WorldWideScience

Sample records for cosine varying diffuse

  1. A method for optimizing the cosine response of solar UV diffusers

    Science.gov (United States)

    Pulli, Tomi; Kärhä, Petri; Ikonen, Erkki

    2013-07-01

    Instruments measuring global solar ultraviolet (UV) irradiance at the surface of the Earth need to collect radiation from the entire hemisphere. Entrance optics with angular response as close as possible to the ideal cosine response are necessary to perform these measurements accurately. Typically, the cosine response is obtained using a transmitting diffuser. We have developed an efficient method based on a Monte Carlo algorithm to simulate radiation transport in the solar UV diffuser assembly. The algorithm takes into account propagation, absorption, and scattering of the radiation inside the diffuser material. The effects of the inner sidewalls of the diffuser housing, the shadow ring, and the protective weather dome are also accounted for. The software implementation of the algorithm is highly optimized: a simulation of 109 photons takes approximately 10 to 15 min to complete on a typical high-end PC. The results of the simulations agree well with the measured angular responses, indicating that the algorithm can be used to guide the diffuser design process. Cost savings can be obtained when simulations are carried out before diffuser fabrication as compared to a purely trial-and-error-based diffuser optimization. The algorithm was used to optimize two types of detectors, one with a planar diffuser and the other with a spherically shaped diffuser. The integrated cosine errors—which indicate the relative measurement error caused by the nonideal angular response under isotropic sky radiance—of these two detectors were calculated to be f2=1.4% and 0.66%, respectively.

  2. Development of sine/cosine coil based on cross-section modulation

    International Nuclear Information System (INIS)

    Harada, Takahiro; Kondoh, Junji; Tsuji-Iio, Shunji; Shimada, Ryuichi

    1996-01-01

    New type sine and cosine coils whose areas of cross sections vary as sine and cosine are proposed. The measurements of current position by the new coils showed their availability. Traditional sine or cosine coil is wound with a pitch which varies as sine or cosine. However these coils have a problem of manufacturing, i.e. it is not easy to wind wire exactly with a pitch of sine or cosine. This new modulation, i.e. varying cross section, provides handy and accurate measurements of the current position. (author)

  3. Sines and Cosines. Part 1 of 3

    Science.gov (United States)

    Apostol, Tom M. (Editor)

    1992-01-01

    Applying the concept of similarities, the mathematical principles of circular motion and sine and cosine waves are presented utilizing both film footage and computer animation in this 'Project Mathematics' series video. Concepts presented include: the symmetry of sine waves; the cosine (complementary sine) and cosine waves; the use of sines and cosines on coordinate systems; the relationship they have to each other; the definitions and uses of periodic waves, square waves, sawtooth waves; the Gibbs phenomena; the use of sines and cosines as ratios; and the terminology related to sines and cosines (frequency, overtone, octave, intensity, and amplitude).

  4. Neutrosophic Refined Similarity Measure Based on Cosine Function

    Directory of Open Access Journals (Sweden)

    Said Broumi

    2014-12-01

    Full Text Available In this paper, the cosine similarity measure of neutrosophic refined (multi- sets is proposed and its properties are studied. The concept of this cosine similarity measure of neutrosophic refined sets is the extension of improved cosine similarity measure of single valued neutrosophic. Finally, using this cosine similarity measure of neutrosophic refined set, the application of medical diagnosis is presented.

  5. Hyperbolic Cross Truncations for Stochastic Fourier Cosine Series

    Science.gov (United States)

    Zhang, Zhihua

    2014-01-01

    Based on our decomposition of stochastic processes and our asymptotic representations of Fourier cosine coefficients, we deduce an asymptotic formula of approximation errors of hyperbolic cross truncations for bivariate stochastic Fourier cosine series. Moreover we propose a kind of Fourier cosine expansions with polynomials factors such that the corresponding Fourier cosine coefficients decay very fast. Although our research is in the setting of stochastic processes, our results are also new for deterministic functions. PMID:25147842

  6. On d -Dimensional Lattice (co)sine n -Algebra

    International Nuclear Information System (INIS)

    Yao Shao-Kui; Zhang Chun-Hong; Zhao Wei-Zhong; Ding Lu; Liu Peng

    2016-01-01

    We present the (co)sine n-algebra which is indexed by the d-dimensional integer lattice. Due to the associative operators, this generalized (co)sine n-algebra is the higher order Lie algebra for the n even case. The particular cases are the d-dimensional lattice sine 3 and cosine 5-algebras with the special parameter values. We find that the corresponding d-dimensional lattice sine 3 and cosine 5-algebras are the Nambu 3-algebra and higher order Lie algebra, respectively. The limiting case of the d-dimensional lattice (co)sine n-algebra is also discussed. Moreover we construct the super sine n-algebra, which is the super higher order Lie algebra for the n even case. (paper)

  7. Improved cosine similarity measures of simplified neutrosophic sets for medical diagnoses.

    Science.gov (United States)

    Ye, Jun

    2015-03-01

    In pattern recognition and medical diagnosis, similarity measure is an important mathematical tool. To overcome some disadvantages of existing cosine similarity measures of simplified neutrosophic sets (SNSs) in vector space, this paper proposed improved cosine similarity measures of SNSs based on cosine function, including single valued neutrosophic cosine similarity measures and interval neutrosophic cosine similarity measures. Then, weighted cosine similarity measures of SNSs were introduced by taking into account the importance of each element. Further, a medical diagnosis method using the improved cosine similarity measures was proposed to solve medical diagnosis problems with simplified neutrosophic information. The improved cosine similarity measures between SNSs were introduced based on cosine function. Then, we compared the improved cosine similarity measures of SNSs with existing cosine similarity measures of SNSs by numerical examples to demonstrate their effectiveness and rationality for overcoming some shortcomings of existing cosine similarity measures of SNSs in some cases. In the medical diagnosis method, we can find a proper diagnosis by the cosine similarity measures between the symptoms and considered diseases which are represented by SNSs. Then, the medical diagnosis method based on the improved cosine similarity measures was applied to two medical diagnosis problems to show the applications and effectiveness of the proposed method. Two numerical examples all demonstrated that the improved cosine similarity measures of SNSs based on the cosine function can overcome the shortcomings of the existing cosine similarity measures between two vectors in some cases. By two medical diagnoses problems, the medical diagnoses using various similarity measures of SNSs indicated the identical diagnosis results and demonstrated the effectiveness and rationality of the diagnosis method proposed in this paper. The improved cosine measures of SNSs based on cosine

  8. Improved cosine similarity measures of simplified neutrosophic setsfor medical diagnoses

    OpenAIRE

    Jun Ye

    2014-01-01

    In pattern recognition and medical diagnosis, similarity measure is an important mathematicaltool. To overcome some disadvantages of existing cosine similarity measures of simplified neutrosophicsets (SNSs) in vector space, this paper proposed improved cosine similarity measures of SNSs based oncosine function, including single valued neutrosophic cosine similarity measures and interval neutro-sophic cosine similarity measures. Then, weighted cosine similarity measures of SNSs were introduced...

  9. An optimized cosine-modulated nonuniform filter bank design for subband coding of ECG signal

    Directory of Open Access Journals (Sweden)

    A. Kumar

    2015-07-01

    Full Text Available A simple iterative technique for the design of nonuniform cosine modulated filter banks (CMFBS is presented in this paper. The proposed technique employs a single parameter for optimization. The nonuniform cosine modulated filter banks are derived by merging the adjacent filters of uniform cosine modulated filter banks. The prototype filter is designed with the aid of different adjustable window functions such as Kaiser, Cosh and Exponential, and by using the constrained equiripple finite impulse response (FIR digital filter design technique. In this method, either cut off frequency or passband edge frequency is varied in order to adjust the filter coefficients so that reconstruction error could be optimized/minimized to zero. Performance and effectiveness of the proposed method in terms of peak reconstruction error (PRE, aliasing distortion (AD, computational (CPU time, and number of iteration (NOI have been shown through the numerical examples and comparative studies. Finally, the technique is exploited for the subband coding of electrocardiogram (ECG and speech signals.

  10. Initial performance of the COSINE-100 experiment

    Energy Technology Data Exchange (ETDEWEB)

    Adhikari, G.; Adhikari, P. [Sejong University, Department of Physics, Seoul (Korea, Republic of); Souza, E.B. de; Jo, J.H.; Lim, K.E.; Maruyama, R.H.; Pierpoint, Z.P.; Thompson, W.G. [Yale University, Department of Physics, New Haven, CT (United States); Carlin, N. [University of Sao Paulo, Physics Institute, Sao Paulo (Brazil); Choi, S.; Joo, H.W.; Kim, S.K. [Seoul National University, Department of Physics and Astronomy, Seoul (Korea, Republic of); Choi, W.Q. [Korea Institute of Science and Technology Information, Daejeon (Korea, Republic of); Karlsruher Institut fuer Technologie (KIT), Institut fuer Experimentelle Kernphysik, Eggenstein-Leopoldshafen (Germany); Djamal, M.; Prihtiadi, H. [Bandung Institute of Technology, Department of Physics, Bandung (Indonesia); Ezeribe, A.C.; Kudryavtsev, V.A.; Lynch, W.A.; Mouton, F.; Spooner, N.J.C. [University of Sheffield, Department of Physics and Astronomy, Sheffield (United Kingdom); Ha, C.; Jeon, E.J.; Kang, W.G.; Kim, B.H.; Kim, H.; Kim, K.W.; Kim, N.Y.; Lee, H.S.; Lee, J.; Lee, M.H.; Leonard, D.S.; Olsen, S.L.; Park, H.K.; Park, K.S.; Ra, S.; Yong, S.H. [Institute for Basic Science (IBS), Center for Underground Physics, Daejeon (Korea, Republic of); Hahn, I.S. [Ewha Womans University, Department of Science Education, Seoul (Korea, Republic of); Hubbard, A.J.F. [Yale University, Department of Physics, New Haven, CT (United States); Northwestern University, Department of Physics and Astronomy, Evanston, IL (United States); Kang, W.; Rott, C. [Sungkyunkwan University, Department of Physics, Seoul (Korea, Republic of); Kauer, M. [University of Wisconsin-Madison, Department of Physics and Wisconsin IceCube Particle Astrophysics Center, Madison, WI (United States); Kim, H.J.; Lee, J.Y. [Kyungpook National University, Department of Physics, Daegu (Korea, Republic of); Kim, M.C. [Sungkyunkwan University, Department of Physics, Seoul (Korea, Republic of); Chiba University, Department of Physics, Chiba (Japan); Kim, Y.D. [Sejong University, Department of Physics, Seoul (Korea, Republic of); Institute for Basic Science (IBS), Center for Underground Physics, Daejeon (Korea, Republic of); Kim, Y.H. [Institute for Basic Science (IBS), Center for Underground Physics, Daejeon (Korea, Republic of); Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of); Park, H.S. [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of); Park, J.S. [Institute for Basic Science (IBS), Center for Underground Physics, Daejeon (Korea, Republic of); High Energy Accelerator Research Organization (KEK), Ibaraki (Japan); Pettus, W. [Yale University, Department of Physics, New Haven, CT (United States); University of Washington, Department of Physics, Center for Experimental Nuclear Physics and Astrophysics, Seattle, WA (United States); Rogers, F.R. [Yale University, Department of Physics, New Haven, CT (United States); Massachusetts Institute of Technology, Department of Physics, Cambridge, MA (United States); Scarff, A. [University of Sheffield, Department of Physics and Astronomy, Sheffield (United Kingdom); University of British Columbia, Department of Physics and Astronomy, Vancouver, BC (Canada); Yang, L. [University of Illinois at Urbana-Champaign, Department of Physics, Urbana, IL (United States)

    2018-02-15

    COSINE is a dark matter search experiment based on an array of low background NaI(Tl) crystals located at the Yangyang underground laboratory. The assembly of COSINE-100 was completed in the summer of 2016 and the detector is currently collecting physics quality data aimed at reproducing the DAMA/LIBRA experiment that reported an annual modulation signal. Stable operation has been achieved and will continue for at least 2 years. Here, we describe the design of COSINE-100, including the shielding arrangement, the configuration of the NaI(Tl) crystal detection elements, the veto systems, and the associated operational systems, and we show the current performance of the experiment. (orig.)

  11. Electro-mechanical sine/cosine generator

    Science.gov (United States)

    Flagge, B. (Inventor)

    1972-01-01

    An electromechanical device for generating both sine and cosine functions is described. A motor rotates a cylinder about an axis parallel to and a slight distance from the central axis of the cylinder. Two noncontacting displacement sensing devices are placed ninety degrees apart, equal distances from the axis of rotation of the cylinder and short distances above the surface of cylinder. Each of these sensing devices produces an electrical signal proportional to the distance that it is away from the cylinder. Consequently, as the cylinder is rotated the outputs from the two sensing devices are the sine and cosine functions.

  12. Modeling information diffusion in time-varying community networks

    Science.gov (United States)

    Cui, Xuelian; Zhao, Narisa

    2017-12-01

    Social networks are rarely static, and they typically have time-varying network topologies. A great number of studies have modeled temporal networks and explored social contagion processes within these models; however, few of these studies have considered community structure variations. In this paper, we present a study of how the time-varying property of a modular structure influences the information dissemination. First, we propose a continuous-time Markov model of information diffusion where two parameters, mobility rate and community attractiveness, are introduced to address the time-varying nature of the community structure. The basic reproduction number is derived, and the accuracy of this model is evaluated by comparing the simulation and theoretical results. Furthermore, numerical results illustrate that generally both the mobility rate and community attractiveness significantly promote the information diffusion process, especially in the initial outbreak stage. Moreover, the strength of this promotion effect is much stronger when the modularity is higher. Counterintuitively, it is found that when all communities have the same attractiveness, social mobility no longer accelerates the diffusion process. In addition, we show that the local spreading in the advantage group has been greatly enhanced due to the agglomeration effect caused by the social mobility and community attractiveness difference, which thus increases the global spreading.

  13. Empirical algorithm to estimate the average cosine of underwater light field at 490 nm

    Digital Repository Service at National Institute of Oceanography (India)

    Talaulikar, M.; Suresh, T.; Desa, E.; Matondkar, S.G.P.; Kumar, T.S.; Lotliker, A.; Inamdar, A.

    optical properties from water color, a multi-band quasi-analytical algorithm for optically deep waters. Applied Optic, 41, pp. 5755– 5772. MCCORMIC, N. J., 1995, Mathematical models for the mean cosine of irradiance and the diffuse attenuation... parameter to determine μ(490) from the measured data and from the ocean color satellite data is discussed. Absorption coefficients of water derived using μ(490) were also evaluated comparing with the synthetic data and in-situ measured data from other...

  14. Multicriteria decision-making method based on a cosine similarity ...

    African Journals Online (AJOL)

    the cosine similarity measure is often used in information retrieval, citation analysis, and automatic classification. However, it scarcely deals with trapezoidal fuzzy information and multicriteria decision-making problems. For this purpose, a cosine similarity measure between trapezoidal fuzzy numbers is proposed based on ...

  15. Test of 10 GHz sin-cosin microwave reflectometer on CASTOR

    International Nuclear Information System (INIS)

    Zacek, F.; Kletecka, P.

    1994-09-01

    The first microwave reflectometric device is described used at the CASTOR tokamak to measure fast density fluctuations. The device operates at the frequency of 10.26 GHz which makes it possible to detect fluctuations near the plasma periphery. The device was proved to work properly during the whole tokamak discharge despite the fact that the reflected signal level varied strongly. The construction of the reflectometric device is described as is its use of the so-called sin-cosin detection system, and the results obtained are discussed. (Z.S.) 8 figs., 3 refs

  16. Regular Discrete Cosine Transform and its Application to Digital Images Representation

    Directory of Open Access Journals (Sweden)

    Yuri A. Gadzhiev

    2011-11-01

    Full Text Available Discrete cosine transform dct-i, unlike dct-ii, does not concentrate the energy of a transformed vector sufficiently well, so it is not used practically for the purposes of digital image compression. By performing regular normalization of the basic cosine transform matrix, we obtain a discrete cosine transform which has the same cosine basis as dct-i, coincides as dct-i with its own inverse transform, but unlike dct-i, it does not reduce the proper ability of cosine transform to the energy concentration. In this paper we consider briefly the properties of this transform, its possible integer implementation for the case of 8x8-matrix, its applications to the image itself and to the preliminary rgb colour space transformations, further more we investigate some models of quantization, perform an experiment for the estimation of the level of digital images compression and the quality achieved by use of this transform. This experiment shows that the transform can be sufficiently effective for practical use, but the question of its comparative effectiveness with respect to dct-ii remains open.

  17. Study and application of microscopic depletion model in core simulator of COSINE project

    International Nuclear Information System (INIS)

    Hu Xiaoyu; Wang Su; Yan Yuhang; Liu Zhanquan; Chen Yixue; Huang Kai

    2013-01-01

    Microscopic depletion correction is one of the commonly used techniques that could improve the historical effect and attain higher precision of diffusion calculation and alleviate the inaccuracy caused by historical effect. Core simulator of COSINE project (core and system integrated engine for design and analysis) has developed a hybrid macroscopic-microscopic depletion model to track important isotopes during each depletion history and correct the macro cross sections. The basic theory was discussed in this paper. The effect and results of microscopic depletion correction were also analyzed. The preliminary test results demonstrate that the microscopic depletion model is effective and practicable for improving the precision of core calculation. (authors)

  18. Cosine and sine operators related to orthogonal polynomial sets on the interval [-1, 1

    International Nuclear Information System (INIS)

    Appl, Thomas; Schiller, Diethard H

    2005-01-01

    The quantization of phase is still an open problem. In the approach of Susskind and Glogower, the so-called cosine and sine operators play a fundamental role. Their eigenstates in the Fock representation are related to the Chebyshev polynomials of the second kind. Here we introduce more general cosine and sine operators whose eigenfunctions in the Fock basis are related in a similar way to arbitrary orthogonal polynomial sets on the interval [-1, 1]. To each polynomial set defined in terms of a weight function there corresponds a pair of cosine and sine operators. Depending on the symmetry of the weight function, we distinguish generalized or extended operators. Their eigenstates are used to define cosine and sine representations and probability distributions. We also consider the arccosine and arcsine operators and use their eigenstates to define cosine-phase and sine-phase distributions, respectively. Specific, numerical and graphical results are given for the classical orthogonal polynomials and for particular Fock and coherent states

  19. The optimal digital filters of sine and cosine transforms for geophysical transient electromagnetic method

    Science.gov (United States)

    Zhao, Yun-wei; Zhu, Zi-qiang; Lu, Guang-yin; Han, Bo

    2018-03-01

    The sine and cosine transforms implemented with digital filters have been used in the Transient electromagnetic methods for a few decades. Kong (2007) proposed a method of obtaining filter coefficients, which are computed in the sample domain by Hankel transform pair. However, the curve shape of Hankel transform pair changes with a parameter, which usually is set to be 1 or 3 in the process of obtaining the digital filter coefficients of sine and cosine transforms. First, this study investigates the influence of the parameter on the digital filter algorithm of sine and cosine transforms based on the digital filter algorithm of Hankel transform and the relationship between the sine, cosine function and the ±1/2 order Bessel function of the first kind. The results show that the selection of the parameter highly influences the precision of digital filter algorithm. Second, upon the optimal selection of the parameter, it is found that an optimal sampling interval s also exists to achieve the best precision of digital filter algorithm. Finally, this study proposes four groups of sine and cosine transform digital filter coefficients with different length, which may help to develop the digital filter algorithm of sine and cosine transforms, and promote its application.

  20. Innovation diffusion on time-varying activity driven networks

    Science.gov (United States)

    Rizzo, Alessandro; Porfiri, Maurizio

    2016-01-01

    Since its introduction in the 1960s, the theory of innovation diffusion has contributed to the advancement of several research fields, such as marketing management and consumer behavior. The 1969 seminal paper by Bass [F.M. Bass, Manag. Sci. 15, 215 (1969)] introduced a model of product growth for consumer durables, which has been extensively used to predict innovation diffusion across a range of applications. Here, we propose a novel approach to study innovation diffusion, where interactions among individuals are mediated by the dynamics of a time-varying network. Our approach is based on the Bass' model, and overcomes key limitations of previous studies, which assumed timescale separation between the individual dynamics and the evolution of the connectivity patterns. Thus, we do not hypothesize homogeneous mixing among individuals or the existence of a fixed interaction network. We formulate our approach in the framework of activity driven networks to enable the analysis of the concurrent evolution of the interaction and individual dynamics. Numerical simulations offer a systematic analysis of the model behavior and highlight the role of individual activity on market penetration when targeted advertisement campaigns are designed, or a competition between two different products takes place.

  1. Muon detector for the COSINE-100 experiment

    Science.gov (United States)

    Prihtiadi, H.; Adhikari, G.; Adhikari, P.; Barbosa de Souza, E.; Carlin, N.; Choi, S.; Choi, W. Q.; Djamal, M.; Ezeribe, A. C.; Ha, C.; Hahn, I. S.; Hubbard, A. J. F.; Jeon, E. J.; Jo, J. H.; Joo, H. W.; Kang, W.; Kang, W. G.; Kauer, M.; Kim, B. H.; Kim, H.; Kim, H. J.; Kim, K. W.; Kim, N. Y.; Kim, S. K.; Kim, Y. D.; Kim, Y. H.; Kudryavtsev, V. A.; Lee, H. S.; Lee, J.; Lee, J. Y.; Lee, M. H.; Leonard, D. S.; Lim, K. E.; Lynch, W. A.; Maruyama, R. H.; Mouton, F.; Olsen, S. L.; Park, H. K.; Park, H. S.; Park, J. S.; Park, K. S.; Pettus, W.; Pierpoint, Z. P.; Ra, S.; Rogers, F. R.; Rott, C.; Scarff, A.; Spooner, N. J. C.; Thompson, W. G.; Yang, L.; Yong, S. H.

    2018-02-01

    The COSINE-100 dark matter search experiment has started taking physics data with the goal of performing an independent measurement of the annual modulation signal observed by DAMA/LIBRA. A muon detector was constructed by using plastic scintillator panels in the outermost layer of the shield surrounding the COSINE-100 detector. It detects cosmic ray muons in order to understand the impact of the muon annual modulation on dark matter analysis. Assembly and initial performance tests of each module have been performed at a ground laboratory. The installation of the detector in the Yangyang Underground Laboratory (Y2L) was completed in the summer of 2016. Using three months of data, the muon underground flux was measured to be 328 ± 1(stat.)± 10(syst.) muons/m2/day. In this report, the assembly of the muon detector and the results from the analysis are presented.

  2. Fast ghost imaging and ghost encryption based on the discrete cosine transform

    International Nuclear Information System (INIS)

    Tanha, Mehrdad; Ahmadi-Kandjani, Sohrab; Kheradmand, Reza

    2013-01-01

    We introduce the discrete cosine transform as an advanced compression tool for images in computational ghost imaging. A novel approach to fast imaging and encryption, the discrete cosine transform, promotes the security level of ghost images and reduces the image retrieval time. To discuss the advantages of this technique we compare experimental outcomes with simulated ones. (paper)

  3. On distributional assumptions and whitened cosine similarities

    DEFF Research Database (Denmark)

    Loog, Marco

    2008-01-01

    Recently, an interpretation of the whitened cosine similarity measure as a Bayes decision rule was proposed (C. Liu, "The Bayes Decision Rule Induced Similarity Measures,'' IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 29, no. 6, pp. 1086-1090, June 2007. This communication makes th...

  4. A Classroom Note on Generating Examples for the Laws of Sines and Cosines from Pythagorean Triangles

    Science.gov (United States)

    Sher, Lawrence; Sher, David

    2007-01-01

    By selecting certain special triangles, students can learn about the laws of sines and cosines without wrestling with long decimal representations or irrational numbers. Since the law of cosines requires only one of the three angles of a triangle, there are many examples of triangles with integral sides and a cosine that can be represented exactly…

  5. Efficient kinetic Monte Carlo method for reaction-diffusion problems with spatially varying annihilation rates

    Science.gov (United States)

    Schwarz, Karsten; Rieger, Heiko

    2013-03-01

    We present an efficient Monte Carlo method to simulate reaction-diffusion processes with spatially varying particle annihilation or transformation rates as it occurs for instance in the context of motor-driven intracellular transport. Like Green's function reaction dynamics and first-passage time methods, our algorithm avoids small diffusive hops by propagating sufficiently distant particles in large hops to the boundaries of protective domains. Since for spatially varying annihilation or transformation rates the single particle diffusion propagator is not known analytically, we present an algorithm that generates efficiently either particle displacements or annihilations with the correct statistics, as we prove rigorously. The numerical efficiency of the algorithm is demonstrated with an illustrative example.

  6. Novel Iris Biometric Watermarking Based on Singular Value Decomposition and Discrete Cosine Transform

    Directory of Open Access Journals (Sweden)

    Jinyu Lu

    2014-01-01

    Full Text Available A novel iris biometric watermarking scheme is proposed focusing on iris recognition instead of the traditional watermark for increasing the security of the digital products. The preprocess of iris image is to be done firstly, which generates the iris biometric template from person's eye images. And then the templates are to be on discrete cosine transform; the value of the discrete cosine is encoded to BCH error control coding. The host image is divided into four areas equally correspondingly. The BCH codes are embedded in the singular values of each host image's coefficients which are obtained through discrete cosine transform (DCT. Numerical results reveal that proposed method can extract the watermark effectively and illustrate its security and robustness.

  7. Effects of curved midline and varying width on the description of the effective diffusivity of Brownian particles

    Science.gov (United States)

    Chávez, Yoshua; Chacón-Acosta, Guillermo; Dagdug, Leonardo

    2018-05-01

    Axial diffusion in channels and tubes of smoothly-varying geometry can be approximately described as one-dimensional diffusion in the entropy potential with a position-dependent effective diffusion coefficient, by means of the modified Fick–Jacobs equation. In this work, we derive analytical expressions for the position-dependent effective diffusivity for two-dimensional asymmetric varying-width channels, and for three-dimensional curved midline tubes, formed by straight walls. To this end, we use a recently developed theoretical framework using the Frenet–Serret moving frame as the coordinate system (2016 J. Chem. Phys. 145 074105). For narrow tubes and channels, an effective one-dimensional description reducing the diffusion equation to a Fick–Jacobs-like equation in general coordinates is used. From this last equation, one can calculate the effective diffusion coefficient applying Neumann boundary conditions.

  8. Global exponential stability of reaction-diffusion recurrent neural networks with time-varying delays

    International Nuclear Information System (INIS)

    Liang Jinling; Cao Jinde

    2003-01-01

    Employing general Halanay inequality, we analyze the global exponential stability of a class of reaction-diffusion recurrent neural networks with time-varying delays. Several new sufficient conditions are obtained to ensure existence, uniqueness and global exponential stability of the equilibrium point of delayed reaction-diffusion recurrent neural networks. The results extend and improve the earlier publications. In addition, an example is given to show the effectiveness of the obtained result

  9. Cosine components in water levels at Yucca Mountain

    International Nuclear Information System (INIS)

    Rice, J.; Lehman, L.; Keen, K.

    1990-01-01

    Water-level records from wells at Yucca Mountain, Nevada are analyzed periodically to determine if they contain periodic (cosine) components. Water-level data from selected wells are input to an iterative numerical procedure that determines a best fitting cosine function. The available water-level data, with coverage of up to 5 years, appear to be representative of the natural water-level changes. From our analysis of 9 water-level records, it appears that there may be periodic components (periods of 2-3 years) in the groundwater-level fluctuations at Yucca Mountain, Nevada, although some records are fit better than others by cosine functions. It also appears that the periodic behavior has a spatial distribution. Wells west of Yucca Mountain have different periods and phase shifts from wells on and east of Yucca Mountain. Interestingly, a similar spatial distribution of groundwater chemistry at Yucca Mountain is reported by Matuska (1988). This suggests a physical cause may underlie the different physical and chemical groundwater conditions. Although a variety of natural processes could cause water-level fluctuations, hydrologic processes are the most likely, because the periodicities are only a few years. A possible cause could be periodic recharge related to a periodicity in precipitation. It is interesting that Cochran et al., (1988), show a crude two-year cycle of precipitation for 1961 to 1970 in southern Nevada. Why periods and phase shifts may differ across Yucca Mountain is unknown. Different phase shifts could indicate different lag times of response to hydrologic stimuli. Difference in periods could mean that the geologic media is heterogeneous and displays heterogeneous response to a single stimulus, or that stimuli differ in certain regions, or that a hydraulic barrier separates the groundwater system into two regions having different water chemistry and recharge areas. 13 refs., 5 figs., 1 tab

  10. Knowledge diffusion in complex networks by considering time-varying information channels

    Science.gov (United States)

    Zhu, He; Ma, Jing

    2018-03-01

    In this article, based on a model of epidemic spreading, we explore the knowledge diffusion process with an innovative mechanism for complex networks by considering time-varying information channels. To cover the knowledge diffusion process in homogeneous and heterogeneous networks, two types of networks (the BA network and the ER network) are investigated. The mean-field theory is used to theoretically draw the knowledge diffusion threshold. Numerical simulation demonstrates that the knowledge diffusion threshold is almost linearly correlated with the mean of the activity rate. In addition, under the influence of the activity rate and distinct from the classic Susceptible-Infected-Susceptible (SIS) model, the density of knowers almost linearly grows with the spreading rate. Finally, in consideration of the ubiquitous mechanism of innovation, we further study the evolution of knowledge in our proposed model. The results suggest that compared with the effect of the spreading rate, the average knowledge version of the population is affected more by the innovation parameter and the mean of the activity rate. Furthermore, in the BA network, the average knowledge version of individuals with higher degree is always newer than those with lower degree.

  11. A Novel Design of Sparse Prototype Filter for Nearly Perfect Reconstruction Cosine-Modulated Filter Banks

    Directory of Open Access Journals (Sweden)

    Wei Xu

    2018-05-01

    Full Text Available Cosine-modulated filter banks play a major role in digital signal processing. Sparse FIR filter banks have lower implementation complexity than full filter banks, while keeping a good performance level. This paper presents a fast design paradigm for sparse nearly perfect-reconstruction (NPR cosine-modulated filter banks. First, an approximation function is introduced to reduce the non-convex quadratically constrained optimization problem to a linearly constrained optimization problem. Then, the desired sparse linear phase FIR prototype filter is derived through the orthogonal matching pursuit (OMP performed under the weighted l 2 norm. The simulation results demonstrate that the proposed scheme is an effective paradigm to design sparse NPR cosine-modulated filter banks.

  12. Generation of heat on fuel rod in cosine pattern by using induction heating

    International Nuclear Information System (INIS)

    Keettikkal, Felix; Sajeesh, Divya; Rao, Poornima; Hande, Shashank; Dakave, Ganesh; Kute, Tushar; Mahajan, Akshay; Kulkarni, R.D.

    2017-01-01

    Fuel rods are used in a nuclear reactor for fission process. When these rods are cooled by water during the heat transfer, the temperature stress causes undesirable defects in the fuel rod. Studying these defects occurring in the fuel rod in the nuclear cluster during nuclear reaction is a difficult task because fission reaction makes it difficult to analyse the changes in the rod. Hence there is a need to use a replica of the rod with similar thermal stress to study and analyse the rod for the defects. Normally the heat generated on the fuel rod follows a cosine pattern which is an inherent characteristic inside a nuclear reactor. In view of this, in this paper induction heating method is used on a rod to create an exact replica of the cosine pattern of heat by varying the pitch of the coil. First, a MATLAB simulation is done using simulink. Then a prototype of the model has been developed comprising of carbon steel pipe, with length and outside diameter of 1 meter and 48.2 mm, respectively. Instead of using water as coolant, rod is simulated in air. Therefore, the heat generated is lost by normal convection and radiation. Non-nuclear testing can be a valuable tool in the development or in some kind of experiment using nuclear reactor. Induction heating becomes an alternative to classical heating technologies because of its advantages such as efficiency, quickness, safety, clean heating and accurate power control. (author)

  13. Inversion algorithms for the spherical Radon and cosine transform

    International Nuclear Information System (INIS)

    Louis, A K; Riplinger, M; Spiess, M; Spodarev, E

    2011-01-01

    We consider two integral transforms which are frequently used in integral geometry and related fields, namely the spherical Radon and cosine transform. Fast algorithms are developed which invert the respective transforms in a numerically stable way. So far, only theoretical inversion formulae or algorithms for atomic measures have been derived, which are not so important for applications. We focus on two- and three-dimensional cases, where we also show that our method leads to a regularization. Numerical results are presented and show the validity of the resulting algorithms. First, we use synthetic data for the inversion of the Radon transform. Then we apply the algorithm for the inversion of the cosine transform to reconstruct the directional distribution of line processes from finitely many intersections of their lines with test lines (2D) or planes (3D), respectively. Finally we apply our method to analyse a series of microscopic two- and three-dimensional images of a fibre system

  14. Traveling Wave Solutions of ZK-BBM Equation Sine-Cosine Method

    Directory of Open Access Journals (Sweden)

    Sadaf Bibi

    2014-03-01

    Full Text Available Travelling wave solutions are obtained by using a relatively new technique which is called sine-cosine method for ZK-BBM equations. Solution procedure and obtained results re-confirm the efficiency of the proposed scheme.

  15. The Law of Cosines for an "n"-Dimensional Simplex

    Science.gov (United States)

    Ding, Yiren

    2008-01-01

    Using the divergence theorem technique of L. Eifler and N.H. Rhee, "The n-dimensional Pythagorean Theorem via the Divergence Theorem" (to appear: Amer. Math. Monthly), we extend the law of cosines for a triangle in a plane to an "n"-dimensional simplex in an "n"-dimensional space.

  16. DCT-Based Characterization of Milk Products Using Diffuse Reflectance Images

    DEFF Research Database (Denmark)

    Sharifzadeh, Sara; Skytte, Jacob Lercke; Clemmensen, Line Katrine Harder

    2013-01-01

    We propose to use the two-dimensional Discrete Cosine Transform (DCT) for decomposition of diffuse reflectance images of laser illumination on milk products in different wavelengths. Based on the prior knowledge about the characteristics of the images, the initial feature vectors are formed at ea...... discriminate milk from yogurt products better....

  17. Cosine bend-linear waveguide digital optical switch with parabolic heater

    Science.gov (United States)

    Yulianti, Ian; Supa'at, Abu Sahmah Mohd.; Idrus, Sevia M.; Al-hetar, Abdulaziz M.

    2010-02-01

    A new digital optical switch (DOS) with large branching angle and short device length that exhibits low crosstalk and low power consumption is demonstrated. The Y-branch shape was optimized by introducing constant effective refractive index difference between branches (Δ N eff) along the propagation direction through beam propagation method (BPM) scheme. To provide decreasing local branching angle that results in the improvement of the crosstalk, two modified cosine bend was introduced to form the Y-branch. The modified cosine branch was then connected to a linear branch. The heater electrode was optimized so that the temperature fields induce a constant Δ N eff to satisfy initial assumption in designing the Y-branch shape. With branching angle of 0.299° and device length of only 5 mm, the simulation shows that the device could exhibits crosstalk of -33 dB at calculated required power of only 26 mW.

  18. Analysis of Real Ship Rolling Dynamics under Wave Excitement Force Composed of Sums of Cosine Functions

    International Nuclear Information System (INIS)

    Zhang, Y. S.; Cai, F.; Xu, W. M.

    2011-01-01

    The ship motion equation with a cosine wave excitement force describes the slip moments in regular waves. A new kind of wave excitement force model, with the form as sums of cosine functions was proposed to describe ship rolling in irregular waves. Ship rolling time series were obtained by solving the ship motion equation with the fourth-order-Runger-Kutta method. These rolling time series were synthetically analyzed with methods of phase-space track, power spectrum, primary component analysis, and the largest Lyapunove exponent. Simulation results show that ship rolling presents some chaotic characteristic when the wave excitement force was applied by sums of cosine functions. The result well explains the course of ship rolling's chaotic mechanism and is useful for ship hydrodynamic study.

  19. Research on V and V strategy of reactor physics code of COSINE

    International Nuclear Information System (INIS)

    Liu Zhanquan; Chen Yixue; Yang Chao; Dang Halei

    2013-01-01

    Verification and validation (V and V) is very important for the software quality assurance. Reasonable and efficient V and V strategy can achieve twice the result with half the effort. Core and system integrated engine for design and analysis (COSINE) software package contains three reactor physics codes, the lattice code (LATC), the core simulator (CORE) and the kinetics code (KIND), which is called the reactor physics subsystem. The V and V strategy for the physics subsystem was researched based on the foundation of scientific software's V and V method. The module based verification method and the function based validation method were proposed, composing the physical subsystem V and V strategy of COSINE software package. (authors)

  20. Sines and Cosines. Part 2 of 3

    Science.gov (United States)

    Apostol, Tom M. (Editor)

    1993-01-01

    The Law of Sines and the Law of Cosines are introduced and demonstrated in this 'Project Mathematics' series video using both film footage and computer animation. This video deals primarily with the mathematical field of Trigonometry and explains how these laws were developed and their applications. One significant use is geographical and geological surveying. This includes both the triangulation method and the spirit leveling method. With these methods, it is shown how the height of the tallest mountain in the world, Mt. Everest, was determined.

  1. Sines and Cosines. Part 3 of 3

    Science.gov (United States)

    Apostol, Tom M. (Editor)

    1994-01-01

    In this 'Project Mathematics' series video, the addition formulas of sines and cosines are explained and their real life applications are demonstrated. Both film footage and computer animation is used. Several mathematical concepts are discussed and include: Ptolemy's theorem concerned with quadrilaterals; the difference between a central angle and an inscribed angle; sines and chord lengths; special angles; subtraction formulas; and a application to simple harmonic motion. A brief history of the city Alexandria, its mathematicians, and their contribution to the field of mathematics is shown.

  2. Peringkasan Sentimen Esktraktif di Twitter Menggunakan Hybrid TF-IDF dan Cosine Similarity

    Directory of Open Access Journals (Sweden)

    Devid Haryalesmana Wahid

    2016-07-01

    Full Text Available The using of Twitter by selebrities has become a new trend of impression management strategy. Mining public reaction in social media is a good strategy to obtain feedbacks, but extracting it are not trivial matter. Reads hundred of tweets while determine their sentiment polarity are time consuming. Extractive sentiment summarization machine are needed to address this issue. Previous research generally do not include sentiment information contained in a tweet as weight factor, as a results only general topics of discussion are extracted. This research aimed to do an extractive sentiment summarization on both positive and negative sentiment mentioning Indonesian selebrity, Agnes Monica, by combining SentiStrength, Hybrid TF-IDF, and Cosine Similarity. SentiStrength is used to obtain sentiment strength score and classify tweet as a positive, negative or neutral. The summarization of posisitve and negative sentiment can be done by rank tweets using Hybrid TF-IDF summarization and sentiment strength score as additional weight then removing similar tweet by using Cosine Similarity. The test results showed that the combination of SentiStrength, Hybrid TF-IDF, and Cosine Similarity perform better than using Hybrid TF-IDF only, given an average 60% accuracy and 62% f-measure. This is due to the addition of sentiment score as a weight factor in sentiment summ­ari­zation.

  3. Slow-fast stochastic diffusion dynamics and quasi-stationarity for diploid populations with varying size.

    Science.gov (United States)

    Coron, Camille

    2016-01-01

    We are interested in the long-time behavior of a diploid population with sexual reproduction and randomly varying population size, characterized by its genotype composition at one bi-allelic locus. The population is modeled by a 3-dimensional birth-and-death process with competition, weak cooperation and Mendelian reproduction. This stochastic process is indexed by a scaling parameter K that goes to infinity, following a large population assumption. When the individual birth and natural death rates are of order K, the sequence of stochastic processes indexed by K converges toward a new slow-fast dynamics with variable population size. We indeed prove the convergence toward 0 of a fast variable giving the deviation of the population from quasi Hardy-Weinberg equilibrium, while the sequence of slow variables giving the respective numbers of occurrences of each allele converges toward a 2-dimensional diffusion process that reaches (0,0) almost surely in finite time. The population size and the proportion of a given allele converge toward a Wright-Fisher diffusion with stochastically varying population size and diploid selection. We insist on differences between haploid and diploid populations due to population size stochastic variability. Using a non trivial change of variables, we study the absorption of this diffusion and its long time behavior conditioned on non-extinction. In particular we prove that this diffusion starting from any non-trivial state and conditioned on not hitting (0,0) admits a unique quasi-stationary distribution. We give numerical approximations of this quasi-stationary behavior in three biologically relevant cases: neutrality, overdominance, and separate niches.

  4. Global exponential stability of BAM neural networks with time-varying delays and diffusion terms

    International Nuclear Information System (INIS)

    Wan Li; Zhou Qinghua

    2007-01-01

    The stability property of bidirectional associate memory (BAM) neural networks with time-varying delays and diffusion terms are considered. By using the method of variation parameter and inequality technique, the delay-independent sufficient conditions to guarantee the uniqueness and global exponential stability of the equilibrium solution of such networks are established

  5. Global exponential stability of BAM neural networks with time-varying delays and diffusion terms

    Science.gov (United States)

    Wan, Li; Zhou, Qinghua

    2007-11-01

    The stability property of bidirectional associate memory (BAM) neural networks with time-varying delays and diffusion terms are considered. By using the method of variation parameter and inequality technique, the delay-independent sufficient conditions to guarantee the uniqueness and global exponential stability of the equilibrium solution of such networks are established.

  6. Diffusive boundary layers over varying topography

    KAUST Repository

    Dell, R.  W.; Pratt, L.  J.

    2015-01-01

    Diffusive bottom boundary layers can produce upslope flows in a stratified fluid. Accumulating observations suggest that these boundary layers may drive upwelling and mixing in mid-ocean ridge flank canyons. However, most studies of diffusive bottom

  7. Cosine problem in EPRL/FK spinfoam model

    Science.gov (United States)

    Vojinović, Marko

    2014-01-01

    We calculate the classical limit effective action of the EPRL/FK spinfoam model of quantum gravity coupled to matter fields. By employing the standard QFT background field method adapted to the spinfoam setting, we find that the model has many different classical effective actions. Most notably, these include the ordinary Einstein-Hilbert action coupled to matter, but also an action which describes antigravity. All those multiple classical limits appear as a consequence of the fact that the EPRL/FK vertex amplitude has cosine-like large spin asymptotics. We discuss some possible ways to eliminate the unwanted classical limits.

  8. AXIFLUX, Cosine Function Fit of Experimental Axial Flux in Cylindrical Reactor

    International Nuclear Information System (INIS)

    Holte, O.

    1980-01-01

    1 - Nature of physical problem solved: Calculates the parameters of the cosine function that will best fit data from axial flux distribution measurements in a cylindrical reactor. 2 - Method of solution: Steepest descent for the minimization. 3 - Restrictions on the complexity of the problem: Number of measured points less than 200

  9. Total number albedo and average cosine of the polar angle of low-energy photons reflected from water

    Directory of Open Access Journals (Sweden)

    Marković Srpko

    2007-01-01

    Full Text Available The total number albedo and average cosine of the polar angle for water and initial photon energy range from 20 keV to 100 keV are presented in this pa per. A water shield in the form of a thick, homogenous plate and per pendicular incidence of the monoenergetic photon beam are assumed. The results were obtained through Monte Carlo simulations of photon reflection by means of the MCNP computer code. Calculated values for the total number albedo were compared with data previously published and good agreement was confirmed. The dependence of the average cosine of the polar angle on energy is studied in detail. It has been found that the total average cosine of the polar angle has values in the narrow interval of 0.66-0.67, approximately corresponding to the reflection angle of 48°, and that it does not depend on the initial photon energy.

  10. Flexible time-varying filter banks

    Science.gov (United States)

    Tuncer, Temel E.; Nguyen, Truong Q.

    1993-09-01

    Linear phase maximally flat FIR Butterworth filter approximations are discussed and a new filter design method is introduced. This variable cutoff filter design method uses the cosine modulated versions of a prototype filter. The design procedure is simple and different variants of this procedure can be used to obtain close to optimum linear phase filters. Using this method, flexible time-varying filter banks with good reconstruction error are introduced. These types of oversampled filter banks have small magnitude error which can be easily controlled by the appropriate choice of modulation frequency. This error can be further decreased by magnitude equalization without increasing the computational complexity considerably. Two dimensional design examples are also given.

  11. Diffusion with Varying Drag; the Runaway Problem.

    Science.gov (United States)

    Rollins, David Kenneth

    We study the motion of electrons in an ionized plasma of electrons and ions in an external electric field. A probability distribution function describes the electron motion and is a solution of a Fokker-Planck equation. In zero field, the solution approaches an equilibrium Maxwellian. For arbitrarily small field, electrons overcome the diffusive effects and are freely accelerated by the field. This is the electron runaway phenomenon. We treat the electric field as a small perturbation. We consider various diffusion coefficients for the one dimensional problem and determine the runaway current as a function of the field strength. Diffusion coefficients, non-zero on a finite interval are examined. Some non-trivial cases of these can be solved exactly in terms of known special functions. The more realistic case where the diffusion coefficient decays with velocity are then considered. To determine the runaway current, the equivalent Schrodinger eigenvalue problem is analysed. The smallest eigenvalue is shown to be equal to the runaway current. Using asymptotic matching a solution can be constructed which is then used to evaluate the runaway current. The runaway current is exponentially small as a function of field strength. This method is used to extract results from the three dimensional problem.

  12. Diffusion with varying drag; the runaway problem

    International Nuclear Information System (INIS)

    Rollins, D.K.

    1986-01-01

    The motion of electrons in an ionized plasma of electrons and ions in an external electric field is studied. A probability distribution function describes the electron motion and is a solution of a Fokker-Planck equation. In zero field, the solution approaches an equilibrium Maxwellian. For arbitrarily small field, electrons overcome the diffusive effects and are freely accelerated by the field. This is the electron-runaway phenomenon. The electric field is treated as a small perturbation. Various diffusion coefficients are considered for the one dimensional problem, and the runaway current is determined as a function of the field strength. Diffusion coefficients, non-zero on a finite interval are examined. Some non-trivial cases of these can be solved exactly in terms of known special functions. The more realistic case where the diffusion coeffient decays with velocity are then considered. To determine the runaway current, the equivalent Schroedinger eigenvalue problem is analyzed. The smallest eigenvalue is shown to be equal to the runaway current. Using asymptotic matching, a solution can be constructed which is then used to evaluate the runaway current. The runaway current is exponentially small as a function of field strength. This method is used to extract results from the three dimensional problem

  13. Cosine-Modulated Multitone for Very-High-Speed Digital Subscriber Lines

    Directory of Open Access Journals (Sweden)

    Lin Lekun

    2006-01-01

    Full Text Available In this paper, the use of cosine-modulated filter banks (CMFBs for multicarrier modulation in the application of very-high-speed digital subscriber lines (VDSLs is studied. We refer to this modulation technique as cosine-modulated multitone (CMT. CMT has the same transmitter structure as discrete wavelet multitone (DWMT. However, the receiver structure in CMT is different from its DWMT counterpart. DWMT uses linear combiner equalizers, which typically have more than 20 taps per subcarrier. CMT, on the other hand, adopts a receiver structure that uses only two taps per subcarrier for equalization. This paper has the following contributions. (i A modification that reduces the computational complexity of the receiver structure of CMT is proposed. (ii Although traditionally CMFBs are designed to satisfy perfect-reconstruction (PR property, in transmultiplexing applications, the presence of channel destroys the PR property of the filter bank, and thus other criteria of filter design should be adopted. We propose one such method. (iii Through extensive computer simulations, we compare CMT with zipper discrete multitone (z-DMT and filtered multitone (FMT, the two modulation techniques that have been included in the VDSL draft standard. Comparisons are made in terms of computational complexity, transmission latency, achievable bit rate, and resistance to radio ingress noise.

  14. A Ramp Cosine Cepstrum Model for the Parameter Estimation of Autoregressive Systems at Low SNR

    Directory of Open Access Journals (Sweden)

    Zhu Wei-Ping

    2010-01-01

    Full Text Available A new cosine cepstrum model-based scheme is presented for the parameter estimation of a minimum-phase autoregressive (AR system under low levels of signal-to-noise ratio (SNR. A ramp cosine cepstrum (RCC model for the one-sided autocorrelation function (OSACF of an AR signal is first proposed by considering both white noise and periodic impulse-train excitations. Using the RCC model, a residue-based least-squares optimization technique that guarantees the stability of the system is then presented in order to estimate the AR parameters from noisy output observations. For the purpose of implementation, the discrete cosine transform, which can efficiently handle the phase unwrapping problem and offer computational advantages as compared to the discrete Fourier transform, is employed. From extensive experimentations on AR systems of different orders, it is shown that the proposed method is capable of estimating parameters accurately and consistently in comparison to some of the existing methods for the SNR levels as low as −5 dB. As a practical application of the proposed technique, simulation results are also provided for the identification of a human vocal tract system using noise-corrupted natural speech signals demonstrating a superior estimation performance in terms of the power spectral density of the synthesized speech signals.

  15. Global exponential stability for reaction-diffusion recurrent neural networks with multiple time varying delays

    International Nuclear Information System (INIS)

    Lou, X.; Cui, B.

    2008-01-01

    In this paper we consider the problem of exponential stability for recurrent neural networks with multiple time varying delays and reaction-diffusion terms. The activation functions are supposed to be bounded and globally Lipschitz continuous. By means of Lyapunov functional, sufficient conditions are derived, which guarantee global exponential stability of the delayed neural network. Finally, a numerical example is given to show the correctness of our analysis. (author)

  16. Low-power hardware implementation of movement decoding for brain computer interface with reduced-resolution discrete cosine transform.

    Science.gov (United States)

    Minho Won; Albalawi, Hassan; Xin Li; Thomas, Donald E

    2014-01-01

    This paper describes a low-power hardware implementation for movement decoding of brain computer interface. Our proposed hardware design is facilitated by two novel ideas: (i) an efficient feature extraction method based on reduced-resolution discrete cosine transform (DCT), and (ii) a new hardware architecture of dual look-up table to perform discrete cosine transform without explicit multiplication. The proposed hardware implementation has been validated for movement decoding of electrocorticography (ECoG) signal by using a Xilinx FPGA Zynq-7000 board. It achieves more than 56× energy reduction over a reference design using band-pass filters for feature extraction.

  17. Error analysis and new dual-cosine window for estimating the sensor frequency response function from the step response data

    Science.gov (United States)

    Yang, Shuang-Long; Liang, Li-Ping; Liu, Hou-De; Xu, Ke-Jun

    2018-03-01

    Aiming at reducing the estimation error of the sensor frequency response function (FRF) estimated by the commonly used window-based spectral estimation method, the error models of interpolation and transient errors are derived in the form of non-parameter models. Accordingly, window effects on the errors are analyzed and reveal that the commonly used hanning window leads to smaller interpolation error which can also be significantly eliminated by the cubic spline interpolation method when estimating the FRF from the step response data, and window with smaller front-end value can restrain more transient error. Thus, a new dual-cosine window with its non-zero discrete Fourier transform bins at -3, -1, 0, 1, and 3 is constructed for FRF estimation. Compared with the hanning window, the new dual-cosine window has the equivalent interpolation error suppression capability and better transient error suppression capability when estimating the FRF from the step response; specifically, it reduces the asymptotic property of the transient error from O(N-2) of the hanning window method to O(N-4) while only increases the uncertainty slightly (about 0.4 dB). Then, one direction of a wind tunnel strain gauge balance which is a high order, small damping, and non-minimum phase system is employed as the example for verifying the new dual-cosine window-based spectral estimation method. The model simulation result shows that the new dual-cosine window method is better than the hanning window method for FRF estimation, and compared with the Gans method and LPM method, it has the advantages of simple computation, less time consumption, and short data requirement; the actual data calculation result of the balance FRF is consistent to the simulation result. Thus, the new dual-cosine window is effective and practical for FRF estimation.

  18. Metric distances derived from cosine similarity and Pearson and Spearman correlations

    OpenAIRE

    van Dongen, Stijn; Enright, Anton J.

    2012-01-01

    We investigate two classes of transformations of cosine similarity and Pearson and Spearman correlations into metric distances, utilising the simple tool of metric-preserving functions. The first class puts anti-correlated objects maximally far apart. Previously known transforms fall within this class. The second class collates correlated and anti-correlated objects. An example of such a transformation that yields a metric distance is the sine function when applied to centered data.

  19. Diffusive boundary layers over varying topography

    KAUST Repository

    Dell, R. W.

    2015-03-25

    Diffusive bottom boundary layers can produce upslope flows in a stratified fluid. Accumulating observations suggest that these boundary layers may drive upwelling and mixing in mid-ocean ridge flank canyons. However, most studies of diffusive bottom boundary layers to date have concentrated on constant bottom slopes. We present a study of how diffusive boundary layers interact with various idealized topography, such as changes in bottom slope, slopes with corrugations and isolated sills. We use linear theory and numerical simulations in the regional ocean modeling system (ROMS) model to show changes in bottom slope can cause convergences and divergences within the boundary layer, in turn causing fluid exchanges that reach far into the overlying fluid and alter stratification far from the bottom. We also identify several different regimes of boundary-layer behaviour for topography with oceanographically relevant size and shape, including reversing flows and overflows, and we develop a simple theory that predicts the regime boundaries, including what topographies will generate overflows. As observations also suggest there may be overflows in deep canyons where the flow passes over isolated bumps and sills, this parameter range may be particularly significant for understanding the role of boundary layers in the deep ocean.

  20. The relation between Pearson’s correlation coefficient r and Salton’s cosine measure

    NARCIS (Netherlands)

    Egghe, L.; Leydesdorff, L.

    2009-01-01

    The relation between Pearson's correlation coefficient and Salton's cosine measure is revealed based on the different possible values of the division of the L1-norm and the L2-norm of a vector. These different values yield a sheaf of increasingly straight lines which together form a cloud of points,

  1. Efficient Implementation of Complex Modulated Filter Banks Using Cosine and Sine Modulated Filter Banks

    Directory of Open Access Journals (Sweden)

    Viholainen Ari

    2006-01-01

    Full Text Available The recently introduced exponentially modulated filter bank (EMFB is a -channel uniform, orthogonal, critically sampled, and frequency-selective complex modulated filter bank that satisfies the perfect reconstruction (PR property if the prototype filter of an -channel PR cosine modulated filter bank (CMFB is used. The purpose of this paper is to present various implementation structures for the EMFBs in a unified framework. The key idea is to use cosine and sine modulated filter banks as building blocks and, therefore, polyphase, lattice, and extended lapped transform (ELT type of implementation solutions are studied. The ELT-based EMFBs are observed to be very competitive with the existing modified discrete Fourier transform filter banks (MDFT-FBs when comparing the number of multiplications/additions and the structural simplicity. In addition, EMFB provides an alternative channel stacking arrangement that could be more natural in certain subband processing applications and data transmission systems.

  2. Multiple scattering of electromagnetic waves in disordered magnetic media localization parameter, energy transport velocity and diffusion constant

    CERN Document Server

    Pinheiro, F A; Martínez, A S

    2001-01-01

    We review some of our recent results concerning the single and multiple electromagnetic scattering by magnetic spherical particles. For a single electromagnetic scattering we show that the magnetic contribution alters, when compared to nonmagnetic scattering, the behavior of the cross sections and mean cosine of the scattering angle (cos omega). For ferromagnetic particles, resonances may occur even in the small-particle limit when the particle radius is much smaller than the wavelength. The resonances increase the cross sections while (cos omega) is diminished , and even may become negative. Several quantities such the Ioffe-Regel parameter for localization are calculated for the multiple scattering regime. We show that magnetic scattering favors the observation of localization of electromagnetic waves in three dimensions. Further, this is also verified for dynamical experiments, where we show that the diffusion constant can be very small. Since the magnetic permeability of the scatterers can vary significan...

  3. Full-frame compression of discrete wavelet and cosine transforms

    Science.gov (United States)

    Lo, Shih-Chung B.; Li, Huai; Krasner, Brian; Freedman, Matthew T.; Mun, Seong K.

    1995-04-01

    At the foreground of computerized radiology and the filmless hospital are the possibilities for easy image retrieval, efficient storage, and rapid image communication. This paper represents the authors' continuous efforts in compression research on full-frame discrete wavelet (FFDWT) and full-frame discrete cosine transforms (FFDCT) for medical image compression. Prior to the coding, it is important to evaluate the global entropy in the decomposed space. It is because of the minimum entropy, that a maximum compression efficiency can be achieved. In this study, each image was split into the top three most significant bit (MSB) and the remaining remapped least significant bit (RLSB) images. The 3MSB image was compressed by an error-free contour coding and received an average of 0.1 bit/pixel. The RLSB image was either transformed to a multi-channel wavelet or the cosine transform domain for entropy evaluation. Ten x-ray chest radiographs and ten mammograms were randomly selected from our clinical database and were used for the study. Our results indicated that the coding scheme in the FFDCT domain performed better than in FFDWT domain for high-resolution digital chest radiographs and mammograms. From this study, we found that decomposition efficiency in the DCT domain for relatively smooth images is higher than that in the DWT. However, both schemes worked just as well for low resolution digital images. We also found that the image characteristics of the `Lena' image commonly used in the compression literature are very different from those of radiological images. The compression outcome of the radiological images can not be extrapolated from the compression result based on the `Lena.'

  4. Soliton solution for nonlinear partial differential equations by cosine-function method

    International Nuclear Information System (INIS)

    Ali, A.H.A.; Soliman, A.A.; Raslan, K.R.

    2007-01-01

    In this Letter, we established a traveling wave solution by using Cosine-function algorithm for nonlinear partial differential equations. The method is used to obtain the exact solutions for five different types of nonlinear partial differential equations such as, general equal width wave equation (GEWE), general regularized long wave equation (GRLW), general Korteweg-de Vries equation (GKdV), general improved Korteweg-de Vries equation (GIKdV), and Coupled equal width wave equations (CEWE), which are the important soliton equations

  5. Medical images storage using discrete cosine transform

    International Nuclear Information System (INIS)

    Arhouma, Ali M.; Ajaal, Tawfik; Marghani, Khaled

    2010-01-01

    The advances in technology during the last decades have made the use of digital images as one of the common things in everyday life. While the application of digital images in communicating information is very important, the cost of storing and transmitting images is much larger compared to storage and transmission of text. The main problem with all of the images was the fact that they take large size of memory space, large transmission bandwidth and long transmission time. Image data compression is needed to reduce the storage space,transmission bandwidth and transmission time. Medical image compression plays a key role as hospitals move towards filmless imaging and go completely digital. Image compression allows Picture Archiving and Communication Systems (PACS) to reduce the file size on their storage requirements while maintaining relevant diagnostic information. The reduced image file size yield reduced transmission times. Even as the capacity of storage media continues to increase, it is expected that the volume of uncompressed data produced by hospitals will exceed capacity of storage and drive up costs. This paper proposes a Discrete Cosine Transform (DCT) algorithm which can help to solve the image storage and transmission time problem in hospitals. Discrete cosine transform (DCT) has become the most popular technique for image compression over the past several years. One of the major reasons for its popularity is its selection as the standard for JPEG. DCTs are most commonly used for non-analytical applications such as image processing and digital signal-processing (DSP) applications such as video conferencing, fax systems, video disks, and high-definition television HDTV. They also can be used on a matrix of practically any dimension. The proposed (DCT) algorithm improves the performance of medical image compression while satisfying both the medical image quality, and the high compression ratio. Application of DCT coding algorithm to actual still images

  6. Status of reactor core design code system in COSINE code package

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y.; Yu, H.; Liu, Z., E-mail: yuhui@snptc.com.cn [State Nuclear Power Software Development Center, SNPTC, National Energy Key Laboratory of Nuclear Power Software (NEKLS), Beijiing (China)

    2014-07-01

    For self-reliance, COre and System INtegrated Engine for design and analysis (COSINE) code package is under development in China. In this paper, recent development status of the reactor core design code system (including the lattice physics code and the core simulator) is presented. The well-established theoretical models have been implemented. The preliminary verification results are illustrated. And some special efforts, such as updated theory models and direct data access application, are also made to achieve better software product. (author)

  7. Status of reactor core design code system in COSINE code package

    International Nuclear Information System (INIS)

    Chen, Y.; Yu, H.; Liu, Z.

    2014-01-01

    For self-reliance, COre and System INtegrated Engine for design and analysis (COSINE) code package is under development in China. In this paper, recent development status of the reactor core design code system (including the lattice physics code and the core simulator) is presented. The well-established theoretical models have been implemented. The preliminary verification results are illustrated. And some special efforts, such as updated theory models and direct data access application, are also made to achieve better software product. (author)

  8. Toward an enhanced Arabic text classification using cosine similarity and Latent Semantic

    Directory of Open Access Journals (Sweden)

    Fawaz S. Al-Anzi

    2017-04-01

    Full Text Available Cosine similarity is one of the most popular distance measures in text classification problems. In this paper, we used this important measure to investigate the performance of Arabic language text classification. For textual features, vector space model (VSM is generally used as a model to represent textual information as numerical vectors. However, Latent Semantic Indexing (LSI is a better textual representation technique as it maintains semantic information between the words. Hence, we used the singular value decomposition (SVD method to extract textual features based on LSI. In our experiments, we conducted comparison between some of the well-known classification methods such as Naïve Bayes, k-Nearest Neighbors, Neural Network, Random Forest, Support Vector Machine, and classification tree. We used a corpus that contains 4,000 documents of ten topics (400 document for each topic. The corpus contains 2,127,197 words with about 139,168 unique words. The testing set contains 400 documents, 40 documents for each topics. As a weighing scheme, we used Term Frequency.Inverse Document Frequency (TF.IDF. This study reveals that the classification methods that use LSI features significantly outperform the TF.IDF-based methods. It also reveals that k-Nearest Neighbors (based on cosine measure and support vector machine are the best performing classifiers.

  9. Generalized Analytical Treatment Of The Source Strength In The Solution Of The Diffusion Equation

    International Nuclear Information System (INIS)

    Essa, Kh.S.M.; EI-Otaify, M.S.

    2007-01-01

    The source release strength (which is an integral part of the mathematical formulation of the diffusion equation) together with the boundary conditions leads to three different forms of the diffusion equation. The obtained forms have been solved analytically under different boundary conditions, by using transformation of axis, cosine, and Fourier transformation. Three equivalent alternative mathematical formulations of the problem have been obtained. The estimated solution of the concentrations at the ground source has been used for comparison with observed concentrations data for SF 6 tracer experiments in low wind and unstable conditions at lIT Delhi sports ground. A good agreement between estimated and observed concentrations is found

  10. Discovering Trigonometric Relationships Implied by the Law of Sines and the Law of Cosines

    Science.gov (United States)

    Skurnick, Ronald; Javadi, Mohammad

    2006-01-01

    The Law of Sines and The Law of Cosines are of paramount importance in the field of trigonometry because these two theorems establish relationships satisfied by the three sides and the three angles of any triangle. In this article, the authors use these two laws to discover a host of other trigonometric relationships that exist within any…

  11. COSINE software development based on code generation technology

    International Nuclear Information System (INIS)

    Ren Hao; Mo Wentao; Liu Shuo; Zhao Guang

    2013-01-01

    The code generation technology can significantly improve the quality and productivity of software development and reduce software development risk. At present, the code generator is usually based on UML model-driven technology, which can not satisfy the development demand of nuclear power calculation software. The feature of scientific computing program was analyzed and the FORTRAN code generator (FCG) based on C# was developed in this paper. FCG can generate module variable definition FORTRAN code automatically according to input metadata. FCG also can generate memory allocation interface for dynamic variables as well as data access interface. FCG was applied to the core and system integrated engine for design and analysis (COSINE) software development. The result shows that FCG can greatly improve the development efficiency of nuclear power calculation software, and reduce the defect rate of software development. (authors)

  12. Exponential Stability for Impulsive BAM Neural Networks with Time-Varying Delays and Reaction-Diffusion Terms

    Directory of Open Access Journals (Sweden)

    Qiankun Song

    2007-06-01

    Full Text Available Impulsive bidirectional associative memory neural network model with time-varying delays and reaction-diffusion terms is considered. Several sufficient conditions ensuring the existence, uniqueness, and global exponential stability of equilibrium point for the addressed neural network are derived by M-matrix theory, analytic methods, and inequality techniques. Moreover, the exponential convergence rate index is estimated, which depends on the system parameters. The obtained results in this paper are less restrictive than previously known criteria. Two examples are given to show the effectiveness of the obtained results.

  13. Exponential Stability for Impulsive BAM Neural Networks with Time-Varying Delays and Reaction-Diffusion Terms

    Directory of Open Access Journals (Sweden)

    Cao Jinde

    2007-01-01

    Full Text Available Impulsive bidirectional associative memory neural network model with time-varying delays and reaction-diffusion terms is considered. Several sufficient conditions ensuring the existence, uniqueness, and global exponential stability of equilibrium point for the addressed neural network are derived by M-matrix theory, analytic methods, and inequality techniques. Moreover, the exponential convergence rate index is estimated, which depends on the system parameters. The obtained results in this paper are less restrictive than previously known criteria. Two examples are given to show the effectiveness of the obtained results.

  14. Solution of the Doppler broadening function based on the fourier cosine transform

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, Alessandro da C [COPPE/UFRJ - Programa de Engenharia Nuclear, Universidade Federal do Rio de Janeiro, P.O. Box 68509, 21941-914 Rio de Janeiro, RJ (Brazil)], E-mail: agoncalves@con.ufrj.br; Martinez, Aquilino S.; Silva, Fernando C. da [COPPE/UFRJ - Programa de Engenharia Nuclear, Universidade Federal do Rio de Janeiro, P.O. Box 68509, 21941-914 Rio de Janeiro, RJ (Brazil)

    2008-10-15

    This paper provides a new integral representation for the Doppler broadening function {psi}({xi}, x), which is interpreted as being a Fourier cosine transform. This integral form allows the obtaining of an analytical solution in a simple and accurate functional manner as regards the elementary functions. The solution obtained through the new integral representation can be widely used in several applications such as the calculation of self-shielding factors and measurement corrections for the microscopic cross section through the activation technique.

  15. Solution of the Doppler broadening function based on the fourier cosine transform

    International Nuclear Information System (INIS)

    Goncalves, Alessandro da C; Martinez, Aquilino S.; Silva, Fernando C. da

    2008-01-01

    This paper provides a new integral representation for the Doppler broadening function ψ(ξ, x), which is interpreted as being a Fourier cosine transform. This integral form allows the obtaining of an analytical solution in a simple and accurate functional manner as regards the elementary functions. The solution obtained through the new integral representation can be widely used in several applications such as the calculation of self-shielding factors and measurement corrections for the microscopic cross section through the activation technique

  16. Application of DFT Filter Banks and Cosine Modulated Filter Banks in Filtering

    Science.gov (United States)

    Lin, Yuan-Pei; Vaidyanathan, P. P.

    1994-01-01

    None given. This is a proposal for a paper to be presented at APCCAS '94 in Taipei, Taiwan. (From outline): This work is organized as follows: Sec. II is devoted to the construction of the new 2m channel under-decimated DFT filter bank. Implementation and complexity of this DFT filter bank are discussed therein. IN a similar manner, the new 2m channel cosine modulated filter bank is discussed in Sec. III. Design examples are given in Sec. IV.

  17. Interface morphology of Mo/Si multilayer systems with varying Mo layer thickness studied by EUV diffuse scattering.

    Science.gov (United States)

    Haase, Anton; Soltwisch, Victor; Braun, Stefan; Laubis, Christian; Scholze, Frank

    2017-06-26

    We investigate the influence of the Mo-layer thickness on the EUV reflectance of Mo/Si mirrors with a set of unpolished and interface-polished Mo/Si/C multilayer mirrors. The Mo-layer thickness is varied in the range from 1.7 nm to 3.05 nm. We use a novel combination of specular and diffuse intensity measurements to determine the interface roughness throughout the multilayer stack and do not rely on scanning probe measurements at the surface only. The combination of EUV and X-ray reflectivity measurements and near-normal incidence EUV diffuse scattering allows to reconstruct the Mo layer thicknesses and to determine the interface roughness power spectral density. The data analysis is conducted by applying a matrix method for the specular reflection and the distorted-wave Born approximation for diffuse scattering. We introduce the Markov-chain Monte Carlo method into the field in order to determine the respective confidence intervals for all reconstructed parameters. We unambiguously detect a threshold thickness for Mo in both sample sets where the specular reflectance goes through a local minimum correlated with a distinct increase in diffuse scatter. We attribute that to the known appearance of an amorphous-to-crystallization transition at a certain thickness threshold which is altered in our sample system by the polishing.

