergers, provided that the black holes have spin as seems inevitable and there are relic magnetic fields and disk debris remaining from the formation of the black holes or from their accretion history. We argue that given the modest efficiency $< 0.01$ required per event per unit of gravitational wave energy release, merging black holes potentially provide an environment for accelerating cosmic rays to ultrahigh energies.

  1. Searching for ultra-high energy cosmic rays with smartphones

    Science.gov (United States)

    Whiteson, Daniel; Mulhearn, Michael; Shimmin, Chase; Cranmer, Kyle; Brodie, Kyle; Burns, Dustin

    2016-06-01

    We propose a novel approach for observing cosmic rays at ultra-high energy (>1018 eV) by repurposing the existing network of smartphones as a ground detector array. Extensive air showers generated by cosmic rays produce muons and high-energy photons, which can be detected by the CMOS sensors of smartphone cameras. The small size and low efficiency of each sensor is compensated by the large number of active phones. We show that if user adoption targets are met, such a network will have significant observing power at the highest energies.

  2. Cosmic ray decreases affect atmospheric aerosols and clouds

    DEFF Research Database (Denmark)

    Svensmark, Henrik; Bondo, Torsten; Svensmark, J.

    2009-01-01

    Close passages of coronal mass ejections from the sun are signaled at the Earth's surface by Forbush decreases in cosmic ray counts. We find that low clouds contain less liquid water following Forbush decreases, and for the most influential events the liquid water in the oceanic atmosphere can...... diminish by as much as 7%. Cloud water content as gauged by the Special Sensor Microwave/Imager (SSM/I) reaches a minimum ≈7 days after the Forbush minimum in cosmic rays, and so does the fraction of low clouds seen by the Moderate Resolution Imaging Spectroradiometer (MODIS) and in the International...

  3. The response of clouds and aerosols to cosmic ray decreases

    DEFF Research Database (Denmark)

    Svensmark, J.; Enghoff, Martin Andreas Bødker; Shaviv, N. J.;

    2016-01-01

    A method is developed to rank Forbush Decreases (FDs) in the galactic cosmic ray radiation according to their expected impact on the ionization of the lower atmosphere. Then a Monte Carlo bootstrap based statistical test is formulated to estimate the significance of the apparent response in physi......A method is developed to rank Forbush Decreases (FDs) in the galactic cosmic ray radiation according to their expected impact on the ionization of the lower atmosphere. Then a Monte Carlo bootstrap based statistical test is formulated to estimate the significance of the apparent response...

  4. An absence of neutrinos associated with cosmic-ray acceleration in γ-ray bursts

    Science.gov (United States)

    Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Altmann, D.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Bay, R.; Bazo Alba, J. L.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker, J. K.; Becker, K.-H.; Bell, M.; Benabderrahmane, M. L.; Benzvi, S.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Bose, D.; Böser, S.; Botner, O.; Brayeur, L.; Brown, A. M.; Buitink, S.; Caballero-Mora, K. S.; Carson, M.; Casier, M.; Chirkin, D.; Christy, B.; Clevermann, F.; Cohen, S.; Colnard, C.; Cowen, D. F.; Cruz Silva, A. H.; D'Agostino, M. V.; Danninger, M.; Daughhetee, J.; Davis, J. C.; de Clercq, C.; Degner, T.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; Deyoung, T.; Díaz-Vélez, J. C.; Dierckxsens, M.; Dreyer, J.; Dumm, J. P.; Dunkman, M.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feintzeig, J.; Feusels, T.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Flis, S.; Franckowiak, A.; Franke, R.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Goodman, J. A.; Góra, D.; Grant, D.; Griesel, T.; Groß, A.; Grullon, S.; Gurtner, M.; Ha, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Heereman, D.; Heinen, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Hoffmann, B.; Homeier, A.; Hoshina, K.; Huelsnitz, W.; Hülβ, J.-P.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jacobi, E.; Jacobsen, J.; Japaridze, G. S.; Johansson, H.; Kappes, A.; Karg, T.; Karle, A.; Kiryluk, J.; Kislat, F.; Klein, S. R.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Kowarik, T.; Krasberg, M.; Kroll, G.; Kunnen, J.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Laihem, K.; Landsman, H.; Larson, M. J.; Lauer, R.; Lünemann, J.; Madsen, J.; Marotta, A.; Maruyama, R.; Mase, K.; Matis, H. S.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Miarecki, S.; Middell, E.; Milke, N.; Miller, J.; Montaruli, T.; Morse, R.; Movit, S. M.; Nahnhauer, R.; Nam, J. W.; Naumann, U.; Nowicki, S. C.; Nygren, D. R.; Odrowski, S.; Olivas, A.; Olivo, M.; O'Murchadha, A.; Panknin, S.; Paul, L.; Pérez de Los Heros, C.; Piegsa, A.; Pieloth, D.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Richman, M.; Riedel, B.; Rizzo, A.; Rodrigues, J. P.; Rothmaier, F.; Rott, C.; Ruhe, T.; Rutledge, D.; Ruzybayev, B.; Ryckbosch, D.; Sander, H.-G.; Santander, M.; Sarkar, S.; Schatto, K.; Schmidt, T.; Schöneberg, S.; Schönwald, A.; Schukraft, A.; Schulte, L.; Schultes, A.; Schulz, O.; Schunck, M.; Seckel, D.; Semburg, B.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Silvestri, A.; Smith, M. W. E.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Strahler, E. A.; Ström, R.; Stüer, M.; Sullivan, G. W.; Taavola, H.; Taboada, I.; Tamburro, A.; Ter-Antonyan, S.; Tilav, S.; Toale, P. A.; Toscano, S.; Tosi, D.; van Eijndhoven, N.; van Overloop, A.; van Santen, J.; Vehring, M.; Voge, M.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Walter, M.; Wasserman, R.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, C.; Xu, D. L.; Xu, X. W.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; Zoll, M.; IceCube Collaboration

    2012-04-01

    Very energetic astrophysical events are required to accelerate cosmic rays to above 1018electronvolts. GRBs (γ-ray bursts) have been proposed as possible candidate sources. In the GRB `fireball' model, cosmic-ray acceleration should be accompanied by neutrinos produced in the decay of charged pions created in interactions between the high-energy cosmic-ray protons and γ-rays. Previous searches for such neutrinos found none, but the constraints were weak because the sensitivity was at best approximately equal to the predicted flux. Here we report an upper limit on the flux of energetic neutrinos associated with GRBs that is at least a factor of 3.7 below the predictions. This implies either that GRBs are not the only sources of cosmic rays with energies exceeding 1018electronvolts or that the efficiency of neutrino production is much lower than has been predicted.

  5. An Absence of Neutrinos Associated with Cosmic Ray Acceleration in Gamma-Ray Bursts

    CERN Document Server

    Abbasi, R; Abu-Zayyad, T; Ackermann, M; Adams, J; Aguilar, J A; Ahlers, M; Altmann, D; Andeen, K; Auffenberg, J; Bai, X; Baker, M; Barwick, S W; Bay, R; Alba, J L Bazo; Beattie, K; Beatty, J J; Bechet, S; Becker, J K; Becker, K -H; Bell, M; Benabderrahmane, M L; BenZvi, S; Berdermann, J; Berghaus, P; Berley, D; Bernardini, E; Besson, D Bertrand D Z; Bindig, D; Bissok, M; Blaufuss, E; Blumenthal, J; Boersma, D J; Bohm, C; Bose, D; Böser, S; Botner, O; Brayeur, L; Brown, A M; Buitink, S; Caballero-Mora, K S; Carson, M; Casier, M; Chirkin, D; Christy, B; Clevermann, F; Cohen, S; Colnard, C; Cowen, D F; Silva, A H Cruz; D'Agostino, M V; Danninger, M; Daughhetee, J; Davis, J C; De Clercq, C; Degner, T; Descamps, F; Desiati, P; de Vries-Uiterweerd, G; DeYoung, T; Díaz-Vélez, J C; Dierckxsens, M; Dreyer, J; Dumm, J P; Dunkman, M; Eisch, J; Ellsworth, R W; Engdegård, O; Euler, S; Evenson, P A; Fadiran, O; Fazely, A R; Fedynitch, A; Feintzeig, J; Feusels, T; Filimonov, K; Finley, C; Fischer-Wasels, T; Flis, S; Franckowiak, A; Franke, R; Gaisser, T K; Gallagher, J; Gerhardt, L; Gladstone, L; Glüsenkamp, T; Goldschmidt, A; Goodman, J A; Góra, D; Grant, D; Griesel, T; Groß, A; Grullon, S; Gurtner, M; Ha, C; Ismail, A Haj; Hallgren, A; Halzen, F; Han, K; Hanson, K; Heereman, D; Heinen, D; Helbing, K; Hellauer, R; Hickford, S; Hill, G C; Hoffman, K D; Hoffmann, B; Homeier, A; Hoshina, K; Huelsnitz, W; Hülβ, J -P; Hulth, P O; Hultqvist, K; Hussain, S; Ishihara, A; Jacobi, E; Jacobsen, J; Japaridze, G S; Johansson, H; Kappes, A; Karg, T; Karle, A; Kiryluk, J; Kislat, F; Klein, S R; Köhne, J -H; Kohnen, G; Kolanoski, H; Köpke, L; Kopper, S; Koskinen, D J; Kowalski, M; Kowarik, T; Krasberg, M; Kroll, G; Kunnen, J; Kurahashi, N; Kuwabara, T; Labare, M; Laihem, K; Landsman, H; Larson, M J; Lauer, R; Lünemann, J; Madsen, J; Marotta, A; Maruyama, R; Mase, K; Matis, H S; Meagher, K; Merck, M; Mészáros, P; Meures, T; Miarecki, S; Middell, E; Milke, N; Miller, J; Montaruli, T; Morse, R; Movit, S M; Nahnhauer, R; Nam, J W; Naumann, U; Nowicki, S C; Nygren, D R; Odrowski, S; Olivas, A; Olivo, M; O'Murchadha, A; Panknin, S; Paul, L; Heros, C Pérez de los; Piegsa, A; Pieloth, D; Posselt, J; Price, P B; Przybylski, G T; Rawlins, K; Redl, P; Resconi, E; Rhode, W; Ribordy, M; Richman, M; Riedel, B; Rizzo, A; Rodrigues, J P; Rothmaier, F; Rott, C; Ruhe, T; Rutledge, D; Ruzybayev, B; Ryckbosch, D; Sander, H -G; Santander, M; Sarkar, S; Schatto, K; Schmidt, T; Schöneberg, S; Schönwald, A; Schukraft, A; Schulte, L; Schultes, A; Schulz, O; Schunck, M; Seckel, D; Semburg, B; Seo, S H; Sestayo, Y; Seunarine, S; Silvestri, A; Smith, M W E; Spiczak, G M; Spiering, C; Stamatikos, M; Stanev, T; Stezelberger, T; Stokstad, R G; Stößl, A; Strahler, E A; Ström, R; Stüer, M; Sullivan, G W; Taavola, H; Taboada, I; Tamburro, A; Ter-Antonyan, S; Tilav, S; Toale, P A; Toscano, S; Tosi, D; van Eijndhoven, N; Van Overloop, A; van Santen, J; Vehring, M; Voge, M; Walck, C; Waldenmaier, T; Wallraff, M; Walter, M; Wasserman, R; Weaver, Ch; Wendt, C; Westerhoff, S; Whitehorn, N; Wiebe, K; Wiebusch, C H; Williams, D R; Wischnewski, R; Wissing, H; Wolf, M; Wood, T R; Woschnagg, K; Xu, C; Xu, D L; Xu, X W; Yanez, J P; Yodh, G; Yoshida, S; Zarzhitsky, P; Zoll, M

    2012-01-01

    Gamma-Ray Bursts (GRBs) have been proposed as a leading candidate for acceleration of ultra high-energy cosmic rays, which would be accompanied by emission of TeV neutrinos produced in proton-photon interactions during acceleration in the GRB fireball. Two analyses using data from two years of the IceCube detector produced no evidence for this neutrino emission, placing strong constraints on models of neutrino and cosmic-ray production in these sources.

  6. The Galactic Center: A Petaelectronvolt Cosmic-ray Acceleration Factory

    Science.gov (United States)

    Guo, Yi-Qing; Tian, Zhen; Wang, Zhen; Li, Hai-Jin; Chen, Tian-Lu

    2017-02-01

    The multiteraelectronvolt γ-rays from the galactic center (GC) have a cutoff at tens of teraelectronvolts, whereas the diffuse emission has no such cutoff, which is regarded as an indication of petaelectronvolt proton acceleration by the HESS experiment. It is important to understand the inconsistency and study the possibility that petaelectronvolt cosmic-ray acceleration could account for the apparently contradictory point and diffuse γ-ray spectra. In this work, we propose that the cosmic rays are accelerated up to greater than petaelectronvolts in the GC. The interaction between cosmic rays and molecular clouds is responsible for the multiteraelectronvolt γ-ray emissions from both the point and diffuse sources today. Enhanced by the small volume filling factor (VFF) of the clumpy structure, the absorption of the γ-rays leads to a sharp cutoff spectrum at tens of teraelectronvolts produced in the GC. Away from the GC, the VFF grows, and the absorption enhancement becomes negligible. As a result, the spectra of γ-ray emissions for both point and diffuse sources can be successfully reproduced under such a self-consistent picture. In addition, a “surviving tail” at ∼100 TeV is expected from the point source, which can be observed by future projects CTA and LHAASO. Neutrinos are simultaneously produced during proton-proton (PP) collision. With 5–10 years of observations, the KM3Net experiment will be able to detect the petaelectronvolt source according to our calculation.

  7. New fermionic dark matters, extended Standard Model and cosmic rays

    Science.gov (United States)

    Hwang, Jae-Kwang

    2017-08-01

    Three generations of leptons and quarks correspond to the lepton charges (LCs) in this work. Then, the leptons have the electric charges (ECs) and LCs. The quarks have the ECs, LCs and color charges (CCs). Three heavy leptons and three heavy quarks are introduced to make the missing third flavor of EC. Then the three new particles which have the ECs are proposed as the bastons (dark matters) with the rest masses of 26.121 eV/c2, 42.7 GeV/c2 and 1.9 × 1015 eV/c2. These new particles are applied to explain the origins of the astrophysical observations like the ultra-high energy cosmic rays and supernova 1987A anti-neutrino data. It is concluded that the 3.5 keV X-ray peak observed from the cosmic X-ray background spectra is originated not from the pair annihilations of the dark matters but from the X-ray emission of the Q1 baryon atoms which are similar in the atomic structure to the hydrogen atom. The presence of the 3.5 keV cosmic X-ray supports the presence of the Q1 quark with the EC of ‑4/3. New particles can be indirectly seen from the astrophysical observations like the cosmic ray and cosmic gamma ray. In this work, the systematic quantized charges of EC, LC and CC for the elementary particles are used to consistently explain the decay and reaction schemes of the elementary particles. Also, the strong, weak and dark matter forces are consistently explained.

  8. The COsmic-ray Soil Moisture Interaction Code (COSMIC for use in data assimilation

    Directory of Open Access Journals (Sweden)

    J. Shuttleworth

    2013-08-01

    Full Text Available Soil moisture status in land surface models (LSMs can be updated by assimilating cosmic-ray neutron intensity measured in air above the surface. This requires a fast and accurate model to calculate the neutron intensity from the profiles of soil moisture modeled by the LSM. The existing Monte Carlo N-Particle eXtended (MCNPX model is sufficiently accurate but too slow to be practical in the context of data assimilation. Consequently an alternative and efficient model is needed which can be calibrated accurately to reproduce the calculations made by MCNPX and used to substitute for MCNPX during data assimilation. This paper describes the construction and calibration of such a model, COsmic-ray Soil Moisture Interaction Code (COSMIC, which is simple, physically based and analytic, and which, because it runs at least 50 000 times faster than MCNPX, is appropriate in data assimilation applications. The model includes simple descriptions of (a degradation of the incoming high-energy neutron flux with soil depth, (b creation of fast neutrons at each depth in the soil, and (c scattering of the resulting fast neutrons before they reach the soil surface, all of which processes may have parameterized dependency on the chemistry and moisture content of the soil. The site-to-site variability in the parameters used in COSMIC is explored for 42 sample sites in the COsmic-ray Soil Moisture Observing System (COSMOS, and the comparative performance of COSMIC relative to MCNPX when applied to represent interactions between cosmic-ray neutrons and moist soil is explored. At an example site in Arizona, fast-neutron counts calculated by COSMIC from the average soil moisture profile given by an independent network of point measurements in the COSMOS probe footprint are similar to the fast-neutron intensity measured by the COSMOS probe. It was demonstrated that, when used within a data assimilation framework to assimilate COSMOS probe counts into the Noah land surface

  9. Response of atmospheric biomarkers to NO(x)-induced photochemistry generated by stellar cosmic rays for earth-like planets in the habitable zone of M dwarf stars.

    Science.gov (United States)

    Grenfell, John Lee; Grießmeier, Jean-Mathias; von Paris, Philip; Patzer, A Beate C; Lammer, Helmut; Stracke, Barbara; Gebauer, Stefanie; Schreier, Franz; Rauer, Heike

    2012-12-01

    Understanding whether M dwarf stars may host habitable planets with Earth-like atmospheres and biospheres is a major goal in exoplanet research. If such planets exist, the question remains as to whether they could be identified via spectral signatures of biomarkers. Such planets may be exposed to extreme intensities of cosmic rays that could perturb their atmospheric photochemistry. Here, we consider stellar activity of M dwarfs ranging from quiet up to strong flaring conditions and investigate one particular effect upon biomarkers, namely, the ability of secondary electrons caused by stellar cosmic rays to break up atmospheric molecular nitrogen (N(2)), which leads to production of nitrogen oxides (NO(x)) in the planetary atmosphere, hence affecting biomarkers such as ozone (O(3)). We apply a stationary model, that is, without a time dependence; hence we are calculating the limiting case where the atmospheric chemistry response time of the biomarkers is assumed to be slow and remains constant compared with rapid forcing by the impinging stellar flares. This point should be further explored in future work with time-dependent models. We estimate the NO(x) production using an air shower approach and evaluate the implications using a climate-chemical model of the planetary atmosphere. O(3) formation proceeds via the reaction O+O(2)+M→O(3)+M. At high NO(x) abundances, the O atoms arise mainly from NO(2) photolysis, whereas on Earth this occurs via the photolysis of molecular oxygen (O(2)). For the flaring case, O(3) is mainly destroyed via direct titration, NO+O(3)→NO(2)+O(2), and not via the familiar catalytic cycle photochemistry, which occurs on Earth. For scenarios with low O(3), Rayleigh scattering by the main atmospheric gases (O(2), N(2), and CO(2)) became more important for shielding the planetary surface from UV radiation. A major result of this work is that the biomarker O(3) survived all the stellar-activity scenarios considered except for the strong

  10. Cosmic ray composition investigations using ICE/ISEE-3

    Science.gov (United States)

    Wiedenbeck, Mark E.

    1992-01-01

    The analysis of data from the high energy cosmic experiment on ISEE-3 and associated modeling and interpretation activities are discussed. The ISEE-3 payload included two instruments capable of measuring the composition of heavy cosmic rays. The designs of these two instruments incorporated innovations which made it possible, for the first time, to measure isotopic as well as the chemical composition for a wide range of elements. As the result of the demonstrations by these two instruments of the capability to resolve individual cosmic ray isotopes, a new generation of detectors was developed using very similar designs, but having improved reliability and increased sensitive area. The composition measurements which were obtained from the ISEE-3 experiment are summarized.

  11. Cosmic ray muon study with the NEVOD-DECOR experiment

    Science.gov (United States)

    Saavedra San Martin, Oscar

    2017-06-01

    The experiment NEVOV-DECOR, which is desinged to study the cosmic muons at very inclined directions, is running under the collaboration of the Moscow Engineering Physics Institute, Moscow, Russia, and the Instituto Nazionale di Astrofisica and the Dipartimento di Fisica, Università di Torino, Italy. The main purpose of this experiment is to study the characteristics of the high multiplicity muons in muon bundles and their angular distributions. The result has shown the observation of the second knee at 1017 eV in the primary cosmic ray spectrum. In addition, we found that the number of high energy muons in EAS is more than 30% of what is predicted by the Monte Carlo models. This effect was found also by other experiments like Auger, but at primary cosmic ray energies higher than 1018 eV. We will present and discuss the main results of these investigations.

