WorldWideScience

Sample records for cosmic neutrons

  1. Neutron stars as cosmic neutron matter laboratories

    International Nuclear Information System (INIS)

    Pines, D.

    1986-01-01

    Recent developments which have radically changed our understanding of the dynamics of neutron star superfluids and the free precession of neutron stars are summarized, and the extent to which neutron stars are cosmic neutron matter laboratories is discussed. 17 refs., 1 tab

  2. Cosmic-ray neutron simulations and measurements in Taiwan

    International Nuclear Information System (INIS)

    Chen, Wei-Lin; Jiang, Shiang-Huei; Sheu, Rong-Jiun

    2014-01-01

    This study used simulations of galactic cosmic ray in the atmosphere to investigate the neutron background environment in Taiwan, emphasising its altitude dependence and spectrum variation near interfaces. The calculated results were analysed and compared with two measurements. The first measurement was a mobile neutron survey from sea level up to 3275 m in altitude conducted using a car-mounted high-sensitivity neutron detector. The second was a previous measured result focusing on the changes in neutron spectra near air/ground and air/water interfaces. The attenuation length of cosmic-ray neutrons in the lower atmosphere was estimated to be 163 g cm -2 in Taiwan. Cosmic-ray neutron spectra vary with altitude and especially near interfaces. The determined spectra near the air/ground and air/water interfaces agree well with measurements for neutrons below 10 MeV. However, the high-energy portion of spectra was observed to be much higher than our previous estimation. Because high-energy neutrons contribute substantially to a dose evaluation, revising the annual sea-level effective dose from cosmic-ray neutrons at ground level in Taiwan to 35 μSv, which corresponds to a neutron flux of 5.30 x 10 -3 n cm -2 s -1 , was suggested. The cosmic-ray neutron background in Taiwan was studied using the FLUKA simulations and field measurements. A new measurement was performed using a car-mounted high-efficiency neutron detector, re-coding real-time neutron counting rates from sea level up to 3275 m. The attenuation of cosmic-ray neutrons in the lower atmosphere exhibited an effective attenuation length of 163 g cm -2 . The calculated neutron counting rates over predicted the measurements by ∼32 %, which leaded to a correction factor for the FLUKA-calculated cosmic-ray neutrons in the lower atmosphere in Taiwan. In addition, a previous measurement regarding neutron spectrum variation near the air/ground and air/water interfaces was re-evaluated. The results showed that the

  3. A study of the cosmic-ray neutron field near interfaces

    CERN Document Server

    Sheu, R J; Jiang, S H

    2002-01-01

    This study investigated the characteristics of the cosmic-ray neutron field near air/ground and air/water interfaces with an emphasis on the angular distribution. Two sets of high-efficiency neutron detecting systems were used. The first one, called the Bonner Cylinders, was used for measurements of the energy information. The other one, referred to as the eight-channel neutron detector (8CND), was used to characterize the angular information of the neutron field. The measured results were used to normalize and confirm one-dimensional transport calculations for cosmic-ray neutrons below 20 MeV in the air/ground and air/water media. Annual sea level cosmic-ray neutron doses were then determined based on the obtained characteristics of low-energy cosmic-ray neutrons near interfaces and estimated contribution from high-energy neutrons.

  4. Footprint Characteristics of Cosmic-Ray Neutron Sensors for Soil Moisture Monitoring

    Science.gov (United States)

    Schrön, Martin; Köhli, Markus; Zreda, Marek; Dietrich, Peter; Zacharias, Steffen

    2015-04-01

    Cosmic-ray neutron sensing is a unique and an increasingly accepted method to monitor the effective soil water content at the field scale. The technology is famous for its low maintenance, non-invasiveness, continuous measurement, and most importantly, for its large footprint. Being more representative than point data and finer resolved than remote-sensing products, cosmic-ray neutron derived soil moisture products provide unrivaled advantage for mesoscale hydrologic and land surface models. The method takes advantage of neutrons induced by cosmic radiation which are extraordinarily sensitive to hydrogen and behave like a hot gas. Information about nearby water sources are quickly mixed in a domain of tens of hectares in air. Since experimental determination of the actual spatial extent is hardly possible, scientists have applied numerical models to address the footprint characteristics. We have revisited previous neutron transport simulations and present a modified conceptual design and refined physical assumptions. Our revised study reveals new insights into probing distance and water sensitivity of detected neutrons under various environmental conditions. These results sharpen the range of interpretation concerning the spatial extent of integral soil moisture products derived from cosmic-ray neutron counts. Our findings will have important impact on calibration strategies, on scales for data assimilation and on the interpolation of soil moisture data derived from mobile cosmic-ray neutron surveys.

  5. Aerial Neutron Detection of Cosmic-Ray Interactions with the Earth's Surface

    International Nuclear Information System (INIS)

    Richard Maurer

    2008-01-01

    We have demonstrated the ability to measure the neutron flux produced by the cosmic-ray interaction with nuclei in the ground surface using aerial neutron detection. High energy cosmic-rays (primarily muons with GeV energies) interact with the nuclei in the ground surface and produce energetic neutrons via spallation. At the air-surface interface, the neutrons produced by spallation will either scatter within the surface material, become thermalized and reabsorbed, or be emitted into the air. The mean free path of energetic neutrons in air can be hundreds of feet as opposed to a few feet in dense materials. As such, the flux of neutrons escaping into the air provides a measure of the surface nuclei composition. It has been demonstrated that this effect can be measured at long range using neutron detectors on low flying helicopters. Radiological survey measurements conducted at Government Wash in Las Vegas, Nevada, have shown that the neutron background from the cosmic-soil interactions is repeatable and directly correlated to the geological data. Government Wash has a very unique geology, spanning a wide variety of nuclide mixtures and formations. The results of the preliminary measurements are presented

  6. Cosmic Ray induced Neutron and Gamma-Ray bursts in a Lead Pile

    International Nuclear Information System (INIS)

    Chapline, G; Hagmann, C; Kerr, P; Snyderman, N J; Wurtz, R

    2007-01-01

    The neutron background is created primarily by cosmic rays interactions. Of particular interest for SNM detection is an understanding of burst events that resemble fission chains. We have been studying the interaction of cosmic rays with a lead pile that is efficient at creating neutron bursts from cosmic ray interactions. The neutron burst size depends on the configuration of the lead. We have found that the largest bursts appear to have been created by primaries of energy over 100 GeV that have had a diffractive interaction with the atmosphere. The large events trigger muon coincidence paddles with very high efficiency, and the resulting interactions with the lead pile can create over 10, 000 neutrons in a burst

  7. Sequential measurements of spectrum and dose for cosmic-ray neutrons on the ground

    International Nuclear Information System (INIS)

    Hirabayashi, N.; Nunomiya, T.; Suzuki, H.; Nakamura, T.

    2002-01-01

    The earth is continually bathed in high-energy particles that come from outside the solar system, known as galactic cosmic rays. When these particles penetrate the magnetic fields of the solar system and the Earth and reach the Earth's atmosphere, they collide with atomic nuclei in air and secondary cosmic rays of every kind. On the other hand, levels of accumulation of the semiconductor increase recently, and the soft error that the cosmic-ray neutrons cause has been regarded as questionable. There have been long-term measurements of cosmic-ray neutron fluence at several places in the world, but no systematic study on cosmic-ray neutron spectrum measurements. This study aimed to measure the cosmic-ray neutron spectrum and dose on the ground during the solar maximum period of 2000 to 2002. Measurements have been continuing in a cabin of Tohoku University Kawauchi campus, by using five multi-moderator spectrometers (Bonner sphere), 12.7 cm diam by 12.7 cm long NE213 scintillator, and rem counter. The Bonner sphere uses a 5.08 cm diam spherical 3 He gas proportional counter and the rem counter uses a 12.7 cm diam 3 He gas counter. The neutron spectra were obtained by unfolding from the count rates measured with the Bonner sphere using the SAND code and the pulse height spectra measured with the NE213 scintillator using the FORIST code . The cosmic- ray neutron spectrum and ambient dose rates have been measured sequentially from April 2001. Furthermore, the correlation between ambient dose rate and the atmospheric pressure was investigated with a barometer. We are also very much interested in the variation of neutron spectrum following big solar flares. From the sequential measurements, we found that the cosmic-ray neutron spectrum has two peaks at around 1 MeV and at around 100 MeV, and the higher energy peak increases with a big solar flare

  8. Cosmic Rays and Clouds, 1. Formation of Lead Mesoatoms In Neutron Monitor By Soft Negative Muons and Expected Atmospheric Electric Field Effect In The Cosmic Ray Neutron Component

    Science.gov (United States)

    Dorman, L. I.; Dorman, I. V.

    We extend our model (Dorman and Dorman, 1995) of cosmic ray atmospheric electric field effect on the case of neutron monitor. We take into account that about 0.07 of neu- tron monitor counting rate caused by negative soft muons captured by lead nucleons and formed mesoatoms with generation of several MeV energy neutrons from lead. In this case the neutron monitor or neutron supermonitor works as analyzer which de- tects muons of only one, negative sign. It is very important because the atmospheric electric field effect have opposite signs for positive and negative muons that main part of this effect in the muon telescope or in ionization chamber is compensated and we can observe only small part of total effect of one sign muons. On the basis of our gen- eral theory of cosmic ray meteorological effects with taking into account of negative soft muon acceleration and deceleration in the Earth atmosphere (in dependence of di- rection and intensity of electric field) we discuss the possibility of existing this effect in cosmic ray neutron component and made some rough estimations. REFERENCES: Dorman L.I. and Dorman I.V., 1995. "Cosmic-ray atmospheric electric field effects". Canadian J. of Physics, Vol. 73, pp. 440-443.

  9. Cosmic radiation dose in aircraft - a neutron track etch detector

    Energy Technology Data Exchange (ETDEWEB)

    Vukovic, B.; Radolic, V.; Miklavcic, I.; Poje, M.; Varga, M. [Department of Physics, University of Osijek, 31000 Osijek, P.O. Box 125, Gajev trg 6 (Croatia); Planinic, J. [Department of Physics, University of Osijek, 31000 Osijek, P.O. Box 125, Gajev trg 6 (Croatia)], E-mail: planinic@ffos.hr

    2007-12-15

    Cosmic radiation bombards us at high altitude by ionizing particles. The radiation environment is a complex mixture of charged particles of solar and galactic origin, as well as of secondary particles produced in interaction of the galactic cosmic particles with the nuclei of atmosphere of the Earth. The radiation field at aircraft altitude consists of different types of particles, mainly photons, electrons, positrons and neutrons, with a large energy range. The non-neutron component of cosmic radiation dose aboard ATR 42 and A 320 aircrafts (flight level of 8 and 11 km, respectively) was measured with TLD-100 (LiF:Mg,Ti) detectors and the Mini 6100 semiconductor dosimeter. The estimated occupational effective dose for the aircraft crew (A 320) working 500 h per year was 1.64 mSv. Other experiments, or dose rate measurements with the neutron dosimeter, consisting of LR-115 track detector and boron foil BN-1 or 10B converter, were performed on five intercontinental flights. Comparison of the dose rates of the non-neutron component (low LET) and the neutron one (high LET) of the radiation field at the aircraft flight level showed that the neutron component carried about 50% of the total dose. The dose rate measurements on the flights from the Middle Europe to the South and Middle America, then to Korea and Japan, showed that the flights over or near the equator region carried less dose rate; this was in accordance with the known geomagnetic latitude effect.

  10. Cosmic radiation dose in aircraft - a neutron track etch detector

    International Nuclear Information System (INIS)

    Vukovic, B.; Radolic, V.; Miklavcic, I.; Poje, M.; Varga, M.; Planinic, J.

    2007-01-01

    Cosmic radiation bombards us at high altitude by ionizing particles. The radiation environment is a complex mixture of charged particles of solar and galactic origin, as well as of secondary particles produced in interaction of the galactic cosmic particles with the nuclei of atmosphere of the Earth. The radiation field at aircraft altitude consists of different types of particles, mainly photons, electrons, positrons and neutrons, with a large energy range. The non-neutron component of cosmic radiation dose aboard ATR 42 and A 320 aircrafts (flight level of 8 and 11 km, respectively) was measured with TLD-100 (LiF:Mg,Ti) detectors and the Mini 6100 semiconductor dosimeter. The estimated occupational effective dose for the aircraft crew (A 320) working 500 h per year was 1.64 mSv. Other experiments, or dose rate measurements with the neutron dosimeter, consisting of LR-115 track detector and boron foil BN-1 or 10B converter, were performed on five intercontinental flights. Comparison of the dose rates of the non-neutron component (low LET) and the neutron one (high LET) of the radiation field at the aircraft flight level showed that the neutron component carried about 50% of the total dose. The dose rate measurements on the flights from the Middle Europe to the South and Middle America, then to Korea and Japan, showed that the flights over or near the equator region carried less dose rate; this was in accordance with the known geomagnetic latitude effect

  11. The potential of detecting intermediate-scale biomass and canopy interception in a coniferous forest using cosmic-ray neutron intensity measurements and neutron transport modeling

    Science.gov (United States)

    Andreasen, M.; Looms, M. C.; Bogena, H. R.; Desilets, D.; Zreda, M. G.; Sonnenborg, T. O.; Jensen, K. H.

    2014-12-01

    The water stored in the various compartments of the terrestrial ecosystem (in snow, canopy interception, soil and litter) controls the exchange of the water and energy between the land surface and the atmosphere. Therefore, measurements of the water stored within these pools are critical for the prediction of e.g. evapotranspiration and groundwater recharge. The detection of cosmic-ray neutron intensity is a novel non-invasive method for the quantification of continuous intermediate-scale soil moisture. The footprint of the cosmic-ray neutron probe is a hemisphere of a few hectometers and subsurface depths of 10-70 cm depending on wetness. The cosmic-ray neutron method offers measurements at a scale between the point-scale measurements and large-scale satellite retrievals. The cosmic-ray neutron intensity is inversely correlated to the hydrogen stored within the footprint. Overall soil moisture represents the largest pool of hydrogen and changes in the soil moisture clearly affect the cosmic-ray neutron signal. However, the neutron intensity is also sensitive to variations of hydrogen in snow, canopy interception and biomass offering the potential to determine water content in such pools from the signal. In this study we tested the potential of determining canopy interception and biomass using cosmic-ray neutron intensity measurements within the framework of the Danish Hydrologic Observatory (HOBE) and the Terrestrial Environmental Observatories (TERENO). Continuous measurements at the ground and the canopy level, along with profile measurements were conducted at towers at forest field sites. Field experiments, including shielding the cosmic-ray neutron probes with cadmium foil (to remove lower-energy neutrons) and measuring reference intensity rates at complete water saturated conditions (on the sea close to the HOBE site), were further conducted to obtain an increased understanding of the physics controlling the cosmic-ray neutron transport and the equipment used

  12. Exploring the potential of the cosmic-ray neutron method to measure interception storage dynamics

    Science.gov (United States)

    Jakobi, Jannis; Bogena, Heye; Huisman, Johan Alexander; Diekkrüger, Bernd; Vereecken, Harry

    2017-04-01

    Cosmic-ray neutron soil moisture probes are an emerging technology that relies on the negative correlation between near-surface fast neutron counts and soil moisture content. Hydrogen atoms in the soil, which are mainly present as water, moderate the secondary neutrons on the way back to the surface. Any application of this method needs to consider the sensitivity of the neutron counts to additional sources of hydrogen (e.g. above- and below-ground biomass, humidity of the lower atmosphere, lattice water of the soil minerals, organic matter and water in the litter layer, intercepted water in the canopy, and soil organic matter). In this study, we analyzed the effects of canopy-intercepted water on the cosmic-ray neutron counts. For this, an arable field cropped with sugar beet was instrumented with several cosmic-ray neutron probes and a wireless sensor network with more than 140 in-situ soil moisture sensors. Additionally rainfall interception was estimated using a new approach coupling throughfall measurements and leaf wetness sensors. The derived interception storage was used to correct for interception effects on cosmic ray neutrons to enhance soil water content prediction. Furthermore, the potential for a simultaneous prediction of above- and below-ground biomass, soil moisture and interception was tested.

  13. Altitude variation of cosmic-ray neutrons

    International Nuclear Information System (INIS)

    Nakamura, T.; Uwamino, Y.; Ohkubo, T.; Hara, A.

    1987-01-01

    The altitude variation of the cosmic-ray neutron energy spectrum and the dose equivalent rate was measured at an average geomagnetic latitude of 24 degrees N by using the high-efficiency multi-sphere neutron spectrometer and neutron dose-equivalent counter developed by the authors. The data were obtained from a 2-h flight over Japan on 27 February 1985. The neutron energy spectra measured at sea level and at altitudes of 4880 m and at 11,280 m were compared with the calculated spectra of O'Brien and with other experimental spectra, and they are in moderately good agreement with them. The dose equivalent rate increases according to a quadratic curve up to about 6000 m and then increases linearly between 6000 m and 11,280 m. The dependence of dose equivalent rates at sea level and at an altitude of 12,500 m on geomagnetic latitude also is given by referring to other experimental results

  14. Examination of radioargon production by cosmic neutron interactions

    International Nuclear Information System (INIS)

    Johnson, Christine; Armstrong, Hirotatsu; Wilson, William H.; Biegalski, Steven R.

    2015-01-01

    Radioargon isotopes, particularly 37 Ar, are currently being considered for use as an On-Site Inspection (OSI) relevant radionuclide within the context of the Comprehensive Nuclear-Test-Ban Treaty (CTBT). In order to understand any soil air measurements taken during an OSI, the radioargon background due to cosmic ray induced activation along with other sources must be understood. An MCNP6 model was developed using the cosmic ray source feature within the code to examine the neutron flux at ground level as a function of various conditions: date during the solar magnetic activity cycle, latitude of sampling location, geology of the sampling location, and sampling depth. Once the cosmic neutron flux was obtained, calculations were performed to determine the rate of radioargon production for the main interactions. Radioargon production was shown to be highly dependent on the soil composition, and a range of 37 Ar production values at 1 m depth was found with a maximum production rate of 4.012 atoms/sec/m 3 in carbonate geologies and a minimum production rate of 0.070 atoms/sec/m 3 in low calcium granite. The sampling location latitude was also shown to have a measurable effect on the radioargon production rate, where the production of 37 Ar in an average continental crust is shown to vary by a factor of two between the equator and the poles. The sampling date's position within the solar magnetic activity cycle was also shown to cause a smaller change, less than a factor of 1.2, in activation between solar maxima and solar minima. - Highlights: • Cosmic neutron flux modeled in various geologic materials using MCNP6. • Radioargon production rate calculated in various geologic materials. • Variations in production considered for latitude, date, material, and depth. • Geology and depth have greatest impact, some latitude effect, smaller date effect

  15. Forward to all-around survey of environmental neutrons from cosmic ray secondary neutron measurements. History and prospects

    International Nuclear Information System (INIS)

    Aratani, M.

    2000-01-01

    At the present stage of our civilization, environmental neutrons come from not only cosmic ray but also the various kinds of nuclear facilities where uranium, plutonium, californium-252, and other transuranium elements are treated in a large scale. To be regret, those neutron-emitting elements have already been released into the environment by experiments with the military purpose, and been distributed among atmosphere, hydrosphere and geosphere in further larger scale than the peaceful use of nuclear energy. Now environmental neutrons should be surveyed against the horizontal component from the nuclear facilities, upward component from soil, and downward component as secondary neutron from cosmic ray, which is to be regarded as background neutron in the environment. The third category of neutrons have long been surveyed by Y. Nishina and his group of the Institute of Physical and Chemical Research (IPCR) since 1970 at the Itabashi Branch (Itabashi, Tokyo) of IPCR. The BF 3 gas-filled monitors (20 cm in diameter x 200 cm) of 28 (36 at maximum) vessels were used for neutrons till Sept. of 1998, and were transferred to Yanpahchin, Tibet, China for the primary neutrons that might be preferred to secondary ones by researchers of the cosmic ray. A critical accident happened at the Tokai facilities of JCO (Japan Conversion Organization) on Sept. 30 1999, and was discussed in various contexts at home and in a severe tone abroad. A background survey of the environmental neutrons has not been made at any nuclear site or facilities concerning fission in this country. The neutron monitor which detected and recorded the neutrons from the JCO critical accidents was what had been equipped for the fusion research, but not for fission application. Radiation education on neutron has not been made in both school and social education. Basic scientists also may be responsible for the critical accident through making light of these fundamental aspects of nuclear technology. In this

  16. STUDIES OF COSMIC-RAY MUONS AND NEUTRONS IN A FIVE-STORY CONCRETE BUILDING.

    Science.gov (United States)

    Chen, Wei-Lin; Sheu, Rong-Jiun

    2018-05-01

    This study thoroughly determined the flux and dose rate distributions of cosmic-ray muons and neutrons in a five-story concrete building by comparing measurements with Monte Carlo simulations of cosmic-ray showers. An angular-energy-dependent surface source comprising secondary muons and neutrons at a height of 200 m above ground level was established and verified, which was used to concatenate the shower development in the upper atmosphere with subsequent simulations of radiation transport down to ground level, including the effect of the terrain and studied building. A Berkeley Lab cosmic-ray detector and a highly sensitive Bonner cylinder were used to perform muon and neutron measurements on each building floor. After careful calibration and correction, the measured responses of the two detectors were discovered to be reasonably consistent with the theoretical predictions, thus confirming the validity of the two-step calculation model employed in this study. The annual effective doses from cosmic-ray muons and neutrons on the open roof of the building were estimated to be 115.2 and 35.2 μSv, respectively. Muons and neutrons were attenuated floor-by-floor with different attenuation factors of 0.97 and 0.78, and their resultant dose rates on the first floor of the building were 97.8 and 9.9 μSv, respectively.

  17. Evaluation of the Neutron Detector Response for Cosmic Ray Energy Spectrum by Monte Carlo Transport Simulation

    International Nuclear Information System (INIS)

    Pazianotto, Mauricio T.; Carlson, Brett V.; Federico, Claudio A.; Gonzalez, Odair L.

    2011-01-01

    Neutrons generated by the interaction of cosmic rays with the atmosphere make an important contribution to the dose accumulated in electronic circuits and aircraft crew members at flight altitude. High-energy neutrons are produced in spallation reactions and intranuclear cascade processes by primary cosmic-ray particle interactions with atoms in the atmosphere. These neutrons can produce secondary neutrons and also undergo a moderation process due to atmosphere interactions, resulting in a wider energy spectrum, ranging from thermal energies (0.025 eV) to energies of several hundreds of MeV. The Long-Counter (LC) detector is a widely used neutron detector designed to measure the directional flux of neutrons with about constant response over a wide energy range (thermal to 20 MeV). ). Its calibration process and the determination of its energy response for the wide-energy of cosmic ray induced neutron spectrum is a very difficult process due to the lack of installations with these capabilities. The goal of this study is to assess the behavior of the response of a Long Counter using the Monte Carlo (MC) computational code MCNPX (Monte Carlo N-Particle eXtended). The dependence of the Long Counter response on the angle of incidence, as well as on the neutron energy, will be carefully investigated, compared with the experimental data previously obtained with 241 Am-Be and 252 Cf neutron sources and extended to the neutron spectrum produced by cosmic rays. (Author)

  18. THE UNREASONABLE WEAKNESS OF R -PROCESS COSMIC RAYS IN THE NEUTRON-STAR-MERGER NUCLEOSYNTHESIS SCENARIO

    Energy Technology Data Exchange (ETDEWEB)

    Kyutoku, Koutarou [Interdisciplinary Theoretical Science (iTHES) Research Group, RIKEN, Wako, Saitama 351-0198 (Japan); Ioka, Kunihito, E-mail: koutarou.kyutoku@riken.jp [Center for Gravitational Physics, Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto, 606-8502 (Japan)

    2016-08-10

    We reach the robust conclusion that, by combining the observed cosmic rays of r -process elements with the fact that the velocity of the neutron-star-merger ejecta is much higher than that of the supernova ejecta, either (1) the reverse shock in the neutron-star-merger ejecta is a very inefficient accelerator that converts less than 0.003% of the ejecta kinetic energy to the cosmic-ray energy or (2) the neutron star merger is not the origin of the Galactic r -process elements. We also find that the acceleration efficiency should be less than 0.1% for the reverse shock of the supernova ejecta with observed cosmic rays lighter than the iron.

  19. Neutron production by cosmic-ray muons in various materials

    Science.gov (United States)

    Manukovsky, K. V.; Ryazhskaya, O. G.; Sobolevsky, N. M.; Yudin, A. V.

    2016-07-01

    The results obtained by studying the background of neutrons produced by cosmic-raymuons in underground experimental facilities intended for rare-event searches and in surrounding rock are presented. The types of this rock may include granite, sedimentary rock, gypsum, and rock salt. Neutron production and transfer were simulated using the Geant4 and SHIELD transport codes. These codes were tuned via a comparison of the results of calculations with experimental data—in particular, with data of the Artemovsk research station of the Institute for Nuclear Research (INR, Moscow, Russia)—as well as via an intercomparison of results of calculations with the Geant4 and SHIELD codes. It turns out that the atomic-number dependence of the production and yield of neutrons has an irregular character and does not allow a description in terms of a universal function of the atomic number. The parameters of this dependence are different for two groups of nuclei—nuclei consisting of alpha particles and all of the remaining nuclei. Moreover, there are manifest exceptions from a power-law dependence—for example, argon. This may entail important consequences both for the existing underground experimental facilities and for those under construction. Investigation of cosmic-ray-induced neutron production in various materials is of paramount importance for the interpretation of experiments conducted at large depths under the Earth's surface.

  20. Exploring the potential of the cosmic-ray neutron method to simultaneously predict soil water and vegetation dynamics

    Science.gov (United States)

    Bogena, H. R.; Fuchs, H.; Jakobi, J.; Huisman, J. A.; Diekkrüger, B.; Vereecken, H.

    2016-12-01

    Cosmic-ray neutron soil moisture probes are an emerging technology that rely on the negative correlation between near-surface fast neutron counts and soil moisture content since hydrogen atoms in the soil, which are mainly present as water, moderate the secondary neutrons on the way back to the surface. Any application of this method needs to consider the sensitivity of the neutron counts to additional sources of hydrogen (e.g. above- and below-ground biomass, humidity of the lower atmosphere, lattice water of the soil minerals, organic matter and water in the litter layer, intercepted water in the canopy, and soil organic matter). In this study, we analyzed the effects of temporally changing above- and below-ground biomass and intercepted water in the canopy on the cosmic-ray neutron counts and the calibration parameter N0. For this, two arable fields cropped with winter wheat and sugar beet were instrumented with several cosmic-ray neutron probes and a wireless sensor network with more than 200 in-situ soil moisture sensors. In addition, we measured rainfall interception in the wheat canopy at several locations in the field using totalisators and leaf wetness sensors. In order to track the changes in above- and below-ground biomass, roots and plants were sampled approximately every four weeks and LAI was measured weekly during the growing season. Weekly biomass changes were derived by relating LAI to total biomass. As expected, we found an increasing discrepancy between cosmic-ray-derived and in-situ measured soil moisture during the growing season and a sharp decrease in discrepancy after the harvest. In order to quantify the effect of hydrogen stored in the vegetation on fast neutron intensity, we derived time series of the calibration parameter N0 using a weekly moving-window optimization. We found a linear negative relationship between N0 and total fresh biomass and N0 and intercepted precipitation. Using these relationships for the correction of fast neutron

  1. Peculiarities of the Moon variations of the neutron and meson components of cosmic rays

    International Nuclear Information System (INIS)

    Naskidashvili, B.D.; Shatashvili, L.Kh.

    1979-01-01

    Lunar variations of the neutron component of cosmic rays have been investigated individually for groups of stations of the northern hemisphere of the Earth and for groups of stations of the southern hemisphere. A dependence has been found of the amplitude and phase of the first harmonic of lunar variations in the intensity of neutron and meson components of cosmic rays on the geocentric distance of the Moon and on the epoch of solar activity. The amplitudes and phases of lunar variations were determined by the Chapman-Miller method. According to the data on the meson component of cosmic rays obtained by the Nagoya station (Japan), the amplitudes of the first harmonic of lunar daily variations point to the fact that as the Moon approaches the Earth the tidal effects do not exceed the effects of lunar gravitational forces when the Moon is at apogee

  2. Ames collaborative study of cosmic-ray neutrons. II. Low- and mid-latitude flights

    International Nuclear Information System (INIS)

    Stephens, L.D.; McCaslin, J.B.; Smith, A.R.; Thomas, R.H.; Hewitt, J.E.; Hughes, L.

    1978-01-01

    The continuing progress of the Ames Collaborative Study of Cosmic Ray Neutrons is described. Data obtained aboard flights from Hawaii at altitudes of 41,000 and 45,000 feet, and in the range of geomagnetic latitude 17 0 N less than or equal to lambda less than or equal to 21 0 N are reported. Preliminary estimates of neutron spectra were made

  3. Cosmic-ray-induced ship-effect neutron measurements and implications for cargo scanning at borders

    Energy Technology Data Exchange (ETDEWEB)

    Kouzes, Richard T. [Pacific Northwest National Laboratory, MS K7-36, P.O. Box 999, Richland, WA 99352 (United States)], E-mail: richard.kouzes@pnl.gov; Ely, James H.; Seifert, Allen; Siciliano, Edward R.; Weier, Dennis R.; Windsor, Lindsay K.; Woodring, Mitchell L. [Pacific Northwest National Laboratory, MS K7-36, P.O. Box 999, Richland, WA 99352 (United States); Borgardt, James; Buckley, Elise; Flumerfelt, Eric; Oliveri, Anna; Salvitti, Matt [Juniata College Physics Department, 1700 Moore St., Huntingdon, PA 16652 (United States)

    2008-03-11

    Neutron measurements are used as part of the interdiction process for illicit nuclear materials at border crossings. Even though the natural neutron background is small, its variation can impact the sensitivity of detection systems. The natural background of neutrons that is observed in monitoring instruments arises almost entirely from cosmic-ray-induced cascades in the atmosphere and the surrounding environment. One significant source of variation in the observed neutron background is produced by the 'ship effect' in large quantities of cargo that transit past detection instruments. This paper reports on results from measurements with typical monitoring equipment of ship effect neutrons in various materials. One new result is the 'neutron shadow shielding' effect seen with some low neutron density materials.

  4. Multitaper spectral analysis of cosmic rays Sao Martinho da Serra's muon telescope and Newark's neutron monitor data

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Marlos Rockenbach da; Alarcon, Walter Demetrio Gonzalez; Echer, Ezequiel; Lago, Alisson dal; Lucas, Aline de [National Institute for Space Research - INPE-MCT, Sao Jose dos Campos, SP (Brazil); Vieira, Luis Eduardo Antunes; Guarnieri, Fernando Luis [Universidade do Vale do Paraiba - UNIVAP, Sao Jose dos Campos, SP (Brazil); Schuch, Nelson Jorge [Southern Regional Space Research Center - CRSPE/INPE-MCT, Santa Maria, RS (Brazil); Munakata, Kazuoki, E-mail: marlos@dge.inpe.br, E-mail: gonzalez@dge.inpe.br, E-mail: eecher@dge.inpe.br, E-mail: dallago@dge.inpe.br, E-mail: delucas@dge.inpe.br, E-mail: levieira@univap.br, E-mail: guarnieri@univap.br, E-mail: njschuch@lacesm.ufsm.br, E-mail: kmuna00@gipac.shinshu-u.ac.jp [Physics Department, Shinshu University, Matsumoto (Japan)

    2007-07-01

    In this work we present an analysis on the correction efficiency of atmospheric effects on cosmic ray Sao Martinho da Serra's muon telescope and Newark's neutron monitor data. We use a Multitaper spectral analysis of cosmic rays time series to show the main periodicities present in the corrected and uncorrected data for the atmospheric effects. This kind of correction is very important when intends to study cosmic rays variations of extra-terrestrial origin. (author)

  5. Cosmic-ray neutron transport at a forest field site: the sensitivity to various environmental conditions with focus on biomass and canopy interception

    Science.gov (United States)

    Andreasen, Mie; Jensen, Karsten H.; Desilets, Darin; Zreda, Marek; Bogena, Heye R.; Looms, Majken C.

    2017-04-01

    Cosmic-ray neutron intensity is inversely correlated to all hydrogen present in the upper decimeters of the subsurface and the first few hectometers of the atmosphere above the ground surface. This correlation forms the base of the cosmic-ray neutron soil moisture estimation method. The method is, however, complicated by the fact that several hydrogen pools other than soil moisture affect the neutron intensity. In order to improve the cosmic-ray neutron soil moisture estimation method and explore the potential for additional applications, knowledge about the environmental effect on cosmic-ray neutron intensity is essential (e.g., the effect of vegetation, litter layer and soil type). In this study the environmental effect is examined by performing a sensitivity analysis using neutron transport modeling. We use a neutron transport model with various representations of the forest and different parameters describing the subsurface to match measured height profiles and time series of thermal and epithermal neutron intensities at a field site in Denmark. Overall, modeled thermal and epithermal neutron intensities are in satisfactory agreement with measurements; however, the choice of forest canopy conceptualization is found to be significant. Modeling results show that the effect of canopy interception, soil chemistry and dry bulk density of litter and mineral soil on neutron intensity is small. On the other hand, the neutron intensity decreases significantly with added litter-layer thickness, especially for epithermal neutron energies. Forest biomass also has a significant influence on the neutron intensity height profiles at the examined field site, altering both the shape of the profiles and the ground-level thermal-to-epithermal neutron ratio. This ratio increases with increasing amounts of biomass, and was confirmed by measurements from three sites representing agricultural, heathland and forest land cover. A much smaller effect of canopy interception on the ground

  6. Measurement of the energy spectrum of cosmic-ray induced neutrons aboard an ER-2 high-altitude airplane

    CERN Document Server

    Goldhagen, P E; Kniss, T; Reginatto, M; Singleterry, R C; Van Steveninck, W; Wilson, J W

    2002-01-01

    Crews working on present-day jet aircraft are a large occupationally exposed group with a relatively high average effective dose from galactic cosmic radiation. Crews of future high-speed commercial aircraft flying at higher altitudes would be even more exposed. To help reduce the significant uncertainties in calculations of such exposures, the atmospheric ionizing radiation (AIR) project, an international collaboration of 15 laboratories, made simultaneous radiation measurements with 14 instruments on five flights of a NASA ER-2 high-altitude aircraft. The primary AIR instrument was a highly sensitive extended-energy multisphere neutron spectrometer with lead and steel shells placed within the moderators of two of its 14 detectors to enhance response at high energies. Detector responses were calculated for neutrons and charged hadrons at energies up to 100 GeV using MCNPX. Neutron spectra were unfolded from the measured count rates using the new MAXED code. We have measured the cosmic-ray neutron spectrum (t...

  7. Calibration and correction procedures for cosmic-ray neutron soil moisture probes located across Australia

    Science.gov (United States)

    Hawdon, Aaron; McJannet, David; Wallace, Jim

    2014-06-01

    The cosmic-ray probe (CRP) provides continuous estimates of soil moisture over an area of ˜30 ha by counting fast neutrons produced from cosmic rays which are predominantly moderated by water molecules in the soil. This paper describes the setup, measurement correction procedures, and field calibration of CRPs at nine locations across Australia with contrasting soil type, climate, and land cover. These probes form the inaugural Australian CRP network, which is known as CosmOz. CRP measurements require neutron count rates to be corrected for effects of atmospheric pressure, water vapor pressure changes, and variations in incoming neutron intensity. We assess the magnitude and importance of these corrections and present standardized approaches for network-wide analysis. In particular, we present a new approach to correct for incoming neutron intensity variations and test its performance against existing procedures used in other studies. Our field calibration results indicate that a generalized calibration function for relating neutron counts to soil moisture is suitable for all soil types, with the possible exception of very sandy soils with low water content. Using multiple calibration data sets, we demonstrate that the generalized calibration function only applies after accounting for persistent sources of hydrogen in the soil profile. Finally, we demonstrate that by following standardized correction procedures and scaling neutron counting rates of all CRPs to a single reference location, differences in calibrations between sites are related to site biomass. This observation provides a means for estimating biomass at a given location or for deriving coefficients for the calibration function in the absence of field calibration data.

  8. Background estimation of cosmic-ray induced neutrons in Chooz site water veto tank for possible future Ricochet Deployment

    Science.gov (United States)

    Silva, James

    2017-09-01

    The Ricochet experiment seeks to measure Coherent (neutral-current) Elastic Neutrino-Nucleus Scattering (CE νNS) using metallic superconducting and germanium semi-conducting detectors with sub-keV thresholds placed near a neutrino source such as the Chooz Nuclear Reactor Complex. In this poster, we present an estimate of the flux of cosmic-ray induced neutrons, which represent an important background in any (CE νNS) search, based on reconstructed cosmic ray data from the Chooz Site. We have simulated a possible Ricochet deployment at the Chooz site in GEANT4 focusing on the spallation neutrons generated when cosmic rays interact with the water tank veto that would surround our detector. We further simulate and discuss the effectiveness of various shielding configurations for optimizing the background levels for a future Ricochet deployment.

  9. Cosmic-ray-veto detector system

    International Nuclear Information System (INIS)

    Miller, D.W.; Menlove, H.O.

    1992-12-01

    To reduce the cosmic-ray-induced neutron background, we are testing a cosmic-ray veto option with a neutron detector system that uses plastic scintillator slabs mounted on the outside of a 3 He-tube detector. The scintillator slabs eliminate unwanted cosmic-ray events, enabling the detector to assay low-level plutonium samples, for which a low-background coincident signature is critical. This report describes the design and testing of the prototype cosmic-ray-veto detector system

  10. Analysis of cosmic ray neutron-induced single-event phenomena

    International Nuclear Information System (INIS)

    Tukamoto, Yasuyuki; Watanabe, Yukinobu; Nakashima, Hideki

    2003-01-01

    We have developed a database of cross sections for the n+ 28 Si reaction in the energy range between 2 MeV and 3 GeV in order to analyze single-event upset (SEU) phenomena induced by cosmic-ray neutrons in semiconductor memory devices. The data are applied to calculations of SEU cross sections using the Burst Generation Rate (BGR) model including two parameters, critical charge and effective depth. The calculated results are compared with measured SEU cross-sections for energies up to 160 MeV, and the reaction products that provide important effects on SEU are mainly investigated. (author)

  11. R -process Element Cosmic Rays from Neutron Star Mergers

    Energy Technology Data Exchange (ETDEWEB)

    Komiya, Yutaka; Shigeyama, Toshikazu [Research Center for the Early Universe, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, 113-0033, Tokyo (Japan)

    2017-09-10

    Neutron star mergers (NSMs) are one of the most plausible sources of r -process elements in the universe. Therefore, NSMs can also be a major source of ultra-heavy elements in cosmic rays. In this paper, we first estimate the contribution of r -process elements synthesized in NSMs to the ultra-heavy element cosmic rays (UHCRs) by calculating transport equations that take into account energy loss processes and spallations. We show that the flux of UHCRs accelerated by the NSMs themselves fluctuates by many orders of magnitude on a timescale of several million years and can overwhelm UHCRs accelerated by supernova remnants (SNRs) after an NSM takes place within a few kiloparsec from the solar system. Experiments with very long exposure times using meteorites as UHCR detectors can detect this fluctuation. As a consequence, we show that if NSMs are the primary source of UHCRs, future experiments using meteorites may be able to reveal the event history of NSMs in the solar vicinity. We also describe a possible difference in the abundance pattern and energy spectrum of UHCRs between NSM and SNR accelerations.

  12. Nuclear data relevant to single event upsets in semiconductor memories induced by cosmic-ray neutrons and protons

    International Nuclear Information System (INIS)

    Watanabe, Yukinobu

    2008-01-01

    The role of nuclear data is examined in the study of single event upset (SEU) phenomena in semiconductor memories caused by cosmic-ray neutrons and protons. Neutron and proton SEU cross sections are calculated with a simplified semi-empirical model using experimental heavy-ion SEU cross-sections and a dedicated database of neutron and proton induced reactions on 28 Si. Some impacts of the nuclear reaction data on SEU simulation are analyzed by investigating relative contribution of secondary ions and neutron elastic scattering to SEU and influence of simultaneous multiple ions emission on SEU. (author)

  13. Non-invasive detection of soil water content at intermediate field scale using natural neutrons from cosmic radiation

    Energy Technology Data Exchange (ETDEWEB)

    Oswald, Sascha; Rivera Villarreyes, Carlos; Baroni, Gabriele [Universitaet Potsdam, Institut fuer Erd und Umweltwissenschaften (Germany)

    2011-07-01

    The amount of water in the subsurface is a key factor influencing soil hydrology, run-off, evapotranspiration and plant development. A new measurement method is the so called cosmic ray method, recently introduced for soil moisture measurements by Zreda and coworkers. Secondary neutron fluxes, product of the interaction of primary cosmic-rays at the land surface, are strongly moderated by the presence of water in or above soil (soil moisture, snow and biomass water). Neutron counts at the ground/air interface represent a valuable observation at intermediate spatial scale which can be used to quantify stored water while distinguishing different water holding compartments at the land surface. We have performed such measurements in an agricultural field, in comparison with classical soil moisture measurement at a number of point locations. We discuss how to extract soil moisture values from the neutron counts, drawbacks of the method, but also that the results show a temporal development supported by the accompanying data.

  14. The energy spectrum of cosmic-ray induced neutrons measured on an airplane over a wide range of altitude and latitude

    International Nuclear Information System (INIS)

    Goldhagen, P.; Clem, J. M.; Wilson, J. W.

    2004-01-01

    Crews of high-altitude aircraft are exposed to radiation from galactic cosmic rays (GCRs). To help determine such exposures, the Atmospheric Ionizing Radiation Project, an international collaboration of 15 laboratories, made simultaneous radiation measurements with 14 instruments on a NASA ER-2 high-altitude airplane. The primary instrument was a sensitive extended-energy multisphere neutron spectrometer. Its detector responses were calculated for energies up to 100 GeV using the radiation transport code MCNPX 2.5.d with improved nuclear models and including the effects of the airplane structure. New calculations of GCR-induced particle spectra in the atmosphere were used to correct for spectrometer counts produced by protons, pions and light nuclear ions. Neutron spectra were unfolded from the corrected measured count rates using the deconvolution code MAXED 3.1. The results for the measured cosmic-ray neutron spectrum (thermal to >10 GeV), total neutron fluence rate, and neutron dose equivalent and effective dose rates, and their dependence on altitude and geomagnetic cut-off agree well with results from recent calculations of GCR-induced neutron spectra. (authors)

  15. Airborne Detection of Cosmic-Ray Albedo Neutrons for Regional-Scale Surveys of Root-Zone Soil Water on Earth

    Science.gov (United States)

    Schrön, M.; Bannehr, L.; Köhli, M.; Zreda, M. G.; Weimar, J.; Zacharias, S.; Oswald, S. E.; Bumberger, J.; Samaniego, L. E.; Schmidt, U.; Zieger, P.; Dietrich, P.

    2017-12-01

    While the detection of albedo neutrons from cosmic rays became a standard method in planetary space science, airborne neutron sensing has never been conceived for hydrological research on Earth. We assessed the applicability of atmospheric neutrons to sense root-zone soil moisture averaged over tens of hectares using neutron detectors on an airborne vehicle. Large-scale quantification of near-surface water content is an urgent challenge in hydrology. Information about soil and plant water is crucial to accurately assess the risks for floods and droughts, to adjust regional weather forecasts, and to calibrate and validate the corresponding models. However, there is a lack of data at scales relevant for these applications. Most conventional ground-based geophysical instruments provide root-zone soil moisture only within a few tens of m2, while electromagnetic signals from conventional remote-sensing instruments can only penetrate the first few centimeters below surface, though at larger spatial areas.In the last couple of years, stationary and roving neutron detectors have been used to sense the albedo component of cosmic-ray neutrons, which represents the average water content within 10—15 hectares and 10—50 cm depth. However, the application of these instruments is limited by inaccessible terrain and interfering local effects from roads. To overcome these limitations, we have pioneered first simulations and experiments of such sensors in the field of airborne geophysics. Theoretical investigations have shown that the footprint increases substantially with height above ground, while local effects smooth out throughout the whole area. Campaigns with neutron detectors mounted on a lightweight gyrocopter have been conducted over areas of various landuse types including agricultural fields, urban areas, forests, flood plains, and lakes. The neutron signal showed influence of soil moisture patterns in heights of up to 180 m above ground. We found correlation with

  16. The Los Alamos Neutron Science Center Spallation Neutron Sources

    International Nuclear Information System (INIS)

    Nowicki, Suzanne F.; Wender, Stephen A.; Mocko, Michael

    2017-01-01

    The Los Alamos Neutron Science Center (LANSCE) provides the scientific community with intense sources of neutrons, which can be used to perform experiments supporting civilian and national security research. These measurements include nuclear physics experiments for the defense program, basic science, and the radiation effect programs. This paper focuses on the radiation effects program, which involves mostly accelerated testing of semiconductor parts. When cosmic rays strike the earth's atmosphere, they cause nuclear reactions with elements in the air and produce a wide range of energetic particles. Because neutrons are uncharged, they can reach aircraft altitudes and sea level. These neutrons are thought to be the most important threat to semiconductor devices and integrated circuits. The best way to determine the failure rate due to these neutrons is to measure the failure rate in a neutron source that has the same spectrum as those produced by cosmic rays. Los Alamos has a high-energy and a low-energy neutron source for semiconductor testing. Both are driven by the 800-MeV proton beam from the LANSCE accelerator. The high-energy neutron source at the Weapons Neutron Research (WNR) facility uses a bare target that is designed to produce fast neutrons with energies from 100 keV to almost 800 MeV. The measured neutron energy distribution from WNR is very similar to that of the cosmic-ray-induced neutrons in the atmosphere. However, the flux provided at the WNR facility is typically 5×107 times more intense than the flux of the cosmic-ray-induced neutrons. This intense neutron flux allows testing at greatly accelerated rates. An irradiation test of less than an hour is equivalent to many years of neutron exposure due to cosmic-ray neutrons. The low-energy neutron source is located at the Lujan Neutron Scattering Center. It is based on a moderated source that provides useful neutrons from subthermal energies to ~100 keV. The characteristics of these sources

  17. The Los Alamos Neutron Science Center Spallation Neutron Sources

    Science.gov (United States)

    Nowicki, Suzanne F.; Wender, Stephen A.; Mocko, Michael

    The Los Alamos Neutron Science Center (LANSCE) provides the scientific community with intense sources of neutrons, which can be used to perform experiments supporting civilian and national security research. These measurements include nuclear physics experiments for the defense program, basic science, and the radiation effect programs. This paper focuses on the radiation effects program, which involves mostly accelerated testing of semiconductor parts. When cosmic rays strike the earth's atmosphere, they cause nuclear reactions with elements in the air and produce a wide range of energetic particles. Because neutrons are uncharged, they can reach aircraft altitudes and sea level. These neutrons are thought to be the most important threat to semiconductor devices and integrated circuits. The best way to determine the failure rate due to these neutrons is to measure the failure rate in a neutron source that has the same spectrum as those produced by cosmic rays. Los Alamos has a high-energy and a low-energy neutron source for semiconductor testing. Both are driven by the 800-MeV proton beam from the LANSCE accelerator. The high-energy neutron source at the Weapons Neutron Research (WNR) facility uses a bare target that is designed to produce fast neutrons with energies from 100 keV to almost 800 MeV. The measured neutron energy distribution from WNR is very similar to that of the cosmic-ray-induced neutrons in the atmosphere. However, the flux provided at the WNR facility is typically 5×107 times more intense than the flux of the cosmic-ray-induced neutrons. This intense neutron flux allows testing at greatly accelerated rates. An irradiation test of less than an hour is equivalent to many years of neutron exposure due to cosmic-ray neutrons. The low-energy neutron source is located at the Lujan Neutron Scattering Center. It is based on a moderated source that provides useful neutrons from subthermal energies to ∼100 keV. The characteristics of these sources, and

  18. Cosmic Ray Neutron Sensing in Complex Systems

    Science.gov (United States)

    Piussi, L. M.; Tomelleri, E.; Tonon, G.; Bertoldi, G.; Mejia Aguilar, A.; Monsorno, R.; Zebisch, M.

    2017-12-01

    Soil moisture is a key variable in environmental monitoring and modelling: being located at the soil-atmosphere boundary, it is a driving force for water, energy and carbon fluxes. Nevertheless its importance, soil moisture observations lack of long time-series at high acquisition frequency in spatial meso-scale resolutions: traditional measurements deliver either long time series with high measurement frequency at spatial point scale or large scale and low frequency acquisitions. The Cosmic Ray Neutron Sensing (CRNS) technique fills this gap because it supplies information from a footprint of 240m of diameter and 15 to 83 cm of depth at a temporal resolution varying between 15 minutes and 24 hours. In addition, being a passive sensing technique, it is non-invasive. For these reasons, CRNS is gaining more and more attention from the scientific community. Nevertheless, the application of this technique in complex systems is still an open issue: where different Hydrogen pools are present and where their distributions vary appreciably with space and time, the traditional calibration method shows some limits. In order to obtain a better understanding of the data and to compare them with remote sensing products and spatially distributed traditional measurements (i.e. Wireless Sensors Network), the complexity of the surrounding environment has to be taken into account. In the current work we assessed the effects of spatial-temporal variability of soil moisture within the footprint, in a steep, heterogeneous mountain grassland area. Measurement were performed with a Cosmic Ray Neutron Probe (CRNP) and a mobile Wireless Sensors Network. We performed an in-deep sensitivity analysis of the effects of varying distributions of soil moisture on the calibration of the CRNP and our preliminary results show how the footprint shape varies depending on these dynamics. The results are then compared with remote sensing data (Sentinel 1 and 2). The current work is an assessment of

  19. Collapse of differentially rotating neutron stars and cosmic censorship

    International Nuclear Information System (INIS)

    Giacomazzo, Bruno; Rezzolla, Luciano; Stergioulas, Nikolaos

    2011-01-01

    We present new results on the dynamics and gravitational-wave emission from the collapse of differentially rotating neutron stars. We have considered a number of polytropic stellar models having different values of the dimensionless angular momentum J/M 2 , where J and M are the asymptotic angular momentum and mass of the star, respectively. For neutron stars with J/M 2 2 >1, i.e. 'supra-Kerr' models, on the other hand, we were not able to find models that are dynamically unstable and all of the computed supra-Kerr models were found to be far from the stability threshold. For these models a gravitational collapse is possible only after a very severe and artificial reduction of the pressure, which then leads to a torus developing nonaxisymmetric instabilities and eventually contracting to a stable axisymmetric stellar configuration. While this does not exclude the possibility that a naked singularity can be produced by the collapse of a differentially rotating star, it also suggests that cosmic censorship is not violated and that generic conditions for a supra-Kerr progenitor do not lead to a naked singularity.

  20. Cosmic Ray Interactions in Shielding Materials

    International Nuclear Information System (INIS)

    Aguayo Navarrete, Estanislao; Kouzes, Richard T.; Ankney, Austin S.; Orrell, John L.; Berguson, Timothy J.; Troy, Meredith D.

    2011-01-01

    This document provides a detailed study of materials used to shield against the hadronic particles from cosmic ray showers at Earth's surface. This work was motivated by the need for a shield that minimizes activation of the enriched germanium during transport for the MAJORANA collaboration. The materials suitable for cosmic-ray shield design are materials such as lead and iron that will stop the primary protons, and materials like polyethylene, borated polyethylene, concrete and water that will stop the induced neutrons. The interaction of the different cosmic-ray components at ground level (protons, neutrons, muons) with their wide energy range (from kilo-electron volts to giga-electron volts) is a complex calculation. Monte Carlo calculations have proven to be a suitable tool for the simulation of nucleon transport, including hadron interactions and radioactive isotope production. The industry standard Monte Carlo simulation tool, Geant4, was used for this study. The result of this study is the assertion that activation at Earth's surface is a result of the neutronic and protonic components of the cosmic-ray shower. The best material to shield against these cosmic-ray components is iron, which has the best combination of primary shielding and minimal secondary neutron production.

  1. Activation measurements for fast neutrons. Part D. Evaluation of cosmic-ray-induced 63Ni background in copper

    International Nuclear Information System (INIS)

    Ruehm, Werner; Rugel, Georg; Faestermann, Thomas

    2005-01-01

    As a result of a joint collaboration between the University of Utah, LLNL, the Technical University Munich and the Ludwig Maximilians University Munich, it became possible to determine A-bomb induced 63 Ni in pure copper samples from Hiroshima beyond a ground range of 1,000 m (see Chapter 9, Part B). The low 63 Ni activities induced in copper samples due to neutrons from the A-bomb explosion at large distance require, however, a careful discussion of the fraction of 63 Ni produced in these samples due to cosmic radiation. In this section, an analysis of the production of 63 Ni in copper samples due to cosmic radiation is performed. Production due to neutrons, protons, stopped muons, and photonuclear reactions is discussed. It is obvious from Figure 1 (Pfennig et al. 1995) that a variety of reactions induced by neutrons, protons, muons and photons can contribute to the production of 63 Ni in copper. The most important of these processes will be discussed here. Since the cross-sections for the production of 63 Ni in copper samples due to fast and stopped muons were not known, they were determined experimentally. (J.P.N.)

  2. Sealed drift tube cosmic ray veto counters

    International Nuclear Information System (INIS)

    Rios, R.; Tatar, E.; Bacon, J.D.; Bowles, T.J.; Hill, R.; Green, J.A.; Hogan, G.E.; Ito, T.M.; Makela, M.; Morris, C.L.; Mortenson, R.; Pasukanics, F.E.; Ramsey, J.; Saunders, A.; Seestrom, S.J.; Sondheim, W.E.; Teasdale, W.; Saltus, M.; Back, H.O.; Cottrell, C.R.

    2011-01-01

    We describe a simple drift tube counter that has been used as a cosmic ray veto for the UCNA experiment, a first-ever measurement of the neutron beta-asymmetry using ultra-cold neutrons. These detectors provide an inexpensive alternative to more conventional scintillation detectors for large area cosmic ray anticoincidence detectors.

  3. Soil Moisture Estimation Across Scales with Mobile Sensors for Cosmic-Ray Neutrons from the Ground and Air

    Science.gov (United States)

    Schrön, Martin; Köhler, Mandy; Bannehr, Lutz; Köhli, Markus; Fersch, Benjamin; Rebmann, Corinna; Mai, Juliane; Cuntz, Matthias; Kögler, Simon; Schröter, Ingmar; Wollschläger, Ute; Oswald, Sascha; Dietrich, Peter; Zacharias, Steffen

    2016-04-01

    Soil moisture is a key variable for environmental sciences, but its determination at various scales and depths is still an open challenge. Cosmic-ray neutron sensing has become a well accepted and unique method to monitor an effective soil water content, covering tens of hectares in area and tens of centimeters in depth. The technology is famous for its low maintanance, non-invasiveness, continous measurement, and most importantly its large footprint and penetration depth. Beeing more representative than point data, and finer resolved plus deeper penetrating than remote-sensing products, cosmic-ray neutron derived soil moisture products provide unrivaled advantage for agriculture, regional hydrologic and land surface models. The method takes advantage of omnipresent neutrons which are extraordinarily sensitive to hydrogen in soil, plants, snow and air. Unwanted hydrogen sources in the footprint can be excluded by local calibration to extract the pure soil water information. However, this procedure is not feasible for mobile measurements, where neutron detectors are mounted on a car to do catchment-scale surveys. As a solution to that problem, we suggest strategies to correct spatial neutron data with the help of available spatial data of soil type, landuse and vegetation. We further present results of mobile rover campaigns at various scales and conditions, covering small sites from 0.2 km2 to catchments of 100 km2 area, and complex terrain from agricultural fields, urban areas, forests, to snowy alpine sites. As the rover is limited to accessible roads, we further investigated the applicability of airborne measurements. First tests with a gyrocopter at 150 to 200m heights proofed the concept of airborne neutron detection for environmental sciences. Moreover, neutron transport simulations confirm an improved areal coverage during these campaigns. Mobile neutron measurements at the ground or air are a promising tool for the detection of water sources across many

  4. The cosmic merger rate of neutron stars and black holes

    Science.gov (United States)

    Mapelli, Michela; Giacobbo, Nicola

    2018-06-01

    Six gravitational wave detections have been reported so far, providing crucial insights on the merger rate of double compact objects. We investigate the cosmic merger rate of double neutron stars (DNSs), neutron star-black hole binaries (NSBHs) and black hole binaries (BHBs) by means of population-synthesis simulations coupled with the Illustris cosmological simulation. We have performed six different simulations, considering different assumptions for the efficiency of common envelope (CE) ejection and exploring two distributions for the supernova (SN) kicks. The current BHB merger rate derived from our simulations spans from ˜150 to ˜240 Gpc-3 yr-1 and is only mildly dependent on CE efficiency. In contrast, the current merger rates of DNSs (ranging from ˜20 to ˜600 Gpc-3 yr-1) and NSBHs (ranging from ˜10 to ˜100 Gpc-3 yr-1) strongly depend on the assumptions on CE and natal kicks. The merger rate of DNSs is consistent with the one inferred from the detection of GW170817 only if a high efficiency of CE ejection and low SN kicks (drawn from a Maxwellian distribution with one dimensional root mean square σ = 15 km s-1) are assumed.

  5. Neutron monitor latitude survey of cosmic ray intensity during the 1986/1987 solar minimum

    International Nuclear Information System (INIS)

    Moraal, H.; Potgieter, M.S.; Stoker, P.H.; van der Walt, A.J.

    1989-01-01

    A latitude survey of the cosmic ray intensity at sea level was conducted during the 1986/1987 solar minimum period on commercial vessels of the South African Marine Corporation (SAFMARINE). The results show that the differential response function for the 1986/1987 solar minimum agrees well with that measured in 1965. Both these response functions are significantly lower than those for 1976 and 1954. This result supports the 22-year modulation cycle as predicted, for example, by models including drift effects of the charged cosmic ray particles in the large-scale interplanetary magnetic field. A crossover of the spectra at rigidities of about 7 GV was also observed. Such a crossover is necessary to explain both the stationary neutron monitor counting rates and the lower-energy balloon and space observations in consecutive solar cycles. copyright American Geophysical Union 1989

  6. Signatures of cosmic-ray interactions on the solar surface

    Science.gov (United States)

    Seckel, D.; Stanev, Todor; Gaisser, T. K.

    1991-01-01

    The fluxes of neutrinos, gamma rays, antiprotons, neutrons, and antineutrons that result from collisions of high-energy Galactic cosmic rays with the solar atmosphere are estimated. The results are sensitive to assumptions about cosmic-ray transport in the magnetic fields of the inner solar system. The high-energy photon flux should be observable by the Gamma Ray Observatory. The neutrino flux should produce less than one event per year in the next generation of neutrino telescopes. The antiproton flux is unobservable against the Galactic background. The neutron and antineutron fluxes are detectable only if neutrons produced in terrestrial cosmic-ray events may be discriminated against.

  7. Cosmic ray modulation

    Science.gov (United States)

    Agarwal Mishra, Rekha; Mishra, Rajesh Kumar

    2016-07-01

    Propagation of cosmic rays to and inside the heliosphere, encounter an outward moving solar wind with cyclic magnetic field fluctuation and turbulence, causing convection and diffusion in the heliosphere. Cosmic ray counts from the ground ground-based neutron monitors at different cut of rigidity show intensity changes, which are anti-correlated with sunspot numbers. They also lose energy as they propagate towards the Earth and experience various types of modulations due to different solar activity indices. In this work, we study the first three harmonics of cosmic ray intensity on geo-magnetically quiet days over the period 1965-2014 for Beijing, Moscow and Tokyo neutron monitoring stations located at different cut off rigidity. The amplitude of first harmonic remains high for low cutoff rigidity as compared to high cutoff rigidity on quiet days. The diurnal amplitude significantly decreases during solar activity minimum years. The diurnal time of maximum significantly shifts to an earlier time as compared to the corotational direction having different cutoff rigidities. The time of maximum for first harmonic significantly shifts towards later hours and for second harmonic it shifts towards earlier hours at low cutoff rigidity station as compared to the high cut off rigidity station on quiet days. The amplitude of second/third harmonics shows a good positive correlation with solar wind velocity, while the others (i.e. amplitude and phase) have no significant correlation on quiet days. The amplitude and direction of the anisotropy on quiet days does not show any significant dependence on high-speed solar wind streams for these neutron monitoring stations of different cutoff rigidity threshold. Keywords: cosmic ray, cut off rigidity, quiet days, harmonics, amplitude, phase.

  8. Cosmic radiation dose in the aircraft

    International Nuclear Information System (INIS)

    Vukovic, B.; Radolic, V.; Varga, M.; Planinic, J.; Vekic, B.

    2006-01-01

    When primary particles from space, mainly protons, enter the atmosphere, they produce interactions with air nuclei, and cosmic-ray showers are induced. The radiation field at aircraft altitude is complex, with different types of particles, mainly photons, electrons, positrons and neutrons, with a large energy range. The non-neutron component of cosmic radiation dose aboard A 320 and ATR 42 aircraft was measured with TLD-100 (LiF:Mg,Ti) detectors and the Mini 6100 semiconductor dosimeter; the neutron dose was measured with the neutron dosimeter consisted of LR-115 track detector and boron foil BN-1 or 10B converter. The estimated occupational effective dose for the aircraft crew (A320) working 500 h per year was 1.64 mSv. Another experiment was performed at the flights Zagreb - Paris - Buenos Aires and reversely, when one measured cosmic radiation dose; for 26.7 h of flight, the MINI 6100 dosimeter gave an average dose rate of 2.3 μSv/h and the TLD dosimeter registered the total dose of 75 μSv or the average dose rate of 2.7 μSv/h; the neutron dosimeter gave the dose rate of 2.4 μSv/h. In the same month, February 2005, a traveling to the Japan (24 hours-flight: Zagreb - Frankfurt - Tokyo and reversely) and the TLD-100 measurement showed the average dose rate of 2.4 μSv/h; the neutron dosimeter gave the dose rate of 2.5 μSv/h. Comparing dose rates of the non-neutron component (low LET) and the neutron one (high LET) of the radiation field at the aircraft flight level, we could conclude the neutron component curried about 50% of the total dose, that was near other known data. (author)

  9. Cosmic-ray-induced sup 6 sup 3 Ni -A potential confounder of fast-neutron-induced sup 6 sup 3 Ni in copper samples from Hiroshima

    CERN Document Server

    Rühm, W; Wallner, A; Fästermann, T; Knie, K; Heisinger, B; Nolte, E; Korschinek, G; Marchetti, A A; Martinelli, R E; Carroll, K L

    2003-01-01

    Recently, the determination of sup 6 sup 3 Ni in copper samples has been suggested as a means to assess fast-neutron fluences in Hiroshima and Nagasaki. In those samples, sup 6 sup 3 Ni (half-life: 100.07 years) was produced by MeV neutrons from the A-bomb explosions via the reaction sup 6 sup 3 Cu(n,p) sup 6 sup 3 Ni. For large distances from the hypocenters, cosmic-ray-induced production of sup 6 sup 3 Ni might also be important and, therefore, it is calculated here. The effective probability f sup * which is required to quantify the cosmic-ray-induced production by stopped muons, was measured, and a value of (12.6 +-1.6)% obtained. The cross-section for the cosmic-ray-induced production by fast muons was measured to be (0.64 +-0.33) mb, at a muon energy of 100 GeV. To validate the proposed method, cosmic-ray-induced production of sup 3 sup 2 P in sulfur and of sup 3 sup 9 Ar in granite was also calculated, and reasonable agreement with literature values was found. Our estimates indicate that as many as (4 ...

  10. Sequential measurements of cosmic-ray neutron spectrum and dose rate at sea level in Sendai, Japan

    International Nuclear Information System (INIS)

    Nakamura, Takashi; Nunomiya, Tomoya; Abe, Shigeru; Terunuma, Kazutaka; Suzuki, Hiroyuki

    2005-01-01

    The cosmic-ray neutron energy spectrum and dose rate were measured sequentially for two years from April 2001 up to March 2003 by using three neutron detectors, a 3 He-loaded multi-moderator detector (Bonner ball), 12.7 cm diameter by 12.7 cm long NE213 organic liquid scintillator, and high-sensitivity rem (dose equivalent) counter at the Kawauchi campus of Tohoku University in Sendai, Japan of geomagnetic latitude, 29degN, and cutoff rigidity, 10.43 GV. The neutron spectrum has three major peaks, thermal energy peak, evaporation peak around 1 MeV and cascade peak around 100 MeV. The ambient neutron dose equivalent rates measured by the rem counter, and the Bonner ball keep almost constant values of 4.0 and 6.5 (nSv/h), respectively, throughout this time period, after atmospheric pressure correction, and it often decreased about 30% after a large Solar Flare, that is called as the Forbush decrease. The total neutron flux was also obtained by the Bonner ball measurements to be 7.5x10 -3 (ncm -2 ·s -1 ) in average. The altitude variation of neutron flux and dose was also investigated by comparing the measured results with other results measured at Mt. Fuji area and aboard an airplane, where the cutoff rigidities are similar. (author)

  11. Performance of the SciBar cosmic ray telescope (SciCRT) toward the detection of high-energy solar neutrons in solar cycle 24

    Science.gov (United States)

    Sasai, Yoshinori; Nagai, Yuya; Itow, Yoshitaka; Matsubara, Yutaka; Sako, Takashi; Lopez, Diego; Itow, Tsukasa; Munakata, Kazuoki; Kato, Chihiro; Kozai, Masayoshi; Miyazaki, Takahiro; Shibata, Shoichi; Oshima, Akitoshi; Kojima, Hiroshi; Tsuchiya, Harufumi; Watanabe, Kyoko; Koi, Tatsumi; Valdés-Galicia, Jose Francisco; González, Luis Xavier; Ortiz, Ernesto; Musalem, Octavio; Hurtado, Alejandro; Garcia, Rocio; Anzorena, Marcos

    2014-12-01

    We plan to observe solar neutrons at Mt. Sierra Negra (4,600 m above sea level) in Mexico using the SciBar detector. This project is named the SciBar Cosmic Ray Telescope (SciCRT). The main aims of the SciCRT project are to observe solar neutrons to study the mechanism of ion acceleration on the surface of the sun and to monitor the anisotropy of galactic cosmic-ray muons. The SciBar detector, a fully active tracker, is composed of 14,848 scintillator bars, whose dimension is 300 cm × 2.5 cm × 1.3 cm. The structure of the detector enables us to obtain the particle trajectory and its total deposited energy. This information is useful for the energy reconstruction of primary neutrons and particle identification. The total volume of the detector is 3.0 m × 3.0 m × 1.7 m. Since this volume is much larger than the solar neutron telescope (SNT) in Mexico, the detection efficiency of the SciCRT for neutrons is highly enhanced. We performed the calibration of the SciCRT at Instituto Nacional de Astrofisica, Optica y Electronica (INAOE) located at 2,150 m above sea level in Mexico in 2012. We installed the SciCRT at Mt. Sierra Negra in April 2013 and calibrated this detector in May and August 2013. We started continuous observation in March 2014. In this paper, we report the detector performance as a solar neutron telescope and the current status of the SciCRT.

  12. Cosmic Ray Neutron Sensing: Use, Calibration and Validation for Soil Moisture Estimation

    International Nuclear Information System (INIS)

    2017-03-01

    Nuclear and related techniques can help develop climate-smart agricultural practices by optimizing water use efficiency. The measurement of soil water content is essential to improve the use of this resource in agriculture. However, most sensors monitor small areas (less than 1m in radius), hence a large number of sensors are needed to obtain soil water content across a large area. This can be both costly and labour intensive and so larger scale measuring devices are needed as an alternative to traditional point-based soil moisture sensing techniques. The cosmic ray neutron sensor (CRNS) is such a device that monitors soil water content in a non-invasive and continuous way. This publication provides background information about this novel technique, and explains in detail the calibration and validation process.

  13. The effects of cosmic radiation on implantable medical devices

    International Nuclear Information System (INIS)

    Bradley, P.

    1996-01-01

    Metal oxide semiconductor (MOS) integrated circuits, with the benefits of low power consumption, represent the state of the art technology for implantable medical devices. Three significant sources of radiation are classified as having the ability to damage or alter the behavior of implantable electronics; Secondary neutron cosmic radiation, alpha particle radiation from the device packaging and therapeutic doses(up to 70 Gγ) of high energy radiation used in radiation oncology. The effects of alpha particle radiation from the packaging may be eliminated by the use of polyimide or silicone rubber die coatings. The relatively low incidence of therapeutic radiation incident on an implantable device and the use of die coating leaves cosmic radiation induced secondary neutron single event upset (SEU) as the main pervasive ionising radiation threat to the reliability of implantable devices. A theoretical model which predicts the susceptibility of a RAM cell to secondary neutron cosmic radiation induced SEU is presented. The model correlates well within the statistical uncertainty associated with both the theoretical and field estimate. The predicted Soft Error Rate (SER) is 4.8 x l0 -12 upsets/(bit hr) compared to an observed upset rate of 8.5 x 10 -12 upsets/(bit hr) from 20 upsets collected over a total of 284672 device days. The predicted upset rate may increase by up to 20% when consideration is given to patients flying in aircraft The upset rate is also consistent with the expected geographical variations of the secondary cosmic ray neutron flux, although insufficient upsets precluded a statistically significant test. This is the first clinical data set obtained indicating the effects of cosmic radiation on implantable devices. Importantly, it may be used to predict the susceptibility of future to the implantable device designs to the effects of cosmic radiation

  14. Cosmic Ray Background Analysis For A Cargo Container Counter

    International Nuclear Information System (INIS)

    Ensslin, Norbert; Geist, W.H.; Lestone, J.P.; Mayo, D.R.; Menlove, Howard O.

    2001-01-01

    We have developed a new model for calculating the expected yield of cosmic-ray spallation neutrons in a Cargo Container Counter, and we have benchmarked the model against measurements made with several existing large neutron counters. We also developed two versions of a new measurement uncertainty prediction code based on Microsoft Excel spreadsheets. The codes calculate the minimum detectability limit for the Cargo Container Counter for either neutron singles or doubles counting, and also propagate the uncertainties associated with efficiency normalization flux monitors and cosmic ray flux monitors. This paper will describe the physics basis for this analysis, and the results obtained for several different counter designs.

  15. Beyond KERMA - neutron data for biomedical applications

    International Nuclear Information System (INIS)

    Blomgren, J.; Olsson, N.

    2003-01-01

    Presently, many new applications of fast neutrons are emerging or under development, like dose effects due to cosmic-ray neutrons for airplane crew, fast-neutron cancer therapy, studies of electronic failures induced by cosmic-ray neutrons, and accelerator-driven incineration of nuclear waste and energy production technologies. All these areas would benefit from improved neutron dosimetry. In this paper, the present rapid progress on measurements of double-differential neutron-induced nuclear reaction data are described. With such data at hand, the full response of, in principle, any system, including human tissue, can be calculated in detail. This could potentially revolutionise our understanding of biological effects in tissue due to fast neutrons. (author)

  16. Studies in cosmic rays

    International Nuclear Information System (INIS)

    Bemalkhedkar, M.M.

    1974-03-01

    The investigation of the diurnal variation in the cosmic ray intensity on individual days has revealed a new class of diurnal variation showing a maximum around 09 hour direction in the interplanetary space. It is shown to occur during the recovery phase of Forbush decreases as well as during quiet periods. The rigidity spectrum of the anomalous diurnal variation has an exponent around zero, the same as that for the average diurnal variation exhibiting maximum around 18 hours in the interplanetary space. It is shown that the Forbush decreases associated with the diurnal variation exhibiting morning maximum, are 27 day recurrent in nature and are preceded by east limb solar flares on most of the occasions. A qualitative model of the transient modulation by solar corotating corpuscular streams of enhanced solar wind velocity, emanating from the active regions on the solar disc, is proposed to explain the anomalous diurnal anisotropy in the recovery phase of 27 day recurrent Forbush decreases. From this model, the cosmic ray diffusion coefficients, parallel and perpendicular to the interplanetary magnetic field inside the corotating stream, are derived and compared with the average values. To investigate the possibility of determining the energy spectra of cosmic ray intensity variations from a single station, a continuous record of neutron multiplicity spectrum has been obtained for the period October, 1967 - October, 1971, using the Gulmarg neutron monitor. The average multiplicity spectrum in the Gulmarg neutron monitor shows a mean multiplicity approximately equal to 1.4 for 12 Boron-tri-fluoride counters and is an increasing function of the number of counters used. The mean multiplicity measured in various other neutron monitors, when normalized to the cutoff rigidity of Gulmurg (11.91 GV), shows a systematic increase with the altitude of the station. (author)

  17. Hydrology and Cosmic radiation

    DEFF Research Database (Denmark)

    Andreasen, Mie

    and calibration. Yet, soil moisture measurements are traditionally provided on either point or kilometer scale from electromagnetic based sensors and satellite retrievals, respectively. Above the ground surface, the cosmic-ray neutron intensity (eV range) is inversely correlated to all hydrogen present...

