WorldWideScience

Sample records for coseismic stress change

  1. A 667 year record of coseismic and interseismic Coulomb stress changes in central Italy reveals the role of fault interaction in controlling irregular earthquake recurrence intervals

    Science.gov (United States)

    Wedmore, L. N. J.; Faure Walker, J. P.; Roberts, G. P.; Sammonds, P. R.; McCaffrey, K. J. W.; Cowie, P. A.

    2017-07-01

    Current studies of fault interaction lack sufficiently long earthquake records and measurements of fault slip rates over multiple seismic cycles to fully investigate the effects of interseismic loading and coseismic stress changes on the surrounding fault network. We model elastic interactions between 97 faults from 30 earthquakes since 1349 A.D. in central Italy to investigate the relative importance of co-seismic stress changes versus interseismic stress accumulation for earthquake occurrence and fault interaction. This region has an exceptionally long, 667 year record of historical earthquakes and detailed constraints on the locations and slip rates of its active normal faults. Of 21 earthquakes since 1654, 20 events occurred on faults where combined coseismic and interseismic loading stresses were positive even though 20% of all faults are in "stress shadows" at any one time. Furthermore, the Coulomb stress on the faults that experience earthquakes is statistically different from a random sequence of earthquakes in the region. We show how coseismic Coulomb stress changes can alter earthquake interevent times by 103 years, and fault length controls the intensity of this effect. Static Coulomb stress changes cause greater interevent perturbations on shorter faults in areas characterized by lower strain (or slip) rates. The exceptional duration and number of earthquakes we model enable us to demonstrate the importance of combining long earthquake records with detailed knowledge of fault geometries, slip rates, and kinematics to understand the impact of stress changes in complex networks of active faults.

  2. Influence of pore pressure change on coseismic volumetric strain

    Science.gov (United States)

    Wang, C. Y.; Barbour, A. J.

    2017-12-01

    Coseismic strain is fundamentally important for understanding crustal response to transient changes of stress. The elastic dislocation model has been widely applied to interpreting observed shear deformation caused by earthquakes. The application of this model to interpreting volumetric strain, however, has met with difficulty, especially in the far field of earthquakes. Predicted volumetric strain with dislocation model often differs substantially, and sometimes of opposite signs, from observed coseismic volumetric strains. The disagreement suggests that some processes unaccounted for by the dislocation model may occur during earthquakes. Several hypotheses have been suggested, but none have been tested quantitatively. In this study we first assemble published data to highlight the significant difference between the measured and predicted coseismic volumetric strains from the dislocation theory. We then show that the disagreement may largely be explained by coseismic change of pore pressure in the shallow crust. We provide a quantitative test of the model with the assembled data, which allows us to conclude that coseismic change of pore pressure may be an important mechanism for coseismic crustal strain and, in the far field, may even be the controlling mechanism. Thus in the interpretation of observed coseismic crustal strain, one needs to account not only for the elastic strain due to fault rupture but also for the strain due to coseismic change of pore pressure.

  3. Influence of pore pressure change on coseismic volumetric strain

    Science.gov (United States)

    Wang, Chi-Yuen; Barbour, Andrew J.

    2017-01-01

    Coseismic strain is fundamentally important for understanding crustal response to changes of stress after earthquakes. The elastic dislocation model has been widely applied to interpreting observed shear deformation caused by earthquakes. The application of the same theory to interpreting volumetric strain, however, has met with difficulty, especially in the far field of earthquakes. Predicted volumetric strain with dislocation model often differs substantially, and sometimes of opposite signs, from observed coseismic volumetric strains. The disagreement suggests that some processes unaccounted for by the dislocation model may occur during earthquakes. Several hypotheses have been suggested, but none have been tested quantitatively. In this paper we first examine published data to highlight the difference between the measured and calculated static coseismic volumetric strains; we then use these data to provide quantitative test of the model that the disagreement may be explained by the change of pore pressure in the shallow crust. The test allows us to conclude that coseismic change of pore pressure may be an important mechanism for coseismic crustal strain and, in the far field, may even be the dominant mechanism. Thus in the interpretation of observed coseismic crustal strain, one needs to account not only for the elastic strain due to fault rupture but also for the strain due to coseismic change of pore pressure.

  4. Faulting process and coseismic stress change during the 30 January, 1973, Colima, Mexico interplate earthquake (Mw=7.6)

    Energy Technology Data Exchange (ETDEWEB)

    Santoyo, Miguel A; Mikumo, Takeshi; Quintanar, Luis [Instituto de Geofisica, Universidad Nacional Autonoma de Mexico, Mexico D.F (Mexico)

    2006-07-15

    A large thrust earthquake (Mw=7.6) occurred on January 30, 1973, on the plate interface between the subducting Cocos plate and the continental North America plate, near the triple junction between the North America, Cocos and Rivera Plates. This event might be related to two sequences of subsequent large earthquakes that occurred around this region. Although several authors have analyzed the focal mechanism and depth of this earthquake, we analyzed its source characteristics and performed a linear kinematic waveform inversion for the slip distribution over the fault plane. We find a shallow thrust mechanism (St=285 degrees, Dip=16 degrees, Ra=85 degrees) consistent with the tectonic environment, with a depth of 16 km and a total moment release of 2.98x10{sup 2}7 dyn-cm. The results show a slip distribution with two main patches, with a maximum dislocation of 199 cm and 173 cm respectively. We calculated the coseismic stress change on and around the fault plane. This earthquake ruptured two main asperities, one downdip and southwest and the other updip and northwest of the hypocenter, with stress change of -31 and -40 bars respectively The surrounding zone of stress increase could have influenced the subsequent seismicity to a distance of up to 120 km from the hypocenter. [Spanish] El 30 de enero de 1973 ocurrio un evento mayor de subduccion (Mw=7.6) en la interfase de las placas de Cocos y Norteamerica, cerca del punto triple entre las placas de Rivera, Cocos y Norteamerica. Este evento podria estar relacionado con dos secuencias de grandes sismos subsecuentes que ocurrieron alrededor de esta region. Aunque varios autores han analizado el mecanismo focal y la profundidad de este sismo, nosotros analizamos las caracteristicas de la fuente y realizamos una inversion cinematica lineal de la distribucion de deslizamientos sobre el plano de falla a traves del modelado de forma de onda. Encontramos un mecanismo inverso (St=285 grados, Dip=16 grados, Ra=85 grados

  5. Coseismic Stress Changes of the 2016 Mw 7.8 Kaikoura, New Zealand, Earthquake and Its Implication for Seismic Hazard Assessment

    Science.gov (United States)

    Shan, B.; LIU, C.; Xiong, X.

    2017-12-01

    On 13 November 2016, an earthquake with moment magnitude Mw 7.8 stroke North Canterbury, New Zealand as result of shallow oblique-reverse faulting close to boundary between the Pacific and Australian plates in the South Island, collapsing buildings and resulting in significant economic losses. The distribution of early aftershocks extended about 150 km to the north-northeast of the mainshock, suggesting the potential of earthquake triggering in this complex fault system. Strong aftershocks following major earthquakes present significant challenges for locals' reconstruction and rehabilitation. The regions around the mainshock may also suffer from earthquakes triggered by the Kaikoura earthquake. Therefore, it is significantly important to outline the regions with potential aftershocks and high seismic hazard to mitigate future disasters. Moreover, this earthquake ruptured at least 13 separate faults, and provided an opportunity to test the theory of earthquake stress triggering for a complex fault system. In this study, we calculated the coseismic Coulomb Failure Stress changes (ΔCFS) caused by the Kaikoura earthquake on the hypocenters of both historical earthquakes and aftershocks of this event with focal mechanisms. Our results show that the percentage of earthquake with positive ΔCFS within the aftershocks is higher than that of historical earthquakes. It means that the Kaikoura earthquake effectively influence the seismicity in this region. The aftershocks of Mw 7.8 Kaikoura earthquake are mainly located in the regions with positive ΔCFS. The aftershock distributions can be well explained by the coseismic ΔCFS. Furthermore, earthquake-induced ΔCFS on the surrounding active faults was further discussed. The northeastern Alpine fault, the southwest part of North Canterbury Fault, parts of the Marlborough fault system and the southwest ends of the Kapiti-Manawatu faults are significantly stressed by the Kaikoura earthquake. The earthquake-induced stress

  6. Indonesian earthquake: earthquake risk from co-seismic stress.

    Science.gov (United States)

    McCloskey, John; Nalbant, Suleyman S; Steacy, Sandy

    2005-03-17

    Following the massive loss of life caused by the Sumatra-Andaman earthquake in Indonesia and its tsunami, the possibility of a triggered earthquake on the contiguous Sunda trench subduction zone is a real concern. We have calculated the distributions of co-seismic stress on this zone, as well as on the neighbouring, vertical strike-slip Sumatra fault, and find an increase in stress on both structures that significantly boosts the already considerable earthquake hazard posed by them. In particular, the increased potential for a large subduction-zone event in this region, with the concomitant risk of another tsunami, makes the need for a tsunami warning system in the Indian Ocean all the more urgent.

  7. Co-seismic strain changes of Wenchuan Mw7. 9 earthquake recorded by borehole strainmeters on Tibetan plateau

    Directory of Open Access Journals (Sweden)

    Fu Guangyu

    2011-08-01

    Full Text Available Co-seismic strain changes of the Wenchuan Mw7. 9 earthquake recorded with three four-component borehole strainmeters showed NW-SE and roughly EW extensions, respectively, at two locations in the interior and northern part of Tibetan plateau, and NS shortening at a location south of the epicenter, in agreement with the tectonic stress field of this region. The observed values of as much as 10−7 are, however, larger than theoretical values obtained with half-space and spherical-earth dislocation theories, implying the existence of other effects, such as local crustal structure and initial stress.

  8. Simulation of co-seismic gravity change and deformation of Wenchuan Ms8. 0 earthquake

    Directory of Open Access Journals (Sweden)

    Chongyang Shen

    2010-01-01

    Full Text Available Surface co-seismic gravity changes and displacements caused by the Wenchuan Ms8. 0 earthquake are calculated on the basis of the half-space dislocation theory and two fault models inversed, respectively, by Institute of Geophysics, CEA and USGS. The results show that 1 the dislocation consists of dip slip and right-lateral strike slip; 2 the co-seismic gravity change shows a four-quadrant pattern, which is greatly controlled by the distribution of the vertical displacements, especially in the near-filed; 3 the gravity change is generally less than 10 × 10−8 ms−2 in the far-field, but as high as several 100 × 10−8 ms−2in the near-filed. These results basically agree with observational results.

  9. Coseismic gravity and displacement changes of Japan Tohoku earthquake (Mw 9.0

    Directory of Open Access Journals (Sweden)

    Xinlin Zhang

    2016-03-01

    Full Text Available The greatest earthquake in the modern history of Japan and probably the fourth greatest in the last 100 years in the world occurred on March 11, 2011 off the Pacific coast of Tohoku. Large tsunami and ground motions caused severe damage in wide areas, particularly many towns along the Pacific coast. So far, gravity change caused by such a great earthquake has been reported for the 1964 Alaska and the 2010 Maule events. However, the spatial-temporal resolution of the gravity data for these cases is insufficient to depict a co-seismic gravity field variation in a spatial scale of a plate subduction zone. Here, we report an unequivocal co-seismic gravity change over the Japanese Island, obtained from a hybrid gravity observation (combined absolute and relative gravity measurements. The time interval of the observation before and after the earthquake is within 1 year at almost all the observed sites, including 13 absolute and 16 relative measurement sites, which deduced tectonic and environmental contributions to the gravity change. The observed gravity agrees well with the result calculated by a dislocation theory based on a self-gravitating and layered spherical earth model. In this computation, a co-seismic slip distribution is determined by an inversion of Global Positioning System (GPS data. Of particular interest is that the observed gravity change in some area is negative where a remarkable subsidence is observed by GPS, which can not be explained by simple vertical movement of the crust. This indicated that the mass redistribution in the underground affects the gravity change. This result supports the result that Gravity Recovery and Climate Experiment (GRACE satellites detected a crustal dilatation due to the 2004 Sumatra earthquake by the terrestrial observation with a higher spatial and temporal resolution.

  10. Detection of a half-microgal coseismic gravity change after the Ms7.0 Lushan earthquake

    Directory of Open Access Journals (Sweden)

    Wei Jin

    2013-08-01

    Full Text Available Because only a small near-field coseismic gravity change signal remains after removal of noise from the accuracy of observations and the time and spatial resolution of the earth's surface gravity observation system, it is difficult to verify simulations of dislocation theory. In this study, it is shown that the GS15 gravimeter, located 99. 5 km from the epicenter of the Ms7. 0 Lushan earthquake on April 20, 2013 at 08 : 04 UTC+8, showed the influence of the earthquake from 2013-04-16 to 2013-04-26 after a time calibration, tide corrections, drift correction, period correction and relaxation correction were applied to its data. The post-seismic relaxation process of the spring in the gravimeter took approximately 430 minutes and showed a 2. 5×10−8 ms−2 gravity change. After correcting for the relaxation process, it is shown that a coseismic gravity change of approximately +0. 59±0. 4×10–8 ms–2 was observed by the GS15 gravimeter; this agrees with the simulated gravity change of approximately 0. 31×10–8 ms–2. The rate of the coseismic gravity change and the coseismic vertical displacement, as measured by one-second and one-day sampling interval GPS units, is also consistent with the theoretical rate of change. Therefore, the GS15 gravimeter at the Pixian Station observed a coseismic gravity change after the Ms7. 0 Lushan earthquake. This and similar measurements could be applied to test and confirm the theory used for these simulations.

  11. Characteristics of coseismic water level changes at Tangshan well for the Wenchuan M S8.0 earthquake and its larger aftershocks

    Science.gov (United States)

    Yin, Baojun; Ma, Li; Chen, Huizhong; Huang, Jianping; Zhang, Chaojun; Wang, Wuxing

    2009-04-01

    Coseismic water level changes which may have been induced by the Wenchuan M S8.0 earthquake and its 15 larger aftershocks ( M S≥5.4) have been observed at Tangshan well. We analyze the correlation between coseismic parameters (maximum amplitude, duration, coseismic step and the time when the coseismic reach its maximum amplitude) and earthquake parameters (magnitude, well-epicenter distance and depth), and then compare the time when the coseismic oscillation reaches its maximum amplitude with the seismogram from Douhe seismic station which is about 16.3 km away from Tangshan well. The analysis indicates that magnitude is the main factor influencing the induced coseismic water level changes, and that the well-epicenter distance and depth have less influence. M S magnitude has the strongest correlation with the coseismic water level changes comparing to M W and M L magnitudes. There exists strong correlation between the maximum amplitude, step size and the oscillation duration. The water level oscillation and step are both caused by dynamic strain sourcing from seismic waves. Most of the times when the oscillations reach their maximum amplitudes are between S and Rayleigh waves. The coseismic water level changes are due to the co-effect of seismic waves and hydro-geological environments.

  12. Simulation of Co-Seismic Off-Fault Stress Effects: Influence of Fault Roughness and Pore Pressure Coupling

    Science.gov (United States)

    Fälth, B.; Lund, B.; Hökmark, H.

    2017-12-01

    Aiming at improved safety assessment of geological nuclear waste repositories, we use dynamic 3D earthquake simulations to estimate the potential for co-seismic off-fault distributed fracture slip. Our model comprises a 12.5 x 8.5 km strike-slip fault embedded in a full space continuum where we apply a homogeneous initial stress field. In the reference case (Case 1) the fault is planar and oriented optimally for slip, given the assumed stress field. To examine the potential impact of fault roughness, we also study cases where the fault surface has undulations with self-similar fractal properties. In both the planar and the undulated cases the fault has homogeneous frictional properties. In a set of ten rough fault models (Case 2), the fault friction is equal to that of Case 1, meaning that these models generate lower seismic moments than Case 1. In another set of ten rough fault models (Case 3), the fault dynamic friction is adjusted such that seismic moments on par with that of Case 1 are generated. For the propagation of the earthquake rupture we adopt the linear slip-weakening law and obtain Mw 6.4 in Case 1 and Case 3, and Mw 6.3 in Case 2 (35 % lower moment than Case 1). During rupture we monitor the off-fault stress evolution along the fault plane at 250 m distance and calculate the corresponding evolution of the Coulomb Failure Stress (CFS) on optimally oriented hypothetical fracture planes. For the stress-pore pressure coupling, we assume Skempton's coefficient B = 0.5 as a base case value, but also examine the sensitivity to variations of B. We observe the following: (I) The CFS values, and thus the potential for fracture slip, tend to increase with the distance from the hypocenter. This is in accordance with results by other authors. (II) The highest CFS values are generated by quasi-static stress concentrations around fault edges and around large scale fault bends, where we obtain values of the order of 10 MPa. (III) Locally, fault roughness may have a

  13. The role of Precambrian mylonitic belts and present-day stress field in the coseismic reactivation of the Pernambuco lineament, Brazil

    Science.gov (United States)

    Ferreira, Joaquim M.; Bezerra, Francisco H. R.; Sousa, Maria O. L.; do Nascimento, Aderson F.; Sá, Jaziel M.; França, George S.

    2008-08-01

    The Pernambuco lineament is a steeply dipping continental-scale ductile shear zone rooted within the Precambrian lithosphere of intraplate northeastern Brazil. It was formed during the Brasiliano orogeny ~ 600 Ma and reactivated during the Pangea breakup in the Cretaceous, when it controlled fault propagation and sediment accumulation in several rift basins. The region is now under an ~ E-W-trending horizontal compression and ~N-S-trending extension, and faulting occurs predominantly in a strike-slip regime. We investigated two aftershock sequences and the preexisting tectonic fabrics along the Pernambuco lineament in order to evaluate the role of these fabrics in the coseismic reactivation of continental-scale structures. The lineaments consist of a main ENE-WSW-trending mylonitic belt about 2-3 km wide, and two secondary NE-trending mylonitic belts about 100 m wide. They both present steeply dipping mylonitic foliations and shallowing plunging stretching lineations. The mylonites present granitoid protoliths and mineral parageneses that range from amphibolite to greenschist facies. Brittle deformation overprints the ductile fabric in all mylonitic belts. In 1991, coseismic reactivation nucleated along the ENE-WSW-striking, ~ 3.3-5.6 km deep, normal fault of less than 1 km in length in the main mylonitic belt. In 2002, seismicity migrated to a NE-trending secondary mylonitic branch and moved as a right-lateral strike-slip, ~ 1.2 km long, 3.8-4.9 km deep fault plane. Both fault segments reactivated the mylonitic foliation and form part of a major system. We conclude that the interplay between the present-day stress field and preexisting fabrics controls seismogenic fault location, attitude, and kinematics. The Pernambuco lineament is an example of a long-lived continental-scale structure, where selective reactivation has occurred. Other shear zones in the region also show a long history of brittle reactivation and present similar orientation in relation to the

  14. 23 October 2011 (Mw=7.2) Van Earthquake (Turkey): Revised Coseismic and Postseismic Models from New GPS Observations

    Science.gov (United States)

    Dogan, U.; Demir, D. O.; Cakir, Z.; Ergintav, S.; Cetin, S.; Ozdemir, A.; Reilinger, R. E.

    2017-12-01

    stress changes rather than representing the coseismic fault. (This study is supported by TUBITAK no: 112Y109 project). Keywords: Van earthquake, GPS, coseismic, postseismic, deformation, elastic modeling

  15. Is the co-seismic slip distribution fractal?

    Science.gov (United States)

    Milliner, Christopher; Sammis, Charles; Allam, Amir; Dolan, James

    2015-04-01

    Co-seismic along-strike slip heterogeneity is widely observed for many surface-rupturing earthquakes as revealed by field and high-resolution geodetic methods. However, this co-seismic slip variability is currently a poorly understood phenomenon. Key unanswered questions include: What are the characteristics and underlying causes of along-strike slip variability? Do the properties of slip variability change from fault-to-fault, along-strike or at different scales? We cross-correlate optical, pre- and post-event air photos using the program COSI-Corr to measure the near-field, surface deformation pattern of the 1992 Mw 7.3 Landers and 1999 Mw 7.1 Hector Mine earthquakes in high-resolution. We produce the co-seismic slip profiles of both events from over 1,000 displacement measurements and observe consistent along-strike slip variability. Although the observed slip heterogeneity seems apparently complex and disordered, a spectral analysis reveals that the slip distributions are indeed self-affine fractal i.e., slip exhibits a consistent degree of irregularity at all observable length scales, with a 'short-memory' and is not random. We find a fractal dimension of 1.58 and 1.75 for the Landers and Hector Mine earthquakes, respectively, indicating that slip is more heterogeneous for the Hector Mine event. Fractal slip is consistent with both dynamic and quasi-static numerical simulations that use non-planar faults, which in turn causes heterogeneous along-strike stress, and we attribute the observed fractal slip to fault surfaces of fractal roughness. As fault surfaces are known to smooth over geologic time due to abrasional wear and fracturing, we also test whether the fractal properties of slip distributions alters between earthquakes from immature to mature fault systems. We will present results that test this hypothesis by using the optical image correlation technique to measure historic, co-seismic slip distributions of earthquakes from structurally mature, large

  16. Coseismic Slip Deficit of the 2017 Mw 6.5 Ormoc Earthquake That Occurred Along a Creeping Segment and Geothermal Field of the Philippine Fault

    Science.gov (United States)

    Yang, Ying-Hui; Tsai, Min-Chien; Hu, Jyr-Ching; Aurelio, Mario A.; Hashimoto, Manabu; Escudero, John Agustin P.; Su, Zhe; Chen, Qiang

    2018-03-01

    Coseismic surface deformation imaged through interferometric synthetic aperture radar (InSAR) measurements was used to estimate the fault geometry and slip distribution of the 2017 Mw 6.5 Ormoc earthquake along a creeping segment of the Philippine Fault on Leyte Island. Our best fitting faulting model suggests that the coseismic rupture occurred on a fault plane with high dip angle of 78.5° and strike angle of 325.8°, and the estimated maximum fault slip of 2.3 m is located at 6.5 km east-northeast of the town of Kananga. The recognized insignificant slip in the Tongonan geothermal field zone implies that the plastic behavior caused by high geothermal gradient underneath the Tongonan geothermal field could prevent the coseismic failure in heated rock mass in this zone. The predicted Coulomb failure stress change shows that a significant positive Coulomb failure stress change occurred along the SE segment of central Philippine Fault with insignificant coseismic slip and infrequent aftershocks, which suggests an increasing risk for future seismic hazard.

  17. Coseismic Strain Steps of the 2008 Wenchuan Earthquake Indicate EW Extension of Tibetan Plateau and Increased Hazard South to Epicenter

    Science.gov (United States)

    Fu, G.; Shen, X.; Tang, J.; Fukuda, Y.

    2008-12-01

    The 2008 Wenchuan earthquake (Ms8.0) occurred at the east edge of Tibetan Plateau. It is the biggest seismic disaster in China since the 1976 Tangshan earthquake. To determine the effects of the earthquake on the deformation field of Tibetan Plateau, we collect and analyze continuing strain data of three stations before and after the earthquake in Tibetan Plateau observed by capacitance-type bore-hole strainmeters (Chi, 1985). We collect strain data in NS, EW, NE-SW and NW-NS directions at each borehole. Then we deduce the co-seismic strain steps at time point 14:28 of May 12, 2008 (at this time point the earthquake occurred) with the data before and after the earthquake using the least squares method. Our observation shows that in Tibetan Plateau significant co-seismic strain steps are accompanied with the 2008 Wenchuan earthquake. Extension in EW direction is observed at interior and north Tibetan Plateau which indicates a rapid EW extension of the whole Plateau. Field investigation shows that the 2008 Wenchuan earthquake is a manifestation of eastward growth of the Tibetan Plateau (Dong et al., 2008). Eastwards growth of the Tibetan Plateau results naturally in the extension of the Plateau in EW direction. Our co-seismic strain observation agrees well with the conclusion from surface rupture investigation. The magnitude of co-seismic strain step equals to five times of average year extensional strain rate throughout the plateau interior. Shortening in SE- NW direction is observed at the east edge of the Plateau. As hints that the eastward extension of Tibetan Plateau is resisted by Sichuan rigid basin which increases the potential earthquake hazard around the observation station, manifests the declaration from co-seismic stress changes calculation (Persons et al., 2008). Our observed co-seismic strain steps are in total lager than theoretical calculations of dislocation theories which indicate that magnitude of the great earthquake should be bigger than 7.9. Due

  18. Reliability of Coulomb stress changes inferred from correlated uncertainties of finite-fault source models

    KAUST Repository

    Woessner, J.

    2012-07-14

    Static stress transfer is one physical mechanism to explain triggered seismicity. Coseismic stress-change calculations strongly depend on the parameterization of the causative finite-fault source model. These models are uncertain due to uncertainties in input data, model assumptions, and modeling procedures. However, fault model uncertainties have usually been ignored in stress-triggering studies and have not been propagated to assess the reliability of Coulomb failure stress change (ΔCFS) calculations. We show how these uncertainties can be used to provide confidence intervals for co-seismic ΔCFS-values. We demonstrate this for the MW = 5.9 June 2000 Kleifarvatn earthquake in southwest Iceland and systematically map these uncertainties. A set of 2500 candidate source models from the full posterior fault-parameter distribution was used to compute 2500 ΔCFS maps. We assess the reliability of the ΔCFS-values from the coefficient of variation (CV) and deem ΔCFS-values to be reliable where they are at least twice as large as the standard deviation (CV ≤ 0.5). Unreliable ΔCFS-values are found near the causative fault and between lobes of positive and negative stress change, where a small change in fault strike causes ΔCFS-values to change sign. The most reliable ΔCFS-values are found away from the source fault in the middle of positive and negative ΔCFS-lobes, a likely general pattern. Using the reliability criterion, our results support the static stress-triggering hypothesis. Nevertheless, our analysis also suggests that results from previous stress-triggering studies not considering source model uncertainties may have lead to a biased interpretation of the importance of static stress-triggering.

  19. Geomorphic Evidence of Coseismic Coastline Changes in Southern Miura Peninsula Associated with the Recent Kanto Earthquakes: Analysis of the LIDAR Data, air Photos and Topo Maps

    Science.gov (United States)

    Kim, H.; Kumaki, Y.; Satake, K.

    2011-12-01

    In order to study geomorphic evidence related to the past Kanto earthquakes, we analyzed LIDAR data, air photos and topographical maps, and traced uplifted marine terraces during the recent earthquakes including the 1923 and 1703 earthquakes. Tokyo Metropolitan Area's well-documented earthquake history is dominated by the 1703 and 1923 great Kanto earthquakes, that were resulted from the subducting Philippine Sea plate. Around the source region of the past Kanto earthquakes, Miura and Boso Peninsulas are located facing the Sagami Bay. The average recurrence interval of Kanto earthquake has been estimated on basis of the seismological, geodetic, geological and gemorophological data. The Earthquake Research Committee [2004] proposed that there are types of earthquakes with the recurrence intervals of 200-400 years, and about 2300 years. They produced different amounts of uplift at Boso Peninsula, but the uplifts of Miura Peninsula are similar. The uplift amounts of Miura Peninsula have been estimated about 1.5 m in 1923 and 1703, from the wave-cut-benches, -notches and the distribution of fossil remains along the coast [Matsuda et al. (1978), Shishikura et al. (2007)]. The coastline just before the 1923 earthquakes can be restored from the old topographical map. By using it, the coseismic uplifts associated with the 1923 and 1703 earthquakes may be more accurately estimated. The air photos we used are by 1946 U.S. forces photography and 1963/1966 Geographical Survey Institute photography; the topographical maps are 1:25,000 topographical maps measured in 1921 and 1:20,000 topographical maps of the Meiji period. In addition, we made a high-density (50 cm mesh) digital elevations map by aerial measurements of the Light Detection and Ranging (LIDAR). In Miura Peninsula, three additional steps of marine terrace surface are formed at 7 to 20 m above MSL, at ~5200,~3300 and ~1500 cal. BC, and these are called Nobi 1, 2 and 3 in order from top [Kumaki, 1985; 14C Age was

  20. Coseismic and postseismic deformation of the great 2004 Sumatra-Andaman earthquake

    Science.gov (United States)

    Hughes, Kristin Leigh Hellem

    The 26 December 2004 M9.2 Sumatra-Andaman earthquake (SAE) induced a devastating tsunami when it ruptured over 1300 km of the boundary between the Indo-Australian plate and Burma microplate (Vigny et al., 2005; Bilek, 2007). Three months later on 28 March 2005, the M8.7 Nias earthquake (NE) ruptured over 400 km along the same trench overlapping and progressing to the south of the M9.2 rupture (Banerjee et al., 2007). The spatial and temporal proximity of these two earthquakes suggests that the SAE mechanically influenced the timing of the NE. I analyze the coseismic and postseismic deformation, stress, and pore pressure of the 2004 SAE using 3D finite element models (FEMs) in order to determine the mechanical coupling of the SAE and NE. The motivation for using FEMs is two-fold. First, FEMs allow me to honor the geologic structure of the Sumatra-Andaman subduction zone, and second, FEMs simulate the mechanical behavior of quasi-static coseismic and postseismic deformation systems (e.g., elastic, poroelastic, and viscoelastic materials). The results of my study include: (1) Coseismic slip distributions are incredibly sensitive to the distribution of material properties (Masterlark and Hughes, 2008), (2) Slip models derived from tsunami wave heights do not match slip models derived from GPS data (Hughes and Masterlark, 2008), (3) These FEMs predict postseismic poroelastic deformation and viscoelastic deformation simultaneously (Masterlark and Hughes, 2008), (4) Pore pressure changes induced by the SAE triggered the NE via fluid flow in the subducting oceanic crust and caused the NE to occur 7 years ahead of interseismic strain accumulation predictions (Hughes et al., 2010; Hughes et al., 2011), (5) Global Conductance Matrices provide a way to smooth an underdetermined FEM for arbitrarily irregular surfaces, and (6) FEMs are capable and desired to model subduction zone deformation built around the complexity of a subducting slab which is usually ignored in geodetic

  1. Factors that affect coseismic folds in an overburden layer

    Science.gov (United States)

    Zeng, Shaogang; Cai, Yongen

    2018-03-01

    Coseismic folds induced by blind thrust faults have been observed in many earthquake zones, and they have received widespread attention from geologists and geophysicists. Numerous studies have been conducted regarding fold kinematics; however, few have studied fold dynamics quantitatively. In this paper, we establish a conceptual model with a thrust fault zone and tectonic stress load to study the factors that affect coseismic folds and their formation mechanisms using the finite element method. The numerical results show that the fault dip angle is a key factor that controls folding. The greater the dip angle is, the steeper the fold slope. The second most important factor is the overburden thickness. The thicker the overburden is, the more gradual the fold. In this case, folds are difficult to identify in field surveys. Therefore, if a fold can be easily identified with the naked eye, the overburden is likely shallow. The least important factors are the mechanical parameters of the overburden. The larger the Young's modulus of the overburden is, the smaller the displacement of the fold and the fold slope. Strong horizontal compression and vertical extension in the overburden near the fault zone are the main mechanisms that form coseismic folds.