  12. Ultra high energy cosmic rays: the highest energy frontier

    CERN Document Server

    Neto, João R T de Mello

    2015-01-01

    Ultra-high energy cosmic rays (UHECRs) are the highest energy messengers of the present universe, with energies up to $10^{20}$ eV. Studies of astrophysical particles (nuclei, electrons, neutrinos and photons) at their highest observed energies have implications for fundamental physics as well as astrophysics. The primary particles interact in the atmosphere and generate extensive air showers. Analysis of those showers enables one not only to estimate the energy, direction and most probable mass of the primary cosmic particles, but also to obtain information about the properties of their hadronic interactions at an energy more than one order of magnitude above that accessible with the current highest energy human-made accelerator. In this contribution we will review the state-of-the-art in UHECRs detection. We will present the leading experiments Pierre Auger Observatory and Telescope Array and discuss the cosmic ray energy spectrum, searches for directional anisotropy, studies of mass composition, the determ...

  13. The LHAASO experiment: from Gamma-Ray Astronomy to Cosmic Rays

    CERN Document Server

    Di Sciascio, G

    2016-01-01

    LHAASO is expected to be the most sensitive project to face the open problems in Galactic cosmic ray physics through a combined study of photon- and charged particle-induced extensive air showers in the energy range 10$^{11}$ - 10$^{17}$ eV. This new generation multi-component experiment will be able of continuously surveying the gamma-ray sky for steady and transient sources from about 100 GeV to PeV energies, thus opening for the first time the 10$^2$--10$^3$ TeV range to the direct observations of the high energy cosmic ray sources. In addition, the different observables (electronic, muonic and Cherenkov components) that will be measured in LHAASO will allow the study of the origin, acceleration and propagation of the radiation through a measurement of energy spectrum, elemental composition and anisotropy with unprecedented resolution. The installation of the experiment started at very high altitude in China (Daocheng site, Sichuan province, 4410 m a.s.l.). The commissioning of one fourth of the detector w...

  14. The All Particle Cosmic-Ray Energy Spectrum Measured with HAWC

    Science.gov (United States)

    Hampel-Arias, Zigfried; HAWC Collaboration

    2016-03-01

    We present results of a measurement of the all-particle cosmic-ray energy spectrum above 10 TeV with the High-Altitude Water Cherenkov (HAWC) Observatory. HAWC is a ground based air shower array deployed on the slopes of Volcán Sierra Negra in the state of Puebla, México. It comprises 300 large light-tight water tanks covering an area of 20,000 square meters. Each tank is instrumented with four photomultipliers to detect particles from extensive air showers produced by gamma rays and cosmic rays upon entering the Earth's atmosphere. HAWC is optimized for the detection of gamma-ray induced air showers, yet the background flux of hadronic air showers is four orders of magnitude greater, allowing for a detailed study of the cosmic-ray flux in the TeV energy range. The primary cosmic-ray energy is determined with a maximum likelihood approach using the particle density as a function of distance to the shower core. Introducing quality cuts to isolate events with shower cores landing on the array, the reconstructed energy distribution is unfolded iteratively. We will report on the energy resolution of the technique and the results of the unfolding.

  15. X-Ray Emission from Star-Forming Galaxies - Signatures of Cosmic Rays and Magnetic Fields

    CERN Document Server

    Schober, Jennifer; Klessen, Ralf S

    2014-01-01

    The evolution of magnetic fields in galaxies is still an open problem in astrophysics. In nearby galaxies the far-infrared-radio correlation indicates the coupling between magnetic fields and star formation. The correlation arises from the synchrotron emission of cosmic ray electrons traveling through the interstellar magnetic fields. However, with an increase of the interstellar radiation field (ISRF), inverse Compton scattering becomes the dominant energy loss mechanism of cosmic ray electrons with a typical emission frequency in the X-ray regime. The ISRF depends on the one hand on the star formation rate and becomes stronger in starburst galaxies, and on the other hand increases with redshift due to the evolution of the cosmic microwave background. With a model for the star formation rate of galaxies, the ISRF, and the cosmic ray spectrum, we can calculate the expected X-ray luminosity resulting from the inverse Compton emission. Except for galaxies with an active galactic nucleus the main additional cont...

  16. Cosmic rays and the search for a Lorentz Invariance Violation

    Energy Technology Data Exchange (ETDEWEB)

    Bietenholz, Wolfgang [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC

    2008-11-15

    This is an introductory review about the on-going search for a signal of Lorentz Invariance Violation (LIV) in cosmic rays. We first summarise basic aspects of cosmic rays, focusing on rays of ultra high energy (UHECRs). We discuss the Greisen-Zatsepin-Kuz'min (GZK) energy cutoff for cosmic protons, which is predicted due to photopion production in the Cosmic Microwave Background (CMB). This is a process of modest energy in the proton rest frame. It can be investigated to a high precision in the laboratory, if Lorentz transformations apply even at factors {gamma} {proportional_to} O(10{sup 11}). For heavier nuclei the energy attenuation is even faster due to photo-disintegration, again if this process is Lorentz invariant. Hence the viability of Lorentz symmetry up to tremendous {gamma}-factors - far beyond accelerator tests - is a central issue. Next we comment on conceptual aspects of Lorentz Invariance and the possibility of its spontaneous breaking. This could lead to slightly particle dependent ''Maximal Attainable Velocities''. We discuss their effect in decays, Cerenkov radiation, the GZK cutoff and neutrino oscillation in cosmic rays. We also review the search for LIV in cosmic {gamma}-rays. For multi TeV {gamma}-rays we possibly encounter another puzzle related to the transparency of the CMB, similar to the GZK cutoff, due to electron/positron creation and subsequent inverse Compton scattering. The photons emitted in a Gamma Ray Burst occur at lower energies, but their very long path provides access to information not far from the Planck scale. We discuss conceivable non-linear photon dispersions based on non-commutative geometry or effective approaches. No LIV has been observed so far. However, even extremely tiny LIV effects could change the predictions for cosmic ray physics drastically. An Appendix is devoted to the recent hypothesis by the Pierre Auger Collaboration, which identifies nearby Active Galactic Nuclei - or objects

  17. Are gamma-ray bursts the sources of ultra-high energy cosmic rays?

    CERN Document Server

    Baerwald, Philipp; Winter, Walter

    2014-01-01

    We reconsider the possibility that gamma-ray bursts (GRBs) are the sources of the ultra-high energy cosmic rays (UHECRs) within the internal shock model, assuming a pure proton composition of the UHECRs. For the first time, we combine the information from gamma-rays, cosmic rays, prompt neutrinos, and cosmogenic neutrinos quantitatively in a joint cosmic ray production and propagation model, and we show that the information on the cosmic energy budget can be obtained as a consequence. In addition to the neutron model, we consider alternative scenarios for the cosmic ray escape from the GRBs, i.e., that cosmic rays can leak from the sources. We find that the dip model, which describes the ankle in UHECR observations by the pair production dip, is strongly disfavored in combination with the internal shock model because a) unrealistically high baryonic loadings (energy in protons versus energy in electrons/gamma-rays) are needed for the individual GRBs and b) the prompt neutrino flux easily overshoots the corres...

  18. Further delays hit troubled $2bn cosmic-ray detector

    CERN Multimedia

    Cartlidge, Edwin

    2010-01-01

    "A $2bn mission to study cosmic rays will have to wait another few months before being sent to the International Space Station (ISS) after NASA announced last month that it was pushing back the launch of the Space Shuttle Endeavour until 26 February 2011" (0.5 page)

  19. Concerning the Nature of the Cosmic Ray Power Law Exponents

    CERN Document Server

    Widom, A; Srivastava, Y N

    2014-01-01

    We have recently shown that the cosmic ray energy distributions as detected on earthbound, low flying balloon or high flying satellite detectors can be computed by employing the heats of evaporation of high energy particles from astrophysical sources. In this manner, the experimentally well known power law exponents of the cosmic ray energy distribution have been theoretically computed as 2.701178 for the case of ideal Bose statistics, 3.000000 for the case of ideal Boltzmann statistics and 3.151374 for the case of ideal Fermi statistics. By "ideal" we mean virtually zero mass (i.e. ultra-relativistic) and noninteracting. These results are in excellent agreement with the experimental indices of 2.7 with a shift to 3.1 at the high energy ~ PeV "knee" in the energy distribution. Our purpose here is to discuss the nature of cosmic ray power law exponents obtained by employing conventional thermal quantum field theoretical models such as quantum chromodynamics to the cosmic ray sources in a thermodynamic scheme w...

  20. Measurement of camera image sensor depletion thickness with cosmic rays

    CERN Document Server

    Vandenbroucke, J; Bravo, S; Jensen, K; Karn, P; Meehan, M; Peacock, J; Plewa, M; Ruggles, T; Santander, M; Schultz, D; Simons, A L; Tosi, D

    2015-01-01

    Camera image sensors can be used to detect ionizing radiation in addition to optical photons. In particular, cosmic-ray muons are detected as long, straight tracks passing through multiple pixels. The distribution of track lengths can be related to the thickness of the active (depleted) region of the camera image sensor through the known angular distribution of muons at sea level. We use a sample of cosmic-ray muon tracks recorded by the Distributed Electronic Cosmic-ray Observatory to measure the thickness of the depletion region of the camera image sensor in a commercial smart phone, the HTC Wildfire S. The track length distribution prefers a cosmic-ray muon angular distribution over an isotropic distribution. Allowing either distribution, we measure the depletion thickness to be between 13.9~$\\mu$m and 27.7~$\\mu$m. The same method can be applied to additional models of image sensor. Once measured, the thickness can be used to convert track length to incident polar angle on a per-event basis. Combined with ...

  1. 1912 – 2012: a century of studying cosmic rays

    CERN Multimedia

    Anaïs Schaeffer

    2012-01-01

    One year ago, the Alpha Magnetic Spectrometer was docked to the International Space Station. This state-of-the-art tool for studying cosmic rays has revolutionised methods of detecting cosmic radiation, which was discovered barely a century ago.   Victor Francis Hess (in the basket), back from his balloon flight in August 1912. Source: American Physical Society. Exactly one hundred years ago, the Austrian-American physicist Victor Francis Hess discovered cosmic rays. The researcher observed the phenomenon while on board a balloon; he found that at an altitude of 1,000 to 5,000 metres, the wires of his Wulf electrometer (a tool used to measure radiation) showed an increase in electrical charge. Hess had just proven the existence of ionising radiation coming from outside the Earth’s atmosphere. Twenty years or so later, the invention of the Geiger-Müller counter enabled physicists to study the properties of the rays more precisely. One century later, cosmic rays and the ques...

  2. Excesses of Cosmic Ray Spectra from A Single Nearby Source

    CERN Document Server

    Liu, Wei; Lin, Su-Jie; Wang, Bing-Bing; Yin, Peng-Fei

    2016-01-01

    Growing evidence reveals universal hardening on various cosmic ray spectra, e.g. proton, positron, as well as antiproton fraction. Such universality may indicate they have a common origin. In this paper, we argue that these widespread excesses can be accounted for by a nearby supernova remnant surrounded by a giant molecular cloud. Secondary cosmic rays ($\\rm p$, $\\rm e^+$) are produced through the collisions between the primary cosmic ray nuclei from this supernova remnant and the molecular gas. Different from the background, which is produced by the ensemble of large amount of sources in the Milky Way, the local injected spectrum can be harder. The time-dependent transport of particles would make the propagated spectrum even harder. Under this scenario, the anomalies of both primary ($\\rm p$, $\\rm e^-$) and secondary ($\\rm e^+$, $\\rm \\bar{p}/p$) cosmic rays can be properly interpreted. We further show that the TeV to sub-PeV anisotropy of proton is consistent with the observations if the local source is rel...

  3. Observing The Cosmic Ray Moon Shadow With VERITAS

    CERN Document Server

    Bird, Ralph

    2015-01-01

    The Earth is subjected to a uniform flux of very-high-energy (VHE, E > 100 GeV) cosmic rays unless they are obscured by an object, such as the Moon, in which case a deficit or shadow is created. Since cosmic rays are charged this deficit is deflected by the Earth's magnetic field, enabling the rigidity of the obstructed cosmic rays to be determined. Measurement of the relative deficits of different species enables the positron fraction and the antiproton ratio to be measured. The April 15, 2014 lunar eclipse was visible with the VERITAS Cherenkov telescopes, which allowed (with special UV bandpass filters) 74 minutes of direct observations of the Moon and the associated deficit in the cosmic-ray flux. The results of this observation are presented. In addition VERITAS has been conducting a series of observations by pointing close to a partially illuminated Moon, with a reduced photomultiplier tube high voltage and UV bandpass filters. We present the technique developed for these observations and their current ...

  4. Cosmic ray propagation and interactions in the Galaxy

    CERN Document Server

    Zirakashvili, V N

    2014-01-01

    Cosmic ray propagation in the Galaxy is shortly reviewed. In particular we consider the self-consistent models of CR propagation. In these models CR streaming instability driven by CR anisotropy results in the Alfv\\'enic turbulence which in turn determines the scattering and diffusion of particles.

  5. Modelling cosmic ray intensities along the Ulysses trajectory

    Directory of Open Access Journals (Sweden)

    D. C. Ndiitwani

    2005-03-01

    Full Text Available Time dependent cosmic ray modulation in the inner heliosphere is studied by comparing results from a 2-D, time-dependent cosmic ray transport model with Ulysses observations. A compound approach, which combines the effects of the global changes in the heliospheric magnetic field magnitude with drifts to establish a realistic time-dependence, in the diffusion and drift coefficients, are used. We show that this model results in realistic cosmic ray modulation from the Ulysses launch (1990 until recently (2004 when compared to 2.5-GV electron and proton and 1.2-GV electron and Helium observations from this spacecraft. This approach is also applied to compute radial gradients present in 2.5-GV cosmic ray electron and protons in the inner heliosphere. The observed latitude dependence for both positive and negative charged particles during both the fast latitude scan periods, corresponding to different solar activity conditions, could also be realistically computed. For this an additional reduction in particle drifts (compared to diffusion toward solar maximum is needed. This results in a realistic charge-sign dependent modulation at solar maximum and the model is also applied to predict charge-sign dependent modulation up to the next expected solar minimum.

  6. Discrepant hardening observed in cosmic-ray elemental spectra

    CERN Document Server

    Ahn, H S; Bagliesi, M G; Beatty, J J; Bigongiari, G; Childers, J T; Conklin, N B; Coutu, S; DuVernois, M A; Ganel, O; Han, J H; Jeon, J A; Kim, K C; Lee, M H; Lutz, L; Maestro, P; Malinin, A; Marrocchesi, P S; Minnick, S; Mognet, S I; Nam, J; Nam, S; Nutter, S L; Park, I H; Park, N H; Seo, E S; Sina, R; Wu, J; Yang, J; Yoon, Y S; Zei, R; Zinn, S Y; 10.1088/2041-8205/714/1/L89

    2010-01-01

    The balloon-borne Cosmic Ray Energetics And Mass (CREAM) experiment launched five times from Antarctica has achieved a cumulative flight duration of about 156 days above 99.5% of the atmosphere. The instrument is configured with complementary and redundant particle detectors designed to extend direct measurements of cosmic-ray composition to the highest energies practical with balloon flights. All elements from protons to iron nuclei are separated with excellent charge resolution. Here we report results from the first two flights of ~70 days, which indicate hardening of the elemental spectra above ~200 GeV/nucleon and a spectral difference between the two most abundant species, protons and helium nuclei. These results challenge the view that cosmic-ray spectra are simple power laws below the so-called knee at ~1015 eV. This discrepant hardening may result from a relatively nearby source, or it could represent spectral concavity caused by interactions of cosmic rays with the accelerating shock. Other possible ...

  7. Where does the heliospheric modulation of galactic cosmic rays start?

    Science.gov (United States)

    Strauss, R. D.; Potgieter, M. S.

    2014-04-01

    The long outstanding question of where the heliospheric (solar) modulation of galactic cosmic rays actually begins, in terms of spatial position, as well as at what high kinetic energy, can now be answered. Both answers are possible by using the results of an advanced numerical model, together with appropriate observations. Voyager 1 has been exploring the outskirts of the heliosphere and is presently entering what can be called the very local interstellar medium. It has been generally expected, and accepted, that once the heliopause is crossed, the local interstellar spectrum (LIS) should be measured in situ by the Voyager spacecraft. However, we show that this may not be the case and that modulation effects on galactic cosmic rays can persist well beyond the heliopause. For example, proton observations at 100 MeV close to the heliopause can be lower by ∼25% to 40% than the LIS, depending on solar modulation conditions. It is also illustrated quantitatively that significant solar modulation diminishes above ∼50 GeV at Earth. It is found that cosmic ray observations above this energy contain less that 5% solar modulation effects and should therefore reflect the LIS for galactic cosmic rays. Input spectra, in other words the very LIS, for solar modulation models are now constrained by in situ observations and can therefore not any longer be treated arbitrarily. It is also possible for the first time to determine the lower limit of the very LIS from a few MeV/nuc to very high energies.

  8. Excesses of cosmic ray spectra from a single nearby source

    Science.gov (United States)

    Liu, Wei; Bi, Xiao-Jun; Lin, Su-Jie; Wang, Bing-Bing; Yin, Peng-Fei

    2017-07-01

    Growing evidence reveals universal hardening on various cosmic ray spectra, e.g., proton, positron, as well as antiproton fractions. Such universality may indicate they have a common origin. In this paper, we argue that these widespread excesses can be accounted for by a nearby supernova remnant surrounded by a giant molecular cloud. Secondary cosmic rays (p , e+ ) are produced through the collisions between the primary cosmic-ray nuclei from this supernova remnant and the molecular gas. Different from the background, which is produced by the ensemble of a large number of sources in the Milky Way, the local injected spectrum can be harder. The time-dependent transport of particles would make the propagated spectrum even harder. Under this scenario, the anomalies of both primary (p , e-) and secondary (e+, p ¯ /p ) cosmic rays can be properly interpreted. We further show that the TeV to sub-PeV anisotropy of the proton is consistent with the observations if the local source is relatively young and lying at the anti-Galactic center direction.

  9. First cosmic-ray images of bone and soft tissue

    Science.gov (United States)

    Mrdja, Dusan; Bikit, Istvan; Bikit, Kristina; Slivka, Jaroslav; Hansman, Jan; Oláh, László; Varga, Dezső

    2016-11-01

    More than 120 years after Roentgen's first X-ray image, the first cosmic-ray muon images of bone and soft tissue are created. The pictures, shown in the present paper, represent the first radiographies of structures of organic origin ever recorded by cosmic rays. This result is achieved by a uniquely designed, simple and versatile cosmic-ray muon-imaging system, which consists of four plastic scintillation detectors and a muon tracker. This system does not use scattering or absorption of muons in order to deduct image information, but takes advantage of the production rate of secondaries in the target materials, detected in coincidence with muons. The 2D image slices of cow femur bone are obtained at several depths along the bone axis, together with the corresponding 3D image. Real organic soft tissue, polymethyl methacrylate and water, never seen before by any other muon imaging techniques, are also registered in the images. Thus, similar imaging systems, placed around structures of organic or inorganic origin, can be used for tomographic imaging using only the omnipresent cosmic radiation.

  10. Design of a transition radiation detector for cosmic rays

    Science.gov (United States)

    Hartmann, G.; Mueller, D.; Prince, T.

    1975-01-01

    Transition radiation detectors consisting of sandwiches of plastic foam radiators and multiwire proportional chambers can be used to identify cosmic ray particles with energies gamma ? E/mc-squared is greater than 10 to the 3rd and to measure their energy in the region gamma is roughly equal to 10 to the 3rd

  11. On Anisotropy of Ultra-High Energy Cosmic-Rays

    CERN Document Server

    Kashti, Tamar

    2009-01-01

    We briefly summarize our study on anisotropy of Ultra-High Energy Cosmic-Rays (UHECRs), in which we define a statistics that measures the correlation between UHECRs and Large Scale Structure (LSS). We also comment here on recently published paper by Koers and Tinyakov that compared our statistics to improved KS statistics.

  12. CMS (LHC) Measurements and Unusual Cosmic Ray Events

    CERN Document Server

    Norbeck, E

    2010-01-01

    At the LHC, for the first time, laboratory energies are sufficiently large to reproduce the kind of reactions that occur when energetic cosmic rays strike the top of the atmospheric. The reaction products of interest for cosmic ray studies are produced at small angles, even with colliding beams. Most of the emphasis at the LHC is on rare processes that are studied with detectors at large angles. It is precision measurements at large angles that are expected to lead to discoveries of Higgs bosons and super symmetric particles. CMS currently has two small angle detectors, CASTOR and a Zero Degree Calorimeter (ZDC). CASTOR, at 0.7 degrees down to 0.08 degrees, is designed to study "Centauro "and "long penetrating" events, observed in VHE cosmic-ray data. As a general purpose detector it also makes measurements of reactions products at forward angles from p-p collisions, which provide input for cosmic ray shower codes. The ZDC is small, 9 cm. wide, between the incoming and outgoing beam pipes out at a distance of...