  18. Ship Effect Neutron Measurements And Impacts On Low-Background Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Aguayo Navarrete, Estanislao [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kouzes, Richard T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Siciliano, Edward R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-10-01

    The primary particles entering the upper atmosphere as cosmic rays create showers in the atmosphere that include a broad spectrum of secondary neutrons, muons and protons. These cosmic-ray secondaries interact with materials at the surface of the Earth, yielding prompt backgrounds in radiation detection systems, as well as inducing long-lived activities through spallation events, dominated by the higher-energy neutron secondaries. For historical reasons, the multiple neutrons produced in spallation cascade events are referred to as “ship effect” neutrons. Quantifying the background from cosmic ray induced activities is important to low-background experiments, such as neutrino-less double beta decay. Since direct measurements of the effects of shielding on the cosmic-ray neutron spectrum are not available, Monte Carlo modeling is used to compute such effects. However, there are large uncertainties (orders of magnitude) in the possible cross-section libraries and the cosmic-ray neutron spectrum for the energy range needed in such calculations. The measurements reported here were initiated to validate results from Monte Carlo models through experimental measurements in order to provide some confidence in the model results. The results indicate that the models provide the correct trends of neutron production with increasing density, but there is substantial disagreement between the model and experimental results for the lower-density materials of Al, Fe and Cu.

  19. Cosmic ray production curves below reworking zones

    International Nuclear Information System (INIS)

    Blanford, G.E.

    1980-01-01

    A method is presented for calculating cosmic ray production profiles below reworking zones. The method uses an input reworking depth determined from data such as signatures in the depth profile of ferromagnetic resonance intensity and input cosmic ray production profiles for an undisturbed surface. Reworking histories are simulated using Monte Carlo techniques, and depth profiles are used to determine cosmic ray exposure age limits with a specified probability. It is shown that the track density profiles predict cosmic ray exposure ages in lunar cores that are consistent with values determined by other methods. Results applied to neutron fluence and spallation rare gases eliminate the use of reworking depth as an adjustable parameter and give cosmic ray exposure ages that are compatible with each other

  20. High-altitude cosmic ray neutrons: probable source for the high-energy protons of the earth's radiation belts

    International Nuclear Information System (INIS)

    Hajnal, F.; Wilson, J.

    1992-01-01

    'Full Text:' Several High-altitude cosmic-ray neutron measurements were performed by the NASA Ames Laboratory in the mid-to late-1970s using airplanes flying at about 13km altitude along constant geomagnetic latitudes of 20, 44 and 51 degrees north. Bonner spheres and manganese, gold and aluminium foils were used in the measurements. In addition, large moderated BF-3 counters served as normalizing instruments. Data analyses performed at that time did not provide complete and unambiguous spectral information and field intensities. Recently, using our new unfolding methods and codes, and Bonner-sphere response function extensions for higher energies, 'new' neutron spectral intensities were obtained, which show progressive hardening of neutron spectra as a function of increasing geomagnetic latitude, with substantial increases in the energy region iron, 1 0 MeV to 10 GeV. For example, we found that the total neutron fluences at 20 and 51 degrees magnetic north are in the ratio of 1 to 5.2 and the 10 MeV to 10 GeV fluence ratio is 1 to 18. The magnitude of these ratios is quite remarkable. From the new results, the derived absolute neutron energy distribution is of the correct strength and shape for the albedo neutrons to be the main source of the high-energy protons trapped in the Earth's inner radiation belt. In addition, the results, depending on the extrapolation scheme used, indicate that the neutron dose equivalent rate may be as high as 0.1 mSv/h near the geomagnetic north pole and thus a significant contributor to the radiation exposures of pilots, flight attendants and the general public. (author)

  1. Some cosmic radiation dose measurements aboard flights connecting Zagreb Airport

    International Nuclear Information System (INIS)

    Vukovic, B.; Radolic, V.; Lisjak, I.; Vekic, B.; Poje, M.; Planinic, J.

    2008-01-01

    When primary particles from space, mainly protons, enter the atmosphere, they produce interactions with air nuclei, and cosmic-ray showers are induced. The radiation field at aircraft altitude is complex, with different types of particles, mainly photons, electrons, positrons and neutrons, with a large energy range. The non-neutron component of cosmic radiation dose aboard A320 and ATR40 aircraft was measured with TLD-100 (LiF:Mg,Ti) detectors and the Mini 6100 semiconductor dosimeter; the neutron dose was measured with the neutron dosimeter consisted of LR-115 track detector and boron foil BN-1 or 10 B converter. The estimated occupational effective dose for the aircraft crew (A320) working 500 h per year was 1.64 mSv. Another experiment was performed at the flights Zagreb-Paris-Buenos Aires and reversely, when one measured non-neutron cosmic radiation dose; for 26.7 h of flight, the MINI 6100 dosimeter gave an average dose rate of 2.3 μSv/h and the TLD dosimeter registered the dose equivalent of 75 μSv or the average dose rate of 2.7 μSv/h; the neutron dosimeter gave the dose rate of 2.4 μSv/h. In the same month, February 2005, a traveling to Japan (24-h-flight: Zagreb-Frankfurt-Tokyo and reversely) and the TLD-100 measurement showed the average dose rate of 2.4 μSv/h; the neutron dosimeter gave the dose rate of 2.5 μSv/h. Comparing dose rates of the non-neutron component (low LET) and the neutron one (high LET) of the radiation field at the aircraft flight level, we could conclude that the neutron component carried about 50% of the total dose, that was near other known data

  2. Some cosmic radiation dose measurements aboard flights connecting Zagreb Airport

    Energy Technology Data Exchange (ETDEWEB)

    Vukovic, B.; Radolic, V. [Department of Physics, University of Osijek, Osijek, P.O. Box 125 (Croatia); Lisjak, I. [Croatia Airlines, Zagreb (Croatia); Vekic, B. [Rudjer Boskovic Institute, Zagreb (Croatia); Poje, M. [Department of Physics, University of Osijek, Osijek, P.O. Box 125 (Croatia); Planinic, J. [Department of Physics, University of Osijek, Osijek, P.O. Box 125 (Croatia)], E-mail: planinic@ffos.hr

    2008-02-15

    When primary particles from space, mainly protons, enter the atmosphere, they produce interactions with air nuclei, and cosmic-ray showers are induced. The radiation field at aircraft altitude is complex, with different types of particles, mainly photons, electrons, positrons and neutrons, with a large energy range. The non-neutron component of cosmic radiation dose aboard A320 and ATR40 aircraft was measured with TLD-100 (LiF:Mg,Ti) detectors and the Mini 6100 semiconductor dosimeter; the neutron dose was measured with the neutron dosimeter consisted of LR-115 track detector and boron foil BN-1 or {sup 10}B converter. The estimated occupational effective dose for the aircraft crew (A320) working 500 h per year was 1.64 mSv. Another experiment was performed at the flights Zagreb-Paris-Buenos Aires and reversely, when one measured non-neutron cosmic radiation dose; for 26.7 h of flight, the MINI 6100 dosimeter gave an average dose rate of 2.3 {mu}Sv/h and the TLD dosimeter registered the dose equivalent of 75 {mu}Sv or the average dose rate of 2.7 {mu}Sv/h; the neutron dosimeter gave the dose rate of 2.4 {mu}Sv/h. In the same month, February 2005, a traveling to Japan (24-h-flight: Zagreb-Frankfurt-Tokyo and reversely) and the TLD-100 measurement showed the average dose rate of 2.4 {mu}Sv/h; the neutron dosimeter gave the dose rate of 2.5 {mu}Sv/h. Comparing dose rates of the non-neutron component (low LET) and the neutron one (high LET) of the radiation field at the aircraft flight level, we could conclude that the neutron component carried about 50% of the total dose, that was near other known data.

  3. Prototype Neutron Energy Spectrometer

    International Nuclear Information System (INIS)

    Mitchell, Stephen; Mukhopadhyay, Sanjoy; Maurer, Richard; Wolff, Ronald

    2010-01-01

    The project goals are: (1) Use three to five pressurized helium tubes with varying polyethylene moderators to build a neutron energy spectrometer that is most sensitive to the incident neutron energy of interest. Neutron energies that are of particular interest are those from the fission neutrons (typically around 1-2 MeV); (2) Neutron Source Identification - Use the neutron energy 'selectivity' property as a tool to discriminate against other competing processes by which neutrons are generated (viz. Cosmic ray induced neutron production (ship effect), (a, n) reactions); (3) Determine the efficiency as a function of neutron energy (response function) of each of the detectors, and thereby obtain the composite neutron energy spectrum from the detector count rates; and (4) Far-field data characterization and effectively discerning shielded fission source. Summary of the presentation is: (1) A light weight simple form factor compact neutron energy spectrometer ready to be used in maritime missions has been built; (2) Under laboratory conditions, individual Single Neutron Source Identification is possible within 30 minutes. (3) Sources belonging to the same type of origin viz., (a, n), fission, cosmic cluster in the same place in the 2-D plot shown; and (4) Isotopes belonging to the same source origin like Cm-Be, Am-Be (a, n) or Pu-239, U-235 (fission) do have some overlap in the 2-D plot.

  4. Prototype Neutron Energy Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Mitchell, Sanjoy Mukhopadhyay, Richard Maurer, Ronald Wolff

    2010-06-16

    The project goals are: (1) Use three to five pressurized helium tubes with varying polyethylene moderators to build a neutron energy spectrometer that is most sensitive to the incident neutron energy of interest. Neutron energies that are of particular interest are those from the fission neutrons (typically around 1-2 MeV); (2) Neutron Source Identification - Use the neutron energy 'selectivity' property as a tool to discriminate against other competing processes by which neutrons are generated (viz. Cosmic ray induced neutron production [ship effect], [a, n] reactions); (3) Determine the efficiency as a function of neutron energy (response function) of each of the detectors, and thereby obtain the composite neutron energy spectrum from the detector count rates; and (4) Far-field data characterization and effectively discerning shielded fission source. Summary of the presentation is: (1) A light weight simple form factor compact neutron energy spectrometer ready to be used in maritime missions has been built; (2) Under laboratory conditions, individual Single Neutron Source Identification is possible within 30 minutes. (3) Sources belonging to the same type of origin viz., (a, n), fission, cosmic cluster in the same place in the 2-D plot shown; and (4) Isotopes belonging to the same source origin like Cm-Be, Am-Be (a, n) or Pu-239, U-235 (fission) do have some overlap in the 2-D plot.

  5. Cosmic ray modulation

    International Nuclear Information System (INIS)

    Ueno, Hirosachi

    1974-01-01

    It is important to know the physical state of solar plasma region by the observation of intensity variation of cosmic ray which passed through the solar plasma region, because earth magnetosphere is formed by the interaction between geomagnetic field and solar plasma flow. The observation of cosmic ray intensity is useful to know the average condition of the space of 0.1--3 A.U., and gives the structure of the magnetic field in solar wind affecting the earth magnetosphere. The observation of neutron component in cosmic ray has been carried out at Norikura, Tokyo, Fukushima and Morioka. The lower limit of the energy of incident cosmic ray which can be observed at each station is different, and the fine structure of the variation can be known by comparison. The intensity of meson component in cosmic ray has been measured in underground, and the state of solar plasma region 2--3 A.U. from the earth can be known. The underground measurement has been made at Takeyama and Matsumoto, and a new station at Sakashita is proposed. The measurement at Sakashita will be made by proportional counters at the depth of 100m (water equivalent). Arrangement of detectors is shown. (Kato, T.)

  6. On the continuous measurement of the cosmic-ray intensity, 2

    International Nuclear Information System (INIS)

    Ishida, Yoshio; Kanno, Tsunekichi

    1974-01-01

    Since November 1971, the cosmic ray neutron intensity has been measured continuously with 3NM-64 neutron monitor at Fukushima University (140 0 29'E geographic longitude, 37 0 45'N geographic latitude, 27.6 0 N geomagnetic latitude and 10.55 GV cut-off rigidity). After the neutron monitor had been operated during the period of fourteen months at the ground floor of 3-storied ferro-reinforced concrete building, it was removed to the prefabricated house near the old position of the monitor at January 1973. As a result of the removement of the monitor, the expected values for the counting rate and barometric coefficient of our neutron monitor were obtained, 7.5x10 4 cph and -0.64% mb respectively. The monitor was moved out into a new place, the statistical accuracy of counting rate is altered from 0.44% (hourly counting rate) to 0.36%. It can be considered that there is no effect of concrete building near the monitor, for reason that the zenith angle is opened more than 60 0 over the monitor. The difference between the new and the old measurement - measurement environments, intensities, barometric coefficient and others - were discussed. The continuous measurement of the cosmic ray neutron intensity at Fukushima will be kept on beaten track, and the obtained data of the cosmic ray neutron intensity (uncorrected, corrected intensity and barometric pressure) will be sent to WDC-C2 in form of monthly tables. (author)

  7. Sulphur mountain: Cosmic ray intensity records

    International Nuclear Information System (INIS)

    Venkatesan, D.; Mathews, T.

    1985-01-01

    This book deals with the comic ray intensity registrations at the Sulphur Mountain Cosmic Ray Laboratory. The time series of intensity form a valuable data-set, for studying cosmic ray intensity variations and their dependence on solar activity. The IGY neutron monitor started operating from July 1, 1957 and continued through 1963. Daily mean values are tabulated for the period and these are also represented in plots. This monitor was set up by the National Research Council of Canada

  8. Muon and neutron observations in connection with the corotating interaction regions

    Science.gov (United States)

    da Silva, M. R.; Dal Lago, A.; Echer, E.; de Lucas, A.; Gonzalez, W. D.; Schuch, N. J.; Munakata, K.; Vieira, L. E. A.; Guarnieri, F. L.

    Ground cosmic ray observations are used for studying several kinds of interplanetary structures. The cosmic ray data has different responses to each kind of interplanetary structure. This article has as objective to study cosmic ray muon and neutron signatures due to the passage of corotating interaction region (CIR) in the interplanetary medium, and identify the signatures in the cosmic ray data due to these events. The cosmic ray muon data used in this work are recorded by the multidirectional muon detector installed at INPE’s Observatório Espacial do Sul OES/CRSPE/INPE-MCT, in São Martinho da Serra, RS (Brazil) and the neutron data was recorded by the neutron monitor installed in Newark (USA). The CIR events were selected in the period from 2001 to 2004. CIRs clearly affect cosmic ray density in the interplanetary medium in the Earth’s vicinity, where the magnetic field plays an important role.

  9. Is there a link between cancer and cosmic rays?

    International Nuclear Information System (INIS)

    Astbury, A.

    2000-06-01

    Conventional wisdom on the carcinogenic effects of ionizing radiation predicts that only a very small percentage of human deaths from cancer can be attributed to cosmic rays. The intensity of the hadronic component of terrestrial cosmic rays, in particular neutrons, is well measured as a function of vertical threshold rigidity (M, in GeV/c). The crude death rates from malignant neoplasms for countries of the world and states of the US reveal a correlation with M. A close examination of eight US states with M ≤ 1.5 GeV/c over the period 1947-1997 shows systematic time variations with periodicities reminiscent of sunspot cycles (∼11 years). A very simple model linking the death rate from cancer to the count rate in a cosmic ray neutron monitor reproduces the gross features of the data. The evidence suggests that conventional wisdom could well be challenged. The situation may only be resolved by a series of detailed measurements of the genetic impact of hadronic cosmic rays on cells. (author)

  10. Modulation of cosmic rays with particular reference to the Hermanus neutron monitor

    International Nuclear Information System (INIS)

    Stoker, P.H.

    1982-01-01

    Investigations at Potchefstroom has directed interest to the interaction between cosmic rays and the interplanetary magnetic field. In this paper the period of increasing modulation of cosmic rays from 1976 is discussed. The geomagnetic field as spectrometer for primary cosmic rays will be discussed and applied to the latitude surveys of 1975 and 1976. Features of the coronal magnetic field, the solar wind with interplanetary magnetic field and the transport of cosmic rays in the interplanetary magnetic field are outlined in order to relate cosmic ray recordings of fixed groundlevel stations to observations made in outerspace by space crafts and satellites and to explain these recordings in terms of cosmic ray modulation processes

  11. Neutron Collar Evolution and Fresh PWR Assembly Measurements with a New Fast Neutron Passive Collar

    Energy Technology Data Exchange (ETDEWEB)

    Menlove, Howard Olsen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Geist, William H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Root, Margaret A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rael, Carlos D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Belian, Anthony P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-02

    The passive neutron collar approach removes the effect of poison rods when using a 1mm Gd liner. This project sets out to solve the following challenges: BWR fuel assemblies have less mass and less neutron multiplication than PWR; and effective removal of cosmic ray spallation neutron bursts needed via QC tests.

  12. Aerial Neutron Detection: Neutron Signatures for Nonproliferation and Emergency Response Applications

    Energy Technology Data Exchange (ETDEWEB)

    Maurer, Richard J.; Stampahar, Thomas G.; Smith, Ethan X.; Mukhopadhyay, Sanjoy; Wolff, Ronald S.; Rourke, Timothy J.; LeDonne, Jeffrey P.; Avaro, Emanuele; Butler, D. Andre; Borders, Kevin L.; Stampahar, Jezabel; Schuck, William H.; Selfridge, Thomas L.; McKissack, Thomas M.; Duncan, William W.; Hendricks, Thane J.

    2012-10-17

    From 2007 to the present, the Remote Sensing Laboratory has been conducting a series of studies designed to expand our fundamental understanding of aerial neutron detection with the goal of designing an enhanced sensitivity detection system for long range neutron detection. Over 35 hours of aerial measurements in a helicopter were conducted for a variety of neutron emitters such as neutron point sources, a commercial nuclear power reactor, nuclear reactor spent fuel in dry cask storage, depleted uranium hexafluoride and depleted uranium metal. The goals of the project were to increase the detection sensitivity of our instruments such that a 5.4 × 104 neutron/second source could be detected at 100 feet above ground level at a speed of 70 knots and to enhance the long-range detection sensitivity for larger neutron sources, i.e., detection ranges above 1000 feet. In order to increase the sensitivity of aerial neutron detection instruments, it is important to understand the dynamics of the neutron background as a function of altitude. For aerial neutron detection, studies have shown that the neutron background primarily originates from above the aircraft, being produced in the upper atmosphere by galactic cosmic-ray interactions with air molecules. These interactions produce energetic neutrons and charged particles that cascade to the earth’s surface, producing additional neutrons in secondary collisions. Hence, the neutron background increases as a function of altitude which is an impediment to long-range neutron detection. In order to increase the sensitivity for long range detection, it is necessary to maintain a low neutron background as a function of altitude. Initial investigations show the variation in the neutron background can be decreased with the application of a cosmic-ray shield. The results of the studies along with a representative data set are presented.

  13. Track-etched detectors for the dosimetry of the radiation of cosmic origin

    International Nuclear Information System (INIS)

    Spurny, F.; Turek, K.

    2004-01-01

    Cosmic rays contribute to the exposure on the Earth's surface as well as in its surroundings. At the surface and/or at aviation altitudes, there are mostly secondary particles created through the cosmic rays interaction in the atmosphere, which contribute to this type of exposure. Onboard a spacecraft, the exposure comes mostly from primary cosmic rays. Track-etched detectors (TED) are able to characterise both these types of exposure. The contribution of neutrons, of cosmic origin, on the Earth's surface was studied at altitudes from few hundreds to 3000 m using TED in a moderator sphere. The results obtained are compared with other data on this type of natural radiation background. The results of studies performed onboard aircraft and/or spacecraft are presented afterwards. We used TED-based neutron dosemeter, as well as a spectrometer of linear energy transfer based on a chemically etched TED. The results of studies performed onboard aircraft, as well as spacecraft, are presented and discussed, including an attempt to estimate a neutron component onboard the spacecraft. It was found that they correlate with the results of other independent investigations. (authors)

  14. Ageing effects on image sensors due to terrestrial cosmic radiation

    NARCIS (Netherlands)

    Nampoothiri, G.G.; Horemans, M.L.R.; Theuwissen, A.J.P.

    2011-01-01

    We analyze the “ageing” effect on image sensors introduced by neutrons present in natural (terrestrial) cosmic environment. The results obtained at sea level are corroborated for the first time with accelerated neutron beam tests and for various image sensor operation conditions. The results reveal

  15. Multi-parametric Effect of Solar Activity on Cosmic Rays V. K. Mishra ...

    Indian Academy of Sciences (India)

    Key words. Sun—solar parameters—cosmic ray modulation—running ... Neutron monitors are most sensitive to cosmic rays in the energy range. 0.5–20 GeV ... been considered as a primary indicator to define the level of solar activity, which.

  16. Cosmic matrix in the jubilee of relativistic astrophysics

    International Nuclear Information System (INIS)

    Ruffini, R.; Aimuratov, Y.; Enderli, M.; Kovacevic, M.; Belinski, V.; Bianco, C. L.; Izzo, L.; Moradi, R.; Muccino, M.; Rueda, J. A.; Vereshchagin, G. V.; Wang, Y.; Xue, S.-S.; Mathews, G. J.; Penacchioni, A. V.; Pisani, G. B.

    2015-01-01

    Following the classical works on Neutron Stars, Black Holes and Cosmology, I outline some recent results obtained in the IRAP-PhD program of ICRANet on the “Cosmic Matrix”: a new astrophysical phenomenon recorded by the X- and Gamma-Ray satellites and by the largest ground based optical telescopes all over our planet. In 3 minutes it has been recorded the occurrence of a “Supernova”, the “Induced-Gravitational-Collapse” on a Neutron Star binary, the formation of a “Black Hole”, and the creation of a “Newly Born Neutron Star”. This presentation is based on a document describing activities of ICRANet and recent developments of the paradigm of the Cosmic Matrix in the comprehension of Gamma Ray Bursts (GRBs) presented on the occasion of the Fourteenth Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Gravitation, and Relativistic Field Theory. A Portuguese version of this document can be downloaded at: http://www.icranet.org/documents/brochure_icranet_pt.pdf

  17. On scaling cosmogenic nuclide production rates for altitude and latitude using cosmic-ray measurements

    Science.gov (United States)

    Desilets, Darin; Zreda, Marek

    2001-11-01

    The wide use of cosmogenic nuclides for dating terrestrial landforms has prompted a renewed interest in characterizing the spatial distribution of terrestrial cosmic rays. Cosmic-ray measurements from neutron monitors, nuclear emulsions and cloud chambers have played an important role in developing new models for scaling cosmic-ray neutron intensities and, indirectly, cosmogenic production rates. Unfortunately, current scaling models overlook or misinterpret many of these data. In this paper, we describe factors that must be considered when using neutron measurements to determine scaling formulations for production rates of cosmogenic nuclides. Over the past 50 years, the overwhelming majority of nucleon flux measurements have been taken with neutron monitors. However, in order to use these data for scaling spallation reactions, the following factors must be considered: (1) sensitivity of instruments to muons and to background, (2) instrumental biases in energy sensitivity, (3) solar activity, and (4) the way of ordering cosmic-ray data in the geomagnetic field. Failure to account for these factors can result in discrepancies of as much as 7% in neutron attenuation lengths measured at the same location. This magnitude of deviation can result in an error on the order of 20% in cosmogenic production rates scaled from 4300 m to sea level. The shapes of latitude curves of nucleon flux also depend on these factors to a measurable extent, thereby causing additional uncertainties in cosmogenic production rates. The corrections proposed herein significantly improve our ability to transfer scaling formulations based on neutron measurements to scaling formulations applicable to spallation reactions, and, therefore, constitute an important advance in cosmogenic dating methodology.

  18. Using Cosmic-Ray Neutron Probes to Monitor Landscape Scale Soil Water Content in Mixed Land Use Agricultural Systems

    International Nuclear Information System (INIS)

    Franz, Trenton E.; Wahbi, Ammar; Weltin, Georg; Heng, Lee; Dercon, Gerd; Vreugdenhi, Mariette; Oismueller, Markus; Strauss, Peter; Desilets, Darin

    2016-01-01

    With an ever-increasing demand for natural resources and the societal need to understand and predict natural disasters such as flood, soil water content (SWC) observations remain a critical variable to monitor in order to optimally allocate resources, establish early warning systems, and improve weather forecasts. However, routine agricultural production practices of soil cultivation, planting, and harvest make the operation and maintenance of direct contact point sensors for long-term monitoring a challenging task. In this work, we used Cosmic-Ray Neutron Probe (CRNP) to monitor landscape average SWC in a mixed agricultural land use system in northeast Austria since December 2013.

  19. Multi-spectra Cosmic Ray Flux Measurement

    Science.gov (United States)

    He, Xiaochun; Dayananda, Mathes

    2010-02-01

    The Earth's upper atmosphere is constantly bombarded by rain of charged particles known as primary cosmic rays. These primary cosmic rays will collide with the atmospheric molecules and create extensive secondary particles which shower downward to the surface of the Earth. In recent years, a few studies have been done regarding to the applications of the cosmic ray measurements and the correlations between the Earth's climate conditions and the cosmic ray fluxes [1,2,3]. Most of the particles, which reach to the surface of the Earth, are muons together with a small percentage of electrons, gammas, neutrons, etc. At Georgia State University, multiple cosmic ray particle detectors have been constructed to measure the fluxes and energy distributions of the secondary cosmic ray particles. In this presentation, we will briefly describe these prototype detectors and show the preliminary test results. Reference: [1] K.Borozdin, G.Hogan, C.Morris, W.Priedhorsky, A.Saunders, L.Shultz, M.Teasdale, Nature, Vol.422, 277 (2003). [2] L.V. Egorova, V. Ya Vovk, O.A. Troshichev, Journal of Atmospheric and Terrestrial Physics 62, 955-966 (2000). [3] Henrik Svensmark, Phy. Rev. Lett. 81, 5027 (1998). )

  20. Cosmic-ray exposure records and origins of meteorites

    International Nuclear Information System (INIS)

    Reedy, R.C.

    1985-01-01

    The cosmic-ray records of meteorites are used to infer much about their origins and recent histories. The methods used to interpret meteorites cosmic-ray records, especially identifying simple or complex exposure histories, often are inadequate. Spallogenic radionuclides, stable nuclides, and measurements of products that have location-sensitive production rates, such as the tracks of heavy cosmic-ray nuclei or neutron-capture nuclides, are very useful in accurately determining a meteorite's history. Samples from different, known locations of a meteorite help in studying the cosmic-ray record. Such extensive sets of meteorite measuremetns, plus theoretical modeling of complex histories, improves the ability to predict the production of cosmogenic nuclides in meteorites, to distinguish simple and complex exposure histories, and to better determine exposure ages

  1. To the problem of superfluous cosmic radiation

    International Nuclear Information System (INIS)

    Savenko, I.A.; Saraeva, M.A.; Shavrin, P.I.

    1979-01-01

    From consideration of a number of basic works on the excessive cosmic radiation given is the most probable composition (electron, proton, and nuclear components) of this radiation in equatorial regions at altitudes corresponding to minimum altitudes of the drift trajectories hsub(min) <= 0, in case of detecting by detector on the artificial satellite of the Earth (ASE) with the mass up to 1t and of the heavier ASE. The disagreement in spectra of solar cosmic rays obtained along the latitude effect on the ASE. ''Molniya-1'' and in the experiments out of the magnetosphere on the ASE ''Explorer-41'' is explained by excessive radiation production of solar cosmic rays. The comparison of readings of the neutron channel with those of the charged particle channels of the apparatus on the ASE ''Molniya-1'' during the proton event on 25.01.1971 does not contradict to the supposition on the similarity of excessive cosmic radiation production of galactic and solar cosmic rays

  2. Intercomparison of cosmic-ray neutron sensors and water balance monitoring in an urban environment

    Science.gov (United States)

    Schrön, Martin; Zacharias, Steffen; Womack, Gary; Köhli, Markus; Desilets, Darin; Oswald, Sascha E.; Bumberger, Jan; Mollenhauer, Hannes; Kögler, Simon; Remmler, Paul; Kasner, Mandy; Denk, Astrid; Dietrich, Peter

    2018-03-01

    Sensor-to-sensor variability is a source of error common to all geoscientific instruments that needs to be assessed before comparative and applied research can be performed with multiple sensors. Consistency among sensor systems is especially critical when subtle features of the surrounding terrain are to be identified. Cosmic-ray neutron sensors (CRNSs) are a recent technology used to monitor hectometre-scale environmental water storages, for which a rigorous comparison study of numerous co-located sensors has not yet been performed. In this work, nine stationary CRNS probes of type CRS1000 were installed in relative proximity on a grass patch surrounded by trees, buildings, and sealed areas. While the dynamics of the neutron count rates were found to be similar, offsets of a few percent from the absolute average neutron count rates were found. Technical adjustments of the individual detection parameters brought all instruments into good agreement. Furthermore, we found a critical integration time of 6 h above which all sensors showed consistent dynamics in the data and their RMSE fell below 1 % of gravimetric water content. The residual differences between the nine signals indicated local effects of the complex urban terrain on the scale of several metres. Mobile CRNS measurements and spatial simulations with the URANOS neutron transport code in the surrounding area (25 ha) have revealed substantial sub-footprint heterogeneity to which CRNS detectors are sensitive despite their large averaging volume. The sealed and constantly dry structures in the footprint furthermore damped the dynamics of the CRNS-derived soil moisture. We developed strategies to correct for the sealed-area effect based on theoretical insights about the spatial sensitivity of the sensor. This procedure not only led to reliable soil moisture estimation during dry-out periods, it further revealed a strong signal of intercepted water that emerged over the sealed surfaces during rain events. The

  3. Department of Cosmic Ray Physics - Overview

    International Nuclear Information System (INIS)

    Szabelski, J.

    2010-01-01

    experimentally the problems of mass composition and EAS. development in the atmosphere in the energy range 10 15 - 1- 18 eV. Knowledge of the mass composition would contribute to models and the search for Cosmic Ray astrophysical sources. The interaction models in the simulation code CORSIKA play an essential role in the interpretation of the data. These are studied experimentally using the KASCADE hadron calorimeter and by measuring EAS muon directions and lateral distributions. The LOPES Collaboration is developing radio techniques for EAS measurements in Karlsruhe. · Locally in Lodz we concentrate on methodological studies of the detection of neutrons and the interpretation of multiple neutron registrations in the underground laboratory. By examining EAS data it is possible to study some properties of very high energy interactions. Detectors at the recently started LHC could verify the models used in the EAS simulations. In the area of high energy particle physics the Department participates in the ZEUS experiment at DESY (Hamburg, Germany), and in the WASA at COSY Collaboration in Juelich, Germany. (author)

  4. Improving calibration and validation of cosmic-ray neutron sensors in the light of spatial sensitivity

    Directory of Open Access Journals (Sweden)

    M. Schrön

    2017-10-01

    Full Text Available In the last few years the method of cosmic-ray neutron sensing (CRNS has gained popularity among hydrologists, physicists, and land-surface modelers. The sensor provides continuous soil moisture data, averaged over several hectares and tens of decimeters in depth. However, the signal still may contain unidentified features of hydrological processes, and many calibration datasets are often required in order to find reliable relations between neutron intensity and water dynamics. Recent insights into environmental neutrons accurately described the spatial sensitivity of the sensor and thus allowed one to quantify the contribution of individual sample locations to the CRNS signal. Consequently, data points of calibration and validation datasets are suggested to be averaged using a more physically based weighting approach. In this work, a revised sensitivity function is used to calculate weighted averages of point data. The function is different from the simple exponential convention by the extraordinary sensitivity to the first few meters around the probe, and by dependencies on air pressure, air humidity, soil moisture, and vegetation. The approach is extensively tested at six distinct monitoring sites: two sites with multiple calibration datasets and four sites with continuous time series datasets. In all cases, the revised averaging method improved the performance of the CRNS products. The revised approach further helped to reveal hidden hydrological processes which otherwise remained unexplained in the data or were lost in the process of overcalibration. The presented weighting approach increases the overall accuracy of CRNS products and will have an impact on all their applications in agriculture, hydrology, and modeling.

  5. Improving calibration and validation of cosmic-ray neutron sensors in the light of spatial sensitivity

    Science.gov (United States)

    Schrön, Martin; Köhli, Markus; Scheiffele, Lena; Iwema, Joost; Bogena, Heye R.; Lv, Ling; Martini, Edoardo; Baroni, Gabriele; Rosolem, Rafael; Weimar, Jannis; Mai, Juliane; Cuntz, Matthias; Rebmann, Corinna; Oswald, Sascha E.; Dietrich, Peter; Schmidt, Ulrich; Zacharias, Steffen

    2017-10-01

    In the last few years the method of cosmic-ray neutron sensing (CRNS) has gained popularity among hydrologists, physicists, and land-surface modelers. The sensor provides continuous soil moisture data, averaged over several hectares and tens of decimeters in depth. However, the signal still may contain unidentified features of hydrological processes, and many calibration datasets are often required in order to find reliable relations between neutron intensity and water dynamics. Recent insights into environmental neutrons accurately described the spatial sensitivity of the sensor and thus allowed one to quantify the contribution of individual sample locations to the CRNS signal. Consequently, data points of calibration and validation datasets are suggested to be averaged using a more physically based weighting approach. In this work, a revised sensitivity function is used to calculate weighted averages of point data. The function is different from the simple exponential convention by the extraordinary sensitivity to the first few meters around the probe, and by dependencies on air pressure, air humidity, soil moisture, and vegetation. The approach is extensively tested at six distinct monitoring sites: two sites with multiple calibration datasets and four sites with continuous time series datasets. In all cases, the revised averaging method improved the performance of the CRNS products. The revised approach further helped to reveal hidden hydrological processes which otherwise remained unexplained in the data or were lost in the process of overcalibration. The presented weighting approach increases the overall accuracy of CRNS products and will have an impact on all their applications in agriculture, hydrology, and modeling.

  6. Decadal trends in the diurnal variation of galactic cosmic rays observed using neutron monitor data

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Simon [Reading Univ. (United Kingdom). Dept. of Meteorology; Univ. College London, Dorking (United Kingdom). Mullard Space Science Lab.; Owens, Mathew; Lockwood, Mike [Reading Univ. (United Kingdom). Dept. of Meteorology; Owen, Chris [Univ. College London, Dorking (United Kingdom). Mullard Space Science Lab.

    2017-10-01

    The diurnal variation (DV) in galactic cosmic ray (GCR) flux is a widely observed phenomenon in neutron monitor data. The background variation considered primarily in this study is due to the balance between the convection of energetic particles away from the Sun and the inward diffusion of energetic particles along magnetic field lines. However, there are also times of enhanced DV following geomagnetic disturbances caused by coronal mass ejections or corotating interaction regions. In this study we investigate changes in the DV over four solar cycles using ground-based neutron monitors at different magnetic latitudes and longitudes at Earth. We divide all of the hourly neutron monitor data into magnetic polarity cycles to investigate cycle-to-cycle variations in the phase and amplitude of the DV. The results show, in general, a similarity between each of the A<0 cycles and A>0 cycles, but with a phase change between the two. To investigate this further, we split the neutron monitor data by solar magnetic polarity between times when the dominant polarity was either directed outward (positive) or inward (negative) at the northern solar pole. We find that the maxima and minima of the DV changes by, typically, 1-2 h between the two polarity states for all non-polar neutron monitors. This difference between cycles becomes even larger in amplitude and phase with the removal of periods with enhanced DV caused by solar wind transients. The time difference between polarity cycles is found to vary in a 22-year cycle for both the maximum and minimum times of the DV. The times of the maximum and minimum in the DV do not always vary in the same manner between A>0 and A<0 polarity cycles, suggesting a slight change in the anisotropy vector of GCRs arriving at Earth between polarity cycles. Polar neutron monitors show differences in phase between polarity cycles which have asymptotic directions at mid-to-high latitudes. All neutron monitors show changes in the amplitude of the

  7. DOUBLE-EXPONENTIAL FITTING FUNCTION FOR EVALUATION OF COSMIC-RAY-INDUCED NEUTRON FLUENCE RATE IN ARBITRARY LOCATIONS.

    Science.gov (United States)

    Li, Huailiang; Yang, Yigang; Wang, Qibiao; Tuo, Xianguo; Julian Henderson, Mark; Courtois, Jérémie

    2017-12-01

    The fluence rate of cosmic-ray-induced neutrons (CRINs) varies with many environmental factors. While many current simulation and experimental studies have focused mainly on the altitude variation, the specific rule that the CRINs vary with geomagnetic cutoff rigidity (which is related to latitude and longitude) was not well considered. In this article, a double-exponential fitting function F=(A1e-A2CR+A3)eB1Al, is proposed to evaluate the CRINs' fluence rate varying with geomagnetic cutoff rigidity and altitude. The fitting R2 can have a value up to 0.9954, and, moreover, the CRINs' fluence rate in an arbitrary location (latitude, longitude and altitude) can be easily evaluated by the proposed function. The field measurements of the CRINs' fluence rate and H*(10) rate in Mt. Emei and Mt. Bowa were carried out using a FHT-762 and LB 6411 neutron prober, respectively, and the evaluation results show that the fitting function agrees well with the measurement results. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. The Global Survey Method Applied to Ground-level Cosmic Ray Measurements

    Science.gov (United States)

    Belov, A.; Eroshenko, E.; Yanke, V.; Oleneva, V.; Abunin, A.; Abunina, M.; Papaioannou, A.; Mavromichalaki, H.

    2018-04-01

    The global survey method (GSM) technique unites simultaneous ground-level observations of cosmic rays in different locations and allows us to obtain the main characteristics of cosmic-ray variations outside of the atmosphere and magnetosphere of Earth. This technique has been developed and applied in numerous studies over many years by the Institute of Terrestrial Magnetism, Ionosphere and Radiowave Propagation (IZMIRAN). We here describe the IZMIRAN version of the GSM in detail. With this technique, the hourly data of the world-wide neutron-monitor network from July 1957 until December 2016 were processed, and further processing is enabled upon the receipt of new data. The result is a database of homogeneous and continuous hourly characteristics of the density variations (an isotropic part of the intensity) and the 3D vector of the cosmic-ray anisotropy. It includes all of the effects that could be identified in galactic cosmic-ray variations that were caused by large-scale disturbances of the interplanetary medium in more than 50 years. These results in turn became the basis for a database on Forbush effects and interplanetary disturbances. This database allows correlating various space-environment parameters (the characteristics of the Sun, the solar wind, et cetera) with cosmic-ray parameters and studying their interrelations. We also present features of the coupling coefficients for different neutron monitors that enable us to make a connection from ground-level measurements to primary cosmic-ray variations outside the atmosphere and the magnetosphere. We discuss the strengths and weaknesses of the current version of the GSM as well as further possible developments and improvements. The method developed allows us to minimize the problems of the neutron-monitor network, which are typical for experimental physics, and to considerably enhance its advantages.

  9. Half a century of cosmic x-ray research

    International Nuclear Information System (INIS)

    Makishima, Kazuo; Takahashi, Tadayuki

    2012-01-01

    The year of 2012, which is the centennial of the cosmic-ray discovery, happens to coincide with the 50th anniversary of the discovery of cosmic X-ray sources. First carried by cosmic-ray physicists, the study of cosmic X-rays has made explosive developments over the last half a century, and has established the X-ray wavelength as an indispensable window onto the Universe. Among a variety of X-ray emitting celestial objects, we choose here neutron stars as a representative, and review the 50 years connecting the dawn era of the research and the state-of-the-art ASTRO-H satellite to be launched in 2014. In this article, 'X-rays' mean energetic photons with energies from 0.1 keV up to a few hundreds keV. (author)

  10. Cosmic matrix in the jubilee of relativistic astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Ruffini, R., E-mail: ruffini@icra.it [Dip. di Fisica, Sapienza University of Rome and ICRA Piazzale Aldo Moro 5, I–00185, Rome (Italy); ICRANet, Piazza della Repubblica 10, I–65122 Pescara (Italy); Université de Nice Sophie Antipolis, Nice, CEDEX 2, Grand Château Parc Valrose (France); ICRANet-Rio, Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud 150, Rio de Janeiro, RJ, 22290–180 (Brazil); Aimuratov, Y.; Enderli, M.; Kovacevic, M. [Dip. di Fisica, Sapienza University of Rome and ICRA Piazzale Aldo Moro 5, I–00185, Rome (Italy); Université de Nice Sophie Antipolis, Nice, CEDEX 2, Grand Château Parc Valrose (France); Belinski, V.; Bianco, C. L.; Izzo, L.; Moradi, R.; Muccino, M.; Rueda, J. A.; Vereshchagin, G. V.; Wang, Y.; Xue, S.-S. [Dip. di Fisica, Sapienza University of Rome and ICRA Piazzale Aldo Moro 5, I–00185, Rome (Italy); ICRANet, Piazza della Repubblica 10, I–65122 Pescara (Italy); Mathews, G. J. [ICRANet, Piazza della Repubblica 10, I–65122 Pescara (Italy); Center for Astrophysics, University of Notre Dame, US (United States); Penacchioni, A. V. [INPE - Av. dos Astronautas, 1758 - Sao Jose dos Campos - Sao Paulo – Brazil (Brazil); Pisani, G. B. [Dip. di Fisica, Sapienza University of Rome and ICRA Piazzale Aldo Moro 5, I–00185, Rome (Italy)

    2015-12-17

    Following the classical works on Neutron Stars, Black Holes and Cosmology, I outline some recent results obtained in the IRAP-PhD program of ICRANet on the “Cosmic Matrix”: a new astrophysical phenomenon recorded by the X- and Gamma-Ray satellites and by the largest ground based optical telescopes all over our planet. In 3 minutes it has been recorded the occurrence of a “Supernova”, the “Induced-Gravitational-Collapse” on a Neutron Star binary, the formation of a “Black Hole”, and the creation of a “Newly Born Neutron Star”. This presentation is based on a document describing activities of ICRANet and recent developments of the paradigm of the Cosmic Matrix in the comprehension of Gamma Ray Bursts (GRBs) presented on the occasion of the Fourteenth Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Gravitation, and Relativistic Field Theory. A Portuguese version of this document can be downloaded at: http://www.icranet.org/documents/brochure{sub i}cranet{sub p}t.pdf.

  11. Estimation of Cosmic Induced Contamination in Ultra-low Background Detector Materials

    Energy Technology Data Exchange (ETDEWEB)

    Aguayo Navarrete, Estanislao; Kouzes, Richard T.; Orrell, John L.; Berguson, Timothy J.; Greene, Austen T.

    2012-08-01

    Executive Summary This document presents the result of investigating a way to reliably determine cosmic induced backgrounds for ultra-low background materials. In particular, it focuses on those radioisotopes produced by the interactions with cosmic ray particles in the detector materials that act as a background for experiments looking for neutrinoless double beta decay. This investigation is motivated by the desire to determine background contributions from cosmic ray activation of the electroformed copper that is being used in the construction of the MAJORANA DEMONSTRATOR. The most important radioisotope produced in copper that contributes to the background budget is 60Co, which has the potential to deposit energy in the region of interest of this experiment. Cobalt-60 is produced via cosmic ray neutron collisions in the copper. This investigation aims to provide a method for determining whether or not the copper has been exposed to cosmic radiation beyond the threshold which the Majorana Project has established as the maximum exposure. This threshold is set by the Project as the expected contribution of this source of background to the overall background budget. One way to estimate cosmic ray neutron exposure of materials on the surface of the Earth is to relate it to the cosmic ray muon exposure. Muons are minimum-ionizing particles and the available technologies to detect muons are easier to implement than those to detect neutrons. We present the results of using a portable, ruggedized muon detector, the µ-Witness made by our research group, for determination of muon exposure of materials for the MAJORANA DEMONSTRATOR. From the muon flux measurement, this report presents a method to estimate equivalent sea-level exposure, and then infer the neutron exposure of the tracked material and thus the cosmogenic activation of the copper. This report combines measurements of the muon flux taken by the µ-Witness detector with Geant4 simulations in order to assure our

  12. Department of Cosmic Ray Physics - Overview

    International Nuclear Information System (INIS)

    Szabelski, J.

    2009-01-01

    Full text: The Department of Cosmic Ray Physics in Lodz is involved in basic research in the high-energy Cosmic Ray field. Cosmic Rays are energetic particles from outside the Solar System. Most of the studies of Cosmic Rays address fundamental problems: - the nature of the physical and astrophysical processes responsible for the high energies of the particles - an estimation of the astrophysical conditions at the acceleration sites and/or the search for sources of Cosmic Rays, - properties of high-energy particle interactions at very high energies. Some Cosmic Ray studies might have practical (commercial) implications, e.g. - '' cosmic weather '' forecasting - predictions of geomagnetic disturbances related to Solar activity changes (due to large Solar Flares/Coronal Mass Ejection events); these are important for large electricity networks, gas pipelines, radio-wave connections, space missions and satellite experiments. Presentation of Cosmic Ray registration to high school students has become a popular way to introduce particle physics detectors and elementary particle detection techniques to young people. We organize in Lodz and Poznan workshops on particle physics for high school students. This is a part of the European activity: EPPOG's Masterclass - Hands on CERN. Energetic Cosmic Ray particles produce cascades of particles in the atmosphere, called Extensive Air Showers (EAS). Registering EAS and their properties is the main way of experimentally study's very high energy Cosmic Rays. Locally in Lodz we concentrate on methodological studies of the detection of neutrons correlated with EAS and the interpretation of this phenomenon. We have also performed two series of neutron background measurements in the deep underground Gran Sasso Laboratory in Italy (within the ILIAS-TA Project). In 2004, we began the Roland Maze Project, a network of EAS detectors placed on the roofs of high schools in Lodz. The pilot project is to equip 10 high schools, each with four 1m

  13. Spectrographical method for determining temperature variations of cosmic rays

    International Nuclear Information System (INIS)

    Dorman, L.I.; Krest'yannikov, Yu.Ya.; AN SSSR, Irkutsk. Sibirskij Inst. Zemnogo Magnetizma Ionosfery i Rasprostraneniya Radiovoln)

    1977-01-01

    A spectrographic method for determining [sigmaJsup(μ)/Jsup(μ)]sub(T) temperature variations in cosmic rays is proposed. The value of (sigmaJsup(μ)/Jsup(μ)]sub(T) is determined from three equations for neutron supermonitors and the equation for the muon component of cosmic rays. It is assumed that all the observation data include corrections for the barometric effect. No temperature effect is observed in the neutron component. To improve the reliability and accuracy of the results obtained the surface area of the existing devices and the number of spectrographic equations should be increased as compared with that of the unknown values. The value of [sigmaJsup(μ)/Jsup(μ)]sub(T) for time instants when the aerological probing was carried out, was determined from the data of observations of cosmic rays with the aid of a spectrographic complex of devices of Sib IZMIR. The r.m.s. dispersion of the difference is about 0.2%, which agrees with the expected dispersion. The agreement obtained can be regarded as an independent proof of the correctness of the theory of meteorological effects of cosmic rays. With the existing detection accuracy the spectrographic method can be used for determining the hourly values of temperature corrections for the muon component

  14. Cosmic-ray exposure records and origins of meteorites

    International Nuclear Information System (INIS)

    Reedy, R.C.

    1985-01-01

    The cosmic-ray records of meteorites can be used to infer much about their origins and recent histories. Some meteorites had simple cosmic-ray exposure histories, while others had complex exposure histories with their cosmogenic products made both before and after a collision in space. The methods used to interpret meteorites' cosmic-ray records, especially identifying simple or complex exposure histories, often are inadequate. Besides spallogenic radionuclides and stable nuclides, measurements of products that have location-sensitive production rates, such as the tracks of heavy cosmic-ray nuclei or neutron-capture nuclides, are very useful in accurately determining a meteorite's history. Samples from different, known locations of a meteorite help in studying the cosmic-ray record. Such extensive sets of meteorite measurements, plus theoretical modeling of complex histories, will improve our ability to predict the production of cosmogenic nuclides in meteorites, to distinguish simple and complex exposure histories, and to better determine exposure ages

  15. Instrumentation for continuous monitoring of low energy cosmic ray intensity

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, S; Prasad, R; Yadav, R S [Aligarh Muslim Univ. (India). Dept. of Physics; Naqvi, T H [Z.H. Engineering Coll., Aligarh (India); Ahmed, Rais [National Council of Educational Research and Training, New Delhi (India)

    1975-12-01

    A high counting rate neutron monitor developed at Aligarh for continuous monitoring of low energy nucleonic component of cosmic rays is described. Transistorized electronic circuits used are described.

  16. Instrumentation for continuous monitoring of low energy cosmic ray intensity

    International Nuclear Information System (INIS)

    Kumar, S.; Prasad, R.; Yadav, R.S.; Ahmed, Rais

    1975-01-01

    A high counting rate neutron monitor developed at Aligarh for continuous monitoring of low energy nucleonic component of cosmic rays is described. Transistorized electronic circuits used are described. (author)

  17. Solar cycle variation of cosmic ray intensity along with interplanetary and solar wind plasma parameters

    International Nuclear Information System (INIS)

    Mishra, R.K.; Tiwari, S.; Agarwal, R.

    2008-01-01

    Galactic cosmic rays are modulated at their propagation in the heliosphere by the effect of the large-scale structure of the interplanetary medium. A comparison of the variations in the cosmic ray intensity data obtained by neutron monitoring stations with those in geomagnetic disturbance, solar wind velocity (V), interplanetary magnetic field (B), and their product (V , B) near the Earth for the period 1964-2004 has been presented so as to establish a possible correlation between them. We used the hourly averaged cosmic ray counts observed with the neutron monitor in Moscow. It is noteworthy that a significant negative correlation has been observed between the interplanetary magnetic field, product (V , B) and cosmic ray intensity during the solar cycles 21 and 22. The solar wind velocity has a good positive correlation with cosmic ray intensity during solar cycle 21, whereas it shows a weak correlation during cycles 20, 22 and 23. The interplanetary magnetic field shows a weak negative correlation with cosmic rays for solar cycle 20, and a good anti-correlation for solar cycles 21-23 with the cosmic ray intensity, which, in turn, shows a good positive correlation with disturbance time index (Dst) during solar cycles 21 and 22, and a weak correlation for cycles 20 and 23. (Authors)

  18. Cosmic-ray neutron transport at a forest field site

    DEFF Research Database (Denmark)

    Andreasen, Mie; Jensen, Karsten Høgh; Desilets, Darin

    2017-01-01

    -ray neutron intensity is essential (e.g., the effect of vegetation, litter layer and soil type). In this study the environmental effect is examined by performing a sensitivity analysis using neutron transport modeling. We use a neutron transport model with various representations of the forest and different...

  19. Spherical zonal components of cosmic ray between Forbush decreases

    International Nuclear Information System (INIS)

    Takahashi, Hachiro; Yahagi, Naohiro; Nagashima, Kazuo.

    1974-01-01

    Two examples are added to the previous report on the zonal harmonic components of cosmic ray in the space between planets by the three dimensional analysis of anisotropy of cosmic ray. Remarkable Forbush decreases occurred in region I during the period from March 20th to April 11th, 1966 and in region II during the period from August 29th to September 11th, 1966. The data used for analysis are the neutron components that have been informed from cosmic ray observation stations in the world. Power type and power exponential type differential rigidity spectra G(P) were used to find isotropic components. The change of the isotropic component a 0 0 was similar to the change of the neutron intensity in Deep River. The southnorth anisotropic phenomenon of cosmic ray intensity was recognized. The anisotropy in the opposite direction to the southnorth anisotropic phenomenon reported by Nagashima et al. was recognized markedly during the period from March 26th to 30th. These tendencies were checked by comparing with the data from the cosmic ray observation stations located near both poles of the earth. McMurdo and Mawson near the south pole, and Thule and Alert near the north pole were selected. The results of analysis were confirmed with these data. Further, the results of the previous report were checked by using the data from the stations near both poles, namely Thule, Resolute Bay, and Mawson. The good coincidence was confirmed on the anisotropic components. (Iwakiri, K.)

  20. Model-dependent estimate on the connection between fast radio bursts and ultra high energy cosmic rays

    International Nuclear Information System (INIS)

    Li, Xiang; Zhou, Bei; He, Hao-Ning; Fan, Yi-Zhong; Wei, Da-Ming

    2014-01-01

    The existence of fast radio bursts (FRBs), a new type of extragalatic transient, has recently been established, and quite a few models have been proposed. In this work, we discuss the possible connection between the FRB sources and ultra high energy (>10 18 eV) cosmic rays. We show that in the blitzar model and the model of merging binary neutron stars, which includes the huge energy release of each FRB central engine together with the rather high rate of FRBs, the accelerated EeV cosmic rays may contribute significantly to the observed ones. In other FRB models, including, for example, the merger of double white dwarfs and the energetic magnetar radio flares, no significant EeV cosmic ray is expected. We also suggest that the mergers of double neutron stars, even if they are irrelevant to FRBs, may play a nonignorable role in producing EeV cosmic ray protons if supramassive neutron stars are formed in a sufficient fraction of mergers and the merger rate is ≳ 10 3 yr –1 Gpc –3 . Such a possibility will be unambiguously tested in the era of gravitational wave astronomy.

  1. Study of the muon-induced neutron background with the LVD detector

    International Nuclear Information System (INIS)

    Menghetti, H.; Selvi, M.

    2005-01-01

    High energy neutrons, generated as a product of cosmic muon interaction in the rock or in the detector passive material, represent the most dangerous background for a large list of topics like reactor neutrino studies, the search for SN relic neutrinos, solar antineutrinos, etc.Up to now there are few measurements of the muon-produced neutron flux at large depth underground. Moreover it is difficult to reproduce the measured data with Monte Carlo simulation because of the large uncertainties in the neutron production and propagation models.We present here the results of such a measurement with the LVD detector, which is well suited for the detection of neutrons produced by cosmic-ray muons, reporting the neutron flux at various distances from the muon track, for different neutron energies (E > 20 MeV) and as a function of the muon track length in scintillator

  2. A search for solar neutron response in neutron monitor data

    International Nuclear Information System (INIS)

    Kudela, K.

    1990-01-01

    The search for an impulsive increase corresponding to a solar neutron response on high-mountain neutron monitors requires control of the stability of the measurement and elimination of other sources of short-time increases of different kinds which are involved in fluctuations of cosmic-ray intensity. For the solar flare of June 3, 1982 the excess of counting rate on the Lomnicky stit neutron monitor is, within a factor or 1.8, equal to that expected from solar neutrons. Superposed epoch analysis of 17 flares with gamma-ray or hard X-ray production gives a slight tendency of an occurring signal in cases of high heliocentric angles, indicating anisotropic production of neutrons on the sun. The low statistical significance of the result indicates that higher temporal resolution, better evaluation of multiplicity, better knowledge of the power spectra of short-term intensity fluctuations on neutron monitors, as well as coordinated measurements of solar gamma-rays and neutrons on satellites, are required. 21 refs

  3. COSMOS: the COsmic-ray Soil Moisture Observing System

    Directory of Open Access Journals (Sweden)

    M. Zreda

    2012-11-01

    Full Text Available The newly-developed cosmic-ray method for measuring area-average soil moisture at the hectometer horizontal scale is being implemented in the COsmic-ray Soil Moisture Observing System (or the COSMOS. The stationary cosmic-ray soil moisture probe measures the neutrons that are generated by cosmic rays within air and soil and other materials, moderated by mainly hydrogen atoms located primarily in soil water, and emitted to the atmosphere where they mix instantaneously at a scale of hundreds of meters and whose density is inversely correlated with soil moisture. The COSMOS has already deployed more than 50 of the eventual 500 cosmic-ray probes, distributed mainly in the USA, each generating a time series of average soil moisture over its horizontal footprint, with similar networks coming into existence around the world. This paper is written to serve a community need to better understand this novel method and the COSMOS project. We describe the cosmic-ray soil moisture measurement method, the instrument and its calibration, the design, data processing and dissemination used in the COSMOS project, and give example time series of soil moisture obtained from COSMOS probes.

  4. CHARACTERIZATION OF A THIN SILICON SENSOR FOR ACTIVE NEUTRON PERSONAL DOSEMETERS.

    Science.gov (United States)

    Takada, M; Nunomiya, T; Nakamura, T; Matsumoto, T; Masuda, A

    2016-09-01

    A thin silicon sensor has been developed for active neutron personal dosemeters for use by aircrews and first responders. This thin silicon sensor is not affected by the funneling effect, which causes detection of cosmic protons and over-response to cosmic neutrons. There are several advantages to the thin silicon sensor: a decrease in sensitivity to gamma rays, an improvement of the energy detection limit for neutrons down to 0.8 MeV and an increase in the sensitivity to fast neutrons. Neutron response functions were experimentally obtained using 2.5 and 5 MeV monoenergy neutron beams and a (252)Cf neutron source. Simulation results using the Monte Carlo N-Particle transport code agree quite well with the experimental ones when an energy deposition region shaped like a circular truncated cone is used in place of a cylindrical region. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. The latitude distribution of cosmic rays at sea level during 1976

    International Nuclear Information System (INIS)

    Potgieter, M.S.

    1978-12-01

    During the 1976 period of maximum intensity of cosmic rays a latitude survey was carried out at sea level with two neutron monitors and a neutron moderated detector on board the S.A. Huguenot of Safmarine. The survey lasted for eleven months from December 1975 to November 1976 and a cutoff rigidity range from 1,8 GV (New York) to 17 GV (Singapore) was covered. The second neutron monitor was designed to be more effective and less sensitive than the standard 1NM64 for the roll and pitch of a ship. A theoretical simulation model was used to compare the characteristics of the two neutron monitors and was finally compared with experimental results. The data recorded during visits to various harbours at specific cutoff rigidities were used to determine a attenuation coefficient for both monitors. The data were corrected for variations in the primary cosmic ray spectrum by using a modulations function characteristic of a period of normal modulation. The data were normalised to the relative counting rate of four reference monitor stations during October 1976. A polynomial regression analysis was used to find the best fit to the experimental data for both monitors. The differential response functions were there-upon calculated and compared. Finally the data were corrected for temperature dependence because of the constribution of muons to the counting rate of a neutron monitor. The long term correction coefficients which were used proved to be satisfactory. The difference between the temperature corrected and uncorrected response functions turned out to be less than 0,5% at 1 GV. A comparison of the 1965 and 1976 latitude distributions showed that the 1976 cosmic ray spectrum was softer compared to the previous maximum in 1965 and about the same as in 1954

  6. Monitoring Landscape Scale Soil Water Content with Cosmic-Ray Neutron Sensors: Validation and Calibration

    International Nuclear Information System (INIS)

    Wahbi, Ammar; Avery, William A.; Dercon, Gerd; Heng, Lee; Weltin, Georg; Franz, Trenton E.; Strauss, Peter; Oismueller, Markus; Desilets, Darin

    2017-01-01

    Increasing populations growth combined with climate change are putting pressure on water resources and agricultural systems around the world. The need for effective water management strategies designed to maximize water use efficiency has made access to soil water content (SWC) information crucial to the global community. This work builds upon ongoing research that began in December 2013 in which a stationary Cosmic-Ray Neutron Sensor (CRNS) was used to monitor SWC within an agricultural system located in north central Austria. Past work at this study site at Petzenkirchen, Austria (100 km west of Vienna) has focused on the calibration and validation of the CRNS technology, and has shown the CRNS to reliably estimate SWC on a large scale (circle with radius of cca. 250 m) when compared to other methods of estimating SWC. This was determined via comparisons of insitu soil sampling, time domain reflectometry (TDR), and time domain transmissivity (TDT) of SWC with estimates of SWC determined from the CRNS. However, questions remain regarding the effective use of the CRNS technology.

  7. Intensity variation of cosmic rays near the heliospheric current sheet

    International Nuclear Information System (INIS)

    Badruddin, K.S.; Yadav, R.S.; Yadav, N.R.

    1985-01-01

    Cosmic ray intensity variations near the heliospheric current sheet-both above and below it-have been studied during 1964-76. Superposed epoch analysis of the cosmic ray neutron monitor data with respect to sector boundaries (i.e., heliospheric current sheet crossings) has been performed. In this analysis data from neutron monitors well distributed in latitude over the Earth's surface is used. First, this study has been made during the two solar activity minimum periods 1964-65 and 1975-76, using the data from Thule (cut-off rigidity O GV), Deep River (cut-off rigidity 1.02 GV), Rome (cut-off rigidity 6.32 GV) and Huancayo (cut-off rigidity 13.45 GV) neutron monitors. The data is analyzed from Deep River, Rome and Huancayo neutron monitors, for which data is available for the full period (1964-76), by dividing the periods according to the changes in solar activity, interplanetary magnetic field polarity and coronal holes. All these studies have shown a negative gradient with respect to heliomagnetic latitude (current sheet). These results have been discussed in the light of theoretical and observational evidences. Suggestions have been given to overcome the discrepancy between the observational and theoretical results. Further, possible explanations for these observational results have been suggested. (author)

  8. Neutron measurements in search of cold fusion

    International Nuclear Information System (INIS)

    Anderson, R.E.; Goulding, C.A.; Johnson, M.W.; Butterfield, K.B.; Gottesfeld, S.; Baker, D.A.; Springer, T.E.; Garzon, F.H.; Bolton, R.D.; Leonard, E.M.; Chancellor, T.

    1990-01-01

    We have conducted a research for neutron emission from cold fusion systems of the electrochemical type and, to a lesser extent, the high-pressure gas cell type. Using a high-efficiency well counter and an NE 213 scintillator, the experiments were conducted on the earth's surface and in a shielded cave approximately 50 ft underground. After approximately 6500 h of counting time, we have obtained no evidence for cold fusion processes leading to neutron production. However, we have observed all three types of neutron data that have been presented as evidence for cold fusion: large positive fluctuations in the neutron counting rate, weak peaks near 2.5 MeV in the neutron energy spectrum, and bursts of up to 145 neutrons in 500-μs intervals. The data were obtained under circumstances that clearly show our results to be data encountered as a part of naturally occurring neutron background, which is due primarily to cosmic rays. Thus, observing these types of data does not, of itself, provide evidence for the existence of cold fusion processes. Artifacts in the data that were due to counter misbehavior were also to lead to long-term ''neutron bursts'' whose time duration varied from several hours to several days. We conclude that any experiments which attempt to observe neutron emission must include strong steps to ensure that the experiments deal adequately with both cosmic-ray processes and counter misbehavior. 13 refs., 14 figs

  9. Radiation transport of cosmic ray nuclei in lunar material and radiation doses

    International Nuclear Information System (INIS)

    Silberberg, R.; Tsao, C.H.; Adams, J.H. Jr.; Letaw, J.R.

    1985-01-01

    The radiation environment on the lunar surface is inhospitable. The permanent settlers may work ten hours per 24-hour interval for the two-week-long lunar day on the lunar surface, or 20 percent of the total time. At moderate depths below the lunar surface (less than 200 g/sq cm) the flux of secondary neutrons exceeds considerably that in the upper atmosphere of the earth, due to cosmic-ray interactions with lunar material. The annual dose equivalent due to neutrons is about 20 or 25 rem within the upper meter of the lunar surface. The dose equivalent due to gamma rays generated by nuclear interactions near the lunar surface is only on the order of 1 percent of that due to neutrons. However, gamma-ray line emission from excited nuclei and nuclear spallation products generated by cosmic rays near the lunar surface is of considerable interest: these lines permit the partial determination of lunar composition by gamma spectroscopy. 12 references

  10. Galactic cosmic ray spectral index: the case of Forbush decreases of March 2012

    Science.gov (United States)

    Livada, M.; Mavromichalaki, H.; Plainaki, C.

    2018-01-01

    During the burst of solar activity in March 2012, close to the maximum of solar cycle 24, a number of X-class and M-class flares and halo CMEs with velocity up to 2684 km/s were recorded. During a relatively short period (7-21 March 2012) two Forbush decreases were registered in the ground-level neutron monitor data. In this work, after a short description of the solar and geomagnetic background of these Forbush decreases, we deduce the cosmic ray density and anisotropy variations based on the daily cosmic ray data of the neutron monitor network (http://www.nmdb.eu; http://cosray.phys.uoa.gr). Applying to our data two different coupling functions methods, the spectral index of these Forbush decreases was calculated following the technique of Wawrzynczak and Alania (Adv. Space Res. 45:622-631, 2010). We pointed out that the estimated values of the spectral index γ of these events are almost similar for both cases following the fluctuation of the Forbush decrease. The study and the calculation of the cosmic ray spectrum during such cosmic ray events are very important for Space Weather applications.

  11. Cosmic Rays in the Heliosphere: Requirements for Future Observations

    Science.gov (United States)

    Mewaldt, R. A.

    2013-06-01

    Since the publication of Cosmic Rays in the Heliosphere in 1998 there has been great progress in understanding how and why cosmic rays vary in space and time. This paper discusses measurements that are needed to continue advances in relating cosmic ray variations to changes in solar and interplanetary activity and variations in the local interstellar environment. Cosmic ray acceleration and transport is an important discipline in space physics and astrophysics, but it also plays a critical role in defining the radiation environment for humans and hardware in space, and is critical to efforts to unravel the history of solar activity. Cosmic rays are measured directly by balloon-borne and space instruments, and indirectly by ground-based neutron, muon and neutrino detectors, and by measurements of cosmogenic isotopes in ice cores, tree-rings, sediments, and meteorites. The topics covered here include: what we can learn from the deep 2008-2009 solar minimum, when cosmic rays reached the highest intensities of the space era; the implications of 10Be and 14C isotope archives for past and future solar activity; the effects of variations in the size of the heliosphere; opportunities provided by the Voyagers for discovering the origin of anomalous cosmic rays and measuring cosmic-ray spectra in interstellar space; and future space missions that can continue the exciting exploration of the heliosphere that has occurred over the past 50 years.

  12. Cosmic radiation and air crew exposure

    International Nuclear Information System (INIS)

    Vukovic, B.; Lisjak, I.; Vekic, B.; Planinic, J.

    2005-01-01

    When the primary particles from space, mainly protons, enter the atmosphere, they interact with the air nuclei and induce cosmic-ray shower. When an aircraft is in the air, the radiation field within includes many types of radiation of large energy range; the field comprises mainly photons, electrons, positrons and neutrons. Cosmic radiation dose for crews of air crafts A 320 and ATR 42 was measured using TLD-100 (LiF: Mg, Ti) detectors and the Mini 6100 semiconductor dosimeter; radon concentration in the atmosphere was measured using the Alpha Guard radon detector. The total annual dose estimated for the A 320 aircraft crew, at altitudes up to 12000 meters, was 5.3 mSv (including natural radon radiation dose of 1.1 mSv).(author)

  13. Towards Hydrological Applications of Stationary and Roving Cosmic-Ray Neutron Sensors in the Light of Spatial Sensitivity

    Science.gov (United States)

    Schrön, M.; Köhli, M.; Rosolem, R.; Baroni, G.; Bogena, H. R.; Brenner, J.; Zink, M.; Rebmann, C.; Oswald, S. E.; Dietrich, P.; Samaniego, L. E.; Zacharias, S.

    2017-12-01

    Cosmic-Ray Neutron Sensing (CRNS) has become a promising and unique method to monitor water content at an effective scale of tens of hectares in area and tens of centimeters in depth. The large footprint is particularly beneficial for hydrological models that operate at these scales.However, reliable estimates of average soil moisture require a detailed knowledge about the sensitivity of the signal to spatial inhomogeneity within the footprint. From this perspective, the large integrating volume challenges data interpretation, validation, and calibration of the sensor. Can we still generate reliable data for hydrological applications? One of the top challenges in the last years was to find out where the signal comes from, and how sensitive it is to spatial variabilities of moisture. Neutron physics simulations have shown that the neutron signal represents a non-linearly weighted average of soil water in the footprint. With the help of the so-called spatial sensitivity functions it is now possible to quantify the contribution of certain regions to the neutron signal. We present examples of how this knowledge can help (1) to understand the contribution of irrigated and sealed areas in the footprint, (2) to improve calibration and validation of the method, and (3) to even reveal excess water storages, e.g. from ponding or rain interception.The spatial sensitivity concept can also explain the influence of dry roads on the neutron signal. Mobile surveys with the CRNS rover have been a common practice to measure soil moisture patterns at the kilometer scale. However, dedicated experiments across agricultural fields in Germany and England have revealed that field soil moisture is significantly underestimated when moving the sensor on roads. We show that knowledge about the spatial sensitivity helps to correct survey data for these effects, depending on road material, width, and distance from the road. The recent methodological advances allow for improved signal

  14. Estimated neutron dose to embryo and foetus during commercial flight

    International Nuclear Information System (INIS)

    Chen, J.; Lewis, B. J.; Bennett, L. G. I.; Green, A. R.; Tracy, B. L.

    2005-01-01

    A study has been carried out to assess the radiation exposure from cosmic-ray neutrons to the embryo and foetus of pregnant aircrew and air travellers in consideration of the radiation exposure from cosmic-ray neutrons to the embryo and foetus. A Monte Carlo analysis was performed to determine the equivalent dose from neutrons to the brain and body of an embryo at 8 weeks and to the foetus at the 3, 6 and 9 month periods. Neutron fluence-to-absorbed dose conversion coefficients for the foetal brain and for the entire foetal body (isotropic irradiation geometry) have been determined at the four developmental stages. The equivalent dose rate to the foetus during commercial flights has been further evaluated considering the fluence-to-absorbed dose conversion coefficients, a neutron spectrum measured at an altitude of 11.3 km and an ICRP-92 radiation-weighting factor for neutrons. This study indicates that the foetus can exceed the annual dose limit of 1 mSv for the general public after, for example, 15 round trips on commercial trans-Atlantic flights. (authors)

  15. Measurements of neutron radiation in aircraft

    International Nuclear Information System (INIS)

    Vukovic, B.; Poje, M.; Varga, M.; Radolic, V.; Miklavcic, I.; Faj, D.; Stanic, D.; Planinic, J.

    2010-01-01

    Radiation environment is a complex mixture of charged particles of the solar and galactic origin, as well as of secondary particles created in an interaction of galactic cosmic particles with the nuclei of the Earth's atmosphere. A radiation field at aircraft altitude consists of different types of particles, mainly photons, electrons, positrons and neutrons, with a large energy range. In order to measure a neutron component of the cosmic radiation, we investigated a few combinations of a track etch detector (CR-39, LR-115) with a plastic converter or boron foil. Detector calibration was performed on neutrons coming from the nuclear reactor, as well as in the CERN-EU high-energy Reference Field (CERF) facility. From November 2007 to September 2008, the neutron dose equivalent was measured by the track detectors during five aircraft flights, in the north geographical latitude from 21 o to 58 o ; the respective average dose rate, determined by using the D-4 detector (CR-39/B), was H n =5.9 μSv/h. The photon dose rate, measured by the electronic dosimeter RAD-60 SE, had the average value of H f =1.4 μSv/h.

  16. Measurements of neutron radiation in aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Vukovic, B.; Poje, M.; Varga, M.; Radolic, V.; Miklavcic, I. [Department of Physics, University of Osijek, Osijek, P.O. Box 125 (Croatia); Faj, D. [Clinical Hospital Osijek (Croatia); Stanic, D. [Department of Physics, University of Osijek, Osijek, P.O. Box 125 (Croatia); Planinic, J., E-mail: planinic@ffos.h [Department of Physics, University of Osijek, Osijek, P.O. Box 125 (Croatia)

    2010-12-15

    Radiation environment is a complex mixture of charged particles of the solar and galactic origin, as well as of secondary particles created in an interaction of galactic cosmic particles with the nuclei of the Earth's atmosphere. A radiation field at aircraft altitude consists of different types of particles, mainly photons, electrons, positrons and neutrons, with a large energy range. In order to measure a neutron component of the cosmic radiation, we investigated a few combinations of a track etch detector (CR-39, LR-115) with a plastic converter or boron foil. Detector calibration was performed on neutrons coming from the nuclear reactor, as well as in the CERN-EU high-energy Reference Field (CERF) facility. From November 2007 to September 2008, the neutron dose equivalent was measured by the track detectors during five aircraft flights, in the north geographical latitude from 21{sup o} to 58{sup o}; the respective average dose rate, determined by using the D-4 detector (CR-39/B), was H{sub n}=5.9 {mu}Sv/h. The photon dose rate, measured by the electronic dosimeter RAD-60 SE, had the average value of H{sub f}=1.4 {mu}Sv/h.