  18. Periodic and solitary wave solutions of Kawahara and modified Kawahara equations by using Sine-Cosine method

    International Nuclear Information System (INIS)

    Yusufoglu, E.; Bekir, A.; Alp, M.

    2008-01-01

    In this paper, we establish exact solutions for nonlinear evolution equations. The sine-cosine method is used to construct periodic and solitary wave solutions of the Kawahara and modified Kawahara equations. These solutions may be important of significance for the explanation of some practical physical problems

  19. Geometric optimisation of an accurate cosine correcting optic fibre coupler for solar spectral measurement

    Science.gov (United States)

    Cahuantzi, Roberto; Buckley, Alastair

    2017-09-01

    Making accurate and reliable measurements of solar irradiance is important for understanding performance in the photovoltaic energy sector. In this paper, we present design details and performance of a number of fibre optic couplers for use in irradiance measurement systems employing remote light sensors applicable for either spectrally resolved or broadband measurement. The angular and spectral characteristics of different coupler designs are characterised and compared with existing state-of-the-art commercial technology. The new coupler designs are fabricated from polytetrafluorethylene (PTFE) rods and operate through forward scattering of incident sunlight on the front surfaces of the structure into an optic fibre located in a cavity to the rear of the structure. The PTFE couplers exhibit up to 4.8% variation in scattered transmission intensity between 425 nm and 700 nm and show minimal specular reflection, making the designs accurate and reliable over the visible region. Through careful geometric optimization near perfect cosine dependence on the angular response of the coupler can be achieved. The PTFE designs represent a significant improvement over the state of the art with less than 0.01% error compared with ideal cosine response for angles of incidence up to 50°.

  20. EKF-GPR-Based Fingerprint Renovation for Subset-Based Indoor Localization with Adjusted Cosine Similarity.

    Science.gov (United States)

    Yang, Junhua; Li, Yong; Cheng, Wei; Liu, Yang; Liu, Chenxi

    2018-01-22

    Received Signal Strength Indicator (RSSI) localization using fingerprint has become a prevailing approach for indoor localization. However, the fingerprint-collecting work is repetitive and time-consuming. After the original fingerprint radio map is built, it is laborious to upgrade the radio map. In this paper, we describe a Fingerprint Renovation System (FRS) based on crowdsourcing, which avoids the use of manual labour to obtain the up-to-date fingerprint status. Extended Kalman Filter (EKF) and Gaussian Process Regression (GPR) in FRS are combined to calculate the current state based on the original fingerprinting radio map. In this system, a method of subset acquisition also makes an immediate impression to reduce the huge computation caused by too many reference points (RPs). Meanwhile, adjusted cosine similarity (ACS) is employed in the online phase to solve the issue of outliers produced by cosine similarity. Both experiments and analytical simulation in a real Wireless Fidelity (Wi-Fi) environment indicate the usefulness of our system to significant performance improvements. The results show that FRS improves the accuracy by 19.6% in the surveyed area compared to the radio map un-renovated. Moreover, the proposed subset algorithm can bring less computation.

  1. EKF–GPR-Based Fingerprint Renovation for Subset-Based Indoor Localization with Adjusted Cosine Similarity

    Science.gov (United States)

    Yang, Junhua; Li, Yong; Cheng, Wei; Liu, Yang; Liu, Chenxi

    2018-01-01

    Received Signal Strength Indicator (RSSI) localization using fingerprint has become a prevailing approach for indoor localization. However, the fingerprint-collecting work is repetitive and time-consuming. After the original fingerprint radio map is built, it is laborious to upgrade the radio map. In this paper, we describe a Fingerprint Renovation System (FRS) based on crowdsourcing, which avoids the use of manual labour to obtain the up-to-date fingerprint status. Extended Kalman Filter (EKF) and Gaussian Process Regression (GPR) in FRS are combined to calculate the current state based on the original fingerprinting radio map. In this system, a method of subset acquisition also makes an immediate impression to reduce the huge computation caused by too many reference points (RPs). Meanwhile, adjusted cosine similarity (ACS) is employed in the online phase to solve the issue of outliers produced by cosine similarity. Both experiments and analytical simulation in a real Wireless Fidelity (Wi-Fi) environment indicate the usefulness of our system to significant performance improvements. The results show that FRS improves the accuracy by 19.6% in the surveyed area compared to the radio map un-renovated. Moreover, the proposed subset algorithm can bring less computation. PMID:29361805

  2. Geometric optimisation of an accurate cosine correcting optic fibre coupler for solar spectral measurement.

    Science.gov (United States)

    Cahuantzi, Roberto; Buckley, Alastair

    2017-09-01

    Making accurate and reliable measurements of solar irradiance is important for understanding performance in the photovoltaic energy sector. In this paper, we present design details and performance of a number of fibre optic couplers for use in irradiance measurement systems employing remote light sensors applicable for either spectrally resolved or broadband measurement. The angular and spectral characteristics of different coupler designs are characterised and compared with existing state-of-the-art commercial technology. The new coupler designs are fabricated from polytetrafluorethylene (PTFE) rods and operate through forward scattering of incident sunlight on the front surfaces of the structure into an optic fibre located in a cavity to the rear of the structure. The PTFE couplers exhibit up to 4.8% variation in scattered transmission intensity between 425 nm and 700 nm and show minimal specular reflection, making the designs accurate and reliable over the visible region. Through careful geometric optimization near perfect cosine dependence on the angular response of the coupler can be achieved. The PTFE designs represent a significant improvement over the state of the art with less than 0.01% error compared with ideal cosine response for angles of incidence up to 50°.

  3. Mittag-Leffler synchronization of fractional neural networks with time-varying delays and reaction-diffusion terms using impulsive and linear controllers.

    Science.gov (United States)

    Stamova, Ivanka; Stamov, Gani

    2017-12-01

    In this paper, we propose a fractional-order neural network system with time-varying delays and reaction-diffusion terms. We first develop a new Mittag-Leffler synchronization strategy for the controlled nodes via impulsive controllers. Using the fractional Lyapunov method sufficient conditions are given. We also study the global Mittag-Leffler synchronization of two identical fractional impulsive reaction-diffusion neural networks using linear controllers, which was an open problem even for integer-order models. Since the Mittag-Leffler stability notion is a generalization of the exponential stability concept for fractional-order systems, our results extend and improve the exponential impulsive control theory of neural network system with time-varying delays and reaction-diffusion terms to the fractional-order case. The fractional-order derivatives allow us to model the long-term memory in the neural networks, and thus the present research provides with a conceptually straightforward mathematical representation of rather complex processes. Illustrative examples are presented to show the validity of the obtained results. We show that by means of appropriate impulsive controllers we can realize the stability goal and to control the qualitative behavior of the states. An image encryption scheme is extended using fractional derivatives. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Wigner distribution function of Hermite-cosine-Gaussian beams through an apertured optical system.

    Science.gov (United States)

    Sun, Dong; Zhao, Daomu

    2005-08-01

    By introducing the hard-aperture function into a finite sum of complex Gaussian functions, the approximate analytical expressions of the Wigner distribution function for Hermite-cosine-Gaussian beams passing through an apertured paraxial ABCD optical system are obtained. The analytical results are compared with the numerically integrated ones, and the absolute errors are also given. It is shown that the analytical results are proper and that the calculation speed for them is much faster than for the numerical results.

  5. The relation between Pearson’s correlation coefficient r and Salton’s cosine measure

    OpenAIRE

    EGGHE, Leo; Leydesdorff, L.

    2009-01-01

    The relation between Pearson’s correlation coefficient and Salton’s cosine measure is revealed based on the different possible values of the division of the -norm and the norm of a vector. These different values yield a sheaf of increasingly straight lines which form together a cloud of points, being the investigated relation. These theoretical results are tested against the author co-citation relations among 24 informetricians for who two matrices can be constructed, based on co-citations: t...

  6. Efficient Pricing of European-Style Asian Options under Exponential Lévy Processes Based on Fourier Cosine Expansions

    NARCIS (Netherlands)

    Zhang, B.; Oosterlee, C.W.

    2013-01-01

    We propose an efficient pricing method for arithmetic and geometric Asian options under exponential Lévy processes based on Fourier cosine expansions and Clenshaw–Curtis quadrature. The pricing method is developed for both European style and American-style Asian options and for discretely and

  7. Discrete cosine and sine transforms general properties, fast algorithms and integer approximations

    CERN Document Server

    Britanak, Vladimir; Rao, K R; Rao, K R

    2006-01-01

    The Discrete Cosine Transform (DCT) is used in many applications by the scientific, engineering and research communities and in data compression in particular. Fast algorithms and applications of the DCT Type II (DCT-II) have become the heart of many established international image/video coding standards. Since then other forms of the DCT and Discrete Sine Transform (DST) have been investigated in detail. This new edition presents the complete set of DCT and DST discrete trigonometric transforms, including their definitions, general mathematical properties, and relations to the optimal Karhune

  8. Rigid Body Attitude Control Based on a Manifold Representation of Direction Cosine Matrices

    International Nuclear Information System (INIS)

    Nakath, David; Clemens, Joachim; Rachuy, Carsten

    2017-01-01

    Autonomous systems typically actively observe certain aspects of their surroundings, which makes them dependent on a suitable controller. However, building an attitude controller for three degrees of freedom is a challenging task, mainly due to singularities in the different parametrizations of the three dimensional rotation group SO (3). Thus, we propose an attitude controller based on a manifold representation of direction cosine matrices: In state space, the attitude is globally and uniquely represented as a direction cosine matrix R ∈ SO (3). However, differences in the state space, i.e., the attitude errors, are exposed to the controller in the vector space ℝ 3 . This is achieved by an operator, which integrates the matrix logarithm mapping from SO (3) to so(3) and the map from so(3) to ℝ 3 . Based on this representation, we derive a proportional and derivative feedback controller, whose output has an upper bound to prevent actuator saturation. Additionally, the feedback is preprocessed by a particle filter to account for measurement and state transition noise. We evaluate our approach in a simulator in three different spacecraft maneuver scenarios: (i) stabilizing, (ii) rest-to-rest, and (iii) nadir-pointing. The controller exhibits stable behavior from initial attitudes near and far from the setpoint. Furthermore, it is able to stabilize a spacecraft and can be used for nadir-pointing maneuvers. (paper)

  9. Modelling of the diffusion of pollutants in the atmosphere under varying conditions in large cultivated regions

    International Nuclear Information System (INIS)

    Wueneke, C.D.; Schultz, H.

    1975-01-01

    The most important routines of a numerical code based on the particle-in-cell-method for calculating the transport and the turbulent dispersion of inert and radio-active pollutants in the atmosphere have been programmed and have been tested successfully on the CDC computer CYBER 73/76 of the Regional Computer Centre for Niedersachsen in Hanover. Compared to the Gaussian plume model such a numerical code based on the particle-in-cell-method offers several advantages for the computation of the diffusion under varying conditions in large cultivated regions. (orig.) [de

  10. Adaptive discrete cosine transform coding algorithm for digital mammography

    Science.gov (United States)

    Baskurt, Atilla M.; Magnin, Isabelle E.; Goutte, Robert

    1992-09-01

    The need for storage, transmission, and archiving of medical images has led researchers to develop adaptive and efficient data compression techniques. Among medical images, x-ray radiographs of the breast are especially difficult to process because of their particularly low contrast and very fine structures. A block adaptive coding algorithm based on the discrete cosine transform to compress digitized mammograms is described. A homogeneous repartition of the degradation in the decoded images is obtained using a spatially adaptive threshold. This threshold depends on the coding error associated with each block of the image. The proposed method is tested on a limited number of pathological mammograms including opacities and microcalcifications. A comparative visual analysis is performed between the original and the decoded images. Finally, it is shown that data compression with rather high compression rates (11 to 26) is possible in the mammography field.

  11. Wiener discrete cosine transform-based image filtering

    Science.gov (United States)

    Pogrebnyak, Oleksiy; Lukin, Vladimir V.

    2012-10-01

    A classical problem of additive white (spatially uncorrelated) Gaussian noise suppression in grayscale images is considered. The main attention is paid to discrete cosine transform (DCT)-based denoising, in particular, to image processing in blocks of a limited size. The efficiency of DCT-based image filtering with hard thresholding is studied for different sizes of overlapped blocks. A multiscale approach that aggregates the outputs of DCT filters having different overlapped block sizes is proposed. Later, a two-stage denoising procedure that presumes the use of the multiscale DCT-based filtering with hard thresholding at the first stage and a multiscale Wiener DCT-based filtering at the second stage is proposed and tested. The efficiency of the proposed multiscale DCT-based filtering is compared to the state-of-the-art block-matching and three-dimensional filter. Next, the potentially reachable multiscale filtering efficiency in terms of output mean square error (MSE) is studied. The obtained results are of the same order as those obtained by Chatterjee's approach based on nonlocal patch processing. It is shown that the ideal Wiener DCT-based filter potential is usually higher when noise variance is high.

  12. Effect of cosine current approximation in lattice cell calculations in cylindrical geometry

    International Nuclear Information System (INIS)

    Mohanakrishnan, P.

    1978-01-01

    It is found that one-dimensional cylindrical geometry reactor lattice cell calculations using cosine angular current approximation at spatial mesh interfaces give results surprisingly close to the results of accurate neutron transport calculations as well as experimental measurements. This is especially true for tight light water moderated lattices. Reasons for this close agreement are investigated here. By re-examining the effects of reflective and white cell boundary conditions in these calculations it is concluded that one major reason is the use of white boundary condition necessitated by the approximation of the two-dimensional reactor lattice cell by a one-dimensional one. (orig.) [de

  13. Deviation from an inverse cosine dependence of kinetic secondary electron emission for angle of incidence at keV energy

    International Nuclear Information System (INIS)

    Ohya, Kaoru; Kawata, Jun; Mori, Ichiro

    1989-01-01

    Incident angle dependence of kinetic secondary electron emission from metals resulting from incidence of keV ions is investigated by computer simulation with the TRIM Monte Carlo program of ion scattering in matter. The results show large deviations from the inverse cosine dependence, which derives from high-energy approximation, because of a series of elastic collisions of incident ions with metal atoms. In the keV energy region, the elastic collisions have two different effects on the angular dependence for relatively high-energy light ions and for low-energy heavy ions: they result in over- and under-inverse-cosine dependences, respectively. The properties are observed even with an experiment of the keV-neutral incidence on a contaminated surface. In addition, the effects of the thin oxide layer and roughness on the surface are examined with simplified models. (author)

  14. The Influence of Slowly Varying Mass on Severity of Dynamics Nonlinearity of Bearing-Rotor Systems with Pedestal Looseness

    Directory of Open Access Journals (Sweden)

    Mian Jiang

    2018-01-01

    Full Text Available Nonlinearity measure is proposed to investigate the influence of slowly varying mass on severity of dynamics nonlinearity of bearing-rotor systems with pedestal looseness. A nonlinear mathematical model including the effect of slowly varying disk mass is developed for a bearing-rotor system with pedestal looseness. The varying of equivalent disk mass is described by a cosine function, and the amplitude coefficient is used as a control parameter. Then, nonlinearity measure is employed to quantify the severity of dynamics nonlinearity of bearing-rotor systems. With the increasing of looseness clearances, the curves that denote the trend of nonlinearity degree are plotted for each amplitude coefficient of mass varying. It can be concluded that larger amplitude coefficients of the disk mass varying will have more influence on the severity of dynamics nonlinearity and generation of chaotic behaviors in rotor systems with pedestal looseness.

  15. Efficient pricing of Asian options under Lévy processes based on Fourier cosine expansions Part I : European-style products

    NARCIS (Netherlands)

    Zhang, B.; Oosterlee, C.W.

    2011-01-01

    We propose an efficient pricing method for arithmetic, and geometric, Asian options under Levy processes, based on Fourier cosine expansions and Clenshaw–Curtis quadrature. The pricing method is developed for both European–style and American–style Asian options, and for discretely and continuously

  16. Hyperbolic Cosines and Sines Theorems for the Triangle Formed by Arcs of Intersecting Semicircles on Euclidean Plane

    Directory of Open Access Journals (Sweden)

    Robert M. Yamaleev

    2013-01-01

    Full Text Available The hyperbolic cosines and sines theorems for the curvilinear triangle bounded by circular arcs of three intersecting circles are formulated and proved by using the general complex calculus. The method is based on a key formula establishing a relationship between exponential function and the cross-ratio. The proofs are carried out on Euclidean plane.

  17. Thermal neutron diffusion parameters in homogeneous mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Drozdowicz, K.; Krynicka, E. [Institute of Nuclear Physics, Cracow (Poland)

    1995-12-31

    A physical background is presented for a computer program which calculates the thermal neutron diffusion parameters for homogeneous mixtures of any compounds. The macroscopic absorption, scattering and transport cross section of the mixture are defined which are generally function of the incident neutron energy. The energy-averaged neutron parameters are available when these energy dependences and the thermal neutron energy distribution are assumed. Then the averaged diffusion coefficient and the pulsed thermal neutron parameters (the absorption rare and the diffusion constant) are also defined. The absorption cross section is described by the 1/v law and deviations from this behaviour are considered. The scattering cross section can be assumed as being almost constant in the thermal neutron region (which results from the free gas model). Serious deviations are observed for hydrogen atoms bound in molecules and a special study in the paper is devoted to this problem. A certain effective scattering cross section is found in this case on a base of individual exact data for a few hydrogenous media. Approximations assumed for the average cosine of the scattering angle are also discussed. The macroscopic parameters calculated are averaged over the Maxwellian energy distribution for the thermal neutron flux. An information on the input data for the computer program is included. (author). 10 refs, 4 figs, 5 tabs.

  18. Thermal neutron diffusion parameters in homogeneous mixtures

    International Nuclear Information System (INIS)

    Drozdowicz, K.; Krynicka, E.

    1995-01-01

    A physical background is presented for a computer program which calculates the thermal neutron diffusion parameters for homogeneous mixtures of any compounds. The macroscopic absorption, scattering and transport cross section of the mixture are defined which are generally function of the incident neutron energy. The energy-averaged neutron parameters are available when these energy dependences and the thermal neutron energy distribution are assumed. Then the averaged diffusion coefficient and the pulsed thermal neutron parameters (the absorption rare and the diffusion constant) are also defined. The absorption cross section is described by the 1/v law and deviations from this behaviour are considered. The scattering cross section can be assumed as being almost constant in the thermal neutron region (which results from the free gas model). Serious deviations are observed for hydrogen atoms bound in molecules and a special study in the paper is devoted to this problem. A certain effective scattering cross section is found in this case on a base of individual exact data for a few hydrogenous media. Approximations assumed for the average cosine of the scattering angle are also discussed. The macroscopic parameters calculated are averaged over the Maxwellian energy distribution for the thermal neutron flux. An information on the input data for the computer program is included. (author). 10 refs, 4 figs, 5 tabs

  19. Wave scattering by an axisymmetric ice floe of varying thickness

    Science.gov (United States)

    Bennetts, Luke G.; Biggs, Nicholas R. T.; Porter, David

    2009-04-01

    The problem of water wave scattering by a circular ice floe, floating in fluid of finite depth, is formulated and solved numerically. Unlike previous investigations of such situations, here we allow the thickness of the floe (and the fluid depth) to vary axisymmetrically and also incorporate a realistic non-zero draught. A numerical approximation to the solution of this problem is obtained to an arbitrary degree of accuracy by combining a Rayleigh-Ritz approximation of the vertical motion with an appropriate variational principle. This numerical solution procedure builds upon the work of Bennets et al. (2007, J. Fluid Mech., 579, 413-443). As part of the numerical formulation, we utilize a Fourier cosine expansion of the azimuthal motion, resulting in a system of ordinary differential equations to solve in the radial coordinate for each azimuthal mode. The displayed results concentrate on the response of the floe rather than the scattered wave field and show that the effects of introducing the new features of varying floe thickness and a realistic draught are significant.

  20. Multiple Scattering in Random Mechanical Systems and Diffusion Approximation

    Science.gov (United States)

    Feres, Renato; Ng, Jasmine; Zhang, Hong-Kun

    2013-10-01

    This paper is concerned with stochastic processes that model multiple (or iterated) scattering in classical mechanical systems of billiard type, defined below. From a given (deterministic) system of billiard type, a random process with transition probabilities operator P is introduced by assuming that some of the dynamical variables are random with prescribed probability distributions. Of particular interest are systems with weak scattering, which are associated to parametric families of operators P h , depending on a geometric or mechanical parameter h, that approaches the identity as h goes to 0. It is shown that ( P h - I)/ h converges for small h to a second order elliptic differential operator on compactly supported functions and that the Markov chain process associated to P h converges to a diffusion with infinitesimal generator . Both P h and are self-adjoint (densely) defined on the space of square-integrable functions over the (lower) half-space in , where η is a stationary measure. This measure's density is either (post-collision) Maxwell-Boltzmann distribution or Knudsen cosine law, and the random processes with infinitesimal generator respectively correspond to what we call MB diffusion and (generalized) Legendre diffusion. Concrete examples of simple mechanical systems are given and illustrated by numerically simulating the random processes.

  1. Development status of the lattice physics code in COSINE project

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y.; Yu, H.; Li, S.; Liu, Z.; Yan, Y. [State Nuclear Power Software Development Center, SNPTC, National Energy Key Laboratory of Nuclear Power Software NEKLS, North Third Ring Road, Beijing 100029 (China)

    2013-07-01

    LATC is an essential part of COSINE code package, which stands for Core and System Integrated Engine for design and analysis. LATC performs 2D multi-group assembly transport calculation and generates few group constants and the required cross-section data for CORE, the core simulator code. LATC is designed to have the capability of modeling the API 000 series assemblies. The development is a continuously improved process. Currently, LATC uses well-proven technology to achieve the key functions. In the next stage, more advanced methods and modules will be implemented. At present, WIMS and WIMS improved format library could be read in LATC code. For resonance calculation, equivalent relation with rational approximations is utilized. For transport calculation, two options are available. One choice is collision probability method in cell homogenization while discrete coordinate method in assembly homogenization, the other is method of characteristics in assembly homogenization directly. For depletion calculation, an improved linear rate 'constant power' depletion method has been developed. (authors)

  2. Development status of the lattice physics code in COSINE project

    International Nuclear Information System (INIS)

    Chen, Y.; Yu, H.; Li, S.; Liu, Z.; Yan, Y.

    2013-01-01

    LATC is an essential part of COSINE code package, which stands for Core and System Integrated Engine for design and analysis. LATC performs 2D multi-group assembly transport calculation and generates few group constants and the required cross-section data for CORE, the core simulator code. LATC is designed to have the capability of modeling the API 000 series assemblies. The development is a continuously improved process. Currently, LATC uses well-proven technology to achieve the key functions. In the next stage, more advanced methods and modules will be implemented. At present, WIMS and WIMS improved format library could be read in LATC code. For resonance calculation, equivalent relation with rational approximations is utilized. For transport calculation, two options are available. One choice is collision probability method in cell homogenization while discrete coordinate method in assembly homogenization, the other is method of characteristics in assembly homogenization directly. For depletion calculation, an improved linear rate 'constant power' depletion method has been developed. (authors)

  3. A new expression for doppler broadening function based on Fourier Cosine Transform

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, Alessandro da C.; Martinez, Aquilino S.; Silva, Fernando C. da [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Programa de Engenharia Nuclear]. E-mails: agoncalves@con.ufrj.br; aquilino@lmp.ufrj.br; fernando@con.ufrj.br

    2007-07-01

    The main objective of this paper consists of the derivation of an analytical solution for the Doppler broadening function {psi} ({xi}, x). The analytical solution is derived from a new integral expression for the {psi} ({xi}, x) function, which can be interpreted as a Fourier cosine transform. The expression obtained for {psi} ({xi}, x) in terms of elementary functions, proved quite simple and accurate, leading to a similar solution obtained through the differential equation for the {psi} ({xi}, x) function, using the methods of Frobenius and of parameter variation. The Doppler broadening function is widely used in applications related to the treatment of nuclear resonances, calculations of multigroup parameters and resonance self-shielding factors, and to correct microscopic cross section measurements through the activation technique. (author)

  4. A new expression for doppler broadening function based on Fourier Cosine Transform

    International Nuclear Information System (INIS)

    Goncalves, Alessandro da C.; Martinez, Aquilino S.; Silva, Fernando C. da

    2007-01-01

    The main objective of this paper consists of the derivation of an analytical solution for the Doppler broadening function Ψ (ξ, x). The analytical solution is derived from a new integral expression for the Ψ (ξ, x) function, which can be interpreted as a Fourier cosine transform. The expression obtained for Ψ (ξ, x) in terms of elementary functions, proved quite simple and accurate, leading to a similar solution obtained through the differential equation for the Ψ (ξ, x) function, using the methods of Frobenius and of parameter variation. The Doppler broadening function is widely used in applications related to the treatment of nuclear resonances, calculations of multigroup parameters and resonance self-shielding factors, and to correct microscopic cross section measurements through the activation technique. (author)

  5. A new Watermarking System based on Discrete Cosine Transform (DCT) in color biometric images.

    Science.gov (United States)

    Dogan, Sengul; Tuncer, Turker; Avci, Engin; Gulten, Arif

    2012-08-01

    This paper recommend a biometric color images hiding approach An Watermarking System based on Discrete Cosine Transform (DCT), which is used to protect the security and integrity of transmitted biometric color images. Watermarking is a very important hiding information (audio, video, color image, gray image) technique. It is commonly used on digital objects together with the developing technology in the last few years. One of the common methods used for hiding information on image files is DCT method which used in the frequency domain. In this study, DCT methods in order to embed watermark data into face images, without corrupting their features.

  6. Warped Discrete Cosine Transform-Based Low Bit-Rate Block Coding Using Image Downsampling

    Directory of Open Access Journals (Sweden)

    Ertürk Sarp

    2007-01-01

    Full Text Available This paper presents warped discrete cosine transform (WDCT-based low bit-rate block coding using image downsampling. While WDCT aims to improve the performance of conventional DCT by frequency warping, the WDCT has only been applicable to high bit-rate coding applications because of the overhead required to define the parameters of the warping filter. Recently, low bit-rate block coding based on image downsampling prior to block coding followed by upsampling after the decoding process is proposed to improve the compression performance for low bit-rate block coders. This paper demonstrates that a superior performance can be achieved if WDCT is used in conjunction with image downsampling-based block coding for low bit-rate applications.

  7. Use of the Discrete Cosine Transform for the restoration of an image sequence

    International Nuclear Information System (INIS)

    Acheroy, M.P.J.

    1985-01-01

    The Discrete Cosine Transform (DCT) is recognized as an important tool for image compression techniques. Its use in image restoration is, however, not well known. It is the aim of this paper to provide a restoration method for a sequence of images using the DCT as well for the deblurring as for the noise reduction. It is shown that the DCT can play an interesting role in the deconvolution problem for linear imaging systems with finite, invariant and symmetric impulse response. It is further shown that the noise reduction can be performed onto an image sequence using a time adaptive Kalman filter in the domain of the Karhunen-Loeve transform which is approximated by the DCT

  8. The Implementation of Cosine Similarity to Calculate Text Relevance between Two Documents

    Science.gov (United States)

    Gunawan, D.; Sembiring, C. A.; Budiman, M. A.

    2018-03-01

    Rapidly increasing number of web pages or documents leads to topic specific filtering in order to find web pages or documents efficiently. This is a preliminary research that uses cosine similarity to implement text relevance in order to find topic specific document. This research is divided into three parts. The first part is text-preprocessing. In this part, the punctuation in a document will be removed, then convert the document to lower case, implement stop word removal and then extracting the root word by using Porter Stemming algorithm. The second part is keywords weighting. Keyword weighting will be used by the next part, the text relevance calculation. Text relevance calculation will result the value between 0 and 1. The closer value to 1, then both documents are more related, vice versa.

  9. γ-irradiation effect on gas diffusion in polymer films. Part I : Hydrogen diffusion through mylar film

    International Nuclear Information System (INIS)

    Rao, K.A.; Pushpa, K.K.; Iyer, R.M.

    1980-01-01

    γ-irradiation of polymers results in further crosslinking in the polymer or breakdown of the polymer or a combination of both these phenomena depending on the type of polymer, the dose as well as the environment in which irradiation is carried out. The gas diffusion through polymer films is expected to vary depending on these changes. With a view to A evaluate the feasibility of effecting selective diffusion of specific gases and also to correlate the change in diffusion rates with the polymer characteristics these studies have been initiated. Hydrogen diffusion through mylar film γ-irradiated under varying conditions upto a dose of approximately 50 Mrads is reported in this paper. The results indicate negligible change in hydrogen diffusion rates on γ-irradiation. However, γ-irradiation induced crosslinking of acrylic acid on Mylar reduced the hydrogen diffusion rate. The hydrogen diffusion studies may also be useful in finding the glass transition temperature of polymer films as is apparent from the gas diffusion curves. (author)

  10. Scaling behaviour of Fisher and Shannon entropies for the exponential-cosine screened coulomb potential

    Science.gov (United States)

    Abdelmonem, M. S.; Abdel-Hady, Afaf; Nasser, I.

    2017-07-01

    The scaling laws are given for the entropies in the information theory, including the Shannon's entropy, its power, the Fisher's information and the Fisher-Shannon product, using the exponential-cosine screened Coulomb potential. The scaling laws are specified, in the r-space, as a function of |μ - μc, nℓ|, where μ is the screening parameter and μc, nℓ its critical value for the specific quantum numbers n and ℓ. Scaling laws for other physical quantities, such as energy eigenvalues, the moments, static polarisability, transition probabilities, etc. are also given. Some of these are reported for the first time. The outcome is compared with the available literatures' results.

  11. Infrared images target detection based on background modeling in the discrete cosine domain

    Science.gov (United States)

    Ye, Han; Pei, Jihong

    2018-02-01

    Background modeling is the critical technology to detect the moving target for video surveillance. Most background modeling techniques are aimed at land monitoring and operated in the spatial domain. A background establishment becomes difficult when the scene is a complex fluctuating sea surface. In this paper, the background stability and separability between target are analyzed deeply in the discrete cosine transform (DCT) domain, on this basis, we propose a background modeling method. The proposed method models each frequency point as a single Gaussian model to represent background, and the target is extracted by suppressing the background coefficients. Experimental results show that our approach can establish an accurate background model for seawater, and the detection results outperform other background modeling methods in the spatial domain.

  12. A Complete Video Coding Chain Based on Multi-Dimensional Discrete Cosine Transform

    Directory of Open Access Journals (Sweden)

    T. Fryza

    2010-09-01

    Full Text Available The paper deals with a video compression method based on the multi-dimensional discrete cosine transform. In the text, the encoder and decoder architectures including the definitions of all mathematical operations like the forward and inverse 3-D DCT, quantization and thresholding are presented. According to the particular number of currently processed pictures, the new quantization tables and entropy code dictionaries are proposed in the paper. The practical properties of the 3-D DCT coding chain compared with the modern video compression methods (such as H.264 and WebM and the computing complexity are presented as well. It will be proved the best compress properties could be achieved by complex H.264 codec. On the other hand the computing complexity - especially on the encoding side - is lower for the 3-D DCT method.

  13. Modeling contact angle hysteresis of a liquid droplet sitting on a cosine wave-like pattern surface.

    Science.gov (United States)

    Promraksa, Arwut; Chen, Li-Jen

    2012-10-15

    A liquid droplet sitting on a hydrophobic surface with a cosine wave-like square-array pattern in the Wenzel state is simulated by using the Surface Evolver to determine the contact angle. For a fixed drop volume, multiple metastable states are obtained at two different surface roughnesses. Unusual and non-circular shape of the three-phase contact line of a liquid droplet sitting on the model surface is observed due to corrugation and distortion of the contact line by structure of the roughness. The contact angle varies along the contact line for each metastable state. The maximum and minimum contact angles among the multiple metastable states at a fixed viewing angle correspond to the advancing and the receding contact angles, respectively. It is interesting to observe that the advancing/receding contact angles (and contact angle hysteresis) are a function of viewing angle. In addition, the receding (or advancing) contact angles at different viewing angles are determined at different metastable states. The contact angle of minimum energy among the multiple metastable states is defined as the most stable (equilibrium) contact angle. The Wenzel model is not able to describe the contact angle along the three-phase contact line. The contact angle hysteresis at different drop volumes is determined. The number of the metastable states increases with increasing drop volume. Drop volume effect on the contact angles is also discussed. Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.

  14. Deteksi Pemalsuan Citra dengan Teknik Copy-Move Menggunakan Metode Ordinal Measure dari Koefisien Discrete Cosine Transform

    Directory of Open Access Journals (Sweden)

    Zulfan

    2016-07-01

    Full Text Available This article discusses a new method for the detection of forgery images generated by copy-move technique. Copy-move technique is one of image forgery techniques which taking a particular object from its original image and add it on that image for the purpose of increasing the number of or changing the same object in the original image. This study aims to detect the forged image generated by the copy-move techniques and copy-move forged image that has been modified by the rotation operation and histogram equalization. Detection feature used is Ordinal Measure of Discrete Cosine Transform coefficient (OM-DCT. Detection starts with division of the image into a block size of BXB (B = 16x16, 32x32 and 64x64 and two-dimensional DCT was performed to each of blocks. The feature distance from the original to the fake image, was calculated by the Euclidian distance and each feature has a distance of less than or equal to the threshold value (T according to the observations will be marked as a forged part. The results show that there are blocks detected on the copy-move image, whether on the unmodified copy-move forge image or those which modified by the rotation operation and histogram equalization. The number of blocks that are found in the copy-move object varies according to the size of the detection block used.

  15. Similarity analysis between chromosomes of Homo sapiens and monkeys with correlation coefficient, rank correlation coefficient and cosine similarity measures

    OpenAIRE

    Someswara Rao, Chinta; Viswanadha Raju, S.

    2016-01-01

    In this paper, we consider correlation coefficient, rank correlation coefficient and cosine similarity measures for evaluating similarity between Homo sapiens and monkeys. We used DNA chromosomes of genome wide genes to determine the correlation between the chromosomal content and evolutionary relationship. The similarity among the H. sapiens and monkeys is measured for a total of 210 chromosomes related to 10 species. The similarity measures of these different species show the relationship b...

  16. Carrier illumination measurement of dopant lateral diffusion

    International Nuclear Information System (INIS)

    Budiarto, E.; Segovia, M.; Borden, P.; Felch, S.

    2005-01-01

    This paper describes the application of the carrier illumination technique to non-destructively measure the lateral diffusion of implanted dopants after annealing. Experiments to validate the feasibility of this method employed test structures with a constant line width of 300 nm and varying undoped spaces of 100-5000 nm. The test patterns were implanted with a p-type dopant and annealed in a 3 x 3 matrix. For each implant condition, the measured lateral diffusion was found to increase with annealing temperature, as expected. More interestingly, the lateral diffusion was not observed to relate to the vertical diffusion by a fixed proportionality factor, as is usually assumed. The ratio of lateral to vertical diffusion varies with annealing temperature, with a trend that depends on the implant condition

  17. Hermite-cosine-Gaussian laser beam and its propagation characteristics in turbulent atmosphere.

    Science.gov (United States)

    Eyyuboğlu, Halil Tanyer

    2005-08-01

    Hermite-cosine-Gaussian (HcosG) laser beams are studied. The source plane intensity of the HcosG beam is introduced and its dependence on the source parameters is examined. By application of the Fresnel diffraction integral, the average receiver intensity of HcosG beam is formulated for the case of propagation in turbulent atmosphere. The average receiver intensity is seen to reduce appropriately to various special cases. When traveling in turbulence, the HcosG beam initially experiences the merging of neighboring beam lobes, and then a TEM-type cosh-Gaussian beam is formed, temporarily leading to a plain cosh-Gaussian beam. Eventually a pure Gaussian beam results. The numerical evaluation of the normalized beam size along the propagation axis at selected mode indices indicates that relative spreading of higher-order HcosG beam modes is less than that of the lower-order counterparts. Consequently, it is possible at some propagation distances to capture more power by using higher-mode-indexed HcosG beams.

  18. Low Loss 1×2 Optical Coupler Based on Cosine S-bend with Segmented Waveguides

    Science.gov (United States)

    Yulianti, Ian; Sahmah, Abu; Supa'at, M.; Idrus, Sevia M.; Ridwanto, Muhammad; Al-hetar, Abdulaziz M.

    2011-05-01

    This paper presents an optimization of 1×2 polymer Y-junction optical coupler. The optimized optical coupler comprises straight polymer waveguide as the input waveguide, tapered waveguide, modified cosine S-bend and linear waveguide. At the branching point, N short waveguides with small width are introduced to reduce evanescent field. At operating wavelength of 1550 nm the excess loss of the coupler is ˜0.18 dB. In term of polarization dependence loss (PDL), the proposed coupler also shows a good performance with PDL value of less than 0.015 dB for wavelength range of 1470 nm-1550 nm. The proposed coupler could reduce excess loss more than 25% compared to conventional Y junction optical coupler.

  19. Quantitative characterization of steady and time-varying, sooting, laminar diffusion flames using optical techniques

    Science.gov (United States)

    Connelly, Blair C.

    In order to reduce the emission of pollutants such as soot and NO x from combustion systems, a detailed understanding of pollutant formation is required. In addition to environmental concerns, this is important for a fundamental understanding of flame behavior as significant quantities of soot lower local flame temperatures, increase overall flame length and affect the formation of such temperature-dependent species as NOx. This problem is investigated by carrying out coupled computational and experimental studies of steady and time-varying sooting, coflow diffusion flames. Optical diagnostic techniques are a powerful tool for characterizing combustion systems, as they provide a noninvasive method of probing the environment. Laser diagnostic techniques have added advantages, as systems can be probed with high spectral, temporal and spatial resolution, and with species selectivity. Experimental soot volume fractions were determined by using two-dimensional laser-induced incandescence (LII), calibrated with an on-line extinction measurement, and soot pyrometry. Measurements of soot particle size distributions are made using time-resolved LII (TR-LII). Laser-induced fluorescence measurements are made of NO and formaldehyde. These experimental measurements, and others, are compared with computational results in an effort to understand and model soot formation and to examine the coupled relationship of soot and NO x formation.

  20. A 16X16 Discrete Cosine Transform Chip

    Science.gov (United States)

    Sun, M. T.; Chen, T. C.; Gottlieb, A.; Wu, L.; Liou, M. L.

    1987-10-01

    Among various transform coding techniques for image compression the Discrete Cosine Transform (DCT) is considered to be the most effective method and has been widely used in the laboratory as well as in the market, place. DCT is computationally intensive. For video application at 14.3 MHz sample rate, a direct implementation of a 16x16 DCT requires a throughput, rate of approximately half a billion multiplications per second. In order to reduce the cost of hardware implementation, a single chip DCT implementation is highly desirable. In this paper, the implementation of a 16x16 DCT chip using a concurrent architecture will be presented. The chip is designed for real-time processing of 14.3 MHz sampled video data. It uses row-column decomposition to implement the two-dimensional transform. Distributed arithmetic combined with hit-serial and hit-parallel structures is used to implement the required vector inner products concurrently. Several schemes are utilized to reduce the size of required memory. The resultant circuit only uses memory, shift registers, and adders. No multipliers are required. It achieves high speed performance with a very regular and efficient integrated circuit realization. The chip accepts 0-bit input and produces 14-bit DCT coefficients. 12 bits are maintained after the first one-dimensional transform. The circuit has been laid out using a 2-μm CMOS technology with a symbolic design tool MULGA. The core contains approximately 73,000 transistors in an area of 7.2 x 7.0

  1. Investigating the tradeoffs between spatial resolution and diffusion sampling for brain mapping with diffusion tractography: time well spent?

    Science.gov (United States)

    Calabrese, Evan; Badea, Alexandra; Coe, Christopher L; Lubach, Gabriele R; Styner, Martin A; Johnson, G Allan

    2014-11-01

    Interest in mapping white matter pathways in the brain has peaked with the recognition that altered brain connectivity may contribute to a variety of neurologic and psychiatric diseases. Diffusion tractography has emerged as a popular method for postmortem brain mapping initiatives, including the ex-vivo component of the human connectome project, yet it remains unclear to what extent computer-generated tracks fully reflect the actual underlying anatomy. Of particular concern is the fact that diffusion tractography results vary widely depending on the choice of acquisition protocol. The two major acquisition variables that consume scan time, spatial resolution, and diffusion sampling, can each have profound effects on the resulting tractography. In this analysis, we determined the effects of the temporal tradeoff between spatial resolution and diffusion sampling on tractography in the ex-vivo rhesus macaque brain, a close primate model for the human brain. We used the wealth of autoradiography-based connectivity data available for the rhesus macaque brain to assess the anatomic accuracy of six time-matched diffusion acquisition protocols with varying balance between spatial and diffusion sampling. We show that tractography results vary greatly, even when the subject and the total acquisition time are held constant. Further, we found that focusing on either spatial resolution or diffusion sampling at the expense of the other is counterproductive. A balanced consideration of both sampling domains produces the most anatomically accurate and consistent results. Copyright © 2014 Wiley Periodicals, Inc.

  2. Effects of screened Coulomb (Yukawa) and exponential-cosine-screened Coulomb potentials on photoionization of H and He+

    International Nuclear Information System (INIS)

    Lin, C.Y.; Ho, Y.K.

    2010-01-01

    The screening effects due to the exponential-cosine-screened Coulomb and screened Coulomb (Yukawa) potentials on photoionization processes are explored within the framework of complex coordinate rotation method. The energy levels of H and He + in both screened potentials shifted with various Debye screening lengths are presented. The photoionization cross sections illustrate the considerable screening effects on photoionization processes in low energy region. The shape resonances can be found near ionization thresholds for certain of Debye screening lengths. The relations between the appearance of resonances and the existence of quasi-bound states under shielding conditions are discussed. (authors)

  3. Sodium diffusion in boroaluminosilicate glasses

    DEFF Research Database (Denmark)

    Smedskjaer, Morten M.; Zheng, Qiuju; Mauro, John C.

    2011-01-01

    of isothermal sodium diffusion in BAS glasses by ion exchange, inward diffusion, and tracer diffusion experiments. By varying the [SiO2]/[Al2O3] ratio of the glasses, different structural regimes of sodium behavior are accessed. We show that the mobility of the sodium ions decreases with increasing [SiO2]/[Al2O......Understanding the fundamentals of alkali diffusion in boroaluminosilicate (BAS) glasses is of critical importance for advanced glass applications, e.g., the production of chemically strengthened glass covers for personal electronic devices. Here, we investigate the composition dependence...

  4. Alternatives to the discrete cosine transform for irreversible tomographic image compression

    International Nuclear Information System (INIS)

    Villasenor, J.D.

    1993-01-01

    Full-frame irreversible compression of medical images is currently being performed using the discrete cosine transform (DCT). Although the DCT is the optimum fast transform for video compression applications, the authors show here that it is out-performed by the discrete Fourier transform (DFT) and discrete Hartley transform (DHT) for images obtained using positron emission tomography (PET) and magnetic resonance imaging (MRI), and possibly for certain types of digitized radiographs. The difference occurs because PET and MRI images are characterized by a roughly circular region D of non-zero intensity bounded by a region R in which the Image intensity is essentially zero. Clipping R to its minimum extent can reduce the number of low-intensity pixels but the practical requirement that images be stored on a rectangular grid means that a significant region of zero intensity must remain an integral part of the image to be compressed. With this constraint imposed, the DCT loses its advantage over the DFT because neither transform introduces significant artificial discontinuities. The DFT and DHT have the further important advantage of requiring less computation time than the DCT

  5. Spread spectrum image data hiding in the encrypted discrete cosine transform coefficients

    Science.gov (United States)

    Zhang, Xiaoqiang; Wang, Z. Jane

    2013-10-01

    Digital watermarking and data hiding are important tools for digital rights protection of media data. Spread spectrum (SS)-based watermarking and data-hiding approaches are popular due to their outstanding robustness, but their security might not be sufficient. To improve the security of SS, a SS-based image data-hiding approach is proposed by encrypting the discrete cosine transform coefficients of the host image with the piecewise linear chaotic map, before the operation of watermark embedding. To evaluate the performance of the proposed approach, simulations and analyses of its robustness and security are carried out. The average bit-error-rate values on 100 real images from the Berkeley segmentation dataset under the JPEG compression, additive Gaussian noise, salt and pepper noise, and cropping attacks are reported. Experimental results show that the proposed approach can maintain the high robustness of traditional SS schemes and, meanwhile, also improve the security. The proposed approach can extend the key space of traditional SS schemes from 10 to 10 and thus can resist brute-force attack and unauthorized detection watermark attack.

  6. Parameterization using Fourier series expansion of the diffuse reflectance of human skin to vary the concentration of the melanocytes

    Science.gov (United States)

    Narea, J. Freddy; Muñoz, Aarón A.; Castro, Jorge; Muñoz, Rafael A.; Villalba, Caroleny E.; Martinez, María. F.; Bravo, Kelly D.

    2013-11-01

    Human skin has been studied in numerous investigations, given the interest in knowing information about physiology, morphology and chemical composition. These parameters can be determined using non invasively optical techniques in vivo, such as the diffuse reflectance spectroscopy. The human skin color is determined by many factors, but primarily by the amount and distribution of the pigment melanin. The melanin is produced by the melanocytes in the basal layer of the epidermis. This research characterize the spectral response of the human skin using the coefficients of Fourier series expansion. Simulating the radiative transfer equation for the Monte Carlo method to vary the concentration of the melanocytes (fme) in a simplified model of human skin. It fits relating the Fourier series coefficient a0 with fme. Therefore it is possible to recover the skin biophysical parameter.

  7. Similarity analysis between chromosomes of Homo sapiens and monkeys with correlation coefficient, rank correlation coefficient and cosine similarity measures.

    Science.gov (United States)

    Someswara Rao, Chinta; Viswanadha Raju, S

    2016-03-01

    In this paper, we consider correlation coefficient, rank correlation coefficient and cosine similarity measures for evaluating similarity between Homo sapiens and monkeys. We used DNA chromosomes of genome wide genes to determine the correlation between the chromosomal content and evolutionary relationship. The similarity among the H. sapiens and monkeys is measured for a total of 210 chromosomes related to 10 species. The similarity measures of these different species show the relationship between the H. sapiens and monkey. This similarity will be helpful at theft identification, maternity identification, disease identification, etc.

  8. Trenched raised cosine FMF for differential mode delay management in next generation optical networks

    Science.gov (United States)

    Chebaane, Saleh; Fathallah, Habib; Seleem, Hussein; Machhout, Mohsen

    2018-02-01

    Dispersion management in few mode fiber (FMF) technology is crucial to support the upcoming standard that reaches 400 Gbps and Terabit/s per wavelength. Recently in Chebaane et al. (2016), we defined two potential differential mode delay (DMD) management strategies, namely sawtooth and triangular. Moreover we proposed a novel parametric refractive index profile for FMF, referred as raised cosine (RC) profile. In this article, we improve and optimize the RC profile design by including additional shaping parameters, in order to obtain much more attractive dispersion characteristics. Our improved design enabled to obtain a zero DMD (z-DMD), strong positive DMD (p-DMD) and near-zero DMD (nz-DMD) for six-mode fiber, all appropriate for dispersion management in FMF system. In addition, we propose a positive DMD (p-DMD) fiber designs for both, four-mode fiber (4-FMF) and six-mode fiber (6-FMF), respectively, having particularly attractive dispersion characteristics.

  9. Natural gas diffusion model and diffusion computation in well Cai25 Bashan Group oil and gas reservoir

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Natural gas diffusion through the cap rock is mainly by means ofdissolving in water, so its concentration can be replaced by solubility, which varies with temperature, pressure and salinity in strata. Under certain geological conditions the maximal solubility is definite, so the diffusion com-putation can be handled approximately by stable state equation. Furthermore, on the basis of the restoration of the paleo-buried history, the diffusion is calculated with the dynamic method, and the result is very close to the real diffusion value in the geological history.

  10. Experimental analysis of bidirectional reflectance distribution function cross section conversion term in direction cosine space.

    Science.gov (United States)

    Butler, Samuel D; Nauyoks, Stephen E; Marciniak, Michael A

    2015-06-01

    Of the many classes of bidirectional reflectance distribution function (BRDF) models, two popular classes of models are the microfacet model and the linear systems diffraction model. The microfacet model has the benefit of speed and simplicity, as it uses geometric optics approximations, while linear systems theory uses a diffraction approach to compute the BRDF, at the expense of greater computational complexity. In this Letter, nongrazing BRDF measurements of rough and polished surface-reflecting materials at multiple incident angles are scaled by the microfacet cross section conversion term, but in the linear systems direction cosine space, resulting in great alignment of BRDF data at various incident angles in this space. This results in a predictive BRDF model for surface-reflecting materials at nongrazing angles, while avoiding some of the computational complexities in the linear systems diffraction model.

  11. MHD diffuser model test program

    Energy Technology Data Exchange (ETDEWEB)

    Idzorek, J J

    1976-07-01

    Experimental results of the aerodynamic performance of seven candidate diffusers are presented to assist in determining their suitability for joining an MHD channel to a steam generator at minimum spacing. The three dimensional diffusers varied in area ratio from 2 to 3.8 and wall half angle from 2 to 5 degrees. The program consisted of five phases: (1) tailoring a diffuser inlet nozzle to a 15 percent blockage; (2) comparison of isolated diffusers at enthalpy ratios 0.5 to 1.0 with respect to separation characteristics and pressure recovery coefficients; (3) recording the optimum diffuser exit flow distribution; (4) recording the internal flow distribution within the steam generator when attached to the diffuser; and (5) observing isolated diffuser exhaust dynamic characteristics. The 2 and 2-1/3 degree half angle rectangular diffusers showed recovery coefficients equal to 0.48 with no evidence of flow separation or instability. Diffusion at angles greater than these produced flow instabilities and with angles greater than 3 degrees random flow separation and reattachment.

  12. MHD diffuser model test program

    International Nuclear Information System (INIS)

    Idzorek, J.J.

    1976-07-01

    Experimental results of the aerodynamic performance of seven candidate diffusers are presented to assist in determining their suitability for joining an MHD channel to a steam generator at minimum spacing. The three dimensional diffusers varied in area ratio from 2 to 3.8 and wall half angle from 2 to 5 degrees. The program consisted of five phases: (1) tailoring a diffuser inlet nozzle to a 15 percent blockage; (2) comparison of isolated diffusers at enthalpy ratios 0.5 to 1.0 with respect to separation characteristics and pressure recovery coefficients; (3) recording the optimum diffuser exit flow distribution; (4) recording the internal flow distribution within the steam generator when attached to the diffuser; and (5) observing isolated diffuser exhaust dynamic characteristics. The 2 and 2-1/3 degree half angle rectangular diffusers showed recovery coefficients equal to 0.48 with no evidence of flow separation or instability. Diffusion at angles greater than these produced flow instabilities and with angles greater than 3 degrees random flow separation and reattachment

  13. Non-uniform cosine modulated filter banks using meta-heuristic algorithms in CSD space

    Directory of Open Access Journals (Sweden)

    Shaeen Kalathil

    2015-11-01

    Full Text Available This paper presents an efficient design of non-uniform cosine modulated filter banks (CMFB using canonic signed digit (CSD coefficients. CMFB has got an easy and efficient design approach. Non-uniform decomposition can be easily obtained by merging the appropriate filters of a uniform filter bank. Only the prototype filter needs to be designed and optimized. In this paper, the prototype filter is designed using window method, weighted Chebyshev approximation and weighted constrained least square approximation. The coefficients are quantized into CSD, using a look-up-table. The finite precision CSD rounding, deteriorates the filter bank performances. The performances of the filter bank are improved using suitably modified meta-heuristic algorithms. The different meta-heuristic algorithms which are modified and used in this paper are Artificial Bee Colony algorithm, Gravitational Search algorithm, Harmony Search algorithm and Genetic algorithm and they result in filter banks with less implementation complexity, power consumption and area requirements when compared with those of the conventional continuous coefficient non-uniform CMFB.

  14. Self-diffusion coefficients of the metastable Lennard-Jones vapor

    International Nuclear Information System (INIS)

    Nie Chu; Zhou Youhua; Marlow, W H; Hassan, Y A

    2008-01-01

    Self-diffusion coefficients of a metastable Lennard-Jones vapor were obtained using the memory function formalism and the frequency moments of the velocity autocorrelation function at reduced temperatures from 0.75 to 1.0. The radial density distribution functions used to evaluate the second, fourth and sixth frequency moments of the velocity autocorrelation function were obtained from the restricted canonical ensemble Monte Carlo simulation (Corti and Debenedetti 1994 Chem. Eng. Sci. 49 2717). The self-diffusion coefficients at reduced temperature 0.75 do not vary monotonically as the density increases, and for the other three temperatures the self-diffusion coefficients vary normally

  15. Self-diffusion coefficients of the metastable Lennard-Jones vapor

    Energy Technology Data Exchange (ETDEWEB)

    Nie Chu; Zhou Youhua [School of Physics and Information Engineering, Jianghan University, Wuhan 430056 (China); Marlow, W H; Hassan, Y A [Department of Nuclear Engineering, Texas A and M University, College Station, TX 77843 (United States)], E-mail: yhzhou@jhun.edu.cn

    2008-10-15

    Self-diffusion coefficients of a metastable Lennard-Jones vapor were obtained using the memory function formalism and the frequency moments of the velocity autocorrelation function at reduced temperatures from 0.75 to 1.0. The radial density distribution functions used to evaluate the second, fourth and sixth frequency moments of the velocity autocorrelation function were obtained from the restricted canonical ensemble Monte Carlo simulation (Corti and Debenedetti 1994 Chem. Eng. Sci. 49 2717). The self-diffusion coefficients at reduced temperature 0.75 do not vary monotonically as the density increases, and for the other three temperatures the self-diffusion coefficients vary normally.

  16. FADTTS: functional analysis of diffusion tensor tract statistics.

    Science.gov (United States)

    Zhu, Hongtu; Kong, Linglong; Li, Runze; Styner, Martin; Gerig, Guido; Lin, Weili; Gilmore, John H

    2011-06-01

    The aim of this paper is to present a functional analysis of a diffusion tensor tract statistics (FADTTS) pipeline for delineating the association between multiple diffusion properties along major white matter fiber bundles with a set of covariates of interest, such as age, diagnostic status and gender, and the structure of the variability of these white matter tract properties in various diffusion tensor imaging studies. The FADTTS integrates five statistical tools: (i) a multivariate varying coefficient model for allowing the varying coefficient functions in terms of arc length to characterize the varying associations between fiber bundle diffusion properties and a set of covariates, (ii) a weighted least squares estimation of the varying coefficient functions, (iii) a functional principal component analysis to delineate the structure of the variability in fiber bundle diffusion properties, (iv) a global test statistic to test hypotheses of interest, and (v) a simultaneous confidence band to quantify the uncertainty in the estimated coefficient functions. Simulated data are used to evaluate the finite sample performance of FADTTS. We apply FADTTS to investigate the development of white matter diffusivities along the splenium of the corpus callosum tract and the right internal capsule tract in a clinical study of neurodevelopment. FADTTS can be used to facilitate the understanding of normal brain development, the neural bases of neuropsychiatric disorders, and the joint effects of environmental and genetic factors on white matter fiber bundles. The advantages of FADTTS compared with the other existing approaches are that they are capable of modeling the structured inter-subject variability, testing the joint effects, and constructing their simultaneous confidence bands. However, FADTTS is not crucial for estimation and reduces to the functional analysis method for the single measure. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Advanced manufacturing: Technology diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Tesar, A.

    1995-12-01

    In this paper we examine how manufacturing technology diffuses rom the developers of technology across national borders to those who do not have the capability or resources to develop advanced technology on their own. None of the wide variety of technology diffusion mechanisms discussed in this paper are new, yet the opportunities to apply these mechanisms are growing. A dramatic increase in technology diffusion occurred over the last decade. The two major trends which probably drive this increase are a worldwide inclination towards ``freer`` markets and diminishing isolation. Technology is most rapidly diffusing from the US In fact, the US is supplying technology for the rest of the world. The value of the technology supplied by the US more than doubled from 1985 to 1992 (see the Introduction for details). History shows us that technology diffusion is inevitable. It is the rates at which technologies diffuse to other countries which can vary considerably. Manufacturers in these countries are increasingly able to absorb technology. Their manufacturing efficiency is expected to progress as technology becomes increasingly available and utilized.

  18. Comparative Analysis of Signal Intensity and Apparent Diffusion Coefficient at Varying b-values in the Brain : Diffusion Weighted-Echo Planar Image (T2 and FLAIR) Sequence

    International Nuclear Information System (INIS)

    Oh, Jong Kap; Im, Jung Yeol

    2009-01-01

    Diffusion-weighted imaging (DWI) has been demonstrated to be a practical method for the diagnosis of various brain diseases such as acute infarction, brain tumor, and white matter disease. In this study, we used two techniques to examine the average signal intensity (SI) and apparent diffusion coefficient (ADC) of the brains of patients who ranged in age from 10 to 60 years. Our results indicated that the average SI was the highest in amygdala (as derived from DWI), whereas that in the cerebrospinal fluid was the lowest. The average ADC was the highest in the cerebrospinal fluid, whereas the lowest measurement was derived from the pons. The average SI and ADC were higher in T 2 -DW-EPI than in FLAIR-DW-EPI. The higher the b-value, the smaller the average difference in both imaging techniques; the lower the b-value, the greater the average difference. Also, comparative analysis of the brains of patients who had experienced cerebral infarction showed no distinct lesion in the general MR image over time. However, there was a high SI in apparent weighted images. Analysis of other brain diseases (e.g., bleeding, acute, subacute, chronic infarction) indicated SI variance in accordance with characteristics of the two techniques. The higher the SI, the lower the ADC. Taken together, the value of SI and ADC in accordance with frequently occurring areas and various brain disease varies based on the b-value and imaging technique. Because they provide additional useful information in the diagnosis and treatment of patients with various brain diseases through signal recognition, the proper imaging technique and b-value are important for the detection and interpretation of subacute stroke and other brain diseases.

  19. Segmentation Technique for Image Indexing and Retrieval on Discrete Cosines Domain

    Directory of Open Access Journals (Sweden)

    Suhendro Yusuf Irianto

    2013-03-01

    Full Text Available This paper uses region growing segmentation technique to segment the Discrete Cosines (DC  image. The problem of content Based image retrieval (CBIR is the luck of accuracy in matching between image query and image in the database as it matches object and background in the same time.   This the reason previous CBIR techniques inaccurate and time consuming. The CBIR   based on the segmented region proposed in this work  separates object from background as CBIR need only match the object not the background.  By using region growing technique on DC image, it reduces the number of image       regions.    The proposed of recursive region growing is not new technique but its application on DC images to build    indexing keys is quite new and not yet presented by many     authors. The experimental results show  that the proposed methods on   segmented images present good precision which are higher than 0.60 on all classes . It can be concluded that  region growing segmented based CBIR more efficient    compare to DC images  in term of their precision 0.59 and 0.75, respectively. Moreover,  DC based CBIR  can save time and simplify algorithm compare to DCT images.

  20. 1/f noise: diffusive systems and music

    Energy Technology Data Exchange (ETDEWEB)

    Voss, R.F.

    1975-11-01

    Measurements of the 1/f voltage noise in continuous metal films are reported. At room temperature, samples of pure metals and bismuth (with a carrier density smaller by 10/sup 5/) of similar volume had comparable noise. The results suggest that the noise arises from equilibrium temperature fluctuations modulating the resistance. Spatial correlation of the noise implied that the fluctuations obey a diffusion equation. The empirical inclusion of an explicit 1/f region and appropriate normalization lead to excellent agreement with the measured noise. If the fluctuations are assumed to be spatially correlated, the diffusion equation can yield an extended 1/f region in the power spectrum. The temperature response of a sample to delta and step function power inputs is shown to have the same shape as the autocorrelation function for uncorrelated and correlated temperature fluctuations, respectively. The spectrum obtained from the cosine transform of the measured step function response is in excellent agreement with the measured 1/f voltage noise spectrum. Spatially correlated equilibrium temperature fluctuations are not the dominant source of 1/f noise in semiconductors and metal films. However, the agreement between the low-frequency spectrum of fluctuations in the mean-square Johnson noise voltage and the resistance fluctuation spectrum measured in the presence of a current demonstrates that in these systems the 1/f noise is also due to equilibrium resistance fluctuations. Loudness fluctuations in music and speech and pitch fluctuations in music also show the 1/f behavior. 1/f noise sources, consequently, are demonstrated to be the natural choice for stochastic composition. 26 figures, 1 table. (auth)

  1. Experimental characterization of methane inverse diffusion flame

    KAUST Repository

    Elbaz, Ayman M.; Roberts, William L.

    2014-01-01

    This article presents 10-kHz images of OH-PLIF simultaneously with 2-D PIV measurements in an inverse methane diffusion flame. Under a constant fuel flow rate, the central air jet Re was varied, leading to air to fuel velocity ratio, Vr, to vary

  2. High-capacity method for hiding data in the discrete cosine transform domain

    Science.gov (United States)

    Qazanfari, Kazem; Safabakhsh, Reza

    2013-10-01

    Steganography is the art and science of hiding data in different media such as texts, audios, images, and videos. Data hiding techniques are generally divided into two groups: spatial and frequency domain techniques. Spatial domain methods generally have low security and, as a result, are less attractive to researchers. Discrete cosine transform (DCT) is the most common transform domain used in steganography and JPEG compression. Since a large number of the DCT coefficients of JPEG images are zero, the capacity of DCT domain-based steganography methods is not very high. We present a high-capacity method for hiding messages in the DCT domain. We describe the method in two classes where the receiver has and where the receiver does not have the cover image. In each class, we consider three cases for each coefficient. By considering n coefficients, there are 3n different situations. The method embeds ⌊log2 3n⌋ bits in these n coefficients. We show that the maximum reachable capacity by our method is 58% higher than the other general steganography methods. Experimental results show that the histogram-based steganalysis methods cannot detect the stego images produced by the proposed method while the capacity is increased significantly.

  3. Comparative Analysis of Signal Intensity and Apparent Diffusion Coefficient at Varying b-values in the Brain : Diffusion Weighted-Echo Planar Image (T{sub 2} and FLAIR) Sequence

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Jong Kap [Dept. of Radiology, Cheomdan Medical Center, Gwangju (Korea, Republic of); Im, Jung Yeol [Dept. of Digital Management Information Graduate School of Nambu Univesity, Gwangju (Korea, Republic of)

    2009-09-15

    Diffusion-weighted imaging (DWI) has been demonstrated to be a practical method for the diagnosis of various brain diseases such as acute infarction, brain tumor, and white matter disease. In this study, we used two techniques to examine the average signal intensity (SI) and apparent diffusion coefficient (ADC) of the brains of patients who ranged in age from 10 to 60 years. Our results indicated that the average SI was the highest in amygdala (as derived from DWI), whereas that in the cerebrospinal fluid was the lowest. The average ADC was the highest in the cerebrospinal fluid, whereas the lowest measurement was derived from the pons. The average SI and ADC were higher in T{sub 2}-DW-EPI than in FLAIR-DW-EPI. The higher the b-value, the smaller the average difference in both imaging techniques; the lower the b-value, the greater the average difference. Also, comparative analysis of the brains of patients who had experienced cerebral infarction showed no distinct lesion in the general MR image over time. However, there was a high SI in apparent weighted images. Analysis of other brain diseases (e.g., bleeding, acute, subacute, chronic infarction) indicated SI variance in accordance with characteristics of the two techniques. The higher the SI, the lower the ADC. Taken together, the value of SI and ADC in accordance with frequently occurring areas and various brain disease varies based on the b-value and imaging technique. Because they provide additional useful information in the diagnosis and treatment of patients with various brain diseases through signal recognition, the proper imaging technique and b-value are important for the detection and interpretation of subacute stroke and other brain diseases.

  4. Plasma diffusion due to magnetic field fluctuations

    International Nuclear Information System (INIS)

    Okuda, H.; Lee, W.W.; Lin, A.T.

    1979-01-01

    Plasma diffusion due to magnetic field fluctuations has been studied in two dimensions for a plasma near thermal equilibrium and when the fluctuations are suprathermal. It is found that near thermal equilibrium electron diffusion varies as B -2 when the collisionless skin depth is greater than the thermal electron gyroradius and is generally smaller than the diffusion due to collisions or electrostatic fluctuations for a low-β plasma. When the suprathermal magnetic fluctuation exists because of macroscopic plasma currents, electron diffusion is enhanced due to the coalescence of current filaments and magnetic islands. Magnetic field energy is found to condense to the longest wavelength available in the system and stays there longer than the electron diffusion time scale

  5. Design of fractional order differentiator using type-III and type-IV discrete cosine transform

    Directory of Open Access Journals (Sweden)

    Manjeet Kumar

    2017-02-01

    Full Text Available In this paper, an interpolation method based on discrete cosine transform (DCT is employed for digital finite impulse response-fractional order differentiator (FIR-FOD design. Here, a fractional order digital differentiator is modeled as finite impulse response (FIR system to get an optimized frequency response that approximates the ideal response of a fractional order differentiator. Next, DCT-III and DCT-IV are utilized to determine the filter coefficients of FIR filter that compute the Fractional derivative of a given signal. To improve the frequency response of the proposed FIR-FOD, the filter coefficients are further modified using windows. Several design examples are presented to demonstrate the superiority of the proposed method. The simulation results have also been compared with the existing FIR-FOD design methods such as DFT interpolation, radial basis function (RBF interpolation, DCT-II interpolation and DST interpolation methods. The result reveals that the proposed FIR-FOD design technique using DCT-III and DCT-IV outperforms DFT interpolation, RBF interpolation, DCT-II interpolation and DST interpolation methods in terms of magnitude error.

  6. Space-Varying Iterative Restoration of Diffuse Optical Tomograms Reconstructed by the Photon Average Trajectories Method

    Directory of Open Access Journals (Sweden)

    Kravtsenyuk Olga V

    2007-01-01

    Full Text Available The possibility of improving the spatial resolution of diffuse optical tomograms reconstructed by the photon average trajectories (PAT method is substantiated. The PAT method recently presented by us is based on a concept of an average statistical trajectory for transfer of light energy, the photon average trajectory (PAT. The inverse problem of diffuse optical tomography is reduced to a solution of an integral equation with integration along a conditional PAT. As a result, the conventional algorithms of projection computed tomography can be used for fast reconstruction of diffuse optical images. The shortcoming of the PAT method is that it reconstructs the images blurred due to averaging over spatial distributions of photons which form the signal measured by the receiver. To improve the resolution, we apply a spatially variant blur model based on an interpolation of the spatially invariant point spread functions simulated for the different small subregions of the image domain. Two iterative algorithms for solving a system of linear algebraic equations, the conjugate gradient algorithm for least squares problem and the modified residual norm steepest descent algorithm, are used for deblurring. It is shown that a gain in spatial resolution can be obtained.

  7. Space-Varying Iterative Restoration of Diffuse Optical Tomograms Reconstructed by the Photon Average Trajectories Method

    Directory of Open Access Journals (Sweden)

    Vladimir V. Lyubimov

    2007-01-01

    Full Text Available The possibility of improving the spatial resolution of diffuse optical tomograms reconstructed by the photon average trajectories (PAT method is substantiated. The PAT method recently presented by us is based on a concept of an average statistical trajectory for transfer of light energy, the photon average trajectory (PAT. The inverse problem of diffuse optical tomography is reduced to a solution of an integral equation with integration along a conditional PAT. As a result, the conventional algorithms of projection computed tomography can be used for fast reconstruction of diffuse optical images. The shortcoming of the PAT method is that it reconstructs the images blurred due to averaging over spatial distributions of photons which form the signal measured by the receiver. To improve the resolution, we apply a spatially variant blur model based on an interpolation of the spatially invariant point spread functions simulated for the different small subregions of the image domain. Two iterative algorithms for solving a system of linear algebraic equations, the conjugate gradient algorithm for least squares problem and the modified residual norm steepest descent algorithm, are used for deblurring. It is shown that a 27% gain in spatial resolution can be obtained.

  8. Extended phase graphs with anisotropic diffusion

    Science.gov (United States)

    Weigel, M.; Schwenk, S.; Kiselev, V. G.; Scheffler, K.; Hennig, J.