  13. CMS (LHC) Measurements and Unusual Cosmic Ray Events

    CERN Document Server

    Norbeck, E

    2010-01-01

    At the LHC, for the first time, laboratory energies are sufficiently large to reproduce the kind of reactions that occur when energetic cosmic rays strike the top of the atmosphere. The reaction products of interest for cosmic ray studies are produced at small angles, even with colliding beams. Most of the emphasis at the LHC is on rare processes that are studied with detectors at large angles. It is precision measurements at large angles that are expected to lead to discoveries of Higgs bosons and super symmetric particles. CMS currently has two small angle detectors, CASTOR and a Zero Degree Calorimeter (ZDC). CASTOR, at 0.7º down to 0.08º, is designed to study "Centauro" and "long penetrating" events, observed in VHE cosmic-ray data. As a general purpose detector it also makes measurements of reaction products at forward angles from p-p collisions, which provide input for cosmic ray shower codes. The ZDC is small, 9 cm. wide, between the incoming and outgoing beam pipes out at a distance of 140 m. The ZD...

  14. Experimental Investigation of Aerosols Produced by Cosmic Rays

    DEFF Research Database (Denmark)

    Pedersen, Jens Olaf Pepke; Enghoff, Martin Andreas Bødker; Svensmark, Henrik;

    Satellite observations have shown that the Earth’s cloud cover is strongly correlated with the galactic cosmic ray flux. While this correlation is indicative of a possible physical connection, there is currently no confirmation that a physical mechanism exists. We are therefore setting up an expe...

  15. Cosmic rays intensity and atmosphere humidity at near earth surface

    Science.gov (United States)

    Oskomov, V. V.; Sedov, A. N.; Saduyev, N. O.; Kalikulov, O. A.; Naurzbayeva, A. Zh; Alimgazinova, N. Sh; Kenzhina, I. E.

    2016-08-01

    Experimental studies of estimation the mutual influence of humidity and flux of cosmic rays in first approximation were carried out. Normalized cross-correlation function of time series of neutron monitors count rate and level of relative atmosphere humidity near cosmic rays registration point is studied. Corrected and uncorrected on pressure minute and hour data of 6NM64 neutron monitor count rate were used for the study. Neutron monitor is located in Al-Farabi Kazakh National University, at an altitude of 850 m above sea level. Also, data from NM64 neutron monitor of Tien Shan mountain research station of Institute of Ionosphere, located at an altitude of 3340 m above sea level were used. Uncorrected on pressure cosmic rays intensity better reflects the changes in relative atmosphere humidity. Average and sometimes strong relationship is often observed by time changes of atmosphere humidity near the point of cosmic rays detection and their intensity: the value of normalized cross-correlation function of respective signals, even in case of their long duration and a large number of data (eg, for minute changes at intervals of up to several months) covers 0.5 - 0.75 range, sometimes falling to ∼⃒ 0.4.

  16. Anomalous Cosmic Rays as Probes of Magnetic Clouds

    Science.gov (United States)

    2009-07-20

    study of Forbush decreases in the intensity of galactic cosmic rays (GCRs) at MCs, Zhang & Burlaga (1988) noted that these decreases were much...from the sweeping effect of the turbulent sheath of the shock and its downstream compression region that dominates the Forbush decreases in GCR

  17. Are cosmic rays effective for ionization of protoplanetary disks?

    Science.gov (United States)

    Dolginov, Arkady Z.; Stepinski, Tomasz F.

    1994-01-01

    The principal uncertainty in studying the magnetic properties of protoplanetary disks concerns the ionization levels of the disk's gas. The low gas temperature precludes thermal ionization, leaving cosmic rays as the dominant source of ionization. It has been shown that the resulting electrical conductivity is just high enough for a MHD dynamo to produce contemporaneously a magnetic field in most of the extended parts of a turbulent protoplanetary disk. Here we argue that the effectiveness of cosmic rays to ionize the bulk of the gas is impaired by the influence of the generated magnetic field on the propagation of cosmic rays within a disk. Cosmic rays scatter on magnetic inhomogeneities, and, as a result, their penetration depth decreases to only a fraction of the disk half-thickness, resulting in a severe depletion of free charge from the midplane regions of a disk. That, in turn, undercuts the dynamo mechanism, so extended parts of the disk are free from a dynamically significant magnetic field. We also point out that any additional, even small, in situ source of ionization, such as radioactive Al-26, may again make a dynamo a viable regeneration process capable of producing a dynamically important magnetic field.

  18. The isotopes of neon in the galactic cosmic rays

    Science.gov (United States)

    Garcia-Munoz, M.; Simpson, J. A.; Wefel, J. P.

    1979-01-01

    The paper examines the results obtained by the University of Chicago instrument on board the IMP 7 satellite used to measure the abundances of Ne-20 and Ne-22 in the galactic cosmic rays during 1973-1977, over the general energy range of 60-230 MeV per nucleon. It is reported that the instrument shows a mass resolution of 0.7 amu(sigma) which was confirmed by calibrating a backup instrument at the LBL Bevalac with separated beams of neon isotopes. Through the use of standard solar modulation and cosmic-ray propagation models, the cosmic-ray source ratio inferred is Ne-22/Ne-20 = 0.38 = or -0.07 which is significantly greater than the present solar system ratio. It is concluded that propagation effects or cross-section uncertainties cannot account for such a large abundance of Ne-22, and thus this measurement provides evidence that the cosmic rays come from a source region where the Ne-22 abundance is substantially greater than in solar system material.

  19. Z-Burst Scenario for the Highest Energy Cosmic Rays

    CERN Document Server

    Fodor, Z; Ringwald, Andreas

    2002-01-01

    The origin of highest energy cosmic rays is yet unknown. An appealing possibility is the so-called Z-burst scenario, in which a large fraction of these cosmic rays are decay products of Z bosons produced in the scattering of ultrahigh energy neutrinos on cosmological relic neutrinos. The comparison between the observed and predicted spectra constrains the mass of the heaviest neutrino. The required neutrino mass is fairly robust against variations of the presently unknown quantities, such as the amount of relic neutrino clustering, the universal photon radio background and the extragalactic magnetic field. Considering different possibilities for the ordinary cosmic rays the required neutrino masses are determined. In the most plausible case that the ordinary cosmic rays are of extragalactic origin and the universal radio background is strong enough to suppress high energy photons, the required neutrino mass is 0.08 eV < m_nu < 0.40 eV. The required ultrahigh energy neutrino flux should be detected in th...

  20. Ultrahigh energy cosmic rays as a Grand Unification signal

    CERN Document Server

    Fodor, Z

    2001-01-01

    We analyze the spectrum of the ultrahigh energy (above \\approx 10^{9} GeV) cosmic rays. With a maximum likelihood analysis we show that the observed spectrum is consistent with the decay of extragalactic GUT scale particles. The predicted mass for these superheavy particles is m_X=10^b GeV, where b=14.6_{-1.7}^{+1.6}.

  1. Solar cosmic ray bursts and solar neutrino fluxes

    Science.gov (United States)

    Basilevakaya, G. A.; Nikolsky, S. I.; Stozhkov, Y. I.; Charakhchyan, T. N.

    1985-01-01

    The neutrino flux detected in the C1-Ar experiment seems to respond to the powerful solar cosmic ray bursts. The ground-based detectors, the balloons and the satellites detect about 50% of the bursts of soalr cosmic ray generated on the Sun's visible side. As a rule, such bursts originate from the Western side of the visible solar disk. Since the solar cosmic ray bursts are in opposite phase withthe 11-year galactic cosmic ray cycle which also seems to be reflected by neutrino experiment. The neutrino generation in the bursts will flatten the possible 11-year behavior of the AR-37 production rate, Q, in the Cl-Ar experiment. The detection of solar-flare-generated gamma-quanta with energies above tens of Mev is indicative of the generation of high-energy particles which in turn may produce neutrinos. Thus, the increased Q during the runs, when the flare-generated high energy gamma-quanta have been registered, may be regarded as additional evidence for neutrino geneation in the solar flare processes.

  2. CERN explores link between cosmic rays and clouds

    CERN Multimedia

    2006-01-01

    "Scientists at CERN, the European Organisation for Nuclear Research, have started a new experiment to investigate the possible influence of galactic cosmic rays on the Earths clouds and climate. This is the first time that a high energy physics accelerator has been used for atmospheric and climate science." (1 page)

  3. Cosmic ray research in India: 1912-2012

    Science.gov (United States)

    Tonwar, Suresh C.

    2013-02-01

    The progress of research in cosmic rays in India over the last 100 years is reviewed, starting with the pioneering work of Debendra Mohan Bose and Homi Bhabha. Experimental research in cosmic rays in India received a big push with the establishment of the Tata Institute of Fundamental Research by Homi Bhabha in Bombay in 1945, the Physical Research Laboratory by Vikram Sarabhai in Ahemedabad in 1947 and the setting up of a cosmic ray research group by Piara Singh Gill at the Aligarh Muslim University in Aligarh in 1949. Studies on high energy interactions by B.V. Sreekantan and colleagues and on muons and neutrinos deep underground in KGF mines by M.G.K. Menon and coworkers were the highlights of the research work in India in 1950's and 60's. In 1970's and 80's, important advances were made in India in several areas, for example, search for proton decay in KGF mines by M.G.K. Menon et al, search for TeV cosmic gamma-ray sources at Ooty and Pachmari by P.V. Ramanamurthy and colleagues, search for PeV cosmic gamma ray sources by S.C. Tonwar et al at Ooty and by M.V.S. Rao and coworkers at KGF. In 1990's, Sreekantan and Tonwar initiated the GRAPES-3 project at Ooty to determine the composition of cosmic ray flux around the 'knee' in the primary energy spectrum at PeV energies using a large muon detector and a compact air shower array. Another major effort to search for TeV gamma-ray sources was initiated by H. Razdan and C.L. Bhat, initially at Gulmarg in Kashmir in the 1980's, leading to successful observations with a stereoscopic imaging atmospheric Cherenkov telescope at Mount Abu in early 2000. In recent years the Pachmari group and the Mount Abu group have joined together to install a sophisticated system of atmospheric Cherenkov detectors at Hanle in the Ladakh region at an altitude of 4200 m to continue studies on VHE sources of cosmic gammarays.

  4. Cosmic-ray energy densities in star-forming galaxies

    Directory of Open Access Journals (Sweden)

    Persic Massimo

    2017-01-01

    Full Text Available The energy density of cosmic ray protons in star forming galaxies can be estimated from π0-decay γ-ray emission, synchrotron radio emission, and supernova rates. To galaxies for which these methods can be applied, the three methods yield consistent energy densities ranging from Up ~ 0.1 − 1 eV cm−3 to Up ~ 102 − 103 eV cm−3 in galaxies with low to high star-formation rates, respectively.

  5. Is the Galactic Cosmic Ray Spectrum Constant in Time?

    CERN Document Server

    Eichler, David; Pohl, Martin

    2013-01-01

    The hypothesis is considered that the present Galactic cosmic ray spectrum is at present softer than its time average due to source intermittency. Measurements of muogenic nuclides underground could provide an independent measurement of the time averaged spectrum. Source intermittency could also account for the surprising low anisotropy reported by the IceCube collaboration. Predictions for Galactic emission of ultrahigh-energy quanta, such as UHE gamma rays and neutrinos, might be higher or lower than previously estimated.

  6. Cosmic Rays and Terrestrial Life: A Brief Review

    OpenAIRE

    Atri, Dimitra; Melott, Adrian L.

    2012-01-01

    "The investigation into the possible effects of cosmic rays on living organisms will also offer great interest." - Victor F. Hess, Nobel Lecture, December 12, 1936 High-energy radiation bursts are commonplace in our Universe. From nearby solar flares to distant gamma ray bursts, a variety of physical processes accelerate charged particles to a wide range of energies, which subsequently reach the Earth. Such particles contribute to a number of physical processes occurring in the Earth system. ...

  7. Gamma-ray signatures of cosmic ray acceleration, propagation, and confinement in the era of CTA

    CERN Document Server

    Acero, F; Casanova, S; de Cea, E; Wilhelmi, E de Ona; Gabici, S; Gallant, Y; Hadasch, D; Marcowith, A; Pedaletti, G; Reimer, O; Renaud, M; Torres, D F; Volpe, F

    2012-01-01

    Galactic cosmic rays are commonly believed to be accelerated at supernova remnants via diffusive shock acceleration. Despite the popularity of this idea, a conclusive proof for its validity is still missing. Gamma-ray astronomy provides us with a powerful tool to tackle this problem, because gamma rays are produced during cosmic ray interactions with the ambient gas. The detection of gamma rays from several supernova remnants is encouraging, but still does not constitute a proof of the scenario, the main problem being the difficulty in disentangling the hadronic and leptonic contributions to the emission. Once released by their sources, cosmic rays diffuse in the interstellar medium, and finally escape from the Galaxy. The diffuse gamma-ray emission from the Galactic disk, as well as the gamma-ray emission detected from a few galaxies is largely due to the interactions of cosmic rays in the interstellar medium. On much larger scales, cosmic rays are also expected to permeate the intracluster medium, since the...

  8. On the Origin of Ultra High Energy Cosmic Rays II

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, T K; Colgate, S; Li, H; Bulmer, R H; Pino, J

    2011-03-08

    We show that accretion disks around Active Galactic Nuclei (AGNs) could account for the enormous power in observed ultra high energy cosmic rays {approx}10{sup 20} eV (UHEs). In our model, cosmic rays are produced by quasi-steady acceleration of ions in magnetic structures previously proposed to explain jets around Active Galactic Nuclei with supermassive black holes. Steady acceleration requires that an AGN accretion disk act as a dynamo, which we show to follow from a modified Standard Model in which the magnetic torque of the dynamo replaces viscosity as the dominant mechanism accounting for angular momentum conservation during accretion. A black hole of mass M{sub BH} produces a steady dynamo voltage V {proportional_to} {radical}M{sub BH} giving V {approx} 10{sup 20} volts for M{sub BH} {approx} 10{sup 8} solar masses. The voltage V reappears as an inductive electric field at the advancing nose of a dynamo-driven jet, where plasma instability inherent in collisionless runaway acceleration allows ions to be steadily accelerated to energies {approx} V, finally ejected as cosmic rays. Transient events can produce much higher energies. The predicted disk radiation is similar to the Standard Model. Unique predictions concern the remarkable collimation of jets and emissions from the jet/radiolobe structure. Given MBH and the accretion rate, the model makes 7 predictions roughly consistent with data: (1) the jet length; (2) the jet radius; (3) the steady-state cosmic ray energy spectrum; (4) the maximum energy in this spectrum; (5) the UHE cosmic ray intensity on Earth; (6) electron synchrotron wavelengths; and (7) the power in synchrotron radiation. These qualitative successes motivate new computer simulations, experiments and data analysis to provide a quantitative verification of the model.

  9. On the Origin of Ultra High Energy Cosmic Rays

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, T; Colgate, S; Li, H

    2009-07-01

    Turbulence-driven plasma accelerators produced by magnetized accretion disks around black holes are proposed as the mechanism mainly responsible for observed cosmic ray protons with ultra high energies 10{sup 19}-10{sup 21} eV. The magnetized disk produces a voltage comparable to these cosmic ray energies. Here we present a Poynting model in which this voltage provides all of the energy to create the jet-like structures observed to be ejected from accretion disks, and this voltage also accelerates ions to high energies at the top of the expanding structure. Since the inductive electric field E = -v x B driving expansion has no component parallel to the magnetic field B, ion acceleration requires plasma wave generation - either a coherent wave accelerator as recently proposed, or instability-driven turbulence. We find that turbulence can tap the full inductive voltage as a quasi-steady accelerator, and even higher energies are produced by transient events on this structure. We find that both MHD modes due to the current and ion diffusion due to kinetic instability caused by the non-Maxwellian ion distribution contribute to acceleration. We apply our results to extragalactic giant radiolobes, whose synchrotron emissions serve to calibrate the model, and we discuss extrapolating to other astrophysical structures. Approximate calculations of the cosmic ray intensity and energy spectrum are in rough agreement with data and serve to motivate more extensive MHD and kinetic simulations of turbulence that could provide more accurate cosmic ray and synchrotron spectra to be compared with observations. A distinctive difference from previous models is that the cosmic ray and synchrotron emissions arise from different parts of the magnetic structure, thus providing a signature for the model.

  10. Single particle effects, Biostack, and risk evaluation - Studies on the radiation risk from Galactic cosmic rays

    Science.gov (United States)

    Curtis, Stanley B.

    1993-01-01

    The possible health risks posed by Galactic cosmic rays, especially the possible heightened cancer risk, are examined. The results of the Biostack studies of the biological effects of high-energy cosmic rays are discussed. The biological mechanisms involved in possible harm due to cosmic rays are considered.

  11. Atmospheric data over a solar cycle: no connection between galactic cosmic rays and new particle formation

    Directory of Open Access Journals (Sweden)

    M. Kulmala

    2010-02-01

    Full Text Available Aerosol particles affect the Earth's radiative balance by directly scattering and absorbing solar radiation and, indirectly, through their activation into cloud droplets. Both effects are known with considerable uncertainty only, and translate into even bigger uncertainties in future climate predictions. More than a decade ago, variations in galactic cosmic rays were suggested to closely correlate with variations in atmospheric cloud cover and therefore constitute a driving force behind aerosol-cloud-climate interactions. Later, the enhancement of atmospheric aerosol particle formation by ions generated from cosmic rays was proposed as a physical mechanism explaining this correlation. Here, we report unique observations on atmospheric aerosol formation based on measurements at the SMEAR II station, Finland, over a solar cycle (years 1996–2008 that shed new light on these presumed relationships. Our analysis shows that none of the quantities related to aerosol formation correlates with the cosmic ray-induced ionisation intensity (CRII. We also examined the contribution of ions to new particle formation on the basis of novel ground-based and airborne observations. A consistent result is that ion-induced formation contributes typically significantly less than 10% to the number of new particles, which would explain the missing correlation between CRII and aerosol formation. Our main conclusion is that galactic cosmic rays appear to play a minor role for atmospheric aerosol formation events, and so for the connected aerosol-climate effects as well.

  12. Atmospheric data over a solar cycle: no connection between galactic cosmic rays and new particle formation

    Directory of Open Access Journals (Sweden)

    M. Kulmala

    2009-10-01

    Full Text Available Aerosol particles affect the Earth's radiative balance by directly scattering and absorbing solar radiation and, indirectly, through their activation into cloud droplets. Both effects are known with considerable uncertainty only, and translate into even bigger uncertainties in future climate predictions. More than a decade ago, variations in galactic cosmic rays were suggested to closely correlate with variations in atmospheric cloud cover and therefore constitute a driving force behind aerosol-cloud-climate interactions. Later, the enhancement of atmospheric aerosol particle formation by ions generated from cosmic rays was proposed as a physical mechanism explaining this correlation. Here, we report unique observations on atmospheric aerosol formation based on measurements at the SMEAR II station, Finland, over a solar cycle (years 1996–2008 that shed new light on these presumed relationships. Our analysis shows that none of the quantities related to aerosol formation correlates with the cosmic ray-induced ionisation intensity (CRII. We also examined the contribution of ions to new particle formation on the basis of novel ground-based and airborne observations. A consistent result is that ion-induced formation contributes typically less than 10% to the number of new particles, which would explain the missing correlation between CRII and aerosol formation. Our main conclusion is that galactic cosmic rays appear to play a minor role for atmospheric aerosol formation, and so for the connected aerosol-climate effects as well.

  13. Cosmic Ray contribution to the WMAP polarization data on the Cosmic Microwave Background

    CERN Document Server

    Wibig, Tadeusz

    2015-01-01

    We have updated our analysis of the 9-year WMAP data using the collection of polarization maps looking for the presence of additional evidence for a finite 'cosmic ray foreground' for the CMB. We have given special attention to high Galactic latitudes, where the recent BICEP2 findings were reported. The method of examining the correlation with the observed gamma ray flux proposed in our earlier papers and applied to the polarization data shows that the foreground related to cosmic rays is still observed even at high Galactic altitudes and conclusions about gravitational waves are not yet secure. Theory has it that there is important information about inflationary gravitational waves in the fine structure of the CMB polarization properties (polarization vector and angle) and it is necessary to examine further the conclusions that can be gained from studies of the CMB maps, in view of the disturbing foreground effects.