  17. Direct detection of albedo neutron decay electrons at the inner edge of the radiation belt and experimental determination of neutron density in near-Earth space

    Science.gov (United States)

    Li, X.; Selesnick, R.; Schiller, Q. A.; Zhang, K.; Zhao, H.; Baker, D. N.; Temerin, M. A.

    2017-12-01

    The galaxy is filled with cosmic ray particles, mostly protons with kinetic energy above hundreds of mega-electron volts (MeV). Soon after the discovery of Earth's Van Allen radiation belts almost six decades ago, it was recognized that the main source of inner belt protons, with kinetic energies of tens to hundreds of MeV, is Cosmic Ray Albedo Neutron Decay (CRAND). In this process, cosmic rays reaching the upper atmosphere from throughout the galaxy interact with neutral atoms to produce albedo neutrons which, being unstable to 𝛽 decay, are a potential source of geomagnetically trapped protons and electrons. Protons retain most of the neutrons' kinetic energy while the electrons have lower energies, mostly below 1 MeV. The viability of the electron source was, however, uncertain because measurements showed that electron intensity can vary greatly while the neutron decay rate should be almost constant. Recent measurements from the Relativistic Electron and Proton Telescope integrated little experiment (REPTile) onboard the Colorado Student Space Weather Experiment (CSSWE) CubeSat now show that CRAND is the main electron source for the radiation belt near its inner edge, and also contributes to the inner belt elsewhere. Furthermore, measurement of the CRAND electron intensity provides the first experimental determination of the neutron density in near-Earth space, 2x10-9/cm3, confirming earlier theoretical estimates.

  18. Neutron monitor measurements on the German research vessel Polarstern. First results

    Energy Technology Data Exchange (ETDEWEB)

    Heber, B. [Insititut fuer Experimentelle und Angewandte Physik, Christian-Albrechts-Universitaet zu Kiel (Germany); Schwerdt, C.; Walter, M. [Deutsches Elektronen-Synchrotron DESY, D-15738 Zeuthen (Germany); Bernade, G.; Fuchs, R.; Krueger, H.; Moraal, H. [Center for Space Research, North-West University, Potchefstroom 2520 (South Africa)

    2014-07-01

    Cosmic-ray particles provide a unique opportunity to probe the dynamic conditions in the highly variable heliosphere. The longest continuous measurements of galactic cosmic rays come from cosmogenic isotopes and from neutron monitors located at different location on Earth. Understanding the effects of energetic particles in and on the atmosphere and the environment of Earth must address their transport to Earth and their interactions with the Earth's atmosphere, including their filtering by the terrestrial magnetosphere. Since neutron monitors are integral detectors of secondary cosmic rays produced in the atmosphere, a single neutron monitor can only derive the energy spectra of the particles impinging on the Earth during latitudinal surveys. A portable neutron monitor was built at the North-West University, South Africa, and was installed on the German research vessel Polarstern. Such latitude surveys have been done before, but this vessel is better suited for this purpose than previous platforms because it traverses all the locations with geomagnetic cutoff rigidities from <<1 GV to 15 GV at least twice per year. In this contribution we present first results from the measurement campaigns.

  19. Validation of SMAP Root Zone Soil Moisture Estimates with Improved Cosmic-Ray Neutron Probe Observations

    Science.gov (United States)

    Babaeian, E.; Tuller, M.; Sadeghi, M.; Franz, T.; Jones, S. B.

    2017-12-01

    Soil Moisture Active Passive (SMAP) soil moisture products are commonly validated based on point-scale reference measurements, despite the exorbitant spatial scale disparity. The difference between the measurement depth of point-scale sensors and the penetration depth of SMAP further complicates evaluation efforts. Cosmic-ray neutron probes (CRNP) with an approximately 500-m radius footprint provide an appealing alternative for SMAP validation. This study is focused on the validation of SMAP level-4 root zone soil moisture products with 9-km spatial resolution based on CRNP observations at twenty U.S. reference sites with climatic conditions ranging from semiarid to humid. The CRNP measurements are often biased by additional hydrogen sources such as surface water, atmospheric vapor, or mineral lattice water, which sometimes yield unrealistic moisture values in excess of the soil water storage capacity. These effects were removed during CRNP data analysis. Comparison of SMAP data with corrected CRNP observations revealed a very high correlation for most of the investigated sites, which opens new avenues for validation of current and future satellite soil moisture products.

  20. Department of Cosmic Ray Physics; Overview

    International Nuclear Information System (INIS)

    Szabelski, J.

    2003-01-01

    Full text: Department of Cosmic Ray Physics in Lodz is involved in basic research in the area of high-energy physics and cosmic ray physics related to: - Experimental and phenomenological studies of Extensive Air Showers induced by cosmic ray particles. - Studies of ultra-high energy (above 10 19 eV) cosmic rays: determination of energy spectrum and mass composition of primary particles - Studies of asymptotic properties of hadronic interactions based on the analysis of cosmic ray propagation through the atmosphere. - Studies of mass composition of cosmic rays in the energy range 10 15 - 10 17 eV. - Registration of cosmic ray intensity variation correlated with solar activity. Theoretical and experimental studies of Extensive Air Shower properties are performed mostly basing on the results obtained by the Lodz Extensive Air Shower Array. We have noticed unexplainable delayed signals registered about 500-900 microseconds after the main EAS pulse. Neutron transport simulations were performed in collaboration with JINR in Dubna. We prepared hardware for further experimental study of this effect. Continuous registrations of 5 GeV muon flux with the underground muon telescope have been carried on over the year 2001. We have detected several changes of muon intensity correlated with Forbush decreases registered at lower energies. We have also started registrations of muon counting rate in the on-surface scintillation detectors. These measurements will be included to the analysis of the disturbed energy spectrum of primary cosmic rays and its dependence on interplanetary disturbances related to the solar activity. In construction and data interpretation of cosmic ray experiments the Lodz group collaborates with many foreign institutes and laboratories: Forschungszentrum in Karlsruhe (Germany), College de France, Institute for Nuclear Studies of the Russian Academy of Sciences, JINR in Dubna (Russia), Uppsala University (Sweden) and DESY (Germany). We have prepared a

  1. Lunar neutron source function

    International Nuclear Information System (INIS)

    Kornblum, J.J.

    1974-01-01

    The search for a quantitative neutron source function for the lunar surface region is justified because it contributes to our understanding of the history of the lunar surface and of nuclear process occurring on the moon since its formation. A knowledge of the neutron source function and neutron flux distribution is important for the interpretation of many experimental measurements. This dissertation uses the available pertinent experimental measurements together with theoretical calculations to obtain an estimate of the lunar neutron source function below 15 MeV. Based upon reasonable assumptions a lunar neutron source function having adjustable parameters is assumed for neutrons below 15 MeV. The lunar neutron source function is composed of several components resulting from the action of cosmic rays with lunar material. A comparison with previous neutron calculations is made and significant differences are discussed. Application of the results to the problem of lunar soil histories is examined using the statistical model for soil development proposed by Fireman. The conclusion is drawn that the moon is losing mass

  2. Calibration of the time response functions of a quenched plastic scintillator for neutron time of flight

    CERN Document Server

    Chen, J B; Peng, H S; Tang, C H; Zhang, B H; Ding, Y K; Chen, M; Chen, H S; Li, C G; Wen, T S; Yu, R Z

    2002-01-01

    The time response functions of an ultrafast quenched plastic scintillation detector used to measure neutron time of flight spectra were calibrated by utilizing cosmic rays and implosion neutrons from DT-filled capsules at the Shenguang II laser facility. These sources could be regarded as delta function pulses due to their much narrower time widths than those of the time response functions of the detection system. The results showed that the detector responses to DT neutrons and to cosmic rays were 1.18 and 0.96 ns FWHM, respectively.

  3. Hard X ray lines from neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Polcaro, V.F.; Bazzano, A.; La Padula, C.; Ubertini, P.

    1982-01-01

    Experimental evidence is presented and evaluated concerning the features of the hard X-ray spectra detected in a number of cosmic X-ray sources which contain a neutron star. The strong emission line at cyclotron resonance detected in the spectrum of Her XI at an energy of 58 keV is evaluated and the implications of this finding are discussed. Also examined is the presence of spectral features in the energy range 20-80 keV found in the spectra of gamma-ray bursts, which have been interpreted as cyclotron resonance from interstellar-gas-accreting neutron stars. The less understood finding of a variable emission line at approximately 70 keV in the spectrum of the Crab Pulsar is considered. It is determined that several features varying with time are present in the spectra of cosmic X-ray sources associated with neutron stars. If these features are due to cyclotron resonance, it is suggested that they provide a direct measurement of neutron star magnetic fields on the order of 10 to the 11th-10 to the 13th Gauss. However, the physical condition of the emitting region and its geometry are still quite obscure.

  4. Simulations of muon-induced neutron flux at large depths underground

    International Nuclear Information System (INIS)

    Kudryavtsev, V.A.; Spooner, N.J.C.; McMillan, J.E.

    2003-01-01

    The production of neutrons by cosmic-ray muons at large depths underground is discussed. The most recent versions of the muon propagation code MUSIC, and particle transport code FLUKA are used to evaluate muon and neutron fluxes. The results of simulations are compared with experimental data

  5. Neutron spectra produced by moderating an isotopic neutron source

    International Nuclear Information System (INIS)

    Carrillo Nunnez, Aureliano; Vega Carrillo, Hector Rene

    2001-01-01

    A Monte Carlo study has been carried out to determine the neutron spectra produced by an isotopic neutron source inserted in moderating media. Most devices used for radiation protection have a response strongly dependent on neutron energy. ISO recommends several neutron sources and monoenergetic neutron radiations, but actual working situations have broad spectral neutron distributions extending from thermal to MeV energies, for instance, near nuclear power plants, medical applications accelerators and cosmic neutrons. To improve the evaluation of the dosimetric quantities, is recommended to calibrate the radiation protection devices in neutron spectra which are nearly like those met in practice. In order to complete the range of neutron calibrating sources, it seems useful to develop several wide spectral distributions representative of typical spectra down to thermal energies. The aim of this investigation was to use an isotopic neutron source in different moderating media to reproduce some of the neutron fields found in practice. MCNP code has been used during calculations, in these a 239PuBe neutron source was inserted in H2O, D2O and polyethylene moderators. Moderators were modeled as spheres and cylinders of different sizes. In the case of cylindrical geometry the anisotropy of resulting neutron spectra was calculated from 0 to 2 . From neutron spectra dosimetric features were calculated. MCNP calculations were validated by measuring the neutron spectra of a 239PuBe neutron source inserted in a H2O cylindrical moderator. The measurements were carried out with a multisphere neutron spectrometer with a 6LiI(Eu) scintillator. From the measurements the neutron spectrum was unfolded using the BUNKIUT code and the UTA4 response matrix. Some of the moderators with the source produce a neutron spectrum close to spectra found in actual applications, then can be used during the calibration of radiation protection devices

  6. Study of Primary Cosmic Ray Electrons In Energy Range 10^11 - 10^13 Ev By Pamela Instrument.

    Science.gov (United States)

    Voronov, S.; Pamela Collaboration

    The main goal of the magnetic spectrometer PAMELA is the study of antiparticle fluxes with energy up to 300 GeV in cosmic rays on board satellite. A modification of instrument was done by introducing of neutron detector. This device was placed under imaging calorimeter and bottom scintillator counter. It consists of two layers of 36 3He gas counters enveloped by a polyethylene moderator. The neutron detector gives additional possibility to identify the antiprotons going in aperture of spectrome- ter and generating the nuclear cascade in tungsten plates of calorimeter. This shower is followed by big number of neutrons in contrast to electromagnetic one caused by elec- tron or positron. From other side the combination of the imaging calorimeter, bottom scintillator and neutron detector constitute the independent instrument with large field of view which gives the possibility to measure the electron-positron cosmic ray com- ponent in energy range 1011-1013 eV with a rejection factor of order 10-4 regarding to nuclear one.

  7. Neutron spectrometry and dosimetry in the environment and at workplaces

    International Nuclear Information System (INIS)

    Alevra, A.V.; Klein, H.; Knauf, K.; Wittstock, J.; Wolber, G.

    1998-01-01

    Results obtained in diverse environments (including workplaces) using both spectrometric and dosimetric instrumentation were compared. The following topics are included: PTB Bonner sphere spectrometers; natural cosmic ray-induced neutron background; neutron fields at the Dukovany nuclear power plant (Czech Republic); neutron fields at the isochronous cyclotron of the German Cancer Research center in Heidelberg; and accuracy of the integral results obtained with Bonner spheres. (P.A.)

  8. Energy spectrum of galactic cosmic ray modulation and dependence of modulation parameters on distance

    International Nuclear Information System (INIS)

    Erkhov, V.I.; Kolomeets, E.V.; Likhoded, V.A.; Sevast'yanov, V.N.; Stekol'nikov, N.V.

    1981-01-01

    The paper presents the results of numerical calculation of galactic cosmic ray modulation by solar wind. Calculations were carried out on the basis of diffusion model taking into account convection and adiabatic loss of particles in interplanetary space. Both isotropic and anisotropic models were used in calculations. Modulation coefficient was calculated using the data on intensity of neutron component of cosmic rays and primary cosmic rays in the stratosphere for the period 1958-1979. The form of modulation function was determined. Obtained results allow to determine the size of modulation region and dependence of solar wind speed and diffusion coefficient on distance

  9. Phase density of neutrons emitted by an atmosphereless planet

    International Nuclear Information System (INIS)

    Goryachev, B.I.; Isakov, A.I.; Lin'kova, N.V.

    1986-01-01

    An approach to calculation of small planet neutron emission characteristics is developed. Using artificial satellites and space probes information on the planet surface may be obtained by analyzing neutron emission being the result of cosmic rays effect. Available calculation methods permit to calculate angular distribution and neutron flux F 0 from planet surface as a function of its surface layer chemical composition. Neutron flux measured by a sattelite and F 0 flux may be connected by a function describing neuton phase density near the planet

  10. Detecting special nuclear material using muon-induced neutron emission

    Energy Technology Data Exchange (ETDEWEB)

    Guardincerri, Elena; Bacon, Jeffrey; Borozdin, Konstantin; Matthew Durham, J.; Fabritius II, Joseph [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Hecht, Adam [University of New Mexico, Albuquerque, NM 87131 (United States); Milner, Edward C. [Southern Methodist University, Dallas, TX 75205 (United States); Miyadera, Haruo; Morris, Christopher L. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Perry, John [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); University of New Mexico, Albuquerque, NM 87131 (United States); Poulson, Daniel [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2015-07-21

    The penetrating ability of cosmic ray muons makes them an attractive probe for imaging dense materials. Here, we describe experimental results from a new technique that uses neutrons generated by cosmic-ray muons to identify the presence of special nuclear material (SNM). Neutrons emitted from SNM are used to tag muon-induced fission events in actinides and laminography is used to form images of the stopping material. This technique allows the imaging of SNM-bearing objects tagged using muon tracking detectors located above or to the side of the objects, and may have potential applications in warhead verification scenarios. During the experiment described here we did not attempt to distinguish the type or grade of the SNM.

  11. Reduction of cosmic-ray components by veto plastic scintillator

    International Nuclear Information System (INIS)

    Hamajima, Y.; Komura, K.

    2004-01-01

    The cosmic-ray component causes the background (BG) in the Ge detector set up on the above ground. The background reduction system was examined by using a plastic scintillator (PS) as a guard counter. It was possible to detect cosmic-ray enough even with a thin PS (0.5 mm in thickness). The resolving time of the timing signal between PS and Ge detector was needed for 10 microseconds. In anti-coincidence with the timing signals of PS, it was possible to reject 90% of the cosmic-ray component by setting up PS to cover the above hemisphere of the Ge detector. It is significant for the anti-coincidence system at above ground to set up effective shield by using ultra low BG Ge and shielding materials as much as possible. It was difficult to reject the secondary neutron component with this system. (author)

  12. Heliospheric Modulation of Galactic Cosmic Rays; Diurnal Variability Abstract Details

    Science.gov (United States)

    Kalu, D. F.; Okpala, K. C.

    2017-12-01

    We have studied the variability of Cosmic rays flux during solar quiet days at mid and high latitudes in the Northern Hemisphere. By using the five (5) quietest days for each month and the five disturbed days for each month, the monthly mean diurnal variation of cosmic ray anisotropy have been derived for the period 1999-2015, which covers part of cycles 23, and cycle 24. This study seeks to understand the heliospheric contribution to the variation of these Cosmic rays on quietest days, three stations (Inuvik, Moscow, Rome) Neutron Monitors were employed. This study seeks to understand the important features of the high latitude and mid latitude diurnal wave, and how solar and geomagnetic activity may be influencing the wave characteristics. Cosmic ray wave characteristics were obtained by discrete Fourier transform (DFT). The mean, diurnal amplitude, phase and dispersion for each month's diurnal wave were calculated and profiled. There was clear indication that the terrestrial effect on the variability of the monthly mean was more associated with geomagnetic activity rather than rigidity of the cosmic rays. Correlation of the time series of these wave characteristic with solar and geomagnetic activity index showed better association with solar activity.

  13. Latitudinal and longitudinal dependence of the cosmic ray diurnal anisotropy during 2001-2014

    International Nuclear Information System (INIS)

    Tezari, Anastasia; Mavromichalaki, Helen; Katsinis, Dimitrios; Kanellakopoulos, Anastasios; Kolovi, Sofia; Plainaki, Christina; National and Kapodistrian Univ. of Athens; Andriopoulou, Maria

    2016-01-01

    The diurnal anisotropy of cosmic ray intensity for the time period 2001 to 2014 is studied, covering the maximum and the descending phase of solar cycle 23, the minimum between solar cycles 23 and 24, and the ascending phase and maximum of solar cycle 24. Cosmic ray intensity data from 11 neutron monitor stations located at different places around the Northern Hemisphere obtained from the high-resolution Neutron Monitor Database (NMDB) were used. Special software was developed for the calculations of the amplitude and the phase of the diurnal anisotropy vectors on annual and monthly basis using Fourier analysis and for the creation of the harmonic dial diagrams. The geomagnetic bending for each station was taken into account in our calculations determined from the asymptotic cones of each station via the Tsyganenko96 (Tsyganenko and Stern, 1996) magnetospheric model. From our analysis, it was resulted that there is a different behavior of the diurnal anisotropy vectors during the different phases of the solar cycles depending on the solar magnetic field polarity. The latitudinal and longitudinal distribution of the cosmic ray diurnal anisotropy was also examined by grouping the stations according to their geographic coordinates, and it was shown that diurnal variation is modulated not only by the latitude but also by the longitude of the stations. The diurnal anisotropy during strong events of solar and/or cosmic ray activity is discussed.

  14. Latitudinal and longitudinal dependence of the cosmic ray diurnal anisotropy during 2001-2014

    Energy Technology Data Exchange (ETDEWEB)

    Tezari, Anastasia; Mavromichalaki, Helen; Katsinis, Dimitrios; Kanellakopoulos, Anastasios; Kolovi, Sofia [National and Kapodistrian Univ. of Athens (Greece). Nuclear and Particle Physics Dept.; Plainaki, Christina [INAF-IAPS, Rome (Italy); National and Kapodistrian Univ. of Athens (Greece). Nuclear and Particle Physics Dept.; Andriopoulou, Maria [Austrian Academy of Sciences, Graz (Austria). Space Research Inst.

    2016-07-01

    The diurnal anisotropy of cosmic ray intensity for the time period 2001 to 2014 is studied, covering the maximum and the descending phase of solar cycle 23, the minimum between solar cycles 23 and 24, and the ascending phase and maximum of solar cycle 24. Cosmic ray intensity data from 11 neutron monitor stations located at different places around the Northern Hemisphere obtained from the high-resolution Neutron Monitor Database (NMDB) were used. Special software was developed for the calculations of the amplitude and the phase of the diurnal anisotropy vectors on annual and monthly basis using Fourier analysis and for the creation of the harmonic dial diagrams. The geomagnetic bending for each station was taken into account in our calculations determined from the asymptotic cones of each station via the Tsyganenko96 (Tsyganenko and Stern, 1996) magnetospheric model. From our analysis, it was resulted that there is a different behavior of the diurnal anisotropy vectors during the different phases of the solar cycles depending on the solar magnetic field polarity. The latitudinal and longitudinal distribution of the cosmic ray diurnal anisotropy was also examined by grouping the stations according to their geographic coordinates, and it was shown that diurnal variation is modulated not only by the latitude but also by the longitude of the stations. The diurnal anisotropy during strong events of solar and/or cosmic ray activity is discussed.

  15. Partial ring currents and cosmic ray magnetic cutoff rigidity variations

    International Nuclear Information System (INIS)

    Arens, M.

    1978-01-01

    A short introduction on cosmic ray modulation and a description of the magnetosphere, and of some physical processes occurring within its boundaries are presented. 20 geomagnetic storms are analysed together with the cosmic ray intensities during these storms as measured by Neutron Monitors. Using a semi-empirical method, the variations in the magnetic cutoff rigidity for the mountain stations Pic du Midi and Jungfraujoch are deduced. These stations are the most sensitive for measuring these variations. The analysis shows that all analyzed storms have an asymmetric development phase. Often the asymmetry even continues during part of the recovery phase. It is shown that variations in magnetic cutoff rigidity occur only during the asymmetric phase of the storm. The largest variations are found when the cosmic ray station is located in the late afternoon-midnight sector. (Auth.)

  16. RECORD-SETTING COSMIC-RAY INTENSITIES IN 2009 AND 2010

    International Nuclear Information System (INIS)

    Mewaldt, R. A.; Davis, A. J.; Leske, R. A.; Stone, E. C.; Cummings, A. C.; Labrador, A. W.; Lave, K. A.; Binns, W. R.; Israel, M. H.; Wiedenbeck, M. E.; Christian, E. R.; De Nolfo, G. A.; Von Rosenvinge, T. T.

    2010-01-01

    We report measurements of record-setting intensities of cosmic-ray nuclei from C to Fe, made with the Cosmic Ray Isotope Spectrometer carried on the Advanced Composition Explorer in orbit about the inner Sun-Earth Lagrangian point. In the energy interval from ∼70 to ∼450 MeV nucleon -1 , near the peak in the near-Earth cosmic-ray spectrum, the measured intensities of major species from C to Fe were each 20%-26% greater in late 2009 than in the 1997-1998 minimum and previous solar minima of the space age (1957-1997). The elevated intensities reported here and also at neutron monitor energies were undoubtedly due to several unusual aspects of the solar cycle 23/24 minimum, including record-low interplanetary magnetic field (IMF) intensities, an extended period of reduced IMF turbulence, reduced solar-wind dynamic pressure, and extremely low solar activity during an extended solar minimum. The estimated parallel diffusion coefficient for cosmic-ray transport based on measured solar-wind properties was 44% greater in 2009 than in the 1997-1998 solar-minimum period. In addition, the weaker IMF should result in higher cosmic-ray drift velocities. Cosmic-ray intensity variations at 1 AU are found to lag IMF variations by 2-3 solar rotations, indicating that significant solar modulation occurs inside ∼20 AU, consistent with earlier galactic cosmic-ray radial-gradient measurements. In 2010, the intensities suddenly decreased to 1997 levels following increases in solar activity and in the inclination of the heliospheric current sheet. We describe the conditions that gave cosmic rays greater access to the inner solar system and discuss some of their implications.

  17. Variations of interplanetary parameters and cosmic-ray intensities

    International Nuclear Information System (INIS)

    Geranios, A.

    1980-01-01

    Observations of cosmic ray intensity depressions by earth bound neutron monitors and measurements of interplanetary parameter's variations aboard geocentric satellites in the period January 1972-July 1974 are analysed and grouped according to their correlation among them. From this analysis of about 30 cases it came out that the majority of the depressions correlates with the average propagation speed of interplanetary shocks as well as with the amplitude of the interplanetary magnetic field after the eruption of a solar flare. About one fourth of the events correlates with corotating fast solar wind streams. As the recovery time of the shock-related depressions depends strongly on the heliographic longitude of the causitive solar flare, it seems that the cosmic ray modulation region has a corotative-like feature. (Auth.)

  18. Heliospheric Impact on Cosmic Rays Modulation

    Science.gov (United States)

    Tiwari, Bhupendra Kumar

    2016-07-01

    Heliospheric Impact on Cosmic RaysModulation B. K. Tiwari Department of Physics, A. P. S. University, Rewa (M.P.), btiwari70@yahoo.com Cosmic rays (CRs) flux at earth is modulated by the heliosphereric magnetic field and the structure of the heliosphere, controls by solar outputs and their variability. Sunspots numbers (SSN) is often treated as a primary indicator of solar activity (SA). GCRs entering the helioshphere are affected by the interplanetary magnetic field (IMF) and solar wind speed, their modulation varies with the varying solar activity. The observation based on data recoded from Omniweb data Centre for solar- interplanetary activity indices and monthly mean count rate of cosmic ray intensity (CRI) data from neutron monitors of different cut-off rigidities(Rc) (Moscow Rc=2.42Gv and Oulu Rc=0.80Gv). During minimum solar activity periodof solar cycle 23/24, the sun is remarkably quiet, weakest strength of the IMF and least dense and slowest, solar wind speed, whereas, in 2003, highest value of yearly averaged solar wind speed (~568 Km/sec) associated with several coronal holes, which generate high speed wind stream has been recorded. It is observed that GCRs fluxes reduces and is high anti-correlated with SSN (0.80) and IMF (0.86). CRI modulation produces by a strong solar flare, however, CME associated solar flare produce more disturbance in the interplanetary medium as well as in geomagnetic field. It is found that count rate of cosmic ray intensity and solar- interplanetary parameters were inverse correlated and solar indices were positive correlated. Keywords- Galactic Cosmic rays (GCRs), Sunspot number (SSN), Solar activity (SA), Coronal Mass Ejection (CME), Interplanetary magnetic field (IMF)

  19. Cosmic Rays and Dynamical Meteorology, 2. Snow Effect In Different Multiplicities According To Neutron Monitor Data of Emilio Segre' Observatory

    Science.gov (United States)

    Dorman, L. I.; Iucci, N.; Pustil'Nik, L. A.; Sternlieb, A.; Villoresi, G.; Zukerman, I. G.

    On the basis of cosmic ray hourly data obtained by NM of Emilio Segre' Observatory (hight 2025 m above s.l., cut-off rigidity for vertical direction 10.8 GV) we determine the snow effect in CR for total neutron intensity and for multiplicities m=1, m=2, m=3, m=4, m=5, m=6, and m=7. For comparison and excluding primary CR variations we use also hourly data on neutron multiplicities obtained by Rome NM (about sea level, cut-off rigidity 6.7 GV). In this paper we will analize effects of snow in periods from 4 January 2000 to 15 April 2000 with maximal absorption effect about 5%, and from 21 December 2000 up to 31 March 2001 with maximal effect 13% in the total neu- tron intensity. We use the periods without snow to determine regeression coefficients between primary CR variations observed by NM of Emilio Segre' Observatory, and by Rome NM. On the basis of obtained results we develop a method to correct data on snow effect by using several NM hourly data. On the basis of our data we estimate the accuracy with what can be made correction of NM data of stations where the snow effect can be important.

  20. Atmospheric electric field effects of cosmic rays detected in Mexico City

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, L. X; Valdes-Galicia, J. F [Instituto de Geofisica, Universidad National Autonoma de Mexico, Mexico D.F(Mexico)

    2006-10-15

    We studied the possible effects of atmospheric electric fields, generated in thunderstorms, on the cosmic ray intensity detected at the Earth's surface by investigating the variations of the counting rates of the cosmic-ray nucleonic component, obtained from the neutron monitor installed in Mexico City, for thunderstorms during 1996 and 1997. These were years of minimum solar activity. We compare our experimental results with the general theory of cosmic ray meteorological effects by Dorman (1995). The observed intensity variation is about 0.2%. According to Dorman (1995), the effect should be between 0.27% and 0.81% on the counting rate of the neutron monitor when the atmospheric electric field intensities are around 100 to 300 Vcm-1.Our results show that either the electric field in Mexico City had less intensity than assumed by Dorman (1995), or the electric field is not uniform in time and height during the development of the thunderstorm. [Spanish] Estudiamos los posibles efectos de los campos electricos atmosfericos, generados en las tormentas electricas, sobre la intensidad de los rayos cosmicos detectados en la superficie terrestre, analizando las variaciones de las razones de conteo de la componente nucleonica de los rayos cosmicos, obtenidas por el monitor de neutrones instalado en la ciudad de Mexico, durante tormentas electricas ocurridas entre 1996 y 1997, anos del minimo solar. Comparamos nuestros resultados experimentales con la teoria general de los efectos meteorologicos en los rayos cosmicos, desarrollada por Dorman (1995). Se observo una variacion en la intensidad de alrededor de 0.2%. De acuerdo con Dorman (1995), el efecto puede estar entre 0.27 % y 0.81% en las razones de conteo del monitor de neutrones cuando las intensidades del campo electrico atmosferico se encuentran al rededor de 100 a 300 Vcm-1. Nuestros resultados muestran que los campos electricos en la ciudad de Mexico tuvieron menos intensidad que los campos electricos asumidos

  1. Cosmic strings and cosmic structure

    International Nuclear Information System (INIS)

    Albrecht, A.; Brandenberger, R.; Turok, N.

    1987-01-01

    The paper concerns the application of the theory of cosmic strings to explain the structure of the Universe. The formation of cosmic strings in the early Universe is outlined, along with the Big Bang theory, Grand Unified theories, and the first three minutes after the Big Bang. A description is given of the shaping of the Universe by cosmic strings, including the evolution of the string. The possibility for direct observation of cosmic strings is discussed. (U.K.)

  2. Assessment of soil moisture dynamics on an irrigated maize field using cosmic ray neutron sensing

    Science.gov (United States)

    Scheiffele, Lena Maria; Baroni, Gabriele; Oswald, Sascha E.

    2015-04-01

    In recent years cosmic ray neutron sensing (CRS) developed as a valuable, indirect and non-invasive method to estimate soil moisture at a scale of tens of hectares, covering the gap between point scale measurements and large scale remote sensing techniques. The method is particularly promising in cropped and irrigated fields where invasive installation of belowground measurement devices could conflict with the agricultural management. However, CRS is affected by all hydrogen pools in the measurement footprint and a fast growing biomass provides some challenges for the interpretation of the signal and application of the method for detecting soil moisture. For this aim, in this study a cosmic ray probe was installed on a field near Braunschweig (Germany) during one maize growing season (2014). The field was irrigated in stripes of 50 m width using sprinkler devices for a total of seven events. Three soil sampling campaigns were conducted throughout the growing season to assess the effect of different hydrogen pools on calibration results. Additionally, leaf area index and biomass measurements were collected to provide the relative contribution of the biomass on the CRS signal. Calibration results obtained with the different soil sampling campaigns showed some discrepancy well correlated with the biomass growth. However, after the calibration function was adjusted to account also for lattice water and soil organic carbon, thus representing an equivalent water content of the soil, the differences decreased. Soil moisture estimated with CRS responded well to precipitation and irrigation events, confirming also the effective footprint of the method (i.e., radius 300 m) and showing occurring water stress for the crop. Thus, the dynamics are in agreement with the soil moisture determined with point scale measurements but they are less affected by the heterogeneous moisture conditions within the field. For this reason, by applying a detailed calibration, CRS proves to be a

  3. Elemental composition of cosmic ray

    International Nuclear Information System (INIS)

    Yanagida, Shohei

    1987-01-01

    The report first summarizes some data that have been obtained so far from observation of isotopes and elements in cosmic rays in the low energy region. Then, objectives of studies planned to be carried out with Astromag are outlined and the number of incident particles expected to be measured by baloon observation is estimated. Heavy elements with atomic numbers of greater than 30 are considered to be formed through neutron absorption reactions by the s- or r-process. Observations show that products of the r-process is abundant in cosmic ray sources. The escape length depends on energy. In relation to this, it has been reported that the ratios Ar-Fe and Ca-Fe increase above 200 GeV-n while such a tendency is not observed for K, Sc, Ti or V. Thus, no satisfactory models are available at present which can fully explain the changes in the escape length. The ratio 3 He- 4 He in the range of 5 - 10 GeV-n is inconsistent with the general theory that interprets the escape length of heavy elements. Some models, including the supermetallicity model and Wolf Rayet theory, have been proposed to explain unusual ratios of isotopes in cosmic rays, but more measurements are required to verify them. It is expected that Astromag can serve to make observations that can clarify these points. (Nogami, K.)

  4. Cosmic ray intensity distribution in the vertical direction to solar equator plane

    International Nuclear Information System (INIS)

    Nosaka, Toru; Mori, Satoru; Sagisaka, Shuji.

    1983-01-01

    The data of the annual variation of cosmic ray intensity measured by neutron detectors were used to study the distribution of cosmic ray intensity vertical to the solar equator plane and its long term variation. The data used were obtained at Deep River, Kiel, Kerguelen Island, McMurdo, Ottawa, and Mt. Washington. All data showed annual variation. The patterns and degree of variation obtained in northern and southern hemisphere were similar. The summation dial representation of the annual variation and semi-annual variation of cosmic ray was obtained. The inversion of annual variation in 1958 - 1959 and 1968 - 1969 corresponded to the inversion of polarity of solar pole magnetic field. The semi-annual variation showed a complex behavior. The helio-latitudial distribution of cosmic ray intensity was obtained. The asymmetric distribution in relation to the solar equator was observed in the annual variation. The northward gradient of density in 1955 - 1958 and southward gradient in 1959 - 1968 were seen. (Kato, T.)

  5. Department of Cosmic Ray Physics - Overview

    International Nuclear Information System (INIS)

    Szabelski, J.

    2008-01-01

    Full text: The Department of Cosmic Ray Physics in Lodz is involved in basic research in the high energy Cosmic Ray field. Cosmic Rays are energetic particles from outside the Solar System. Most of the studies of Cosmic Rays address fundamental problems: · the nature of the physical and astrophysical processes responsible for high energies of particles · an estimation of the astrophysical conditions at the acceleration sites and/or search for sources of Cosmic Rays, · properties of high energy particle interactions at very high energies. Some Cosmic Ray studies might have practical (commercial) implications, e.g. · '' cosmic weather '' forecast - predictions of geomagnetic disturbances related to Solar activity changes (due to large Solar Flares / events of Coronal Mass Ejection); these are important for large electricity networks, gas pipes, radio-wave connections, space missions and satellite experiments. Presentation of Cosmic Ray registration to high school students becomes a popular way to introduce particle physics detectors and elementary particle detection techniques to young people. We organize in Lodz several workshops on particle physics for high school students. This is a part of European activity: EPPOG's Masterclass - Hands on CERN. Energetic Cosmic Ray particles produce cascades of particles in the atmosphere, called Extensive Air Showers (EAS). Registering EAS and their properties is the main way of experimental studies of very high energy Cosmic Rays. In Lodz Department we run Extensive Air Shower array where EAS are continuously being registered. We concentrate on the studies of detection of neutrons correlated with EAS and interpretation of this phenomenon. In 2004 we started realisation of the Roland Maze Project, the network of EAS detectors placed on the roofs of high schools in Lodz. We received funds from the City of Lodz budget to make a pilot project and equip 10 high schools, each with four 1m 2 detectors and GPS. The network is

  6. Next Generation Gamma/Neutron Detectors for Planetary Science., Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Gamma ray and neutron spectroscopy are well established techniques for determining the chemical composition of planetary surfaces, and small cosmic bodies such as...

  7. Influence of clouds on the cosmic radiation dose rate on aircraft

    International Nuclear Information System (INIS)

    Pazianotto, Mauricio T.; Carlson, Brett V.; Federico, Claudio A.; Goncalez, Odair L.; Cortes-Giraldo, Miguel A.; Quesada, Jose Manuel M.; Palomo, Francisco R.; Pinto, Marcos Luiz de A.

    2014-01-01

    Flight missions were made in Brazilian territory in 2009 and 2011 with the aim of measuring the cosmic radiation dose rate incident on aircraft in the South Atlantic Magnetic Anomaly and to compare it with Monte Carlo simulations. During one of these flights, small fluctuations were observed in the vicinity of the aircraft with formation of Cumulonimbus clouds. Motivated by these observations, in this work, the authors investigated the relationship between the presence of clouds and the neutron flux and dose rate incident on aircraft using computational simulation. The Monte Carlo simulations were made using the MCNPX and Geant4 codes, considering the incident proton flux at the top of the atmosphere and its propagation and neutron production through several vertically arranged slabs, which were modelled according to the ISO specifications. The paper presents first-order calculation about the influence of Cumulonimbus clouds on the flux and dose rate due to cosmic neutrons in the atmosphere, at aircraft flight altitudes. The simulations show variations of the order of 5.5 % in the neutrons flux and 3.6 % of the dose rate due to the presence of the cloud. Such variations can extend up to ∼1.5 km from the edge of the cloud. The spectrum of neutrons within a cloud formation was observed undergo changes due to the neutron absorption and scattering processes with the water content inside the cloud. To accomplish these simulations, it is important to have a proper knowledge of the data libraries and nuclear models to be applied, since the simulation processes are strongly dependent on these factors. These results emphasise the importance of conducting more detailed studies on this topic, since the influence of clouds can change the dose and flux on aircraft overflying such formations, as well as could explain some of the fluctuations in the experimental dose rate data obtained in aircraft flights. Future studies should extend such simulations to different types of

  8. Slowly braked, rotating neutron stars

    Science.gov (United States)

    Sato, H.

    1975-01-01

    A slowly braked, rotating neutron star is believed to be a star which rapidly rotates, has no nebula, is nonpulsing, and has a long initial braking time of ten thousand to a million years because of a low magnetic field. Such an object might be observable as an extended weak source of infrared or radio wave radiation due to the scattering of low-frequency strong-wave photons by accelerated electrons. If these objects exist abundantly in the Galaxy, they would act as sources of relatively low-energy cosmic rays. Pulsars (rapidly braked neutron stars) are shown to have difficulties in providing an adequate amount of cosmic-ray matter, making these new sources seem necessary. The possibility that the acceleration mechanism around a slowly braked star may be not a direct acceleration by the strong wave but an acceleration due to plasma turbulence excited by the strong wave is briefly explored. It is shown that white dwarfs may also be slowly braked stars with braking times longer than 3.15 million years.

  9. Department of Cosmic Ray Physics - Overview

    International Nuclear Information System (INIS)

    Szabelski, J

    2005-01-01

    Full text: The Department of Cosmic Ray Physics in Lodz is involved in basic research in the high energy Cosmic Ray field. Cosmic Rays are energetic particles from outside the Solar System. The energy spectrum (power law energy dependence) suggests a non-thermal origin of these particles. Most studies of Cosmic Rays address fundamental problems: - the nature of the physical and astrophysical processes responsible for high energies of particles (up to about 10 20 eV/particle), - estimation of the astrophysical conditions at the acceleration sites and/or search for sources of Cosmic Rays, - properties of high energy particle interactions at very high energies (nuclear interactions at energies exceeding energy available in laboratories). - Some Cosmic Ray studies might have practical (commercial) implications, e.g. - ''cosmic weather'' forecast - predictions of geomagnetic disturbances related to Solar activity changes (due to large Solar Flares / events of Coronal Mass Ejection); these are important for large electricity networks, gas pipes, radio-wave connections, space missions and satellite experiments. Presentation of Cosmic Ray registration to high school students is a popular way to introduce particle physics detectors and elementary particle detection techniques to young people. Energetic Cosmic Ray particles produce cascades of particles in the atmosphere, called Extensive Air Showers (EAS). Registering the EAS and their properties is the main way of experimental studies of very high energy Cosmic Rays. In our Lodz Department we run an Extensive Air Shower array where EAS are continuously being registered. We concentrate on the studies of detection of neutrons correlated with EAS and interpretation of this phenomenon. In 2004 we started realisation of the Roland Maze Project, the network of EAS detectors placed on the roofs of high schools in Lodz. We received funds from the City of Lodz's budget to make a pilot project and equip 10 high schools, each with

  10. Pair production from nuclear collisions and cosmic ray transport

    International Nuclear Information System (INIS)

    Norbury, John W

    2006-01-01

    Modern cosmic ray transport codes, that are capable of use for a variety of applications, need to include all significant atomic, nuclear and particle reactions at a variety of energies. Lepton pair production from nucleus-nucleus collisions has not been included in transport codes to date. Using the methods of Baur, Bertulani and Baron, the present report provides estimates of electron-positron pair production cross sections for nuclei and energies relevant to cosmic ray transport. It is shown that the cross sections are large compared to other typical processes such as single neutron removal due to strong or electromagnetic interactions. Therefore, lepton pair production may need to be included in some transport code applications involving MeV electrons. (brief report)

  11. Are gamma-ray bursts the sources of ultra-high energy cosmic rays?

    International Nuclear Information System (INIS)

    Baerwald, Philipp

    2014-07-01

    We reconsider the possibility that gamma-ray bursts (GRBs) are the sources of the ultra-high energy cosmic rays (UHECRs) within the internal shock model, assuming a pure proton composition of the UHECRs. For the first time, we combine the information from gamma-rays, cosmic rays, prompt neutrinos, and cosmogenic neutrinos quantitatively in a joint cosmic ray production and propagation model, and we show that the information on the cosmic energy budget can be obtained as a consequence. In addition to the neutron model, we consider alternative scenarios for the cosmic ray escape from the GRBs, i.e., that cosmic rays can leak from the sources. We find that the dip model, which describes the ankle in UHECR observations by the pair production dip, is strongly disfavored in combination with the internal shock model because (a) unrealistically high baryonic loadings (energy in protons versus energy in electrons/gamma-rays) are needed for the individual GRBs and (b) the prompt neutrino flux easily overshoots the corresponding neutrino bound. On the other hand, GRBs may account for the UHECRs in the ankle transition model if cosmic rays leak out from the source at the highest energies. In that case, we demonstrate that future neutrino observations can efficiently test most of the parameter space - unless the baryonic loading is much larger than previously anticipated.

  12. Reconstructing the long-term cosmic ray intensity: linear relations do not work

    Directory of Open Access Journals (Sweden)

    K. Mursula

    2003-04-01

    Full Text Available It was recently suggested (Lockwood, 2001 that the cosmic ray intensity in the neutron monitor energy range is linearly related to the coronal source flux, and can be reconstructed for the last 130 years using the long-term coronal flux estimated earlier. Moreover, Lockwood (2001 reconstructed the coronal flux for the last 500 years using a similar linear relation between the flux and the concentration of cosmogenic 10 Be isotopes in polar ice. Here we show that the applied linear relations are oversimplified and lead to unphysical results on long time scales. In particular, the cosmic ray intensity reconstructed by Lockwood (2001 for the last 130 years has a steep trend which is considerably larger than the trend estimated from observations during the last 65 years. Accordingly, the reconstructed cosmic ray intensity reaches or even exceeds the local interstellar cosmic ray flux around 1900. We argue that these unphysical results obtained when using linear relations are due to the oversimplified approach which does not take into account the complex and essentially nonlinear nature of long-term cosmic ray modulation in the heliosphere. We also compare the long-term cosmic ray intensity based on a linear treatment with the reconstruction based on a recent physical model which predicts a considerably lower cosmic ray intensity around 1900.Key words. Interplanetary physics (cosmic rays; heliopause and solar wind termination – Geomagnetism and paleomagnetism (time variations, secular and long-term

  13. Measurement of the cosmic-induced neutron yield at the Modane underground laboratory

    International Nuclear Information System (INIS)

    Kluck, Holger Martin

    2013-01-01

    Muon-induced neutrons are an important background source for rare event searches such as Dark Matter searches looking for nuclear recoils induced by the elastic scattering of galactic WIMPs off nuclei. Due to a shielding of 4800 mwe against muons at the Laboratoire Souterrain de Modane (LSM), the rate of muon-induced neutrons in EDELWEISS is too low, to be studied in situ with satisfying statistical accuracy. One thus relies on Monte Carlo (MC) modelling of the relevant processes, using e.g. the package Geant4. However, the reliability of MC simulations is debatable, as the published differences between simulation and measurement is often larger than a factor two. The lack of reliable data on the neutron production yield in lead at LSM and the dubious accuracy of the MC simulations motivated this work and lead to the following results: A high statistics reference data set of muon-induced neutrons at LSM was collected by running a dedicated neutron counter consisting of a lead target below a neutron multiplicity meter based on 1000 l liquid scintillator loaded with gadolinium. Within a live-time of 964.5 d from 2009 to 2012, a sample of 5583 tagged muons were measured in coincidence with 313 candidates for muon-induced neutrons distributed over 181 neutron cascades. Using the modelling package Geant4, we propagated about 5.5 . 10"7 muons (μ"+/μ"- ∼ 1.37) through a detailed three-dimensional geometry and tracked all electromagnetic and hadronic shower products. Albeit more than 95.5 % of all neutrons which terminated in the liquid scintillator were produced within a distance of 1.19 m around the neutron counter, only 78.2 % of them originated from the lead target. This highlights the importance of a detailed geometry implemented in simulation packages. Taking into account a calibrated detector response model on an event-by-event base, the measured and simulated absolute integral rates of neutron candidates agree within the statistical, systematic, and theoretical

  14. Cosmogenic neutron production at Daya Bay

    Science.gov (United States)

    An, F. P.; Balantekin, A. B.; Band, H. R.; Bishai, M.; Blyth, S.; Cao, D.; Cao, G. F.; Cao, J.; Chan, Y. L.; Chang, J. F.; Chang, Y.; Chen, H. S.; Chen, S. M.; Chen, Y.; Chen, Y. X.; Cheng, J.; Cheng, Z. K.; Cherwinka, J. J.; Chu, M. C.; Chukanov, A.; Cummings, J. P.; Ding, Y. Y.; Diwan, M. V.; Dolgareva, M.; Dove, J.; Dwyer, D. A.; Edwards, W. R.; Gill, R.; Gonchar, M.; Gong, G. H.; Gong, H.; Grassi, M.; Gu, W. Q.; Guo, L.; Guo, X. H.; Guo, Y. H.; Guo, Z.; Hackenburg, R. W.; Hans, S.; He, M.; Heeger, K. M.; Heng, Y. K.; Higuera, A.; Hsiung, Y. B.; Hu, B. Z.; Hu, T.; Huang, H. X.; Huang, X. T.; Huang, Y. B.; Huber, P.; Huo, W.; Hussain, G.; Jaffe, D. E.; Jen, K. L.; Ji, X. L.; Ji, X. P.; Jiao, J. B.; Johnson, R. A.; Jones, D.; Kang, L.; Kettell, S. H.; Khan, A.; Koerner, L. W.; Kohn, S.; Kramer, M.; Kwok, M. W.; Langford, T. J.; Lau, K.; Lebanowski, L.; Lee, J.; Lee, J. H. C.; Lei, R. T.; Leitner, R.; Leung, J. K. C.; Li, C.; Li, D. J.; Li, F.; Li, G. S.; Li, Q. J.; Li, S.; Li, S. C.; Li, W. D.; Li, X. N.; Li, X. Q.; Li, Y. F.; Li, Z. B.; Liang, H.; Lin, C. J.; Lin, G. L.; Lin, S.; Lin, S. K.; Lin, Y.-C.; Ling, J. J.; Link, J. M.; Littenberg, L.; Littlejohn, B. R.; Liu, J. C.; Liu, J. L.; Loh, C. W.; Lu, C.; Lu, H. Q.; Lu, J. S.; Luk, K. B.; Ma, X. B.; Ma, X. Y.; Ma, Y. Q.; Malyshkin, Y.; Martinez Caicedo, D. A.; McDonald, K. T.; McKeown, R. D.; Mitchell, I.; Nakajima, Y.; Napolitano, J.; Naumov, D.; Naumova, E.; Ochoa-Ricoux, J. P.; Olshevskiy, A.; Pan, H.-R.; Park, J.; Patton, S.; Pec, V.; Peng, J. C.; Pinsky, L.; Pun, C. S. J.; Qi, F. Z.; Qi, M.; Qian, X.; Qiu, R. M.; Raper, N.; Ren, J.; Rosero, R.; Roskovec, B.; Ruan, X. C.; Steiner, H.; Sun, J. L.; Tang, W.; Taychenachev, D.; Treskov, K.; Tsang, K. V.; Tse, W.-H.; Tull, C. E.; Viaux, N.; Viren, B.; Vorobel, V.; Wang, C. H.; Wang, M.; Wang, N. Y.; Wang, R. G.; Wang, W.; Wang, X.; Wang, Y. F.; Wang, Z.; Wang, Z.; Wang, Z. M.; Wei, H. Y.; Wen, L. J.; Whisnant, K.; White, C. G.; Wise, T.; Wong, H. L. H.; Wong, S. C. F.; Worcester, E.; Wu, C.-H.; Wu, Q.; Wu, W. J.; Xia, D. M.; Xia, J. K.; Xing, Z. Z.; Xu, J. L.; Xu, Y.; Xue, T.; Yang, C. G.; Yang, H.; Yang, L.; Yang, M. S.; Yang, M. T.; Yang, Y. Z.; Ye, M.; Ye, Z.; Yeh, M.; Young, B. L.; Yu, Z. Y.; Zeng, S.; Zhan, L.; Zhang, C.; Zhang, C. C.; Zhang, H. H.; Zhang, J. W.; Zhang, Q. M.; Zhang, R.; Zhang, X. T.; Zhang, Y. M.; Zhang, Y. M.; Zhang, Y. X.; Zhang, Z. J.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, J.; Zhou, L.; Zhuang, H. L.; Zou, J. H.; Daya Bay Collaboration

    2018-03-01

    Neutrons produced by cosmic ray muons are an important background for underground experiments studying neutrino oscillations, neutrinoless double beta decay, dark matter, and other rare-event signals. A measurement of the neutron yield in the three different experimental halls of the Daya Bay Reactor Neutrino Experiment at varying depth is reported. The neutron yield in Daya Bay's liquid scintillator is measured to be Yn=(10.26 ±0.86 )×10-5 , (10.22 ±0.87 )×10-5 , and (17.03 ±1.22 )×10-5 μ-1 g-1 cm2 at depths of 250, 265, and 860 meters-water-equivalent. These results are compared to other measurements and the simulated neutron yield in Fluka and Geant4. A global fit including the Daya Bay measurements yields a power law coefficient of 0.77 ±0.03 for the dependence of the neutron yield on muon energy.

  15. Measurement of Neutron and Muon Fluxes 100~m Underground with the SciBath Detector

    Energy Technology Data Exchange (ETDEWEB)

    Garrison, Lance [Indiana Univ., Bloomington, IN (United States)

    2014-01-01

    The SciBath detector is an 80 liter liquid scintillator detector read out by a three dimensional grid of 768 wavelength-shifting fibers. Initially conceived as a fine-grained charged particle detector for neutrino studies that could image charged particle tracks in all directions, it is also sensitive to fast neutrons (15-200 MeV). In fall of 2011 the apparatus performed a three month run to measure cosmic-induced muons and neutrons 100~meters underground in the FNAL MINOS near-detector area. Data from this run has been analyzed and resulted in measurements of the cosmic muon flux as \

  16. Pulsars as the sources of high energy cosmic ray positrons

    International Nuclear Information System (INIS)

    Hooper, Dan; Blasi, Pasquale; Serpico, Pasquale Dario

    2009-01-01

    Recent results from the PAMELA satellite indicate the presence of a large flux of positrons (relative to electrons) in the cosmic ray spectrum between approximately 10 and 100 GeV. As annihilating dark matter particles in many models are predicted to contribute to the cosmic ray positron spectrum in this energy range, a great deal of interest has resulted from this observation. Here, we consider pulsars (rapidly spinning, magnetized neutron stars) as an alternative source of this signal. After calculating the contribution to the cosmic ray positron and electron spectra from pulsars, we find that the spectrum observed by PAMELA could plausibly originate from such sources. In particular, a significant contribution is expected from the sum of all mature pulsars throughout the Milky Way, as well as from the most nearby mature pulsars (such as Geminga and B0656+14). The signal from nearby pulsars is expected to generate a small but significant dipole anisotropy in the cosmic ray electron spectrum, potentially providing a method by which the Fermi gamma-ray space telescope would be capable of discriminating between the pulsar and dark matter origins of the observed high energy positrons

  17. Measurements of the Cosmic Rays Dose at Different Altitudes of Iran

    International Nuclear Information System (INIS)

    Faghihi, R.; Mehdizadeh, S.; Jafarizadeh, M.; Sina, S.; Zehtabian, M.; Taheri, M.

    2012-01-01

    The amount of cosmic rays varies widely with the altitude, latitude and longitude in each region. In this study, the radiation doses due to the cosmic rays were estimated in two steps: in the first step, the neutron and gamma components of the radiation dose were measured for a roundtrip flight on 3 flight routes (Shiraz-Asaluye, Asaluye-Rasht and Shiraz-Mashhad) using a gamma-tracer photon detector and a Thyac 190 N, neutron detector. The minimum values of the measured gamma and neutron doses of 0.15 and 0.04μSv were measured on the Asaluyeh-Shiraz route at the lowest altitude of 19000 ft, while for Rasht-Asaluyeh route at an altitude of 35000 ft those values were found to be 2.52 and 1.09 mSv, respectively. In the second step, a number of air crew members were equipped with thermoluminescence dosimeters (TLD cards) for evaluating the gamma dose and polycarbonate dosimeters (SSNTD) for assessing the neutron dose for one year. The measured value of the annual effective dose received by the crew ranged between 0.5 mSv/y and 1.16 mSv/y, with an average of 0.9 mSv/y for the gamma component and between 0.37 mSv/y and 0.77 mSv/y with an average of 0.61 mSv/y for the neutron component. The results of this investigation are comparable with the investigations that have been conducted in other countries. For instance in UK, the reported annual effective dose of air crew is about 2 mSv, and in Canada, it is estimated to be between 1 to 5 mSv, depending on the flight situations (such as the latitude and longitude of the cities, the flight altitude, etc).

  18. Department of Cosmic Ray Physics - Overview

    International Nuclear Information System (INIS)

    Szabelski, J.

    2007-01-01

    The Department of Cosmic Ray Physics in Lodz is involved in basic research in the high energy Cosmic Ray field. Cosmic Rays are energetic particles from outside the Solar System. The energy spectrum (power law energy dependence) suggests non-thermal origin of these particles. Most of the studies of Cosmic Rays address fundamental problems: · the nature of the physical and astrophysical processes responsible for high energies of particles (up to about 1020 eV/particle), · an estimation of the astrophysical conditions at the acceleration sites and/or search for sources of Cosmic Rays, · properties of high energy particle interactions at very high energies (nuclear interactions at energies exceeding energy available in the laboratories). Some Cosmic Ray studies might have practical (commercial) implications, e.g.: · '' cosmic weather '' forecast - predictions of geomagnetic disturbances related to Solar activity changes (due to large Solar Flares / events of Coronal Mass Ejection); these are important for large electricity networks, gas pipes, radio-wave connections, space missions and satellite experiments. Presentation of Cosmic Ray registration to high school students becomes a popular way to introduce particle physics detectors and elementary particle detection techniques to young people. We organize in Lodz several workshops on particle physics for high school students. This is a part of European activity: Masterclass - Hands on CERN. Energetic Cosmic Ray particles produce cascades of particles in the atmosphere, called Extensive Air Showers (EAS). Registering EAS and their properties is the main way of experimental studies of very high energy Cosmic Rays. In Lodz Department we run Extensive Air Shower array where EAS are continuously being registered. We concentrate on the studies of detection of neutrons correlated with EAS and interpretation of this phenomenon. Back in 2004 we started realisation of the Roland Maze Project, the network of EAS detectors

  19. Scaling in situ cosmogenic nuclide production rates using analytical approximations to atmospheric cosmic-ray fluxes

    Science.gov (United States)

    Lifton, Nathaniel; Sato, Tatsuhiko; Dunai, Tibor J.

    2014-01-01

    Several models have been proposed for scaling in situ cosmogenic nuclide production rates from the relatively few sites where they have been measured to other sites of interest. Two main types of models are recognized: (1) those based on data from nuclear disintegrations in photographic emulsions combined with various neutron detectors, and (2) those based largely on neutron monitor data. However, stubborn discrepancies between these model types have led to frequent confusion when calculating surface exposure ages from production rates derived from the models. To help resolve these discrepancies and identify the sources of potential biases in each model, we have developed a new scaling model based on analytical approximations to modeled fluxes of the main atmospheric cosmic-ray particles responsible for in situ cosmogenic nuclide production. Both the analytical formulations and the Monte Carlo model fluxes on which they are based agree well with measured atmospheric fluxes of neutrons, protons, and muons, indicating they can serve as a robust estimate of the atmospheric cosmic-ray flux based on first principles. We are also using updated records for quantifying temporal and spatial variability in geomagnetic and solar modulation effects on the fluxes. A key advantage of this new model (herein termed LSD) over previous Monte Carlo models of cosmogenic nuclide production is that it allows for faster estimation of scaling factors based on time-varying geomagnetic and solar inputs. Comparing scaling predictions derived from the LSD model with those of previously published models suggest potential sources of bias in the latter can be largely attributed to two factors: different energy responses of the secondary neutron detectors used in developing the models, and different geomagnetic parameterizations. Given that the LSD model generates flux spectra for each cosmic-ray particle of interest, it is also relatively straightforward to generate nuclide-specific scaling

  20. Discriminating cosmic muons and X-rays based on rise time using a GEM detector

    Science.gov (United States)

    Wu, Hui-Yin; Zhao, Sheng-Ying; Wang, Xiao-Dong; Zhang, Xian-Ming; Qi, Hui-Rong; Zhang, Wei; Wu, Ke-Yan; Hu, Bi-Tao; Zhang, Yi

    2016-08-01

    Gas electron multiplier (GEM) detectors have been used in cosmic muon scattering tomography and neutron imaging over the last decade. In this work, a triple GEM device with an effective readout area of 10 cm × 10 cm is developed, and a method of discriminating between cosmic muons and X-rays based on rise time is tested. The energy resolution of the GEM detector is tested by 55Fe ray source to prove the GEM detector has a good performance. Analysis of the complete signal-cycles allows us to get the rise time and pulse heights. The experiment result indicates that cosmic muons and X-rays can be discriminated with an appropriate rise time threshold. Supported by National Natural Science Foundation of China (11135002, 11275235, 11405077, 11575073)

  1. Analytical Model for Estimating Terrestrial Cosmic Ray Fluxes Nearly Anytime and Anywhere in the World: Extension of PARMA/EXPACS.

    Directory of Open Access Journals (Sweden)

    Tatsuhiko Sato

    Full Text Available By extending our previously established model, here we present a new model called "PHITS-based Analytical Radiation Model in the Atmosphere (PARMA version 3.0," which can instantaneously estimate terrestrial cosmic ray fluxes of neutrons, protons, ions with charge up to 28 (Ni, muons, electrons, positrons, and photons nearly anytime and anywhere in the Earth's atmosphere. The model comprises numerous analytical functions with parameters whose numerical values were fitted to reproduce the results of the extensive air shower (EAS simulation performed by Particle and Heavy Ion Transport code System (PHITS. The accuracy of the EAS simulation was well verified using various experimental data, while that of PARMA3.0 was confirmed by the high R2 values of the fit. The models to be used for estimating radiation doses due to cosmic ray exposure, cosmic ray induced ionization rates, and count rates of neutron monitors were validated by investigating their capability to reproduce those quantities measured under various conditions. PARMA3.0 is available freely and is easy to use, as implemented in an open-access software program EXcel-based Program for Calculating Atmospheric Cosmic ray Spectrum (EXPACS. Because of these features, the new version of PARMA/EXPACS can be an important tool in various research fields such as geosciences, cosmic ray physics, and radiation research.

  2. Cosmic rays and terrestrial life: A brief review

    Science.gov (United States)

    Atri, Dimitra; Melott, Adrian L.

    2014-01-01

    “The investigation into the possible effects of cosmic rays on living organisms will also offer great interest.” - Victor F. Hess, Nobel Lecture, December 12, 1936 High-energy radiation bursts are commonplace in our Universe. From nearby solar flares to distant gamma ray bursts, a variety of physical processes accelerate charged particles to a wide range of energies, which subsequently reach the Earth. Such particles contribute to a number of physical processes occurring in the Earth system. A large fraction of the energy of charged particles gets deposited in the atmosphere, ionizing it, causing changes in its chemistry and affecting the global electric circuit. Remaining secondary particles contribute to the background dose of cosmic rays on the surface and parts of the subsurface region. Life has evolved over the past ∼3 billion years in presence of this background radiation, which itself has varied considerably during the period [1-3]. As demonstrated by the Miller-Urey experiment, lightning plays a very important role in the formation of complex organic molecules, which are the building blocks of more complex structures forming life. There is growing evidence of increase in the lightning rate with increasing flux of charged particles. Is there a connection between enhanced rate of cosmic rays and the origin of life? Cosmic ray secondaries are also known to damage DNA and cause mutations, leading to cancer and other diseases. It is now possible to compute radiation doses from secondary particles, in particular muons and neutrons. Have the variations in cosmic ray flux affected the evolution of life on earth? We describe the mechanisms of cosmic rays affecting terrestrial life and review the potential implications of the variation of high-energy astrophysical radiation on the history of life on earth.

  3. Cosmic ray variations of solar origin in relation to human physiological state during the December 2006 solar extreme events

    Science.gov (United States)

    Papailiou, M.; Mavromichalaki, H.; Vassilaki, A.; Kelesidis, K. M.; Mertzanos, G. A.; Petropoulos, B.

    2009-02-01

    There is an increasing amount of evidence linking biological effects to solar and geomagnetic disturbances. A series of studies is published referring to the changes in human physiological responses at different levels of geomagnetic activity. In this study, the possible relation between the daily variations of cosmic ray intensity, measured by the Neutron Monitor at the Cosmic Ray Station of the University of Athens (http://cosray.phys.uoa.gr) and the average daily and hourly heart rate variations of persons, with no symptoms or hospital admission, monitored by Holter electrocardiogram, is considered. This work refers to a group of persons admitted to the cardiological clinic of the KAT Hospital in Athens during the time period from 4th to 24th December 2006 that is characterized by extreme solar and geomagnetic activity. A series of Forbush decreases started on 6th December and lasted until the end of the month and a great solar proton event causing a Ground Level Enhancement (GLE) of the cosmic ray intensity on 13th December occurred. A sudden decrease of the cosmic ray intensity on 15th December, when a geomagnetic storm was registered, was also recorded in Athens Neutron Monitor station (cut-off rigidity 8.53 GV) with amplitude of 4%. It is noticed that during geomagnetically quiet days the heart rate and the cosmic ray intensity variations are positively correlated. When intense cosmic ray variations, like Forbush decreases and relativistic proton events produced by strong solar phenomena occur, cosmic ray intensity and heart rate get minimum values and their variations, also, coincide. During these events the correlation coefficient of these two parameters changes and follows the behavior of the cosmic ray intensity variations. This is only a small part of an extended investigation, which has begun using data from the year 2002 and is still in progress.

  4. Ecological and hydrological monitoring of the natural environment with help of cosmic rays

    International Nuclear Information System (INIS)

    Oskomov, V.V.

    2001-01-01

    It is noted that with help cosmic ray it is possible measuring the contaminating element concentration in the atmosphere, near surface water layer, and soil by characteristic radiation of elements generated by cosmic rays. With aim of determination of hydrological and glaciology characteristics of glaciers and snow cover of mountain districts the method for moisture store determination in the substance with help of natural ionizing radiation were used. With help of automate remote system including a set of detectors for muons, neutrons and gamma quanta, and others ones placed near researched medium the ecological and hydrological monitoring is worked out

  5. Do coronal holes influence cosmic ray daily harmonics

    International Nuclear Information System (INIS)

    Ahluwalia, H.S.

    1977-01-01

    Coronal holes are identified by their low emissivity in either EUV (Munro and Withrobe, 1973) or in X-rays (Krieger et al, 1973). They are seats of unidirectional magnetic fields. Also, high speed solar wind streams originate in them. Also, high speed solar wind streams originate in then (Krieger et al, 1973; Neupert and Pizzo, 1974; Nolte et al, 1976). Coronal holes often extend over a wide range of heliolatitudes (Timothy et al, 1975). Elsewhere in the Proceedings we have presented results on the long term changes observed in the amplitudes and the times of maximum of the diurnal, the semidiurnal and the tridiurnal variations of cosmic rays, at low (neutrons) and at high (underground muons) primary rigidities (Ahluwalia, 1977). We have shown that a dramatic shift to early hours is noticeable in the times of maxima of the harmonics during 1971-72 period. In this paper we examine the nature of the contributions of off-ecliptic cosmic rays of high enough rigidity, streaming under the influence of large scale ordered interplanetary magnetic field set up by the coronal holes, to the cosmic ray daily harmonics. Some models are presented and discussed in a preliminary fashion. (author)

  6. On the possibility of highest energy cosmic rays bursts and their correlation with gamma rays bursts e.g. March 5th, 1979 event

    International Nuclear Information System (INIS)

    Drukier, K.

    1982-01-01

    The avalanche production of magnetic monopoles is possible in neutron stars. Big part of the magnetic field energy can be used to accelerate a pulse of 10 30 monopoles to the energy E > approximately 10 17 eV. Thus the neutron stars may be ''point'' sources of bursts of highest energy Cosmic Rays. The emission of brehmsstrahlung photons by these highly relativistic monopoles would be seen as X and gamma bursts. This ''exotic'' model for March 5th, 1979 event, predicts that it has been followed by burst of highest energy Cosmic Rays coming from the direction of LMC supernovae remanent N49

  7. Department of Cosmic Ray Physics - Overview

    International Nuclear Information System (INIS)

    Szabelski, J.

    2006-01-01

    The Department of Cosmic Ray Physics in Lodz is involved in basic research in the high energy Cosmic Ray field. Cosmic Rays are energetic particles from outside the Solar System. The energy spectrum (power law energy dependence) suggests a non-thermal origin of these particles. Most of the studies of Cosmic Rays address fundamental problems: · The nature of the physical and astrophysical processes responsible for the high energies of the particles (up to about 1020 eV/particle), · An estimation of the astrophysical conditions at the acceleration sites and/or search for sources of Cosmic Rays, · properties of high energy particle interactions at very high energies (nuclear interactions at energies exceeding energy available in the laboratories). Some Cosmic Ray studies might have practical (commercial) implications, e.g. · 'cosmic weather' forecast - predictions of geomagnetic disturbances related to Solar activity changes (due to large Solar Flares / events of Coronal Mass Ejection); these are important for large electricity networks, gas pipes, radio-wave connections, space missions and satellite experiments. Presentation of Cosmic Ray registration to high school students becomes a popular way to introduce particle physics detectors and elementary particle detection techniques to young people. Energetic Cosmic Ray particles produce cascades of particles in the atmosphere, called Extensive Air Showers (EAS). Registering EAS and their properties is the main way of experimental studies of very high energy Cosmic Rays. In the Lodz Department we run the Extensive Air Shower array where EAS are being registered. We concentrate on the studies of detection of neutrons correlated with EAS and interpretation of this phenomenon. In 2004, we started realisation of the Roland Maze Project, the network of EAS detectors placed on roofs of high schools in Lodz. We received funds from the City of Lodz budget to make a pilot project and equip 10 high schools, each with four 1 m

  8. Experimental observations of strengthening the neutron flux during negative lightning discharges of thunderclouds with tripolar configuration

    Science.gov (United States)

    Toropov, A. A.; Kozlov, V. I.; Mullayarov, V. A.; Starodubtsev, S. A.

    2013-03-01

    We consider neutron bursts (Yakutsk cosmic ray spectrograph,105 m above sea level) and the electric field during lightning discharges. It was found that the neutron bursts are observed in the negative lightning discharg only. We discuss the possibility of generation of neutrons in the lower part (the point of impact into the ground) lightning discharge.

  9. Study of multi-neutron emission in the $\\beta$-decay of $^{11}$Li

    CERN Multimedia

    A new investigation of neutron emission in the $\\beta$-decay of $^{11}$Li is proposed. The principal goal of this study will be to directly measure, for the first time for any system, two $\\beta$-delayed neutrons in coincidence and determine the energy and angular correlations. This will be possible using liquid scintillator detectors, capable of distinguishing between neutrons and ambient $\\gamma$ and cosmic-rays, coupled to a new digital electronics and acquisition system. In parallel, a considerably more refined picture of the single-neutron emission will be obtained.

  10. Cosmogenic excess of 40K and the flux of fast neutrons in meteorites

    International Nuclear Information System (INIS)

    Stegmann, W.; Begemann, F.

    1975-01-01

    Results are reported of a mass spectrometric investigation of the content and isotopic composition of potassium from the mesosiderite Emery (silicate phase) and the chondrite Elenovka (bulk). Normalized to the Nier value of 39 K/ 41 K = 13.47, the 40 K in Emery (K-content 220 +- 25 ppm) was found to be enriched by (4.03 +- 0.30)%, the potassium from Elenovka (760 +- 50 ppm) to be indistinguishable from terrestrial potassium. Evidence is presented that the excess 40 K in the silicates from Emery (Ca-content 6.06 weight %) has been produced essentially by secondary cosmic ray neutrons via the 40 Ca(n,p)-reaction. The total excess of (2.57 +- 0.39) x 10 14 40 K-atoms/gCa together with the excitation function of the 40 Ca(n,p)-reaction and the neutron flux spectrum of Arnold, Honda and Lal yields a dose of fast neutrons (2 MeV 16 neutrons/cm 2 and an average flux during the cosmic ray exposure age T = (134 +- 12) Myrs of PHI = (17.4 +- 3.1) neutrons/cm 2 sec. (orig./BJ) [de

  11. Suppression background device in neutron detection by a scintillation detector

    International Nuclear Information System (INIS)

    Degtyarev, A.P.; Kozyr', Yu.E.; Prokopets, G.A.

    1980-01-01

    A pulse shape discriminator for suppression of cosmic and gamma background as well as for suppression of intrinsic noises of a photomultiplier is described. Identification of signals of background and neutrons is performed by means of comparison of relative intensity of fast and slow components of scintillator luminescence. Basic discriminator flowsheet which contains integrating and differential RC circuits and time-to-amplitude converter is given. The discriminator provides minimum energy of detected neutrons equal to 500 keV when using a FEhU-36 neutron detector with a stilbene crystal [ru

  12. Neutron- and muon-induced background in underground physics experiments

    International Nuclear Information System (INIS)

    Kudryavtsev, V.A.; Tomasello, V.; Pandola, L.

    2008-01-01

    Background induced by neutrons in deep underground laboratories is a critical issue for all experiments looking for rare events, such as dark matter interactions or neutrinoless ββ decay. Neutrons can be produced either by natural radioactivity, via spontaneous fission or (α, n) reactions, or by interactions initiated by high-energy cosmic rays. In all underground experiments, Monte Carlo simulations of neutron background play a crucial role for the evaluation of the total background rate and for the optimization of rejection strategies. The Monte Carlo methods that are commonly employed to evaluate neutron-induced background and to optimize the experimental setup, are reviewed and discussed. Focus is given to the issue of reliability of Monte Carlo background estimates. (orig.)

  13. Neutron- and muon-induced background in underground physics experiments

    Energy Technology Data Exchange (ETDEWEB)

    Kudryavtsev, V.A.; Tomasello, V. [University of Sheffield, Department of Physics and Astronomy, Sheffield (United Kingdom); Pandola, L. [Laboratori Nazionali del Gran Sasso, INFN, Assergi (Italy)

    2008-05-15

    Background induced by neutrons in deep underground laboratories is a critical issue for all experiments looking for rare events, such as dark matter interactions or neutrinoless {beta}{beta} decay. Neutrons can be produced either by natural radioactivity, via spontaneous fission or ({alpha}, n) reactions, or by interactions initiated by high-energy cosmic rays. In all underground experiments, Monte Carlo simulations of neutron background play a crucial role for the evaluation of the total background rate and for the optimization of rejection strategies. The Monte Carlo methods that are commonly employed to evaluate neutron-induced background and to optimize the experimental setup, are reviewed and discussed. Focus is given to the issue of reliability of Monte Carlo background estimates. (orig.)