  2. COSEISMIC DEFORMATION FIELD AND FAULT SLIP DISTRIBUTION OF THE 2015 CHILE Mw8.3 EARTHQUAKE

    Directory of Open Access Journals (Sweden)

    C. Qu

    2016-06-01

    Full Text Available On September 16, 2015, a magnitude 8.3 earthquake struck west of Illapel, Chile. We analyzed Sentinel-1A/IW InSAR data on the descending track acquired before and after the Chile Mw8.3 earthquake of 16 September 2015. We found that the coseismic deformation field of this event consists of many semi circular fringes protruding to east in an approximately 300km long and 190km wide region. The maximum coseismic displacement is about 1.33m in LOS direction corresponding to subsidence or westward shift of the ground. We inverted the coseismic fault slip based on a small-dip single plane fault model in a homogeneous elastic half space. The inverted coseismic slip mainly concentrates at shallow depth above the hypocenter with a symmetry shape. The rupture length along strike is about 340 km with maximum slip of about 8.16m near the trench. The estimated moment is 3.126×1021 N.m (Mw8.27,the maximum depth of coseismic slip near zero appears to 50km. We also analyzed the postseismic deformation fields using four interferograms with different time intervals. The results show that postseismic deformation occurred in a narrow area of approximately 65km wide with maximum slip 11cm, and its predominant motion changes from uplift to subsidence with time. that is to say, at first, the postseismic deformation direction is opposite to that of coseismic deformation, then it tends to be consistent with coseismic deformation.It maybe indicates the differences and changes in the velocity between the Nazca oceanic plate and the South American continental plate.

  3. Fault model of the 2017 Jiuzhaigou Mw 6.5 earthquake estimated from coseismic deformation observed using Global Positioning System and Interferometric Synthetic Aperture Radar data

    Science.gov (United States)

    Nie, Zhaosheng; Wang, Di-Jin; Jia, Zhige; Yu, Pengfei; Li, Liangfa

    2018-04-01

    On August 8, 2017, the Jiuzhaigou Mw 6.5 earthquake occurred in Sichuan province, southwestern China, along the eastern margin of the Tibetan Plateau. The epicenter is surrounded by the Minjiang, Huya, and Tazang Faults. As the seismic activity and tectonics are very complicated, there is controversy regarding the accurate location of the epicenter and the seismic fault of the Jiuzhaigou earthquake. To investigate these aspects, first, the coseismic deformation field was derived from Global Positioning System (GPS) and Interferometric Synthetic Aperture Radar (InSAR) measurements. Second, the fault geometry, coseismic slip model, and Coulomb stress changes around the seismic region were calculated using a homogeneous elastic half-space model. The coseismic deformation field derived from InSAR measurements shows that this event was mainly dominated by a left-lateral strike-slip fault. The maximal and minimal displacements were approximately 0.15 m and - 0.21 m, respectively, along line-of-sight observation. The whole deformation field follows a northwest-trending direction and is mainly concentrated west of the fault. The coseismic slip is 28 km along the strike and 18 km along the dip. It is dominated by a left-lateral strike-slip fault. The average and maximal fault slip is 0.18 and 0.85 m, respectively. The rupture did not fully reach the ground surface. The focal mechanism derived from GPS and InSAR data is consistent with the kinematics and geometry of the Huya Fault. Therefore, we conclude that the northern section or the Shuzheng segment of the Huya Fault is the seismogenic fault. The maximal fault slip is located at 33.25°N and 103.82°E at a depth of 11 km, and the release moment is approximately 6.635 × 1018 Nm, corresponding to a magnitude of Mw 6.49, which is consistent with results reported by the US Geological Survey, Global Centroid Moment Tensor, and other researchers. The coseismic Coulomb stress changes enhanced the stress on the northwest and

  4. Ruptured Pebbles - a coseismic and paleoseismic indicator?

    Science.gov (United States)

    Weismüller, Christopher; Reicherter, Klaus

    2017-04-01

    fostered the assumption that these pebbles must have been fractured in-situ in the matrix. During slow deformation in combination with the contrast in competence between pebble and matrix, the pebbles would rotate and realign along a shear plane within the matrix. We explain the observed shearing of pebbles in the debris flow to be the product of a temporary tensile stress induced by the propagation of a seismic wave through the sediment body. The quick deformation causes the pebbles and matrix to engage in a state of similar competence, enabling the shearing of the clasts in the matrix. Under the given circumstances, we conclude the near-fault presence of ruptured pebbles in a soft sediment body to indicate paleoseismic activity and coseismic deformation. In contrast to that we regard aligned pebbles as a slow deformation, probably caused by afterslip and post-seismic deformation.

  5. Calibrating coseismic coastal land-level changes during the 2014 Iquique (Mw=8.2) earthquake (northern Chile) with leveling, GPS and intertidal biota.

    Science.gov (United States)

    Jaramillo, Eduardo; Melnick, Daniel; Baez, Juan Carlos; Montecino, Henry; Lagos, Nelson A; Acuña, Emilio; Manzano, Mario; Camus, Patricio A

    2017-01-01

    The April 1st 2014 Iquique earthquake (MW 8.1) occurred along the northern Chile margin where the Nazca plate is subducted below the South American continent. The last great megathrust earthquake here, in 1877 of Mw ~8.8 opened a seismic gap, which was only partly closed by the 2014 earthquake. Prior to the earthquake in 2013, and shortly after it we compared data from leveled benchmarks, deployed campaign GPS instruments, continuous GPS stations and estimated sea levels using the upper vertical level of rocky shore benthic organisms including algae, barnacles, and mussels. Land-level changes estimated from mean elevations of benchmarks indicate subsidence along a ~100-km stretch of coast, ranging from 3 to 9 cm at Corazones (18°30'S) to between 30 and 50 cm at Pisagua (19°30'S). About 15 cm of uplift was measured along the southern part of the rupture at Chanabaya (20°50'S). Land-level changes obtained from benchmarks and campaign GPS were similar at most sites (mean difference 3.7±3.2 cm). Higher differences however, were found between benchmarks and continuous GPS (mean difference 8.5±3.6 cm), possibly because sites were not collocated and separated by several kilometers. Subsidence estimated from the upper limits of intertidal fauna at Pisagua ranged between 40 to 60 cm, in general agreement with benchmarks and GPS. At Chanavaya, the magnitude and sense of displacement of the upper marine limit was variable across species, possibly due to species-dependent differences in ecology. Among the studied species, measurements on lithothamnioid calcareous algae most closely matched those made with benchmarks and GPS. When properly calibrated, rocky shore benthic species may be used to accurately measure land-level changes along coasts affected by subduction earthquakes. Our calibration of those methods will improve their accuracy when applied to coasts lacking pre-earthquake data and in estimating deformation during pre-instrumental earthquakes.

  6. Fault pseudotachylyte: a coseismic lightning rod

    Science.gov (United States)

    Ferre, E. C.; Conder, J. A.; MathanaSekaran, N.; Geissman, J. W.

    2013-12-01

    The electrical conductivity of fault rocks varies considerably during an earthquake due to catastrophic physical changes, such as cataclastic deformation and frictional melting. We model independently the role of each parameter affecting electrical conductivity for a rock of granitic composition with an initial electrical conductivity s = 6.25 x 10^-7 S/m at 300 K and a density d = 2.64 x 10^3 kg/m3. In dry, unfractured rock, the electrical conductivity increases with temperature by one order of magnitude between 300 and 1300 K. Above 1300 K, partial melting generally takes place and the electrical conductivity drastically increases because metallic conduction prevails in a melt. Complex phase transitions, involving hematite, maghemite and magnetite, are responsible for discrete changes in electrical conductivity as a function of temperature. As the number and width of fractures increases towards the fault core and during slip, due to high strain rates (10^-2 m/s), the porosity also increases. The electrical conductivity can be modeled using a variation of Archie's Law. Our model assumes an increase in porosity from 0.2 to 2.0 %, similar to that observed for both the Nojima and the Soultz fault, which cut granites, and a fluid conductivity of Sw = 0.5 S/m, consistent with conductivity of fluids commonly present at depths of 2000 m. An increase in electrical conductivity by two orders of magnitude is predicted. Finally, the electrical conductivity of a mixture of solid rock and silicate melt is a composite of the electrical properties of both components. The electrical conductivity of the silicate melt results from metallic conduction and varies considerably with melt temperature. During seismic slip, the solid rock temperature is considered constant due to the low thermal conductivity of granitic rocks. Our model, a variant of the brick layer model of Partzsch et al. (2000), reveals another cause for the rise in electrical conductivity due to increasing abundance

  7. Estimates of stress changes from the 2010 Maule, Chile earthquake: the influence on crustal faults and volcanos

    Science.gov (United States)

    Keiding, M.; Heidbach, O.; Moreno, M.; Baez, J. C.; Melnick, D.; Kukowski, N.

    2012-04-01

    The south-central Chile margin is an active plate boundary where the accumulated stress in the subduction interface is released frequently by megathrust earthquakes (Mw>8.5). The Maule earthquake of February 27 2010 affected about 500 km of the plate boundary producing spectacular tectonic deformation and a devastating tsunami. A compilation of pre-, co-, and post-earthquake geologic and geodetic data offers the opportunity of gain insight into the processes that control strain accumulation and stress changes associated to megathrust events. The fore-arc deformation is primarily controlled by the stresses that are transferred through the locked parts of the plate interface and the release of stresses during megathrust events. During a great interplate faulting event, upper plate faults, rooted in the plate interface, can play a key role in controlling fluid pressurization. Hence, the hydraulic behavior of splay faults may induce variations of shear strength and may promote dynamic slip weakening along a crustal fault. Furthermore, the co-seismic stress transfer from megathrust earthquakes can severely affect nearby volcanos promoting eruptions and local deformation. InSAR and time-series of continuous GPS in the aftermath of the Maule earthquake show evidences of activation of the NW-striking Lanalhue fault system as well as pressure increase at the Antuco volcano. We build a 3D geomechanical-numerical model that consists of 1.8 million finite elements and incorporates realistic geometries adapted from geophysical data sets as well as the major crustal faults in the region. An updated co-seismic slip model is obtained based on a joint inversion of InSAR and GPS data. The model is used to compute stress changes in the upper plate in order to investigate how the Maule earthquake may have affected the crustal faults and volcanoes in the region.

  8. Three dimensional viscoelastic simulation on dynamic evolution of stress field in North China induced by the 1966 Xingtai earthquake

    Science.gov (United States)

    Chen, Lian-Wang; Lu, Yuan-Zhong; Liu, Jie; Guo, Ruo-Mei

    2001-09-01

    Using three dimensional (3D) viscoelastic finite element method (FEM) we study the dynamic evolution pattern of the coseismic change of Coulomb failure stress and postseismic change, on time scale of hundreds years, of rheological effect induced by the M S=7.2 Xingtai earthquake on March 22, 1966. Then, we simulate the coseismic disturbance in stress field in North China and dynamic change rate on one-year scale caused by the Xingtai earthquake and Tangshan earthquake during 15 years from 1966 to 1980. Finally, we discuss the triggering of a strong earthquake to another future strong earthquake.

  9. Temporal stress changes associated with the 2008 May 29 MW 6 earthquake doublet in the western South Iceland Seismic Zone

    Science.gov (United States)

    Hensch, Martin; Lund, Björn; Árnadóttir, Thóra; Brandsdóttir, Bryndís

    2016-01-01

    On 2008 May 29, two magnitude MW ˜ 6 earthquakes occurred on two adjacent N-S faults in the western South Iceland Seismic Zone. The first main shock was followed approximately 3 s later by the rupture on a parallel fault, about 5 km to the west. An intense aftershock sequence was mostly confined to the western fault and an E-W aligned zone, extending west of the main shock region into the Reykjanes oblique rift. In this study, a total of 325 well-constrained focal mechanisms were obtained using data from the permanent Icelandic SIL seismic network and a temporary network promptly installed in the source region following the main shocks, which allowed a high-resolution stress inversion in short time intervals during the aftershock period. More than 800 additional focal mechanisms for the time period 2001-2009, obtained from the permanent SIL network, were analysed to study stress changes associated with the main shocks. Results reveal a coseismic counter-clockwise rotation of the maximum horizontal stress of 11 ± 10° (95 per cent confidence level) in the main rupture region. From previous fault models obtained by inversion of geodetic data, we estimate a stress drop of about half of the background shear stress on the western fault. With a stress drop of 8-10 MPa, the pre-event shear stress is estimated to 16-20 MPa. The apparent weakness of the western fault may be caused by fault properties, pore fluid pressure and the vicinity of the fault to the western rift zone, but may also be due to the dynamic stress increase on the western fault by the rupture on the eastern fault. Further, a coseismic change of the stress regime-from normal faulting to strike-slip faulting-was observed at the northern end of the western fault. This change could be caused by stress heterogeneities, but may also be due to a southward shift in the location of the aftershocks as compared to prior events.

  10. The impact of static stress change, dynamic stress change, and the background stress on aftershock focal mechanisms

    Science.gov (United States)

    Hardebeck, Jeanne L.

    2014-01-01

    The focal mechanisms of earthquakes in Southern California before and after four M ≥ 6.7 main shocks provide insight into how fault systems respond to stress and changes in stress. The main shock static stress changes have two observed impacts on the seismicity: changing the focal mechanisms in a given location to favor those aligned with the static stress change and changing the spatial distribution of seismicity to favor locations where the static stress change aligns with the background stress. The aftershock focal mechanisms are significantly aligned with the static stress changes for absolute stress changes of ≥ 0.02 MPa, for up to ~20 years following the main shock. The dynamic stress changes have similar, although smaller, effects on the local focal mechanisms and the spatial seismicity distribution. Dynamic stress effects are best observed at long periods (30–60 s) and for metrics based on repeated stress cycling in the same direction. This implies that dynamic triggering operates, at least in part, through cyclic shear stress loading in the direction of fault slip. The background stress also strongly controls both the preshock and aftershock mechanisms. While most aftershock mechanisms are well oriented in the background stress field, 10% of aftershocks are identified as poorly oriented outliers, which may indicate limited heterogeneity in the postmain shock stress field. The fault plane orientations of the outliers are well oriented in the background stress, while their slip directions are not, implying that the background stress restricts the distribution of available fault planes.

  11. Inverting Coseismic TEC Disturbances for Neutral Atmosphere Pressure Wave

    Science.gov (United States)

    Lee, R. F.; Mikesell, D.; Rolland, L.

    2017-12-01

    Research from the past 20 years has shown that we can detect coseismic disturbances in the total electron content (TEC) using global navigation space systems (GNSS). In the near field, TEC disturbances are created by the direct wave from rupture on the surface. This pressure wave travels through the neutral atmosphere to the ionosphere within about 10 minutes. This provides the opportunity to almost immediately characterize the source of the acoustic disturbance on the surface using methods from seismology. In populated areas, this could provide valuable information to first responders. To retrieve the surface motion amplitude information we must account for changes in the waveform caused by the geomagnetic field, motion of the satellites and the geometry of the satellites and receivers. One method is to use a transfer function to invert for the neutral atmosphere pressure wave. Gómez et al (2015) first employed an analytical model to invert for acoustic waves produced by Rayleigh waves propagating along the Earth's surface. Here, we examine the same model in the near field using the TEC disturbances from the direct wave produced by rupture at the surface. We compare results from the forward model against a numerical model that has been shown to be in good agreement with observations from the 2011 Van (Turkey) earthquake. We show the forward model predictions using both methods for the Van earthquake. We then analyze results for hypothetical events at different latitudes and discuss the reliability of the analytical model in each scenario. Gómez, D., R. Jr. Smalley, C. A. Langston, T. J. Wilson, M. Bevis, I. W. D. Dalziel, E. C. Kendrick, S. A. Konfal, M. J. Willis, D. A. Piñón, et al. (2015), Virtual array beamforming of GPS TEC observations of coseismic ionospheric disturbances near the Geomagnetic South Pole triggered by teleseismic megathrusts, J. Geophys. Res. Space Physics, 120, 9087-9101, doi:10.1002/2015JA021725.

  12. Can Tectonic Loading be Observed as Interseismic Stress Rotation?

    Science.gov (United States)

    Hardebeck, J.

    2016-12-01

    The shear stress on major faults evolves through the seismic cycle, due to tectonic stress loading, coseismic stress release, and earthquake stress transfer. If the seismic cycle stresses are small compared to the background differential stress, the stress orientations should not change during the seismic cycle. However, observed coseismic stress rotations imply that the stress drop is on the order of the differential stress. The coseismic stress rotations suggest that the stress rotates back during the rest of the seismic cycle as the fault is reloaded, raising the possibility that monitoring interseismic stress changes could inform earthquake hazard assessment. I test whether observable interseismic stress rotations in southern California are consistent with tectonic loading. I invert the focal mechanism catalog of Yang et al (BSSA, 2012) for stress orientations in 4 time periods, and look for significant changes in the direction of the maximum horizontal stress axis, SHmax. For a simple loading model, increased shear stress on strike-slip faults should correspond to SHmax rotating towards a 45° angle to the fault strike. For the San Andreas, San Jacinto, Elsinore, and Garlock faults, however, >40% of sample points along the fault experience SHmax rotating away from 45°. To better account for the complexity of loading of the fault system, I compute the SHmax rotation directions predicted by the SCEC Community Stress Model (CSM). I add 33 years of loading from a stressing rate model to a stress model, for different pairs of CSM models, and compute the direction of SHmax rotation. Most pairs of models exhibit similar patterns of SHmax rotation, featuring counter-clockwise rotations centered along the major faults. The observed rotations, in both directions, do not qualitatively match these predicted patterns. I conclude that the interseismic tectonic stress loading in southern California is not detectable, at least over the 33-year time period of the mechanism

  13. Velocity- and slip-dependent weakening on the Tohoku plate boundary fault: shallow coseismic slip facilitated by foreshock afterslip

    Science.gov (United States)

    Ito, Y.; Ikari, M.; Ujiie, K.; Kopf, A.

    2016-12-01

    Understanding of role of slow earthquakes as they relate to the occurrence of both megathrust earthquakes and tsunami earthquakes is necessary to mitigate these disasters in the near future. Laboratory shearing experiments is one of important approach to evaluate these relationships. Here, we use powdered gouge samples from JFAST (IODP Expedition 343) Hole C0019E, core sample 17R-1, which is the plate boundary fault zone in the Japan Trench subduction zone. In this region, both large coseismic slip during the 2011 Tohoku-Oki earthquake as well as discrete slow slip events (SSE) have occurred. Experiments were conducted in a single-direct shear apparatus under normal stress of 16 MPa, with total shear displacements of up to 16 mm. We evaluate both the velocity- and slip-dependence of friction by extracting the velocity-dependent friction parameters a, b, and Dc, and measuring the rate of change in friction coefficient with shear displacement as the slip-dependence of friction. We report that in friction experiments using the Tohoku fault zone samples, an increase in sliding velocity exceeding that of earthquake afterslip can induce a change from steady-state frictional strength or slip hardening friction to slip-weakening frictional behavior. Our results show that the slip weakening is observed when the slip velocity exceeds 1 x 10-6 m/s during our experiments, while steady-state frictional strength or slip hardening is observed below 1x10-6 m/s. In the Japan Trench region, two slow events were observed at the downdip edge of the mainshock coseismic slip zone (< 30 m) were observed. These are an episodic SSE with a slip velocity of 0.1 x 10-6, and afterslip after the largest foreshock with a slip velocity of 2 x 10-6 m/s. This suggests that the afterslip may have facilitated the large coseismic slip during the mainshock on the plate boundary fault of the Tohoku-Oki earthquake.

  14. Managing stress and change during service reviews.

    Science.gov (United States)

    Sweeney, Corinne

    2009-01-01

    Service reviews occur throughout the National Health Service from time to time, and changes in commissioning policies have recently led many Primary Care Trusts to hold reviews of the community health services. Although reviews can provide opportunities for fresh thinking, the process can be a time of considerable stress and apprehension for many staff as current systems and ways of working are challenged and possibly changed. If this stress is not managed appropriately, staff may suffer ill health leading to possible staff absences and pressure on services. Leaders and managers are ideally placed to manage this time of stress, if they have the necessary skills and qualities. Self-help measures are also beneficial and recommended as part of a healthy lifestyle. This article discusses how change can affect people in different stages of their life and how it can be managed more positively in the workplace.

  15. InSAR and GPS derived coseismic deformation and fault model of the 2017 Ms7.0 Jiuzhaigou earthquake in the Northeast Bayanhar block

    Science.gov (United States)

    Zhao, Dezheng; Qu, Chunyan; Shan, Xinjian; Gong, Wenyu; Zhang, Yingfeng; Zhang, Guohong

    2018-02-01

    On 8 August 2017, a Ms7.0 earthquake stroke the city of Jiuzhaigou, Sichuan, China. The Jiuzhaigou earthquake occurred on a buried fault in the vicinity of three well-known active faults and this event offers a unique opportunity to study tectonic structures in the epicentral region and stress transferring. Here we present coseismic displacement field maps for this earthquake using descending and ascending Sentinel-1A Interferometric Synthetic Aperture Radar (InSAR) data. Deformation covered an area of approximately 50 × 50 km, with a maximum line-of-sight (LOS) displacement of 22 cm in ascending and 14 cm in descending observations on the west side of the source fault. Based on InSAR and Global Positioning System (GPS) measurements, both separately and jointly, we constructed a one-segment model to invert the coseismic slip distribution and dip angle of this event. Our final fault slip model suggests that slip was concentrated at an upper depth of 15 km; there was a maximum slip of 1.3 m and the rupture was dominated by a left-lateral strike-slip motion. The inverted geodetic moment was approximately 6.75 × 1018 Nm, corresponding to a moment magnitude of Mw6.5, consistent with seismological results. The calculated static Coulomb stress changes indicate that most aftershocks occurred in stress increasing zones caused by the mainshock rupture; the Jiuzhaigou earthquake has brought the western part of the Tazang fault 0.1-0.4 MPa closer to failure, indicating an increasing seismic hazard in this region. The Coulomb stress changes caused by the 2008 Mw7.8 Wenchuan earthquake suggest that stress loading from this event acted as a trigger for the Jiuzhaigou earthquake.

  16. Coseismic paleomagnetic signal in fault pseudotachylytes?

    Science.gov (United States)

    Ferre, E.; Geissman, J. W.; Zechmeister, M. S.

    2012-04-01

    The 59 Ma-old fault-related pseudotachylytes of the Peninsular Ranges of California have been investigated from the microstructural and magnetic point of view. These veins have a 30-fold increase in magnetic susceptibility compared to their tonalitic host-rock. The increase results from the breakdown of mafic silicates during frictional melting and subsequent formation of abundant fine grained magnetite grains. Upon rapid cooling of the pseudotachylyte melt in the Earth's magnetic field the rocks acquire a strong thermoremanent magnetization. In addition to this dominant process some samples exhibit a "lightning-induced" remanent magnetization acquired during seismic slip in the presence of a high magnetic field. This unusual remanence component is anomalous in direction and tends to be at high angle to the pseudotachylyte vein plane. We propose that the coseismic lightning-induced magnetization is caused by electrical currents possibly similar to those responsible for earthquake lightnings.

  17. Shared identity in organizational stress and change.

    Science.gov (United States)

    van Dick, Rolf; Ciampa, Valeria; Liang, Shuang

    2017-11-17

    The social identity approach has been found very useful for the understanding of a range of phenomena within and across organizations. It has been applied in particular to analyze employees' stress and well-being at work and their reactions to organizational change. In this paper, we argue that there is a mismatch between the theoretical notion of shared identities in teams and organizations and empirical research, which largely focuses on the individual employee's identification with his or her social categories at work. We briefly review the literature in the two areas of stress and change and conclude with an agenda for future research. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Mechanical properties of conjugate faults in the Makran accretionary prism estimated from InSAR observations of coseismic deformation due to the 2013 Baluchistan (Mw 7.7) earthquake

    Science.gov (United States)

    Dutta, R.; Harrington, J.; Wang, T.; Feng, G.; Vasyura-Bathke, H.; Jonsson, S.

    2017-12-01

    Interferometric Synthetic Aperture Radar (InSAR) measurements allow us to study various mechanical and rheological properties around faults. For example, strain localizations along faults induced by nearby earthquakes observed by InSAR have been explained by the elastic response of compliant fault zones (CFZ) where the elastic moduli is reduced with respect to that of the surrounding rock. We observed similar strain localizations (up to 1-3 cm displacements in the line-of-sight direction of InSAR) along several conjugate faults near the rupture of the 2013 Mw7.7 Baluchistan (Pakistan) earthquake in the accretionary prism of the Makran subduction zone. These conjugate compliant faults, which have strikes of N30°E and N45°W, are located 15-30 km from the mainshock fault rupture in a N-S compressional stress regime. The long-term geologic slip direction of these faults is left-lateral for the N30°E striking faults and right-lateral for the N45°W striking faults. The 2013 Baluchistan earthquake caused WSW-ENE extensional coseismic stress changes across the conjugate fault system and the observed strain localizations shows opposite sense of motion to that of the geologic long-term slip. We use 3D Finite Element modeling (FEM) to study the effects extensional coseismic stresses have on the conjugate CFZs that is otherwise loaded in a compressional regional stress. We use coseismic static displacements due to the earthquake along the FEM domain boundaries to simulate the extensional coseismic stress change acting across the fault system. Around 0.5-2 km wide CFZs with reduction in shear modulus by a factor of 3 to 4 can explain the observed InSAR strain localizations and the opposite sense of motion. The InSAR measurements were also used to constrain the ranges of the length, width and rigidity variations of the CFZs. The FEM solution shows that the N45°W striking faults localize mostly extensional strain and a small amount of left-lateral shear (opposite sense to

  19. Coseismic displacement caused by the Mw 6.1 Mashhad earthquake in NE Iran from Sentinel-1A TOPS radar images

    Science.gov (United States)

    Su, Z.; Hu, J. C.; Talebian, M.

    2017-12-01

    Determining the relationship between crustal movement and associated slip partitioning is essential for understanding earthquake source and addressing the proposed models of a potential earthquake hazard. An Mw 6.1 earthquake struck the southeastern margin of the Mashhad valley in the northeast of Iran on 5 April 2017. In this study, we use both the ascending and descending mode of Sentinel-1A TOPS satellite data to characterize coseismic deformation pattern and to inverse the coseismic slip distribution on the fault patches. The best fitting model predicts that the coseismic rupture occurs along a fault plane with strike of 324.4º and dip of 28.1ºE. Our results show the fault tip does not propagate to the ground surface, and the predicted coseismic slip on the surface is about 0.11 m located on the hanging wall of the fault. Significant slip is concentrated on the fault patches at depth of 4-8 km and an along-strike distance of 10 km with varying slip magnitude from 0.1 m to 0.9 m. The fault slip is composed by thrusting with right-lateral strike slip, which is consistent with the focal mechanism solution. The over-thrusting was occurred from the depth of 14 km and terminated at the 4 km depth. While the right-lateral strike slip was only concentrated at a shallower depth of 4 to 8 km depth with the maximum slip of 0.9 m. The seismic moment release of our preferred fault model is 1.71×1018 Nm, equivalent to Mw 6.16 event. The Coulomb failure stress (CFS) calculated by the preferred fault model predicts significant positive CFS change on the three paralleled subsidiary faults of the southernmost Mashhad and Kashafrud fault, the Tus, Sorkhdeh and Natu faults. Consequently, these segments should be considered to have increasing of risk for future seismic hazard. Although most of the northward motion of the Lut and Central Iranian Blocks have been absorbed by the crustal shortening (e.g. thrusting and folding along the Binalud and Kopeh Dagh), simple strike

  20. An Investigation of the Accuracy of Coulomb Stress Changes Inferred From Geodetic Observations Following Subduction Zone Earthquakes

    Science.gov (United States)

    Stressler, Bryan J.; Barnhart, William D.

    2017-09-01

    Earthquake clustering along plate boundaries suggests that earthquakes may interact, and static Coulomb stress change (CSC) is commonly invoked as one possible mechanism for stress transfer between earthquakes and nearby faults. Previous work has addressed the precision of CSC predictions that are influenced by observational noise, inversion regularization, and simplified modeling assumptions. Here we address the accuracy of CSC predictions informed by geodetic observations in subduction zones where inversion model resolution is poor. We conduct synthetic tests to quantify the degree to which the sign and magnitude of CSC can be reliably inferred from slip distributions inverted from various geodetic observations (interferometric synthetic aperture radar (InSAR), GPS, and seafloor observations). We find that in an idealized subduction zone, CSC can only be confidently inferred for receiver faults far (tens of kilometers) from the earthquake source, though this distance shortens with the addition of synthetic seafloor observations. We apply this methodology to the 2010 Mw8.8 Maule earthquake and identify 13 aftershocks from a population of 475 documented events for which we can confidently resolve coseismic stress changes. These results demonstrate that the low model resolution of fault slip inversions in subduction zones limits our ability to address fundamental questions about earthquake sources and stress interactions. Nonetheless, our results highlight that stress change predictions are considerably more accurate after the introduction of seafloor geodetic observations. Additionally, we show that InSAR observations are not required to substantially improve stress change approximations in regions where GPS may be the only viable observation, such as in island arcs settings.

  1. Coseismic slip and early afterslip of the 2015 Illapel, Chile, earthquake: Implications for frictional heterogeneity and coastal uplift

    Science.gov (United States)

    Barnhart, William D.; Murray, Jessica R.; Briggs, Richard W.; Gomez, Francisco; Miles, Charles P. J.; Svarc, Jerry L.; Riquelme, Sebástian; Stressler, Bryan J.

    2016-01-01

    Great subduction earthquakes are thought to rupture portions of the megathrust, where interseismic coupling is high and velocity-weakening frictional behavior is dominant, releasing elastic deformation accrued over a seismic cycle. Conversely, postseismic afterslip is assumed to occur primarily in regions of velocity-strengthening frictional characteristics that may correlate with lower interseismic coupling. However, it remains unclear if fixed frictional properties of the subduction interface, coseismic or aftershock-induced stress redistribution, or other factors control the spatial distribution of afterslip. Here we use interferometric synthetic aperture radar and Global Position System observations to map the distribution of coseismic slip of the 2015 Mw 8.3 Illapel, Chile, earthquake and afterslip within the first 38 days following the earthquake. We find that afterslip overlaps the coseismic slip area and propagates along-strike into regions of both high and moderate interseismic coupling. The significance of these observations, however, is tempered by the limited resolution of geodetic inversions for both slip and coupling. Additional afterslip imaged deeper on the fault surface bounds a discrete region of deep coseismic slip, and both contribute to net uplift of the Chilean Coastal Cordillera. A simple partitioning of the subduction interface into regions of fixed frictional properties cannot reconcile our geodetic observations. Instead, stress heterogeneities, either preexisting or induced by the earthquake, likely provide the primary control on the afterslip distribution for this subduction zone earthquake. We also explore the occurrence of coseismic and postseismic coastal uplift in this sequence and its implications for recent hypotheses concerning the source of permanent coastal uplift along subduction zones.