  14. Evaluating biomarkers to model cancer risk post cosmic ray exposure.

    Science.gov (United States)

    Sridharan, Deepa M; Asaithamby, Aroumougame; Blattnig, Steve R; Costes, Sylvain V; Doetsch, Paul W; Dynan, William S; Hahnfeldt, Philip; Hlatky, Lynn; Kidane, Yared; Kronenberg, Amy; Naidu, Mamta D; Peterson, Leif E; Plante, Ianik; Ponomarev, Artem L; Saha, Janapriya; Snijders, Antoine M; Srinivasan, Kalayarasan; Tang, Jonathan; Werner, Erica; Pluth, Janice M

    2016-06-01

    Robust predictive models are essential to manage the risk of radiation-induced carcinogenesis. Chronic exposure to cosmic rays in the context of the complex deep space environment may place astronauts at high cancer risk. To estimate this risk, it is critical to understand how radiation-induced cellular stress impacts cell fate decisions and how this in turn alters the risk of carcinogenesis. Exposure to the heavy ion component of cosmic rays triggers a multitude of cellular changes, depending on the rate of exposure, the type of damage incurred and individual susceptibility. Heterogeneity in dose, dose rate, radiation quality, energy and particle flux contribute to the complexity of risk assessment. To unravel the impact of each of these factors, it is critical to identify sensitive biomarkers that can serve as inputs for robust modeling of individual risk of cancer or other long-term health consequences of exposure. Limitations in sensitivity of biomarkers to dose and dose rate, and the complexity of longitudinal monitoring, are some of the factors that increase uncertainties in the output from risk prediction models. Here, we critically evaluate candidate early and late biomarkers of radiation exposure and discuss their usefulness in predicting cell fate decisions. Some of the biomarkers we have reviewed include complex clustered DNA damage, persistent DNA repair foci, reactive oxygen species, chromosome aberrations and inflammation. Other biomarkers discussed, often assayed for at longer points post exposure, include mutations, chromosome aberrations, reactive oxygen species and telomere length changes. We discuss the relationship of biomarkers to different potential cell fates, including proliferation, apoptosis, senescence, and loss of stemness, which can propagate genomic instability and alter tissue composition and the underlying mRNA signatures that contribute to cell fate decisions. Our goal is to highlight factors that are important in choosing

  15. Evaluating biomarkers to model cancer risk post cosmic ray exposure

    Science.gov (United States)

    Sridharan, Deepa M.; Asaithamby, Aroumougame; Blattnig, Steve R.; Costes, Sylvain V.; Doetsch, Paul W.; Dynan, William S.; Hahnfeldt, Philip; Hlatky, Lynn; Kidane, Yared; Kronenberg, Amy; Naidu, Mamta D.; Peterson, Leif E.; Plante, Ianik; Ponomarev, Artem L.; Saha, Janapriya; Snijders, Antoine M.; Srinivasan, Kalayarasan; Tang, Jonathan; Werner, Erica; Pluth, Janice M.

    2016-06-01

    Robust predictive models are essential to manage the risk of radiation-induced carcinogenesis. Chronic exposure to cosmic rays in the context of the complex deep space environment may place astronauts at high cancer risk. To estimate this risk, it is critical to understand how radiation-induced cellular stress impacts cell fate decisions and how this in turn alters the risk of carcinogenesis. Exposure to the heavy ion component of cosmic rays triggers a multitude of cellular changes, depending on the rate of exposure, the type of damage incurred and individual susceptibility. Heterogeneity in dose, dose rate, radiation quality, energy and particle flux contribute to the complexity of risk assessment. To unravel the impact of each of these factors, it is critical to identify sensitive biomarkers that can serve as inputs for robust modeling of individual risk of cancer or other long-term health consequences of exposure. Limitations in sensitivity of biomarkers to dose and dose rate, and the complexity of longitudinal monitoring, are some of the factors that increase uncertainties in the output from risk prediction models. Here, we critically evaluate candidate early and late biomarkers of radiation exposure and discuss their usefulness in predicting cell fate decisions. Some of the biomarkers we have reviewed include complex clustered DNA damage, persistent DNA repair foci, reactive oxygen species, chromosome aberrations and inflammation. Other biomarkers discussed, often assayed for at longer points post exposure, include mutations, chromosome aberrations, reactive oxygen species and telomere length changes. We discuss the relationship of biomarkers to different potential cell fates, including proliferation, apoptosis, senescence, and loss of stemness, which can propagate genomic instability and alter tissue composition and the underlying mRNA signatures that contribute to cell fate decisions. Our goal is to highlight factors that are important in choosing