  14. Ship Effect Measurements With Fiber Optic Neutron Detector

    International Nuclear Information System (INIS)

    King, Kenneth L.; Dean, Rashe A.; Akbar, Shahzad; Kouzes, Richard T.; Woodring, Mitchell L.

    2010-01-01

    The main objectives of this research project was to assemble, operate, test and characterize an innovatively designed scintillating fiber optic neutron radiation detector manufactured by Innovative American Technology with possible application to the Department of Homeland Security screening for potential radiological and nuclear threats at US borders (Kouzes 2004). One goal of this project was to make measurements of the neutron ship effect for several materials. The Virginia State University DOE FaST/NSF summer student-faculty team made measurements with the fiber optic radiation detector at PNNL above ground to characterize the ship effect from cosmic neutrons, and underground to characterize the muon contribution.

  15. Measurement result of the neutron monitor onboard the Space Environment Data Acquisition Equipment - Attached Payload (SEDA-AP)

    Science.gov (United States)

    Koga, K.; Muraki, Y.; Shibata, S.; Yamamoto, T.; Matsumoto, H.; Okudaira, O.; Kawano, H.; Yumoto, K.

    2013-12-01

    To support future space activities, it is crucial to acquire space environmental data related to the space-radiation degradation of space parts and materials, and spacecraft anomalies. Such data are useful for spacecraft design and manned space activity. SEDA-AP was mounted on 'Kibo' of the ISS (International Space Station) to measure the space environment at a 400-kilometer altitude. Neutrons are very harmful radiation, with electrical neutrality that makes them strongly permeable. SEDA-AP measures the energy of neutrons from thermal to 100 MeV in real time using a Bonner Ball Detector (BBND) and a Scintillation Fiber Detector (FIB). BBND detects neutrons using He-3 counters, which have high sensitivity to thermal neutrons. Neutron energy is derived using the relative response function of polyethylene moderators of 6 different thicknesses. FIB measures the tracks of recoil protons caused by neutrons within a cubic arrayed sensor of 512 scintillation fibers. The charged particles are excluded using an anti-scintillator which surrounds the cube sensor, and the neutron energy is obtained from the track length of a recoil proton. There are three sources of neutrons in space; 1. Albedo Neutrons Produced by reactions of galactic cosmic rays or radiation belt particles with the atmosphere 2. Local Neutrons Produced by the reactions of galactic cosmic rays or radiation belt particles with spacecraft 3. Solar Neutrons Produced by accelerated particles in solar flares An accurate energy spectrum of the solar neutrons includes important information on high-energy particle generation mechanism in a solar flare, because neutrons are unaffected by interplanetary magnetic fields. These data will become useful to forecast solar energetic particles in future. Some candidate events involving solar neutrons were found as a result of analyzing data of the solar flare of M>2 since September 2009. Moreover, it is important to measure albedo neutrons, since protons generated by neutron

  16. Behavior of neutrons under different thicknesses of moderation; Comportamiento de los neutrones bajo diferentes espesores de moderacion

    Energy Technology Data Exchange (ETDEWEB)

    Baltazar R, A. [Universidad Autonoma de Zacatecas, Unidad Academica de Ingenieria Electrica, Programa de Doctorado en Ingenieria y Tecnologia Aplicada, 98068 Zacatecas, Zac. (Mexico); Medina C, D.; Soto B, T. G. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Programa de Doctorado en Ciencias Basicas, 98068 Zacatecas, Zac. (Mexico); Vega C, H. R., E-mail: raigosa.antonio@hotmail.com [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas, Zac. (Mexico)

    2016-10-15

    Neutrons occur naturally, regardless of whether they are obtained as a by-product of other reactions or intentionally, mainly as a by-product of the interaction of cosmic rays with the nuclei of the atmosphere, and in anthropogenic or artificial form with neutron generators, nuclear reactors, radioisotope sources, etc. Due to their high radiobiological efficiency is important measure them in order to estimate the effective dose in occupationally exposed personnel and the public in general. This dose depends on the amount of neutrons and their energy; in order to reduce neutron energy, light materials based on H, D, C, Be are used which moderate and thermalize them. The objective of this work was to determine the behavior of monoenergetic sources of neutrons in their transport within polyethylene of different thicknesses. The study was carried out using Monte Carlo methods with the code MCNP5, where 23 monoenergetic sources of I E(-9) were used at 20 MeV by influencing the neutrons on various polyethylene surfaces whose thickness was varied from 5.08 to 30.48 cm and the total neutron flux was estimated, as well as its spectrum when crossing the various thicknesses used in the study. (Author)

  17. Measuring planetary neutron albedo fluxes by remote gamma-ray sensing

    International Nuclear Information System (INIS)

    Haines, E.L.; Metzger, A.E.

    1984-01-01

    A remote-sensing γ-ray spectrometer (GRS) is capable of measuring planetary surface composition through the detection of characteristic gamma rays. In addition, the planetary neutron leakage flux may be detected by means of a thin neutron absorber surrounding the γ-ray detector which converts the neutron flux into a γ-ray flux having a unique energy signature. The γ rays representing the neutron flux are observed against interference consisting of cosmic γ rays, planetary continuum and line emission, and a variety of gamma rays arising from cosmic-ray particle interactions with the γ-ray spectrometer and spacecraft (SC). In this paper the amplitudes of planetary and non-planetary neutron fluxes are assessed and their impact on the sensitivity of measurement is calculated for a lunar orbiter mission and a comet nucleus rendezvous mission. For a 100 h observation period from an altitude of 100 km, a GRS on a lunar orbiter can detect a thermal neutron albedo flux as low as 0.002 cm -2 s -1 and measure the expected flux of approx.=0.6 cm -2 s -1 with an uncertainty of 0.001 cm -2 s -1 . A GRS rendezvousing with a comet at a distance equal to the radius of the comet's nucleus, again for a 100 h observation time, should detect a thermal neutron albedo flux at a level of 0.006 cm -2 s -1 and measure the expected flux of approx.=0.4 cm -2 s -1 with an uncertainty of 0.004 cm -2 s -1 . Mapping the planetary neutron flux jointly with the direct detection of H will not only provide a more accurate model for translating observed γ-ray fluxes into concentrations but will also extend the effective sampling depth and should provide a capability for simple stratigraphic modeling of hydrogen. (orig.)

  18. On the calibration of a single channel cosmic ray particle detector

    Science.gov (United States)

    Maghrabi, A. H.; Alghamdi, A. S.; Alotaibi, R.; Almutari, M. M.; Garawi, M. S.

    2014-07-01

    Cosmic Ray (CR) variation measurements have been extensively conducted using different type of detectors sensing different components of CR and at different locations around the world. We have constructed and, operated a single channel muon detector in the central part of Saudi Arabia. The main goal of this detector is to record the intensity of cosmic rays on different time scales and investigate their correlations with environment parameters. This detector is expected to fill the gap between neutron monitors and muon telescopes that exist around the world. In this paper, the technical aspects of this detector will be briefly discussed. Calibration procedures conducted to characterize and improve its performance will be detailed. These include the effect of the detector geometry and the internal surface coating.

  19. Heliospheric Modulation Strength During The Neutron Monitor Era

    Science.gov (United States)

    Usoskin, I. G.; Alanko, K.; Mursula, K.; Kovaltsov, G. A.

    Using a stochastic simulation of a one-dimensional heliosphere we calculate galactic cosmic ray spectra at the Earth's orbit for different values of the heliospheric mod- ulation strength. Convoluting these spectra with the specific yield function of a neu- tron monitor, we obtain the expected neutron monitor count rates for different values of the modulation strength. Finally, inverting this relation, we calculate the modula- tion strength using the actually recorded neutron monitor count rates. We present the reconstructed annual heliospheric modulation strengths for the neutron monitor era (1953­2000) using several neutron monitors from different latitudes, covering a large range of geomagnetic rigidity cutoffs from polar to equatorial regions. The estimated modulation strengths are shown to be in good agreement with the corresponding esti- mates reported earlier for some years.

  20. Time dependent worldwide distribution of atmospheric neutrons and of their products. I, II, III.

    Science.gov (United States)

    Merker, M.; Light, E. S.; Verschell, H. J.; Mendell, R. B.; Korff, S. A.

    1973-01-01

    Review of the experimental results obtained in a series of measurements of the fast neutron cosmic ray spectrum by means of high-altitude balloons and aircraft. These results serve as a basis for checking a Monte Carlo calculation of the entire neutron distribution and its products. A calculation of neutron production and transport in the earth's atmosphere is then discussed for the purpose of providing a detailed description of the morphology of secondary neutron components. Finally, an analysis of neutron observations during solar particle events is presented. The Monte Carlo output is used to estimate the contribution of flare particles to fluctuations in the steady state neutron distributions.

  1. Isotopic Evidence for Multi-stage Cosmic-ray Exposure Histories of Lunar Meteorites: Long Residence on the Moon and Short Transition to the Earth

    International Nuclear Information System (INIS)

    Hidaka, Hiroshi; Sakuma, Keisuke; Nishiizumi, Kunihiko; Yoneda, Shigekazu

    2017-01-01

    It is known that most lunar meteorites have complicated cosmic-ray exposure experiences on the Moon and in space. In this study, cosmic-ray irradiation histories of six lunar meteorites, Dhofar 489, Northwest Africa 032 (NWA 032), NWA 479, NWA 482, NWA 2995, and NWA 5000, were characterized from neutron-captured isotopic shifts of Sm and Gd, and from the abundances of long-lived cosmogenic radionuclides like 10 Be, 26 Al, 36 Cl, and 41 Ca. Sm and Gd isotopic data of all of six meteorites show significant isotopic shifts of 149 Sm– 150 Sm and 157 Gd– 158 Gd caused by accumulation of neutron capture reactions due to cosmic-ray irradiation, corresponding to the neutron fluences of (1.3–9.6) × 10 16 n cm −2 . In particular, very large Sm and Gd isotopic shifts of NWA 482 are over those of a lunar regolith 70002, having the largest isotopic shifts among the Apollo regolith samples, corresponding to cosmic-ray exposure duration over 800 million years in the lunar surface (2 π irradiation). Meanwhile, the concentrations of cosmogenic radionuclides for individual six meteorites show the short irradiation time less than one million years as their bodies in space (4 π irradiation). Our data also support the results of previous studies, revealing that most of lunar meteorites have long exposure ages at shallow depths on the Moon and short transit times from the Moon to the Earth.

  2. Space weather monitoring with neutron monitor measurements

    Energy Technology Data Exchange (ETDEWEB)

    Steigies, Christian [Christian-Albrechts-Universitaet zu Kiel (Germany)

    2013-07-01

    Space Weather affects many areas of the modern society, advance knowledge about space weather events is important to protect personnel and infrastructure. Cosmic Rays (CR) measurements by ground-based Neutron Monitors are influenced by Coronal Mass Ejections (CME), the intensity of the ever present Cosmic Rays is reduced in a Forbush decrease (Fd). In the case of very energetic CMEs, the measured intensity can be significantly increased in a Ground Level Enhancement (GLE). By detecting the anisotropy of the CR environment, a CME can be detected hours before it arrives at Earth. During a GLE the high-energy particles from the Sun can be detected before the more abundant lower energy particles arrive at Earth, thus allowing to take protective measures. Since the beginning of the Neutron Monitor Database (NMDB) project, which has been started in 2008 with funding from the European Commission, real-time data from Neutron Monitors around the world has been made available through one web-portal. We have more than doubled the number of stations providing data since the start of the project to now over 30 stations. The effectiveness of the ALERT applications which are based on NMDB data has been shown by the recent GLE71. We present different applications through which the measurements and different data products are accessible.

  3. Three dimensional analysis of cosmic ray intensity variation

    International Nuclear Information System (INIS)

    Yasue, Shin-ichi; Mori, Satoru; Nagashima, Kazuo.

    1974-01-01

    Three dimensional analysis of cosmic ray anisotropy and its time variation was performed. This paper describes the analysis of the Forbush decrease in Jan. 1968 to investigate by comparing the direction of the magnetic field in interplanetary space and the direction of the reference axis for cosmic ray anisotropy. New anisotropy becomes dominant at the time of Forbush decrease because the anisotropy of cosmic ray in calm state is wiped out. Such anisotropy produces intensity variation in neutron monitors on the ground. The characteristic parameters of three dimensional anisotropy can be determined from theoretical value and observed intensity. Analyzed data were taken for 6 days from Jan. 25 to Jan. 30, 1968, at Deep River. The decrease of intensity at Deep River was seen for several hours from 11 o'clock (UT), Jan. 26, just before The Forbush decrease. This may be due to the loss cone. The Forbush decrease began at 19 o'clock, Jan. 26, and the main phase continued to 5 o'clock in the next morning. The spectrum of variation was Psup(-0.5). The time variations of the magnetic field in interplanetary space and the reference axis of cosmic ray anisotropy are shown for 15 hours. The average directions of both are almost in coincidence. The spatial distribution of cosmic ray near the earth may be expressed by the superposition of axial symmetrical distribution along a reference axis and its push-out to the direction of 12 o'clock. It is considered that the direction of magnetic force line and the velocity of solar wind correspond to the direction of the reference axis and the magnitude of anisotropy in the direction of 12 o'clock, respectively. (Kato, T.)

  4. Chandra Discovers Cosmic Cannonball

    Science.gov (United States)

    2007-11-01

    One of the fastest moving stars ever seen has been discovered with NASA's Chandra X-ray Observatory. This cosmic cannonball is challenging theories to explain its blistering speed. Astronomers used Chandra to observe a neutron star, known as RX J0822-4300, over a period of about five years. During that span, three Chandra observations clearly show the neutron star moving away from the center of the Puppis A supernova remnant. This remnant is the stellar debris field created during the same explosion in which the neutron star was created about 3700 years ago. Chandra X-ray Image of RX J0822-4300 in Puppis A Chandra X-ray Image of RX J0822-4300 in Puppis A By combining how far it has moved across the sky with its distance from Earth, astronomers determined the neutron star is moving at over 3 million miles per hour. At this rate, RX J0822-4300 is destined to escape from the Milky Way after millions of years, even though it has only traveled about 20 light years so far. "This star is moving at 3 million miles an hour, but it's so far away that the apparent motion we see in five years is less than the height of the numerals in the date on a penny, seen from the length of a football field," said Frank Winkler of Middlebury College in Vermont. "It's remarkable, and a real testament to the power of Chandra, that such a tiny motion can be measured." Labeled Image of RX J0822-4300 in Puppis A Labeled Image of RX J0822-4300 in Puppis A "Just after it was born, this neutron star got a one-way ticket out of the Galaxy," said co-author Robert Petre of NASA's Goddard Space Flight Center in Greenbelt, Md. "Astronomers have seen other stars being flung out of the Milky Way, but few as fast as this." So-called hypervelocity stars have been previously discovered shooting out of the Milky Way with speeds around one million miles per hour. One key difference between RX J0822-4300 and these other reported galactic escapees is the source of their speed. The hypervelocity stars are

  5. Cosmic radiation

    Energy Technology Data Exchange (ETDEWEB)

    Capdevielle, J N

    1984-01-01

    First, the different instruments and techniques of cosmic particle detection are presented. Then the passage of the cosmic particles through the atmosphere is studied: electrons, photons, muons. The collective behavior of the different categories is also studied, the electromagnetic cascade is distinguished from the hadron cascade. Through the principal physical properties of the radiation and the medium, the ''mean'' aspects of the radiation are then successively dealt with out of the atmosphere, at different altitudes until the sea level, then at great depths. A chapter is devoted to cosmic radiation of more than 10,000 GeV, studied separately. Then solar radiation in universe is studied through their propagation in solar system and their origin. At last, the cosmic radiation effects are studied in environment (cosmic biophysics) and some applications of cosmic radiation are presented.

  6. Cosmic Education: Formation of a Planetary and Cosmic Personality

    Directory of Open Access Journals (Sweden)

    Bazaluk Oleg

    2012-04-01

    Full Text Available The major stages of development of cosmic pedagogy have been researched. Based on the achievements of the modern neurosciences as well as of psychology, cosmology, and philosophy, the authors provide their reasoning for the cosmic education and its outlooks for the educational systems of the world. Through the studies of how important human mind is for the Earth and the cosmos and by researching the evolution of human mind within the structure of the Universe, the authors create a more advanced scientific and philosophic basis for the cosmic education where the subject is a comprehensive process of formation and directed progress of both an individual mind and a conglomerate of minds called the "psychospace". The cosmic education researches the permanent progress of the intelligent matter of the Earth. The purpose of the cosmic education has been determined as formation of a planetary and cosmic personality. According to the authors, a planetary and cosmic personality is a harmony of mind, soul, and body, and such harmony is directed to use the internal creative potential of mind to the benefit of the intelligent matter of the entire Earth and the cosmos. The properties of such a planetary and cosmic personality are being improved continuously; they are a sample (the ideal of the cosmic pedagogy and the image of a human being of the future. Through the usage of the entire potential and art of upbringing and educating, the cosmic pedagogy is called to embody the major properties of the image of a human being of the future in the new generations of minds and to form a planetary and cosmic personality capable of self-actualization to the benefit of the permanent progress of the intelligent matter.

  7. Exploring Ultra-Heavy Cosmic Rays with the Trans-Iron Galactic Element Recorder (TIGER)

    Science.gov (United States)

    Link, Jason; Supertiger Collaboration

    2017-01-01

    Elements heavier than iron are primarily synthesized by neutron capture. These elements can be accelerated as cosmic-rays and measuring their abundances at Earth can yield information about galactic cosmic-rays' sources, the acceleration processes and the composition of the universe beyond the boundaries of our solar system. The Trans-Iron Galactic Element Recorder (TIGER) and its larger successor SuperTIGER was designed to measure the abundance of these ultra-heavy cosmic rays between Z=10 and Z=60. These detectors utilize scintillators with a wavelength shifter bar and PMT readout system as well as aerogel and acrylic Cherenkov detectors to identify the charge and energy of a particle and utilize a scintillating fiber hodoscope to provide trajectory information. In this talk I will review the results from this highly successful program, give the status for the next SuperTIGER flight planned for a December 2017 launch from Antarctica, and discuss the future direction of the program.

  8. Salient features, response and operation of Lead-Free Gulmarg Neutron Monitor

    International Nuclear Information System (INIS)

    Mufti, S.; Chatterjee, S.; Ishtiaq, P.M.; Darzi, M.A.; Mir, T.A.; Shah, G.N.

    2016-01-01

    Lead-Free Gulmarg Neutron Monitor (LFGNM) provides continuous ground level intensity measurements of atmospheric secondary neutrons produced in interactions of primary cosmic rays with the Earth's constituent atmosphere. We report the LFGNM detector salient features and simulation of its energy response for 10"−"1"1 MeV to 10"4 MeV energy incident neutrons using the FLUKA Monte Carlo package. An empirical calibration of the LFGNM detector carried out with a Pu–Be neutron source for maximising its few MeV neutron counting sensitivity is also presented. As an illustration of its functionality a single representative transient solar modulation event recorded by LFGNM depicting Forbush decrease in integrated neutron data for which the geospace consequences are well known is also presented. Performance of LFGNM under actual observation conditions for effectively responding to transient solar modulation is seen to compare well with other world-wide conventional neutron monitors.

  9. Secondary Neutron Production from Space Radiation Interactions: Advances in Model and Experimental Data Base Development

    Science.gov (United States)

    Heilbronn, Lawrence H.; Townsend, Lawrence W.; Braley, G. Scott; Iwata, Yoshiyuki; Iwase, Hiroshi; Nakamura, Takashi; Ronningen, Reginald M.; Cucinotta, Francis A.

    2003-01-01

    For humans engaged in long-duration missions in deep space or near-Earth orbit, the risk from exposure to galactic and solar cosmic rays is an important factor in the design of spacecraft, spacesuits, and planetary bases. As cosmic rays are transported through shielding materials and human tissue components, a secondary radiation field is produced. Neutrons are an important component of that secondary field, especially in thickly-shielded environments. Calculations predict that 50% of the dose-equivalent in a lunar or Martian base comes from neutrons, and a recent workshop held at the Johnson Space Center concluded that as much as 30% of the dose in the International Space Station may come from secondary neutrons. Accelerator facilities provide a means for measuring the effectiveness of various materials in their ability to limit neutron production, using beams and energies that are present in cosmic radiation. The nearly limitless range of beams, energies, and target materials that are present in space, however, means that accelerator-based experiments will not provide a complete database of cross sections and thick-target yields that are necessary to plan and design long-duration missions. As such, accurate nuclear models of neutron production are needed, as well as data sets that can be used to compare with, and verify, the predictions from such models. Improvements in a model of secondary neutron production from heavy-ion interactions are presented here, along with the results from recent accelerator-based measurements of neutron-production cross sections. An analytical knockout-ablation model capable of predicting neutron production from high-energy hadron-hadron interactions (both nucleon-nucleus and nucleus-nucleus collisions) has been previously developed. In the knockout stage, the collision between two nuclei result in the emission of one or more nucleons from the projectile and/or target. The resulting projectile and target remnants, referred to as

  10. Exotic geophysical phenomena observed in an environmental neutron flux study using EAS PRISMA detectors

    Directory of Open Access Journals (Sweden)

    Alekseenko Victor

    2017-01-01

    Full Text Available Some exotic geophysical events are observed by a global net of electron-neutron detectors (en-detectors developed in the framework of the PRISMA EAS project. Our en-detectors running both on the Earth's surface and underground are continuously measuring the environmental thermal neutron flux. Thermal neutrons are in equilibrium with media and are therefore sensitive to many geophysical phenomena, which are exotic for people studying ultra high-energy cosmic rays or carrying out low background experiments deep underground.

  11. Measurements of the dose due to cosmic rays in aircraft

    International Nuclear Information System (INIS)

    Vukovic, B.; Lisjak, I.; Radolic, V.; Vekic, B.; Planinic, J.

    2006-01-01

    When the primary particles from space, mainly protons, enter the atmosphere, they produce interactions with air nuclei, and cosmic-ray showers are induced. The radiation field at aircraft altitude is complex, with different types of particles, mainly photons, electrons, positrons and neutrons, with a large energy range. The cosmic radiation dose aboard A320 and ATR 42 aircraft was measured with TLD-100 (LiF:Mg,Ti) detectors and the Mini 6100 semiconductor dosimeter; radon concentration in the atmosphere was measured with the Alpha Guard radon detector. The estimated occupational effective dose for the aircraft crew (A320) working 500 h per year was 1.64 mSv. Another experiment was performed by the flights Zagreb-Paris-Buenos Aires and reversely, when one measured cosmic radiation dose; for 26.7 h of flight, the TLD dosimeter registered the total dose of 75 μSv and the average dose rate was 2.7 μSv/h. In the same month, February 2005, a traveling to Japan (24 h flight: Zagreb-Frankfurt-Tokyo and reversely) and the TLD-100 measurement showed the average dose rate of 2.4 μSv/h

  12. Measurements of the dose due to cosmic rays in aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Vukovic, B. [Department of Physics, University of Osijek, Osijek, P.O. Box 125 (Croatia); Lisjak, I. [Croatia Airlines, Zagreb (Croatia); Radolic, V. [Department of Physics, University of Osijek, Osijek, P.O. Box 125 (Croatia); Vekic, B. [Rudjer Boskovic Institute, Zagreb (Croatia); Planinic, J. [Department of Physics, University of Osijek, Osijek, P.O. Box 125 (Croatia)]. E-mail: planinic@ffos.hr

    2006-06-15

    When the primary particles from space, mainly protons, enter the atmosphere, they produce interactions with air nuclei, and cosmic-ray showers are induced. The radiation field at aircraft altitude is complex, with different types of particles, mainly photons, electrons, positrons and neutrons, with a large energy range. The cosmic radiation dose aboard A320 and ATR 42 aircraft was measured with TLD-100 (LiF:Mg,Ti) detectors and the Mini 6100 semiconductor dosimeter; radon concentration in the atmosphere was measured with the Alpha Guard radon detector. The estimated occupational effective dose for the aircraft crew (A320) working 500 h per year was 1.64 mSv. Another experiment was performed by the flights Zagreb-Paris-Buenos Aires and reversely, when one measured cosmic radiation dose; for 26.7 h of flight, the TLD dosimeter registered the total dose of 75 {mu}Sv and the average dose rate was 2.7 {mu}Sv/h. In the same month, February 2005, a traveling to Japan (24 h flight: Zagreb-Frankfurt-Tokyo and reversely) and the TLD-100 measurement showed the average dose rate of 2.4 {mu}Sv/h.

  13. INCA project for investigation of primary cosmic radiation spectrum

    International Nuclear Information System (INIS)

    Aleksandrov, K.V.; Erlykin, A.D.; Zhdanov, G.B.

    2002-01-01

    The scientific purposes of the INCA project and application of the ionization-neutron calorimeter for direct measurements of the cosmic rays spectrum and composition in the knee area and the primary electrons spectrum by 10 14 - 10 13 eV are discussed. The new effective method for the primary electrons and protons separation with the complex rejection coefficient of 10 -5 - 10 -6 is proposed for studying the primary electrons spectrum by E e > 1 TeV. The experimental and calculation data are in good agreement [ru

  14. Two specialized delayed-neutron detector designs for assays of fissionable elements in water and sediment samples

    International Nuclear Information System (INIS)

    Balestrini, S.J.; Balagna, J.P.; Menlove, H.O.

    1976-01-01

    Two specialized neutron-sensitive detectors are described which are employed for rapid assays of fissionable elements by sensing for delayed neutrons emitted by samples after they have been irradiated in a nuclear reactor. The more sensitive of the two detectors, designed to assay for uranium in water samples, is 40% efficient; the other, designed for sediment sample assays, is 27% efficient. These detectors are also designed to operate under water as an inexpensive shielding against neutron leakage from the reactor and neutrons from cosmic rays. (Auth.)

  15. Isotopic Evidence for Multi-stage Cosmic-ray Exposure Histories of Lunar Meteorites: Long Residence on the Moon and Short Transition to the Earth

    Energy Technology Data Exchange (ETDEWEB)

    Hidaka, Hiroshi; Sakuma, Keisuke [Department of Earth and Planetary Sciences, Nagoya University Nagoya 464-8601 (Japan); Nishiizumi, Kunihiko [Space Sciences Laboratory, University of California, Berkeley, CA 94720-7450 (United States); Yoneda, Shigekazu, E-mail: hidaka@eps.nagoya-u.ac.jp [Department of Science and Engineering, National Museum of Nature and Science Tsukuba 305-0005 (Japan)

    2017-06-01

    It is known that most lunar meteorites have complicated cosmic-ray exposure experiences on the Moon and in space. In this study, cosmic-ray irradiation histories of six lunar meteorites, Dhofar 489, Northwest Africa 032 (NWA 032), NWA 479, NWA 482, NWA 2995, and NWA 5000, were characterized from neutron-captured isotopic shifts of Sm and Gd, and from the abundances of long-lived cosmogenic radionuclides like {sup 10}Be, {sup 26}Al, {sup 36}Cl, and {sup 41}Ca. Sm and Gd isotopic data of all of six meteorites show significant isotopic shifts of {sup 149}Sm–{sup 150}Sm and {sup 157}Gd–{sup 158}Gd caused by accumulation of neutron capture reactions due to cosmic-ray irradiation, corresponding to the neutron fluences of (1.3–9.6) × 10{sup 16} n cm{sup −2}. In particular, very large Sm and Gd isotopic shifts of NWA 482 are over those of a lunar regolith 70002, having the largest isotopic shifts among the Apollo regolith samples, corresponding to cosmic-ray exposure duration over 800 million years in the lunar surface (2 π irradiation). Meanwhile, the concentrations of cosmogenic radionuclides for individual six meteorites show the short irradiation time less than one million years as their bodies in space (4 π irradiation). Our data also support the results of previous studies, revealing that most of lunar meteorites have long exposure ages at shallow depths on the Moon and short transit times from the Moon to the Earth.

  16. DIFFERENTIAL SPECTRUM OF NEUTRONS AT CHACALTAYA-BOLIVIA

    International Nuclear Information System (INIS)

    Mayta, R.; Zanini, A.; Ticona, R.; Velarde, A.

    2009-01-01

    We describe the Neutron Spectrometer Experiment installed at Chacaltaya Cosmic Rays Observatory (68 deg. O, 16.2 deg. S), located in Bolivia, at 5230 m.a.s.l. This experimental system is constituted by passive detectors which register the flux of neutrons, in an energy range of 10 KeV-20 MeV. Using the unfolding code BUNTO a peak around 1 MeV of the characteristic spectrum of neutrons was obtained. Experimental values, observed during April of 2008, are compared with similar ones carried out in 1997 at the same place, in order to look for eventual changes due to local atmosphere. A similar experiment was also carried up at the Laboratory of Testa Grigia-Italy (45.56 deg. N, 7.42 deg. E,. 3480 m.a.l.s). Data of both stations allow us to compare the spectra in order to explain the difference of neutron flux of these two stations.

  17. Neutron irradiation of RPCs for the CMS experiment

    CERN Document Server

    Abbrescia, M; Belli, G; Bruno, G; Colaleo, A; Guida, R; Iaselli, G; Loddo, F; Maggi, M; Marangelli, B; Natali, S; Nuzzo, S; Pugliese, G; Ranieri, A; Romano, F

    2003-01-01

    All the CMS muon stations will be equipped with Resistive Plate Chambers (RPCs). They will be exposed to high neutron background environment during the LHC running. In order to verify the safe operation of these detectors, an irradiation test has been carried out with two RPCs at high neutron flux (about 10**8 n cm**-**2 s**- **1), integrating values of dose and fluence equivalent to 10 LHC- years. Before and after the irradiation, the performance of the detectors was studied with cosmic muons, showing no relevant aging effects. Moreover, no indication of damage or chemical changes were observed on the electrode surfaces.

  18. Simulation of neutron background for DINO experiment

    International Nuclear Information System (INIS)

    Meghna, K.K.; Bhattacharjee, Pijushpani; Bhattacharya, Satyaki

    2017-01-01

    Various cosmological observations such as rotation curve of galaxies, gravitational lensing etc. establish the existence of a non-luminous matter known as Dark Matter which constitutes about 27% of the matter content of the universe. Despite the evidence for the existence of dark matter, its constituents are still unknown. In underground laboratories, neutrons can be generated mainly by spontaneous fission of U and radiogenic processes, such as by U / Th (α;n) reactions on the rock materials and by cosmogenic processes, such as interaction of cosmic ray muons with rock and shielding materials. We have estimated the flux of both the cosmogenic and the radiogenic neutrons for Jaduguda laboratory facility

  19. Real-time database for high resolution neutron monitor measurements

    Energy Technology Data Exchange (ETDEWEB)

    Steigies, Christian T.; Rother, Oliver M.; Wimmer-Schweingruber, Robert F.; Heber, Bernd [IEAP, Christian-Albrechts-Universitaet zu Kiel (Germany)

    2008-07-01

    The worldwide network of standardised neutron monitors is, after 50 years, still the state-of-the-art instrumentation to measure spectral variations of the primary cosmic ray component. These measurements are an ideal complement to space based cosmic ray measurements. Data from the approximately 50 IGY and NM64 neutron monitors is stored locally but also available through data collections sites like the World Data Center (WDC) or the IZMIRAN ftp server. The data from the WDC is in a standard format, but only hourly values are available. IZMIRAN collects the data in the best available time resolution, but the data arrives on the ftp server only hours, sometimes days, after the measurements. Also, the high time-resolution measurements of the different stations do not have a common format, a conversion routine for each station is needed before they can be used for scientific analysis. Supported by the 7th framework program of the European Commission, we are setting up a real-time database where high resolution cosmic ray measurements will be stored and accessible immediately after the measurement. Stations that do not have 1-minute resolution measurements will be upgraded to 1-minute or better resolution with an affordable standard registration system, that will submit the measurements to the database via the internet in real-time.

  20. Aircrew Exposure To Cosmic Radiation Evaluated By Means Of Several Methods; Results Obtained In 2006

    International Nuclear Information System (INIS)

    Ploc, Ondrej; Spurny, Frantisek; Jadrnickova, Iva; Turek, Karel

    2008-01-01

    Routine evaluation of aircraft crew exposure to cosmic radiation in the Czech Republic is performed by means of calculation method. Measurements onboard aircraft work as a control tool of the routine method, as well as a possibility of comparison of results measured by means of several methods. The following methods were used in 2006: (1) mobile dosimetry unit (MDU) type Liulin--a spectrometer of energy deposited in Si-detector; (2) two types of LET spectrometers based on the chemically etched track detectors (TED); (3) two types of thermoluminescent detectors; and (4) two calculation methods. MDU represents currently one of the most reliable equipments for evaluation of the aircraft crew exposure to cosmic radiation. It is an active device which measures total energy depositions (E dep ) in the semiconductor unit, and, after appropriate calibration, is able to give a separate estimation for non-neutron and neutron-like components of H*(10). This contribution consists mostly of results acquired by means of this equipment; measurements with passive detectors and calculations are mentioned because of comparison. Reasonably good agreement of all data sets could be stated

  1. Measuring fast neutrons with large liquid scintillation detector for ultra-low background experiments

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, C. [Department of Physics, The University of South Dakota, Vermillion, SD 57069 (United States); College of Sciences, China Three Gorges University, Yichang 443002 (China); Mei, D.-M., E-mail: dongming.mei@usd.edu [Department of Physics, The University of South Dakota, Vermillion, SD 57069 (United States); Davis, P.; Woltman, B. [Department of Physics, The University of South Dakota, Vermillion, SD 57069 (United States); Gray, F. [Department of Physics and Computational Science, Regis University, Denver, CO 80221 (United States)

    2013-11-21

    We developed a 12-liter volume neutron detector filled with the liquid scintillator EJ301 that measures neutrons in an underground laboratory where dark matter and neutrino experiments are located. The detector target is a cylindrical volume coated on the inside with reflective paint (95% reflectivity) that significantly increases the detector's light collection. We demonstrate several calibration techniques using point sources and cosmic-ray muons for energies up to 20 MeV for this large liquid scintillation detector. Neutron–gamma separation using pulse shape discrimination with a few MeV neutrons to hundreds of MeV neutrons is shown for the first time using a large liquid scintillator.

  2. Behavior of neutrons under different thicknesses of moderation

    International Nuclear Information System (INIS)

    Baltazar R, A.; Medina C, D.; Soto B, T. G.; Vega C, H. R.

    2016-10-01

    Neutrons occur naturally, regardless of whether they are obtained as a by-product of other reactions or intentionally, mainly as a by-product of the interaction of cosmic rays with the nuclei of the atmosphere, and in anthropogenic or artificial form with neutron generators, nuclear reactors, radioisotope sources, etc. Due to their high radiobiological efficiency is important measure them in order to estimate the effective dose in occupationally exposed personnel and the public in general. This dose depends on the amount of neutrons and their energy; in order to reduce neutron energy, light materials based on H, D, C, Be are used which moderate and thermalize them. The objective of this work was to determine the behavior of monoenergetic sources of neutrons in their transport within polyethylene of different thicknesses. The study was carried out using Monte Carlo methods with the code MCNP5, where 23 monoenergetic sources of I E(-9) were used at 20 MeV by influencing the neutrons on various polyethylene surfaces whose thickness was varied from 5.08 to 30.48 cm and the total neutron flux was estimated, as well as its spectrum when crossing the various thicknesses used in the study. (Author)

  3. Footprint radius of a cosmic-ray neutron probe for measuring soil-water content and its spatiotemporal variability in an alpine meadow ecosystem

    Science.gov (United States)

    Zhu, Xuchao; Cao, Ruixue; Shao, Mingan; Liang, Yin

    2018-03-01

    Cosmic-ray neutron probes (CRNPs) have footprint radii for measuring soil-water content (SWC). The theoretical radius is much larger at high altitude, such as the northern Tibetan Plateau, than the radius at sea level. The most probable practical radius of CRNPs for the northern Tibetan Plateau, however, is not known due to the lack of SWC data in this hostile environment. We calculated the theoretical footprint of the CRNP based on a recent simulation and analyzed the practical radius of a CRNP for the northern Tibetan Plateau by measuring SWC at 113 sampling locations on 21 measuring occasions to a depth of 30 cm in a 33.5 ha plot in an alpine meadow at 4600 m a.s.l. The temporal variability and spatial heterogeneity of SWC within the footprint were then analyzed. The theoretical footprint radius was between 360 and 420 m after accounting for the influences of air humidity, soil moisture, vegetation and air pressure. A comparison of SWCs measured by the CRNP and a neutron probe from access tubes in circles with different radii conservatively indicated that the most probable experimental footprint radius was >200 m. SWC within the CRNP footprint was moderately variable over both time and space, but the temporal variability was higher. Spatial heterogeneity was weak, but should be considered in future CRNP calibrations. This study provided theoretical and practical bases for the application and promotion of CRNPs in alpine meadows on the Tibetan Plateau.

  4. Cosmic Ray Daily Variation And SOLAR Activity On Anomalous Days

    International Nuclear Information System (INIS)

    Mishra, Rajesh Kumar; Mishra, Rekha Agarwal

    2008-01-01

    A study is carried out on the long-term changes in the diurnal anisotropy of cosmic rays using the ground based Deep River neutron monitor data during significantly low amplitude anisotropic wave train events in cosmic ray intensity for the period 1981-94. It has been observed that the phase of the diurnal anisotropy for majority of the low amplitude anisotropic wave train events significantly shifts towards earlier hours as compared to the co-rotational direction. The long-term behaviour of the amplitude of the diurnal anisotropy can be explained in terms of the occurrence of low amplitude anisotropic wave train events. The occurrence of these events is dominant during solar activity minimum years. The amplitude of the diurnal anisotropy is well correlated with the solar cycle but the direction of the anisotropy is not correlated with the solar cycle and shows a systematic shift to earlier hours. (authors)

  5. Second generation ultralow background germanium gamma-ray spectrometer using super clean materials and improved multilayered cosmic ray anticoincidence and passive shielding

    International Nuclear Information System (INIS)

    Reeves, J.H.; Hensley, W.K.; Brodzinski, R.L.

    1984-10-01

    Our current paper describes the development of a low cost shielding system using liquid scintillator for the cosmic ray detector-neutron moderator which accounts for a tenfold reduction in the cosmic continuum. Our primary objective was to develop a low cost anticoincidence shield for laboratory use which would substantially reduce the background from cosmic ray interactions. The minimum thickness of scintillator which would provide the necessary moderation of neutrons as well as furnish detectable quantities of light generated from cosmic ray interactions was determined experimentally. Tanks holding the liquid scintillator were constructed from stainless steel and were partitioned in such a manner that 10, 20, 30, or 40 cm thicknesses could be selected for background measurements. Lucite was used for construction of a tank which would allow the comparison of light output relative to stainless steel for a 10 cm thickness of liquid scintillator. Plastic scintillator was used for the bottom layer in all cases, however, liquid scintillator could be used with proper internal support. A 20 cm x 20 cm x 40 cm plastic scintillator was machined to completely surround the detector and fit inside 15 cm thick walls of lead which in turn, fit inside the stainless steel scintilllator tanks. Background measurements were taken with this inner scintillator both active and inactive. Measurements were also made using copper as well as iron as replacements for the inner scintillator

  6. Obtaining the neutron time-of-flight instrument response function for a single D-T neutron utilizing n-alpha coincidence from the d(t, α) n nuclear reaction

    Science.gov (United States)

    Styron, Jedediah; Ruiz, Carlos; Hahn, Kelly; Cooper, Gary; Chandler, Gordon; Jones, Brent; McWatters, Bruce; Smith, Jenny; Vaughan, Jeremy

    2017-10-01

    A measured neutron time-of-flight (nTOF) signal is a convolution of the neutron reaction history and the instrument response function (IRF). For this work, the IRF was obtained by measuring single, D-T neutron events by utilizing n-alpha coincidence. The d(t, α) n nuclear reaction was produced at Sandia National Laboratories' Ion Beam Laboratory using a 300-keV Cockroft-Walton generator to accelerate a 2- μA beam, of 175-keV D + ions, into a stationary, 2.6- μm, ErT2 target. Comparison of these results to those obtained using cosmic-rays and photons will be discussed. Sandia National Laboratories.

  7. Definition by modelling, optimization and characterization of a neutron spectrometry system based on Bonner spheres extended to the high-energy range

    International Nuclear Information System (INIS)

    Serre, S.

    2010-01-01

    This research thesis first describes the problematic of the effects of natural radiation on micro- and nano-electronic components, and the atmospheric-radiative stress of atmospheric neutrons from cosmic origin: issue of 'Single event upsets', present knowledge of the atmospheric radiative environment induced by cosmic rays. The author then presents the neutron-based detection and spectrometry by using the Bonner sphere technique: principle of moderating spheres, definition and mathematical formulation of neutron spectrometry using Bonner spheres, active sensors of thermal neutrons, response of a system to conventional Bonner spheres, extension to the range of high energies. Then, he reports the development of a Bonner sphere system extended to the high-energy range for the spectrometry of atmospheric neutrons: definition of a conventional system, Monte Carlo calculation of response functions, development of the response matrix, representation and semi-empirical verification of fluence response, uncertainty analysis, extension to high energies, and measurement tests of the spectrometer. He reports the use of a Monte Carlo simulation to characterize the spectrometer response in the high-energy range

  8. Case study on the effect of cosmic radiation in embedded systems in aircraft

    International Nuclear Information System (INIS)

    Prado, Adriane C.M.; Pereira, Marlon A.; Federico, Claudio A.; Goncalez, Odair L.

    2014-01-01

    High-energy neutrons generated from the interaction of cosmic radiation with atoms of the atmosphere, can cause adverse effects on avionics devices. These effects are referred to as 'Single Event Effects' (SEE) and may occur especially in aircraft onboard computers, from change the logic state of memory cells or functional interruptions, which could compromise flight safety. The effects of the SEE must first be evaluated and entered into the safety analysis process in order to determine the susceptibility to failures by SEE devices. SEE rate can be evaluated separately for thermal neutrons and fast neutrons with energy above 10 MeV. This paper presents an exploratory study of susceptibility to radiation to a specific type of SRAM memory, during periods of maximum and minimum solar, in situations of equatorial and polar flight in the typical flight altitude of existing aircraft and, at higher altitudes, near the maximum of Pfotzer. This study was conducted using estimates of particle flows employing the EXPACS QARM codes and evaluating the expected rate of SEE due to thermal neutrons and fast neutrons separately. The distribution in energy and the flow of neutrons inside the airplane are influenced by the total mass of the aircraft and this influence are also discussed

  9. Neutron irradiation of RPCs for the CMS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Abbrescia, M.; Colaleo, A.; Iaselli, G.; Loddo, F.; Maggi, M.; Marangelli, B.; Natali, S.; Nuzzo, S.; Pugliese, G. E-mail: gabriella.pugliese@ba.infn.it; Ranieri, A.; Romano, F.; Altieri, S.; Belli, G.; Bruno, G.; Guida, R.; Ratti, S.P.; Riccardi, C.; Torre, P.; Vitulo, P

    2003-08-01

    All the CMS muon stations will be equipped with Resistive Plate Chambers (RPCs). They will be exposed to high neutron background environment during the LHC running. In order to verify the safe operation of these detectors, an irradiation test has been carried out with two RPCs at high neutron flux (about 10{sup 8} n cm{sup -2} s{sup -1}), integrating values of dose and fluence equivalent to 10 LHC-years. Before and after the irradiation, the performance of the detectors was studied with cosmic muons, showing no relevant aging effects. Moreover, no indication of damage or chemical changes were observed on the electrode surfaces.

  10. Cosmic-ray production of tungsten isotopes in lunar samples and meteorites and its implications for Hf-W cosmochemistry

    Science.gov (United States)

    Leya, Ingo; Wieler, Rainer; Halliday, Alex N.

    2000-01-01

    Excesses and deficiencies in 182W in meteorites and lunar samples relative to the terrestrial 182W atomic abundance have been assigned to the decay of 182Hf (t1/2=9 Ma) and have been used to date metal-silicate fractionation events in the early solar system. Because the effects are very small, production and burn-out of tungsten isotopes by cosmic ray interactions are a concern in such studies. Masarik [J. Masarik, Contribution of neutron-capture reactions to observed tungsten isotopic ratios, Earth Planet. Sci. Lett. 152 (1997) 181-185] showed that neutron-capture reactions on tungsten isotopes can account at best for a minor part of the observed deficit of 182W in Toluca and other iron meteorites. On the other hand, in lunar samples and stony meteorites the production of 182W from 181Ta may become crucial. Here, we calculate this contribution as well as production and consumption of 182-186W by other neutron-induced reactions. The neutron fluence of each sample is estimated by its nominal cosmic-ray exposure age deduced from noble gas data. This approach overestimates the true cosmogenic W isotopic shifts for samples that might have been irradiated very close to the regolith surface. A quantitative estimate is often also hampered by a lack of Ta data. Despite these reservations, it appears that in many lunar samples neutron-capture on Ta has caused a large part of the observed 182W excess. On the other hand, in some samples, especially those with very low exposure ages, clearly only a minor or even negligible fraction of the 182W excess can be cosmogenic. Therefore, the conclusion, based on Hf-W model ages, that the Moon formed 50 Myr after the start of the solar system remains valid. Martian meteorites have lower Ta/W ratios and cosmic ray exposure ages than most lunar samples. Therefore, cosmogenic production has not significantly altered the W isotopic composition in Martian meteorites. Observed 182W excesses in Martian meteorites as well as the very large

  11. Measurement of neutron radiation exposure of commercial airline pilots using bubble detectors

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, B.J.; Kosierb, R. (Royal Military College of Canada, Kingston, Ontario (Canada). Dept. of Chemistry and Chemical Engineering); Cousins, T. (Defense Research Establishment Ottawa, Ontario (Canada). Space Systems and Technology Section); Hudson, D.F. (Air Canada Flight Operations, Vancouver, British Columbia (Canada)); Guery, G. (Air France-Direction des Operations Aeriennes, Roissy Charles de Gaulle (France))

    1994-06-01

    Neutron bubble detectors have been used over a 1-yr period by commercial airline pilots from Air Canada and Air France to measure the high-altitude neutron radiation exposure produced by galactic cosmic rays. The present work yielded measurements of the neutron flux of 1.0 to 4.6 n/cm[sup 2][center dot]s, and the neutron dose equivalent rates of 1.7 to 7.7 [mu]S[nu]/h. These measurements are in agreement with previous studies using high-altitude aircraft and conventional neutron instrumentation. The total dose equivalents for the Air Canada flights are also consistent with predictions of the CARI code. Considering that the neutron component contributes [approximately] 50% of the total dose equivalent, this study indicates that the annual dose for the air crew member would exceed the new recommendations of the International Commission on Radiological Protection (ICRP-60) for the general public.

  12. Measurement of neutron radiation exposure of commercial airline pilots using bubble detectors

    International Nuclear Information System (INIS)

    Lewis, B.J.; Kosierb, R.; Guery, G.

    1994-01-01

    Neutron bubble detectors have been used over a 1-yr period by commercial airline pilots from Air Canada and Air France to measure the high-altitude neutron radiation exposure produced by galactic cosmic rays. The present work yielded measurements of the neutron flux of 1.0 to 4.6 n/cm 2 ·s, and the neutron dose equivalent rates of 1.7 to 7.7 μSν/h. These measurements are in agreement with previous studies using high-altitude aircraft and conventional neutron instrumentation. The total dose equivalents for the Air Canada flights are also consistent with predictions of the CARI code. Considering that the neutron component contributes ∼ 50% of the total dose equivalent, this study indicates that the annual dose for the air crew member would exceed the new recommendations of the International Commission on Radiological Protection (ICRP-60) for the general public

  13. Cosmic rays: an in-flight hazard?

    International Nuclear Information System (INIS)

    O'Sullivan, Denis

    2000-01-01

    International airlines are collaborating with physicists to assess whether aircrew are at risk from cosmic radiation as routine monitoring will soon become mandatory. Recently, an international team of physicists has joined forces with NASA and several European airlines to study in detail how the radiation field varies inside the atmosphere depending on the altitude, latitude and solar activity. Astronauts are subjected to the full intensity of high-energy cosmic rays and solar particles (together with the secondary particles produced in the spacecraft walls), and the biological risks in space are the subject of ongoing investigations. A typical return mission to Mars, for example, could result in a total ''dose equivalent'' of up to 0.5 sievert. The dose equivalent takes into account the harm caused by a particular type of radiation. Current estimates suggest that a person who receives a 1 sievert dose of ionizing radiation incurs a few per cent increase in the risk of contracting fatal cancer in his or her lifetime, although the risk level depends on sex and age. The radiation we observe at aircraft altitudes of typically 10-12 km is due to very high-energy particles mainly protons and helium nuclei, together with a small amount of heavy nuclei penetrating the atmosphere and colliding with air atoms. These collisions give rise to the production of more particles, such as protons, neutrons and various mesons. A cascade of particles is then produced by successive interactions as they penetrate deeper into the atmosphere. As a result, the flux of particles increases in the upper atmosphere and reaches a maximum at about 20 km above sea level. Below this point, the number of particles decreases due to energy losses and various particle interactions. Happily, at the Earth's surface we are protected by the air above us, which provides the same degree of shielding as a layer of water 10 m thick. The small amount of radiation that eventually reaches us in the form of

  14. Cosmogenic Radionuclides as an Extension of the Neutron Monitor Era into the Past: Potential and Limitations

    Science.gov (United States)

    Beer, J.; McCracken, K. G.; Abreu, J.; Heikkilä, U.; Steinhilber, F.

    2013-06-01

    The cosmogenic radionuclides, 10Be, 14C and others, provide a record of the paleo-cosmic radiation that extends >10,000 years into the past. They are the only quantitative means at our disposal to study the heliosphere prior to the commencement of routine sunspot observations in the 17th century. The cosmogenic radionuclides are primarily produced by secondary neutrons generated by the galactic cosmic radiation, and can be regarded, in a sense, as providing an extrapolation of the neutron monitor era into the past. However, their characteristics are quite different from the man-made neutron monitor in several important respects: (1) they are sensitive to somewhat lower cosmic ray energies; (2) their temporal resolution is ˜1 to 2 years, being determined by the rapidity with which they are sequestered in ice, biological, or other archives; (3) the statistical precision for annual data is very poor (˜19%); however it is quite adequate (˜5% for 22-year averages) to study the large variations (±40%) that have occurred in the paleo-cosmic ray record in the past between grand solar minima and maxima. The data contains "noise" caused by local meteorological effects, and longer-term climate effects, and the use of principal component analysis to separate these "system" effects from production effects is outlined. The concentrations of 10Be decreased by a factor of two at the commencement of Holocene, the present-day "interglacial", due to a 100% increase in the ice accumulation rates in polar regions. The use of the 10Be flux to study heliospheric properties during the last glacial is discussed briefly.

  15. The Pierre Auger Observatory scaler mode for the study of solar activity modulation of galactic cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Abreu, P.; /Lisbon, LIFEP /Lisbon, IST; Aglietta, M.; /Turin Observ. /Turin U. /INFN, Turin; Ahn, E.J.; /Fermilab; Allard, D.; /APC, Paris; Allekotte, I.; /Centro Atomico Bariloche /Balseiro Inst., San Carlos de Bariloche; Allen, J.; /New York U.; Alvarez Castillo, J.; /Mexico U.; Alvarez-Muniz, J.; /Santiago de Compostela U.; Ambrosio, M.; /Naples U. /INFN, Naples; Aminaei, A.; /Nijmegen U., IMAPP; Anchordoqui, L.; /Wisconsin U., Milwaukee /Lisbon, LIFEP /Lisbon, IST

    2011-01-01

    Since data-taking began in January 2004, the Pierre Auger Observatory has been recording the count rates of low energy secondary cosmic ray particles for the self-calibration of the ground detectors of its surface detector array. After correcting for atmospheric effects, modulations of galactic cosmic rays due to solar activity and transient events are observed. Temporal variations related with the activity of the heliosphere can be determined with high accuracy due to the high total count rates. In this study, the available data are presented together with an analysis focused on the observation of Forbush decreases, where a strong correlation with neutron monitor data is found.

  16. Evaluation of exposure to cosmic radiation of flight crews of Lithuanian Airlines

    International Nuclear Information System (INIS)

    Morkunas, G.; Pilkyte, L.; Ereminas, D.

    2003-01-01

    In Lithuania the average annual effective dose due to cosmic radiation at the sea level is 0.38 mSv. The dose rate caused by cosmic radiation increases with altitude due to the decrease in attenuation of cosmic radiation by atmosphere. Dose rates altitudes of commercial flights are tens times higher than those at the sea level. For this reason people who frequently fly receive higher doses which might even be subject to legal regulations. The European Council Directive (96/29 EURATOM) on basic radiation safety standards requires that doses of air crews members be assessed and appropriate measures taken, depending on the assessment results. The aim of this study was to evaluate potential doses, which can be received by members of air crews of Lithuania Airlines. The assessment was done by performing measurements and calculations. Measurements were performed in flying aircraft by thermoluminescent detectors, Geiger Muller counters and neutron rem counter. Such an approach lead to evaluation of doses due to directly ionizing particles and neutrons. Calculations were done with the help of the code CARI-6M. Such parameters as flight route, solar activity, duration and altitudes of flight were taken into account. Doses received during different flights and in different air crafts were assessed. The results of measurements and calculations were compared and differences discussed. The results were also compared with the data obtained in other similar studies. It was found that the highest doses are received in flights to Paris, London, Amsterdam, and Frankfurt by aircraft B737. A number of flights causing annual doses higher than 1 mSv was estimated. Despite the fact that only European flights are operated by Lithuanian Airlines the dose of 1 mSv may be exceeded under some circumstances. If it happens some radiation protection measures shall be taken. These measures are also discussed. (author)

  17. Light-Ion Production in the Interaction of 96 MeV Neutrons with Silicon

    International Nuclear Information System (INIS)

    Tippawan, U.; Dangtip, S.; Pomp, S.; Atac, A.; Bergenwall, B.; Blomgren, J.; Hildebrand, A.; Johansson, C.; Klug, J.; Mermod, P.; Oesterlund, M.; Nilsson, L.; Elmgren, K.; Olsson, N.; Jonsson, O.; Prokofiev, A.V.; Renberg, P.-U.; Nadel-Turonski, P.; Corcalciuc, V.; Watanabe, Y.

    2005-01-01

    Radiation effects induced by terrestrial cosmic rays in microelectronics, on board aircrafts as well as at sea level, have recently attracted much attention. The most important particle radiation is due to spallation neutrons, created in the atmosphere by cosmic-ray protons. When, e.g., an electronic memory circuit is exposed to neutron radiation, charged particles can be produced in a nuclear reaction. The charge released by ionization can cause a flip of the memory content in a bit, which is called a single-event upset (SEU). This induces no hardware damage to the circuit, but unwanted re-programming of memories, CPUs, etc., can have consequences for the reliability, and ultimately also for the safety of the system.Data on energy and angular distributions of the secondary particles produced by neutrons in silicon nuclei are essential input for analyses and calculation of SEU rate. In this work, double-differential cross sections of inclusive light-ion (p, d, t, 3He and α) production in silicon, induced by 96 MeV neutrons, are presented. Energy distributions are measured at eight laboratory angles from 20 deg. to 160 deg. in steps of 20 deg. Deduced energy-differential and production cross sections are reported as well. Experimental cross sections are compared to theoretical reaction model calculations and existing experimental data in the literature

  18. Cosmic void clumps

    Science.gov (United States)

    Lares, M.; Luparello, H. E.; Garcia Lambas, D.; Ruiz, A. N.; Ceccarelli, L.; Paz, D.

    2017-10-01

    Cosmic voids are of great interest given their relation to the large scale distribution of mass and the way they trace cosmic flows shaping the cosmic web. Here we show that the distribution of voids has, in consonance with the distribution of mass, a characteristic scale at which void pairs are preferentially located. We identify clumps of voids with similar environments and use them to define second order underdensities. Also, we characterize its properties and analyze its impact on the cosmic microwave background.

  19. Cosmic-ray-induced radiation environment and dose to man for low-orbit space applications

    International Nuclear Information System (INIS)

    Sandmeier, H.A.; Hansen, G.E.; Battat, M.E.; O'Brien, K.

    1981-09-01

    Neutrons and photons resulting from the interaction of galactic cosmic rays with the material of an orbiting satellite or an orbiting space station at an altitude of some few hundreds of kilometers, and below the level of the radiation belts, have been calculated as a function of geomagnetic latitude and solar activity level. The photon and neutron leakage currents from the top of the atmosphere have been computed. The radiation dose-equivalent rate to an unshielded astronaut has also been calculated. The maximum dose-equivalent rate, near the magnetic poles, was 2 mrem/h. In deep space this would amount to 18 rem/y, indicating that for a prolonged stay in space, shielding would be needed

  20. Neutron oscillations and the primordial magnetic field

    International Nuclear Information System (INIS)

    Sarkar, S.

    1988-01-01

    It has been claimed that a primordial magnetic field must exist in order to suppress possible oscillations of neutrons into antineutrons which would otherwise affect the cosmological synthesis of helium. We demonstrate that such oscillations, even if they do occur, have a negligible effect on primordial nucleosynthesis, thus refuting the above claim. Hence the possible existence of a primordial magnetic field, relevant to current speculations concerning superconducting 'cosmic strings', remains an open question. (author)

  1. Neural network and wavelets in prediction of cosmic ray variability: The North Africa as study case

    Science.gov (United States)

    Zarrouk, Neïla; Bennaceur, Raouf

    2010-04-01

    Since the Earth is permanently bombarded with energetic cosmic rays particles, cosmic ray flux has been monitored by ground based neutron monitors for decades. In this work an attempt is made to investigate the decomposition and reconstructions provided by Morlet wavelet technique, using data series of cosmic rays variabilities, then to constitute from this wavelet analysis an input data base for the neural network system with which we can then predict decomposition coefficients and all related parameters for other points. Thus the latter are used for the recomposition step in which the plots and curves describing the relative cosmic rays intensities are obtained in any points on the earth in which we do not have any information about cosmic rays intensities. Although neural network associated with wavelets are not frequently used for cosmic rays time series, they seems very suitable and are a good choice to obtain these results. In fact we have succeeded to derive a very useful tool to obtain the decomposition coefficients, the main periods for each point on the Earth and on another hand we have now a kind of virtual NM for these locations like North Africa countries, Maroc, Algeria, Tunisia, Libya and Cairo. We have found the aspect of very known 11-years cycle: T1, we have also revealed the variation type of T2 and especially T3 cycles which seem to be induced by particular Earth's phenomena.

  2. Cosmic rays

    International Nuclear Information System (INIS)

    Tkachev, I.I.

    2014-01-01

    In this talk I will review results of cosmic ray observations at the highest energies. This year the new results on energy spectra, composition and the study of arrival directions of cosmic ray primaries came from the Telescope Array collaboration. I present these results in comparison with measurements done by other recent experiments and discuss their implications for the search of cosmic ray sources. Some related results in gamma-ray astronomy and selected recent advances in theory are also covered. (author)

  3. The estimation of the dose from cosmic radiation received by the population living at mainland of China

    International Nuclear Information System (INIS)

    Jin Hua; Yue Qingyu

    1989-11-01

    The measurement of ionization distribution caused by the cosmic ray ionizing components in the air, the survey of population distribution in geography and the investigation of total passengers taking air liners at the mainland of China have been completed. By taking the data from the census of the year 1986 and the population distribution of the mainland, considering the cosmic ray distribution with the height and referring the distribution of neutron flux density in cosmic ray, the population-weighted mean annual effective dose equivalent, which is obtained from 2017 counties and 353 cities, for inhabitants living in every provinces and municipalities directly under Central Government has been calculated. The collective dose equivalent produced by the external exposure of cosmic ray is also estimated when people are taking air liners. The results which are effected by the population distribution show that the annual effective dose equivalant received by the population of China from the cosmic ray is 28% lower than the population of the world. The most of Chinese people are living at the north hemisphere area having lower elevation and geomagnetic latitude, and 53.6% among them is in the area of elevation below 100 m and 91% is in the area of geomagnetic latitude below 30 deg N

  4. Martian Neutron Energy Spectrometer (MANES)

    Science.gov (United States)

    Maurer, R. H.; Roth, D. R.; Kinnison, J. D.; Goldsten, J. O.; Fainchtein, R.; Badhwar, G.

    2000-01-01

    High energy charged particles of extragalactic, galactic, and solar origin collide with spacecraft structures and planetary atmospheres. These primaries create a number of secondary particles inside the structures or on the surfaces of planets to produce a significant radiation environment. This radiation is a threat to long term inhabitants and travelers for interplanetary missions and produces an increased risk of carcinogenesis, central nervous system (CNS) and DNA damage. Charged particles are readily detected; but, neutrons, being electrically neutral, are much more difficult to monitor. These secondary neutrons are reported to contribute 30-60% of the dose equivalent in the Shuttle and MIR station. The Martian atmosphere has an areal density of 37 g/sq cm primarily of carbon dioxide molecules. This shallow atmosphere presents fewer mean free paths to the bombarding cosmic rays and solar particles. The secondary neutrons present at the surface of Mars will have undergone fewer generations of collisions and have higher energies than at sea level on Earth. Albedo neutrons produced by collisions with the Martian surface material will also contribute to the radiation environment. The increased threat of radiation damage to humans on Mars occurs when neutrons of higher mean energy traverse the thin, dry Martian atmosphere and encounter water in the astronaut's body. Water, being hydrogeneous, efficiently moderates the high energy neutrons thereby slowing them as they penetrate deeply into the body. Consequently, greater radiation doses can be deposited in or near critical organs such as the liver or spleen than is the case on Earth. A second significant threat is the possibility of a high energy heavy ion or neutron causing a DNA double strand break in a single strike.

  5. Update on the correlation between the cosmic radiation intensity and the geomagnetic AA index

    International Nuclear Information System (INIS)

    Shea, M.A.; Smart, D.F.

    1985-01-01

    A statistical study between the cosmic ray intensity, as observed by a neutron monitor, and of the geomagnetic aa index, as representative of perturbations in the plasma and interplanetary magnetic field in the heliosphere, has been updated to specifically exclude time periods around the reversal of the solar magnetic field. The results of this study show a strong negative correlation for the period 1960 through 1968 with a correlation coefficient of approximately -0.86. However, there is essentially no correlation between the cosmic ray intensity and the aa index for the period 1972-1979 (i.e. correlation coefficient less than 0.16). These results would appear to support the theory of preferential particle propagation into the heliosphere vis the ecliptic during the period 1960-1968 and via the solar polar regions during 1972-1979

  6. Dosimetry for occupational exposure to cosmic radiation

    International Nuclear Information System (INIS)

    Bartlett, D.T.; McAulay, I.R.; Schrewe, U.J.

    1997-01-01

    Aircraft crew and frequent flyers are exposed to elevated levels of cosmic radiation of galactic and solar origin and secondary radiation produced in the atmosphere, aircraft structure, etc. This has been recognised for some time and estimates of the exposure of aircraft crew have been made previously and included in, for example, UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation) publications. The recent increased interest has been brought about by several factors - the consideration that the relative biological effectiveness of the neutron component was being underestimated; the trend towards higher cruising altitudes for subsonic commercial aircraft and business jet aircraft; and most importantly, the recommendations of the International Commission on Radiological Protection (ICRP) in Publication 60, and the revision of the Euratom Basic Safety Standards Directive (BSS). In 1992, the European Dosimetry Group (EURADOS) established a Working Group to consider the exposure to cosmic radiation of aircraft crew, and the scientific and technical problems associated with radiation protection dosimetry for this occupational group. The Working Group was composed of fifteen scientists (plus a corresponding member) involved in this field of study and with knowledge of radiation measurement at aviation altitudes. This paper is based on the findings of this Working Group. (author)

  7. Single event phenomena in atmospheric neutron environments

    International Nuclear Information System (INIS)

    Gossett, C.A.; Hughlock, B.W.; Katoozi, M.; LaRue, G.S.; Wender, S.A.

    1993-01-01

    As integrated circuit technology achieves higher density through smaller feature sizes and as the airplane manufacturing industry integrates more sophisticated electronic components into the design of new aircraft, it has become increasingly important to evaluate the contribution of single event effects, primarily Single Event Upset (SEU), to the safety and reliability of commercial aircraft. In contrast to the effects of radiation on electronic systems in space applications for which protons and heavy ions are of major concern, in commercial aircraft applications the interactions of high energy neutrons are the dominant cause of single event effects. These high energy neutrons are produced by the interaction of solar and galactic cosmic rays, principally protons and heavy ions, in the upper atmosphere. This paper will describe direct experimental measurements of neutron-induced Single Event Effect (SEE) rates in commercial high density static random access memories in a neutron environment characteristic of that at commercial airplane altitudes. The first experimental measurements testing current models for neutron-silicon burst generation rates will be presented, as well as measurements of charge collection in silicon test structures as a function of neutron energy. These are the first laboratory SEE and charge collection measurements using a particle beam having a continuum energy spectrum and with a shape nearly identical to that observed during flight

  8. Cosmic gamma-ray bursts from BATSE - Another great debate

    Science.gov (United States)

    Hartmann, Dieter H.; The, Lih-Sin; Clayton, Donald D.; Schnepf, Neil G.; Linder, Eric V.

    1992-01-01

    The BATSE detectors aboard Compton Observatory record about one cosmic gamma-ray burst (GRB) per day. Preliminary data analysis shows a highly isotropic sky map and a nonuniform brightness distribution. Anisotropies expected from a Galactic neutron star population, the most frequently considered source model, did not emerge from the data. Taken at face value, the data seem to suggest a heliocentric solution of the GRB puzzle. The observed isotropy can be achieved if sources are either very near or extragalactic. Pop I neutron stars in the disk do not simultaneously fit sky and brightness distributions. A possibility are sources in an extended Galactic halo with scale length large enough to avoid strong anisotropies due to the solar offset from the Galactic center. If GRBs are located in an extended halo we ask whether the neutron star paradigm can survive. We show that the recently discovered high velocity radio pulsars may provide a natural source population for GRBs. If these pulsars formed in the halo, as suggested by the radio data, the possibility arises that GRBs and high velocity pulsars are two related phenomena that provide observational evidence of the dark Galactic corona. We also discuss cosmological redshift constraints that follow from the observed brightness distribution.

  9. A strategy to unveil transient sources of ultra-high-energy cosmic rays

    Directory of Open Access Journals (Sweden)

    Takami Hajime

    2013-06-01

    Full Text Available Transient generation of ultra-high-energy cosmic rays (UHECRs has been motivated from promising candidates of UHECR sources such as gamma-ray bursts, flares of active galactic nuclei, and newly born neutron stars and magnetars. Here we propose a strategy to unveil transient sources of UHECRs from UHECR experiments. We demonstrate that the rate of UHECR bursts and/or flares is related to the apparent number density of UHECR sources, which is the number density estimated on the assumption of steady sources, and the time-profile spread of the bursts produced by cosmic magnetic fields. The apparent number density strongly depends on UHECR energies under a given rate of the bursts, which becomes observational evidence of transient sources. It is saturated at the number density of host galaxies of UHECR sources. We also derive constraints on the UHECR burst rate and/or energy budget of UHECRs per source as a function of the apparent source number density by using models of cosmic magnetic fields. In order to obtain a precise constraint of the UHECR burst rate, high event statistics above ∼ 1020 eV for evaluating the apparent source number density at the highest energies and better knowledge on cosmic magnetic fields by future observations and/or simulations to better estimate the time-profile spread of UHECR bursts are required. The estimated rate allows us to constrain transient UHECR sources by being compared with the occurrence rates of known energetic transient phenomena.

  10. Human population exposure to cosmic radiation

    International Nuclear Information System (INIS)

    Bouville, A.; Lowder, W.M.

    1988-01-01

    Critical evaluations of existing data on cosmic radiation in the atmosphere and in interplanetary space have been carried out in order to estimate the exposure of the world's population to this important component of natural background radiation. Data on population distribution and mean terrain heights on a 1 x 1 degree grid have been folded in to estimate regional and global dose distributions. The per caput annual dose equivalent at ground altitudes is estimated to be 270 μSv from charged particles and 50 μSv from neutrons. More than 100 million people receive more than 1 mSv in a year, and two million in excess of 5 mSv. Aircraft flight crews and frequent flyers receive an additional annual dose equivalent in the order of 1 mSv, though the global per caput annual dose equivalent from airplane flights is only about 1 μSv. Future space travellers on extended missions are likely to receive dose equivalents in the range 0.11 Sv, with the possibility of higher doses at relatively high dose rates from unusually large solar flares. These results indicate a critical need for a better understanding of the biological significance of chronic neutron and heavy charged particle exposure. (author)

  11. An application of statistical adjustment of data to the energetic solar cosmic ray increase of August 7, 1972

    International Nuclear Information System (INIS)

    Komori, H.

    1975-01-01

    Data of five minute intervals of the neutron intensity from twelve cosmic ray stations were utilized for this application. Five source parameters; amplitude a, latitude lambdasub(s), longitude PHIsub(s), power law exponent γ in spectral representation and power law exponent n of angular spread have been determined by the least-square method of Deming. (orig./WBU) [de

  12. Measurement of secondary cosmic radiation and calculation of associated dose conversion coefficients for humans

    International Nuclear Information System (INIS)

    Simmer, Gregor

    2012-01-01

    Due to secondary cosmic radiation (SCR), pilots and flight attendants receive elevated effective doses at flight altitudes. For this reason, since 2003 aircrew members are considered as occupationally exposed, in Germany. This work deals with the calculation of dose conversion coefficients (DCC) for protons, neutrons, electrons, positrons, photons and myons, which are crucial for estimation of effective dose from SCR. For the first time, calculations were performed combining Geant4 - a Monte Carlo code developed at CERN - with the voxel phantoms for the reference female and male published in 2008 by ICRP and ICRU. Furthermore, measurements of neutron fluence spectra - which contribute the major part to the effective dose of SCR - were carried out at the Environmental Research Station Schneefernerhaus (UFS) located at 2650 m above sea level nearby the Zugspitze mountain, Germany. These measured neutron spectra, and additionally available calculated spectra, were then folded with the DCC calculated in this work, and effective dose rates for different heights were calculated.

  13. Our Cosmic Insignificance

    Science.gov (United States)

    Kahane, Guy

    2014-01-01

    The universe that surrounds us is vast, and we are so very small. When we reflect on the vastness of the universe, our humdrum cosmic location, and the inevitable future demise of humanity, our lives can seem utterly insignificant. Many philosophers assume that such worries about our significance reflect a banal metaethical confusion. They dismiss the very idea of cosmic significance. This, I argue, is a mistake. Worries about cosmic insignificance do not express metaethical worries about objectivity or nihilism, and we can make good sense of the idea of cosmic significance and its absence. It is also possible to explain why the vastness of the universe can make us feel insignificant. This impression does turn out to be mistaken, but not for the reasons typically assumed. In fact, we might be of immense cosmic significance—though we cannot, at this point, tell whether this is the case. PMID:25729095

  14. The design of a high-efficiency neutron counter for waste drums to provide optimized sensitivity for plutonium assay

    Energy Technology Data Exchange (ETDEWEB)

    Menlove, H.O.; Beddingfield, D.H.; Pickrell, M.M. [Los Alamos National Lab., NM (United States)] [and others

    1997-11-01

    An advanced passive neutron counter has been designed to improve the accuracy and sensitivity for the nondestructive assay of plutonium in scrap and waste containers. The High-Efficiency Neutron Counter (HENC) was developed under a Cooperative Research Development Agreement between the Los Alamos National Laboratory and Canberra Industries. The primary goal of the development was to produce a passive assay system for 200-L drums that has detectability limits and multiplicity counting features that are superior to previous systems. A detectability limit figure of merit (FOM) was defined that included the detector efficiency, the neutron die-away time, and the detector`s active volume and density that determine the cosmic-ray background. Monte Carlo neutron calculations were performed to determine the parameters to provide an optimum FOM. The system includes the {sup 252}Cf {open_quotes}add-a-source{close_quotes} feature to improve the accuracy as well as statistical filters to reduce the cosmic-ray spallation neutron background. The final decision gave an efficiency of 32% for plutonium with a detector {sup 3}He tube volume that is significantly smaller than for previous high-efficiency systems for 200-L drums. Because of the high efficiency of the HENC, we have incorporated neutron multiplicity counting for matrix corrections for those cases where the plutonium is localized in nonuniform hydrogenous materials. The paper describes the design and performance testing of the advanced system. 5 refs., 8 figs., 3 tabs.