  2. Geospatial Assessment of Coseismic Landslides in Baturagung Area

    Directory of Open Access Journals (Sweden)

    Aditya Saputra

    2016-02-01

    Full Text Available Java, the most densely populated island in Indonesia, is located on top of the most seismically active areas in Southeast Asia: the Sunda Megathrust. This area is frequently hit by strong earthquake. More than 3,300 M>5earthquakesoccurred between 1973-2014. The wide range of mountainous areas and high intensity of rainfall, make several part of the island one of the most exposed regions for coseismic landslides such as Baturagung area, the Southeast mountainous area of Yogyakarta Province. An integrated method between RS and GIS was used to conduct the vulnerability assessment due to the lack of the site specific slope instability analysis and coseismic landslides data. The seismic zonation of Baturagung area was obtained based on the analysis of Kanai attenuation. The geologic information was extracted using remote sensing interpretation based on the 1:100,000 geologic map of Yogyakarta and geomorphologic map of Baturagung area as well. The coseismic landslide hazard assessment has been estimated using scoring analysis in the GIS platform proposed by Mora and Vahrson (1993 with several modification. The accomplished coseismic landslide hazard map shows medium hazard coverage in the eastern areas, in the upper slope of Baturagung area, which consists of Semilir Formation. The result provides a distinct description of coseismic landslides hazard distribution in Batuaragung area. However, it should only be the preliminary assessment of the site specific investigation especially on valuable area or asset.

  3. Workplace Re-organization and Changes in Physiological Stress Markers

    DEFF Research Database (Denmark)

    Carlsson, Rikke Hinge; Hansen, Åse Marie; Kristiansen, Jesper

    2014-01-01

    The aim of this study was to investigate changes in physiological stress markers as a consequence of workplace reorganization. Moreover, we aimed to investigate changes in the psychosocial work environment (job strain, effortreward imbalance (ERI), in psychological distress (stress symptoms...... and questionnaire data was in 2006 and 2008, and in this sub-study we included 359 participants. To reflect stress reactions of the autonomic nervous system, the endocrine system and the immune system, we included 13 physiological markers. We observed significant change in several physiological stress markers...... reorganization and changes in several physiological stress markers. However, these changes could not be explained by a significant change in psychological distress....

  4. Co-seismic landslide topographic analysis based on multi-temporal DEM-A case study of the Wenchuan earthquake.

    Science.gov (United States)

    Ren, Zhikun; Zhang, Zhuqi; Dai, Fuchu; Yin, Jinhui; Zhang, Huiping

    2013-01-01

    Hillslope instability has been thought to be one of the most important factors for landslide susceptibility. In this study, we apply geomorphic analysis using multi-temporal DEM data and shake intensity analysis to evaluate the topographic characteristics of the landslide areas. There are many geomorphologic analysis methods such as roughness, slope aspect, which are also as useful as slope analysis. The analyses indicate that most of the co-seismic landslides occurred in regions with roughness, hillslope and slope aspect of >1.2, >30, and between 90 and 270, respectively. However, the intersection regions from the above three methods are more accurate than that derived by applying single topographic analysis method. The ground motion data indicates that the co-seismic landslides mainly occurred on the hanging wall side of Longmen Shan Thrust Belt within the up-down and horizontal peak ground acceleration (PGA) contour of 150 PGA and 200 gal, respectively. The comparisons of pre- and post-earthquake DEM data indicate that the medium roughness and slope increased, the roughest and steepest regions decreased after the Wenchuan earthquake. However, slope aspects did not even change. Our results indicate that co-seismic landslides mainly occurred at specific regions of high roughness, southward and steep sloping areas under strong ground motion. Co-seismic landslides significantly modified the local topography, especially the hillslope and roughness. The roughest relief and steepest slope are significantly smoothed; however, the medium relief and slope become rougher and steeper, respectively.

  5. Postseismic Gravity Change After the 2006-2007 Great Earthquake Doublet and Constraints on the Asthenosphere Structure in the Central Kuril Islands

    Science.gov (United States)

    Shin-Chan, Han; Sauber, Jeanne; Pollitz, Fred

    2016-01-01

    Large earthquakes often trigger viscoelastic adjustment for years to decades depending on the rheological properties and the nature and spatial extent of coseismic stress. The 2006 Mw8.3 thrust and 2007 Mw8.1 normal fault earthquakes of the central Kuril Islands resulted in significant postseismic gravity change in GRACE but without a discernible coseismic gravity change. The gravity increase of approximately 4 micro-Gal, observed consistently from various GRACE solutions around the epicentral area during 2007-2015, is interpreted as resulting from gradual seafloor uplift by (is) approximately 6 cm produced by postseismic relaxation. The GRACE data are best fit with a model of 25-35 km for the elastic thickness and approximately 10(exp 18) Pa s for the Maxwell viscosity of the asthenosphere. The large measurable postseismic gravity change (greater than coseismic change) emphasizes the importance of viscoelastic relaxation in understanding tectonic deformation and fault-locking scenarios in the Kuril subduction zone.

  6. Changing stress levels through gaining information on stress

    Directory of Open Access Journals (Sweden)

    S.N. Madu

    2002-09-01

    Full Text Available Objective: The aim of this research was to find out the effect of the Information Phase of a Stress Management Program (SMP on the perceptions of participants about their stress levels. Method: A total sample of 100 workers (nursing staff, private business men and women, laboratory assistants, the protective services [foreman and security staff], as well as people in human resources departments took part in this study. All the participants were from the Northern and Gauteng Provinces in South Africa. The Combined Hassles and Uplifts Scale (Folkman & Lazarus, 1989 was used as an instrument to measure the perceived stress level of participants in a SMP. Result: A significant reduction in stress levels was achieved among those who received the Information Phase of the SMP only, as well as those who received the whole stress management techniques. There was no significant difference between the amount of reduction in perceived stress-levels achieved among those that received the Information Phase of the SMP only, compared to that of those who received the whole techniques. Conclusion: The authors conclude that where the resources are limited, only the information phase of a SMP may be given to desiring clients. That should help to save time and money spent on participating in SMPs. This should however not discourage the use of the whole SPM, where affordable. Keywords: Stress Management Programs, Information Phase, Perception, Stress Level.

  7. Temporal stress changes caused by earthquakes: A review

    Science.gov (United States)

    Hardebeck, Jeanne L.; Okada, Tomomi

    2018-01-01

    Earthquakes can change the stress field in the Earth’s lithosphere as they relieve and redistribute stress. Earthquake-induced stress changes have been observed as temporal rotations of the principal stress axes following major earthquakes in a variety of tectonic settings. The stress changes due to the 2011 Mw9.0 Tohoku-Oki, Japan, earthquake were particularly well documented. Earthquake stress rotations can inform our understanding of earthquake physics, most notably addressing the long-standing problem of whether the Earth’s crust at plate boundaries is “strong” or “weak.” Many of the observed stress rotations, including that due to the Tohoku-Oki earthquake, indicate near-complete stress drop in the mainshock. This implies low background differential stress, on the order of earthquake stress drop, supporting the weak crust model. Earthquake stress rotations can also be used to address other important geophysical questions, such as the level of crustal stress heterogeneity and the mechanisms of postseismic stress reloading. The quantitative interpretation of stress rotations is evolving from those based on simple analytical methods to those based on more sophisticated numerical modeling that can capture the spatial-temporal complexity of the earthquake stress changes.

  8. Spatial variations of earthquake occurrence and coseismic deformation in the Upper Rhine Graben, Central Europe

    Science.gov (United States)

    Barth, A.; Ritter, J. R. R.; Wenzel, F.

    2015-05-01

    Seismic activity in the densely populated Upper Rhine Graben (URG) is an aspect in the public, political, and industrial decision making process. The spatial analysis of magnitude-frequency distributions provides valuable information about local seismicity patterns and regional seismic hazard assessment and can be used also as a proxy for coseismic deformation to explore the seismo-tectonic setting of the URG. We combine five instrumental and one historic earthquake bulletins to obtain for the first time a consistent database for events with local magnitudes ML ≥ 2.0 in the whole URG and use it for the determination of magnitude frequencies. The data processing results in a dataset with 274 Poisson distributed instrumentally recorded earthquakes within the URG between 01/1971 and 02/2012 and 34 historic events since the year 1250. Our analysis reveals significant b-value variations along the URG that allow us to differentiate four distinct sections (I-IV) with significant differences in earthquake magnitude distributions: I: Basel region in the Swiss-France-German border region (b = 0.83), II: region between Mulhouse and Freiburg in the southern URG (b = 1.42), III: central URG (b = 0.93), and IV: northern URG (b = 1.06). High b-values and thus a relatively low amount of high magnitude events in the Freiburg section are possibly a consequence of strongly segmented, small-scale structures that are not able to accumulate high stresses. We use the obtained magnitude-frequency distributions and representative source mechanisms for each section to determine coseismic displacement rates. A maximum horizontal displacement rate of 41 μm/a around Basel is found whereas only 8 μm/a are derived for the central and northern URG. A comparison with geodetic and geological constraints implies that the coseismic displacement rates cover less than 10% of the overall displacement rates, suggesting a high amount of aseismic deformation in the URG.

  9. The spin zone: Transient mid-crust permeability caused by coseismic brecciation

    Science.gov (United States)

    Melosh, Benjamin L.; Rowe, Christie D.; Gerbi, Christopher; Bate, Charlotte E.; Shulman, Deborah

    2016-06-01

    Pore fluids migrating through the deep section of continental strike-slip fault zones have been invoked to explain such phenomena as tectonic tremor, stress transfer across the brittle-ductile transition, and short timescales of co-seismic healing. In this contribution, we describe a coseismic mechanism for forming transient vertical fluid conduits within dilational jogs in strike-slip faults. We present field observations of breccias that formed coseismically at dilational stepovers in the dextral Pofadder Shear Zone, a ∼ 1 Ga exhumed continental strike-slip fault in South Africa and Namibia. These breccias are interpreted to have formed when tensile fractures emanating from rupture tips intersected mylonitic foliation parallel to the rupture surface, which then failed, disaggregating the rock. We used quartz textures in the mylonites determined by electron backscatter diffraction to uniquely compare the orientation of each clast to the neighboring wall rock and constrain finite clast rotation within breccia bodies. Comparison of two- and three-dimensional rotation patterns show that clast trajectories are highly scattered when decoupled from wall rock, suggesting that Pofadder breccias were not formed by gradual plucking of clasts during slip. The dilational breccia bodies have sub-vertical geometries and high porosities relative to the host mylonites. We infer that the opening of these breccias may have created instantaneous, temporary vertical pathways for fluid draining through the brittle-plastic transition. These pathways healed post-seismically by cementation or ductile creep along the fault. The connection of many adjacent and overprinting breccia bodies through time provides a mechanism for fluid transport on a 10 s of km scale though the middle crust.

  10. Assessment of co-seismic landslide susceptibility using LR and ...

    Indian Academy of Sciences (India)

    Suchita Shrestha

    2018-03-28

    Mar 28, 2018 ... evaluating rapid co-seismic landslide susceptibil- ity. The LR method has been applied by various researchers (Jade and Sarkar 1993; Dai et al. 2001;. Devkota et al. 2013). An ANCOVA is a normal lin- ear model that combines analysis of variance and regression with qualitative and continuous covari-.

  11. Slip-dependent weakening on shallow plate boundary fault in the Japan subduction zone: shallow coseismic slip facilitated by foreshock afterslip

    Science.gov (United States)

    Ito, Yoshi; Ikari, Matt; Ujiie, Kohtaro; Kopf, Achim

    2017-04-01

    Understanding of role of slow earthquakes as they relate to the occurrence of both megathrust earthquakes and tsunami earthquakes is necessary to mitigate these disasters in the near future. Laboratory shearing experiments is one of important approach to evaluate these relationships. Here, we use powdered gouge samples from JFAST (IODP Expedition 343) Hole C0019E, core sample 17R-1, which is the plate boundary fault zone in the Japan Trench subduction zone. In this region, both large coseismic slip during the 2011 Tohoku-Oki earthquake as well as discrete slow slip events (SSE) have occurred. Experiments were conducted in a single-direct shear apparatus under normal stress of 16 MPa, with total shear displacements of up to 16 mm. We evaluate the slip-dependence of friction by extracting the velocity-dependent friction parameters a, b, and Dc , and also measure the rate of change in friction coefficient with shear displacement as the slip-dependence of friction. We report that in friction experiments using the Tohoku fault zone samples, an increase in sliding velocity exceeding that of earthquake afterslip can induce a change from steady-state frictional strength or slip hardening friction to slip-weakening frictional behavior. Our results show that the slip weakening is observed when the slip velocity exceeds 3.7 × 10-6 m/s during our experiments, while steady-state frictional strength or slip hardening is observed below 1 × 10-6 m/s. In the Japan Trench region, two slow events prior to the mainshock were observed in the mainshock area with a coseismic slip exceeding 30 m . One event is an episodic SSE with a slip velocity of 0.1 × 10-6 , and the other is afterslip after the largest Tohoku earthquake foreshock with a slip velocity exceeding 2 × 10-6 m/s. Our experiments show that slip-weakening friction should be expected at the afterslip rate, suggesting that the afterslip may have facilitated the large coseismic slip during the mainshock on the plate boundary

  12. Running Therapy: Change Agent in Anxiety and Stress Management.

    Science.gov (United States)

    Sachs, Michael L.

    1982-01-01

    Running can be used effectively to produce positive physiological and psychological changes, including cardiovascular and physical fitness, reduction of anxiety, and more effective management of stress. (CJ)

  13. Chronic stress and social changes: socioeconomic determination of chronic stress.

    Science.gov (United States)

    Kopp, Mária S; Skrabski, Arpád; Székely, András; Stauder, Adrienne; Williams, Redford

    2007-10-01

    In the last decades in the transforming societies of Central and Eastern Europe, premature mortality increased dramatically, especially among men. Increasing disparities in socioeconomic conditions have been accompanied by a widening socioeconomic gradient in mortality among men. Social cohesion and meaning in life may help to counterbalance the widening gap in material circumstances. Not the difficult social situation in itself, but the subjective experience of relative disadvantage, the prolonged negative emotional state, that is, chronic stress seems to be the most important risk factor. The health consequences of a low socioeconomic situation among men might be mostly explained by chronic stress caused by work and close-partner-related factors, and the toxic components of this interaction are depression and hopelessness. In the case of women, the broader personal and family relations are the most important health-related factors. Weekend workload, low social support at work and low control at work accounted for a large part of variation in male premature cardiovascular mortality rates, whereas job insecurity, high weekend workload, and low control at work contribute most markedly to variations in premature cardiovascular mortality rates among women. There are two general approaches that scientists and practitioners might take: train individuals and groups to use skills that will enable them to cope better with the stressful conditions that are damaging their health; and lobby governments to adopt policies that will result in decreased chronic stress on the societal level.

  14. Prenatal stress changes learning strategies in adulthood.

    Science.gov (United States)

    Schwabe, Lars; Bohbot, Veronique D; Wolf, Oliver T

    2012-11-01

    It is well known that stressful experiences may shape hippocampus-dependent learning and memory processes. However, although most studies focused on the impact of stress at the time of learning or memory testing, very little is known about how stress during critical periods of brain development affects learning and memory later in life. In this study, we asked whether prenatal stress exposure may influence the engagement of hippocampus-dependent spatial learning strategies and caudate nucleus-dependent response learning strategies in later life. To this end, we tested healthy participants whose mothers had experienced major negative life events during their pregnancy in a virtual navigation task that can be solved by spatial and response strategies. We found that young adults with prenatal stress used rigid response learning strategies more often than flexible spatial learning strategies compared with participants whose mothers did not experience major negative life events during pregnancy. Individual differences in acute or chronic stress do not account for these findings. Our data suggest that the engagement of hippocampal and nonhippocampal learning strategies may be influenced by stress very early in life. Copyright © 2012 Wiley Periodicals, Inc.

  15. Coseismic Deformations and Tectonic Implications of the two Mw>6 2013 Nantou Earthquakes in Taiwan

    Science.gov (United States)

    Lin, J.; Chang, W.; Chao, B. F.

    2013-12-01

    In 2013, two Mw>6 thrust-faulting earthquakes occurred in Nantou County of the central Taiwan with close epicentral locations within a distance of ~8.5 km: the Mw 6.1 March 27, or 0327, earthquake has a focal depth of 19.4 km and the Mw 6.2 June 2, or 0602, earthquake has a focal depth of 15 km. To evaluate the coseismic surface displacements and fault-slip distributions of the two events, we applied the GIPSY/OASIS II software to process the 1-Hz and 15-second GPS data from 18 stations around the epicentral area in a precise point-positioning mode. We adopted JPL's final orbits and clock products, the VMF1 tropospheric mapping function, and the FES2004 tide loading effect for our processing. We also applied modified sidereal filtering (MSF) to deduce common errors due to multipath effects in the high-rate (1-Hz) solutions. For the 0327 event, a horizontal coseismic displacement of 19.2×7.3 mm was obtained based on the change of daily coordinates recorded at the SUN1 station, the closest station to the earthquake epicenter. This displacement is in consistency with the value of 18.8×23.5 mm revealed by the high-rate (1-Hz) solutions (Fig. 1a). For the 0602 event, the GPS daily coordinates indicate a coseismic displacement of 43.9×8.6 mm at SUN1 that is apparently different from the high-rate solution of 29.2×20.2 mm (Fig. 1b). Preliminary fault modeling of daily-based GPS data showed a maximum coseismic fault slip of 9 cm at 20-km depth for the 0327 event, and 19 cm at 12-km depth for the 0602 event. These results suggest that the two Nantou earthquakes are located in a shallow (< 20km) seismogenic zone beneath the central Taiwan, where a conjugate-fault system was revealed by the background seismicity and the aftershocks of the 2000 Mw=6.7 earthquake. Our studies on the relation among the two Nantou earthquakes and the fault system are in progress with further fault modeling constrained by relocated seismic data and other geologic observations.

  16. Early resistance change and stress/electromigrationmodeling in aluminium interconnects

    NARCIS (Netherlands)

    Petrescu, V.; Mouthaan, A.J.; Schoenmaker, W.

    1997-01-01

    A complete description for early resistance change and two dimensional simulation of mechanical stress evolution in confined Al interconnects, related to the electromigration, is given in this paper. The model, combines the stress/ vacancy concentration evolution with the early resistance change of

  17. Influence of organizational change and stress on employee ...

    African Journals Online (AJOL)

    The study investigated the influence of organizational changes, stress, and working experience on well being of bankers in Lagos state. The study adopted descriptive research design of survey type to investigate the effects of organizational change and stress on employee psychological wellbeing among workers in private ...

  18. Far-field coseismic ionospheric disturbances of Tohoku earthquake

    Czech Academy of Sciences Publication Activity Database

    Krasnov, V. M.; Drobzheva, Ya. V.; Chum, Jaroslav

    2015-01-01

    Roč. 135, December (2015), s. 12-21 ISSN 1364-6826 R&D Projects: GA ČR(CZ) GC15-07281J Institutional support: RVO:68378289 Keywords : earthquake * infrasonic waves * ionospheric disturbances * infrasound triggered by the earthquake * co-seismic ionospheric perturbations * modeling * remote sensing Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.463, year: 2015 http://www.sciencedirect.com/science/article/pii/S1364682615300584

  19. Fault on–off versus coseismic fluids reaction

    Directory of Open Access Journals (Sweden)

    C. Doglioni

    2014-11-01

    Full Text Available The fault activation (fault on interrupts the enduring fault locking (fault off and marks the end of a seismic cycle in which the brittle-ductile transition (BDT acts as a sort of switch. We suggest that the fluid flow rates differ during the different periods of the seismic cycle (interseismic, pre-seismic, coseismic and post-seismic and in particular as a function of the tectonic style. Regional examples indicate that tectonic-related fluids anomalies depend on the stage of the tectonic cycle and the tectonic style. Although it is difficult to model an increasing permeability with depth and several BDT transitions plus independent acquicludes may occur in the crust, we devised the simplest numerical model of a fault constantly shearing in the ductile deeper crust while being locked in the brittle shallow layer, with variable homogeneous permeabilities. The results indicate different behaviors in the three main tectonic settings. In tensional tectonics, a stretched band antithetic to the normal fault forms above the BDT during the interseismic period. Fractures close and fluids are expelled during the coseismic stage. The mechanism reverses in compressional tectonics. During the interseismic stage, an over-compressed band forms above the BDT. The band dilates while rebounding in the coseismic stage and attracts fluids locally. At the tip lines along strike-slip faults, two couples of subvertical bands show different behavior, one in dilation/compression and one in compression/dilation. This deformation pattern inverts during the coseismic stage. Sometimes a pre-seismic stage in which fluids start moving may be observed and could potentially become a precursor.

  20. Changes in Appearance in the Presence of Major Stress Events

    Directory of Open Access Journals (Sweden)

    Megan E. Stitz

    2013-04-01

    Full Text Available The relationship between experiencing major stress events (MSEs and changes in appearance (CAs was studied in a sample of 128 participants. All participants completed the Major Stress Event and Changes in Appearance Inventory. Results indicated a significant correlation between experiencing MSEs and considered or actual CAs (r = .50 p < .01. Scores on the Changes in Appearance Inventory were significantly higher in groups with moderate to high scores on the Major Stress Event scale. This relationship between MSEs and CAs was affected by age but not gender. These results suggest that stressful life events may prompt body image dissatisfaction and underlie motivations for changes in body appearance to promote self-image. Successive or dramatic appearance changes may be an important signal of stressful experiences.

  1. An Integrated Analysis of Changes in Water Stress in Europe

    DEFF Research Database (Denmark)

    Henrichs, T.; Lehner, B.; Alcamo, J.

    2002-01-01

    Future changes in water availability with climate change and changes in water use due to socio-economic development are to occur in parallel. In an integrated analysis we bring together these aspects of global change in a consistent manner, and analyse the water stress situation in Europe. We find...... that today high water stress exists in one-fifth of European river basin area. Under a scenario projection, increases in water use throughout Eastern Europe are accompanied by decreases in water availability in most of Southern Europe--combining these trends leads to a marked increase in water stress...

  2. The shape of change in perceived stress, negative affect, and stress sensitivity during mindfulness-based stress reduction.

    Science.gov (United States)

    Snippe, Evelien; Dziak, John J; Lanza, Stephanie T; Nyklíček, Ivan; Wichers, Marieke

    2017-06-01

    Both daily stress and the tendency to react to stress with heightened levels of negative affect (i.e., stress sensitivity) are important vulnerability factors for adverse mental health outcomes. Mindfulness-based stress reduction (MBSR) may help to reduce perceived daily stress and stress sensitivity. The purpose of this study was to examine how change in perceived stress, negative affect (NA), and the decoupling between perceived stress and NA evolved over the course of a MBSR program, without making any a priori assumptions on the shape of change. Seventy-one adults from the general population participating in MBSR provided daily diary assessments of perceived stress and NA during MBSR. The time-varying effect model (TVEM) indicated that perceived stress and NA decreased in a linear fashion rather than in a non-linear fashion, both as a function of time and as a function of the cumulative number of days of mindfulness practice. Both TVEM and multilevel growth modeling showed that the association between perceived stress and NA did not decrease over the course of MBSR. The findings support the hypothesis that MBSR reduces NA and also reduces the extent to which individuals perceive their days as stressful. Also, the results suggest that there is a dose-response relationship between the amount of mindfulness practice and reductions in daily stress and NA.

  3. A hybrid spectral and finite element method for coseismic and postseismic deformation

    Science.gov (United States)

    Pergler, Tomáš; Matyska, Ctirad

    2007-08-01

    We investigate the elastic and viscoelastic responses of the Earth to a sudden slip along a fault. Firstly, equations describing the Earth's infinitesimal deformations for elastic and viscoelastic rheological models are introduced within the weak formulation and the theorems of existence and uniqueness of solutions are demonstrated. Three-dimensional numerical method, which combines the 2D finite element method in a plane perpendicular to the fault with application of the Fourier transform in the direction along the fault, is described. We then discuss several numerical benchmarks. At the end, the coseismic deformation and the Coulomb stress for the August 14, 2003 earthquake on the Lefkada island in Greece are computed incorporating also the influence of topography. We demonstrate that the results are sensitive to both source interpretations and the epicenter area topography.

  4. Evidence for coseismic subsidence events in a southern California coastal saltmarsh

    Science.gov (United States)

    Leeper, Robert; Rhodes, Brady P.; Kirby, Matthew E.; Scharer, Katherine M.; Carlin, Joseph A.; Hemphill-Haley, Eileen; Avnaim-Katav, Simona; MacDonald, Glen M.; Starratt, Scott W.; Aranda, Angela

    2017-01-01

    Paleoenvironmental records from a southern California coastal saltmarsh reveal evidence for repeated late Holocene coseismic subsidence events. Field analysis of sediment gouge cores established discrete lithostratigraphic units extend across the wetland. Detailed sediment analyses reveal abrupt changes in lithology, percent total organic matter, grain size, and magnetic susceptibility. Microfossil analyses indicate that predominantly freshwater deposits bury relic intertidal deposits at three distinct depths. Radiocarbon dating indicates that the three burial events occurred in the last 2000 calendar years. Two of the three events are contemporaneous with large-magnitude paleoearthquakes along the Newport-Inglewood/Rose Canyon fault system. From these data, we infer that during large magnitude earthquakes a step-over along the fault zone results in the vertical displacement of an approximately 5-km2 area that is consistent with the footprint of an estuary identified in pre-development maps. These findings provide insight on the evolution of the saltmarsh, coseismic deformation and earthquake recurrence in a wide area of southern California, and sensitive habitat already threatened by eustatic sea level rise.

  5. Oxidative stress and histopathological changes induced by ...

    African Journals Online (AJOL)

    many vegetables, fruits and field crops against a wide spectrum of fungal diseases. Oxidative stress has .... man's method16 modified by Jollow et al17 based on the .... Figure 1: (A) Evolution of erythrocyte osmotic fragility and (B) blood smear in adult rats, controls and treated with300 (B1) and 500 (B2) mg/kg b.w of MT.

  6. Oxidative stress and histopathological changes induced by ...

    African Journals Online (AJOL)

    Background: Methyl-thiophanate (MT), a fungicide largely used in agriculture throughout the world including Tunisia, protects many vegetables, fruits and field crops against a wide spectrum of fungal diseases. Oxidative stress has been proposed as a possible mechanism involved in MT toxicity on non-target organism.

  7. When Change Causes Stress: Effects of Self-construal and Change Consequences.

    Science.gov (United States)

    Wisse, Barbara; Sleebos, Ed

    Organizational change can be a major stress factor for employees. We investigate if stress responses can be explained by the extent to which there is a match between employee self-construal (in personal or collective terms) and change consequences (i.e., does the change particularly have consequences for the individual or for the group). We further investigate if the interactive effect of self-construal and change consequences on stress will be mediated by feelings of uncertainty. Data were obtained in three studies. Study 1, a laboratory study, focused on physiological stress . Study 2, a business scenario, focused on anticipated stress . Study 3, a cross-sectional survey, focused on perceived stress . Studies 2 and 3 also included measures of uncertainty in order to test its mediating qualities. Change is more likely to lead to stress when the change has consequences for matters that are central to employees' sense of self, and particularly so when the personal self is salient. This effect is mediated by feelings of uncertainty. Understanding why some people experience stress during change, while others do so to a lesser extent, may be essential for improving change management practices. It may help to prevent change processes being unnecessarily stressful for employees. This is one of the first studies to show that different kinds of change may be leading to uncertainty or stress, depending on employees' level of self-construal. The multi-method approach boosts the confidence in our findings.

  8. Non-linear elastic thermal stress analysis with phase changes

    International Nuclear Information System (INIS)

    Amada, S.; Yang, W.H.

    1978-01-01

    The non-linear elastic, thermal stress analysis with temperature induced phase changes in the materials is presented. An infinite plate (or body) with a circular hole (or tunnel) is subjected to a thermal loading on its inner surface. The peak temperature around the hole reaches beyond the melting point of the material. The non-linear diffusion equation is solved numerically using the finite difference method. The material properties change rapidly at temperatures where the change of crystal structures and solid-liquid transition occur. The elastic stresses induced by the transient non-homogeneous temperature distribution are calculated. The stresses change remarkably when the phase changes occur and there are residual stresses remaining in the plate after one cycle of thermal loading. (Auth.)

  9. Psychosocial Stress and Change in Weight Among US Adults

    OpenAIRE

    Block, Jason P.; He, Yulei; Zaslavsky, Alan M.; Ding, Lin; Ayanian, John Z.

    2009-01-01

    The association of psychosocial stress with weight gain may have important implications for clinical practice and workplace and public health interventions. To determine whether multiple domains of psychosocial stress were associated with weight gain from 1995 to 2004, the authors analyzed a nationally representative longitudinal cohort of 1,355 men and women in the United States. Change in body mass index was assessed for multiple domains of psychosocial stress related to work, personal rela...

  10. Oxidative stress biomarkers and metabolic changes associated with ...

    African Journals Online (AJOL)

    Cadmium (Cd)-induced stress in hyacinth bean (Lablab purpureus) was investigated by growing seedlings in a nutrient solution containing increasing cadmium concentrations (0 to 50 μM), under strictly controlled growth conditions. Changes consequent to Cd uptake in growth parameters, enzyme activities and other stress ...

  11. Evaluation of stress gradient by x-ray stress measurement based on change in angle phi

    International Nuclear Information System (INIS)

    Sasaki, Toshihiko; Kuramoto, Makoto; Yoshioka, Yasuo.

    1985-01-01

    A new principle of X-ray stress evaluation for a sample with steep stress gradient has been prosed. The feature of this method is that the stress is determined by using so-called phi-method based on the change of phi-angle and thus has no effect on the penetration depth of X-rays. The procedure is as follows; firstly, an average stress within the penetration depth of X-rays is determined by changing only phi-angle under a fixed psi-angle, and then a distribution of the average stress vs. the penetration depth of X-rays is detected by repeating the similar procedure at different psi-angles. The following conclusions were found out as the result of residual stress measurements on a carbon steel of type S 55 C polished by emery paper. This method is practical enough to use for a plane stress problem. And the assumption of a linear stress gradient adopted in the authors' previous investigations is valid. In case of a triaxial stress analysis, this method is effective for the solution of three shearing stresses. However, three normal stresses can not be solved perfectly except particular psi-angles. (author)

  12. When Change Causes Stress : Effects of Self-construal and Change Consequences

    NARCIS (Netherlands)

    Wisse, Barbara; Sleebos, Ed

    Purpose - Organizational change can be a major stress factor for employees. We investigate if stress responses can be explained by the extent to which there is a match between employee self-construal (in personal or collective terms) and change consequences (i.e., does the change particularly have

  13. When change causes stress: Effects of self-construal and change consequences

    NARCIS (Netherlands)

    Wisse, B.M.; Sleebos, E.