    2010-08-01

    The extended phase graph (EPG) calculus gives an elegant pictorial description of magnetization response in multi-pulse MR sequences. The use of the EPG calculus enables a high computational efficiency for the quantitation of echo intensities even for complex sequences with multiple refocusing pulses with arbitrary flip angles. In this work, the EPG concept dealing with RF pulses with arbitrary flip angles and phases is extended to account for anisotropic diffusion in the presence of arbitrary varying gradients. The diffusion effect can be expressed by specific diffusion weightings of individual magnetization pathways. This can be represented as an action of a linear operator on the magnetization state. The algorithm allows easy integration of diffusion anisotropy effects. The formalism is validated on known examples from literature and used to calculate the effective diffusion weighting in multi-echo sequences with arbitrary refocusing flip angles.

  9. Alternating-gradient canted cosine theta superconducting magnets for future compact proton gantries

    Directory of Open Access Journals (Sweden)

    Weishi Wan

    2015-10-01

    Full Text Available We present a design of superconducting magnets, optimized for application in a gantry for proton therapy. We have introduced a new magnet design concept, called an alternating-gradient canted cosine theta (AG-CCT concept, which is compatible with an achromatic layout. This layout allows a large momentum acceptance. The 15 cm radius of the bore aperture enables the application of pencil beam scanning in front of the SC-magnet. The optical and dynamic performance of a gantry based on these magnets has been analyzed using the fields derived (via Biot-Savart law from the actual windings of the AG-CCT combined with the full equations of motion. The results show that with appropriate higher order correction, a large 3D volume can be rapidly scanned with little beam shape distortion. A very big advantage is that all this can be done while keeping the AG-CCT fields fixed. This reduces the need for fast field ramping of the superconducting magnets between the successive beam energies used for the scanning in depth and it is important for medical application since this reduces the technical risk (e.g., a quench associated with fast field changes in superconducting magnets. For proton gantries the corresponding superconducting magnet system holds promise of dramatic reduction in weight. For heavier ion gantries there may furthermore be a significant reduction in size.

  10. Time-optimized high-resolution readout-segmented diffusion tensor imaging.

    Directory of Open Access Journals (Sweden)

    Gernot Reishofer

    Full Text Available Readout-segmented echo planar imaging with 2D navigator-based reacquisition is an uprising technique enabling the sampling of high-resolution diffusion images with reduced susceptibility artifacts. However, low signal from the small voxels and long scan times hamper the clinical applicability. Therefore, we introduce a regularization algorithm based on total variation that is applied directly on the entire diffusion tensor. The spatially varying regularization parameter is determined automatically dependent on spatial variations in signal-to-noise ratio thus, avoiding over- or under-regularization. Information about the noise distribution in the diffusion tensor is extracted from the diffusion weighted images by means of complex independent component analysis. Moreover, the combination of those features enables processing of the diffusion data absolutely user independent. Tractography from in vivo data and from a software phantom demonstrate the advantage of the spatially varying regularization compared to un-regularized data with respect to parameters relevant for fiber-tracking such as Mean Fiber Length, Track Count, Volume and Voxel Count. Specifically, for in vivo data findings suggest that tractography results from the regularized diffusion tensor based on one measurement (16 min generates results comparable to the un-regularized data with three averages (48 min. This significant reduction in scan time renders high resolution (1 × 1 × 2.5 mm(3 diffusion tensor imaging of the entire brain applicable in a clinical context.

  11. Beam heating studies on an early model is a superconducting cosine theta magnet

    International Nuclear Information System (INIS)

    Bozoki, G.; Bunce, G.; Danby, G.; Foelsche, H.; Jackson, J.; Prodell, A.; Soukas, A.; Stevens, A.; Stoehr, R.; Weisenbloom, J.

    1980-01-01

    Superconducting magnets for accelerators can be accidentally quenched by heat resulting from beam losses in the magnet. The threshold for such quenches is determined by the time structure of the beam loss and by details of the magnet application, construction and cooling. A 4.25 m long superconducting cosine theta dipole magnet, MARK VI, constructed during the research and development phase of the ISABELLE Project at BNL was installed in the 28.5 GeV/c primary proton beam line from the AGS. By energizing the magnet, the proton beam could be deflected into the magnet. The beam intensity required to quench the magnet was observed for different beam sizes and at several values of magnet current up to 2400 A or approximately 70% of the highest magnet operating current. The maximum current was limited by the gas-cooled power lead flow available using pool-boiling helium rather than single phase forced-flow helium at 5 atm for which the magnet system was designed. Details of the experimental setup including the magnet and cryogenic system, the beam-monitoring equipment and instrumentation are described. The measurements are discussed and compared with beam heating measurements made on another superconducting magnet and interpreted using the Cascade Simulation Program, CASIM

  12. 2015 MICCAI Workshop on Computational Diffusion MRI

    CERN Document Server

    Ghosh, Aurobrata; Kaden, Enrico; Rathi, Yogesh; Reisert, Marco

    2016-01-01

    These Proceedings of the 2015 MICCAI Workshop “Computational Diffusion MRI” offer a snapshot of the current state of the art on a broad range of topics within the highly active and growing field of diffusion MRI. The topics vary from fundamental theoretical work on mathematical modeling, to the development and evaluation of robust algorithms, new computational methods applied to diffusion magnetic resonance imaging data, and applications in neuroscientific studies and clinical practice. Over the last decade interest in diffusion MRI has exploded. The technique provides unique insights into the microstructure of living tissue and enables in-vivo connectivity mapping of the brain. Computational techniques are key to the continued success and development of diffusion MRI and to its widespread transfer into clinical practice. New processing methods are essential for addressing issues at each stage of the diffusion MRI pipeline: acquisition, reconstruction, modeling and model fitting, image processing, fiber t...

  13. Infrared and visible image fusion using discrete cosine transform and swarm intelligence for surveillance applications

    Science.gov (United States)

    Paramanandham, Nirmala; Rajendiran, Kishore

    2018-01-01

    A novel image fusion technique is presented for integrating infrared and visible images. Integration of images from the same or various sensing modalities can deliver the required information that cannot be delivered by viewing the sensor outputs individually and consecutively. In this paper, a swarm intelligence based image fusion technique using discrete cosine transform (DCT) domain is proposed for surveillance application which integrates the infrared image with the visible image for generating a single informative fused image. Particle swarm optimization (PSO) is used in the fusion process for obtaining the optimized weighting factor. These optimized weighting factors are used for fusing the DCT coefficients of visible and infrared images. Inverse DCT is applied for obtaining the initial fused image. An enhanced fused image is obtained through adaptive histogram equalization for a better visual understanding and target detection. The proposed framework is evaluated using quantitative metrics such as standard deviation, spatial frequency, entropy and mean gradient. The experimental results demonstrate the outperformance of the proposed algorithm over many other state- of- the- art techniques reported in literature.

  14. Global Diffusion of Interactive Networks. The Impact of Culture

    OpenAIRE

    Maitland, Carleen

    1998-01-01

    The Internet and other interactive networks are diffusing across the globe at rates that vary from country to country. Typically, economic and market structure variables are used to explain these differences. The addition of culture to these variables will provide a more robust understanding of the differences in Internet and interactive network diffusion. Existing analyses that identify culture as a predictor of diffusion do not adequately specificy the dimensions of culture and their imp...

  15. Oceanic diffusion in the coastal area

    International Nuclear Information System (INIS)

    Rukuda, Masaaki

    1980-03-01

    Described in this paper is the eddy diffusion in the area off Tokai Village investigated by means of dye diffusion experiment and of oceanic observation. In order to assess the oceanic diffusion in coastal areas, improved methods effective in complex field were developed. The oceanic diffusion was separated in two groups, horizontal and vertical diffusion respectively. Both these diffusions are combined and their analysis together is difficult. The oceanic diffusion is thus considered separately. Instantaneous point release is the basis of horizontal diffusion analysis. Continuous release is then the overlap of numerous instantaneous releases. It was shown that the diffusion parameters derived from the results of diffusion experiment or oceanic observation vary widely with time and place and with sea conditions. A simple diffusion equation was developed from the equation of continuity. The results were in good agreement with seasonal mean horizontal distribution of river water in the sea area. The vertical observation in diffusion experiment is difficult and the vertical structure of oceanic condition is complex, so that the research on vertical diffusion generally is not advanced yet. With river water as the tracer, a method of estimating vertical diffusion parameters with a Gaussian model or one-dimensional model was developed. The vertical diffusion near sea bottom was numerically analized with suspended particles in seawater as the tracer. Diffusion was computed for each particle size, and by summing up the vertical distribution of beam attenuation coefficient was estimated. By comparing the results of estimation and those of observation the vertical diffusivity and the particle size distribution at sea bottom could be estimated. (author)

  16. Ambipolar diffusion in plasma

    International Nuclear Information System (INIS)

    Silva, T.L. da.

    1987-01-01

    Is this thesis, a numerical method for the solution of the linear diffusion equation for a plasma containing two types of ions, with the possibility of charge exchange, has been developed. It has been shown that the decay time of the electron and ion densities is much smaller than that in a plasma containing only a single type of ion. A non-linear diffusion equation, which includes the effects of an external electric field varying linearly in time, to describe a slightly ionized plasma has also been developed. It has been verified that the decay of the electron density in the presence of such an electric field is very slow. (author)

  17. Urban diffusion problems

    International Nuclear Information System (INIS)

    Hanna, S.R.

    1976-01-01

    It is hoped that urban diffusion models of air pollutants can eventually confidently be used to make major decisions, such as in planning the layout of a new industrial park, determining the effects of a new highway on air quality, or estimating the results of a new automobile emissions exhaust system. The urban diffusion model itself should be able to account for point, line, and area sources, and the local aerodynamic effects of street canyons and building wakes. Removal or transformations due to dry or wet deposition and chemical reactions are often important. It would be best if the model included meteorological parameters such as wind speed and temperature as dependent variables, since these parameters vary significantly when air passes from rural surfaces over urban surfaces

  18. Diffusion of uranium in compacted sodium bentonite

    International Nuclear Information System (INIS)

    Muurinen, A.; Lehikoinen, J.

    1992-09-01

    In the study the diffusion of uranium dissolved from uranium oxide fuel was studied experimentally in compacted sodium bentonite (Wyoming bentonite MX-80). The experiments were carried out by the through-diffusion method. The parameters varied in the study were the density of bentonite, salt content of the solution and redox conditions. Uranium was dissolved under aerobic conditions in order to simulate oxic conditions possibly caused by radiolysis in the repository

  19. Matrix-dependent multigrid-homogenization for diffusion problems

    Energy Technology Data Exchange (ETDEWEB)

    Knapek, S. [Institut fuer Informatik tu Muenchen (Germany)

    1996-12-31

    We present a method to approximately determine the effective diffusion coefficient on the coarse scale level of problems with strongly varying or discontinuous diffusion coefficients. It is based on techniques used also in multigrid, like Dendy`s matrix-dependent prolongations and the construction of coarse grid operators by means of the Galerkin approximation. In numerical experiments, we compare our multigrid-homogenization method with homogenization, renormalization and averaging approaches.

  20. Single Crystal Diffuse Neutron Scattering

    Directory of Open Access Journals (Sweden)

    Richard Welberry

    2018-01-01

    Full Text Available Diffuse neutron scattering has become a valuable tool for investigating local structure in materials ranging from organic molecular crystals containing only light atoms to piezo-ceramics that frequently contain heavy elements. Although neutron sources will never be able to compete with X-rays in terms of the available flux the special properties of neutrons, viz. the ability to explore inelastic scattering events, the fact that scattering lengths do not vary systematically with atomic number and their ability to scatter from magnetic moments, provides strong motivation for developing neutron diffuse scattering methods. In this paper, we compare three different instruments that have been used by us to collect neutron diffuse scattering data. Two of these are on a spallation source and one on a reactor source.

  1. Effects of Impeller-Diffuser Interaction on Centrifugal Compressor Performance

    Science.gov (United States)

    Tan, Choon S.

    2003-01-01

    This research program focuses on characterizing the effect of impeller-diffuser interactions in a centrifugal compressor stage on its performance using unsteady threedimensional Reynolds-averaged Navier-Stokes simulations. The computed results show that the interaction between the downstream diffuser pressure field and the impeller tip clearance flow can account for performance changes in the impeller. The magnitude of performance change due to this interaction was examined for an impeller with varying tip clearance followed by a vaned or vaneless diffuser. The impact of unsteady impeller-diffuser interaction, primarily through the impeller tip clearance flow, is reflected through a time-averaged change in impeller loss, blockage and slip. The results show that there exists a tip clearance where the beneficial effect of the impeller-diffuser interaction on the impeller performance is at a maximum. A flow feature that consists of tip flow back leakage was shown to occur at design speed for the centrifugal compressor stage. This flow phenomenon is described as tip flow that originates in one passage, flows downstream of the impeller trailing edge and then returns to upstream of the impeller trailing edge of a neighboring passage. Such a flow feature is a source of loss in the impeller. A hypothesis is put forth to show that changing the diffuser vane count and changing impeller-diffuser gap has an analogous effect on the impeller performance. The centrifugal compressor stage was analyzed using diffusers of different vane counts, producing an impeller performance trend similar to that when the impeller-diffuser gap was varied, thus supporting the hypothesis made. This has the implication that the effect impeller performance associated with changing the impeller-diffuser gap and changing diffuser vane count can be described by the non-dimensional ratio of impeller-diffuser gap to diffuser vane pitch. A procedure is proposed and developed for isolating impeller passage

  2. Slaved diffusion in phospholipid bilayers

    Science.gov (United States)

    Zhang, Liangfang; Granick, Steve

    2005-01-01

    The translational diffusion of phospholipids in supported fluid bilayers splits into two populations when polyelectrolytes adsorb at incomplete surface coverage. Spatially resolved measurements using fluorescence correlation spectroscopy show that a slow mode, whose magnitude scales inversely with the degree of polymerization of the adsorbate, coexists with a fast mode characteristic of naked lipid diffusion. Inner and outer leaflets of the bilayer are affected nearly equally. Mobility may vary from spot to spot on the membrane surface, despite the lipid composition being the same. This work offers a mechanism to explain how nanosized domains with reduced mobility arise in lipid membranes. PMID:15967988

  3. Nuclear diffuseness as a degree of freedom

    Science.gov (United States)

    Myers, W. D.; ŚwiaŢecki, W. J.

    1998-12-01

    The response of the nuclear energy to changes in neutron and proton surface diffusenesses is investigated using the Thomas-Fermi model. Algebraic expressions are provided for the energy cost of changing the two diffusenesses away from their equilibrium values. This will make it possible to generalize the macroscopic-microscopic calculations of nuclear masses and deformation energies by the inclusion of the neutron and proton diffusenesses as degrees of freedom (to be varied along with the shape degrees of freedom). One result, which is suggested by the relatively low cost in macroscopic energy of increasing the diffuseness of a heavy nucleus by 10% (about 4 MeV), is that superheavy nuclei near Z=126, N=184 may have a fair chance of becoming stabilized by shell effects. An appendix introduces an improved measure of surface diffuseness, with certain advantages over the conventional Süssmann width b.

  4. Nuclear diffuseness as a degree of freedom

    International Nuclear Information System (INIS)

    Myers, W.D.; Swiatecki, W.J.

    1998-01-01

    The response of the nuclear energy to changes in neutron and proton surface diffusenesses is investigated using the Thomas-Fermi model. Algebraic expressions are provided for the energy cost of changing the two diffusenesses away from their equilibrium values. This will make it possible to generalize the macroscopic-microscopic calculations of nuclear masses and deformation energies by the inclusion of the neutron and proton diffusenesses as degrees of freedom (to be varied along with the shape degrees of freedom). One result, which is suggested by the relatively low cost in macroscopic energy of increasing the diffuseness of a heavy nucleus by 10% (about 4 MeV), is that superheavy nuclei near Z=126, N=184 may have a fair chance of becoming stabilized by shell effects. An appendix introduces an improved measure of surface diffuseness, with certain advantages over the conventional Suessmann width b. copyright 1998 The American Physical Society

  5. Intercomparison of diffusion coefficient derived from the through-diffusion experiment using different numerical methods

    International Nuclear Information System (INIS)

    Chih-Lung Chen; Institute of Nuclear Energy Research, Taoyuan, Taiwan; Tsing-Hai Wang; Shi-Ping Teng; Ching-Hor Lee

    2014-01-01

    Diffusion is a dominant mechanism regulating the transport of released nuclides. The through-diffusion method is typically applied to determine the diffusion coefficients (D). Depending on the design of the experiment, the concentrations in the source term [i.e., inlet reservoir (IR)] or the end term [i.e., outlet reservoir (OR)] can be fixed or vary. The combinations involve four distinct models (i.e., the CC-CC model, CC-VC model, VC-CC model, and the VC-VC model). Studies discussing the VC-CC model are scant. An analytical method considering the decay effect is required to accurately interpret the radioactive nuclide diffusion experiment results. Therefore, we developed a CC-CC model and a CC-VC model with a decay effect and the simplified formulas of these two models to determine the diffusion coefficient (i.e., the CC-CC method and CC-VC method). We also proposed two simplified methods using the VC-VC model to determine the diffusion coefficient straightforwardly based upon the concentration variation in IR and OR. More importantly, the best advantage of proposed method over others is that one can derive three diffusion coefficients based on one run of experiment. In addition, applying our CC-VC method to those data reported from Radiochemica Acta 96:111-117, 2008; and J Contam Hydrol 35:55-65, 1998, derived comparable diffusion coefficient lying in the identical order of magnitude. Furthermore, we proposed a formula to determine the conceptual critical time (Tc), which is particularly beneficial for the selection of using CC-VC or VC-VC method. Based on our proposed method, it becomes possible to calculate diffusion coefficient from a through-diffusion experiment in a shorter period of time. (author)

  6. Flux-limited diffusion coefficients in reactor physics applications

    International Nuclear Information System (INIS)

    Pounders, J.; Rahnema, F.; Szilard, R.

    2007-01-01

    Flux-limited diffusion theory has been successfully applied to problems in radiative transfer and radiation hydrodynamics, but its relevance to reactor physics has not yet been explored. The current investigation compares the performance of a flux-limited diffusion coefficient against the traditionally defined transport cross section. A one-dimensional BWR benchmark problem is examined at both the assembly and full-core level with varying degrees of heterogeneity. (authors)

  7. New method and installation for rapid determination of radon diffusion coefficient in various materials

    International Nuclear Information System (INIS)

    Tsapalov, Andrey; Gulabyants, Loren; Livshits, Mihail; Kovler, Konstantin

    2014-01-01

    The mathematical apparatus and the experimental installation for the rapid determination of radon diffusion coefficient in various materials are developed. The single test lasts not longer than 18 h and allows testing numerous materials, such as gaseous and liquid media, as well as soil, concrete and radon-proof membranes, in which diffusion coefficient of radon may vary in an extremely wide range, from 1·10 −12 to 5·10 −5 m 2 /s. The uncertainty of radon diffusion coefficient estimation depends on the permeability of the sample and varies from about 5% (for the most permeable materials) to 40% (for less permeable materials, such as radon-proof membranes). - Highlights: • The new method and installation for determination of radon diffusion coefficient D are developed. • The measured D-values vary in an extremely wide range, from 5×10 -5 to 1×10 -12 m 2 /s. • The materials include water, air, soil, building materials and radon-proof membranes. • The duration of the single test does not exceed 18 hours. • The measurement uncertainty varies from 5% (in permeable materials) to 40% (in radon gas barriers)

  8. Image secure transmission for optical orthogonal frequency-division multiplexing visible light communication systems using chaotic discrete cosine transform

    Science.gov (United States)

    Wang, Zhongpeng; Zhang, Shaozhong; Chen, Fangni; Wu, Ming-Wei; Qiu, Weiwei

    2017-11-01

    A physical encryption scheme for orthogonal frequency-division multiplexing (OFDM) visible light communication (VLC) systems using chaotic discrete cosine transform (DCT) is proposed. In the scheme, the row of the DCT matrix is permutated by a scrambling sequence generated by a three-dimensional (3-D) Arnold chaos map. Furthermore, two scrambling sequences, which are also generated from a 3-D Arnold map, are employed to encrypt the real and imaginary parts of the transmitted OFDM signal before the chaotic DCT operation. The proposed scheme enhances the physical layer security and improves the bit error rate (BER) performance for OFDM-based VLC. The simulation results prove the efficiency of the proposed encryption method. The experimental results show that the proposed security scheme not only protects image data from eavesdroppers but also keeps the good BER and peak-to-average power ratio performances for image-based OFDM-VLC systems.

  9. MODELING OF SUPERCRITICAL FLUID EXTRACTION KINETIC OF FLAXSEED OIL BY DIFFUSION CONTROL METHOD

    Directory of Open Access Journals (Sweden)

    Emir Zafer HOŞGÜN

    2013-06-01

    Full Text Available In this study, Flaxseed oil was extracted by Supercritical Carbondioxide Extraction, and extractionkinetics was modelled using diffusion controlled method.The effect of process parameters, such as pressure (20, 35, 55 MPa, temperature (323 and 343 K, and CO2 flow rate (1 and 3 L CO2 /min on the extraction yield and effective diffusivity (De was investigated. The effective diffusion coefficient varied between 2.4 x10-12 and 10.8 x10-12 m2s-1 for the entire range of experiments and increased with the pressure and flow rate. The model fitted well theexperimental data (ADD varied between 2.35 and 7.48%.

  10. Synchronization of Reaction-Diffusion Neural Networks With Dirichlet Boundary Conditions and Infinite Delays.

    Science.gov (United States)

    Sheng, Yin; Zhang, Hao; Zeng, Zhigang

    2017-10-01

    This paper is concerned with synchronization for a class of reaction-diffusion neural networks with Dirichlet boundary conditions and infinite discrete time-varying delays. By utilizing theories of partial differential equations, Green's formula, inequality techniques, and the concept of comparison, algebraic criteria are presented to guarantee master-slave synchronization of the underlying reaction-diffusion neural networks via a designed controller. Additionally, sufficient conditions on exponential synchronization of reaction-diffusion neural networks with finite time-varying delays are established. The proposed criteria herein enhance and generalize some published ones. Three numerical examples are presented to substantiate the validity and merits of the obtained theoretical results.

  11. A diffuse radar scattering model from Martian surface rocks

    Science.gov (United States)

    Calvin, W. M.; Jakosky, B. M.; Christensen, P. R.

    1987-01-01

    Remote sensing of Mars has been done with a variety of instrumentation at various wavelengths. Many of these data sets can be reconciled with a surface model of bonded fines (or duricrust) which varies widely across the surface and a surface rock distribution which varies less so. A surface rock distribution map from -60 to +60 deg latitude has been generated by Christensen. Our objective is to model the diffuse component of radar reflection based on this surface distribution of rocks. The diffuse, rather than specular, scattering is modeled because the diffuse component arises due to scattering from rocks with sizes on the order of the wavelength of the radar beam. Scattering for radio waves of 12.5 cm is then indicative of the meter scale and smaller structure of the surface. The specular term is indicative of large scale surface undulations and should not be causally related to other surface physical properties. A simplified model of diffuse scattering is described along with two rock distribution models. The results of applying the models to a planet of uniform fractional rock coverage with values ranging from 5 to 20% are discussed.

  12. Investigation of the Stage Performance and Flow Fields in a Centrifugal Compressor with a Vaneless Diffuser

    Directory of Open Access Journals (Sweden)

    Ahti Jaatinen-Värri

    2014-01-01

    Full Text Available The effect of the width of the vaneless diffuser on the stage performance and flow fields of a centrifugal compressor is studied numerically and experimentally. The diffuser width is varied by reducing the diffuser flow area from the shroud side (i.e., pinching the diffuser. Seven different diffuser widths are studied with numerical simulation. In the modeling, the diffuser width b/b2 is varied within the range 1.00 to 0.50. The numerical results are compared with results obtained in previous studies. In addition, two of the diffusers are further investigated with experimental measurement. The main finding of the work is that the pinch reduces losses in the impeller associated with the tip-clearance flow. Furthermore, it is shown that a too large width reduction causes the flow to accelerate excessively, resulting in a highly nonuniform flow field and flow separation near the shroud.

  13. Path coefficient analysis of zinc dynamics in varying soil environment

    International Nuclear Information System (INIS)

    Rattan, R.K.; Phung, C.V.; Singhal, S.K.; Deb, D.L.; Singh, A.K.

    1994-01-01

    Influence of soil properties on labile zinc, as measured by diethylene-triamine pentaacetic acid (DTPA) and zinc-65, and self-diffusion coefficients of zinc was assessed on 22 surface soil samples varying widely in their characteristics following linear regression and path coefficient analysis techniques. DTPA extractable zinc could be predicted from organic carbon status and pH of the soil with a highly significant coefficient of determination (R 2 =0.84 ** ). Ninety seven per cent variation in isotopically exchangeable zinc was explained by pH, clay content and cation exchange capacity (CEC) of soil. The self-diffusion coefficients (DaZn and DpZn) and buffer power of zinc exhibited exponential relationship with soil properties, pH being the most dominant one. Soil properties like organic matter, clay content etc. exhibited indirect effects on zinc diffusion rates via pH only. (author). 13 refs., 6 tabs

  14. Effects of MR parameter changes on the quantification of diffusion anisotropy and apparent diffusion coefficient in diffusion tensor imaging: Evaluation using a diffusional anisotropic phantom

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Joon; Choi, Choong Gon; Kim, Jeong Kon [Dept. of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Yun, Sung Cheol [Dept. of Biostatistics, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Jeong, Ha Kyu [Dept. of Radiology, East-West Neomedical Center, Kyung Hee University College of Medicine, Seoul (Korea, Republic of); Kim, Eun Ju [Clinical Scientist, MR, Philips Healthcare, Seoul (Korea, Republic of)

    2015-04-15

    To validate the usefulness of a diffusional anisotropic capillary array phantom and to investigate the effects of diffusion tensor imaging (DTI) parameter changes on diffusion fractional anisotropy (FA) and apparent diffusion coefficient (ADC) using the phantom. Diffusion tensor imaging of a capillary array phantom was performed with imaging parameter changes, including voxel size, number of sensitivity encoding (SENSE) factor, echo time (TE), number of signal acquisitions, b-value, and number of diffusion gradient directions (NDGD), one-at-a-time in a stepwise-incremental fashion. We repeated the entire series of DTI scans thrice. The coefficients of variation (CoV) were evaluated for FA and ADC, and the correlation between each MR imaging parameter and the corresponding FA and ADC was evaluated using Spearman's correlation analysis. The capillary array phantom CoVs of FA and ADC were 7.1% and 2.4%, respectively. There were significant correlations between FA and SENSE factor, TE, b-value, and NDGD, as well as significant correlations between ADC and SENSE factor, TE, and b-value. A capillary array phantom enables repeated measurements of FA and ADC. Both FA and ADC can vary when certain parameters are changed during diffusion experiments. We suggest that the capillary array phantom can be used for quality control in longitudinal or multicenter clinical studies.

  15. Multiphase Microfluidics The Diffuse Interface Model

    CERN Document Server

    2012-01-01

    Multiphase flows are typically described assuming that the different phases are separated by a sharp interface, with appropriate boundary conditions. This approach breaks down whenever the lengthscale of the phenomenon that is being studied is comparable with the real interface thickness, as it happens, for example, in the coalescence and breakup of bubbles and drops, the wetting and dewetting of solid surfaces and, in general, im micro-devices. The diffuse interface model resolves these probems by assuming that all quantities can vary continuously, so that interfaces have a non-zero thickness, i.e. they are "diffuse". The contributions in this book review the theory and describe some relevant applications of the diffuse interface model for one-component, two-phase fluids and for liquid binary mixtures, to model multiphase flows in confined geometries.

  16. An investigation into the effects of a cosine axial heat flux distribution on burnout in a 12ft long annulus using Freon-12

    International Nuclear Information System (INIS)

    Stevens, G.F.; Wood, R.W.; Pryzbylski, J.

    1968-09-01

    Burnout results are given for an annular test section 12ft long and having an inner heated rod 0.625 in diameter, and an outer unheated tube of 0.825in bore. In one case the rod was uniformly heated and in the other case the rod was given a symmetrical chopped cosine heat flux profile. The Freon data is shown to compare well with equivalent water data using an established scaling technique; this applied both to burnout power and to burnout position. The comparison is made at pressures of 1000 psia and 750 psia water equivalent and the same scaling factors are shown to work at both pressures. (author)

  17. Diffusion coefficients for unattached decay products of thoron - dependence on ventilation and relative humidity

    International Nuclear Information System (INIS)

    Kotrappa, P.; Bhanti, D.P.; Raghunath, B.

    1976-01-01

    The results of a study of the diffusivity of unattached decay products of thoron with respect to air changes using a recently developed diffusion sampler are reported. The dependence of diffusivity of radon/thoron decay products on relative humidity has also been investigated by measurement of diffusion coefficients in an atmosphere where relative humidities varied from 5 to 90%. Results are shown tabulated. (U.K.)

  18. Diffusion of Fission Product Elements in Compacted Bentonite

    International Nuclear Information System (INIS)

    Pratomo-Budiman-Sastrowardoyo; Dewi-Susilowati; Dadang-Suganda

    2000-01-01

    Study on diffusion of fission product in compacted bentonite has been conducted. The information about mobilities of these elements have been obtained from the studies resulted in many countries. It is presented that the diffusion coefficient was varied by the function of solution phase condition as well as the nature of bentonite. It is also showed that the diffusion coefficient decreased by the increasing of density, as well as the increasing of montmorillonite content in bentonite. The ratio of bentonite/silica-sand used, was related to the increasing of elements mobility. In many case variation of diffusion coefficient was related to the variation of pH, redox condition, and the presence of complex ant in solution phase. The lower diffusion coefficient could give the higher retardation factor, which is a favorable factor to retard the radionuclides release from a disposal facility to geosphere. (author)

  19. Ambiguity resolving based on cosine property of phase differences for 3D source localization with uniform circular array

    Science.gov (United States)

    Chen, Xin; Wang, Shuhong; Liu, Zhen; Wei, Xizhang

    2017-07-01

    Localization of a source whose half-wavelength is smaller than the array aperture would suffer from serious phase ambiguity problem, which also appears in recently proposed phase-based algorithms. In this paper, by using the centro-symmetry of fixed uniform circular array (UCA) with even number of sensors, the source's angles and range can be decoupled and a novel ambiguity resolving approach is addressed for phase-based algorithms of source's 3-D localization (azimuth angle, elevation angle, and range). In the proposed method, by using the cosine property of unambiguous phase differences, ambiguity searching and actual-value matching are first employed to obtain actual phase differences and corresponding source's angles. Then, the unambiguous angles are utilized to estimate the source's range based on a one dimension multiple signal classification (1-D MUSIC) estimator. Finally, simulation experiments investigate the influence of step size in search and SNR on performance of ambiguity resolution and demonstrate the satisfactory estimation performance of the proposed method.

  20. Critical role for mesoscale eddy diffusion in supplying oxygen to hypoxic ocean waters

    Science.gov (United States)

    Gnanadesikan, Anand; Bianchi, Daniele; Pradal, Marie-Aude

    2013-10-01

    of the oceanic lateral eddy diffusion coefficient Aredi vary by more than an order of magnitude, ranging from less than a few hundred m2/s to thousands of m2/s. This uncertainty has first-order implications for the intensity of oceanic hypoxia, which is poorly simulated by the current generation of Earth System Models. Using satellite-based estimate of oxygen consumption in hypoxic waters to estimate the required diffusion coefficient for these waters gives a value of order 1000 m2/s. Varying Aredi across a suite of Earth System Models yields a broadly consistent result given a thermocline diapycnal diffusion coefficient of 1 × 10-5 m2/s.

  1. On the analytical solutions of the system of conformable time-fractional Robertson equations with 1-D diffusion

    International Nuclear Information System (INIS)

    Iyiola, O.S.; Tasbozan, O.; Kurt, A.; Çenesiz, Y.

    2017-01-01

    In this paper, we consider the system of conformable time-fractional Robertson equations with one-dimensional diffusion having widely varying diffusion coefficients. Due to the mismatched nature of the initial and boundary conditions associated with Robertson equation, there are spurious oscillations appearing in many computational algorithms. Our goal is to obtain an approximate solutions of this system of equations using the q-homotopy analysis method (q-HAM) and examine the widely varying diffusion coefficients and the fractional order of the derivative.

  2. Unexpected consequences of bedload diffusion

    Science.gov (United States)

    Devauchelle, O.; Abramian, A.; Lajeunesse, E.

    2017-12-01

    Sedimentary grains transported as bedload bump and bounce on the rough bed of the river that entrains them. The succession of these random events causes bedload particles to diffuse across the flow, towards the less active areas of the bed. In a fashion reminiscent of that proposed by Parker (1978) for suspended load, this mechanism opposes gravity to maintain the banks of alluvial rivers. In fact, diffusion is so tightly linked to bedload that it appears in the most basic sediment transport experiment--the straight channel we use to calibrate transport laws. Indeed, the fixed sides of the channel cause the flow, and thus the bed shear stress, to vary across the flume. This variation induces bedload diffusion, which in turn deforms the bed. As a consequence, to reliably calibrate a transport law, we need to measure the full profiles of shear stress and bedload transport, rather than bulk-average these quantities. Unfortunately, using a larger channel does not solve the problem, as a large aspect ratio favors the growth of streaks caused by a diffusion-induced instability. Based on these observations, we propose a different design for sediment transport experiments.

  3. Structural-functional lung imaging using a combined CT-EIT and a Discrete Cosine Transformation reconstruction method.

    Science.gov (United States)

    Schullcke, Benjamin; Gong, Bo; Krueger-Ziolek, Sabine; Soleimani, Manuchehr; Mueller-Lisse, Ullrich; Moeller, Knut

    2016-05-16

    Lung EIT is a functional imaging method that utilizes electrical currents to reconstruct images of conductivity changes inside the thorax. This technique is radiation free and applicable at the bedside, but lacks of spatial resolution compared to morphological imaging methods such as X-ray computed tomography (CT). In this article we describe an approach for EIT image reconstruction using morphologic information obtained from other structural imaging modalities. This leads to recon- structed images of lung ventilation that can easily be superimposed with structural CT or MRI images, which facilitates image interpretation. The approach is based on a Discrete Cosine Transformation (DCT) of an image of the considered transversal thorax slice. The use of DCT enables reduction of the dimensionality of the reconstruction and ensures that only conductivity changes of the lungs are reconstructed and displayed. The DCT based approach is well suited to fuse morphological image information with functional lung imaging at low computational costs. Results on simulated data indicate that this approach preserves the morphological structures of the lungs and avoids blurring of the solution. Images from patient measurements reveal the capabilities of the method and demonstrate benefits in possible applications.

  4. Nodal approximations of varying order by energy group for solving the diffusion equation

    International Nuclear Information System (INIS)

    Broda, J.T.

    1992-02-01

    The neutron flux across the nuclear reactor core is of interest to reactor designers and others. The diffusion equation, an integro-differential equation in space and energy, is commonly used to determine the flux level. However, the solution of a simplified version of this equation when automated is very time consuming. Since the flux level changes with time, in general, this calculation must be made repeatedly. Therefore solution techniques that speed the calculation while maintaining accuracy are desirable. One factor that contributes to the solution time is the spatial flux shape approximation used. It is common practice to use the same order flux shape approximation in each energy group even though this method may not be the most efficient. The one-dimensional, two-energy group diffusion equation was solved, for the node average flux and core k-effective, using two sets of spatial shape approximations for each of three reactor types. A fourth-order approximation in both energy groups forms the first set of approximations used. The second set used combines a second-order approximation with a fourth-order approximation in energy group two. Comparison of the results from the two approximation sets show that the use of a different order spatial flux shape approximation results in considerable loss in accuracy for the pressurized water reactor modeled. However, the loss in accuracy is small for the heavy water and graphite reactors modeled. The use of different order approximations in each energy group produces mixed results. Further investigation into the accuracy and computing time is required before any quantitative advantage of the use of the second-order approximation in energy group one and the fourth-order approximation in energy group two can be determined

  5. Assessing Quasi-Steady State in Evaporation of Sessile Drops by Diffusion Models

    Science.gov (United States)

    Martin, Cameron; Nguyen, Hoa; Kelly-Zion, Peter; Pursell, Chris

    2017-11-01

    The vapor distributions surrounding sessile drops of methanol are modeled as the solutions of the steady-state and transient diffusion equations using Matlab's PDE Toolbox. The goal is to determine how quickly the transient diffusive transport reaches its quasi-steady state as the droplet geometry is varied between a Weber's disc, a real droplet shape, and a spherical cap with matching thickness or contact angle. We assume that the only transport mechanism at work is diffusion. Quasi-steady state is defined using several metrics, such as differences between the transient and steady-state solutions, and change in the transient solution over time. Knowing the vapor distribution, the gradient is computed to evaluate the diffusive flux. The flux is integrated along the surface of a control volume surrounding the drop to obtain the net rate of diffusion out of the volume. Based on the differences between the transient and steady-state diffusive fluxes at the discrete points along the control-volume surface, the time to reach quasi-steady state evaporation is determined and is consistent with other proposed measurements. By varying the dimensions of the control volume, we can also assess what regimes have equivalent or different quasi-steady states for different droplet geometries. Petroleum Research Fund.

  6. Diffusion-weighted MRI of the prostate

    International Nuclear Information System (INIS)

    Mueller-Lisse, U.G.; Scherr, M.K.; Mueller-Lisse, U.L.; Zamecnik, P.; Schlemmer, H.P.W.

    2011-01-01

    Diffusion-weighted magnetic resonance imaging (DWI) can complement MRI of the prostate in the detection and localization of prostate cancer, particularly after previous negative biopsy. A total of 13 original reports and 2 reviews published in 2010 demonstrate that prostate cancer can be detected by DWI due to its increased cell density and decreased diffusiveness, either qualitatively in DWI images or quantitatively by means of the apparent diffusion coefficient (ADC). In the prostate, the ADC is influenced by the strength of diffusion weighting, localization (peripheral or transitional zone), presence of prostatitis or hemorrhage and density and differentiation of prostate cancer cells. Mean differences between healthy tissue of the peripheral zone and prostate cancer appear to be smaller for ADC than for the (choline + creatine)/citrate ratio in MR spectroscopy. Test quality parameters vary greatly between different studies but appear to be slightly better for combined MRI and DWI than for MRI of the prostate alone. Clinical validation of DWI of the prostate requires both increased technical conformity and increased numbers of patients in clinical studies. (orig.) [de

  7. Diffusion of iron in lithium niobate: a secondary ion mass spectrometry study

    Energy Technology Data Exchange (ETDEWEB)

    Ciampolillo, M.V.; Argiolas, N.; Zaltron, A.; Bazzan, M.; Sada, C. [University of Padova, Physics Department (Italy); CNISM, Padova (Italy)

    2011-10-15

    Iron-doped X-cut lithium niobate crystals were prepared by means of thermal diffusion from thin film varying in a systematic way the process parameters such as temperature and diffusion duration. Secondary Ion Mass Spectrometry was exploited to characterize the iron in-depth profiles. The evolution of the composition of the Fe thin film in the range between 600 C and 800 C was studied, and the diffusion coefficient at different temperatures in the range between 900 C and 1050 C and the activation energy of the diffusion process were estimated. (orig.)

  8. The distribution and seasonal variations of diffuse fraction

    International Nuclear Information System (INIS)

    Anane-Fenin, K.

    1989-06-01

    A moving average approach is used to develop linear and polynomial regression models for the diffuse fraction averaged over 10, 15, 20 and 30 days. The correlations do not appear to be influenced by climate conditions or altitude. It is noted that the correlations vary with season. The time-dependent variations of the diffuse fraction correlations are examined by studying the residual differences between the measured diffuse fraction and those calculated from the over-all best-fit correlation. The residuals exhibit no pronounced pattern leading to the conclusion that the observed seasonal variation is caused by air mass and water vapour and that atmospheric turbidity plays little or no part. (author). 14 refs, 9 figs, 8 tabs

  9. New method and installation for rapid determination of radon diffusion coefficient in various materials.

    Science.gov (United States)

    Tsapalov, Andrey; Gulabyants, Loren; Livshits, Mihail; Kovler, Konstantin

    2014-04-01

    The mathematical apparatus and the experimental installation for the rapid determination of radon diffusion coefficient in various materials are developed. The single test lasts not longer than 18 h and allows testing numerous materials, such as gaseous and liquid media, as well as soil, concrete and radon-proof membranes, in which diffusion coefficient of radon may vary in an extremely wide range, from 1·10(-12) to 5·10(-5) m(2)/s. The uncertainty of radon diffusion coefficient estimation depends on the permeability of the sample and varies from about 5% (for the most permeable materials) to 40% (for less permeable materials, such as radon-proof membranes). Copyright © 2014. Published by Elsevier Ltd.

  10. Elements of sub-quantum thermodynamics: quantum motion as ballistic diffusion

    International Nuclear Information System (INIS)

    Groessing, G; Fussy, S; Pascasio, J Mesa; Schwabl, H

    2011-01-01

    By modelling quantum systems as emerging from a (classical) sub-quantum thermodynamics, the quantum mechanical 'decay of the wave packet' is shown to simply result from sub-quantum diffusion with a specific diffusion coefficient varying in time due to a particle's changing thermal environment. It is thereby proven that free quantum motion strictly equals ballistic diffusion. The exact quantum mechanical trajectory distributions and the velocity field of the Gaussian wave packet are thus derived solely from classical physics. Moreover, also quantum motion in a linear (e.g., gravitational) potential is shown to equal said ballistic diffusion. Quantitative statements on the trajectories' characteristic behaviours are obtained which provide a detailed 'micro-causal' explanation in full accordance with momentum conservation.

  11. Measuring nanoparticle diffusion in an ABELtrap

    Science.gov (United States)

    Dienerowitz, M.; Dienerowitz, F.; Börsch, M.

    2018-03-01

    Monitoring the Brownian motion of individual nanoscopic objects is key to investigate their transport properties and interactions with their close environment. Most techniques rely on transient diffusion through a detection volume or immobilisation, which restrict observation times or motility. We measure the diffusion coefficient and surface charge of individual nanoparticles and DNA molecules in an anti-Brownian electrokinetic trap (ABELtrap). This instrument is an active feedback trap confining the Brownian motion of a nanoparticle to the detection site by applying an electric field based on the particle’s current position. We simulate the Brownian motion of nanospheres in our sample geometry, including wall effects, due to partial confinement in the third dimension. The theoretically predicted values are in excellent agreement with our diffusion measurements in the ABELtrap. We also demonstrate the ABELtrap’s ability to measure varying sizes of DNA origami structures during denaturation.

  12. Synchronization criteria for generalized reaction-diffusion neural networks via periodically intermittent control.

    Science.gov (United States)

    Gan, Qintao; Lv, Tianshi; Fu, Zhenhua

    2016-04-01

    In this paper, the synchronization problem for a class of generalized neural networks with time-varying delays and reaction-diffusion terms is investigated concerning Neumann boundary conditions in terms of p-norm. The proposed generalized neural networks model includes reaction-diffusion local field neural networks and reaction-diffusion static neural networks as its special cases. By establishing a new inequality, some simple and useful conditions are obtained analytically to guarantee the global exponential synchronization of the addressed neural networks under the periodically intermittent control. According to the theoretical results, the influences of diffusion coefficients, diffusion space, and control rate on synchronization are analyzed. Finally, the feasibility and effectiveness of the proposed methods are shown by simulation examples, and by choosing different diffusion coefficients, diffusion spaces, and control rates, different controlled synchronization states can be obtained.

  13. Adsorption and diffusion of plutonium in soil

    International Nuclear Information System (INIS)

    Relyea, J.F.; Brown, D.A.

    1978-01-01

    The behavior of plutonium in soil--water systems was studied by measuring its apparent diffusion coefficient in the aqueous and solid phases and by finding the adsorption--desorption relationships between soil and solution. Apparent diffusion coefficients of plutonium in soil were measured using a quick-freeze method. Aqueous diffusion was studied in a capillary-tube diffusion cell. Adsorption studies were done by equilibrating a tagged soil--water mixture on a rotary shaker before centrifuging and sampling. As expected from high adsorption coefficients (Kd) (300--10,000), the apparent diffusion coefficients were low compared with normal soil cations (1.4 x 10 -8 cm 2 /sec in a sandy soil to less than 2.4 x 10 -11 cm 2 /sec in a silt loam). The Kd of plutonium in aqueous solution containing the chelate ethylenediaminetetraacetic acid (EDTA) was reduced compared with the Kd in dilute HNO 3 . As the EDTA concentration was increased, the Kd was decreased. The chelate diethylenetriaminepentaacetic acid (DTPA) reduced the Kd more than EDTA at comparable concentrations. The aqueous diffusion coefficients varied from 3.1 x 10 -7 cm 2 /sec in a solution extracted from the silt loam up to 2.7 x 10 -5 cm 2 /sec in a solution extracted from the sandy soil

  14. Comparison of methods for measurement and retrieval of SIF with tower based sensors

    Science.gov (United States)

    Kornfeld, A.; Berry, J. A.

    2017-12-01

    As the popularity of solar induced fluorescence (SIF) measurement increases, the number of ways to measure and process the data has also increased, leaving a bewildering array of choices for the practitioner. To help clarify the advantages and disadvantages of several methods, we modified our foreoptic, Rotaprism, to measure spectra using either bi-hemispheric (cosine correcting diffusers on both upward and downward views) or hemispherical-conical views (only the upward view is cosine corrected). To test spatial sensitivity of each optic, we recorded data after moving the device relatively short distances - 1-2x the sensor's height above the canopy. When using conical measurements, measured SIF varied by as much as 100% across locations, whereas bi-hemispherical measurements were nearly unaffected by the moves. Reflectance indexes such as NDVI, PRI, NIRv were also spatially sensitive for the conical measurements. We also compared retrievals using either the O2A band or the adjacent Fraunhofer band to examine the relative advantages of each retrieval band for full-day retrievals. Finally, we investigated how choice of retrieval algorithm (SVD, FLD, SFM) affects the computed results. The primary site for this experiment was a California bunchgrass/tallgrass field. Additional data from the Brazilian Amazon will also be used, where appropriate, to support our conclusions.

  15. CONSTRUCTION TECHNOLOGY DIFFUSION IN DEVELOPING COUNTRIES: LIMITATIONS OF PREVAILING INNOVATION SYSTEMS

    Directory of Open Access Journals (Sweden)

    Emilia van Egmond-deWilde de Ligny

    2008-12-01

    Full Text Available The diffusion of innovative technologies in the market is usually a complex and difficult process with a varying degree of success and the effects of the diffused innovative technologies are very un-balanced. The objective of our research is to gain insight into the reasons why the diffusion of innovative technology fails, even though they promise a superior performance compared to incumbent technologies. Drawing on innovation systems theories, we have identified and used the concepts of technological regime, actor network and technology sets to analyze technology diffusion in a case study in the dwelling construction industry in Costa Rica. The results showed bottlenecks in the prevailing innovation system that curtailed the diffusion of an innovative construction technology.

  16. Diffusion of gases in metal containing carbon aerogels

    Energy Technology Data Exchange (ETDEWEB)

    Marques, L.M.; Conceicao, F.L.; Carrott, M.M.L. Ribeiro; Carrott, P.J.M. [Evora Univ. (Portugal). Centro de Quimica de Evora

    2011-02-15

    Carbon aerogels containing Fe, Ni, Cu or no metal were prepared by carbonisation of polymer aerogels synthesised from 2,4-dihydroxybenzoic acid and formaldehyde and modified by CVD of benzene. Uptakes and diffusion coefficients of CO{sub 2}, CH{sub 4}, N{sub 2} and O{sub 2} were measured and the results compared with those obtained using a commercial carbon molecular sieve. The results indicated that the diffusion of light gas molecules in carbon aerogels cannot be interpreted solely on the basis of micropore diffusion, but that the very high mesopore volumes of the aerogel monoliths exert a strong influence on the kinetics of diffusion in these materials. The mesoporosity is decreased when the % solids used during synthesis of the polymer precursor increases and this resulted in kinetic behaviour which was more similar to that predicted by Fickian or LDF models. Increasing % solids was also accompanied by generally slower diffusion rates and generally lower uptakes. The single gas uptakes and diffusion coefficients could be altered by varying the % solids used during synthesis of the polymer precursor, by introducing different metals into the polymer hydrogel by ion exchange, or by CVD of benzene on the carbon aerogel. (author)

  17. Diffusion of gases in metal containing carbon aerogels

    International Nuclear Information System (INIS)

    Marques, L.M.; Conceicao, F.L.; Carrott, M.M.L. Ribeiro; Carrott, P.J.M.

    2011-01-01

    Carbon aerogels containing Fe, Ni, Cu or no metal were prepared by carbonisation of polymer aerogels synthesised from 2,4-dihydroxybenzoic acid and formaldehyde and modified by CVD of benzene. Uptakes and diffusion coefficients of CO 2 , CH 4 , N 2 and O 2 were measured and the results compared with those obtained using a commercial carbon molecular sieve. The results indicated that the diffusion of light gas molecules in carbon aerogels cannot be interpreted solely on the basis of micropore diffusion, but that the very high mesopore volumes of the aerogel monoliths exert a strong influence on the kinetics of diffusion in these materials. The mesoporosity is decreased when the % solids used during synthesis of the polymer precursor increases and this resulted in kinetic behaviour which was more similar to that predicted by Fickian or LDF models. Increasing % solids was also accompanied by generally slower diffusion rates and generally lower uptakes. The single gas uptakes and diffusion coefficients could be altered by varying the % solids used during synthesis of the polymer precursor, by introducing different metals into the polymer hydrogel by ion exchange, or by CVD of benzene on the carbon aerogel. (author)

  18. Reactive solid surface morphology variation via ionic diffusion.

    Science.gov (United States)

    Sun, Zhenchao; Zhou, Qiang; Fan, Liang-Shih

    2012-08-14

    In gas-solid reactions, one of the most important factors that determine the overall reaction rate is the solid morphology, which can be characterized by a combination of smooth, convex and concave structures. Generally, the solid surface structure varies in the course of reactions, which is classically noted as being attributed to one or more of the following three mechanisms: mechanical interaction, molar volume change, and sintering. Here we show that if a gas-solid reaction involves the outward ionic diffusion of a solid-phase reactant then this outward ionic diffusion could eventually smooth the surface with an initial concave and/or convex structure. Specifically, the concave surface is filled via a larger outward diffusing surface pointing to the concave valley, whereas the height of the convex surface decreases via a lower outward diffusion flux in the vertical direction. A quantitative 2-D continuum diffusion model is established to analyze these two morphological variation processes, which shows consistent results with the experiments. This surface morphology variation by solid-phase ionic diffusion serves to provide a fourth mechanism that supplements the traditionally acknowledged solid morphology variation or, in general, porosity variation mechanisms in gas-solid reactions.

  19. A fractional Fokker-Planck model for anomalous diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Johan, E-mail: anderson.johan@gmail.com [Department of Earth and Space Sciences, Chalmers University of Technology, SE-412 96 Göteborg (Sweden); Kim, Eun-jin [Department of Mathematics and Statistics, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH (United Kingdom); Moradi, Sara [Ecole Polytechnique, CNRS UMR7648, LPP, F-91128 Palaiseau (France)

    2014-12-15

    In this paper, we present a study of anomalous diffusion using a Fokker-Planck description with fractional velocity derivatives. The distribution functions are found using numerical means for varying degree of fractionality of the stable Lévy distribution. The statistical properties of the distribution functions are assessed by a generalized normalized expectation measure and entropy in terms of Tsallis statistical mechanics. We find that the ratio of the generalized entropy and expectation is increasing with decreasing fractionality towards the well known so-called sub-diffusive domain, indicating a self-organising behavior.

  20. Development of lithium diffused radiation resistant solar cells, part 2

    Science.gov (United States)

    Payne, P. R.; Somberg, H.

    1971-01-01

    The work performed to investigate the effect of various process parameters on the performance of lithium doped P/N solar cells is described. Effort was concentrated in four main areas: (1) the starting material, (2) the boron diffusion, (3) the lithium diffusion, and (4) the contact system. Investigation of starting material primarily involved comparison of crucible grown silicon (high oxygen content) and Lopex silicon (low oxygen content). In addition, the effect of varying growing parameters of crucible grown silicon on lithium cell output was also examined. The objective of the boron diffusion studies was to obtain a diffusion process which produced high efficiency cells with minimal silicon stressing and could be scaled up to process 100 or more cells per diffusion. Contact studies included investigating sintering of the TiAg contacts and evaluation of the contact integrity.

  1. Reduced dielectric response in spatially varying electric fields

    DEFF Research Database (Denmark)

    Hansen, Jesper Schmidt

    2015-01-01

    relations between the flux and the gradient of the polarization. Comparison between the theory and molecular dynamics simulations confirms this effect. The effect is significant for small length scale electric field variations and the inclusion of the flux is thus important in nanoscale modeling......In this paper, the dynamical equation for polarization is derived. From this the dielectric response to a spatially varying electric field is analyzed showing a reduced response due to flux of polarization in the material. This flux is modeled as a diffusive process through linear constitutive...

  2. An exploration into diffusion tensor imaging in the bovine ocular lens

    Directory of Open Access Journals (Sweden)

    Ehsan eVaghefi

    2013-03-01

    Full Text Available We describe our development of the diffusion tensor imaging modality for the bovine ocular lens. Diffusion gradients were added to a spin-echo pulse sequence and the relevant parameters of the sequence were refined to achieve good diffusion weighting in the lens tissue, which demonstrated heterogeneous regions of diffusive signal attenuation. Decay curves for b-value (loosely summarizes the strength of diffusion weighting and TE (determines the amount of MRI-obtained signal were used to estimate apparent diffusion coefficients (ADC and T2 in different lens regions. The ADCs varied by over an order of magnitude and revealed diffusive anisotropy in the lens. Up to 30 diffusion gradient directions, and 8 signal acquisition averages, were applied to lenses in culture in order to improve maps of diffusion tensor eigenvalues, equivalent to ADC, across the lens. From these maps, fractional anisotropy maps were calculated and compared to known spatial distributions of anisotropic molecular fluxes in the lens. This comparison suggested new hypotheses and experiments to quantitatively assess models of circulation in the avascular lens.

  3. Diffusion of anions and cations in compacted sodium bentonite

    International Nuclear Information System (INIS)

    Muurinen, A.

    1994-02-01

    The thesis presents the results of studies on the diffusion mechanisms of anions and cations in compacted sodium bentonite, which is planned to be used as a buffer material in nuclear waste disposal in Finland. The diffusivities and sorption factors were determined by tracer experiments. The pore volume accessible to chloride, here defined as effective porosity, was determined as a function of bentonite density and electrolyte concentration in water, and the Stern-Gouy double-layer model was used to explain the observed anion exclusion. The sorption of Cs + and Sr 2+ was studied in loose and compacted bentonite samples as a function of the electrolyte concentration in solution. In order to obtain evidence of the diffusion of exchangeable cations, defined as surface diffusion, the diffusivities of Cs + and Sr 2+ in compacted bentonite were studied as a function of the sorption factor, which was varied by electrolyte concentration in solution. The measurements were performed both by a non-steady state method and by a through-diffusion method. (89 refs., 35 fig., 4 tab.)

  4. Effect of diffusion of light on thin-film photovoltaic laminates

    Directory of Open Access Journals (Sweden)

    Lipi Mohanty

    Full Text Available A large fraction of the daylight incident on building-integrated photovoltaic (BIPV laminates is diffuse irradiance. In this study, fabrics of various weaves were used to simulate combinations of direct and diffuse irradiance on façade-mounted PV. The scattering of light achieved with the fabrics at varying angles of incidence was measured with a goniophotometer. The transmittance distribution was used to quantify the percentage of diffusion created by the fabrics. A photovoltaic (PV laminate was shaded with the fabrics to simulate diffuse irradiance and the short circuit current of the module was measured. The experimental results indicate fabrics of different porosity can be used to simulate various combinations of direct and diffuse irradiance. However, these fabrics can affect the module output. Preliminary results show that the proximity of the fabric to the thin-film PV laminate during the test skews the measured electrical parameters. Keywords: Scattering, BRDF, Solar energy, Diffused irradiance, Photovoltaics, Goniophotometry

  5. Efficient estimation of diffusion during dendritic solidification

    Science.gov (United States)

    Yeum, K. S.; Poirier, D. R.; Laxmanan, V.

    1989-01-01

    A very efficient finite difference method has been developed to estimate the solute redistribution during solidification with diffusion in the solid. This method is validated by comparing the computed results with the results of an analytical solution derived by Kobayashi (1988) for the assumptions of a constant diffusion coefficient, a constant equilibrium partition ratio, and a parabolic rate of the advancement of the solid/liquid interface. The flexibility of the method is demonstrated by applying it to the dendritic solidification of a Pb-15 wt pct Sn alloy, for which the equilibrium partition ratio and diffusion coefficient vary substantially during solidification. The fraction eutectic at the end of solidification is also obtained by estimating the fraction solid, in greater resolution, where the concentration of solute in the interdendritic liquid reaches the eutectic composition of the alloy.

  6. Numerical Solutions of Singularly Perturbed Reaction Diffusion Equation with Sobolev Gradients

    Directory of Open Access Journals (Sweden)

    Nauman Raza

    2013-01-01

    Full Text Available Critical points related to the singular perturbed reaction diffusion models are calculated using weighted Sobolev gradient method in finite element setting. Performance of different Sobolev gradients has been discussed for varying diffusion coefficient values. A comparison is shown between the weighted and unweighted Sobolev gradients in two and three dimensions. The superiority of the method is also demonstrated by showing comparison with Newton's method.

  7. Chemical diffusion of Cr, Ni and Si in welded joints. II

    International Nuclear Information System (INIS)

    Kucera, J.; Ciha, K.

    1987-01-01

    The results are given of a study in chemical diffusion in welded joints P2/A and P3/A. P2 stands for the steel (Fe-17.48 Cr-8.15 Ni-0.14 Si), P3 for (Fe-18.52 Cr-8.20 Ni-1.78 Si) and A for the Fe-Arema. Triadic sandwiche-like samples were diffusion heated at temperatures from 920 to 1170 degC. The concentration distributions N(x,t) of the given elements were measured with microprobe JXA-3A. The evaluation of the experimental data was carried out either by Grube's method, or in some cases by the spline-polynomial method. The evaluated diffusivities D-bar satisfy the Arrhenius relation and yield the standard diffusion characteristics D 0 and H. The diffusivities D-bar of Cr, Ni and Si in P1/A, in P2/A and P3/A welded joints vary with Si content in P1, P2 and P3 alloys, similar to the Cr-51 and Ni-63 self-diffusivities in Fe-18 Cr-12 Ni-X Si steels, and tend to increase with increasing Si content. The values D-bar measured in the vicinity of grain boundaries are higher than the bulk diffusion coefficients. The most rapid diffusant is Si and the slowest one Ni. Thus, the relations D-bar Si :D-bar Cr :D-bar Ni ≅ 6:3:1 (P3/A) and D-bar Si :D-bar Cr :D-bar Ni ≅ 1.7:1.4:1 (P3/A) are valid at 1050 degC. Comparing the results with those published if can be noted that the Cr-51 and Ni-63 self-diffusion in Fe-18 Cr-12 Ni-X Si steels is faster than chemical diffusion of these elements in the said steel welded joints P2/A and P3/A; X varies from 0.14 to 1.98. (author). 7 tabs., 7 figs., 20 refs

  8. Cerebral perfusion changes in traumatic diffuse brain injury. IMP SPECT studies

    International Nuclear Information System (INIS)

    Ito, Hiroshi; Kawashima, Ryuta; Fukuda, Hiroshi; Ishii, Kiyoshi; Onuma, Takehide.

    1997-01-01

    Diffuse brain injury (DBI) is characterized by axonal degeneration and neuronal damage which cause diffuse brain atrophy. We have investigated the time course of abnormalities in cerebral perfusion distribution in cases of DBI by using Iodine-123-IMP SPECT, and the relationship to the appearance of diffuse brain atrophy. SPECT scans were performed on eight patients with diffuse brain injury due to closed cranial trauma in acute and chronic stages. All patients showed abnormalities in cerebral perfusion with decreases in perfusion, even in non-depicted regions on MRI, and the affected areas varied throughout the period of observation. Diffuse brain atrophy appeared in all patients. In some patients, diffuse brain atrophy was observed at or just after the time when the maximum number of lesions on SPECT were seen. The abnormalities in cerebral perfusion in cases of DBI might therefore be related to axonal degeneration and neuronal damage which causes diffuse brain atrophy. (author)

  9. Diffusion in the uranium - plutonium system and self-diffusion of plutonium in epsilon phase; Diffusion dans le systeme uranium-plutonium et autodiffusion du plutonium epsilon

    Energy Technology Data Exchange (ETDEWEB)

    Dupuy, M [Commissariat a l' Energie Atomique, Fontenay-Aux-Roses (France). Centre d' Etudes Nucleaires

    1967-07-01

    A survey of uranium-plutonium phase diagram leads to confirm anglo-saxon results about the plutonium solubility in {alpha} uranium (15 per cent at 565 C) and the uranium one in {zeta} phase (74 per cent at 565 C). Interdiffusion coefficients, for concentration lower than 15 per cent had been determined in a temperature range from 410 C to 640 C. They vary between 0.2 and 6 10{sup 12} cm{sup 2} s{sup -1}, and the activation energy between 13 and 20 kcal/mole. Grain boundary, diffusion of plutonium in a uranium had been pointed out by micrography, X-ray microanalysis and {alpha} autoradiography. Self-diffusion of plutonium in {epsilon} phase (bcc) obeys Arrhenius law: D = 2. 10{sup -2} exp -(18500)/RT. But this activation energy does not follow empirical laws generally accepted for other metals. It has analogies with 'anomalous' bcc metals ({beta}Zr, {beta}Ti, {beta}Hf, U{sub {gamma}}). (author) [French] Une etude du diagramme d'equilibre uranium-plutonium conduit a confirmer les resultats anglo-saxons relatifs a la solubilite du plutonium dans l'uranium {alpha} (15 pour cent a 565 C) et de l'uranium dans la phase {zeta} (74 pour cent a 565 C). Les coefficients de diffusion chimique, pour des concentrations inferieures a 15 pour cent ont ete determines a des temperatures comprises entre 410 et 640 C. Ils se situent entre 0.2 et 6. 10{sup 12} cm{sup 2} s{sup -1}. L'energie d'activation varie entre 13 et 20 kcal/mole. La diffusion intergranulaire du plutonium dans l'uranium a a ete mise en evidence par micrographie, microanalyse X et autoradiographie {alpha}. L' autodiffusion du plutonium {beta} cubique centree obeit a la loi d'Arrhenius D = 2. 10{sup -2} exp - (18500)/RT. Son energie d'activation n'obeit pas aux lois empiriques generalement admises pour les autres metaux. Elle possede des analogies avec les cubiques centres ''anormaux'' (Zr{beta}, Ti{beta}, Hf{beta}, U{gamma}). (auteur)

  10. Diffusion-weighted MRI of adult male pelvic cancers

    International Nuclear Information System (INIS)

    Lim, K.S.; Tan, C.H.

    2012-01-01

    Magnetic resonance imaging (MRI), with its superior soft-tissue delineation, plays a pivotal role in the staging and surveillance of cancers affecting adult males, in particular, rectal, urinary bladder, and prostate cancers. There has been much recent interest in the complementary roles of diffusion-weighted imaging (DWI) for imaging of pelvic cancers. DWI measures the diffusivity of water molecules in biological tissue. Cancer, with its high cellular density and nuclear:cytoplasmic ratio, and extracellular disorganization, typically shows significant restricted diffusivity compared with surrounding normal tissue. In theory, diffusivity of water molecules may vary according to degree of tumour aggressiveness and changes in cell density and extracellular fluid content after treatment. Information regarding these variations may be used to study the histological grades of cancers and their response to treatment. In this article, we present the currently available evidence on the potential roles of DWI for the assessment of pelvic cancers in men, and demonstrate with imaging examples how this knowledge may be applied to daily clinical practice.

  11. Fractional Diffusion Equations and Anomalous Diffusion

    Science.gov (United States)

    Evangelista, Luiz Roberto; Kaminski Lenzi, Ervin

    2018-01-01

    Preface; 1. Mathematical preliminaries; 2. A survey of the fractional calculus; 3. From normal to anomalous diffusion; 4. Fractional diffusion equations: elementary applications; 5. Fractional diffusion equations: surface effects; 6. Fractional nonlinear diffusion equation; 7. Anomalous diffusion: anisotropic case; 8. Fractional Schrödinger equations; 9. Anomalous diffusion and impedance spectroscopy; 10. The Poisson–Nernst–Planck anomalous (PNPA) models; References; Index.

  12. Counterion self-diffusion in polyelectrolyte solutions

    Science.gov (United States)

    Schipper, F. J. M.; Hollander, J. G.; Leyte, J. C.

    1997-12-01

    The self-diffusion coefficient of 0953-8984/9/50/019/img1, tetra-methylammonium 0953-8984/9/50/019/img2, tetra-ethylammonium 0953-8984/9/50/019/img3, tetra-propylammonium 0953-8984/9/50/019/img4 and tetra-butylammonium 0953-8984/9/50/019/img5 in solutions of the weak polymethacrylic acid (PMA) were measured with PFG NMR. No additional salt was present in any of the experiments. The polyion concentration and degree of neutralization were varied. The maximum relative counterion self-diffusion coefficient against polyion concentration, that was reported earlier, was observed for both alkali and tetra-alkylammonium 0953-8984/9/50/019/img6 counterions. We propose that the maximum is due to the combination of the obstruction by the polyion and the changing counterion distribution at increasing polyion concentration. An explanation of this proposal is offered in terms of the Poisson - Boltzmann - Smoluchowski (PBS) model for polyelectrolytes. Qualitative agreement of this model with experiment was found for the dependence of the counterion self-diffusion coefficient on the degree of neutralization of the polyion, on counterion radius and on polyion concentration, over a concentration range from 0.01 to 1 0953-8984/9/50/019/img7. Adaption of the theoretical obstruction, to fit the self-diffusion data of the solvent, also greatly improves the model predictions on the counterion self-diffusion.

  13. Detecting causality in policy diffusion processes

    Science.gov (United States)

    Grabow, Carsten; Macinko, James; Silver, Diana; Porfiri, Maurizio

    2016-08-01

    A universal question in network science entails learning about the topology of interaction from collective dynamics. Here, we address this question by examining diffusion of laws across US states. We propose two complementary techniques to unravel determinants of this diffusion process: information-theoretic union transfer entropy and event synchronization. In order to systematically investigate their performance on law activity data, we establish a new stochastic model to generate synthetic law activity data based on plausible networks of interactions. Through extensive parametric studies, we demonstrate the ability of these methods to reconstruct networks, varying in size, link density, and degree heterogeneity. Our results suggest that union transfer entropy should be preferred for slowly varying processes, which may be associated with policies attending to specific local problems that occur only rarely or with policies facing high levels of opposition. In contrast, event synchronization is effective for faster enactment rates, which may be related to policies involving Federal mandates or incentives. This study puts forward a data-driven toolbox to explain the determinants of legal activity applicable to political science, across dynamical systems, information theory, and complex networks.

  14. Stress in film/substrate system due to diffusion and thermal misfit effects

    International Nuclear Information System (INIS)

    Shao Shanshan; Xuan Fuzhen; Wang Zhengdong; Tu Shantung

    2009-01-01

    The stress in film/substrate systems has been analysed taking into consideration the coupling effects of diffusion and thermal misfit within the framework of Fick's second law. The solution of diffusion-induced stress in a film/substrate system involving the thermal misfit stress feedback is developed. The effects of modulus ratios, diffusivity ratios, thickness ratios of the substrate and the film and the partial molar volume of the diffusing component on the stress distribution in the film/substrate system are then discussed with the help of the finite difference method. Results indicate that the stresses in the film/substrate system vary with diffusion time. Diffusion enhances the magnitudes of film stress when the thermal misfit stress is compressive in the film. Furthermore, the absolute values of stress in the film increase with the increasing modulus ratios of the substrate and film, while they reduce with the increasing partial molar volume of the diffusing component and the diffusivity ratio of the substrate and the film.