  15. The design of a high-efficiency neutron counter for waste drums to provide optimized sensitivity for plutonium assay

    International Nuclear Information System (INIS)

    Menlove, H.O.; Beddingfield, D.H.; Pickrell, M.M.

    1997-01-01

    An advanced passive neutron counter has been designed to improve the accuracy and sensitivity for the nondestructive assay of plutonium in scrap and waste containers. The High-Efficiency Neutron Counter (HENC) was developed under a Cooperative Research Development Agreement between the Los Alamos National Laboratory and Canberra Industries. The primary goal of the development was to produce a passive assay system for 200-L drums that has detectability limits and multiplicity counting features that are superior to previous systems. A detectability limit figure of merit (FOM) was defined that included the detector efficiency, the neutron die-away time, and the detector's active volume and density that determine the cosmic-ray background. Monte Carlo neutron calculations were performed to determine the parameters to provide an optimum FOM. The system includes the 252 Cf open-quotes add-a-sourceclose quotes feature to improve the accuracy as well as statistical filters to reduce the cosmic-ray spallation neutron background. The final decision gave an efficiency of 32% for plutonium with a detector 3 He tube volume that is significantly smaller than for previous high-efficiency systems for 200-L drums. Because of the high efficiency of the HENC, we have incorporated neutron multiplicity counting for matrix corrections for those cases where the plutonium is localized in nonuniform hydrogenous materials. The paper describes the design and performance testing of the advanced system. 5 refs., 8 figs., 3 tabs

  16. An update on the correlation between the cosmic radiation intensity and the geomagnetic AA index

    Science.gov (United States)

    Shea, M. A.; Smart, D. F.

    1985-01-01

    A statistical study between the cosmic ray intensity, as observed by a neutron monitor, and of the geomagnetic aa index, as representative of perturbations in the plasma and interplanetary magnetic field in the heliosphere, has been updated to specifically exclude time periods around the reversal of the solar magnetic field. The results of this study show a strong negative correlation for the period 1960 through 1968 with a correlation coefficient of approximately -0.86. However, there is essentially no correlation between the cosmic ray intensity and the aa index for the period 1972-1979 (i.e. correlation coefficient less than 0.16). These results would appear to support the theory of preferential particle propagation into the heliosphere vis the ecliptic during the period 1960-1968 and via the solar polar regions during 1972-1979.

  17. A cosmic microwave background feature consistent with a cosmic texture.

    Science.gov (United States)

    Cruz, M; Turok, N; Vielva, P; Martínez-González, E; Hobson, M

    2007-12-07

    The Cosmic Microwave Background provides our most ancient image of the universe and our best tool for studying its early evolution. Theories of high-energy physics predict the formation of various types of topological defects in the very early universe, including cosmic texture, which would generate hot and cold spots in the Cosmic Microwave Background. We show through a Bayesian statistical analysis that the most prominent 5 degrees -radius cold spot observed in all-sky images, which is otherwise hard to explain, is compatible with having being caused by a texture. From this model, we constrain the fundamental symmetry-breaking energy scale to be (0) approximately 8.7 x 10(15) gigaelectron volts. If confirmed, this detection of a cosmic defect will probe physics at energies exceeding any conceivable terrestrial experiment.

  18. Cosmic Microwave Background Timeline

    Science.gov (United States)

    Cosmic Microwave Background Timeline 1934 : Richard Tolman shows that blackbody radiation in an will have a blackbody cosmic microwave background with temperature about 5 K 1955: Tigran Shmaonov anisotropy in the cosmic microwave background, this strongly supports the big bang model with gravitational

  19. Light scattering by cosmic particles

    NARCIS (Netherlands)

    Hovenier, J.W.; Min, M.

    2008-01-01

    We define cosmic particles as particles outside the Earth. Two types of cosmic particles can be distinguished, namely liquid and solid particles. The solid particles are often called grains or cosmic dust particles. Cosmic particles occur in a great variety of astronomical objects and environments.

  20. Study of the neutron background noise generated by muons in the Edelweiss-2 experiment; Etude du bruit de fond neutron induit par les muons dans l'experience EDELWEISS-2

    Energy Technology Data Exchange (ETDEWEB)

    Chabert, L

    2004-07-01

    This thesis contributes to the Edelweiss experiment whose aim is to detect interactions between neutralinos and target nuclei. Bolometers used in Edelweiss combine the detection of phonons with the detection of electric charges generated by the energy deposition. This double detection enables us to discard background signals due to electronic interactions and soon detection sensitivity of the experiment will be limited by the neutron background noise due to residual cosmic muons. This work is dedicated to a detailed study of muon inelastic interactions and the consequent production of neutrons. Simulations show that the expected neutron flux is so high that the direct detection of muons is required in order to link it to the neutron signal issued by the bolometer. Results from simulations show that plastic scintillators might be the main components of the muon detector.

  1. Cosmic strings and galaxy formation

    International Nuclear Information System (INIS)

    Bertschinger, E.

    1989-01-01

    Cosmic strings have become increasingly popular candidates as seeds for the formation of structure in the universe. This scenario, remains a serious cosmogonical model despite close scrutiny. In constrast, magnetic monopoles and domain walls - relic topological defects as are cosmic strings - are disastrous for cosmology if they are left over from the early universe. The production of heavy cosmic strings is speculative, as it depends on the details of ultrahigh energy physics. Fortunately, speculation about cosmic strings is not entirely idle because, if they exist and are heavy enough to seed galaxy formation, cosmic strings can be detected astronomically. Failure to detect cosmic strings would impose some constraints on grand unified theories (GUTs); their discovery would have exciting consequences for high energy physics and cosmology. This article reviews the basic physics of nonsuperconducting cosmic strings, highlighting the field theory aspects, and provides a progress report on calculations of structure formation with cosmic strings

  2. Improved Fission Neutron Data Base for Active Interrogation of Actinides

    Energy Technology Data Exchange (ETDEWEB)

    Pozzi, Sara; Czirr, J. Bart; Haight, Robert; Kovash, Michael; Tsvetkov, Pavel

    2013-11-06

    This project will develop an innovative neutron detection system for active interrogation measurements. Many active interrogation methods to detect fissionable material are based on the detection of neutrons from fission induced by fast neutrons or high-energy gamma rays. The energy spectrum of the fission neutrons provides data to identify the fissionable isotopes and materials such as shielding between the fissionable material and the detector. The proposed path for the project is as follows. First, the team will develop new neutron detection systems and algorithms by Monte Carlo simulations and bench-top experiments. Next, They will characterize and calibrate detection systems both with monoenergetic and white neutron sources. Finally, high-fidelity measurements of neutron emission from fissions induced by fast neutrons will be performed. Several existing fission chambers containing U-235, Pu-239, U-238, or Th-232 will be used to measure the neutron-induced fission neutron emission spectra. The challenge for making confident measurements is the detection of neutrons in the energy ranges of 0.01 – 1 MeV and above 8 MeV, regions where the basic data on the neutron energy spectrum emitted from fission is least well known. In addition, improvements in the specificity of neutron detectors are required throughout the complete energy range: they must be able to clearly distinguish neutrons from other radiations, in particular gamma rays and cosmic rays. The team believes that all of these challenges can be addressed successfully with emerging technologies under development by this collaboration. In particular, the collaboration will address the area of fission neutron emission spectra for isotopes of interest in the advanced fuel cycle initiative (AFCI).

  3. Elpasolite Planetary Ice and Composition Spectrometer (EPICS): A Low-Resource Combined Gamma-Ray and Neutron Spectrometer for Planetary Science

    Science.gov (United States)

    Stonehill, L. C.; Coupland, D. D. S.; Dallmann, N. A.; Feldman, W. C.; Mesick, K.; Nowicki, S.; Storms, S.

    2017-12-01

    The Elpasolite Planetary Ice and Composition Spectrometer (EPICS) is an innovative, low-resource gamma-ray and neutron spectrometer for planetary science missions, enabled by new scintillator and photodetector technologies. Neutrons and gamma rays are produced by cosmic ray interactions with planetary bodies and their subsequent interactions with the near-surface materials produce distinctive energy spectra. Measuring these spectra reveals details of the planetary near-surface composition that are not accessible through any other phenomenology. EPICS will be the first planetary science instrument to fully integrate the neutron and gamma-ray spectrometers. This integration is enabled by the elpasolite family of scintillators that offer gamma-ray spectroscopy energy resolutions as good as 3% FWHM at 662 keV, thermal neutron sensitivity, and the ability to distinguish gamma-ray and neutron signals via pulse shape differences. This new detection technology will significantly reduce size, weight, and power (SWaP) while providing similar neutron performance and improved gamma energy resolution compared to previous scintillator instruments, and the ability to monitor the cosmic-ray source term. EPICS will detect scintillation light with silicon photomultipliers rather than traditional photomultiplier tubes, offering dramatic additional SWaP reduction. EPICS is under development with Los Alamos National Laboratory internal research and development funding. Here we report on the EPICS design, provide an update on the current status of the EPICS development, and discuss the expected sensitivity and performance of EPICS in several potential missions to airless bodies.

  4. Calculation of cosmic ray induced single event upsets: Program CRUP (Cosmic Ray Upset Program)

    Science.gov (United States)

    Shapiro, P.

    1983-09-01

    This report documents PROGRAM CRUP, COSMIC RAY UPSET PROGRAM. The computer program calculates cosmic ray induced single-event error rates in microelectronic circuits exposed to several representative cosmic-ray environments.

  5. Diagnostics and equipment for ion temperatures and implosion neutron yields

    International Nuclear Information System (INIS)

    Chen Jiabin; Zheng Zhijian; Peng Hansheng; Wen Shuhuai; Zhang Baohan; Ding Yongkun; Qi Lanying; Chen Ming; Li Chaoguang

    2001-01-01

    Fuel ion temperature is of great importance in the ICF research field. A set of ultra-fast quenched plastic scintillation detector system was fabricated for low yield neutron diagnostic. The detection efficiency and the sensitivity to DT neutrons were scaled using a K-400 accelerator and a pulse neutron tube from Russia with a width 5 - 10 ns, respectively. Its time response functions were calibrated by cosmic ray and implosion neutron separately. Under the conditions of low laser energy so low neutron yield and very limited space, fuel ion temperatures (including implosion neutron yields at the same time) were obtained. The measured ion temperatures for exploding pusher capsules were between 4 keV and 5 keV with errors +-(15 - 25)%. The neutron yields were 5 x 10 8 - 3 x 10 9 for exploding pusher capsules and 1.6 x 10 7 - 3.9 x 10 8 for ablation ones with errors +- (7 - 10)%. Of the six shots of neutron yields calculated, five are in good agreement with authors' experimental results in the range of +- 20%. Not only the heat-conducting mechanism and the effects on implosion of the energy balance of each path of incidence laser, target design, fuel mixture as well as hot electron behavior have been investigated, but also the upgrade level of the laser facility Shengguang II has been tested

  6. Transient phenomena in cosmic ray intensity during extreme events

    Science.gov (United States)

    Agarwal, Rekha; Mishra, Rajesh K.

    2008-04-01

    In the present work an analysis has been made of the extreme events occurring during July 2005. Specifically, a rather intense Forbush decrease was observed at different neutron monitors all over the world during 16 July 2005. An effort has been made to study the effect of this unusual event on cosmic ray intensity as well as various solar and interplanetary plasma parameters. It is noteworthy that during 11 to 18 July 2005 the solar activity ranged from low to very active. Especially low levels occurred on 11, 15, and 17 July whereas high levels took place on 14 and 16 July 2005. The Sun is observed to be active during 11 to 18 July 2005, the interplanetary magnetic field intensity lies within 15 nT, and solar wind velocity was limited to ˜500 kms-1. The geomagnetic activity during this period remains very quiet, the Kp index did not exceed 5, the disturbance storm time Dst index remains ˜-70 nT and no sudden storm commencement has been detected during this period. It is noted that for the majority of the hours, the north/south component of the interplanetary magnetic field, Bz, remains negative, and the cosmic ray intensity increases and shows good/high correlation with Bz, as the polarity of Bz tends to shift from negative to positive values, the intensity decreases and shows good/high anti-correlation with Bz. The cosmic ray intensity tends to decrease with increase of interplanetary magnetic field strength (B) and shows anti-correlation for the majority of the days.

  7. Gravitational wave spectroscopy of binary neutron star merger remnants with mode stacking

    Science.gov (United States)

    Yang, Huan; Paschalidis, Vasileios; Yagi, Kent; Lehner, Luis; Pretorius, Frans; Yunes, Nicolás

    2018-01-01

    A binary neutron star coalescence event has recently been observed for the first time in gravitational waves, and many more detections are expected once current ground-based detectors begin operating at design sensitivity. As in the case of binary black holes, gravitational waves generated by binary neutron stars consist of inspiral, merger, and postmerger components. Detecting the latter is important because it encodes information about the nuclear equation of state in a regime that cannot be probed prior to merger. The postmerger signal, however, can only be expected to be measurable by current detectors for events closer than roughly ten megaparsecs, which given merger rate estimates implies a low probability of observation within the expected lifetime of these detectors. We carry out Monte Carlo simulations showing that the dominant postmerger signal (the ℓ=m =2 mode) from individual binary neutron star mergers may not have a good chance of observation even with the most sensitive future ground-based gravitational wave detectors proposed so far (the Einstein Telescope and Cosmic Explorer, for certain equations of state, assuming a full year of operation, the latest merger rates, and a detection threshold corresponding to a signal-to-noise ratio of 5). For this reason, we propose two methods that stack the postmerger signal from multiple binary neutron star observations to boost the postmerger detection probability. The first method follows a commonly used practice of multiplying the Bayes factors of individual events. The second method relies on an assumption that the mode phase can be determined from the inspiral waveform, so that coherent mode stacking of the data from different events becomes possible. We find that both methods significantly improve the chances of detecting the dominant postmerger signal, making a detection very likely after a year of observation with Cosmic Explorer for certain equations of state. We also show that in terms of detection

  8. Fast neutron flux analyzer with real-time digital pulse shape discrimination

    Energy Technology Data Exchange (ETDEWEB)

    Ivanova, A.A., E-mail: a.a.ivanova@inp.nsk.su [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); Zubarev, P.V. [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); Novosibirsk State Technical University, 630092 Novosibirsk (Russian Federation); Ivanenko, S.V. [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); Khilchenko, A.D. [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); Novosibirsk State Technical University, 630092 Novosibirsk (Russian Federation); Kotelnikov, A.I. [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); Polosatkin, S.V. [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); Novosibirsk State Technical University, 630092 Novosibirsk (Russian Federation); Novosibirsk State University, 630090 Novosibirsk (Russian Federation); Puryga, E.A.; Shvyrev, V.G. [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); Novosibirsk State Technical University, 630092 Novosibirsk (Russian Federation); Sulyaev, Yu.S. [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, 630090 Novosibirsk (Russian Federation)

    2016-08-11

    Investigation of subthermonuclear plasma confinement and heating in magnetic fusion devices such as GOL–3 and GDT at the Budker Institute (Novosibirsk, Russia) requires sophisticated equipment for neutron-, gamma- diagnostics and upgrading data acquisition systems with online data processing. Measurement of fast neutron flux with stilbene scintillation detectors raised the problem of discrimination of the neutrons (n) from background cosmic particles (muons) and neutron-induced gamma rays (γ). This paper describes a fast neutron flux analyzer with real-time digital pulse-shape discrimination (DPSD) algorithm FPGA-implemented for the GOL–3 and GDT devices. This analyzer was tested and calibrated with the help of {sup 137}Cs and {sup 252}Cf radiation sources. The Figures of Merit (FOM) calculated for different energy cuts are presented. - Highlights: • Electronic equipment for measurement of fast neutron flux with stilbene scintillator is presented. • FPGA-implemented digital pulse-shape discrimination algorithm by charge comparison method is shown. • Calibration of analyzer was carried out with {sup 137}Cs and {sup 252}Cf. • Figures of Merit (FOM) values for energy cuts from 1/8 Cs to 2 Cs are from 1.264 to 2.34 respectively.

  9. Cosmic ray diffusion: report of the workshop in cosmic ray diffusion theory

    International Nuclear Information System (INIS)

    Birmingham, T.J.; Jones, F.C.

    1975-02-01

    A workshop in cosmic ray diffusion theory was held at Goddard Space Flight Center on May 16-17, 1974. Topics discussed and summarized are: (1) cosmic ray measurements as related to diffusion theory; (2) quasi-linear theory, nonlinear theory, and computer simulation of cosmic ray pitch-angle diffusion; and (3) magnetic field fluctuation measurements as related to diffusion theory. (auth)

  10. 11. European cosmic ray symposium

    International Nuclear Information System (INIS)

    1989-03-01

    The biannual Symposium includes all aspects of cosmic ray research. The scientific programme was organized under three main headings: Cosmic rays in the heliosphere, Cosmic rays in the interstellar and extragalactic space, Properties of high-energy interactions as studied by cosmic rays. Seven invited talks were indexed seprately for the INIS database. (R.P.)

  11. A COSMIC VARIANCE COOKBOOK

    International Nuclear Information System (INIS)

    Moster, Benjamin P.; Rix, Hans-Walter; Somerville, Rachel S.; Newman, Jeffrey A.

    2011-01-01

    Deep pencil beam surveys ( 2 ) are of fundamental importance for studying the high-redshift universe. However, inferences about galaxy population properties (e.g., the abundance of objects) are in practice limited by 'cosmic variance'. This is the uncertainty in observational estimates of the number density of galaxies arising from the underlying large-scale density fluctuations. This source of uncertainty can be significant, especially for surveys which cover only small areas and for massive high-redshift galaxies. Cosmic variance for a given galaxy population can be determined using predictions from cold dark matter theory and the galaxy bias. In this paper, we provide tools for experiment design and interpretation. For a given survey geometry, we present the cosmic variance of dark matter as a function of mean redshift z-bar and redshift bin size Δz. Using a halo occupation model to predict galaxy clustering, we derive the galaxy bias as a function of mean redshift for galaxy samples of a given stellar mass range. In the linear regime, the cosmic variance of these galaxy samples is the product of the galaxy bias and the dark matter cosmic variance. We present a simple recipe using a fitting function to compute cosmic variance as a function of the angular dimensions of the field, z-bar , Δz, and stellar mass m * . We also provide tabulated values and a software tool. The accuracy of the resulting cosmic variance estimates (δσ v /σ v ) is shown to be better than 20%. We find that for GOODS at z-bar =2 and with Δz = 0.5, the relative cosmic variance of galaxies with m * >10 11 M sun is ∼38%, while it is ∼27% for GEMS and ∼12% for COSMOS. For galaxies of m * ∼ 10 10 M sun , the relative cosmic variance is ∼19% for GOODS, ∼13% for GEMS, and ∼6% for COSMOS. This implies that cosmic variance is a significant source of uncertainty at z-bar =2 for small fields and massive galaxies, while for larger fields and intermediate mass galaxies, cosmic

  12. Cosmic Accelerators: An Introduction

    International Nuclear Information System (INIS)

    Kanbach, Gottfried

    2005-01-01

    High energy, relativistic, particles are an essential component of the Universe and play a major role in astrophysics. In a few years we will reach the centennial of the discovery of cosmic rays; all through this century the properties, origin, and effects of this radiation have intrigued researchers in astrophysics and elementary particles alike. We briefly review the history, current status, and future perspectives of cosmic ray research. Emphasis will be placed on the multitude of cosmic accelerators, direct observations of these objects, and the effects of cosmic rays in the Galaxy and beyond

  13. High energy cosmic rays

    CERN Document Server

    Stanev, Todor

    2010-01-01

    Offers an accessible text and reference (a cosmic-ray manual) for graduate students entering the field and high-energy astrophysicists will find this an accessible cosmic-ray manual Easy to read for the general astronomer, the first part describes the standard model of cosmic rays based on our understanding of modern particle physics. Presents the acceleration scenario in some detail in supernovae explosions as well as in the passage of cosmic rays through the Galaxy. Compares experimental data in the atmosphere as well as underground are compared with theoretical models

  14. Ultrahigh energy cosmic ray nuclei from extragalactic pulsars and the effect of their Galactic counterparts

    International Nuclear Information System (INIS)

    Fang, Ke; Olinto, Angela V.; Kotera, Kumiko

    2013-01-01

    The acceleration of ultrahigh energy nuclei in fast spinning newborn pulsars can explain the observed spectrum of ultrahigh energy cosmic rays and the trend towards heavier nuclei for energies above 10 19 eV as reported by the Auger Observatory. Pulsar acceleration implies a hard injection spectrum ( ∼ E −1 ) due to pulsar spin down and a maximum energy E max ∼ Z 10 19 eV due to the limit on the spin rate of neutron stars. We have previously shown that the escape through the young supernova remnant softens the spectrum, decreases slightly the maximum energy, and generates secondary nuclei. Here we show that the distribution of pulsar birth periods and the effect of propagation in the interstellar and intergalactic media modifies the combined spectrum of all pulsars. By assuming a normal distribution of pulsar birth periods centered at 300 ms, we show that the contribution of extragalactic pulsar births to the ultrahigh energy cosmic ray spectrum naturally gives rise to a contribution to very high energy cosmic rays (VHECRs, between 10 16 and 10 18 eV) by Galactic pulsar births. The required injected composition to fit the observed spectrum depends on the absolute energy scale, which is uncertain, differing between Auger Observatory and Telescope Array. The contribution of Galactic pulsar births can also bridge the gap between predictions for cosmic ray acceleration in supernova remnants and the observed spectrum just below the ankle, depending on the composition of the cosmic rays that escape the supernova remnant and the diffusion behavior of VHECRs in the Galaxy

  15. FAIR - Cosmic matter in the laboratory

    International Nuclear Information System (INIS)

    Stöcker, Horst; Stöhlker, Thomas; Sturm, Christian

    2015-01-01

    To explore cosmic matter in the laboratory - this fascinating research prospect becomes available at the Facility for Antiproton and Ion Research, FAIR. The new facility is being constructed within the next five years adjacent to the existing accelerator complex of the GSI Helmholtz Centre for Heavy Ion Research at Darmstadt/Germany, expanding the research goals and technical possibilities substantially. This includes new insights into the dynamics of supernovae depending on the properties of short-lived neutron-rich nuclei which will be investigated with intense rare isotope beams. New insights will be provided into the interior of stars by exploring dense plasmas with intense heavy-ion beams combined with a high-performance laser - or into neutron star cores by probing the highest baryon densities in relativistic nucleus-nucleus collisions at unprecedented collision rates. To the latter, the properties of hadrons play an important part which will be systematically studied by high precision hadron spectroscopy with antiproton beams at unmatched intensities. The worldwide unique accelerator and experimental facilities of FAIR will open the way for a broad spectrum of unprecedented fore-front research supplying a large variety of experiments in hadron, nuclear, atomic and plasma physics as well as biomedical and material science which will be briefly described in this article. This article is based on the FAIR Green Paper and gives an update of former publications. (author)

  16. FAIR - Cosmic Matter in the Laboratory

    Science.gov (United States)

    Stöcker, Horst; Stöhlker, Thomas; Sturm, Christian

    2015-06-01

    To explore cosmic matter in the laboratory - this fascinating research prospect becomes available at the Facility for Antiproton and Ion Research, FAIR. The new facility is being constructed within the next five years adjacent to the existing accelerator complex of the GSI Helmholtz Centre for Heavy Ion Research at Darmstadt/Germany, expanding the research goals and technical possibilities substantially. This includes new insights into the dynamics of supernovae depending on the properties of short-lived neutron-rich nuclei which will be investigated with intense rare isotope beams. New insights will be provided into the interior of stars by exploring dense plasmas with intense heavy-ion beams combined with a high-performance laser - or into neutron star cores by probing the highest baryon densities in relativistic nucleus-nucleus collisions at unprecedented collision rates. To the latter, the properties of hadrons play an important part which will be systematically studied by high precision hadron spectroscopy with antiproton beams at unmatched intensities. The worldwide unique accelerator and experimental facilities of FAIR will open the way for a broad spectrum of unprecedented fore-front research supplying a large variety of experiments in hadron, nuclear, atomic and plasma physics as well as biomedical and material science which will be briefly described in this article. This article is based on the FAIR Green Paper [4] and gives an update of former publications [5] - [12].

  17. Solar tri-diurnal variation of cosmic rays in a wide range of rigidity

    Science.gov (United States)

    Mori, S.; Ueno, H.; Fujii, Z.; Morishita, I.; Nagashima, K.

    1985-01-01

    Solar tri-diurnal variations of cosmic rays have been analyzed in a wide range of rigidity, using data from neutron monitors, and the surface and underground muon telescopes for the period 1978-1983. The rigidity spectrum of the anisotropy in space is assumed to be of power-exponential type as (P/gamma P sub o) to the gamma exp (gamma-P/P sub o). By means of the best-fit method between the observed and the expected variations, it is obtained that the spectrum has a peak at P (=gamma P sub o) approx = 90 GV, where gamma=approx 3.0 and P sub o approx. 30 GV. The phase in space of the tri-diurnal variation is also obtained as 7.0 hr (15 hr and 23 hr LT), which is quite different from that of approx. 1 hr. arising from the axisymmetric distribution of cosmic rays with respect to the IMF.

  18. Status of radiation detector and neutron monitor technology

    CERN Document Server

    Kim, Y K; Ha, J H; Han, S H; Hong, S B; Hwang, I K; Lee, W G; Moon, B S; Park, S H; Song, M H

    2002-01-01

    In this report, we describe the current states of the radiation detection technology, detectors for industrial application, and neutron monitors. We also survey the new technologies being applied to this field. The method to detect radiation is the measurement of the observable secondary effect from the interaction between incident radiation and detector material, such as ionization, excitation, fluorescence, and chemical reaction. The radiation detectors can be categorized into gas detectors, scintillation detectors, and semiconductor detectors according to major effects and main applications. This report contains the current status and operational principles of these detectors. The application fields of radiation detectors are industrial measurement system, in-core neutron monitor, medical radiation diagnostic device, nondestructive inspection device, environmental radiation monitoring, cosmic-ray measurement, security system, fundamental science experiment, and radiation measurement standardization. The st...

  19. High Energy Cosmic Electrons: Messengers from Nearby Cosmic Ray Sources or Dark Matter?

    Science.gov (United States)

    Moiseev, Alexander

    2011-01-01

    This slide presentation reviews the recent discoveries by the Large Area Telescope (LAT) and the Gamma-ray Burst Monitor (GBM) on board the Fermi Gamma-Ray Telescope in reference to high energy cosmic electrons, and whether their source is cosmic rays or dark matter. Specific interest is devoted to Cosmic Ray electrons anisotropy,

  20. Cosmic strings

    International Nuclear Information System (INIS)

    Bennett, D.P.

    1988-07-01

    Cosmic strings are linear topological defects that are predicted by some grand unified theories to form during a spontaneous symmetry breaking phase transition in the early universe. They are the basis for the only theories of galaxy formation aside from quantum fluctuations from inflation that are based on fundamental physics. In contrast to inflation, they can also be observed directly through gravitational lensing and their characteristic microwave background anistropy. It has recently been discovered by F. Bouchet and myself that details of cosmic string evolution are very different from the so-called ''standard model'' that has been assumed in most of the string induced galaxy formation calculations. Therefore, the details of galaxy formation in the cosmic string models are currently very uncertain. 29 refs., 9 figs

  1. FLUKA Calculation of the Neutron Albedo Encountered at Low Earth Orbits

    CERN Document Server

    Claret, Arnaud; Combier, Natacha; Ferrari, Alfredo; Laurent, Philippe

    2014-01-01

    This paper presents Monte-Carlo simulations based on the Fluka code aiming to calculate the contribution of the neutron albedo at a given date and altitude above the Earth chosen by the user. The main input parameters of our model are the solar modulation affecting the spectra of cosmic rays, and the date of the Earth’s geomagnetic fi eld. The results consist in a two-parameter distribution, the neutron energy and the angle to the tangent plane of the sphere containing the orbi t of interest, and are provided by geographical position above the E arth at the chosen altitude. This model can be used to predict the te mporal variation of the neutron fl ux encountered along the orbit, and thus constrain the determination of the instrumental backg round noise of space experiments in low earth orbit.

  2. Latitude survey investigation of galactic cosmic ray solar modulation during 1994-2007

    Energy Technology Data Exchange (ETDEWEB)

    Nuntiyakul, W.; Ruffolo, D.; Sáiz, A. [Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400 (Thailand); Evenson, P.; Bieber, J. W.; Clem, J.; Pyle, R. [Bartol Research Institute and Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Duldig, M. L.; Humble, J. E., E-mail: w.nuntiyakul@gmail.com, E-mail: david.ruf@mahidol.ac.th, E-mail: alejandro.sai@mahidol.ac.th, E-mail: evenson@udel.edu, E-mail: jwbieber@bartol.udel.edu, E-mail: clem@bartol.udel.edu, E-mail: pyle@bartol.udel.edu, E-mail: John.Humble@utas.edu.au, E-mail: Marc.Duldig@utas.edu.au [School of Physical Sciences, University of Tasmania, Hobart, Tasmania 7001 (Australia)

    2014-11-01

    The Galactic cosmic ray spectrum exhibits subtle variations over the 22 yr solar magnetic cycle in addition to the more dramatic variations over the 11 yr sunspot cycle. Neutron monitors are large ground-based detectors that provide accurate measurements of variations in the cosmic ray flux at the top of the atmosphere above the detector. At any given location the magnetic field of the Earth excludes particles below a well-defined rigidity (momentum per unit charge) known as the cutoff rigidity, which can be accurately calculated using detailed models of the geomagnetic field. By carrying a neutron monitor to different locations, e.g., on a ship, the Earth itself serves as a magnet spectrometer. By repeating such latitude surveys with identical equipment, a sensitive measurement of changes in the spectrum can be made. In this work, we analyze data from the 1994 through 2007 series of latitude surveys conducted by the Bartol Research Institute, the University of Tasmania, and the Australian Antarctic Division. We confirm the curious 'crossover' in spectra measured near solar minima during epochs of opposite solar magnetic polarity, and show that it is directly related to a sudden change in the spectral behavior of solar modulation at the time of the polarity reversal, as revealed from contemporaneous variations in the survey data and a fixed station. We suggest that the spectral change and crossover result from the interaction of effects due to gradient/curvature drifts with a systematic change in the interplanetary diffusion coefficient caused by turbulent magnetic helicity.

  3. Distinct Pattern of Solar Modulation of Galactic Cosmic Rays above a High Geomagnetic Cutoff Rigidity

    Science.gov (United States)

    Mangeard, Pierre-Simon; Clem, John; Evenson, Paul; Pyle, Roger; Mitthumsiri, Warit; Ruffolo, David; Sáiz, Alejandro; Nutaro, Tanin

    2018-05-01

    Solar modulation refers to Galactic cosmic-ray variations with the ∼11 yr sunspot cycle and ∼22 yr solar magnetic cycle and is relevant to the space radiation environment and effects on Earth’s atmosphere. Its complicated dependence on solar and heliospheric conditions is only roughly understood and has been empirically modeled in terms of a single modulation parameter. Most analyses of solar modulation use neutron monitor (NM) data from locations with relatively low geomagnetic cutoff rigidity, i.e., the threshold for cosmic rays to penetrate Earth’s magnetic field. The Princess Sirindhorn Neutron Monitor at Doi Inthanon, Thailand, has the world’s highest cutoff rigidity (≈17 GV) where observations span a complete solar modulation cycle (since late 2007). The pattern of solar modulation at Doi Inthanon during 2011–2014 was qualitatively very different from that at a low geomagnetic cutoff and is not well described by the same modulation parameter. At other times, NM count rates from Doi Inthanon and McMurdo, Antarctica (cutoff ∼1 GV), were linearly correlated and confirm the observation from latitude surveys in the previous solar cycle that the slope of the correlation changes with solar magnetic polarity. Low solar magnetic tilt angles (magnetic field, which is consistent with an increase in diffusion at high rigidity short-circuiting the effects of drifts and the heliospheric current sheet.

  4. Cosmic-Ray Extremely Distributed Observatory: a global cosmic ray detection framework

    Science.gov (United States)

    Sushchov, O.; Homola, P.; Dhital, N.; Bratek, Ł.; Poznański, P.; Wibig, T.; Zamora-Saa, J.; Almeida Cheminant, K.; Alvarez Castillo, D.; Góra, D.; Jagoda, P.; Jałocha, J.; Jarvis, J. F.; Kasztelan, M.; Kopański, K.; Krupiński, M.; Michałek, M.; Nazari, V.; Smelcerz, K.; Smolek, K.; Stasielak, J.; Sułek, M.

    2017-12-01

    The main objective of the Cosmic-Ray Extremely Distributed Observatory (CREDO) is the detection and analysis of extended cosmic ray phenomena, so-called super-preshowers (SPS), using existing as well as new infrastructure (cosmic-ray observatories, educational detectors, single detectors etc.). The search for ensembles of cosmic ray events initiated by SPS is yet an untouched ground, in contrast to the current state-of-the-art analysis, which is focused on the detection of single cosmic ray events. Theoretical explanation of SPS could be given either within classical (e.g., photon-photon interaction) or exotic (e.g., Super Heavy Dark Matter decay or annihilation) scenarios, thus detection of SPS would provide a better understanding of particle physics, high energy astrophysics and cosmology. The ensembles of cosmic rays can be classified based on the spatial and temporal extent of particles constituting the ensemble. Some classes of SPS are predicted to have huge spatial distribution, a unique signature detectable only with a facility of the global size. Since development and commissioning of a completely new facility with such requirements is economically unwarranted and time-consuming, the global analysis goals are achievable when all types of existing detectors are merged into a worldwide network. The idea to use the instruments in operation is based on a novel trigger algorithm: in parallel to looking for neighbour surface detectors receiving the signal simultaneously, one should also look for spatially isolated stations clustered in a small time window. On the other hand, CREDO strategy is also aimed at an active engagement of a large number of participants, who will contribute to the project by using common electronic devices (e.g., smartphones), capable of detecting cosmic rays. It will help not only in expanding the geographical spread of CREDO, but also in managing a large manpower necessary for a more efficient crowd-sourced pattern recognition scheme to

  5. Neutron detector for detecting rare events of spontaneous fission

    International Nuclear Information System (INIS)

    Ter-Akop'yan, G.M.; Popeko, A.G.; Sokol, E.A.; Chelnokov, L.P.; Smirnov, V.I.; Gorshkov, V.A.

    1981-01-01

    The neutron detector for registering rare events of spontaneous fission by detecting multiple neutron emission is described. The detector represents a block of plexiglas of 550 mm diameter and 700 mm height in the centre of which there is a through 160 mm diameter channel for the sample under investigation. The detector comprises 56 3 He filled counters (up to 7 atm pressure) with 1% CO 2 addition. The counters have a 500 mm length and a 32 mm diameter. The sampling of fission events is realized by an electron system which allows determining the number of detected neutrons, numbers of operated counters, signal amplitude and time for fission event detecting. A block diagram of a neutron detector electron system is presented and its operation principle is considered. For protection against cosmic radiation the detector is surronded by a system of plastic scintillators and placed behind the concrete shield of 6 m thickness. The results of measurements of background radiation are given. It has been found that the background radiation of single neutron constitutes about 150 counts per hour, the detecting efficiency of single neutron equals 0.483 +- 0.005, for a 10l detector sensitive volume. By means of the detector described the parameters of multiplicity distribution of prompt neutrons for 256 Fm spontaneous fission are measured. The average multiplicity equals 3.59+-0.06 the dispersion being 2.30+-0.65

  6. Europe's space camera unmasks a cosmic gamma-ray machine

    Science.gov (United States)

    1996-11-01

    brighter flashes when the electrons hit a phosphor screen. Since Hubble's launch in 1990, the Faint Object Camera has examined many different kinds of cosmic objects, from the moons of Jupiter to remote galaxies and quasars. When the space telescope's optics were corrected at the end of 1993 the Faint Object Camera immediately celebrated the event with the discovery of primeval helium in intergalactic gas. In their search for Pulsar 1055-52, the astronomers chose a near-ultraviolet filter to sharpen the Faint Object Camera's vision and reduce the adjacent star's huge advantage in intensity. In May 1996, the Hubble Space Telescope operators aimed at the spot which radio astronomers had indicated, as the source of the radio pulsations of Pulsar 1055-52. The neutron star appeared precisely in the centre of the field of view, and it was clearly separated from the glare of the adjacent star. At magnitude 24.9, Pulsar 1055-52 was comfortably within the power of the Faint Object Camera, which can see stars 20 times fainter still. "The Faint Object Camera is the instrument of choice for looking for neutron stars," says Giovanni Bignami, speaking on behalf of the Italian team. "Whenever it points to a judiciously selected neutron star it detects the corresponding visible or ultraviolet light. The Faint Object Camera has now identified three neutron stars in that way, including Pulsar 1055-52, and it has examined a few that were first detected by other instruments." Mysteries of the neutron stars The importance of the new result can be gauged by the tally of only eight neutron stars seen so far at optical wavelengths, compared with about 760 known from their radio pulsations, and about 21 seen emitting X-rays. Since the first pulsar was detected by radio astronomers in Cambridge, England, nearly 30 years ago, theorists have come to recognize neutron stars as fantastic objects. They are veritable cosmic laboratories in which Nature reveals the behaviour of matter under extreme stress

  7. Cosmic rays in space

    International Nuclear Information System (INIS)

    Fujitaka, Kazunobu

    2005-01-01

    Cosmos is a mysterious space by which many researchers are fascinated for many years. But, going into space means that we will receive extra exposure due to existence of cosmic rays. Cosmic rays are mainly composed of highly energetic protons. It was born in the last stage of stellar life. Understanding of cosmos will certainly bring right understanding of radiation energy, or energy itself. As no one could see the very early stage of cosmic rays, there is only a speculation. But it is better to speculate something based on certain side evidences, than to give up the whole. Such attitude shall be welcomed in the space researches. Anyway, cosmic rays were born in the last explosion of a star, which is called as Super Nova. After cosmic rays are emitted from the Super Nova, it will reach to the human surroundings. To indicate its intensity, special unit of ''dose rate'' is used. When a man climbs a mountain, cosmic ray intensity surely increases. It doubles as he goes up every 1500m elevation. It was ascertained by our own measurements. Then what happens when the goes up more? At aviation altitude, where airplanes fly, the dose rate will be increased up to 100times the high mountain cases. And what is expected when he goes up further more, up to space orbit altitude? In this case, the dose rate increases up to 10times the airplane cases. Geomagnetism affects the dose rate very much. As primary cosmic ray particles are charged particles, they cannot do well with existence of the magnetic field. In effect, cosmic rays can penetrate into the polar atmosphere along geomagnetic lines of forces which stand almost vertical, but penetration of low energy cosmic rays will be banned when they intend to penetrate crossing the geomagnetic lines of forces in equatorial region. Therefore, exposure due to cosmic rays will become large in polar region, while it remains small in equatorial region. In effect, airplanes which fly over the equator. Only, we have to know that the cosmos

  8. Temperature Effect in Secondary Cosmic Rays (MUONS) Observed at the Ground: Analysis of the Global MUON Detector Network Data

    Science.gov (United States)

    de Mendonça, R. R. S.; Braga, C. R.; Echer, E.; Dal Lago, A.; Munakata, K.; Kuwabara, T.; Kozai, M.; Kato, C.; Rockenbach, M.; Schuch, N. J.; Jassar, H. K. Al; Sharma, M. M.; Tokumaru, M.; Duldig, M. L.; Humble, J. E.; Evenson, P.; Sabbah, I.

    2016-10-01

    The analysis of cosmic ray intensity variation seen by muon detectors at Earth's surface can help us to understand astrophysical, solar, interplanetary and geomagnetic phenomena. However, before comparing cosmic ray intensity variations with extraterrestrial phenomena, it is necessary to take into account atmospheric effects such as the temperature effect. In this work, we analyzed this effect on the Global Muon Detector Network (GMDN), which is composed of four ground-based detectors, two in the northern hemisphere and two in the southern hemisphere. In general, we found a higher temperature influence on detectors located in the northern hemisphere. Besides that, we noticed that the seasonal temperature variation observed at the ground and at the altitude of maximum muon production are in antiphase for all GMDN locations (low-latitude regions). In this way, contrary to what is expected in high-latitude regions, the ground muon intensity decrease occurring during summertime would be related to both parts of the temperature effect (the negative and the positive). We analyzed several methods to describe the temperature effect on cosmic ray intensity. We found that the mass weighted method is the one that best reproduces the seasonal cosmic ray variation observed by the GMDN detectors and allows the highest correlation with long-term variation of the cosmic ray intensity seen by neutron monitors.

  9. Cosmic ray: Studying the origin

    International Nuclear Information System (INIS)

    Szabelski, J.

    1997-01-01

    Investigations of the origin of cosmic rays are presented. Different methods are discussed: studies of cosmic gamma rays of energy from 30 MeV to about 10 15 eV (since photons point to their places of origin), studies of the mass composition of cosmic rays (because it reflects source morphology), and studies of cosmic rays with energy above 1O 19 eV (for these are the highest energies observed in nature). (author)

  10. Constraints on cosmic strings due to black holes formed from collapsed cosmic string loops

    International Nuclear Information System (INIS)

    Caldwell, R.R.; Gates, E.

    1993-05-01

    The cosmological features of primordial black holes formed from collapsed cosmic string loops are studied. Observational restrictions on a population of primordial black holes are used to restrict f, the fraction of cosmic string loops which collapse to form black holes, and μ, the cosmic string mass-per-unit-length. Using a realistic model of cosmic strings, we find the strongest restriction on the parameters f and μ is due to the energy density in 100MeV photons radiated by the black holes. We also find that inert black hole remnants cannot serve as the dark matter. If earlier, crude estimates of f are reliable, our results severely restrict μ, and therefore limit the viability of the cosmic string large-scale structure scenario

  11. Air crew exposure to cosmic radiation. New analysis, recommendations EURADOS

    Energy Technology Data Exchange (ETDEWEB)

    Spurny, F; Votockova, I [Academy of the Sciences of Czech Republic, Prague (Czech Republic). Nuclear Physics Institute, Department of Radiation Dosimetry

    1996-12-31

    Cosmic radiation on the board of an aircraft consist of two components: directly ionizing radiation (electron, proton - low LET) and neutrons (high LET). Neither composition nor the energy spectrum of usual on-Earth calibration sources ({sup 60}Co, {sup 252}Cf) do not correspond to the field on a board. Therefore high energy reference fields behind shielding high energy accelerator at CERN and Dubna have been created and intensively studied. Their typical characteristics following from the results of our measurements were obtained. In-flight measurements on the board of commercial aircraft have been realized since 1991 during about 20 flights, Flight routes extended from the 1.3 grad N up to about 65 grad N, flying altitudes varied from 8.2 km to 12.5 km. The exposure level due to galactic cosmic radiation is inversely proportional to the solar activity. Some radiation protection aspects were concluded: (a) The usual limits of annual air crew flight hours correspond at 11.3 km to about 4 mSv per year, with new ICRP conversion factors to about 5 mSv per year; (b) Monthly flight hours limit does not exclude that the exposure of a pregnant women can exceed 1 mSv during this period; (c) The air crew exposure should therefore be checked, controlled a nd administered as conscientiously as for any other group of occupationally exposed persons. A Working group 11 of EURADOS `Exposure of air crew to cosmic radiation` has been formed (1992-1995) to prepare basic analysis and recommendations concerning the topics. (Abstract Truncated)

  12. 2-D Modelling of Long Period Variations of Galactic Cosmic Ray Intensity

    International Nuclear Information System (INIS)

    Siluszyk, M; Iskra, K; Alania, M

    2015-01-01

    A new two-dimensional (2-D) time dependent model describing long-period variations of the Galactic Cosmic Ray (GCR) intensity has been developed. New approximations for the changes of the magnitude B of the Interplanetary Magnetic Field (IMF), the tilt angle δ of the Heliospheric Neutral Sheet (HNS) and drift effects of the GCR particles have been included into the model. Moreover, temporal changes of the exponent γ expressing the power law - rigidity dependence of the amplitudes of the 11-year variation of the GCR intensity have been added. We show that changes of the expected GCR particle density precedes changes of the GCR intensity measured by the Moscow Neutron (MN) monitor by about 18 months. So ∼18 months can be taken as an effective delay time between the expected intensity caused by the combined influence of the changes of the parameters implemented in the time-dependent 2-D model and the GCR intensity measured by neutron monitors during the 21 cycle of solar activity. (paper)

  13. Modeling the Effects of Meteorological Conditions on the Neutron Flux

    Science.gov (United States)

    2017-05-22

    about 2% between day and night on a given day [2]. In the 1960s, the launch of satellites allowed scientists to measure the sun’s cosmic rays outside...hour, a 20% variation, over five months of data collection with large variation between days . Meteorological data were collected with two commercially...contributes to the formation of the neutron flux. To account for the earth’s magnetic field, scientists have done extensive three-dimensional analysis

  14. D-term inflation, cosmic strings, and consistency with cosmic microwave background measurements.

    Science.gov (United States)

    Rocher, Jonathan; Sakellariadou, Mairi

    2005-01-14

    Standard D-term inflation is studied in the framework of supergravity. D-term inflation produces cosmic strings; however, it can still be compatible with cosmic microwave background (CMB) measurements without invoking any new physics. The cosmic strings contribution to the CMB data is not constant, nor dominant, contrary to some previous results. Using current CMB measurements, the free parameters (gauge and superpotential couplings, as well as the Fayet-Iliopoulos term) of D-term inflation are constrained.

  15. Cosmic ray studies on the ISS using SSNTD, BRADOS projects, 2001–2003

    CERN Document Server

    Pálfalvia, J K; Akatov, Y; Sajó-Bohus, L; Eördögh, I

    2005-01-01

    The BRADOS 1–3 projects were organised by the Russian Space Agency (RZA) between 2001 and 2003. The aim was to study the contribution of the primary galactic cosmic rays and of the secondary particles to the dose received by the crew of the International Space Station (ISS). Several laboratories participated in these experiments. Two different stacks (constructed by the team of the Atomic Energy Research Institute, AERI, Budapest, Hungary) composed of solid-state nuclear track detectors (SSNTD) were exposed inside the Service Module at different locations. The calibrations were made at the CERN high-energy neutron reference field named CERF (Geneva, Swiss). Applying a multiple track etching technique (2–20 h etching time) and a sophisticated image analyser, the secondary neutron dose was deduced. The composition of stacks, the evaluation methods and the results will be presented here or referenced to previous papers.

  16. Cosmic Humanity: Utopia, Realities, Prospects

    OpenAIRE

    Sergey Krichevsky

    2017-01-01

    The philosophical foundations of the theory and practice of the creation of cosmic humanity as a process of the evolution of human civilization, the emergence into space, with the prospect of resettlement outside the Earth are considered. There is a connection between myths, fantasies, ideas, concepts and projects aimed at the exploration of outer space, the creation of cosmic humanity. A new and voluminous definition of cosmic humanity in the evolutionary paradigm is given. Cosmic humanity i...

  17. Determination of planetary surfaces elemental composition by gamma and neutron spectroscopy

    International Nuclear Information System (INIS)

    Diez, B.

    2009-06-01

    Measuring the neutron and gamma ray fluxes produced by the interaction of galactic cosmic rays with planetary surfaces allow constraining the chemical composition of the upper tens of centimeters of material. Two different angles are proposed to study neutron and gamma spectroscopy: data processing and data interpretation. The present work is in line with two experiments, the Mars Odyssey Neutron Spectrometer (MONS) and the Selene Gamma Ray Spectrometer. A review of the processing operations applied to the MONS dataset is proposed. The resulting dataset is used to determine the depth of the hydrogen deposits below the Martian surface. In water depleted regions, neutron data allow constraining the concentration in elements likely to interact with neutrons. The confrontation of these results to those issued from the Gamma Ray Spectrometer onboard Mars Odyssey provides interesting insight on the geologic context of the Central Elysium Planitia region. These martian questions are followed by the study of the Selene gamma ray data. Although only preliminary processing has been done to date, qualitative lunar maps of major elements (Fe, Ca, Si, Ti, Mg, K, Th, U) have already been realized. (author)

  18. Talys calculations for evaluation of neutron-induced single-event upset cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Bourselier, Jean-Christophe

    2005-08-15

    The computer code TALYS has been used to calculate interactions between cosmic-ray neutrons and silicon nuclei with the goal to describe single-event upset (SEU) cross sections in microelectronics devices. Calculations for the Si(n,X) reaction extend over an energy range of 2 to 200 MeV. The obtained energy spectra of the resulting residuals and light-ions have been integrated using several different critical charges as SEU threshold. It is found that the SEU cross section seems largely to be dominated by {sup 28}Si recoils from elastic scattering. Furthermore, the shape of the SEU cross section as a function of the energy of the incoming neutron changes drastically with decreasing critical charge. The results presented in this report stress the importance of performing studies at mono-energetic neutron beams to advance the understanding of the underlying mechanisms causing SEUs.

  19. Talys calculations for evaluation of neutron-induced single-event upset cross sections

    International Nuclear Information System (INIS)

    Bourselier, Jean-Christophe

    2005-08-01

    The computer code TALYS has been used to calculate interactions between cosmic-ray neutrons and silicon nuclei with the goal to describe single-event upset (SEU) cross sections in microelectronics devices. Calculations for the Si(n,X) reaction extend over an energy range of 2 to 200 MeV. The obtained energy spectra of the resulting residuals and light-ions have been integrated using several different critical charges as SEU threshold. It is found that the SEU cross section seems largely to be dominated by 28 Si recoils from elastic scattering. Furthermore, the shape of the SEU cross section as a function of the energy of the incoming neutron changes drastically with decreasing critical charge. The results presented in this report stress the importance of performing studies at mono-energetic neutron beams to advance the understanding of the underlying mechanisms causing SEUs

  20. Test particle trajectories near cosmic strings

    Indian Academy of Sciences (India)

    We present a detailed analysis of the motion of test particle in the gravitational field of cosmic strings in different situations using the Hamilton–Jacobi (H–J) formalism. We have discussed the trajectories near static cosmic string, cosmic string in Brans–Dicke theory and cosmic string in dilaton gravity.

  1. Cosmic ray: Studying the origin

    Energy Technology Data Exchange (ETDEWEB)

    Szabelski, J. [Cosmic Ray Laboratory, Soltan Institute for Nuclear Studies, Lodz (Poland)

    1997-12-31

    Investigations of the origin of cosmic rays are presented. Different methods are discussed: studies of cosmic gamma rays of energy from 30 MeV to about 10{sup 15} eV (since photons point to their places of origin), studies of the mass composition of cosmic rays (because it reflects source morphology), and studies of cosmic rays with energy above 1O{sup 19} eV (for these are the highest energies observed in nature). (author) 101 refs, 19 figs, 7 tabs

  2. Passive neutron design study for 200-L waste drums

    International Nuclear Information System (INIS)

    Menlove, H.O.; Beddingfield, D.B.; Pickrell, M.M.

    1997-09-01

    We have developed a passive neutron counter for the measurement of plutonium in 200-L drums of scrap and waste. The counter incorporates high efficiency for the multiplicity counting in addition to the traditional coincidence counting. The 252 Cf add-a-source feature is used to provide an accurate assay over a wide range of waste matrix materials. The room background neutron rate is reduced by using 30 cm of external polyethylene shielding and the cosmic-ray background is reduced by statistical filtering techniques. Monte Carlo Code calculations were used to determine the optimum detector design, including the gas pressure, size, number, and placement of the 3 He tubes in the moderator. Various moderators, including polyethylene, plastics, teflon, and graphite, were evaluated to obtain the maximum efficiency and minimum detectable mass of plutonium

  3. Department of Cosmic Radiation Physics: Overview

    International Nuclear Information System (INIS)

    Gawin, J.

    1999-01-01

    Full text: The Department of Cosmic Ray Physics in Lodz is involved in basic research in the area of high energy physics and cosmic ray physics related to: - Studies of asymptotic properties of hadronic interactions based on the analysis of cosmic ray propagation in the atmosphere. - Experimental and phenomenological studies of Extensive Air Showers induced by cosmic ray particles. - Search for point sources of high energy cosmic rays. - Studies of cosmic ray propagation in the Galaxy and mechanisms of particle acceleration. - Studies of mass composition of cosmic rays in the energy range 10 15 - 10 17 eV. Theoretical and experimental studies of Extensive Air Shower properties are performed mostly based on the results obtained by the Lodz Extensive Air Shower Array. We analysed nearly 100,000 events of energies above 10 15 eV registered by the Lodz hodoscope. We have developed the method of data analysis which allows us to verify different models of cosmic ray mass composition. In our research in high energy cosmic rays we also used experimental data from other collaborating experiments in Karlsruhe, Baksan and THEMISTOCLE. The Lodz group collaborates with many foreign institutes and laboratories in construction and data interpretation of cosmic ray experiments. Our most important partners are: Forschungszentrum in Karlsruhe (Germany), College de France, Institute for Nuclear Studies of the Russian Academy of Science, University of Perpignan and Uppsala University (Sweden). (author)

  4. Department of Cosmic Radiation Physics - Overview

    International Nuclear Information System (INIS)

    Gawin, J.

    1997-01-01

    Full text: The Department of Cosmic Ray Physics in Lodz is involved in basic research in the area of high energy physics and cosmic ray physics related to: -Studies of the asymptotic properties of hadronic interactions from the analysis of cosmic ray propagation in the atmosphere. -Studies of structure and properties of Extensive Air Showers induced by cosmic ray particles. -Search for point sources of high energy cosmic rays. -Studies of cosmic ray propagation in the Galaxy and mechanisms of particle acceleration. -Studies of the mass composition of cosmic rays in the energy range 10 15 -10 17 eV. Theoretical and experimental studies of nuclear interactions for energies exceeding those obtained by modern particle accelerators are performed employing results obtained by the Lodz Extensive Air Shower Array. The Lodz hodoscope can register electromagnetic components of cosmic ray showers in the atmosphere as well as muons at two energy thresholds. Data collected by the Lodz array are also used to study mass composition of cosmic rays in the energy range 10 15 - 10 17 eV. The Lodz group collaborates with foreign institutes and laboratories on construction and data interpretation of cosmic ray experiments. Our most important partners are: Forschungszentrum Karlsruhe (Germany), College de France, the Institute for Nuclear Studies of the Russian Academy of Sciences, the University of Durham, and the University of Perpignan. (author)

  5. Large-area Soil Moisture Surveys Using a Cosmic-ray Rover: Approaches and Results from Australia

    Science.gov (United States)

    Hawdon, A. A.; McJannet, D. L.; Renzullo, L. J.; Baker, B.; Searle, R.

    2017-12-01

    Recent improvements in satellite instrumentation has increased the resolution and frequency of soil moisture observations, and this in turn has supported the development of higher resolution land surface process models. Calibration and validation of these products is restricted by the mismatch of scales between remotely sensed and contemporary ground based observations. Although the cosmic ray neutron soil moisture probe can provide estimates soil moisture at a scale useful for the calibration and validation purposes, it is spatially limited to a single, fixed location. This scaling issue has been addressed with the development of mobile soil moisture monitoring systems that utilizes the cosmic ray neutron method, typically referred to as a `rover'. This manuscript describes a project designed to develop approaches for undertaking rover surveys to produce soil moisture estimates at scales comparable to satellite observations and land surface process models. A custom designed, trailer-mounted rover was used to conduct repeat surveys at two scales in the Mallee region of Victoria, Australia. A broad scale survey was conducted at 36 x 36 km covering an area of a standard SMAP pixel and an intensive scale survey was conducted over a 10 x 10 km portion of the broad scale survey, which is at a scale equivalent to that used for national water balance modelling. We will describe the design of the rover, the methods used for converting neutron counts into soil moisture and discuss factors controlling soil moisture variability. We found that the intensive scale rover surveys produced reliable soil moisture estimates at 1 km resolution and the broad scale at 9 km resolution. We conclude that these products are well suited for future analysis of satellite soil moisture retrievals and finer scale soil moisture models.

  6. THE TEMPERATURE EFFECT IN SECONDARY COSMIC RAYS (MUONS) OBSERVED AT THE GROUND: ANALYSIS OF THE GLOBAL MUON DETECTOR NETWORK DATA

    Energy Technology Data Exchange (ETDEWEB)

    De Mendonça, R. R. S.; Braga, C. R.; Echer, E.; Dal Lago, A.; Rockenbach, M.; Schuch, N. J. [Space Geophysics Division, National Institute for Space Research, São José dos Campos, SP, 12227-010 (Brazil); Munakata, K.; Kato, C. [Physics Department, Shinshu University, Matsumoto, Nagano, 390-8621 (Japan); Kuwabara, T. [Graduate School of Science, Chiba University, Chiba City, Chiba 263-8522 (Japan); Kozai, M. [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, Kanagawa 252-5210 (Japan); Al Jassar, H. K.; Sharma, M. M. [Physics Department, Kuwait University, Kuwait City, 13060 (Kuwait); Tokumaru, M. [Solar Terrestrial Environment Laboratory, Nagoya University, Nagoya, Aichi, 464-8601 (Japan); Duldig, M. L.; Humble, J. E. [School of Physical Sciences, University of Tasmania, Hobart, Tasmania, 7001 (Australia); Evenson, P. [Bartol Research Institute, Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Sabbah, I. [Department of Natural Sciences, College of Health Sciences, Public Authority for Applied Education and Training, Kuwait City, 72853 (Kuwait)

    2016-10-20

    The analysis of cosmic ray intensity variation seen by muon detectors at Earth's surface can help us to understand astrophysical, solar, interplanetary and geomagnetic phenomena. However, before comparing cosmic ray intensity variations with extraterrestrial phenomena, it is necessary to take into account atmospheric effects such as the temperature effect. In this work, we analyzed this effect on the Global Muon Detector Network (GMDN), which is composed of four ground-based detectors, two in the northern hemisphere and two in the southern hemisphere. In general, we found a higher temperature influence on detectors located in the northern hemisphere. Besides that, we noticed that the seasonal temperature variation observed at the ground and at the altitude of maximum muon production are in antiphase for all GMDN locations (low-latitude regions). In this way, contrary to what is expected in high-latitude regions, the ground muon intensity decrease occurring during summertime would be related to both parts of the temperature effect (the negative and the positive). We analyzed several methods to describe the temperature effect on cosmic ray intensity. We found that the mass weighted method is the one that best reproduces the seasonal cosmic ray variation observed by the GMDN detectors and allows the highest correlation with long-term variation of the cosmic ray intensity seen by neutron monitors.

  7. THE TEMPERATURE EFFECT IN SECONDARY COSMIC RAYS (MUONS) OBSERVED AT THE GROUND: ANALYSIS OF THE GLOBAL MUON DETECTOR NETWORK DATA

    International Nuclear Information System (INIS)

    De Mendonça, R. R. S.; Braga, C. R.; Echer, E.; Dal Lago, A.; Rockenbach, M.; Schuch, N. J.; Munakata, K.; Kato, C.; Kuwabara, T.; Kozai, M.; Al Jassar, H. K.; Sharma, M. M.; Tokumaru, M.; Duldig, M. L.; Humble, J. E.; Evenson, P.; Sabbah, I.

    2016-01-01

    The analysis of cosmic ray intensity variation seen by muon detectors at Earth's surface can help us to understand astrophysical, solar, interplanetary and geomagnetic phenomena. However, before comparing cosmic ray intensity variations with extraterrestrial phenomena, it is necessary to take into account atmospheric effects such as the temperature effect. In this work, we analyzed this effect on the Global Muon Detector Network (GMDN), which is composed of four ground-based detectors, two in the northern hemisphere and two in the southern hemisphere. In general, we found a higher temperature influence on detectors located in the northern hemisphere. Besides that, we noticed that the seasonal temperature variation observed at the ground and at the altitude of maximum muon production are in antiphase for all GMDN locations (low-latitude regions). In this way, contrary to what is expected in high-latitude regions, the ground muon intensity decrease occurring during summertime would be related to both parts of the temperature effect (the negative and the positive). We analyzed several methods to describe the temperature effect on cosmic ray intensity. We found that the mass weighted method is the one that best reproduces the seasonal cosmic ray variation observed by the GMDN detectors and allows the highest correlation with long-term variation of the cosmic ray intensity seen by neutron monitors.

  8. Deepening Cosmic Education

    Science.gov (United States)

    Leonard, Gerard

    2013-01-01

    This article is a special blend of research, theory, and practice, with clear insight into the origins of Cosmic Education and cosmic task, while recalling memories of student explorations in botany, in particular, episodes from Mr. Leonard's teaching. Mr. Leonard speaks of a storytelling curriculum that eloquently puts perspective into dimensions…

  9. Chandra Discovers X-Ray Ring Around Cosmic Powerhouse in Crab Nebula

    Science.gov (United States)

    1999-09-01

    After barely two months in space, NASA's Chandra X-ray Observatory has taken a stunning image of the Crab Nebula, the spectacular remains of a stellar explosion, and has revealed something never seen before: a brilliant ring around the nebula's heart. Combined with observations from the Hubble Space Telescope, the image provides important clues to the puzzle of how the cosmic "generator," a pulsing neutron star, energizes the nebula, which still glows brightly almost 1,000 years after the explosion. "The inner ring is unique," said Professor Jeff Hester of Arizona State University, Tempe, AZ. "It has never been seen before, and it should tell us a lot about how the energy from the pulsar gets into the nebula. It's like finding the transmission lines between the power plant and the light bulb." Professor Mal Ruderman of Columbia University, New York, NY, agreed. "The X-rays Chandra sees are the best tracer of where the energy is. With images such as these, we can directly diagnose what is going on." What is going on, according to Dr. Martin Weisskopf, Chandra Project Scientist from NASA's Marshall Space Flight Center, Huntsville, AL, is awesome. "The Crab pulsar is accelerating particles up to the speed of light and flinging them out into interstellar space at an incredible rate." The image shows tilted rings or waves of high-energy particles that appear to have been flung outward over the distance of a light year from the central star, and high-energy jets of particles blasting away from the neutron star in a direction perpendicular to the spiral. Hubble Space Telescope images have shown moving knots and wisps around the neutron star, and previous X-ray images have shown the outer parts of the jet and hinted at the ring structure. With Chandra's exceptional resolution, the jet can be traced all the way in to the neutron star, and the ring pattern clearly appears. The image was made with Chandra's Advanced CCD Imaging Spectrometer and High Energy Transmission

  10. A theory of Cosmic Rays

    CERN Document Server

    Dar, Arnon; Dar, Arnon; Rújula, Alvaro De

    2008-01-01

    We present a theory of non-solar cosmic rays (CRs) based on a single type of CR source at all energies. The total luminosity of the Galaxy, the broken power-law spectra with their observed slopes, the position of the `knee(s)' and `ankle', and the CR composition and its variation with energy are all predicted in terms of very simple and completely `standard' physics. The source of CRs is extremely `economical': it has only one parameter to be fitted to the ensemble of all of the mentioned data. All other inputs are `priors', that is, theoretical or observational items of information independent of the properties of the source of CRs, and chosen to lie in their pre-established ranges. The theory is part of a `unified view of high-energy astrophysics' --based on the `Cannonball' model of the relativistic ejecta of accreting black holes and neutron stars. If correct, this model is only lacking a satisfactory theoretical understanding of the `cannon' that emits the cannonballs in catastrophic processes of accreti...

  11. Department of Cosmic Radiation Physics: Overview

    International Nuclear Information System (INIS)

    Szabelski, J.

    2000-01-01

    Full text: Department of Cosmic Ray Physics in Lodz is involved in basic research in the area of high-energy physics and cosmic ray physics related to: -Studies of asymptotic properties of hadronic interactions based on the analysis of cosmic ray propagation through the atmosphere. -Experimental and phenomenological studies of Extensive Air Showers induced by cosmic ray particles. - Search for high-energy cosmic ray point sources. - Studies of cosmic ray propagation in the Galaxy and particle acceleration mechanisms. -Studies of mass composition of cosmic rays in the energy range 10 15 -10 17 eV. Theoretical and experimental studies of Extensive Air Shower properties are performed mainly on the basis of the results obtained by the Lodz Extensive Air Shower Array. We have analysed nearly 100,000 events of energies above 10 15 eV registered in the Lodz hodoscope. We have developed a method to verify different models of cosmic ray mass composition. The Lodz group collaborates with many foreign institutes and laboratories in construction and data interpretation of cosmic ray experiments. Our most important partners are: Forschungszentrum in Karlsruhe (Germany), College de France, Institute for Nuclear Studies of the Russian Academy of Sciences and Uppsala University (Sweden). (author)

  12. Robust constraint on cosmic textures from the cosmic microwave background.

    Science.gov (United States)

    Feeney, Stephen M; Johnson, Matthew C; Mortlock, Daniel J; Peiris, Hiranya V

    2012-06-15

    Fluctuations in the cosmic microwave background (CMB) contain information which has been pivotal in establishing the current cosmological model. These data can also be used to test well-motivated additions to this model, such as cosmic textures. Textures are a type of topological defect that can be produced during a cosmological phase transition in the early Universe, and which leave characteristic hot and cold spots in the CMB. We apply bayesian methods to carry out a rigorous test of the texture hypothesis, using full-sky data from the Wilkinson Microwave Anisotropy Probe. We conclude that current data do not warrant augmenting the standard cosmological model with textures. We rule out at 95% confidence models that predict more than 6 detectable cosmic textures on the full sky.

  13. Department of Cosmic Radiation Physics: Overview

    International Nuclear Information System (INIS)

    Gawin, J.

    1998-01-01

    (full text) The Department of Cosmic Ray Physics in Lodz is involved in basic research in the area of high energy physics and cosmic ray physics related to: -Studies of asymptotic properties of hadronic interactions based on the analysis of cosmic ray propagation in the atmosphere. -Studies of the structure and properties of Extensive Air Showers induced by cosmic ray particles. - Search for point sources of high energy cosmic rays. - Studies of cosmic ray propagation in the Galaxy and mechanisms of particle acceleration. - Studies of mass composition of cosmic rays in the energy range l0 15 -10 17 eV. Theoretical and experimental studies of nuclear interactions for energies exceeding those obtained by modern particle accelerators are performed based on the results obtained by the Lodz Extensive Air Shower Array. The Lodz hodoscope can register the electromagnetic component of cosmic ray showers developing in the atmosphere as well as muons of two energy thresholds. Data collected by the Lodz array are also used to study the mass composition of cosmic rays in the energy range 10 15 -10 17 eV. The Lodz group collaborates with many foreign institutes and laboratories in construction and data interpretation of cosmic ray experiments. Our most important partners are: Forschungszentrum Karlsruhe (Germany), College de' France, the Institute for Nuclear Studies of the Russian Academy of Science, the University of Perpignan (France) and Uppsala University (Sweden). (author)

  14. The estimation of the dose from cosmic radiation received by the population living at mainland areas of China

    International Nuclear Information System (INIS)

    Jin Hua; Yue Qingyu

    1989-01-01

    According to the distribution of cosmic ray ionization with altitude and latitude as well as the census information in all of our country (the end of the year 1986), the population-weighted mean annual effective dose equivalent received by the population living at mainland areas of China is estimated to be about 278 μSv, in which the ionizing component and the neutron component are 252 μSv and 26 μSv, respectively

  15. Measurement of hydrogen and helium isotopes flux in galactic cosmic rays with the PAMELA experiment

    Energy Technology Data Exchange (ETDEWEB)

    Formato, V., E-mail: valerio.formato@ts.infn.it [INFN, Sezione di Trieste, I-34149 Trieste (Italy); University of Trieste, Department of Physics, I-34147 Trieste (Italy); Adriani, O. [University of Florence, Department of Physics, I-50019 Sesto Fiorentino, Florence (Italy); INFN, Sezione di Florence, I-50019 Sesto Fiorentino, Florence (Italy); Barbarino, G.C. [University of Naples “Federico II”, Department of Physics, I-80126 Naples (Italy); INFN, Sezione di Naples, I-80126 Naples (Italy); Bazilevskaya, G.A. [Lebedev Physical Institute, RU-119991, Moscow (Russian Federation); Bellotti, R. [University of Bari, Department of Physics, I-70126 Bari (Italy); INFN, Sezione di Bari, I-70126 Bari (Italy); Boezio, M. [INFN, Sezione di Trieste, I-34149 Trieste (Italy); Bogomolov, E.A. [Ioffe Physical Technical Institute, RU-194021 St. Petersburg (Russian Federation); Bongi, M. [University of Florence, Department of Physics, I-50019 Sesto Fiorentino, Florence (Italy); INFN, Sezione di Florence, I-50019 Sesto Fiorentino, Florence (Italy); Bonvicini, V. [INFN, Sezione di Trieste, I-34149 Trieste (Italy); Bottai, S. [INFN, Sezione di Florence, I-50019 Sesto Fiorentino, Florence (Italy); Bruno, A.; Cafagna, F. [INFN, Sezione di Bari, I-70126 Bari (Italy); Campana, D. [INFN, Sezione di Naples, I-80126 Naples (Italy); Carbone, R. [INFN, Sezione di Trieste, I-34149 Trieste (Italy); Carlson, P. [KTH, Department of Physics, AlbaNova University Centre, SE-10691 Stockholm (Sweden); Oskar Klein Centre for Cosmoparticle Physics (Sweden); Casolino, M. [INFN, Sezione di Rome “Tor Vergata”, I-00133 Rome (Italy); RIKEN, Advanced Science Institute, Wako-shi, Saitama (Japan); Castellini, G. [IFAC, I-50019 Sesto Fiorentino, Florence (Italy); and others

    2014-04-01

    PAMELA is a satellite borne experiment designed to study with great accuracy cosmic rays of galactic, solar, and trapped nature, with particular focus on the antimatter component. The detector consists of a permanent magnet spectrometer core to provide rigidity and charge sign information, a Time-of-Flight system for velocity and charge information, a Silicon–Tungsten calorimeter and a Neutron detector for lepton/hadron identification. The velocity and rigidity information allow the identification of different isotopes for Z=1 and Z=2 particles in the energy range 100 MeV/n to 1 GeV/n. In this work we will present the PAMELA results on the H and He isotope fluxes based on the data collected during the 23rd solar minimum from 2006 to 2007. Such fluxes carry relevant information helpful in constraining parameters in galactic cosmic rays propagation models complementary to those obtained from other secondary to primary measurements such as the boron-to-carbon ratio.

  16. Cosmic Ether

    CERN Document Server

    Tomaschitz, R

    1998-01-01

    A prerelativistic approach to particle dynamics is explored in an expanding Robertson-Walker cosmology. The receding galactic background provides a distinguished frame of reference and a unique cosmic time. In this context the relativistic, purely geometric space-time concept is criticized. Physical space is regarded as a permeable medium, the cosmic ether, which effects the world-lines of particles and rays. We study in detail a Robertson-Walker universe with linear expansion factor and negatively curved, open three-space; we choose the permeability tensor of the ether in such a way that the semiclassical approximation is exact. Galactic red-shifts depend on the refractive index of the ether. In the local Minkowskian limit the ether causes a time variation of mass, which scales inversely proportional to cosmic time. In the globally geodesic rest frames of galactic observers the ether manifests itself in an unbounded speed of signal transfer, in bifurcations of world-lines, and in time inversion effects.