    2016-01-01

    Purpose: Organizational change can be a major stress factor for employees. We investigate if stress responses can be explained by the extent to which there is a match between employee self-construal (in personal or collective terms) and change consequences (i.e., does the change particularly have

  14. Salt stress change chlorophyll fluorescence in mango

    Directory of Open Access Journals (Sweden)

    Cicero Cartaxo de Lucena

    2012-12-01

    Full Text Available This study evaluated the tolerance of mango cultivars 'Haden', 'Palmer', 'Tommy Atkins' and 'Uba' grafted on rootstock 'Imbú' to salt stress using chlorophyll fluorescence. Plants were grown in modified Hoagland solution containing 0, 15, 30, and 45 mmol L-1 NaCl. At 97 days the parameters of the chlorophyll fluorescence (F0, Fm, Fv, F0/Fm, Fv/Fm, Fv'/Fm', ΦPSII = [(Fm'-Fs/(Fm'], D = (1- Fv'/Fm' and ETR = (ΦPSII×PPF×0,84×0,5 were determined. At 100 days, the leaf emission and leaf area, toxicity and leaf abscission indexes were determined. In all cultivars evaluated, in different degree, there were decreases in photochemical efficiency of photosystem II, enhanced concentrations from 15 mmol L-1 NaCl. The decreases in the potential quantum yield of photosystem II (Fv/Fm were 27.9, 18.7, 20.5, and 27.4%, for cultivars 'Haden', 'Palmer', 'Tommy Atkins', and 'Uba', respectively, when grown in 45 mmol L-1 NaCl. It was found decreases in leaf emission and mean leaf area in all cultivars from 15 mmol L-1 NaCl. There were increases in leaf toxicity of 33.0, 67.5, 41.6 and 80.8% and in leaf abscission of 71.8, 29.2, 32.5, and 67.9% for the cultivars 'Haden', 'Palmer', 'Tommy Atkins', and 'Uba' respectively, when grown in 45 mmol L-1 NaCl. Leaf toxicity and leaf abscission were not observed in 15 mmol L-1 NaCl. The decrease in Fv/Fm ratio were accompanied by decreasing in leaf emission and increased leaf toxicity index, showing, therefore, the potential of chlorophyll fluorescence in the early detection of salt stress in mango tree.

  15. Mode of Strong Earthquake Recurrence In Central Ionian Islands (greece). Possible Triggering Due To Coulomb Stress Changes Generated By The Occurrence of Previous Strong Shocks

    Science.gov (United States)

    Papadimitriou, E.

    The spatial-temporal distribution of shallow strong (M>6.3) earthquakes occurring in the area of central Ionian Islands is analyzed. These shocks generated on two adja- cent fault segments with different strike, but both associated with strike-slip faulting, constituting the boundary between continental collision to the north and oceanic sub- duction to the south. Seismic activity is confined in short time intervals alternating by much longer relatively quiescent periods. Each active period consists of a relatively large event or series (two to four) of events occurring closely both in space and time. This alteration was observed to happen four times since 1867, from when complete data exist for the study area. Since the phenomenon is not strictly periodic and during each active period multiple events occurred, it is attempted to interpret the seismic behavior on the basis of possible triggering. It is then investigated how changes in Coulomb Failure Function (DCFF) associated with one or more earthquakes may trig- ger subsequent events. Both the coseismic slip due to the generation of the strong earthquakes and stress build up associated with the two major fault segments were taken into account for the DCFF calculation. Earthquakes can be modeled as static dislocations in elastic half-space, and the stress pattern has been inverted according to the geometry and slip of each of the faults that ruptured in the chain of events. These calculations show that 13 out of 14 earthquakes with M>6.3 were preceded by a static stress change that encouraged failure. The magnitude of the stress increases transferred from one earthquake to another ranged from 0.01 MPa (0.1 bar) to over 0.1 MPa (1 bar). Maps of current DCFF provide additional information to long-term earthquake prediction. Areas of positive DCFF have been identified at two sites in Ke- falonia and Lefkada faults, respectively, where the next strong events are expected to occur.

  16. Global perceived stress predicts cognitive change among older adults.

    Science.gov (United States)

    Munoz, Elizabeth; Sliwinski, Martin J; Scott, Stacey B; Hofer, Scott

    2015-09-01

    Research on stress and cognitive aging has primarily focused on examining the effects of biological and psychosocial indicators of stress, with little attention provided to examining the association between perceived stress and cognitive aging. We examined the longitudinal association between global perceived stress (GPS) and cognitive change among 116 older adults (M(age) = 80, SD = 6.40, range = 67-96) in a repeated measurement burst design. Bursts of 6 daily cognitive assessments were repeated every 6 months over a 2-year period, with self-reported GPS assessed at the start of every burst. Using a double-exponential learning model, 2 parameters were estimated: (a) asymptotic level (peak performance), and (b) asymptotic change (the rate at which peak performance changed across bursts). We hypothesized that greater GPS would predict slowed performance in tasks of attention, working memory, and speed of processing and that increases in GPS across time would predict cognitive slowing. Results from latent growth curve analyses were consistent with our first hypothesis and indicated that level of GPS predicted cognitive slowing across time. Changes in GPS did not predict cognitive slowing. This study extends previous findings by demonstrating a prospective association between level of GPS and cognitive slowing across a 2-year period, highlighting the role of psychological stress as a risk factor for poor cognitive function. (c) 2015 APA, all rights reserved).

  17. Global Perceived Stress Predicts Cognitive Change among Older Adults

    Science.gov (United States)

    Munoz, Elizabeth; Sliwinski, Martin J.; Scott, Stacey B.; Hofer, Scott

    2015-01-01

    Research on stress and cognitive aging has primarily focused on examining the effects of biological and psychosocial indicators of stress with little attention provided to examining the association between perceived stress and cognitive aging. We examined the longitudinal association between global perceived stress (GPS) and cognitive change among 116 older adults (Mage = 80, SD = 6.40, range: 67–96) in a repeated measurement burst design. Bursts of six daily cognitive assessments were repeated every six months over a two-year period with self-reported GPS assessed at the start of every burst. Using a double-exponential learning model, two parameters were estimated: 1) asymptotic level (peak performance), and 2) asymptotic change (the rate in which peak performance changed across bursts). We hypothesized that greater GPS would predict slowed performance in tasks of attention, working memory, and speed of processing and that increases in GPS across time would predict cognitive slowing. Results from latent growth curve analyses were consistent with our first hypothesis and indicated that level of GPS predicted cognitive slowing across time. Changes in GPS did not predict cognitive slowing. This study extends previous findings by demonstrating a prospective association between level of GPS and cognitive slowing across a two-year period highlighting the role of psychological stress as a risk factor for poor cognitive function. PMID:26121285

  18. Seismic Velocity Changes in the Backarc Continental Crust After the 2011 Mw 9.0 Tohoku-Oki Megathrust Earthquake

    Science.gov (United States)

    Hong, Tae-Kyung; Lee, Junhyung; Chi, Donggeun; Park, Seongjun

    2017-11-01

    The 2011 Mw 9.0 Tohoku-Oki megathrust earthquake accompanied coseismic and postseismic displacements around the eastern Eurasian continental plate. Noise cross correlations produced transient seismic waveforms along interstation paths in the Korean Peninsula. We measured the traveltime changes of the fundamental mode Rayleigh waves over the range of 0.03-0.08 Hz after the megathrust earthquake. The temporal seismic velocity changes in the lower crust were assessed from the traveltime changes. The traveltimes increased instantly after the megathrust earthquake and were gradually recovered over several hundreds to thousands of days. The instant shear wave velocity decreases ranged between 0.731 (±0.057)% and 4.068 (±0.173)%. The temporal medium perturbation might be caused by the transient uniaxial tensional stress due to the coseismic and postseismic displacements. The medium properties may be recovered by progressive stress field reconstruction.

  19. Stress-induced core temperature changes in pigeons (Columba livia).

    Science.gov (United States)

    Bittencourt, Myla de Aguiar; Melleu, Fernando Falkenburger; Marino-Neto, José

    2015-02-01

    Changes in body temperature are significant physiological consequences of stressful stimuli in mammals and birds. Pigeons (Columba livia) prosper in (potentially) stressful urban environments and are common subjects in neurobehavioral studies; however, the thermal responses to stress stimuli by pigeons are poorly known. Here, we describe acute changes in the telemetrically recorded celomatic (core) temperature (Tc) in pigeons given a variety of potentially stressful stimuli, including transfer to a novel cage (ExC) leading to visual isolation from conspecifics, the presence of the experimenter (ExpR), gentle handling (H), sham intracelomatic injections (SI), and the induction of the tonic immobility (TI) response. Transfer to the ExC cage provoked short-lived hyperthermia (10-20 min) followed by a long-lasting and substantial decrease in Tc, which returned to baseline levels 2 h after the start of the test. After a 2-hour stay in the ExC, the other potentially stressful stimuli evoked only weak, marginally significant hyperthermic (ExpR, IT) or hypothermic (SI) responses. Stimuli delivered 26 h after transfer to the ExC induced definite and intense increases in Tc (ExpR, H) or hypothermic responses (SI). These Tc changes appear to be unrelated to modifications in general activity (as measured via telemetrically recorded actimetric data). Repeated testing failed to affect the hypothermic responses to the transference to the ExC, even after nine trials and at 1- or 8-day intervals, suggesting that the social (visual) isolation from conspecifics may be a strong and poorly controllable stimulus in this species. The present data indicated that stress-induced changes in Tc may be a consistent and reliable physiological parameter of stress but that they may also show stressor type-, direction- and species-specific attributes. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Combination of coseismic displacement fields: a geodetic perspective

    Directory of Open Access Journals (Sweden)

    Roberto Devoti

    2012-10-01

    Full Text Available This study provides the mathematical framework for the rigorous combination of coseismic offsets observed by a global positioning system (GPS network and investigates the results obtained on the occasion of the recent Emilia earthquakes (Italy. This seismic sequence that affected northern Italy from May 20, 2012, allowed two offset fields to be computed, one with reference to the mainshock (M 5.9, followed by two other M 5.1 events on the same day, and a second with reference to the replicas that occurred on May 29, 2012 (M 5.8, M 5.3 and M 5.2; ISIDe data archive, http://iside.rm.ingv.it. The final displacement field is basically the result of a comparison and validation process with repeated feedback between the different analysis groups at the Istituto Nazionale di Geofisica e Vulcanologia (INGV; National Institute of Geophysics and Volcanology that was established to obtain prompt coseismic displacement solutions, as precise as possible, and in the first days after an event. This is important for early seismic-source evaluation as it represents the most complete and validated dataset at the very early stage of a seismic crisis, and it is also extremely useful in reducing random and systematic errors in the estimated parameters. This study is the result of a cooperative effort that involved different research groups at INGV, with the sharing of all of the collected GPS data. The intention was to compare these results and thus reducing sources of error associated with individual processing strategies, to allow the final combination of the different displacement fields into a single consensus solution. The process assessed the robustness of each single GPS result, thus minimizing erroneous interpretations of individual solutions. […

  1. Estimates of stress drop and crustal tectonic stress from the 27 February 2010 Maule, Chile, earthquake: Implications for fault strength

    Science.gov (United States)

    Luttrell, K.M.; Tong, X.; Sandwell, D.T.; Brooks, B.A.; Bevis, M.G.

    2011-01-01

    The great 27 February 2010 Mw 8.8 earthquake off the coast of southern Chile ruptured a ???600 km length of subduction zone. In this paper, we make two independent estimates of shear stress in the crust in the region of the Chile earthquake. First, we use a coseismic slip model constrained by geodetic observations from interferometric synthetic aperture radar (InSAR) and GPS to derive a spatially variable estimate of the change in static shear stress along the ruptured fault. Second, we use a static force balance model to constrain the crustal shear stress required to simultaneously support observed fore-arc topography and the stress orientation indicated by the earthquake focal mechanism. This includes the derivation of a semianalytic solution for the stress field exerted by surface and Moho topography loading the crust. We find that the deviatoric stress exerted by topography is minimized in the limit when the crust is considered an incompressible elastic solid, with a Poisson ratio of 0.5, and is independent of Young's modulus. This places a strict lower bound on the critical stress state maintained by the crust supporting plastically deformed accretionary wedge topography. We estimate the coseismic shear stress change from the Maule event ranged from-6 MPa (stress increase) to 17 MPa (stress drop), with a maximum depth-averaged crustal shear-stress drop of 4 MPa. We separately estimate that the plate-driving forces acting in the region, regardless of their exact mechanism, must contribute at least 27 MPa trench-perpendicular compression and 15 MPa trench-parallel compression. This corresponds to a depth-averaged shear stress of at least 7 MPa. The comparable magnitude of these two independent shear stress estimates is consistent with the interpretation that the section of the megathrust fault ruptured in the Maule earthquake is weak, with the seismic cycle relieving much of the total sustained shear stress in the crust. Copyright 2011 by the American

  2. Water stress induced changes in antioxidant enzymes, membrane ...

    African Journals Online (AJOL)

    Water stress induced changes in antioxidant enzymes membrane stablity index and seed protein profiling of four different wheat (Triticum aestivum L.) accessions (011251, 011417, 011320 and 011393) were determined in a pot study under natural condition during the wheat-growing season 2005 and 2006. Sampling was ...

  3. Plant molecular stress responses face climate change. Trends in Plants

    NARCIS (Netherlands)

    Ahuja, I.; Vos, de R.C.H.; Bones, A.M.; Hall, R.D.

    2010-01-01

    Environmental stress factors such as drought, elevated temperature, salinity and rising CO2 affect plant growth and pose a growing threat to sustainable agriculture. This has become a hot issue due to concerns about the effects of climate change on plant resources, biodiversity and global food

  4. [Finite element analysis on stress change of lumbar spine].

    Science.gov (United States)

    Yan, Jia-zhi; Wu, Zhi-hong; Wang, Xue-song; Xing, Ze-jun; Song, Hai-feng; Zhao, Yu; Zhang, Jian-guo; Wang, Yi-peng; Qiu, Gui-xing

    2009-05-05

    To build a 3D finite element model of whole lumbar spine and verify its efficiency and analyze the biomechanical change of L3-4 motion segment. L1-L5 segment data were obtained from computed tomography (CT) scans of the lumbar spine of a 40-year-old man with no abnormal findings. A three-dimensional finite element model of the human whole lumbar spine was built in the Mimics and the ABAQUS software. The model was composed of bony vertebrae, articulating facets, intervertebral disc and associated ligaments. The basic stress analysis of L3-4 motion segment was made under the considerations of different material properties of bone, ligaments and facet joints contacting frictional property. The stress on annulus fiber, nucleus pulposus, endplate and facet joints under axial pressure (0.3 MPa, 0.5 MPa, 1.0 MPa, 2.0 MPa & 4.0 MPa) were analyzed. A three-dimensional finite element model of human L3-L4 motion segment has 272, 619 elements, the stresses were higher in the posterior of annulus fiber, the Max pressure stress (S33) distributed in nucleus pulposus and the center of endplate. The stresses increased as axial pressure rose. 3D finite element model of whole lumbar spine and L3-4 motion segment were established successfully and the stress analyses were feasible and reliable.

  5. [Phase changes of energy metabolism during adaptation to immobilization stress].

    Science.gov (United States)

    Portnichenko, V I; Nosar, V I; Honchar, O O; Opanasenko, H V; Hlazyrin, I D; Man'kovs'ka, I M

    2014-01-01

    In stress, it was showed the organ and tissue changes associated with damage by lipid peroxides, and the disrupted barrier function. As a consequence, it was to lead to a syndrome of "stress-induced lung" and violation of oxygen delivery to the tissues and hypoxia. Purpose of the study was to investigate the dynamics of changes in gas exchange, blood glucose, body temperature, oxidant and antioxidant system activity, as well as mitochondrial respiration by Chance under the influence of chronic stress (6-hour immobilization daily for 3 weeks). It was identified 4 phase changes of energy metabolism in the dynamics of chronic stress. In the first phase, hypomethabolic, instability oxidative metabolism, decreased oxidation of NAD-dependent substrates, significant elevation of FAD-dependent substrates oxidation and low MRU were found. The activity of superoxide dismutase (MnSOD) was increased; it was occurred on a background low activity of glutathione peroxidase, and of misbalanced antioxidant system. After seven immobilizations, second phase-shift in energy metabolism, was observed, and then the third phase (hypermetabolic) started. It was characterized by gradual increase in oxidative metabolism, the restoration of oxidation of NAD-dependent substrates, MRU, as well as optimizing balance of oxidant and antioxidant systems. The fourth phase was started after 15 immobilizations, and characterized by the development of adaptive reactions expressed in increased tolerance of energy metabolism to the impact of immobilization. The results are correlated with changes in the dynamics of blood corticosterone. Thus, it was found the phase character of the energy metabolism rebuilding during the chronic stress.

  6. Social Stress at Work and Change in Women's Body Weight

    OpenAIRE

    Kottwitz, Maria Undine; Grebner, Simone Irmgard; Semmer, Norbert K.; Tschan, Franziska; Elfering, Achim

    2014-01-01

    Social stressors at work (such as conflict or animosities) imply disrespect or a lack of appreciation and thus a threat to self. Stress induced by this offence to self might result, over time, in a change in body weight. The current study investigated the impact of changing working conditions —specifically social stressors, demands, and control at work— on women’s change in weighted Body-Mass-Index over the course of a year. Fifty-seven women in their first year of occupational life participa...

  7. Sleep Patterning Changes in a Prenatal Stress Model of Depression

    DEFF Research Database (Denmark)

    Sickmann, Helle Mark; Skoven, Christian; Bastlund, Jesper Frank

    2018-01-01

    Clinical depression is accompanied by changes in sleep patterning, which is controlled in a circadian fashion. It is thus desirable that animal models of depression mirror such diurnally-specific state alterations, along with other behavioral and physiological changes. We previously found several...... changes in behavior indicative of a depression-like phenotype in offspring of rats subjected to repeated, variable prenatal stress (PNS), including increased locomotor activity during specific periods of the circadian cycle. We, therefore, investigated whether PNS rats also exhibit alterations in sleep...

  8. Coseismic Deformation Detection of the 1997 Mani Earthquake Using ERS SAR Data

    Science.gov (United States)

    Wang, Xinhong; Tang, Lingli; Li, Chuanrong; Ouyang, Guangzhou; Zhang, Jingfa

    2010-12-01

    D-InSAR has been proven a powerful technique to measure coseismic deformation. This paper will describe an application of D-InSAR on earthquake deformation detecting. On the basis of analysis of fundamentals of D-InSAR, coseismic displacement fields corresponding to Mani earthquake which took place in November 1997, has been successfully extracted. Through the coseismic displacement information, the largest surface displacement value on LOS direction can then be estimated. Four ERS SAR images were used for the D-InSAR processing, in which three images were acquired prior to the earthquake event, and the other one were acquired after the earthquake. The resultant coseismic displacement field image clearly shows the spatial distribution pattern of the deformation magnitude and the location of the earthquake epicentre. From the number of deformation fringes, the most large displacement can be estimated to be at least 92.4 cm in the line of sight direction of the radar.

  9. Evolution of Deformation, Pore Pressure, and Coulomb Stress Following the M9 Sumatra- Andaman Earthquake.

    Science.gov (United States)

    Masterlark, T.; Hughes, K. L.

    2007-12-01

    The M9 Sumatra-Andaman Earthquake of 2004 ruptured the interface of the subducting Indo-Australian plate and overriding Burma microplate. Near-field GPS measurements of the coseismic deformation are on the order of several meters. This deformation induced a devastating tsunami and generated transient stress and pore pressure changes that triggered numerous aftershocks, including the M8.7 Nias earthquake. Finite element models (FEMs) are uniquely capable of simulating the coseismic load and induced evolution of postseismic deformation, pore pressure, and Coulomb stress; while simultaneously honoring the known geologic complexity of the subduction zone. We construct FEMs that simulate deformation of the earthquake for a three-dimensional problem domain partitioned to account for the distribution of material properties of the subducting slab, mantle wedge, forearc, volcanic arc, and backarc. The coseismic slip distribution is estimated from the near-field GPS data via standard inverse methods and FEM-generated Green's functions. Forward models, driven by this slip distribution, predict the evolution of poroelastic and viscoelastic deformation, stress, and pore pressure following the earthquake. Preliminary results suggest poroelastic deformation may be up to several tens-of-centimeters in offshore regions, although predicted poroelastic displacements for near-field GPS sites are generally a few centimeters. Initial pore pressure magnitudes, due to the load of the coseismic slip, exceed 1 MPa in the near- field region. Predicted postseismic pore pressure recovery correlates to the observed spatial and temporal distribution of aftershock swarms, in accord with the poroelastic formulation of Coulomb failure theory. Although the predicted poroelastic displacements are resolvable by GPS measurements in the near-field region, more than a meter of viscoelastic deformation is expected for near-field GPS sites over the next decade.

  10. Stress changes of lateral collateral ligament at different

    Directory of Open Access Journals (Sweden)

    ZHONG Yan-lin

    2011-04-01

    Full Text Available 【Abstract】 Objective: To create a 3-dimensional finite element model of knee ligaments and to analyse the stress changes of lateral collateral ligament (LCL with or without displaced movements at different knee flexion conditions. Methods: A four-major-ligament contained knee specimen from an adult died of skull injury was prepared for CT scanning with the detectable ligament insertion footprints, locations and orientations precisely marked in advance. The CT scanning images were converted to a 3-dimensional model of the knee with the 3-dimensional reconstruction technique and transformed into finite element model by the software of ANSYS. The model was validated using experimental and numerical results obtained by other scientists. The natural stress changes of LCL at five different knee flexion angles (0°, 30°, 60°, 90°, 120° and under various motions of anterior-posterior tibial translation, tibial varus rotation and internal-external tibial rotation were measured. Results: The maximum stress reached to 87%-113% versus natural stress in varus motion at early 30° of knee flexions. The stress values were smaller than the peak value of natural stress at 0° (knee full extension when knee bending was over 60° of flexion in anterior-posterior tibial translation and internal-external rotation. Conclusion: LCL is vulnerable to varus motion in almost all knee bending positions and susceptible to anterior- posterior tibial translation or internal-external rotation at early 30° of knee flexions. Key words: Knee joint; Collateral ligaments; Finite element analysis

  11. Geomodels of coseismic landslides environments in Central Chile.

    Science.gov (United States)

    Serey, A.; Sepulveda, S. A.; Murphy, W.; Petley, D. N.

    2017-12-01

    Landslides are a major source of fatalities and damage during strong earthquakes in mountain areas. Detailed geomodels of coseismic landslides environments are essential parts of seismic landslide hazard analyses. The development of a site specific geological model is required, based on consideration of the regional and local geological and geomorphological history and the current ground surface conditions. An engineering geological model is any approximation of the geological conditions, at varying scales, created for the purpose of solving an engineering problem. In our case, the objective is the development of a methodology for earthquake-induced landslide hazard assessment applicable to urban/territorial planning and disaster prevention strategies assessment at a regional scale adapted for the Chilean tectonic conditions. We have developed the only 2 complete inventories of landslides triggered by earthquakes in Chile. The first from the Mw 6.2, shallow crustal Aysén earthquake in 2007. Second one from the Mw 8.8, megathrust subduction Maule earthquake in 2010. From the comparison of these 2 inventories with others from abroad, as well as analysis of large, prehistoric landslide inventories proposed as likely induced by seismic activity we have determined topographic, geomorphological, geological and seismic controlling factors in the occurrence of earthquake-triggered landslides. With the information collected we have defined different environments for generation of coseismic landslides based on the construction of geomodels. As a result we have built several geomodels in the Santiago Cordillera in central Chile (33°S), based upon the San Ramón Fault, a west-vergent reverse fault that outcrops at the edge of Santiago basin recently found to be active and a likely source of seismic activity in the future, with potential of triggering landslides in the Santiago mountain front as well as inland into the Mapocho and Maipo Cordilleran valleys. In conclusion

  12. Memory under stress: from single systems to network changes.

    Science.gov (United States)

    Schwabe, Lars

    2017-02-01

    Stressful events have profound effects on learning and memory. These effects are mainly mediated by catecholamines and glucocorticoid hormones released from the adrenals during stressful encounters. It has been known for long that both catecholamines and glucocorticoids influence the functioning of the hippocampus, a critical hub for episodic memory. However, areas implicated in other forms of memory, such as the insula or the dorsal striatum, can be affected by stress as well. Beyond changes in single memory systems, acute stress triggers the reconfiguration of large scale neural networks which sets the stage for a shift from thoughtful, 'cognitive' control of learning and memory toward more reflexive, 'habitual' processes. Stress-related alterations in amygdala connectivity with the hippocampus, dorsal striatum, and prefrontal cortex seem to play a key role in this shift. The bias toward systems proficient in threat processing and the implementation of well-established routines may facilitate coping with an acute stressor. Overreliance on these reflexive systems or the inability to shift flexibly between them, however, may represent a risk factor for psychopathology in the long-run. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  13. Coseismic conjugate faulting structures produced by the 2016 Mw 7.1 Kumamoto earthquake, Japan

    Science.gov (United States)

    Lin, Aiming; Chiba, Tatsuro

    2017-06-01

    Field investigations and analyses of airborne LiDAR data reveal that the 2016 Mw7.1 Kumamoto earthquake produced a ∼40-km-long surface rupture zone with a typical conjugate Riedel shearing fault structure along the pre-existing right-lateral strike-slip Hinagu-Futagawa Fault Zone (HFFZ). The conjugate Riedel shearing structure comprises two sets of coseismic shear fault zones that are oriented to NE-SW to ENE-WSW and WNW-ESE to E-W. The NE-SW to ENE-WSW-trending shear fault zone is characterized by R Riedel shear structures with right-lateral strike-slip displacement of up to 2.5 m, including left-stepping en echelon cracks (T-shear) and mole tracks (P-shear). In contrast, the WNW-ESE to E-W-trending shear fault zone is dominated by R‧ Riedel shear structures with left-lateral displacement of up to 1.3 m, including right-stepping en echelon tension cracks (T) and mole tracks (P), which are concentrated in a zone of strike-slip faults of HFFZ under the present E-W compressive stress in the study area, associated with the ongoing penetration of the Philippine Sea Plate into the Eurasian Plate.

  14. Sleep Changes in a Rat Prenatal Stress Model of Depression

    DEFF Research Database (Denmark)

    Skoven, Christian; Sickman, Helle M.; Bastlund, Jesper Frank

    Major depression is one of the most frequently occurring mental health disorders, but is characterized by diverse symptomatology. Sleep disturbances, however, are commonplace in depressive patients. These alterations include increased duration of Rapid Eye Movement Sleep (REMS) and increased sleep...... fragmentation. Stressful life events during the second trimester of human pregnancy increase the risk of depression in the offspring. Similarly, rodents exposed to prenatal stress (PNS) during gestation express depression- like behavioral changes. Accordingly, we investigated sleep changes in a rat PNS model...... determination of sleep-wakefulness state. As traumatic episodes can trigger episodes of clinical depression, we also investigated effects of an acute stressor during the recording period. PNS animals (n=21) had an 82% increase in amount of REMS (11.6±1.4% vs 6.3±0.9%; p

  15. Stress changes of lateral collateral ligament at different

    OpenAIRE

    ZHONG Yan-lin; WANG You; WANG Hai-peng; RONG Ke; XIE Le

    2011-01-01

    【Abstract】 Objective: To create a 3-dimensional finite element model of knee ligaments and to analyse the stress changes of lateral collateral ligament (LCL) with or without displaced movements at different knee flexion conditions. Methods: A four-major-ligament contained knee specimen from an adult died of skull injury was prepared for CT scanning with the detectable ligament insertion footprints, locations and orientations precisely marked in advance. The CT scann...

  16. Will climate change exacerbate water stress in Central Asia?

    DEFF Research Database (Denmark)

    Siegfried, Tobias; Bernauer, Thomas; Guiennet, Renaud

    2012-01-01

    Millions of people in the geopolitically important region of Central Asia depend on water from snow- and glacier-melt driven international rivers, most of all the Syr Darya and Amu Darya. The riparian countries of these rivers have experienced recurring water allocation conflicts ever since...... the Soviet Union collapsed. Will climate change exacerbate water stress and thus conflicts? We have developed a coupled climate, land-ice and rainfall-runoff model for the Syr Darya to quantify impacts and show that climatic changes are likely to have consequences on runoff seasonality due to earlier snow-melt...

  17. Dynamic changes in DNA methylation of stress-associated genes (OXTR, BDNF ) after acute psychosocial stress

    Science.gov (United States)

    Unternaehrer, E; Luers, P; Mill, J; Dempster, E; Meyer, A H; Staehli, S; Lieb, R; Hellhammer, D H; Meinlschmidt, G

    2012-01-01

    Environmentally induced epigenetic alterations are related to mental health. We investigated quantitative DNA methylation status before and after an acute psychosocial stressor in two stress-related genes: oxytocin receptor (OXTR) and brain-derived neurotrophic factor (BDNF ). The cross sectional study took place at the Division of Theoretical and Clinical Psychobiology, University of Trier, Germany and was conducted from February to August 2009. We included 83 participants aged 61–67 years. Thereof, 76 participants completed the full study procedure consisting of blood sampling before (pre-stress), 10 min after (post-stress) and 90 min after (follow-up) the Trier social stress test. We assessed quantitative DNA methylation of whole-blood cells using Sequenom EpiTYPER. Methylation status differed between sampling times in one target sequence of OXTR (P<0.001): methylation increased from pre- to post-stress (P=0.009) and decreased from post-stress to follow-up (P<0.001). This decrease was also found in a second target sequence of OXTR (P=0.034), where it lost statistical significance when blood cell count was statistically controlled. We did not detect any time-associated differences in methylation status of the examined BDNF region. The results suggest a dynamic regulation of DNA methylation in OXTR—which may in part reflect changes in blood cell composition—but not BDNF after acute psychosocial stress. This may enhance the understanding of how psychosocial events alter DNA methylation and could provide new insights into the etiology of mental disorders. PMID:22892716

  18. Drinking water biofilm cohesiveness changes under chlorination or hydrodynamic stress.

    Science.gov (United States)

    Mathieu, L; Bertrand, I; Abe, Y; Angel, E; Block, J C; Skali-Lami, S; Francius, G

    2014-05-15

    Attempts at removal of drinking water biofilms rely on various preventive and curative strategies such as nutrient reduction in drinking water, disinfection or water flushing, which have demonstrated limited efficiency. The main reason for these failures is the cohesiveness of the biofilm driven by the physico-chemical properties of its exopolymeric matrix (EPS). Effective cleaning procedures should break up the matrix and/or change the elastic properties of bacterial biofilms. The aim of this study was to evaluate the change in the cohesive strength of two-month-old drinking water biofilms under increasing hydrodynamic shear stress τw (from ∼0.2 to ∼10 Pa) and shock chlorination (applied concentration at T0: 10 mg Cl2/L; 60 min contact time). Biofilm erosion (cell loss per unit surface area) and cohesiveness (changes in the detachment shear stress and cluster volumes measured by atomic force microscopy (AFM)) were studied. When rapidly increasing the hydrodynamic constraint, biofilm removal was found to be dependent on a dual process of erosion and coalescence of the biofilm clusters. Indeed, 56% of the biofilm cells were removed with, concomitantly, a decrease in the number of the 50-300 μm(3) clusters and an increase in the number of the smaller (i.e., 600 μm(3)) ones. Moreover, AFM evidenced the strengthening of the biofilm structure along with the doubling of the number of contact points, NC, per cluster volume unit following the hydrodynamic disturbance. This suggests that the compactness of the biofilm exopolymers increases with hydrodynamic stress. Shock chlorination removed cells (-75%) from the biofilm while reducing the volume of biofilm clusters. Oxidation stress resulted in a decrease in the cohesive strength profile of the remaining drinking water biofilms linked to a reduction in the number of contact points within the biofilm network structure in particular for the largest biofilm cluster volumes (>200 μm(3)). Changes in the cohesive

  19. Coseismic Fault Model of Mw 8.3 2015 Illapel Earthquake (Chile Retrieved from Multi-Orbit Sentinel1-A DInSAR Measurements

    Directory of Open Access Journals (Sweden)

    Giuseppe Solaro

    2016-04-01

    Full Text Available On 16 September 2015, a Mw 8.3 interplate thrust earthquake ruptured offshore the Illapel region (Chile. Here, we perform coseismic slip fault modeling based on multi-orbit Sentinel 1-A (S1A data. To do this, we generate ascending and descending S1A interferograms, whose combination allows us to retrieve the EW and vertical components of deformation. In particular, the EW displacement map highlights a westward displacement of about 210 cm, while the vertical map shows an uplift of about 25 cm along the coast, surrounded by a subsidence of about 20 cm. Following this analysis, we jointly invert the multi-orbit S1A interferograms by using an analytical approach to search for the coseismic fault parameters and related slip values. Most of the slip occurs northwest of the epicenter, with a maximum located in the shallowest 20 km. Finally, we refine our modeling approach by exploiting the Finite Element method, which allows us to take geological and structural complexities into account to simulate the slip along the slab curvature, the von Mises stress distribution, and the principal stress axes orientation. The von Mises stress distribution shows a close similarity to the depth distribution of the aftershock hypocenters. Likewise, the maximum principal stress orientation highlights a compressive regime in correspondence of the deeper portion of the slab and an extensional regime at its shallower segment; these findings are supported by seismological data.