  16. CMS Data Processing Workflows during an Extended Cosmic Ray Run

    CERN Document Server

    INSPIRE-00165402; Khachatryan, V; Sirunyan, A M; Adam, W; Arnold, B; Bergauer, H; Bergauer, T; Dragicevic, M; Eichberger, M; Erö, J; Friedl, M; Frühwirth, R; Ghete, V M; Hammer, J; Hänsel, S; Hoch, M; Hörmann, N; Hrubec, J; Jeitler, M; Kasieczka, G; Kastner, K; Krammer, M; Liko, D; Magrans de Abril, I; Mikulec, I; Mittermayr, F; Neuherz, B; Oberegger, M; Padrta, M; Pernicka, M; Rohringer, H; Schmid, S; Schöfbeck, R; Schreiner, T; Stark, R; Steininger, H; Strauss, J; Taurok, A; Teischinger, F; Themel, T; Uhl, D; Wagner, P; Waltenberger, W; Walzel, G; Widl, E; Wulz, C E; Chekhovsky, V; Dvornikov, O; Emeliantchik, I; Litomin, A; Makarenko, V; Marfin, I; Mossolov, V; Shumeiko, N; Solin, A; Stefanovitch, R; Suarez Gonzalez, J; Tikhonov, A; Fedorov, A; Karneyeu, A; Korzhik, M; Panov, V; Zuyeuski, R; Kuchinsky, P; Beaumont, W; Benucci, L; Cardaci, M; De Wolf, E A; Delmeire, E; Druzhkin, D; Hashemi, M; Janssen, X; Maes, T; Mucibello, L; Ochesanu, S; Rougny, R; Selvaggi, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Adler, V; Beauceron, S; Blyweert, S; D'Hondt, J; De Weirdt, S; Devroede, O; Heyninck, J; Kalogeropoulos, A; Maes, J; Maes, M; Mozer, M U; Tavernier, S; Van Doninck, W; Van Mulders, P; Villella, I; Bouhali, O; Chabert, E C; Charaf, O; Clerbaux, B; De Lentdecker, G; Dero, V; Elgammal, S; Gay, A P R; Hammad, G H; Marage, P E; Rugovac, S; Vander Velde, C; Vanlaer, P; Wickens, J; Grunewald, M; Klein, B; Marinov, A; Ryckbosch, D; Thyssen, F; Tytgat, M; Vanelderen, L; Verwilligen, P; Basegmez, S; Bruno, G; Caudron, J; Delaere, C; Demin, P; Favart, D; Giammanco, A; Grégoire, G; Lemaitre, V; Militaru, O; Ovyn, S; Piotrzkowski, K; Quertenmont, L; Schul, N; Beliy, N; Daubie, E; Alves, G A; Pol, M E; Souza, M H G; Carvalho, W; De Jesus Damiao, D; De Oliveira Martins, C; Fonseca De Souza, S; Mundim, L; Oguri, V; Santoro, A; Silva Do Amaral, S M; Sznajder, A; Fernandez Perez Tomei, T R; Ferreira Dias, M A; Gregores, E M; Novaes, S F; Abadjiev, K; Anguelov, T; Damgov, J; Darmenov, N; Dimitrov, L; Genchev, V; Iaydjiev, P; Piperov, S; Stoykova, S; Sultanov, G; Trayanov, R; Vankov, I; Dimitrov, A; Dyulendarova, M; Kozhuharov, V; Litov, L; Marinova, E; Mateev, M; Pavlov, B; Petkov, P; Toteva, Z; Chen, G M; Chen, H S; Guan, W; Jiang, C H; Liang, D; Liu, B; Meng, X; Tao, J; Wang, J; Wang, Z; Xue, Z; Zhang, Z; Ban, Y; Cai, J; Ge, Y; Guo, S; Hu, Z; Mao, Y; Qian, S J; Teng, H; Zhu, B; Avila, C; Baquero Ruiz, M; Carrillo Montoya, C A; Gomez, A; Gomez Moreno, B; Ocampo Rios, A A; Osorio Oliveros, A F; Reyes Romero, D; Sanabria, J C; Godinovic, N; Lelas, K; Plestina, R; Polic, D; Puljak, I; Antunovic, Z; Dzelalija, M; Brigljevic, V; Duric, S; Kadija, K; Morovic, S; Fereos, R; Galanti, M; Mousa, J; Papadakis, A; Ptochos, F; Razis, P A; Tsiakkouri, D; Zinonos, Z; Hektor, A; Kadastik, M; Kannike, K; Müntel, M; Raidal, M; Rebane, L; Anttila, E; Czellar, S; Härkönen, J; Heikkinen, A; Karimäki, V; Kinnunen, R; Klem, J; Kortelainen, M J; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Nysten, J; Tuominen, E; Tuominiemi, J; Ungaro, D; Wendland, L; Banzuzi, K; Korpela, A; Tuuva, T; Nedelec, P; Sillou, D; Besancon, M; Chipaux, R; Dejardin, M; Denegri, D; Descamps, J; Fabbro, B; Faure, J L; Ferri, F; Ganjour, S; Gentit, F X; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Lemaire, M C; Locci, E; Malcles, J; Marionneau, M; Millischer, L; Rander, J; Rosowsky, A; Rousseau, D; Titov, M; Verrecchia, P; Baffioni, S; Bianchini, L; Bluj, M; Busson, P; Charlot, C; Dobrzynski, L; Granier de Cassagnac, R; Haguenauer, M; Miné, P; Paganini, P; Sirois, Y; Thiebaux, C; Zabi, A; Agram, J L; Besson, A; Bloch, D; Bodin, D; Brom, J M; Conte, E; Drouhin, F; Fontaine, J C; Gelé, D; Goerlach, U; Gross, L; Juillot, P; Le Bihan, A C; Patois, Y; Speck, J; Van Hove, P; Baty, C; Bedjidian, M; Blaha, J; Boudoul, G; Brun, H; Chanon, N; Chierici, R; Contardo, D; Depasse, P; Dupasquier, T; El Mamouni, H; Fassi, F; Fay, J; Gascon, S; Ille, B; Kurca, T; Le Grand, T; Lethuillier, M; Lumb, N; Mirabito, L; Perries, S; Vander Donckt, M; Verdier, P; Djaoshvili, N; Roinishvili, N; Roinishvili, V; Amaglobeli, N; Adolphi, R; Anagnostou, G; Brauer, R; Braunschweig, W; Edelhoff, M; Esser, H; Feld, L; Karpinski, W; Khomich, A; Klein, K; Mohr, N; Ostaptchouk, A; Pandoulas, D; Pierschel, G; Raupach, F; Schael, S; Schultz von Dratzig, A; Schwering, G; Sprenger, D; Thomas, M; Weber, M; Wittmer, B; Wlochal, M; Actis, O; Altenhöfer, G; Bender, W; Biallass, P; Erdmann, M; Fetchenhauer, G; Frangenheim, J; Hebbeker, T; Hilgers, G; Hinzmann, A; Hoepfner, K; Hof, C; Kirsch, M; Klimkovich, T; Kreuzer, P; Lanske, D; Merschmeyer, M; Meyer, A; Philipps, B; Pieta, H; Reithler, H; Schmitz, S A; Sonnenschein, L; Sowa, M; Steggemann, J; Szczesny, H; Teyssier, D; Zeidler, C; Bontenackels, M; Davids, M; Duda, M; Flügge, G; Geenen, H; Giffels, M; Haj Ahmad, W; Hermanns, T; Heydhausen, D; Kalinin, S; Kress, T; Linn, A; Nowack, A; Perchalla, L; Poettgens, M; Pooth, O; Sauerland, P; Stahl, A; Tornier, D; Zoeller, M H; Aldaya Martin, M; Behrens, U; Borras, K; Campbell, A; Castro, E; Dammann, D; Eckerlin, G; Flossdorf, A; Flucke, G; Geiser, A; Hatton, D; Hauk, J; Jung, H; Kasemann, M; Katkov, I; Kleinwort, C; Kluge, H; Knutsson, A; Kuznetsova, E; Lange, W; Lohmann, W; Mankel, R; Marienfeld, M; Meyer, A B; Miglioranzi, S; Mnich, J; Ohlerich, M; Olzem, J; Parenti, A; Rosemann, C; Schmidt, R; Schoerner-Sadenius, T; Volyanskyy, D; Wissing, C; Zeuner, W D; Autermann, C; Bechtel, F; Draeger, J; Eckstein, D; Gebbert, U; Kaschube, K; Kaussen, G; Klanner, R; Mura, B; Naumann-Emme, S; Nowak, F; Pein, U; Sander, C; Schleper, P; Schum, T; Stadie, H; Steinbrück, G; Thomsen, J; Wolf, R; Bauer, J; Blüm, P; Buege, V; Cakir, A; Chwalek, T; De Boer, W; Dierlamm, A; Dirkes, G; Feindt, M; Felzmann, U; Frey, M; Furgeri, A; Gruschke, J; Hackstein, C; Hartmann, F; Heier, S; Heinrich, M; Held, H; Hirschbuehl, D; Hoffmann, K H; Honc, S; Jung, C; Kuhr, T; Liamsuwan, T; Martschei, D; Mueller, S; Müller, Th; Neuland, M B; Niegel, M; Oberst, O; Oehler, A; Ott, J; Peiffer, T; Piparo, D; Quast, G; Rabbertz, K; Ratnikov, F; Ratnikova, N; Renz, M; Saout, C; Sartisohn, G; Scheurer, A; Schieferdecker, P; Schilling, F P; Schott, G; Simonis, H J; Stober, F M; Sturm, P; Troendle, D; Trunov, A; Wagner, W; Wagner-Kuhr, J; Zeise, M; Zhukov, V; Ziebarth, E B; Daskalakis, G; Geralis, T; Karafasoulis, K; Kyriakis, A; Loukas, D; Markou, A; Markou, C; Mavrommatis, C; Petrakou, E; Zachariadou, A; Gouskos, L; Katsas, P; Panagiotou, A; Evangelou, I; Kokkas, P; Manthos, N; Papadopoulos, I; Patras, V; Triantis, F A; Bencze, G; Boldizsar, L; Debreczeni, G; Hajdu, C; Hernath, S; Hidas, P; Horvath, D; Krajczar, K; Laszlo, A; Patay, G; Sikler, F; Toth, N; Vesztergombi, G; Beni, N; Christian, G; Imrek, J; Molnar, J; Novak, D; Palinkas, J; Szekely, G; Szillasi, Z; Tokesi, K; Veszpremi, V; Kapusi, A; Marian, G; Raics, P; Szabo, Z; Trocsanyi, Z L; Ujvari, B; Zilizi, G; Bansal, S; Bawa, H S; Beri, S B; Bhatnagar, V; Jindal, M; Kaur, M; Kaur, R; Kohli, J M; Mehta, M Z; Nishu, N; Saini, L K; Sharma, A; Singh, A; Singh, J B; Singh, S P; Ahuja, S; Arora, S; Bhattacharya, S; Chauhan, S; Choudhary, B C; Gupta, P; Jain, S; Jha, M; Kumar, A; Ranjan, K; Shivpuri, R K; Srivastava, A K; Choudhury, R K; Dutta, D; Kailas, S; Kataria, S K; Mohanty, A K; Pant, L M; Shukla, P; Topkar, A; Aziz, T; Guchait, M; Gurtu, A; Maity, M; Majumder, D; Majumder, G; Mazumdar, K; Nayak, A; Saha, A; Sudhakar, K; Banerjee, S; Dugad, S; Mondal, N K; Arfaei, H; Bakhshiansohi, H; Fahim, A; Jafari, A; Mohammadi Najafabadi, M; Moshaii, A; Paktinat Mehdiabadi, S; Rouhani, S; Safarzadeh, B; Zeinali, M; Felcini, M; Abbrescia, M; Barbone, L; Chiumarulo, F; Clemente, A; Colaleo, A; Creanza, D; Cuscela, G; De Filippis, N; De Palma, M; De Robertis, G; Donvito, G; Fedele, F; Fiore, L; Franco, M; Iaselli, G; Lacalamita, N; Loddo, F; Lusito, L; Maggi, G; Maggi, M; Manna, N; Marangelli, B; My, S; Natali, S; Nuzzo, S; Papagni, G; Piccolomo, S; Pierro, G A; Pinto, C; Pompili, A; Pugliese, G; Rajan, R; Ranieri, A; Romano, F; Roselli, G; Selvaggi, G; Shinde, Y; Silvestris, L; Tupputi, S; Zito, G; Abbiendi, G; Bacchi, W; Benvenuti, A C; Boldini, M; Bonacorsi, D; Braibant-Giacomelli, S; Cafaro, V D; Caiazza, S S; Capiluppi, P; Castro, A; Cavallo, F R; Codispoti, G; Cuffiani, M; D'Antone, I; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Giordano, V; Giunta, M; Grandi, C; Guerzoni, M; Marcellini, S; Masetti, G; Montanari, A; Navarria, F L; Odorici, F; Pellegrini, G; Perrotta, A; Rossi, A M; Rovelli, T; Siroli, G; Torromeo, G; Travaglini, R; Albergo, S; Costa, S; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Broccolo, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Frosali, S; Gallo, E; Genta, C; Landi, G; Lenzi, P; Meschini, M; Paoletti, S; Sguazzoni, G; Tropiano, A; Benussi, L; Bertani, M; Bianco, S; Colafranceschi, S; Colonna, D; Fabbri, F; Giardoni, M; Passamonti, L; Piccolo, D; Pierluigi, D; Ponzio, B; Russo, A; Fabbricatore, P; Musenich, R; Benaglia, A; Calloni, M; Cerati, G B; D'Angelo, P; De Guio, F; Farina, F M; Ghezzi, A; Govoni, P; Malberti, M; Malvezzi, S; Martelli, A; Menasce, D; Miccio, V; Moroni, L; Negri, P; Paganoni, M; Pedrini, D; Pullia, A; Ragazzi, S; Redaelli, N; Sala, S; Salerno, R; Tabarelli de Fatis, T; Tancini, V; Taroni, S; Buontempo, S; Cavallo, N; Cimmino, A; De Gruttola, M; Fabozzi, F; Iorio, A O M; Lista, L; Lomidze, D; Noli, P; Paolucci, P; Sciacca, C; Azzi, P; Bacchetta, N; Barcellan, L; Bellan, P; Bellato, M; Benettoni, M; Biasotto, M; Bisello, D; Borsato, E; Branca, A; Carlin, R; Castellani, L; Checchia, P; Conti, E; Dal Corso, F; De Mattia, M; Dorigo, T; Dosselli, U; Fanzago, F; Gasparini, F; Gasparini, U; Giubilato, P; Gonella, F; Gresele, A; Gulmini, M; Kaminskiy, A; Lacaprara, S; Lazzizzera, I; Margoni, M; Maron, G; Mattiazzo, S; Mazzucato, M; Meneghelli, M; Meneguzzo, A T; Michelotto, M; Montecassiano, F; Nespolo, M; Passaseo, M; Pegoraro, M; Perrozzi, L; Pozzobon, N; Ronchese, P; Simonetto, F; Toniolo, N; Torassa, E; Tosi, M; Triossi, A; Vanini, S; Ventura, S; Zotto, P; Zumerle, G; Baesso, P; Berzano, U; Bricola, S; Necchi, M M; Pagano, D; Ratti, S P; Riccardi, C; Torre, P; Vicini, A; Vitulo, P; Viviani, C; Aisa, D; Aisa, S; Babucci, E; Biasini, M; Bilei, G M; Caponeri, B; Checcucci, B; Dinu, N; Fanò, L; Farnesini, L; Lariccia, P; Lucaroni, A; Mantovani, G; Nappi, A; Piluso, A; Postolache, V; Santocchia, A; Servoli, L; Tonoiu, D; Vedaee, A; Volpe, R; Azzurri, P; Bagliesi, G; Bernardini, J; Berretta, L; Boccali, T; Bocci, A; Borrello, L; Bosi, F; Calzolari, F; Castaldi, R; Dell'Orso, R; Fiori, F; Foà, L; Gennai, S; Giassi, A; Kraan, A; Ligabue, F; Lomtadze, T; Mariani, F; Martini, L; Massa, M; Messineo, A; Moggi, A; Palla, F; Palmonari, F; Petragnani, G; Petrucciani, G; Raffaelli, F; Sarkar, S; Segneri, G; Serban, A T; Spagnolo, P; Tenchini, R; Tolaini, S; Tonelli, G; Venturi, A; Verdini, P G; Baccaro, S; Barone, L; Bartoloni, A; Cavallari, F; Dafinei, I; Del Re, D; Di Marco, E; Diemoz, M; Franci, D; Longo, E; Organtini, G; Palma, A; Pandolfi, F; Paramatti, R; Pellegrino, F; Rahatlou, S; Rovelli, C; Alampi, G; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Biino, C; Borgia, M A; Botta, C; Cartiglia, N; Castello, R; Cerminara, G; Costa, M; Dattola, D; Dellacasa, G; Demaria, N; Dughera, G; Dumitrache, F; Graziano, A; Mariotti, C; Marone, M; Maselli, S; Migliore, E; Mila, G; Monaco, V; Musich, M; Nervo, M; Obertino, M M; Oggero, S; Panero, R; Pastrone, N; Pelliccioni, M; Romero, A; Ruspa, M; Sacchi, R; Solano, A; Staiano, A; Trapani, P P; Trocino, D; Vilela Pereira, A; Visca, L; Zampieri, A; Ambroglini, F; Belforte, S; Cossutti, F; Della Ricca, G; Gobbo, B; Penzo, A; Chang, S; Chung, J; Kim, D H; Kim, G N; Kong, D J; Park, H; Son, D C; Bahk, S Y; Song, S; Jung, S Y; Hong, B; Kim, H; Kim, J H; Lee, K S; Moon, D H; Park, S K; Rhee, H B; Sim, K S; Kim, J; Choi, M; Hahn, G; Park, I C; Choi, S; Choi, Y; Goh, J; Jeong, H; Kim, T J; Lee, J; Lee, S; Janulis, M; Martisiute, D; Petrov, P; Sabonis, T; Castilla Valdez, H; Sánchez Hernández, A; Carrillo Moreno, S; Morelos Pineda, A; Allfrey, P; Gray, R N C; Krofcheck, D; Bernardino Rodrigues, N; Butler, P H; Signal, T; Williams, J C; Ahmad, M; Ahmed, I; Ahmed, W; Asghar, M I; Awan, M I M; Hoorani, H R; Hussain, I; Khan, W A; Khurshid, T; Muhammad, S; Qazi, S; Shahzad, H; Cwiok, M; Dabrowski, R; Dominik, W; Doroba, K; Konecki, M; Krolikowski, J; Pozniak, K; Romaniuk, Ryszard; Zabolotny, W; Zych, P; Frueboes, T; Gokieli, R; Goscilo, L; Górski, M; Kazana, M; Nawrocki, K; Szleper, M; Wrochna, G; Zalewski, P; Almeida, N; Antunes Pedro, L; Bargassa, P; David, A; Faccioli, P; Ferreira Parracho, P G; Freitas Ferreira, M; Gallinaro, M; Guerra Jordao, M; Martins, P; Mini, G; Musella, P; Pela, J; Raposo, L; Ribeiro, P Q; Sampaio, S; Seixas, J; Silva, J; Silva, P; Soares, D; Sousa, M; Varela, J; Wöhri, H K; Altsybeev, I; Belotelov, I; Bunin, P; Ershov, Y; Filozova, I; Finger, M; Finger, M., Jr.; Golunov, A; Golutvin, I; Gorbounov, N; Kalagin, V; Kamenev, A; Karjavin, V; Konoplyanikov, V; Korenkov, V; Kozlov, G; Kurenkov, A; Lanev, A; Makankin, A; Mitsyn, V V; Moisenz, P; Nikonov, E; Oleynik, D; Palichik, V; Perelygin, V; Petrosyan, A; Semenov, R; Shmatov, S; Smirnov, V; Smolin, D; Tikhonenko, E; Vasil'ev, S; Vishnevskiy, A; Volodko, A; Zarubin, A; Zhiltsov, V; Bondar, N; Chtchipounov, L; Denisov, A; Gavrikov, Y; Gavrilov, G; Golovtsov, V; Ivanov, Y; Kim, V; Kozlov, V; Levchenko, P; Obrant, G; Orishchin, E; Petrunin, A; Shcheglov, Y; Shchetkovskiy, A; Sknar, V; Smirnov, I; Sulimov, V; Tarakanov, V; Uvarov, L; Vavilov, S; Velichko, G; Volkov, S; Vorobyev, A; Andreev, Yu; Anisimov, A; Antipov, P; Dermenev, A; Gninenko, S; Golubev, N; Kirsanov, M; Krasnikov, N; Matveev, V; Pashenkov, A; Postoev, V E; Solovey, A; Toropin, A; Troitsky, S; Baud, A; Epshteyn, V; Gavrilov, V; Ilina, N; Kaftanov, V; Kolosov, V; Kossov, M; Krokhotin, A; Kuleshov, S; Oulianov, A; Safronov, G; Semenov, S; Shreyber, I; Stolin, V; Vlasov, E; Zhokin, A; Boos, E; Dubinin, M; Dudko, L; Ershov, A; Gribushin, A; Klyukhin, V; Kodolova, O; Lokhtin, I; Petrushanko, S; Sarycheva, L; Savrin, V; Snigirev, A; Vardanyan, I; Dremin, I; Kirakosyan, M; Konovalova, N; Rusakov, S V; Vinogradov, A; Akimenko, S; Artamonov, A; Azhgirey, I; Bitioukov, S; Burtovoy, V; Grishin, V; Kachanov, V; Konstantinov, D; Krychkine, V; Levine, A; Lobov, I; Lukanin, V; Mel'nik, Y; Petrov, V; Ryutin, R; Slabospitsky, S; Sobol, A; Sytine, A; Tourtchanovitch, L; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Djordjevic, M; Jovanovic, D; Krpic, D; Maletic, D; Puzovic, J; Smiljkovic, N; Aguilar-Benitez, M; Alberdi, J; Alcaraz Maestre, J; Arce, P; Barcala, J M; Battilana, C; Burgos Lazaro, C; Caballero Bejar, J; Calvo, E; Cardenas Montes, M; Cepeda, M; Cerrada, M; Chamizo Llatas, M; Clemente, F; Colino, N; Daniel, M; De La Cruz, B; Delgado Peris, A; Diez Pardos, C; Fernandez Bedoya, C; Fernández Ramos, J P; Ferrando, A; Flix, J; Fouz, M C; Garcia-Abia, P; Garcia-Bonilla, A C; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Marin, J; Merino, G; Molina, J; Molinero, A; Navarrete, J J; Oller, J C; Puerta Pelayo, J; Romero, L; Santaolalla, J; Villanueva Munoz, C; Willmott, C; Yuste, C; Albajar, C; Blanco Otano, M; de Trocóniz, J F; Garcia Raboso, A; Lopez Berengueres, J O; Cuevas, J; Fernandez Menendez, J; Gonzalez Caballero, I; Lloret Iglesias, L; Naves Sordo, H; Vizan Garcia, J M; Cabrillo, I J; Calderon, A; Chuang, S H; Diaz Merino, I; Diez Gonzalez, C; Duarte Campderros, J; Fernandez, M; Gomez, G; Gonzalez Sanchez, J; Gonzalez Suarez, R; Jorda, C; Lobelle Pardo, P; Lopez Virto, A; Marco, J; Marco, R; Martinez Rivero, C; Martinez Ruiz del Arbol, P; Matorras, F; Rodrigo, T; Ruiz Jimeno, A; Scodellaro, L; Sobron Sanudo, M; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Albert, E; Alidra, M; Ashby, S; Auffray, E; Baechler, J; Baillon, P; Ball, A H; Bally, S L; Barney, D; Beaudette, F; Bellan, R; Benedetti, D; Benelli, G; Bernet, C; Bloch, P; Bolognesi, S; Bona, M; Bos, J; Bourgeois, N; Bourrel, T; Breuker, H; Bunkowski, K; Campi, D; Camporesi, T; Cano, E; Cattai, A; Chatelain, J P; Chauvey, M; Christiansen, T; Coarasa Perez, J A; Conde Garcia, A; Covarelli, R; Curé, B; De Roeck, A; Delachenal, V; Deyrail, D; Di Vincenzo, S; Dos Santos, S; Dupont, T; Edera, L M; Elliott-Peisert, A; Eppard, M; Favre, M; Frank, N; Funk, W; Gaddi, A; Gastal, M; Gateau, M; Gerwig, H; Gigi, D; Gill, K; Giordano, D; Girod, J P; Glege, F; Gomez-Reino Garrido, R; Goudard, R; Gowdy, S; Guida, R; Guiducci, L; Gutleber, J; Hansen, M; Hartl, C; Harvey, J; Hegner, B; Hoffmann, H F; Holzner, A; Honma, A; Huhtinen, M; Innocente, V; Janot, P; Le Godec, G; Lecoq, P; Leonidopoulos, C; Loos, R; Lourenço, C; Lyonnet, A; Macpherson, A; Magini, N; Maillefaud, J D; Maire, G; Mäki, T; Malgeri, L; Mannelli, M; Masetti, L; Meijers, F; Meridiani, P; Mersi, S; Meschi, E; Meynet Cordonnier, A; Moser, R; Mulders, M; Mulon, J; Noy, M; Oh, A; Olesen, G; Onnela, A; Orimoto, T; Orsini, L; Perez, E; Perinic, G; Pernot, J F; Petagna, P; Petiot, P; Petrilli, A; Pfeiffer, A; Pierini, M; Pimiä, M; Pintus, R; Pirollet, B; Postema, H; Racz, A; Ravat, S; Rew, S B; Rodrigues Antunes, J; Rolandi, G; Rovere, M; Ryjov, V; Sakulin, H; Samyn, D; Sauce, H; Schäfer, C; Schlatter, W D; Schröder, M; Schwick, C; Sciaba, A; Segoni, I; Sharma, A; Siegrist, N; Siegrist, P; Sinanis, N; Sobrier, T; Sphicas, P; Spiga, D; Spiropulu, M; Stöckli, F; Traczyk, P; Tropea, P; Troska, J; Tsirou, A; Veillet, L; Veres, G I; Voutilainen, M; Wertelaers, P; Zanetti, M; Bertl, W; Deiters, K; Erdmann, W; Gabathuler, K; Horisberger, R; Ingram, Q; Kaestli, H C; König, S; Kotlinski, D; Langenegger, U; Meier, F; Renker, D; Rohe, T; Sibille, J; Starodumov, A; Betev, B; Caminada, L; Chen, Z; Cittolin, S; Da Silva Di Calafiori, D R; Dambach, S; Dissertori, G; Dittmar, M; Eggel, C; Eugster, J; Faber, G; Freudenreich, K; Grab, C; Hervé, A; Hintz, W; Lecomte, P; Luckey, P D; Lustermann, W; Marchica, C; Milenovic, P; Moortgat, F; Nardulli, A; Nessi-Tedaldi, F; Pape, L; Pauss, F; Punz, T; Rizzi, A; Ronga, F J; Sala, L; Sanchez, A K; Sawley, M C; Sordini, V; Stieger, B; Tauscher, L; Thea, A; Theofilatos, K; Treille, D; Trüb, P; Weber, M; Wehrli, L; Weng, J; Zelepoukine, S; Amsler, C; Chiochia, V; De Visscher, S; Regenfus, C; Robmann, P; Rommerskirchen, T; Schmidt, A; Tsirigkas, D; Wilke, L; Chang, Y H; Chen, E A; Chen, W T; Go, A; Kuo, C M; Li, S W; Lin, W; Bartalini, P; Chang, P; Chao, Y; Chen, K F; Hou, W S; Hsiung, Y; Lei, Y J; Lin, S W; Lu, R S; Schümann, J; Shiu, J G; Tzeng, Y M; Ueno, K; Velikzhanin, Y; Wang, C C; Wang, M; Adiguzel, A; Ayhan, A; Azman Gokce, A; Bakirci, M N; Cerci, S; Dumanoglu, I; Eskut, E; Girgis, S; Gurpinar, E; Hos, I; Karaman, T; Kayis Topaksu, A; Kurt, P; Önengüt, G; Önengüt Gökbulut, G; Ozdemir, K; Ozturk, S; Polatöz, A; Sogut, K; Tali, B; Topakli, H; Uzun, D; Vergili, L N; Vergili, M; Akin, I V; Aliev, T; Bilmis, S; Deniz, M; Gamsizkan, H; Guler, A M; Öcalan, K; Serin, M; Sever, R; Surat, U E; Zeyrek, M; Deliomeroglu, M; Demir, D; Gülmez, E; Halu, A; Isildak, B; Kaya, M; Kaya, O; Ozkorucuklu, S; Sonmez, N; Levchuk, L; Lukyanenko, S; Soroka, D; Zub, S; Bostock, F; Brooke, J J; Cheng, T L; Cussans, D; Frazier, R; Goldstein, J; Grant, N; Hansen, M; Heath, G P; Heath, H F; Hill, C; Huckvale, B; Jackson, J; Mackay, C K; Metson, S; Newbold, D M; Nirunpong, K; Smith, V J; Velthuis, J; Walton, R; Bell, K W; Brew, C; Brown, R M; Camanzi, B; Cockerill, D J A; Coughlan, J A; Geddes, N I; Harder, K; Harper, S; Kennedy, B W; Murray, P; Shepherd-Themistocleous, C H; Tomalin, I R; Williams, J H; Womersley, W J; Worm, S D; Bainbridge, R; Ball, G; Ballin, J; Beuselinck, R; Buchmuller, O; Colling, D; Cripps, N; Davies, G; Della Negra, M; Foudas, C; Fulcher, J; Futyan, D; Hall, G; Hays, J; Iles, G; Karapostoli, G; MacEvoy, B C; Magnan, A M; Marrouche, J; Nash, J; Nikitenko, A; Papageorgiou, A; Pesaresi, M; Petridis, K; Pioppi, M; Raymond, D M; Rompotis, N; Rose, A; Ryan, M J; Seez, C; Sharp, P; Sidiropoulos, G; Stettler, M; Stoye, M; Takahashi, M; Tapper, A; Timlin, C; Tourneur, S; Vazquez Acosta, M; Virdee, T; Wakefield, S; Wardrope, D; Whyntie, T; Wingham, M; Cole, J E; Goitom, I; Hobson, P R; Khan, A; Kyberd, P; Leslie, D; Munro, C; Reid, I D; Siamitros, C; Taylor, R; Teodorescu, L; Yaselli, I; Bose, T; Carleton, M; Hazen, E; Heering, A H; Heister, A; John, J St; Lawson, P; Lazic, D; Osborne, D; Rohlf, J; Sulak, L; Wu, S; Andrea, J; Avetisyan, A; Bhattacharya, S; Chou, J P; Cutts, D; Esen, S; Kukartsev, G; Landsberg, G; Narain, M; Nguyen, D; Speer, T; Tsang, K V; Breedon, R; Calderon De La Barca Sanchez, M; Case, M; Cebra, D; Chertok, M; Conway, J; Cox, P T; Dolen, J; Erbacher, R; Friis, E; Ko, W; Kopecky, A; Lander, R; Lister, A; Liu, H; Maruyama, S; Miceli, T; Nikolic, M; Pellett, D; Robles, J; Searle, M; Smith, J; Squires, M; Stilley, J; Tripathi, M; Vasquez Sierra, R; Veelken, C; Andreev, V; Arisaka, K; Cline, D; Cousins, R; Erhan, S; Hauser, J; Ignatenko, M; Jarvis, C; Mumford, J; Plager, C; Rakness, G; Schlein, P; Tucker, J; Valuev, V; Wallny, R; Yang, X; Babb, J; Bose, M; Chandra, A; Clare, R; Ellison, J A; Gary, J W; Hanson, G; Jeng, G Y; Kao, S C; Liu, F; Liu, H; Luthra, A; Nguyen, H; Pasztor, G; Satpathy, A; Shen, B C; Stringer, R; Sturdy, J; Sytnik, V; Wilken, R; Wimpenny, S; Branson, J G; Dusinberre, E; Evans, D; Golf, F; Kelley, R; Lebourgeois, M; Letts, J; Lipeles, E; Mangano, B; Muelmenstaedt, J; Norman, M; Padhi, S; Petrucci, A; Pi, H; Pieri, M; Ranieri, R; Sani, M; Sharma, V; Simon, S; Würthwein, F; Yagil, A; Campagnari, C; D'Alfonso, M; Danielson, T; Garberson, J; Incandela, J; Justus, C; Kalavase, P; Koay, S A; Kovalskyi, D; Krutelyov, V; Lamb, J; Lowette, S; Pavlunin, V; Rebassoo, F; Ribnik, J; Richman, J; Rossin, R; Stuart, D; To, W; Vlimant, J R; Witherell, M; Apresyan, A; Bornheim, A; Bunn, J; Chiorboli, M; Gataullin, M; Kcira, D; Litvine, V; Ma, Y; Newman, H B; Rogan, C; Timciuc, V; Veverka, J; Wilkinson, R; Yang, Y; Zhang, L; Zhu, K; Zhu, R Y; Akgun, B; Carroll, R; Ferguson, T; Jang, D W; Jun, S Y; Paulini, M; Russ, J; Terentyev, N; Vogel, H; Vorobiev, I; Cumalat, J P; Dinardo, M E; Drell, B R; Ford, W T; Heyburn, B; Luiggi Lopez, E; Nauenberg, U; Stenson, K; Ulmer, K; Wagner, S R; Zang, S L; Agostino, L; Alexander, J; Blekman, F; Cassel, D; Chatterjee, A; Das, S; Gibbons, L K; Heltsley, B; Hopkins, W; Khukhunaishvili, A; Kreis, B; Kuznetsov, V; Patterson, J R; Puigh, D; Ryd, A; Shi, X; Stroiney, S; Sun, W; Teo, W D; Thom, J; Vaughan, J; Weng, Y; Wittich, P; Beetz, C P; Cirino, G; Sanzeni, C; Winn, D; Abdullin, S; Afaq, M A; Albrow, M; Ananthan, B; Apollinari, G; Atac, M; Badgett, W; Bagby, L; Bakken, J A; Baldin, B; Banerjee, S; Banicz, K; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Biery, K; Binkley, M; Bloch, I; Borcherding, F; Brett, A M; Burkett, K; Butler, J N; Chetluru, V; Cheung, H W K; Chlebana, F; Churin, I; Cihangir, S; Crawford, M; Dagenhart, W; Demarteau, M; Derylo, G; Dykstra, D; Eartly, D P; Elias, J E; Elvira, V D; Evans, D; Feng, L; Fischler, M; Fisk, I; Foulkes, S; Freeman, J; Gartung, P; Gottschalk, E; Grassi, T; Green, D; Guo, Y; Gutsche, O; Hahn, A; Hanlon, J; Harris, R M; Holzman, B; Howell, J; Hufnagel, D; James, E; Jensen, H; Johnson, M; Jones, C D; Joshi, U; Juska, E; Kaiser, J; Klima, B; Kossiakov, S; Kousouris, K; Kwan, S; Lei, C M; Limon, P; Lopez Perez, J A; Los, S; Lueking, L; Lukhanin, G; Lusin, S; Lykken, J; Maeshima, K; Marraffino, J M; Mason, D; McBride, P; Miao, T; Mishra, K; Moccia, S; Mommsen, R; Mrenna, S; Muhammad, A S; Newman-Holmes, C; Noeding, C; O'Dell, V; Prokofyev, O; Rivera, R; Rivetta, C H; Ronzhin, A; Rossman, P; Ryu, S; Sekhri, V; Sexton-Kennedy, E; Sfiligoi, I; Sharma, S; Shaw, T M; Shpakov, D; Skup, E; Smith, R P; Soha, A; Spalding, W J; Spiegel, L; Suzuki, I; Tan, P; Tanenbaum, W; Tkaczyk, S; Trentadue, R; Uplegger, L; Vaandering, E W; Vidal, R; Whitmore, J; Wicklund, E; Wu, W; Yarba, J; Yumiceva, F; Yun, J C; Acosta, D; Avery, P; Barashko, V; Bourilkov, D; Chen, M; Di Giovanni, G P; Dobur, D; Drozdetskiy, A; Field, R D; Fu, Y; Furic, I K; Gartner, J; Holmes, D; Kim, B; Klimenko, S; Konigsberg, J; Korytov, A; Kotov, K; Kropivnitskaya, A; Kypreos, T; Madorsky, A; Matchev, K; Mitselmakher, G; Pakhotin, Y; Piedra Gomez, J; Prescott, C; Rapsevicius, V; Remington, R; Schmitt, M; Scurlock, B; Wang, D; Yelton, J; Ceron, C; Gaultney, V; Kramer, L; Lebolo, L M; Linn, S; Markowitz, P; Martinez, G; Rodriguez, J L; Adams, T; Askew, A; Baer, H; Bertoldi, M; Chen, J; Dharmaratna, W G D; Gleyzer, S V; Haas, J; Hagopian, S; Hagopian, V; Jenkins, M; Johnson, K F; Prettner, E; Prosper, H; Sekmen, S; Baarmand, M M; Guragain, S; Hohlmann, M; Kalakhety, H; Mermerkaya, H; Ralich, R; Vodopiyanov, I; Abelev, B; Adams, M R; Anghel, I M; Apanasevich, L; Bazterra, V E; Betts, R R; Callner, J; Castro, M A; Cavanaugh, R; Dragoiu, C; Garcia-Solis, E J; Gerber, C E; Hofman, D J; Khalatian, S; Mironov, C; Shabalina, E; Smoron, A; Varelas, N; Akgun, U; Albayrak, E A; Ayan, A S; Bilki, B; Briggs, R; Cankocak, K; Chung, K; Clarida, W; Debbins, P; Duru, F; Ingram, F D; Lae, C K; McCliment, E; Merlo, J P; Mestvirishvili, A; Miller, M J; Moeller, A; Nachtman, J; Newsom, C R; Norbeck, E; Olson, J; Onel, Y; Ozok, F; Parsons, J; Schmidt, I; Sen, S; Wetzel, J; Yetkin, T; Yi, K; Barnett, B A; Blumenfeld, B; Bonato, A; Chien, C Y; Fehling, D; Giurgiu, G; Gritsan, A V; Guo, Z J; Maksimovic, P; Rappoccio, S; Swartz, M; Tran, N V; Zhang, Y; Baringer, P; Bean, A; Grachov, O; Murray, M; Radicci, V; Sanders, S; Wood, J S; Zhukova, V; Bandurin, D; Bolton, T; Kaadze, K; Liu, A; Maravin, Y; Onoprienko, D; Svintradze, I; Wan, Z; Gronberg, J; Hollar, J; Lange, D; Wright, D; Baden, D; Bard, R; Boutemeur, M; Eno, S C; Ferencek, D; Hadley, N J; Kellogg, R G; Kirn, M; Kunori, S; Rossato, K; Rumerio, P; Santanastasio, F; Skuja, A; Temple, J; Tonjes, M B; Tonwar, S C; Toole, T; Twedt, E; Alver, B; Bauer, G; Bendavid, J; Busza, W; Butz, E; Cali, I A; Chan, M; D'Enterria, D; Everaerts, P; Gomez Ceballos, G; Hahn, K A; Harris, P; Jaditz, S; Kim, Y; Klute, M; Lee, Y J; Li, W; Loizides, C; Ma, T; Miller, M; Nahn, S; Paus, C; Roland, C; Roland, G; Rudolph, M; Stephans, G; Sumorok, K; Sung, K; Vaurynovich, S; Wenger, E A; Wyslouch, B; Xie, S; Yilmaz, Y; Yoon, A S; Bailleux, D; Cooper, S I; Cushman, P; Dahmes, B; De Benedetti, A; Dolgopolov, A; Dudero, P R; Egeland, R; Franzoni, G; Haupt, J; Inyakin, A; Klapoetke, K; Kubota, Y; Mans, J; Mirman, N; Petyt, D; Rekovic, V; Rusack, R; Schroeder, M; Singovsky, A; Zhang, J; Cremaldi, L M; Godang, R; Kroeger, R; Perera, L; Rahmat, R; Sanders, D A; Sonnek, P; Summers, D; Bloom, K; Bockelman, B; Bose, S; Butt, J; Claes, D R; Dominguez, A; Eads, M; Keller, J; Kelly, T; Kravchenko, I; Lazo-Flores, J; Lundstedt, C; Malbouisson, H; Malik, S; Snow, G R; Baur, U; Iashvili, I; Kharchilava, A; Kumar, A; Smith, K; Strang, M; Alverson, G; Barberis, E; Boeriu, O; Eulisse, G; Govi, G; McCauley, T; Musienko, Y; Muzaffar, S; Osborne, I; Paul, T; Reucroft, S; Swain, J; Taylor, L; Tuura, L; Anastassov, A; Gobbi, B; Kubik, A; Ofierzynski, R A; Pozdnyakov, A; Schmitt, M; Stoynev, S; Velasco, M; Won, S; Antonelli, L; Berry, D; Hildreth, M; Jessop, C; Karmgard, D J; Kolberg, T; Lannon, K; Lynch, S; Marinelli, N; Morse, D M; Ruchti, R; Slaunwhite, J; Warchol, J; Wayne, M; Bylsma, B; Durkin, L S; Gilmore, J; Gu, J; Killewald, P; Ling, T Y; Williams, G; Adam, N; Berry, E; Elmer, P; Garmash, A; Gerbaudo, D; Halyo, V; Hunt, A; Jones, J; Laird, E; Marlow, D; Medvedeva, T; Mooney, M; Olsen, J; Piroué, P; Stickland, D; Tully, C; Werner, J S; Wildish, T; Xie, Z; Zuranski, A; Acosta, J G; Bonnett Del Alamo, M; Huang, X T; Lopez, A; Mendez, H; Oliveros, S; Ramirez Vargas, J E; Santacruz, N; Zatzerklyany, A; Alagoz, E; Antillon, E; Barnes, V E; Bolla, G; Bortoletto, D; Everett, A; Garfinkel, A F; Gecse, Z; Gutay, L; Ippolito, N; Jones, M; Koybasi, O; Laasanen, A T; Leonardo, N; Liu, C; Maroussov, V; Merkel, P; Miller, D H; Neumeister, N; Sedov, A; Shipsey, I; Yoo, H D; Zheng, Y; Jindal, P; Parashar, N; Cuplov, V; Ecklund, K M; Geurts, F J M; Liu, J H; Maronde, D; Matveev, M; Padley, B P; Redjimi, R; Roberts, J; Sabbatini, L; Tumanov, A; Betchart, B; Bodek, A; Budd, H; Chung, Y S; de Barbaro, P; Demina, R; Flacher, H; Gotra, Y; Harel, A; Korjenevski, S; Miner, D C; Orbaker, D; Petrillo, G; Vishnevskiy, D; Zielinski, M; Bhatti, A; Demortier, L; Goulianos, K; Hatakeyama, K; Lungu, G; Mesropian, C; Yan, M; Atramentov, O; Bartz, E; Gershtein, Y; Halkiadakis, E; Hits, D; Lath, A; Rose, K; Schnetzer, S; Somalwar, S; Stone, R; Thomas, S; Watts, T L; Cerizza, G; Hollingsworth, M; Spanier, S; Yang, Z C; York, A; Asaadi, J; Aurisano, A; Eusebi, R; Golyash, A; Gurrola, A; Kamon, T; Nguyen, C N; Pivarski, J; Safonov, A; Sengupta, S; Toback, D; Weinberger, M; Akchurin, N; Berntzon, L; Gumus, K; Jeong, C; Kim, H; Lee, S W; Popescu, S; Roh, Y; Sill, A; Volobouev, I; Washington, E; Wigmans, R; Yazgan, E; Engh, D; Florez, C; Johns, W; Pathak, S; Sheldon, P; Andelin, D; Arenton, M W; Balazs, M; Boutle, S; Buehler, M; Conetti, S; Cox, B; Hirosky, R; Ledovskoy, A; Neu, C; Phillips II, D; Ronquest, M; Yohay, R; Gollapinni, S; Gunthoti, K; Harr, R; Karchin, P E; Mattson, M; Sakharov, A; Anderson, M; Bachtis, M; Bellinger, J N; Carlsmith, D; Crotty, I; Dasu, S; Dutta, S; Efron, J; Feyzi, F; Flood, K; Gray, L; Grogg, K S; Grothe, M; Hall-Wilton, R; Jaworski, M; Klabbers, P; Klukas, J; Lanaro, A; Lazaridis, C; Leonard, J; Loveless, R; Magrans de Abril, M; Mohapatra, A; Ott, G; Polese, G; Reeder, D; Savin, A; Smith, W H; Sourkov, A; Swanson, J; Weinberg, M; Wenman, D; Wensveen, M; White, A