  15. Diffusion in the matrix of rocks from Olkiluoto. The effect of anion exclusion

    International Nuclear Information System (INIS)

    Valkiainen, M.; Aalto, H.; Olin, M.; Lindberg, A.; Siitari-Kauppi, M.

    1995-12-01

    Diffusion in the rock matrix is dependent on two basic factors: the effective diffusion conductivity of the rock and the rock-capacity factor. The aim of this ongoing research is to study both of these factors more closely by finding evidence and studying the significance of anion exclusion and surface diffusion. The material for the study was selected form the drill-core of the drill-hole OL-KR5 from Olkiluoto investigations site. Six rock-types were included in the study, three unaltered and three altered. The water-types selected can be divided to two groups: in one the ionic strength is varied, in the another the ionic type is varied. The diffusion measurements were carried out partly by the equilibration-leaching method, partly by the through-diffusion method. The measurements by the equilibration-leaching method were performed in the anaerobic cabinet and the through-diffusion measurement in laboratory room conditions. Radioactive isotopes 3 H, 35 S, 36 Cl and 22 Na were selected as tracers. This report contains results of the equilibration-leaching measurements and through- diffusion measurements using 3 H (HTO), 36 Cl (Cl-) and 35 S(SO 4 2- ) as tracers. The rock-types under study were also studied in the University of Helsinki, Department of Chemistry using polymethylmethacrylate labelled with 14 C revealing the pore structure. Also, results of specific surface area measurements made in BAM, Berlin are given. The comparison of results obtained by the gas diffusion method at the University of Jyvaeskylae to the results obtained by tritium are also appended. (12 refs., 20 figs., 10 tabs.)

  16. A compact spin-exchange optical pumping system for 3He polarization based on a solenoid coil, a VBG laser diode, and a cosine theta RF coil

    Science.gov (United States)

    Lee, Sungman; Kim, Jongyul; Moon, Myung Kook; Lee, Kye Hong; Lee, Seung Wook; Ino, Takashi; Skoy, Vadim R.; Lee, Manwoo; Kim, Guinyun

    2013-02-01

    For use as a neutron spin polarizer or analyzer in the neutron beam lines of the HANARO (High-flux Advanced Neutron Application ReactOr) nuclear research reactor, a 3He polarizer was designed based on both a compact solenoid coil and a VBG (volume Bragg grating) diode laser with a narrow spectral linewidth of 25 GHz. The nuclear magnetic resonance (NMR) signal was measured and analyzed using both a built-in cosine radio-frequency (RF) coil and a pick-up coil. Using a neutron transmission measurement, we estimated the polarization ratio of the 3He cell as 18% for an optical pumping time of 8 hours.

  17. Linear transforms for Fourier data on the sphere: application to high angular resolution diffusion MRI of the brain.

    Science.gov (United States)

    Haldar, Justin P; Leahy, Richard M

    2013-05-01

    This paper presents a novel family of linear transforms that can be applied to data collected from the surface of a 2-sphere in three-dimensional Fourier space. This family of transforms generalizes the previously-proposed Funk-Radon Transform (FRT), which was originally developed for estimating the orientations of white matter fibers in the central nervous system from diffusion magnetic resonance imaging data. The new family of transforms is characterized theoretically, and efficient numerical implementations of the transforms are presented for the case when the measured data is represented in a basis of spherical harmonics. After these general discussions, attention is focused on a particular new transform from this family that we name the Funk-Radon and Cosine Transform (FRACT). Based on theoretical arguments, it is expected that FRACT-based analysis should yield significantly better orientation information (e.g., improved accuracy and higher angular resolution) than FRT-based analysis, while maintaining the strong characterizability and computational efficiency of the FRT. Simulations are used to confirm these theoretical characteristics, and the practical significance of the proposed approach is illustrated with real diffusion weighted MRI brain data. These experiments demonstrate that, in addition to having strong theoretical characteristics, the proposed approach can outperform existing state-of-the-art orientation estimation methods with respect to measures such as angular resolution and robustness to noise and modeling errors. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Establishing the diffuse correlation spectroscopy signal relationship with blood flow.

    Science.gov (United States)

    Boas, David A; Sakadžić, Sava; Selb, Juliette; Farzam, Parisa; Franceschini, Maria Angela; Carp, Stefan A

    2016-07-01

    Diffuse correlation spectroscopy (DCS) measurements of blood flow rely on the sensitivity of the temporal autocorrelation function of diffusively scattered light to red blood cell (RBC) mean square displacement (MSD). For RBCs flowing with convective velocity [Formula: see text], the autocorrelation is expected to decay exponentially with [Formula: see text], where [Formula: see text] is the delay time. RBCs also experience shear-induced diffusion with a diffusion coefficient [Formula: see text] and an MSD of [Formula: see text]. Surprisingly, experimental data primarily reflect diffusive behavior. To provide quantitative estimates of the relative contributions of convective and diffusive movements, we performed Monte Carlo simulations of light scattering through tissue of varying vessel densities. We assumed laminar vessel flow profiles and accounted for shear-induced diffusion effects. In agreement with experimental data, we found that diffusive motion dominates the correlation decay for typical DCS measurement parameters. Furthermore, our model offers a quantitative relationship between the RBC diffusion coefficient and absolute tissue blood flow. We thus offer, for the first time, theoretical support for the empirically accepted ability of the DCS blood flow index ([Formula: see text]) to quantify tissue perfusion. We find [Formula: see text] to be linearly proportional to blood flow, but with a proportionality modulated by the hemoglobin concentration and the average blood vessel diameter.

  19. On Diffusive Climatological Models.

    Science.gov (United States)

    Griffel, D. H.; Drazin, P. G.

    1981-11-01

    A simple, zonally and annually averaged, energy-balance climatological model with diffusive heat transport and nonlinear albedo feedback is solved numerically. Some parameters of the model are varied, one by one, to find the resultant effects on the steady solution representing the climate. In particular, the outward radiation flux, the insulation distribution and the albedo parameterization are varied. We have found an accurate yet simple analytic expression for the mean annual insolation as a function of latitude and the obliquity of the Earth's rotation axis; this has enabled us to consider the effects of the oscillation of the obliquity. We have used a continuous albedo function which fits the observed values; it considerably reduces the sensitivity of the model. Climatic cycles, calculated by solving the time-dependent equation when parameters change slowly and periodically, are compared qualitatively with paleoclimatic records.

  20. Experimental study of diffuse auroral precipitations

    International Nuclear Information System (INIS)

    Mouaia, K.

    1983-01-01

    First chapter is devoted to low energy electron precipitation in the evening sector of the auroral magnetosphere, during quiet and disturbed magnetic periods. Four subjects are studied in detail: the latitude distribution of the varied auroral forms and their relations to external magnetosphere; the time coefficients related to precipitations, the form and the dynamic of the diffuse precipitation equatorial frontier; the precipitation effect on the ionosphere concentration. The last part of the chapter shows that the plasma convection in the magnetosphere, associated to wave-particle interactions near the equatorial accounts for the principal characteristics of the evening sector diffuse electronic precipitations. The second chapter deals with subauroral precipitations of low energy ions, after the magnetospheric substorms, in the high latitude regions of the morning sector [fr

  1. Hyperbolic-cosine waveguide tapers and oversize rectangular waveguide for reduced broadband insertion loss in W-band electron paramagnetic resonance spectroscopy. II. Broadband characterization

    Energy Technology Data Exchange (ETDEWEB)

    Sidabras, Jason W.; Anderson, James R.; Mainali, Laxman; Hyde, James S. [Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 (United States); Strangeway, Robert A. [Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 (United States); Department of Electrical Engineering and Computer Science, Milwaukee School of Engineering, Milwaukee, Wisconsin 53201 (United States); Mett, Richard R. [Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 (United States); Department of Chemistry and Physics, Milwaukee School of Engineering, Milwaukee, Wisconsin 53201 (United States)

    2016-03-15

    Experimental results have been reported on an oversize rectangular waveguide assembly operating nominally at 94 GHz. It was formed using commercially available WR28 waveguide as well as a pair of specially designed tapers with a hyperbolic-cosine shape from WR28 to WR10 waveguide [R. R. Mett et al., Rev. Sci. Instrum. 82, 074704 (2011)]. The oversize section reduces broadband insertion loss for an Electron Paramagnetic Resonance (EPR) probe placed in a 3.36 T magnet. Hyperbolic-cosine tapers minimize reflection of the main mode and the excitation of unwanted propagating waveguide modes. Oversize waveguide is distinguished from corrugated waveguide, overmoded waveguide, or quasi-optic techniques by minimal coupling to higher-order modes. Only the TE{sub 10} mode of the parent WR10 waveguide is propagated. In the present work, a new oversize assembly with a gradual 90° twist was implemented. Microwave power measurements show that the twisted oversize waveguide assembly reduces the power loss in the observe and pump arms of a W-band bridge by an average of 2.35 dB and 2.41 dB, respectively, over a measured 1.25 GHz bandwidth relative to a straight length of WR10 waveguide. Network analyzer measurements confirm a decrease in insertion loss of 2.37 dB over a 4 GHz bandwidth and show minimal amplitude distortion of approximately 0.15 dB. Continuous wave EPR experiments confirm these results. The measured phase variations of the twisted oversize waveguide assembly, relative to an ideal distortionless transmission line, are reduced by a factor of two compared to a straight length of WR10 waveguide. Oversize waveguide with proper transitions is demonstrated as an effective way to increase incident power and the return signal for broadband EPR experiments. Detailed performance characteristics, including continuous wave experiment using 1 μM 2,2,6,6-tetramethylpiperidine-1-oxyl in aqueous solution, provided here serve as a benchmark for other broadband low-loss probes in

  2. Hyperbolic-cosine waveguide tapers and oversize rectangular waveguide for reduced broadband insertion loss in W-band electron paramagnetic resonance spectroscopy. II. Broadband characterization

    International Nuclear Information System (INIS)

    Sidabras, Jason W.; Anderson, James R.; Mainali, Laxman; Hyde, James S.; Strangeway, Robert A.; Mett, Richard R.

    2016-01-01

    Experimental results have been reported on an oversize rectangular waveguide assembly operating nominally at 94 GHz. It was formed using commercially available WR28 waveguide as well as a pair of specially designed tapers with a hyperbolic-cosine shape from WR28 to WR10 waveguide [R. R. Mett et al., Rev. Sci. Instrum. 82, 074704 (2011)]. The oversize section reduces broadband insertion loss for an Electron Paramagnetic Resonance (EPR) probe placed in a 3.36 T magnet. Hyperbolic-cosine tapers minimize reflection of the main mode and the excitation of unwanted propagating waveguide modes. Oversize waveguide is distinguished from corrugated waveguide, overmoded waveguide, or quasi-optic techniques by minimal coupling to higher-order modes. Only the TE 10 mode of the parent WR10 waveguide is propagated. In the present work, a new oversize assembly with a gradual 90° twist was implemented. Microwave power measurements show that the twisted oversize waveguide assembly reduces the power loss in the observe and pump arms of a W-band bridge by an average of 2.35 dB and 2.41 dB, respectively, over a measured 1.25 GHz bandwidth relative to a straight length of WR10 waveguide. Network analyzer measurements confirm a decrease in insertion loss of 2.37 dB over a 4 GHz bandwidth and show minimal amplitude distortion of approximately 0.15 dB. Continuous wave EPR experiments confirm these results. The measured phase variations of the twisted oversize waveguide assembly, relative to an ideal distortionless transmission line, are reduced by a factor of two compared to a straight length of WR10 waveguide. Oversize waveguide with proper transitions is demonstrated as an effective way to increase incident power and the return signal for broadband EPR experiments. Detailed performance characteristics, including continuous wave experiment using 1 μM 2,2,6,6-tetramethylpiperidine-1-oxyl in aqueous solution, provided here serve as a benchmark for other broadband low-loss probes in

  3. Diffusion in intermetallic compounds studied using short-lived radioisotopes

    CERN Multimedia

    Diffusion – the long range movement of atoms – plays an important role in materials processing and in determining suitable applications for materials. Conventional radiotracer methods for measuring diffusion can determine readily how distributions of radioactive probe atoms in samples evolve under varying experimental conditions. It is possible to obtain limited information about atomic jump rates and pathways from these measurements; however, it is desirable to make more direct observations of the atomic jumps by using experimental methods that are sensitive to atomic scale processes. One such method is time-differential perturbed $\\gamma$–$\\gamma$-angular correlation spectroscopy (PAC). Two series of PAC experiments using $^{111m}$Cd are proposed to contribute to fundamental understanding of diffusion in intermetallic compounds. The goal of the first is to determine the dominant vacancy species in several Li$_{2}$-structured compounds and see if the previously observed change in diffusion mechanism th...

  4. Laboratory experiments to characterize radiochloride diffusion in unsaturated soils

    Energy Technology Data Exchange (ETDEWEB)

    Aldaba, D.; Fernandez-Torrent, R.; Rauret, G.; Vidal, M. [Departament de Quimica Analitica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain); Rigol, A. [Departament de Quimica Analitica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain)], E-mail: annarigol@ub.edu

    2010-03-15

    Diffusion transport of {sup 36}Cl was examined in seven soils under unsaturated conditions in tubes packed with two portions of each soil having different {sup 36}Cl activity concentrations. Apparent diffusion coefficients (D{sub a}) derived from diffusion profiles varied within a narrow range (from 3x10{sup -10} to 7x10{sup -10} m{sup 2} s{sup -1}) confirming the minor effect of soil properties on the diffusion of a non-reactive radionuclide like {sup 36}Cl. Instead, packing conditions had a major effect. Solid-liquid distribution coefficients (K{sub d}) derived from D{sub a} (0.02-0.2 L kg{sup -1}) were systematically lower than those obtained from batch experiments (0.6-1.0 L kg{sup -1}), but with a similar variation pattern among soils. The low values of K{sub d} (Cl) confirmed an almost negligible radiochloride-soil interaction.

  5. Liquid Film Diffusion on Reaction Rate in Submerged Biofilters

    DEFF Research Database (Denmark)

    Christiansen, Pia; Hollesen, Line; Harremoës, Poul

    1995-01-01

    Experiments were carried out in order to investigate the influence of liquid film diffusion on reaction rate in a submerged biofilter with denitrification and in order to compare with a theoretical study of the mass transfer coefficient. The experiments were carried out with varied flow, identified...... by the empty bed velocity of inflow and recirculation, respectively 1.3, 2.8, 5.6 and 10.9 m/h. The filter material consisted of 3 mm biostyren spheres. The results indicate that the influence of liquid film diffusion on reaction rate can be ignored....

  6. Energetics of melts from thermal diffusion studies. FY 1995 progress report

    International Nuclear Information System (INIS)

    Lesher, C.E.

    1996-01-01

    This research program characterizes mass transport by diffusion in geological fluids in response to thermal, solubility, and/or chemical gradients to obtain quantitative information on the thermodynamic and kinetic properties of multicomponent systems. Silicate liquids undergo substantial thermal diffusion (Soret) differentiation, while the response in sulfide, carbonate, and aqueous fluids to an imposed temperature gradient is varied. The experimental observations of this differentiation are used to evaluate the form and quantitative values of solution parameters, and to quantify ordinary diffusion coefficients, heats of transport, and activation energies of multicomponent liquids. The diffusion, solution, and element partition coefficients determined for these geological fluids form a data base for understanding magmatic crystallization behavior and for evaluating geothermal, ore deposit, and nuclear waste isolation potentials

  7. Diffusion of flexible, charged, nanoscopic molecules in solution: Size and pH dependence for PAMAM dendrimer

    Science.gov (United States)

    Maiti, Prabal K.; Bagchi, Biman

    2009-12-01

    In order to understand self-diffusion (D) of a charged, flexible, and porous nanoscopic molecule in water, we carry out very long, fully atomistic molecular dynamics simulation of PAMAM dendrimer up to eight generations in explicit salt water under varying pH. We find that while the radius of gyration (Rg) varies as N1/3, the self-diffusion constant (D ) scales, surprisingly, as N-α, with α =0.39 at high pH and 0.5 at neutral pH, indicating a dramatic breakdown of Stokes-Einstein relation for diffusion of charged nanoscopic molecules. The variation in D as a function of radius of gyration demonstrates the importance of treating water and ions explicitly in the diffusion process of a flexible nanoscopic molecule. In agreement with recent experiments, the self-diffusion constant increases with pH, revealing the importance of dielectric friction in the diffusion process. The shape of a dendrimer is found to fluctuate on a nanosecond time scale. We argue that this flexibility (and also the porosity) of the dendrimer may play an important role in determining the mean square displacement of the dendrimer and the breakdown of the Stokes-Einstein relation between diffusion constant and the radius.

  8. Diffusive epidemic process: theory and simulation

    International Nuclear Information System (INIS)

    Maia, Daniel Souza; Dickman, Ronald

    2007-01-01

    We study the continuous absorbing-state phase transition in the one-dimensional diffusive epidemic process via mean-field theory and Monte Carlo simulation. In this model, particles of two species (A and B) hop on a lattice and undergo reactions B → A and A+B → 2B; the total particle number is conserved. We formulate the model as a continuous-time Markov process described by a master equation. A phase transition between the (absorbing) B-free state and an active state is observed as the parameters (reaction and diffusion rates, and total particle density) are varied. Mean-field theory reveals a surprising, nonmonotonic dependence of the critical recovery rate on the diffusion rate of B particles. A computational realization of the process that is faithful to the transition rates defining the model is devised, allowing for direct comparison with theory. Using the quasi-stationary simulation method we determine the order parameter and the survival time in systems of up to 4000 sites. Due to strong finite-size effects, the results converge only for large system sizes. We find no evidence for a discontinuous transition. Our results are consistent with the existence of three distinct universality classes, depending on whether A particles diffusive more rapidly, less rapidly or at the same rate as B particles. We also perform quasi-stationary simulations of the triplet creation model, which yield results consistent with a discontinuous transition at high diffusion rates

  9. Apparent Diffusion Coefficient Maps of Pediatric Mass Lesions with Free-Breathing Diffusion-Weighted Magnetic Resonance: Feasibility Study

    International Nuclear Information System (INIS)

    Olsen, Oe.E.; Sebire, N.J.

    2006-01-01

    Purpose: To assess the technical feasibility of apparent diffusion coefficient (ADC) mapping based on free-breathing diffusion-weighted magnetic resonance (DW-MR) outside the CNS in children. Material and Methods: Twelve children with mass lesions of varied histopathology were scanned with short-tau inversion recovery (STIR), contrast-enhanced T1-weighted (CE-T1W), and diffusion-weighted (b = 0, 500 and 1,000 s/mm 2 ) sequences. ADC maps were calculated. Lesion-to-background signal intensity ratios were measured and compared between STIR/CE-T1W/ADC overall (Friedman test) and between viable embryonal tumors and other lesions (Kruskal-Wallis test). Results: ADC maps clearly depicted all lesions. Lesion-to-background signal intensity ratios of STIR (median 3.7), CE-T1W (median 1.4), and ADC (median 1.6) showed no overall difference (chi-square = 3.846; P = 0.146), and there was no difference between viable embryonal tumors and other lesions within STIR/CE-T1W/ADC (chi-square 1.118/0.669/<0.001; P = 0.290/0.414/1.000, respectively). Conclusion: ADC mapping is feasible in free-breathing imaging of pediatric mass lesions outside the CNS using standard clinical equipment. Keywords: Diffusion-weighted magnetic resonance imaging; infants and children; neoplasms

  10. Signal intensity changes of normal brain at varying high b-value diffusion-weighted images using 3.0T MR scanner

    International Nuclear Information System (INIS)

    Lee, Jin Hee; Sohn, Chul Ho; Choi, Jin Soo

    2003-01-01

    Using diffusion-weighted MR imaging (DWI), to evaluate the signal intensity characteristics of normal adult brain as diffusion gradient strength (b value) increases from 1,000 to 3,000 s/mm 2 . Twenty-one healthy volunteers with neither neurologic symptoms nor pathologic findings at axial and sagittal T2-weighted MR imaging were involved in this study. All images were obtained with a 3.0T MR scanner. Six sets of spin-echo echo-planar images were acquired in the axial plane using progressively increasing strengths of diffusion-sensitizing gradients (corresponding to b values of 0, 1,000, 1,500, 2,000, 2,500, and 3,000 s/mm 2 ). All imaging parameters other than TE remained constant. Changes in normal white-gray matter signal intensity observed at variable b-value DWI were qualitatively analysed, and the signal-to-noise ratios (SNRs) in six anatomic regions (frontal and parietal white matter, genu and splenium corporis callosi, the posterior limb of the internal capsule, and the thalamus) quantitatively, and the ratios were averaged and compared with the average SNR of 1,000 s/mm DWI. As gradient strength increased from 1,000 to 3,000 s/mm 2 , both gray-and white-matter structures diminished in signal intensity, and images obtained at a b value of 3,000 s/mm 2 appeared very noisy. White matter became progressively hyperintense to gray matter as the diffusion sensitizing gradient increased, especially at the centrum semiovale, the posterior limb of the internal capsule, and the splenium corporis callosi, but the genu corporis callosi; showed exceptional intermediate low signal intensity. At quantitative assessment, the signal-to-noise ratio decreased as the diffusion sensitizing gradient increased. Relative to the images obtained at a b value of 1,000 s/mm 2 , average SNRs were 0.71 (b=1,500 s/mm 2 ), 0.52 (b=2,000 s/mm 2 ), 0.41 (b=2,500 s/mm 2 ), 0.33 (b=3,000 s/mm 2 ). As the diffusion sensitizing gradient increased, the signal-to-noise ratio of brain structures

  11. Modeling of the interplay between single-file diffusion and conversion reaction in mesoporous systems

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jing [Iowa State Univ., Ames, IA (United States)

    2013-01-11

    We analyze the spatiotemporal behavior of species concentrations in a diffusion-mediated conversion reaction which occurs at catalytic sites within linear pores of nanometer diameter. A strict single-file (no passing) constraint occurs in the diffusion within such narrow pores. Both transient and steady-state behavior is precisely characterized by kinetic Monte Carlo simulations of a spatially discrete lattice–gas model for this reaction–diffusion process considering various distributions of catalytic sites. Exact hierarchical master equations can also be developed for this model. Their analysis, after application of mean-field type truncation approximations, produces discrete reaction–diffusion type equations (mf-RDE). For slowly varying concentrations, we further develop coarse-grained continuum hydrodynamic reaction–diffusion equations (h-RDE) incorporating a precise treatment of single-file diffusion (SFD) in this multispecies system. Noting the shortcomings of mf-RDE and h-RDE, we then develop a generalized hydrodynamic (GH) formulation of appropriate gh-RDE which incorporates an unconventional description of chemical diffusion in mixed-component quasi-single-file systems based on a refined picture of tracer diffusion for finite-length pores. The gh-RDE elucidate the non-exponential decay of the steady-state reactant concentration into the pore and the non-mean-field scaling of the reactant penetration depth. Then an extended model of a catalytic conversion reaction within a functionalized nanoporous material is developed to assess the effect of varying the reaction product – pore interior interaction from attractive to repulsive. The analysis is performed utilizing the generalized hydrodynamic formulation of the reaction-diffusion equations which can reliably capture the complex interplay between reaction and restricted transport for both irreversible and reversible reactions.

  12. Diffusion

    International Nuclear Information System (INIS)

    Kubaschewski, O.

    1983-01-01

    The diffusion rate values of titanium, its compounds and alloys are summarized and tabulated. The individual chemical diffusion coefficients and self-diffusion coefficients of certain isotopes are given. Experimental methods are listed which were used for the determination of diffusion coefficients. Some values have been taken over from other studies. Also given are graphs showing the temperature dependences of diffusion and changes in the diffusion coefficient with concentration changes

  13. A novel adaptive discrete cosine transform-domain filter for gap-inpainting of high resolution PET scanners

    International Nuclear Information System (INIS)

    Shih, Cheng-Ting; Lin, Hsin-Hon; Chuang, Keh-Shih; Wu, Jay; Chang, Shu-Jun

    2014-01-01

    Purpose: Several positron emission tomography (PET) scanners with special detector block arrangements have been developed in recent years to improve the resolution of PET images. However, the discontinuous detector blocks cause gaps in the sinogram. This study proposes an adaptive discrete cosine transform-based (aDCT) filter for gap-inpainting. Methods: The gap-corrupted sinogram was morphologically closed and subsequently converted to the DCT domain. A certain number of the largest coefficients in the DCT spectrum were identified to determine the low-frequency preservation region. The weighting factors for the remaining coefficients were determined by an exponential weighting function. The aDCT filter was constructed and applied to two digital phantoms and a simulated phantom introduced with various levels of noise. Results: For the Shepp-Logan head phantom, the aDCT filter filled the gaps effectively. For the Jaszczak phantom, no secondary artifacts were induced after aDCT filtering. The percent mean square error and mean structure similarity of the aDCT filter were superior to those of the DCT2 filter at all noise levels. For the simulated striatal dopamine innervation study, the aDCT filter recovered the shape of the striatum and restored the striatum to reference activity ratios to the ideal value. Conclusions: The proposed aDCT filter can recover the missing gap data in the sinogram and improve the image quality and quantitative accuracy of PET images

  14. A novel adaptive discrete cosine transform-domain filter for gap-inpainting of high resolution PET scanners

    Energy Technology Data Exchange (ETDEWEB)

    Shih, Cheng-Ting; Lin, Hsin-Hon; Chuang, Keh-Shih [Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Wu, Jay, E-mail: jwu@mail.cmu.edu.tw [Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung 40402, Taiwan (China); Chang, Shu-Jun [Health Physics Division, Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan 32546, Taiwan (China)

    2014-08-15

    Purpose: Several positron emission tomography (PET) scanners with special detector block arrangements have been developed in recent years to improve the resolution of PET images. However, the discontinuous detector blocks cause gaps in the sinogram. This study proposes an adaptive discrete cosine transform-based (aDCT) filter for gap-inpainting. Methods: The gap-corrupted sinogram was morphologically closed and subsequently converted to the DCT domain. A certain number of the largest coefficients in the DCT spectrum were identified to determine the low-frequency preservation region. The weighting factors for the remaining coefficients were determined by an exponential weighting function. The aDCT filter was constructed and applied to two digital phantoms and a simulated phantom introduced with various levels of noise. Results: For the Shepp-Logan head phantom, the aDCT filter filled the gaps effectively. For the Jaszczak phantom, no secondary artifacts were induced after aDCT filtering. The percent mean square error and mean structure similarity of the aDCT filter were superior to those of the DCT2 filter at all noise levels. For the simulated striatal dopamine innervation study, the aDCT filter recovered the shape of the striatum and restored the striatum to reference activity ratios to the ideal value. Conclusions: The proposed aDCT filter can recover the missing gap data in the sinogram and improve the image quality and quantitative accuracy of PET images.

  15. Johnson-Matthey diffuser characterization testing

    International Nuclear Information System (INIS)

    Foster, P. J.; Klein, J. E.; Sessions, H. T.; Morgan, G. A.

    2008-01-01

    A diffuser/permeator commercially fabricated by Johnson-Matthey was purchased for characterization testing at the Savannah River National Laboratory (SRNL). A test system was fabricated to test not only feed and bleed flows and pressures, but also permeate pressure for flows up to 20 sLPM. The tests described in this paper consider the effect of various inert gas types, feed gas compositions, methods for temperature control, and varying tube pressure on permeation of H 2 through the Pd/Ag tubes. (authors)

  16. Absolute cosine-based SVM-RFE feature selection method for prostate histopathological grading.

    Science.gov (United States)

    Sahran, Shahnorbanun; Albashish, Dheeb; Abdullah, Azizi; Shukor, Nordashima Abd; Hayati Md Pauzi, Suria

    2018-04-18

    Feature selection (FS) methods are widely used in grading and diagnosing prostate histopathological images. In this context, FS is based on the texture features obtained from the lumen, nuclei, cytoplasm and stroma, all of which are important tissue components. However, it is difficult to represent the high-dimensional textures of these tissue components. To solve this problem, we propose a new FS method that enables the selection of features with minimal redundancy in the tissue components. We categorise tissue images based on the texture of individual tissue components via the construction of a single classifier and also construct an ensemble learning model by merging the values obtained by each classifier. Another issue that arises is overfitting due to the high-dimensional texture of individual tissue components. We propose a new FS method, SVM-RFE(AC), that integrates a Support Vector Machine-Recursive Feature Elimination (SVM-RFE) embedded procedure with an absolute cosine (AC) filter method to prevent redundancy in the selected features of the SV-RFE and an unoptimised classifier in the AC. We conducted experiments on H&E histopathological prostate and colon cancer images with respect to three prostate classifications, namely benign vs. grade 3, benign vs. grade 4 and grade 3 vs. grade 4. The colon benchmark dataset requires a distinction between grades 1 and 2, which are the most difficult cases to distinguish in the colon domain. The results obtained by both the single and ensemble classification models (which uses the product rule as its merging method) confirm that the proposed SVM-RFE(AC) is superior to the other SVM and SVM-RFE-based methods. We developed an FS method based on SVM-RFE and AC and successfully showed that its use enabled the identification of the most crucial texture feature of each tissue component. Thus, it makes possible the distinction between multiple Gleason grades (e.g. grade 3 vs. grade 4) and its performance is far superior to

  17. Infrared and visual image fusion method based on discrete cosine transform and local spatial frequency in discrete stationary wavelet transform domain

    Science.gov (United States)

    Jin, Xin; Jiang, Qian; Yao, Shaowen; Zhou, Dongming; Nie, Rencan; Lee, Shin-Jye; He, Kangjian

    2018-01-01

    In order to promote the performance of infrared and visual image fusion and provide better visual effects, this paper proposes a hybrid fusion method for infrared and visual image by the combination of discrete stationary wavelet transform (DSWT), discrete cosine transform (DCT) and local spatial frequency (LSF). The proposed method has three key processing steps. Firstly, DSWT is employed to decompose the important features of the source image into a series of sub-images with different levels and spatial frequencies. Secondly, DCT is used to separate the significant details of the sub-images according to the energy of different frequencies. Thirdly, LSF is applied to enhance the regional features of DCT coefficients, and it can be helpful and useful for image feature extraction. Some frequently-used image fusion methods and evaluation metrics are employed to evaluate the validity of the proposed method. The experiments indicate that the proposed method can achieve good fusion effect, and it is more efficient than other conventional image fusion methods.

  18. Diffusion in the uranium - plutonium system and self-diffusion of plutonium in epsilon phase

    International Nuclear Information System (INIS)

    Dupuy, M.

    1967-07-01

    A survey of uranium-plutonium phase diagram leads to confirm anglo-saxon results about the plutonium solubility in α uranium (15 per cent at 565 C) and the uranium one in ζ phase (74 per cent at 565 C). Interdiffusion coefficients, for concentration lower than 15 per cent had been determined in a temperature range from 410 C to 640 C. They vary between 0.2 and 6 10 12 cm 2 s -1 , and the activation energy between 13 and 20 kcal/mole. Grain boundary, diffusion of plutonium in a uranium had been pointed out by micrography, X-ray microanalysis and α autoradiography. Self-diffusion of plutonium in ε phase (bcc) obeys Arrhenius law: D = 2. 10 -2 exp -(18500)/RT. But this activation energy does not follow empirical laws generally accepted for other metals. It has analogies with 'anomalous' bcc metals (βZr, βTi, βHf, U γ ). (author) [fr

  19. Approach to equilibrium of diffusion in a logarithmic potential.

    Science.gov (United States)

    Hirschberg, Ori; Mukamel, David; Schütz, Gunter M

    2011-10-01

    The late-time distribution function P(x,t) of a particle diffusing in a one-dimensional logarithmic potential is calculated for arbitrary initial conditions. We find a scaling solution with three surprising features: (i) the solution is given by two distinct scaling forms, corresponding to a diffusive (x∼t(1/2)) and a subdiffusive (x∼t(γ) with a given γfunction is selected by the initial condition, and (iii) depending on the tail of the initial condition, the scaling exponent that characterizes the scaling function is found to exhibit a transition from a continuously varying to a fixed value.

  20. Diffusion archeology for diffusion progression history reconstruction.

    Science.gov (United States)

    Sefer, Emre; Kingsford, Carl

    2016-11-01

    Diffusion through graphs can be used to model many real-world processes, such as the spread of diseases, social network memes, computer viruses, or water contaminants. Often, a real-world diffusion cannot be directly observed while it is occurring - perhaps it is not noticed until some time has passed, continuous monitoring is too costly, or privacy concerns limit data access. This leads to the need to reconstruct how the present state of the diffusion came to be from partial diffusion data. Here, we tackle the problem of reconstructing a diffusion history from one or more snapshots of the diffusion state. This ability can be invaluable to learn when certain computer nodes are infected or which people are the initial disease spreaders to control future diffusions. We formulate this problem over discrete-time SEIRS-type diffusion models in terms of maximum likelihood. We design methods that are based on submodularity and a novel prize-collecting dominating-set vertex cover (PCDSVC) relaxation that can identify likely diffusion steps with some provable performance guarantees. Our methods are the first to be able to reconstruct complete diffusion histories accurately in real and simulated situations. As a special case, they can also identify the initial spreaders better than the existing methods for that problem. Our results for both meme and contaminant diffusion show that the partial diffusion data problem can be overcome with proper modeling and methods, and that hidden temporal characteristics of diffusion can be predicted from limited data.

  1. Dimensional reduction of a general advection–diffusion equation in 2D channels

    Science.gov (United States)

    Kalinay, Pavol; Slanina, František

    2018-06-01

    Diffusion of point-like particles in a two-dimensional channel of varying width is studied. The particles are driven by an arbitrary space dependent force. We construct a general recurrence procedure mapping the corresponding two-dimensional advection-diffusion equation onto the longitudinal coordinate x. Unlike the previous specific cases, the presented procedure enables us to find the one-dimensional description of the confined diffusion even for non-conservative (vortex) forces, e.g. caused by flowing solvent dragging the particles. We show that the result is again the generalized Fick–Jacobs equation. Despite of non existing scalar potential in the case of vortex forces, the effective one-dimensional scalar potential, as well as the corresponding quasi-equilibrium and the effective diffusion coefficient can be always found.

  2. RESIDENCE TIMES OF PARTICLES IN DIFFUSIVE PROTOPLANETARY DISK ENVIRONMENTS. I. VERTICAL MOTIONS

    International Nuclear Information System (INIS)

    Ciesla, F. J.

    2010-01-01

    The chemical and physical evolution of primitive materials in protoplanetary disks are determined by the types of environments they are exposed to and their residence times within each environment. Here, a method for calculating representative paths of materials in diffusive protoplanetary disks is developed and applied to understanding how the vertical trajectories that particles take impact their overall evolution. The methods are general enough to be applied to disks with uniform diffusivity, the so-called constant-α cases, and disks with a spatially varying diffusivity, such as expected in 'layered-disks'. The average long-term dynamical evolution of small particles and gaseous molecules is independent of the specific form of the diffusivity in that they spend comparable fractions of their lifetimes at different heights in the disk. However, the paths that individual particles and molecules take depend strongly on the form of the diffusivity leading to a different range of behavior of particles in terms of deviations from the mean. As temperatures, gas densities, chemical abundances, and photon fluxes will vary with height in protoplanetary disks, the different paths taken by primitive materials will lead to differences in their chemical and physical evolution. Examples of differences in gas phase chemistry and photochemistry are explored here. The methods outlined here provide a powerful tool that can be integrated with chemical models to understand the formation and evolution of primitive materials in protoplanetary disks on timescales of 10 5 -10 6 years.

  3. Diffusing diffusivity: Rotational diffusion in two and three dimensions

    Science.gov (United States)

    Jain, Rohit; Sebastian, K. L.

    2017-06-01

    We consider the problem of calculating the probability distribution function (pdf) of angular displacement for rotational diffusion in a crowded, rearranging medium. We use the diffusing diffusivity model and following our previous work on translational diffusion [R. Jain and K. L. Sebastian, J. Phys. Chem. B 120, 3988 (2016)], we show that the problem can be reduced to that of calculating the survival probability of a particle undergoing Brownian motion, in the presence of a sink. We use the approach to calculate the pdf for the rotational motion in two and three dimensions. We also propose new dimensionless, time dependent parameters, αr o t ,2 D and αr o t ,3 D, which can be used to analyze the experimental/simulation data to find the extent of deviation from the normal behavior, i.e., constant diffusivity, and obtain explicit analytical expressions for them, within our model.

  4. Magnetic orientation of nontronite clay in aqueous dispersions and its effect on water diffusion.

    Science.gov (United States)

    Abrahamsson, Christoffer; Nordstierna, Lars; Nordin, Matias; Dvinskikh, Sergey V; Nydén, Magnus

    2015-01-01

    The diffusion rate of water in dilute clay dispersions depends on particle concentration, size, shape, aggregation and water-particle interactions. As nontronite clay particles magnetically align parallel to the magnetic field, directional self-diffusion anisotropy can be created within such dispersion. Here we study water diffusion in exfoliated nontronite clay dispersions by diffusion NMR and time-dependant 1H-NMR-imaging profiles. The dispersion clay concentration was varied between 0.3 and 0.7 vol%. After magnetic alignment of the clay particles in these dispersions a maximum difference of 20% was measured between the parallel and perpendicular self-diffusion coefficients in the dispersion with 0.7 vol% clay. A method was developed to measure water diffusion within the dispersion in the absence of a magnetic field (random clay orientation) as this is not possible with standard diffusion NMR. However, no significant difference in self-diffusion coefficient between random and aligned dispersions could be observed. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Motoneuron membrane potentials follow a time inhomogeneous jump diffusion process

    DEFF Research Database (Denmark)

    Jahn, Patrick; Berg, Rune W; Hounsgaard, Jørn

    2011-01-01

    models can only be applied over short time windows. However, experimental data show varying time constants, state dependent noise, a graded firing threshold and time-inhomogeneous input. In the present study we build a jump diffusion model that incorporates these features, and introduce a firing...

  6. Study of cerium diffusion in undoped lithium-6 enriched glass with Rutherford backscattering spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaodong, E-mail: xzhang39@utk.edu [Department of Nuclear Engineering, University of Tennessee, TN 37996 (United States); Moore, Michael E.; Lee, Kyung-Min; Lukosi, Eric D. [Department of Nuclear Engineering, University of Tennessee, TN 37996 (United States); Hayward, Jason P. [Department of Nuclear Engineering, University of Tennessee, TN 37996 (United States); Oak Ridge National Lab, Oak Ridge, TN 37831 (United States)

    2016-07-01

    Undoped lithium-6 enriched glasses coated with pure cerium (99.9%) with a gold protection layer on top were heated at three different temperatures (500, 550, and 600 °C) for varied durations (1, 2, and 4 h). Diffusion profiles of cerium in such glasses were obtained with the conventional Rutherford backscattering technique. Through fitting the diffusion profiles with the thin-film solution of Fick’s second law, diffusion coefficients of cerium with different annealing temperatures and durations were solved. Then, the activation energy of cerium for the diffusion process in the studied glasses was found to be 114 kJ/mol with the Arrhenius equation.

  7. Study of cerium diffusion in undoped lithium-6 enriched glass with Rutherford backscattering spectrometry

    Science.gov (United States)

    Zhang, Xiaodong; Moore, Michael E.; Lee, Kyung-Min; Lukosi, Eric D.; Hayward, Jason P.

    2016-07-01

    Undoped lithium-6 enriched glasses coated with pure cerium (99.9%) with a gold protection layer on top were heated at three different temperatures (500, 550, and 600 °C) for varied durations (1, 2, and 4 h). Diffusion profiles of cerium in such glasses were obtained with the conventional Rutherford backscattering technique. Through fitting the diffusion profiles with the thin-film solution of Fick's second law, diffusion coefficients of cerium with different annealing temperatures and durations were solved. Then, the activation energy of cerium for the diffusion process in the studied glasses was found to be 114 kJ/mol with the Arrhenius equation.

  8. Solutes and cells - aspects of advection-diffusion-reaction phenomena in biochips

    DEFF Research Database (Denmark)

    Vedel, Søren

    2012-01-01

    the dependencies on density. This shows that the varied single-cell behavior including the overall modulations imposed by density arise as a natural consequence of pseudopod-driven motility in a social context. The final subproject concerns the combined effects of advection, diffusion and reaction of several......Cell’), and the overall title of the project is Solutes and cells — aspects of advection-diffusion-reaction phenomena in biochips. The work has consisted of several projects focusing on theory, and to some extend analysis of experimental data, with advection-diffusion-reaction phenomena of solutes as the recurring theme...... quantitatively interpret the proximal concentration of specific solutes, and integrate this to achieve biological functions. In three specific examples, the author and co-workers have investigated different aspects of the influence of advection, diffusion and reaction on solute distributions, as well...

  9. FPGA-based design and implementation of arterial pulse wave generator using piecewise Gaussian-cosine fitting.

    Science.gov (United States)

    Wang, Lu; Xu, Lisheng; Zhao, Dazhe; Yao, Yang; Song, Dan

    2015-04-01

    Because arterial pulse waves contain vital information related to the condition of the cardiovascular system, considerable attention has been devoted to the study of pulse waves in recent years. Accurate acquisition is essential to investigate arterial pulse waves. However, at the stage of developing equipment for acquiring and analyzing arterial pulse waves, specific pulse signals may be unavailable for debugging and evaluating the system under development. To produce test signals that reflect specific physiological conditions, in this paper, an arterial pulse wave generator has been designed and implemented using a field programmable gate array (FPGA), which can produce the desired pulse waves according to the feature points set by users. To reconstruct a periodic pulse wave from the given feature points, a method known as piecewise Gaussian-cosine fitting is also proposed in this paper. Using a test database that contains four types of typical pulse waves with each type containing 25 pulse wave signals, the maximum residual error of each sampling point of the fitted pulse wave in comparison with the real pulse wave is within 8%. In addition, the function for adding baseline drift and three types of noises is integrated into the developed system because the baseline occasionally wanders, and noise needs to be added for testing the performance of the designed circuits and the analysis algorithms. The proposed arterial pulse wave generator can be considered as a special signal generator with a simple structure, low cost and compact size, which can also provide flexible solutions for many other related research purposes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. The Measurement of Thermal Diffusivity in Conductor and Insulator by Photodeflection Technique

    Science.gov (United States)

    Achathongsuk, U.; Rittidach, T.; Tipmonta, P.; Kijamnajsuk, P.; Chotikaprakhan, S.

    2017-09-01

    The purpose of this study is to estimate thermal diffusivities of high thermal diffusivity bulk material as well as low thermal diffusivity bulk material by using many types of fluid such as Ethyl alcohol and water. This method is studied by measuring amplitude and phase of photodeflection signal in various frequency modulations. The experimental setup consists of two laser lines: 1) a pump laser beams through a modulator, varied frequency, controlled by lock-in amplifier and focused on sample surface by lens. 2) a probe laser which parallels with the sample surface and is perpendicular to the pump laser beam. The probe laser deflection signal is obtained by a position sensor which controlled by lock-in amplifier. Thermal diffusivity is calculated by measuring the amplitude and phase of the photodeflection signal and compared with the thermal diffusivity of a standard value. The thermal diffusivity of SGG agrees well with the literature but the thermal diffusivity of Cu is less than the literature value by a factor of ten. The experiment requires further improvement to measure the thermal diffusivity of Cu. However, we succeed in using ethyl alcohol as the coupling medium instead of CCl4 which is highly toxic.

  11. An inverse problem for a one-dimensional time-fractional diffusion problem

    KAUST Repository

    Jin, Bangti; Rundell, William

    2012-01-01

    We study an inverse problem of recovering a spatially varying potential term in a one-dimensional time-fractional diffusion equation from the flux measurements taken at a single fixed time corresponding to a given set of input sources. The unique

  12. Diffusion along and around dislocations; Diffusion le long et autour des dislocations

    Energy Technology Data Exchange (ETDEWEB)

    Brebec, G [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1965-07-01

    We have gathered together in this text some solutions for Fick's equations applicable to diffusion in dislocations. The problems is fairly similar to that of grain boundaries but in this case a further difficulty arises, purely mathematical in fact, due to the supposedly cylindrical shape of the perturbed region around a dislocation. It follows that Fick's equation is used in the form: {partial_derivative}C/{partial_derivative}t=D[{partial_derivative}{sup 2}C/{partial_derivative}r{sup 2}+1/r{partial_derivative}C/{partial_derivative} r + {partial_derivative}{sup 2}C/{partial_derivative}z{sup 2}] in order to express simply the limiting conditions and so that the solution takes into account the symmetry of revolution of the system. This very much complicates the final form of the results. We give here as an illustration a solution obtained using the same hypotheses and making the same approximations as those employed by WHIPPLE for his grain boundary work. Unfortunately the final form is not suitable for a numerical calculation. By making grosser approximations, such a those used by FISHER, it is possible to determine the parameter D/(a{sup 2}D'); the same result as for grain boundary is found i.e that the logarithm of the mean concentration varies linearly with penetration, the slope of this straight line is proportional to {radical}(D/(a{sup 2}D')) Finally we give the exact solution for a platelet of finite thickness assuming that the diffusion in the defect less crystal is negligible and that the surface diffusion is infinitely fast. This is the problem dealt with by HENDRIGKSON and MACHLIN. We arrive at conclusions different to those obtained by these two authors. (author) [French] Nous avons groupe dans ce texte quelques solutions des equations de Fick applicables a la diffusion dans les dislocations. Le probleme est assez analogue a celui des joints de grains mais il s'introduit ici une difficulte supplementaire, d'ailleurs purement mathematique, due au fait de

  13. Diffusive flux of methane from warm wetlands

    Energy Technology Data Exchange (ETDEWEB)

    Barber, T.R.; Burke, R.A.; Sackett, W.M. (Univ. of South Florida, St. Petersburg (USA))

    1988-12-01

    Diffusion of methane across the air-water interface from several wetland environments in south Florida was estimated from measured surface water concentrations using an empirically derived gas exchange model. The flux from the Everglades sawgrass marsh system varied widely, ranging from 0.18 + or{minus}0.21 mol CH{sub 4}/sq m/yr for densely vegetated regions to 2.01 + or{minus}0.88 for sparsely vegetated, calcitic mud areas. Despite brackish salinities, a strong methane flux, 1.87 + or{minus}0.63 mol CH{sub 4}/sq m/yr, was estimated for an organic-rich mangrove pond near Florida Bay. The diffusive flux accounted for 23, 36, and 13% of the total amount of CH{sub 4} emitted to the atmosphere from these environments, respectively. The average dissolved methane concentration for an organic-rich forested swamp was the highest of any site at 12.6 microM; however, the calculated diffusive flux from this location, 2.57 + or{minus}1.88 mol CH{sub 4}/sq m/yr, was diminished by an extensive plant canopy that sheltered the air-water interface from the wind. The mean diffusive flux from four freshwater lakes, 0.77 + or{minus}0.73 mol CH{sub 4}/sq m/yr, demonstrated little temperature dependence. The mean diffusive flux for an urbanized, subtropical estuary was 0.06 + or{minus}0.05 mol CH{sub 4}/sq m/yr.

  14. Canning by the diffusion caused by a heated die; Gainage par diffusion par filiere chauffante

    Energy Technology Data Exchange (ETDEWEB)

    Gauthron, M [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1959-07-01

    In this process, the uranium fuel is clad with a zirconium can by passing the element through a die. The operation takes place at a temperature varying between 500 and 1000 deg. C. The heating is obtained by passing low voltage electric current through the can. This process differs from the co-extrusion process in that the uranium is not deformed. The uranium is therefore machined to the final dimensions before canning, it can also be hollow. Two types of processes can be adopted for the extrusion: a) Process in which the binding of the can to the uranium is obtained without diffusion (here the can is at high temperature - subsequently cooled - and the uranium is at a low temperature); b) Process in which uranium-zirconium diffusion is initiated. No matter which process is adopted the element is subsequently heat treated in an over at 800 deg. C in order to obtain the final diffusion. The quality of this diffusion is dependent on the initial state of the surfaces and on the degree of vacuum maintained during the operation. (author) [French] Dans ce procede, la gaine zirconium est plaquee sur le combustible uranium par passage dans une filiere. L'operation a lieu a chaud, a une temperature variant entre 500 et 1000 deg. C. Le chauffage est assure par passage d'un courant basse tension dans la gaine. A la difference du procede de cofilage, l'uranium ne subit pas de deformation durant l'operation. Il est donc prealablement usine aux cotes definitives et peut etre creux. Deux processus sont possibles pendant le passage dans la filiere: a) Obtention d'un frettage de la gaine sur l'uranium sans diffusion (avec une gaine a haute temperature et un tube d'uranium a basse temperature, eventuellement refroidi); b) Obtention d'un commencement de diffusion uranium-zirconium. Quelque soit le processus adopte, la cartouche est ensuite traitee dans un four a 800 deg. C pour obtenir la diffusion definitive. La qualite de celle-ci depend essentiellement des etats de surface initiaux

  15. Canning by the diffusion caused by a heated die

    International Nuclear Information System (INIS)

    Gauthron, M.

    1959-01-01

    In this process, the uranium fuel is clad with a zirconium can by passing the element through a die. The operation takes place at a temperature varying between 500 and 1000 deg. C. The heating is obtained by passing low voltage electric current through the can. This process differs from the co-extrusion process in that the uranium is not deformed. The uranium is therefore machined to the final dimensions before canning, it can also be hollow. Two types of processes can be adopted for the extrusion: a) Process in which the binding of the can to the uranium is obtained without diffusion (here the can is at high temperature - subsequently cooled - and the uranium is at a low temperature); b) Process in which uranium-zirconium diffusion is initiated. No matter which process is adopted the element is subsequently heat treated in an over at 800 deg. C in order to obtain the final diffusion. The quality of this diffusion is dependent on the initial state of the surfaces and on the degree of vacuum maintained during the operation. (author) [fr

  16. Tidal influences on vertical diffusion and diurnal variability of ozone in the mesosphere

    Science.gov (United States)

    Bjarnason, Gudmundur G.; Solomon, Susan; Garcia, Rolando R.

    1987-01-01

    Possible dynamical influences on the diurnal behavior of ozone are investigated. A time dependent one-dimensional photochemical model is developed for this purpose; all model calculations are made at 70 deg N during summer. It is shown that the vertical diffusion can vary as much as 1 order of magnitude within a day as a result of large changes in the zonal wind induced by atmospheric thermal tides. It is found that by introducing a dissipation time scale for turbulence produced by breaking gravity waves, the agreement with Poker Flat echo data is improved. Comparisons of results from photochemical model calculations, where the vertical diffusion is a function of height only, with those in which the vertical diffusion coefficient is changing in time show large differences in the diurnal behavior of ozone between 70 and 90 km. By including the dynamical effect, much better agreement with the Solar Mesosphere Explorers data is obtained. The results are, however, sensitive to the background zonally averaged wind. The influence of including time-varying vertical diffusion coefficient on the OH densities is also large, especially between 80 and 90 km. This suggests that dynamical effects are important in determining the diurnal behavior of the airglow emission from the Meinel bands.

  17. Diffusion and crystal growth in plasma deposed thin ITO films

    International Nuclear Information System (INIS)

    Steffen, H.; Wulff, H.; Quaas, M.; Tun, Tin Maung.; Hipple, R.

    2000-01-01

    Tin-doped indium oxide (ITO) films were deposited by means of DC-planar magnetron sputtering. A metallic In/Sn (90/10) target an Ar/O 2 gas mixture were used. The oxygen flow was varied between 0 and 2 sccm. Substrate voltages between 0 and -100 V were used. With increasing oxygen flow film structure and composition change from crystalline metallic In/Sn to amorphous ITO. Simultaneously the deposition rate decreases and the film density increases. The diffusion of oxygen into metallic In/Sn films and the amorphous-to-crystalline transformation of ITO were studied using in situ grazing incidence X-ray diffractometry (GIXRD), grazing incidence reflectometry (GIXR), and AFM. From the X-ray integral intensities diffusion constants, activation energies of the diffusion, reaction order and activation energy of the crystal growth were extracted. (authors)

  18. Shear-limited test particle diffusion in 2-dimensional plasmas

    International Nuclear Information System (INIS)

    Anderegg, Francois; Driscoll, C. Fred; Dubin, Daniel H.E.

    2002-01-01

    Measurements of test-particle diffusion in pure ion plasmas show 2D enhancements over the 3D rates, limited by shear in the plasma rotation ω E (r). The diffusion is due to 'long-range' ion-ion collisions in the quiescent, steady-state Mg + plasma. For short plasma length L p and low shear S≡r∂ω E /∂r, thermal ions bounce axially many times before shear separates them in θ, so the ions move in (r,θ) as bounce averaged 'rods' of charge (i.e. 2D point vortices). Experimentally, we vary the number of bounces over the range 0.2≤N b ≤10,000. For long plasmas with N b ≤1, we observe diffusion in quantitative agreement with the 3D theory of long-range ExB drift collisions. For shorter plasmas or lower shear, with N b >1, we measure diffusion rates enhanced by up to 100x. For exceedingly small she0ar, i.e. N b ≥1000, we observe diffusion rates consistent with the Taylor-McNamara estimates for a shear-free thermal plasma. Overall, the data shows fair agreement with Dubin's new theory of 2D diffusion in shear, which predicts an enhancement of D 2D /D 3D ≅N b up to the Taylor-McNamara limit

  19. Suspended sediment diffusion mechanisms in the Yangtze Estuary influenced by wind fields

    Science.gov (United States)

    Wang, Lihua; Zhou, Yunxuan; Shen, Fang

    2018-01-01

    The complexity of suspended sediment concentration (SSC) distribution and diffusion has been widely recognized because it is influenced by sediment supply and various hydrodynamic forcing conditions that vary over space and over time. Sediment suspended by waves and transported by currents are the dominant sediment transport mechanisms in estuarine and coastal areas. However, it is unclear to what extent the SSC distribution is impacted by each hydrodynamic factor. Research on the quantitative influence of wind fields on the SSC diffusion range will contribute to a better understanding of the characteristics of sediment transport change and sedimentary geomorphic evolution. This study determined SSC from three Envisat Medium-Resolution Imaging Spectrometer acquisitions, covering the Yangtze Estuary and adjacent water area under the same season and tidal conditions but with varying wind conditions. SSC was examined based on the Semi-Empirical Radiative Transfer model, which has been well validated with the observation data. Integrating the corresponding wind field information from European Centre for Medium-Range Weather Forecasts further facilitated the discussion of wind fields affecting SSC, and in turn the influence of water and suspended sediment transportation and diffusion in the Yangtze estuarine and coastal area. The results demonstrated that the SSC present much more distinctive fluvial features in the inner estuary and wind fields are one of the major factors controlling the range of turbid water diffusion.

  20. Dissociative diffusion mechanism in vacancy-rich materials according to mass action kinetics

    Directory of Open Access Journals (Sweden)

    N. J. Biderman

    2016-05-01

    Full Text Available Two sets of diffusion-reaction numerical simulations using a finite difference method (FDM were conducted to investigate fast impurity diffusion via interstitial sites in vacancy-rich materials such as Cu(In,GaSe2 (CIGS and Cu2ZnSn(S, Se4 (CZTSSe or CZTS via the dissociative diffusion mechanism where the interstitial diffuser ultimately reacts with a vacancy to produce a substitutional. The first set of simulations extends the standard interstitial-limited dissociative diffusion theory to vacancy-rich material conditions where vacancies are annihilated in large amounts, introducing non-equilibrium vacancy concentration profiles. The second simulation set explores the vacancy-limited dissociative diffusion where impurity incorporation increases the equilibrium vacancy concentration. In addition to diffusion profiles of varying concentrations and shapes that were obtained in all simulations, some of the profiles can be fitted with the constant- and limited-source solutions of Fick’s second law despite the non-equilibrium condition induced by the interstitial-vacancy reaction. The first set of simulations reveals that the dissociative diffusion coefficient in vacancy-rich materials is inversely proportional to the initial vacancy concentration. In the second set of numerical simulations, impurity-induced changes in the vacancy concentration lead to distinctive diffusion profile shapes. The simulation results are also compared with published data of impurity diffusion in CIGS. According to the characteristic properties of diffusion profiles from the two set of simulations, experimental detection of the dissociative diffusion mechanism in vacancy-rich materials may be possible.

  1. Delay-induced wave instabilities in single-species reaction-diffusion systems

    Science.gov (United States)

    Otto, Andereas; Wang, Jian; Radons, Günter

    2017-11-01

    The Turing (wave) instability is only possible in reaction-diffusion systems with more than one (two) components. Motivated by the fact that a time delay increases the dimension of a system, we investigate the presence of diffusion-driven instabilities in single-species reaction-diffusion systems with delay. The stability of arbitrary one-component systems with a single discrete delay, with distributed delay, or with a variable delay is systematically analyzed. We show that a wave instability can appear from an equilibrium of single-species reaction-diffusion systems with fluctuating or distributed delay, which is not possible in similar systems with constant discrete delay or without delay. More precisely, we show by basic analytic arguments and by numerical simulations that fast asymmetric delay fluctuations or asymmetrically distributed delays can lead to wave instabilities in these systems. Examples, for the resulting traveling waves are shown for a Fisher-KPP equation with distributed delay in the reaction term. In addition, we have studied diffusion-induced instabilities from homogeneous periodic orbits in the same systems with variable delay, where the homogeneous periodic orbits are attracting resonant periodic solutions of the system without diffusion, i.e., periodic orbits of the Hutchinson equation with time-varying delay. If diffusion is introduced, standing waves can emerge whose temporal period is equal to the period of the variable delay.

  2. Diffusion-weighted MR imaging of the abdomen with pulse triggering

    International Nuclear Information System (INIS)

    Muertz, P.; Pauleit, D.; Traeber, F.; Kreft, B.P.; Schild, H.H.

    2000-01-01

    Purpose: The aim of this work was to reduce the influence of motion on diffusion-weighted MR images of the abdomen by pulse triggering of single-shot sequences. Methods: Five healthy volunteers were examined both without and with finger pulse-triggering of a diffusion-weighted single-shot echo planar MR imaging sequence at 1.5 T. Series of diffusion-weighted images were acquired at different phases of the cardiac cycle by varying the time delay between finger pulse and sequence acquisition. The measurements were repeated three times. The diffusion weighted images were analysed by measuring the signal intensities and by determining the ADC values within the spleen, kidney and liver. Results: The magnitude of motion artifacts on diffusion weighted images shows a strong dependence on the trigger delay. The optimum trigger delay is found to be between 500 and 600 ms. For these values the abdominal organs appear homogeneous on all diffusion weighted images and the strongest signal intensities are detected. At optimum triggering the accuracy of the apparent diffusion coefficients is up to 10 times better than without triggering. Moreover, the standard deviation of the repeated measurements is smaller than 12% for all volunteers and for all organs. Without triggering the standard deviation is larger by a factor of 4 on average. Conclusion: Pulse triggering of single-shot sequences leads to significant reduction of motion related artifacts on diffusion weighted images of the abdomen and provides more accurate and reproducible ADC values. (orig.) [de

  3. Diffuse axonal injury: detection of changes in anisotropy of water diffusion by diffusion-weighted imaging

    International Nuclear Information System (INIS)

    Chan, J.H.M.; Tsui, E.Y.K.; Yuen, M.K.; Peh, W.C.G.; Fong, D.; Fok, K.F.; Leung, K.M.; Fung, K.K.L.

    2003-01-01

    Myelinated axons of white matter demonstrate prominent directional differences in water diffusion. We performed diffusion-weighted imaging on ten patients with head injury to explore the feasibility of using water diffusion anisotropy for quantitating diffuse axonal injury. We showed significant decrease in diffusion anisotropy indices in areas with or without signal abnormality on T2 and T2*-weighted images. We conclude that the water diffusion anisotropy index a potentially useful, sensitive and quantitative way of diagnosing and assessing patients with diffuse axonal injury. (orig.)

  4. A mixed-order nonlinear diffusion compressed sensing MR image reconstruction.

    Science.gov (United States)

    Joy, Ajin; Paul, Joseph Suresh

    2018-03-07

    Avoid formation of staircase artifacts in nonlinear diffusion-based MR image reconstruction without compromising computational speed. Whereas second-order diffusion encourages the evolution of pixel neighborhood with uniform intensities, fourth-order diffusion considers smooth region to be not necessarily a uniform intensity region but also a planar region. Therefore, a controlled application of fourth-order diffusivity function is used to encourage second-order diffusion to reconstruct the smooth regions of the image as a plane rather than a group of blocks, while not being strong enough to introduce the undesirable speckle effect. Proposed method is compared with second- and fourth-order nonlinear diffusion reconstruction, total variation (TV), total generalized variation, and higher degree TV using in vivo data sets for different undersampling levels with application to dictionary learning-based reconstruction. It is observed that the proposed technique preserves sharp boundaries in the image while preventing the formation of staircase artifacts in the regions of smoothly varying pixel intensities. It also shows reduced error measures compared with second-order nonlinear diffusion reconstruction or TV and converges faster than TV-based methods. Because nonlinear diffusion is known to be an effective alternative to TV for edge-preserving reconstruction, the crucial aspect of staircase artifact removal is addressed. Reconstruction is found to be stable for the experimentally determined range of fourth-order regularization parameter, and therefore not does not introduce a parameter search. Hence, the computational simplicity of second-order diffusion is retained. © 2018 International Society for Magnetic Resonance in Medicine.

  5. Adoption of renewable heating systems: An empirical test of the diffusion of innovation theory

    International Nuclear Information System (INIS)

    Franceschinis, Cristiano; Thiene, Mara; Scarpa, Riccardo; Rose, John; Moretto, Michele; Cavalli, Raffaele

    2017-01-01

    The implementation of heating technologies based on renewable resources is an important part of Italy's energy policy. Yet, despite efforts to promote the uptake of such technologies, their diffusion is still limited while heating systems based on fossil fuels are still predominant. Theory suggests that beliefs and attitudes of individual consumers play a crucial role in the diffusion of innovative products. However, empirical studies corroborating such observations are still thin on the ground. We use a Choice Experiment and a Latent Class-Random Parameter model to analyze preferences of households in the Veneto region (North-East Italy) for key features of ambient heating systems. We evaluate the coherence of the underlying preference structure using as criteria psychological constructs from the Theory of Diffusion of Innovation by Rogers. Our results broadly support this theory by providing evidence of segmentation of the population consistent with the individuals' propensity to adopt innovations. We found that preferences for heating systems and respondents' willingness to pay for their key features vary across segments. These results enabled us to generate maps that show how willingness to pay estimates vary across the region and can guide local policy design aimed at stimulating adoption of sustainable solutions. - Highlights: • We relate preferences for wood pellet heating systems to Diffusion of Innovation theory. • We found a segmentation of the population according to individual innovativeness. • Preferences for wood pellet heating systems vary across population segments. • Public intervention seems necessary to foster adoption among late adopters.

  6. Effects of imaging gradients in sequences with varying longitudinal storage time-Case of diffusion exchange imaging

    DEFF Research Database (Denmark)

    Lasic, Samo; Lundell, Henrik; Topgaard, Daniel

    2017-01-01

    low-pass diffusion filtering during the LS interval, which is more pronounced at lower exchange rates. For a total exchange rate constant larger than 1 s-1, the AXR bias is expected to be negligible when slices thicker than 2.5mm are used. Conclusion: In correlation experiments like FEXI, relying...... on LS with variable duration, imaging gradients may cause disrupting effects that cannot be easily mitigated and should be carefully considered for unbiased results. In typical clinical applications of FEXI, the imaging gradients are expected to cause a negligible AXR bias. However, the AXR bias may...

  7. Angular dependence of the efficiency of the UV sensor polysulphone film

    International Nuclear Information System (INIS)

    Krins, A.; Bolsee, D.; Doerschel, B.; Gillotay, D.; Knuschke, P.

    2000-01-01

    The UV dose refers to the physical quantity radiant exposure, which is defined for a plane area element with fixed orientation in space and thus radiation intercepting this area element is weighted with the cosine of the angle of incidence. For this reason, a UV dosemeter also has to weight incoming radiation with the cosine of the angle of incidence. The angular dependence of the efficiency of polysulphone film was determined experimentally. The investigations were carried out with monochromatic UV radiation at three different wavelengths as well as with polychromatic radiation. Angles were varied between normal incidence and 70 deg. Within this range, the angular dependence of the efficiency of polysulphone film follows the cosine function. This behaviour is independent of the wavelength and applies for monochromatic as well as for polychromatic radiation. These experimental results are corroborated by earlier theoretical considerations. (author)

  8. Cationic Contrast Agent Diffusion Differs Between Cartilage and Meniscus.

    Science.gov (United States)

    Honkanen, Juuso T J; Turunen, Mikael J; Freedman, Jonathan D; Saarakkala, Simo; Grinstaff, Mark W; Ylärinne, Janne H; Jurvelin, Jukka S; Töyräs, Juha

    2016-10-01

    Contrast enhanced computed tomography (CECT) is a non-destructive imaging technique used for the assessment of composition and structure of articular cartilage and meniscus. Due to structural and compositional differences between these tissues, diffusion and distribution of contrast agents may differ in cartilage and meniscus. The aim of this study is to determine the diffusion kinematics of a novel iodine based cationic contrast agent (CA(2+)) in cartilage and meniscus. Cylindrical cartilage and meniscus samples (d = 6 mm, h ≈ 2 mm) were harvested from healthy bovine knee joints (n = 10), immersed in isotonic cationic contrast agent (20 mgI/mL), and imaged using a micro-CT scanner at 26 time points up to 48 h. Subsequently, normalized X-ray attenuation and contrast agent diffusion flux, as well as water, collagen and proteoglycan (PG) contents in the tissues were determined. The contrast agent distributions within cartilage and meniscus were different. In addition, the normalized attenuation and diffusion flux were higher (p < 0.05) in cartilage. Based on these results, diffusion kinematics vary between cartilage and meniscus. These tissue specific variations can affect the interpretation of CECT images and should be considered when cartilage and meniscus are assessed simultaneously.

  9. Role of Rayleigh numbers on characteristics of double diffusive salt fingers

    Science.gov (United States)

    Rehman, F.; Singh, O. P.

    2018-05-01

    Double diffusion convection, driven by two constituents of the fluid with different molecular diffusivity, is widely applied in oceanography and large number of other fields like astrophysics, geology, chemistry and metallurgy. In case of ocean, heat (T) and salinity (S) are the two components with varying diffusivity, where heat diffuses hundred times faster than salt. Component (T) stabilizes the system whereas components (S) destabilizes the system with overall density remains stable and forms the rising and sinking fingers known as salt fingers. Recent observations suggest that salt finger characteristics such as growth rates, wavenumber, and fluxes are strongly depending on the Rayleigh numbers as major driving force. In this paper, we corroborate this observation with the help of experiments, numerical simulations and linear theory. An eigenvalue expression for growth rate is derived from the linearized governing equations with explicit dependence on Rayleigh numbers, density stability ratio, Prandtl number and diffusivity ratio. Expressions for fastest growing fingers are also derived as a function various non-dimensional parameter. The predicted results corroborate well with the data reported from the field measurements, experiments and numerical simulations.

  10. Spin-diffusions and diffusive molecular dynamics

    Science.gov (United States)

    Farmer, Brittan; Luskin, Mitchell; Plecháč, Petr; Simpson, Gideon

    2017-12-01

    Metastable configurations in condensed matter typically fluctuate about local energy minima at the femtosecond time scale before transitioning between local minima after nanoseconds or microseconds. This vast scale separation limits the applicability of classical molecular dynamics (MD) methods and has spurned the development of a host of approximate algorithms. One recently proposed method is diffusive MD which aims at integrating a system of ordinary differential equations describing the likelihood of occupancy by one of two species, in the case of a binary alloy, while quasistatically evolving the locations of the atoms. While diffusive MD has shown itself to be efficient and provide agreement with observations, it is fundamentally a model, with unclear connections to classical MD. In this work, we formulate a spin-diffusion stochastic process and show how it can be connected to diffusive MD. The spin-diffusion model couples a classical overdamped Langevin equation to a kinetic Monte Carlo model for exchange amongst the species of a binary alloy. Under suitable assumptions and approximations, spin-diffusion can be shown to lead to diffusive MD type models. The key assumptions and approximations include a well-defined time scale separation, a choice of spin-exchange rates, a low temperature approximation, and a mean field type approximation. We derive several models from different assumptions and show their relationship to diffusive MD. Differences and similarities amongst the models are explored in a simple test problem.

  11. Physics of pitch angle scattering and velocity diffusion. I - Theory

    Science.gov (United States)

    Karimabadi, H.; Krauss-Varban, D.; Terasawa, T.