  17. Cosmic vacuum

    International Nuclear Information System (INIS)

    Chernin, Artur D

    2001-01-01

    Recent observational studies of distant supernovae have suggested the existence of cosmic vacuum whose energy density exceeds the total density of all the other energy components in the Universe. The vacuum produces the field of antigravity that causes the cosmological expansion to accelerate. It is this accelerated expansion that has been discovered in the observations. The discovery of cosmic vacuum radically changes our current understanding of the present state of the Universe. It also poses new challenges to both cosmology and fundamental physics. Why is the density of vacuum what it is? Why do the densities of the cosmic energy components differ in exact value but agree in order of magnitude? On the other hand, the discovery made at large cosmological distances of hundreds and thousands Mpc provides new insights into the dynamics of the nearby Universe, the motions of galaxies in the local volume of 10 - 20 Mpc where the cosmological expansion was originally discovered. (reviews of topical problems)

  18. Cosmic vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Chernin, Artur D [P.K. Shternberg State Astronomical Institute at the M.V. Lomonosov Moscow State University, Moscow (Russian Federation)

    2001-11-30

    Recent observational studies of distant supernovae have suggested the existence of cosmic vacuum whose energy density exceeds the total density of all the other energy components in the Universe. The vacuum produces the field of antigravity that causes the cosmological expansion to accelerate. It is this accelerated expansion that has been discovered in the observations. The discovery of cosmic vacuum radically changes our current understanding of the present state of the Universe. It also poses new challenges to both cosmology and fundamental physics. Why is the density of vacuum what it is? Why do the densities of the cosmic energy components differ in exact value but agree in order of magnitude? On the other hand, the discovery made at large cosmological distances of hundreds and thousands Mpc provides new insights into the dynamics of the nearby Universe, the motions of galaxies in the local volume of 10 - 20 Mpc where the cosmological expansion was originally discovered. (reviews of topical problems)

  19. Computation of cosmic radiation spectra and application to aircrew dosimetry

    International Nuclear Information System (INIS)

    Yoo, Song Jae

    2002-02-01

    Using the Monte Carlo radiation transport code FLUKA- 99, secondary cosmic radiation energy spectra and intensities of neutrons, protons, photons, electrons, and muons were calculated for different geographical latitude and longitude at the commercial jet's altitudes ranging from 27000 ft to 41000 ft. The Badhwar's proton model was used to construct the primary cosmic radiation spectrum and effect of the vertical cutoff rigidity was considered after spectra similar to those given in literature were resulted. By applying the effective dose conversion factors, a calculation tool for aircrew doses was developed. According to the resulting dose rate distribution, effective dose rate over North pole region is around three times of that over equator region due to the geomagnetical shielding effect. Illustrative assessments of aircrew doses were made for four distinctive routes of Korean airliners : Seoul - New York (USA), London (UK), Sydney (Australia) and Mumbai(India). The effective doses to aircrew incurred from a round trip were 0.047, 0.055, 0.018, and 0.018μSv, respectively. If aircrew work 500 hour s a year at the cruise altitude of a international airline, the individual dose would reach 2 mSv which is about the same size as the average annual dose of workers at a nuclear power plant

  20. Study of Ne and Kr production in Mg, Al, Rb, Sr and Y targets by 0-180 MeV neutrons. Cosmochemical application

    International Nuclear Information System (INIS)

    Bertin, P.

    1989-07-01

    High sensitivity mass spectrometry technique has been used to measure production of noble gases Ne and Kr induced by 0-180 MeV neutrons in Mg, Al, Rb, Sr and Y targets. This experiment allowed us an evaluation of the implied excitation functions, in an energy range where no experimental data were available. These results have exhibited the importance of secondary neutrons induced in the interaction of cosmic rays with meteorites and moon surface [fr

  1. Standard Practice for Application and Analysis of Nuclear Research Emulsions for Fast Neutron Dosimetry

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2006-01-01

    1.1 Nuclear Research Emulsions (NRE) have a long and illustrious history of applications in the physical sciences, earth sciences and biological sciences (1,2) . In the physical sciences, NRE experiments have led to many fundamental discoveries in such diverse disciplines as nuclear physics, cosmic ray physics and high energy physics. In the applied physical sciences, NRE have been used in neutron physics experiments in both fission and fusion reactor environments (3-6). Numerous NRE neutron experiments can be found in other applied disciplines, such as nuclear engineering, environmental monitoring and health physics. Given the breadth of NRE applications, there exist many textbooks and handbooks that provide considerable detail on the techniques used in the NRE method. As a consequence, this practice will be restricted to the application of the NRE method for neutron measurements in reactor physics and nuclear engineering with particular emphasis on neutron dosimetry in benchmark fields (see Matrix E706). 1...

  2. Biotropic Effect of Radiation Conditions on Orbital Cosmic Stations

    Science.gov (United States)

    Tsetlin, Vladimir; Ushakov, Igor; Gurieva, Tamar; Moisa, Svetlana; Zotin, Alexei; Lobanov, Alexei

    On the orbit of pilot orbital stations the crews undergo to low doses of chronic irradiation of cosmic radiation. The studying of radiobiological effects in different living systems were carried out in the ship’s side (OC “MIR” and ICS) and model surface experiments (power dose 200 mGy/day, density of neutron flow 30 particles/sm2 sec). It was shown that ionized radiation effects on embryonal development of Japanese quail embryo, inducing morphological disturbances in 12% of embryos. Many years ontogenesis (more 15 years of life in OC “MIR”) of microbial association evoked replacement of dominant types of micromycetes and bacterium and increasing of colony-formed units (CFU) in four orders. In laboratory low doses of γ-radiation induced the increasing of flight strain biomass of Aspergillus niger that corresponds to a radiation hormezis and also the increasing of radio-sensitivity. Moreover, under γ-neutron radiation were marked some deviations in morphology of supporting cell and numerous head falls of Aspergillus niger. The irradiation of Protozoa by low doses led to that spontaneous motion activity of spirostoms (Spirostomum ambiguum Ehbg.) accommodated in water processing by mixed γ-neutron radiation decreased twice that testified the fact that the definite factor of γ-neutron radiation effect is the changing of water medium state. In dry seeds of the highest plants wetting in water of preliminary low doses α-and γ-irradiation cells gradually decreased. In hypomagnetic camera the opposite tendency was observed. It is established the phenomena of stimulating effect of low doses of continuous γ-radiation (source of radiation Co60, period of radiation 10 days, average daily power dose 1,5-2,0 mGy, summary dose 15 mGy) on mezenchim stem cells of mice bone brain - a radiation hormezis which revealed in the intensifying of proliferative activity and increasing of number of colony-formed units-F in bone brain in 1,5-4,5 times. Regenerative capacity of

  3. Closing CMS to hunt cosmic rays

    CERN Multimedia

    Claudia Marcelloni

    2006-01-01

    Every second the Earth is bombarded by billions of cosmic rays and occasionally one of these cosmic particles will collide with the Earth's atmosphere generating a shower of particles known as an 'air shower'. This is similiar to the collisions and subsequent particle showers observed in accelerators such as the LHC. Here the CMS detector is closed so that systems can be tested using muon cosmic rays in the 'Cosmic Challenge'.

  4. Solar activity effects on cosmic ray intensity and geomagnetic field variation

    International Nuclear Information System (INIS)

    Shukla, A.K.; Shukla, J.P.; Sharma, S.M.; Singh, R.L.; Agrawal, S.P.

    1978-01-01

    An analysis has been performed to statistically correlate the date of solar flare occurrence and its importance with the short term cosmic ray intensity decreases (observed by the high latitude neutron monitors) as well as with the geomagnetic field fluctuation indices (Asub(p) and Dsub(st)), during the period 1973-1976. This period has the particular advantage of being close to a solar minimum to avoid the ambiguity due to closely spaced solar flares. It is found that the intensity decrease starts at least 2-3 days after the date of bright solar flares of Imp 1B, 2B or 3B and the amplitude of the decrease increases with the importance of the solar flare. (author)

  5. Observed diurnal variations in Mars Science Laboratory Dynamic Albedo of Neutrons passive mode data

    Science.gov (United States)

    Tate, C. G.; Moersch, J.; Jun, I.; Mitrofanov, I.; Litvak, M.; Boynton, W. V.; Drake, D.; Fedosov, F.; Golovin, D.; Hardgrove, C.; Harshman, K.; Kozyrev, A. S.; Kuzmin, R.; Lisov, D.; Maclennan, E.; Malakhov, A.; Mischna, M.; Mokrousov, M.; Nikiforov, S.; Sanin, A. B.; Starr, R.; Vostrukhin, A.

    2018-06-01

    The Mars Science Laboratory Dynamic Albedo of Neutrons (DAN) experiment measures the martian neutron leakage flux in order to estimate the amount of water equivalent hydrogen present in the shallow regolith. When DAN is operating in passive mode, it is sensitive to neutrons produced through the interactions of galactic cosmic rays (GCR) with the regolith and atmosphere and neutrons produced by the rover's Multi-Mission Radioisotope Thermoelectric Generator (MMRTG). During the mission, DAN passive mode data were collected over the full diurnal cycle at the locations known as Rocknest (sols 60-100) and John Klein (sols 166-272). A weak, but unexpected, diurnal variation was observed in the neutron count rates reported at these locations. We investigate different hypotheses that could be causing these observed variations. These hypotheses are variations in subsurface temperature, atmospheric pressure, the exchange of water vapor between the atmosphere and regolith, and instrumental effects on the neutron count rates. Our investigation suggests the most likely factors contributing to the observed diurnal variations in DAN passive data are instrumental effects and time-variable preferential shielding of alpha particles, with other environmental effects only having small contributions.

  6. Interplanetary cosmic-ray scintillations

    Energy Technology Data Exchange (ETDEWEB)

    Toptygin, I N; Vasiliev, V N [Kalininskij Sel' skokhozyajstvennyj Inst. (USSR)

    1977-05-01

    The equation for the two-particles cosmic-ray distribution function is derived by means of the Boltzmann kinetic equation averaging. This equation is valid for arbitrary ratio of regular and random parts of the magnetic field. For small energy particles the guiding-center approximation is used. On the basis of the derived equation the dependence between power spectra of cosmic-ray intensity and random magnetic field is obtained. If power spectra are degree functions for high energy particles (approximately 10 GeV nucleon/sup -1/), then the spectral exponent ..gamma.. of magnetic field lies between rho and rho-2, where rho is the spectral exponent of cosmic-ray power spectra. The experimental data concerning moderate energy particles are in accordance with ..gamma..=rho, which demonstrates that the magnetic fluctuations are isotropic or cosmic-ray space gradient is small near the Earth orbit.

  7. ALICE Cosmic Ray Detector

    CERN Multimedia

    Fernandez Tellez, A; Martinez Hernandez, M; Rodriguez Cahuantzi, M

    2013-01-01

    The ALICE underground cavern provides an ideal place for the detection of high energy atmospheric muons coming from cosmic ray showers. ACORDE detects cosmic ray showers by triggering the arrival of muons to the top of the ALICE magnet.

  8. Cosmic Humanity: Utopia, Realities, Prospects

    Directory of Open Access Journals (Sweden)

    Sergey Krichevsky

    2017-07-01

    Full Text Available The philosophical foundations of the theory and practice of the creation of cosmic humanity as a process of the evolution of human civilization, the emergence into space, with the prospect of resettlement outside the Earth are considered. There is a connection between myths, fantasies, ideas, concepts and projects aimed at the exploration of outer space, the creation of cosmic humanity. A new and voluminous definition of cosmic humanity in the evolutionary paradigm is given. Cosmic humanity is (essence and 4 stages of evolution: 1. Humanity living on Earth, sensing, knowing, understanding its cosmic origin, relationship with the cosmos and cosmic destiny. 2. Humanity living on Earth, leading aerospace activity for the purposes of exploration and use of aerospace space (Heaven, Space for survival and development. 3. Humanity living on Earth and outside the Earth — in the solar system, preserving the Earth and mastering the Cosmos for survival and development. 4. Humanity, settled and living in the Cosmos. Now humanity is in the process of transition from the second to the third stage. In the process of this evolution, a complex transformation of man and society takes place. The problem-semantic field of cosmic humanity is described and its general model is presented. The meta-goal-setting is the justification of cosmic humanity with the application of the anthropic principle and its “active” super (post anthropic supplement: “Cosmic humanity has an evolutionary purpose to actively manage evolution: change man, humanity and the universe.” The evolution of the “cosmic dream”, goals and technologies of space activities is formalized in the form of a conceptual model. Challenges and negative trends are considered in connection with the crisis of space activity, criticism and attempts to limit the flights of people into space. The prototype of cosmic humanity, its basis and acting model is the cosmonauts’ community. The main

  9. Cosmic Connections:. from Cosmic Rays to Gamma Rays, Cosmic Backgrounds and Magnetic Fields

    Science.gov (United States)

    Kusenko, Alexander

    2013-12-01

    Combined data from gamma-ray telescopes and cosmic-ray detectors have produced some new surprising insights regarding intergalactic and galactic magnetic fields, as well as extragalactic background light. We review some recent advances, including a theory explaining the hard spectra of distant blazars and the measurements of intergalactic magnetic fields based on the spectra of distant sources. Furthermore, we discuss the possible contribution of transient galactic sources, such as past gamma-ray bursts and hypernova explosions in the Milky Way, to the observed ux of ultrahigh-energy cosmicrays nuclei. The need for a holistic treatment of gamma rays, cosmic rays, and magnetic fields serves as a unifying theme for these seemingly unrelated phenomena.

  10. Fitting cosmic microwave background data with cosmic strings and inflation.

    Science.gov (United States)

    Bevis, Neil; Hindmarsh, Mark; Kunz, Martin; Urrestilla, Jon

    2008-01-18

    We perform a multiparameter likelihood analysis to compare measurements of the cosmic microwave background (CMB) power spectra with predictions from models involving cosmic strings. Adding strings to the standard case of a primordial spectrum with power-law tilt ns, we find a 2sigma detection of strings: f10=0.11+/-0.05, where f10 is the fractional contribution made by strings in the temperature power spectrum (at l=10). CMB data give moderate preference to the model ns=1 with cosmic strings over the standard zero-strings model with variable tilt. When additional non-CMB data are incorporated, the two models become on a par. With variable ns and these extra data, we find that f10<0.11, which corresponds to Gmicro<0.7x10(-6) (where micro is the string tension and G is the gravitational constant).

  11. Department of Cosmic Ray Physics: Overview

    International Nuclear Information System (INIS)

    Szabelski, J.

    2001-01-01

    Full text: The Department of Cosmic Ray Physics in Lodz is involved in basic research in the area of high-energy physics and cosmic ray physics related to: Experimental and phenomenological studies of Extensive Air Showers induced by cosmic ray particles. Studies of ultra-high energy (above 10 19 eV) cosmic rays: determination of energy and primary particle mass composition. Studies of asymptotic properties of hadronic interactions based on the analysis of cosmic ray propagation through the atmosphere. Studies of mass composition of cosmic rays in the energy range 10 15 -10 17 eV. Registration of cosmic ray intensity variation correlated with solar activity. Theoretical and experimental studies of Extensive Air Shower properties are performed mostly based on the results obtained by the Lodz Extensive Air Shower Array. We have noticed unexplainable delayed signals registered about 500-900 microseconds after the main EAS pulse. We prepared hardware for further experimental study of this effect. In September we have started registration of 5 GeV muon flux with the underground muon telescope. We registered 3 decreases of muon intensity correlated with Forbush decreases registered at lower energies. Variations of primary cosmic ray of energies up to about 100 GeV were responsible for our registrations. These set the upper limits for geometrical size of geomagnetic disturbances in interplanetary space. In construction and data interpretation of cosmic ray experiments, the Lodz group collaborates with many foreign institutes and laboratories: Forschungszentrum in Karlsruhe (Germany), College de France, Institute for Nuclear Studies of the Russian Academy of Sciences and Uppsala University (Sweden). We have organised (together with the Physics Department of the University of Lodz) the 17 th European Cosmic Ray Symposium (24-?8 July 2000) in which about 150 physicists participated (about 100 from abroad). (author)

  12. Cosmic ray anisotropy along with interplanetary transients

    Science.gov (United States)

    Mishra, Rajesh Kumar

    The present work deals with the study of first three harmonics of low amplitude anisotropic wave trains of cosmic ray intensity over the period 1991-1994 for Deep River neutron monitoring station. It is observed that the diurnal time of maximum remains in the corotational direction; whereas, the time of maximum for both diurnal and semi-diurnal anisotropy has significantly shifted towards later hours as compared to the quiet day annual average for majority of the LAE events. It is noticed that these events are not caused either by the high-speed solar wind streams or by the sources on the Sun responsible for producing these streams; such as, polar coronal holes. The direction of the tri-diurnal anisotropy shows a good negative correlation with Bz component of interplanetary magnetic field. The occurrence of low amplitude events is dominant for positive polarity of Bz. The Disturbance Storm Time index i.e. Dst remains consistently negative only throughout the entire low amplitude wave train event.

  13. The Fermi Gamma-Ray Space Telescope, Exploding Stars, Neutron Stars, and Black Holes

    Science.gov (United States)

    Thompson, David J.

    2010-01-01

    Since August, 2008, the Fermi Gamma-ray Space Telescope has been scanning the sky, producing a full-sky image every three hours. These cosmic gamma-rays come from extreme astrophysical phenomena, many related to exploding stars (supernovae) or what these explosions leave behind: supernova remnants, neutron stars, and black holes. This talk uses sample Fermi results, plus simple demonstrations, to illustrate the exotic properties of these endpoints of stellar evolution.

  14. Cosmic physics: the high energy frontier

    International Nuclear Information System (INIS)

    Stecker, F W

    2003-01-01

    Cosmic rays have been observed up to energies 10 8 times larger than those of the best particle accelerators. Studies of astrophysical particles (hadrons, neutrinos and photons) at their highest observed energies have implications for fundamental physics as well as astrophysics. Thus, the cosmic high energy frontier is the nexus to new particle physics. This overview discusses recent advances being made in the physics and astrophysics of cosmic rays and cosmic γ-rays at the highest observed energies as well as the related physics and astrophysics of very high energy cosmic neutrinos. These topics touch on questions of grand unification, violations of Lorentz invariance as well as Planck scale physics and quantum gravity. (topical review)

  15. Cosmic rays and global warming

    Energy Technology Data Exchange (ETDEWEB)

    Erlykin, A.D. [P.N. Lebedev Physical Institute, Moscow (Russian Federation); Sloan, T. [Lancaster University (United Kingdom); Wolfendale, A.W. [Durham University (United Kingdom)

    2010-07-01

    The possible effects of cosmic rays on clouds could contribute to global warming. The argument is that the observed increased solar activity during the last century caused a decrease in the ionization due to cosmic rays since the lower energy cosmic particles are deflected by the magnetic field created by the increasing solar wind. This would lead to a decrease in cloud cover allowing more heating of the earth by the sun. Meteorological data combined to solar activity observations and simulations show that any effect of solar activity on clouds and the climate is likely to be through irradiance rather than cosmic rays. Since solar irradiance transfers 8 orders of magnitude more energy to the atmosphere than cosmic rays it is more plausible that this can produce a real effect. The total contribution of variable solar activity to global warming is shown to be less than 14% of the total temperature rise. (A.C.)

  16. High-energy X-ray production in a boundary layer of an accreting neutron star

    International Nuclear Information System (INIS)

    Hanawa, Tomoyuki

    1991-01-01

    It is shown by Monte Carlo simulation that high-energy X-rays are produced through Compton scattering in a boundary layer of an accreting neutron star. The following is the mechanism for the high-energy X-ray production. An accreting neutron star has a boundary layer rotating rapidly on the surface. X-rays radiated from the star's surface are scattered in part in the boundary layer. Since the boundary layer rotates at a semirelativistic speed, the scattered X-ray energy is changed by the Compton effect. Some X-rays are scattered repeatedly between the neutron star and the boundary layer and become high-energy X-rays. This mechanism is a photon analog of the second-order Fermi acceleration of cosmic rays. When the boundary layer is semitransparent, high-energy X-rays are produced efficiently. 17 refs

  17. 37Ar and 39Ar in meteorites and the spatial cosmic ray gradient

    International Nuclear Information System (INIS)

    Heusser, G.; Schaeffer, O.A.

    1977-01-01

    Cosmic-ray-produced 37 Ar (tsub(1/2) = 35 days), and 39 Ar (tsub(1/2) = 269 years) in the Fe-Ni phase of meteorites have been studied in connection with their implications for the radial gradient of cosmic ray particles. For the chondrite, Canon City, which fell on October 27, 1973, 20.1 +- 1.5 dpm/kg FeNi of 37 Ar and 22.5 +- 1.4 dpm/kg FeNi of 39 Ar was found. Usually, the 37 Ar/ 39 Ar ratio is used to deduce a spatial gradient. However, 37 Ar data reported in the literature are inconsistent. They fluctuate much more than could be accounted for by different orbits and the anticipated correlation with the cosmic ray neutron registrations is rather weak. Consequently, the 37 Ar/ 39 Ar-derived gradient has a low confidence level. On the other hand, 39 Ar activities group close to a mean value of 22.5 dpm/kg FeNi and appear to be almost independent of the different meteoroid orbits. A comparison of measured 39 Ar activities in meteorites with those calculated for orbits obtained from fireball data shows that a gradient of 10%/Au or less is reconcilable with the experimental findings. The average gradient (E > 200 MeV) during the last 500 years was probably not much larger than that measured presently by the Pioneer 10 and 11, and Helios spacecrafts. (Auth.)

  18. Impact of Cosmic-Ray Transport on Galactic Winds

    Science.gov (United States)

    Farber, R.; Ruszkowski, M.; Yang, H.-Y. K.; Zweibel, E. G.

    2018-04-01

    The role of cosmic rays generated by supernovae and young stars has very recently begun to receive significant attention in studies of galaxy formation and evolution due to the realization that cosmic rays can efficiently accelerate galactic winds. Microscopic cosmic-ray transport processes are fundamental for determining the efficiency of cosmic-ray wind driving. Previous studies modeled cosmic-ray transport either via a constant diffusion coefficient or via streaming proportional to the Alfvén speed. However, in predominantly cold, neutral gas, cosmic rays can propagate faster than in the ionized medium, and the effective transport can be substantially larger; i.e., cosmic rays can decouple from the gas. We perform three-dimensional magnetohydrodynamical simulations of patches of galactic disks including the effects of cosmic rays. Our simulations include the decoupling of cosmic rays in the cold, neutral interstellar medium. We find that, compared to the ordinary diffusive cosmic-ray transport case, accounting for the decoupling leads to significantly different wind properties, such as the gas density and temperature, significantly broader spatial distribution of cosmic rays, and higher wind speed. These results have implications for X-ray, γ-ray, and radio emission, and for the magnetization and pollution of the circumgalactic medium by cosmic rays.

  19. Extensive Air Showers Detected by Aragats Neutron Monitor

    International Nuclear Information System (INIS)

    Badalyan, A.; Chilingarian, A.; Hovsepyan, G.; Grigoryan, A.; Khanikyants, Y.; Manukyan, A.; Pokhsraryan, D.; Soghomonyan, S.

    2017-01-01

    Extensive Air Shower (EAS) duration as registered by the surface particle detectors does not exceed a few tens of nanosecond. However, Neutron monitors containing plenty of absorbing matter can respond to EAS core traversal during 1 ∼ms by registering secondary slow neutrons born by EAS hadrons in the soil, walls of buildings and in the matter of detector itself. Thus, the time distribution of the pulses from the proportional counters of the neutron monitor after EAS propagation extends to ∼l ms, ∼5 orders of magnitude larger than the EAS passing time. The Aragats Neutron Monitor (ArNM) has a special option for the EAS core detection. In general, the dead time of NM is ∼1 ms that provides the one-to-one relation of incident hadrons and detector counts. The pulses generated by the neutrons possibly entering the proportional chamber after the first one will be neglected. In ArNM, we use several “electronic” dead times, and with the shortest one, 400 ns, the detector counts all pulses that enter the proportional chambers. If ArNM one-second time series corresponding to the shortest dead time contain much more signals (a neutron burst) than with l-ms dead time, then we conclude that the EAS core hits the detector. We assume that he distribution of registered burst multiplicities is proportional to the energy of the primary particle. The primary cosmic ray energy spectrum was obtained by the frequency analysis through the counting frequencies of the multiplicities of different magnitudes and relating them to the integral energy spectrum measured by the MAKET array at the same place several years ago. (author)

  20. Cosmic Topology

    Science.gov (United States)

    Luminet, Jean-Pierre

    2015-08-01

    Cosmic Topology is the name given to the study of the overall shape of the universe, which involves both global topological features and more local geometrical properties such as curvature. Whether space is finite or infinite, simply-connected or multi-connected like a torus, smaller or greater than the portion of the universe that we can directly observe, are questions that refer to topology rather than curvature. A striking feature of some relativistic, multi-connected "small" universe models is to create multiples images of faraway cosmic sources. While the most recent cosmological data fit the simplest model of a zero-curvature, infinite space model, they are also consistent with compact topologies of the three homogeneous and isotropic geometries of constant curvature, such as, for instance, the spherical Poincaré Dodecahedral Space, the flat hypertorus or the hyperbolic Picard horn. After a "dark age" period, the field of Cosmic Topology has recently become one of the major concerns in cosmology, not only for theorists but also for observational astronomers, leaving open a number of unsolved issues.

  1. Cosmic ray physics goes to school

    CERN Multimedia

    2002-01-01

    With the help of a CERN physicist, German Schools bring the Largest Cosmic Ray Detector in Europe one step closer to reality   Eric Berthier and Robert Porret (CERN, ST/HM), Frej Torp and Christian Antfolk from the Polytechnics Arcada in Finland, and Karsten Eggert, physicist at CERN who initiated this project, during the installation of cosmic ray detectors in the Pays de Gex, at point 4. Niina Patrikainen and Frej Torp, Finnish students from Rovaniemi and Arcada Polytechnics, installing cosmic ray counters at the Fachhochschule in Duesseldorf. The science of cosmic ray detection is growing, literally. Cosmic rays, energetic particles from space, strike our planet all the time. They collide with the air molecules in our upper atmosphere and initiate large showers of elementary particles (mainly electrons, photons, hadrons and muons) which rain down upon the earth. The shower size and the particle density in the showers reflect the initial energy of the cosmic ray particle, a detail which makes d...

  2. Cosmic Ray Modulation and Radiation Dose of Aircrews During Possible Grand Minimum

    Science.gov (United States)

    Miyake, S.; Kataoka, R.; Sato, T.; Imada, S.; Miyahara, H.; Shiota, D.; Matsumoto, T.; Ueno, H.

    2017-12-01

    The Sun is exhibiting low solar activity levels since the descending phase of the last solar cycle, and it is likely to be continued as well as in the case of the past grand solar minima. The cosmic-ray modulation, which is the variation of the galactic cosmic ray (GCR) spectrum caused by the heliospheric environmental change, is basically anti-correlated with the solar activity. In the recent weak solar cycle, we thus expect that the flux of GCRs is getting higher than that in the previous solar cycles, leading to the increase in the radiation exposure in the space and atmosphere. In order to quantitatively evaluate the possible solar modulation of GCRs and resultant radiation exposure at flight altitude, we have developed the time-dependent and three-dimensional model of the cosmic-ray modulation. Our model can give the flux of GCRs anywhere in the heliosphere by assuming the variation of the solar wind speed, the strength of the heliospheric magnetic field (HMF), and its tilt angle. We solve the gradient-curvature drift motion of GCRs in the HMF, and therefore reproduce the 22-year variation of the cosmic-ray modulation. We also calculate the neutron monitor counting rate and the radiation dose of aircrews at flight altitude, by the air-shower simulation performed by PHITS (Particle and Heavy Ion Transport code System). In our previous study [1], we calculated the radiation dose at a flight altitude during the coming solar cycle by assuming the variation of the solar wind speed and the strength of the HMF expressed by sinusoidal curve, and obtained that an annual radiation dose of aircrews in 5 years around the next solar minimum will be up to 19% higher than that at the last cycle. In this study, we predict the new model of the heliospheric environmental change on the basis of a prediction model for the sunspot number. The quantitative predictions of the cosmic-ray modulation and the radiation dose at a flight altitude during possible Grand Minimum considering

  3. Separation of gravitational-wave and cosmic-shear contributions to cosmic microwave background polarization.

    Science.gov (United States)

    Kesden, Michael; Cooray, Asantha; Kamionkowski, Marc

    2002-07-01

    Inflationary gravitational waves (GW) contribute to the curl component in the polarization of the cosmic microwave background (CMB). Cosmic shear--gravitational lensing of the CMB--converts a fraction of the dominant gradient polarization to the curl component. Higher-order correlations can be used to map the cosmic shear and subtract this contribution to the curl. Arcminute resolution will be required to pursue GW amplitudes smaller than those accessible by the Planck surveyor mission. The blurring by lensing of small-scale CMB power leads with this reconstruction technique to a minimum detectable GW amplitude corresponding to an inflation energy near 10(15) GeV.

  4. Development of a Nuclear Reaction Database on Silicon for Simulation of Neutron-Induced Single-Event Upsets in Microelectronics and its Application

    International Nuclear Information System (INIS)

    Watanabe, Yukinobu; Kodama, Akihiro; Tukamoto, Yasuyuki; Nakashima, Hideki

    2005-01-01

    We have developed a cross-section database for neutron-induced reactions on 28Si in the energy range between 2 MeV and 3 GeV in order to analyze single-event upsets (SEUs) phenomena induced by cosmic-ray neutrons in microelectronic devices. A simplified spherical device model is proposed for simulation of the initial processes of SEUs. The model is applied to SEU cross-section calculations for semiconductor memory devices. The calculated results are compared with measured SEU cross sections and the other simulation result. The dependence of SEU cross sections on incident neutron energy and secondary ions having the most important effects on SEUs are discussed

  5. Cosmic rays and the interstellar medium

    International Nuclear Information System (INIS)

    Wolfendale, A.W.

    1986-01-01

    It is inevitable that there is a close connection between cosmic rays and the ISM insofar as the propagation of cosmic rays is conditioned by the magnetic field in the ISM and the cosmic rays interact with the gas (and photon fluxes) in this medium. This paper deals with both topics. Propagation effects manifest themselves as an anisotropy in arrival directions and a review is given of anisotropy measurements and their interpretation. The status of studies of cosmic ray interactions is examined whit particular reference to the information about the ISM itself which comes from observations of the flux of secondary γ-rays produced by cosmic ray interactions with gas, the situation regarding molecular as in the Inner Galaxy being of particular concern

  6. Looking for Cosmic Neutrino Background

    Directory of Open Access Journals (Sweden)

    Chiaki eYanagisawa

    2014-06-01

    Full Text Available Since the discovery of neutrino oscillation in atmospheric neutrinos by the Super-Kamiokande experiment in 1998, study of neutrinos has been one of exciting fields in high-energy physics. All the mixing angles were measured. Quests for 1 measurements of the remaining parameters, the lightest neutrino mass, the CP violating phase(s, and the sign of mass splitting between the mass eigenstates m3 and m1, and 2 better measurements to determine whether the mixing angle theta23 is less than pi/4, are in progress in a well-controlled manner. Determining the nature of neutrinos, whether they are Dirac or Majorana particles is also in progress with continuous improvement. On the other hand, although the ideas of detecting cosmic neutrino background have been discussed since 1960s, there has not been a serious concerted effort to achieve this goal. One of the reasons is that it is extremely difficult to detect such low energy neutrinos from the Big Bang. While there has been tremendous accumulation of information on Cosmic Microwave Background since its discovery in 1965, there is no direct evidence for Cosmic Neutrino Background. The importance of detecting Cosmic Neutrino Background is that, although detailed studies of Big Bang Nucleosynthesis and Cosmic Microwave Background give information of the early Universe at ~a few minutes old and ~300 k years old, respectively, observation of Cosmic Neutrino Background allows us to study the early Universe at $sim$ 1 sec old. This article reviews progress made in the past 50 years on detection methods of Cosmic Neutrino Background.

  7. The extended range neutron rem counter LINUS: overview and latest developments

    International Nuclear Information System (INIS)

    Birattari, C.; Rancati, T.; Esposito, A.; Pelliccioni, M.; Ferrari, A.; Silari, M.

    1997-01-01

    The 'history' of the extended range neutron rem counter LINUS, since its first conception in 1990 is reviewed, along with the latest developments. These include the calibration of the initially cylindrical version with nearly monoenergetic neutrons in the energy range 34-66 MeV, a detailed evaluation of the anisotropy of its response function, the construction and calibration of an improved spherical version, and recent measurements in reference high energy stray radiation fields. The instrument can now be considered as being fully characterized. Similar monitors built by other laboratories following the present design have confirmed its performances. The instrument is now in semi-routine use at a number of particle accelerator facilities and is one of several devices used on-board of aircrafts for assessing the exposure to cosmic rays at commercial flight altitudes. (author)

  8. Exposure to cosmic radiation: a developing major problem in radiation protection

    International Nuclear Information System (INIS)

    Lowder, W.M.; Hajnal, F.

    1992-01-01

    'Full Text:' Cosmic radiation at ground altitudes is usually a relatively minor contributor to human radiation exposure, producing a global collective dose equivalent that is about 10 percent of the total from all natural sources. However, more than a million people living at high altitudes receive annual dose equivalents in excess of 5 mSv. In recent years, there has been increasing concern about the exposure of aircraft flight crews and passengers, for whom annual dose equivalents of up to several mSv have been estimated. Recent EML results indicate the presence of an important high-energy neutron component at jet aircraft altitudes, perhaps producing dose equivalents of the order of 0.1. mSv/h at high latitudes. Finally, space agencies have been long concerned with the potential exposures of astronauts, especially from the rare massive solar flare events. As more people venture into space, this source of human radiation exposure will become increasingly important. Available date on those aspects of cosmic radiation exposure will be reviewed, along with current and anticipated future research activities that may yield and improve assessment of the problem. The question of how such exposures might be controlled will be addressed, but not answered. (author)

  9. Ir and Rare Earth's Elements determination by Neutron Activation Analysis and ICP - MS in soil samples

    Science.gov (United States)

    Salvini, A.; Cattadori, C.; Broggini, C.; Cagnazzo, M.; Ori, Gian Gabriele; Nisi, S.; Borio, A.; Manera, S.

    2006-05-01

    The platinum metals depleted in the earth's crust are relative to their cosmic abundance; concentration of these elements in sediments may thus indicate influxes of extraterrestrial material. Analysis of these parameters are done easily by Neutron Activation Analysis (NAA) and comparative results with ICP-MS technique show a good match. Results, adjust parameters and limits of this method will be displayed in tables.

  10. Cosmic strings and galaxy formation

    Science.gov (United States)

    Bertschinger, Edmund

    1989-01-01

    The cosmogonical model proposed by Zel'dovich and Vilenkin (1981), in which superconducting cosmic strings act as seeds for the origin of structure in the universe, is discussed, summarizing the results of recent theoretical investigations. Consideration is given to the formation of cosmic strings, the microscopic structure of strings, gravitational effects, cosmic string evolution, and the formation of galaxies and large-scale structure. Simulation results are presented in graphs, and several outstanding issues are listed and briefly characterized.

  11. Neutron-induced gamma-ray spectroscopy: simulations for chemical mapping of planetary surfaces

    International Nuclear Information System (INIS)

    Brueckner, J.; Waenke, H.; Reedy, R.C.

    1986-01-01

    Cosmic rays interact with the surface of a planetary body and produce a cascade of secondary particles, such as neutrons. Neutron-induced scattering and capture reactions play an important role in the production of discrete gamma-ray lines that can be measured by a gamma-ray spectrometer on board of an orbiting spacecraft. These data can be used to determine the concentration of many elements in the surface of a planetary body, which provides clues to its bulk composition and in turn to its origin and evolution. To investigate the gamma rays made by neutron interactions, thin targets were irradiated with neutrons having energies from 14 MeV to 0.025 eV. By means of foil activation technique the ratio of epithermal to thermal neutrons was determined to be similar to that in the Moon. Gamma rays emitted by the targets and the surrounding material were detected by a high-resolution germanium detector in the energy range of 0.1 to 8 MeV. Most of the gamma-ray lines that are expected to be used for planetary gamma-ray spectroscopy were found in the recorded spectra and the principal lines in these spectra are presented. 58 refs., 7 figs., 9 tabs

  12. The cosmic spiderweb: equivalence of cosmic, architectural and origami tessellations

    Science.gov (United States)

    Neyrinck, Mark C.; Hidding, Johan; Konstantatou, Marina; van de Weygaert, Rien

    2018-04-01

    For over 20 years, the term `cosmic web' has guided our understanding of the large-scale arrangement of matter in the cosmos, accurately evoking the concept of a network of galaxies linked by filaments. But the physical correspondence between the cosmic web and structural engineering or textile `spiderwebs' is even deeper than previously known, and also extends to origami tessellations. Here, we explain that in a good structure-formation approximation known as the adhesion model, threads of the cosmic web form a spiderweb, i.e. can be strung up to be entirely in tension. The correspondence is exact if nodes sampling voids are included, and if structure is excluded within collapsed regions (walls, filaments and haloes), where dark-matter multistreaming and baryonic physics affect the structure. We also suggest how concepts arising from this link might be used to test cosmological models: for example, to test for large-scale anisotropy and rotational flows in the cosmos.

  13. The cosmic spiderweb: equivalence of cosmic, architectural and origami tessellations.

    Science.gov (United States)

    Neyrinck, Mark C; Hidding, Johan; Konstantatou, Marina; van de Weygaert, Rien

    2018-04-01

    For over 20 years, the term 'cosmic web' has guided our understanding of the large-scale arrangement of matter in the cosmos, accurately evoking the concept of a network of galaxies linked by filaments. But the physical correspondence between the cosmic web and structural engineering or textile 'spiderwebs' is even deeper than previously known, and also extends to origami tessellations. Here, we explain that in a good structure-formation approximation known as the adhesion model, threads of the cosmic web form a spiderweb, i.e. can be strung up to be entirely in tension. The correspondence is exact if nodes sampling voids are included, and if structure is excluded within collapsed regions (walls, filaments and haloes), where dark-matter multistreaming and baryonic physics affect the structure. We also suggest how concepts arising from this link might be used to test cosmological models: for example, to test for large-scale anisotropy and rotational flows in the cosmos.

  14. The cosmic spiderweb: equivalence of cosmic, architectural and origami tessellations

    Science.gov (United States)

    Hidding, Johan; Konstantatou, Marina; van de Weygaert, Rien

    2018-01-01

    For over 20 years, the term ‘cosmic web’ has guided our understanding of the large-scale arrangement of matter in the cosmos, accurately evoking the concept of a network of galaxies linked by filaments. But the physical correspondence between the cosmic web and structural engineering or textile ‘spiderwebs’ is even deeper than previously known, and also extends to origami tessellations. Here, we explain that in a good structure-formation approximation known as the adhesion model, threads of the cosmic web form a spiderweb, i.e. can be strung up to be entirely in tension. The correspondence is exact if nodes sampling voids are included, and if structure is excluded within collapsed regions (walls, filaments and haloes), where dark-matter multistreaming and baryonic physics affect the structure. We also suggest how concepts arising from this link might be used to test cosmological models: for example, to test for large-scale anisotropy and rotational flows in the cosmos. PMID:29765637

  15. Dosimetry of environmental radiations (cosmic ray)

    International Nuclear Information System (INIS)

    Yamasaki, Keizo

    1978-01-01

    Cosmic ray is dominant as environmental radiation, though the experimental determination made on cosmic ray doses is few in Japan. The free air ionization intensity at sea level due to cosmic ray has been estimated in the Bay of Wakasa, Japan, at middle geomagnetic latitude (25 deg. N), in October 1977. The ionization chambers used were two air and one argon types. Where the responses to cosmic and terrestrial gamma rays were equal, the ionization intensity due to cosmic ray was obtained by subtracting the ionization intensity due to terrestrial gamma ray from the total ionization intensity. As the terrestrial gamma ray, (1) U-238 series, Th-232 series, and K-40 in seawater, (2) K-40 in the material of a wooden ship, and (3) Rn-222 and its daughter products in the atmosphere were considered. The result of free air ionization due to cosmic ray with the argon chamber was slightly smaller than those with the other two air chambers; however, both were in good agreement within standard errors. (JPN.)

  16. Department of Cosmic Ray Physics; Overview

    International Nuclear Information System (INIS)

    Szabelski, J.

    2004-01-01

    Full text: Cosmic Rays are energetic particles from outside the Solar System. The energy spectrum (power law energy dependence) suggests a non-thermal origin of these particles. Most of the studies of Cosmic Rays address fundamental problems such as: - the nature of the physical and astrophysical processes responsible for the high energies of particles (up to about 10 20 eV/particle), - estimation of the astrophysical conditions at the acceleration sites and/or a search for sources of Cosmic Rays, - properties of high energy particle interactions at very high energies (nuclear interactions at energies exceeding energies available in the laboratories). Some Cosmic Ray studies might have practical (commercial) implications, e.g. - ''cosmic weather'' forecast - predictions of geomagnetic disturbances related to Solar activity changes (due to large Solar Flares / events of Coronal Mass Ejections); these are important for large electricity networks, gas pipes, radio-wave connections, space missions and satellite experiments. The Department of Cosmic Ray Physics in Lodz is involved in basic research in the high energy Cosmic Ray field. Energetic Cosmic Ray particles produce cascades of particles in the atmosphere, called Extensive Air Showers (EAS). Registering EAS and their properties is the main theme of experimental studies of very high energy Cosmic Rays. In the Lodz Department we run an Extensive Air Shower array where EAS are registered. We concentrate our experimental research on the explanation of particle detection delayed by hundreds of microseconds with respect to the main EAS signals. In the underground (I5 meters) laboratory we continuously register muon (5 GeV energy threshold) flux with the multidirectional telescope. We have observed several disturbances (Forbush Decreases) in muon counting rates. The interpretation of these events for ''cosmic weather'' and for Cosmic Ray transport models in the interplanetary plasma are on going in collaboration with

  17. A time series approach to the correction for atmosphere effects and the significance of a semi-diurnal variation in corrected intensities of secondary cosmic ray neutrons and mesons (NM64 and MT64)

    International Nuclear Information System (INIS)

    Huijsmans, D.P.

    1982-01-01

    The aim of this research was to distinguish as accurately as possible between two mechanisms behind a half-daily variation in detected numbers of neutrons and mesons in the secondary cosmic ray particles at sea level. These two mechanisms are due to air pressure variations at sea level and affect the number of primary particles with a certain arrival direction. The distribution among arrival directions in the ecliptic plane varies if a gradient exists in the guiding centre density of primaries in directions perpendicular to the neutral sheet. Chapter 2 is devoted to the calculation of a physically and statistically justifiable determination of the barometric coefficient for neutron measurements and air pressures. Chapter 3 deals with the estimation of atmospheric correction coefficients for the elimination of the influence of changing atmospheric conditions on the number of detected mesons. For mesons the variation of total mass, and also the variations in mass-distribution along the trajectory of the mesons are important. After correction for atmospheric variations using the resulting atmospheric correction coefficients from chapter 2 and 3, the influence of the structure of the interplanetary magnetic field near the earth is examined in chapter 4. 0inally, in chapter 5, a power spectral analysis of variations in corrected intensities of neutrons and mesons is carried out. Such an analysis distinguishes the variance of a time series into contributions within small frequency intervals. From the power spectra of variations on a yearly basis, a statistically fundamented judgement can be given as to the significance of the semi-diurnal variation during the different phases of the solar magnetic activity cycle. (Auth.)

  18. Advanced Neutron Detection Methods: new Tools for Countering Nuclear Terrorism (412th Brookhaven Lecture)

    International Nuclear Information System (INIS)

    Vanier, Peter

    2006-01-01

    Acts of terrorism have become almost daily occurrences in the international news. Yet one of the most feared types of terrorism - nuclear terrorism - has not yet happened. One important way of preventing nuclear terrorism is to safeguard nuclear materials, and many people worldwide work continuously to achieve that goal. A second, vital defense is being developed: greatly improved methods of detecting material that a nuclear terrorist would need so that timely discovery of the material could become more probable. Special nuclear materials can emit neutrons, either spontaneously or when excited by a source of high-energy gamma rays, such as an electron accelerator. Traditional neutron detectors can sense these neutrons, but not the direction from which the neutrons come, or their energy. The odds against finding smuggled nuclear materials using conventional detectors are great. However, innovative designs of detectors are producing images that show the locations and even the shapes of man-made neutron sources, which stand out against the uniform background produced by cosmic rays. With the new detectors, finding needles in haystacks - or smuggled nuclear materials in a huge container among thousands of others in a busy port - suddenly becomes possible.

  19. Systematic measurement of fast neutron background fluctuations in an urban area using a mobile detection system

    International Nuclear Information System (INIS)

    Iyengar, A.; Beach, M.; Newby, R.J.; Fabris, L.; Heilbronn, L.H.; Hayward, J.P.

    2015-01-01

    Neutron background measurements using a mobile trailer-based system were conducted in Knoxville, Tennessee, USA. The 0.5 m 2 system, consisting of eight EJ-301 liquid scintillation detectors, was used to collect neutron background measurements in order to better understand the systematic variations in background that depend solely on the street-level measurement position in a downtown area. Data was collected along 5 different streets, and the measurements were found to be repeatable. Using 10-min measurements, the fractional uncertainty in each measured data point was <2%. Compared with fast neutron background count rates measured away from downtown Knoxville, a reduction in background count rates ranging from 10% to 50% was observed in the downtown area, sometimes varying substantially over distances of tens of meters. These reductions are attributed to the net shielding of the cosmic ray neutron flux by adjacent buildings. For reference, the building structure as observed at street level is quantified in part here by a measured angle-of-open-sky metric

  20. Systematic measurement of fast neutron background fluctuations in an urban area using a mobile detection system

    Energy Technology Data Exchange (ETDEWEB)

    Iyengar, A., E-mail: aiyengar@utk.edu [Department of Nuclear and Radiological Engineering, University of Tennessee, Knoxville, TN (United States); Beach, M. [Department of Nuclear and Radiological Engineering, University of Tennessee, Knoxville, TN (United States); Newby, R.J.; Fabris, L. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Heilbronn, L.H. [Department of Nuclear and Radiological Engineering, University of Tennessee, Knoxville, TN (United States); Hayward, J.P. [Department of Nuclear and Radiological Engineering, University of Tennessee, Knoxville, TN (United States); Oak Ridge National Laboratory, Oak Ridge, TN (United States)

    2015-02-11

    Neutron background measurements using a mobile trailer-based system were conducted in Knoxville, Tennessee, USA. The 0.5 m{sup 2} system, consisting of eight EJ-301 liquid scintillation detectors, was used to collect neutron background measurements in order to better understand the systematic variations in background that depend solely on the street-level measurement position in a downtown area. Data was collected along 5 different streets, and the measurements were found to be repeatable. Using 10-min measurements, the fractional uncertainty in each measured data point was <2%. Compared with fast neutron background count rates measured away from downtown Knoxville, a reduction in background count rates ranging from 10% to 50% was observed in the downtown area, sometimes varying substantially over distances of tens of meters. These reductions are attributed to the net shielding of the cosmic ray neutron flux by adjacent buildings. For reference, the building structure as observed at street level is quantified in part here by a measured angle-of-open-sky metric.

  1. Ground Albedo Neutron Sensing (GANS) for Measurement of Integral Soil Water Content at the Small Catchment Scale

    Science.gov (United States)

    Rivera Villarreyes, C.; Baroni, G.; Oswald, S. E.

    2012-12-01

    Soil water content at the plot or hill-slope scale is an important link between local vadose zone hydrology and catchment hydrology. One largest initiative to cover the measuring gap of soil moisture between point scale and remote sensing observations is the COSMOS network (Zreda et al., 2012). Here, cosmic-ray neutron sensing, which may be more precisely named ground albedo neutron sensing (GANS), is applied. The measuring principle is based on the crucial role of hydrogen as neutron moderator compared to others landscape materials. Soil water content contained in a footprint of ca. 600 m diameter and a depth ranging down to a few decimeters is inversely correlated to the neutron flux at the air-ground interface. This approach is now implemented, e.g. in USA (Zreda et al., 2012) and Germany (Rivera Villarreyes et al., 2011), based on its simple installation and integral measurement of soil moisture at the small catchment scale. The present study performed Ground Albedo Neutron Sensing on farmland at two locations in Germany under different vegetative situations (cropped and bare field) and different seasonal conditions (summer, autumn and winter). Ground albedo neutrons were measured at (i) a farmland close to Potsdam and Berlin cropped with corn in 2010, sunflower in 2011 and winter rye in 2012, and (ii) a mountainous farmland catchment (Schaefertal, Harz Mountains) since middle 2011. In order to test this methodology, classical soil moisture devices and meteorological data were used for comparison. Moreover, several calibration approaches, role of vegetation cover and transferability of calibration parameters to different times and locations were also evaluated. Observations suggest that GANS can overcome the lack of data for hydrological processes at the intermediate scale. Soil moisture from GANS compared quantitatively with mean values derived from a network of classical devices under vegetated and non- vegetated conditions. The GANS approach responded well

  2. In vivo transcriptome modulation after low dose of high energy neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Amendola, R; Fratini, E; Piscitelli, M; Sallustio, D E [ENEA, BAS BIOTEC MED, Roma (Italy); Angelone, M; Pillon, M [ENEA, FUS TEC, Frascati (Italy); Chiani, F; Licursi, V; Negri, R [Universita La Sapienza, Roma (Italy). Dip. Biologia Cellulare e dello Sviluppo

    2007-07-01

    Complete text of publication follows. Objective: This project aims to the identification of an hypothetical transcriptome modulation of mouse peripheral blood lymphocytes and skin after exposure to high energy neutron in vivo. Positive candidate genes isolated from mice in in vivo experiments will be selected and evaluated for both radioprotection issues dealing with cosmic ray exposure, and for biomedical issues mainly for low doses and non-cancer effects. Methods: High energy neutron irradiation is performed at the ENEA Frascati, neutron generator facilities (FNG), specifically dedicated to biological samples. FNG is a linear electrostatic accelerator that produces up to 1.0 x 10{sup 11} n/s 14 MeV neutrons via the D-T nuclear reaction. The dose-rate applied for this study is of 0.7 cGy/min. The functional genomic approach has been performed on six animals for each experimental points: un-irradiated; 20 cGy, 6 hours and 24 hours delayed time after exposure. Preliminarily, a pool of total RNA is evaluated on commercial micro-arrays containing large collections of mus musculus cDNAs. Statistical filtering and functional clustering of the data is carried out using dedicated software packages. Results: Candidate genes are selected on the basis of responsiveness to 20 cGy of exposure, with a defined temporal regulation. We plan to organize a systematic screen focused on genes responding to our selection criteria, in in vivo mouse experiments, and correlate their differential expression to the human counterparts. A specific cross species database will be created with all the functional information available in standardized format (MIAME: minimal information about micro-arrays experiments). Conclusions: A lack of information on in vivo experiments is still evident for low doses exposure, especially for neutron of cosmic interest. Individual susceptibility, extensive number of animals to be processed, lack of standardization methodologies are among problems to be solved

  3. Cosmic antimatter

    International Nuclear Information System (INIS)

    Tarle, G.; Swordy, S.

    1998-01-01

    In 1928 Paul Dirac forecasted the existence of antimatter and 4 years later Carl Anderson detected the first antiparticle: the positron in a cloud chamber while studying cosmic radiation. Antiprotons were more difficult to find but in 1955 physicists from Lawrence Berkeley Laboratory got some in a particle accelerator. In 1995 a team from the CERN synthesized atoms of anti-hydrogen by binding positrons to antiprotons in a particle accelerator. Astrophysicists have built more and more complex detectors to study cosmic rays. The detector HEAT (high energy antimatter telescope) has been designed to study positrons above the atmosphere. This detector has been launched for the first time in 1994 and has measured cosmic radiation for 32 hours at an altitude of 37000 meters. The results were challenging: whereas the number of low energy positrons detected agrees with the theory, the number of high energy positrons is too important. It suggests the existence of unknown sources of positrons somewhere in the universe. The massive particles that interact weakly (WIMP) could be such sources. This article draws the history of the quest for antimatter and its implications in cosmology, the detector HEAT is described. (A.C.)

  4. Neutron Interactions in the CUORE Neutrinoless Double Beta Decay Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Dolinski, Michelle Jean [Univ. of California, Berkeley, CA (United States)

    2008-10-01

    Neutrinoless double beta decay (0vDBD) is a lepton-number violating process that can occur only for a massive Majorana neutrino. The search for 0vDBD is currently the only practical experimental way to determine whether neutrinos are identical to their own antiparticles (Majorana neutrinos) or have distinct particle and anti-particle states (Dirac neutrinos). In addition, the observation of 0vDBD can provide information about the absolute mass scale of the neutrino. The Cuoricino experiment was a sensitive search for 0vDBD, as well as a proof of principle for the next generation experiment, CUORE. CUORE will search for 0vDBD of 130Te with a ton-scale array of unenriched TeO2 bolometers. By increasing mass and decreasing the background for 0vDBD, the half-life sensitivity of CUORE will be a factor of twenty better than that of Cuoricino. The site for both of these experiments is the Laboratori Nazionali del Gran Sasso, an underground laboratory with 3300 meters water equivalent rock overburden and a cosmic ray muon attenuation factor of 10-6. Because of the extreme low background requirements for CUORE, it is important that all potential sources of background in the 0vDBD peak region at 2530 keV are well understood. One potential source of background for CUORE comes from neutrons, which can be produced underground both by (α,n) reactions and by fast cosmic ray muon interactions. Preliminary simulations by the CUORE collaboration indicate that these backgrounds will be negligible for CUORE. However, in order to accurately simulate the expected neutron background, it is important to understand the cross sections for neutron interactions with detector materials. In order to help refine these simulations, I have measured the gamma-ray production cross sections for interactions of neutrons on the abundant stable isotopes of Te using the GEANIE detector array at the Los Alamos Neutron Science Center. In addition, I have used the GEANIE

  5. Primary cosmic ray flux

    Energy Technology Data Exchange (ETDEWEB)

    Stanev, Todor

    2001-05-01

    We discuss the primary cosmic ray flux from the point of view of particle interactions and production of atmospheric neutrinos. The overall normalization of the cosmic ray flux and its time variations and site dependence are major ingredients of the atmospheric neutrino predictions and the basis for the derivation of the neutrino oscillation parameters.

  6. Investigation of Secondary Neutron Production in Large Space Vehicles for Deep Space

    Science.gov (United States)

    Rojdev, Kristina; Koontz, Steve; Reddell, Brandon; Atwell, William; Boeder, Paul

    2016-01-01

    Future NASA missions will focus on deep space and Mars surface operations with large structures necessary for transportation of crew and cargo. In addition to the challenges of manufacturing these large structures, there are added challenges from the space radiation environment and its impacts on the crew, electronics, and vehicle materials. Primary radiation from the sun (solar particle events) and from outside the solar system (galactic cosmic rays) interact with materials of the vehicle and the elements inside the vehicle. These interactions lead to the primary radiation being absorbed or producing secondary radiation (primarily neutrons). With all vehicles, the high-energy primary radiation is of most concern. However, with larger vehicles, there is more opportunity for secondary radiation production, which can be significant enough to cause concern. In a previous paper, we embarked upon our first steps toward studying neutron production from large vehicles by validating our radiation transport codes for neutron environments against flight data. The following paper will extend the previous work to focus on the deep space environment and the resulting neutron flux from large vehicles in this deep space environment.

  7. Measurement of cosmic-ray muons with the Distributed Electronic Cosmic-ray Observatory, a network of smartphones

    International Nuclear Information System (INIS)

    Vandenbroucke, J.; Bravo, S.; Karn, P.; Meehan, M.; Plewa, M.; Schultz, D.; Tosi, D.; BenZvi, S.; Jensen, K.; Peacock, J.; Ruggles, T.; Santander, M.; Simons, A.L.

    2016-01-01

    Solid-state camera image sensors can be used to detect ionizing radiation in addition to optical photons. We describe the Distributed Electronic Cosmic-ray Observatory (DECO), an app and associated public database that enables a network of consumer devices to detect cosmic rays and other ionizing radiation. In addition to terrestrial background radiation, cosmic-ray muon candidate events are detected as long, straight tracks passing through multiple pixels. The distribution of track lengths can be related to the thickness of the active (depleted) region of the camera image sensor through the known angular distribution of muons at sea level. We use a sample of candidate muon events detected by DECO to measure the thickness of the depletion region of the camera image sensor in a particular consumer smartphone model, the HTC Wildfire S. The track length distribution is fit better by a cosmic-ray muon angular distribution than an isotropic distribution, demonstrating that DECO can detect and identify cosmic-ray muons despite a background of other particle detections. Using the cosmic-ray distribution, we measure the depletion thickness to be 26.3 ± 1.4 μm. With additional data, the same method can be applied to additional models of image sensor. Once measured, the thickness can be used to convert track length to incident polar angle on a per-event basis. Combined with a determination of the incident azimuthal angle directly from the track orientation in the sensor plane, this enables direction reconstruction of individual cosmic-ray events using a single consumer device. The results simultaneously validate the use of cell phone camera image sensors as cosmic-ray muon detectors and provide a measurement of a parameter of camera image sensor performance which is not otherwise publicly available

  8. In-Situ Spectrometry of Neutrons

    Science.gov (United States)

    Maurer, Richard H.

    1999-01-01

    High energy charged particles of extra-galactic, galactic and solar origin collide with spacecraft structures in Earth orbit outside the atmosphere and in interplanetary travel beyond the Earth's magnetosphere. These primaries create a number of secondary particles inside the structures that can produce a significant ionizing radiation environment. This radiation is a threat to long term inhabitants or travelers for space missions and produces an increased risk of cancer and DNA damage. The primary high energy cosmic rays and trapped protons collide with common spacecraft materials such as aluminum and silicon and create secondary particles inside structures that are mostly protons and neutrons. Charged protons are readily detected and instruments are already in existence for this task. Neutrons are electrically neutral and therefore much more difficult to measure and detect. These neutrons are reported to contribute 30-60% of the dose inside space structures and cannot be ignored. Currently there is no compact, portable and real time neutron detector instrumentation available for use inside spacecraft or on planetary surfaces where astronauts will live and work. We propose to design and build a portable, low power and robust neutron spectrometer that will measure the neutron spectrum from 10 KeV to 500 MeV with at least 10% energy resolution in the various energy intervals. This instrument will monitor the existing neutron environment both inside spacecraft structures and on planetary surfaces to determine the safest living areas, warn of high fluxes associated with solar storms and assist the NSBRI Radiation Effects Team in making an accurate assessment of increased cancer risk and DNA damage to astronauts. The instrument uses a highly efficient proportional counter Helium 3 tube at the lowest energy intervals where .equivalent damage factors for tissue are the highest (10 KeV-2 MeV). The Helium 3 tube may be shielded with a cadmium absorber to eliminate the much

  9. Cosmic Ray Physics with ACORDE at LHC

    CERN Document Server

    Pagliarone, C.

    2008-01-01

    The use of large underground high-energy physics experiments, for comic ray studies, have been used, in the past, at CERN, in order to measure, precisely, the inclusive cosmic ray flux in the energy range from 2x10^10 - 2x10^12 eV. ACORDE, ALICE Cosmic Rays DEtector, will act as Level 0 cosmic ray trigger and, together with other ALICE apparatus, will provide precise information on cosmic rays with primary energies around 10^15 - 10^17 eV. This paper reviews the main detector features, the present status, commissioning and integration with other apparatus. Finally, we discuss the ACORDE-ALICE cosmic ray physics program.

  10. Cosmic ray physics with ACORDE at LHC

    International Nuclear Information System (INIS)

    Pagliarone, C; Fernandez-Tellez, A

    2008-01-01

    The use of large underground high-energy physics experiments, for comic ray studies, have been used, in the past, at CERN, in order to measure, precisely, the inclusive cosmic ray flux in the energy range from 2·10 10 to 2· 10 12 eV. ACORDE, ALICE Cosmic Rays DEtector, will act as Level 0 cosmic ray trigger and, together with other ALICE apparatus, will provide precise information on cosmic rays with primary energies around 10 15 to 10 17 eV. This paper reviews the main detector features, the present status, commissioning and integration with other apparatus. Finally, we discuss the ACORDE-ALICE cosmic ray physics program

  11. Technological advances in cosmogenic neutron detectors for measuring soil water content

    Science.gov (United States)

    Zreda, M. G.; Schrön, M.; Köhli, M.

    2017-12-01

    The cosmic-ray neutron probe is used for measuring area-average soil water content at the hectometer scale. Early work showed a simple exponential decrease with distance of the instrument's sensitivity and a footprint 300 m in radius. Recent research suggested a much higher sensitivity to local neutrons and reduced footprint. We show results confirming the high sensitivity to local neutrons, describe two ways to reduce local and increase far-field effects, and propose ways of measuring neutrons at different spatial scales. Measurements with moderated detectors across a 10-m-wide creek and a 2-m-wide water tank show a decrease by 30% and 20%, respectively, of neutron intensity over water compared to that over land nearby. These results mean that the detector is sensitive to meter-scale heterogeneities of water content. This sensitivity can be reduced by rising the detector or by shielding it from local neutrons. The effect of local water distributions on the measured neutron intensity decreases with height. In the water tank experiment it disappeared almost completely at the height of 2 m, leading to the conjecture that the height roughly equal to the horizontal scale of heterogeneity would eliminate the sensitivity. This may or may not be practical. Shielding the detector below by a hydrogenous material removes a substantial fraction of the local neutrons. The shielded detector has a reduced count rate, reduced sensitivity to local neutrons and increased sensitivity to neutrons farther afield, and a larger footprint. Such a detector could be preferable to the current cosmogenic-neutron probe under heterogeneous soil water conditions. The shielding experiments also inspired the development of a local-area neutron detector. It has hydrogenous neutron shields on all sides except the bottom, substantially blocking the neutrons coming from afar, while allowing the neutrons coming directly from below. Its footprint is equal to its physical dimension when the detector is

  12. Measurement of very forward neutron energy spectra for 7 TeV proton--proton collisions at the Large Hadron Collider

    CERN Document Server

    Adriani, O.; Bonechi, L.; Bongi, M.; Castellini, G.; D'Alessandro, R.; Del Prete, M.; Haguenauer, M.; Itow, Y.; Kasahara, K.; Kawade, K.; Makino, Y.; Masuda, K.; Matsubayashi, E.; Menjo, H.; Mitsuka, G.; Muraki, Y.; Okuno, Y.; Papini, P.; Perrot, A-L.; Ricciarini, S.; Sako, T.; Sakurai, N.; Sugiura, Y.; Suzuki, T.; Tamura, T.; Tiberio, A.; Torii, S.; Tricomi, A.; Turner, W.C.; Zhou, Q.D.

    2015-01-01

    The Large Hadron Collider forward (LHCf) experiment is designed to use the LHC to verify the hadronic-interaction models used in cosmic-ray physics. Forward baryon production is one of the crucial points to understand the development of cosmic-ray showers. We report the neutron-energy spectra for LHC $\\sqrt{s}$ = 7 TeV proton--proton collisions with the pseudo-rapidity $\\eta$ ranging from 8.81 to 8.99, from 8.99 to 9.22, and from 10.76 to infinity. The measured energy spectra obtained from the two independent calorimeters of Arm1 and Arm2 show the same characteristic feature before unfolding the difference in the detector responses. We unfolded the measured spectra by using the multidimensional unfolding method based on Bayesian theory, and the unfolded spectra were compared with current hadronic-interaction models. The QGSJET II-03 model predicts a high neutron production rate at the highest pseudo-rapidity range similar to our results and the DPMJET 3.04 model describes our results well at the lower pseudo-...

  13. Department of Cosmic Ray Physics: Overview

    International Nuclear Information System (INIS)

    Szabelski, J.

    2002-01-01

    Full text:The Department of Cosmic Ray Physics in Lodz is involved in basic research in the area of high-energy physics and cosmic ray physics related to: * Experimental and phenomenological studies of Extensive Air Showers induced by cosmic ray particles. * Studies of ultra-high energy (above 10 19 eV) cosmic rays: determination of energy spectrum and mass composition of primary particles * Studies of asymptotic properties of hadronic interactions based on the analysis of cosmic ray propagation through the atmosphere. * Studies of mass composition of cosmic rays in the energy range 10 15 -10 17 eV. * Registration of cosmic ray intensity variation correlated with solar activity. Theoretical and experimental studies of Extensive Air Shower properties are performed mostly based on the results obtained by the Lodz Extensive Air Shower Array. We have noticed unexplainable delayed signals registered about 500-900 microseconds after the main EAS pulse. We prepared hardware for further experimental study of this effect. Continuous registrations of 5 GeV muon flux with the underground muon telescope have been carried on during 2001. We detected several changes of muon intensity correlated with Forbush decreases registered at lower energies. We have also started registration of the muon counting rate in on-surface scintillation detectors. These measurements will be included to the analysis of the disturbed energy spectrum of primary cosmic rays and its dependence on interplanetary disturbances related to solar activity. In construction and data interpretation of cosmic ray experiments the Lodz group collaborates with many foreign institutes and laboratories: Forschungszentrum in Karlsruhe (Germany), College de France, Institute for Nuclear Studies of the Russian Academy of Sciences, Uppsala University (Sweden) and DESY (Germany). We have prepared a project of large air shower array for studies of cosmic rays up to 10 20 eV. Detectors would be placed on the roofs of high

  14. Muon reconstruction performance using cosmic rays in CMS

    CERN Document Server

    Calderon, Alicia

    2009-01-01

    After the incident with the Large Hadron Collider (LHC) in September 2008, the Compact Muon Solenoid (CMS) collaboration invested a considerable effort in further refining the understanding of the detector using cosmic muon data. About 300 million cosmic events were recorded with the CMS detector fully operational and the central solenoid switched on at the nominal value of 3.8 Tesla. The resulting data set provides ample statistics to study in great detail the detector performance and allows to analyze properties of cosmic rays. We present recent results on detector performance from the cosmic muon analysis activities and compare cosmic data to dedicated cosmic Monte Carlo samples. These results demonstrate the readiness of the CMS detector to do physics analysis with muons, and the study of cosmic muon properties provides interesting links to astrophysics.

  15. COSMIC-RAY TRANSPORT AND ANISOTROPIES

    Energy Technology Data Exchange (ETDEWEB)

    Biermann, Peter L. [MPI for Radioastronomy, Auf dem Huegel 69, D-53121 Bonn (Germany); Becker Tjus, Julia; Mandelartz, Matthias [Ruhr-Universitaet Bochum, Fakultaet fuer Physik and Astronomie, Theoretische Physik I, D-44780 Bochum (Germany); Seo, Eun-Suk [Department of Physics, University of Maryland, College Park, MD 20742 (United States)

    2013-05-10

    We show that the large-scale cosmic-ray anisotropy at {approx}10 TeV can be explained by a modified Compton-Getting effect in the magnetized flow field of old supernova remnants. Cosmic rays arrive isotropically to the flow field and are then carried along with the flow to produce a large-scale anisotropy in the arrival direction. This approach suggests an optimum energy scale for detecting the anisotropy. Two key assumptions are that propagation is based on turbulence following a Kolmogorov law and that cosmic-ray interactions are dominated by transport via cosmic-ray-excited magnetic irregularities through the stellar wind of an exploding star and its shock shell. A prediction is that the amplitude is smaller at lower energies due to incomplete sampling of the velocity field and also smaller at larger energies due to smearing.

  16. High energy physics in cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Lawrence W. [University of Michigan, Ann Arbor, Michigan (United States)

    2013-02-07

    In the first half-century of cosmic ray physics, the primary research focus was on elementary particles; the positron, pi-mesons, mu-mesons, and hyperons were discovered in cosmic rays. Much of this research was carried out at mountain elevations; Pic du Midi in the Pyrenees, Mt. Chacaltaya in Bolivia, and Mt. Evans/Echo Lake in Colorado, among other sites. In the 1960s, claims of the observation of free quarks, and satellite measurements of a significant rise in p-p cross sections, plus the delay in initiating accelerator construction programs for energies above 100 GeV, motivated the Michigan-Wisconsin group to undertake a serious cosmic ray program at Echo Lake. Subsequently, with the succession of higher energy accelerators and colliders at CERN and Fermilab, cosmic ray research has increasingly focused on cosmology and astrophysics, although some groups continue to study cosmic ray particle interactions in emulsion chambers.

  17. Cosmic rays, clouds and climate

    Energy Technology Data Exchange (ETDEWEB)

    Svensmark, Henrik [Danish Space Research Institute, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark)

    2007-07-01

    Changes in the intensity of galactic cosmic rays seems alter the Earth's cloudiness. A recent experiment has shown how electrons liberated by cosmic rays assist in making aerosols, the building blocks of cloud condensation nuclei, while anomalous climatic trends in Antarctica confirm the role of clouds in helping to drive climate change. Variations in the cosmic-ray influx due to solar magnetic activity account well for climatic fluctuations on decadal, centennial and millennial timescales. Over longer intervals, the changing galactic environment of the Solar System has had dramatic consequences, including Snowball Earth episodes.

  18. High-energy cosmic-ray acceleration

    CERN Document Server

    Bustamante, M; de Paula, W; Duarte Chavez, J A; Gago, A M; Hakobyan, H; Jez, P; Monroy Montañez, J A; Ortiz Velasquez, A; Padilla Cabal, F; Pino Rozas, M; Rodriguez Patarroyo, D J; Romeo, G L; Saldaña-Salazar , U J; Velasquez, M; von Steinkirch, M

    2010-01-01

    We briefly review the basics of ultrahigh-energy cosmic-ray acceleration. The Hillas criterion is introduced as a geometrical criterion that must be fulfilled by potential acceleration sites, and energy losses are taken into account in order to obtain a more realistic scenario. The different available acceleration mechanisms are presented, with special emphasis on Fermi shock acceleration and its prediction of a power-law cosmic-ray energy spectrum. We conclude that first-order Fermi acceleration, though not entirely satisfactory, is the most promising mechanism for explaining the ultra-high-energy cosmic-ray flux.

  19. Low- and high-frequency spectral behavior of cosmic-ray intensity for the period 1953–1996

    Directory of Open Access Journals (Sweden)

    H. Mavromichalaki

    2003-08-01

    Full Text Available A study of the cosmic-ray intensity power spectrum using the Climax Neutron Monitor data in the frequency range from 10-9 Hz to 10-7 Hz (which corresponds to periodicities from 11 years to a few months during the period 1953–1996, was carried out by means of the successive approximations method of analysis and was compared against the power spectrum and the maximum entropy methods. The contributions of the time evolution of several peaks to the global one were obtained. Except for the well-known 11-year and the 1-year variations, peaks at 7.7, 5.5, 2 and 1.7 years are found. Several peaks with periods less than 10 months have appeared in our analysis, while the occurrence of 5.1 months is obtained in all the examined solar cycles with a strong signature in cycle 21. Transitions of these quasi-periodicities are seen in power spectra plots. Some of them can be attributed to the modulation of the cosmic ray intensity by solar activity. Others are sporadic and have been previously attributed to the interplanetary magnetic field. The results obtained support once again the argument regarding the difference in the solar activity between odd and even solar cycles.Key words. Interplanetary physics (Cosmic rays, Interplanetary magnetic fields

  20. Chemical compositions of magnetic, stony spherules from deep-sea sediments determined by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Yamakoshi, Kazuo

    1984-01-01

    Chemical compositions of magnetic, stony spherules from deep sea sediments were determined by instrumental neutron activation analysis. High Ir, Au, Ni and Co contents indicate their extraterrestrial origin. The obtained compositions are considerably different from those of chondrites. It can be qualitatively interpreted, however, that cosmic matters having the compositions of chondrites are changed into magnetic, stony spherules by thermal degenerations during their atmospheric entry. (author)

  1. Fast neutron background characterization with the Radiological Multi-sensor Analysis Platform (RadMAP)

    Energy Technology Data Exchange (ETDEWEB)

    Davis, John R., E-mail: john.davis@usma.edu [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); The United States Military Academy, West Point, NY (United States); Brubaker, Erik [Sandia National Laboratories, Livermore, CA (United States); Vetter, Kai [Lawrence Berkeley National Laboratory, Berkeley, CA (United States)

    2017-06-21

    In an effort to characterize the fast neutron radiation background, 16 EJ-309 liquid scintillator cells were installed in the Radiological Multi-sensor Analysis Platform (RadMAP) to collect data in the San Francisco Bay Area. Each fast neutron event was associated with specific weather metrics (pressure, temperature, absolute humidity) and GPS coordinates. The expected exponential dependence of the fast neutron count rate on atmospheric pressure was demonstrated and event rates were subsequently adjusted given the measured pressure at the time of detection. Pressure adjusted data was also used to investigate the influence of other environmental conditions on the neutron background rate. Using National Oceanic and Atmospheric Administration (NOAA) coastal area lidar data, an algorithm was implemented to approximate sky-view factors (the total fraction of visible sky) for points along RadMAPs route. Three areas analyzed in San Francisco, Downtown Oakland, and Berkeley all demonstrated a suppression in the background rate of over 50% for the range of sky-view factors measured. This effect, which is due to the shielding of cosmic-ray produced neutrons by surrounding buildings, was comparable to the pressure influence which yielded a 32% suppression in the count rate over the range of pressures measured.