  20. Gender, Stress in Childhood and Adulthood, and Trajectories of Change in Body Mass

    OpenAIRE

    Liu, Hui; Umberson, Debra

    2015-01-01

    Despite substantial evidence of the linkage between stress and weight change, previous studies have not considered how stress trajectories that begin in childhood and fluctuate throughout adulthood may work together to have long-term consequences for weight change. Working from a stress and life course perspective, we investigate the linkages between childhood stress, adulthood stress and trajectories of change in body mass (i.e., Body Mass Index, BMI) over time, with attent...

  1. Ultrastructural changes of Saccharomyces cerevisiae in response to ethanol stress.

    Science.gov (United States)

    Ma, Manli; Han, Pei; Zhang, Ruimin; Li, Hao

    2013-09-01

    In the fermentative process using Saccharomyces cerevisiae to produce bioethanol, the performance of cells is often compromised by the accumulation of ethanol. However, the mechanism of how S. cerevisiae responds against ethanol stress remains elusive. In the current study, S. cerevisiae cells were cultured in YPD (yeast extract - peptone - dextrose) medium containing various concentrations of ethanol (0%, 2.5%, 5%, 7.5%, 10%, and 15% (v/v)). Compared with the control group without ethanol, the mean cell volume of S. cerevisiae decreased significantly in the presence of 7.5% and 10% ethanol after incubation for 16 h (P < 0.05), and in the presence of 15% ethanol at all 3 sampling time points (1, 8, and 16 h) (P < 0.05). The exposure of S. cerevisiae cells to ethanol also led to an increase in malonyldialdehyde content (P < 0.05) and a decrease in sulfhydryl group content (P < 0.05). Moreover, the observations through transmission electron microscopy enabled us to relate ultrastructural changes elicited by ethanol with the cellular stress physiology. Under ethanol stress, the integrity of the cell membrane was compromised. The swelling or distortion of mitochondria together with the occurrence of a single and large vacuole was correlated with the addition of ethanol. These results suggested that the cell membrane is one of the targets of ethanol, and the degeneration of mitochondria promoted the accumulation of intracellular reactive oxygen species.

  2. Coseismic Dehydration and Amorphisation of Serpentinite in a Creeping Shear Zone

    Science.gov (United States)

    Tarling, M.; Smith, S. A. F.; Viti, C.; Rooney, J. S.; Gordon, K. C.

    2017-12-01

    Recent experiments show that coseismic heating in serpentinite-bearing faults can produce dehydration assemblages consisting of olivine + enstatite or talc, as well as amorphous material and melt. Identification of these coseismic products has not been made in natural serpentinite shear zones, possibly because the reaction products would be quickly altered or rehydrated to form serpentine. Magnetite-coated slip surfaces within the serpentinite mélange of the Livingstone Fault, New Zealand, contain microstructural and mineralogical evidence for coseismic dehydration and amorphization of serpentine due to frictional heating. The bulk serpentinite mélange has a scaly fabric that contains abundant evidence for pressure-solution creep. These fabrics are crosscut by multi-layered, magnetite-coated slip surfaces up to 1.5 mm thick that enclose numerous thin (products (nanocrystalline olivine, enstatite, amorphous silica) are restricted to a zone 500 um from the main slip surface, no products of dehydration or amorphisation are identifiable. Encapsulated within the magnetite layers and protected from subsequent hydration, the thin selvages of serpentinite provide the first evidence of highly localised dehydration and amorphisation of serpentinite in a natural shear zone. Interpreted in the context of recent experiments, our results suggest that 1) the slip surfaces experienced extreme dynamic weakening associated with coseismic dehydration and amorphisation and, 2) localized rupture and coseismic slip can propagate through serpentinite mélange deforming by bulk pressure-solution creep.

  3. The shape of change in perceived stress, negative affect, and stress sensitivity during mindfulness based stress reduction

    NARCIS (Netherlands)

    Snippe, E.; Dziak, J.J.; Lanza, S.T.; Nyklicek, I.; Wichers, M.

    2017-01-01

    Both daily stress and the tendency to react to stress with heightened levels of negative affect (i.e., stress sensitivity) are important vulnerability factors for adverse mental health outcomes. Mindfulness-based stress reduction (MBSR) may help to reduce perceived daily stress and stress

  4. The Shape of Change in Perceived Stress, Negative Affect, and Stress Sensitivity During Mindfulness-Based Stress Reduction

    NARCIS (Netherlands)

    Snippe, Evelien; Dziak, John J.; Lanza, Stephanie T.; Nykliek, Ivan; Wichers, Marieke

    Both daily stress and the tendency to react to stress with heightened levels of negative affect (i.e., stress sensitivity) are important vulnerability factors for adverse mental health outcomes. Mindfulness-based stress reduction (MBSR) may help to reduce perceived daily stress and stress

  5. Vertical deformation associated with normal fault systems evolved over coseismic, postseismic, and multiseismic periods

    Science.gov (United States)

    Thompson, George A.; Parsons, Thomas E.

    2016-01-01

    Vertical deformation of extensional provinces varies significantly and in seemingly contradictory ways. Sparse but robust geodetic, seismic, and geologic observations in the Basin and Range province of the western United States indicate that immediately after an earthquake, vertical change primarily occurs as subsidence of the normal fault hanging wall. A few decades later, a ±100 km wide zone is symmetrically uplifted. The preserved topography of long-term rifting shows bent and tilted footwall flanks rising high above deep basins. We develop finite element models subjected to extensional and gravitational forces to study time-varying deformation associated with normal faulting. We replicate observations with a model that has a weak upper mantle overlain by a stronger lower crust and a breakable elastic upper crust. A 60° dipping normal fault cuts through the upper crust and extends through the lower crust to simulate an underlying shear zone. Stretching the model under gravity demonstrates that asymmetric slip via collapse of the hanging wall is a natural consequence of coseismic deformation. Focused flow in the upper mantle imposed by deformation of the lower crust localizes uplift under the footwall; the breakable upper crust is a necessary model feature to replicate footwall bending over the observed width ( topographic signature of rifting is expected to occur early in the postseismic period. The relatively stronger lower crust in our models is necessary to replicate broader postseismic uplift that is observed geodetically in subsequent decades.

  6. Potential of future seismogenesis in Hebei Province (NE China) due to stress interactions between strong earthquakes

    Science.gov (United States)

    Karakostas, Vassilios; Papadimitriou, Eleftheria; Jin, Xueshen; Liu, Zhihui; Paradisopoulou, Parthena; He, Zhang

    2013-10-01

    Northeast China, a densely populated area, is affected by intense seismic activity, which includes large events that caused extensive disaster and tremendous loss of life. For contributing to the continuous efforts for seismic hazard assessment, the earthquake potential from the active faults near the cities of Zhangjiakou and Langfang in Hebei Province is examined. We estimate the effect of the coseismic stress changes of strong (M ⩾ 5.0) earthquakes on the major regional active faults, and mapped Coulomb stress change onto these target faults. More importantly our calculations reveal that positive stress changes caused by the largest events of the 1976 Tangshan sequence make the Xiadian and part of Daxing fault, thus considered the most likely sites of the next strong earthquake in the study area. The accumulated static stress changes that reached a value of up to 0.4 bar onto these faults, were subsequently incorporated in earthquake probability estimates for the next 30 years.

  7. Thermal Stress Effect on Density Changes of Hemp Hurds Composites

    Science.gov (United States)

    Schwarzova, Ivana; Cigasova, Julia; Stevulova, Nadezda

    2016-12-01

    The aim of this article is to study the behavior of prepared biocomposites based on hemp hurds as a filling agent in composite system. In addition to the filler and water, an alternative binder, called MgO-cement was used. For this objective were prepared three types of samples; samples based on untreated hemp hurds as a referential material and samples based on chemically (with NaOH solution) and physically (by ultrasonic procedure) treated hemp hurds. The thermal stress effect on bulk density changes of hemp hurds composites was monitored. Gradual increase in temperature led to composites density reduction of 30-40 %. This process is connected with mass loss of the adsorbed moisture and physically bound water and also with degradation of organic compounds present in hemp hurds aggregates such as pectin, hemicelluloses and cellulose. Therefore the changes in the chemical composition of treated hemp hurds in comparison to original sample and its thermal decomposition were also studied.

  8. Gene expression changes in response to aging compared to heat stress, oxidative stress and ionizing radiation in Drosophila melanogaster.

    Science.gov (United States)

    Landis, Gary; Shen, Jie; Tower, John

    2012-11-01

    Gene expression changes in response to aging, heat stress, hyperoxia, hydrogen peroxide, and ionizing radiation were compared using microarrays. A set of 18 genes were up-regulated across all conditions, indicating a general stress response shared with aging, including the heat shock protein (Hsp) genes Hsp70, Hsp83 and l(2)efl, the glutathione-S-transferase gene GstD2, and the mitochondrial unfolded protein response (mUPR) gene ref(2)P. Selected gene expression changes were confirmed using quantitative PCR, Northern analysis and GstD-GFP reporter constructs. Certain genes were altered in only a subset of the conditions, for example, up-regulation of numerous developmental pathway and signaling genes in response to hydrogen peroxide. While aging shared features with each stress, aging was more similar to the stresses most associated with oxidative stress (hyperoxia, hydrogen peroxide, ionizing radiation) than to heat stress. Aging is associated with down-regulation of numerous mitochondrial genes, including electron-transport-chain (ETC) genes and mitochondrial metabolism genes, and a sub-set of these changes was also observed upon hydrogen peroxide stress and ionizing radiation stress. Aging shared the largest number of gene expression changes with hyperoxia. The extensive down-regulation of mitochondrial and ETC genes during aging is consistent with an aging-associated failure in mitochondrial maintenance, which may underlie the oxidative stress-like and proteotoxic stress-like responses observed during aging.

  9. Coseismic and postseismic motion of a landslide: Observations, modeling, and analogy with tectonic faults

    Science.gov (United States)

    Lacroix, P.; Perfettini, H.; Taipe, E.; Guillier, B.

    2014-10-01

    We document the first time series of a landslide reactivation by an earthquake using continuous GPS measurements over the Maca landslide (Peru). Our survey shows a coseismic response of the landslide of about 2 cm, followed by a relaxation period of 5 weeks during which postseismic slip is 3 times greater than the coseismic displacement itself. Our results confirm the coseismic activation of landslides and provide the first observation of a postseismic displacement. These observations are consistent with a mechanical model where slip on the landslide basal interface is governed by rate and state friction, analogous to the mechanics of creeping tectonic faults, opening new perspectives to study the mechanics of landslides and active faults.

  10. Modeling of the coseismic electromagnetic fields observed during the 2004 Mw 6.0 Parkfield earthquake

    Science.gov (United States)

    Gao, Yongxin; Harris, Jerry M.; Wen, Jian; Huang, Yihe; Twardzik, Cedric; Chen, Xiaofei; Hu, Hengshan

    2016-01-01

    The coseismic electromagnetic signals observed during the 2004 Mw 6 Parkfield earthquake are simulated using electrokinetic theory. By using a finite fault source model obtained via kinematic inversion, we calculate the electric and magnetic responses to the earthquake rupture. The result shows that the synthetic electric signals agree with the observed data for both amplitude and wave shape, especially for early portions of the records (first 9 s) after the earthquake, supporting the electrokinetic effect as the reasonable mechanism for the generation of the coseismic electric fields. More work is needed to explain the magnetic fields and the later portions of the electric fields. Analysis shows that the coseismic electromagnetic (EM) signals are sensitive to both the material properties at the location of the EM sensors and the electrochemical heterogeneity in the vicinity of the EM sensors and can be used to characterize the underground electrochemical properties.

  11. Coseismic effects of the 2016 Amatrice seismic sequence: first geological results

    Directory of Open Access Journals (Sweden)

    EMERGEO W.G. :

    2016-11-01

    Full Text Available Since the beginning of the ongoing Amatrice seismic sequence on August 24, 2016, initiated by a Mw 6.0 normal faulting earthquake, the EMERGEO Working Group (an INGV team devoted to earthquake aftermath geological survey set off to investigate any coseismic effects on the natural environment. Up to now, we surveyed about 750 km2 and collected more than 3200 geological observations as differently oriented tectonic fractures together with intermediate- to small- sized landslides, that were mapped in the whole area. The most impressive coseismic evidence was found along the known active Mt. Vettore fault system, where surface ruptures with clear vertical/horizontal offset were observed for more than 5 km, while unclear and discontinuous coseismic features were recorded along the Laga Mts. Fault systems.

  12. Stress related changes during TeamGym competition.

    Science.gov (United States)

    DE Pero, Roberta; Cibelli, Giuseppe; Cortis, Cristina; Sbriccoli, Paola; Capranica, Laura; Piacentini, Maria F

    2016-05-01

    The aim of the present study was to investigate the stress-related changes of a TeamGym competition considering both physiological (i.e. salivary cortisol [sC] and alpha-amylase [sAA]) and psychological (i.e. state anxiety) responses in relation to exercise intensity and competition outcomes. Eleven (5 males and 6 females) elite TeamGym athletes (age: 21-28 yrs) were administered the State-Trait Anxiety Inventory before an official international TeamGym competition. sAA and sC samples were collected 15 minutes prior to competition, after each apparatus, 10-min and 30-min after competition. Exercise intensity was estimated by heart rate (HR) recording and performance was evaluated by three international judges. All these parameters were correlated with competition outcomes. TeamGym competition posed a low exercise load (most of exercise was performed below 85% of the individual HRmax). Significant increases (Panxiety (P=0.045) were observed, with respect to baseline values. Conversely, sC remained stable throughout the competition. Significant (P=0.029) correlation between sAA, state anxiety and competition outcomes emerged. Present findings provide the first evidence that the psycho-physiological stress response prior to and during competition can affect performance outcome, especially in a technical sport such as TeamGym.

  13. Geodetic Inversion Analysis Method of Coseismic Slip Distribution Using a Three-dimensional Finite Element High-fidelity Model

    Science.gov (United States)

    Agata, R.; Ichimura, T.; Hirahara, K.; Hori, T.; Hyodo, M.; Hori, M.

    2013-12-01

    Many studies have focused on geodetic inversion analysis method of coseismic slip distribution with combination of observation data of coseismic crustal deformation on the ground and simplified crustal models such like analytical solution in elastic half-space (Okada, 1985). On the other hand, displacements on the seafloor or near trench axes due to actual earthquakes has been observed by seafloor observatories (e.g. the 2011 Tohoku-oki Earthquake (Tohoku Earthquake) (Sato et. al. 2011) (Kido et. al. 2011)). Also, some studies on tsunamis due to the Tohoku Earthquake indicate that large fault slips near the trench axis may have occurred. Those facts suggest that crustal models considering complex geometry and heterogeneity of the material property near the trench axis should be used for geodetic inversion analysis. Therefore, our group has developed a mesh generation method for finite element models of the Japanese Islands of higher fidelity and a fast crustal deformation analysis method for the models. Degree-of-freedom of the models generated by this method is about 150 million. In this research, the method is extended for inversion analyses of coseismic slip distribution. Since inversion analyses need computation of hundreds of slip response functions due to a unit fault slip assigned for respective divided cells on the fault, parallel computing environment is used. Plural crustal deformation analyses are simultaneously run in a Message Passing Interface (MPI) job. In the job, dynamic load balancing is implemented so that a better parallel efficiency is obtained. Submitting the necessary number of serial job of our previous method is also possible, but the proposed method needs less computation time, places less stress on file systems, and allows simpler job management. A method for considering the fault slip right near the trench axis is also developed. As the displacement distribution of unit fault slip for computing response function, 3rd order B

  14. Climate Change Impact on Evapotranspiration, Heat Stress and Chill Requirements

    Science.gov (United States)

    Snyder, R. L.; Marras, S.; Spano, D.

    2013-12-01

    Carbon dioxide concentration scenarios project an increase in CO2 from 372 ppm to between 500 and 950 ppm by the year 2100, and the potential effect on temperature, humidity, and plant responses to environmental factors are complex and concerning. For 2100, mean daily temperature increase projections range from 1.2oC to 6.8oC depending on greenhouse gas emissions. On the bad side, higher temperatures are often associated with increases in evapotranspiration (ET), heat stress, and pest infestations. On the good side, increased temperature is commonly related to less frost damage, faster growth, and higher production in some cases. One misconception is that global warming will increase evapotranspiration and, hence, agricultural water demand. As the oceans and other water bodies warm, evaporation and humidity are likely to increase globally, but higher humidity tends to reduce plant transpiration and hence ET. Higher CO2 concentrations also tend to reduce ET, and, in the end, the increase in ET due to higher temperature is likely to be offset by a decrease in ET due to higher humidity and CO2. With a decrease in daytime evapotranspiration, the canopy temperature is likely to rise relative to the air temperature, and this implies that heat stress could be worse than predicted by increased air temperature. Daily minimum temperatures are generally increasing about twice as fast as maximum temperatures presumably because of the increasing dew point temperatures as more water vapor is added to the atmosphere. This could present a serious problem to meet the chill requirement for fruit and nut crops. Growing seasons, i.e., from the last spring to the first fall frost, are likely to increase, but the crop growth period is likely to shorten due to higher temperature. Thus, spring frost damage is unlikely to change but there should be fewer damaging fall frost events. In this paper, we will present some ideas on the possible impact of climate change on evapotranspiration and

  15. Co-Seismic Mass Displacement and its Effect on Earth's Rotation and Gravity

    Science.gov (United States)

    Chao, B. F.; Gross, R. S.

    2004-01-01

    Mantle processes often involve large-scale mass transport, ranging from mantle convection, tectonic motions, glacial isostatic adjustment, to tides, atmospheric and oceanic loadings, volcanism and seismicity. On very short time scale of less than an hour, co-seismic event, apart from the "shaking" that is the earthquake, leaves behind permanent (step-function-like) displacements in the crust and mantle. This redistribution of mass changes the Earth's inertia tensor (and hence Earth's rotation in both length-of-day and polar motion), and the gravity field. The question is whether these effects are large enough to be of any significance. In this paper we report updated calculation results based on Chao & Gross. The calculation uses the normal mode summation scheme, applied to over twenty thousand major earthquakes that occurred during 1976-2002, according to source mechanism solutions given by the Harvard Centroid Moment Tensor catalog. Compared to the truly large ones earlier in the century, the earthquakes we study are individually all too small to have left any discernible signature in geodetic records of Earth rotation or global gravity field. However, their collective effects continue to exhibit an extremely strong statistical tendencies, conspiring to decrease J2 and J22 while shortening LOD, resulting in a rounder and more compact Earth. Strong tendency is also seen in the earthquakes trying to "nudge" the Earth rotation pole towards approx. 140 deg.E, roughly opposite to the observed polar drift direction. Currently, the Gravity Recovery And Climate Experiment (GRACE) is measuring the time-variable gravity to high degree and order with unprecedented accuracy. Our results show that great earthquakes such as the 1960 Chilean or 1964 Alaskan events cause gravitational field changes that are large enough to be detected by GRACE.

  16. In stressful company – Changes in stress and work ties over time

    DEFF Research Database (Denmark)

    Waldstrøm, Christian; Parker, Andrew; Shah, Neha P.

    Recent research on stress and burnout has highlighted the collective aspects of stress symptoms, perceived stress, and coping mechanisms. Much of this work, however, is focused on group and team dynamics rather than how network factors shape individuals’ feelings of stress and burnout. We use...

  17. A survival guide to the stress of organizational change

    National Research Council Canada - National Science Library

    Pritchett, Price; Pound, Ron

    1995-01-01

    .... By all accounts, the pace of business will continue to accelerate in the years to come, and for many that means more stress - stress which will almost certainly affect job performance and satisfaction...

  18. Measuring Bus Drivers' Occupational Stress Under Changing Working Conditions

    NARCIS (Netherlands)

    Hlotova, Y.; Cats, O.; Meijer, S.A.

    2014-01-01

    Stress is an immense problem in modern society; approximately half of all occupational illnesses are directly or indirectly related to stress. The work of a bus driver is typically associated with high stress levels that negatively influence individual well-being as well as workforce management. The

  19. Responsible corporate change: detecting and managing employee stress.

    Science.gov (United States)

    McBride, D I; Lovelock, K; Dirks, K N; Welch, D; Shepherd, D

    2015-04-01

    All 120 health and safety inspectors employed by the New Zealand regulatory agency had their jobs disestablished during a restructuring process and were required to undergo an assessment process with tight time frames. To report on psychological morbidity during the transition to change. The Hospital Anxiety and Depression Scale (HADS) questionnaire was emailed to all 120 current inspectors to measure levels of anxiety (HAD-A) and depression (HAD-D). A score of 11 is indicative of a clinical disorder. Replies were received from 36% (43) of the inspectors. Of the 40 usable responses, 47% (19) and 55% (22), respectively, had HAD-A and HAD-D scores greater than the case cut-off. Only 28% (11) and 15% (6), respectively, had scores that would be considered normal. The high scores evident in this sample are comparable to those found in patients with serious psychopathology. Change managers should recognize that the onus for primary prevention lies with the organization, in this case designing an assessment process that takes place over a reasonable time frame. They should also realize the requirement for the active monitoring of stress. © The Author 2015. Published by Oxford University Press on behalf of the Society of Occupational Medicine. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Thermal Stress Effect on Density Changes of Hemp Hurds Composites

    Directory of Open Access Journals (Sweden)

    Schwarzova Ivana

    2016-12-01

    Full Text Available The aim of this article is to study the behavior of prepared biocomposites based on hemp hurds as a filling agent in composite system. In addition to the filler and water, an alternative binder, called MgO-cement was used. For this objective were prepared three types of samples; samples based on untreated hemp hurds as a referential material and samples based on chemically (with NaOH solution and physically (by ultrasonic procedure treated hemp hurds. The thermal stress effect on bulk density changes of hemp hurds composites was monitored. Gradual increase in temperature led to composites density reduction of 30-40 %. This process is connected with mass loss of the adsorbed moisture and physically bound water and also with degradation of organic compounds present in hemp hurds aggregates such as pectin, hemicelluloses and cellulose. Therefore the changes in the chemical composition of treated hemp hurds in comparison to original sample and its thermal decomposition were also studied.

  1. Pre-seismic, co-seismic and post-seismic displacements associated ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    of points in the past century, the re-measurements reveal pre-seismic, co-seismic and post-seismic deformation related to Bhuj earthquake. More than 25µ-strain contraction north of the epicenter appears to have occurred in the past 140 years corresponding to a linear convergence rate of approx- imately 10 mm/yr across ...

  2. Coseismic Deformation of Chi-Chi Earthquake as Detected by Differential Synthetic Aperture Radar Interferometry and GPS Data

    Directory of Open Access Journals (Sweden)

    Chia-Sheng Hsieh Tian-Yuan Shih

    2006-01-01

    Full Text Available A rupture in the Chelungpu fault caused an Mw 7.6 earthquake on 21 September 1999 near Chi-Chi in central Taiwan. This earthquake was the most destructive experienced in Taiwan for the past century along this fault. In this study, we examined the earthquake-induced surface deformation pattern using differential synthetic aperture radar interferometry (D-InSAR combined with global positioning system (GPS data regarding the footwall of the Chelungpu fault. Six synthetic aperture radar (SAR scenes, approximately 100 × 100 km each, recorded by the European Remote Sensing Satellite 2 (ERS-2, spanning the rupture area, were selected for study. The data were used to generate a high-resolution, wide-area map of displacements in flat or semi-flat areas. Interferograms show radar line contours indicating line-of-sight (LOS changes corresponding to surface displacements caused by earthquake ruptures. These results were compared to synthetic interferograms generated from GPS data. Displacements shown by GPS data were interpolated onto wide-area maps and transformed to coincide with the radar LOS direction. The resulting coseismic displacement contour map showed a lobed pattern consistent with the precise GPSbased displacement field. Highly accurate vertical displacement was determined using D-InSAR data using the coordinate transform method, while GPS data was effective in showing the horizontal component. Thus, this study confirmed the effectiveness of the D-InSAR method for determining the coseismic deformation caused by the Chi-Chi earthquake at the footwall of the Chelungpu fault.

  3. The changes of β-endorphin, thyroid hormone and cortisol in military stress

    International Nuclear Information System (INIS)

    Han Cuihua; Liu Qing; Qi Bing; Zhang Jing; Zhao Junwu

    2002-01-01

    The change of irritable hormones was studied when new soldiers were in military stress. The stressor was the test of real shooting. Forty and two new soldiers were selected, and their vein blood were extracted when they were in stress and in rest. The content of blood β-endorphin (β-EP), thyroid hormone and cortisol was analysed by RIA. Results showed that the content of β-EP and cortisol was greater in stress than in rest (P 3 was significantly lesser in stress than in rest (P 4 was raised in stress, but it was not significant (P>0.05). Military stress led to the changes of the soldiers stress. Detection of stress hormone will be very worthy in the matter of raising military stress's ability and insuring fighter's health of body and mind

  4. Coseismic liquefaction phenomenon analysis by COSMO-SkyMed: 2012 Emilia (Italy) earthquake

    Science.gov (United States)

    Chini, Marco; Albano, Matteo; Saroli, Michele; Pulvirenti, Luca; Moro, Marco; Bignami, Christian; Falcucci, Emanuela; Gori, Stefano; Modoni, Giuseppe; Pierdicca, Nazzareno; Stramondo, Salvatore

    2015-07-01

    The liquefaction phenomenon that occurred in the coseismic phase of the May 20, 2012 Emilia (Italy) earthquake (ML 5.9) is investigated. It was induced by the water pressure increase in the buried and confined sand layers. The level-ground liquefaction was the result of a chaotic ground oscillation caused by the earthquake shaking and the observed failures were due to the upward water flow caused by the excess of pore pressures. We exploited the capability of the differential synthetic aperture radar interferometry (DInSAR) technique to detect soil liquefactions and estimate their surface displacements, as well as the high sensitivity to surface changes of complex coherence, SAR backscattering and intensity correlation. To this aim, a set of four COSMO-SkyMed X-band SAR images, covering the period April 1-June 6, 2012, was used. Geological-geotechnical analysis was also performed in order to ascertain if the detected SAR-based surface effects could be due to the compaction induced by liquefaction of deep sandy layers. In this regards, the results obtained from 13 electrical cone penetrometer tests show the presence of a fine to medium sandy layer at depths, ranging between 9 and 13 m, which probably liquefied during the earthquake, inducing vertical displacements between 3 and 16 cm. The quantitative results from geological-geotechnical analysis and the surface punctual effects measured by DInSAR are in good agreement, even if some differences are present, probably ascribable to the local thickness and depth variability of the sandy layer, or to lack of deformation detection due to DInSAR decorrelation. The adopted approach permitted us to define the extent of the areas that underwent liquefaction and to quantify the local subsidence related to these phenomena. The latter achievement provides useful information that must be considered in engineering practices, in terms of expected vertical deformations.

  5. Co-Seismic Mass Dislocation and its Effect on Earth's Rotation and Gravity

    Science.gov (United States)

    Chao, B. F.; Gross, R. S.

    2002-01-01

    Mantle processes often involve large-scale mass transport, ranging from mantle convection, tectonic motions, glacial isostatic adjustment, to tides, atmospheric and oceanic loadings, volcanism and seismicity. On very short time scale of less than an hour, co-seismic event, apart from the shaking that is the earthquake, leaves behind permanent (step-function-like) dislocations in the crust and mantle. This redistribution of mass changes the Earth's inertia tensor (and hence Earth's rotation in both length-of-day and polar motion), and the gravity field (in terms of spherical harmonic Stokes coefficients). The question is whether these effects are large enough to be of any significance. In this paper we report updated calculation results based on Chao & Gross (1987). The calculation uses the normal mode summation scheme, applied to nearly twenty thousand major earthquakes that occurred during 1976-2002, according to source mechanism solutions given by the Harvard Central Moment Tensor catalog. Compared to the truly large ones earlier in the century, the earthquakes we study are individually all too small to have left any discernible signature in geodetic records of Earth rotation or global gravity field. However, their collective effects continue to exhibit an extremely strong statistical tendencies. For example, earthquakes conspire to decrease J2 and J22 while shortening LOD, resulting in a rounder and more compact Earth. Strong tendency is also seen in the earthquakes trying to nudge the Earth rotation pole towards approximately 140 degrees E, roughly opposite to the observed polar drift direction. The geophysical significance and implications will be further studied.

  6. Temperature changes during exercise stress testing in children with burns.

    Science.gov (United States)

    Mlcak, R P; Desai, M H; Robinson, E; McCauley, R L; Robson, M C; Herndon, D N

    1993-01-01

    It has been postulated that because of the extensive destruction of the skin and appendages after thermal injury, the thermoregulatory control mechanism would be impaired, and these patients would be intolerant to prolonged work. Preview studies demonstrate evidence that during work in a hot climate, patients with an extensively healed burn react with an excessive rise in body temperature. This study was designed to investigate the thermoregulatory response to exercise in pediatric patients with burns and to study changes in body temperature during exercise testing. Cardiopulmonary stress tests were completed in 32 children with a mean postburn time of 2.3 +/- 1.5 years and a mean burn size of 44% +/- 23% total body surface area. Exercise variables included expired volume, tidal volume, respiratory rate, tidal/dead space rate, heart rate, and work stage achieved. Temperature monitoring included external auditory canal temperature, burn scar, and normal skin temperature. Values were measured at baseline during and at maximum exercise. Our data indicate all patients reached the same endurance level regardless of the size of the total body surface area burn. Additionally, in a temperature-controlled environment, adequate heat dissipation in children with burns can be maintained during exercise testing without an excessive rise in body temperature.