    1992-01-01

    A general theory for the pitch angle scattering and velocity diffusion of particles in the field of a spectrum of waves in a magnetized plasma is presented. The test particle theory is used to analyze the particle motion. The form of diffusion surfaces is examined, and analytical expressions are given for the resonance width and bounce frequency. The resonance widths are found to vary strongly as a function of harmonic number. The resulting diffusion can be quite asymmetric with respect to pitch angle of 90 deg. The conditions for the onset of pitch angle scattering and energy diffusion are explained in detail. Some of the known shortcomings of the standard quasi-linear theory are also addressed, and ways to overcome them are shown. In particular, the often stated quasi-linear gap at 90 deg is found to exist only under very special cases. For instance, oblique wave propagation can easily remove the gap. The conditions for the existence of the gap are described in great detail. A new diffusion equation which takes into account the finite resonance widths is also discussed. The differences between this new theory and the standard resonance broadening theory is explained.

  12. A nonlinear equation for ionic diffusion in a strong binary electrolyte

    Science.gov (United States)

    Ghosal, Sandip; Chen, Zhen

    2010-01-01

    The problem of the one-dimensional electro-diffusion of ions in a strong binary electrolyte is considered. The mathematical description, known as the Poisson–Nernst–Planck (PNP) system, consists of a diffusion equation for each species augmented by transport owing to a self-consistent electrostatic field determined by the Poisson equation. This description is also relevant to other important problems in physics, such as electron and hole diffusion across semiconductor junctions and the diffusion of ions in plasmas. If concentrations do not vary appreciably over distances of the order of the Debye length, the Poisson equation can be replaced by the condition of local charge neutrality first introduced by Planck. It can then be shown that both species diffuse at the same rate with a common diffusivity that is intermediate between that of the slow and fast species (ambipolar diffusion). Here, we derive a more general theory by exploiting the ratio of the Debye length to a characteristic length scale as a small asymptotic parameter. It is shown that the concentration of either species may be described by a nonlinear partial differential equation that provides a better approximation than the classical linear equation for ambipolar diffusion, but reduces to it in the appropriate limit. PMID:21818176

  13. Plasma sprayed and electrospark deposited zirconium metal diffusion barrier coatings

    International Nuclear Information System (INIS)

    Hollis, Kendall J.; Pena, Maria I.

    2010-01-01

    Zirconium metal coatings applied by plasma spraying and electrospark deposition (ESD) have been investigated for use as diffusion barrier coatings on low enrichment uranium fuel for research nuclear reactors. The coatings have been applied to both stainless steel as a surrogate and to simulated nuclear fuel uranium-molybdenum alloy substrates. Deposition parameter development accompanied by coating characterization has been performed. The structure of the plasma sprayed coating was shown to vary with transferred arc current during deposition. The structure of ESD coatings was shown to vary with the capacitance of the deposition equipment.

  14. Diffusion processes in unsaturated porous media studied with nuclear magnetic resonance techniques

    International Nuclear Information System (INIS)

    Farrher, German David

    2006-01-01

    Unsaturated porous media form two-phase systems consisting of the liquid and its vapor. Molecular exchange between the two phases defines an effective diffusion coefficient which substantially deviates from the bulk value of the liquid. The objective of the present thesis is to study self-diffusion under such conditions by varying both the filling degree of the porous medium and the diffusion time. The main experimental tool was a combination of two different NMR field gradient diffusometry techniques. For comparison, diffusion in a porous medium was modeled with the aid of Monte Carlo simulations. The NMR diffusometry techniques under consideration were the pulsed gradient stimulated echo (PGStE) method, the fringe field stimulated echo (FFStE) method, and the magnetization grid rotating frame imaging (MAGROFI) method. As liquids, water and cyclohexane were chosen as representatives of polar and nonpolar species. The porous glasses examined were Vycor with a mean pore size of 4 nm and VitraPor 5, with a pore size ranging from 1 to 1.6 μm. Using a combination of the FFStE and the MAGROFI technique permits one to cover four decades of the diffusion time from 100 μs to 1 s. The time dependences acquired in this way were compared with Monte Carlo simulations of a model structure in a time window of eight decades, from 125 ps up to 12.5 ms. NMR microscopy of VitraPor5 partially filled with water or cyclohexane reveals heterogeneous distributions of the liquid on a length scale much longer than the pore dimension. As a consequence of the inhomogeneous filling degree, the effective transverse relaxation time varies, which in turn leads to NMR imaging contrasts. The NMR methods employed, that is, a combination of FFStE and MAGROFI diffusometry, provide effective diffusion coefficients not affected by spatial variations of the transverse relaxation time, in contrast to the PGStE method: The FFStE and MAGROFI techniques render the effective diffusion coefficient averaged

  15. Differences in Gaussian diffusion tensor imaging and non-Gaussian diffusion kurtosis imaging model-based estimates of diffusion tensor invariants in the human brain.

    Science.gov (United States)

    Lanzafame, S; Giannelli, M; Garaci, F; Floris, R; Duggento, A; Guerrisi, M; Toschi, N

    2016-05-01

    An increasing number of studies have aimed to compare diffusion tensor imaging (DTI)-related parameters [e.g., mean diffusivity (MD), fractional anisotropy (FA), radial diffusivity (RD), and axial diffusivity (AD)] to complementary new indexes [e.g., mean kurtosis (MK)/radial kurtosis (RK)/axial kurtosis (AK)] derived through diffusion kurtosis imaging (DKI) in terms of their discriminative potential about tissue disease-related microstructural alterations. Given that the DTI and DKI models provide conceptually and quantitatively different estimates of the diffusion tensor, which can also depend on fitting routine, the aim of this study was to investigate model- and algorithm-dependent differences in MD/FA/RD/AD and anisotropy mode (MO) estimates in diffusion-weighted imaging of human brain white matter. The authors employed (a) data collected from 33 healthy subjects (20-59 yr, F: 15, M: 18) within the Human Connectome Project (HCP) on a customized 3 T scanner, and (b) data from 34 healthy subjects (26-61 yr, F: 5, M: 29) acquired on a clinical 3 T scanner. The DTI model was fitted to b-value =0 and b-value =1000 s/mm(2) data while the DKI model was fitted to data comprising b-value =0, 1000 and 3000/2500 s/mm(2) [for dataset (a)/(b), respectively] through nonlinear and weighted linear least squares algorithms. In addition to MK/RK/AK maps, MD/FA/MO/RD/AD maps were estimated from both models and both algorithms. Using tract-based spatial statistics, the authors tested the null hypothesis of zero difference between the two MD/FA/MO/RD/AD estimates in brain white matter for both datasets and both algorithms. DKI-derived MD/FA/RD/AD and MO estimates were significantly higher and lower, respectively, than corresponding DTI-derived estimates. All voxelwise differences extended over most of the white matter skeleton. Fractional differences between the two estimates [(DKI - DTI)/DTI] of most invariants were seen to vary with the invariant value itself as well as with MK

  16. SC lipid model membranes designed for studying impact of ceramide species on drug diffusion and permeation--part II: diffusion and permeation of model drugs.

    Science.gov (United States)

    Ochalek, M; Podhaisky, H; Ruettinger, H-H; Wohlrab, J; Neubert, R H H

    2012-10-01

    The barrier function of two quaternary stratum corneum (SC) lipid model membranes, which were previously characterized with regard to the lipid organization, was investigated based on diffusion studies of model drugs with varying lipophilicities. Diffusion experiments of a hydrophilic drug, urea, and more lipophilic drugs than urea (i.e. caffeine, diclofenac sodium) were conducted using Franz-type diffusion cells. The amount of permeated drug was analyzed using either HPLC or CE technique. The subjects of interest in the present study were the investigation of the influence of physicochemical properties of model drugs on their diffusion and permeation through SC lipid model membranes, as well as the study of the impact of the constituents of these artificial systems (particularly ceramide species) on their barrier properties. The diffusion through both SC lipid model membranes and the human SC of the most hydrophilic model drug, urea, was faster than the permeation of the more lipophilic drugs. The slowest rate of permeation through SC lipid systems occurred in the case of caffeine. The composition of SC lipid model membranes has a significant impact on their barrier function. Model drugs diffused and permeated faster through Membrane II (presence of Cer [EOS]). In terms of the barrier properties, Membrane II is much more similar to the human SC than Membrane I. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Diffusion tensor smoothing through weighted Karcher means

    Science.gov (United States)

    Carmichael, Owen; Chen, Jun; Paul, Debashis; Peng, Jie

    2014-01-01

    Diffusion tensor magnetic resonance imaging (MRI) quantifies the spatial distribution of water Diffusion at each voxel on a regular grid of locations in a biological specimen by Diffusion tensors– 3 × 3 positive definite matrices. Removal of noise from DTI is an important problem due to the high scientific relevance of DTI and relatively low signal to noise ratio it provides. Leading approaches to this problem amount to estimation of weighted Karcher means of Diffusion tensors within spatial neighborhoods, under various metrics imposed on the space of tensors. However, it is unclear how the behavior of these estimators varies with the magnitude of DTI sensor noise (the noise resulting from the thermal e!ects of MRI scanning) as well as the geometric structure of the underlying Diffusion tensor neighborhoods. In this paper, we combine theoretical analysis, empirical analysis of simulated DTI data, and empirical analysis of real DTI scans to compare the noise removal performance of three kernel-based DTI smoothers that are based on Euclidean, log-Euclidean, and affine-invariant metrics. The results suggest, contrary to conventional wisdom, that imposing a simplistic Euclidean metric may in fact provide comparable or superior noise removal, especially in relatively unstructured regions and/or in the presence of moderate to high levels of sensor noise. On the contrary, log-Euclidean and affine-invariant metrics may lead to better noise removal in highly structured anatomical regions, especially when the sensor noise is of low magnitude. These findings emphasize the importance of considering the interplay of sensor noise magnitude and tensor field geometric structure when assessing Diffusion tensor smoothing options. They also point to the necessity for continued development of smoothing methods that perform well across a large range of scenarios. PMID:25419264

  18. Prediction Of Abrasive And Diffusive Tool Wear Mechanisms In Machining

    Science.gov (United States)

    Rizzuti, S.; Umbrello, D.

    2011-01-01

    Tool wear prediction is regarded as very important task in order to maximize tool performance, minimize cutting costs and improve the quality of workpiece in cutting. In this research work, an experimental campaign was carried out at the varying of cutting conditions with the aim to measure both crater and flank tool wear, during machining of an AISI 1045 with an uncoated carbide tool P40. Parallel a FEM-based analysis was developed in order to study the tool wear mechanisms, taking also into account the influence of the cutting conditions and the temperature reached on the tool surfaces. The results show that, when the temperature of the tool rake surface is lower than the activation temperature of the diffusive phenomenon, the wear rate can be estimated applying an abrasive model. In contrast, in the tool area where the temperature is higher than the diffusive activation temperature, the wear rate can be evaluated applying a diffusive model. Finally, for a temperature ranges within the above cited values an adopted abrasive-diffusive wear model furnished the possibility to correctly evaluate the tool wear phenomena.

  19. Reduction of Altitude Diffuser Jet Noise Using Water Injection

    Science.gov (United States)

    Allgood, Daniel C.; Saunders, Grady P.; Langford, Lester A.

    2011-01-01

    A feasibility study on the effects of injecting water into the exhaust plume of an altitude rocket diffuser for the purpose of reducing the far-field acoustic noise has been performed. Water injection design parameters such as axial placement, angle of injection, diameter of injectors, and mass flow rate of water have been systematically varied during the operation of a subscale altitude test facility. The changes in acoustic far-field noise were measured with an array of free-field microphones in order to quantify the effects of the water injection on overall sound pressure level spectra and directivity. The results showed significant reductions in noise levels were possible with optimum conditions corresponding to water injection at or just upstream of the exit plane of the diffuser. Increasing the angle and mass flow rate of water injection also showed improvements in noise reduction. However, a limit on the maximum water flow rate existed as too large of flow rate could result in un-starting the supersonic diffuser.

  20. Emptiness formation probability of XX-chain in diffusion process

    International Nuclear Information System (INIS)

    Ogata, Yoshiko

    2004-01-01

    We study the distribution of emptiness formation probability of XX-model in the diffusion process. There exits a Gaussian decay as well as an exponential decay. The Gaussian decay is caused by the existence of zero point in the Fermi distribution function. The correlation length for each point of scaling factor varies up to the initial condition, monotonically or non-monotonically

  1. Observation of time-varying photoconductivity and persistent photoconductivity in porous silicon

    DEFF Research Database (Denmark)

    Frello, T.; Veje, E.; Leistiko, Otto

    1996-01-01

    We have observed time-varying photoconductivity and persistent photoconductivity in porous silicon, both with time-evolution scales of the order of several minutes or hours. The time evolutions depend on the wavelength and the intensity of the illuminating light. The data indicate the presence...... of at least two competing mechanisms, one is tentatively related to photoinduced creation of charge carriers in the silicon substrate followed by diffusion into the porous silicon layer, and the other is tentatively related to desorption of hydrogen from the porous silicon. ©1996 American Institute of Physics....

  2. Modeling and experiments for the time-dependent diffusion coefficient during methane desorption from coal

    Science.gov (United States)

    Cheng-Wu, Li; Hong-Lai, Xue; Cheng, Guan; Wen-biao, Liu

    2018-04-01

    Statistical analysis shows that in the coal matrix, the diffusion coefficient for methane is time-varying, and its integral satisfies the formula μt κ /(1 + β κ ). Therefore, a so-called dynamic diffusion coefficient model (DDC model) is developed. To verify the suitability and accuracy of the DDC model, a series of gas diffusion experiments were conducted using coal particles of different sizes. The results show that the experimental data can be accurately described by the DDC and bidisperse models, but the fit to the DDC model is slightly better. For all coal samples, as time increases, the effective diffusion coefficient first shows a sudden drop, followed by a gradual decrease before stabilizing at longer times. The effective diffusion coefficient has a negative relationship with the size of the coal particle. Finally, the relationship between the constants of the DDC model and the effective diffusion coefficient is discussed. The constant α (μ/R 2 ) denotes the effective coefficient at the initial time, and the constants κ and β control the attenuation characteristic of the effective diffusion coefficient.

  3. Effects of radiation and thermal diffusivity on heat transfer over a stretching surface with variable heat flux

    International Nuclear Information System (INIS)

    Seddeek, M.A.; Abdelmeguid, M.S.

    2006-01-01

    The effect of radiation and thermal diffusivity on heat transfer over a stretching surface with variable heat flux has been studied. The thermal diffusivity is assumed to vary as a linear function of temperature. The governing partial differential equations have been transformed to ordinary differential equations. The exact analytical solution for the velocity and the numerical solution for the temperature field are given. Numerical solutions are obtained for different values of variable thermal diffusivity, radiation, temperature parameter and Prandtl number

  4. Design of multiplier-less sharp non-uniform cosine modulated filter banks for efficient channelizers in software defined radio

    Directory of Open Access Journals (Sweden)

    Shaeen Kalathil

    2016-03-01

    Full Text Available Forthcoming software defined radios require filter banks which satisfy stringent specifications efficiently with low implementation complexity. Cosine modulated filter banks (CMFB have simple and efficient design procedure. The different wireless standards have different channel spacing or bandwidths and hence demand non-uniform decomposition of subbands. The non-uniform CMFB can be obtained from a uniform CMFB in a simple and efficient approach by merging the adjacent channels of the uniform CMFB. Very narrow transition width filters with low complexity can be achieved using frequency response masking (FRM filter as prototype filter. The complexity is further reduced by the multiplier-less realization of filter banks in which the least number of signed power of two (SPT terms is achieved by representing the filter coefficients using canonic signed digit (CSD representation and then optimizing using suitable modified meta-heuristic algorithms. Hybrid meta-heuristic algorithms are used in this paper. A hybrid algorithm combines the qualities of two meta-heuristic algorithms and results in improved performances with low implementation complexity. Highly frequency selective filter banks characterized by small passband ripple, narrow transition width and high stopband attenuation with non-uniform decomposition of subbands can be designed with least the implementation complexity, using this approach. A digital channelizer can be designed for SDR implementations, using the proposed approach. In this paper, the non-uniform CMFB is designed for various existing wireless standards.

  5. Anisotropy in "isotropic diffusion" measurements due to nongaussian diffusion

    DEFF Research Database (Denmark)

    Jespersen, Sune Nørhøj; Olesen, Jonas Lynge; Ianuş, Andrada

    2017-01-01

    Designing novel diffusion-weighted NMR and MRI pulse sequences aiming to probe tissue microstructure with techniques extending beyond the conventional Stejskal-Tanner family is currently of broad interest. One such technique, multidimensional diffusion MRI, has been recently proposed to afford...... model-free decomposition of diffusion signal kurtosis into terms originating from either ensemble variance of isotropic diffusivity or microscopic diffusion anisotropy. This ability rests on the assumption that diffusion can be described as a sum of multiple Gaussian compartments, but this is often...

  6. VARI-QUIR-3, 2-D Multigroup Steady-State Neutron Diffusion in X-Y R-Z or R-Theta Geometry

    International Nuclear Information System (INIS)

    Collier, George

    1984-01-01

    1 - Nature of physical problem solved: The steady-state, multigroup, two-dimensional neutron diffusion equations are solved in x-y, r-z, and r-theta geometry. 2 - Method of solution: A Gauss-Seidel type of solution with inner and outer iterations is used. The source is held constant during the inner iterations

  7. Wastewater diffusive dilution and sedimentation of the fine contaminated particles for nonuniform flow in open channels

    Directory of Open Access Journals (Sweden)

    Lyapin Anton

    2018-01-01

    Full Text Available The influence of non-uniformity on mass transfer processes in open channels have been investigated under the action of urbanization factors. The study is related to the urgent problem of environmental degradation of water objects in urbanized areas. It is known that the water quality in the water objects depends on the manner in which the contaminants spread how they mix with the river water and diluted by it. The main results of the study consist of recommendations to incorporate non-uniformity factor to the calculation of diffusion dilution of wastewater and prediction of river processes. So the effect of the flow non-uniformity on the diffusion model of pollutants dilution and diffusion coefficient have been investigated. Formulas for the concentration profiles calculating and the average concentration of fine particulate matter in nonuniform gradually varied flow were presented. The deposition length of suspended contaminants were received, based on the hydraulic resistance laws of nonuniform gradually varied flow.

  8. Observational Inferences of Lateral Eddy Diffusivity in the Halocline of the Beaufort Gyre

    Science.gov (United States)

    Meneghello, Gianluca; Marshall, John; Cole, Sylvia T.; Timmermans, Mary-Louise

    2017-12-01

    Using Ekman pumping rates mediated by sea ice in the Arctic Ocean's Beaufort Gyre (BG), the magnitude of lateral eddy diffusivities required to balance downward pumping is inferred. In this limit—that of vanishing residual-mean circulation—eddy-induced upwelling exactly balances downward pumping. The implied eddy diffusivity varies spatially and decays with depth, with values of 50-400 m2/s. Eddy diffusivity estimated using mixing length theory applied to BG mooring data exhibits a similar decay with depth and range of values from 100 m2/s to more than 600 m2/s. We conclude that eddy diffusivities in the BG are likely large enough to balance downward Ekman pumping, arresting the deepening of the gyre and suggesting that eddies play a zero-order role in buoyancy and freshwater budgets of the BG.

  9. The influence of wedge diffuser blade number and divergence angle on the performance of a high pressure ratio centrifugal compressor

    Science.gov (United States)

    Wang, Yi; Han, Ge; Lu, Xingen; Zhu, Junqiang

    2018-02-01

    Wedge diffuser is widely used in centrifugal compressors due to its high performance and compact size. This paper is aimed to research the influence of wedge diffuser blade number and divergence angle on centrifugal compressor performance. The impact of wedge diffuser blade number on compressor stage performance is investigated, and then the wedge diffusers with different divergence angle are studied by varying diffuser wedge angle and blade number simultaneously. It is found that wedge diffuser with 27 blades could have about 0.8% higher adiabatic efficiency and 0.14 higher total pressure ratio than the wedge diffuser with 19 blades and the best compressor performance is achieved when diffuser divergence angle is 8.3°.These results could give some advices on centrifugal compressor design.

  10. Thermal diffusion (1963); Diffusion thermique (1963)

    Energy Technology Data Exchange (ETDEWEB)

    Lemarechal, A [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1963-07-01

    This report brings together the essential principles of thermal diffusion in the liquid and gaseous phases. The macroscopic and molecular aspects of the thermal diffusion constant are reviewed, as well as the various measurement method; the most important developments however concern the operation of the CLUSIUS and DICKEL thermo-gravitational column and its applications. (author) [French] Ce rapport rassemble les principes essentiels de la diffusion thermique en phase liquide et en phase gazeuse. Les aspects macroscopique et moleculaire de la constante de diffusion thermique sont passes en revue ainsi que ses differentes methodes de mesure; mais les developpements les plus importants concernent le fonctionnement de ls colonne thermogravitationnelle de CLUSIUS et DICKEL et ses applications. (auteur)

  11. Diffusion and Kirkendall effect in plutonium-zirconium system; Diffusion et effet Kirkendall dans le systeme plutonium-zirconium

    Energy Technology Data Exchange (ETDEWEB)

    Remy, C [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1968-10-01

    Results are reported for the chemical diffusion in {epsilon}{beta} phase (bcc) over the range 10 - 70 atomic per cent plutonium. Concentration-penetration curves, obtained by using electron microprobe, have been analysed by Hall and Matano methods. Chemical diffusion coefficients, measured from 650 to 900 deg. C., increase with plutonium concentration and follow the Arrhenius law. Activation energies range from 18000 up to 44000 cal/mole for plutonium concentrations from 60 to 20 atomic per cent plutonium. Kirkendall effect has been observed by the shift of inert markers located originally at the Zr-PuZr interface. Analysis of intrinsic diffusion coefficients variation, flux of the two species and lattice velocity has been carried out by the incremental couples technique by using Darken and Heumann equations. It was found that D{sub Pu} > D{sub Zr}; the ratio D{sub Pu}/D{sub Zr} increases from 1 to 6 over the range 15 - 60 atomic per cent Pu. Activation energies for intrinsic diffusion coefficients vary between 25 and 50 Kcal/mole. (author) [French] Nous donnons des resultats sur la diffusion chimique en phase {epsilon}{beta} (cc) de 10 a 70 pour cent atomique en plutonium. Les courbes concentration-penetration, obtenues par microanalyse X ont ete depouillees par les methodes de HALL et de MATANO. Les coefficients de diffusion chimique mesures de 650 deg. C a 900 deg. C., augmentent avec la concentration en plutonium et suivent la loi d'ARRHENIUS. Les energies d'activation passent de 18000 a 44000 calories par mole pour des concentrations de 60 a 20 pour cent atomique en plutonium. L'existence d'un effet KIRKENDALL a ete mis en evidence par le deplacement de fils inertes places initialement dans le plan de soudure. L'analyse de la variation des coefficients de diffusion intrinseques, des flux des deux especes et de la vitesse du reseau a ete faite par la technique des couples incrementaux en utilisant les equations de DARKEN et de HEUMANN. On trouve D{sub Pu} > D

  12. Diffusion of radon in candidate soils for covering uranium-mill tailings

    International Nuclear Information System (INIS)

    Kalkwarf, D.R.; Silker, W.B.

    1984-01-01

    Diffusion coefficients were measured for radon in 34 soils that had been identified by uranium mill personnel as candidate soils for covering their tailings piles in order to reduce radon emission. The coefficients referred to diffusion in the total pore space of the soils. They were measured by a steady-state method using soil columns compacted to greater than 80% of their Proctor maximum packing densities, but with moisture contents generally less than would be expected at a tailings site. Three published empirical equations relating diffusion coefficients to soil moisture and porosity were tested with these data. The best fit was obtained with the equation: D = 0.70 exp [-4(m-mP - +m 5 )] in which P is the dry porosity of the soil and m is its moisture saturation, e.e. the fraction of pore volume filled with water. This equation was used to extrapolate measured coefficients to values expected at soil-moisture contents representative of tailings sites in the western United States. Extrapolated values for silty sands and clayey sands ranged from 0.004 to 0.06 cm 2 /s where w, the weight ratio of water to dry soil, is expected to vary from 0.04 to 0.09. Values for inorganic silts and clays ranged from 0.001 to 0.02 cm 2 /s where w is expected to vary from 0.10 to 0.13

  13. Posterior Reversible Encephalopathy Syndrome (PRES): Restricted Diffusion does not Necessarily Mean Irreversibility.

    Science.gov (United States)

    Wagih, Alaa; Mohsen, Laila; Rayan, Moustafa M; Hasan, Mo'men M; Al-Sherif, Ashraf H

    2015-01-01

    Restricted diffusion is the second most common atypical presentation of PRES. This has a very important implication, as lesions with cytotoxic edema may progress to infarction. Several studies suggested the role of DWI in the prediction of development of infarctions in these cases. Other studies, however, suggested that PRES is reversible even with cytotoxic patterns. Our aim was to evaluate whether every restricted diffusion in PRES is reversible and what factors affect this reversibility. Thirty-six patients with acute neurological symptoms suggestive of PRES were included in our study. Inclusion criteria comprised imaging features of atypical PRES where DWI images and ADC maps show restricted diffusion. Patients were imaged with 0.2-T and 1.5-T machines. FLAIR images were evaluated for the severity of the disease and a FLAIR/DWI score was used. ADC values were selectively recorded from the areas of diffusion restriction. A follow-up MRI study was carried out in all patients after 2 weeks. Patients were classified according to reversibility into: Group 1 (reversible PRES; 32 patients) and Group 2 (irreversible changes; 4 patients). The study was approved by the University's research ethics committee, which conforms to the declaration of Helsinki. The age and blood pressure did not vary significantly between both groups. The total number of regions involved and the FLAIR/DWI score did not vary significantly between both groups. Individual regions did not reveal any tendency for the development of irreversible lesions. Similarly, ADC values did not reveal any significant difference between both groups. PRES is completely reversible in the majority of patients, even with restricted diffusion. None of the variables under study could predict the reversibility of PRES lesions. It seems that this process is individual-dependent.

  14. Molecular dynamics simulation of self-diffusion coefficients for liquid metals

    International Nuclear Information System (INIS)

    Ju Yuan-Yuan; Zhang Qing-Ming; Gong Zi-Zheng; Ji Guang-Fu

    2013-01-01

    The temperature-dependent coefficients of self-diffusion for liquid metals are simulated by molecular dynamics methods based on the embedded-atom-method (EAM) potential function. The simulated results show that a good inverse linear relation exists between the natural logarithm of self-diffusion coefficients and temperature, though the results in the literature vary somewhat, due to the employment of different potential functions. The estimated activation energy of liquid metals obtained by fitting the Arrhenius formula is close to the experimental data. The temperature-dependent shear-viscosities obtained from the Stokes—Einstein relation in conjunction with the results of molecular dynamics simulation are generally consistent with other values in the literature. (atomic and molecular physics)

  15. Electron confinement at diffuse ZnMgO/ZnO interfaces

    Directory of Open Access Journals (Sweden)

    Maddison L. Coke

    2017-01-01

    Full Text Available Abrupt interfaces between ZnMgO and ZnO are strained due to lattice mismatch. This strain is relaxed if there is a gradual incorporation of Mg during growth, resulting in a diffuse interface. This strain relaxation is however accompanied by reduced confinement and enhanced Mg-ion scattering of the confined electrons at the interface. Here we experimentally study the electronic transport properties of the diffuse heteroepitaxial interface between single-crystal ZnO and ZnMgO films grown by molecular-beam epitaxy. The spatial extent of the interface region is controlled during growth by varying the zinc flux. We show that, as the spatial extent of the graded interface is reduced, the enhancement of electron mobility due to electron confinement more than compensates for any suppression of mobility due to increased strain. Furthermore, we determine the extent to which scattering of impurities in the ZnO substrate limits the electron mobility in diffuse ZnMgO–ZnO interfaces.

  16. Electron confinement at diffuse ZnMgO/ZnO interfaces

    Science.gov (United States)

    Coke, Maddison L.; Kennedy, Oscar W.; Sagar, James T.; Warburton, Paul A.

    2017-01-01

    Abrupt interfaces between ZnMgO and ZnO are strained due to lattice mismatch. This strain is relaxed if there is a gradual incorporation of Mg during growth, resulting in a diffuse interface. This strain relaxation is however accompanied by reduced confinement and enhanced Mg-ion scattering of the confined electrons at the interface. Here we experimentally study the electronic transport properties of the diffuse heteroepitaxial interface between single-crystal ZnO and ZnMgO films grown by molecular-beam epitaxy. The spatial extent of the interface region is controlled during growth by varying the zinc flux. We show that, as the spatial extent of the graded interface is reduced, the enhancement of electron mobility due to electron confinement more than compensates for any suppression of mobility due to increased strain. Furthermore, we determine the extent to which scattering of impurities in the ZnO substrate limits the electron mobility in diffuse ZnMgO-ZnO interfaces.

  17. Concentration Distribution of Chloride Ion under the Influence of the Convection-Diffusion Coupling

    Directory of Open Access Journals (Sweden)

    Q. L. Zhao

    2017-01-01

    Full Text Available The transfer process of chloride ion under the action of the convection-diffusion coupling was analyzed in order to predict the corrosion of reinforcement and the durability of structure more accurately. Considering the time-varying properties of diffusion coefficient and the space-time effect of the convection velocity, the differential equation for chloride ion transfer under the action of the convection-diffusion coupling was constructed. And then the chloride ion transfer model was validated by the existing experimental datum and the actual project datum. The results showed that when only diffusion was considered, the chlorine ion concentration increased with the time and decreased with the decay index of time. Under the action of the convection-diffusion coupling, at each point of coupling region, the chloride ion concentration first increased and then decreased and tended to stabilize, and the maximum appeared at the moment of convection velocity being 0; in the diffusion zone, the chloride ion concentration increased over time, and the chloride ion concentration of the same location increased with the depth of convection (in the later period, the velocity of convection (in the early period, and the chloride ion concentration of the surface.

  18. Writing practices: scientific diffusion texts in a portuguese course book

    Directory of Open Access Journals (Sweden)

    Regina Braz da Silva Santos Rocha

    2012-12-01

    Full Text Available The objective of this article is to show how the production of scientific diffusion texts from a Portuguese textbook used in high schools is taught. The research questions are: (1 how is the scientific diffusion sphere presented to the student? (2 Which is the linguistic-discursive treatment that the authors offer to lead the student to the production of scientific diffusion texts? (3 How do these procedures help improve writing in the most varied genres in the scientific sphere? A didactic activity involving written production of a text for scientific diffusion from the textbook series Português: contexto, interlocução e sentido was chosen. The analysis is based on the concept of text as postulated by Bakhtin and the Circle, for whom the text is a real unit of discursive communication. The result shows that the activity does not materialize the Bakhtinian theoretical bases adopted in the teacher’s manual. In the dialogic perspective, in order to insert the student in the writing practices of scientific texts, it is necessary to make him/her take on the role of reader of journals and specialized magazines, as well as the role of scientist/researcher.

  19. Determination of spatially dependent diffusion parameters in bovine bone using Kalman filter.

    Science.gov (United States)

    Shokry, Abdallah; Ståhle, Per; Svensson, Ingrid

    2015-11-07

    Although many studies have been made for homogenous constant diffusion, bone is an inhomogeneous material. It has been suggested that bone porosity decreases from the inner boundaries to the outer boundaries of the long bones. The diffusivity of substances in the bone matrix is believed to increase as the bone porosity increases. In this study, an experimental set up is used where bovine bone samples, saturated with potassium chloride (KCl), were put into distilled water and the conductivity of the water was followed. Chloride ions in the bone samples escaped out in the water through diffusion and the increase of the conductivity was measured. A one-dimensional, spatially dependent mathematical model describing the diffusion process is used. The diffusion parameters in the model are determined using a Kalman filter technique. The parameters for spatially dependent at endosteal and periosteal surfaces are found to be (12.8 ± 4.7) × 10(-11) and (5 ± 3.5) × 10(-11)m(2)/s respectively. The mathematical model function using the obtained diffusion parameters fits very well with the experimental data with mean square error varies from 0.06 × 10(-6) to 0.183 × 10(-6) (μS/m)(2). Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Transient enhanced diffusion in preamorphized silicon: the role of the surface

    Science.gov (United States)

    Cowern, N. E. B.; Alquier, D.; Omri, M.; Claverie, A.; Nejim, A.

    1999-01-01

    Experiments on the depth dependence of transient enhanced diffusion (TED) of boron during rapid thermal annealing of Ge-preamorphized layers reveal a linear decrease in the diffusion enhancement between the end-of-range (EOR) defect band and the surface. This behavior, which indicates a quasi-steady-state distribution of excess interstitials, emitted from the EOR band and absorbed at the surface, is observed for annealing times as short as 1 s at 900°C. Using an etching procedure we vary the distance xEOR from the EOR band to the surface in the range 80-175 nm, and observe how this influences the interstitial supersaturation, s( x). The supersaturations at the EOR band and the surface remain unchanged, while the gradient d s/d x, and thus the flux to the surface, varies inversely with xEOR. This confirms the validity of earlier modelling of EOR defect evolution in terms of Ostwald ripening, and provides conclusive evidence that the surface is the dominant sink for interstitials during TED.

  1. Diffusion of Zonal Variables Using Node-Centered Diffusion Solver

    Energy Technology Data Exchange (ETDEWEB)

    Yang, T B

    2007-08-06

    Tom Kaiser [1] has done some preliminary work to use the node-centered diffusion solver (originally developed by T. Palmer [2]) in Kull for diffusion of zonal variables such as electron temperature. To avoid numerical diffusion, Tom used a scheme developed by Shestakov et al. [3] and found their scheme could, in the vicinity of steep gradients, decouple nearest-neighbor zonal sub-meshes leading to 'alternating-zone' (red-black mode) errors. Tom extended their scheme to couple the sub-meshes with appropriate chosen artificial diffusion and thereby solved the 'alternating-zone' problem. Because the choice of the artificial diffusion coefficient could be very delicate, it is desirable to use a scheme that does not require the artificial diffusion but still able to avoid both numerical diffusion and the 'alternating-zone' problem. In this document we present such a scheme.

  2. Fractional diffusion equations and anomalous diffusion

    CERN Document Server

    Evangelista, Luiz Roberto

    2018-01-01

    Anomalous diffusion has been detected in a wide variety of scenarios, from fractal media, systems with memory, transport processes in porous media, to fluctuations of financial markets, tumour growth, and complex fluids. Providing a contemporary treatment of this process, this book examines the recent literature on anomalous diffusion and covers a rich class of problems in which surface effects are important, offering detailed mathematical tools of usual and fractional calculus for a wide audience of scientists and graduate students in physics, mathematics, chemistry and engineering. Including the basic mathematical tools needed to understand the rules for operating with the fractional derivatives and fractional differential equations, this self-contained text presents the possibility of using fractional diffusion equations with anomalous diffusion phenomena to propose powerful mathematical models for a large variety of fundamental and practical problems in a fast-growing field of research.

  3. Thermal diffusivity of felsic to mafic granulites at elevated temperatures

    Science.gov (United States)

    Ray, Labani; Förster, H.-J.; Schilling, F. R.; Förster, A.

    2006-11-01

    The thermal diffusivity of felsic and intermediate granulites (charnockites, enderbites), mafic granulites, and amphibolite-facies gneisses has been measured up to temperatures of 550 °C using a transient technique. The rock samples are from the Archean and Pan-African terranes of the Southern Indian Granulite Province. Thermal diffusivity at room temperature ( DRT) for different rock types ranges between 1.2 and 2.2 mm 2 s - 1 . For most of the rocks, the effect of radiative heat transfer is observed at temperatures above 450 °C. However, for few enderbites and mafic granulites, radiative heat transfer is negligible up to 550 °C. In the temperature range of conductive heat transfer, i.e., between 20 ° and 450 °C, thermal diffusivity decreases between 35% and 45% with increasing temperature. The temperature dependence of the thermal diffusivity is directly correlated with the thermal diffusivity at room temperature, i.e., the higher the thermal diffusivity at room temperature, DRT, the greater is its temperature dependence. In this temperature range i.e., between 20 and 450 °C, thermal diffusivity can be expressed as D = 0.7 mm 2 s -1 + 144 K ( DRT - 0.7 mm 2 s -1 ) / ( T - 150 K), where T is the absolute temperature in Kelvin. At higher temperatures, an additional radiative contribution is observed according to CT3, where C varies from 10 - 9 to 10 - 10 depending on intrinsic rock properties (opacity, absorption behavior, grain size, grain boundary, etc). An equation is presented that describes the temperature and pressure dependence thermal diffusivity of rocks based only on the room-temperature thermal diffusivity. Room-temperature thermal diffusivity and its temperature dependence are mainly dependent on the major mineralogy of the rock. Because granulites are important components of the middle and lower continental crust, the results of this study provide important constraints in quantifying more accurately the thermal state of the deeper continental

  4. Diffusion in solids

    International Nuclear Information System (INIS)

    Tiwari, G.P.; Kale, G.B.; Patil, R.V.

    1999-01-01

    The article presents a brief survey of process of diffusion in solids. It is emphasised that the essence of diffusion is the mass transfer through the atomic jumps. To begin with formal equations for diffusion coefficient are presented. This is followed by discussions on mechanisms of diffusion. Except for solutes which form interstitial solid solution, diffusion in majority of cases is mediated through exchange of sites between an atom and its neighbouring vacancy. Various vacancy parameters such as activation volume, correlation factor, mass effect etc are discussed and their role in establishing the mode of diffusion is delineated. The contribution of dislocations and grain boundaries in diffusion process is brought out. The experimental determination of different types of diffusion coefficients are described. Finally, the pervasive nature of diffusion process in number of commercial processes is outlined to show the importance of diffusion studies in materials science and technology. (author)

  5. Experimental Investigation of Radio-Turbulence Induced Diffusion -- Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Spitz, H. B.; Usman, S.

    2005-07-07

    The outcome of this research project suggests that the transport of radon in water is significantly greater than that predicted solely by molecular diffusion. The original study was related to the long term storage of {sup 226}Ra-bearing sand at the DOE Fernald site and determining whether a barrier of water covering the sand would be effective in reducing the emanation of {sup 222}Rn from the sand. Initial observations before this study found the transport of radon in water to be greater than that predicted solely by molecular diffusion. Fick's law on diffusion was used to model the transport of radon in water including the impact associated with radioactive decay. Initial measurements suggested that the deposition of energy in water associated with the radioactive decay process influences diffusion and enhances transport of radon. A multi-region, one-dimensional, steady-state transport model was used to analyze the movement of radon through a sequential column of air, water and air. An effective diffusion coefficient was determined by varying the thickness of the water column and measuring the time for transport of {sup 222}Rn through of the water barrier. A one-region, one-dimensional transient diffusion equation was developed to investigate the build up of radon at the end of the water column to the time when a steady-state, equilibrium condition was achieved. This build up with time is characteristic of the transport rate of radon in water and established the basis for estimating the effective diffusion coefficient for {sup 222}Rn in water. Several experiments were conducted using different types and physical arrangements of water barriers to examine how radon transport is influenced by the water barrier. Results of our measurements confirm our theoretical analyses which suggest that convective forces other than pure molecular diffusion impact the transport of {sup 222}Rn through the water barrier. An effective diffusion coefficient is defined that

  6. Study of accelerated diffusion in gold and aluminium under neutron irradiation

    International Nuclear Information System (INIS)

    Acker, Denis.

    1977-09-01

    The speed-up of diffusion under neutron irradiation was studied. The experiments concern the self-diffusion of gold as a function of temperature and the heterodiffusion of copper and gold in aluminium against flux and temperature. In each of these systems the coefficients measured were 10 6 times higher than the expected extra-irradiation values for a flux of 6.10 12 n/cm 2 /s and at a temperature 0.33 Tsub(f), Tsub(f) being the matting point of the matrix expressed in Kelvins. The results obtained can be explained satisfactorily by assuming that, under irradiation: the activation energy of the diffusion coefficient is equal to half the hole migration energy (corrected for the hole-impurity interaction terms in the case of heterodiffusion); the diffusion coefficient under irradiation varies with the square root of the flux; defect wells eliminate interstitials much more efficient by than holes. The first two points agree well with theoretical predictions if the holes and interstitials are assumed to disappear essentially by mutual recombination, whereas the third can be interpreted in terms of a low efficiency of wells for holes and by supposing that the interstitial elimination reaction is limited only by the diffusion rate of these interstitials [fr

  7. The importance of balanced pro-inflammatory and anti-inflammatory mechanisms in diffuse lung disease

    Directory of Open Access Journals (Sweden)

    Strieter Robert

    2002-01-01

    Full Text Available Abstract The lung responds to a variety of insults in a remarkably consistent fashion but with inconsistent outcomes that vary from complete resolution and return to normal to the destruction of normal architecture and progressive fibrosis. Increasing evidence indicates that diffuse lung disease results from an imbalance between the pro-inflammatory and anti-inflammatory mechanisms, with a persistent imbalance that favors pro-inflammatory mediators dictating the development of chronic diffuse lung disease. This review focuses on the mediators that influence this imbalance.

  8. Matrix Diffusion for Performance Assessment - Experimental Evidence, Modelling Assumptions and Open Issues

    Energy Technology Data Exchange (ETDEWEB)

    Jakob, A

    2004-07-01

    In this report a comprehensive overview on the matrix diffusion of solutes in fractured crystalline rocks is presented. Some examples from observations in crystalline bedrock are used to illustrate that matrix diffusion indeed acts on various length scales. Fickian diffusion is discussed in detail followed by some considerations on rock porosity. Due to the fact that the dual-porosity medium model is a very common and versatile method for describing solute transport in fractured porous media, the transport equations and the fundamental assumptions, approximations and simplifications are discussed in detail. There is a variety of geometrical aspects, processes and events which could influence matrix diffusion. The most important of these, such as, e.g., the effect of the flow-wetted fracture surface, channelling and the limited extent of the porous rock for matrix diffusion etc., are addressed. In a further section open issues and unresolved problems related to matrix diffusion are mentioned. Since matrix diffusion is one of the key retarding processes in geosphere transport of dissolved radionuclide species, matrix diffusion was consequently taken into account in past performance assessments of radioactive waste repositories in crystalline host rocks. Some issues regarding matrix diffusion are site-specific while others are independent of the specific situation of a planned repository for radioactive wastes. Eight different performance assessments from Finland, Sweden and Switzerland were considered with the aim of finding out how matrix diffusion was addressed, and whether a consistent picture emerges regarding the varying methodology of the different radioactive waste organisations. In the final section of the report some conclusions are drawn and an outlook is given. An extensive bibliography provides the reader with the key papers and reports related to matrix diffusion. (author)

  9. Influence of Cu diffusion conditions on the switching of Cu-SiO2-based resistive memory devices

    International Nuclear Information System (INIS)

    Thermadam, S. Puthen; Bhagat, S.K.; Alford, T.L.; Sakaguchi, Y.; Kozicki, M.N.; Mitkova, M.

    2010-01-01

    This paper presents a study of Cu diffusion at various temperatures in thin SiO 2 films and the influence of diffusion conditions on the switching of Programmable Metallization Cell (PMC) devices formed from such Cu-doped films. Film composition and diffusion products were analyzed using secondary ion mass spectroscopy, Rutherford backscattering spectrometry, X-ray diffraction and Raman spectroscopy methods. We found a strong dependence of the diffused Cu concentration, which varied between 0.8 at.% and 10 -3 at.%, on the annealing temperature. X-ray diffraction and Raman studies revealed that Cu does not react with the SiO 2 network and remains in elemental form after diffusion for the annealing conditions used. PMC resistive memory cells were fabricated with such Cu-diffused SiO 2 films and device performance, including the stability of the switching voltage, is discussed in the context of the material characteristics.

  10. Evolution of colloidal dispersions in novel time-varying optical potentials

    Science.gov (United States)

    Koss, Brian Alan

    Optical traps use forces exerted by a tightly focused light beam to trap objects from tens of nanometers to tens of micrometers in size. Since their introduction in 1986, optical tweezers have become very useful to biology, chemistry, and soft condensed-matter physics. Work presented here, promises to advance optical tweezers not only in fundamental scientific research, but also in applications outside of the laboratory and into the mainstream of miniaturized manufacturing and diagnostics. By providing unprecedented access to the mesoscopic world, a new generation of optical traps, called Dynamic Holographic Optical Tweezers (HOTs) offers revolutionary new opportunities for fundamental and applied research. To demonstrate this technique, HOTs will be used to pump particles via a new method of transport called Optical Peristalsis (OP). OP is efficient method for transporting mesoscopic objects in three dimensions using short repetitive sequences of holographic optical trapping patterns. Transport in this process is analogous to peristaltic pumping, with the configurations of optical traps mimicking states of a peristaltic pump. While not limited to the deterministic particle transport, OP, can also be a platform to investigate the stochastic limit of particle transport. Advances in recent years have demonstrated that a variety of time-varying perturbations can induce drift in a diffusive system without exerting an overall force. Among these, are thermal ratchet models in which the system is subjected to time-varying energy landscapes that break spatiotemporal symmetry and thereby induce drift. Typically, the potential energy landscape is chosen to be the sawtooth potential. This work describes an alternate class of symmetric thermal ratchet models, that are not sawtooth, and demonstrates their efficacy in biasing the diffusion of colloidal spheres in both the stochastic and deterministic limits. Unlike previous models, each state in this thermal ratchet consists of

  11. Molecular dynamics simulation of helium and oxygen diffusion in UO2±x

    International Nuclear Information System (INIS)

    Govers, K.; Lemehov, S.; Hou, M.; Verwerft, M.

    2009-01-01

    Atomic scale simulation techniques based on empirical potentials have been considered in the present work to get insight on helium diffusion in uranium dioxide. By varying the stoichiometry, together with the system temperature, the performed molecular dynamics simulations indicate two diffusion regimes for He. The first one presents a low activation energy (0.5 eV) and suggests oxygen vacancies assisted migration. This regime seems to provide the major contribution to diffusion when structural defects are present (extrinsic defects, imposed, e.g. by the stoichiometry). The second regime presents a higher activation energy, around 2 eV, and dominates in the higher temperature range or at perfect stoichiometry, suggesting an intrinsic migration process. Considering the dependence of He behaviour with oxygen defects, oxygen diffusion has been considered as well in the different stoichiometry domains. Finally, further investigations were made with nudged elastic bands calculations for a better interpretation of the operating migration mechanisms, both for He and O.

  12. A new empirical model to estimate hourly diffuse photosynthetic photon flux density

    Science.gov (United States)

    Foyo-Moreno, I.; Alados, I.; Alados-Arboledas, L.

    2018-05-01

    Knowledge of the photosynthetic photon flux density (Qp) is critical in different applications dealing with climate change, plant physiology, biomass production, and natural illumination in greenhouses. This is particularly true regarding its diffuse component (Qpd), which can enhance canopy light-use efficiency and thereby boost carbon uptake. Therefore, diffuse photosynthetic photon flux density is a key driving factor of ecosystem-productivity models. In this work, we propose a model to estimate this component, using a previous model to calculate Qp and furthermore divide it into its components. We have used measurements in urban Granada (southern Spain), of global solar radiation (Rs) to study relationships between the ratio Qpd/Rs with different parameters accounting for solar position, water-vapour absorption and sky conditions. The model performance has been validated with experimental measurements from sites having varied climatic conditions. The model provides acceptable results, with the mean bias error and root mean square error varying between - 0.3 and - 8.8% and between 9.6 and 20.4%, respectively. Direct measurements of this flux are very scarce so that modelling simulations are needed, this is particularly true regarding its diffuse component. We propose a new parameterization to estimate this component using only measured data of solar global irradiance, which facilitates its use for the construction of long-term data series of PAR in regions where continuous measurements of PAR are not yet performed.

  13. A diffuse neutron scattering study of clustering kinetics in Cu-Ni alloys

    International Nuclear Information System (INIS)

    Vrijen, J.; Radelaar, S.; Schwahn, D.

    1977-01-01

    Diffuse scattering of thermal neutrons was used to investigate the kinetics of clustering in Cu-Ni alloys. In order to optimize the experimental conditions the isotopes 65 Cu and 62 Ni were alloyed. The time evolution of the diffuse scattered intensity at 400 0 C has been measured for eight Cu-Ni alloys, varying in composition between 30 and 80 at. pour cent Ni. The relaxation of the so called null matrix, containing 56.5 at. pour cent Ni has also been investigated at 320, 340, 425 and 450 0 C. Using Cook's model from all these measurements information has been deduced about diffusion at low temperatures and about thermodynamic properties of the Cu-Ni system. It turns out that Cook's model is not sufficiently detailed for an accurate description of the initial stages of these relaxations

  14. Oxygen Permeability and Grain-Boundary Diffusion Applied to Alumina Scales

    Science.gov (United States)

    Smialek, James L.; Jacobson, Nathan S.; Gleeson, Brian; Hovis, David B.; Heuer, Arthur H.

    2013-01-01

    High-temperature oxygen permeability measurements had determined grain-boundary diffusivities (deltaD(sub gb)) in bulk polycrystalline alumina (Wada, Matsudaira, and Kitaoka). They predict that oxygen deltaD(sub gb,O) varies with oxygen pressure as P(O2)(sup -1/6) at low pressure whereas aluminum deltaD(sub gb),Al varies with P(O2)(sup +3/16) at high pressure. These relations were used to evaluate alumina scale growth in terms of diffusivity and grain size. A modified Wagner treatment for dominant inward oxygen growth produces the concise solution: ?(sub i) = k(sub p,i)×G(sub i) = 12 deltaD(sub gb,O,int), where ?(sub i) is a constant and k(sub p,i) and G(sub i) refer to instantaneous values of the scale parabolic growth constant and grain size, respectively. A commercial FeCrAl(Zr) alloy was oxidized at 1100 to 1400 degC to determine k(sub p,i), interfacial grain size, ?, and thus deltaD(sub gb,O,int). The deltaD(sub gb,O,int) values predicted from oxidation at (375 kJ/mole) were about 20 times less than those obtained above (at 298 kJ/mole), but closer than extrapolations from high-temperature bulk measurements. The experimental oxidation results agree with similar FeCrAl(X) studies, especially where both k(sub p,i) and G(sub i) were characterized. This complete approach accounts for temperature-sensitive oxidation effects of grain enlargement, equilibrium interface pressure variation, and grain-boundary diffusivity.

  15. Analyses of body weight patterns in growing pigs

    DEFF Research Database (Denmark)

    Stygar, A. H.; Dolecheck, K. A.; Kristensen, A. R.

    2018-01-01

    as a quadratic function of time. A diurnal pattern was incorporated into the model by a cosine wave with known length (24 h). The model included pig effect which was defined as a random autoregressive process with exponential correlation. Variance of within-pigs error was assumed to increase with time. Because...... only five batches were observed, it was not possible to obtain the random effect for batch. However, in order to account for the batch effect the model included interactions between batch and fixed parameters: intercept, time, square value of time and cosine wave. The gender effect was not significant......, the exact time of obtaining maximum and minimum BW during the day differed between batches. Pigs had access to natural light and, therefore, existing differences could be explained by varying daylight level during observations periods. Because the diurnal amplitude for pig growth varied between batches from...

  16. High-fidelity meshes from tissue samples for diffusion MRI simulations.

    Science.gov (United States)

    Panagiotaki, Eleftheria; Hall, Matt G; Zhang, Hui; Siow, Bernard; Lythgoe, Mark F; Alexander, Daniel C

    2010-01-01

    This paper presents a method for constructing detailed geometric models of tissue microstructure for synthesizing realistic diffusion MRI data. We construct three-dimensional mesh models from confocal microscopy image stacks using the marching cubes algorithm. Random-walk simulations within the resulting meshes provide synthetic diffusion MRI measurements. Experiments optimise simulation parameters and complexity of the meshes to achieve accuracy and reproducibility while minimizing computation time. Finally we assess the quality of the synthesized data from the mesh models by comparison with scanner data as well as synthetic data from simple geometric models and simplified meshes that vary only in two dimensions. The results support the extra complexity of the three-dimensional mesh compared to simpler models although sensitivity to the mesh resolution is quite robust.

  17. Analysis of radiation fields in tomography on diffusion gaseous sound

    International Nuclear Information System (INIS)

    Bekman, I.N.

    1999-01-01

    Perspectives of application of equilibrium and stationary variants of diffusion tomography with radioactive gaseous sounds for spatial reconstruction of heterogeneous media in materials technology were considered. The basic attention were allocated to creation of simple algorithms of detection of sound accumulation on the background of monotonically varying concentration field. Algorithms of transformation of two-dimensional radiation field in three-dimensional distribution of radiation sources were suggested. The methods of analytical elongation of concentration field permitting separation of regional anomalies on the background of local ones and vice verse were discussed. It was shown that both equilibrium and stationary variants of diffusion tomography detect the heterogeneity of testing material, provide reduction of spatial distribution of elements of its structure and give an estimation of relative degree of defectiveness

  18. Diffusion in Solids Fundamentals, Methods, Materials, Diffusion-Controlled Processes

    CERN Document Server

    Mehrer, Helmut

    2007-01-01

    Diffusion is a vital topic in solid-state physics and chemistry, physical metallurgy and materials science. Diffusion processes are ubiquitous in solids at elevated temperatures. A thorough understanding of diffusion in materials is crucial for materials development and engineering. This book first gives an account of the central aspects of diffusion in solids, for which the necessary background is a course in solid state physics. It then provides easy access to important information about diffuson in metals, alloys, semiconductors, ion-conducting materials, glasses and nanomaterials. Several diffusion-controlled phenomena, including ionic conduction, grain-boundary and dislocation pipe diffusion, are considered as well. Graduate students in solid-state physics, physical metallurgy, materials science, physical and inorganic chemistry or geophysics will benefit from this book as will physicists, chemists, metallurgists, materials engineers in academic and industrial research laboratories.

  19. Exposure, hazard, and survival analysis of diffusion on social networks.

    Science.gov (United States)

    Wu, Jiacheng; Crawford, Forrest W; Kim, David A; Stafford, Derek; Christakis, Nicholas A

    2018-04-29

    Sociologists, economists, epidemiologists, and others recognize the importance of social networks in the diffusion of ideas and behaviors through human societies. To measure the flow of information on real-world networks, researchers often conduct comprehensive sociometric mapping of social links between individuals and then follow the spread of an "innovation" from reports of adoption or change in behavior over time. The innovation is introduced to a small number of individuals who may also be encouraged to spread it to their network contacts. In conjunction with the known social network, the pattern of adoptions gives researchers insight into the spread of the innovation in the population and factors associated with successful diffusion. Researchers have used widely varying statistical tools to estimate these quantities, and there is disagreement about how to analyze diffusion on fully observed networks. Here, we describe a framework for measuring features of diffusion processes on social networks using the epidemiological concepts of exposure and competing risks. Given a realization of a diffusion process on a fully observed network, we show that classical survival regression models can be adapted to estimate the rate of diffusion, and actor/edge attributes associated with successful transmission or adoption, while accounting for the topology of the social network. We illustrate these tools by applying them to a randomized network intervention trial conducted in Honduras to estimate the rate of adoption of 2 health-related interventions-multivitamins and chlorine bleach for water purification-and determine factors associated with successful social transmission. Copyright © 2018 John Wiley & Sons, Ltd.

  20. Applications of a general random-walk theory for confined diffusion.

    Science.gov (United States)

    Calvo-Muñoz, Elisa M; Selvan, Myvizhi Esai; Xiong, Ruichang; Ojha, Madhusudan; Keffer, David J; Nicholson, Donald M; Egami, Takeshi

    2011-01-01

    A general random walk theory for diffusion in the presence of nanoscale confinement is developed and applied. The random-walk theory contains two parameters describing confinement: a cage size and a cage-to-cage hopping probability. The theory captures the correct nonlinear dependence of the mean square displacement (MSD) on observation time for intermediate times. Because of its simplicity, the theory also requires modest computational requirements and is thus able to simulate systems with very low diffusivities for sufficiently long time to reach the infinite-time-limit regime where the Einstein relation can be used to extract the self-diffusivity. The theory is applied to three practical cases in which the degree of order in confinement varies. The three systems include diffusion of (i) polyatomic molecules in metal organic frameworks, (ii) water in proton exchange membranes, and (iii) liquid and glassy iron. For all three cases, the comparison between theory and the results of molecular dynamics (MD) simulations indicates that the theory can describe the observed diffusion behavior with a small fraction of the computational expense. The confined-random-walk theory fit to the MSDs of very short MD simulations is capable of accurately reproducing the MSDs of much longer MD simulations. Furthermore, the values of the parameter for cage size correspond to the physical dimensions of the systems and the cage-to-cage hopping probability corresponds to the activation barrier for diffusion, indicating that the two parameters in the theory are not simply fitted values but correspond to real properties of the physical system.

  1. Multiplexed measurement of protein diffusion in Caenorhabditis elegans embryos with SPIM-FCS

    Science.gov (United States)

    Struntz, Philipp; Weiss, Matthias

    2016-02-01

    Quantifying the diffusion behavior of proteins in different environments, e.g. on cellular membranes, is a key step in uncovering the vital action of protein networks in living organisms. While several established techniques for local diffusion measurements exist, the life sciences are currently in need of a multiplexed, i.e. spatially parallelized, data acquisition that allows for obtaining diffusion maps with high spatiotemporal resolution. Following this demand, the combination of camera-based single-plane illumination microscopy (SPIM) and fluorescence correlation spectroscopy (FCS) has recently emerged as a promising approach. So far, SPIM-FCS has mainly been used to assess the diffusion of soluble particles and proteins in vitro and in culture cells, but due to a particularly low photobleaching and -toxicity the method is also well applicable to developmental organisms. Here, we have probed the performance of SPIM-FCS on an established developmental model organism, the small nematode Caenorhabditis elegans. In particular, we have quantified the diffusion of the peripheral membrane protein PLC1δ 1 in the embryo’s cytoplasm and on the plasma membrane. As a result, we were able to derive diffusion maps of PLC1δ 1 in both compartments in multiple individuals, showing the spatially varying diffusion coefficients across the embryo. Our data also report on the dissociation kinetics of PLC1δ 1 from the plasma membrane, hence underlining that SPIM-FCS can be used to explore key features of peripheral membrane proteins in fragile developmental model organisms.

  2. The effect of shear flow on the rotational diffusivity of a single axisymmetric particle

    Science.gov (United States)

    Leahy, Brian; Koch, Donald; Cohen, Itai

    2014-11-01

    Colloidal suspensions of nonspherical particles abound in the world around us, from red blood cells in arteries to kaolinite discs in clay. Understanding the orientation dynamics of these particles is important for suspension rheology and particle self-assembly. However, even for the simplest case of dilute suspensions in simple shear flow, the orientation dynamics of Brownian nonspherical particles are poorly understood at large shear rates. Here, we analytically calculate the time-dependent orientation distributions of particles confined to the flow-gradient plane when the rotary diffusion is small but nonzero. For both startup and oscillatory shear flows, we find a coordinate change that maps the convection-diffusion equation to a simple diffusion equation with an enhanced diffusion constant, simplifying the orientation dynamics. For oscillatory shear, this enhanced diffusion drastically alters the quasi-steady orientation distributions. Our theory of the unsteady orientation dynamics provides an understanding of a nonspherical particle suspension's rheology for a large class of unsteady flows. For particles with aspect ratio 10 under oscillatory shear, the rotary diffusion and intrinsic viscosity vary with amplitude by a factor of ~ 40 and ~ 2 , respectively.

  3. Determination of the Pt spin diffusion length by spin-pumping and spin Hall effect

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wei; Pearson, John E.; Hoffmann, Axel [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Vlaminck, Vincent [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Colegio de Ciencias e Ingenería, Universidad San Fransciso de Quito, Quito (Ecuador); Divan, Ralu [Center for Nanoscale Materials, Argonne National Laboratory, Illinois 60439 (United States); Bader, Samuel D. [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Center for Nanoscale Materials, Argonne National Laboratory, Illinois 60439 (United States)

    2013-12-09

    The spin diffusion length of Pt at room temperature and at 8 K is experimentally determined via spin pumping and spin Hall effect in permalloy/Pt bilayers. Voltages generated during excitation of ferromagnetic resonance from the inverse spin Hall effect and anisotropic magnetoresistance effect were investigated with a broadband approach. Varying the Pt layer thickness gives rise to an evolution of the voltage line shape due to the superposition of the above two effects. By studying the ratio of the two voltage components with the Pt layer thickness, the spin diffusion length of Pt can be directly extracted. We obtain a spin diffusion length of ∼1.2 nm at room temperature and ∼1.6 nm at 8 K.

  4. Molecular dynamics simulations of self-diffusion near a symmetrical tilt grain boundary in UO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Vincent-Aublant, E.; Delaye, J.M. [CEA-Marcoule, DEN/DTCD/SECM, B.P. 17171, 30207 Bagnols sur Ceze cedex (France); Van Brutzel, L. [CEA-Saclay, DEN-DANS/DPC/SCP/LM2T, 91191 Gif-sur-Yvette (France)

    2008-07-01

    Molecular dynamics (MD) simulations have been used to study the influence of symmetrical tilt grain boundaries (GBs) in stoichiometric UO{sub 2} on uranium and oxygen self-diffusions. The study was performed on a large range of temperature varying from 300 K to 2100 K. First, the effect of the temperature on the structure and the formation energies of 6 relaxed tilt GBs was investigated. The {sigma}5 and {sigma}41 GBs geometries were chosen to study the diffusion. O and U diffusion coefficients have been calculated and compared to those obtained in a perfect stoichiometric UO{sub 2} as well as in over and under-stoichiometric matrices. (authors)

  5. Principles and implementation of diffusion-weighted and diffusion tensor imaging

    International Nuclear Information System (INIS)

    Roberts, Timothy P.L.; Schwartz, E.S.

    2007-01-01

    We review the physiological basis of diffusion-weighted imaging and discuss the implementation of diffusion-weighted imaging pulse sequences and the subsequent postprocessing to yield quantitative estimations of diffusion parameters. We also introduce the concept of directionality of ''apparent'' diffusion in vivo and the means of assessing such anisotropy quantitatively. This in turn leads to the methodological application of diffusion tensor imaging and the subsequent postprocessing, known as tractography. The following articles deal with the clinical applications enabled by such methodologies. (orig.)

  6. Diffusion archeology for diffusion progression history reconstruction

    OpenAIRE

    Sefer, Emre; Kingsford, Carl

    2015-01-01

    Diffusion through graphs can be used to model many real-world processes, such as the spread of diseases, social network memes, computer viruses, or water contaminants. Often, a real-world diffusion cannot be directly observed while it is occurring — perhaps it is not noticed until some time has passed, continuous monitoring is too costly, or privacy concerns limit data access. This leads to the need to reconstruct how the present state of the diffusion came to be from partial d...

  7. Communication: Relationship between solute localization and diffusion in a dynamically constrained polymer system

    Energy Technology Data Exchange (ETDEWEB)

    Saylor, David M.; Jawahery, Sudi; Silverstein, Joshua S.; Forrey, Christopher [Center for Devices and Radiological Health, FDA, Silver Spring, Maryland 20993 (United States)

    2016-07-21

    We investigate the link between dynamic localization, characterized by the Debye–Waller factor, 〈u{sup 2}〉, and solute self-diffusivity, D, in a polymer system using atomistic molecular dynamics simulations and vapor sorption experiments. We find a linear relationship between lnD and 1/〈u{sup 2}〉 over more than four decades of D, encompassing most of the glass formation regime. The observed linearity is consistent with the Langevin dynamics in a periodically varying potential field and may offer a means to rapidly assess diffusion based on the characterization of dynamic localization.

  8. Quantifying the importance of diffuse minewater pollution in a historically heavily coal mined catchment

    International Nuclear Information System (INIS)

    Mayes, W.M.; Gozzard, E.; Potter, H.A.B.; Jarvis, A.P.

    2008-01-01

    There has been considerable progress in developing treatment systems for point sources of minewater pollution in recent years; however, there remains a knowledge gap in the characterisation and remediation of diffuse minewater sources. Data are presented from the River Gaunless catchment, a historically heavily coal mined catchment in the northeast of England. Instream iron (Fe) loadings were monitored alongside loadings arising from point minewater discharges over a 12-month period to assess the dynamic importance of diffuse sources of minewater pollution. In low flow, diffuse sources account for around 50% of instream loading, a proportion which increases to 98% in high flow conditions. The low flow sources appear to be dominated by direct discharge of contaminated groundwater to surface waters in lower reaches of the catchment. In high flow, resuspended Fe-rich sediments, which are both naturally occurring and derived from historic mining, become the dominant diffuse source of Fe in the water column. - Diffuse sources of minewater pollution significantly contribute to instream contaminant loadings under varying flow conditions

  9. Data quality in diffusion tensor imaging studies of the preterm brain: a systematic review.

    Science.gov (United States)

    Pieterman, Kay; Plaisier, Annemarie; Govaert, Paul; Leemans, Alexander; Lequin, Maarten H; Dudink, Jeroen

    2015-08-01

    To study early neurodevelopment in preterm infants, evaluation of brain maturation and injury is increasingly performed using diffusion tensor imaging, for which the reliability of underlying data is paramount. To review the literature to evaluate acquisition and processing methodology in diffusion tensor imaging studies of preterm infants. We searched the Embase, Medline, Web of Science and Cochrane databases for relevant papers published between 2003 and 2013. The following keywords were included in our search: prematurity, neuroimaging, brain, and diffusion tensor imaging. We found 74 diffusion tensor imaging studies in preterm infants meeting our inclusion criteria. There was wide variation in acquisition and processing methodology, and we found incomplete reporting of these settings. Nineteen studies (26%) reported the use of neonatal hardware. Data quality assessment was not reported in 13 (18%) studies. Artefacts-correction and data-exclusion was not reported in 33 (45%) and 18 (24%) studies, respectively. Tensor estimation algorithms were reported in 56 (76%) studies but were often suboptimal. Diffusion tensor imaging acquisition and processing settings are incompletely described in current literature, vary considerably, and frequently do not meet the highest standards.

  10. Spatial Mapping of Translational Diffusion Coefficients Using Diffusion Tensor Imaging: A Mathematical Description.

    Science.gov (United States)

    Shetty, Anil N; Chiang, Sharon; Maletic-Savatic, Mirjana; Kasprian, Gregor; Vannucci, Marina; Lee, Wesley

    2014-01-01

    In this article, we discuss the theoretical background for diffusion weighted imaging and diffusion tensor imaging. Molecular diffusion is a random process involving thermal Brownian motion. In biological tissues, the underlying microstructures restrict the diffusion of water molecules, making diffusion directionally dependent. Water diffusion in tissue is mathematically characterized by the diffusion tensor, the elements of which contain information about the magnitude and direction of diffusion and is a function of the coordinate system. Thus, it is possible to generate contrast in tissue based primarily on diffusion effects. Expressing diffusion in terms of the measured diffusion coefficient (eigenvalue) in any one direction can lead to errors. Nowhere is this more evident than in white matter, due to the preferential orientation of myelin fibers. The directional dependency is removed by diagonalization of the diffusion tensor, which then yields a set of three eigenvalues and eigenvectors, representing the magnitude and direction of the three orthogonal axes of the diffusion ellipsoid, respectively. For example, the eigenvalue corresponding to the eigenvector along the long axis of the fiber corresponds qualitatively to diffusion with least restriction. Determination of the principal values of the diffusion tensor and various anisotropic indices provides structural information. We review the use of diffusion measurements using the modified Stejskal-Tanner diffusion equation. The anisotropy is analyzed by decomposing the diffusion tensor based on symmetrical properties describing the geometry of diffusion tensor. We further describe diffusion tensor properties in visualizing fiber tract organization of the human brain.