    2010-01-01

    The CMS Collaboration conducted a month-long data taking exercise, the Cosmic Run At Four Tesla, during October-November 2008, with the goal of commissioning the experiment for extended operation. With all installed detector systems participating, CMS recorded 270 million cosmic ray events with the solenoid at a magnetic field strength of 3.8 T. This paper describes the data flow from the detector through the various online and offline computing systems, as well as the workflows used for recording the data, for aligning and calibrating the detector, and for analysis of the data.

  17. Cosmic ray tests of large area Multigap Resistive Plate Chambers

    CERN Document Server

    An, S; Kim, J; Williams, M C S; Zichichi, A; Zuyeuski, R

    2007-01-01

    We have built Multigap Resistive Plate Chambers (MRPC) with six gas gaps and an active area of . The signals are generated on 2.5 cm wide copper pickup strips; these are read out at each end thus allowing the position of the hit along the strip to be obtained from the time difference. Using three of these chambers we have set up a cosmic tracking system in a similar manner as planned for the Extreme Energy Events (EEE) project. The details of the set-up are presented in this paper. In addition we discuss the time and position resolution of these MRPCs measured using cosmic rays.

  18. CMS Data Processing Workflows during an Extended Cosmic Ray Run

    Energy Technology Data Exchange (ETDEWEB)

    2009-11-01

    The CMS Collaboration conducted a month-long data taking exercise, the Cosmic Run At Four Tesla, during October-November 2008, with the goal of commissioning the experiment for extended operation. With all installed detector systems participating, CMS recorded 270 million cosmic ray events with the solenoid at a magnetic field strength of 3.8 T. This paper describes the data flow from the detector through the various online and offline computing systems, as well as the workflows used for recording the data, for aligning and calibrating the detector, and for analysis of the data.