  7. Structural and functional brain changes in posttraumatic stress disorder.

    Science.gov (United States)

    Nutt, David J; Malizia, Andrea L

    2004-01-01

    Posttraumatic stress disorder (PTSD) is a highly disabling condition that is associated with intrusive recollections of a traumatic event, hyperarousal, avoidance of clues associated with the trauma, and psychological numbing. The field of neuroimaging has made tremendous advances in the past decade and has contributed greatly to our understanding of the physiology of fear and the pathophysiology of PTSD. Neuroimaging studies have demonstrated significant neurobiologic changes in PTSD. There appear to be 3 areas of the brain that are different in patients with PTSD compared with those in control subjects: the hippocampus, the amygdala, and the medial frontal cortex. The amygdala appears to be hyperreactive to trauma-related stimuli. The hallmark symptoms of PTSD, including exaggerated startle response and flashbacks, may be related to a failure of higher brain regions (i.e., the hippocampus and the medial frontal cortex) to dampen the exaggerated symptoms of arousal and distress that are mediated through the amygdala in response to reminders of the traumatic event. The findings of structural and functional neuroimaging studies of PTSD are reviewed as they relate to our current understanding of the pathophysiology of this disorder.

  8. Stress habituation and alterations in perceived stress predict BMI percentile changes across a school year

    Science.gov (United States)

    Adolescents experience stressful situations at a high rate during school. Indeed, school is the most common source of stress for teens. This high rate of stress may promote increases in adiposity during a developmental period important for establishing the adult physique. Adiposity gains may be th...

  9. The coseismic displacements of the 2013 Lushan Mw6.6 earthquake determined using continuous global positioning system measurements

    Directory of Open Access Journals (Sweden)

    Huang Yong

    2013-05-01

    Full Text Available Based on Continuous GPS (CGPS observation data of the Crustal Movement Observation Network of China (CMONOC and the Sichuan Continuous Operational Reference System (SCCORS, we calculated the horizontal coseismic displacements of CGPS sites caused by the 2013 Lushan Mw 6. 6 earthquake. The results indicate that the horizontal coseismic deformations of CGPS stations are consistent with thrust-compression rupture. Furthermore, the sites closest to the epicenter underwent significant coseismic displacements. Three network stations exhibited displacements greater than 9 mm (the largest is 20. 9 mm at SCTQ, while the others were displaced approximately 1–4 mm.

  10. Changes in job stress and coping skills among caregivers after dementia care practitioner training.

    Science.gov (United States)

    Takizawa, Takeya; Takahashi, Megumi; Takai, Michiko; Ikeda, Taichiro; Miyaoka, Hitoshi

    2017-01-01

    Dementia care practitioner training is essential for professional caregivers to acquire medical knowledge and care skills for dementia patients. We investigated the significance of training in stress management by evaluating caregivers' job stress and coping style before and after they have completed training. The subjects included 134 professional caregivers (41 men, 93 women) recruited from participants in training programmes held in Kanagawa Prefecture from August 2008 to March 2010. A survey using a brief job stress questionnaire and a coping scale was carried out before and after they completed their training. A t-test and multiple regression analysis were performed to evaluate the effects of the training. After the training, the scores of modifiers on the job stress scale and of the coping scale increased, whereas the scores of stress reactions on the job stress scale decreased. However, there were no changes in participants' subjective cognition concerning their workplace environment. Furthermore, the change in stress reaction score tended to correlate with the change in consultation score in all participants and with the change in problem-solving and consultation in male participants. Among female participants, the change in stress reaction score tended to correlate with change in support from superiors and colleagues as modifiers. The factors that correlated to the change in stress reaction score differed between genders. The findings suggest that training caregivers improves their stress reaction and coping skills. © 2016 The Authors. Psychogeriatrics © 2016 Japanese Psychogeriatric Society.

  11. Postseismic gravity change after the 2006–2007 great earthquake doublet and constraints on the asthenosphere structure in the central Kuril Islands

    Science.gov (United States)

    Han, Shin-Chan; Sauber, Jeanne; Pollitz, Fred

    2016-01-01

    Large earthquakes often trigger viscoelastic adjustment for years to decades depending on the rheological properties and the nature and spatial extent of coseismic stress. The 2006 Mw8.3 thrust and 2007 Mw8.1 normal fault earthquakes of the central Kuril Islands resulted in significant postseismic gravity change in Gravity Recovery and Climate Experiment (GRACE) but without a discernible coseismic gravity change. The gravity increase of ~4 μGal, observed consistently from various GRACE solutions around the epicentral area during 2007–2015, is interpreted as resulting from gradual seafloor uplift by ~6 cm produced by postseismic relaxation. The GRACE data are best fit with a model of 25–35 km for the elastic thickness and ~1018 Pa s for the Maxwell viscosity of the asthenosphere. The large measurable postseismic gravity change (greater than coseismic change) emphasizes the importance of viscoelastic relaxation in understanding tectonic deformation and fault-locking scenarios in the Kuril subduction zone.

  12. Change in Biot's effective stress coefficient of chalk during pore collapse

    DEFF Research Database (Denmark)

    Alam, M. Monzurul; Fabricius, Ida Lykke

    2013-01-01

    and porosity reduces at a slower rate. We noticed that presence of non carbonates and hydrocarbon could increase σ'm. During rock mechanics test in the lab, with increased applied stress, σ'm increases, Biot's effective stress coefficient shows a decreasing trend, while a minor porosity reduction was observed......Biot's effective stress coefficient (α) is a measure of how well grains in the rocks are connected with each other. The amount of contact cements between the grains determines the stiffness of rocks. Change in grain contact occurs during natural diagenesis of sedimentary rock. Contact between...... the grains could also change during elastic deformation of the grains in a rock mechanics test. Diagenetic change in grain contact cement of chalk can be compared with stress-induced change in the laboratory. The change in porosity is studied with reference to the change in effective stress on grain contacts...

  13. Modeling forest mortality caused by drought stress: implications for climate change

    Science.gov (United States)

    Eric J Gustafson; Brian R. Sturtevant

    2013-01-01

    Climate change is expected to affect forest landscape dynamics in many ways, but it is possible that the most important direct impact of climate change will be drought stress. We combined data from weather stations and forest inventory plots (FIA) across the upper Great Lakes region (USA) to study the relationship between measures of drought stress and mortality for...

  14. Early resistance change and stress/electromigration evolution in near bamboo interconnects

    NARCIS (Netherlands)

    Petrescu, V.; Mouthaan, A.J.; Dima, G.; Govoreanu, B.; Mitrea, O.; Profirescu, M.

    1997-01-01

    A complete description for early resistance change and mechanical stress evolution in near-bamboo interconnects, related to the electromigration, is given in this paper. The proposed model, for the first time, combines the stress/vacancy concentration evolution with the early resistance change of

  15. Measurement of stress changes using compact conical -ended borehole monitoring

    Czech Academy of Sciences Publication Activity Database

    Staš, Lubomír; Knejzlík, Jaromír; Palla, L.; Souček, Kamil; Waclawik, P.

    2011-01-01

    Roč. 34, č. 6 (2011), s. 685-693 ISSN 0149-6115 R&D Projects: GA MŠk ED2.1.00/03.0082; GA ČR GA105/06/1768 Institutional research plan: CEZ:AV0Z30860518 Keywords : conical gauge probe * stress determination * stress tensor Subject RIV: DH - Mining, incl. Coal Mining Impact factor: 0.505, year: 2011 http://www.astm.org/DIGITAL_LIBRARY/JOURNALS/GEOTECH/PAGES/GTJ102794.htm

  16. Electroencephalographic changes in albino rats subjected to stress

    Science.gov (United States)

    Mercier, J.; Assouline, G.; Fondarai, J.

    1980-01-01

    Twenty one albino Wistar rats were subjected to stress for 7 hours. There was a significant difference in the slopes of regression lines for 7 nonulcerous rats and those for 14 ulcerous rats. Nonulcerous rats subjected to stress showed greater EEG curve synchronization than did ulcerous rats. If curve synchronization can be equated to a relaxed state, it may therefore be possible to explain the protective action of hypnotics, tranquilizers and analgesics on ulcers.

  17. Block motion changes in Japan triggered by the 2011 great Tohoku earthquake

    Science.gov (United States)

    Meade, Brendan J.; Loveless, John P.

    2017-07-01

    Plate motions are governed by equilibrium between basal and edge forces. Great earthquakes may induce differential static stress changes across tectonic plates, enabling a new equilibrium state. Here we consider the torque balance for idealized circular plates and find a simple scalar relationship for changes in relative plate speed as a function of its size, upper mantle viscosity, and coseismic stress changes. Applied to Japan, the 2011 MW=9.0 Tohoku earthquake generated coseismic stresses of 102-105 Pa that could have induced changes in motion of small (radius ˜100 km) crustal blocks within Honshu. Analysis of time-dependent GPS velocities, with corrections for earthquake cycle effects, reveals that plate speeds may have changed by up to ˜3 mm/yr between ˜3.75 year epochs bracketing this earthquake, consistent with an upper mantle viscosity of ˜5 × 1018Pa·s, suggesting that great earthquakes may modulate motions of proximal crustal blocks at frequencies as high as 10-8 Hz.

  18. Environmental stress, resource management and demographic change in Northern Tanzania

    International Nuclear Information System (INIS)

    Niboye, E.P.

    1999-12-01

    A multitude of environmental problems abound in Tanzania. The problems range from declining land resources, de-vegetation, urban and air pollution, degradation of the marine environment to the destruction of biological diversity. A thorough analysis of these manifestations of environments decline reveal the presence of linkages to economic, political, cultural and demographic constraints which have been at the crux of Tanzania's efforts towards emancipation. We attested that societies are always dialect and integral parts of the global entity. As such the analysis of any societal problem can not be sufficiently tackled by basing on a 'micro level' societal specific factors. We need to expand our horizon and include 'macro level' elements which impinges on the society under study. Imperatively, influences on any environment, social or biophysical, whether positive or negative, emanates either or both from within the specific society and or from without. In our study we set out to provide an insight into the nature and character of man and environment interaction in Arumeru district, Northern Tanzania. We intended to investigate the extent to which changes in the household production patterns as a result of environmental stress and the consequent resource management strategies influence and are hitherto influenced by population growth. The aspects of demographic changes especially patterns of growth and settlement, agrarian production such as land tenure, food and cash crop interventions, non-farm activities and management of the commons were studies. Further, local adaptation to crisis including environmental stress and emerging markets were explored. he theoretical model adopted in analysing the man-land environment relationship in Arumeru district and the ensuing findings, give legitimacy to the position that issues of population growth or decline cannot be separated from questions of economic and social development, or from the environmental concerns related to

  19. Co-Seismic Effect of the 2011 Japan Earthquake on the Crustal Movement Observation Network of China

    Directory of Open Access Journals (Sweden)

    Shaomin Yang

    2013-01-01

    Full Text Available Great earthquakes introduce measurable co-seismic displacements over regions of hundreds and thousands of kilometers in width, which, if not accounted for, may significantly bias the long-term surface velocity field constrained by GPS observations performed during a period encompassing that event. Here, we first present an estimation of the far-field co-seismic off-sets associated with the 2011 Japan Mw 9.0 earthquake using GPS measurements from the Crustal Movement Observation Network of China (CMONOC in North China. The uncertainties of co-seismic off-set, either at cGPS stations or at campaign sites, are better than 5 - 6 mm on average. We compare three methods to constrain the co-seismic off-sets at the campaign sites in northeastern China 1 interpolating cGPS coseismic offsets, 2 estimating in terms of sparsely sampled time-series, and 3 predicting by using a well-constrained slip model. We show that the interpolation of cGPS co-seismic off-sets onto the campaign sites yield the best co-seismic off-set solution for these sites. The source model gives a consistent prediction based on finite dislocation in a layered spherical Earth, which agrees with the best prediction with discrepancies of 2 - 10 mm for 32 campaign sites. Thus, the co-seismic off-set model prediction is still a reasonable choice if a good coverage cGPS network is not available for a very active region like the Tibetan Plateau in which numerous campaign GPS sites were displaced by the recent large earthquakes.

  20. The determination of interseismic, coseismic and postseismic deformations caused by the Gökçeada-Samothraki earthquake (2014, Mw: 6.9) based on GNSS data

    Science.gov (United States)

    Tiryakioglu, Ibrahim; Yigit, Cemal Ozer; Yavasoglu, Hakan; Saka, Mehmet Halis; Alkan, Reha Metin

    2017-09-01

    Since the 1990s, seismic deformations have been commonly determined using the Global Navigation Satellite System (GNSS). Recently, the GNSS systems have become even more powerful with the use of new technologies in innovative studies. In this study, the GNSS data was used to investigate interseismic, coseismic and postseismic deformation and velocity of the Gökçeada-Samothraki earthquake (Mw = 6.9) that occurred on May 24, 2014. The data was obtained at 30 s (0.033 Hz) and 1 s (1 Hz) intervals from the GNSS receivers in the network of Continuously Operating Reference Stations, Turkey (CORS-TR). For the interseismic period, the daily coordinate time series of 12 stations located within 90-250 km of the earthquake epicenter was evaluated for the displacement of stations over a period of approximately 2000 days prior to the day of the earthquakes, from October 1, 2008 to May 23, 2014. In order to analyze the ground motion displacement during the Gökçeada-Samothraki earthquake, 1 Hz data from 8 continuous GNSS stations was processed using precise point positioning (PPP) and relative positioning methods to estimate the epoch-by-epoch positions of the stations. During the earthquake, coseismic displacements of approximately 7 and 30 mm were detected in the NW direction at the YENC and CANA stations, respectively. However, at the IPSA station, a coseismic deformation of 20 mm was observed in the NE direction. There were no significant changes at the other stations during the earthquake. For the postseismic period, the daily coordinate time series of the 12 stations were evaluated for station displacements for 570 days after the day of the earthquakes, from May 24, 2014 to January 1, 2016. The results demonstrated that no significant postseismic deformation with the exception of the EDIR station. An abnormal deformation caused by local factors was determined at the EDIR station. In this study, the PPP and the relative solution were also compared in terms of capturing

  1. Coseismic rupturing stopped by Aso volcano during the 2016 Mw 7.1 Kumamoto earthquake, Japan.

    Science.gov (United States)

    Lin, A; Satsukawa, T; Wang, M; Mohammadi Asl, Z; Fueta, R; Nakajima, F

    2016-11-18

    Field investigations and seismic data show that the 16 April 2016 moment magnitude (M w ) 7.1 Kumamoto earthquake produced a ~40-kilometer-long surface rupture zone along the northeast-southwest-striking Hinagu-Futagawa strike-slip fault zone and newly identified faults on the western side of Aso caldera, Kyushu Island, Japan. The coseismic surface ruptures cut Aso caldera, including two volcanic cones inside it, but terminate therein. The data show that northeastward propagation of coseismic rupturing terminated in Aso caldera because of the presence of magma beneath the Aso volcanic cluster. The seismogenic faults of the 2016 Kumamoto earthquake may require reassessment of the volcanic hazard in the vicinity of Aso volcano. Copyright © 2016, American Association for the Advancement of Science.

  2. Numerical simulation of co-seismic deformation of 2011 Japan Mw9. 0 earthquake

    Directory of Open Access Journals (Sweden)

    Zhang Keliang

    2011-08-01

    Full Text Available Co-seismic displacements associated with the Mw9. 0 earthquake on March 11, 2011 in Japan are numerically simulated on the basis of a finite-fault dislocation model with PSGRN/PSCMP software. Compared with the inland GPS observation, 90% of the computed eastward, northward and vertical displacements have residuals less than 0.10 m, suggesting that the simulated results can be, to certain extent, used to demonstrate the co-seismic deformation in the near field. In this model, the maximum eastward displacement increases from 6 m along the coast to 30 m near the epicenter, where the maximum southward displacement is 13 m. The three-dimensional display shows that the vertical displacement reaches a maximum uplift of 14.3 m, which is comparable to the tsunami height in the near-trench region. The maximum subsidence is 5.3 m.

  3. Improved SAR Amplitude Image Offset Measurements for Deriving Three-Dimensional Coseismic Displacements

    KAUST Repository

    Wang, Teng

    2015-02-03

    Offsets of synthetic aperture radar (SAR) images have played an important role in deriving complete three-dimensional (3-D) surface displacement fields in geoscientific applications. However, offset maps often suffer from multiple outliers and patch-like artifacts, because the standard offset-measurement method is a regular moving-window operation that does not consider the scattering characteristics of the ground. Here, we show that by focusing the offset measurements on predetected strong reflectors, the reliability and accuracy of SAR offsets can be significantly improved. Application to the 2011 Van (Turkey) earthquake reveals a clear deformation signal from an otherwise decorrelated interferogram, making derivation of the 3-D coseismic displacement field possible. Our proposed method can improve mapping of coseismic deformation and other ground displacements, such as glacier flow and landslide movement when strong reflectors exist.

  4. Seafloor observations indicate spatial separation of coseismic and postseismic slips in the 2011 Tohoku earthquake

    Science.gov (United States)

    Iinuma, Takeshi; Hino, Ryota; Uchida, Naoki; Nakamura, Wataru; Kido, Motoyuki; Osada, Yukihito; Miura, Satoshi

    2016-01-01

    Large interplate earthquakes are often followed by postseismic slip that is considered to occur in areas surrounding the coseismic ruptures. Such spatial separation is expected from the difference in frictional and material properties in and around the faults. However, even though the 2011 Tohoku Earthquake ruptured a vast area on the plate interface, the estimation of high-resolution slip is usually difficult because of the lack of seafloor geodetic data. Here using the seafloor and terrestrial geodetic data, we investigated the postseismic slip to examine whether it was spatially separated with the coseismic slip by applying a comprehensive finite-element method model to subtract the viscoelastic components from the observed postseismic displacements. The high-resolution co- and postseismic slip distributions clarified the spatial separation, which also agreed with the activities of interplate and repeating earthquakes. These findings suggest that the conventional frictional property model is valid for the source region of gigantic earthquakes. PMID:27853138

  5. Implications for stress changes along the Motagua fault and other nearby faults using GPS and seismic constraints on the M=7.3 2009 Swan Islands earthquake

    Science.gov (United States)

    Graham, S. E.; Rodriguez, M.; Rogers, R. D.; Strauch, W.; Hernandez, D.; Demets, C.

    2010-12-01

    The May 28, 2009 M=7.3 Swan Islands earthquake off the north coast of Honduras caused significant damage in the northern part of the country, including seven deaths. This event, the largest in the region for several decades, ruptured the offshore continuation of the Motagua-Polochic fault system, whose 1976 earthquake (located several hundred kilometers to the southwest of the 2009 epicenter) caused more than 23,000 deaths in Central America and left homeless 20% of Guatemala’s population. We use elastic half-space modeling of coseismic offsets measured at 39 GPS stations in Honduras, El Salvador, and Guatemala to better understand the slip source of the recent Swan Islands earthquake. Measured offsets range from .32 meters at a campaign site near the Motagua fault in northern Honduras to 4 millimeters at five continuous sites in El Salvador. Coulomb stress calculations based on the estimated distribution of coseismic slip will be presented and compared to earthquake focal mechanisms and aftershock locations determined from a portable seismic network that was installed in northern Honduras after the main shock. Implications of the Swan Islands rupture for the seismically hazardous Motagua-Polochic fault system will be described.

  6. An investigation of coseismic OSL / TL time zeroing of quartz gouge based on low- to high-velocity friction experiments

    Science.gov (United States)

    Akasegawa, K.; Oohashi, K.; Hasebe, N.; Miura, K.

    2016-12-01

    To determine an age of coseismic event of an active fault, we generally examine crosscutting relationship between faults and overlying strata by trenching. However, we could not apply this method in case there are no overlying young strata in the vicinity of the fault zones. The alternative is a dating of fault zone materials whose age experienced resetting with seismic fault slip (for example, the ESR method;. Ikeya et al,1982; the OSL and TL methods). The idea behinds to the OSL (optically stimulated luminescence) and TL (thermoluminescence) dating methods for a determination of paleo-earthquake event is the accumulated natural radiation damage becomes to zero (time zeroing) by the frictional heating and grinding. However, physical and geological conditions required to induce time zeroing is not well understood because there is only few experimental investigations under the limited conditions (Hiraga et al,2004;. Kim et al, 2014) . In this study, we conduct low- to high-velocity friction experiments using quartz gouge under various experimental conditions (e.g., normal stress, displacement, moisture content) to establish an empirical relationship and physical and geological conditions of coseismic OSL time zeroing. In this experiment, we carry out the friction experiments using quartz in Tsushigawa granite taken from the east wall of the Nojima fault Ogura trench site, which was excavated in 2015. Samples were taken from the most distant position from the fault in the trench site. The samples were clashed using a mortar and sieved to a grain size of treatment. The residual is user for the friction experiments after having known radiation dose using an artificial gamma-ray source. In this presentation, we show results of the friction experiments and dating of the quartz gouge and discuss physical and geological conditions of OSL time zeroing. References Okumura, T., and Shitaoka, Y., 2011. Engineering Geology of Japan, No. 1, 5-17. Hiraga, S., Yoshimoto, A., and

  7. Chromatin changes in response to drought, salinity, heat, and cold stresses in plants

    Directory of Open Access Journals (Sweden)

    Jong-Myong eKim

    2015-03-01

    Full Text Available Chromatin regulation is essential to regulate genes and genome activities. In plants, the alteration of histone modification and DNA methylation are coordinated with changes in the expression of stress-responsive genes to adapt to environmental changes. Several chromatin regulators have been shown to be involved in the regulation of stress-responsive gene networks under abiotic stress conditions. Specific histone modification sites and the histone modifiers that regulate key stress-responsive genes have been identified by genetic and biochemical approaches, revealing the importance of chromatin regulation in plant stress responses. Recent studies have also suggested that histone modification plays an important role in plant stress memory. In this review, we summarize recent progress on the regulation and alteration of histone modification (acetylation, methylation, phosphorylation, and SUMOylation in response to the abiotic stresses, drought, high-salinity, heat, and cold in plants.

  8. Electrokinetic effect combined with surface-charge assumption: a possible generation mechanism of coseismic EM signals

    Science.gov (United States)

    Ren, Hengxin; Wen, Jian; Huang, Qinghua; Chen, Xiaofei

    2015-02-01

    According to field observations, electromagnetic (EM) signals accompanying seismic waves can be recorded. The orders of magnitude of observed coseismic electric and magnetic signals associated with earthquakes are usually around 1 to 101 mV km-1 and 10-2 to 1 nT, respectively. In this paper, we carry out numerical simulation of coseismic EM signals associated with seismic waves due to electrokinetic effect and compare with field observations. The seismic source is represented by a finite fault measuring 15 × 9 km2 with a max slip displacement 1.5 m, corresponding to a Mw 5.9 earthquake. While using the EM surface boundary condition of continuous horizontal EM components, the magnetic signals only accompany the late-arriving S waves at receiver near the ground surface. This is obviously different from field observations. Thus, we adopt another EM surface boundary condition which assumes the ground surface carries surface charge. For the used half-space model, a surface-charge density magnitude |Qsc| in excess of 10-4 C m-2 is sufficient to make horizontal magnetic components clearly show up at the whole time duration of seismic waves. When |Qsc| increases, the contribution of surface-charge density to coseismic EM signals becomes more and more dominant comparing with that of the seismically induced streaming-current. We estimate the Qsc expected at the Earth's surface might be a value between -5 × 10-4 and -0.1 C m-2 by the comparison between numerical results and field observations. The vertical magnetic signals only accompany the late-arriving seismic waves, because they are theoretically only induced by SH wave. The field observation results of vertical magnetic signals may be resulted from the scattering effect or the seismic dynamo effect. We conclude that electrokinetic effect combined with surface-charge assumption is one possible generation mechanism of the observed coseismic EM signals.

  9. COMPARISON OF COSEISMIC IONOSPHERIC DISTURBANCE WAVEFORMS REVISITED: STRIKE-SLIP, NORMAL, AND REVERSE FAULT EARTHQUAKE

    Directory of Open Access Journals (Sweden)

    Mokhamad Nur Cahyadi

    2015-02-01

    Full Text Available Using Total Electron Content (TEC measurements with Global Positioning System we studied ionospheric responses to three large earthquakes with difference focal mechanism that occurred in the Sumatra Andaman 26 December 2004, North off Sumatra 11 April 2012, and North Japan 7 December 2012. These earthquakes have different focal mechanisms, i.e. high-angle reverse, strike-slip, and normal faulting, respectively. TEC responses to the Sumatra Andaman 2004 and north Japan 2012 events initiated with positive changes. On the other hand, the initial TEC changes in the Sumatra 2012 earthquake showed both positive and negative polarities depending on the azimuth around the focal area. Such a variety may reflect differences in coseismic vertical crustal displacements, which are dominated by uplift and subsidence in the Sumatra 2012 event. This phenomena has same characteristic with 1994 Kuril Arch earthquake. There are three different propagation velocity in the Sumatra 2012 earthquake, within the first 300 km until 430 km, the CID propagation velocity was ~3 km/s, which is equal to the secod sound speed at the height of the ionospheric F-layer. Starting from 380 km until 750 km out from the epicenter, the disturbance seems to divide into two separate perturbations, with each propagating at a different velocity, about 1 km/s for the one and about 0.4 m/s for the other. The apparent velocity in the Sumatra Andaman 2004 and Japan 2012 propagated ~ 1 km/s and ~ 0.3 km/s, consistent with the sound speed at the ionospheric F layer height and internal gravity wave respectively. Resonant oscillation of TEC with a frequency of ~ 3.7 mHZ and ~4.4 mHz have been found in the Sumatra 2012 and Sumatra Andaman 2004 events. Those earthquakes, which occurred during a period of quiet geomagnetic activity, also showed clear preseismic TEC anomalies similar to those before the 2011 Tohoku-Oki and 2007 Bengkulu earthquake.   The positive anomalies started 30-60 minutes

  10. Monitoring eruption activity using temporal stress changes at Mount Ontake volcano.

    Science.gov (United States)

    Terakawa, Toshiko; Kato, Aitaro; Yamanaka, Yoshiko; Maeda, Yuta; Horikawa, Shinichiro; Matsuhiro, Kenjiro; Okuda, Takashi

    2016-02-19

    Volcanic activity is often accompanied by many small earthquakes. Earthquake focal mechanisms represent the fault orientation and slip direction, which are influenced by the stress field. Focal mechanisms of volcano-tectonic earthquakes provide information on the state of volcanoes via stresses. Here we demonstrate that quantitative evaluation of temporal stress changes beneath Mt. Ontake, Japan, using the misfit angles of focal mechanism solutions to the regional stress field, is effective for eruption monitoring. The moving average of misfit angles indicates that during the precursory period the local stress field beneath Mt. Ontake was deviated from the regional stress field, presumably by stress perturbations caused by the inflation of magmatic/hydrothermal fluids, which was removed immediately after the expulsion of volcanic ejecta. The deviation of the local stress field can be an indicator of increases in volcanic activity. The proposed method may contribute to the mitigation of volcanic hazards.

  11. Stressful life transitions and wellbeing: A comparison of the stress buffering hypothesis and the social identity model of identity change.

    Science.gov (United States)

    Praharso, Nurul F; Tear, Morgan J; Cruwys, Tegan

    2017-01-01

    The relationship between stressful life transitions and wellbeing is well established, however, the protective role of social connectedness has received mixed support. We test two theoretical models, the Stress Buffering Hypothesis and the Social Identity Model of Identity Change, to determine which best explains the relationship between social connectedness, stress, and wellbeing. Study 1 (N=165) was an experiment in which participants considered the impact of moving cities versus receiving a serious health diagnosis. Study 2 (N=79) was a longitudinal study that examined the adjustment of international students to university over the course of their first semester. Both studies found limited evidence for the buffering role of social support as predicted by the Stress Buffering Hypothesis; instead people who experienced a loss of social identities as a result of a stressor had a subsequent decline in wellbeing, consistent with the Social Identity Model of Identity Change. We conclude that stressful life events are best conceptualised as identity transitions. Such events are more likely to be perceived as stressful and compromise wellbeing when they entail identity loss. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Morpho-physiological changes in maize seedling sunder osmotic stress

    Directory of Open Access Journals (Sweden)

    Anđelković Violeta

    2012-01-01

    Full Text Available Drought is a major abiotic stress factor limiting crop growth, development and production worldwide. The objective of this study was to evaluate tolerance to osmotic stress of maize seedlings. More than 6,000 accessions from the Maize Research Institute gene bank were tested under controlled drought (at flowering in Egypt, and afterwards in temperate climate (Serbia and Macedonia. Out of 41 drought tolerant accessions in the field, five inbred lines were chosen for laboratory testing, as well as one drought sensitive line. These genotypes were exposed to 4% polyethylene glycol-PEG (Mr 10000 for 24 h and 48 h. Nine-day-old seedlings compared to control conditions were analyzed in root and shoot length, fresh and dry weight and proline content. Results showed reduction in all parameters under stress, while only proline content increased in all PEG treated genotypes compared to control.

  13. Gender, stress in childhood and adulthood, and trajectories of change in body mass.

    Science.gov (United States)

    Liu, Hui; Umberson, Debra

    2015-08-01

    Despite substantial evidence of the linkage between stress and weight change, previous studies have not considered how stress trajectories that begin in childhood and fluctuate throughout adulthood may work together to have long-term consequences for weight change. Working from a stress and life course perspective, we investigate the linkages between childhood stress, adulthood stress and trajectories of change in body mass (i.e., Body Mass Index, BMI) over time, with attention to possible gender variation in these processes. Data are drawn from a national longitudinal survey of the Americans' Changing Lives (N = 3617). Results from growth curve analyses suggest that both women and men who experienced higher levels of childhood stress also report higher levels of stress in adulthood. At the beginning of the study period, higher levels of adulthood stress are related to greater BMI for women but not men. Moreover, women who experienced higher levels of childhood stress gained weight more rapidly throughout the 15-year study period than did women who experienced less childhood stress, but neither childhood nor adulthood stress significantly modified men's BMI trajectories. These findings add to our understanding of how childhood stress-a more important driver of long-term BMI increase than adult stress-reverberates throughout the life course to foster cumulative disadvantage in body mass, and how such processes differ for men and women. Results highlight the importance of considering sex-specific social contexts of early childhood in order to design effective clinical programs that prevent or treat overweight and obesity later in life. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Water stress induced changes in antioxidant enzymes, membrane ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-12-01

    Dec 1, 2009 ... reduction in chloroplasts (Robinson and Bunce, 2000). In fact it has been reported that much of the injury to plants caused by exposure to various ...... stress on soybean and spinach leaf ascorbate-dehydroascorbate level and redox status. Int. J. Plant Sci. 161:271-279. Sairam RK (1994). Effect of moisture ...