  11. On estimating the effective diffusive properties of hardened cement pastes

    International Nuclear Information System (INIS)

    Stora, E.; Bary, B.; Stora, E.; He, Qi-Chang

    2008-01-01

    The effective diffusion coefficients of hardened cement pastes can vary between a few orders of magnitude. The paper aims at building a homogenization model to estimate these macroscopic diffusivities and capture such strong variations. For this purpose, a three-scale description of the paste is proposed, relying mainly on the fact that the initial cement grains hydrate forming a complex microstructure with a multi-scale pore structure. In particular, porosity is found to be well connected at a fine scale. However, only a few homogenization schemes are shown to be adequate to account for such connectivity. Among them, the mixed composite spheres assemblage estimate (Stora, E., He, Q.-C., Bary, B.: J. Appl. Phys. 100(8), 084910, 2006a) seems to be the only one that always complies with rigorous bounds and is consequently employed to predict the effects of this fine porosity on the material effective diffusivities. The model proposed provides predictions in good agreement with experimental results and is consistent with the numerous measurements of critical pore diameters issued from mercury intrusion porosimetry tests. The evolution of the effective diffusivities of cement pastes subjected to leaching is also assessed by adopting a simplified scenario of the decalcification process. (authors)

  12. Effect of increasing diffusion gradient direction number on diffusion tensor imaging fiber tracking in the human brain

    International Nuclear Information System (INIS)

    Yao, Xu Fang; Liang, Bie Bei; Xia, Tian; Huang, Qin Ming; Zhuang, Song Lin; Yu, Tong Gang

    2015-01-01

    To assess the effects of varying the number of diffusion gradient directions (NDGDs) on diffusion tensor fiber tracking (FT) in human brain white matter using tract characteristics. Twelve normal volunteers underwent diffusion tensor imaging (DTI) scanning with NDGDs of 6, 11, 15, 21, and 31 orientations. Three fiber tract groups, including the splenium of the corpus callosum (CC), the entire CC, and the full brain tract, were reconstructed by deterministic DTI-FT. Tract architecture was first qualitatively evaluated by visual observation. Six quantitative tract characteristics, including the number of fibers (NF), average length (AL), fractional anisotropy (FA), relative anisotropy (RA), mean diffusivity (MD), and volume ratio (VR) were measured for the splenium of the CC at the tract branch level, for the entire CC at tract level, and for the full brain tract at the whole brain level. Visual results and those of NF, AL, FA, RA, MD, and VR were compared among the five different NDGDs. The DTI-FT with NDGD of 11, 15, 21, and 31 orientations gave better tracking results compared with NDGD of 6 after the visual evaluation. NF, FA, RA, MD, and VR values with NDGD of six were significantly greater (smallest p = 0.001 to largest p = 0.042) than those with four other NDGDs (11, 15, 21, or 31 orientations), whereas AL measured with NDGD of six was significantly smaller (smallest p = 0.001 to largest p = 0.041) than with four other NDGDs (11, 15, 21, or 31 orientations). No significant differences were observed in the results among the four NDGD groups of 11, 15, 21, and 31 directions (smallest p = 0.059 to largest p = 1.000). The main fiber tracts were detected with NDGD of six orientations; however, the use of larger NDGD (> or = 11 orientations) could provide improved tract characteristics at the expense of longer scanning time.

  13. Effect of increasing diffusion gradient direction number on diffusion tensor imaging fiber tracking in the human brain

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Xu Fang; Liang, Bie Bei; Xia, Tian; Huang, Qin Ming; Zhuang, Song Lin [School of Optical-Electrical and Computer Engineering, Shanghai Medical Instrument College, University of Shanghai for Science and Technology, Shanghai (China); Yu, Tong Gang [Dept. of Radiology, Huashan Hospital, Fudan University, Shanghai (China)

    2015-04-15

    To assess the effects of varying the number of diffusion gradient directions (NDGDs) on diffusion tensor fiber tracking (FT) in human brain white matter using tract characteristics. Twelve normal volunteers underwent diffusion tensor imaging (DTI) scanning with NDGDs of 6, 11, 15, 21, and 31 orientations. Three fiber tract groups, including the splenium of the corpus callosum (CC), the entire CC, and the full brain tract, were reconstructed by deterministic DTI-FT. Tract architecture was first qualitatively evaluated by visual observation. Six quantitative tract characteristics, including the number of fibers (NF), average length (AL), fractional anisotropy (FA), relative anisotropy (RA), mean diffusivity (MD), and volume ratio (VR) were measured for the splenium of the CC at the tract branch level, for the entire CC at tract level, and for the full brain tract at the whole brain level. Visual results and those of NF, AL, FA, RA, MD, and VR were compared among the five different NDGDs. The DTI-FT with NDGD of 11, 15, 21, and 31 orientations gave better tracking results compared with NDGD of 6 after the visual evaluation. NF, FA, RA, MD, and VR values with NDGD of six were significantly greater (smallest p = 0.001 to largest p = 0.042) than those with four other NDGDs (11, 15, 21, or 31 orientations), whereas AL measured with NDGD of six was significantly smaller (smallest p = 0.001 to largest p = 0.041) than with four other NDGDs (11, 15, 21, or 31 orientations). No significant differences were observed in the results among the four NDGD groups of 11, 15, 21, and 31 directions (smallest p = 0.059 to largest p = 1.000). The main fiber tracts were detected with NDGD of six orientations; however, the use of larger NDGD (> or = 11 orientations) could provide improved tract characteristics at the expense of longer scanning time.

  14. Modeling the oxygen diffusion of nanocomposite-based food packaging films.

    Science.gov (United States)

    Bhunia, Kanishka; Dhawan, Sumeet; Sablani, Shyam S

    2012-07-01

    Polymer-layered silicate nanocomposites have been shown to improve the gas barrier properties of food packaging polymers. This study developed a computer simulation model using the commercial software, COMSOL Multiphysics to analyze changes in oxygen barrier properties in terms of relative diffusivity, as influenced by configuration and structural parameters that include volume fraction (φ), aspect ratio (α), intercalation width (W), and orientation angle (θ) of nanoparticles. The simulation was performed at different φ (1%, 3%, 5%, and 7%), α (50, 100, 500, and 1000), and W (1, 3, 5, and 7 nm). The θ value was varied from 0° to 85°. Results show that diffusivity decreases with increasing volume fraction, but beyond φ = 5% and α = 500, diffusivity remained almost constant at W values of 1 and 3 nm. Higher relative diffusivity coincided with increasing W and decreasing α value for the same volume fraction of nanoparticles. Diffusivity increased as the rotational angle increased, gradually diminishing the influence of nanoparticles. Diffusivity increased drastically as θ changed from 15° to 30° (relative increment in relative diffusivity was almost 3.5 times). Nanoparticles with exfoliation configuration exhibited better oxygen barrier properties compared to intercalation. The finite element model developed in this study provides insight into oxygen barrier properties for nanocomposite with a wide range of structural parameters. This model can be used to design and manufacture an ideal nanocomposite-based food packaging film with improved gas barrier properties for industrial applications. The model will assist in designing nanocomposite polymeric structures of desired gas barrier properties for food packaging applications. In addition, this study will be helpful in formulating a combination of nanoparticle structural parameters for designing nanocomposite membranes with selective permeability for the industrial applications including membrane

  15. Exponential stability of delayed fuzzy cellular neural networks with diffusion

    International Nuclear Information System (INIS)

    Huang Tingwen

    2007-01-01

    The exponential stability of delayed fuzzy cellular neural networks (FCNN) with diffusion is investigated. Exponential stability, significant for applications of neural networks, is obtained under conditions that are easily verified by a new approach. Earlier results on the exponential stability of FCNN with time-dependent delay, a special case of the model studied in this paper, are improved without using the time-varying term condition: dτ(t)/dt < μ

  16. Impossibility of unconditional stability and robustness of diffusive acceleration schemes

    International Nuclear Information System (INIS)

    Azmy, Y.Y.

    1998-01-01

    The authors construct a problem for which exists no preconditioner with a cell-centered diffusion coupling stencil that is unconditionally stable and robust. In particular they consider an asymptotic limit of the Periodic Horizontal Interface (PHI) configuration wherein the cell height in both layers approaches zero like σ 2 while the total cross section varies like a in one layer and like 1/σ in the other layer. In such case they show that the conditions for stability and robustness of the flat eigenmodes of the iteration residual imply instability of the modes flat in the y-dimension and rapidly varying in the x-dimension. This paper is important for radiation transport studies

  17. The problem of birth of autowaves in parabolic systems with small diffusion

    International Nuclear Information System (INIS)

    Kolesov, A Yu; Rozov, N Kh; Sadovnichii, V A

    2007-01-01

    A parabolic reaction-diffusion system with zero Neumann boundary conditions at the end-points of a finite interval is considered under the following basic assumptions. First, the matrix diffusion coefficient in the system is proportional to a small parameter ε>0, and the system itself possesses a spatially homogeneous cycle (independent of the space variable) of amplitude of order √ε born by a zero equilibrium at an Andronov-Hopf bifurcation. Second, it is assumed that the matrix diffusion depends on an additional small parameter μ≥0, and for μ=0 there occurs in the stability problem for the homogeneous cycle the critical case of characteristic multiplier 1 of multiplicity 2 without Jordan block. Under these constraints and for independently varied parameters ε and μ the problem of the existence and the stability of spatially inhomogeneous auto-oscillations branching from the homogeneous cycle is analysed. Bibliography: 16 titles.

  18. Efficiency analysis of diffusion on T-fractals in the sense of random walks.

    Science.gov (United States)

    Peng, Junhao; Xu, Guoai

    2014-04-07

    Efficiently controlling the diffusion process is crucial in the study of diffusion problem in complex systems. In the sense of random walks with a single trap, mean trapping time (MTT) and mean diffusing time (MDT) are good measures of trapping efficiency and diffusion efficiency, respectively. They both vary with the location of the node. In this paper, we analyze the effects of node's location on trapping efficiency and diffusion efficiency of T-fractals measured by MTT and MDT. First, we provide methods to calculate the MTT for any target node and the MDT for any source node of T-fractals. The methods can also be used to calculate the mean first-passage time between any pair of nodes. Then, using the MTT and the MDT as the measure of trapping efficiency and diffusion efficiency, respectively, we compare the trapping efficiency and diffusion efficiency among all nodes of T-fractal and find the best (or worst) trapping sites and the best (or worst) diffusing sites. Our results show that the hub node of T-fractal is the best trapping site, but it is also the worst diffusing site; and that the three boundary nodes are the worst trapping sites, but they are also the best diffusing sites. Comparing the maximum of MTT and MDT with their minimums, we find that the maximum of MTT is almost 6 times of the minimum of MTT and the maximum of MDT is almost equal to the minimum for MDT. Thus, the location of target node has large effect on the trapping efficiency, but the location of source node almost has no effect on diffusion efficiency. We also simulate random walks on T-fractals, whose results are consistent with the derived results.

  19. Optimal Parameters to Determine the Apparent Diffusion Coefficient in Diffusion Weighted Imaging via Simulation

    Science.gov (United States)

    Perera, Dimuthu

    Diffusion weighted (DW) Imaging is a non-invasive MR technique that provides information about the tissue microstructure using the diffusion of water molecules. The diffusion is generally characterized by the apparent diffusion coefficient (ADC) parametric map. The purpose of this study is to investigate in silico how the calculation of ADC is affected by image SNR, b-values, and the true tissue ADC. Also, to provide optimal parameter combination depending on the percentage accuracy and precision for prostate peripheral region cancer application. Moreover, to suggest parameter choices for any type of tissue, while providing the expected accuracy and precision. In this research DW images were generated assuming a mono-exponential signal model at two different b-values and for known true ADC values. Rician noise of different levels was added to the DWI images to adjust the image SNR. Using the two DWI images, ADC was calculated using a mono-exponential model for each set of b-values, SNR, and true ADC. 40,000 ADC data were collected for each parameter setting to determine the mean and the standard-deviation of the calculated ADC, as well as the percentage accuracy and precision with respect to the true ADC. The accuracy was calculated using the difference between known and calculated ADC. The precision was calculated using the standard-deviation of calculated ADC. The optimal parameters for a specific study was determined when both the percentage accuracy and precision were minimized. In our study, we simulated two true ADCs (ADC 0.00102 for tumor and 0.00180 mm2/s for normal prostate peripheral region tissue). Image SNR was varied from 2 to 100 and b-values were varied from 0 to 2000s/mm2. The results show that the percentage accuracy and percentage precision were minimized with image SNR. To increase SNR, 10 signal-averagings (NEX) were used considering the limitation in total scan time. The optimal NEX combination for tumor and normal tissue for prostate

  20. Contributions of chemical and diffusive exchange to T1ρ dispersion.

    Science.gov (United States)

    Cobb, Jared Guthrie; Xie, Jingping; Gore, John C

    2013-05-01

    Variations in local magnetic susceptibility may induce magnetic field gradients that affect the signals acquired for MR imaging. Under appropriate diffusion conditions, such fields produce effects similar to slow chemical exchange. These effects may also be found in combination with other chemical exchange processes at multiple time scales. We investigate these effects with simulations and measurements to determine their contributions to rotating frame (R1ρ ) relaxation in model systems. Simulations of diffusive and chemical exchange effects on R1ρ dispersion were performed using the Bloch equations. Additionally, R1ρ dispersion was measured in suspensions of Sephadex and latex beads with varying spin locking fields at 9.4 T. A novel analysis method was used to iteratively fit for apparent chemical and diffusive exchange rates with a model by Chopra et al. Single- and double-inflection points in R1ρ dispersion profiles were observed, respectively, in simulations of slow diffusive exchange alone and when combined with rapid chemical exchange. These simulations were consistent with measurements of R1ρ in latex bead suspensions and small-diameter Sephadex beads that showed single- and double-inflection points, respectively. These observations, along with measurements following changes in temperature and pH, are consistent with the combined effects of slow diffusion and rapid -OH exchange processes. Copyright © 2012 Wiley Periodicals, Inc.

  1. Characteristic time scales for diffusion processes through layers and across interfaces

    Science.gov (United States)

    Carr, Elliot J.

    2018-04-01

    This paper presents a simple tool for characterizing the time scale for continuum diffusion processes through layered heterogeneous media. This mathematical problem is motivated by several practical applications such as heat transport in composite materials, flow in layered aquifers, and drug diffusion through the layers of the skin. In such processes, the physical properties of the medium vary across layers and internal boundary conditions apply at the interfaces between adjacent layers. To characterize the time scale, we use the concept of mean action time, which provides the mean time scale at each position in the medium by utilizing the fact that the transition of the transient solution of the underlying partial differential equation model, from initial state to steady state, can be represented as a cumulative distribution function of time. Using this concept, we define the characteristic time scale for a multilayer diffusion process as the maximum value of the mean action time across the layered medium. For given initial conditions and internal and external boundary conditions, this approach leads to simple algebraic expressions for characterizing the time scale that depend on the physical and geometrical properties of the medium, such as the diffusivities and lengths of the layers. Numerical examples demonstrate that these expressions provide useful insight into explaining how the parameters in the model affect the time it takes for a multilayer diffusion process to reach steady state.

  2. Protection of uranium by electrodeposition of nickel and diffusion

    International Nuclear Information System (INIS)

    Chauvin, G.; Coriou, H.; Hure, J.

    1959-01-01

    This work forms part of the overall scheme for investigating uranium canning for nuclear reactors. It is necessary to: - Protect the fuel (uranium) against corrosion by the cooling medium (heavy water, CO 2 , etc.), in the case of a rupture of the can; - Avoid dangerous U-Al diffusion (when it is question of an aluminium can) by using an intermediate layer of a metal whose rate of diffusion in uranium is very much less than that of aluminium under the same conditions. In the present work based on the use of an intermediate layer of nickel the following points are apparent: 1) After having treated the uranium surface it is possible to electroplate nickel on it in such a way that after annealing without the application of any pressure these deposits give a very good intermetallic U-Ni diffusion. Though this diffusion is inferior to that of the UAl system, it enables the protection to be reinforced and thus the corrosion resistance to be increased. 2) When no other factor varies, the experiments show that the quality of the diffusion zones obtained depends on the nature of the electrolytic nickel bath. 3) The classical nickel baths used previously for this type of work contain 20 to 40 g/l of boric acid acting as an electrolytic buffer. As a result of this, the deposits are highly contaminated by boron (400 to 500 ppm of boron). We shall show that with a bath which does not contain nuclear poisons, a very clean U-Ni diffusion zone can be obtained. 4) After annealing for 100 hours at 700 deg. C, microscopic examination of the diffusion front reveals the existence of five layers under bright field illumination and six Layers in polarised light: at least four of these layers are well crystallised. 5) Important irregularities in the interface between uranium and the first intermetallic compound U 6 Ni seem to be result of barriers to the diffusion caused by certain impurities in the uranium. 6) Of the seven definite compounds which can be formed during the diffusion, that

  3. Correlated diffusion imaging

    International Nuclear Information System (INIS)

    Wong, Alexander; Glaister, Jeffrey; Cameron, Andrew; Haider, Masoom

    2013-01-01

    Prostate cancer is one of the leading causes of cancer death in the male population. Fortunately, the prognosis is excellent if detected at an early stage. Hence, the detection and localization of prostate cancer is crucial for diagnosis, as well as treatment via targeted focal therapy. New imaging techniques can potentially be invaluable tools for improving prostate cancer detection and localization. In this study, we introduce a new form of diffusion magnetic resonance imaging called correlated diffusion imaging, where the tissue being imaged is characterized by the joint correlation of diffusion signal attenuation across multiple gradient pulse strengths and timings. By taking into account signal attenuation at different water diffusion motion sensitivities, correlated diffusion imaging can provide improved delineation between cancerous tissue and healthy tissue when compared to existing diffusion imaging modalities. Quantitative evaluation using receiver operating characteristic (ROC) curve analysis, tissue class separability analysis, and visual assessment by an expert radiologist were performed to study correlated diffusion imaging for the task of prostate cancer diagnosis. These results are compared with that obtained using T2-weighted imaging and standard diffusion imaging (via the apparent diffusion coefficient (ADC)). Experimental results suggest that correlated diffusion imaging provide improved delineation between healthy and cancerous tissue and may have potential as a diagnostic tool for cancer detection and localization in the prostate gland. A new form of diffusion magnetic resonance imaging called correlated diffusion imaging (CDI) was developed for the purpose of aiding radiologists in cancer detection and localization in the prostate gland. Preliminary results show CDI shows considerable promise as a diagnostic aid for radiologists in the detection and localization of prostate cancer

  4. Molecular dynamics simulation of helium and oxygen diffusion in UO{sub 2+}-{sub x}

    Energy Technology Data Exchange (ETDEWEB)

    Govers, K., E-mail: kgovers@sckcen.b [Service de Metrologie Nucleaire (CP 165/84), Universite Libre de Bruxelles, 50 av. F.D. Roosevelt, B-1050 Bruxelles (Belgium); Institute for Nuclear Materials Sciences, SCK-CEN, Boeretang 200, B-2400 Mol (Belgium); Lemehov, S. [Institute for Nuclear Materials Sciences, SCK-CEN, Boeretang 200, B-2400 Mol (Belgium); Hou, M. [Physique des Solides Irradies et des Nanostructures (CP 234), Universite Libre de Bruxelles, Bd du Triomphe, B-1050 Bruxelles (Belgium); Verwerft, M. [Institute for Nuclear Materials Sciences, SCK-CEN, Boeretang 200, B-2400 Mol (Belgium)

    2009-12-15

    Atomic scale simulation techniques based on empirical potentials have been considered in the present work to get insight on helium diffusion in uranium dioxide. By varying the stoichiometry, together with the system temperature, the performed molecular dynamics simulations indicate two diffusion regimes for He. The first one presents a low activation energy (0.5 eV) and suggests oxygen vacancies assisted migration. This regime seems to provide the major contribution to diffusion when structural defects are present (extrinsic defects, imposed, e.g. by the stoichiometry). The second regime presents a higher activation energy, around 2 eV, and dominates in the higher temperature range or at perfect stoichiometry, suggesting an intrinsic migration process. Considering the dependence of He behaviour with oxygen defects, oxygen diffusion has been considered as well in the different stoichiometry domains. Finally, further investigations were made with nudged elastic bands calculations for a better interpretation of the operating migration mechanisms, both for He and O.

  5. Diffusion in membranes: Toward a two-dimensional diffusion map

    Directory of Open Access Journals (Sweden)

    Toppozini Laura

    2015-01-01

    Full Text Available For decades, quasi-elastic neutron scattering has been the prime tool for studying molecular diffusion in membranes over relevant nanometer distances. These experiments are essential to our current understanding of molecular dynamics of lipids, proteins and membrane-active molecules. Recently, we presented experimental evidence from X-ray diffraction and quasi-elastic neutron scattering demonstrating that ethanol enhances the permeability of membranes. At the QENS 2014/WINS 2014 conference we presented a novel technique to measure diffusion across membranes employing 2-dimensional quasi-elastic neutron scattering. We present results from our preliminary analysis of an experiment on the cold neutron multi-chopper spectrometer LET at ISIS, where we studied the self-diffusion of water molecules along lipid membranes and have the possibility of studying the diffusion in membranes. By preparing highly oriented membrane stacks and aligning them horizontally in the spectrometer, our aim is to distinguish between lateral and transmembrane diffusion. Diffusion may also be measured at different locations in the membranes, such as the water layer and the hydrocarbon membrane core. With a complete analysis of the data, 2-dimensional mapping will enable us to determine diffusion channels of water and ethanol molecules to quantitatively determine nanoscale membrane permeability.

  6. SOUND FIELD DIFFUSIVITY AT THE TOP SURFACE OF SCHROEDER DIFFUSER BARRIERS

    Directory of Open Access Journals (Sweden)

    M. R. Monazzam

    2006-10-01

    Full Text Available Reactive barriers are one of the most promising and novel environmental noise barriers. In this case using Schroeder diffusers (e.g. quadratic residue diffusers on the top surface of the T-shape barrier was shown to significantly improve the performance of absorbent T-shape barriers. The reasons behind the high performance of diffuser barriers are considered in this investigation. A question about the diffusivity behavior of Schroeder diffusers when they are utilized on the top of barrier was raised. Diffusion coefficients of a diffuser in different conditions at some receiver locations were predicted by using a 2D boundary element method. It was found that the diffusion coefficient of diffuser at the top of barrier is so small that the diffusivity of the structure is almost the same as rigid T-shape barrier. To find the barrier’s cap behavior, the total field above the top surface of profile barriers was also predicted. It was found that the lowest total energy is at the receiver side of the cap very close to the top surface,which could demonstrate the effect of top surface on absorbing the energy as wave transfers from source edge toward the receiver side of the cap. In this case the amount of minimum total energy depends on the frequency and the configuration of the top surface. A comparison between the reductions of total field at the source side of the cap with the improvements of barrier’s performance was also done. It was shown that the amount of decrease in total field compared to that of an absorbent barrier “Ref” is directly associated to the amount of improvement in the insertion loss made by the diffuser barrier compared to the “Ref” barrier in the wide area on the ground at the shadow zone. Finally it was concluded that the diffuser on the top of barrier does not act as a diffuser and a kind of similarity between the contribution of diffuser and absorbent material on the top of T-profile barrier is seen.

  7. Thermal diffusivity from heat wave propagation in Wendelstein 7-AS

    International Nuclear Information System (INIS)

    Hartfuss, H.J.; Erckmann, V.; Giannone, L.; Maassberg, H.; Tutter, M.

    1991-01-01

    Electron thermal diffusivity studies can be carried out in two ways: static and dynamic. In the static analysis, the transport coefficients are determined from the stationary power balance, in the dynamic analysis from the propagation of a small perturbation of the stationary plasma state which can be caused by either a sawtooth generated heat pulse or modulation of the heating power. Electron thermal diffusivity χ e is deduced from the evolution of the perturbed electron temperature T e at different locations r i in the plasma. χ e values obtained from perturbation analysis are usually greater than those calculated from power balance. It has been pointed out that there is a principal difference between static and perturbative analysis. Whereas the static method yields the transport coefficient χ e = q e /n e ∇T e , the perturbative methods leads to an icnrease of the flux q e as a result of an increase in the temperature gradient ∇T e . The quantity determined is an incremental χ e as defined by χ e inc =δq e /n e δ(∇T e ). By varying the modulation of the heating power at different frequencies and amplitudes one can address the question whether or not this discrepancy is a function of the varied parameters. (orig.)

  8. A model for self-diffusion of guanidinium-based ionic liquids: a molecular simulation study.

    Science.gov (United States)

    Klähn, Marco; Seduraman, Abirami; Wu, Ping

    2008-11-06

    We propose a novel self-diffusion model for ionic liquids on an atomic level of detail. The model is derived from molecular dynamics simulations of guanidinium-based ionic liquids (GILs) as a model case. The simulations are based on an empirical molecular mechanical force field, which has been developed in our preceding work, and it relies on the charge distribution in the actual liquid. The simulated GILs consist of acyclic and cyclic cations that were paired with nitrate and perchlorate anions. Self-diffusion coefficients are calculated at different temperatures from which diffusive activation energies between 32-40 kJ/mol are derived. Vaporization enthalpies between 174-212 kJ/mol are calculated, and their strong connection with diffusive activation energies is demonstrated. An observed formation of cavities in GILs of up to 6.5% of the total volume does not facilitate self-diffusion. Instead, the diffusion of ions is found to be determined primarily by interactions with their immediate environment via electrostatic attraction between cation hydrogen and anion oxygen atoms. The calculated average time between single diffusive transitions varies between 58-107 ps and determines the speed of diffusion, in contrast to diffusive displacement distances, which were found to be similar in all simulated GILs. All simulations indicate that ions diffuse by using a brachiation type of movement: a diffusive transition is initiated by cleaving close contacts to a coordinated counterion, after which the ion diffuses only about 2 A until new close contacts are formed with another counterion in its vicinity. The proposed diffusion model links all calculated energetic and dynamic properties of GILs consistently and explains their molecular origin. The validity of the model is confirmed by providing an explanation for the variation of measured ratios of self-diffusion coefficients of cations and paired anions over a wide range of values, encompassing various ionic liquid classes

  9. Diffusion coefficients of radon in candidate soils for covering uranium mill tailings

    International Nuclear Information System (INIS)

    Kalkwarf, D.R.; Silker, W.B.

    1983-10-01

    Diffusion coefficients were measured for radon in 34 soils that had been identified by uranium mill personnel as candidate soils for covering their tailings piles in order to reduce radon emission. The coefficients referred to diffusion in the total pore space of the soils. They were measured by a steady-state method using soil columns compacted to greater than 80% of their Proctor maximum packing densities, but with moisture contents generally less than would be expected at a tailings site. Three published empirical equations relating diffusion coefficients to soil moisture and porosity were tested with these data. The best fir was obtained with the equation: D = 0.70 exp [-4(m-mP 2 +m 5 )] in which P is the dry porosity of the soil and m is its moisture saturation, i.e. the fraction of pore volume filled with water. This equation was used to extrapolate measured coefficients to values expected at soil-moisture contents representative of tailings sites in the western United States. Extrapolated values for silty sands and clayey sands range from 0.004 to 0.06 cm 2 /s where w, the weight ratio of water to dry soil, is expected to vary from 0.04 to 0.09. Values for inorganic silts and clays ranged from 0.001 to 0.02 cm 2 /s where w is expected to vary from 0.10 to 0.13. 8 references, 1 figure, 1 table

  10. Molecular dynamics simulation of self-diffusion processes in titanium in bulk material, on grain junctions and on surface.

    Science.gov (United States)

    Sushko, Gennady B; Verkhovtsev, Alexey V; Yakubovich, Alexander V; Schramm, Stefan; Solov'yov, Andrey V

    2014-08-21

    The process of self-diffusion of titanium atoms in a bulk material, on grain junctions and on surface is explored numerically in a broad temperature range by means of classical molecular dynamics simulation. The analysis is carried out for a nanoscale cylindrical sample consisting of three adjacent sectors and various junctions between nanocrystals. The calculated diffusion coefficient varies by several orders of magnitude for different regions of the sample. The calculated values of the bulk diffusion coefficient correspond reasonably well to the experimental data obtained for solid and molten states of titanium. Investigation of diffusion in the nanocrystalline titanium is of a significant importance because of its numerous technological applications. This paper aims to reduce the lack of data on diffusion in titanium and describe the processes occurring in bulk, at different interfaces and on surface of the crystalline titanium.

  11. SOUND FIELD DIFFUSIVITY AT THE TOP SURFACE OF SCHROEDER DIFFUSER BARRIERS

    OpenAIRE

    M. R. Monazzam

    2006-01-01

    Reactive barriers are one of the most promising and novel environmental noise barriers. In this case using Schroeder diffusers (e.g. quadratic residue diffusers) on the top surface of the T-shape barrier was shown to significantly improve the performance of absorbent T-shape barriers. The reasons behind the high performance of diffuser barriers are considered in this investigation. A question about the diffusivity behavior of Schroeder diffusers when they are utilized on the top of barrier wa...

  12. Numerical investigation of diffuser solidity effect on turbulent airflow and performance of the turbocharger compressor

    Directory of Open Access Journals (Sweden)

    Chehhat A.

    2016-12-01

    Full Text Available Low solidity diffuser in centrifugal compressors can achieve both high efficiency and wide operating ranges which is of great importance for turbocharger compressor. Low solidity is achieved by using a low chord to pitch ratio. In this work, a CFD simulation is carried out to examine the effect of solidity on airflow field of a turbocharger centrifugal compressor which consists of a simple-splitter impeller and a vaned diffuser. By changing the number of diffuser vanes while keeping the number of impeller blades constant, the solidity value of the diffuser is varied. The characteristics of the compressor are evaluated for 6, 8, 10 and 12 stator vanes which correspond to solidity of: 0.78, 1.04, 1.29 and 1.55, respectively. The spatial distribution of the pressure, velocity and turbulent kinetic energy show that the diffuser solidity has significant effect on flow field and compressor performance map. The compressor with a 6 vanes diffuser has higher efficiency and operates at a wider range of flow rate relative to that obtained with larger vans number. However a non-uniform flow at the compressor exit was observed with relatively high turbulent kinetic energy.

  13. Catalytic conversion reactions mediated by single-file diffusion in linear nanopores: hydrodynamic versus stochastic behavior.

    Science.gov (United States)

    Ackerman, David M; Wang, Jing; Wendel, Joseph H; Liu, Da-Jiang; Pruski, Marek; Evans, James W

    2011-03-21

    We analyze the spatiotemporal behavior of species concentrations in a diffusion-mediated conversion reaction which occurs at catalytic sites within linear pores of nanometer diameter. Diffusion within the pores is subject to a strict single-file (no passing) constraint. Both transient and steady-state behavior is precisely characterized by kinetic Monte Carlo simulations of a spatially discrete lattice-gas model for this reaction-diffusion process considering various distributions of catalytic sites. Exact hierarchical master equations can also be developed for this model. Their analysis, after application of mean-field type truncation approximations, produces discrete reaction-diffusion type equations (mf-RDE). For slowly varying concentrations, we further develop coarse-grained continuum hydrodynamic reaction-diffusion equations (h-RDE) incorporating a precise treatment of single-file diffusion in this multispecies system. The h-RDE successfully describe nontrivial aspects of transient behavior, in contrast to the mf-RDE, and also correctly capture unreactive steady-state behavior in the pore interior. However, steady-state reactivity, which is localized near the pore ends when those regions are catalytic, is controlled by fluctuations not incorporated into the hydrodynamic treatment. The mf-RDE partly capture these fluctuation effects, but cannot describe scaling behavior of the reactivity.

  14. Diffusive instabilities in hyperbolic reaction-diffusion equations

    Science.gov (United States)

    Zemskov, Evgeny P.; Horsthemke, Werner

    2016-03-01

    We investigate two-variable reaction-diffusion systems of the hyperbolic type. A linear stability analysis is performed, and the conditions for diffusion-driven instabilities are derived. Two basic types of eigenvalues, real and complex, are described. Dispersion curves for both types of eigenvalues are plotted and their behavior is analyzed. The real case is related to the Turing instability, and the complex one corresponds to the wave instability. We emphasize the interesting feature that the wave instability in the hyperbolic equations occurs in two-variable systems, whereas in the parabolic case one needs three reaction-diffusion equations.

  15. Interaction dynamics of two diffusing particles: contact times and influence of nearby surfaces.

    Science.gov (United States)

    Tränkle, B; Ruh, D; Rohrbach, A

    2016-03-14

    Interactions of diffusing particles are governed by hydrodynamics on different length and timescales. The local hydrodynamics can be influenced substantially by simple interfaces. Here, we investigate the interaction dynamics of two micron-sized spheres close to plane interfaces to mimic more complex biological systems or microfluidic environments. Using scanned line optical tweezers and fast 3D interferometric particle tracking, we are able to track the motion of each bead with precisions of a few nanometers and at a rate of 10 kilohertz. From the recorded trajectories, all spatial and temporal information is accessible. This way, we measure diffusion coefficients for two coupling particles at varying distances h to one or two glass interfaces. We analyze their coupling strength and length by cross-correlation analysis relative to h and find a significant decrease in the coupling length when a second particle diffuses nearby. By analysing the times the particles are in close contact, we find that the influence of nearby surfaces and interaction potentials reduce the diffusivity strongly, although we found that the diffusivity hardly affects the contact times and the binding probability between the particles. All experimental results are compared to a theoretical model, which is based on the number of possible diffusion paths following the Catalan numbers and a diffusion probability, which is biased by the spheres' surface potential. The theoretical and experimental results agree very well and therefore enable a better understanding of hydrodynamically coupled interaction processes.

  16. Predicting the weathering of fuel and oil spills: A diffusion-limited evaporation model.

    Science.gov (United States)

    Kotzakoulakis, Konstantinos; George, Simon C

    2018-01-01

    The majority of the evaporation models currently available in the literature for the prediction of oil spill weathering do not take into account diffusion-limited mass transport and the formation of a concentration gradient in the oil phase. The altered surface concentration of the spill caused by diffusion-limited transport leads to a slower evaporation rate compared to the predictions of diffusion-agnostic evaporation models. The model presented in this study incorporates a diffusive layer in the oil phase and predicts the diffusion-limited evaporation rate. The information required is the composition of the fluid from gas chromatography or alternatively the distillation data. If the density or a single viscosity measurement is available the accuracy of the predictions is higher. Environmental conditions such as water temperature, air pressure and wind velocity are taken into account. The model was tested with synthetic mixtures, petroleum fuels and crude oils with initial viscosities ranging from 2 to 13,000 cSt. The tested temperatures varied from 0 °C to 23.4 °C and wind velocities from 0.3 to 3.8 m/s. The average absolute deviation (AAD) of the diffusion-limited model ranged between 1.62% and 24.87%. In comparison, the AAD of a diffusion-agnostic model ranged between 2.34% and 136.62% against the same tested fluids. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Boron diffusion into nitrogen doped silicon films for P{sup +} polysilicon gate structures

    Energy Technology Data Exchange (ETDEWEB)

    Mansour, Farida; Mahamdi, Ramdane; Jalabert, Laurent; Temple-Boyer, Pierre

    2003-06-23

    This paper deals with the study of the boron diffusion in nitrogen doped silicon (NIDOS) deposited from disilane Si{sub 2}H{sub 6} and ammonia NH{sub 3} for the development of P{sup +} polysilicon gate metal oxide semiconductor (MOS) devices. NIDOS films with varied nitrogen content have been boron implanted, then annealed and finally analysed by secondary ion mass spectroscopy (SIMS). In order to simulate the experimental SIMS of boron concentration profiles in the NIDOS films, a model adapted to the particular conditions of the samples elaboration, i.e. the very high boron concentration and the nitrogen content, has been established. The boron diffusion reduction in NIDOS films with increasing nitrogen rates has been evidenced by the profiles as well as by the obtained diffusion coefficients, which shows that the nitrogen incorporation reduces the boron diffusion. This has been confirmed by capacitance-voltage (C-V) measurements performed on MOS capacitors: the higher the nitrogen content, the lower the flat-band voltage. Finally, these results demonstrate that the improvement of the gate oxide quality occurs with the suppression of the boron penetration.

  18. Study of water diffusion on single-supported bilayer lipid membranes by quasielastic neutron scattering

    DEFF Research Database (Denmark)

    Bai, M.; Miskowiec, A.; Hansen, F. Y.

    2012-01-01

    High-energy-resolution quasielastic neutron scattering has been used to elucidate the diffusion of water molecules in proximity to single bilayer lipid membranes supported on a silicon substrate. By varying sample temperature, level of hydration, and deuteration, we identify three different types...... of diffusive water motion: bulk-like, confined, and bound. The motion of bulk-like and confined water molecules is fast compared to those bound to the lipid head groups (7-10 H2O molecules per lipid), which move on the same nanosecond time scale as H atoms within the lipid molecules. Copyright (C) EPLA, 2012...

  19. IN-SITU MEASURING METHOD OF RADON AND THORON DIFFUSION COEFFICIENT IN SOIL

    Directory of Open Access Journals (Sweden)

    V.S. Yakovleva

    2014-06-01

    Full Text Available A simple and valid in-situ measurement method of effective diffusion coefficient of radon and thoron in soil and other porous materials was designed. The analysis of numerical investigation of radon and thoron transport in upper layers of soil revealed that thoron flux density from the earth surface does not depend on soil gas advective velocity and varies only with diffusion coefficient changes. This result showed the advantages of thoron using versus radon using in the suggested method. The comparison of the new method with existing ones previously developed. The method could be helpful for solving of problems of radon mass-transport in porous media and gaseous exchange between soil and atmosphere.

  20. Sorption kinetics of polycyclic aromatic hydrocarbons removal using granular activated carbon: Intraparticle diffusion coefficients

    International Nuclear Information System (INIS)

    Valderrama, C.; Gamisans, X.; Heras, X. de las; Farran, A.; Cortina, J.L.

    2008-01-01

    Granular activated carbon (GAC) was evaluated as a suitable sorbent for polycyclic aromatic hydrocarbons (PAHs) removal from aqueous solutions. For this purpose, kinetic measurements on the extraction of a family of six PAHs were taken. A morphology study was performed by means of a scanning electron microscopy (SEM) analysis of GAC samples. Analyses of the batch rate data for each PAH were carried out using two kinetic models: the homogenous particle diffusion model (HPDM) and the shell progressive model (SPM). The process was controlled by diffusion rate the solutes (PAHs) that penetrated the reacted layer at PAH concentrations in the range of 0.2-10 mg L -1 . The effective particle diffusion coefficients (D eff ) derived from the two models were determined from the batch rate data. The Weber and Morris intraparticle diffusion model made a double contribution to the surface and pore diffusivities in the sorption process. The D eff values derived from both the HPMD and SPM equations varied from 1.1 x 10 -13 to 6.0 x 10 -14 m 2 s -1 . The simplest model, the pore diffusion model, was applied first for data analysis. The model of the next level of complexity, the surface diffusion model, was applied in order to gain a deeper understanding of the diffusion process. This model is able to explain the data, and the apparent surface diffusivities are in the same order of magnitude as the values for the sorption of functionalized aromatic hydrocarbons (phenols and sulphonates) that are described in the literature

  1. The Pearson diffusions: A class of statistically tractable diffusion processes

    DEFF Research Database (Denmark)

    Forman, Julie Lyng; Sørensen, Michael

    The Pearson diffusions is a flexible class of diffusions defined by having linear drift and quadratic squared diffusion coefficient. It is demonstrated that for this class explicit statistical inference is feasible. Explicit optimal martingale estimating func- tions are found, and the corresponding...

  2. Multi-scale modeling of diffusion-controlled reactions in polymers: renormalisation of reactivity parameters.

    Science.gov (United States)

    Everaers, Ralf; Rosa, Angelo

    2012-01-07

    The quantitative description of polymeric systems requires hierarchical modeling schemes, which bridge the gap between the atomic scale, relevant to chemical or biomolecular reactions, and the macromolecular scale, where the longest relaxation modes occur. Here, we use the formalism for diffusion-controlled reactions in polymers developed by Wilemski, Fixman, and Doi to discuss the renormalisation of the reactivity parameters in polymer models with varying spatial resolution. In particular, we show that the adjustments are independent of chain length. As a consequence, it is possible to match reactions times between descriptions with different resolution for relatively short reference chains and to use the coarse-grained model to make quantitative predictions for longer chains. We illustrate our results by a detailed discussion of the classical problem of chain cyclization in the Rouse model, which offers the simplest example of a multi-scale descriptions, if we consider differently discretized Rouse models for the same physical system. Moreover, we are able to explore different combinations of compact and non-compact diffusion in the local and large-scale dynamics by varying the embedding dimension.

  3. Diffusion in Altered Tonalite Sample Using Time Domain Diffusion Simulations in Tomographic Images Combined with Lab-scale Diffusion Experiments

    Science.gov (United States)

    Voutilainen, M.; Sardini, P.; Togneri, L.; Siitari-Kauppi, M.; Timonen, J.

    2010-12-01

    In this work an effect of rock heterogeneity on diffusion was investigated. Time domain diffusion simulations were used to compare behavior of diffusion in homogeneous and heterogeneous 3D media. Tomographic images were used as heterogeneous rock media. One altered tonalite sample from Sievi, Finland, was chosen as test case for introduced analysis procedure. Effective diffusion coefficient of tonalite sample was determined with lab-scale experiments and the same coefficient was used also for homogeneous media. Somewhat technically complicated mathematical solution for analysis of through diffusion experiment is shortly described. Computed tomography (CT) is already quite widely used in many geological, petrological, and paleontological applications when the three-dimensional (3D) structure of the material is of interest, and is an excellent method for gaining information especially about its heterogeneity, grain size, or porosity. In addition to offering means for quantitative characterization, CT provides a lot of qualitative information [1]. A through -diffusion laboratory experiment using radioactive tracer was fitted using the Time Domain Diffusion (TDD) method. This rapid particle tracking method allows simulation of the heterogeneous diffusion based on pore-scale images and local values of diffusivities [2]. As a result we found out that heterogeneity has only a small effect to diffusion coefficient and in-diffusion profile for used geometry. Also direction dependency was tested and was found to be negligible. Whereas significant difference between generally accepted value and value obtained from simulations for constant m in Archie’s law was found. [1] Voutilainen, M., Siitari-Kauppi, M., Sardini, P., and Timonen, J., (2010). On pore-space characterization of an altered tonalite by X-ray µCT and the 14C-PMMA method (in progress). [2] Sardini, P., Robinet, J., Siitari-Kauppi, M., Delay, F., and Hellmuth, K-H, (2007). On direct simulation of heterogeneous

  4. Hydrogen diffusion and microstructure in undoped and boron-dope hydrogenated amorphous silicon: An IR and SIMS study

    International Nuclear Information System (INIS)

    Mitra, S.

    1991-01-01

    Hydrogenated amorphous silicon (a-Si:H) prepared by rf sputtering of a polycrystalline Si target at various rf powers 50 ≤ P ≤ 550 W (0.27--2.97 W/cm 2 ), target to substrate distance 1 ≤ d ≤ 2 double-prime, and varying hydrogen partial pressures. Doping was accomplished by introducing diborane (B 2 H 6 ) in the plasma. Hydrogen diffusion was studied from the depth profiles obtained from the SIMS on multilayered a-Si:H/a-Si:(H,D)/a-Si:H samples. The properties of the samples were characterized by IR absorption, optical gap measurements and ESR. IR yielded quantitative and qualitative information total hydrogen content and the nature of the hydrogen bonding, respectively. Hence the hydrogen microstructure of the samples could be varied in a systematic manner and monitored from the hydrogen vibrational modes. The ESR gave information on the number of paramagnetic defects per unit volume in the samples. The IR absorption of both as-deposited and annealed samples were closely monitored and the results clearly demonstrate a strong correlation between hydrogen diffusion and its microstructure. It is shown that microvoids in a-Si:H play a critical role in the process of diffusion by inducing deep hydrogen trapping sites that render them immobile. Consequently, as the microvoid density increases beyond a critical density hydrogen diffusion is totally quenched. The diffusion results are discussed both in the context of multiple trapping transport of hydrogen in an exponential distribution of trapping sites and the floating bond model

  5. The magnetic diffusion of neutrons; La diffusion magnetique des neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Koehler, W C [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1959-07-01

    The purpose of this report is to examine briefly the diffusion of neutrons by substances, particularly by crystals containing permanent atomic or ionic magnetic moments. In other words we shall deal with ferromagnetic, antiferromagnetic, ferrimagnetic or paramagnetic crystals, but first it is necessary to touch on nuclear diffusion of neutrons. We shall start with the interaction of the neutron with a single diffusion centre; the results will then be applied to the magnetic interactions of the neutron with the satellite electrons of the atom; finally we shall discuss the diffusion of neutrons by crystals. (author) [French] Le but de ce rapport est d'examiner, brievement, la diffusion des neutrons par les substances, et surtout, par des cristaux qui contiennent des moments magnetiques atomiques ou ioniques permanents. C'est-a-dire que nous nous interesserons aux cristaux ferromagnetiques, antiferromagnetiques, ferrimagnetiques ou paramagnetiques; il nous faut cependant rappeler d'abord la diffusion nucleaire des neutrons. Nous commencerons par l'interaction du neutron avec un seul centre diffuseur; puis les resultats seront appliques aux interactions magnetiques du neutron avec les electrons satellites de l'atome; enfin nous discuterons la diffusion des neutrons par les cristaux. (auteur)

  6. Simulation of anisotropic diffusion by means of a diffusion velocity method

    CERN Document Server

    Beaudoin, A; Rivoalen, E

    2003-01-01

    An alternative method to the Particle Strength Exchange method for solving the advection-diffusion equation in the general case of a non-isotropic and non-uniform diffusion is proposed. This method is an extension of the diffusion velocity method. It is shown that this extension is quite straightforward due to the explicit use of the diffusion flux in the expression of the diffusion velocity. This approach is used to simulate pollutant transport in groundwater and the results are compared to those of the PSE method presented in an earlier study by Zimmermann et al.

  7. Data quality in diffusion tensor imaging studies of the preterm brain: a systematic review

    Energy Technology Data Exchange (ETDEWEB)

    Pieterman, Kay; Plaisier, Annemarie; Dudink, Jeroen [Erasmus Medical Center - Sophia, Division of Neonatology, Department of Pediatrics, dr. Molewaterplein 60, GJ, Rotterdam (Netherlands); Department of Radiology, Erasmus Medical Center, Rotterdam (Netherlands); Govaert, Paul [Erasmus Medical Center - Sophia, Division of Neonatology, Department of Pediatrics, dr. Molewaterplein 60, GJ, Rotterdam (Netherlands); Department of Pediatrics, Koningin Paola Children' s Hospital, Antwerp (Belgium); Leemans, Alexander [University Medical Center Utrecht, Image Sciences Institute, Utrecht (Netherlands); Lequin, Maarten H. [Department of Radiology, Erasmus Medical Center, Rotterdam (Netherlands)

    2015-08-15

    To study early neurodevelopment in preterm infants, evaluation of brain maturation and injury is increasingly performed using diffusion tensor imaging, for which the reliability of underlying data is paramount. To review the literature to evaluate acquisition and processing methodology in diffusion tensor imaging studies of preterm infants. We searched the Embase, Medline, Web of Science and Cochrane databases for relevant papers published between 2003 and 2013. The following keywords were included in our search: prematurity, neuroimaging, brain, and diffusion tensor imaging. We found 74 diffusion tensor imaging studies in preterm infants meeting our inclusion criteria. There was wide variation in acquisition and processing methodology, and we found incomplete reporting of these settings. Nineteen studies (26%) reported the use of neonatal hardware. Data quality assessment was not reported in 13 (18%) studies. Artefacts-correction and data-exclusion was not reported in 33 (45%) and 18 (24%) studies, respectively. Tensor estimation algorithms were reported in 56 (76%) studies but were often suboptimal. Diffusion tensor imaging acquisition and processing settings are incompletely described in current literature, vary considerably, and frequently do not meet the highest standards. (orig.)

  8. Data quality in diffusion tensor imaging studies of the preterm brain: a systematic review

    International Nuclear Information System (INIS)

    Pieterman, Kay; Plaisier, Annemarie; Dudink, Jeroen; Govaert, Paul; Leemans, Alexander; Lequin, Maarten H.

    2015-01-01

    To study early neurodevelopment in preterm infants, evaluation of brain maturation and injury is increasingly performed using diffusion tensor imaging, for which the reliability of underlying data is paramount. To review the literature to evaluate acquisition and processing methodology in diffusion tensor imaging studies of preterm infants. We searched the Embase, Medline, Web of Science and Cochrane databases for relevant papers published between 2003 and 2013. The following keywords were included in our search: prematurity, neuroimaging, brain, and diffusion tensor imaging. We found 74 diffusion tensor imaging studies in preterm infants meeting our inclusion criteria. There was wide variation in acquisition and processing methodology, and we found incomplete reporting of these settings. Nineteen studies (26%) reported the use of neonatal hardware. Data quality assessment was not reported in 13 (18%) studies. Artefacts-correction and data-exclusion was not reported in 33 (45%) and 18 (24%) studies, respectively. Tensor estimation algorithms were reported in 56 (76%) studies but were often suboptimal. Diffusion tensor imaging acquisition and processing settings are incompletely described in current literature, vary considerably, and frequently do not meet the highest standards. (orig.)

  9. Markov branching diffusions: martingales, Girsanov type theorems and applications to the long term behaviour

    NARCIS (Netherlands)

    Engländer, J.; Kyprianou, A.E.

    2001-01-01

    Consider a spatial branching particle process where the underlying motion is a conservative diffusion on D C Rd corresponding to the elliptic op- erator L on D, and the branching is strictly binary (dyadic), with spatially varying rate ß(x) => 0 (and ß <> 0) which is assumed to be bounded

  10. Experimental and Monte Carlo investigation of visible diffuse-reflectance imaging sensitivity to diffusing particle size changes in an optical model of a bladder wall

    Science.gov (United States)

    Kalyagina, N.; Loschenov, V.; Wolf, D.; Daul, C.; Blondel, W.; Savelieva, T.

    2011-11-01

    We have investigated the influence of scatterer size changes on the laser light diffusion, induced by collimated monochromatic laser irradiation, in tissue-like optical phantoms using diffuse-reflectance imaging. For that purpose, three-layer optical phantoms were prepared, in which nano- and microsphere size varied in order to simulate the scattering properties of healthy and cancerous urinary bladder walls. The informative areas of the surface diffuse-reflected light distributions were about 15×18 pixels for the smallest scattering particles of 0.05 μm, about 21×25 pixels for the medium-size particles of 0.53 μm, and about 25×30 pixels for the largest particles of 5.09 μm. The computation of the laser spot areas provided useful information for the analysis of the light distribution with high measurement accuracy of up to 92%. The minimal stability of 78% accuracy was observed for superficial scattering signals on the phantoms with the largest particles. The experimental results showed a good agreement with the results obtained by the Monte Carlo simulations. The presented method shows a good potential to be useful for a tissue-state diagnosis of the urinary bladder.

  11. Diffusion as a function of guest molecule length and functionalization in flexible metal–organic frameworks

    KAUST Repository

    Zheng, B.; Wang, L. L.; Du, L.; Pan, Y.; Lai, Zhiping; Huang, Kuo-Wei; Du, H. L.

    2016-01-01

    Understanding guest diffusion in nanoporous host-guest systems is crucial in the efficient design of metal-organic frameworks (MOFs) for chemical separation and drug delivery applications. In this work, we investigated the effect of molecule length on the diffusion rate in the zeolitic imidazolate framework 8 (ZIF-8), trying to find a simple and straightforward variable to characterize the complicated guest diffusion. We found that, counter-intuitively, long guest molecules can diffuse as quickly as short molecules; the diffusion coefficient of ethyl acetate for example is of the same order of magnitude as ethane and ethanol, as excludes the existence of a simple relationship between molecule length and diffusion rate. This phenomenon is explained by a study of the contributions of intra- and inter-cage movement to overall transport. Steric confinement limits the degrees of freedom of long guest molecules, shortening their residence time and increasing the efficiency of radial diffusion. In contrast, shorter molecules meander within MOF cages, reducing transport. Furthermore, the energy barrier of inter-cage transport also does not exhibit a simple dependence on a guest molecule length, attributing to the effect of the type of functional group on diffusion. Guests over varying lengths were investigated by using theoretical methods, revealing that the guest diffusion in ZIF-8 depends on the number of contiguous carbon atoms in a molecule, rather than its overall length. Thus, we proposed simple criteria to predict arbitrary guest molecule diffusivity in ZIF-8 without time-consuming experimentation. © 2016 The Royal Society of Chemistry.

  12. Diffusion as a function of guest molecule length and functionalization in flexible metal–organic frameworks

    KAUST Repository

    Zheng, B.

    2016-05-11

    Understanding guest diffusion in nanoporous host-guest systems is crucial in the efficient design of metal-organic frameworks (MOFs) for chemical separation and drug delivery applications. In this work, we investigated the effect of molecule length on the diffusion rate in the zeolitic imidazolate framework 8 (ZIF-8), trying to find a simple and straightforward variable to characterize the complicated guest diffusion. We found that, counter-intuitively, long guest molecules can diffuse as quickly as short molecules; the diffusion coefficient of ethyl acetate for example is of the same order of magnitude as ethane and ethanol, as excludes the existence of a simple relationship between molecule length and diffusion rate. This phenomenon is explained by a study of the contributions of intra- and inter-cage movement to overall transport. Steric confinement limits the degrees of freedom of long guest molecules, shortening their residence time and increasing the efficiency of radial diffusion. In contrast, shorter molecules meander within MOF cages, reducing transport. Furthermore, the energy barrier of inter-cage transport also does not exhibit a simple dependence on a guest molecule length, attributing to the effect of the type of functional group on diffusion. Guests over varying lengths were investigated by using theoretical methods, revealing that the guest diffusion in ZIF-8 depends on the number of contiguous carbon atoms in a molecule, rather than its overall length. Thus, we proposed simple criteria to predict arbitrary guest molecule diffusivity in ZIF-8 without time-consuming experimentation. © 2016 The Royal Society of Chemistry.

  13. Diffusion in reactor materials

    International Nuclear Information System (INIS)

    Fedorov, G.B.; Smirnov, E.A.

    1984-01-01

    The monograph contains a brief description of the principles underlying the theory of diffusion, as well as modern methods of studying diffusion. Data on self-diffusion and diffusion of impurities in a nuclear fuel and fissionable materials (uranium, plutonium, thorium, zirconium, titanium, hafnium, niobium, molybdenum, tungsten, beryllium, etc.) is presented. Anomalous diffusion, diffusion of components, and interdiffusion in binary and ternary alloys were examined. The monograph presents the most recent reference material on diffusion. It is intended for a wide range of researchers working in the field of diffusion in metals and alloys and attempting to discover new materials for application in nuclear engineering. It will also be useful for teachers, research scholars and students of physical metallurgy

  14. Self-diffusion in isotopically enriched silicon carbide and its correlation with dopant diffusion

    International Nuclear Information System (INIS)

    Rueschenschmidt, K.; Bracht, H.; Stolwijk, N.A.; Laube, M.; Pensl, G.; Brandes, G.R.

    2004-01-01

    Diffusion of 13 C and 30 Si in silicon carbide was performed with isotopically enriched 4H- 28 Si 12 C/ nat SiC heterostructures which were grown by chemical vapor phase epitaxy. After diffusion annealing at temperatures between 2000 deg. C and 2200 deg. C the 30 Si and 13 C profiles were measured by means of secondary ion mass spectrometry. We found that the Si and C diffusivity is of the same order of magnitude but several orders of magnitude lower than earlier data reported in the literature. Both Si and C tracer diffusion coefficients are in satisfactory agreement with the native point defect contribution to self-diffusion deduced from B diffusion in SiC. This reveals that the native defect which mediates B diffusion also controls self-diffusion. Assuming that B atoms within the extended tail region of B profiles are mainly dissolved on C sites, we propose that B diffuses via the kick-out mechanism involving C interstitials. Accordingly, C diffusion should proceed mainly via C interstitials. The mechanism of Si diffusion remains unsolved but Si may diffuse via both Si vacancies and interstitials, with the preference for either species depending on the doping level

  15. Fractal diffusion equations: Microscopic models with anomalous diffusion and its generalizations

    International Nuclear Information System (INIS)

    Arkhincheev, V.E.

    2001-04-01

    To describe the ''anomalous'' diffusion the generalized diffusion equations of fractal order are deduced from microscopic models with anomalous diffusion as Comb model and Levy flights. It is shown that two types of equations are possible: with fractional temporal and fractional spatial derivatives. The solutions of these equations are obtained and the physical sense of these fractional equations is discussed. The relation between diffusion and conductivity is studied and the well-known Einstein relation is generalized for the anomalous diffusion case. It is shown that for Levy flight diffusion the Ohm's law is not applied and the current depends on electric field in a nonlinear way due to the anomalous character of Levy flights. The results of numerical simulations, which confirmed this conclusion, are also presented. (author)

  16. Lateral diffusion of nutrients by mammalian herbivores in terrestrial ecosystems.

    Directory of Open Access Journals (Sweden)

    Adam Wolf

    Full Text Available Animals translocate nutrients by consuming nutrients at one point and excreting them or dying at another location. Such lateral fluxes may be an important mechanism of nutrient supply in many ecosystems, but lack quantification and a systematic theoretical framework for their evaluation. This paper presents a mathematical framework for quantifying such fluxes in the context of mammalian herbivores. We develop an expression for lateral diffusion of a nutrient, where the diffusivity is a biologically determined parameter depending on the characteristics of mammals occupying the domain, including size-dependent phenomena such as day range, metabolic demand, food passage time, and population size. Three findings stand out: (a Scaling law-derived estimates of diffusion parameters are comparable to estimates calculated from estimates of each coefficient gathered from primary literature. (b The diffusion term due to transport of nutrients in dung is orders of magnitude large than the coefficient representing nutrients in bodymass. (c The scaling coefficients show that large herbivores make a disproportionate contribution to lateral nutrient transfer. We apply the diffusion equation to a case study of Kruger National Park to estimate the conditions under which mammal-driven nutrient transport is comparable in magnitude to other (abiotic nutrient fluxes (inputs and losses. Finally, a global analysis of mammalian herbivore transport is presented, using a comprehensive database of contemporary animal distributions. We show that continents vary greatly in terms of the importance of animal-driven nutrient fluxes, and also that perturbations to nutrient cycles are potentially quite large if threatened large herbivores are driven to extinction.

  17. Diffusion in molybdenum disilicide

    International Nuclear Information System (INIS)

    Salamon, M.; Mehrer, H.

    2005-01-01

    The diffusion behaviour of the high-temperature material molybdenum disilicide (MoSi 2 ) was completely unknown until recently. In this paper we present studies of Mo self-diffusion and compare our present results with our already published studies of Si and Ge diffusion in MoSi 2 . Self-diffusion of molybdenum in monocrystalline MoSi 2 was studied by the radiotracer technique using the radioisotope 99 Mo. Deposition of the radiotracer and serial sectioning after the diffusion anneals to determine the concentration-depth profiles was performed using a sputtering device. Diffusion of Mo is a very slow process. In the entire temperature region investigated (1437 to 2173 K), the 99 Mo diffusivities in both principal directions of the tetragonal MoSi 2 crystals obey Arrhenius laws, where the diffusion perpendicular to the tetragonal axis is faster by two to three orders of magnitude than parallel to it. The activation enthalpies for diffusion perpendicular and parallel to the tetragonal axis are Q perpendicular to = 468 kJ mol -1 (4.85 eV) and Q parallel = 586 kJ mol -1 (6.07 eV), respectively. Diffusion of Si and its homologous element Ge is fast and is mediated by thermal vacancies of the Si sublattice of MoSi 2 . The diffusion of Mo is by several orders of magnitude slower than the diffusion of Si and Ge. This large difference suggests that Si and Mo diffusion are decoupled and that the diffusion of Mo likely takes place via vacancies on the Mo sublattice. (orig.)

  18. Demonstration of non-Gaussian restricted diffusion in tumor cells using diffusion-time dependent diffusion weighted MR contrast

    Directory of Open Access Journals (Sweden)

    Tuva Roaldsdatter Hope

    2016-08-01

    Full Text Available The diffusion weighted imaging (DWI technique enables quantification of water mobility for probing microstructural properties of biological tissue, and has become an effective tool for collecting information about the underlying pathology of cancerous tissue. Measurements using multiple b-values have indicated a bi-exponential signal attenuation, ascribed to fast (high ADC and slow (low ADC diffusion components. In this empirical study, we investigate the properties of the diffusion time (∆ - dependent components of the diffusion-weighted (DW signal in a constant b-value experiment. A Xenograft GBM mouse was imaged using ∆ = 11 ms, 20 ms, 40 ms, 60 ms and b=500-4000 s/mm2 in intervals of 500s/mm2. Data was corrected for EPI distortions and the ∆-dependence on the DW signal was measured within three regions of interest (intermediate- and high-density tumor regions and normal appearing brain tissue regions (NAB. In this empirical study we verify the assumption that the slow decaying component of the DW-signal is non-Gaussian and dependent on ∆, consistent with restricted diffusion of the intracellular space. As the DW-signal as a function of ∆ is specific to restricted diffusion, manipulating ∆ at constant b-value (cb provides a complementary and direct approach for separating the restricted from the hindered diffusion component. Our results show that only tumor tissue signal of our data demonstrate ∆-dependence, based on a bi-exponential model with a restricted diffusion component, we successfully estimated the restricted ADC, signal volume fraction and cell size within each tumor ROI.

  19. Hereditary Diffuse Gastric Cancer

    Science.gov (United States)

    ... Hereditary Diffuse Gastric Cancer Request Permissions Hereditary Diffuse Gastric Cancer Approved by the Cancer.Net Editorial Board , 10/2017 What is hereditary diffuse gastric cancer? Hereditary diffuse gastric cancer (HDGC) is a rare ...

  20. Automatic gender determination from 3D digital maxillary tooth plaster models based on the random forest algorithm and discrete cosine transform.

    Science.gov (United States)

    Akkoç, Betül; Arslan, Ahmet; Kök, Hatice

    2017-05-01

    One of the first stages in the identification of an individual is gender determination. Through gender determination, the search spectrum can be reduced. In disasters such as accidents or fires, which can render identification somewhat difficult, durable teeth are an important source for identification. This study proposes a smart system that can automatically determine gender using 3D digital maxillary tooth plaster models. The study group was composed of 40 Turkish individuals (20 female, 20 male) between the ages of 21 and 24. Using the iterative closest point (ICP) algorithm, tooth models were aligned, and after the segmentation process, models were transformed into depth images. The local discrete cosine transform (DCT) was used in the process of feature extraction, and the random forest (RF) algorithm was used for the process of classification. Classification was performed using 30 different seeds for random generator values and 10-fold cross-validation. A value of 85.166% was obtained for average classification accuracy (CA) and a value of 91.75% for the area under the ROC curve (AUC). A multi-disciplinary study is performed here that includes computer sciences, medicine and dentistry. A smart system is proposed for the determination of gender from 3D digital models of maxillary tooth plaster models. This study has the capacity to extend the field of gender determination from teeth. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. FIELD-SCALE EFFECTIVE MATRIX DIFFUSION COEFFICIENT FOR FRACTURED ROCK: RESULTS FROM LITERATURE SURVEY

    International Nuclear Information System (INIS)

    Zhou, Q.; Hui-Hai Liu; Molz, F.J.; Zhang, Y.; Bodvarsson, G.S.

    2005-01-01

    Matrix diffusion is an important mechanism for solute transport in fractured rock. We recently conducted a literature survey on the effective matrix diffusion coefficient, D m e , a key parameter for describing matrix diffusion processes at the field scale. Forty field tracer tests at 15 fractured geologic sites were surveyed and selected for the study, based on data availability and quality. Field-scale D m e values were calculated, either directly using data reported in the literature or by reanalyzing the corresponding field tracer tests. Surveyed data indicate that the effective-matrix-diffusion-coefficient factor F D (defined as the ratio of D m e to the lab-scale matrix diffusion coefficient [D m ] of the same tracer) is generally larger than one, indicating that the effective matrix diffusion coefficient in the field is comparatively larger than the matrix diffusion coefficient at the rock-core scale. This larger value can be attributed to the many mass-transfer processes at different scales in naturally heterogeneous, fractured rock systems. Furthermore, we observed a moderate trend toward systematic increase in the F D value with observation scale, indicating that the effective matrix diffusion coefficient is likely to be statistically scale dependent. The F D value ranges from 1 to 10,000 for observation scales from 5 to 2,000 m. At a given scale, the F D value varies by two orders of magnitude, reflecting the influence of differing degrees of fractured rock heterogeneity at different sites. In addition, the surveyed data indicate that field-scale longitudinal dispersivity generally increases with observation scale, which is consistent with previous studies. The scale-dependent field-scale matrix diffusion coefficient (and dispersivity) may have significant implications for assessing long-term, large-scale radionuclide and contaminant transport events in fractured rock, both for nuclear waste disposal and contaminant remediation

  2. Second rank direction cosine spherical tensor operators and the nuclear electric quadrupole hyperfine structure Hamiltonian of rotating molecules

    Science.gov (United States)

    di Lauro, C.

    2018-03-01

    Transformations of vector or tensor properties from a space-fixed to a molecule-fixed axis system are often required in the study of rotating molecules. Spherical components λμ,ν of a first rank irreducible tensor can be obtained from the direction cosines between the two axis systems, and a second rank tensor with spherical components λμ,ν(2) can be built from the direct product λ × λ. It is shown that the treatment of the interaction between molecular rotation and the electric quadrupole of a nucleus is greatly simplified, if the coefficients in the axis-system transformation of the gradient of the electric field of the outer charges at the coupled nucleus are arranged as spherical components λμ,ν(2). Then the reduced matrix elements of the field gradient operators in a symmetric top eigenfunction basis, including their dependence on the molecule-fixed z-angular momentum component k, can be determined from the knowledge of those of λ(2) . The hyperfine structure Hamiltonian Hq is expressed as the sum of terms characterized each by a value of the molecule-fixed index ν, whose matrix elements obey the rule Δk = ν. Some of these terms may vanish because of molecular symmetry, and the specific cases of linear and symmetric top molecules, orthorhombic molecules, and molecules with symmetry lower than orthorhombic are considered. Each ν-term consists of a contraction of the rotational tensor λ(2) and the nuclear quadrupole tensor in the space-fixed frame, and its matrix elements in the rotation-nuclear spin coupled representation can be determined by the standard spherical tensor methods.

  3. Simple simulation of diffusion bridges with application to likelihood inference for diffusions

    DEFF Research Database (Denmark)

    Bladt, Mogens; Sørensen, Michael

    2014-01-01

    the accuracy and efficiency of the approximate method and compare it to exact simulation methods. In the study, our method provides a very good approximation to the distribution of a diffusion bridge for bridges that are likely to occur in applications to statistical inference. To illustrate the usefulness......With a view to statistical inference for discretely observed diffusion models, we propose simple methods of simulating diffusion bridges, approximately and exactly. Diffusion bridge simulation plays a fundamental role in likelihood and Bayesian inference for diffusion processes. First a simple......-dimensional diffusions and is applicable to all one-dimensional diffusion processes with finite speed-measure. One advantage of the new approach is that simple simulation methods like the Milstein scheme can be applied to bridge simulation. Another advantage over previous bridge simulation methods is that the proposed...

  4. Study of the uranium-zirconium diffusion; Etude de la diffusion uranium-zirconium

    Energy Technology Data Exchange (ETDEWEB)

    Adda, Y; Mairy, C; Bouchet, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1957-07-01

    The intermetallic diffusion of uranium fuel and zirconium used as cladding is studied. Intermetallic diffusion can occur during the cladding of uranium rods and uranium can penetrate the zirconium cladding. Different parameters are involved in this mechanism as structure and mechanical properties of the diffusion area as well as presence of impurities in the metal. The uses of different analysis techniques (micrography, Castaing electronic microprobe, microhardness and autoradiography) have permitted to determine with great accuracy the diffusion coefficient in gamma phase (body centered cubic system) and the results have given important information on the intermetallic diffusion mechanisms. The existence of the Kirkendall effect in the U-Zr diffusion is also an argument in favor of the generality of the diffusion mechanism by vacancies in body centered cubic system. (M.P.)

  5. Supranational Cultural Norms, Domestic Value Orientations and the Diffusion of Same-sex Union Rights in Europe, 1988–2009

    OpenAIRE

    Fernández, J.; Lutter, M.

    2013-01-01

    The process of policy diffusion is gaining increasing attention among social scientists. Following world society theory, a burgeoning literature reports a positive relationship between national linkages to global cultural norms and the diffusion of public policies. However, previous analyses do not simultaneously control for time-varying domestic cultural orientations. In order to conduct a stricter test of this theory, this article examines the wave of same-sex union (SSU) laws in Europe. Wh...