  19. CMS Data Processing Workflows during an Extended Cosmic Ray Run

    CERN Document Server

    Chatrchyan, S; Sirunyan, A M; Adam, W; Arnold, B; Bergauer, H; Bergauer, T; Dragicevic, M; Eichberger, M; Erö, J; Friedl, M; Frühwirth, R; Ghete, V M; Hammer, J; Hänsel, S; Hoch, M; Hörmann, N; Hrubec, J; Jeitler, M; Kasieczka, G; Kastner, K; Krammer, M; Liko, D; Magrans de Abril, I; Mikulec, I; Mittermayr, F; Neuherz, B; Oberegger, M; Padrta, M; Pernicka, M; Rohringer, H; Schmid, S; Schöfbeck, R; Schreiner, T; Stark, R; Steininger, H; Strauss, J; Taurok, A; Teischinger, F; Themel, T; Uhl, D; Wagner, P; Waltenberger, W; Walzel, G; Widl, E; Wulz, C E; Chekhovsky, V; Dvornikov, O; Emeliantchik, I; Litomin, A; Makarenko, V; Marfin, I; Mossolov, V; Shumeiko, N; Solin, A; Stefanovitch, R; Suarez Gonzalez, J; Tikhonov, A; Fedorov, A; Karneyeu, A; Korzhik, M; Panov, V; Zuyeuski, R; Kuchinsky, P; Beaumont, W; Benucci, L; Cardaci, M; De Wolf, E A; Delmeire, E; Druzhkin, D; Hashemi, M; Janssen, X; Maes, T; Mucibello, L; Ochesanu, S; Rougny, R; Selvaggi, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Adler, V; Beauceron, S; Blyweert, S; D'Hondt, J; De Weirdt, S; Devroede, O; Heyninck, J; Kalogeropoulos, A; Maes, J; Maes, M; Mozer, M U; Tavernier, S; Van Doninck, W; Van Mulders, P; Villella, I; Bouhali, O; Chabert, E C; Charaf, O; Clerbaux, B; De Lentdecker, G; Dero, V; Elgammal, S; Gay, A P R; Hammad, G H; Marage, P E; Rugovac, S; Vander Velde, C; Vanlaer, P; Wickens, J; Grunewald, M; Klein, B; Marinov, A; Ryckbosch, D; Thyssen, F; Tytgat, M; Vanelderen, L; Verwilligen, P; Basegmez, S; Bruno, G; Caudron, J; Delaere, C; Demin, P; Favart, D; Giammanco, A; Grégoire, G; Lemaitre, V; Militaru, O; Ovyn, S; Piotrzkowski, K; Quertenmont, L; Schul, N; Beliy, N; Daubie, E; Alves, G A; Pol, M E; Souza, M H G; Carvalho, W; De Jesus Damiao, D; De Oliveira Martins, C; Fonseca De Souza, S; Mundim, L; Oguri, V; Santoro, A; Silva Do Amaral, S M; Sznajder, A; Fernandez Perez Tomei, T R; Ferreira Dias, M A; Gregores, E M; Novaes, S F; Abadjiev, K; Anguelov, T; Damgov, J; Darmenov, N; Dimitrov, L; Genchev, V; Iaydjiev, P; Piperov, S; Stoykova, S; Sultanov, G; Trayanov, R; Vankov, I; Dimitrov, A; Dyulendarova, M; Kozhuharov, V; Litov, L; Marinova, E; Mateev, M; Pavlov, B; Petkov, P; Toteva, Z; Chen, G M; Chen, H S; Guan, W; Jiang, C H; Liang, D; Liu, B; Meng, X; Tao, J; Wang, J; Wang, Z; Xue, Z; Zhang, Z; Ban, Y; Cai, J; Ge, Y; Guo, S; Hu, Z; Mao, Y; Qian, S J; Teng, H; Zhu, B; Avila, C; Baquero Ruiz, M; Carrillo Montoya, C A; Gomez, A; Gomez Moreno, B; Ocampo Rios, A A; Osorio Oliveros, A F; Reyes Romero, D; Sanabria, J C; Godinovic, N; Lelas, K; Plestina, R; Polic, D; Puljak, I; Antunovic, Z; Dzelalija, M; Brigljevic, V; Duric, S; Kadija, K; Morovic, S; Fereos, R; Galanti, M; Mousa, J; Papadakis, A; Ptochos, F; Razis, P A; Tsiakkouri, D; Zinonos, Z; Hektor, A; Kadastik, M; Kannike, K; Müntel, M; Raidal, M; Rebane, L; Anttila, E; Czellar, S; Härkönen, J; Heikkinen, A; Karimäki, V; Kinnunen, R; Klem, J; Kortelainen, M J; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Nysten, J; Tuominen, E; Tuominiemi, J; Ungaro, D; Wendland, L; Banzuzi, K; Korpela, A; Tuuva, T; Nedelec, P; Sillou, D; Besancon, M; Chipaux, R; Dejardin, M; Denegri, D; Descamps, J; Fabbro, B; Faure, J L; Ferri, F; Ganjour, S; Gentit, F X; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Lemaire, M C; Locci, E; Malcles, J; Marionneau, M; Millischer, L; Rander, J; Rosowsky, A; Rousseau, D; Titov, M; Verrecchia, P; Baffioni, S; Bianchini, L; Bluj, M; Busson, P; Charlot, C; Dobrzynski, L; Granier de Cassagnac, R; Haguenauer, M; Miné, P; Paganini, P; Sirois, Y; Thiebaux, C; Zabi, A; Agram, J L; Besson, A; Bloch, D; Bodin, D; Brom, J M; Conte, E; Drouhin, F; Fontaine, J C; Gelé, D; Goerlach, U; Gross, L; Juillot, P; Le Bihan, A C; Patois, Y; Speck, J; Van Hove, P; Baty, C; Bedjidian, M; Blaha, J; Boudoul, G; Brun, H; Chanon, N; Chierici, R; Contardo, D; Depasse, P; Dupasquier, T; El Mamouni, H; Fassi, F; Fay, J; Gascon, S; Ille, B; Kurca, T; Le Grand, T; Lethuillier, M; Lumb, N; Mirabito, L; Perries, S; Vander Donckt, M; Verdier, P; Djaoshvili, N; Roinishvili, N; Roinishvili, V; Amaglobeli, N; Adolphi, R; Anagnostou, G; Brauer, R; Braunschweig, W; Edelhoff, M; Esser, H; Feld, L; Karpinski, W; Khomich, A; Klein, K; Mohr, N; Ostaptchouk, A; Pandoulas, D; Pierschel, G; Raupach, F; Schael, S; Schultz von Dratzig, A; Schwering, G; Sprenger, D; Thomas, M; Weber, M; Wittmer, B; Wlochal, M; Actis, O; Altenhöfer, G; Bender, W; Biallass, P; Erdmann, M; Fetchenhauer, G; Frangenheim, J; Hebbeker, T; Hilgers, G; Hinzmann, A; Hoepfner, K; Hof, C; Kirsch, M; Klimkovich, T; Kreuzer, P; Lanske, D; Merschmeyer, M; Meyer, A; Philipps, B; Pieta, H; Reithler, H; Schmitz, S A; Sonnenschein, L; Sowa, M; Steggemann, J; Szczesny, H; Teyssier, D; Zeidler, C; Bontenackels, M; Davids, M; Duda, M; Flügge, G; Geenen, H; Giffels, M; Haj Ahmad, W; Hermanns, T; Heydhausen, D; Kalinin, S; Kress, T; Linn, A; Nowack, A; Perchalla, L; Poettgens, M; Pooth, O; Sauerland, P; Stahl, A; Tornier, D; Zoeller, M H; Aldaya Martin, M; Behrens, U; Borras, K; Campbell, A; Castro, E; Dammann, D; Eckerlin, G; Flossdorf, A; Flucke, G; Geiser, A; Hatton, D; Hauk, J; Jung, H; Kasemann, M; Katkov, I; Kleinwort, C; Kluge, H; Knutsson, A; Kuznetsova, E; Lange, W; Lohmann, W; Mankel, R; Marienfeld, M; Meyer, A B; Miglioranzi, S; Mnich, J; Ohlerich, M; Olzem, J; Parenti, A; Rosemann, C; Schmidt, R; Schoerner-Sadenius, T; Volyanskyy, D; Wissing, C; Zeuner, W D; Autermann, C; Bechtel, F; Draeger, J; Eckstein, D; Gebbert, U; Kaschube, K; Kaussen, G; Klanner, R; Mura, B; Naumann-Emme, S; Nowak, F; Pein, U; Sander, C; Schleper, P; Schum, T; Stadie, H; Steinbrück, G; Thomsen, J; Wolf, R; Bauer, J; Blüm, P; Buege, V; Cakir, A; Chwalek, T; De Boer, W; Dierlamm, A; Dirkes, G; Feindt, M; Felzmann, U; Frey, M; Furgeri, A; Gruschke, J; Hackstein, C; Hartmann, F; Heier, S; Heinrich, M; Held, H; Hirschbuehl, D; Hoffmann, K H; Honc, S; Jung, C; Kuhr, T; Liamsuwan, T; Martschei, D; Mueller, S; Müller, Th; Neuland, M B; Niegel, M; Oberst, O; Oehler, A; Ott, J; Peiffer, T; Piparo, D; Quast, G; Rabbertz, K; Ratnikov, F; Ratnikova, N; Renz, M; Saout, C; Sartisohn, G; Scheurer, A; Schieferdecker, P; Schilling, F P; Schott, G; Simonis, H J; Stober, F M; Sturm, P; Troendle, D; Trunov, A; Wagner, W; Wagner-Kuhr, J; Zeise, M; Zhukov, V; Ziebarth, E B; Daskalakis, G; Geralis, T; Karafasoulis, K; Kyriakis, A; Loukas, D; Markou, A; Markou, C; Mavrommatis, C; Petrakou, E; Zachariadou, A; Gouskos, L; Katsas, P; Panagiotou, A; Evangelou, I; Kokkas, P; Manthos, N; Papadopoulos, I; Patras, V; Triantis, F A; Bencze, G; Boldizsar, L; Debreczeni, G; Hajdu, C; Hernath, S; Hidas, P; Horvath, D; Krajczar, K; Laszlo, A; Patay, G; Sikler, F; Toth, N; Vesztergombi, G; Beni, N; Christian, G; Imrek, J; Molnar, J; Novak, D; Palinkas, J; Szekely, G; Szillasi, Z; Tokesi, K; Veszpremi, V; Kapusi, A; Marian, G; Raics, P; Szabo, Z; Trocsanyi, Z L; Ujvari, B; Zilizi, G; Bansal, S; Bawa, H S; Beri, S B; Bhatnagar, V; Jindal, M; Kaur, M; Kaur, R; Kohli, J M; Mehta, M Z; Nishu, N; Saini, L K; Sharma, A; Singh, A; Singh, J B; Singh, S P; Ahuja, S; Arora, S; Bhattacharya, S; Chauhan, S; Choudhary, B C; Gupta, P; Jain, S; Jain, S; Jha, M; Kumar, A; Ranjan, K; Shivpuri, R K; Srivastava, A K; Choudhury, R K; Dutta, D; Kailas, S; Kataria, S K; Mohanty, A K; Pant, L M; Shukla, P; Topkar, A; Aziz, T; Guchait, M; Gurtu, A; Maity, M; Majumder, D; Majumder, G; Mazumdar, K; Nayak, A; Saha, A; Sudhakar, K; Banerjee, S; Dugad, S; Mondal, N K; Arfaei, H; Bakhshiansohi, H; Fahim, A; Jafari, A; Mohammadi Najafabadi, M; Moshaii, A; Paktinat Mehdiabadi, S; Rouhani, S; Safarzadeh, B; Zeinali, M; Felcini, M; Abbrescia, M; Barbone, L; Chiumarulo, F; Clemente, A; Colaleo, A; Creanza, D; Cuscela, G; De Filippis, N; De Palma, M; De Robertis, G; Donvito, G; Fedele, F; Fiore, L; Franco, M; Iaselli, G; Lacalamita, N; Loddo, F; Lusito, L; Maggi, G; Maggi, M; Manna, N; Marangelli, B; My, S; Natali, S; Nuzzo, S; Papagni, G; Piccolomo, S; Pierro, G A; Pinto, C; Pompili, A; Pugliese, G; Rajan, R; Ranieri, A; Romano, F; Roselli, G; Selvaggi, G; Shinde, Y; Silvestris, L; Tupputi, S; Zito, G; Abbiendi, G; Bacchi, W; Benvenuti, A C; Boldini, M; Bonacorsi, D; Braibant-Giacomelli, S; Cafaro, V D; Caiazza, S S; Capiluppi, P; Castro, A; Cavallo, F R; Codispoti, G; Cuffiani, M; D'Antone, I; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Giordano, V; Giunta, M; Grandi, C; Guerzoni, M; Marcellini, S; Masetti, G; Montanari, A; Navarria, F L; Odorici, F; Pellegrini, G; Perrotta, A; Rossi, A M; Rovelli, T; Siroli, G; Torromeo, G; Travaglini, R; Albergo, S; Costa, S; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Broccolo, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Frosali, S; Gallo, E; Genta, C; Landi, G; Lenzi, P; Meschini, M; Paoletti, S; Sguazzoni, G; Tropiano, A; Benussi, L; Bertani, M; Bianco, S; Colafranceschi, S; Colonna, D; Fabbri, F; Giardoni, M; Passamonti, L; Piccolo, D; Pierluigi, D; Ponzio, B; Russo, A; Fabbricatore, P; Musenich, R; Benaglia, A; Calloni, M; Cerati, G B; D'Angelo, P; De Guio, F; Farina, F M; Ghezzi, A; Govoni, P; Malberti, M; Malvezzi, S; Martelli, A; Menasce, D; Miccio, V; Moroni, L; Negri, P; Paganoni, M; Pedrini, D; Pullia, A; Ragazzi, S; Redaelli, N; Sala, S; Salerno, R; Tabarelli de Fatis, T; Tancini, V; Taroni, S; Buontempo, S; Cavallo, N; Cimmino, A; De Gruttola, M; Fabozzi, F; Iorio, A O M; Lista, L; Lomidze, D; Noli, P; Paolucci, P; Sciacca, C; Azzi, P; Bacchetta, N; Barcellan, L; Bellan, P; Bellato, M; Benettoni, M; Biasotto, M; Bisello, D; Borsato, E; Branca, A; Carlin, R; Castellani, L; Checchia, P; Conti, E; Dal Corso, F; De Mattia, M; Dorigo, T; Dosselli, U; Fanzago, F; Gasparini, F; Gasparini, U; Giubilato, P; Gonella, F; Gresele, A; Gulmini, M; Kaminskiy, A; Lacaprara, S; Lazzizzera, I; Margoni, M; Maron, G; Mattiazzo, S; Mazzucato, M; Meneghelli, M; Meneguzzo, A T; Michelotto, M; Montecassiano, F; Nespolo, M; Passaseo, M; Pegoraro, M; Perrozzi, L; Pozzobon, N; Ronchese, P; Simonetto, F; Toniolo, N; Torassa, E; Tosi, M; Triossi, A; Vanini, S; Ventura, S; Zotto, P; Zumerle, G; Baesso, P; Berzano, U; Bricola, S; Necchi, M M; Pagano, D; Ratti, S P; Riccardi, C; Torre, P; Vicini, A; Vitulo, P; Viviani, C; Aisa, D; Aisa, S; Babucci, E; Biasini, M; Bilei, G M; Caponeri, B; Checcucci, B; Dinu, N; Fanò, L; Farnesini, L; Lariccia, P; Lucaroni, A; Mantovani, G; Nappi, A; Piluso, A; Postolache, V; Santocchia, A; Servoli, L; Tonoiu, D; Vedaee, A; Volpe, R; Azzurri, P; Bagliesi, G; Bernardini, J; Berretta, L; Boccali, T; Bocci, A; Borrello, L; Bosi, F; Calzolari, F; Castaldi, R; Dell'Orso, R; Fiori, F; Foà, L; Gennai, S; Giassi, A; Kraan, A; Ligabue, F; Lomtadze, T; Mariani, F; Martini, L; Massa, M; Messineo, A; Moggi, A; Palla, F; Palmonari, F; Petragnani, G; Petrucciani, G; Raffaelli, F; Sarkar, S; Segneri, G; Serban, A T; Spagnolo, P; Tenchini, R; Tolaini, S; Tonelli, G; Venturi, A; Verdini, P G; Baccaro, S; Barone, L; Bartoloni, A; Cavallari, F; Dafinei, I; Del Re, D; Di Marco, E; Diemoz, M; Franci, D; Longo, E; Organtini, G; Palma, A; Pandolfi, F; Paramatti, R; Pellegrino, F; Rahatlou, S; Rovelli, C; Alampi, G; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Biino, C; Borgia, M A; Botta, C; Cartiglia, N; Castello, R; Cerminara, G; Costa, M; Dattola, D; Dellacasa, G; Demaria, N; Dughera, G; Dumitrache, F; Graziano, A; Mariotti, C; Marone, M; Maselli, S; Migliore, E; Mila, G; Monaco, V; Musich, M; Nervo, M; Obertino, M M; Oggero, S; Panero, R; Pastrone, N; Pelliccioni, M; Romero, A; Ruspa, M; Sacchi, R; Solano, A; Staiano, A; Trapani, P P; Trocino, D; Vilela Pereira, A; Visca, L; Zampieri, A; Ambroglini, F; Belforte, S; Cossutti, F; Della Ricca, G; Gobbo, B; Penzo, A; Chang, S; Chung, J; Kim, D H; Kim, G N; Kong, D J; Park, H; Son, D C; Bahk, S Y; Song, S; Jung, S Y; Hong, B; Kim, H; Kim, J H; Lee, K S; Moon, D H; Park, S K; Rhee, H B; Sim, K S; Kim, J; Choi, M; Hahn, G; Park, I C; Choi, S; Choi, Y; Goh, J; Jeong, H; Kim, T J; Lee, J; Lee, S; Janulis, M; Martisiute, D; Petrov, P; Sabonis, T; Castilla Valdez, H; Sánchez Hernández, A; Carrillo Moreno, S; Morelos Pineda, A; Allfrey, P; Gray, R N C; Krofcheck, D; Bernardino Rodrigues, N; Butler, P H; Signal, T; Williams, J C; Ahmad, M; Ahmed, I; Ahmed, W; Asghar, M I; Awan, M I M; Hoorani, H R; Hussain, I; Khan, W A; Khurshid, T; Muhammad, S; Qazi, S; Shahzad, H; Cwiok, M; Dabrowski, R; Dominik, W; Doroba, K; Konecki, M; Krolikowski, J; Pozniak, K; Romaniuk, Ryszard; Zabolotny, W; Zych, P; Frueboes, T; Gokieli, R; Goscilo, L; Górski, M; Kazana, M; Nawrocki, K; Szleper, M; Wrochna, G; Zalewski, P; Almeida, N; Antunes Pedro, L; Bargassa, P; David, A; Faccioli, P; Ferreira Parracho, P G; Freitas Ferreira, M; Gallinaro, M; Guerra Jordao, M; Martins, P; Mini, G; Musella, P; Pela, J; Raposo, L; Ribeiro, P Q; Sampaio, S; Seixas, J; Silva, J; Silva, P; Soares, D; Sousa, M; Varela, J; Wöhri, H K; Altsybeev, I; Belotelov, I; Bunin, P; Ershov, Y; Filozova, I; Finger, M; Finger, M Jr; Golunov, A; Golutvin, I; Gorbounov, N; Kalagin, V; Kamenev, A; Karjavin, V; Konoplyanikov, V; Korenkov, V; Kozlov, G; Kurenkov, A; Lanev, A; Makankin, A; Mitsyn, V V; Moisenz, P; Nikonov, E; Oleynik, D; Palichik, V; Perelygin, V; Petrosyan, A; Semenov, R; Shmatov, S; Smirnov, V; Smolin, D; Tikhonenko, E; Vasil'ev, S; Vishnevskiy, A; Volodko, A; Zarubin, A; Zhiltsov, V; Bondar, N; Chtchipounov, L; Denisov, A; Gavrikov, Y; Gavrilov, G; Golovtsov, V; Ivanov, Y; Kim, V; Kozlov, V; Levchenko, P; Obrant, G; Orishchin, E; Petrunin, A; Shcheglov, Y; Shchetkovskiy, A; Sknar, V; Smirnov, I; Sulimov, V; Tarakanov, V; Uvarov, L; Vavilov, S; Velichko, G; Volkov, S; Vorobyev, A; Andreev, Yu; Anisimov, A; Antipov, P; Dermenev, A; Gninenko, S; Golubev, N; Kirsanov, M; Krasnikov, N; Matveev, V; Pashenkov, A; Postoev, V E; Solovey, A; Solovey, A; Toropin, A; Troitsky, S; Baud, A; Epshteyn, V; Gavrilov, V; Ilina, N; Kaftanov, V; Kolosov, V; Kossov, M; Krokhotin, A; Kuleshov, S; Oulianov, A; Safronov, G; Semenov, S; Shreyber, I; Stolin, V; Vlasov, E; Zhokin, A; Boos, E; Dubinin, M; Dudko, L; Ershov, A; Gribushin, A; Klyukhin, V; Kodolova, O; Lokhtin, I; Petrushanko, S; Sarycheva, L; Savrin, V; Snigirev, A; Vardanyan, I; Dremin, I; Kirakosyan, M; Konovalova, N; Rusakov, S V; Vinogradov, A; Akimenko, S; Artamonov, A; Azhgirey, I; Bitioukov, S; Burtovoy, V; Grishin, V; Kachanov, V; Konstantinov, D; Krychkine, V; Levine, A; Lobov, I; Lukanin, V; Mel'nik, Y; Petrov, V; Ryutin, R; Slabospitsky, S; Sobol, A; Sytine, A; Tourtchanovitch, L; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Djordjevic, M; Jovanovic, D; Krpic, D; Maletic, D; Puzovic, J; Smiljkovic, N; Aguilar-Benitez, M; Alberdi, J; Alcaraz Maestre, J; Arce, P; Barcala, J M; Battilana, C; Burgos Lazaro, C; Caballero Bejar, J; Calvo, E; Cardenas Montes, M; Cepeda, M; Cerrada, M; Chamizo Llatas, M; Clemente, F; Colino, N; Daniel, M; De La Cruz, B; Delgado Peris, A; Diez Pardos, C; Fernandez Bedoya, C; Fernández Ramos, J P; Ferrando, A; Flix, J; Fouz, M C; Garcia-Abia, P; Garcia-Bonilla, A C; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Marin, J; Merino, G; Molina, J; Molinero, A; Navarrete, J J; Oller, J C; Puerta Pelayo, J; Romero, L; Santaolalla, J; Villanueva Munoz, C; Willmott, C; Yuste, C; Albajar, C; Blanco Otano, M; de Trocóniz, J F; Garcia Raboso, A; Lopez Berengueres, J O; Cuevas, J; Fernandez Menendez, J; Gonzalez Caballero, I; Lloret Iglesias, L; Naves Sordo, H; Vizan Garcia, J M; Cabrillo, I J; Calderon, A; Chuang, S H; Diaz Merino, I; Diez Gonzalez, C; Duarte Campderros, J; Fernandez, M; Gomez, G; Gonzalez Sanchez, J; Gonzalez Suarez, R; Jorda, C; Lobelle Pardo, P; Lopez Virto, A; Marco, J; Marco, R; Martinez Rivero, C; Martinez Ruiz del Arbol, P; Matorras, F; Rodrigo, T; Ruiz Jimeno, A; Scodellaro, L; Sobron Sanudo, M; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Albert, E; Alidra, M; Ashby, S; Auffray, E; Baechler, J; Baillon, P; Ball, A H; Bally, S L; Barney, D; Beaudette, F; Bellan, R; Benedetti, D; Benelli, G; Bernet, C; Bloch, P; Bolognesi, S; Bona, M; Bos, J; Bourgeois, N; Bourrel, T; Breuker, H; Bunkowski, K; Campi, D; Camporesi, T; Cano, E; Cattai, A; Chatelain, J P; Chauvey, M; Christiansen, T; Coarasa Perez, J A; Conde Garcia, A; Covarelli, R; Curé, B; De Roeck, A; Delachenal, V; Deyrail, D; Di Vincenzo, S; Dos Santos, S; Dupont, T; Edera, L M; Elliott-Peisert, A; Eppard, M; Favre, M; Frank, N; Funk, W; Gaddi, A; Gastal, M; Gateau, M; Gerwig, H; Gigi, D; Gill, K; Giordano, D; Girod, J P; Glege, F; Gomez-Reino Garrido, R; Goudard, R; Gowdy, S; Guida, R; Guiducci, L; Gutleber, J; Hansen, M; Hartl, C; Harvey, J; Hegner, B; Hoffmann, H F; Holzner, A; Honma, A; Huhtinen, M; Innocente, V; Janot, P; Le Godec, G; Lecoq, P; Leonidopoulos, C; Loos, R; Lourenço, C; Lyonnet, A; Macpherson, A; Magini, N; Maillefaud, J D; Maire, G; Mäki, T; Malgeri, L; Mannelli, M; Masetti, L; Meijers, F; Meridiani, P; Mersi, S; Meschi, E; Meynet Cordonnier, A; Moser, R; Mulders, M; Mulon, J; Noy, M; Oh, A; Olesen, G; Onnela, A; Orimoto, T; Orsini, L; Perez, E; Perinic, G; Pernot, J F; Petagna, P; Petiot, P; Petrilli, A; Pfeiffer, A; Pierini, M; Pimiä, M; Pintus, R; Pirollet, B; Postema, H; Racz, A; Ravat, S; Rew, S B; Rodrigues Antunes, J; Rolandi, G; Rovere, M; Ryjov, V; Sakulin, H; Samyn, D; Sauce, H; Schäfer, C; Schlatter, W D; Schröder, M; Schwick, C; Sciaba, A; Segoni, I; Sharma, A; Siegrist, N; Siegrist, P; Sinanis, N; Sobrier, T; Sphicas, P; Spiga, D; Spiropulu, M; Stöckli, F; Traczyk, P; Tropea, P; Troska, J; Tsirou, A; Veillet, L; Veres, G I; Voutilainen, M; Wertelaers, P; Zanetti, M; Bertl, W; Deiters, K; Erdmann, W; Gabathuler, K; Horisberger, R; Ingram, Q; Kaestli, H C; König, S; Kotlinski, D; Langenegger, U; Meier, F; Renker, D; Rohe, T; Sibille, J; Starodumov, A; Betev, B; Caminada, L; Chen, Z; Cittolin, S; Da Silva Di Calafiori, D R; Dambach, S; Dissertori, G; Dittmar, M; Eggel, C; Eugster, J; Faber, G; Freudenreich, K; Grab, C; Hervé, A; Hintz, W; Lecomte, P; Luckey, P D; Lustermann, W; Marchica, C; Milenovic, P; Moortgat, F; Nardulli, A; Nessi-Tedaldi, F; Pape, L; Pauss, F; Punz, T; Rizzi, A; Ronga, F J; Sala, L; Sanchez, A K; Sawley, M C; Sordini, V; Stieger, B; Tauscher, L; Thea, A; Theofilatos, K; Treille, D; Trüb, P; Weber, M; Wehrli, L; Weng, J; Zelepoukine, S; Amsler, C; Chiochia, V; De Visscher, S; Regenfus, C; Robmann, P; Rommerskirchen, T; Schmidt, A; Tsirigkas, D; Wilke, L; Chang, Y H; Chen, E A; Chen, W T; Go, A; Kuo, C M; Li, S W; Lin, W; Bartalini, P; Chang, P; Chao, Y; Chen, K F; Hou, W S; Hsiung, Y; Lei, Y J; Lin, S W; Lu, R S; Schümann, J; Shiu, J G; Tzeng, Y M; Ueno, K; Velikzhanin, Y; Wang, C C; Wang, M; Adiguzel, A; Ayhan, A; Azman Gokce, A; Bakirci, M N; Cerci, S; Dumanoglu, I; Eskut, E; Girgis, S; Gurpinar, E; Hos, I; Karaman, T; Karaman, T; Kayis Topaksu, A; Kurt, P; Önengüt, G; Önengüt Gökbulut, G; Ozdemir, K; Ozturk, S; Polatöz, A; Sogut, K; Tali, B; Topakli, H; Uzun, D; Vergili, L N; Vergili, M; Akin, I V; Aliev, T; Bilmis, S; Deniz, M; Gamsizkan, H; Guler, A M; Öcalan, K; Serin, M; Sever, R; Surat, U E; Zeyrek, M; Deliomeroglu, M; Demir, D; Gülmez, E; Halu, A; Isildak, B; Kaya, M; Kaya, O; Ozkorucuklu, S; Sonmez, N; Levchuk, L; Lukyanenko, S; Soroka, D; Zub, S; Bostock, F; Brooke, J J; Cheng, T L; Cussans, D; Frazier, R; Goldstein, J; Grant, N; Hansen, M; Heath, G P; Heath, H F; Hill, C; Huckvale, B; Jackson, J; Mackay, C K; Metson, S; Newbold, D M; Nirunpong, K; Smith, V J; Velthuis, J; Walton, R; Bell, K W; Brew, C; Brown, R M; Camanzi, B; Cockerill, D J A; Coughlan, J A; Geddes, N I; Harder, K; Harper, S; Kennedy, B W; Murray, P; Shepherd-Themistocleous, C H; Tomalin, I R; Williams, J H; Womersley, W J; Worm, S D; Bainbridge, R; Ball, G; Ballin, J; Beuselinck, R; Buchmuller, O; Colling, D; Cripps, N; Davies, G; Della Negra, M; Foudas, C; Fulcher, J; Futyan, D; Hall, G; Hays, J; Iles, G; Karapostoli, G; MacEvoy, B C; Magnan, A M; Marrouche, J; Nash, J; Nikitenko, A; Papageorgiou, A; Pesaresi, M; Petridis, K; Pioppi, M; Raymond, D M; Rompotis, N; Rose, A; Ryan, M J; Seez, C; Sharp, P; Sidiropoulos, G; Stettler, M; Stoye, M; Takahashi, M; Tapper, A; Timlin, C; Tourneur, S; Vazquez Acosta, M; Virdee, T; Wakefield, S; Wardrope, D; Whyntie, T; Wingham, M; Cole, J E; Goitom, I; Hobson, P R; Khan, A; Kyberd, P; Leslie, D; Munro, C; Reid, I D; Siamitros, C; Taylor, R; Teodorescu, L; Yaselli, I; Bose, T; Carleton, M; Hazen, E; Heering, A H; Heister, A; John, J St; Lawson, P; Lazic, D; Osborne, D; Rohlf, J; Sulak, L; Wu, S; Andrea, J; Avetisyan, A; Bhattacharya, S; Chou, J P; Cutts, D; Esen, S; Kukartsev, G; Landsberg, G; Narain, M; Nguyen, D; Speer, T; Tsang, K V; Breedon, R; Calderon De La Barca Sanchez, M; Case, M; Cebra, D; Chertok, M; Conway, J; Cox, P T; Dolen, J; Erbacher, R; Friis, E; Ko, W; Kopecky, A; Lander, R; Lister, A; Liu, H; Maruyama, S; Miceli, T; Nikolic, M; Pellett, D; Robles, J; Searle, M; Smith, J; Squires, M; Stilley, J; Tripathi, M; Vasquez Sierra, R; Veelken, C; Andreev, V; Arisaka, K; Cline, D; Cousins, R; Erhan, S; Hauser, J; Ignatenko, M; Jarvis, C; Mumford, J; Plager, C; Rakness, G; Schlein, P; Tucker, J; Valuev, V; Wallny, R; Yang, X; Babb, J; Bose, M; Chandra, A; Clare, R; Ellison, J A; Gary, J W; Hanson, G; Jeng, G Y; Kao, S C; Liu, F; Liu, H; Luthra, A; Nguyen, H; Pasztor, G; Satpathy, A; Shen, B C; Stringer, R; Sturdy, J; Sytnik, V; Wilken, R; Wimpenny, S; Branson, J G; Dusinberre, E; Evans, D; Golf, F; Kelley, R; Lebourgeois, M; Letts, J; Lipeles, E; Mangano, B; Muelmenstaedt, J; Norman, M; Padhi, S; Petrucci, A; Pi, H; Pieri, M; Ranieri, R; Sani, M; Sharma, V; Simon, S; Würthwein, F; Yagil, A; Campagnari, C; D'Alfonso, M; Danielson, T; Garberson, J; Incandela, J; Justus, C; Kalavase, P; Koay, S A; Kovalskyi, D; Krutelyov, V; Lamb, J; Lowette, S; Pavlunin, V; Rebassoo, F; Ribnik, J; Richman, J; Rossin, R; Stuart, D; To, W; Vlimant, J R; Witherell, M; Apresyan, A; Bornheim, A; Bunn, J; Chiorboli, M; Gataullin, M; Kcira, D; Litvine, V; Ma, Y; Newman, H B; Rogan, C; Timciuc, V; Veverka, J; Wilkinson, R; Yang, Y; Zhang, L; Zhu, K; Zhu, R Y; Akgun, B; Carroll, R; Ferguson, T; Jang, D W; Jun, S Y; Paulini, M; Russ, J; Terentyev, N; Vogel, H; Vorobiev, I; Cumalat, J P; Dinardo, M E; Drell, B R; Ford, W T; Heyburn, B; Luiggi Lopez, E; Nauenberg, U; Stenson, K; Ulmer, K; Wagner, S R; Zang, S L; Agostino, L; Alexander, J; Blekman, F; Cassel, D; Chatterjee, A; Das, S; Gibbons, L K; Heltsley, B; Hopkins, W; Khukhunaishvili, A; Kreis, B; Kuznetsov, V; Patterson, J R; Puigh, D; Ryd, A; Shi, X; Stroiney, S; Sun, W; Teo, W D; Thom, J; Vaughan, J; Weng, Y; Wittich, P; Beetz, C P; Cirino, G; Sanzeni, C; Winn, D; Abdullin, S; Afaq, M A; Albrow, M; Ananthan, B; Apollinari, G; Atac, M; Badgett, W; Bagby, L; Bakken, J A; Baldin, B; Banerjee, S; Banicz, K; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Biery, K; Binkley, M; Bloch, I; Borcherding, F; Brett, A M; Burkett, K; Butler, J N; Chetluru, V; Cheung, H W K; Chlebana, F; Churin, I; Cihangir, S; Crawford, M; Dagenhart, W; Demarteau, M; Derylo, G; Dykstra, D; Eartly, D P; Elias, J E; Elvira, V D; Evans, D; Feng, L; Fischler, M; Fisk, I; Foulkes, S; Freeman, J; Gartung, P; Gottschalk, E; Grassi, T; Green, D; Guo, Y; Gutsche, O; Hahn, A; Hanlon, J; Harris, R M; Holzman, B; Howell, J; Hufnagel, D; James, E; Jensen, H; Johnson, M; Jones, C D; Joshi, U; Juska, E; Kaiser, J; Klima, B; Kossiakov, S; Kousouris, K; Kwan, S; Lei, C M; Limon, P; Lopez Perez, J A; Los, S; Lueking, L; Lukhanin, G; Lusin, S; Lykken, J; Maeshima, K; Marraffino, J M; Mason, D; McBride, P; Miao, T; Mishra, K; Moccia, S; Mommsen, R; Mrenna, S; Muhammad, A S; Newman-Holmes, C; Noeding, C; O'Dell, V; Prokofyev, O; Rivera, R; Rivetta, C H; Ronzhin, A; Rossman, P; Ryu, S; Sekhri, V; Sexton-Kennedy, E; Sfiligoi, I; Sharma, S; Shaw, T M; Shpakov, D; Skup, E; Smith, R P; Soha, A; Spalding, W J; Spiegel, L; Suzuki, I; Tan, P; Tanenbaum, W; Tkaczyk, S; Trentadue, R; Uplegger, L; Vaandering, E W; Vidal, R; Whitmore, J; Wicklund, E; Wu, W; Yarba, J; Yumiceva, F; Yun, J C; Acosta, D; Avery, P; Barashko, V; Bourilkov, D; Chen, M; Di Giovanni, G P; Dobur, D; Drozdetskiy, A; Field, R D; Fu, Y; Furic, I K; Gartner, J; Holmes, D; Kim, B; Klimenko, S; Konigsberg, J; Korytov, A; Kotov, K; Kropivnitskaya, A; Kypreos, T; Madorsky, A; Matchev, K; Mitselmakher, G; Pakhotin, Y; Piedra Gomez, J; Prescott, C; Rapsevicius, V; Remington, R; Schmitt, M; Scurlock, B; Wang, D; Yelton, J; Ceron, C; Gaultney, V; Kramer, L; Lebolo, L M; Linn, S; Markowitz, P; Martinez, G; Rodriguez, J L; Adams, T; Askew, A; Baer, H; Bertoldi, M; Chen, J; Dharmaratna, W G D; Gleyzer, S V; Haas, J; Hagopian, S; Hagopian, V; Jenkins, M; Johnson, K F; Prettner, E; Prosper, H; Sekmen, S; Baarmand, M M; Guragain, S; Hohlmann, M; Kalakhety, H; Mermerkaya, H; Ralich, R; Vodopiyanov, I; Abelev, B; Adams, M R; Anghel, I M; Apanasevich, L; Bazterra, V E; Betts, R R; Callner, J; Castro, M A; Cavanaugh, R; Dragoiu, C; Garcia-Solis, E J; Gerber, C E; Hofman, D J; Khalatian, S; Mironov, C; Shabalina, E; Smoron, A; Varelas, N; Akgun, U; Albayrak, E A; Ayan, A S; Bilki, B; Briggs, R; Cankocak, K; Chung, K; Clarida, W; Debbins, P; Duru, F; Ingram, F D; Lae, C K; McCliment, E; Merlo, J P; Mestvirishvili, A; Miller, M J; Moeller, A; Nachtman, J; Newsom, C R; Norbeck, E; Olson, J; Onel, Y; Ozok, F; Parsons, J; Schmidt, I; Sen, S; Wetzel, J; Yetkin, T; Yi, K; Barnett, B A; Blumenfeld, B; Bonato, A; Chien, C Y; Fehling, D; Giurgiu, G; Gritsan, A V; Guo, Z J; Maksimovic, P; Rappoccio, S; Swartz, M; Tran, N V; Zhang, Y; Baringer, P; Bean, A; Grachov, O; Murray, M; Radicci, V; Sanders, S; Wood, J S; Zhukova, V; Bandurin, D; Bolton, T; Kaadze, K; Liu, A; Maravin, Y; Onoprienko, D; Svintradze, I; Wan, Z; Gronberg, J; Hollar, J; Lange, D; Wright, D; Baden, D; Bard, R; Boutemeur, M; Eno, S C; Ferencek, D; Hadley, N J; Kellogg, R G; Kirn, M; Kunori, S; Rossato, K; Rumerio, P; Santanastasio, F; Skuja, A; Temple, J; Tonjes, M B; Tonwar, S C; Toole, T; Twedt, E; Alver, B; Bauer, G; Bendavid, J; Busza, W; Butz, E; Cali, I A; Chan, M; D'Enterria, D; Everaerts, P; Gomez Ceballos, G; Hahn, K A; Harris, P; Jaditz, S; Kim, Y; Klute, M; Lee, Y J; Li, W; Loizides, C; Ma, T; Miller, M; Nahn, S; Paus, C; Roland, C; Roland, G; Rudolph, M; Stephans, G; Sumorok, K; Sung, K; Vaurynovich, S; Wenger, E A; Wyslouch, B; Xie, S; Yilmaz, Y; Yoon, A S; Bailleux, D; Cooper, S I; Cushman, P; Dahmes, B; De Benedetti, A; Dolgopolov, A; Dudero, P R; Egeland, R; Franzoni, G; Haupt, J; Inyakin, A; Klapoetke, K; Kubota, Y; Mans, J; Mirman, N; Petyt, D; Rekovic, V; Rusack, R; Schroeder, M; Singovsky, A; Zhang, J; Cremaldi, L M; Godang, R; Kroeger, R; Perera, L; Rahmat, R; Sanders, D A; Sonnek, P; Summers, D; Bloom, K; Bockelman, B; Bose, S; Butt, J; Claes, D R; Dominguez, A; Eads, M; Keller, J; Kelly, T; Kravchenko, I; Lazo-Flores, J; Lundstedt, C; Malbouisson, H; Malik, S; Snow, G R; Baur, U; Iashvili, I; Kharchilava, A; Kumar, A; Smith, K; Strang, M; Alverson, G; Barberis, E; Boeriu, O; Eulisse, G; Govi, G; McCauley, T; Musienko, Y; Muzaffar, S; Osborne, I; Paul, T; Reucroft, S; Swain, J; Taylor, L; Tuura, L; Anastassov, A; Gobbi, B; Kubik, A; Ofierzynski, R A; Pozdnyakov, A; Schmitt, M; Stoynev, S; Velasco, M; Won, S; Antonelli, L; Berry, D; Hildreth, M; Jessop, C; Karmgard, D J; Kolberg, T; Lannon, K; Lynch, S; Marinelli, N; Morse, D M; Ruchti, R; Slaunwhite, J; Warchol, J; Wayne, M; Bylsma, B; Durkin, L S; Gilmore, J; Gu, J; Killewald, P; Ling, T Y; Williams, G; Adam, N; Berry, E; Elmer, P; Garmash, A; Gerbaudo, D; Halyo, V; Hunt, A; Jones, J; Laird, E; Marlow, D; Medvedeva, T; Mooney, M; Olsen, J; Piroué, P; Stickland, D; Tully, C; Werner, J S; Wildish, T; Xie, Z; Zuranski, A; Acosta, J G; Bonnett Del Alamo, M; Huang, X T; Lopez, A; Mendez, H; Oliveros, S; Ramirez Vargas, J E; Santacruz, N; Zatzerklyany, A; Alagoz, E; Antillon, E; Barnes, V E; Bolla, G; Bortoletto, D; Everett, A; Garfinkel, A F; Gecse, Z; Gutay, L; Ippolito, N; Jones, M; Koybasi, O; Laasanen, A T; Leonardo, N; Liu, C; Maroussov, V; Merkel, P; Miller, D H; Neumeister, N; Sedov, A; Shipsey, I; Yoo, H D; Zheng, Y; Jindal, P; Parashar, N; Cuplov, V; Ecklund, K M; Geurts, F J M; Liu, J H; Maronde, D; Matveev, M; Padley, B P; Redjimi, R; Roberts, J; Sabbatini, L; Tumanov, A; Betchart, B; Bodek, A; Budd, H; Chung, Y S; de Barbaro, P; Demina, R; Flacher, H; Gotra, Y; Harel, A; Korjenevski, S; Miner, D C; Orbaker, D; Petrillo, G; Vishnevskiy, D; Zielinski, M; Bhatti, A; Demortier, L; Goulianos, K; Hatakeyama, K; Lungu, G; Mesropian, C; Yan, M; Atramentov, O; Bartz, E; Gershtein, Y; Halkiadakis, E; Hits, D; Lath, A; Rose, K; Schnetzer, S; Somalwar, S; Stone, R; Thomas, S; Watts, T L; Cerizza, G; Hollingsworth, M; Spanier, S; Yang, Z C; York, A; Asaadi, J; Aurisano, A; Eusebi, R; Golyash, A; Gurrola, A; Kamon, T; Nguyen, C N; Pivarski, J; Safonov, A; Sengupta, S; Toback, D; Weinberger, M; Akchurin, N; Berntzon, L; Gumus, K; Jeong, C; Kim, H; Lee, S W; Popescu, S; Roh, Y; Sill, A; Volobouev, I; Washington, E; Wigmans, R; Yazgan, E; Engh, D; Florez, C; Johns, W; Pathak, S; Sheldon, P; Andelin, D; Arenton, M W; Balazs, M; Boutle, S; Buehler, M; Conetti, S; Cox, B; Hirosky, R; Ledovskoy, A; Neu, C; Phillips II, D; Ronquest, M; Yohay, R; Gollapinni, S; Gunthoti, K; Harr, R; Karchin, P E; Mattson, M; Sakharov, A; Anderson, M; Bachtis, M; Bellinger, J N; Carlsmith, D; Crotty, I; Dasu, S; Dutta, S; Efron, J; Feyzi, F; Flood, K; Gray, L; Grogg, K S; Grothe, M; Hall-Wilton, R; Jaworski, M; Klabbers, P; Klukas, J; Lanaro, A; Lazaridis, C; Leonard, J; Loveless, R; Magrans de Abril, M; Mohapatra, A; Ott, G; Polese, G; Reeder, D; Savin, A; Smith, W H; Sourkov, A; Swanson, J; Weinberg, M; Wenman, D; Wensveen, M; White, A