  15. Diastolic Function Changes during Stress Echocardiography in Hypertensive Patients

    Directory of Open Access Journals (Sweden)

    Sara Hosseini

    2017-04-01

    Full Text Available Background Some hypertensive patients experience dyspnea with exercise due to rise in filling pressures. So, exercise is helpful to determine left ventricular filling tension. Objectives This study aims to evaluate the effect of dobutamine stress echocardiography on diastolic function in hypertensive patients with normal ejection fraction. Methods In this study, 30 hypertensive patients (52.7 ± 3.6 years and 30 sex and age matched healthy controls (50.8 ± 7.6 years were examined. Exclusion criteria were patients with coronary artery disease, significant valvular heart disease, hypertrophic cardiomyopathy, left ventricular systolic dysfunction (EF (ejection fraction < 50%, atrial fibrillation and bad echogenic view. We performed complete echocardiography and dobutamine stress echocardiography with pulsed wave Doppler tissue imaging at rest and during peak stress to measure primary mitral inflow diastolic wave rate (E, late mitral inflow diastolic wave rate (A, E/A ratio, primary diastolic myocardial wave rate (E′ and late diastolic myocardial wave velocity (A’. Results At rest, E’ was significantly lower in patients than controls (8.2 ± 1.6 vs 14.7 ± 2.6 P value < 0.001 and E/E (early mitral inflow diastolic wave rate/early myocardial diastolic wave rate was significantly higher in patients (7.6 ± 1.2 vs 4.8 ± 1.0 P value <0.001. At peak stress, E/A ratio was significantly lower in patients (P < 0.001 while E/E′ was significantly higher in patients than controls (8.3 ± 2.1 vs 4.7 ± 0.7 P value < 0.001. Conclusions Dobutamine stress echocardiography with Doppler tissue study is effective in the evaluation of hypertensive patients with dyspnea on exertion with normal resting echocardiography.

  16. Stiffness Evolution in Frozen Sands Subjected to Stress Changes

    KAUST Repository

    Dai, Sheng

    2017-04-21

    Sampling affects all soils, including frozen soils and hydrate-bearing sediments. The authors monitor the stiffness evolution of frozen sands subjected to various temperature and stress conditions using an oedometer cell instrumented with P-wave transducers. Experimental results show the stress-dependent stiffness of freshly remolded sands, the dominant stiffening effect of ice, creep after unloading, and the associated exponential decrease in stiffness with time. The characteristic time for stiffness loss during creep is of the order of tens of minutes; therefore it is inevitable that frozen soils experience sampling disturbances attributable to unloading. Slow unloading minimizes stiffness loss; conversely, fast unloading causes a pronounced reduction in stiffness probably attributable to the brittle failure of ice or ice-mineral bonding.

  17. Rotation of principal axes and changes of stress due to mine-induced stresses

    Czech Academy of Sciences Publication Activity Database

    Ptáček, Jiří; Koníček, Petr; Staš, Lubomír; Waclawik, Petr; Kukutsch, Radovan

    2015-01-01

    Roč. 52, č. 10 (2015), s. 1440-1447 ISSN 0008-3674. [International Colloquium on Geomechanics and Geophysics /5./. Karolinka, 25.06.2014-27.06.2014] R&D Projects: GA MŠk ED2.1.00/03.0082; GA MŠk(CZ) LO1406 Institutional support: RVO:68145535 Keywords : mining * principal stress * stress distribution * modified overcoring Subject RIV: DH - Mining, incl. Coal Mining Impact factor: 1.877, year: 2015 http://www.nrcresearchpress.com/doi/full/10.1139/cgj-2014-0364#.VgqDPpc70mt

  18. Rotation of principal axes and changes of stress due to mine-induced stresses

    Czech Academy of Sciences Publication Activity Database

    Ptáček, Jiří; Koníček, Petr; Staš, Lubomír; Waclawik, Petr; Kukutsch, Radovan

    2015-01-01

    Roč. 52, č. 10 (2015), s. 1440-1447 ISSN 0008-3674. [International Colloquium on Geomechanics and Geophysics /5./. Karolinka, 25.06.2014-27.06.2014] R&D Projects: GA MŠk ED2.1.00/03.0082; GA MŠk(CZ) LO1406 Institutional support: RVO:68145535 Keywords : mining * principal stress * stress distribution * modified overcoring Subject RIV: DH - Mining , incl. Coal Mining Impact factor: 1.877, year: 2015 http://www.nrcresearchpress.com/doi/full/10.1139/cgj-2014-0364#.VgqDPpc70mt

  19. Obesity and Age-Related Changes in Markers of Oxidative Stress and Inflammation Across Four Generations

    NARCIS (Netherlands)

    Hulsegge, Gerben; Herber-Gast, Gerrie-Cor M; Spijkerman, Annemieke M W; Susan, H; Picavet, J; van der Schouw, Yvonne T; Bakker, Stephan J L; Gansevoort, Ron T; Dollé, Martijn E T; Smit, Henriette A; Monique Verschuren, W M

    ObjectiveThe prevalence of obesity increases with age and is higher in each younger generation (unfavorable generation shift). This may influence patterns of oxidative stress and inflammation. Age-related changes and generation shifts in markers of oxidative stress and inflammation were

  20. Genome wide association of changes in feeding behavior due to heat stress in pigs

    Science.gov (United States)

    Heat stress negatively impacts pork production, losses include decreased growth, reduced feed intake, and mortality. Therefore, the objective of this study was to identify genetic markers associated with changes in feeding behavior due to heat stress in grow-finish pigs. Data were collected on grow-...

  1. Stress, Life Events, and Socioeconomic Disparities in Health: Results from the Americans' Changing Lives Study

    Science.gov (United States)

    Lantz, Paula M.; House, James S.; Mero, Richard P.; Williams, David R.

    2005-01-01

    It has been hypothesized that exposure to stress and negative life events is related to poor health outcomes, and that differential exposure to stress plays a role in socioeconomic disparities in health. Data from three waves of the Americans' Changing Lives study (n = 3,617) were analyzed to investigate prospectively the relationship among…

  2. 3d-model of Earthquake Induced Stress Field Changes In The Swabian Jura

    Science.gov (United States)

    Sachse, A.; Heidbach, O.; Connolly, P.; Reinecker, J.; Scherbaum, F.

    Several damaging earthquakes occurred during the last century in the Swabian Jura, south-western Germany. This is one of the most active regions of northern Europe with local magnitudes up to 6. The earthquake sequence 1911- 1978 contains eight strike-slip events which took place at sub-vertical NNE-SSW striking fault planes. Remarkable is a time migration of the seismic events and simultaneous decrease in focal depths towards north. In our model assumption we explain this observed be- haviour as a earthquake triggering due to stress changes. These stress changes can be either caused by a single previous seismic event or by stress accumulation of all pre- vious earthquakes. A three-dimensional Finite-Element-Model of the Swabian Jura is established. The 100x100 km box of the crust contains the striking geological fea- tures, including the Albstadt-shearzone and the Hohenzollern-graben. The rheology is linear-elastic. The Youngs modulus changes with lithological and thermal setting. The boundary conditions are the displacements derived from the earthquake sequence. The stress changes are represented by using the Coulomb failure function. In case of failure the function value is positive, i.e. shear stress exceeds normal stress. Looking at the change of Coulomb failure stress it can be stated if an event will be suppressed or encouraged by the previous earthquake. First results of various case studies will be presented.

  3. Climate change induced occupational stress and reported morbidity among cocoa farmers in South-Western Nigeria

    Directory of Open Access Journals (Sweden)

    Abayomi Samuel Oyekale

    2015-05-01

    Climate change influences the farm operations of cocoa farmers with resultant occupational stresses. Efforts to assist cocoa farmers should include, among others, provision of weather forecasts and some form of insurance.

  4. Young's modulus and residual stress of GeSbTe phase-change thin films

    NARCIS (Netherlands)

    Nazeer, H.; Bhaskaran, Harish; Woldering, L.A.; Abelmann, Leon

    2015-01-01

    The mechanical properties of phase change materials alter when the phase is transformed. In this paper, we report on experiments that determine the change in crucial parameters such as Young's modulus and residual stress for two of the most widely employed compositions of phase change films,

  5. Tomographic measurement of femtosecond-laser induced stress changes in optical fibers

    International Nuclear Information System (INIS)

    Duerr, F.; Limberger, H.G.; Salathe, R.P.; Hindle, F.; Douay, M.; Fertein, E.; Przygodzki, C.

    2004-01-01

    The tomographic measurement of the residual stress profile in femtosecond-laser irradiated standard SMF-28 germanium-doped telecommunication fiber is demonstrated. The fiber is irradiated with weakly focused pulses to realize long-period fiber gratings. In the irradiated grating regions, an asymmetrical increase in axial core stress up to 6.2 kg/mm2 is found. The increase in stress is attributed to a densification of the irradiated glass matrix. The stress-induced anisotropic index distribution is calculated and related to the absolute index change in the irradiated regions

  6. Stress-related changes in body form – Results from the Whitehall II study

    OpenAIRE

    Kubera, Britta; Leonhard, Claudine; Röβler, Andreas; Peters, Achim

    2017-01-01

    Objective Stress is associated with body mass gain in some people, but with body mass loss in others. When the stressor persists, some people adapt with their stress responses whereas others don't. Heart-rate-variability (HRV) reflects ‘autonomic variability’ and is related to stress responses to psychosocial challenges. We hypothesized that the combined effects of ‘stress exposure’ and ‘autonomic variability’ predict long-term changes in body form. Methods Data of 1369 men and 612 women from...

  7. Structural changes in elastically stressed crystallites under irradiation

    International Nuclear Information System (INIS)

    Zolnikov, K.P.; Korchuganov, A.V.; Kryzhevich, D.S.; Chernov, V.M.; Psakhie, S.G.

    2015-01-01

    The response of elastically stressed iron and vanadium crystallites to atomic displacement cascades was investigated by molecular dynamics simulation. Interatomic interaction in vanadium was described by a many-body potential calculated in the Finnis–Sinclair approximation of the embedded atom method. Interatomic interaction in iron was described by a many-body potential constructed in the approximation of valence-electron gas. The crystallite temperature in the calculations was varied from 100 to 600 K. The elastically stressed state in the crystallites was formed through uniaxial tension by 4–8% such that their volume remained unchanged. The energy of a primary knock-on atom was varied from 0.5 to 50 keV. It is shown that the lower the temperature and the higher the strain degree of an initial crystallite, the lower the threshold primary knock-on atom energy for plastic deformation generation in the crystallite. The structural rearrangements induced in the crystallites by an atomic displacement cascade are similar to those induced by mechanical loading. It is found that the rearrangements are realized through twinning

  8. Stress evolution following the 1999 Chi-Chi, Taiwan, earthquake: Consequences for afterslip, relaxation, aftershocks and departures from Omori decay

    Science.gov (United States)

    Chan, C.-H.; Stein, R.S.

    2009-01-01

    We explore how Coulomb stress transfer and viscoelastic relaxation control afterslip and aftershocks in a continental thrust fault system. The 1999 September 21 Mw = 7.6 Chi-Chi shock is typical of continental ramp-d??collement systems throughout the world, and so inferences drawn from this uniquely well-recorded event may be widely applicable. First, we find that the spatial and depth distribution of aftershocks and their focal mechanisms are consistent with the calculated Coulomb stress changes imparted by the coseismic rupture. Some 61 per cent of the M ??? 2 aftershocks and 83 per cent of the M ??? 4 aftershocks lie in regions for which the Coulomb stress increased by ???0.1 bars, and there is a 11-12 per cent gain in the percentage of aftershocks nodal planes on which the shear stress increased over the pre-Chi Chi control period. Second, we find that afterslip occurred where the calculated coseismic stress increased on the fault ramp and d??collement, subject to the condition that friction is high on the ramp and low on the d??collement. Third, viscoelastic relaxation is evident from the fit of the post-seismic GPS data on the footwall. Fourth, we find that the rate of seismicity began to increase during the post-seismic period in an annulus extending east of the main rupture. The spatial extent of the seismicity annulus resembles the calculated ???0.05-bar Coulomb stress increase caused by viscoelastic relaxation and afterslip, and we find a 9-12 per cent gain in the percentage of focal mechanisms with >0.01-bar shear stress increases imparted by the post-seismic afterslip and relaxation in comparison to the control period. Thus, we argue that post-seismic stress changes can for the first time be shown to alter the production of aftershocks, as judged by their rate, spatial distribution, and focal mechanisms. ?? Journal compilation ?? 2009 RAS.

  9. [Effect of opioid receptors on acute stress-induced changes in recognition memory].

    Science.gov (United States)

    Liu, Ying; Wu, Yu-Wei; Qian, Zhao-Qiang; Yan, Cai-Fang; Fan, Ka-Min; Xu, Jin-Hui; Li, Xiao; Liu, Zhi-Qiang

    2016-12-25

    Although ample evidence has shown that acute stress impairs memory, the influences of acute stress on different phases of memory, such as acquisition, consolidation and retrieval, are different. Experimental data from both human and animals support that endogenous opioid system plays a role in stress, as endogenous opioid release is increased and opioid receptors are activated during stress experience. On the other hand, endogenous opioid system mediates learning and memory. The aim of the present study was to investigate the effect of acute forced swimming stress on recognition memory of C57 mice and the role of opioid receptors in this process by using a three-day pattern of new object recognition task. The results showed that 15-min acute forced swimming damaged the retrieval of recognition memory, but had no effect on acquisition and consolidation of recognition memory. No significant change of object recognition memory was found in mice that were given naloxone, an opioid receptor antagonist, by intraperitoneal injection. But intraperitoneal injection of naloxone before forced swimming stress could inhibit the impairment of recognition memory retrieval caused by forced swimming stress. The results of real-time PCR showed that acute forced swimming decreased the μ opioid receptor mRNA levels in whole brain and hippocampus, while the injection of naloxone before stress could reverse this change. These results suggest that acute stress may impair recognition memory retrieval via opioid receptors.

  10. Change in job stress and job satisfaction over a two-year interval using the Brief Job Stress Questionnaire.

    Science.gov (United States)

    Kawada, Tomoyuki; Otsuka, Toshiaki

    2014-01-01

    The relationship between job stress and job satisfaction by the follow-up study should be more evaluated for workers' health support. Job stress is strongly affected by the content of the job and the personality of a worker. This study was focused on determining the changes of the job stress and job satisfaction levels over a two-year interval, using the Brief Job Stress Questionnaire (BJSQ). This self-administered questionnaire was distributed to the same 310 employees of a Japanese industrial company in 2009 and 2011. Sixty-one employees were lost from 371 responders in 2009. Data of 16 items from 57 items graded on a four-point Likert-type scale to measure the job stressors, psycho-physical complaints and support for workers, job overload (six items), job control (three items), support (six items) and job satisfaction score (one item) were selected for the analysis. The age-adjusted partial correlation coefficients for job overload, job control and support were 0.684 (pjob overload, job control and support were 0.681 (0.616-0.736), 0.473 (0.382-0.555), and 0.623 (0.549-0.687), respectively. There were no significant differences in the mean score for job overload, job control or support, although significant decline in the job satisfaction level was apparent at the end of the two-year period (pjob satisfaction in 2009 and in 2011 for subjects with keeping low job strain. No significant changes in the scores on the three elements of job stress were observed over the two-year study period, and the job satisfaction level deteriorated significantly during this period. There was a decline in the job satisfaction in the two-year period, although subjects did not suffer from job stress at the same period.

  11. Ultrastructural and physiological changes induced by different stress conditions on the human parasite Trypanosoma cruzi.

    Science.gov (United States)

    Pérez-Morales, Deyanira; Hernández, Karla Daniela Rodríguez; Martínez, Ignacio; Agredano-Moreno, Lourdes Teresa; Jiménez-García, Luis Felipe; Espinoza, Bertha

    2017-01-01

    Trypanosoma cruzi is the etiological agent of Chagas disease. The life cycle of this protozoan parasite is digenetic because it alternates its different developmental forms through two hosts, a vector insect and a vertebrate host. As a result, the parasites are exposed to sudden and drastic environmental changes causing cellular stress. The stress response to some types of stress has been studied in T. cruzi, mainly at the molecular level; however, data about ultrastructure and physiological state of the cells in stress conditions are scarce or null. In this work, we analyzed the morphological, ultrastructural, and physiological changes produced on T. cruzi epimastigotes when they were exposed to acid, nutritional, heat, and oxidative stress. Clear morphological changes were observed, but the physiological conditions varied depending on the type of stress. The maintenance of the physiological state was severely affected by heat shock, acidic, nutritional, and oxidative stress. According to the surprising observed growth recovery after damage by stress alterations, different adaptations from the parasite to these harsh conditions were suggested. Particular cellular death pathways are discussed.

  12. Stress Models of the Annual Hydrospheric, Atmospheric, Thermal, and Tidal Loading Cycles on California Faults: Perturbation of Background Stress and Changes in Seismicity

    Science.gov (United States)

    Johnson, Christopher W.; Fu, Yuning; Bürgmann, Roland

    2017-12-01

    Stresses in the lithosphere arise from multiple natural loading sources that include both surface and body forces. The largest surface loads include near-surface water storage, snow and ice, atmosphere pressure, ocean loading, and temperature changes. The solid Earth also deforms from celestial body interactions and variations in Earth's rotation. We model the seasonal stress changes in California from 2006 through 2014 for seven different loading sources with annual periods to produce an aggregate stressing history for faults in the study area. Our modeling shows that the annual water loading, atmosphere, temperature, and Earth pole tides are the largest loading sources and should each be evaluated to fully describe seasonal stress changes. In California we find that the hydrological loads are the largest source of seasonal stresses. We explore the seasonal stresses with respect to the background principal stress orientation constrained with regional focal mechanisms and analyze the modulation of seismicity. Our results do not suggest a resolvable seasonal variation for the ambient stress orientation in the shallow crust. When projecting the seasonal stresses into the background stress orientation we find that the timing of microseismicity modestly increases from an 8 kPa seasonal mean-normal-stress perturbation. The results suggest that faults in California are optimally oriented with the background stress field and respond to subsurface pressure changes, possibly due to processes we have not considered in this study. At any time a population of faults are near failure as evident from earthquakes triggered by these slight seasonal stress perturbations.

  13. Comparison of Adenosine Stress Myocardial Perfusion Scintigraphy and Oral Dipyridamole Stress Myocardial Perfusion Scintigraphy for Hemodynamic Changes and Adverse Effects

    Directory of Open Access Journals (Sweden)

    Ahmet Yanarateş

    2016-08-01

    Full Text Available Objective: Similar effects can be achieved during stress myocardial perfusion scintigraphy (MPS using pharmacological agents to create cardiac stress for patients who are unable to exercise. In our study, we aimed to show the hemodynamic changes and adverse effects caused by adenosine and to compare the results with dipyridamole stress MPS. Materials and Methods: Sixty-five patients with suspected coronary artery disease were included in our study. Fifty patients in whom stress MPS with intravenous adenosine was performed (group A and 15 patients who underwent oral dipyridamole stress MPS (group B were retrospectively evaluated. During the test, blood pressure measurements and electrocardiographic follow-up were performed in all patients and side effects were noted. Results: At least one side effect occurred in 68% of the group A and in 46% of the group B patients. There was no statistically significant difference between the two groups in terms of side effects that occurred during the pharmacological stress. During the maximum stress, there was an increase of 15.80±11.60 beats/min in heart beats in group A and 5.53±4.54 beats/min in group B. There was a statistically significant difference between the groups in terms of heart rate increase per minute. When we compared reduction in systolic blood pressure and diastolic blood pressure, there was no statistically significant difference between the two groups. Conclusion: Although side effects are more often seen with adenosine, rapid decline in complaints was observed when adenosine infusion was terminated and there was no need for patient follow-up due to short half life of adenosine. We believe that these favourable advantages will increase the use of adenosine in clinical practice.

  14. Nonlinear coseismic infrasound waves in the upper atmosphere and ionosphere

    Science.gov (United States)

    Chum, J.; Liu, J. Y.; Cabrera, M. A.

    2017-12-01

    Vertical motion of the ground surface caused by seismic waves generates acoustic waves that propagate nearly vertically upward because of supersonic speed of seismic waves. As the air density decreases with height, the amplitude of acoustic waves increases to conserve the energy flux. If the initial perturbation is large enough (larger than 10 mm/s) and the period of waves is long (>10 s), then the amplitude reaches significant values in the upper atmosphere (e.g. oscillation velocities of the air particles become comparable with sound speed) and the nonlinear phenomena start to play an important role before the wave is dissipated. The nonlinear phenomena lead to changes of spectral content of the wave packet. The energy is transferred to lower frequencies, which can cause the formation of roughly bipolar N-shaped pulse in the vicinity of the epicenters (up to distance about 1000-1500 km) of strong, M>7, earthquakes. The nonlinear propagation is studied on the basis of numerical solution of continuity, momentum and heat equations in 1D (along vertical axis) for viscous compressible atmosphere. Boundary conditions on the ground are determined by real measurements of the vertical motion of the ground surface. The results of numerical simulations are in a good agreement with atmospheric fluctuations observed by continuous Doppler sounding at heights of about 200 km and epicenter distance around 800 km. In addition, the expected fluctuations of GSP-TEC are calculated.

  15. Change of residual stresses during plastic deformation under uniaxial tension test

    International Nuclear Information System (INIS)

    Benito, J. A.; Jorba, J.; Roca, A.

    2001-01-01

    Hang of longitudinal and transverse residual stresses was studied by X Ray diffraction method as the applied plastic deformation, measured as A% was increased in a standard tension test. The starting material, hot rolling Armco iron, has values close to 0 MPa in longitudinal direction. But it reaches 600 MPa with only A=1,5%, this value remains constant until necking is produced. In transverse direction the stating values are 300 MPa, changes are small and residual stresses remain compressive until the end of tension test. In addition, studies of the changes of residual stresses with time and with misalignment between incident X Ray and drawing direction are presented. (Author) 5 refs

  16. Confirmation of Low Stress Creep Regime in 9% Chromium Steel by Stress Change Creep Experiments

    Czech Academy of Sciences Publication Activity Database

    Kloc, Luboš; Sklenička, Václav

    387-389, - (2004), s. 633-638 ISSN 0921-5093. [International Conference on the Strength of Materials /13./. Budapest, 25.08.2003-30.08.2003] R&D Projects: GA AV ČR IAA2041101; GA ČR GA106/02/0608 Institutional research plan: CEZ:AV0Z2041904 Keywords : Low stress creep * 9% Cr steel Subject RIV: JG - Metallurgy Impact factor: 1.445, year: 2004

  17. Coseismic and postseismic slip of the 2011 magnitude-9 Tohoku-Oki earthquake.

    Science.gov (United States)

    Ozawa, Shinzaburo; Nishimura, Takuya; Suito, Hisashi; Kobayashi, Tomokazu; Tobita, Mikio; Imakiire, Tetsuro

    2011-06-15

    Most large earthquakes occur along an oceanic trench, where an oceanic plate subducts beneath a continental plate. Massive earthquakes with a moment magnitude, M(w), of nine have been known to occur in only a few areas, including Chile, Alaska, Kamchatka and Sumatra. No historical records exist of a M(w) = 9 earthquake along the Japan trench, where the Pacific plate subducts beneath the Okhotsk plate, with the possible exception of the ad 869 Jogan earthquake, the magnitude of which has not been well constrained. However, the strain accumulation rate estimated there from recent geodetic observations is much higher than the average strain rate released in previous interplate earthquakes. This finding raises the question of how such areas release the accumulated strain. A megathrust earthquake with M(w) = 9.0 (hereafter referred to as the Tohoku-Oki earthquake) occurred on 11 March 2011, rupturing the plate boundary off the Pacific coast of northeastern Japan. Here we report the distributions of the coseismic slip and postseismic slip as determined from ground displacement detected using a network based on the Global Positioning System. The coseismic slip area extends approximately 400 km along the Japan trench, matching the area of the pre-seismic locked zone. The afterslip has begun to overlap the coseismic slip area and extends into the surrounding region. In particular, the afterslip area reached a depth of approximately 100 km, with M(w) = 8.3, on 25 March 2011. Because the Tohoku-Oki earthquake released the strain accumulated for several hundred years, the paradox of the strain budget imbalance may be partly resolved. This earthquake reminds us of the potential for M(w) ≈ 9 earthquakes to occur along other trench systems, even if no past evidence of such events exists. Therefore, it is imperative that strain accumulation be monitored using a space geodetic technique to assess earthquake potential.

  18. Quantifying slip balance in the earthquake cycle: Coseismic slip model constrained by interseismic coupling

    KAUST Repository

    Wang, Lifeng

    2015-11-11

    The long-term slip on faults has to follow, on average, the plate motion, while slip deficit is accumulated over shorter time scales (e.g., between the large earthquakes). Accumulated slip deficits eventually have to be released by earthquakes and aseismic processes. In this study, we propose a new inversion approach for coseismic slip, taking interseismic slip deficit as prior information. We assume a linear correlation between coseismic slip and interseismic slip deficit, and invert for the coefficients that link the coseismic displacements to the required strain accumulation time and seismic release level of the earthquake. We apply our approach to the 2011 M9 Tohoku-Oki earthquake and the 2004 M6 Parkfield earthquake. Under the assumption that the largest slip almost fully releases the local strain (as indicated by borehole measurements, Lin et al., 2013), our results suggest that the strain accumulated along the Tohoku-Oki earthquake segment has been almost fully released during the 2011 M9 rupture. The remaining slip deficit can be attributed to the postseismic processes. Similar conclusions can be drawn for the 2004 M6 Parkfield earthquake. We also estimate the required time of strain accumulation for the 2004 M6 Parkfield earthquake to be ~25 years (confidence interval of [17, 43] years), consistent with the observed average recurrence time of ~22 years for M6 earthquakes in Parkfield. For the Tohoku-Oki earthquake, we estimate the recurrence time of~500-700 years. This new inversion approach for evaluating slip balance can be generally applied to any earthquake for which dense geodetic measurements are available.

  19. Chicken domestication changes expression of stress-related genes in brain, pituitary and adrenals

    Directory of Open Access Journals (Sweden)

    Pia Løtvedt

    2017-12-01

    Full Text Available Domesticated species have an attenuated behavioral and physiological stress response compared to their wild counterparts, but the genetic mechanisms underlying this change are not fully understood. We investigated gene expression of a panel of stress response-related genes in five tissues known for their involvement in the stress response: hippocampus, hypothalamus, pituitary, adrenal glands and liver of domesticated White Leghorn chickens and compared it with the wild ancestor of all domesticated breeds, the Red Junglefowl. Gene expression was measured both at baseline and after 45 min of restraint stress. Most of the changes in gene expression related to stress were similar to mammals, with an upregulation of genes such as FKBP5, C-FOS and EGR1 in hippocampus and hypothalamus and StAR, MC2R and TH in adrenal glands. We also found a decrease in the expression of CRHR1 in the pituitary of chickens after stress, which could be involved in negative feedback regulation of the stress response. Furthermore, we observed a downregulation of EGR1 and C-FOS in the pituitary following stress, which could be a potential link between stress and its effects on reproduction and growth in chickens.We also found changes in the expression of important genes between breeds such as GR in the hypothalamus, POMC and PC1 in the pituitary and CYP11A1 and HSD3B2 in the adrenal glands. These results suggest that the domesticated White Leghorn may have a higher capacity for negative feedback of the HPA axis, a lower capacity for synthesis of ACTH in the pituitary and a reduced synthesis rate of corticosterone in the adrenal glands compared to Red Junglefowl. All of these findings could explain the attenuated stress response in the domesticated birds. Keywords: Animal domestication, Stress response, HPA axis, Glucocorticoid receptor, Gene expression, Chicken

  20. Comparison of Estimates of Coseismic Displacement From the 2003 M 6.5 San Simeon Earthquake

    Science.gov (United States)

    King, N. E.

    2004-12-01

    Estimation of crustal deformation requires trading off solution precision and latency. Between large earthquakes the relative station velocities of southern California stations are small, on the order of a few mm/yr, and the deformation across the entire region is about 50 mm/yr. Estimation of such interseismic crustal deformation rates requires the use of the best GPS software, precise orbits which are available with a delay of one week, and reference frame stabilization; such processing strategies yield precisions of about 1 to 2 mm in the horizontal and about 3 to 4 mm in the vertical. Coseismic offsets for large earthquakes, however, are tens or hundred of mm, or more, for stations near the epicenter, and it is possible to sacrifice a few mm of precision to obtain a rapid solution. Such rapid estimates are useful to both scientists and emergency response agencies. The M 6.5 San Simeon, California, earthquake occurred on December 22, 2003, at the northern edge of the Southern California Integration GPS Network (SCIGN). The nearest station (CRBT) was 34 km from the epicenter, and its horizontal displacement was about 43 mm to the south and 35 mm to the west. The U.S. Geological Survey (USGS), the Scripps Institution of Oceanography, the Massachusetts Institute of Technology (MIT), and the Jet Propulsion Laboratory (JPL) estimated the coseismic displacements for the SCIGN stations. These groups used different software, stations, orbits, processing strategies and parameters. After obtaining rapid solutions, the groups re-analyzed the data using better orbits and more time-consuming processing strategies. Mean differences between pairs of solutions range from sub-mm to 4.5, 6.1, and 8.3 mm in the north, east, and vertical, respectively. Estimates of the coseismic displacement of station CRBT differed by up to 7.3, 5.2, and 10.1 mm in north, east, and vertical components, respectively. Otherwise identical processing with the IGS ultrarapid and precise orbits yielded

  1. Effects of city expansion on heat stress under climate change conditions.

    Directory of Open Access Journals (Sweden)

    Daniel Argüeso

    Full Text Available We examine the joint contribution of urban expansion and climate change on heat stress over the Sydney region. A Regional Climate Model was used to downscale present (1990-2009 and future (2040-2059 simulations from a Global Climate Model. The effects of urban surfaces on local temperature and vapor pressure were included. The role of urban expansion in modulating the climate change signal at local scales was investigated using a human heat-stress index combining temperature and vapor pressure. Urban expansion and climate change leads to increased risk of heat-stress conditions in the Sydney region, with substantially more frequent adverse conditions in urban areas. Impacts are particularly obvious in extreme values; daytime heat-stress impacts are more noticeable in the higher percentiles than in the mean values and the impact at night is more obvious in the lower percentiles than in the mean. Urban expansion enhances heat-stress increases due to climate change at night, but partly compensates its effects during the day. These differences are due to a stronger contribution from vapor pressure deficit during the day and from temperature increases during the night induced by urban surfaces. Our results highlight the inappropriateness of assessing human comfort determined using temperature changes alone and point to the likelihood that impacts of climate change assessed using models that lack urban surfaces probably underestimate future changes in terms of human comfort.