  6. Diffuse ceiling ventilation

    DEFF Research Database (Denmark)

    Zhang, Chen

    Diffuse ceiling ventilation is an innovative ventilation concept where the suspended ceiling serves as air diffuser to supply fresh air into the room. Compared with conventional ventilation systems, diffuse ceiling ventilation can significantly reduce or even eliminate draught risk due to the low...

  7. Frequency-dependent photothermal measurement of transverse thermal diffusivity of organic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Brill, J. W.; Shahi, Maryam; Yao, Y. [Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506-0055 (United States); Payne, Marcia M.; Anthony, J. E. [Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055 (United States); Edberg, Jesper; Crispin, Xavier [Department of Science and Technology, Organic Electronics, Linköping University, SE-601 74 Norrköping (Sweden)

    2015-12-21

    We have used a photothermal technique, in which chopped light heats the front surface of a small (∼1 mm{sup 2}) sample and the chopping frequency dependence of thermal radiation from the back surface is measured with a liquid-nitrogen-cooled infrared detector. In our system, the sample is placed directly in front of the detector within its dewar. Because the detector is also sensitive to some of the incident light, which leaks around or through the sample, measurements are made for the detector signal that is in quadrature with the chopped light. Results are presented for layered crystals of semiconducting 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-pn) and for papers of cellulose nanofibrils coated with semiconducting poly(3,4-ethylene-dioxythiophene):poly(styrene-sulfonate) (NFC-PEDOT). For NFC-PEDOT, we have found that the transverse diffusivity, smaller than the in-plane value, varies inversely with thickness, suggesting that texturing of the papers varies with thickness. For TIPS-pn, we have found that the interlayer diffusivity is an order of magnitude larger than the in-plane value, consistent with previous estimates, suggesting that low-frequency optical phonons, presumably associated with librations in the TIPS side groups, carry most of the heat.

  8. Diffusion of gases in solids: rare gas diffusion in solids; tritium diffusion in fission and fusion reactor metals. Final report

    International Nuclear Information System (INIS)

    Abraham, P.M.; Chandra, D.; Mintz, J.M.; Elleman, T.S.; Verghese, K.

    1976-01-01

    Major results of tritium and rare gas diffusion research conducted under the contract are summarized. The materials studied were austenitic stainless steels, Zircaloy, and niobium. In all three of the metal systems investigated, tritium release rates were found to be inhibited by surface oxide films. The effective diffusion coefficients that control tritium release from surface films on Zircaloy and niobium were determined to be eight to ten orders of magnitude lower than the bulk diffusion coefficients. A rapid component of diffusion due to grain boundaries was identified in stainless steels. The grain boundary diffusion coefficient was determined to be about six orders of magnitude greater than the bulk diffusion coefficient for tritium in stainless steel. In Zircaloy clad fuel pins, the permeation rate of tritium through the cladding is rate-limited by the extremely slow diffusion rate in the surface films. Tritium diffusion rates through surface oxide films on niobium appear to be controlled by cracks in the surface films at temperatures up to 600 0 C. Beyond 600 0 C, the cracks appear to heal, thereby increasing the activation energy for diffusion through the oxide film. The steady-state diffusion of tritium in a fusion reactor blanket has been evaluated in order to calculate the equilibrium tritium transport rate, approximate time to equilibrium, and tritium inventory in various regions of the reactor blanket as a function of selected blanket parameters. Values for these quantities have been tabulated

  9. Diffusion Modeling: A Study of the Diffusion of “Jatropha Curcas ...

    African Journals Online (AJOL)

    Consequently, the study recommended the use of diffusion networks which integrate interpersonal networks, and multimedia strategies for the effective diffusion of innovation such as Jacodiesel in Adamawa State and other parts of the country. Keywords: Sustainability, Diffusion, Innovation, Communicative Influence, ...

  10. Anomalous diffusion in niobium. Study of solute diffusion mechanism of iron in niobium

    International Nuclear Information System (INIS)

    Ablitzer, D.

    1977-01-01

    In order to explain anomalously high diffusion velocities observed for iron diffusion in niobium, the following parameters were measured: isotope effect, b factor (which expresses the effect of iron on niobium self-diffusion), self-diffusion coefficient of niobium, solute diffusion coefficient of iron in niobium. The results obtained show that neither pure vacancy models, nor diffusion in the lattice defects (dislocations, sub-boundaries, grain boundaries), nor pure interstitialy mechanisms, nor simple or cyclic exchange mechanisms agree with experiments. A mechanism is proposed which considers an equilibrium between substitution iron atoms and interstitial iron atoms. The diffusion of iron then occurs through interstitial vancancy pairs [fr

  11. Effect of Oxygen Enrichment in Propane Laminar Diffusion Flames under Microgravity and Earth Gravity Conditions

    Science.gov (United States)

    Bhatia, Pramod; Singh, Ravinder

    2017-06-01

    Diffusion flames are the most common type of flame which we see in our daily life such as candle flame and match-stick flame. Also, they are the most used flames in practical combustion system such as industrial burner (coal fired, gas fired or oil fired), diesel engines, gas turbines, and solid fuel rockets. In the present study, steady-state global chemistry calculations for 24 different flames were performed using an axisymmetric computational fluid dynamics code (UNICORN). Computation involved simulations of inverse and normal diffusion flames of propane in earth and microgravity condition with varying oxidizer compositions (21, 30, 50, 100 % O2, by mole, in N2). 2 cases were compared with the experimental result for validating the computational model. These flames were stabilized on a 5.5 mm diameter burner with 10 mm of burner length. The effect of oxygen enrichment and variation in gravity (earth gravity and microgravity) on shape and size of diffusion flames, flame temperature, flame velocity have been studied from the computational result obtained. Oxygen enrichment resulted in significant increase in flame temperature for both types of diffusion flames. Also, oxygen enrichment and gravity variation have significant effect on the flame configuration of normal diffusion flames in comparison with inverse diffusion flames. Microgravity normal diffusion flames are spherical in shape and much wider in comparison to earth gravity normal diffusion flames. In inverse diffusion flames, microgravity flames were wider than earth gravity flames. However, microgravity inverse flames were not spherical in shape.

  12. Protection of uranium by electrodeposition of nickel and diffusion; Protection de l'uranium par nickelage electrolytique et diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Chauvin, G; Coriou, H; Hure, J [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1959-07-01

    This work forms part of the overall scheme for investigating uranium canning for nuclear reactors. It is necessary to: - Protect the fuel (uranium) against corrosion by the cooling medium (heavy water, CO{sub 2}, etc.), in the case of a rupture of the can; - Avoid dangerous U-Al diffusion (when it is question of an aluminium can) by using an intermediate layer of a metal whose rate of diffusion in uranium is very much less than that of aluminium under the same conditions. In the present work based on the use of an intermediate layer of nickel the following points are apparent: 1) After having treated the uranium surface it is possible to electroplate nickel on it in such a way that after annealing without the application of any pressure these deposits give a very good intermetallic U-Ni diffusion. Though this diffusion is inferior to that of the UAl system, it enables the protection to be reinforced and thus the corrosion resistance to be increased. 2) When no other factor varies, the experiments show that the quality of the diffusion zones obtained depends on the nature of the electrolytic nickel bath. 3) The classical nickel baths used previously for this type of work contain 20 to 40 g/l of boric acid acting as an electrolytic buffer. As a result of this, the deposits are highly contaminated by boron (400 to 500 ppm of boron). We shall show that with a bath which does not contain nuclear poisons, a very clean U-Ni diffusion zone can be obtained. 4) After annealing for 100 hours at 700 deg. C, microscopic examination of the diffusion front reveals the existence of five layers under bright field illumination and six Layers in polarised light: at least four of these layers are well crystallised. 5) Important irregularities in the interface between uranium and the first intermetallic compound U{sub 6}Ni seem to be result of barriers to the diffusion caused by certain impurities in the uranium. 6) Of the seven definite compounds which can be formed during the

  13. Inpainting using airy diffusion

    Science.gov (United States)

    Lorduy Hernandez, Sara

    2015-09-01

    One inpainting procedure based on Airy diffusion is proposed, implemented via Maple and applied to some digital images. Airy diffusion is a partial differential equation with spatial derivatives of third order in contrast with the usual diffusion with spatial derivatives of second order. Airy diffusion generates the Airy semigroup in terms of the Airy functions which can be rewritten in terms of Bessel functions. The Airy diffusion can be used to smooth an image with the corresponding noise elimination via convolution. Also the Airy diffusion can be used to erase objects from an image. We build an algorithm using the Maple package ImageTools and such algorithm is tested using some images. Our results using Airy diffusion are compared with the similar results using standard diffusion. We observe that Airy diffusion generates powerful filters for image processing which could be incorporated in the usual packages for image processing such as ImageJ and Photoshop. Also is interesting to consider the possibility to incorporate the Airy filters as applications for smartphones and smart-glasses.

  14. Diffusion in compacted betonite

    International Nuclear Information System (INIS)

    Muurinen, A.; Rantanen, J.

    1985-01-01

    The objective of this report is to collect the literature bearing on the diffusion in compacted betonite, which has been suggested as possible buffer material for the disposal of spent fuel. Diffusion in a porous, water-saturated material is usually described as diffusion in the pore-water where sorption on the solid matter can delay the migration in the instationary state. There are also models which take into consideration that the sorbed molecules can also move while being sorbed. Diffusion experiments in compacted bentonite have been reported by many authors. Gases, anions, cations and actinides have been used as diffusing molecules. The report collects the results and the information on the measurement methods. On the basis of the results can be concluded that different particles possibly follow different diffusion mechanisms. The parameters which affect the diffusion seem to be for example the size, the electric charge and the sorption properties of the diffusing molecule. The report also suggest the parameters to be used in the diffusion calculation of the safety analyses of spent fuel disposal. (author)

  15. The accuracy of the diffusion theory component of removal-diffusion theory

    International Nuclear Information System (INIS)

    Donnelly, I.J.

    1976-03-01

    The neutron fluxes in five neutron shields consisting of water, concrete, graphite, iron and an iron-water lattice respectively, have been calculated using P 1 theory, diffusion theory with the usual transport correction for anisotropic scattering (DT), and diffusion theory with a diagonal transport correction (DDT). The calculations have been repeated using transport theory for the flux above 0.5 MeV and the diffusion theories for lower energies. Comparisons with transport theory calculations reveal the accuracy of each diffusion theory when it is used for flux evaluation at all energies, and also its accuracy when used for flux evaluation below 0.5 MeV given the correct flux above 0.5 MeV. It is concluded that the diffusion component of removal-diffusion theory has adequate accuracy unless the high energy diffusion entering the shield is significantly larger than the removal flux. In general, P 1 and DT are more accurate than DDT and give similar fluxes except for shields having a large hydrogen content, in which case DT is better. Therefore it is recommended that DT be used in preference to P 1 theory or DDT. (author)

  16. Cosmic ray diffusion: report of the workshop in cosmic ray diffusion theory

    International Nuclear Information System (INIS)

    Birmingham, T.J.; Jones, F.C.

    1975-02-01

    A workshop in cosmic ray diffusion theory was held at Goddard Space Flight Center on May 16-17, 1974. Topics discussed and summarized are: (1) cosmic ray measurements as related to diffusion theory; (2) quasi-linear theory, nonlinear theory, and computer simulation of cosmic ray pitch-angle diffusion; and (3) magnetic field fluctuation measurements as related to diffusion theory. (auth)

  17. Thermal diffusivity and electron transport properties of NTC samples obtained by the photoacoustic method

    International Nuclear Information System (INIS)

    Savic, S.M.; Aleksic, O.S.; Nikolic, M.V.; Lukovic, D.T.; Pejovic, V.Z.; Nikolic, P.M.

    2006-01-01

    Thermal diffusivity and electron transport parameters of sintered NTC samples were determined by the photoacoustic (PA) technique. Powder mixtures composed of MnO, NiO, CoO and Fe 2 O 3 were milled to nanometer particle size. NTC discs were dry powder pressed and sintered at different temperatures in the range from 900 deg. C to 1300 deg. C for 30 min. A second group of NTC discs was sintered at 1200 deg. C with the sintering time varying from 30 min to 360 min. These NTC samples were polished and exposed to a chopped laser beam in order to plot a response in the acoustic range. The thermal diffusivity of sintered NTC layers based on a metal oxide powder mixture was measured at room temperature by the photoacoustic technique. An increase of thermal diffusivity with the sintering temperature and time of sintering was observed

  18. Thermal diffusivity and electron transport properties of NTC samples obtained by the photoacoustic method

    Energy Technology Data Exchange (ETDEWEB)

    Savic, S.M. [Institute of Technical Sciences of SASA, Knez Mihailova 35/IV, 11000 Belgrade (Serbia); Aleksic, O.S. [Center for Multidisciplinary Studies of the University of Belgrade, Kneza Viseslava 1, 11000 Belgrade (Serbia); Nikolic, M.V. [Center for Multidisciplinary Studies of the University of Belgrade, Kneza Viseslava 1, 11000 Belgrade (Serbia); Lukovic, D.T. [Institute of Technical Sciences of SASA, Knez Mihailova 35/IV, 11000 Belgrade (Serbia); Pejovic, V.Z. [Center for Multidisciplinary Studies of the University of Belgrade, Kneza Viseslava 1, 11000 Belgrade (Serbia); Nikolic, P.M. [Institute of Technical Sciences of SASA, Knez Mihailova 35/IV, 11000 Belgrade (Serbia)]. E-mail: nikolic@sanu.ac.yu

    2006-07-15

    Thermal diffusivity and electron transport parameters of sintered NTC samples were determined by the photoacoustic (PA) technique. Powder mixtures composed of MnO, NiO, CoO and Fe{sub 2}O{sub 3} were milled to nanometer particle size. NTC discs were dry powder pressed and sintered at different temperatures in the range from 900 deg. C to 1300 deg. C for 30 min. A second group of NTC discs was sintered at 1200 deg. C with the sintering time varying from 30 min to 360 min. These NTC samples were polished and exposed to a chopped laser beam in order to plot a response in the acoustic range. The thermal diffusivity of sintered NTC layers based on a metal oxide powder mixture was measured at room temperature by the photoacoustic technique. An increase of thermal diffusivity with the sintering temperature and time of sintering was observed.

  19. COHORT CHANGE, DIFFUSION, AND SUPPORT FOR ENVIRONMENTAL SPENDING IN THE UNITED STATES.

    Science.gov (United States)

    Pampel, Fred C; Hunter, Lori M

    2012-09-01

    The long-standing and sometimes heated debates over the direction and size of the effect of socioeconomic status (SES) on environmental concern contrast post-materialist and affluence arguments, suggesting a positive relationship in high-income nations, with counter arguments for a negative or near zero relationship. A diffusion-of-innovations approach adapts parts of both arguments by predicting that high SES groups first adopt pro-environmental views, which produces a positive relationship. Like other innovations, however, environmentalism diffuses over time to other SES groups, which subsequently weakens the association. We test this argument using the General Social Survey from 1973 to 2008 to compare support for environmental spending across 83 cohorts born from around 1900 to 1982. In developing attitudes before, during, and after the emergence of environmentalism, varying cohorts provide the contrast needed to identify long-term changes in environmental concern. Multilevel age, period, and cohort models support diffusion arguments by demonstrating the effects, across cohorts, of three common indicators of SES - education, income and occupational prestige - first strengthen and then weaken. This finding suggests that diffusion of environmental concern first produces positive relationships consistent with postmaterialism arguments and later produces null or negative relationships consistent with global environmentalism arguments.

  20. Fast solution of neutron diffusion problem by reduced basis finite element method

    International Nuclear Information System (INIS)

    Chunyu, Zhang; Gong, Chen

    2018-01-01

    Highlights: •An extremely efficient method is proposed to solve the neutron diffusion equation with varying the cross sections. •Three orders of speedup is achieved for IAEA benchmark problems. •The method may open a new possibility of efficient high-fidelity modeling of large scale problems in nuclear engineering. -- Abstract: For the important applications which need carry out many times of neutron diffusion calculations such as the fuel depletion analysis and the neutronics-thermohydraulics coupling analysis, fast and accurate solutions of the neutron diffusion equation are demanding but necessary. In the present work, the certified reduced basis finite element method is proposed and implemented to solve the generalized eigenvalue problems of neutron diffusion with variable cross sections. The order reduced model is built upon high-fidelity finite element approximations during the offline stage. During the online stage, both the k eff and the spatical distribution of neutron flux can be obtained very efficiently for any given set of cross sections. Numerical tests show that a speedup of around 1100 is achieved for the IAEA two-dimensional PWR benchmark problem and a speedup of around 3400 is achieved for the three-dimensional counterpart with the fission cross-sections, the absorption cross-sections and the scattering cross-sections treated as parameters.

  1. Amplitude equations for a sub-diffusive reaction-diffusion system

    International Nuclear Information System (INIS)

    Nec, Y; Nepomnyashchy, A A

    2008-01-01

    A sub-diffusive reaction-diffusion system with a positive definite memory operator and a nonlinear reaction term is analysed. Amplitude equations (Ginzburg-Landau type) are derived for short wave (Turing) and long wave (Hopf) bifurcation points

  2. Measurement of SEU thresholds and cross sections at fixed incidence angles

    International Nuclear Information System (INIS)

    Criswell, T.L.; Oberg, D.L.; Wert, J.L.; Measel, P.R.; Wilson, W.E.

    1987-01-01

    Current SEU testing and analysis techniques have as basic assumptions that the charge deposited at a junction depends linearly on the linear energy transfer (LET) of the ion and the pathlength of the ion through an imagined parallelepiped that represents the depletion region. This study tests these assumptions for two bipolar parts, AMD 27LS00 and Fairchild 93L422, by irradiating at fixed angles while varying the LET of two ion species. It was found that the 27LS00 shows a pronounced ion species dependence, and may show a deviation of deposited charge from the usual inverse-cosine times a fixed depletion depth, while the 93L422 exhibited the expected inverse-cosine dependence and no ion species dependence

  3. Impact of implanted phosphorus on the diffusivity of boron and its applicability to silicon solar cells

    International Nuclear Information System (INIS)

    Schrof, Julian; Müller, Ralph; Benick, Jan; Hermle, Martin; Reedy, Robert C.

    2015-01-01

    Boron diffusivity reduction in extrinsically doped silicon was investigated in the context of a process combination consisting of BBr 3 furnace diffusion and preceding Phosphorus ion implantation. The implantation of Phosphorus leads to a substantial blocking of Boron during the subsequent Boron diffusion. First, the influences of ion implantation induced point defects as well as the initial P doping on B diffusivity were studied independently. Here, it was found that not the defects created during ion implantation but the P doping itself results in the observed B diffusion retardation. The influence of the initial P concentration was investigated in more detail by varying the P implantation dose. A secondary ion mass spectrometry (SIMS) analysis of the BSG layer after the B diffusion revealed that the B diffusion retardation is not due to potential P content in the BSG layer but rather caused by the n-type doping of the crystalline silicon itself. Based on the observations the B diffusion retardation was classified into three groups: (i) no reduction of B diffusivity, (ii) reduced B diffusivity, and (iii) blocking of the B diffusion. The retardation of B diffusion can well be explained by the phosphorus doping level resulting in a Fermi level shift and pairing of B and P ions, both reducing the B diffusivity. Besides these main influences, there are probably additional transient phenomena responsible for the blocking of boron. Those might be an interstitial transport mechanism caused by P diffusion that reduces interstitial concentration at the surface or the silicon/BSG interface shift due to oxidation during the BBr 3 diffusion process. Lifetime measurements revealed that the residual (non-blocked) B leads to an increased dark saturation current density in the P doped region. Nevertheless, electrical quality is on a high level and was further increased by reducing the B dose as well as by removing the first few nanometers of the silicon surface after the BBr 3

  4. Effect of uniaxial strain on adatom diffusion across {l_brace}1 1 1{r_brace}-faceted step

    Energy Technology Data Exchange (ETDEWEB)

    Yang Jianyu, E-mail: wuliyangjianyu@yahoo.com.cn [Department of Maths and Physics, Hunan Institute of Engineering, Donghu Street, Xiangtan 411104 (China); Hu Wangyu, E-mail: Wangyuhu2001@yahoo.com.cn [Department of Applied Physics, Hunan University, Changsha 410082 (China); Tang Jianfeng [Department of Applied Physics, Hunan Agricultural University, Changsha 410128 (China)

    2011-02-01

    Diffusion of Pt adatom across the strained {l_brace}1 1 1{r_brace}-faceted step is studied by embedded atom method along with nudged elastic band method. For adatom on the flat (1 1 1) surface, the anisotropic diffusion behavior is found as the uniaxial strain is imposed. For the strained {l_brace}1 1 1{r_brace}-faceted step, our results show that the maximum energy barrier for adatom crossing step edge remains approximately constant as the strain varied from -1.0% to 1.0%, and there is a rise as the larger uniaxial strain is applied. The calculated energy barrier for adatom diffusion along the step edge increases with increasing tensile strain, and the slope of the straight line is small.

  5. Breakdown of the Stokes-Einstein Relation for the Rotational Diffusivity of Polymer Grafted Nanoparticles in Polymer Melts.

    Science.gov (United States)

    Maldonado-Camargo, Lorena; Rinaldi, Carlos

    2016-11-09

    We report observations of breakdown of the Stokes-Einstein relation for the rotational diffusivity of polymer-grafted spherical nanoparticles in polymer melts. The rotational diffusivity of magnetic nanoparticles coated with poly(ethylene glycol) dispersed in poly(ethylene glycol) melts was determined through dynamic magnetic susceptibility measurements of the collective rotation of the magnetic nanoparticles due to imposed time-varying magnetic torques. These measurements clearly demonstrate the existence of a critical molecular weight for the melt polymer, below which the Stokes-Einstein relation accurately describes the rotational diffusivity of the polymer-grafted nanoparticles and above which the Stokes-Einstein relation ceases to apply. This critical molecular weight was found to correspond to a chain contour length that approximates the hydrodynamic diameter of the nanoparticles.

  6. Study of uranium-titanium diffusion; Etude de la diffusion uranium-titane

    Energy Technology Data Exchange (ETDEWEB)

    Adda, Y; Philibert, J [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires; Institut de Recherches de la Siderurgie Francaise (IRSID), 78 - Saint-Germain-en-Laye (France)

    1959-07-01

    In the overall scheme of research on the chemical diffusion of uranium and the transition metals we have studied the uranium-titanium system. The diffusion couples are prepared by welding together small plates of uranium and titanium under pressure, using a technique already described by us. After diffusion under vacuum, polished sections of the samples were micro-graphically examined. This inspection showed that intergranular diffusion occurred at temperatures below 650 deg. C. At higher temperatures, the diffusion occurred uniquely throughout the volume of the metal, and the diffusion zone appeared as a succession of micro-graphically distinguishable bands. Study of the rate of increase of these corresponding 'penetration coefficients'. In addition, we have observed important variations in microhardness within the diffusion zone, we have tried to relate these variations to the variation of concentration. This is measured with the Castaing microprobe. We have thus accurately established the concentration-penetration curves for temperatures between 950 and 1075 deg. C. From these curves, we have calculated the diffusion coefficient D as a function of the concentration using Matano's method. At all temperatures, D(c) curve has a U form as for the U-Zr system. The activation energy has a maximum value of 42 kcal/g atom at an atomic concentration of 0,5. Even though we have rarely seen pores in the diffusion zone, we have nevertheless observed an important Kirkendall-effect by studying the displacements x{sub i} of the interface using tungsten wires as markers. These displacements can be expressed as a function of time and temperature by the equation: x{sub i} = 0,9 t {sup 1/2} exp ( - 14600/(RT)). Finally, using Darken's equations we calculated the intrinsic diffusion coefficients Du and Dti as well as the corresponding activation energies. These energies are similar (QU = 38,5 and QTi = 40 kcal/at. g) and also almost the same as those found for the U-Zr system

  7. Experimental characterization of methane inverse diffusion flame

    KAUST Repository

    Elbaz, Ayman M.

    2014-06-26

    This article presents 10-kHz images of OH-PLIF simultaneously with 2-D PIV measurements in an inverse methane diffusion flame. Under a constant fuel flow rate, the central air jet Re was varied, leading to air to fuel velocity ratio, Vr, to vary from 8.3 to 66.5. Starting from Vr = 20.7, the flame is commonly characterized by three distinct zones. The length of the lower fuel entrainment region is inversely proportional to Vr. The flames investigated resemble a string shear layer confining this zone, and converging into the second distinct region, the flame neck zone. The third region is the rest of the flame, which spreads in a jet-like manner. The inverse diffusion flames exhibit varying degrees of partial premixing, depending upon on the velocity ratio Vr, and this region of partial premixing evolves into a well-mixed reaction zone along the flame centerline. The OH distribution correlated with the changes in the mean characteristics of the flow through reduction in the local Reynolds number due to heat release. The existence of a flame suppresses or laminarizes the turbulence at early axial locations and promotes fluctuations at the flame tip for flames with Vr < 49.8. In addition, the flame jet width can be correlated to the OH distribution. In upstream regions of the flames, the breaks in OH are counterbalanced by flame closures and are governed by edge flame propagation. These local extinctions were found to occur at locations where large flow structures were impinging on the flame and are associated with a locally higher strain rate or correlated to the local high strain rates at the flame hole edges without this flow impinging. Another contributor to re-ignition was found to be growing flame kernels. As the flames approach global blow-off, these kernels become the main mechanism for re-ignition further downstream of the flames. At low Vr, laminarization within the early regions of the flame provides an effective shield, preventing the jet flow from

  8. An axisymmetric diffusion experiment for the determination of diffusion and sorption coefficients of rock samples.

    Science.gov (United States)

    Takeda, M; Hiratsuka, T; Ito, K; Finsterle, S

    2011-04-25

    Diffusion anisotropy is a critical property in predicting migration of substances in sedimentary formations with very low permeability. The diffusion anisotropy of sedimentary rocks has been evaluated mainly from laboratory diffusion experiments, in which the directional diffusivities are separately estimated by through-diffusion experiments using different rock samples, or concurrently by in-diffusion experiments in which only the tracer profile in a rock block is measured. To estimate the diffusion anisotropy from a single rock sample, this study proposes an axisymmetric diffusion test, in which tracer diffuses between a cylindrical rock sample and a surrounding solution reservoir. The tracer diffusion between the sample and reservoir can be monitored from the reservoir tracer concentrations, and the tracer profile could also be obtained after dismantling the sample. Semi-analytical solutions are derived for tracer concentrations in both the reservoir and sample, accounting for an anisotropic diffusion tensor of rank two as well as the dilution effects from sampling and replacement of reservoir solution. The transient and steady-state analyses were examined experimentally and numerically for different experimental configurations, but without the need for tracer profiling. These experimental configurations are tested for in- and out-diffusion experiments using Koetoi and Wakkanai mudstones and Shirahama sandstone, and are scrutinized by a numerical approach to identify favorable conditions for parameter estimation. The analysis reveals the difficulty in estimating diffusion anisotropy; test configurations are proposed for enhanced identifiability of diffusion anisotropy. Moreover, it is demonstrated that the axisymmetric diffusion test is efficient in obtaining the sorption parameter from both steady-state and transient data, and in determining the effective diffusion coefficient if isotropic diffusion is assumed. Moreover, measuring reservoir concentrations in an

  9. An asixymmetric diffusion experiment for the determination of diffusion and sorption coefficients of rock samples

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, M.; Hiratsuka, T.; Ito, K.; Finsterle, S.

    2011-02-01

    Diffusion anisotropy is a critical property in predicting migration of substances in sedimentary formations with very low permeability. The diffusion anisotropy of sedimentary rocks has been evaluated mainly from laboratory diffusion experiments, in which the directional diffusivities are separately estimated by through-diffusion experiments using different rock samples, or concurrently by in-diffusion experiments in which only the tracer profile in a rock block is measured. To estimate the diffusion anisotropy from a single rock sample, this study proposes an axisymmetric diffusion test, in which tracer diffuses between a cylindrical rock sample and a surrounding solution reservoir. The tracer diffusion between the sample and reservoir can be monitored from the reservoir tracer concentrations, and the tracer profile could also be obtained after dismantling the sample. Semi-analytical solutions are derived for tracer concentrations in both the reservoir and sample, accounting for an anisotropic diffusion tensor of rank two as well as the dilution effects from sampling and replacement of reservoir solution. The transient and steady-state analyses were examined experimentally and numerically for different experimental configurations, but without the need for tracer profiling. These experimental configurations are tested for in- and out-diffusion experiments using Koetoi and Wakkanai mudstones and Shirahama sandstone, and are scrutinized by a numerical approach to identify favorable conditions for parameter estimation. The analysis reveals the difficulty in estimating diffusion anisotropy; test configurations are proposed for enhanced identifiability of diffusion anisotropy. Moreover, it is demonstrated that the axisymmetric diffusion test is efficient in obtaining the sorption parameter from both steady-state and transient data, and in determining the effective diffusion coefficient if isotropic diffusion is assumed. Moreover, measuring reservoir concentrations in an

  10. Self-diffusion and solute diffusion in alloys under irradiation: Influence of ballistic jumps

    International Nuclear Information System (INIS)

    Roussel, Jean-Marc; Bellon, Pascal

    2002-01-01

    We have studied the influence of ballistic jumps on thermal and total diffusion of solvent and solute atoms in dilute fcc alloys under irradiation. For the diffusion components that result from vacancy migration, we introduce generalized five-frequency models, and show that ballistic jumps produce decorrelation effects that have a moderate impact on self-diffusion but that can enhance or suppress solute diffusion by several orders of magnitude. These could lead to new irradiation-induced transformations, especially in the case of subthreshold irradiation conditions. We also show that the mutual influence of thermal and ballistic jumps results in a nonadditivity of partial diffusion coefficients: the total diffusion coefficient under irradiation may be less than the sum of the thermal and ballistic diffusion coefficients. These predictions are confirmed by kinetic Monte Carlo simulations. Finally, it is shown that the method introduced here can be extended to take into account the effect of ballistic jumps on the diffusion of dumbbell interstitials in dilute alloys

  11. Sol-Gel Glass Holographic Light-Shaping Diffusers

    Science.gov (United States)

    Yu, Kevin; Lee, Kang; Savant, Gajendra; Yin, Khin Swe (Lillian)

    2005-01-01

    Holographic glass light-shaping diffusers (GLSDs) are optical components for use in special-purpose illumination systems (see figure). When properly positioned with respect to lamps and areas to be illuminated, holographic GLSDs efficiently channel light from the lamps onto specified areas with specified distributions of illumination for example, uniform or nearly uniform irradiance can be concentrated with intensity confined to a peak a few degrees wide about normal incidence, over a circular or elliptical area. Holographic light diffusers were developed during the 1990s. The development of the present holographic GLSDs extends the prior development to incorporate sol-gel optical glass. To fabricate a holographic GLSD, one records a hologram on a sol-gel silica film formulated specially for this purpose. The hologram is a quasi-random, micro-sculpted pattern of smoothly varying changes in the index of refraction of the glass. The structures in this pattern act as an array of numerous miniature lenses that refract light passing through the GLSD, such that the transmitted light beam exhibits a precisely tailored energy distribution. In comparison with other light diffusers, holographic GLSDs function with remarkably high efficiency: they typically transmit 90 percent or more of the incident lamp light onto the designated areas. In addition, they can withstand temperatures in excess of 1,000 C. These characteristics make holographic GLSDs attractive for use in diverse lighting applications that involve high temperatures and/or requirements for high transmission efficiency for ultraviolet, visible, and near-infrared light. Examples include projectors, automobile headlights, aircraft landing lights, high-power laser illuminators, and industrial and scientific illuminators.

  12. Energetics and self-diffusion behavior of Zr atomic clusters on a Zr(0 0 0 1) surface

    Energy Technology Data Exchange (ETDEWEB)

    Liu Fusheng [Department of Applied Physics, Hunan University, Changsha 410082 (China); Hu Wangyu [Department of Applied Physics, Hunan University, Changsha 410082 (China)], E-mail: wangyuhu2001cn@yahoo.com.cn; Deng Huiqiu; Luo Wenhua; Xiao Shifang [Department of Applied Physics, Hunan University, Changsha 410082 (China); Yang Jianyu [Department of Maths and Physics, Hunan Institute of Engineering, Xiangtan 411104 (China)

    2009-09-15

    Using a molecular dynamics method and a modified analytic embedded atom potential, the energetic and the self-diffusion dynamics of Zr atomic clusters up to eight atoms on {alpha}-Zr(0 0 0 1) surface have been studied. The simulation temperature ranges from 300 to 1100 K and the simulation time varies from 20 to 40 ns. It's found that the heptamer and trimer are more stable comparing to other neighboring non-compact clusters. The diffusion coefficients of clusters are derived from the mean square displacement of cluster's mass-center and the present diffusion coefficients for clusters exhibit an Arrhenius behavior. The Arrhenius relation of the single adatom can be divided into two parts in different temperature range because of their different diffusion mechanisms. The migration energies of clusters increase with increasing the number of atoms in cluster. The differences of the prefactors also come from the diverse diffusion mechanisms. On the facet of 60 nm, the heptamer can be the nuclei in the crystal growth below 370 K.

  13. Analysing the diffusion and adoption of mobile IT across social worlds

    DEFF Research Database (Denmark)

    Agger Nielsen, Jeppe; Mengiste, Shegaw Anagaw

    2014-01-01

    focused on organizations and individuals as the unit of analysis with little emphasis on the environment in which health care organizations are embedded. We propose the social worlds approach as a promising theoretical lens to deal with this limitation and reports from a case study of a mobile......Abstract Diffusion and adoption of IT innovations (such as mobile IT) in health care organizations is a dynamic process of change involving multiple stakeholders with competing interests, varying commitments and values. Yet, extant literature on mobile IT diffusion and adoption has predominantly...... IT innovation in elderly home care in Denmark including both the socio-political level and organization level within the analysis. By using notions of social worlds, trajectories and boundary objects, we show how mobile IT innovation in Danish home care facilitated negotiation and collaboration across different...

  14. Diffuse colonies of human skin fibroblasts in relation to cellular senescence and proliferation.

    Science.gov (United States)

    Zorin, Vadim; Zorina, Alla; Smetanina, Nadezhda; Kopnin, Pavel; Ozerov, Ivan V; Leonov, Sergey; Isaev, Artur; Klokov, Dmitry; Osipov, Andreyan N

    2017-05-16

    Development of personalized skin treatment in medicine and skin care may benefit from simple and accurate evaluation of the fraction of senescent skin fibroblasts that lost their proliferative capacity. We examined whether enriched analysis of colonies formed by primary human skin fibroblasts, a simple and widely available cellular assay, could reveal correlations with the fraction of senescent cells in heterogenic cell population. We measured fractions of senescence associated β-galactosidase (SA-βgal) positive cells in either mass cultures or colonies of various morphological types (dense, mixed and diffuse) formed by skin fibroblasts from 10 human donors. Although the donors were chosen to be within the same age group (33-54 years), the colony forming efficiency of their fibroblasts (ECO-f) and the percentage of dense, mixed and diffuse colonies varied greatly among the donors. We showed, for the first time, that the SA-βgal positive fraction was the largest in diffuse colonies, confirming that they originated from cells with the least proliferative capacity. The percentage of diffuse colonies was also found to correlate with the SA-βgal positive cells in mass culture. Using Ki67 as a cell proliferation marker, we further demonstrated a strong inverse correlation (r=-0.85, p=0.02) between the percentage of diffuse colonies and the fraction of Ki67+ cells. Moreover, a significant inverse correlation (r=-0.94, p=0.0001) between the percentage of diffuse colonies and ECO-f was found. Our data indicate that quantification of a fraction of diffuse colonies may provide a simple and useful method to evaluate the extent of cellular senescence in human skin fibroblasts.

  15. Dynamics diffusion behaviors of Pd small clusters on a Pd(1 1 1) surface

    International Nuclear Information System (INIS)

    Liu, Fusheng; Hu, Wangyu; Deng, Huiqiu; He, Rensheng; Yang, Xiyuan; Lu, Kuilin; Deng, Lei; Luo, Wenhua

    2010-01-01

    Using molecular dynamics, nudged elastic band and modified analytic embedded atom methods, the self-diffusion dynamics properties of palladium atomic clusters up to seven atoms on the Pd (1 1 1) surface have been studied at temperatures ranging from 300 to 1000 K. The simulation time varies from 20 to 75 ns according to the cluster sizes and the temperature ranges. The heptamer and trimer are more stable than the other neighboring clusters. The diffusion coefficients of the clusters are derived from the mean square displacement of the cluster's mass-center, and the diffusion prefactors D 0 and activation energies E a are derived from the Arrhenius relation. The activation energy of the clusters increases with the increasing atom number in the clusters, especially for Pd 6 to Pd 7 . The analysis of trajectories shows the noncompact clusters diffuse by the local diffusion mechanism but the compact clusters diffuse mainly by the whole gliding mechanism, and some static energy barriers of the diffusion modes are calculated. From Pd 2 to Pd 6 , the prefactors are in the range of the standard value 10 −3  cm 2  s −1 , and the prefactor of Pd 7 cluster is 2 orders of magnitude greater than that of the single Pd adatom because of a large number of nonequivalent diffusion processes. The heptamer can be the nucleus in the room temperature range according to nucleation theory

  16. Modeling and experimental evaluation of the diffusion bonding of the oxide dispersion strengthened steel PM2000

    International Nuclear Information System (INIS)

    Sittel, Wiebke; Basuki, Widodo W.; Aktaa, Jarir

    2015-01-01

    A modeling based optimization process of the solid state diffusion bonding is presented for joining ferritic oxide dispersion strengthened steels PM2000. An optimization study employing varying bonding temperatures and pressures results in almost the same strength and toughness of the bonded compared to the as received material. TEM investigations of diffusion bonded samples show a homogeneous distribution of oxide particles at the bonding seam similar to that in the bulk. Hence, no loss in strength or creep resistance due to oxide particle agglomeration is found, as verified by the mechanical properties observed for the joint.

  17. Mutual diffusion of binary liquid mixtures containing methanol, ethanol, acetone, benzene, cyclohexane, toluene, and carbon tetrachloride

    Energy Technology Data Exchange (ETDEWEB)

    Guevara-Carrion, Gabriela; Janzen, Tatjana; Muñoz-Muñoz, Y. Mauricio; Vrabec, Jadran, E-mail: jadran.vrabec@uni-paderborn.de [Thermodynamics and Energy Technology, University of Paderborn, 33098 Paderborn (Germany)

    2016-03-28

    Mutual diffusion coefficients of all 20 binary liquid mixtures that can be formed out of methanol, ethanol, acetone, benzene, cyclohexane, toluene, and carbon tetrachloride without a miscibility gap are studied at ambient conditions of temperature and pressure in the entire composition range. The considered mixtures show a varying mixing behavior from almost ideal to strongly non-ideal. Predictive molecular dynamics simulations employing the Green-Kubo formalism are carried out. Radial distribution functions are analyzed to gain an understanding of the liquid structure influencing the diffusion processes. It is shown that cluster formation in mixtures containing one alcoholic component has a significant impact on the diffusion process. The estimation of the thermodynamic factor from experimental vapor-liquid equilibrium data is investigated, considering three excess Gibbs energy models, i.e., Wilson, NRTL, and UNIQUAC. It is found that the Wilson model yields the thermodynamic factor that best suits the simulation results for the prediction of the Fick diffusion coefficient. Four semi-empirical methods for the prediction of the self-diffusion coefficients and nine predictive equations for the Fick diffusion coefficient are assessed and it is found that methods based on local composition models are more reliable. Finally, the shear viscosity and thermal conductivity are predicted and in most cases favorably compared with experimental literature values.

  18. A study of the diffusion mechanisms in amorphous metallic alloys: diffusion and diffusion under high pressure in an amorphous NiZr alloy

    International Nuclear Information System (INIS)

    Grandjean, A.

    1996-01-01

    The aim of this work is a better understanding of the diffusion mechanism in amorphous metallic alloys. Then interdiffusion and hafnium diffusion in amorphous NiZr alloy have been studied. Samples used are made by sputtering co-deposition under vacuum and are well relaxed before the diffusion measurements. The time evolution of resistivity during annealing due to the decay of a composition modulated film has been measured and from this change in resistivity interdiffusion coefficients have been determined. Dependence of Hf diffusion on temperature and pressure has been studied using (SIMS). In this two cases, the diffusion process obeys an Arrhenius law and gives an activation energy of 1.33 eV for interdiffusion, and 0.76 eV for Hf diffusion. An effect of pressure on Hf diffusion has been found leading to an activation volume of 8.5 angstrom 3 . Thanks to these results, two approaches of the diffusion mechanisms in these systems have been proposed. The first comes from a comparison with the diffusion mechanisms in crystalline metals, that is to say by point defects. The second is an hypothesis of collective motions in these non crystalline alloys. (author)

  19. Continuous versus discontinuous albedo representations in a simple diffusive climate model

    Science.gov (United States)

    Simmons, P. A.; Griffel, D. H.

    1988-07-01

    A one-dimensional annually and zonally averaged energy-balance model, with diffusive meridional heat transport and including icealbedo feedback, is considered. This type of model is found to be very sensitive to the form of albedo used. The solutions for a discontinuous step-function albedo are compared to those for a more realistic smoothly varying albedo. The smooth albedo gives a closer fit to present conditions, but the discontinuous form gives a better representation of climates in earlier epochs.

  20. Tc-99 Decontamination From Heat Treated Gaseous Diffusion Membrane -Phase I

    Energy Technology Data Exchange (ETDEWEB)

    Oji, L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Wilmarth, B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Restivo, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Duignan, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-03-13

    Uranium gaseous diffusion cascades represent a significant environmental challenge to dismantle, containerize and dispose as low-level radioactive waste. Baseline technologies rely on manual manipulations involving direct access to technetium-contaminated piping and materials. There is a potential to utilize novel thermal decontamination technologies to remove the technetium and allow for on-site disposal of the very large uranium converters. Technetium entered these gaseous diffusion cascades as a hexafluoride complex in the same fashion as uranium. Technetium, as the isotope Tc-99, is an impurity that follows uranium in the first cycle of the Plutonium and Uranium Extraction (PUREX) process. The technetium speciation or exact form in the gas diffusion cascades is not well defined. Several forms of Tc-99 compounds, mostly the fluorinated technetium compounds with varying degrees of volatility have been speculated by the scientific community to be present in these cascades. Therefore, there may be a possibility of using thermal desorption, which is independent of the technetium oxidation states, to perform an in situ removal of the technetium as a volatile species and trap the radionuclide on sorbent traps which could be disposed as low-level waste.

  1. Optical Transient-Grating Measurements of Spin Diffusion and Relaxation in a Two-Dimensional Electron Gas

    International Nuclear Information System (INIS)

    Weber, Christopher P.

    2005-01-01

    Spin diffusion in n-GaAs quantum wells, as measured by our optical transient-grating technique, is strongly suppressed relative to that of charge. Over a broad range of temperatures and dopings, the suppression of Ds relative to Dc agrees quantitatively with the prediction of ''spin Coulomb dra'' theory, which takes into account the exchange of spin in electron-electron collisions. Moreover, the spin-diffusion length, Ls, is a nearly constant 1 micrometer over the same range of T and n, despite Ds's varying by nearly two orders of magnitude. This constancy supports the D'yakonov-Perel'-Kachorovskii model of spin relaxation through interrupted precessional dephasing in the spin-orbit field

  2. Generation of a library of two-group diffusion and kinetics parameters for DYN3D

    International Nuclear Information System (INIS)

    Petkov, P.T.; Christoskov, I.D.; Kamenov, K.; Antov, A.

    2002-01-01

    A library of two-group diffusion and kinetics parameters has been generated for the neutron kinetics code DYN3D for analysis of reactivity initiated accidents for the WWER-440 reactors, based on the MAGRU approximation methodology for the diffusion and kinetics parameters. The accuracy of this methodology has been tested and the conclusion is that it is not adequate. A new approximation methodology, based on interpolation for the most widely varying parameters, i.e. the moderator temperature and density, and on approximation for all other independent parameters, is presented. The methodology of calculation of the kinetics parameters using primary data from ENDF-B/VI is described in detail (Authors)

  3. Some experiments to study diffusive transport through a semi interpenetrating polymeric network in the absence and presence of aqueous electrolytes

    Science.gov (United States)

    Biswas, Pritha; Das, Atreyee; Yasmin, Tanvee; Kanjilal, Baishali; Chakrabarti, Haimanti

    2018-05-01

    The study of ion transport in biological system has become a topic of great current interest. This work presents the diffusive transport properties through a typical semi interpenetrating polymeric network (SIPN) which mimics many characteristic features of the walls of human food pipes. The SIPN matrix has been synthesised from Polyvinyl alcohol, Acrylamide monomer, Glutaraldehyde and Ammonium Per sulphate in our laboratory is utilised to study the diffusive transport in the absence and presence of aqueous electrolyte (KCl) at varying concentrations. The diffusivity of the SIPN polymer hydrogel was estimated by the `Theory of Elastomer' to get an insight into process of Potassium and Chlorine ion transport through the SIPN.

  4. Effect of stress on the diffusion kinetics of methane during gas desorption in coal matrix under different equilibrium pressures

    Science.gov (United States)

    Li, Chengwu; Xue, Honglai; Hu, Po; Guan, Cheng; Liu, Wenbiao

    2018-06-01

    Stress has a significant influence on gas diffusion, which is a key factor for methane recovery in coal mines. In this study, a series of experiments were performed to investigate effect of stress on the gas diffusivity during desorption in tectonic coal. Additionally, the desorbed data were modeled using the unipore and bidisperse models. The results show that the bidisperse model better describes the diffusion kinetics than the unipore model in this study. Additionally, the modeling results using the bidisperse approach suggest that the stress impact on the macropore diffusivity is greater than the stress on the micropore diffusivity. Under the same equilibrium pressure, the diffusivity varies with stress according to a four-stage function, which shows an ‘M-shape’. As the equilibrium gas pressure increased from 0.6 to 1.7 MPa, the critical point between stage 2 and stage 3 and between stage 3 and stage 4 transferred to a low stress. This difference is attributed to the gas pressure effects on the physical and mechanical properties of coal. These observations indicate that both the stress and gas pressure can significantly impact gas diffusion and may have significant implications on methane recovery in coal mines.

  5. Drug diffusion across skin with diffusivity spatially modulated

    Science.gov (United States)

    Montoya Arroyave, Isabel

    2014-05-01

    A diffusion and delivery model of a drug across the skin with diffusivity spatially modulated is formulated and solved analytically using computer algebra. The model is developed using one-dimensional diffusion equation with a diffusivity which is a function of position in the skin; with an initial condition which is describing that the drug is initially contained inside a therapeutic patch; with a boundary condition according to which the change in concentration in the patch is minimal, such that assumption of zero flux at the patch-skin interface is valid; and with other boundary condition according to which the microcirculation in the capillaries just below the dermis carries the drug molecules away from the site at a very fast rate, maintaining the inner concentration at 0. The model is solved analytically by the method of the Laplace transform, with Bromwich integral and residue theorem. The concentration profile of the drug in the skin is expressed as an infinite series of Bessel functions. The corresponding total amount of delivered drug is expressed as an infinite series of decreasing exponentials. Also, the corresponding effective time for the therapeutic patch is determined. All computations were performed using computer algebra software, specifically Maple. The analytical results obtained are important for understanding and improving currentapplications of therapeutic patches. For future research it is interesting to consider more general models of spatial modulation of the diffusivity and the possible application of other computer algebra software such as Mathematica and Maxima.

  6. Adsorption and diffusion of dilute gases in microporous graphite pellets in relation to their macroscopic structure

    International Nuclear Information System (INIS)

    Savvakis, C.; Tsimillis, K.; Petropoulos, J.H.

    1982-01-01

    The adsorption and gas-phase or surface diffusion properties of a series of microporous pellets made by the compaction of very fine graphite powder are reported. The overall degree of compaction of the powder was very nearly the same in all cases, but the mode of compaction was varied. The resulting variation in the macroscopic structural inhomogeneity of the pellets (examined in some detail in a parallel study) has been shown to affect both adsorption and diffusion properties. The effect on adsorption properties was modest but definite and can be accounted for by the dependence of the extent of adsorption on pore size. On the other hand, the experimental gas-phase and surface diffusion coefficients were strongly dependent on macroscopic structure. The dependence of the surface diffusion coefficient was particularly marked and is of special interest: such effects have not, so far, been taken into account in interpretations of experimental data, although they can be predicted theoretically. Previous analyses of the structure dependence of experimental gas-phase and surface diffusion coefficients are thus subject to revision in the light of the present conclusions. (author)

  7. Now consider diffusion

    International Nuclear Information System (INIS)

    Dungey, J.W.

    1984-01-01

    The authors want to talk about future work, but first he will reply to Stan Cowley's comment on his naivety in believing in the whole story to 99% confidence in '65, when he knew about Fairfield's results. Does it matter whether you make the right judgment about theories? Yes, it does, particularly for experimentalists perhaps, but also for theorists. The work you do later depends on the judgment you've made on previous work. People have wasted a lot of time developing on insecure or even wrong foundations. Now for future work. One mild surprise the authors have had is that they haven't heard more about diffusion, in two contexts. Gordon Rostoker is yet to come and he may talk about particles getting into the magnetosphere by diffusion. Lots of noise is observed and so diffusion must happen. If time had not been short, the authors were planning to discuss in a handwaving way what sort of diffusion mechanisms one might consider. The other aspect of diffusion he was going to talk about is at the other end of things and is velocity diffusion, which is involved in anomalous resistivity

  8. Deformation-driven diffusion and plastic flow in amorphous granular pillars.

    Science.gov (United States)

    Li, Wenbin; Rieser, Jennifer M; Liu, Andrea J; Durian, Douglas J; Li, Ju

    2015-06-01

    We report a combined experimental and simulation study of deformation-induced diffusion in compacted quasi-two-dimensional amorphous granular pillars, in which thermal fluctuations play a negligible role. The pillars, consisting of bidisperse cylindrical acetal plastic particles standing upright on a substrate, are deformed uniaxially and quasistatically by a rigid bar moving at a constant speed. The plastic flow and particle rearrangements in the pillars are characterized by computing the best-fit affine transformation strain and nonaffine displacement associated with each particle between two stages of deformation. The nonaffine displacement exhibits exponential crossover from ballistic to diffusive behavior with respect to the cumulative deviatoric strain, indicating that in athermal granular packings, the cumulative deviatoric strain plays the role of time in thermal systems and drives effective particle diffusion. We further study the size-dependent deformation of the granular pillars by simulation, and find that different-sized pillars follow self-similar shape evolution during deformation. In addition, the yield stress of the pillars increases linearly with pillar size. Formation of transient shear lines in the pillars during deformation becomes more evident as pillar size increases. The width of these elementary shear bands is about twice the diameter of a particle, and does not vary with pillar size.

  9. Diffusion in silicon isotope heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Silvestri, Hughes Howland [Univ. of California, Berkeley, CA (United States)

    2004-01-01

    The simultaneous diffusion of Si and the dopants B, P, and As has been studied by the use of a multilayer structure of isotopically enriched Si. This structure, consisting of 5 pairs of 120 nm thick natural Si and 28Si enriched layers, enables the observation of 30Si self-diffusion from the natural layers into the 28Si enriched layers, as well as dopant diffusion from an implanted source in an amorphous Si cap layer, via Secondary Ion Mass Spectrometry (SIMS). The dopant diffusion created regions of the multilayer structure that were extrinsic at the diffusion temperatures. In these regions, the Fermi level shift due to the extrinsic condition altered the concentration and charge state of the native defects involved in the diffusion process, which affected the dopant and self-diffusion. The simultaneously recorded diffusion profiles enabled the modeling of the coupled dopant and self-diffusion. From the modeling of the simultaneous diffusion, the dopant diffusion mechanisms, the native defect charge states, and the self- and dopant diffusion coefficients can be determined. This information is necessary to enhance the physical modeling of dopant diffusion in Si. It is of particular interest to the modeling of future electronic Si devices, where the nanometer-scale features have created the need for precise physical models of atomic diffusion in Si. The modeling of the experimental profiles of simultaneous diffusion of B and Si under p-type extrinsic conditions revealed that both species are mediated by neutral and singly, positively charged Si self-interstitials. The diffusion of As and Si under extrinsic n-type conditions yielded a model consisting of the interstitialcy and vacancy mechanisms of diffusion via singly negatively charged self-interstitials and neutral vacancies. The simultaneous diffusion of P and Si has been modeled on the basis of neutral and singly negatively charged self-interstitials and neutral and singly

  10. Conservative diffusions

    International Nuclear Information System (INIS)

    Carlen, E.A.

    1984-01-01

    In Nelson's stochastic mechanics, quantum phenomena are described in terms of diffusions instead of wave functions. These diffusions are formally given by stochastic differential equations with extremely singular coefficients. Using PDE methods, we prove the existence of solutions. This reult provides a rigorous basis for stochastic mechanics. (orig.)

  11. Determination of the effective diffusion coefficient of water through cement-based materials when applying an electrical field

    International Nuclear Information System (INIS)

    Wattez, T.

    2013-01-01

    previously formulated. The formation factor, as well as the effective diffusion coefficient, does not depend on the ionic strength of the material pore solution, this being validated for solutions of different composition encompassing the cement materials pore solution diversity. The formation factor also does not vary when the amplitude of the applied electrical field varies, provided both the test duration and the electrical field amplitude are kept within acceptable boundaries. Finally, the comparison between the values of the effective diffusion coefficient obtained with both the constant field migration test and the natural diffusion techniques, for perfectly conditioned and prepared materials, leads us to invalidate the assumption that the effects of the double electrical layer are negligible. (author) [fr

  12. Evolution of interfacial toughness of a thermal barrier system with a Pt-diffused {gamma}/{gamma}' bond coat

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, X.; Liu, J. [School of Materials, University of Manchester, Manchester M1 7HS (United Kingdom); Rickerby, D.S.; Jones, R.J. [Rolls-Royce Plc., PO Box 31, Derby DE24 8BJ (United Kingdom); Xiao, P., E-mail: ping.xiao@manchester.ac.uk [School of Materials, University of Manchester, Manchester M1 7HS (United Kingdom)

    2011-09-15

    A strain-to-fail method has been employed to examine the interfacial adhesion of electron beam-physical vapor deposited thermal barrier coatings (TBCs) with a Pt-diffused {gamma}/{gamma}' bond coat. Based on a previously established model, the estimated interfacial toughness decreases with oxidation time of TBCs. Furthermore, the interfacial toughness value varies considerably with the use of different Young's moduli in the model. It is believed that the modulus obtained from beam bending represents the columnar structure of the TBC. In this case, the mode I interfacial toughness was found to vary from 10 J m{sup -2} for as-deposited TBCs to 0.79 J m{sup -2} for the 60 h oxidized TBCs. The degradation of adhesion could be attributed to the defect formation and impurity segregation at the TGO/bond coat interface, which is associated with the diffusion of Pt.

  13. Methodology for using prompt gamma activation analysis to measure the binary diffusion coefficient of a gas in a porous medium

    International Nuclear Information System (INIS)

    Rios Perez, Carlos A.; Biegalski, Steve R.; Deinert, Mark R.

    2012-01-01

    Highlights: ► Prompt gamma activation analysis is used to study gas diffusion in a porous system. ► Diffusion coefficients are determined using prompt gamma activation analysis. ► Predictions concentrations fit experimental measurements with an R 2 of 0.98. - Abstract: Diffusion plays a critical role in determining the rate at which gases migrate through porous systems. Accurate estimates of diffusion coefficients are essential if gas transport is to be accurately modeled and better techniques are needed that can be used to measure these coefficients non-invasively. Here we present a novel method for using prompt gamma activation analysis to determine the binary diffusion coefficients of a gas in a porous system. Argon diffusion experiments were conducted in a 1 m long, 10 cm diameter, horizontal column packed with a SiO 2 sand. The temporal variation of argon concentration within the system was measured using prompt gamma activation analysis. The binary diffusion coefficient was obtained by comparing the experimental data with the predictions from a numerical model in which the diffusion coefficient was varied until the sum of square errors between experiment and model data was minimized. Predictions of argon concentration using the optimal diffusivity fit experimental measurements with an R 2 of 0.983.

  14. Investigation of the extraction of short diffusion lengths from simulated electron-beam induced current

    Energy Technology Data Exchange (ETDEWEB)

    Wee, D.; Parish, G.; Nener, B. [Microelectronics Research Group, The University of Western Australia, 35 Stirling Highway, 6009 Crawley (Perth) (Australia)

    2010-10-15

    This paper reports on the investigations via 2-D simulation into the accuracy of diffusion length extraction from scanning electron-beam induced current measurements when the diffusion length, L is very short. L is extracted by using the direct method proposed by Chan et al.[1] and later refined by Kurniawan and Ong[2] to take finite junction depth into account. The 2-D simulations were undertaken using Synopsys {sup registered} Sentaurus TCAD and a realistic electron-hole pair generation volume was created using CASINO v2.42[3], a Monte Carlo Scanning Electron Microscope interaction simulation software, and imported into Sentaurus. The voltage and diameter of the electron beam and diffusion length and surface recombination velocity of the semiconductor materials were varied in the simulations to determine the errors in the diffusion length extracted from the EBIC signals as a function of these parameters. The results of the simulation show that the accuracy of the method proposed in[1] is reasonably accurate and that the beam voltage and spot size do not have significant effects on the accuracy (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Investigation of the extraction of short diffusion lengths from simulated electron-beam induced current

    International Nuclear Information System (INIS)

    Wee, D.; Parish, G.; Nener, B.

    2010-01-01

    This paper reports on the investigations via 2-D simulation into the accuracy of diffusion length extraction from scanning electron-beam induced current measurements when the diffusion length, L is very short. L is extracted by using the direct method proposed by Chan et al.[1] and later refined by Kurniawan and Ong[2] to take finite junction depth into account. The 2-D simulations were undertaken using Synopsys registered Sentaurus TCAD and a realistic electron-hole pair generation volume was created using CASINO v2.42[3], a Monte Carlo Scanning Electron Microscope interaction simulation software, and imported into Sentaurus. The voltage and diameter of the electron beam and diffusion length and surface recombination velocity of the semiconductor materials were varied in the simulations to determine the errors in the diffusion length extracted from the EBIC signals as a function of these parameters. The results of the simulation show that the accuracy of the method proposed in[1] is reasonably accurate and that the beam voltage and spot size do not have significant effects on the accuracy (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Self-diffusion dynamic behavior of atomic clusters on Re(0 0 0 1) surface

    Energy Technology Data Exchange (ETDEWEB)

    Liu Fusheng [Department of Applied Physics, Hunan University, Changsha 410082 (China); Hu Wangyu, E-mail: wangyuhu2001cn@yahoo.com.cn [Department of Applied Physics, Hunan University, Changsha 410082 (China); Deng Huiqiu; Luo Wenhua; Xiao Shifang [Department of Applied Physics, Hunan University, Changsha 410082 (China); Yang Jianyu [Department of Maths and Physics, Hunan Institute of Engineering, Xiangtan 411104 (China)

    2009-08-15

    Using molecular dynamics simulations and a modified analytic embedded atom potential, the self-diffusion dynamics of rhenium atomic clusters up to seven atoms on Re(0 0 0 1) surface have been studied in the temperature ranges from 600 K to 1900 K. The simulation time varies from 20 ns to 200 ns according to the cluster sizes and the temperature. The heptamer and trimer are more stable comparing to other neighboring non-compact clusters. The diffusion coefficients of clusters are derived from the mean square displacement of cluster's mass-center, and diffusion prefactors D{sub 0} and activation energies E{sub a} are derived from the Arrhenius relation. It is found that the Arrhenius relation of the adatom can be divided into two parts at different temperature range. The activation energy of clusters increases with the increasing of the atom number in clusters. The prefactor of the heptamer is 2-3 orders of magnitude higher than a usual prefactor because of a large number of nonequivalent diffusion processes. The trimer and heptamer are the nuclei at different temperature range according to the nucleation theory.

  17. Diffusion-weighted MRI of the prostate; Diffusionsgewichtete MRT der Prostata

    Energy Technology Data Exchange (ETDEWEB)

    Mueller-Lisse, U.G.; Scherr, M.K. [Klinikum der Ludwig-Maximilians-Universitaet Muenchen, Institut fuer Klinische Radiologie, Muenchen (Germany); Mueller-Lisse, U.L. [Klinikum der Ludwig-Maximilians-Universitaet Muenchen, Klinik und Poliklinik fuer Urologie, Muenchen (Germany); Zamecnik, P.; Schlemmer, H.P.W. [Deutsches Krebsforschungszentrum (DKFZ), Abteilung fuer Radiologische Diagnostik, Heidelberg (Germany)

    2011-03-15

    Diffusion-weighted magnetic resonance imaging (DWI) can complement MRI of the prostate in the detection and localization of prostate cancer, particularly after previous negative biopsy. A total of 13 original reports and 2 reviews published in 2010 demonstrate that prostate cancer can be detected by DWI due to its increased cell density and decreased diffusiveness, either qualitatively in DWI images or quantitatively by means of the apparent diffusion coefficient (ADC). In the prostate, the ADC is influenced by the strength of diffusion weighting, localization (peripheral or transitional zone), presence of prostatitis or hemorrhage and density and differentiation of prostate cancer cells. Mean differences between healthy tissue of the peripheral zone and prostate cancer appear to be smaller for ADC than for the (choline + creatine)/citrate ratio in MR spectroscopy. Test quality parameters vary greatly between different studies but appear to be slightly better for combined MRI and DWI than for MRI of the prostate alone. Clinical validation of DWI of the prostate requires both increased technical conformity and increased numbers of patients in clinical studies. (orig.) [German] Die diffusionsgewichtete MRT (''diffusion-weighted imaging'', DWI) kann die MRT der Prostata bei der Erkennung und Lokalisation von Prostatakarzinomen besonders nach vorangehender, negativer Stanzbiopsie ergaenzen. In 13 klinischen Original- und 2 Uebersichtsarbeiten des Jahres 2010 zeigt sich, dass die DWI Prostatakarzinome an Einschraenkungen der freien Teilchenbeweglichkeit bei erhoehter Zelldichte qualitativ im Bild oder quantitativ an Hand des ''apparent diffusion coefficient'' (ADC) nachweist. Den ADC in der Prostata beeinflussen Staerke der Diffusionsgewichtung, Lokalisation (periphere Zone, Transitionalzone), Vorliegen von Prostatitis oder Einblutung sowie Streudichte und Differenzierung von Prostatakarzinomzellen. Unterschiede zwischen gesundem

  18. New diffusion-like solutions of one-speed transport equations in spherical geometry

    International Nuclear Information System (INIS)

    Sahni, D.C.

    1988-01-01

    Stationary, one-speed, spherically symmetric transport equations are considered in a conservative medium. Closed-form expressions are obtained for the angular flux ψ(r, μ) that yield a total flux varying as 1/r by using Sonine transforms. Properties of this solution are studied and it is shown that the solution can not be identified as a diffusion mode solution of the transport equation. Limitations of the Sonine transform technique are noted. (author)

  19. Turing instability in reaction-diffusion systems with nonlinear diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Zemskov, E. P., E-mail: zemskov@ccas.ru [Russian Academy of Sciences, Dorodnicyn Computing Center (Russian Federation)

    2013-10-15

    The Turing instability is studied in two-component reaction-diffusion systems with nonlinear diffusion terms, and the regions in parametric space where Turing patterns can form are determined. The boundaries between super- and subcritical bifurcations are found. Calculations are performed for one-dimensional brusselator and oregonator models.

  20. Meyer-Neldel rule for Cu (I) diffusion in In{sub 2}S{sub 3} layers

    Energy Technology Data Exchange (ETDEWEB)

    Juma, Albert, E-mail: albert.juma@helmholtz-berlin.de; Dittrich, Thomas [Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Wafula, Henry [Masinde Muliro University of Science and Technology, P.O. Box 190-50100, Kakamega (Kenya); Wendler, Elke [Institut für Festkörperphysik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743 Jena (Germany)

    2014-02-07

    The nature of barriers for atomic transport in In{sub 2}S{sub 3} layers has been varied by addition of chlorine. Diffusion of Cu(I) from a removable CuSCN source was used to probe the variation of the barriers. The Meyer-Neldel (compensation) rule was observed with a Meyer-Neldel energy (E{sub MN}) and a proportionality prefactor (D{sub 00}) amounting to 40 meV and 5 × 10{sup −14} cm{sup 2}/s, respectively. D{sub 00} shows that the elementary excitation step is independent of the specific mechanism and nature of the barrier including different densities of Cl in In{sub 2}S{sub 3}. The value of E{sub MN} implies that coupling of the diffusing species to an optical-phonon bath is the source of the multiple excitations supplying the energy to overcome the diffusion barriers.

  1. Thermal diffusivity from heat wave propagation in Wendelstein 7-AS

    Energy Technology Data Exchange (ETDEWEB)

    Hartfuss, H J; Erckmann, V; Giannone, L.; Maassberg, H; Tutter, M [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany)

    1991-01-01

    Electron thermal diffusivity studies can be carried out in two ways: static and dynamic. In the static analysis, the transport coefficients are determined from the stationary power balance, in the dynamic analysis from the propagation of a small perturbation of the stationary plasma state which can be caused by either a sawtooth generated heat pulse or modulation of the heating power. Electron thermal diffusivity [chi][sub e] is deduced from the evolution of the perturbed electron temperature T[sub e] at different locations r[sub i] in the plasma. [chi][sub e] values obtained from perturbation analysis are usually greater than those calculated from power balance. It has been pointed out that there is a principal difference between static and perturbative analysis. Whereas the static method yields the transport coefficient [chi][sub e]=q[sub e]/n[sub e][nabla]T[sub e], the perturbative method leads to an increase of the flux q[sub e] as a result of an increase in the temperature gradient [nabla]T[sub e]. The quantity determined is an incremental [chi][sub e] as defined by [chi][sub e][sup inc]=[partial derivative]q[sub e]/n[sub e][partial derivative]([nabla]T[sub e]). By varying the modulation of the heating power at different frequencies and amplitudes one can address the question whether or not this discrepancy is a function of the varied parameters. (author) 7 refs., 2 figs.

  2. Behaviors and kinetics of toluene adsorption-desorption on activated carbons with varying pore structure.

    Science.gov (United States)

    Yang, Xi; Yi, Honghong; Tang, Xiaolong; Zhao, Shunzheng; Yang, Zhongyu; Ma, Yueqiang; Feng, Tiecheng; Cui, Xiaoxu

    2018-05-01

    This work was undertaken to investigate the behaviors and kinetics of toluene adsorption and desorption on activated carbons with varying pore structure. Five kinds of activated carbon from different raw materials were selected. Adsorption isotherms and breakthrough curves for toluene were measured. Langmuir and Freundlich equations were fitted to the equilibrium data, and the Freundlich equation was more suitable for simulating toluene adsorption. The process consisted of monolayer, multilayer and partial active site adsorption types. The effect of the pore structure of the activated carbons on toluene adsorption capacity was investigated. The quasi-first-order model was more suitable for describing the process than the quasi-second-order model. The adsorption data was also modeled by the internal particle diffusion model and it was found that the adsorption process could be divided into three stages. In the external surface adsorption process, the rate depended on the specific surface area. During the particle diffusion stage, pore structure and volume were the main factors affecting adsorption rate. In the final equilibrium stage, the rate was determined by the ratio of meso- and macro-pores to total pore volume. The rate over the whole adsorption process was dominated by the toluene concentration. The desorption behavior of toluene on activated carbons was investigated, and the process was divided into heat and mass transfer parts corresponding to emission and diffusion mechanisms, respectively. Physical adsorption played the main role during the adsorption process. Copyright © 2017. Published by Elsevier B.V.

  3. Structural-electromagnetic bidirectional coupling analysis of space large film reflector antennas

    Science.gov (United States)

    Zhang, Xinghua; Zhang, Shuxin; Cheng, ZhengAi; Duan, Baoyan; Yang, Chen; Li, Meng; Hou, Xinbin; Li, Xun

    2017-10-01

    As used for energy transmission, a space large film reflector antenna (SLFRA) is characterized by large size and enduring high power density. The structural flexibility and the microwave radiation pressure (MRP) will lead to the phenomenon of structural-electromagnetic bidirectional coupling (SEBC). In this paper, the SEBC model of SLFRA is presented, then the deformation induced by the MRP and the corresponding far field pattern deterioration are simulated. Results show that, the direction of the MRP is identical to the normal of the reflector surface, and the magnitude is proportional to the power density and the square of cosine incident angle. For a typical cosine function distributed electric field, the MRP is a square of cosine distributed across the diameter. The maximum deflections of SLFRA linearly increase with the increasing microwave power densities and the square of the reflector diameters, and vary inversely with the film thicknesses. When the reflector diameter becomes 100 m large and the microwave power density exceeds 102 W/cm2, the gain loss of the 6.3 μm-thick reflector goes beyond 0.75 dB. When the MRP-induced deflection degrades the reflector performance, the SEBC should be taken into account.