    2010-01-01

    The CMS Collaboration conducted a month-long data taking exercise, the Cosmic Run At Four Tesla, during October-November 2008, with the goal of commissioning the experiment for extended operation. With all installed detector systems participating, CMS recorded 270 million cosmic ray events with the solenoid at a magnetic field strength of 3.8 T. This paper describes the data flow from the detector through the various online and offline computing systems, as well as the workflows used for recording the data, for aligning and calibrating the detector, and for analysis of the data.

  20. Understanding cosmic rays with Balloon and Space Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Picozza, P., E-mail: piergiorgio.picozza@roma2.infn.it [University of Rome Tor Vergata, Department of Physics, Via della Ricerca Scientifica 1, 00133 Rome (Italy); INFN, Sezione di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome (Italy); Di Felice, V. [INFN, Sezione di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome (Italy)

    2013-10-15

    Measurements of cosmic rays provide important information on their sources and on the mechanisms of acceleration and propagation of cosmic particles through the Galaxy. Positrons and antiprotons in cosmic rays are also the major candidates for searching signals from annihilation of dark matter and contributions from other exotic sources as nearby pulsars. Many balloon-borne experiments have been performed since the sixties, obtaining important results that strongly suggested the realization of the PAMELA and Fermi satellite missions, the latter mainly for gamma rays, and AMS-02 on the ISS. The precision of the measurements and the high statistics highlighted unexpected features in the cosmic particle energy spectra that are setting strong constraints to the nature of Dark Matter and are contributing to change our basic vision of their origin and propagation. The continuous particle detection in space experiments is allowing a constant monitoring of the solar activity and detailed study of the solar modulation for a long period, giving important improvements to the comprehension of the heliosphere mechanisms.

  1. Cosmological Cosmic Rays: Sharpening the Primordial Lithium Problem

    CERN Document Server

    Prodanovic, Tijana

    2007-01-01

    Cosmic structure formation leads to large-scale shocked baryonic flows which are expected to produce a cosmological population of structure-formation cosmic rays (SFCRs). Interactions between SFCRs and ambient baryons will produce lithium isotopes via \\alpha+\\alpha \\to ^{6,7}Li. This pre-Galactic (but non-primordial) lithium should contribute to the primordial 7Li measured in halo stars and must be subtracted in order to arrive to the true observed primordial lithium abundance. In this paper we point out that the recent halo star 6Li measurements can be used to place a strong constraint to the level of such contamination, because the exclusive astrophysical production of 6Li is from cosmic-ray interactions. We find that the putative 6Li plateau, if due to pre-Galactic cosmic-ray interactions, implies that SFCR-produced lithium represents Li_{SFCR}/Li_{plateau}\\approx 15% of the observed elemental Li plateau. Taking the remaining plateau Li to be cosmological 7Li, we find a revised (and slightly worsened) disc...

  2. Monte Carlo Simulations of Cosmic Rays Hadronic Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Aguayo Navarrete, Estanislao; Orrell, John L.; Kouzes, Richard T.

    2011-04-01

    This document describes the construction and results of the MaCoR software tool, developed to model the hadronic interactions of cosmic rays with different geometries of materials. The ubiquity of cosmic radiation in the environment results in the activation of stable isotopes, referred to as cosmogenic activities. The objective is to use this application in conjunction with a model of the MAJORANA DEMONSTRATOR components, from extraction to deployment, to evaluate cosmogenic activation of such components before and after deployment. The cosmic ray showers include several types of particles with a wide range of energy (MeV to GeV). It is infeasible to compute an exact result with a deterministic algorithm for this problem; Monte Carlo simulations are a more suitable approach to model cosmic ray hadronic interactions. In order to validate the results generated by the application, a test comparing experimental muon flux measurements and those predicted by the application is presented. The experimental and simulated results have a deviation of 3%.

  3. Cosmic rays, CCN and clouds – a reassessment using MODIS data

    Directory of Open Access Journals (Sweden)

    J. E. Kristjánsson

    2008-07-01

    Full Text Available The response of clouds to sudden decreases in the flux of galactic cosmic rays (Forbush decrease events has been investigated using cloud products from the space-borne MODIS instrument, which has been in operation since 2000. By focusing on pristine Southern Hemisphere ocean regions we examine areas which are particularly susceptible to changes in cloud condensation nuclei (CCN concentrations, and where a cosmic ray signal should be easier to detect than elsewhere. While previous studies on the subject have mainly considered cloud cover, the high spatial and spectral resolution of MODIS allows for a more thorough study of microphysical parameters such as cloud droplet size, cloud water content and cloud optical depth, in addition to cloud cover. Averaging the results from the 13 Forbush decrease events that were considered, no systematic correlation was found between any of the four cloud parameters and galactic cosmic radiation, with a seemingly random distribution of positive and negative correlations. When only the three Forbush decrease events with the largest amplitude are studied, the correlations fit the hypothesis better, with 8 out of 12 correlations having the expected sign. Splitting the area of study into several sub-regions, one sub-region in the Atlantic Ocean showed statistically significant correlations compatible with a cosmic ray-induced enhancement of CCN and cloud droplet number concentrations. However, the lack of correlation in any of the other 5 sub-regions suggests that this may be a statistical co-incidence. Introducing a time lag of a few days for clouds to respond to the cosmic ray signal did not change the overall results. Singling out low clouds of intermediate optical depth with large susceptibility did not lead to higher correlations. In conclusion, no response to variations in cosmic rays associated with Forbush decrease events was found in marine low clouds in remote regions using MODIS data.

  4. On the Origin of the Highest Energy Cosmic Rays

    CERN Document Server

    Stecker, F W

    1998-01-01

    We present the results of a new estimation of the photodisintegration and propagation of ultrahigh energy cosmic ray (UHCR) nuclei in intergalactic space. The critical interactions for photodisintegration and energy loss of UHCR nuclei occur with photons of the infrared background radiation (IBR). We have reexamined this problem making use of a new determination of the IBR based on empirical data, primarily from IRAS galaxies, and also collateral information from TeV gamma-ray observations of two nearby BL Lac objects. Our results indicate that a 200 EeV Fe nucleus can propagate apx. 100 Mpc through the IBR. We argue that it is possible that the highest energy cosmic rays observed may be heavy nuclei.

  5. Cosmic Ray Monitoring and Space Dangerous Phenomena, 2. Methods of Cosmic Ray Using For Forecasting of Major Geomagnetic Storms

    Science.gov (United States)

    Belov, A. V.; Dorman, L. I.; Eroshenko, E. A.; Iucci, N.; Mavromichalaki, H.; Pustil'Nik, L. A.; Sternlieb, A.; Villoresi, G.; Yanke, V. G.; Zukerman, I. G.

    We present developing of methods (e.g., Dorman et al., 1995, 1999) for forecasting on the basis of neutron monitor hourly on-line data (as well as on-line muon tele- scopes hourly data from different directions) geomagnetic storms of scales G5 (3- hour index of geomagnetic activity Kp=9), G4 (Kp=8) and G3 (Kp=7) (according to NOAA Space Weather Scales). These geomagnetic storms are dangerous for peo- ple technology and health (influence on power systems, on spacecraft operations, on HF radio-communications and others). We show that for especially dangerous geo- magnetic storms can be used global-spectrographic method if on-line will be avail- able 35-40 NM and muon telescopes. In this case for each hour can be determined CR anisotropy vector, and the specifically behavior of this vector before SC of ge- omagnetic storms G5, G4 or G3 (according to NOAA Space Weather Scales) can be used as important factor for forecast. The second factor what can be used for SC forecast is specifically behavior of CR density (CR intensity) for about 30-15 hours before SC (caused mainly by galactic CR particles acceleration during interaction with shock wave moved from the Sun). The third factor is effect of cosmic ray pre- decreasing, caused by magnetic connection of the Earth with the region behind the shock wave. We demonstrate developing methods on several examples of major ge- omagnetic storms. REFERENCES: Dorman L.I., et al. "Cosmic-ray forecasting fea- tures for big Forbush-decreases". Nuclear Physics B, Vol. 49A, pp. 136-144. (1995). L.I.Dorman, et al, "Cosmic ray Forbush-decrease as indicators of space dangerous phenomenon and possible use of cosmic ray data for their prediction", Proc. of 26-th Intern. Cosmic Ray Conference, Salt Lake City, Vol. 6, p. 476-479, (1999).

  6. INTEGRAL observations of the cosmic X-ray background in the 5-100 keV range via occultation by the Earth

    DEFF Research Database (Denmark)

    Churazov, E.; Sunyaev, R.; Revnivtsev, M.

    2007-01-01