  2. Cosmic rays on earth

    International Nuclear Information System (INIS)

    Allkofer, O.C.; Grieder, P.K.F.

    1984-01-01

    A data collection is presented that covers cosmic rays on earth. Included are all relevant data on flux and intensity measurements, energy spectra, and related data of all primary and secondary components of the cosmic radiation at all levels in the atmosphere, at sea level and underground. In those cases where no useful experimental data have been available, theoretical predictions were substituted. (GSCH)

  3. High-energy cosmic rays

    CERN Document Server

    Cronin, James Watson

    1996-01-01

    Recently two cosmic rays with energy in excess of 2 1020 eV have been recorded. These are some 108 times more energetic than the protons produced by accelerators on earth. There is no credible understanding of the mechanism of acceleration by known a Because of the short mean free path in the cosmic background radiation they must come from nearby distances on a cosmological scale (< 50 Mpc). Their magnetic rigidity suggests that they should point to their source. Lectures will cover the present available data on the highest energy cosmic rays, their detection, possible acceleration mechanisms, their propagation in the galaxy and in extra galactic space and design of new detectors where simulations of air show ers play an important role.

  4. Empirical model for the Earth's cosmic ray shadow at 400 KM: prohibited cosmic ray access

    International Nuclear Information System (INIS)

    Humble, J.E.; Smart, D.F.; Shea, M.A.

    1985-01-01

    The possibility of constructing a unit sphere of access that describes the cosmic radiation allowed to an Earth-orbiting spacecraft is discussed. It is found that it is possible to model the occluded portion of the cosmic ray sphere of access as a circular projection with a diameter bounded by the satellite-Earth horizon. Maintaining tangency at the eastern edge of the spacecraft-Earth horizon, this optically occluded area is projected downward by an angle beta which is a function of the magnetic field inclination and cosmic ray arrival direction. This projected plane, corresponding to the forbidden area of cosmic ray access, is bounded by the spacecraft-Earth horizon in easterly directions, and is rotated around the vertical axis by an angle alpha from the eastern direction, where the angle alpha is a function of the offset dipole latitude of the spacecraft

  5. Cosmic ray physics with ACORDE at LHC

    Energy Technology Data Exchange (ETDEWEB)

    Pagliarone, C [Universita degli Studi di Cassino and INFN Pisa, Largo B. Pontecorvo, 3 - Pisa (Italy); Fernandez-Tellez, A [Benemerita Universidad Autonoma de Puebla (BUAP), Puebla (Mexico)], E-mail: pagliarone@fnal.gov

    2008-05-15

    The use of large underground high-energy physics experiments, for comic ray studies, have been used, in the past, at CERN, in order to measure, precisely, the inclusive cosmic ray flux in the energy range from 2{center_dot}10{sup 10} to 2{center_dot} 10{sup 12} eV. ACORDE, ALICE Cosmic Rays DEtector, will act as Level 0 cosmic ray trigger and, together with other ALICE apparatus, will provide precise information on cosmic rays with primary energies around 10{sup 15} to 10{sup 17} eV. This paper reviews the main detector features, the present status, commissioning and integration with other apparatus. Finally, we discuss the ACORDE-ALICE cosmic ray physics program.

  6. On the use of the South-American neutron monitors

    Energy Technology Data Exchange (ETDEWEB)

    Cordaro, E. G. [Santiago de Chile Univ., Santiago de Chile (Chile). Facultad de Ciencias Fisicas y Matematicas, Dept. de Fisica, Lewis Research Center; Storini, M. [Consiglio Nazionale delle Ricerche, Istituto di Fisica dello Spazio Interplanetario, Rome (Italy); Rome Univ. Tre, Rome (Italy). Dipt. di Fisica, Raggi Cosmici

    2001-10-01

    Cosmic ray scientific community deserves special attention to the Chacaltaya site for its over 5 km altitude. In this site, a neutron monitor of the IGY type operated from 1960 to 1969, and the one of the NM-64 type since 1966 (16.31{sup 0}S, 291.85{sup 0}E, height: about 5200 m a.s.l.). It was discussed the relevance of such kind of detector when it is integrated with the other South-American neutron monitors: a) LARC (62.20{sup 0}S, 301.04{sup 0}E, height: 40 m a.s.l., King George Island, Antarctica; operating since 1991); b) Los Cerrillos (33.45{sup 0}S, 289.40{sup 0}E, height: 570 m a. s. l., Santiago, Chile; to be installed in the near future); c) Huancayo (12.03{sup 0}S, 284.67{sup 0}E, height: 3400 m a.s.l., Huancayo, Peru; hoping to recover its acquired data).

  7. Cosmic ray investigations

    International Nuclear Information System (INIS)

    Zatsepin, Georgii T; Roganova, Tat'yana M

    2009-01-01

    The history of cosmic ray research at the Lebedev Institute beginning with the first work and continuing up to now is reviewed. The milestones and main avenues of research are outlined. Pioneering studies on the nuclear cascade process in extensive air showers, investigations of the Vavilov-Cherenkov radiation, and some work on the origin of cosmic rays are discussed. Recent data on ultrahigh-energy particle detection at the Pierre Auger Observatory and the High Resolution Fly's Eye (HiRes) experiments are presented. (conferences and symposia)

  8. Cosmic Sum Rules

    DEFF Research Database (Denmark)

    T. Frandsen, Mads; Masina, Isabella; Sannino, Francesco

    2011-01-01

    We introduce new sum rules allowing to determine universal properties of the unknown component of the cosmic rays and show how it can be used to predict the positron fraction at energies not yet explored by current experiments and to constrain specific models.......We introduce new sum rules allowing to determine universal properties of the unknown component of the cosmic rays and show how it can be used to predict the positron fraction at energies not yet explored by current experiments and to constrain specific models....

  9. Heterotic cosmic strings

    International Nuclear Information System (INIS)

    Becker, Katrin; Becker, Melanie; Krause, Axel

    2006-01-01

    We show that all three conditions for the cosmological relevance of heterotic cosmic strings, the right tension, stability and a production mechanism at the end of inflation, can be met in the strongly coupled M-theory regime. Whereas cosmic strings generated from weakly coupled heterotic strings have the well-known problems posed by Witten in 1985, we show that strings arising from M5-branes wrapped around 4-cycles (divisors) of a Calabi-Yau in heterotic M-theory compactifications solve these problems in an elegant fashion

  10. Effects of geochemical composition on neutron die-away measurements: Implications for Mars Science Laboratory's Dynamic Albedo of Neutrons experiment

    Energy Technology Data Exchange (ETDEWEB)

    Hardgrove, C., E-mail: craig.hardgrove@stonybrook.edu [Department of Earth and Planetary Science, University of Tennessee, Knoxville, TN (United States); Moersch, J.; Drake, D. [Techsource, Santa Fe, NM (United States)

    2011-12-11

    The Dynamic Albedo of Neutrons (DAN) experiment, part of the scientific payload of the Mars Science Laboratory (MSL) rover mission, will have the ability to assess both the abundance and the burial depth of subsurface hydrogen as the rover traverses the Martian surface. DAN will employ a method of measuring neutron fluxes called 'neutron die-away' that has not been used in previous planetary exploration missions. This method requires the use of a pulsed neutron generator that supplements neutrons produced via spallation in the subsurface by the cosmic ray background. It is well established in neutron remote sensing that low-energy (thermal) neutrons are sensitive not only to hydrogen content, but also to the macroscopic absorption cross-section of near-surface materials. To better understand the results that will be forthcoming from DAN, we model the effects of varying abundances of high absorption cross-section elements that are likely to be found on the Martian surface (Cl, Fe) on neutron die-away measurements made from a rover platform. Previously, the Mars Exploration Rovers (MER) Spirit and Opportunity found that elevated abundances of these two elements are commonly associated with locales that have experienced some form of aqueous activity in the past, even though hydrogen-rich materials are not necessarily still present. By modeling a suite of H and Cl compositions, we demonstrate that (for abundance ranges reasonable for Mars) both the elements will significantly affect DAN thermal neutron count rates. Additionally, we show that the timing of thermal neutron arrivals at the detector can be used together with the thermal neutron count rates to independently determine the abundances of hydrogen and high neutron absorption cross-section elements (the most important being Cl). Epithermal neutron die-away curves may also be used to separate these two components. We model neutron scattering in actual Martian compositions that were determined by the MER

  11. Large angle cosmic microwave background fluctuations from cosmic strings with a cosmological constant

    International Nuclear Information System (INIS)

    Landriau, M.; Shellard, E.P.S.

    2004-01-01

    In this paper, we present results for large-angle cosmic microwave background anisotropies generated from high resolution simulations of cosmic string networks in a range of flat Friedmann-Robertson-Walker universes with a cosmological constant. Using an ensemble of all-sky maps, we compare with the Cosmic Background Explorer data to infer a normalization (or upper bound) on the string linear energy density μ. For a flat matter-dominated model (Ω M =1) we find Gμ/c 2 ≅0.7x10 -6 , which is lower than previous constraints probably because of the more accurate inclusion of string small-scale structure. For a cosmological constant within an observationally acceptable range, we find a relatively weak dependence with Gμ/c 2 less than 10% higher

  12. Ultra Low Level Environmental Neutron Measurements Using Superheated Droplet Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, A.C. [Centro de Ciencias e Tecnologias Nucleares, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Estrada Nacional 10 - km 139.7, 2695-066 Bobadela LRS (Portugal); Centro de Fisica Nuclear, Universidade de Lisboa. Av. Prof. Gama Pinto, 2, 1649- 003 Lisboa (Portugal); Felizardo, M.; Girard, T.A.; Kling, A.; Ramos, A.R. [Centro de Fisica Nuclear, Universidade de Lisboa. Av. Prof. Gama Pinto, 2, 1649- 003 Lisboa (Portugal); Marques, J.G.; Prudencio, M.I.; Marques, R.; Carvalho, F.P. [Centro de Ciencias e Tecnologias Nucleares, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Estrada Nacional 10 - km 139.7, 2695-066 Bobadela LRS (Portugal)

    2015-07-01

    Through the application of superheated droplet detectors (SDDs), the SIMPLE project for the direct search for dark matter (DM) reached the most restrictive limits on the spin-dependent sector to date. The experiment is based on the detection of recoils following WIMP-nuclei interaction, mimicking those from neutron scattering. The thermodynamic operation conditions yield the SDDs intrinsically insensitive to radiations with linear energy transfer below ∼150 keVμm{sup -1} such as photons, electrons, muons and neutrons with energies below ∼40 keV. Underground facilities are increasingly employed for measurements in a low-level radiation background (DM search, gamma-spectroscopy, intrinsic soft-error rate measurements, etc.), where the rock overburden shields against cosmic radiation. In this environment the SDDs are sensitive only to α-particles and neutrons naturally emitted from the surrounding materials. Recently developed signal analysis techniques allow discrimination between neutron and α-induced signals. SDDs are therefore a promising instrument for low-level neutron and α measurements, namely environmental neutron measurements and α-contamination assays. In this work neutron measurements performed in the challenging conditions of the latest SIMPLE experiment (1500 mwe depth with 50-75 cm water shield) are reported. The results are compared with those obtained by detailed Monte Carlo simulations of the neutron background induced by {sup 238}U and {sup 232}Th traces in the facility, shielding and detector materials. Calculations of the neutron energy distribution yield the following neutron fluence rates (in 10{sup -8} cm{sup -2}s{sup -1}): thermal (<0.5 eV): 2.5; epithermal (0.5 eV-100 keV): 2.2; fast (>1 MeV): 3.9. Signal rates were derived using standard cross sections and codes routinely employed in reactor dosimetry. The measured and calculated neutron count rates per unit of active mass were 0.15 ct/kgd and 0.33 ct/kg-d respectively. As the major

  13. Cosmic radiation exposure to airline flight passenger

    International Nuclear Information System (INIS)

    Momose, Mitsuhiro

    2000-01-01

    At the high altitudes, airline flight passengers can be exposed to some levels of cosmic radiation. The purpose of this study was to quantify this radiation exposure. Cosmic radiation was measured during 5 flights using a personal dosimeter (PDM-102, Aloka). Cosmic radiation equivalent dose rates ranged from 0.7 to 1.43 microsieverts per hour, the average rate was 1.08. For the passenger who travels only occasionally, the cosmic radiation levels are well below occupational limits, and the risks are extremely small. (author)

  14. Cosmic radiation exposure to airline flight passenger

    Energy Technology Data Exchange (ETDEWEB)

    Momose, Mitsuhiro [Shinshu Univ., Matsumoto, Nagano (Japan). School of Medicine

    2000-08-01

    At the high altitudes, airline flight passengers can be exposed to some levels of cosmic radiation. The purpose of this study was to quantify this radiation exposure. Cosmic radiation was measured during 5 flights using a personal dosimeter (PDM-102, Aloka). Cosmic radiation equivalent dose rates ranged from 0.7 to 1.43 microsieverts per hour, the average rate was 1.08. For the passenger who travels only occasionally, the cosmic radiation levels are well below occupational limits, and the risks are extremely small. (author)

  15. Proceedings of the 21. European Cosmic Ray Symposium

    International Nuclear Information System (INIS)

    Kiraly, P.; Kudela, K.; Wolfendale, A. W.

    2008-09-01

    Scientific symposium deals with problems of cosmic ray. The Symposium included the following sessions: (1): Relationship of cosmic rays to the environment; (2) Energetic particles and the magnetosphere of the Earth; (3) Energetic particles in the heliosphere; (4) Solar-terrestrial effects on different time scales; (5) Cosmic rays below the knee; (6) Cosmic rays above the knee (7) High energy interactions; (8) GeV and TeV gamma ray astronomy; (9) European projects related to cosmic rays; Future perspectives. Proceedings contains 122 papers dealing with the scope of INIS.

  16. Study of the Production of Radioactive Isotopes through Cosmic Muon Spallation in KamLAND

    Energy Technology Data Exchange (ETDEWEB)

    KamLAND Collaboration; Abe, S.; Enomoto, S.; Furuno, K.; Gando, Y.; Ikeda, H.; Inoue, K.; Kibe, Y.; Kishimoto, Y.; Koga, M.; Minekawa, Y.; Mitsui, T.; Nakajima, K.; Nakajima, K.; Nakamura, K.; Nakamura, M.; Shimizu, I.; Shimizu, Y.; Shirai, J.; Suekane, F.; Suzuki, A.; Takemoto, Y.; Tamae, K.; Terashima, A.; Watanabe, H.; Yonezawa, E.; Yoshida, S.; Kozlov, A.; Murayama, H.; Busenitz, J.; Classen, T.; Grant, C.; Keefer, G.; Leonard, D. S.; McKee, D.; Piepke, A.; Banks, T. I.; Bloxham, T.; Detwiler, J. A.; Freedman, S. J.; Fujikawa, B. K.; Gray, F.; Guardincerri, E.; Hsu, L.; Ichimura, K.; Kadel, R.; Lendvai, C.; Luk, K.-B.; O' Donnell, T.; Steiner, H. M.; Winslow, L. A.; Dwyer, D. A.; Jillings, C.; Mauger, C.; McKeown, R. D.; Vogel, P.; Zhang, C.; Berger, B. E.; Lane, C. E.; Maricic, J.; Miletic, T.; Batygov, M.; Learned, J. G.; Matsuno, S.; Pakvasa, S.; Foster, J.; Horton-Smith, G. A.; Tang, A.; Dazeley, S.; Downum, K. E.; Gratta, G.; Tolich, K.; Bugg, W.; Efremenko, Y.; Kamyshkov, Y.; Perevozchikov, O.; Karwowski, H. J.; Markoff, D. M.; Tornow, W.; Heeger, K. M.; Piquemal, F.; Ricol, J.-S.; Decowski, M. P.

    2009-06-30

    Radioactive isotopes produced through cosmic muon spallation are a background for rare event detection in {nu} detectors, double-beta-decay experiments, and dark-matter searches. Understanding the nature of cosmogenic backgrounds is particularly important for future experiments aiming to determine the pep and CNO solar neutrino fluxes, for which the background is dominated by the spallation production of {sup 11}C. Data from the Kamioka Liquid scintillator Anti-Neutrino Detector (KamLAND) provides valuable information for better understanding these backgrounds, especially in liquid scintillator, and for checking estimates from current simulations based upon MUSIC, FLUKA, and Geant4. Using the time correlation between detected muons and neutron captures, the neutron production yield in the KamLAND liquid scintillator is measured to be (2.8 {+-} 0.3) x 10{sup -4} n/({mu} {center_dot} (g/cm{sup 2})). For other isotopes, the production yield is determined from the observed time correlation related to known isotope lifetimes. We find some yields are inconsistent with extrapolations based on an accelerator muon beam experiment.

  17. A Shifting Shield Provides Protection Against Cosmic Rays

    Science.gov (United States)

    Kohler, Susanna

    2017-12-01

    The Sun plays an important role in protecting us from cosmic rays, energetic particles that pelt us from outside our solar system. But can we predict when and how it will provide the most protection, and use this to minimize the damage to both pilotedand roboticspace missions?The Challenge of Cosmic RaysSpacecraft outside of Earths atmosphere and magnetic field are at risk of damage from cosmic rays. [ESA]Galactic cosmic rays are high-energy, charged particles that originate from astrophysical processes like supernovae or even distant active galactic nuclei outside of our solar system.One reason to care about the cosmic rays arriving near Earth is because these particles can provide a significant challenge for space missions traveling above Earths protective atmosphere and magnetic field. Since impacts from cosmic rays can damage human DNA, this risk poses a major barrier to plans for interplanetary travel by crewed spacecraft. And roboticmissions arent safe either: cosmic rays can flip bits, wreaking havoc on spacecraft electronics as well.The magnetic field carried by the solar wind provides a protective shield, deflecting galactic cosmic rays from our solar system. [Walt Feimer/NASA GSFCs Conceptual Image Lab]Shielded by the SunConveniently, we do have some broader protection against galactic cosmic rays: a built-in shield provided by the Sun. The interplanetary magnetic field, which is embedded in the solar wind, deflects low-energy cosmic rays from us at the outer reaches of our solar system, decreasing the flux of these cosmic rays that reach us at Earth.This shield, however, isnt stationary; instead, it moves and changes as the strength and direction of the solar wind moves and changes. This results in a much lower cosmic-ray flux at Earth when solar activity is high i.e., at the peak of the 11-year solar cycle than when solar activity is low. This visible change in local cosmic-ray flux with solar activity is known as solar modulation of the cosmic ray flux

  18. Testing the weak gravity-cosmic censorship connection

    Science.gov (United States)

    Crisford, Toby; Horowitz, Gary T.; Santos, Jorge E.

    2018-03-01

    A surprising connection between the weak gravity conjecture and cosmic censorship has recently been proposed. In particular, it was argued that a promising class of counterexamples to cosmic censorship in four-dimensional Einstein-Maxwell-Λ theory would be removed if charged particles (with sufficient charge) were present. We test this idea and find that indeed if the weak gravity conjecture is true, one cannot violate cosmic censorship this way. Remarkably, the minimum value of charge required to preserve cosmic censorship appears to agree precisely with that proposed by the weak gravity conjecture.

  19. Modulation of cosmic rays on geomagnetically most quiet days

    Science.gov (United States)

    Agarwal Mishra, Rekha; Agarwal Mishra, Rekha; Mishra, Rajesh Kumar

    The aim of this work is to study the first three harmonics of cosmic ray intensity on geomagnetically quiet days over the period 1980-1990 for Deep River and Tokyo neutron monitoring stations. The amplitude of first harmonic remains high for Deep River having low cutoff rigidity as compared to Tokyo neutron monitor having high cutoff rigidity on quiet days.. The diurnal time of maximum significantly shifts to an earlier time as compared to the corotational/1800 Hr direction at both the stations having different cutoff rigidities. The time of maximum for first harmonic significantly shifts towards later hours and for second harmonic it shifts towards earlier hours at low cutoff rigidity station i.e. Deep River as compared to the high cut off rigidity station i.e. Tokyo on quiet days. The amplitude of semi/tri-diurnal anisotropy have a good positive correlation with solar wind velocity, while the others (i.e. amplitude and phase) have no significant correlation on quiet days for Deep River and Tokyo having different cutoff rigidity during 1980-1990. The solar wind velocity significantly remains in the range 350 to 425 km/s i.e. being nearly average on quiet days. The amplitude and direction of the anisotropy on quiet days are weakly dependent on high-speed solar wind streams for two neutron monitoring station of low and high cutoff rigidity threshold. The semi-diurnal amplitude has a significant anti-correlation, whereas the amplitude of third harmonic and direction of first harmonic has a good anti-correlation with IMF Bz and the product V x Bz on quiet days at Deep River station. However, the direction of first harmonic has a significant anti-correlation and the direction of second harmonic has a good anti-correlation with IMF Bz and the product V x Bz on quiet days at Tokyo station.

  20. Cosmic rays at ultra high energies (Neutrinos.)

    International Nuclear Information System (INIS)

    Ahlers, M.; Ringwald, A.; Tu, H.

    2005-06-01

    Resonant photopion production with the cosmic microwave background predicts a suppression of extragalactic protons above the famous Greisen-Zatsepin-Kuzmin cutoff at about E GZK ∼ 5 x 10 10 GeV. Current cosmic ray data measured by the AGASA and HiRes Collaborations do not unambiguously confirm the GZK cutoff and leave a window for speculations about the origin and chemical composition of the highest energy cosmic rays. In this work we analyze the possibility of strongly interacting neutrino primaries and derive model-independent quantitative requirements on the neutrino-nucleon inelastic cross section for a viable explanation of the cosmic ray data. Search results on weakly interacting cosmic particles from the AGASA and RICE experiments are taken into account simultaneously. Using a flexible parameterization of the inelastic neutrino-nucleon cross section we find that a combined fit of the data does not favor the Standard Model neutrino-nucleon inelastic cross section, but requires, at 90% confidence level, a steep increase within one energy decade around E GZK by four orders of magnitude. We illustrate such an enhancement within some extensions of the Standard Model. The impact of new cosmic ray data or cosmic neutrino search results on this scenario, notably from the Pierre Auger Observatory soon, can be immediately evaluated within our approach. (orig.)

  1. Relativistic transport theory for cosmic-rays

    International Nuclear Information System (INIS)

    Webb, G.M.

    1985-01-01

    Various aspects of the transport of cosmic-rays in a relativistically moving magnetized plasma supporting a spectrum of hydromagnetic waves that scatter the cosmic-rays are presented. A local Lorentz frame moving with the waves or turbulence scattering the cosmic-rays is used to specify the individual particle momentum. The comoving frame is in general a noninertial frame in which the observer's volume element is expanding and shearing, geometric energy change terms appear in the cosmic-ray transport equation which consist of the relativistic generalization of the adiabatic deceleration term and a further term involving the acceleration vector of the scatterers. A relativistic version of the pitch angle evolution equation, including the effects of adiabatic focussing, pitch angle scattering, and energy changes is presented

  2. Cosmic Rays in Intermittent Magnetic Fields

    International Nuclear Information System (INIS)

    Shukurov, Anvar; Seta, Amit; Bushby, Paul J.; Wood, Toby S.; Snodin, Andrew P.

    2017-01-01

    The propagation of cosmic rays in turbulent magnetic fields is a diffusive process driven by the scattering of the charged particles by random magnetic fluctuations. Such fields are usually highly intermittent, consisting of intense magnetic filaments and ribbons surrounded by weaker, unstructured fluctuations. Studies of cosmic-ray propagation have largely overlooked intermittency, instead adopting Gaussian random magnetic fields. Using test particle simulations, we calculate cosmic-ray diffusivity in intermittent, dynamo-generated magnetic fields. The results are compared with those obtained from non-intermittent magnetic fields having identical power spectra. The presence of magnetic intermittency significantly enhances cosmic-ray diffusion over a wide range of particle energies. We demonstrate that the results can be interpreted in terms of a correlated random walk.

  3. Cosmic Rays in Intermittent Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    Shukurov, Anvar; Seta, Amit; Bushby, Paul J.; Wood, Toby S. [School of Mathematics and Statistics, Newcastle University, Newcastle Upon Tyne NE1 7RU (United Kingdom); Snodin, Andrew P., E-mail: a.seta1@ncl.ac.uk, E-mail: amitseta90@gmail.com [Department of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok 10800 (Thailand)

    2017-04-10

    The propagation of cosmic rays in turbulent magnetic fields is a diffusive process driven by the scattering of the charged particles by random magnetic fluctuations. Such fields are usually highly intermittent, consisting of intense magnetic filaments and ribbons surrounded by weaker, unstructured fluctuations. Studies of cosmic-ray propagation have largely overlooked intermittency, instead adopting Gaussian random magnetic fields. Using test particle simulations, we calculate cosmic-ray diffusivity in intermittent, dynamo-generated magnetic fields. The results are compared with those obtained from non-intermittent magnetic fields having identical power spectra. The presence of magnetic intermittency significantly enhances cosmic-ray diffusion over a wide range of particle energies. We demonstrate that the results can be interpreted in terms of a correlated random walk.

  4. Semianalytic calculation of cosmic microwave background anisotropies from wiggly and superconducting cosmic strings

    Science.gov (United States)

    Rybak, I. Yu.; Avgoustidis, A.; Martins, C. J. A. P.

    2017-11-01

    We study how the presence of world-sheet currents affects the evolution of cosmic string networks, and their impact on predictions for the cosmic microwave background (CMB) anisotropies generated by these networks. We provide a general description of string networks with currents and explicitly investigate in detail two physically motivated examples: wiggly and superconducting cosmic string networks. By using a modified version of the CMBact code, we show quantitatively how the relevant network parameters in both of these cases influence the predicted CMB signal. Our analysis suggests that previous studies have overestimated the amplitude of the anisotropies for wiggly strings. For superconducting strings the amplitude of the anisotropies depends on parameters which presently are not well known—but which can be measured in future high-resolution numerical simulations.

  5. Cosmic-ray anisotropy studies with IceCube

    Science.gov (United States)

    McNally, Frank

    2014-03-01

    The IceCube neutrino observatory detects tens of billions of energetic muons per year produced by cosmic-ray interactions with the atmosphere. The size of this sample has allowed IceCube to observe a significant anisotropy in arrival direction for cosmic rays with median energies between 20 and 400 TeV. This anisotropy is characterized by a large scale structure of per-mille amplitude accompanied by structures with smaller amplitudes and with typical angular sizes between 10° and 20°. IceTop, the surface component of IceCube, has observed a similar anisotropy in the arrival direction distribution of cosmic rays, extending the study to PeV energies. The better energy resolution of IceTop allows for additional studies of the anisotropy, for example a comparison of the energy spectrum in regions of a cosmic-ray excess or deficit to the rest of the sky. We present an update on the cosmic-ray anisotropy observed with IceCube and IceTop and the results of first studies of the energy spectrum at locations of cosmic-ray excess or deficit.

  6. Resonance parameters for measured keV neutron capture cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Musgrove, A.R. de L

    1969-05-01

    All available neutron capture cross sections in the keV region ({approx} to 100 keV) have been fitted with resonance parameters. Capture cross sections for nuclides with reasonably well known average s-wave parameters, but no measured cross section, have been calculated and tabulated using p-and d- wave strength functions interpolated between fitted values. Several of these nuclides are of interest in the theory of slow nucleosynthesis of heavy elements in stars, and the product of cosmic abundance (due to the s-process) and capture cross section at 30 keV has been plotted versus mass number. (author)

  7. Geomagnetic, ionospheric and cosmic ray variations around the passages of different magnetic clouds

    International Nuclear Information System (INIS)

    Maercz, F.

    1992-01-01

    Thirty-four interplanetary magnetic clouds have been divided into two groups on the basis of Wilson's (J.geophys. Res. 95, 215, 1990) classification: NS clouds (whose B z near cloud onset at Earth is directed northward, and soon after B z is turning southward) and SN clouds (those with an opposite behaviour with respect to B z ). Using the days of cloud onsets as key days, geomagnetic, ionospheric and cosmic ray data have been analysed by the superposed epoch analysis method for passages of both NS and SN clouds. On the basis of the daily ΣK p values, geomagnetic activity is found to suddenly increase in the vicinity of both types of cloud passages. Afterwards, the variation shown by the geomagnetic indices is found to differ for NS clouds in comparison with SN clouds. Namely, on average the recovery to a normal activity level is much slower for NS clouds. Similarly, the enhancements in the ionospheric absorption of radio waves (the so-called ''after-effects'') are found to show different signatures according to cloud type, an interpretation also valid for variations in cosmic ray intensity. The latter results are based on analyses of neutron monitor counts observed at two stations (Apatity: 67 N; and Moscow: 55 o N). (author)

  8. USING COSMIC MICROWAVE BACKGROUND LENSING TO CONSTRAIN THE MULTIPLICATIVE BIAS OF COSMIC SHEAR

    International Nuclear Information System (INIS)

    Vallinotto, Alberto

    2012-01-01

    Weak gravitational lensing is one of the key probes of cosmology. Cosmic shear surveys aimed at measuring the distribution of matter in the universe are currently being carried out (Pan-STARRS) or planned for the coming decade (DES, LSST, EUCLID, WFIRST). Crucial to the success of these surveys is the control of systematics. In this work, a new method to constrain one such family of systematics, known as multiplicative bias, is proposed. This method exploits the cross-correlation between weak-lensing measurements from galaxy surveys and the ones obtained from high-resolution cosmic microwave background experiments. This cross-correlation is shown to have the power to break the degeneracy between the normalization of the matter power spectrum and the multiplicative bias of cosmic shear and to be able to constrain the latter to a few percent.

  9. A two-zone cosmic ray propagation model and its implication of the surviving fraction of radioactive cosmic ray isotopes

    International Nuclear Information System (INIS)

    Simon, M.; Scherzer, R.; Enge, W.

    1977-01-01

    In cosmic ray propagation calculations one can usually assume a homogeneous distribution of interstellar matter. The crucial astrophysical parameters in these models are: The path length distribution, the age of the cosmic ray particles and the interstellar matter density. These values are interrelated. The surviving fraction of radioactive cosmic ray isotopes is often used to determine a mean matter density of that region, where the cosmic ray particles may mainly reside. Using a Monte Carlo Propagation Program we calculated the change in the surviving fraction quantitatively assuming a region around the sources with higher matter density. (author)

  10. Radiation Backgrounds at Cosmic Dawn: X-Rays from Compact Binaries

    Science.gov (United States)

    Madau, Piero; Fragos, Tassos

    2017-05-01

    We compute the expected X-ray diffuse background and radiative feedback on the intergalactic medium (IGM) from X-ray binaries prior to and during the epoch of reionization. The cosmic evolution of compact binaries is followed using a population synthesis technique that treats separately neutron stars and black hole binaries in different spectral states and is calibrated to reproduce the observed X-ray properties of galaxies at z ≲ 4. Together with an updated empirical determination of the cosmic history of star formation, recent modeling of the stellar mass-metallicity relation, and a scheme for absorption by the IGM that accounts for the presence of ionized H II bubbles during the epoch of reionization, our detailed calculations provide refined predictions of the X-ray volume emissivity and filtered radiation background from “normal” galaxies at z ≳ 6. Radiative transfer effects modulate the background spectrum, which shows a characteristic peak between 1 and 2 keV. Because of the energy dependence of photoabsorption, soft X-ray photons are produced by local sources, while more energetic radiation arrives unattenuated from larger cosmological volumes. While the filtering of X-ray radiation through the IGM slightly increases the mean excess energy per photoionization, it also weakens the radiation intensity below 1 keV, lowering the mean photoionization and heating rates. Numerical integration of the rate and energy equations shows that the contribution of X-ray binaries to the ionization of the bulk IGM is negligible, with the electron fraction never exceeding 1%. Direct He I photoionizations are the main source of IGM heating, and the temperature of the largely neutral medium in between H II cavities increases above the temperature of the cosmic microwave background (CMB) only at z ≲ 10, when the volume filling factor of H II bubbles is already ≳0.1. Therefore, in this scenario, it is only at relatively late epochs that neutral intergalactic hydrogen

  11. Radiation Backgrounds at Cosmic Dawn: X-Rays from Compact Binaries

    Energy Technology Data Exchange (ETDEWEB)

    Madau, Piero [Department of Astronomy and Astrophysics, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States); Fragos, Tassos [Geneva Observatory, University of Geneva, Chemin des Maillettes 51, 1290 Sauverny (Switzerland)

    2017-05-01

    We compute the expected X-ray diffuse background and radiative feedback on the intergalactic medium (IGM) from X-ray binaries prior to and during the epoch of reionization. The cosmic evolution of compact binaries is followed using a population synthesis technique that treats separately neutron stars and black hole binaries in different spectral states and is calibrated to reproduce the observed X-ray properties of galaxies at z ≲ 4. Together with an updated empirical determination of the cosmic history of star formation, recent modeling of the stellar mass–metallicity relation, and a scheme for absorption by the IGM that accounts for the presence of ionized H ii bubbles during the epoch of reionization, our detailed calculations provide refined predictions of the X-ray volume emissivity and filtered radiation background from “normal” galaxies at z ≳ 6. Radiative transfer effects modulate the background spectrum, which shows a characteristic peak between 1 and 2 keV. Because of the energy dependence of photoabsorption, soft X-ray photons are produced by local sources, while more energetic radiation arrives unattenuated from larger cosmological volumes. While the filtering of X-ray radiation through the IGM slightly increases the mean excess energy per photoionization, it also weakens the radiation intensity below 1 keV, lowering the mean photoionization and heating rates. Numerical integration of the rate and energy equations shows that the contribution of X-ray binaries to the ionization of the bulk IGM is negligible, with the electron fraction never exceeding 1%. Direct He i photoionizations are the main source of IGM heating, and the temperature of the largely neutral medium in between H ii cavities increases above the temperature of the cosmic microwave background (CMB) only at z ≲ 10, when the volume filling factor of H ii bubbles is already ≳0.1. Therefore, in this scenario, it is only at relatively late epochs that neutral intergalactic

  12. Cosmic censorship and test particles

    International Nuclear Information System (INIS)

    Needham, T.

    1980-01-01

    In this paper one unambiguous prediction of cosmic censorship is put to the test, namely that it should be impossible to destroy a black hole (i.e. eliminate its horizon) by injecting test particles into it. Several authors have treated this problem and have not found their conclusions in contradiction with the prediction. Here we prove that if a general charged spinning particle (with parameters very much smaller than the respective hole parameters) is injected in an arbitrary manner into an extreme Kerr-Newman black hole, then cosmic censorship is upheld. As a by-product of the analysis a natural proof is given of the Christodoulou-Ruffini conditions on the injection of a spinless particle which yield a reversible black-hole transformation. Finally we consider the injection of particles with parameters that are not small compared with those of the hole, for which cosmic censorship is apparently violated. By assuming the validity of cosmic censorship we are led to a few conjectures concerning the extent of the particle's interaction with the hole while approaching it

  13. Cosmic Strings and Their Induced Non-Gaussianities in the Cosmic Microwave Background

    Directory of Open Access Journals (Sweden)

    Christophe Ringeval

    2010-01-01

    small fraction of the CMB angular power spectrum, cosmic strings could actually be the main source of its non-Gaussianities. In this paper, after having reviewed the basic cosmological properties of a string network, we present the signatures Nambu-Goto cosmic strings would induce in various observables ranging from the one-point function of the temperature anisotropies to the bispectrum and trispectrum. It is shown that string imprints are significantly different than those expected from the primordial type of non-Gaussianity and could therefore be easily distinguished.

  14. Tracing the cosmic web

    Science.gov (United States)

    Libeskind, Noam I.; van de Weygaert, Rien; Cautun, Marius; Falck, Bridget; Tempel, Elmo; Abel, Tom; Alpaslan, Mehmet; Aragón-Calvo, Miguel A.; Forero-Romero, Jaime E.; Gonzalez, Roberto; Gottlöber, Stefan; Hahn, Oliver; Hellwing, Wojciech A.; Hoffman, Yehuda; Jones, Bernard J. T.; Kitaura, Francisco; Knebe, Alexander; Manti, Serena; Neyrinck, Mark; Nuza, Sebastián E.; Padilla, Nelson; Platen, Erwin; Ramachandra, Nesar; Robotham, Aaron; Saar, Enn; Shandarin, Sergei; Steinmetz, Matthias; Stoica, Radu S.; Sousbie, Thierry; Yepes, Gustavo

    2018-01-01

    The cosmic web is one of the most striking features of the distribution of galaxies and dark matter on the largest scales in the Universe. It is composed of dense regions packed full of galaxies, long filamentary bridges, flattened sheets and vast low-density voids. The study of the cosmic web has focused primarily on the identification of such features, and on understanding the environmental effects on galaxy formation and halo assembly. As such, a variety of different methods have been devised to classify the cosmic web - depending on the data at hand, be it numerical simulations, large sky surveys or other. In this paper, we bring 12 of these methods together and apply them to the same data set in order to understand how they compare. In general, these cosmic-web classifiers have been designed with different cosmological goals in mind, and to study different questions. Therefore, one would not a priori expect agreement between different techniques; however, many of these methods do converge on the identification of specific features. In this paper, we study the agreements and disparities of the different methods. For example, each method finds that knots inhabit higher density regions than filaments, etc. and that voids have the lowest densities. For a given web environment, we find a substantial overlap in the density range assigned by each web classification scheme. We also compare classifications on a halo-by-halo basis; for example, we find that 9 of 12 methods classify around a third of group-mass haloes (i.e. Mhalo ∼ 1013.5 h-1 M⊙) as being in filaments. Lastly, so that any future cosmic-web classification scheme can be compared to the 12 methods used here, we have made all the data used in this paper public.

  15. Angular correlation of cosmic neutrinos with ultrahigh-energy cosmic rays and implications for their sources

    Energy Technology Data Exchange (ETDEWEB)

    Moharana, Reetanjali; Razzaque, Soebur, E-mail: reetanjalim@uj.ac.za, E-mail: srazzaque@uj.ac.za [Department of Physics, University of Johannesburg, P.O. Box 524, Auckland Park 2006 (South Africa)

    2015-08-01

    Cosmic neutrino events detected by the IceCube Neutrino Observatory with energy 0∼> 3 TeV have poor angular resolutions to reveal their origin. Ultrahigh-energy cosmic rays (UHECRs), with better angular resolutions at 0>6 EeV energies, can be used to check if the same astrophysical sources are responsible for producing both neutrinos and UHECRs. We test this hypothesis, with statistical methods which emphasize invariant quantities, by using data from the Pierre Auger Observatory, Telescope Array and past cosmic-ray experiments. We find that the arrival directions of the cosmic neutrinos are correlated with 0≥ 10 EeV UHECR arrival directions at confidence level ≈ 90%. The strength of the correlation decreases with decreasing UHECR energy and no correlation exists at energy 0∼ 6 EeV . A search in astrophysical databases within 3{sup o} of the arrival directions of UHECRs with energy 0≥ 10 EeV, that are correlated with the IceCube cosmic neutrinos, resulted in 18 sources from the Swift-BAT X-ray catalog with redshift z≤ 0.06. We also found 3 objects in the Kühr catalog of radio sources using the same criteria. The sources are dominantly Seyfert galaxies with Cygnus A being the most prominent member. We calculate the required neutrino and UHECR fluxes to produce the observed correlated events, and estimate the corresponding neutrino luminosity (25 TeV–2.2 PeV) and cosmic-ray luminosity (500 TeV–180 EeV), assuming the sources are the ones we found in the Swift-BAT and Kühr catalogs. We compare these luminosities with the X-ray luminosity of the corresponding sources and discuss possibilities of accelerating protons to 0∼> 10 EeV and produce neutrinos in these sources.

  16. Effects of atmospheric neutrons on advanced micro-electronic devices, standards and applications; Effets des neutrons atmospheriques sur les dispositifs microelectroniques avances, normes et applications

    Energy Technology Data Exchange (ETDEWEB)

    Leray, J.L. [CEA, 75 - Paris (France); Baggio, J.; Ferlet-Cavrois, V.; Flament, O. [CEA Bruyeres-le-Chatel, 91 (France)

    2005-10-01

    Since the 1980's, it is known that terrestrial cosmic rays, mainly reported as atmospheric neutrons, can penetrate the natural shielding of buildings, equipments and circuit package and induce soft errors in integrated circuits and breakdown of power devices. The high-energy neutron fluxes of interest, larger than 10 MeV, range between 10 particles/cm{sup 2}/hour at sea level and 10{sup 4} particles/cm{sup 2}/hour at typical airplanes flight altitude of 30000 feet, with modulation due to solar flares. In the 1990's, the phenomenon has pervaded as a consequence of the road-map of electronic devices especially the down-scaling of transistor dimensions, the increase of signal bandwidth and the increase of the size of DRAM and SRAM memory, stand-alone or embedded on processors and system-on-chips. Failure-in-time and soft error rate became unacceptable. Test standards and design solutions have been proposed to maintain reliability of commercial products and improve those used in special high-reliability equipments such as avionic computers. The paper describes the atmospheric neutron flux, the effects in the main classes of devices and specific cases such as neutron induced single event upset observed in CMOS vs. CMOS/SOI and some mitigation issues. In this paper, a model called CCPM (critical cross-point model) is proposed to provide critical graphs of technology node sensitivity along the scaling trend of CMOS. (authors)

  17. Cosmic logic: a computational model

    International Nuclear Information System (INIS)

    Vanchurin, Vitaly

    2016-01-01

    We initiate a formal study of logical inferences in context of the measure problem in cosmology or what we call cosmic logic. We describe a simple computational model of cosmic logic suitable for analysis of, for example, discretized cosmological systems. The construction is based on a particular model of computation, developed by Alan Turing, with cosmic observers (CO), cosmic measures (CM) and cosmic symmetries (CS) described by Turing machines. CO machines always start with a blank tape and CM machines take CO's Turing number (also known as description number or Gödel number) as input and output the corresponding probability. Similarly, CS machines take CO's Turing number as input, but output either one if the CO machines are in the same equivalence class or zero otherwise. We argue that CS machines are more fundamental than CM machines and, thus, should be used as building blocks in constructing CM machines. We prove the non-computability of a CS machine which discriminates between two classes of CO machines: mortal that halts in finite time and immortal that runs forever. In context of eternal inflation this result implies that it is impossible to construct CM machines to compute probabilities on the set of all CO machines using cut-off prescriptions. The cut-off measures can still be used if the set is reduced to include only machines which halt after a finite and predetermined number of steps

  18. The intergalactic propagation of ultrahigh energy cosmic ray nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, Dan; /Fermilab; Sarkar, Subir; /Oxford U., Theor. Phys.; Taylor, Andrew M.; /Oxford U.

    2006-08-01

    We investigate the propagation of ultra-high energy cosmic ray nuclei (A = 1-56) from cosmologically distant sources through the cosmic radiation backgrounds. Various models for the injected composition and spectrum and of the cosmic infrared background are studied using updated photodisintegration cross-sections. The observational data on the spectrum and the composition of ultra-high energy cosmic rays are jointly consistent with a model where all of the injected primary cosmic rays are iron nuclei (or a mixture of heavy and light nuclei).

  19. Study of the radiation around a high energy accelerator. Production and scattering of cascade neutrons; Etude du rayonnement autour d'un accelerateur de haute energie. Production et diffusion des neutrons de cascade

    Energy Technology Data Exchange (ETDEWEB)

    Tardy-Joubert, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1966-03-01

    The cascade induced in protective screens by a 3 GeV proton beam has been studied using activation detectors; the results have been compared with the cosmic neutron spectrum in the atmosphere. A study of the secondary neutron spectrum has made, it possible to obtain the distribution of the dose and to determine the maximum permissible fluxes expressed in terms of the energy, taking into account all the daughter products present. The dose calculated has been checked experimentally. The proportion of cascade neutrons has been studied using the idea of an imaginary source. The parameters which have to be introduced into the general equations to take into account scattering in the the air have been determined. (author) [French] La cascade induite dans les ecrans de protection par un faisceau de protons de 3 GeV a ete etudiee au moyen de detecteurs a activation et la comparaison a ete faite avec le spectre des neutrons cosmiques dans l'atmosphere. L'etude du spectre des neutrons secondaires a permis de preciser la distribution de la dose et de determiner les flux maximaux admissibles qui sont exprimes en fonction de l'energie, en tenant compte de l'ensemble des descendants presents. La dose calculee a ete verifiee experimentalement. La propagation des neutrons de cascade a ete etudiee en introduisant la notion de source fictive. Les parametres a introduire dans les equations generales pour rendre compte de la diffusion dans l'air ont ete determines. (auteur)

  20. Progress in high-energy cosmic ray physics

    Science.gov (United States)

    Mollerach, S.; Roulet, E.

    2018-01-01

    We review some of the recent progress in our knowledge about high-energy cosmic rays, with an emphasis on the interpretation of the different observational results. We discuss the effects that are relevant to shape the cosmic ray spectrum and the explanations proposed to account for its features and for the observed changes in composition. The physics of air-showers is summarized and we also present the results obtained on the proton-air cross section and on the muon content of the showers. We discuss the cosmic ray propagation through magnetic fields, the effects of diffusion and of magnetic lensing, the cosmic ray interactions with background radiation fields and the production of secondary neutrinos and photons. We also consider the cosmic ray anisotropies, both at large and small angular scales, presenting the results obtained from the TeV up to the highest energies and discuss the models proposed to explain their origin.

  1. LHCf sheds new light on cosmic rays

    CERN Multimedia

    Anaïs Schaeffer

    2011-01-01

    The energy spectrum of the single photon obtained using data from the LHCf experiment has turned out to be very different from that predicted by the theoretical models used until now to describe the interactions between very high-energy cosmic rays and the earth's atmosphere. The consequences of this discrepancy for cosmic ray studies could be significant.   Artistic impression of cosmic rays entering Earth's atmosphere. (Credit: Asimmetrie/Infn). It took physicists by surprise when analysis of the data collected by the two LHCf calorimeters in 2010 showed that high-energy cosmic rays don't interact with the atmosphere in the manner predicted by theory. The LHCf detectors, set up 140 metres either side of the ATLAS interaction point, are dedicated to the study of the secondary particles emitted at very small angles during proton-proton collisions in the LHC, with energies comparable to cosmic rays entering the earth's atmosphere at 2.5x1016 eV. The aim of the experiment is to r...

  2. Cosmic rays and tests of fundamental principles

    Science.gov (United States)

    Gonzalez-Mestres, Luis

    2011-03-01

    It is now widely acknowledged that cosmic rays experiments can test possible new physics directly generated at the Planck scale or at some other fundamental scale. By studying particle properties at energies far beyond the reach of any man-made accelerator, they can yield unique checks of basic principles. A well-known example is provided by possible tests of special relativity at the highest cosmic-ray energies. But other essential ingredients of standard theories can in principle be tested: quantum mechanics, uncertainty principle, energy and momentum conservation, effective space-time dimensions, hamiltonian and lagrangian formalisms, postulates of cosmology, vacuum dynamics and particle propagation, quark and gluon confinement, elementariness of particles…Standard particle physics or string-like patterns may have a composite origin able to manifest itself through specific cosmic-ray signatures. Ultra-high energy cosmic rays, but also cosmic rays at lower energies, are probes of both "conventional" and new Physics. Status, prospects, new ideas, and open questions in the field are discussed.

  3. Cosmic rays and tests of fundamental principles

    International Nuclear Information System (INIS)

    Gonzalez-Mestres, Luis

    2011-01-01

    It is now widely acknowledged that cosmic rays experiments can test possible new physics directly generated at the Planck scale or at some other fundamental scale. By studying particle properties at energies far beyond the reach of any man-made accelerator, they can yield unique checks of basic principles. A well-known example is provided by possible tests of special relativity at the highest cosmic-ray energies. But other essential ingredients of standard theories can in principle be tested: quantum mechanics, uncertainty principle, energy and momentum conservation, effective space-time dimensions, hamiltonian and lagrangian formalisms, postulates of cosmology, vacuum dynamics and particle propagation, quark and gluon confinement, elementariness of particles... Standard particle physics or string-like patterns may have a composite origin able to manifest itself through specific cosmic-ray signatures. Ultra-high energy cosmic rays, but also cosmic rays at lower energies, are probes of both 'conventional' and new Physics. Status, prospects, new ideas, and open questions in the field are discussed.

  4. The electric dipole moment of the neutron a cosmic seismometer?

    CERN Document Server

    Nanopoulos, Dimitri V

    1981-01-01

    One of the most striking successes of Grand Unified Theories is the possibility of understanding, qualitatively and quantitatively the observed baryon asymmetry in the Universe GUTS contain all the basic ingredients for creating the baryon asymmetry, and the expanding Universe provides for free an excellent way to get out of equilibrium at the appropriate times. A very interesting question which is often asked is whether there is some connection between the observed low energy CP-violation in the K-system and the CP-violation operating at superhigh energies and thus responsible for the observed baryon asymmetry. The usual answer is no! Recently, J. Ellis, M.K. Gillard, S.Rudez and the author (Phys. Lett. B, vol.99, p.101, 1981) have done some work towards a connection that may exist between the magnitude of the (still unobserved) electric dipole moment of the neutron (d/sub n /) and the magnitude of the observed baryon asymmetry (n/sub B//n/sub gamma /). This is a review of that work, but with strong emphasis...

  5. Characterization of the neutron field at the ISIS-VESUVIO facility by means of a bonner sphere spectrometer

    Science.gov (United States)

    Bedogni, Roberto; Esposito, Adolfo; Andreani, Carla; Senesi, Roberto; De Pascale, Maria Pia; Picozza, Piergiorgio; Pietropaolo, Antonino; Gorini, Giuseppe; Frost, Christopher D.; Ansell, Stewart

    2009-12-01

    One of the more actual and promising fields of applied neutron physics is the investigation of the malfunctions induced by high-energy neutrons naturally present in the atmosphere in electronic devices, called single event effects (SEE). These studies are of primary importance for the design of devices that have to fulfill high reliability requirements and those that are likely to be exposed to enhanced levels of cosmic rays background, e.g. in aerospace and avionic applications. Particle accelerators-driven neutron sources constitute valuable irradiation facilities for these purposes as they provide an opportunity for accelerated testing of the effects of these naturally occurring neutrons, provided the neutron spectrum is comparable with the atmospheric one and the neutron fields are known with high accuracy. The latter can be achieved through the use of appropriate radiation transport codes and neutron spectrometry techniques. In view of the design and construction of CHIPIR, a dedicated beam line for SEE studies at the ISIS pulsed neutron source second target station (UK) [1] ( http://ts-2.isis.rl.ac.uk/instruments/phase2/index.htm), a spectrometric characterization was performed on the VESUVIO beamline [2] (Senesi et al.,2000). The spectrometric technique was the bonner sphere spectrometer (BSS), widely used to determine neutron spectra and dose quantities around high-energy accelerators. The experimental campaign provided a complete spectrometric investigation of the VESUVIO neutron beam, allowing the integral quantities (total fluence rate, fraction of fluence in given energy intervals) to be estimated with uncertainties lower than 10%.

  6. Characterization of the neutron field at the ISIS-VESUVIO facility by means of a bonner sphere spectrometer

    International Nuclear Information System (INIS)

    Bedogni, Roberto; Esposito, Adolfo; Andreani, Carla; Senesi, Roberto; De Pascale, Maria Pia; Picozza, Piergiorgio; Pietropaolo, Antonino; Gorini, Giuseppe; Frost, Christopher D.; Ansell, Stewart

    2009-01-01

    One of the more actual and promising fields of applied neutron physics is the investigation of the malfunctions induced by high-energy neutrons naturally present in the atmosphere in electronic devices, called single event effects (SEE). These studies are of primary importance for the design of devices that have to fulfill high reliability requirements and those that are likely to be exposed to enhanced levels of cosmic rays background, e.g. in aerospace and avionic applications. Particle accelerators-driven neutron sources constitute valuable irradiation facilities for these purposes as they provide an opportunity for accelerated testing of the effects of these naturally occurring neutrons, provided the neutron spectrum is comparable with the atmospheric one and the neutron fields are known with high accuracy. The latter can be achieved through the use of appropriate radiation transport codes and neutron spectrometry techniques. In view of the design and construction of CHIPIR, a dedicated beam line for SEE studies at the ISIS pulsed neutron source second target station (UK) ((http://ts-2.isis.rl.ac.uk/instruments/phase2/index.htm)), a spectrometric characterization was performed on the VESUVIO beamline (Senesi et al.,2000). The spectrometric technique was the bonner sphere spectrometer (BSS), widely used to determine neutron spectra and dose quantities around high-energy accelerators. The experimental campaign provided a complete spectrometric investigation of the VESUVIO neutron beam, allowing the integral quantities (total fluence rate, fraction of fluence in given energy intervals) to be estimated with uncertainties lower than 10%.

  7. Characterization of the neutron field at the ISIS-VESUVIO facility by means of a bonner sphere spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Bedogni, Roberto; Esposito, Adolfo [INFN-LNF Via E. Fermi n. 40-00044 Frascati (RM) (Italy); Andreani, Carla [Universita degli Studi di Roma Tor Vergata, Dipartimento di Fisica e Centro NAST, Via R. Scientifica 1, 00133 Roma (Italy); Senesi, Roberto, E-mail: roberto.senesi@roma2.infn.i [Universita degli Studi di Roma Tor Vergata, Dipartimento di Fisica e Centro NAST, Via R. Scientifica 1, 00133 Roma (Italy); De Pascale, Maria Pia; Picozza, Piergiorgio [Universita degli Studi di Roma Tor Vergata, Dipartimento di Fisica e Centro NAST, Via R. Scientifica 1, 00133 Roma (Italy); Pietropaolo, Antonino; Gorini, Giuseppe [CNISM and Universita degli Studi di Milano Bicocca, Dipartimento di Fisica ' G. Occhialini' , Piazza della Scienza 3, 20126 Milano (Italy); Frost, Christopher D. [INFN-LNF Via E. Fermi n. 40-00044 Frascati (RM) (Italy); Universita degli Studi di Roma Tor Vergata, Dipartimento di Fisica e Centro NAST, Via R. Scientifica 1, 00133 Roma (Italy); CNISM and Universita degli Studi di Milano Bicocca, Dipartimento di Fisica ' G. Occhialini' , Piazza della Scienza 3, 20126 Milano (Italy); STFC Rutherford Appleton Laboratory, ISIS Facility, Harwell Science and Innovation Campus, Didcot, Oxon, OX11 0QX (United Kingdom); Ansell, Stewart [STFC Rutherford Appleton Laboratory, ISIS Facility, Harwell Science and Innovation Campus, Didcot, Oxon, OX11 0QX (United Kingdom)

    2009-12-21

    One of the more actual and promising fields of applied neutron physics is the investigation of the malfunctions induced by high-energy neutrons naturally present in the atmosphere in electronic devices, called single event effects (SEE). These studies are of primary importance for the design of devices that have to fulfill high reliability requirements and those that are likely to be exposed to enhanced levels of cosmic rays background, e.g. in aerospace and avionic applications. Particle accelerators-driven neutron sources constitute valuable irradiation facilities for these purposes as they provide an opportunity for accelerated testing of the effects of these naturally occurring neutrons, provided the neutron spectrum is comparable with the atmospheric one and the neutron fields are known with high accuracy. The latter can be achieved through the use of appropriate radiation transport codes and neutron spectrometry techniques. In view of the design and construction of CHIPIR, a dedicated beam line for SEE studies at the ISIS pulsed neutron source second target station (UK) ((http://ts-2.isis.rl.ac.uk/instruments/phase2/index.htm)), a spectrometric characterization was performed on the VESUVIO beamline (Senesi et al.,2000). The spectrometric technique was the bonner sphere spectrometer (BSS), widely used to determine neutron spectra and dose quantities around high-energy accelerators. The experimental campaign provided a complete spectrometric investigation of the VESUVIO neutron beam, allowing the integral quantities (total fluence rate, fraction of fluence in given energy intervals) to be estimated with uncertainties lower than 10%.

  8. Low-energy cosmic rays in the Orion region

    DEFF Research Database (Denmark)

    Pohl, M.

    1998-01-01

    The recently observed nuclear gamma-ray line emission from the Orion complex implies a high flux of low-energy cosmic rays (LECR) with unusual abundance. This cosmic ray component would dominate the energy density, pressure, and ionising power of cosmic rays, and thus would have a strong impact...

  9. Does a cosmic censor exist

    International Nuclear Information System (INIS)

    Israel, W.

    1984-01-01

    A distinction is drawn between the event horizon conjecture (EHC), the conjecture that an event horizon forms in a gravitational collapse, and cosmic censorship, the idea that every singularity which develops in the course of collapse must be enclosed within a horizon. It is argued that a body of circumstantial evidence seems to favor EHC, but cosmic censorship seems contraindicated

  10. Diffuse fluxes of cosmic high-energy neutrinos

    International Nuclear Information System (INIS)

    Stecker, F.W.

    1979-01-01

    Production spectra of high-energy neutrinos from galactic cosmic-ray interactions with interstellar gas and extragalactic ultrahigh-energy cosmic-ray interactions with microwave blackbody photons are presented and discussed. These production processes involve the decay of charged pions and are thus related to the production of cosmic γ-rays from the decay of neutral pions. Estimates of the neutrino fluxes from various diffuse cosmic sources are then made, and the reasons for significant differences with previous estimates are discussed. Small predicted event rates for a DUMAND type detection system, combined with a possible significant flux of prompt neutrinos from the atmosphere above 50 TeV, may make the study of diffuse extraterrestrial neutrinos more difficult than previously thought

  11. Cosmic Rays and Climate

    CERN Document Server

    Kirkby, Jasper

    2007-01-01

    Among the most puzzling questions in climate change is that of solar-climate variability, which has attracted the attention of scientists for more than two centuries. Until recently, even the existence of solar-climate variability has been controversial—perhaps because the observations had largely involved correlations between climate and the sunspot cycle that had persisted for only a few decades. Over the last few years, however, diverse reconstructions of past climate change have revealed clear associations with cosmic ray variations recorded in cosmogenic isotope archives, providing persuasive evidence for solar or cosmic ray forcing of the climate. However, despite the increasing evidence of its importance, solar-climate variability is likely to remain controversial until a physical mechanism is established. Although this remains a mystery, observations suggest that cloud cover may be influenced by cosmic rays, which are modulated by the solar wind and, on longer time scales, by the geomagnetic fiel...

  12. Atmospheric and biospheric effects of cosmic

    International Nuclear Information System (INIS)

    Cardenas, Rolando

    2007-01-01

    We briefly review and classify the action that different sources of cosmic radiations might have had on Earth climate and biosphere in the geological past and at present times. We present the action of both sparse explosive phenomena, like gamma-ray bursts and supernovae, and permanent ones like cosmic rays and ultraviolet radiation backgrounds. Very energetic cosmic radiation coming from explosions can deplete the ozone lawyer due to initial ionization reactions, while soft backgrounds might trigger low altitude cloud formation through certain microphysical amplification processes. We examine a hypothesis concerning the potential role of cosmic rays on present Global Climatic Change. We also present the potential of UV astronomy to probe some of above scenarios, and speak on the possibilities for the Cuban participation in the international mega-project World Space Observatory, a UV telescope to be launched in the period 2007-2009. (Author)

  13. Systematic measurement of fast neutron background fluctuations in an urban area using a mobile detection system

    Science.gov (United States)

    Iyengar, A.; Beach, M.; Newby, R. J.; Fabris, L.; Heilbronn, L. H.; Hayward, J. P.

    2015-02-01

    Neutron background measurements using a mobile trailer-based system were conducted in Knoxville, Tennessee, USA. The 0.5 m2 system, consisting of eight EJ-301 liquid scintillation detectors, was used to collect neutron background measurements in order to better understand the systematic variations in background that depend solely on the street-level measurement position in a downtown area. Data was collected along 5 different streets, and the measurements were found to be repeatable. Using 10-min measurements, the fractional uncertainty in each measured data point was rates measured away from downtown Knoxville, a reduction in background count rates ranging from 10% to 50% was observed in the downtown area, sometimes varying substantially over distances of tens of meters. These reductions are attributed to the net shielding of the cosmic ray neutron flux by adjacent buildings. For reference, the building structure as observed at street level is quantified in part here by a measured angle-of-open-sky metric.

  14. Cosmology with cosmic shear observations: a review.

    Science.gov (United States)

    Kilbinger, Martin

    2015-07-01

    Cosmic shear is the distortion of images of distant galaxies due to weak gravitational lensing by the large-scale structure in the Universe. Such images are coherently deformed by the tidal field of matter inhomogeneities along the line of sight. By measuring galaxy shape correlations, we can study the properties and evolution of structure on large scales as well as the geometry of the Universe. Thus, cosmic shear has become a powerful probe into the nature of dark matter and the origin of the current accelerated expansion of the Universe. Over the last years, cosmic shear has evolved into a reliable and robust cosmological probe, providing measurements of the expansion history of the Universe and the growth of its structure. We review here the principles of weak gravitational lensing and show how cosmic shear is interpreted in a cosmological context. Then we give an overview of weak-lensing measurements, and present the main observational cosmic-shear results since it was discovered 15 years ago, as well as the implications for cosmology. We then conclude with an outlook on the various future surveys and missions, for which cosmic shear is one of the main science drivers, and discuss promising new weak cosmological lensing techniques for future observations.

  15. Evidence from cosmic ray exposure (CRE) dating for the existence of a pre-Minoan caldera on Santorini, Greece

    Science.gov (United States)

    Athanassas, C. D.; Bourlès, D. L.; Braucher, R.; Druitt, T. H.; Nomikou, P.; Léanni, L.

    2016-05-01

    Cosmic ray exposure (CRE) dating was performed on the caldera cliffs of Santorini with the aim of detecting cliff segments predating the Minoan eruption (17th century BCE). The methodology involved the determination of in situ-produced cosmogenic 36Cl concentration in basaltic-to-rhyodacitic whole rocks cropping out in the cliffs. After the samples were processed following the chemical protocol of 36Cl preparation for silicate rocks, 36Cl concentrations were measured by accelerator mass spectrometry (AMS). Important challenges during the implementation procedure were related to large amounts of radiogenic 36Cl, complex modeling of inherited 36Cl, and dominance of the thermal and epithermal (low-energy) neutron capture production pathway. Nevertheless, quantitative assessments on the basis of the contribution of the low-energy neutron capture pathway percent to the total production rate validated the calculated CRE dates. Current CRE ages demonstrate that an ancient caldera existed on pre-Minoan Santorini, occupying at least the northern half of the modern-day caldera.

  16. Cosmic ray riddle solved?

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    Full text: Physicists from Japan and the United States have discovered a possible answer to the puzzle of the origin of high energy cosmic rays that bombard Earth from all directions in space. Using data from the Japanese/US X-ray astronomical satellite ASCA, physicists have found strong evidence for the production of cosmic particles in the shock wave of a supernova remnant, the expanding fireball produced by the explosion of a star. Primary cosmic rays, mostly electrons and protons, travel near the speed of light. Each second, approximately 4 such particles cross one square centimetre of space just outside the Earth's atmosphere. Subsequently, collisions of these primary particles with atoms in the upper atmosphere produce slower secondary particles. Ever since the discovery of cosmic rays early this century, scientists have debated the origin of these particles and how they can be accelerated to such high speeds. Supernova remnants have long been thought to provide the high energy component, but the evidence has been lacking until now. The international team of investigators used the satellite to determine that cosmic rays are generated profusely in the remains of the supernova of 1006 AD - which appeared to medieval viewers to be as bright as the Moon - and that they are accelerated to high velocities by an iterative process first suggested by Enrico Fermi in 1949. Using solid-state X-ray cameras, the ASCA satellite records simultaneous images and spectra of X-rays from celestial sources, allowing astronomers to distinguish different types of X-ray emission. The tell-tale clue to the discovery was the detection of two diametrically opposite regions in the rapidly expanding supernova remnant, the debris from the stellar explosion. The two regions glow intensely from the synchrotron radiation produced when fast-moving electrons are bent by a magnetic field. The remainder of the supernova remnant, in contrast, emits ordinary ''thermal'' X

  17. Calculations of neutron spectra after neutron-neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, B E [Gettysburg College, Box 405, Gettysburg, PA 17325 (United States); Stephenson, S L [Gettysburg College, Box 405, Gettysburg, PA 17325 (United States); Howell, C R [Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Mitchell, G E [North Carolina State University, Raleigh, NC 27695-8202 (United States); Tornow, W [Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Furman, W I [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Lychagin, E V [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Muzichka, A Yu [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Nekhaev, G V [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Strelkov, A V [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Sharapov, E I [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Shvetsov, V N [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation)

    2004-09-01

    A direct neutron-neutron scattering length, a{sub nn}, measurement with the goal of 3% accuracy (0.5 fm) is under preparation at the aperiodic pulsed reactor YAGUAR. A direct measurement of a{sub nn} will not only help resolve conflicting results of a{sub nn} by indirect means, but also in comparison to the proton-proton scattering length, a{sub pp}, shed light on the charge-symmetry of the nuclear force. We discuss in detail the analysis of the nn-scattering data in terms of a simple analytical expression. We also discuss calibration measurements using the time-of-flight spectra of neutrons scattered on He and Ar gases and the neutron activation technique. In particular, we calculate the neutron velocity and time-of-flight spectra after scattering neutrons on neutrons and after scattering neutrons on He and Ar atoms for the proposed experimental geometry, using a realistic neutron flux spectrum-Maxwellian plus epithermal tail. The shape of the neutron spectrum after scattering is appreciably different from the initial spectrum, due to collisions between thermal-thermal and thermal-epithermal neutrons. At the same time, the integral over the Maxwellian part of the realistic scattering spectrum differs by only about 6 per cent from that of a pure Maxwellian nn-scattering spectrum.

  18. Cosmic gamma-ray background radiation. Current understandings and problems

    International Nuclear Information System (INIS)

    Inoue, Yoshiyuki

    2015-01-01

    The cosmic gamma-ray background radiation is one of the most fundamental observables in the gamma-ray band. Although the origin of the cosmic gamma-ray background radiation has been a mystery for a long time, the Fermi gamma-ray space telescope has recently measured it at 0.1-820 GeV and revealed that the cosmic GeV gamma-ray background is composed of blazars, radio galaxies, and star-forming galaxies. However, Fermi still leaves the following questions. Those are dark matter contribution, origins of the cosmic MeV gamma-ray background, and the connection to the IceCube TeV-PeV neutrino events. In this proceeding, I will review the current understandings of the cosmic gamma-ray background and discuss future prospects of cosmic gamma-ray background radiation studies. (author)

  19. Phenomenology of cosmic phase transitions

    International Nuclear Information System (INIS)

    Kaempfer, B.; Lukacs, B.; Paal, G.

    1989-11-01

    The evolution of the cosmic matter from Planck temperature to the atomic combination temperature is considered from a phenomenological point of view. Particular emphasis is devoted to the sequence of cosmic phase transitions. The inflationary era at the temperature of the order of the grand unification energy scale and the quantum chromodynamic confinement transition are dealt with in detail. (author) 131 refs.; 26 figs

  20. Cosmic microwave background, where next?

    CERN Multimedia

    CERN. Geneva

    2009-01-01

    Ground-based, balloon-borne and space-based experiments will observe the Cosmic Microwave Background in greater details to address open questions about the origin and the evolution of the Universe. In particular, detailed observations the polarization pattern of the Cosmic Microwave Background radiation have the potential to directly probe physics at the GUT scale and illuminate aspects of the physics of the very early Universe.

  1. Cosmic rays and Earth's climate

    DEFF Research Database (Denmark)

    Svensmark, Henrik

    2000-01-01

    During the last solar cycle the Earth's cloud cover underwent a modulation in phase with the cosmic ray flux. Assuming that there is a causal relationship between the two, it is expected and found that the Earth's temperature follows more closely decade variations in cosmic ray flux than other...... solar activity parameters. If the relationship is real the state of the Heliosphere affects the Earth's climate....

  2. The Spine of the Cosmic Web

    NARCIS (Netherlands)

    Aragón-Calvo, Miguel A.; Platen, Erwin; van de Weijgaert, Rien; Szalay, Alexander S.

    2010-01-01

    We present the SpineWeb framework for the topological analysis of the Cosmic Web and the identification of its walls, filaments, and cluster nodes. Based on the watershed segmentation of the cosmic density field, the SpineWeb method invokes the local adjacency properties of the boundaries between

  3. The Spine of the Cosmic Web

    NARCIS (Netherlands)

    Aragón-Calvo, Miguel A.; Platen, Erwin; van de Weijgaert, Rien; Szalay, Alexander S.

    We present the SpineWeb framework for the topological analysis of the Cosmic Web and the identification of its walls, filaments, and cluster nodes. Based on the watershed segmentation of the cosmic density field, the SpineWeb method invokes the local adjacency properties of the boundaries between

  4. NEXUS: tracing the cosmic web connection

    NARCIS (Netherlands)

    Cautun, Marius; van de Weygaert, Rien; Jones, Bernard J. T.

    2013-01-01

    We introduce the NEXUS algorithm for the identification of cosmic web environments: clusters, filaments, walls and voids. This is a multiscale and automatic morphological analysis tool that identifies all the cosmic structures in a scale free way, without preference for a certain size or shape. We

  5. Smooth halos in the cosmic web

    Energy Technology Data Exchange (ETDEWEB)

    Gaite, José, E-mail: jose.gaite@upm.es [Physics Dept., ETSIAE, IDR, Universidad Politécnica de Madrid, Pza. Cardenal Cisneros 3, E-28040 Madrid (Spain)

    2015-04-01

    Dark matter halos can be defined as smooth distributions of dark matter placed in a non-smooth cosmic web structure. This definition of halos demands a precise definition of smoothness and a characterization of the manner in which the transition from smooth halos to the cosmic web takes place. We introduce entropic measures of smoothness, related to measures of inequality previously used in economy and with the advantage of being connected with standard methods of multifractal analysis already used for characterizing the cosmic web structure in cold dark matter N-body simulations. These entropic measures provide us with a quantitative description of the transition from the small scales portrayed as a distribution of halos to the larger scales portrayed as a cosmic web and, therefore, allow us to assign definite sizes to halos. However, these ''smoothness sizes'' have no direct relation to the virial radii. Finally, we discuss the influence of N-body discreteness parameters on smoothness.

  6. Lightning Discharges, Cosmic Rays and Climate

    Science.gov (United States)

    Kumar, Sanjay; Siingh, Devendraa; Singh, R. P.; Singh, A. K.; Kamra, A. K.

    2018-03-01

    The entirety of the Earth's climate system is continuously bombarded by cosmic rays and exhibits about 2000 thunderstorms active at any time of the day all over the globe. Any linkage among these vast systems should have global consequences. Numerous studies done in the past deal with partial links between some selected aspects of this grand linkage. Results of these studies vary from weakly to strongly significant and are not yet complete enough to justify the physical mechanism proposed to explain such links. This review is aimed at presenting the current understanding, based on the past studies on the link between cosmic ray, lightning and climate. The deficiencies in some proposed links are pointed out. Impacts of cosmic rays on engineering systems and the possible effects of cosmic rays on human health are also briefly discussed. Also enumerated are some problems for future work which may help in developing the grand linkage among these three vast systems.

  7. Cosmic ray propagation with CRPropa 3

    International Nuclear Information System (INIS)

    Batista, R Alves; Evoli, C; Sigl, G; Van Vliet, A; Erdmann, M; Kuempel, D; Mueller, G; Walz, D; Kampert, K-H; Winchen, T

    2015-01-01

    Solving the question of the origin of ultra-high energy cosmic rays (UHECRs) requires the development of detailed simulation tools in order to interpret the experimental data and draw conclusions on the UHECR universe. CRPropa is a public Monte Carlo code for the galactic and extragalactic propagation of cosmic ray nuclei above ∼ 10 17 eV, as well as their photon and neutrino secondaries. In this contribution the new algorithms and features of CRPropa 3, the next major release, are presented. CRPropa 3 introduces time-dependent scenarios to include cosmic evolution in the presence of cosmic ray deflections in magnetic fields. The usage of high resolution magnetic fields is facilitated by shared memory parallelism, modulated fields and fields with heterogeneous resolution. Galactic propagation is enabled through the implementation of galactic magnetic field models, as well as an efficient forward propagation technique through transformation matrices. To make use of the large Python ecosystem in astrophysics CRPropa 3 can be steered and extended in Python. (paper)

  8. Smooth halos in the cosmic web

    International Nuclear Information System (INIS)

    Gaite, José

    2015-01-01

    Dark matter halos can be defined as smooth distributions of dark matter placed in a non-smooth cosmic web structure. This definition of halos demands a precise definition of smoothness and a characterization of the manner in which the transition from smooth halos to the cosmic web takes place. We introduce entropic measures of smoothness, related to measures of inequality previously used in economy and with the advantage of being connected with standard methods of multifractal analysis already used for characterizing the cosmic web structure in cold dark matter N-body simulations. These entropic measures provide us with a quantitative description of the transition from the small scales portrayed as a distribution of halos to the larger scales portrayed as a cosmic web and, therefore, allow us to assign definite sizes to halos. However, these ''smoothness sizes'' have no direct relation to the virial radii. Finally, we discuss the influence of N-body discreteness parameters on smoothness

  9. Large vessel imaging using cosmic-ray muons

    International Nuclear Information System (INIS)

    Jenneson, P.M.