  4. Modelling of Innovation Diffusion

    Directory of Open Access Journals (Sweden)

    Arkadiusz Kijek

    2010-01-01

    Full Text Available Since the publication of the Bass model in 1969, research on the modelling of the diffusion of innovation resulted in a vast body of scientific literature consisting of articles, books, and studies of real-world applications of this model. The main objective of the diffusion model is to describe a pattern of spread of innovation among potential adopters in terms of a mathematical function of time. This paper assesses the state-of-the-art in mathematical models of innovation diffusion and procedures for estimating their parameters. Moreover, theoretical issues related to the models presented are supplemented with empirical research. The purpose of the research is to explore the extent to which the diffusion of broadband Internet users in 29 OECD countries can be adequately described by three diffusion models, i.e. the Bass model, logistic model and dynamic model. The results of this research are ambiguous and do not indicate which model best describes the diffusion pattern of broadband Internet users but in terms of the results presented, in most cases the dynamic model is inappropriate for describing the diffusion pattern. Issues related to the further development of innovation diffusion models are discussed and some recommendations are given. (original abstract

  5. Processes influencing migration of bioavailable organic compounds from polymers - investigated during biotic and abiotic testing under static and non-static conditions with varying S/V-ratios

    DEFF Research Database (Denmark)

    Corfitzen, Charlotte B.; Arvin, Erik; Albrechtsen, Hans-Jørgen

    . The bioavailable migration from the polymer surface was influence by diffusion over the solid-liquid boundary layer under sterile conditions, which resulted in an inversely proportionally relationship between bioavailable migration expressed per unit surface area of material and the surface to volume ratio (S/V-ratio...... the effect of the boundary layer, since bioavailable migration was continuously consumed by the bacteria. Thus the driving force for the diffusion process was maintained at a maximum, thereby enhancing the bioavailable migration from the material surfaces. Thus neither non-static conditions nor varying S/V-ratios...

  6. Diffusion rates for elevated releases

    International Nuclear Information System (INIS)

    Ramsdell, J.V.

    1983-11-01

    A search of the literature related to diffusion from elevated sources has determined that an adequate data base exists for use in developing parameterizations for estimating diffusion rates for material released from free standing stacks at nuclear power plants. A review of published data analyses indicates that a new parameterization of horizontal diffusion rates specifically for elevated releases is not likely to significantly change the magnitudes of horizontal diffusion coefficients on the average. However, the uncertainties associated with horizontal diffusion coefficient estimates under any given set of atmospheric conditions could be reduced by a new parameterization. Similarly, a new parameterization of vertical diffusion rates would be unlikely to significantly alter the magnitudes of diffusion coefficients for unstable atmospheric conditons. However, for neutral and stable atmospheric conditions, a new parameterization of vertical diffusion rates might increase vertical diffusion coefficients significantly. The increase would move ground-level time-integrated concentration maxima closer to the plant and would increase the maxima. 55 references, 2 figures, 4 tables

  7. In-Situ Testing of the Thermal Diffusivity of Polysilicon Thin Films

    Directory of Open Access Journals (Sweden)

    Yi-Fan Gu

    2016-10-01

    Full Text Available This paper presents an intuitive yet effective in-situ thermal diffusivity testing structure and testing method. The structure consists of two doubly clamped beams with the same width and thickness but different lengths. When the electric current is applied through two terminals of one beam, the beam serves as thermal resistor and the resistance R(t varies as temperature rises. A delicate thermodynamic model considering thermal convection, thermal radiation, and film-to-substrate heat conduction was established for the testing structure. The presented in-situ thermal diffusivity testing structure can be fabricated by various commonly used micro electro mechanical systems (MEMS fabrication methods, i.e., it requires no extra customized processes yet provides electrical input and output interfaces for in-situ testing. Meanwhile, the testing environment and equipment had no stringent restriction, measurements were carried out at normal temperatures and pressures, and the results are relatively accurate.

  8. A systematic determination of diffusion coefficients of trace elements in open and restricted diffusive layers used by the diffusive gradients in a thin film technique

    DEFF Research Database (Denmark)

    Shiva, Amir Houshang; Teasdale, Peter R.; Bennett, William W.

    2015-01-01

    A systematic comparison of the diffusion coefficients of cations (Al, Cd, Co, Cu, Mn, Ni, Pb, Zn) and oxyanions (Al, As, Mo, Sb, V, W) in open (ODL) and restricted (RDL) diffusive layers used by the DGT technique was undertaken. Diffusion coefficients were measured using both the diffusion cell...... concentrations required with the Dcell measurements. This is the first time that D values have been reported for several oxyanions using RDL. Except for Al at pH 8.30 with ODL, all DDGT measurements were retarded relative to diffusion coefficients in water (DW) for both diffusive hydrogels. Diffusion in RDL...

  9. Moving boundary - Oxygen diffusion. Two algorithms using Landau transformation

    International Nuclear Information System (INIS)

    Moyano, E.A.

    1991-01-01

    A description is made of two algorithms which solve a mathematical model destinated for the study of one-dimensional problems with moving boundaries and implicit boundary conditions. The Landau transformation is used in both methods for each temporal level so as to work all through with the same amount of nodes. Thus, it is necessary to deal with a partial differential equation whose diffusive and convective terms are accompanied by variable coefficients. The partial differential equation is made discrete implicitly, using the Laasonen scheme -which is always stable- instead of the Crank-Nicholson scheme, as performed by Ferris and Hill (5), in the fixed time passing method. The second method employs the tridiagonal algorithm. The first algorithm uses fixed time passing and iterates with variable interface positions, that is to say, it varies δs until it satisfies the boundary condition. The mathematical model describes oxygen diffusion in live tissues. Its numerical solution is obtained by finite differences. An important application of this method could be the estimation of the radiation dose in cancerous tumor treatment. (Author) [es

  10. Diffuse flow environments within basalt- and sediment-based hydrothermal vent ecosystems harbor specialized microbial communities.

    Science.gov (United States)

    Campbell, Barbara J; Polson, Shawn W; Zeigler Allen, Lisa; Williamson, Shannon J; Lee, Charles K; Wommack, K Eric; Cary, S Craig

    2013-01-01

    Hydrothermal vents differ both in surface input and subsurface geochemistry. The effects of these differences on their microbial communities are not clear. Here, we investigated both alpha and beta diversity of diffuse flow-associated microbial communities emanating from vents at a basalt-based hydrothermal system along the East Pacific Rise (EPR) and a sediment-based hydrothermal system, Guaymas Basin. Both Bacteria and Archaea were targeted using high throughput 16S rRNA gene pyrosequencing analyses. A unique aspect of this study was the use of a universal set of 16S rRNA gene primers to characterize total and diffuse flow-specific microbial communities from varied deep-sea hydrothermal environments. Both surrounding seawater and diffuse flow water samples contained large numbers of Marine Group I (MGI) Thaumarchaea and Gammaproteobacteria taxa previously observed in deep-sea systems. However, these taxa were geographically distinct and segregated according to type of spreading center. Diffuse flow microbial community profiles were highly differentiated. In particular, EPR dominant diffuse flow taxa were most closely associated with chemolithoautotrophs, and off axis water was dominated by heterotrophic-related taxa, whereas the opposite was true for Guaymas Basin. The diversity and richness of diffuse flow-specific microbial communities were strongly correlated to the relative abundance of Epsilonproteobacteria, proximity to macrofauna, and hydrothermal system type. Archaeal diversity was higher than or equivalent to bacterial diversity in about one third of the samples. Most diffuse flow-specific communities were dominated by OTUs associated with Epsilonproteobacteria, but many of the Guaymas Basin diffuse flow samples were dominated by either OTUs within the Planctomycetes or hyperthermophilic Archaea. This study emphasizes the unique microbial communities associated with geochemically and geographically distinct hydrothermal diffuse flow environments.

  11. Molecular dynamics simulations of interfacial interactions between small nanoparticles during diffusion-limited aggregation

    International Nuclear Information System (INIS)

    Lu, Jing; Liu, Dongmei; Yang, Xiaonan; Zhao, Ying; Liu, Haixing; Tang, Huan; Cui, Fuyi

    2015-01-01

    Graphical abstract: - Highlights: • Diffusion-limited aggregation is analyzed using molecular dynamic simulations. • The aggregation processand aggregate structure vary with particle size. • Particle-particle interaction and surface diffusion result in direct bonding. • Water-mediated interaction is responsible for the separation betweennanoparticles. - Abstract: Due to the limitations of experimental methods at the atomic level, research on the aggregation of small nanoparticles (D < 5 nm) in aqueous solutions is quite rare. The aggregation of small nanoparticles in aqueous solutions is very different than that of normal sized nanoparticles. The interfacial interactions play a dominant role in the aggregation of small nanoparticles. In this paper, molecular dynamics simulations, which can explore the microscopic behavior of nanoparticles during the diffusion-limited aggregation at an atomic level, were employed to reveal the aggregation mechanism of small nanoparticles in aqueous solutions. First, the aggregation processes and aggregate structure were depicted. Second, the particle–particle interaction and surface diffusion of nanoparticles during aggregation were investigated. Third, the water-mediated interactions during aggregation were ascertained. The results indicate that the aggregation of nanoparticle in aqueous solutions is affected by particle size. The strong particle–particle interaction and high surface diffusion result in the formation of particle–particle bonds of 2 nm TiO 2 nanoparticles, and the water-mediated interaction plays an important role in the aggregation process of 3 and 4 nm TiO 2 nanoparticles.

  12. Application of diffusion theory to the transport of neutral particles in fusion plasmas

    International Nuclear Information System (INIS)

    Hasan, M.Z.

    1985-01-01

    It is shown that the widely held view that diffusion theory can not provide good accuracy for the transport of neutral particles in fusion plasmas is misplaced. In fact, it is shown that multigroup diffusion theory gives quite good accuracy as compared to the transport theory. The reasons for this are elaborated and some of the physical and theoretical reasons which make the multigroup diffusion theory provide good accuracy are explained. Energy dependence must be taken into consideration to obtain a realistic neutral atom distribution in fusion plasmas. There are two reasons for this; presence of either is enough to necessitate an energy dependent treatment. First, the plasma temperature varies spatially, and second, the ratio of charge-exchange to total plasma-neutral interaction cross section (c) is not close to one. A computer code to solve the one-dimensional multigroup diffusion theory in general geometry (slab, cylindrical and spherical) has been written for use on Cray computers, and its results are compared with those from the one-dimensional transport code ANISN to support the above finding. A fast, compact and versatile two-dimensional finite element multigroup diffusion theory code, FINAT, in X-Y and R-Z cylindrical/toroidal geometries has been written for use on CRAY computers. This code has been compared with the two dimensional transport code DOT-4.3. The accuracy is very good, and FENAT runs much faster compared even to DOT-4.3 which is a finite difference code

  13. The Disruption of Geniculocalcarine Tract in Occipital Neoplasm: A Diffusion Tensor Imaging Study

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    2016-01-01

    Full Text Available Aim. Investigate the disruption of geniculocalcarine tract (GCT in different occipital neoplasm by diffusion tensor imaging (DTI. Methods. Thirty-two subjects (44.1 ± 3.6 years who had single occipital neoplasm (9 gliomas, 6 meningiomas, and 17 metastatic tumors with ipsilateral GCT involved and thirty healthy subjects (39.2 ± 3.3 years underwent conventional sequences scanning and diffusion tensor imaging by a 1.5T MR scanner. The diffusion-sensitive gradient direction is 13. Compare the fractional anisotropy (FA and mean diffusivity (MD values of healthy GCT with the corresponding values of GCT in peritumoral edema area. Perform diffusion tensor tractography (DTT on GCT by the line propagation technique in all subjects. Results. The FA values of GCT in peritumoral edema area decreased (P=0.001 while the MD values increased (P=0.002 when compared with healthy subjects. There was no difference in the FA values across tumor types (P=0.114 while the MD values of GCT in the metastatic tumor group were higher than the other groups (P=0.001. GCTs were infiltrated in all the 9 gliomas cases, with displacement in 2 cases and disruption in 7 cases. GCTs were displaced in 6 meningiomas cases. GCTs were displaced in all the 7 metastatic cases, with disruption in 7 cases. Conclusions. DTI represents valid markers for evaluating GCT’s disruption in occipital neoplasm. The disruption of GCT varies according to the properties of neoplasm.

  14. Lead diffusion in monazite; Diffusion du plomb dans la monazite

    Energy Technology Data Exchange (ETDEWEB)

    Gardes, E

    2006-06-15

    Proper knowledge of the diffusion rates of lead in monazite is necessary to understand the U-Th-Pb age anomalies of this mineral, which is one of the most used in geochronology after zircon. Diffusion experiments were performed in NdPO{sub 4} monocrystals and in Nd{sub 0.66}Ca{sub 0.17}Th{sub 0.17}PO{sub 4} polycrystals from Nd{sub 0.66}Pb{sub 0.17}Th{sub 0.17}PO{sub 4} thin films to investigate Pb{sup 2+} + Th{sup 4+} {r_reversible} 2 Nd{sup 3+} and Pb{sup 2+} {r_reversible} Ca{sup 2+} exchanges. Diffusion annealings were run between 1200 and 1500 Celsius degrees, at room pressure, for durations ranging from one hour to one month. The diffusion profiles were analysed using TEM (transmission electronic microscopy) and RBS (Rutherford backscattering spectroscopy). The diffusivities extracted for Pb{sup 2+} + Th{sup 4+} {r_reversible} 2 Nd{sup 3+} exchange follow an Arrhenius law with parameters E equals 509 {+-} 24 kJ mol{sup -1} and log(D{sub 0} (m{sup 2}s{sup -1})) equals -3.41 {+-} 0.77. Preliminary data for Pb{sup 2+} {r_reversible} Ca{sup 2+} exchange are in agreement with this result. The extrapolation of our data to crustal temperatures yields very slow diffusivities. For instance, the time necessary for a 50 {mu}m grain to lose all of its lead at 800 Celsius degrees is greater than the age of the Earth. From these results and other evidence from the literature, we conclude that most of the perturbations in U-Th-Pb ages of monazite cannot be attributed to lead diffusion, but rather to interactions with fluids. (author)

  15. Use and abuse of diffusion

    International Nuclear Information System (INIS)

    Kwiotek, A.; Grzywna, Z.J.

    2005-01-01

    Diffusion in a bounded region (or diffusive mass transport) can be seen from at least three platforms: - chemistry of he Fick's equation; - chemical engineering. To pose a particular problem we have to provide some additional conditions (initial conditions, boundary conditions and further). As we understood it in all cases diffusion is considered in an open region (in other words in one phase). Chemical engineering however brings an idea of 'diffusion' between phases. We claim that there isn't diffusion between phases. One can only consider mass transport between phases. Mass transport (or transfer in chemical engineering jargon) from one phase to another composes of: diffusion in first phase partition at an interface diffusion in second phase. (author)

  16. Performance improvement of centrifugal compressor stage with pinched geometry or vaned diffuser

    Energy Technology Data Exchange (ETDEWEB)

    Jaatinen, A.

    2009-07-01

    Centrifugal compressors are widely used for example in refrigeration processes, the oil and gas industry, superchargers, and waste water treatment. In this work, five different vaneless diffusers and six different vaned diffusers are investigated numerically. The vaneless diffusers vary only by their diffuser width, so that four of the geometries have pinch implemented to them. Pinch means a decrease in the diffuser width. Four of the vaned diffusers have the same vane turning angle and a different number of vanes, and two have different vane turning angles. The flow solver used to solve the flow fields is Finfo, which is a Navier-Stokes solver. All the cases are modeled Chien's k-epsilon turbulence model. All five vaneless diffusers and three vaned diffusers are investigated also experimentally. For each construction, the compressor operating map is measured according to relevant standards. In addition to this, the flow fields before and after the diffuser are measured with static and total pressure, flow angle and total temperature measurements k-omega SST turbulence model. The simulation results indicate that it is possible to improve the efficiency with the pinch, and according to the numerical results, the two best geometries are the ones with most pinch at the shroud. These geometries have approximately 4 percentage points higher effciency than the unpinched vaneless diffusers. The hub pinch does not seem to have any major benefits. In general, the pinches make the flow fields before and after the diffuser more uniform. The pinch also seems to improve the impeller effciency. This is down to two reasons. The major reason is that the pinch decreases the size of slow flow and possible backflow region located near the shroud after the impeller. Secondly, the pinches decrease the flow velocity in the tip clearance, leading to a smaller tip leakage flow and therefore slightly better impeller efficiency. Also some of the vaned diffusers improve the efficiency

  17. Study on diffusion anisotropy of cerebral ischemia using diffusion weighted echo-planar MRI

    International Nuclear Information System (INIS)

    Kajima, Toshio

    1997-01-01

    Focal cerebral ischemia was produced by occlusion of the intracranial main cerebral artery with a silicone cylinder in Wistar rats. Diffusion-weighted echo-planar images (DW-EPls) using the motion-probing gradient (MPG) method were acquired at 1-3 hours and 24-48 hours after occlusion. Apparent diffusion coefficients (ADCs) were calculated from these images in ischemic lesions and in normal unoccluded regions. Results were as follows. Ischemic lesions could be detected on the DW-EPIs at 1 hour after occlusion. The ADC of water in the brain tissue was smaller than that of free water as a result of restricted diffusion. Anisotropic diffusion that probably can be attributed to the myelin sheath was observed in the normal white matter. In the ischemic lesions, the ADC decreased rapidly within 1-3 hours after occlusion and then decreased gradually after 24-48 hours. In the ischemic white matter, diffusion anisotropy disappeared at 24-48 hours after occlusion. Diffusion-weighted imaging may have applications in the examination of pathophysiological mechanisms in cerebral ischemia by means of evaluation of ADC and diffusion anisotropy. (author)

  18. Diffusion Under Geometrical Constraint

    OpenAIRE

    Ogawa, Naohisa

    2014-01-01

    Here we discus the diffusion of particles in a curved tube. This kind of transport phenomenon is observed in biological cells and porous media. To solve such a problem, we discuss the three dimensional diffusion equation with a confining wall forming a thinner tube. We find that the curvature appears in a effective diffusion coefficient for such a quasi-one-dimensional system. As an application to higher dimensional case, we discuss the diffusion in a curved surface with ...

  19. Metric diffusion along foliations

    CERN Document Server

    Walczak, Szymon M

    2017-01-01

    Up-to-date research in metric diffusion along compact foliations is presented in this book. Beginning with fundamentals from the optimal transportation theory and the theory of foliations; this book moves on to cover Wasserstein distance, Kantorovich Duality Theorem, and the metrization of the weak topology by the Wasserstein distance. Metric diffusion is defined, the topology of the metric space is studied and the limits of diffused metrics along compact foliations are discussed. Essentials on foliations, holonomy, heat diffusion, and compact foliations are detailed and vital technical lemmas are proved to aide understanding. Graduate students and researchers in geometry, topology and dynamics of foliations and laminations will find this supplement useful as it presents facts about the metric diffusion along non-compact foliation and provides a full description of the limit for metrics diffused along foliation with at least one compact leaf on the two dimensions.

  20. Oxygen diffusion in monazite

    Science.gov (United States)

    Cherniak, D. J.; Zhang, X. Y.; Nakamura, M.; Watson, E. B.

    2004-09-01

    We report measurements of oxygen diffusion in natural monazites under both dry, 1-atm conditions and hydrothermal conditions. For dry experiments, 18O-enriched CePO4 powder and monazite crystals were sealed in Ag-Pd capsules with a solid buffer (to buffer at NNO) and annealed in 1-atm furnaces. Hydrothermal runs were conducted in cold-seal pressure vessels, where monazite grains were encapsulated with 18O-enriched water. Following the diffusion anneals, oxygen concentration profiles were measured with Nuclear Reaction Analysis (NRA) using the reaction 18O(p,α)15N. Over the temperature range 850-1100 °C, the Arrhenius relation determined for dry diffusion experiments on monazite is given by: Under wet conditions at 100 MPa water pressure, over the temperature range 700-880 °C, oxygen diffusion can be described by the Arrhenius relationship: Oxygen diffusion under hydrothermal conditions has a significantly lower activation energy for diffusion than under dry conditions, as has been found the case for many other minerals, both silicate and nonsilicate. Given these differences in activation energies, the differences between dry and wet diffusion rates increase with lower temperatures; for example, at 600 °C, dry diffusion will be more than 4 orders of magnitude slower than diffusion under hydrothermal conditions. These disparate diffusivities will result in pronounced differences in the degree of retentivity of oxygen isotope signatures. For instance, under dry conditions (presumably rare in the crust) and high lower-crustal temperatures (∼800 °C), monazite cores of 70-μm radii will preserve O isotope ratios for about 500,000 years; by comparison, they would be retained at this temperature under wet conditions for about 15,000 years.

  1. Some discussions on micrometeorology and atmospheric diffusion of classic and radioactive industrial pollutions. 4

    International Nuclear Information System (INIS)

    Veverka, O.; Vlachovsky, K.; Valenta, V.

    1977-01-01

    The mean horizontal wind velocity is defined and it is calculated that it varies little with height so that it may be considered as constant up to the reference level which corresponds to the height of the source of industrial pollution. The formula is given for the calculation of the mean dispersion values of the diffusion coefficient and of the dispersion factor. (J.P.)

  2. Diffuse and vascular hepatic diseases; Diffuse und vaskulaere Lebererkrankungen

    Energy Technology Data Exchange (ETDEWEB)

    Kreimeyer, S.; Grenacher, L. [Universitaetsklinikum Heidelberg, Abteilung Diagnostische und Interventionelle Radiologie, Heidelberg (Germany)

    2011-08-15

    In addition to focal liver lesions, diffuse and vascular disorders of the liver represent a wide spectrum of liver diseases which are from the radiological point of view often difficult or nearly impossible to diagnose. Classical diagnostic methods are computed tomography and magnetic resonance imaging in addition to ultrasound. Diffuse parenchymal damage caused by diseases of various etiologies is therefore difficult to evaluate because it often lacks characteristic morphological features. For hepatic steatosis, hemochromatosis/siderosis as an example of a diffuse storage disease and sarcoidosis and candidiasis as infectious/inflammatory diseases, an image-based diagnosis is appropriate in some cases. For most diffuse liver diseases, however only nonspecific changes are visualized. Vascular pathologies of the liver, such as the Budd-Chiari syndrome and portal vein thrombosis, however, can usually be diagnosed very clearly using radiology and there is also a very effective interventional radiological treatment. Chronic diseases very often culminate in liver cirrhosis which is highly associated with an increased risk of liver cancer. (orig.) [German] Neben den fokalen Leberlaesionen stellen diffuse und vaskulaere Lebererkrankungen ein weites Spektrum an Erkrankungen der Leber dar, die radiologisch oft schwer oder gar nicht diagnostizierbar sind. Klassische diagnostische Verfahren sind dabei neben dem Ultraschall die Computertomographie und die Magnetresonanztomographie. Diffuse Parenchymschaeden, bedingt durch Erkrankungen unterschiedlichster Aetiologie, sind deshalb schwierig evaluierbar, weil haeufig charakteristische bildmorphologische Merkmale fehlen. Die Steatosis hepatis, die Haemochromatose/Siderose als Beispiel der Speicherkrankheiten sowie die Sarkoidose und die Candidose als infektioes-entzuendliche Erkrankungen sind einer bildbasierten Diagnosestellung z. T. zugaenglich, bei den meisten diffusen Lebererkrankungen jedoch zeigen sich lediglich unspezifische

  3. Diffusion of Botulinum Toxins

    Directory of Open Access Journals (Sweden)

    Matthew A. Brodsky

    2012-08-01

    Full Text Available Background: It is generally agreed that diffusion of botulinum toxin occurs, but the extent of the spread and its clinical importance are disputed. Many factors have been suggested to play a role but which have the most clinical relevance is a subject of much discussion.Methods: This review discusses the variables affecting diffusion, including protein composition and molecular size as well as injection factors (e.g., volume, dose, injection method. It also discusses data on diffusion from comparative studies in animal models and human clinical trials that illustrate differences between the available botulinum toxin products (onabotulinumtoxinA, abobotulinumtoxinA, incobotulinumtoxinA, and rimabotulinumtoxinB.Results: Neither molecular weight nor the presence of complexing proteins appears to affect diffusion; however, injection volume, concentration, and dose all play roles and are modifiable. Both animal and human studies show that botulinum toxin products are not interchangeable, and that some products are associated with greater diffusion and higher rates of diffusion-related adverse events than others.Discussion: Each of the botulinum toxins is a unique pharmacologic entity. A working knowledge of the different serotypes is essential to avoid unwanted diffusion-related adverse events. In addition, clinicians should be aware that the factors influencing diffusion may range from properties intrinsic to the drug to accurate muscle selection as well as dilution, volume, and dose injected.

  4. Optical Transient-Grating Measurements of Spin Diffusion andRelaxation in a Two-Dimensional Electron Gas

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Christopher Phillip [Univ. of California, Berkeley, CA (United States)

    2005-01-01

    Spin diffusion in n-GaAs quantum wells, as measured by our optical transient-grating technique, is strongly suppressed relative to that of charge. Over a broad range of temperatures and dopings, the suppression of Ds relative to Dc agrees quantitatively with the prediction of ''spin Coulomb dra'' theory, which takes into account the exchange of spin in electron-electron collisions. Moreover, the spin-diffusion length, Ls, is a nearly constant 1 micrometer over the same range of T and n, despite Ds's varying by nearly two orders of magnitude. This constancy supports the D'yakonov-Perel'-Kachorovskii model of spin relaxation through interrupted precessional dephasing in the spin-orbit field.

  5. Instability induced by cross-diffusion in reaction-diffusion systems

    DEFF Research Database (Denmark)

    Tian, Canrong; Lin, Zhigui; Pedersen, Michael

    2010-01-01

    In this paper the instability of the uniform equilibrium of a general strongly coupled reaction–diffusion is discussed. In unbounded domain and bounded domain the sufficient conditions for the instability are obtained respectively. The conclusion is applied to the ecosystem, it is shown that cros...... can induce the instability of an equilibrium which is stable for the kinetic system and for the self-diffusion–reaction system.......In this paper the instability of the uniform equilibrium of a general strongly coupled reaction–diffusion is discussed. In unbounded domain and bounded domain the sufficient conditions for the instability are obtained respectively. The conclusion is applied to the ecosystem, it is shown that cross-diffusion...

  6. Diffusion in flowing gas

    International Nuclear Information System (INIS)

    Reus, K.W.

    1979-01-01

    This thesis is concerned with the back-diffusion method of calculating the mutual diffusion coefficient of two gases. The applicability of this method for measuring diffusion coefficients at temperatures up to 1300 K is considered. A further aim of the work was to make a contribution to the description of the interatomic potential energy of noble gases at higher energies as a function of the internuclear distance. This was achieved with the measured diffusion coefficients, especially with those for high temperatures. (Auth.)

  7. Contribution to the study of diffusion in poly-phase system; Contribution a l'etude de la diffusion en systeme polyphase

    Energy Technology Data Exchange (ETDEWEB)

    Adda, Y; Philibert, J [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires; Institut de Recherches de la Siderurgie Francaise (IRSID), 78 - Saint-Germain-en-Laye (France)

    1959-07-01

    After chemical diffusion between two metals, at temperatures where, according to the equilibrium diagram, several phases exist, parallel bands corresponding to these various phases can be seen in a section which is perpendicular to the diffusion front. It is known that in this case there are discontinuities in the concentration-penetration curve, corresponding to the interfaces. The concentrations at the point where the discontinuities occur give the limits of solubility in each of the present phases. During our experiments on the system uranium-zirconium, we verified that these concentrations do not vary with the diffusion time and therefore that the conditions of thermodynamical equilibrium are obeyed. It follows that an interesting method is available for determining the equilibrium diagram for the solid state. We have applied this method to the U-Zr system. Kinetic studies of poly-phase diffusion are as yet relatively scarce as a result of difficulty of experimentation. Various methods based on purely micro-graphical studies (measurement of the thickness of intermediate phases) are also proposed for evaluating the coefficient of diffusion. Our experimental results show that the hypotheses on which these methods are based are rarely valid. We have established concentration-penetration curves for the systems U-Zr (between 590 deg. C and 950 deg. C) and U-Mo (between 800 deg. C and 1050 deg. C). These curves have very often a very accentuated curvature, thus indicating variations in the diffusion coefficient, which cannot be expressed by simple relationships. Finally, we have observed certain anomalies in the neighbourhood of the interfaces between adjacent phases. Further we have studied the Kirkendall effect in poly-phase system by marking the plane of welding with tungsten wires, and compared these results to those from a previous study in the homogeneous phase. We have found that the presence of phase boundaries accentuates this effect. The interpretation of

  8. Effects of diffuse light on radiation use efficiency depend on the response of stomatal conductance to dynamic light intensity

    Directory of Open Access Journals (Sweden)

    Tao eLi

    2016-02-01

    Full Text Available The stimulating effect of diffuse light on radiation use efficiency (RUE of crops is often explained by the more homogeneous spatial light distribution, while rarely considering differences in temporal light distribution at leaf level. This study investigated whether diffuse light effects on crop RUE can be explained by dynamic responses of leaf photosynthesis to temporal changes of photosynthetic photon flux density (PPFD.Two Anthurium andreanum cultivars (‘Pink Champion’ and ‘Royal Champion’ were grown in two glasshouses covered by clear (control and diffuse glass, with similar light transmission. On clear days, diffusing the light resulted in less temporal fluctuations of PPFD. Stomatal conductance (gs varied strongly in response to transient PPFD in ‘Royal Champion’, whereas it remained relatively constant in ‘Pink Champion’. Instantaneous net leaf photosynthesis (Pn in both cultivars approached steady state Pn in diffuse light treatment. In control treatment this only occurred in ‘Pink Champion’. These cultivar differences were reflected by a higher RUE (8% in ‘Royal Champion’ in diffuse light treatment compared with control, whereas no effect on RUE was observed in ‘Pink Champion’. We conclude that the stimulating effect of diffuse light on RUE depends on the stomatal response to temporal PPFD fluctuations, which response is cultivar dependent.

  9. An inverse diffusivity problem for the helium production–diffusion equation

    International Nuclear Information System (INIS)

    Bao, Gang; Xu, Xiang

    2012-01-01

    Thermochronology is a technique for the extraction of information about the thermal history of rocks. Such information is crucial for determining the depth below the surface at which rocks were located at a given time (Bao G et al 2011 Commun. Comput. Phys. 9 129). Mathematically, extracting the time–temperature path can be formulated as an inverse diffusivity problem for the helium production–diffusion equation which is the underlying process of thermochronology. In this paper, to reconstruct the diffusivity which depends on space only and accounts for the structural information of rocks, a local Hölder conditional stability is obtained by a Carleman estimate. A uniqueness result is also proven for extracting the thermal history, i.e. identifying the time-dependant part of the diffusion coefficient, provided that it is analytical with respect to time. Numerical examples are presented to illustrate the validity and effectiveness of the proposed regularization scheme. (paper)

  10. Gaseous diffusion system

    International Nuclear Information System (INIS)

    Garrett, G.A.; Shacter, J.

    1978-01-01

    A gaseous diffusion system is described comprising a plurality of diffusers connected in cascade to form a series of stages, each of the diffusers having a porous partition dividing it into a high pressure chamber and a low pressure chamber, and means for combining a portion of the enriched gas from a succeeding stage with a portion of the enriched gas from the low pressure chamber of each stage and feeding it into one extremity of the high pressure chamber thereof

  11. Effects of imaging gradients in sequences with varying longitudinal storage time-Case of diffusion exchange imaging.

    Science.gov (United States)

    Lasič, Samo; Lundell, Henrik; Topgaard, Daniel; Dyrby, Tim B

    2018-04-01

    To illustrate the potential bias caused by imaging gradients in correlation MRI sequences using longitudinal magnetization storage (LS) and examine the case of filter exchange imaging (FEXI) yielding maps of the apparent exchange rate (AXR). The effects of imaging gradients in FEXI were observed on yeast cells. To analyze the AXR bias, signal evolution was calculated by applying matrix exponential operators. A sharp threshold for the slice thickness was identified, below which the AXR is increasingly underestimated. The bias can be understood in terms of an extended low-pass diffusion filtering during the LS interval, which is more pronounced at lower exchange rates. For a total exchange rate constant larger than 1 s -1 , the AXR bias is expected to be negligible when slices thicker than 2.5 mm are used. In correlation experiments like FEXI, relying on LS with variable duration, imaging gradients may cause disrupting effects that cannot be easily mitigated and should be carefully considered for unbiased results. In typical clinical applications of FEXI, the imaging gradients are expected to cause a negligible AXR bias. However, the AXR bias may be significant in preclinical settings or whenever thin imaging slices are used. Magn Reson Med 79:2228-2235, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  12. Estimating the Diffusion Coefficients of Sugars Using Diffusion Experiments in Agar-Gel and Computer Simulations.

    Science.gov (United States)

    Miyamoto, Shuichi; Atsuyama, Kenji; Ekino, Keisuke; Shin, Takashi

    2018-01-01

    The isolation of useful microbes is one of the traditional approaches for the lead generation in drug discovery. As an effective technique for microbe isolation, we recently developed a multidimensional diffusion-based gradient culture system of microbes. In order to enhance the utility of the system, it is favorable to have diffusion coefficients of nutrients such as sugars in the culture medium beforehand. We have, therefore, built a simple and convenient experimental system that uses agar-gel to observe diffusion. Next, we performed computer simulations-based on random-walk concepts-of the experimental diffusion system and derived correlation formulas that relate observable diffusion data to diffusion coefficients. Finally, we applied these correlation formulas to our experimentally-determined diffusion data to estimate the diffusion coefficients of sugars. Our values for these coefficients agree reasonably well with values published in the literature. The effectiveness of our simple technique, which has elucidated the diffusion coefficients of some molecules which are rarely reported (e.g., galactose, trehalose, and glycerol) is demonstrated by the strong correspondence between the literature values and those obtained in our experiments.

  13. Diffusing Best Practices

    DEFF Research Database (Denmark)

    Pries-Heje, Jan; Baskerville, Richard

    2014-01-01

    approach. The study context is a design case in which an organization desires to diffuse its best practices across different groups. The design goal is embodied in organizational mechanisms to achieve this diffusion. The study used Theory of Planned Behavior (TPB) as a kernel theory. The artifacts...... resulting from the design were two-day training workshops conceptually anchored to TBP. The design theory was evaluated through execution of eight diffusion workshops involving three different groups in the same company. The findings indicate that the match between the practice and the context materialized...... that the behavior will be effective). These two factors were especially critical if the source context of the best practice is qualitatively different from the target context into which the organization is seeking to diffuse the best practice....

  14. Diffuse sound field: challenges and misconceptions

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho

    2016-01-01

    Diffuse sound field is a popular, yet widely misused concept. Although its definition is relatively well established, acousticians use this term for different meanings. The diffuse sound field is defined by a uniform sound pressure distribution (spatial diffusion or homogeneity) and uniform...... tremendously in different chambers because the chambers are non-diffuse in variously different ways. Therefore, good objective measures that can quantify the degree of diffusion and potentially indicate how to fix such problems in reverberation chambers are needed. Acousticians often blend the concept...... of mixing and diffuse sound field. Acousticians often refer diffuse reflections from surfaces to diffuseness in rooms, and vice versa. Subjective aspects of diffuseness have not been much investigated. Finally, ways to realize a diffuse sound field in a finite space are discussed....

  15. Transition Process from Diffuser Stall to Stage Stall in a Centrifugal Compressor with a Vaned Diffuser

    Directory of Open Access Journals (Sweden)

    Nobumichi Fujisawa

    2017-01-01

    Full Text Available The transition process from a diffuser rotating stall to a stage stall in a centrifugal compressor with a vaned diffuser was investigated by experimental and numerical analyses. From the velocity measurements, it was found that the rotating stall existed on the shroud side of the diffuser passage in the off-design flow condition. The numerical results revealed the typical vortical structure of the diffuser stall. The diffuser stall cell was caused by the systematic vortical structure which consisted of the tornado-type vortex, the longitudinal vortex at the shroud/suction surface corner (i.e., leading edge vortex (LEV, and the vortex in the throat area of the diffuser passages. Furthermore, the stage stall, which rotated within both the impeller and diffuser passages, occurred instead of the diffuser stall as the mass flow rate was decreased. According to the velocity measurements at the diffuser inlet, the diffuser stall which rotated on the shroud side was shifted to the hub side. Then, the diffuser stall moved into the impeller passages and formed the stage stall. Therefore, the stage stall was caused by the development of the diffuser stall, which transferred from the shroud side to the hub side in the vaneless space and expanded to the impeller passages.

  16. Comparison of radon diffusion coefficients measured by transient-diffusion and steady-state laboratory methods

    International Nuclear Information System (INIS)

    Kalwarf, D.R.; Nielson, K.K.; Rich, D.C.; Rogers, V.C.

    1982-11-01

    A method was developed and used to determine radon diffusion coefficients in compacted soils by transient-diffusion measurements. A relative standard deviation of 12% was observed in repeated measurements with a dry soil by the transient-diffusion method, and a 40% uncertainty was determined for moistures exceeding 50% of saturation. Excellent agreement was also obtained between values of the diffusion coefficient for radon in air, as measured by the transient-diffusion method, and those in the published literature. Good agreement was also obtained with diffusion coefficients measured by a steady-state method on the same soils. The agreement was best at low moistures, averaging less than ten percent difference, but differences of up to a factor of two were observed at high moistures. The comparison of the transient-diffusion and steady-state methods at low moistures provides an excellent verification of the theoretical validity and technical accuracy of these approaches, which are based on completely independent experimental conditions, measurement methods and mathematical interpretations

  17. A study of the diffusion mechanisms in amorphous metallic alloys: diffusion and diffusion under high pressure in an amorphous NiZr alloy; Contribution a l`etude des mecanismes de transport dans les materiaux metalliques amorphes: diffusion et diffusion sous pression dans NiZr amorphe

    Energy Technology Data Exchange (ETDEWEB)

    Grandjean, A.

    1996-03-01

    The aim of this work is a better understanding of the diffusion mechanism in amorphous metallic alloys. Then interdiffusion and hafnium diffusion in amorphous NiZr alloy have been studied. Samples used are made by sputtering co-deposition under vacuum and are well relaxed before the diffusion measurements. The time evolution of resistivity during annealing due to the decay of a composition modulated film has been measured and from this change in resistivity interdiffusion coefficients have been determined. Dependence of Hf diffusion on temperature and pressure has been studied using (SIMS). In this two cases, the diffusion process obeys an Arrhenius law and gives an activation energy of 1.33 eV for interdiffusion, and 0.76 eV for Hf diffusion. An effect of pressure on Hf diffusion has been found leading to an activation volume of 8.5 angstrom{sup 3}. Thanks to these results, two approaches of the diffusion mechanisms in these systems have been proposed. The first comes from a comparison with the diffusion mechanisms in crystalline metals, that is to say by point defects. The second is an hypothesis of collective motions in these non crystalline alloys. (author).

  18. CROSS DIFFUSION AND NONLINEAR DIFFUSION PREVENTING BLOW UP IN THE KELLER–SEGEL MODEL

    KAUST Repository

    CARRILLO, JOSÉ ANTONIO

    2012-12-01

    A parabolic-parabolic (Patlak-)Keller-Segel model in up to three space dimensions with nonlinear cell diffusion and an additional nonlinear cross-diffusion term is analyzed. The main feature of this model is that there exists a new entropy functional, yielding gradient estimates for the cell density and chemical concentration. For arbitrarily small cross-diffusion coefficients and for suitable exponents of the nonlinear diffusion terms, the global-in-time existence of weak solutions is proved, thus preventing finite-time blow up of the cell density. The global existence result also holds for linear and fast diffusion of the cell density in a certain parameter range in three dimensions. Furthermore, we show L∞ bounds for the solutions to the parabolic-elliptic system. Sufficient conditions leading to the asymptotic stability of the constant steady state are given for a particular choice of the nonlinear diffusion exponents. Numerical experiments in two and three space dimensions illustrate the theoretical results. © 2012 World Scientific Publishing Company.

  19. Diffuse interstellar clouds

    International Nuclear Information System (INIS)

    Black, J.H.

    1987-01-01

    The author defines and discusses the nature of diffuse interstellar clouds. He discusses how they contribute to the general extinction of starlight. The atomic and molecular species that have been identified in the ultraviolet, visible, and near infrared regions of the spectrum of a diffuse cloud are presented. The author illustrates some of the practical considerations that affect absorption line observations of interstellar atoms and molecules. Various aspects of the theoretical description of diffuse clouds required for a full interpretation of the observations are discussed

  20. Diffusion of 51Cr along high-diffusivity paths in Ni-Fe alloys

    International Nuclear Information System (INIS)

    Cermak, J.

    1990-01-01

    Penetration profiles of 51 Cr in polycrystalline alloys Ni-xFe (x = 0, 20, 40, and 60 wt.% Fe) after diffusion anneals at temperatures between 693 and 1473 K are studied. Sectioning of diffusion zones of samples annealed above 858 K is carried out by grinding, at lower temperatures by DC glow discharge sputtering. The concentration of 51 Cr in depth x is assumed to be proportional to relative radioactivity of individual sections. With help of volume and pipe self-diffusion data taken from literature, the temperature dependence of product P = δD g (δ and D g are grain boundary width and grain boundary diffusion coefficient, respectively) is obtained: P = (2.68 - 0.88 +1.3 ) x 10 -11 exp [-(221.3 ± 3.0) kJ/mol/RT]m 3 /s. This result agrees well with the previous measurements of 51 Cr diffusivity in Fe-18 Cr-12 Ni and Fe-21 Cr-31 Ni. It indicates that the mean chemical composition of Fe-Cr-Ni ternary alloys is not a dominant factor affecting the grain boundary diffusivity of Cr in these alloys. (author)

  1. Seasonal and spatial variation of diffuse (non-point) source zinc pollution in a historically metal mined river catchment, UK

    Energy Technology Data Exchange (ETDEWEB)

    Gozzard, E., E-mail: emgo@ceh.ac.uk [Hydrogeochemical Engineering Research and Outreach Group, School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne NE1 7RU (United Kingdom); Mayes, W.M., E-mail: W.Mayes@hull.ac.uk [Hydrogeochemical Engineering Research and Outreach Group, School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne NE1 7RU (United Kingdom); Potter, H.A.B., E-mail: hugh.potter@environment-agency.gov.uk [Environment Agency England and Wales, c/o Institute for Research on Environment and Sustainability, Newcastle University, Newcastle upon Tyne NE1 7RU (United Kingdom); Jarvis, A.P., E-mail: a.p.jarvis@ncl.ac.uk [Hydrogeochemical Engineering Research and Outreach Group, School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne NE1 7RU (United Kingdom)

    2011-10-15

    Quantifying diffuse sources of pollution is becoming increasingly important when characterising river catchments in entirety - a prerequisite for environmental management. This study examines both low and high flow events, as well as spatial variability, in order to assess point and diffuse components of zinc pollution within the River West Allen catchment, which lies within the northern England lead-zinc Orefield. Zinc levels in the river are elevated under all flow regimes, and are of environmental concern. Diffuse components are of little importance at low flow, with point source mine water discharges dominating instream zinc concentration and load. During higher river flows 90% of the instream zinc load is attributed to diffuse sources, where inputs from resuspension of metal-rich sediments, and groundwater influx are likely to be more dominant. Remediating point mine water discharges should significantly improve water quality at lower flows, but contribution from diffuse sources will continue to elevate zinc flux at higher flows. - Highlights: > Zinc concentrations breach EU quality thresholds under all river flow conditions. > Contributions from point sources dominate instream zinc dynamics in low flow. > Contributions from diffuse sources dominate instream zinc dynamics in high flow. > Important diffuse sources include river-bed sediment resuspension and groundwater influx. > Diffuse sources would still create significant instream pollution, even with point source treatment. - Diffuse zinc sources are an important source of instream contamination to mine-impacted rivers under varying flow conditions.

  2. Similarity solutions of reaction–diffusion equation with space- and time-dependent diffusion and reaction terms

    Energy Technology Data Exchange (ETDEWEB)

    Ho, C.-L. [Department of Physics, Tamkang University, Tamsui 25137, Taiwan (China); Lee, C.-C., E-mail: chieh.no27@gmail.com [Center of General Education, Aletheia University, Tamsui 25103, Taiwan (China)

    2016-01-15

    We consider solvability of the generalized reaction–diffusion equation with both space- and time-dependent diffusion and reaction terms by means of the similarity method. By introducing the similarity variable, the reaction–diffusion equation is reduced to an ordinary differential equation. Matching the resulting ordinary differential equation with known exactly solvable equations, one can obtain corresponding exactly solvable reaction–diffusion systems. Several representative examples of exactly solvable reaction–diffusion equations are presented.

  3. Fast neutron irradiation effects on diffusion processes in the aluminum-magnesium system; Effets de l'irradiation aux neutrons rapides sur les phenomenes lies a la diffusion dans le systeme aluminium-magnesium

    Energy Technology Data Exchange (ETDEWEB)

    Moreau, G [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1969-06-01

    Examination of bulky diffusion couples Al (Mg) - Al and Mg (Al) - Mg handled in same thermal conditions (between 200 and 440 C) out of pile and under fast neutron irradiation show, in the latter case: 1 - An increase of the growth kinetics of {beta} phase which can be explained with KIDSON' s formula. 2 - An apparent increase of solubility caused by migration of a part of excess vacancies as complexes (vacancy - solute atom) to sinks (stacking faults, grain boundaries) or to sub-microscopical clusters. 3 - An enhancement of chemical diffusion at low temperature. At infinite dilution, chemical diffusion coefficient of Mg in Al can be expressed in normal conditions as: D = 1 exp(- 31000/RT {+-} 1200/RT cal/mole) cm{sup 2}.s{sup -1} and under irradiation as: D = 8.10{sup -3} exp(-24500/RT {+-} 1200/RT cal/mole) cm{sup 2}.s{sup -1}. Interpretation can be carried out by DIENES and Damask's theory. Excess defects (vacancies and interstitials generated in equal numbers by radiation) annihilate by migration to sinks and by direct recombination. Sinks density varies with temperature and irradiation time. The part of complexes (vacancy-solute atom) is important in the vacancies annealing kinetics. (author) [French] L'examen de couples de diffusion massifs Al (Mg) - Al et Mg (Al) - Mg traites dans les memes conditions thermiques (entre 200 et 440 C) hors pile et sous flux de neutrons rapides montre dans le dernier cas: 1 - Une acceleration de la cinetique de croissance de la phase {beta} a basse temperature dont on peut rendre compte a l'aide de la formule de KIDSON. 2 - Une augmentation apparente de la solubilite due a l'elimination d'une partie des lacunes en exces sous forme de complexes (lacune -solute) sur des pieges (dislocations, joints) ou sous forme d'amas sub-microscopiques. 3 - Une acceleration de la diffusion a basse temperature. A dilution infinie la diffusion (en cm{sup 2}/s) du Mg dans l'Al passe de: 1 exp(- 31000/RT {+-} 1200/RT cal/mole) a 8.10{sup -3} exp

  4. Diffuse reflectance relations based on diffusion dipole theory for large absorption and reduced scattering.

    Science.gov (United States)

    Bremmer, Rolf H; van Gemert, Martin J C; Faber, Dirk J; van Leeuwen, Ton G; Aalders, Maurice C G

    2013-08-01

    Diffuse reflectance spectra are used to determine the optical properties of biological samples. In medicine and forensic science, the turbid objects under study often possess large absorption and/or scattering properties. However, data analysis is frequently based on the diffusion approximation to the radiative transfer equation, implying that it is limited to tissues where the reduced scattering coefficient dominates over the absorption coefficient. Nevertheless, up to absorption coefficients of 20  mm-1 at reduced scattering coefficients of 1 and 11.5  mm-1, we observed excellent agreement (r2=0.994) between reflectance measurements of phantoms and the diffuse reflectance equation proposed by Zonios et al. [Appl. Opt.38, 6628-6637 (1999)], derived as an approximation to one of the diffusion dipole equations of Farrell et al. [Med. Phys.19, 879-888 (1992)]. However, two parameters were fitted to all phantom experiments, including strongly absorbing samples, implying that the reflectance equation differs from diffusion theory. Yet, the exact diffusion dipole approximation at high reduced scattering and absorption also showed agreement with the phantom measurements. The mathematical structure of the diffuse reflectance relation used, derived by Zonios et al. [Appl. Opt.38, 6628-6637 (1999)], explains this observation. In conclusion, diffuse reflectance relations derived as an approximation to the diffusion dipole theory of Farrell et al. can analyze reflectance ratios accurately, even for much larger absorption than reduced scattering coefficients. This allows calibration of fiber-probe set-ups so that the object's diffuse reflectance can be related to its absorption even when large. These findings will greatly expand the application of diffuse reflection spectroscopy. In medicine, it may allow the use of blue/green wavelengths and measurements on whole blood, and in forensic science, it may allow inclusion of objects such as blood stains and cloth at crime

  5. Solar UVR instrument inter-comparison focussing on measurement interval recording setting and solar zenith angle as important factors

    CSIR Research Space (South Africa)

    Wright, GY

    2015-09-01

    Full Text Available considerations, to make meaningful deductions from the data. By comparing two solar UVR instruments, namely, a UV biometer and a Davis Vantage Pro2 UVR Detector, we look at an important factor influencing ambient solar UVR, namely SZA, and its impact... Vantage Pro2 UV detector comprises a transducer which is a semiconductor photodiode with a spectral response that matches the McKinley/Diffey Erythemal Action Spectrum. It includes a diffuser which provides good cosine response and multiple hard...

  6. A Monte Carlo study of radon detection in cylindrical diffusion chambers

    Energy Technology Data Exchange (ETDEWEB)

    Rickards, Jorge, E-mail: rickards@fisica.unam.m [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Circuito de la Investigacion Cientifica, Ciudad Universitaria, Delegacion Coyoacan, 04520 Mexico, D.F. (Mexico); Golzarri, Jose-Ignacio, E-mail: golzarri@fisica.unam.m [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Circuito de la Investigacion Cientifica, Ciudad Universitaria, Delegacion Coyoacan, 04520 Mexico, D.F. (Mexico); Espinosa, Guillermo, E-mail: espinosa@fisica.unam.m [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Circuito de la Investigacion Cientifica, Ciudad Universitaria, Delegacion Coyoacan, 04520 Mexico, D.F. (Mexico)

    2010-05-15

    The functioning of radon diffusion chambers was studied using the Monte Carlo code RAMMX developed here. The alpha particles from radon are assumed randomly produced in the volume of the cylinder, and those from the progeny are assumed to originate randomly at the cylindrical surface. The energy spectrum, the distribution of incident angles, and the distribution of path lengths of the alpha particles on the detector were obtained. These quantities vary depending on input parameters such as initial alpha particle energy, radius and depth of the diffusion chamber, detector size and atmospheric pressure. The calculated energy spectrum for both {sup 222}Rn and {sup 220}Rn was compared with experiment, permitting the identification of each peak and its origin, and a better understanding of radon monitoring. Three aspects not considered in previous calculations are progeny alphas coming from surfaces of the monitor, taking into account the atmospheric pressure, and including the isotope {sup 220}Rn.

  7. Progress on Fabrication of Planar Diffusion Couples with Representative TRISO PyC/SiC Microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Hunn, John D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jolly, Brian C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gerczak, Tyler J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Campbell, Anne A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Schumacher, Austin T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-10-01

    Release of fission products from tristructural-isotropic (TRISO) coated particle fuel limits the fuel’s operational lifetime and creates potential safety and maintenance concerns. A need for diffusion analysis in representative TRISO layers exists to provide fuel performance models with high fidelity data to improve fuel performance and efficiency. An effort has been initiated to better understand fission product transport in, and release from, quality TRISO fuel by investigating diffusion couples with representative pyrocarbon (PyC) and silicon carbide (SiC). Here planar PyC/SiC diffusion couples are being developed with representative PyC/SiC layers using a fluidized bed chemical vapor deposition (FBCVD) system identical to those used to produce laboratory-scale TRISO fuel for the Advanced Gas Reactor Fuel Qualification and Development Program’s (AGR) first fuel irradiation. The diffusivity of silver, the silver and palladium system, europium, and strontium in the PyC/SiC will be studied at elevated temperatures and under high temperature neutron irradiation. The study also includes a comparative study of PyC/SiC diffusion couples with varying TRISO layer properties to understand the influence of SiC microstructure (grain size) and the PyC/SiC interface on fission product transport. The first step in accomplishing these goals is the development of the planar diffusion couples. The diffusion couple construction consists of multiple steps which includes fabrication of the primary PyC/SiC structures with targeted layer properties, introduction of fission product species and seal coating to create an isolated system. Coating development has shown planar PyC/SiC diffusion couples with similar properties to AGR TRISO fuel can be produced. A summary of the coating development process, characterization methods, and status are presented.

  8. Comprehensive method for analyzing the power conversion efficiency of organic solar cells under different spectral irradiances considering both photonic and electrical characteristics

    International Nuclear Information System (INIS)

    Chong, Kok-Keong; Khlyabich, Petr P.; Hong, Kai-Jeat; Reyes-Martinez, Marcos; Rand, Barry P.; Loo, Yueh-Lin

    2016-01-01

    Highlights: • Method to analyze power-conversion efficiency under various solar irradiance. • Power-conversion efficiency at local irradiance is 5.4% higher than AM1.5G. • Diffuse local irradiance has gain of 23.7–27.9% relative to AM1.5G conditions. • Annual average energy density yield is estimated as 31.89 kW h/m 2 in Malaysia. - Abstract: The solar spectral irradiance varies significantly for different locations and time due to latitude, humidity, cosine effect of incident sunlight, etc. For convenience, the power-conversion efficiency of a solar cell is referenced to the international standard of AM1.5G spectral irradiance, which inevitably leads to varying performance of deployed solar cells under the specific local climate and insolation conditions. To predict the actual performance of solar cells under local climate conditions, we propose a methodology to compute the power-conversion efficiency of organic photovoltaic cells based upon indoor measurement with a solar simulator, the measured local solar spectrum, and making use of both optical and electrical factors. From our study, the annual average energy density yield of poly(3-hexylthiophene):phenyl-C 61 -butyric acid methyl ester (P3HT:PCBM) bulk-heterojunction organic solar cells under the local spectral irradiance of Malaysia is estimated to be 31.89 kW h/m 2 and the power-conversion efficiency is increased by 5.4% compared to that measured under AM1.5G conditions. In addition, diffuse solar irradiance (cloudy condition) was found to be in favor of P3HT:PCBM solar cells, with gain of 23.7–27.9% relative to AM1.5G conditions.

  9. The effects of ageing on mouse muscle microstructure: a comparative study of time-dependent diffusion MRI and histological assessment.

    Science.gov (United States)

    Porcari, Paola; Hall, Matt G; Clark, Chris A; Greally, Elizabeth; Straub, Volker; Blamire, Andrew M

    2018-03-01

    The investigation of age-related changes in muscle microstructure between developmental and healthy adult mice may help us to understand the clinical features of early-onset muscle diseases, such as Duchenne muscular dystrophy. We investigated the evolution of mouse hind-limb muscle microstructure using diffusion imaging of in vivo and in vitro samples from both actively growing and mature mice. Mean apparent diffusion coefficients (ADCs) of the gastrocnemius and tibialis anterior muscles were determined as a function of diffusion time (Δ), age (7.5, 22 and 44 weeks) and diffusion gradient direction, applied parallel or transverse to the principal axis of the muscle fibres. We investigated a wide range of diffusion times with the goal of probing a range of diffusion lengths characteristic of muscle microstructure. We compared the diffusion time-dependent ADC of hind-limb muscles with histology. ADC was found to vary as a function of diffusion time in muscles at all stages of maturation. Muscle water diffusivity was higher in younger (7.5 weeks) than in adult (22 and 44 weeks) mice, whereas no differences were observed between the older ages. In vitro data showed the same diffusivity pattern as in vivo data. The highlighted differences in diffusion properties between young and mature muscles suggested differences in underlying muscle microstructure, which were confirmed by histological assessment. In particular, although diffusion was more restricted in older muscle, muscle fibre size increased significantly from young to adult age. The extracellular space decreased with age by only ~1%. This suggests that the observed diffusivity differences between young and adult muscles may be caused by increased membrane permeability in younger muscle associated with properties of the sarcolemma. Copyright © 2018 John Wiley & Sons, Ltd.

  10. Advanced diffusion processes and phenomena

    CERN Document Server

    Öchsner, Andreas; Belova, Irina

    2014-01-01

    This topical volume on Advanced Diffusion Processes and Phenomena addresses diffusion in a wider sense of not only mass diffusion but also heat diffusion in fluids and solids. Both diffusion phenomena play an important role in the characterization of engineering materials and corresponding structures. Understanding these different transport phenomena at many levels, from atomistic to macro, has therefore long attracted the attention of many researchers in materials science and engineering and related disciplines. The present topical volume captures a representative cross-section of some of the

  11. Diffusion of condenser water discharge

    International Nuclear Information System (INIS)

    Iwakiri, Toshio

    1977-01-01

    Thermal and nuclear power stations in Japan are mostly located in coastal area, and the cooling water is discharged into sea as warm water. Recently, large interest is taken in this matter, and it is desirable to predict the diffusion of warm discharge accurately and to take effective measures for lowering the temperature. As for the methods of predicting the diffusion of warm discharge, simplified estimation, mathematical analysis and hydrographical model experiment are used corresponding to objects and conditions. As for the measures to lower temperature, the method of discharging warm water into deep sea bottom was confirmed to be very effective. In this paper, the phenomena of diffusion of warm discharge in sea, the methods of predicting the diffusion of warm discharge, and the deep sea discharge as the measure for lowering temperature are outlined. The factors concerning the diffusion of warm discharge in sea are the conditions of discharge, topography and sea state, and the diffusion is roughly divided into mixing diffusion in the vicinity of warm water outlet and eddy diffusion in distant region. It is difficult to change artificially the conditions of diffusion in distant region, and the measures of raising the rate of dilution in near region are effective, therefore the deep sea discharge is adopted. (Kako, I.)

  12. Continuous diffusion signal, EAP and ODF estimation via Compressive Sensing in diffusion MRI.

    Science.gov (United States)

    Merlet, Sylvain L; Deriche, Rachid

    2013-07-01

    In this paper, we exploit the ability of Compressed Sensing (CS) to recover the whole 3D Diffusion MRI (dMRI) signal from a limited number of samples while efficiently recovering important diffusion features such as the Ensemble Average Propagator (EAP) and the Orientation Distribution Function (ODF). Some attempts to use CS in estimating diffusion signals have been done recently. However, this was mainly an experimental insight of CS capabilities in dMRI and the CS theory has not been fully exploited. In this work, we also propose to study the impact of the sparsity, the incoherence and the RIP property on the reconstruction of diffusion signals. We show that an efficient use of the CS theory enables to drastically reduce the number of measurements commonly used in dMRI acquisitions. Only 20-30 measurements, optimally spread on several b-value shells, are shown to be necessary, which is less than previous attempts to recover the diffusion signal using CS. This opens an attractive perspective to measure the diffusion signals in white matter within a reduced acquisition time and shows that CS holds great promise and opens new and exciting perspectives in diffusion MRI (dMRI). Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Effective thermal conductivity and diffusivity of containment wall for nuclear power plant OPR1000

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Hyung Gyun; Park, Hyun Sun [Div. of Advanced Nuclear Engineering (DANE), Pohang University of Science and Technology (POSTECH), Pohang (Korea, Republic of); Lee, Jong Hwi; Kang, Hie Chan [Mechanical Engineering Div., Kunsan National University (KNU), Gunsan (Korea, Republic of)

    2017-04-15

    The goal of this study is to evaluate the effective thermal conductivity and diffusivity of containment walls as heat sinks or passive cooling systems during nuclear power plant (NPP) accidents. Containment walls consist of steel reinforced concrete, steel liners, and tendons, and provide the main thermal resistance of the heat sinks, which varies with the volume fraction and geometric alignment of the rebar and tendons, as well as the temperature and chemical composition. The target geometry for the containment walls of this work is the standard Korean NPP OPR1000. Sample tests and numerical simulations are conducted to verify the correlations for models with different densities of concrete, volume fractions, and alignments of steel. Estimation of the effective thermal conductivity and diffusivity of the containment wall models is proposed. The Maxwell model and modified Rayleigh volume fraction model employed in the present work predict the experiment and finite volume method (FVM) results well. The effective thermal conductivity and diffusivity of the containment walls are summarized as functions of density, temperature, and the volume fraction of steel for the analysis of the NPP accidents.

  14. Diffusion of helium and estimated diffusion coefficients of hydrogen dissolved in water-saturated, compacted Ca-montmorillonite

    International Nuclear Information System (INIS)

    Higashihara, Tomohiro; Sato, Seichi; Ohashi, Hiroshi; Otsuka, Teppei

    2001-01-01

    The diffusion coefficients of hydrogen gas dissolved in water-saturated, compacted montmorillonite are required to estimate the performance of bentonite buffer materials for geological disposal of nuclear waste. As part of the effort to determine the diffusion coefficients, the diffusion coefficients of helium in water-saturated, compacted calcium montmorillonite (Ca-montmorillonite) were determined as a function of dry density, 0.78 to 1.37x10 3 kg m -3 , by a transient diffusion method. The diffusion coefficients were from 8.3x10 -10 m 2 s -1 at 0.78x10 3 kgm -3 to 2.8x10 -10 m 2 s -1 at 1.37x10 3 kgm -3 . The data obtained by this diffusion experiment of helium were highly reproducible. The diffusion coefficients of helium in Ca-montmorillonite were somewhat larger than those previously obtained for helium in sodium montmorillonite (Na-montmorillonite). The diffusion coefficients of hydrogen gas in the montmorillonites were roughly estimated using the diffusion coefficients of helium. These estimates were based on assumptions that both helium and hydrogen molecules are non-adsorptive and that the geometric factors in the compacted montmorillonites are approximately the same for diffusion of helium and diffusion of hydrogen. (author)

  15. Diffusion properties of NAA in human corpus callosum as studied with diffusion tensor spectroscopy.

    Science.gov (United States)

    Upadhyay, Jaymin; Hallock, Kevin; Erb, Kelley; Kim, Dae-Shik; Ronen, Itamar

    2007-11-01

    In diffusion tensor imaging (DTI) the anisotropic movement of water is exploited to characterize microstructure. One confounding issue of DTI is the presence of intra- and extracellular components contributing to the measured diffusivity. This causes an ambiguity in determining the underlying cause of diffusion properties, particularly the fractional anisotropy (FA). In this study an intracellular constituent, N-acetyl aspartate (NAA), was used to probe intracellular diffusion, while water molecules were used to probe the combined intra- and extracellular diffusion. NAA and water diffusion measurements were made in anterior and medial corpus callosum (CC) regions, which are referred to as R1 and R2, respectively. FA(NAA) was found to be greater than FA(Water) in both CC regions, thus indicating a higher degree of anisotropy within the intracellular space in comparison to the combined intra- and extracellular spaces. A decreasing trend in the FA of NAA and water was observed between R1 and R2, while the radial diffusivity (RD) for both molecules increased. The increase in RD(NAA) is particularly significant, thus explaining the more significant decrease in FA(NAA) between the two regions. It is suggested that diffusion tensor spectroscopy of NAA can potentially be used to further characterize microscopic anatomic organization in white matter. Copyright 2007 Wiley-Liss, Inc.

  16. Contribution to the study of diffusion in poly-phase system; Contribution a l'etude de la diffusion en systeme polyphase

    Energy Technology Data Exchange (ETDEWEB)

    Adda, Y.; Philibert, J. [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires; Institut de Recherches de la Siderurgie Francaise (IRSID), 78 - Saint-Germain-en-Laye (France)

    1959-07-01

    After chemical diffusion between two metals, at temperatures where, according to the equilibrium diagram, several phases exist, parallel bands corresponding to these various phases can be seen in a section which is perpendicular to the diffusion front. It is known that in this case there are discontinuities in the concentration-penetration curve, corresponding to the interfaces. The concentrations at the point where the discontinuities occur give the limits of solubility in each of the present phases. During our experiments on the system uranium-zirconium, we verified that these concentrations do not vary with the diffusion time and therefore that the conditions of thermodynamical equilibrium are obeyed. It follows that an interesting method is available for determining the equilibrium diagram for the solid state. We have applied this method to the U-Zr system. Kinetic studies of poly-phase diffusion are as yet relatively scarce as a result of difficulty of experimentation. Various methods based on purely micro-graphical studies (measurement of the thickness of intermediate phases) are also proposed for evaluating the coefficient of diffusion. Our experimental results show that the hypotheses on which these methods are based are rarely valid. We have established concentration-penetration curves for the systems U-Zr (between 590 deg. C and 950 deg. C) and U-Mo (between 800 deg. C and 1050 deg. C). These curves have very often a very accentuated curvature, thus indicating variations in the diffusion coefficient, which cannot be expressed by simple relationships. Finally, we have observed certain anomalies in the neighbourhood of the interfaces between adjacent phases. Further we have studied the Kirkendall effect in poly-phase system by marking the plane of welding with tungsten wires, and compared these results to those from a previous study in the homogeneous phase. We have found that the presence of phase boundaries accentuates this effect. The interpretation of

  17. Relative and single particle diffusion estimates determined from smoke plume photographs

    International Nuclear Information System (INIS)

    Nappo, C.J. Jr.

    1978-01-01

    The formula given by Gifford (1959) for obtaining space-varying values of particle dispersion parameters from photographs of smoke puffs and plumes has been applied to high-altitude U-2 photographs of a long smoke plume generated at the Idaho National Engineering Laboratory near Idaho Falls. The turbulence time scale derived from the photographs was found to be in good agreement with estimates obtained within the framework of single- and two-particle diffusion theory applied to wind speed and direction data from a tower near the smoke source

  18. Adaptive exponential synchronization of delayed neural networks with reaction-diffusion terms

    International Nuclear Information System (INIS)

    Sheng Li; Yang Huizhong; Lou Xuyang

    2009-01-01

    This paper presents an exponential synchronization scheme for a class of neural networks with time-varying and distributed delays and reaction-diffusion terms. An adaptive synchronization controller is derived to achieve the exponential synchronization of the drive-response structure of neural networks by using the Lyapunov stability theory. At the same time, the update laws of parameters are proposed to guarantee the synchronization of delayed neural networks with all parameters unknown. It is shown that the approaches developed here extend and improve the ideas presented in recent literatures.

  19. Thermal diffusion and separation of isotopes; Diffusion thermique et separation d'isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Fournier, Andre

    1944-03-30

    After a review of the various processes used to separate isotopes or at least to obtain mixes with a composition different from the natural proportion, this research addresses the use of thermal diffusion. The author reports a theoretical study of gas thermal diffusion and of the Clusius-Dickel method. In the second part, he reports the enrichment of methane with carbon-13, and of ammoniac with nitrogen-15. The next part reports the experimental study of thermal diffusion of liquids and solutions, and the enrichment of carbon tetra-chloride with chlorine-37. The author then proposes an overview of theories of thermal diffusion in liquid phase (hydrodynamic theory, kinetic theory, theory of caged molecules)

  20. Effects of differential mobility on biased diffusion of two species

    International Nuclear Information System (INIS)

    Hipolito, R S; Zia, R K P; Schmittmann, B

    2003-01-01

    Using simulations and a simple mean-field theory, we investigate jamming transitions in a two-species lattice gas under non-equilibrium steady-state conditions. The two types of particles diffuse with different mobilities on a square lattice, subject to an excluded volume constraint and biased in opposite directions. Varying filling fraction, differential mobility and drive, we map out the phase diagram, identifying first order and continuous transitions between a free-flowing disordered and a spatially inhomogeneous jammed phase. Ordered structures are observed to drift, with a characteristic velocity, in the direction of the more mobile species