    2004-01-01

    Cosmic-ray muons are assessed for their practical use in the tomographic imaging of the internal composition of large vessels over 2 m in diameter. The technique is based on the attenuation and scattering of cosmic-ray muons passing through a vessel and has advantages over photon-based methods of tomography that it is extendable to object containing high-density materials over many tens of metres. The main disadvantage is the length of time required to produce images of sufficient resolution and hence cosmic ray muon tomography will be most suited to the imaging of large structures whose internal composition is effectively static for the duration of the imaging period. Simulation and theoretical results are presented here which demonstrate the feasibility of cosmic ray muon tomography

  10. Cosmic ray antimatter and baryon symmetric cosmology

    Science.gov (United States)

    Stecker, F. W.; Protheroe, R. J.; Kazanas, D.

    1982-01-01

    The relative merits and difficulties of the primary and secondary origin hypotheses for the observed cosmic-ray antiprotons, including the new low-energy measurement of Buffington, et al. We conclude that the cosmic-ray antiproton data may be evidence for antimatter galaxies and baryon symmetric cosmology. The present bar P data are consistent with a primary extragalactic component having /p=/equiv 1+/- 3.2/0.7x10 = to the -4 independent of energy. We propose that the primary extragalactic cosmic ray antiprotons are most likely from active galaxies and that expected disintegration of bar alpha/alpha ban alpha/alpha. We further predict a value for ban alpha/alpha =/equiv 10 to the -5, within range of future cosmic ray detectors.

  11. Solar flares and the cosmic ray intensity

    International Nuclear Information System (INIS)

    Hatton, C.J.

    1980-01-01

    The relationship between the cosmic ray intensity and solar activity during solar cycle 20 is discussed. A model is developed whereby it is possible to simulate the observed cosmic ray intensity from the observed number of solar flares of importance >= 1. This model leads to a radius for the modulation region of 60-70 AU. It is suggested that high speed solar streams also made a small contribution to the modulation of cosmic rays during solar cycle 20. (orig.)

  12. Cosmic-ray-modified stellar winds. III. A numerical iterative approach

    International Nuclear Information System (INIS)

    Ko, C.M.; Jokipii, J.R.; Webb, G.M.

    1988-01-01

    A numerical iterative method is used to determine the modification of a stellar wind flow with a termination shock by the galactic cosmic rays. A two-fluid model consisting of cosmic rays and thermal stellar wind gas is used in which the cosmic rays are coupled to the background flow via scattering with magnetohydrodynamic waves or irregularities. A polytropic model is used to describe the thermal stellar wind gas, and the cosmic-rays are modeled as a hot, low-density gas with negligible mass flux. The positive galactic cosmic-ray pressure gradient serves to brake the outflowing stellar wind gas, and the cosmic rays modify the location of the critical point of the wind, the location of the shock, the wind fluid velocity profile, and the thermal gas entropy constants on both sides of the shock. The transfer of energy to the cosmic rays results in an outward radial flux of cosmic-ray energy. 21 references

  13. Case study on the effect of cosmic radiation in embedded systems in aircraft; Estudo de caso sobre o efeito da radiacao cosmica em sistemas embarcados em aeronaves

    Energy Technology Data Exchange (ETDEWEB)

    Prado, Adriane C.M.; Pereira, Marlon A., E-mail: adriane.acm@hotmail.com, E-mail: marlon@ieav.cta.br [Instituto Tecnologico de Aeronautica (ITA/DCTA), Sao Jose dos Campos, SP (Brazil); Federico, Claudio A.; Goncalez, Odair L., E-mail: claudiofederico@ieav.cta.br, E-mail: odairl@ieav.cta.br [Instituto de Estudos Avancados (IEAv/DCTA), Sao Jose dos Campos, SP (Brazil)

    2014-07-01

    High-energy neutrons generated from the interaction of cosmic radiation with atoms of the atmosphere, can cause adverse effects on avionics devices. These effects are referred to as 'Single Event Effects' (SEE) and may occur especially in aircraft onboard computers, from change the logic state of memory cells or functional interruptions, which could compromise flight safety. The effects of the SEE must first be evaluated and entered into the safety analysis process in order to determine the susceptibility to failures by SEE devices. SEE rate can be evaluated separately for thermal neutrons and fast neutrons with energy above 10 MeV. This paper presents an exploratory study of susceptibility to radiation to a specific type of SRAM memory, during periods of maximum and minimum solar, in situations of equatorial and polar flight in the typical flight altitude of existing aircraft and, at higher altitudes, near the maximum of Pfotzer. This study was conducted using estimates of particle flows employing the EXPACS QARM codes and evaluating the expected rate of SEE due to thermal neutrons and fast neutrons separately. The distribution in energy and the flow of neutrons inside the airplane are influenced by the total mass of the aircraft and this influence are also discussed.

  14. A disintegrating cosmic string

    International Nuclear Information System (INIS)

    Griffiths, J B; Docherty, P

    2002-01-01

    We present a simple sandwich gravitational wave of the Robinson-Trautman family. This is interpreted as representing a shock wave with a spherical wavefront which propagates into a Minkowski background minus a wedge (i.e. the background contains a cosmic string). The deficit angle (the tension) of the string decreases through the gravitational wave, which then ceases. This leaves an expanding spherical region of Minkowski space behind it. The decay of the cosmic string over a finite interval of retarded time may be considered to generate the gravitational wave. (letter to the editor)

  15. Feasibility study on a cosmic-ray level gauge

    International Nuclear Information System (INIS)

    Matsuda, H.; Fukaya, M.; Minato, S.

    1989-01-01

    Cosmic-ray intensities were measured at the stairs in a subway station in Nagoya City, inside a tall concrete building and under a cylindrical water tank, to examine the feasibility of a cosmic-ray level gauge. The measured results agreed quite well with the theoretical calculations. These results show that a cosmic-ray level gauge is feasible. (author)

  16. Relativistic MHD modeling of magnetized neutron stars, pulsar winds, and their nebulae

    Science.gov (United States)

    Del Zanna, L.; Pili, A. G.; Olmi, B.; Bucciantini, N.; Amato, E.

    2018-01-01

    Neutron stars are among the most fascinating astrophysical sources, being characterized by strong gravity, densities about the nuclear one or even above, and huge magnetic fields. Their observational signatures can be extremely diverse across the electromagnetic spectrum, ranging from the periodic and low-frequency signals of radio pulsars, up to the abrupt high-energy gamma-ray flares of magnetars, where energies of ∼ {10}46 {erg} are released in a few seconds. Fast-rotating and highly magnetized neutron stars are expected to launch powerful relativistic winds, whose interaction with the supernova remnants gives rise to the non-thermal emission of pulsar wind nebulae, which are known cosmic accelerators of electrons and positrons up to PeV energies. In the extreme cases of proto-magnetars (magnetic fields of ∼ {10}15 G and millisecond periods), a similar mechanism is likely to provide a viable engine for the still mysterious gamma-ray bursts. The key ingredient in all these spectacular manifestations of neutron stars is the presence of strong magnetic fields in their constituent plasma. Here we will present recent updates of a couple of state-of-the-art numerical investigations by the high-energy astrophysics group in Arcetri: a comprehensive modeling of the steady-state axisymmetric structure of rotating magnetized neutron stars in general relativity, and dynamical 3D MHD simulations of relativistic pulsar winds and their associated nebulae.

  17. One century of cosmic rays – A particle physicist's view

    Directory of Open Access Journals (Sweden)

    Sutton Christine

    2015-01-01

    Full Text Available Experiments on cosmic rays and the elementary particles share a common history that dates back to the 19th century. Following the discovery of radioactivity in the 1890s, the paths of the two fields intertwined, especially during the decades after the discovery of cosmic rays. Experiments demonstrated that the primary cosmic rays are positively charged particles, while other studies of cosmic rays revealed various new sub-atomic particles, including the first antiparticle. Techniques developed in common led to the birth of neutrino astronomy in 1987 and the first observation of a cosmic γ-ray source by a ground-based cosmic-ray telescope in 1989.

  18. Propagation of ultrahigh-energy cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Stanev, Todor [Bartol Research Institute and Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States)], E-mail: stanev@bartol.udel.edu

    2009-06-15

    We briefly describe the energy loss processes of ultrahigh-energy protons, heavier nuclei and {gamma}-rays in interactions with the universal photon fields of the Universe. We then discuss the modification of the accelerated cosmic-ray energy spectrum in propagation by the energy loss processes and the charged cosmic-ray scattering in the extragalactic magnetic fields. The energy lost by the ultrahigh-energy cosmic rays goes into {gamma}-rays and neutrinos that carry additional information about the sources of highest energy particles. The new experimental results of the HiRes and the Auger collaborations are discussed in view of the predictions from propagation calculations.

  19. Fluctuations in the cosmic microwave background

    International Nuclear Information System (INIS)

    Banday, A.J.; Wolfendale, A.W.

    1990-01-01

    In view of the importance to contemporary cosmology, and to our understanding of the Universe, of the precise nature of the Cosmic Microwave Background (CMB) spectrum, we consider the effects on this spectrum of contamination by other radiation fields of both galactic and extragalactic origin. Particular attention is given to the significance of measurements of the fluctuations in the 'background' radiation detected at 10.46 GHz and we conclude that these fluctuations are of the same magnitude as those expected from galactic cosmic-ray effects. A more detailed study of the cosmic-ray induced fluctuations and measurements at higher frequencies will be needed before genuine CMB fluctuations can be claimed. (author)

  20. Cosmic growth history and expansion history

    International Nuclear Information System (INIS)

    Linder, Eric V.

    2005-01-01

    The cosmic expansion history tests the dynamics of the global evolution of the universe and its energy density contents, while the cosmic growth history tests the evolution of the inhomogeneous part of the energy density. Precision comparison of the two histories can distinguish the nature of the physics responsible for the accelerating cosmic expansion: an additional smooth component--dark energy--or a modification of the gravitational field equations. With the aid of a new fitting formula for linear perturbation growth accurate to 0.05%-0.2%, we separate out the growth dependence on the expansion history and introduce a new growth index parameter γ that quantifies the gravitational modification

  1. Characteristics of old neutron stars in dense interstellar clouds

    International Nuclear Information System (INIS)

    Boehringer, H.; Morfill, G.E.; Zimmermann, H.U.

    1987-01-01

    The forms observable radiation will assume as old neutron stars pass through interstellar clouds and accrete material are examined theoretically. The radiation, mainly X-rays and gamma rays, will be partially absorbed by the surrounding dust and gas, which in turn produces far-IR radiation from warm dust and line radiation from the gas. Adiabatic compression of the accretion flow and the accretion shock are expected to produce cosmic rays, while gamma rays will be emitted by interaction of the energetic particles with the cloud material. The calculations indicate that the stars will then be identified as X-ray sources, some of which may be unidentified sources in the COS-B database. 37 references

  2. Robustness of cosmic neutrino background detection in the cosmic microwave background

    Energy Technology Data Exchange (ETDEWEB)

    Audren, Benjamin [Institut de Théorie des Phénomènes Physiques, École Polytechnique Fédérale de Lausanne, CH-1015, Lausanne (Switzerland); Bellini, Emilio; Cuesta, Antonio J.; Verde, Licia [Institut de Ciències del Cosmos, Universitat de Barcelona, IEEC-UB, Martí i Franquès 1, E08028 Barcelona (Spain); Gontcho, Satya Gontcho A; Pérez-Ràfols, Ignasi [Dept. d' Astronomia i Meteorologia, Institut de Ciències del Cosmos, Universitat de Barcelona, IEEC-UB, Martí i Franquès 1, E08028 Barcelona (Spain); Lesgourgues, Julien [CERN, Theory Division, CH-1211 Geneva 23 (Switzerland); Niro, Viviana [Departamento de Física Teórica, Universidad Autónoma de Madrid and Instituto de Física Teórica UAM/CSIC, Calle Nicolás Cabrera 13-15, Cantoblanco, E-28049 Madrid (Spain); Pellejero-Ibanez, Marcos; Tramonte, Denis [Instituto de Astrofísica de Canarias (IAC), C/Vía Láctea s/n, E-38200, La Laguna, Tenerife (Spain); Poulin, Vivian [LAPTh, Université de Savoie, CNRS, B.P.110, Annecy-le-Vieux F-74941 (France); Tram, Thomas, E-mail: emilio.bellini@icc.ub.edu [Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Burnaby Road, Portsmouth PO1 3FX (United Kingdom)

    2015-03-01

    The existence of a cosmic neutrino background can be probed indirectly by CMB experiments, not only by measuring the background density of radiation in the universe, but also by searching for the typical signatures of the fluctuations of free-streaming species in the temperature and polarisation power spectrum. Previous studies have already proposed a rather generic parametrisation of these fluctuations, that could help to discriminate between the signature of ordinary free-streaming neutrinos, or of more exotic dark radiation models. Current data are compatible with standard values of these parameters, which seems to bring further evidence for the existence of a cosmic neutrino background. In this work, we investigate the robustness of this conclusion under various assumptions. We generalise the definition of an effective sound speed and viscosity speed to the case of massive neutrinos or other dark radiation components experiencing a non-relativistic transition. We show that current bounds on these effective parameters do not vary significantly when considering an arbitrary value of the particle mass, or extended cosmological models with a free effective neutrino number, dynamical dark energy or a running of the primordial spectrum tilt. We conclude that it is possible to make a robust statement about the detection of the cosmic neutrino background by CMB experiments.

  3. Collisions of cosmic F- and D-strings

    International Nuclear Information System (INIS)

    Jones, N.

    2004-01-01

    Recent theoretical advances and upcoming experimental measurements make the testing of generic predictions of string theory models of cosmology feasible. Brane anti-brane models of inflation within superstring theory are promising as string theory descriptions of the physics of the early universe. While varied in their construction, these models can have the generic and observable consequence that cosmic strings will be abundant in the early universe. This leads to possible detectable effects in the cosmic microwave background, gravitational wave physics and gravitational lensing. Detailed calculations of cosmic string interactions within string theory are presented, in order to distinguish these cosmic strings from those in more conventional theories; these interaction probabilities can be very different from conventional 4-dimension strings, providing the possibility of experimental tests of string theory. (authors)

  4. neutron multiplicity measurements on 220 l waste drums containing Pu in the range 0.1-1 g 240Pueff with the time interval analysis method

    International Nuclear Information System (INIS)

    Baeten, P.; Bruggeman, M.; Carchon, R.; De Boeck, W.

    1998-01-01

    Measurement results are presented for the assay of plutonium in 220 l waste drums containing Pu-masses in the range 0.1-1 g 240 Pu eff obtained with the time interval analysis (TIA) method. TIA is a neutron multiplicity method based on the concept of one- and two-dimensional Rossi-alpha distributions. The main source of measurement bias in neutron multiplicity measurements at low count-rates is the impredictable variation of the high-multiplicity neutron background of spallation neutrons induced by cosmic rays. The TIA-method was therefore equipped with a special background filter, which is designed and optimized to reduce the influence of these spallation neutrons by rejecting the high-multiplicity events. The measurement results, obtained with the background correction filter outlined in this paper, prove the repeatability and validity of the TIA-method and show that multiplicity counting with the TIA-technique is applicable for masses as low as 0.1 g 240 Pu eff even at a detection efficiency of 12%. (orig.)

  5. Aerosols Produced by Cosmic Rays

    DEFF Research Database (Denmark)

    Enghoff, Martin Andreas Bødker

    an experiment in order to investigate the underlying microphysical processes. The results of this experiment will help to understand whether ionization from cosmic rays, and by implication the related processes in the universe, has a direct influence on Earth’s atmosphere and climate. Since any physical...... mechanism linking cosmic rays to clouds and climate is currently speculative, there have been various suggestions of the role atmospheric ions may play; these involve any one of a number of processes from the nucleation of aerosols up to the collection processes of cloud droplets. We have chosen to start......Satellite observations have shown that the Earth’s cloud cover is strongly correlated with the galactic cosmic ray flux. While this correlation is indicative of a possible physical connection, there is currently no confirmation that a physical mechanism exists. We are therefore setting up...

  6. Cosmic rays, clouds, and climate

    DEFF Research Database (Denmark)

    Marsh, N.; Svensmark, Henrik

    2000-01-01

    cloud radiative properties. Thus, a moderate influence on atmospheric aerosol distributions from cosmic ray ionisation would have a strong influence on the Earth's radiation budget. Historical evidence over the past 1000 years indicates that changes in climate have occurred in accord with variability......A correlation between a global average of low cloud cover and the flux of cosmic rays incident in the atmosphere has been observed during the last solar cycle. The ionising potential of Earth bound cosmic rays are modulated by the state of the heliosphere, while clouds play an important role...... in the Earth's radiation budget through trapping outgoing radiation and reflecting incoming radiation. If a physical link between these two features can be established, it would provide a mechanism linking solar activity and Earth's climate. Recent satellite observations have further revealed a correlation...

  7. Cosmic Rays and Extensive Air Showers

    CERN Document Server

    Stanev, Todor

    2010-01-01

    We begin with a brief introduction of the cosmic ray energy spectrum and its main features. At energies higher than 105 GeV cosmic rays are detected by the showers they initiate in the atmosphere. We continues with a brief description of the energy spectrum and composition derived from air shower data.

  8. The History of Cosmic Ray Studies after Hess

    Energy Technology Data Exchange (ETDEWEB)

    Grupen, Claus, E-mail: grupen@physik.uni-siegen.de

    2013-06-15

    The discovery of cosmic rays by Victor Hess was confirmed with balloon flights at higher altitudes by Kolhörster. Soon the interest turned into questions about the nature of cosmic rays: gamma rays or particles? Subsequent investigations have established cosmic rays as the birthplace of elementary particle physics. The 1936 Nobel prize was shared between Victor Hess and Carl Anderson. Anderson discovered the positron in a cloud chamber. The positron was predicted by Dirac several years earlier. Many new results came now from studies with cloud chambers and nuclear emulsions. Anderson and Neddermeyer saw the muon, which for some time was considered to be a candidate for the Yukawa particle responsible for nuclear binding. Lattes, Powell, Occhialini and Muirhead clarified the situation by the discovery of the charged pions in cosmic rays. Rochester and Butler found V's, which turned out to be short-lived neutral kaons decaying into a pair of charged pions. Λ's, Σ's and Ξ's were found in cosmic rays using nuclear emulsions. After that period, accelerators and storage rings took over. The unexpected renaissance of cosmic rays started with the search for solar neutrinos and the observation of the supernova 1987A and other accelerators in the sky. With the observation of neutrino oscillations one began to look beyond the standard model of elementary particles. After 100 years of cosmic ray research we are again at the beginning of a new era, and cosmic rays may contribute to solve the many open questions, like dark matter and dark energy, by providing energies well beyond those of earth-bound accelerators.

  9. Measurement of secondary cosmic radiation and calculation of associated dose conversion coefficients for humans; Messung sekundaerer kosmischer Strahlung und Berechnung der zugehoerigen Dosiskonversionskoeffizienten fuer den Menschen

    Energy Technology Data Exchange (ETDEWEB)

    Simmer, Gregor

    2012-04-11

    Due to secondary cosmic radiation (SCR), pilots and flight attendants receive elevated effective doses at flight altitudes. For this reason, since 2003 aircrew members are considered as occupationally exposed, in Germany. This work deals with the calculation of dose conversion coefficients (DCC) for protons, neutrons, electrons, positrons, photons and myons, which are crucial for estimation of effective dose from SCR. For the first time, calculations were performed combining Geant4 - a Monte Carlo code developed at CERN - with the voxel phantoms for the reference female and male published in 2008 by ICRP and ICRU. Furthermore, measurements of neutron fluence spectra - which contribute the major part to the effective dose of SCR - were carried out at the Environmental Research Station Schneefernerhaus (UFS) located at 2650 m above sea level nearby the Zugspitze mountain, Germany. These measured neutron spectra, and additionally available calculated spectra, were then folded with the DCC calculated in this work, and effective dose rates for different heights were calculated.

  10. High-energy cosmic-ray acceleration

    OpenAIRE

    Bustamante, M; Carrillo Montoya, G; de Paula, W; Duarte Chavez, J A; Gago, A M; Hakobyan, H; Jez, P; Monroy Montañez, J A; Ortiz Velasquez, A; Padilla Cabal, F; Pino Rozas, M; Rodriguez Patarroyo, D J; Romeo, G L; Saldaña-Salazar , U J; Velasquez, M

    2010-01-01

    We briefly review the basics of ultrahigh-energy cosmic-ray acceleration. The Hillas criterion is introduced as a geometrical criterion that must be fulfilled by potential acceleration sites, and energy losses are taken into account in order to obtain a more realistic scenario. The different available acceleration mechanisms are presented, with special emphasis on Fermi shock acceleration and its prediction of a power-law cosmic-ray energy spectrum. We conclude that first-order Fermi accelera...

  11. SSNTD-supersymmetry theory unifying cosmic and nucleonic matters

    International Nuclear Information System (INIS)

    Swarup, R.

    2011-01-01

    rise to the differences between ordinary particles and their superpartners well coupled with SSNTD type Cosmic Ray Tracks. While reviewing supersymmetry with supergravity every quantum particle can be imagined as little spinning top, the spin taking on only the discrete values 0, 1/2, 1, 3/2, 2 and so on in certain units (say Planck Constant h divided by 2Π). Spin s=0 means top does not spin. Spin s=1/2 means a specific amount of spin and spin s=1 means twice of this amount and so on. The pion, a strongly interacting hadron, has spin s=0. The proton, neutron, quarks and leptons all have spin s=1/2 while photon and weak Gluon W and G have spin 1 and spin s=2 for Graviton. For the first time the mathematical imagination saw the possibility that all quantum particles, not just those of same spin, are components of a single master super field endowed with supersymmetry. The SSNTD analog of stellar and cosmic worlds really describe specially structured space-time drains of sizes 10 -9 -10 -24 cm and various multiples in the lower dimensions having ranges nano-nano(nn), nano-micro-pico/Fermi/femto/atto/zepto/yocto: (np), (nf) (nft), (na), (nz), (nY)... (npfazy) transporting Geo-Cosmic matters as resonant quantum tunnels. Such states are attained as transverse fluctuations in SSNTD type geometrical constructs obeying quantum tunneling type characteristic behaviours. The supersymmetry breakings emerges through spin fractionalization such as s=1/3,1/4,1/5,1/6,1/8..... whose matrices formulated accordingly. (author)

  12. Evaluation of the fluence to dose conversion coefficients for high energy neutrons using a voxel phantom coupled with the GEANT4 code

    CERN Document Server

    Paganini, S

    2005-01-01

    Crews working on present-day jet aircraft are a large occupationally exposed group with a relatively high average effective dose from Galactic cosmic radiation. Crews of future high-speed commercial flying at higher altitudes would be even more exposed. To help reduce the significant uncertainties in calculations of such exposures, the male adult voxels phantom MAX, developed in the Nuclear Energy Department of Pernambuco Federal University in Brazil, has been coupled with the Monte Carlo simulation code GEANT4. This toolkit, distributed and upgraded from the international scientific community of CERN/Switzerland, simulates thermal to ultrahigh energy neutrons transport and interactions in the matter. The high energy neutrons are pointed as the component that contribute about 70% of the neutron effective dose that represent the 35% to 60% total dose at aircraft altitude. In this research calculations of conversion coefficients from fluence to effective dose are performed for neutrons of energies from 100 MeV ...

  13. Cosmic Shear With ACS Pure Parallels

    Science.gov (United States)

    Rhodes, Jason

    2002-07-01

    Small distortions in the shapes of background galaxies by foreground mass provide a powerful method of directly measuring the amount and distribution of dark matter. Several groups have recently detected this weak lensing by large-scale structure, also called cosmic shear. The high resolution and sensitivity of HST/ACS provide a unique opportunity to measure cosmic shear accurately on small scales. Using 260 parallel orbits in Sloan textiti {F775W} we will measure for the first time: beginlistosetlength sep0cm setlengthemsep0cm setlengthopsep0cm em the cosmic shear variance on scales Omega_m^0.5, with signal-to-noise {s/n} 20, and the mass density Omega_m with s/n=4. They will be done at small angular scales where non-linear effects dominate the power spectrum, providing a test of the gravitational instability paradigm for structure formation. Measurements on these scales are not possible from the ground, because of the systematic effects induced by PSF smearing from seeing. Having many independent lines of sight reduces the uncertainty due to cosmic variance, making parallel observations ideal.

  14. High-energy cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Gaisser, Thomas K. [Bartol Research Institute, University of Delaware, Newark, DE 19716 (United States)]. E-mail: gaisser@bartol.udel.edu; Stanev, Todor [Bartol Research Institute, University of Delaware, Newark, DE 19716 (United States)

    2006-10-17

    After a brief review of galactic cosmic rays in the GeV to TeV energy range, we describe some current problems of interest for particles of very high energy. Particularly interesting are two features of the spectrum, the knee above 10{sup 15} eV and the ankle above 10{sup 18} eV. An important question is whether the highest-energy particles are of extra-galactic origin and, if so, at what energy the transition occurs. A theme common to all energy ranges is use of nuclear abundances as a tool for understanding the origin of the cosmic radiation.

  15. Educational Cosmic Ray Arrays

    International Nuclear Information System (INIS)

    Soluk, R. A.

    2006-01-01

    In the last decade a great deal of interest has arisen in using sparse arrays of cosmic ray detectors located at schools as a means of doing both outreach and physics research. This approach has the unique advantage of involving grade school students in an actual ongoing experiment, rather then a simple teaching exercise, while at the same time providing researchers with the basic infrastructure for installation of cosmic ray detectors. A survey is made of projects in North America and Europe and in particular the ALTA experiment at the University of Alberta which was the first experiment operating under this paradigm

  16. The absence of distortion in the cosmic microwave background spectrum and superconducting cosmic strings

    International Nuclear Information System (INIS)

    Sanchez, N.; Signore, M.

    1990-01-01

    From the results of recent measurements we place new constraints on superconducting cosmic strings (SCS) and on their cosmological evolution, independently of numerical simulation results. The absence of distortion in the cosmic microwave background radiation (MBR) spectrum recently reported from the preliminary data of the COBE (Cosmic background explorer) satellite, together with the available MBR angular temperature ΔT/T measurements and the latest fast pulsar timings, allow us to obtain (i) the electromagnetic-to-gravitational radiation ratio released by SCS loops, f -2 , (ii) the chemical potential due to SCS, μ 0SCS -3 , (iii) constraints on the loop evolution parameters which we confront to those given by numerical simulations, and (iv) limits on the string parameter Gμ: those obtained from COBE's data (Gμ -6 ) converge to those given by the latest PSR 1937+21 timing. Both limits on Gμ are reduced by an order of magnitude when taking into account numerical simulation results. (orig.)

  17. Long-term and transient time variation of cosmic ray fluxes detected in Argentina by CARPET cosmic ray detector

    Science.gov (United States)

    De Mendonça, R. R. S.; Raulin, J.-P.; Bertoni, F. C. P.; Echer, E.; Makhmutov, V. S.; Fernandez, G.

    2011-07-01

    We present results obtained at El Leoncito (CASLEO, San Juan, Argentina) with the CARPET charged particles detector installed in April 2006. The observed modulation of the cosmic ray flux is discussed as a function of its time variability and it is related to longer solar activity variations and to shorter variations during solar and geomagnetic transient activity. Short period (few minutes, few hours) cosmic ray modulation events are observed during rain time (precipitation) and significant variations of the atmospheric electric field. Complementary observations of the atmospheric electric field indicate that its time variations play an important role in the detected cosmic ray event.

  18. The ALTA cosmic ray experiment electronics system

    International Nuclear Information System (INIS)

    Brouwer, W.; Burris, W.J.; Caron, B.; Hewlett, J.; Holm, L.; Hamilton, A.; McDonald, W.J.; Pinfold, J.L.; Price, P.; Schaapman, J.R.; Sibley, L.; Soluk, R.A.; Wampler, L.J.

    2005-01-01

    Understanding the origin and propagation of high-energy cosmic rays is a fundamental area of astroparticle physics with major unanswered questions. The study of cosmic rays with energy more than 10 14 eV, probed only by ground-based experiments, has been restricted by the low particle flux. The Alberta Large-area Time-coincidence Array (ALTA) uses a sparse array of cosmic ray detection stations located in high schools across a large geographical area to search for non-random high-energy cosmic ray phenomena. Custom-built ALTA electronics is based on a modular board design. Its function is to control the detectors at each ALTA site allowing precise measurements of event timing and energy in the local detectors as well as time synchronization of all of the sites in the array using the global positioning system

  19. Voids and the Cosmic Web: cosmic depression & spatial complexity

    NARCIS (Netherlands)

    van de Weygaert, Rien; Shandarin, S.; Saar, E.; Einasto, J.

    2016-01-01

    Voids form a prominent aspect of the Megaparsec distribution of galaxies and matter. Not only do theyrepresent a key constituent of the Cosmic Web, they also are one of the cleanest probesand measures of global cosmological parameters. The shape and evolution of voids are highly sensitive tothe

  20. Can cosmic shear shed light on low cosmic microwave background multipoles?

    Science.gov (United States)

    Kesden, Michael; Kamionkowski, Marc; Cooray, Asantha

    2003-11-28

    The lowest multipole moments of the cosmic microwave background (CMB) are smaller than expected for a scale-invariant power spectrum. One possible explanation is a cutoff in the primordial power spectrum below a comoving scale of k(c) approximately equal to 5.0 x 10(-4) Mpc(-1). Such a cutoff would increase significantly the cross correlation between the large-angle CMB and cosmic-shear patterns. The cross correlation may be detectable at >2sigma which, combined with the low CMB moments, may tilt the balance between a 2sigma result and a firm detection of a large-scale power-spectrum cutoff. The cutoff also increases the large-angle cross correlation between the CMB and the low-redshift tracers of the mass distribution.

  1. Muon Production in Relativistic Cosmic-Ray Interactions

    OpenAIRE

    Klein, Spencer

    2009-01-01

    Cosmic-rays with energies up to $3\\times10^{20}$ eV have been observed. The nuclear composition of these cosmic rays is unknown but if the incident nuclei are protons then the corresponding center of mass energy is $\\sqrt{s_{nn}} = 700$ TeV. High energy muons can be used to probe the composition of these incident nuclei. The energy spectra of high-energy ($>$ 1 TeV) cosmic ray induced muons have been measured with deep underground or under-ice detectors. These muons come from pion and kaon de...

  2. High energy cosmic rays: sources and fluxes

    Energy Technology Data Exchange (ETDEWEB)

    Stanev, Todor; Gaisser, Thomas K.; Tilav, Serap

    2014-04-01

    We discuss the production of a unique energy spectrum of the high energy cosmic rays detected with air showers by shifting the energy estimates of different detectors. After such a spectrum is generated we fit the spectrum with three or four populations of cosmic rays that might be accelerated at different cosmic ray sources. We also present the chemical composition that the fits of the spectrum generates and discuss some new data sets presented this summer at the ICRC in Rio de Janeiro that may require new global fits.

  3. Ultra high-energy cosmic ray composition

    International Nuclear Information System (INIS)

    Longley, N.P.

    1993-01-01

    The Soudan 2 surface-underground cosmic ray experiment can simultaneously measure surface shower size, underground muon multiplicity, and underground muon separation for ultra high energy cosmic ray showers. These measurements are sensitive to the primary composition. Analysis for energies from 10 1 to 10 4 TeV favors a light flux consisting of predominantly H and He nuclei

  4. Neutron--neutron logging

    International Nuclear Information System (INIS)

    Allen, L.S.

    1977-01-01

    A borehole logging tool includes a steady-state source of fast neutrons, two epithermal neutron detectors, and two thermal neutron detectors. A count rate meter is connected to each neutron detector. A first ratio detector provides an indication of the porosity of the formation surrounding the borehole by determining the ratio of the outputs of the two count rate meters connected to the two epithermal neutron detectors. A second ratio detector provides an indication of both porosity and macroscopic absorption cross section of the formation surrounding the borehole by determining the ratio of the outputs of the two count rate meters connected to the two thermal neutron detectors. By comparing the signals of the two ratio detectors, oil bearing zones and salt water bearing zones within the formation being logged can be distinguished and the amount of oil saturation can be determined. 6 claims, 2 figures

  5. Ultrahigh Energy Cosmic Rays: Facts, Myths, and Legends

    CERN Document Server

    Anchordoqui, Luis Alfredo

    2013-06-27

    This is a written version of a series of lectures aimed at graduate students in astrophysics/particle theory/particle experiment. In the first part, we explain the important progress made in recent years towards understanding the experimental data on cosmic rays with energies > 10^8 GeV. We begin with a brief survey of the available data, including a description of the energy spectrum, mass composition, and arrival directions. At this point we also give a short overview of experimental techniques. After that, we introduce the fundamentals of acceleration and propagation in order to discuss the conjectured nearby cosmic ray sources, and emphasize some of the prospects for a new (multi-particle) astronomy. Next, we survey the state of the art regarding the ultrahigh energy cosmic neutrinos which should be produced in association with the observed cosmic rays. In the second part, we summarize the phenomenology of cosmic ray air showers. We explain the hadronic interaction models used to extrapolate results from ...

  6. Cosmic string induced CMB maps

    International Nuclear Information System (INIS)

    Landriau, M.; Shellard, E. P. S.

    2011-01-01

    We compute maps of CMB temperature fluctuations seeded by cosmic strings using high resolution simulations of cosmic strings in a Friedmann-Robertson-Walker universe. We create full-sky, 18 deg. and 3 deg. CMB maps, including the relevant string contribution at each resolution from before recombination to today. We extract the angular power spectrum from these maps, demonstrating the importance of recombination effects. We briefly discuss the probability density function of the pixel temperatures, their skewness, and kurtosis.

  7. Cosmic Ray Physics with the IceCube Observatory

    International Nuclear Information System (INIS)

    Kolanoski, H

    2013-01-01

    The IceCube Neutrino Observatory with its 1-km 3 in-ice detector and the 1-km 2 surface detector (IceTop) constitutes a three-dimensional cosmic ray detector well suited for general cosmic ray physics. Various measurements of cosmic ray properties, such as energy spectra, mass composition and anisotropies, have been obtained from analyses of air showers at the surface and/or atmospheric muons in the ice.

  8. Interpreting the cosmic ray composition

    Energy Technology Data Exchange (ETDEWEB)

    O' C Drury, L.; Ellisson, D.C; Meyer, J.-P

    2000-01-31

    The detailed pattern of elemental abundances in the Galactic Cosmic Rays is well determined at energies of a few GeV per nucleon. After correction for propagation effects the inferred source composition shows significant deviations from the standard pattern of Galactic elemental abundances. These deviations, surprisingly overabundances of the heavy elements relative to Hydrogen, are clearly a significant clue to the origin of the cosmic rays, but one which has proven very difficult to interpret. We have recently shown that the 'standard' model for the origin of the bulk of the Galactic cosmic rays, namely acceleration by the diffusive shock acceleration process at the strong shocks associated with supernova remnants, can quantitatively explain all features of the source composition if the acceleration occurs from a dusty interstellar medium. This success must be regarded as one of the stronger pieces of evidence in favour of the standard model.

  9. Cosmic Ray Energetics and Mass

    CERN Multimedia

    Baylon cardiel, J L; Wallace, K C; Anderson, T B; Copley, M

    The cosmic-ray energetics and mass (CREAM) investigation is designed to measure cosmic-ray composition to the supernova energy scale of 10$^{15}$ eV in a series of ultra long duration balloon (ULDB) flights. The first flight is planned to be launched from Antarctica in December 2004. The goal is to observe cosmic-ray spectral features and/or abundance changes that might signify a limit to supernova acceleration. The particle ($\\{Z}$) measurements will be made with a timing-based charge detector and a pixelated silicon charge detector to minimize the effect of backscatter from the calorimeter. The particle energy measurements will be made with a transition radiation detector (TRD) for $\\{Z}$ > 3 and a sampling tungsten/scintillator calorimeter for $\\{Z}$ $\\geq$1 particles, allowing inflight cross calibration of the two detectors. The status of the payload construction and flight preparation are reported in this paper.

  10. Interpreting the cosmic ray composition

    International Nuclear Information System (INIS)

    O'C Drury, L.; Ellisson, D.C; Meyer, J.-P.

    2000-01-01

    The detailed pattern of elemental abundances in the Galactic Cosmic Rays is well determined at energies of a few GeV per nucleon. After correction for propagation effects the inferred source composition shows significant deviations from the standard pattern of Galactic elemental abundances. These deviations, surprisingly overabundances of the heavy elements relative to Hydrogen, are clearly a significant clue to the origin of the cosmic rays, but one which has proven very difficult to interpret. We have recently shown that the 'standard' model for the origin of the bulk of the Galactic cosmic rays, namely acceleration by the diffusive shock acceleration process at the strong shocks associated with supernova remnants, can quantitatively explain all features of the source composition if the acceleration occurs from a dusty interstellar medium. This success must be regarded as one of the stronger pieces of evidence in favour of the standard model

  11. Re/Os cosmochronometer: measurement of neutron cross sections

    International Nuclear Information System (INIS)

    Mosconi, M.

    2007-01-01

    This experimental work is devoted to the improved assessment of the Re/Os cosmochronometer. The dating technique is based on the decay of 187 Re (t 1/2 =41.2 Gyr) into 187 Os and determines the age of the universe by the time of onset of nucleosynthesis. The nucleosynthesis mechanisms, which are responsible for the 187 Re/ 187 Os pair, provide the possibility to identify the radiogenic fraction of 187 Os exclusively by nuclear physics considerations. Apart from its radiogenic component, 187 Os can be synthesized otherwise only by the s process, which means that this missing fraction can be reliably determined and subtracted by proper s-process modeling. On the other hand, 187 Re is almost completely produced by the r process. The only information needed for the interpretation as a cosmic clock is the production rate of 187 Re as a function of time. The accuracy of the s-process calculations that are needed to determine the nucleosynthetic abundance of 187 Os depends on the quality of the neutron capture cross sections averaged over the thermal neutron spectrum at the s-process sites. Laboratory measurements of these cross sections have to be corrected for the effect of nuclear levels, which can be significantly populated at the high stellar temperatures during the s process. The neutron capture cross sections of 186 Os, 187 Os and 188 Os have been measured at the CERN n TOF facility in the range between 0.7 eV and 1 MeV. From these data, Maxwellian averaged cross sections have been determined for thermal energies from 5 to 100 keV with an accuracy around 4%, 3%, and 5% for 186 Os, 187 Os, and 188 Os, respectively. Since, the first excited state in 187 Os occurs at 9.75 keV, the cross section of this isotope requires a substantial correction for thermal population of low lying nuclear levels. This effect has been evaluated on the basis of resonance data derived in the (n, γ) experiments and by an improved measurements of the inelastic scattering cross section for

  12. Cosmic gamma bursts

    International Nuclear Information System (INIS)

    Ehstulin, I.V.

    1980-01-01

    A brief consideration is being given to the history of cosmic gamma burst discovery and modern knowledge of their properties. The time dependence of gamma bursts is described and their possible sources are discussed

  13. Structure formation cosmic rays: Identifying observational constraints

    Directory of Open Access Journals (Sweden)

    Prodanović T.

    2005-01-01

    Full Text Available Shocks that arise from baryonic in-fall and merger events during the structure formation are believed to be a source of cosmic rays. These "structure formation cosmic rays" (SFCRs would essentially be primordial in composition, namely, mostly made of protons and alpha particles. However, very little is known about this population of cosmic rays. One way to test the level of its presence is to look at the products of hadronic reactions between SFCRs and the ISM. A perfect probe of these reactions would be Li. The rare isotope Li is produced only by cosmic rays, dominantly in αα → 6Li fusion reactions with the ISM helium. Consequently, this nuclide provides a unique diagnostic of the history of cosmic rays. Exactly because of this unique property is Li affected most by the presence of an additional cosmic ray population. In turn, this could have profound consequences for the Big-Bang nucleosynthesis: cosmic rays created during cosmic structure formation would lead to pre-Galactic Li production, which would act as a "contaminant" to the primordial 7Li content of metalpoor halo stars. Given the already existing problem of establishing the concordance between Li observed in halo stars and primordial 7Li as predicted by the WMAP, it is crucial to set limits to the level of this "contamination". However, the history of SFCRs is not very well known. Thus we propose a few model-independent ways of testing the SFCR species and their history, as well as the existing lithium problem: 1 we establish the connection between gamma-ray and Li production, which enables us to place constraints on the SFCR-made lithium by using the observed Extragalactic Gamma-Ray Background (EGRB; 2 we propose a new site for testing the primordial and SFCR-made lithium, namely, low-metalicity High-Velocity Clouds (HVCs, which retain the pre-Galactic composition without any significant depletion. Although using one method alone may not give us strong constraints, using them in

  14. Air crew exposure to cosmic radiation. New analysis, recommendations EURADOS

    International Nuclear Information System (INIS)

    Spurny, F.; Votockova, I.

    1995-01-01

    Cosmic radiation on the board of an aircraft consist of two components: directly ionizing radiation (electron, proton - low LET) and neutrons (high LET). Neither composition nor the energy spectrum of usual on-Earth calibration sources ( 60 Co, 252 Cf) do not correspond to the field on a board. Therefore high energy reference fields behind shielding high energy accelerator at CERN and Dubna have been created and intensively studied. Their typical characteristics following from the results of our measurements were obtained. In-flight measurements on the board of commercial aircraft have been realized since 1991 during about 20 flights, Flight routes extended from the 1.3 grad N up to about 65 grad N, flying altitudes varied from 8.2 km to 12.5 km. The exposure level due to galactic cosmic radiation is inversely proportional to the solar activity. Some radiation protection aspects were concluded: (a) The usual limits of annual air crew flight hours correspond at 11.3 km to about 4 mSv per year, with new ICRP conversion factors to about 5 mSv per year; (b) Monthly flight hours limit does not exclude that the exposure of a pregnant women can exceed 1 mSv during this period; (c) The air crew exposure should therefore be checked, controlled a nd administered as conscientiously as for any other group of occupationally exposed persons. A Working group 11 of EURADOS 'Exposure of air crew to cosmic radiation' has been formed (1992-1995) to prepare basic analysis and recommendations concerning the topics. The basic recommendations are the following: (a) air crew flying routinely at altitudes over 8 km are deemed to be category B workers, it is therefore important to estimate, record, control and, where necessary, to limit the doses; (b) the preferred procedure in order to estimate doses to air crew or frequent flyers is to determine route doses and fold these data with data on staff rostering; (c) where doses may exceed the limit for category B workers (6 mSv per year), on

  15. 14. European cosmic ray symposium. Symposium program and abstracts

    International Nuclear Information System (INIS)

    1994-08-01

    The abstracts of the 14. European Cosmic Ray Symposium are presented. The papers cover a large variety of topics in cosmic ray physics, both from the theoretical and the experimental point of view. Sun physics, and the effects on the inner heliosphere, the composition, and the properties of the primary and secondary cosmic radiation, galactic acceleration and the results of accelerator physics relevant to cosmic radiation physics, and the description and the results of large detector systems are presented. 63 items are indexed for INIS database. (K.A.)

  16. Cosmic Censorship for Gowdy Spacetimes.

    Science.gov (United States)

    Ringström, Hans

    2010-01-01

    Due to the complexity of Einstein's equations, it is often natural to study a question of interest in the framework of a restricted class of solutions. One way to impose a restriction is to consider solutions satisfying a given symmetry condition. There are many possible choices, but the present article is concerned with one particular choice, which we shall refer to as Gowdy symmetry. We begin by explaining the origin and meaning of this symmetry type, which has been used as a simplifying assumption in various contexts, some of which we shall mention. Nevertheless, the subject of interest here is strong cosmic censorship. Consequently, after having described what the Gowdy class of spacetimes is, we describe, as seen from the perspective of a mathematician, what is meant by strong cosmic censorship. The existing results on cosmic censorship are based on a detailed analysis of the asymptotic behavior of solutions. This analysis is in part motivated by conjectures, such as the BKL conjecture, which we shall therefore briefly describe. However, the emphasis of the article is on the mathematical analysis of the asymptotics, due to its central importance in the proof and in the hope that it might be of relevance more generally. The article ends with a description of the results that have been obtained concerning strong cosmic censorship in the class of Gowdy spacetimes.

  17. How to detect the cosmic neutrino background?

    International Nuclear Information System (INIS)

    Ringwald, A.

    2003-01-01

    A measurement of the big bang relic neutrinos would open a new window to the early universe. We review various possibilities to detect this cosmic neutrino background and substantiate the assertion that - apart from the rather indirect evidence to be gained from cosmology and large-scale structure formation - the annihilation of ultrahigh energy cosmic neutrinos with relic anti-neutrinos (or vice versa) on the Z-resonance is a unique process having sensitivity to the relic neutrinos, if a sufficient flux at E ν i res =M Z 2 /(2m ν i )=4.10 22 eV (0.1 eV/m ν i ) exists. The associated absorption dips in the ultrahigh energy cosmic neutrino spectrum may be searched for at forthcoming neutrino and air shower detectors. The associated protons and photons may have been seen already in form of the cosmic ray events above the Greisen-Zatsepin-Kuzmin cutoff. (orig.)

  18. Comparing cosmic web classifiers using information theory

    Energy Technology Data Exchange (ETDEWEB)

    Leclercq, Florent [Institute of Cosmology and Gravitation (ICG), University of Portsmouth, Dennis Sciama Building, Burnaby Road, Portsmouth PO1 3FX (United Kingdom); Lavaux, Guilhem; Wandelt, Benjamin [Institut d' Astrophysique de Paris (IAP), UMR 7095, CNRS – UPMC Université Paris 6, Sorbonne Universités, 98bis boulevard Arago, F-75014 Paris (France); Jasche, Jens, E-mail: florent.leclercq@polytechnique.org, E-mail: lavaux@iap.fr, E-mail: j.jasche@tum.de, E-mail: wandelt@iap.fr [Excellence Cluster Universe, Technische Universität München, Boltzmannstrasse 2, D-85748 Garching (Germany)

    2016-08-01

    We introduce a decision scheme for optimally choosing a classifier, which segments the cosmic web into different structure types (voids, sheets, filaments, and clusters). Our framework, based on information theory, accounts for the design aims of different classes of possible applications: (i) parameter inference, (ii) model selection, and (iii) prediction of new observations. As an illustration, we use cosmographic maps of web-types in the Sloan Digital Sky Survey to assess the relative performance of the classifiers T-WEB, DIVA and ORIGAMI for: (i) analyzing the morphology of the cosmic web, (ii) discriminating dark energy models, and (iii) predicting galaxy colors. Our study substantiates a data-supported connection between cosmic web analysis and information theory, and paves the path towards principled design of analysis procedures for the next generation of galaxy surveys. We have made the cosmic web maps, galaxy catalog, and analysis scripts used in this work publicly available.

  19. Comparing cosmic web classifiers using information theory

    International Nuclear Information System (INIS)

    Leclercq, Florent; Lavaux, Guilhem; Wandelt, Benjamin; Jasche, Jens

    2016-01-01

    We introduce a decision scheme for optimally choosing a classifier, which segments the cosmic web into different structure types (voids, sheets, filaments, and clusters). Our framework, based on information theory, accounts for the design aims of different classes of possible applications: (i) parameter inference, (ii) model selection, and (iii) prediction of new observations. As an illustration, we use cosmographic maps of web-types in the Sloan Digital Sky Survey to assess the relative performance of the classifiers T-WEB, DIVA and ORIGAMI for: (i) analyzing the morphology of the cosmic web, (ii) discriminating dark energy models, and (iii) predicting galaxy colors. Our study substantiates a data-supported connection between cosmic web analysis and information theory, and paves the path towards principled design of analysis procedures for the next generation of galaxy surveys. We have made the cosmic web maps, galaxy catalog, and analysis scripts used in this work publicly available.

  20. Cosmogenic nuclides in recently fallen meteorites: Evidence for galactic cosmic ray variations during the period 1967--1978

    International Nuclear Information System (INIS)

    Evans, J.C.; Reeves, J.H.; Rancitelli, L.A.; Bogard, D.D.

    1982-01-01

    Cosmogenic radionuclides were measured on 48 fragments of 24 meteorites which fell between 1967 and 1978. Nondestructive gamma counting techniques were used to obtain data on 7 Be, 46 Sc, 48 V, 51 Cr, 54 Mn, 56 Co, 57 Co, 58 Co, and 60 Co on at least some of the samples. Sodium 22 and 26 Al measurements are reported on all 48 samples. In addition, new rare gas data and exposure ages are reported for the meteorites Guibga, Gorlovka, Dhajala, Louisville, Acapulco, Jilin, Kabo, Alta-Ameen, and Canon City. The cosmogenic radioisotope and rare gas data are interpreted in terms of a time dependent modulation of galactic cosmic rays spanning one full 11 year sun spot cycle. Special attention is given to the data on 22 Na, 46 Sc, 54 Mn, and 48 V with either 26 Al or 22 Ne/ 21 Ne used to provide a shielding correction. The shielding normalized data using the 26 Al method appear to correlate well with calculated production rates scaled against the Deep River neutron monitor. The data for the four isotopes are consistent with a production rate variation of a factor of 2.5--3 between solar maximum and solar minimum for sun spot cycle 20. These data demonstrate that the production rates of cosmic ray-produced nuclides in meteorites vary considerably according to modulation by the 11-year solar cycle and support the concept that variations of solar-modulated, cosmic ray flux of similar magnitude have occurred over much longer time periods

  1. Effect of local perturbations of the geomagnetic field on cosmic ray cutoff rigidities at Jungfraujoch and Kiel

    International Nuclear Information System (INIS)

    Flueckiger, E.O.; Smart, D.F.; Shea, M.A.

    1983-01-01

    We have investigated the effect of local perturbations of the geomagnetic field on the vertical cosmic ray cutoff rigidities at Jungfraujoch and Kiel as representative mid-latitude neutron monitor stations. The main, effective, and Stoermer vertical cutoff rigidities and their changes were determined by utilizing the trajectory-tracing technique in a magnetic field which is modeled as a simple dipole field to which the disturbance field is superposed. It was found that the cosmic ray cutoff rigidities are most sensitive to variations of the z component of the geomagnetic field at geomagnetic latitudes -20 0 0 and at longitudes within 90 0 to the east of these northern hemisphere stations. Furthermore, cutoff rigidity variations at Kiel are predominantly due to changes of the geomagnetic field within geocentric distances 2.5R/sub E/< r<6R/sub E/, whereas at Jungfraujoch changes in cutoff rigidities are caused almost exclusively by magnetic disturbances within 1R/sub E/< r<4.5R/sub E/. For both locations the dependence of the main, effective, and Stoermer vertical cutoff rigidities on the radial, latitudinal and longitudinal structure of the magnetic perturbations is given explicitly. The results are discussed with respect to the theory by Treiman (1953) describing the effect of a ring current on cosmic ray cutoff rigidities. It is also shown that for the analysis of the characteristic properties of the correlation between cutoff rigidity variations and specific geomagnetic perturbations the rigidity corresponding to the first ''discontinuity band'' of the rigidity spectrum is an extremely useful parameter

  2. Cosmic microwave background theory

    Science.gov (United States)

    Bond, J. Richard

    1998-01-01

    A long-standing goal of theorists has been to constrain cosmological parameters that define the structure formation theory from cosmic microwave background (CMB) anisotropy experiments and large-scale structure (LSS) observations. The status and future promise of this enterprise is described. Current band-powers in ℓ-space are consistent with a ΔT flat in frequency and broadly follow inflation-based expectations. That the levels are ∼(10−5)2 provides strong support for the gravitational instability theory, while the Far Infrared Absolute Spectrophotometer (FIRAS) constraints on energy injection rule out cosmic explosions as a dominant source of LSS. Band-powers at ℓ ≳ 100 suggest that the universe could not have re-ionized too early. To get the LSS of Cosmic Background Explorer (COBE)-normalized fluctuations right provides encouraging support that the initial fluctuation spectrum was not far off the scale invariant form that inflation models prefer: e.g., for tilted Λ cold dark matter sequences of fixed 13-Gyr age (with the Hubble constant H0 marginalized), ns = 1.17 ± 0.3 for Differential Microwave Radiometer (DMR) only; 1.15 ± 0.08 for DMR plus the SK95 experiment; 1.00 ± 0.04 for DMR plus all smaller angle experiments; 1.00 ± 0.05 when LSS constraints are included as well. The CMB alone currently gives weak constraints on Λ and moderate constraints on Ωtot, but theoretical forecasts of future long duration balloon and satellite experiments are shown which predict percent-level accuracy among a large fraction of the 10+ parameters characterizing the cosmic structure formation theory, at least if it is an inflation variant. PMID:9419321

  3. Carl Sagan's Cosmic Connection

    Science.gov (United States)

    Sagan, Carl; Agel, Jerome

    2000-08-01

    Foreword Freeman Dyson; Personal reflections Ann Druyan; Preface; Part I. Cosmic Perspective: 1. A transitional animal; 2. The Unicorn of Cetus; 3. A message from earth; 4. A message to earth; 5. Experiments in utopias; 6. Chauvinism; 7. Space exploration as a human enterprise I. The scientific interest; 8. Space exploration as a human enterprise II. The public interest; 9. Space exploration as a human enterprise III. The historical interest; Part II. The Solar System: 10. On teaching the first grade; 11. 'The ancient and legendary Gods of old'; 12. The Venus detective story; 13. Venus is hell; 14. Science and 'intelligence'; 15. The moons of Barsoom; 16. The mountains of Mars I. Observations from earth; 17. The mountains of Mars II. Observations from space; 18. The canals of Mars; 19. The lost pictures of Mars; 20. The Ice Age and the cauldron; 21. Beginnings and ends of the Earth; 22. Terraforming the plants; 23. The exploration and utlization of the solar system; Part III. Beyond the Solar System: 24. Some of my best friends are dolphins; 25. 'Hello, central casting? Send me twenty extraterrestrials'; 26. The cosmic connection; 27. Extraterrestrial life: an idea whose time has come; 28. Has the Earth been visited?; 29. A search strategy for detecting extraterrestrial intelligence; 30. If we succeed 31. Cables, drums, and seashells; 32. The night freight to the stars; 33. Astroengineering; 34. Twenty questions: a classification of cosmic civilisations; 35. Galactic cultural exchanges; 36. A passage to elsewhere; 37. Starfolk I. A Fable; 38. Starfolk II. A future; 39. Starfolk III. The cosmic Cheshire cats; Epilog David Morrison; Index.

  4. Isotherms clustering in cosmic microwave background

    International Nuclear Information System (INIS)

    Bershadskii, A.

    2006-01-01

    Isotherms clustering in cosmic microwave background (CMB) has been studied using the 3-year WMAP data on cosmic microwave background radiation. It is shown that the isotherms clustering could be produced by the baryon-photon fluid turbulence in the last scattering surface. The Taylor-microscale Reynolds number of the turbulence is estimated directly from the CMB data as Re λ ∼10 2

  5. Neutronics of pulsed spallation neutron sources

    CERN Document Server

    Watanabe, N

    2003-01-01

    Various topics and issues on the neutronics of pulsed spallation neutron sources, mainly for neutron scattering experiments, are reviewed to give a wide circle of readers a better understanding of these sources in order to achieve a high neutronic performance. Starting from what neutrons are needed, what the spallation reaction is and how to produce slow-neutrons more efficiently, the outline of the target and moderator neutronics are explained. Various efforts with some new concepts or ideas have already been devoted to obtaining the highest possible slow-neutron intensity with desired pulse characteristics. This paper also reviews the recent progress of such efforts, mainly focused on moderator neutronics, since moderators are the final devices of a neutron source, which determine the source performance. Various governing parameters for neutron-pulse characteristics such as material issues, geometrical parameters (shape and dimensions), the target-moderator coupling scheme, the ortho-para-hydrogen ratio, po...

  6. Cosmic censorship, black holes, and particle orbits

    International Nuclear Information System (INIS)

    Hiscock, W.A.

    1979-01-01

    One of the main reasons for believing in the cosmic censorship hypothesis is the disquieting nature of the alternative: the existence of naked singularities, and hence loss of predictability, the possibility of closed timelike lines and so forth. The consequences of assuming the cosmic hypothesis can also be somewhat strange and unexpected. In particular, Hawking's black hole area theorem is applied to the study of particle orbits near a Schwarzschild black hole. If the cosmic censorship hypothesis (and hence the area theorem) is true, then there exist stable near-circular orbits arbitrarily close to the horizon at r = 2M. (author)

  7. Cosmic-ray antimatter - A primary origin hypothesis

    Science.gov (United States)

    Stecker, F. W.; Protheroe, R. J.; Kazanas, D.

    1983-01-01

    The present investigation is concerned with the possibility that the observed cosmic-ray protons are of primary extragalactic origin, taking into account the significance of the current antiproton data. Attention is given to questions regarding primary antiprotons, antihelium fluxes, and the propagation of extragalactic cosmic rays. It is concluded that the primary origin hypothesis should be considered as a serious alternative explanation for the cosmic-ray antiproton fluxes. Such extragalactic primary origin can be considered in the context of a baryon symmetric domain cosmology. The fluxes and propagation characteristics suggested are found to be in rough agreement with the present antiproton data.

  8. Wavelet-Bayesian inference of cosmic strings embedded in the cosmic microwave background

    Science.gov (United States)

    McEwen, J. D.; Feeney, S. M.; Peiris, H. V.; Wiaux, Y.; Ringeval, C.; Bouchet, F. R.

    2017-12-01

    Cosmic strings are a well-motivated extension to the standard cosmological model and could induce a subdominant component in the anisotropies of the cosmic microwave background (CMB), in addition to the standard inflationary component. The detection of strings, while observationally challenging, would provide a direct probe of physics at very high-energy scales. We develop a framework for cosmic string inference from observations of the CMB made over the celestial sphere, performing a Bayesian analysis in wavelet space where the string-induced CMB component has distinct statistical properties to the standard inflationary component. Our wavelet-Bayesian framework provides a principled approach to compute the posterior distribution of the string tension Gμ and the Bayesian evidence ratio comparing the string model to the standard inflationary model. Furthermore, we present a technique to recover an estimate of any string-induced CMB map embedded in observational data. Using Planck-like simulations, we demonstrate the application of our framework and evaluate its performance. The method is sensitive to Gμ ∼ 5 × 10-7 for Nambu-Goto string simulations that include an integrated Sachs-Wolfe contribution only and do not include any recombination effects, before any parameters of the analysis are optimized. The sensitivity of the method compares favourably with other techniques applied to the same simulations.

  9. Cosmic strings in a braneworld theory with metastable gravitons

    International Nuclear Information System (INIS)

    Lue, Arthur

    2002-01-01

    If the graviton possesses an arbitrarily small (but nonvanishing) mass, perturbation theory implies that cosmic strings have a nonzero Newtonian potential. Nevertheless in Einstein gravity, where the graviton is strictly massless, the Newtonian potential of a cosmic string vanishes. This discrepancy is an example of the van Dam-Veltman-Zakharov (VDVZ) discontinuity. We present a solution for the metric around a cosmic string in a braneworld theory with a graviton metastable on the brane. This theory possesses those features that yield a VDVZ discontinuity in massive gravity, but nevertheless is generally covariant and classically self-consistent. Although the cosmic string in this theory supports a nontrivial Newtonian potential far from the source, one can recover the Einstein solution in a region near the cosmic string. That latter region grows as the graviton's effective linewidth vanishes (analogous to a vanishing graviton mass), suggesting the lack of a VDVZ discontinuity in this theory. Moreover, the presence of scale dependent structure in the metric may have consequences for the search for cosmic strings through gravitational lensing techniques

  10. Current constraints on the cosmic growth history

    International Nuclear Information System (INIS)

    Bean, Rachel; Tangmatitham, Matipon

    2010-01-01

    We present constraints on the cosmic growth history with recent cosmological data, allowing for deviations from ΛCDM as might arise if cosmic acceleration is due to modifications to general relativity or inhomogeneous dark energy. We combine measures of the cosmic expansion history, from Type 1a supernovae, baryon acoustic oscillations, and the cosmic microwave background (CMB), with constraints on the growth of structure from recent galaxy, CMB, and weak lensing surveys along with integated Sachs Wolfe-galaxy cross correlations. Deviations from ΛCDM are parameterized by phenomenological modifications to the Poisson equation and the relationship between the two Newtonian potentials. We find modifications that are present at the time the CMB is formed are tightly constrained through their impact on the well-measured CMB acoustic peaks. By contrast, constraints on late-time modifications to the growth history, as might arise if modifications are related to the onset of cosmic acceleration, are far weaker, but remain consistent with ΛCDM at the 95% confidence level. For these late-time modifications we find that differences in the evolution on large and small scales could provide an interesting signature by which to search for modified growth histories with future wide angular coverage, large scale structure surveys.

  11. Xenia: A Probe of Cosmic Chemical Evolution

    Science.gov (United States)

    Kouveliotou, Chryssa; Piro, L.

    2008-01-01

    Xenia is a concept study for a medium-size astrophysical cosmology mission addressing the Cosmic Origins key objective of NASA's Science Plan. The fundamental goal of this objective is to understand the formation and evolution of structures on various scales from the early Universe to the present time (stars, galaxies and the cosmic web). Xenia will use X-and y-ray monitoring and wide field X-ray imaging and high-resolution spectroscopy to collect essential information from three major tracers of these cosmic structures: the Warm Hot Intergalactic Medium (WHIM), Galaxy Clusters and Gamma Ray Bursts (GRBs). Our goal is to trace the chemo-dynamical history of the ubiquitous warm hot diffuse baryon component in the Universe residing in cosmic filaments and clusters of galaxies up to its formation epoch (at z =0-2) and to map star formation and galaxy metal enrichment into the re-ionization era beyond z 6. The concept of Xenia (Greek for "hospitality") evolved in parallel with the Explorer of Diffuse Emission and GRB Explosions (EDGE), a mission proposed by a multinational collaboration to the ESA Cosmic Vision 2015. Xenia incorporates the European and Japanese collaborators into a U.S. led mission that builds on the scientific objectives and technological readiness of EDGE.

  12. Xenia: A Probe of Cosmic Chemical Evolution

    Science.gov (United States)

    Kouveliotou, Chryssa; Piro, L.; Xenia Collaboration

    2008-03-01

    Xenia is a concept study for a medium-size astrophysical cosmology mission addressing the Cosmic Origins key objective of NASA's Science Plan. The fundamental goal of this objective is to understand the formation and evolution of structures on various scales from the early Universe to the present time (stars, galaxies and the cosmic web). Xenia will use X-and γ-ray monitoring and wide field X-ray imaging and high-resolution spectroscopy to collect essential information from three major tracers of these cosmic structures: the Warm Hot Intergalactic Medium (WHIM), Galaxy Clusters and Gamma Ray Bursts (GRBs). Our goal is to trace the chemo-dynamical history of the ubiquitous warm hot diffuse baryon component in the Universe residing in cosmic filaments and clusters of galaxies up to its formation epoch (at z =0-2) and to map star formation and galaxy metal enrichment into the re-ionization era beyond z 6. The concept of Xenia (Greek for "hospitality") evolved in parallel with the Explorer of Diffuse Emission and GRB Explosions (EDGE), a mission proposed by a multinational collaboration to the ESA Cosmic Vision 2015. Xenia incorporates the European and Japanese collaborators into a U.S. led mission that builds on the scientific objectives and technological readiness of EDGE.

  13. The Cosmic Ray Tracking (CRT) detector system

    International Nuclear Information System (INIS)

    Bernloehr, K.; Gamp, S.; Hermann, G.; Hofmann, W.; Kihm, T.; Knoeppler, J.; Leffers, G.; Matheis, V.; Panter, M.; Trunk, U.; Ulrich, M.; Wolf, T.; Zink, R.; Heintze, J.

    1996-01-01

    The Cosmic Ray Tracking (CRT) project represents a study on the use of tracking detectors of the time projection chamber type to detect secondary cosmic ray particles in extensive air showers. In reconstructing the arrival direction of the primary cosmic ray particles, the CRT detectors take advantage of the angular correlation of secondary particles with the cosmic rays leading to these air showers. In this paper, the detector hardware including the custom-designed electronics system is described in detail. A CRT detector module provides an active area of 2.5 m 2 and allows to measure track directions with a precision of 0.4 circle . It consists of two circular drift chambers of 1.8 m diameter with six sense wires each, and a 10 cm thick iron plate between the two chambers. Each detector has a local electronics box with a readout, trigger, and monitoring system. The detectors can distinguish penetrating muons from other types of charged secondaries. A large detector array could be used to search for γ-ray point sources at energies above several TeV and for studies of the cosmic-ray composition. Ten detectors are in operation at the site of the HEGRA air shower array. (orig.)

  14. The Cosmic Microwave Background Anisotropy

    Science.gov (United States)

    Bennett, C. L.

    1994-12-01

    The properties of the cosmic microwave background radiation provide unique constraints on the history and evolution of the universe. The first detection of anisotropy of the microwave radiation was reported by the COBE Team in 1992, based on the first year of flight data. The latest analyses of the first two years of COBE data are reviewed in this talk, including the amplitude of the microwave anisotropy as a function of angular scale and the statistical nature of the fluctuations. The two-year results are generally consistent with the earlier first year results, but the additional data allow for a better determination of the key cosmological parameters. In this talk the COBE results are compared with other observational anisotropy results and directions for future cosmic microwave anisotropy observations will be discussed. The National Aeronautics and Space Administration/Goddard Space Flight Center (NASA/GSFC) is responsible for the design, development, and operation of the Cosmic Background Explorer (COBE). Scientific guidance is provided by the COBE Science Working Group.

  15. Neutronics of pulsed spallation neutron sources

    International Nuclear Information System (INIS)

    Watanabe, Noboru

    2003-01-01

    Various topics and issues on the neutronics of pulsed spallation neutron sources, mainly for neutron scattering experiments, are reviewed to give a wide circle of readers a better understanding of these sources in order to achieve a high neutronic performance. Starting from what neutrons are needed, what the spallation reaction is and how to produce slow-neutrons more efficiently, the outline of the target and moderator neutronics are explained. Various efforts with some new concepts or ideas have already been devoted to obtaining the highest possible slow-neutron intensity with desired pulse characteristics. This paper also reviews the recent progress of such efforts, mainly focused on moderator neutronics, since moderators are the final devices of a neutron source, which determine the source performance. Various governing parameters for neutron-pulse characteristics such as material issues, geometrical parameters (shape and dimensions), the target-moderator coupling scheme, the ortho-para-hydrogen ratio, poisoning, etc are discussed, aiming at a high performance pulsed spallation source

  16. Search for antimatter in 1012 eV cosmic rays using Artemis method and interpretation of the cosmic rays spectrum

    International Nuclear Information System (INIS)

    Pomarede, D.

    1999-04-01

    This thesis is divided into three parts. The first part is a review of the present knowledge of the antimatter and of the cosmic rays. Theoretical and experimental aspects are presented. It is demonstrated that a measurement of the antimatter abundance in TeV cosmic rays is of fundamental interest, and would establish the symmetric or asymmetric nature of the Universe. The second part is dedicated to the method of antimatter research through the Earth Moon ion spectrometer (ARTEMIS). The account is given of the winter 1996-97 41-nights observation campaign undertaken at the Whipple Observatory in Arizona (USA). A 109 photomultiplier camera is operated on the 40 meter telescope to detect by Cherenkov imaging the cosmic ray initiated showers. We describe the performance of an optical filter used to reduce the noise. The development and the utilization of a simulation program are described. The main work is the analysis of the data: data characterization, understanding of the apparatus, understanding of the noise and its influence, calibration, search for signals by different methods. Subtle systematic effects are uncovered. The simulations establish that the amount of data is insufficient to reveal a shadow effect in the cosmic ray flux. The conclusion of this work is that the experimental setup was not suitable, and we propose important improvements of the method based on a bigger focal plane that would allow to reach a one percent sensitivity on the antimatter content of the cosmic rays. In the third part of the thesis, an interpretation of the total cosmic ray spectrum is proposed and discussed. (author)

  17. Interstellar propagation of low energy cosmic rays

    International Nuclear Information System (INIS)

    Cesarsky, C.J.

    1975-01-01

    Wave particles interactions prevent low energy cosmic rays from propagating at velocities much faster than the Alfven velocity, reducing their range by a factor of order 50. Therefore, supernovae remnants cannot fill the neutral portions of the interstellar medium with 2 MeV cosmic rays [fr

  18. Effects of atmospheric neutrons on advanced micro-electronic devices, standards and applications

    International Nuclear Information System (INIS)

    Leray, J.L.; Baggio, J.; Ferlet-Cavrois, V.; Flament, O.

    2005-01-01

    Since the 1980's, it is known that terrestrial cosmic rays, mainly reported as atmospheric neutrons, can penetrate the natural shielding of buildings, equipments and circuit package and induce soft errors in integrated circuits and breakdown of power devices. The high-energy neutron fluxes of interest, larger than 10 MeV, range between 10 particles/cm 2 /hour at sea level and 10 4 particles/cm 2 /hour at typical airplanes flight altitude of 30000 feet, with modulation due to solar flares. In the 1990's, the phenomenon has pervaded as a consequence of the road-map of electronic devices especially the down-scaling of transistor dimensions, the increase of signal bandwidth and the increase of the size of DRAM and SRAM memory, stand-alone or embedded on processors and system-on-chips. Failure-in-time and soft error rate became unacceptable. Test standards and design solutions have been proposed to maintain reliability of commercial products and improve those used in special high-reliability equipments such as avionic computers. The paper describes the atmospheric neutron flux, the effects in the main classes of devices and specific cases such as neutron induced single event upset observed in CMOS vs. CMOS/SOI and some mitigation issues. In this paper, a model called CCPM (critical cross-point model) is proposed to provide critical graphs of technology node sensitivity along the scaling trend of CMOS. (authors)

  19. Cosmic radiation doses at flight level altitudes of airliners

    International Nuclear Information System (INIS)

    Viragh, E.; Petr, I.

    1985-01-01

    Changes are discussed in flux density of cosmic radiation particles with time as are the origin of cosmic radiation, the level of cosmic radiation near the Earth's surface, and the determination of cosmic radiation doses in airliners. Doses and dose rates are given measured on different flight routes. In spite of the fact that the flight duration at an altitude of about 10 km makes for about 80% of the total flight time, the overall radiation burden of the crews at 1000 flight hours a year is roughly double that of the rest of the population. (J.C.)

  20. Standard Cosmic Ray Energetics and Light Element Production

    CERN Document Server

    Fields, B D; Cassé, M; Vangioni-Flam, E; Fields, Brian D.; Olive, Keith A.; Casse, Michel; Vangioni-Flam, Elisabeth

    2001-01-01

    The recent observations of Be and B in metal poor stars has led to a reassessment of the origin of the light elements in the early Galaxy. At low it is metallicity ([O/H] < -1.75), it is necessary to introduce a production mechanism which is independent of the interstellar metallicity (primary). At higher metallicities, existing data might indicate that secondary production is dominant. In this paper, we focus on the secondary process, related to the standard Galactic cosmic rays, and we examine the cosmic ray energy requirements for both present and past epochs. We find the power input to maintain the present-day Galactic cosmic ray flux is about 1.5e41 erg/s = 5e50 erg/century. This implies that, if supernovae are the sites of cosmic ray acceleration, the fraction of explosion energy going to accelerated particles is about 30%, a value which we obtain consistently both from considering the present cosmic ray flux and confinement and from the present 9Be and 6Li abundances. Using the abundances of 9Be (an...