  2. Effects of City Expansion on Heat Stress under Climate Change Conditions

    Science.gov (United States)

    Argüeso, Daniel; Evans, Jason P.; Pitman, Andrew J.; Di Luca, Alejandro

    2015-01-01

    We examine the joint contribution of urban expansion and climate change on heat stress over the Sydney region. A Regional Climate Model was used to downscale present (1990–2009) and future (2040–2059) simulations from a Global Climate Model. The effects of urban surfaces on local temperature and vapor pressure were included. The role of urban expansion in modulating the climate change signal at local scales was investigated using a human heat-stress index combining temperature and vapor pressure. Urban expansion and climate change leads to increased risk of heat-stress conditions in the Sydney region, with substantially more frequent adverse conditions in urban areas. Impacts are particularly obvious in extreme values; daytime heat-stress impacts are more noticeable in the higher percentiles than in the mean values and the impact at night is more obvious in the lower percentiles than in the mean. Urban expansion enhances heat-stress increases due to climate change at night, but partly compensates its effects during the day. These differences are due to a stronger contribution from vapor pressure deficit during the day and from temperature increases during the night induced by urban surfaces. Our results highlight the inappropriateness of assessing human comfort determined using temperature changes alone and point to the likelihood that impacts of climate change assessed using models that lack urban surfaces probably underestimate future changes in terms of human comfort. PMID:25668390

  3. Stress and serial adult metamorphosis: Multiple roles for the stress axis in socially regulated sex change

    Directory of Open Access Journals (Sweden)

    Tessa K Solomon-Lane

    2013-11-01

    Full Text Available Socially regulated sex change in teleost fishes is a striking example of social status information regulating biological function in the service of reproductive success. The establishment of social dominance in sex changing species is translated into a cascade of changes in behavior, physiology, neuroendocrine function, and morphology that transforms a female into a male, or vice versa. The hypothalamic-pituitary-interrenal axis (HPI, homologous to HP-adrenal axis in mammals and birds has been hypothesized to play a mechanistic role linking status to sex change. The HPA/I axis responds to environmental stressors by integrating relevant external and internal cues and coordinating biological responses including changes in behavior, energetics, physiology, and morphology (i.e., metamorphosis. Through actions of both corticotropin-releasing factor and glucocorticoids (GCs, the HPA/I axis has been implicated in processes central to sex change, including the regulation of agonistic behavior, social status, energetic investment, and life history transitions. In this paper, we review the hypothesized roles of the HPA/I axis in the regulation of sex change and how those hypotheses have been tested to date. We include original data on sex change in the bluebanded goby (Lythyrpnus dalli, a highly social fish capable of bidirectional sex change. We then propose a model for HPA/I involvement in sex change and discuss how these ideas might be tested in the future. Understanding the regulation of sex change has the potential to elucidate evolutionarily conserved mechanisms responsible for translating pertinent information about the environment into coordinated biological changes along multiple body axes.

  4. The association between changes in pressure pain sensitivity and changes in cardiovascular physiological factors associated with persistent stress

    DEFF Research Database (Denmark)

    Ballegaard, Søren; Petersen, Pernille B.; Harboe, Gitte S.

    2014-01-01

    rate (HR) and work of the heart measured as Pressure-Rate-Product (PRP); Secondary endpoints: Other features of the metabolic syndrome. Results. PPS decreased and changes in PPS after the intervention period were significantly associated with HR, PRP, body mass index (BMI) and visceral fat index (all......Abstract Objectives. To evaluate the possible association between pressure pain sensitivity of the chest bone (PPS) and cardiovascular physiological factors related to persistent stress in connection with a three-month PPS-guided stress-reducing experimental intervention programme. Methods. Forty......-two office workers with an elevated PPS (≥ 60 arbitrary units) as a sign of increased level of persistent stress, completed a single-blinded cluster randomized controlled trial. The active treatment was a PPS (self-measurement)-guided stress management programme. Primary endpoints: Blood pressure (BP), heart...

  5. Coseismic Contortion and Coupled Nocturnal Ionospheric Perturbations During 2016 Kaikoura, Mw 7.8 New Zealand Earthquake

    Science.gov (United States)

    Bagiya, Mala S.; Sunil, P. S.; Sunil, A. S.; Ramesh, D. S.

    2018-02-01

    The oblique-thrust Kaikoura earthquake of Mw 7.8 that struck New Zealand on 13 November 2016 at 11:02:56 UTC (local time at 00:02:56 a.m. on 14 November 2016) was one of the most geometrically and tectonically complex earthquakes recorded onshore in modern seismology. The event ruptured in the region of multisegmented faults and propagated unilaterally northeastward for more than 170 km from the epicenter. The GPS derived coseismic surface displacements reveal a larger widespread horizontal and vertical coseismic surface offsets of 6 m and 2 m, respectively, with two distinct tectonic thrust zones. We study the characteristics of coseismic ionospheric perturbations based on tectonic and nontectonic forcing mechanisms and demonstrate that these perturbations are linked to two distinct surface thrust zones with rotating horizontal reinforcement trending the rupture, rather than merely to the displacements oriented along the rupture propagation direction.

  6. Behavioral changes over time in post-traumatic stress disorder: Insights from a rat model of single prolonged stress.

    Science.gov (United States)

    Wu, Zhuoyun; Tian, Qing; Li, Feng; Gao, Junqiao; Liu, Yan; Mao, Meng; Liu, Jing; Wang, Shuyan; Li, Genmao; Ge, Dongyu; Mao, Yingqiu; Zhang, Wei; Liu, Zhaolan; Song, Yuehan

    2016-03-01

    Post-traumatic stress disorder (PTSD) is manifested as a persistent mental and emotional condition after potentially life-threatening events. Different animal models of PTSD have been developed for neuro-pathophysiology and pharmacological evaluations. A single prolonged stress (SPS) induced animal model has demonstrated to result in specific neuro-endocrinological dysregulation, and behavior abnormalities observed in PTSD. However, animal studies of PTSD have mostly been performed at one time point after SPS exposure. To better understand the development of PTSD-like behaviors in the SPS animal model, and to identify an optimal period of study, we examined depressive behavior, anxiety-like behavior, physical activity and body weight in SPS model rats for two weeks. Our results confirmed the SPS-induced PTSD-like behavior and physical activity observed in previous studies, and indicated that the most pronounced symptomatic behavior changes were observed on day 1 and 7 after SPS exposure, which may involve stress-induced acute hormone changes and unclear secondary neurobiological changes, respectively. These results provide a solid basis for further investigation into the neuro-pathophysiology of or neuropharmacology for PTSD using the SPS rat model. However, for chronic (pharmacological) studies longer than 7 days, a prolonged PTSD animal model should be developed, perhaps using enhanced stimulation. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Stress-induced changes in skin barrier function in healthy women.

    Science.gov (United States)

    Altemus, M; Rao, B; Dhabhar, F S; Ding, W; Granstein, R D

    2001-08-01

    Despite clear exacerbation of several skin disorders by stress, the effect of psychologic or exertional stress on human skin has not been well studied. We investigated the effect of three different stressors, psychologic interview stress, sleep deprivation, and exercise, on several dermatologic measures: transepidermal water loss, recovery of skin barrier function after tape stripping, and stratum corneum water content (skin conductance). We simultaneously measured the effects of stress on plasma levels of several stress-response hormones and cytokines, natural killer cell activity, and absolute numbers of peripheral blood leukocytes. Twenty-five women participated in a laboratory psychologic interview stress, 11 women participated in one night of sleep deprivation, and 10 women participated in a 3 d exercise protocol. The interview stress caused a delay in the recovery of skin barrier function, as well as increases in plasma cortisol, norepinephrine, interleukin-1beta and interleukin-10, tumor necrosis factor-alpha, and an increase in circulating natural killer cell activity and natural killer cell number. Sleep deprivation also decreased skin barrier function recovery and increased plasma interleukin-1beta, tumor necrosis factor-alpha, and natural killer cell activity. The exercise stress did not affect skin barrier function recovery, but caused an increase in natural killer cell activity and circulating numbers of both cytolytic T lymphocytes and helper T cells. In addition, cytokine responses to the interview stress were inversely correlated with changes in barrier function recovery. These results suggest that acute psychosocial and sleep deprivation stress disrupts skin barrier function homeostasis in women, and that this disruption may be related to stress-induced changes in cytokine secretion.

  8. Treadmill exercise does not change gene expression of adrenal catecholamine biosynthetic enzymes in chronically stressed rats

    Directory of Open Access Journals (Sweden)

    LJUBICA GAVRILOVIC

    2013-09-01

    Full Text Available ABSTRACT Chronic isolation of adult animals represents a form of psychological stress that produces sympatho-adrenomedullar activation. Exercise training acts as an important modulator of sympatho-adrenomedullary system. This study aimed to investigate physical exercise-related changes in gene expression of catecholamine biosynthetic enzymes (tyrosine hydroxylase, dopamine-ß-hydroxylase and phenylethanolamine N-methyltransferase and cyclic adenosine monophosphate response element-binding (CREB in the adrenal medulla, concentrations of catecholamines and corticosterone (CORT in the plasma and the weight of adrenal glands of chronically psychosocially stressed adult rats exposed daily to 20 min treadmill running for 12 weeks. Also, we examined how additional acute immobilization stress changes the mentioned parameters. Treadmill running did not result in modulation of gene expression of catecholamine synthesizing enzymes and it decreased the level of CREB mRNA in the adrenal medulla of chronically psychosocially stressed adult rats. The potentially negative physiological adaptations after treadmill running were recorded as increased concentrations of catecholamines and decreased morning CORT concentration in the plasma, as well as the adrenal gland hypertrophy of chronically psychosocially stressed rats. The additional acute immobilization stress increases gene expression of catecholamine biosynthetic enzymes in the adrenal medulla, as well as catecholamines and CORT levels in the plasma. Treadmill exercise does not change the activity of sympatho-adrenomedullary system of chronically psychosocially stressed rats.

  9. Psychological stress exposure to aged mice causes abnormal feeding patterns with changes in the bout number.

    Science.gov (United States)

    Yamada, Chihiro; Mogami, Sachiko; Hattori, Tomohisa

    2017-11-09

    Stress responses are affected by aging. However, studies on stress-related changes in feeding patterns with aging subject are minimal. We investigated feeding patterns induced by two psychological stress models, revealing characteristics of stress-induced feeding patterns as "meal" and "bout" (defined as the minimum feeding behavior parameters) in aged mice. Feeding behaviors of C57BL/6J mice were monitored for 24 h by an automatic monitoring device. Novelty stress reduced the meal amount over the 24 h in both young and aged mice, but as a result of a time course study it was persistent in aged mice. In addition, the decreased bout number was more pronounced in aged mice than in young mice. The 24-h meal and bout parameters did not change in either the young or aged mice following water avoidance stress (WAS). However, the meal amount and bout number increased in aged mice for 0-6 h after WAS exposure but remained unchanged in young mice. Our findings suggest that changes in bout number may lead to abnormal stress-related feeding patterns and may be one tool for evaluating eating abnormality in aged mice.

  10. Water deficit stress-induced changes in carbon and nitrogen partitioning in Chenopodium quinoa Willd.

    Science.gov (United States)

    Bascuñán-Godoy, Luisa; Reguera, Maria; Abdel-Tawab, Yasser M; Blumwald, Eduardo

    2016-03-01

    Water deficit stress followed by re-watering during grain filling resulted in the induction of the ornithine pathway and in changes in Quinoa grain quality. The genetic diversity of Chenopodium quinoa Willd. (Quinoa) is accompanied by an outstanding environmental adaptability and high nutritional properties of the grains. However, little is known about the biochemical and physiological mechanisms associated with the abiotic stress tolerance of Quinoa. Here, we characterized carbon and nitrogen metabolic changes in Quinoa leaves and grains in response to water deficit stress analyzing their impact on the grain quality of two lowland ecotypes (Faro and BO78). Differences in the stress recovery response were found between genotypes including changes in the activity of nitrogen assimilation-associated enzymes that resulted in differences in grain quality. Both genotypes showed a common strategy to overcome water stress including the stress-induced synthesis of reactive oxygen species scavengers and osmolytes. Particularly, water deficit stress induced the stimulation of the ornithine and raffinose pathways. Our results would suggest that the regulation of C- and N partitioning in Quinoa during grain filling could be used for the improvement of the grain quality without altering grain yields.

  11. Early Stress Evokes Age-Dependent Biphasic Changes in Hippocampal Neurogenesis, Bdnf Expression, and Cognition

    Science.gov (United States)

    Suri, Deepika; Veenit, Vandana; Sarkar, Ambalika; Thiagarajan, Devi; Kumar, Arvind; Nestler, Eric J.; Galande, Sanjeev; Vaidya, Vidita A.

    2014-01-01

    Background Adult-onset stressors exert opposing effects on hippocampal neurogenesis and cognition, with enhancement observed following mild stress and dysfunction following severe chronic stress. While early life stress evokes persistent changes in anxiety, it is unknown whether early stress differentially regulates hippocampal neurogenesis, trophic factor expression, and cognition across the life span. Methods Hippocampal-dependent cognitive behavior, neurogenesis, and epigenetic regulation of brain-derived neurotrophic factor (Bdnf) expression was examined at distinct time points across the life span in rats subjected to the early stress of maternal separation (ES) and control groups. We also examined the influence of chronic antidepressant treatment on the neurogenic, neurotrophic, and cognitive changes in middle-aged ES animals. Results Animals subjected to early stress of maternal separation examined during postnatal life and young adulthood exhibited enhanced hippocampal neurogenesis, decreased repressive histone methylation at the Bdnf IV promoter along with enhanced Bdnf levels, and improved performance on the stress-associated Morris water maze. Strikingly, opposing changes in hippocampal neurogenesis and epigenetic regulation of Bdnf IV expression, concomitant with impairments on hippocampal-dependent cognitive tasks, were observed in middle-aged ES animals. Chronic antidepressant treatment with amitriptyline attenuated the maladaptive neurogenic, epigenetic, transcriptional, and cognitive effects in middle-aged ES animals. Conclusions Our study provides novel insights into the short- and long-term consequences of ES, demonstrating both biphasic and unique, age-dependent changes at the molecular, epigenetic, neurogenic, and behavioral levels. These results indicate that early stress may transiently endow animals with a potential adaptive advantage in stressful environments but across a life span is associated with long-term deleterious effects. PMID

  12. Simulation of Co-Seismic Secondary Fracture Displacements: Effects of Rupture Propagation, Fault Properties and Rupture Arrest

    Science.gov (United States)

    Fälth, B.; Lund, B.; Hökmark, H.

    2016-12-01

    Using dynamic earthquake simulations we calculate co-seismic secondary fracture shear displacements induced by dynamic and static stress variations. Our results are aimed at improved safety assessment of geological nuclear waste repositories. We use a model with a pre-defined earthquake fault plane (primary fault) surrounded by smaller discontinuities (target fractures) representing faults on which shear movements may be induced by the earthquake. Trying two different methods for propagating the earthquake rupture, we study how the propagation mechanism impacts the amount of target fracture shear displacement. In the first method, which we have adopted in previous studies, we apply a time-weakening algorithm and a pre-defined, constant, rupture velocity. In the second method, we apply the slip-weakening law, i.e. the rupture propagates spontaneously and the strength breakdown takes place over a pre-defined slip-weakening distance. To have relevant cases at hand for our method comparison, we perform several simulations that cover ranges of rupture velocity, strength breakdown time and slip-weakening distance. Furthermore, by applying spatial fault shear strength variations (following both regular sinusoidal strength distributions and self-similar fractal distributions) we study how inhomogeneous fault properties may influence the results. Finally, motivated by observations made in previous studies of extensive secondary effects along sharp rupture area tips that generate exaggerated slip gradients, we examine how more realistic slip gradients may influence the results. Our preliminary results indicate that (i) for similar rupture velocities, the two rupture propagation methods yield secondary displacements at short fault-fracture distances that differ 30%, at most, (ii) fault inhomogeneities may increase the maximum displacements by about 30%, and (iii) the displacements close to the rupture area tip are reduced by more than 35% when more realistic slip gradients

  13. Psychological stress-induced changes in salivary alpha-amylase and adrenergic activity.

    Science.gov (United States)

    Kang, Younhee

    2010-12-01

    The aim of the study was to examine the relationships among salivary alpha-amylase, plasma catecholamines, blood pressure, and heart rate during psychological stress. This study used a pretest-post-test experimental design with a control group, using repeated measures. A total of 33 participants was divided into the experimental group (n = 16) that underwent a college academic final test as the psychological stress and the control group (n = 17) that did not undergo the test. The levels of salivary alpha-amylase and plasma catecholamines, blood pressure, and heart rate were measured seven times and stress and anxiety were measured once and twice, respectively, as subjective stress markers. Significant changes in the level of salivary alpha-amylase were found in response to psychological stress. However, the correlations of salivary alpha-amylase with the plasma catecholamines, blood pressure, and heart rate were only partially found to be statistically significant. In conclusion, it was shown that salivary alpha-amylase was sensitive to stress throughout this study. Thus, salivary alpha-amylase may be used to measure stress uninvasively in both clinical settings and nursing research where the effects of stress might be scrutinized. Furthermore, the mechanisms of illnesses that are induced by stress could be explored. © 2010 Blackwell Publishing Asia Pty Ltd.

  14. Will open ocean oxygen stress intensify under climate change?

    OpenAIRE

    A. Gnanadesikan; J. P. Dunne; J. John

    2011-01-01

    Global warming is expected to reduce oxygen solubility and vertical exchange in the ocean, changes which would be expected to result in an increase in the volume of hypoxic waters. A simulation made with a full earth system model with dynamical atmosphere, ocean, sea ice and biogeochemical cycling shows that this holds true if the condition for hypoxia is set relatively high. However, the volume of the most hypoxic waters does not increase under global warming, as these waters actually become...

  15. Life Changes and Social Support: Stress and Its Moderators.

    Science.gov (United States)

    1981-04-17

    dissatisfaction and a lowered sense of emotional wellbeing . Petrich and Holmes (1977) have suggested that patients should be advised to pace the...his or her developmental state. Life changes are important milestones in life span development (Brim & Ryff , 1980). An inspection of both the SRE and...0. G., Jr., & Ryff , C. D. On the properties of life events. In P. B. Baltes & 0. G. Brim, Jr. (Eds.), Life-span development and behavior, Vol. 3. New

  16. Oxidative Stress and Pulmonary Changes in Experimental Liver Cirrhosis

    Directory of Open Access Journals (Sweden)

    Renata Salatti Ferrari

    2012-01-01

    Full Text Available The use of carbon tetrachloride (CCl4 in rats is an experimental model of hepatic tissue damage; which leads to fibrosis, and at the long term, cirrhosis. Cirrhosis is the consequence of progressive continued liver damage, it may be reversible when the damaging noxae have been withdrawn. The aim of this study is to evaluate the changes caused by cirrhosis in lung and liver, through the experimental model of intraperitoneal CCI4 administration. We used 18 male Wistar rats divided into three groups: control (CO and two groups divided by the time of cirrhosis induction by CCI4: G1 (11 weeks, G2 (16 weeks. We found significant increase of transaminase levels and lipid peroxidation (TBARS in liver and lung tissue and also increased antioxidant enzymes SOD and CAT, as well as the expression of TNF-α and IL-1β in the lung of cirrhotic animals. We observed changes in gas exchange in both cirrhotic groups. We can conclude that our model reproduces a model of liver cirrhosis, which causes alterations in the pulmonary system that leads to changes in gas exchange and size of pulmonary vessels.

  17. Change of Rin1 and Stathmin in the Animal Model of Traumatic Stresses

    Directory of Open Access Journals (Sweden)

    Yuxiu Shi

    2017-04-01

    Full Text Available The molecular mechanism of fear memory is poorly understood. Therefore, the pathogenesis of post-traumatic stress disorder (PTSD, whose symptom presentation can enhance fear memory, remains largely unclear. Recent studies with knockout animals have reported that Rin1 and stathmin regulate fear memory. Rin1 inhibits acquisition and promotes memory extinction, whereas stathmin regulates innate and basal fear. The aim of our study was to examine changes in the expression of Rin1 and stathmin in different animal models of stress, particluarly traumatic stress. We used three animal traumatic stresses: single prolonged stress (SPS, which is a rodent model of PTSD, an immobilization-stress (IM and a Loud sound stress (LSS, to examine the change and uniqueness in Rin1/stathmin expression. Behavioral tests of SPS rats demonstrated increased anxiety and contextual fear-conditioning. They showed decreased long-term potentiation (LTP, as well as decreased stathmin and increased Rin1 expression in the hippocampus and the amygdala. Expression of the stathmin effector, tubulin, and downstream molecules Rin1, Rab5, and Abl, appeared to increase. Rin1 and EphA4 were endogenously coexpressed in primary neurons after SPS stimulation. IM rats exhibited increased anxiety behavior and enhanced fear-conditioning to contextual and auditory stimuli. Similar changes in expression of Rin1/stathmin were observed in IM rats whereas no changes were observed in rats exposed to a loud sound. These data suggest that changes in expression of the Rin1 and stathmin genes may be involved in rodents with SPS and IM stresses, which provide valuable insight into fear memories under abnormal conditions, particularly in PTSD.

  18. Dispositional optimism and stress-induced changes in immunity and negative mood.

    Science.gov (United States)

    Brydon, Lena; Walker, Cicely; Wawrzyniak, Andrew J; Chart, Henrik; Steptoe, Andrew

    2009-08-01

    Evidence suggests that optimism may be protective for health during times of heightened stress, yet the mechanisms involved remain unclear. In a double-blind placebo-controlled study, we recently showed that acute psychological stress and an immune stimulus (Typhim-Vi typhoid vaccine) synergistically increased serum levels of interleukin-6 (IL-6) and negative mood in 59 healthy men. Here we carried out further analysis of this sample to investigate the relationship between dispositional optimism and stress-induced changes in immunity and mood. Volunteers were randomly assigned to one of four experimental conditions in which they received either typhoid vaccine or saline placebo, and then rested or completed two mental tasks. In the stress condition, optimism was inversely related to IL-6 responses, independent of age, BMI, trait CES-D depression and baseline IL-6. This relationship was present across both stress groups (combining vaccine and placebo) and was not present in the vaccine/stress group alone, suggesting that optimism protects against the inflammatory effects of stress rather than vaccine per se. Typhoid vaccine induced a significant increase in participants' circulating anti-Vi antibody levels. Stress had no effect on antibody responses overall. However, in the vaccine/stress group, there was a strong positive association between optimism and antibody responses, indicating that stress accentuated the antibody response to vaccine in optimists. Across the complete sample, more optimistic individuals had smaller increases in negative mood and less reduction in mental vigour. Together these findings suggest that optimism may promote health, by counteracting stress-induced increases in inflammation and boosting the adjuvant effects of acute stress.

  19. Instantaneous separation between coseismic deformation and tsunami height from pressure gauge records based on the data assimilation method

    Science.gov (United States)

    Maeda, T.

    2016-12-01

    Data assimilation method provides a successive estimation of tsunami wavefield rather than the seismic source fault slip or initial sea height. This method well assimilates the incoming tsunami wavefield without relying on seismic wave observations, which is suitable for real-time monitoring and forecasting. The ocean bottom pressure gauge records, however, contain an offset due to coseismic deformation beneath the sensor. This characteristics of observation caused a difficulty on using pressure records of tsunami caused inside of the tsunametor network. In the original data assimilation, the pressure gauge data are directly assimilated to the shallow water equation. The tsunami height at one-time step away is forecasted by numerical simulation, and the tsunami height at the station location is compared with the observed data. The residual between the forecast and the observation is used to assimilate the surrounding tsunami wavefield by the optimum interpolation method. Since the data assimilation uses the tsunami height estimated by pressure gauge (hereinafter referred to as pressure height), the assimilated tsunami wavefield should be contaminated by the coseismic deformation. In the new proposed method, we estimate the coseismic deformation at the same time. The tsunami height, given by the sum of the coseismic deformation and pressure height, is assimilated by the optimum interpolation method. It is shown that the coseismic deformation can be approximately­­ expressed as a solution of Laplace equation having pressure height as the inhomogeneous term. This Laplace equation is numerically solved for estimation of coseismic deformation term at the present time with using pressure height estimated by the data assimilation. Numerical experiments for this method was performed. First the synthetic tsunami was simulated for obtaining hypothetical observation data at stations, and then they are used for data assimilation at every one second. By applying the proposed

  20. A database of the coseismic effects following the 30 October 2016 Norcia earthquake in Central Italy.

    Science.gov (United States)

    Villani, Fabio; Civico, Riccardo; Pucci, Stefano; Pizzimenti, Luca; Nappi, Rosa; De Martini, Paolo Marco

    2018-03-27

    We provide a database of the coseismic geological surface effects following the Mw 6.5 Norcia earthquake that hit central Italy on 30 October 2016. This was one of the strongest seismic events to occur in Europe in the past thirty years, causing complex surface ruptures over an area of >400 km 2 . The database originated from the collaboration of several European teams (Open EMERGEO Working Group; about 130 researchers) coordinated by the Istituto Nazionale di Geofisica e Vulcanologia. The observations were collected by performing detailed field surveys in the epicentral region in order to describe the geometry and kinematics of surface faulting, and subsequently of landslides and other secondary coseismic effects. The resulting database consists of homogeneous georeferenced records identifying 7323 observation points, each of which contains 18 numeric and string fields of relevant information. This database will impact future earthquake studies focused on modelling of the seismic processes in active extensional settings, updating probabilistic estimates of slip distribution, and assessing the hazard of surface faulting.

  1. Coseismic slip distribution of the February 27, 2010 Mw 8.9 Maule, Chile earthquake

    Science.gov (United States)

    Pollitz, Fred F.; Brooks, Ben; Tong, Xiaopeng; Bevis, Michael G.; Foster, James H.; Burgmann, Roland

    2011-01-01

    [1] Static offsets produced by the February 27, 2010 Mw = 8.8 Maule, Chile earthquake as measured by GPS and InSAR constrain coseismic slip along a section of the Andean megathrust of dimensions 650 km (in length) × 180 km (in width). GPS data have been collected from both campaign and continuous sites sampling both the near-field and far field. ALOS/PALSAR data from several ascending and descending tracks constrain the near-field crustal deformation. Inversions of the geodetic data for distributed slip on the megathrust reveal a pronounced slip maximum of order 15 m at ∼15–25 km depth on the megathrust offshore Lloca, indicating that seismic slip was greatest north of the epicenter of the bilaterally propagating rupture. A secondary slip maximum appears at depth ∼25 km on the megathrust just west of Concepción. Coseismic slip is negligible below 35 km depth. Estimates of the seismic moment based on different datasets and modeling approaches vary from 1.8 to 2.6 × 1022 N m. Our study is the first to model the static displacement field using a layered spherical Earth model, allowing us to incorporate both near-field and far-field static displacements in a consistent manner. The obtained seismic moment of 1.97 × 1022 N m, corresponding to a moment magnitude of 8.8, is similar to that obtained by previous seismic and geodetic inversions.

  2. Southern Perú coseismic subsidence: 23 June 2001 8.4-Mw earthquake

    Directory of Open Access Journals (Sweden)

    L. Ocola

    2008-01-01

    Full Text Available The 23-June-2001 8.4-Mw magnitude earthquake partially filled the 1868-seismic-gap in southern Perú. This earthquake produced a thrust faulting dislocation with a rupture that started at about ~200 km SE from the 1996's Nazca earthquake epicenter, and stopped near Ilo, at about 300 km from the epicenter, near a positive gravity anomaly offshore Ilo. The 23-June-2001-earthquake dislocation zone is under the Arequipa sedimentary Basin. Pre- and post-seismic GPS measurements at Camaná and Ilo at SIRGAS-GPS points (SIRGAS: Sistema de Referencia Geocéntrico para América del Sur and the average sea level pre- and post-seismic event at Mollendo tide gauge provide evidence of a regional subsidence of southern Perú, with 84 cm at Camaná, 16 cm at Ilo, and 15 cm at Mollendo. Field surveys post earthquake document significant subsidence in Camaná resort beaches. Results of a simple dislocation modelling of 23-June-2001 earthquake agree reasonably well with the observed data. However, the coseismic subsidence of southern Perú is at variance with the regional uplift of southern Perú based on Neotectonic studies. This fact, suggests that, in recent geological times, the magnitude of the secular uplift due to tectonic plate converge has been larger than the coseismic deformation recovery.

  3. Extracting coseismic deformation of the 1997 Mani earthquake with differential interferometric SAR

    Science.gov (United States)

    Shan, Xin-Jian; Ma, Jin; Wang, Chang-Lin; Liu, Jia-Hang

    2002-07-01

    Interferometry Synthetic Aperture Radar (InSAR) is a kind of new earth observation technique and great development has been made in the recent ten years. In the paper, InSAR and Differential Interferometric Synthetic Aperture Radar (D-InSAR) are generally introduced; then the factors affecting the data accuracy are primarily discussed. The 1997 Mani earthquake was selected as an example to obtain the coseismic deformation field with the three-pass differential interferometric processing method. The results show that the coseismic deformation field is about 200 km in length and 115 km in width. The interferometric fringes spread in the area with the NEE-trending seismogenic fault — the Margaichaka fault as the center and they are primarily parallel to the fault. Based on the analysis to the interferogram, the seismogenic fault can be divided into three segments. The whole fault is about 110 km and the length of each segment from the west to the east is about 23 km, 60 km and 26 km. The maximum uplifting displacement in the side-looking direction near the seismic center is about 162.4 cm, the maximum subsiding displacement in the side-looking direction in the western part of the fault is about 103.6 cm, and the maximum horizontal surface dislocation near the seismic center is about 7.96 m.

  4. Cognitive Change Predicts Symptom Reduction with Cognitive Therapy for Posttraumatic Stress Disorder

    Science.gov (United States)

    Kleim, Birgit; Grey, Nick; Wild, Jennifer; Nussbeck, Fridtjof W.; Stott, Richard; Hackmann, Ann; Clark, David M.; Ehlers, Anke

    2013-01-01

    Objective: There is a growing body of evidence for the effectiveness of trauma-focused cognitive behavior therapy (TF-CBT) for posttraumatic stress disorder (PTSD), but few studies to date have investigated the mechanisms by which TF-CBT leads to therapeutic change. Models of PTSD suggest that a core treatment mechanism is the change in…

  5. Genome-wide association of changes in swine feeding behaviour due to heat stress

    Science.gov (United States)

    Background: Heat stress has a negative impact on pork production, particularly during the grow-finish phase. As temperature increases, feeding behaviour changes in order for pigs to decrease heat production. The objective of this study was to identify genetic markers associated with changes in feedi...

  6. Stress-Induced Crystallization of Ge-Doped Sb Phase-Change Thin Films

    NARCIS (Netherlands)

    Eising, Gert; Pauza, Andrew; Kooi, Bart J.

    The large effects of moderate stresses on the crystal growth rate in Ge-doped Sb phase-change thin films are demonstrated using direct optical imaging. For Ge6Sb94 and Ge7Sb93 phase-change films, a large increase in crystallization temperature is found when using a polycarbonate substrate instead of

  7. Marrow changes in anorexia nervosa masking the presence of stress fractures on MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Tins, B.; Cassar-Pullicino, V. [Department of Radiology, RJAH Orthopaedic and District Hospital, Oswestry (United Kingdom)

    2006-11-15

    Patients with anorexia nervosa (AN) usually have abnormal bone and bone marrow metabolism resulting in osteopenia and serous bone marrow change. There is an increased risk of stress/insufficiency fractures and these can be the first presentation of AN. This case report describes a patient with previously undiagnosed AN who presented with foot pain. The serous bone marrow changes of AN were found to mask the MR imaging features of stress fractures, as both had low T1w and high T2w and STIR signal intensities. Contrast enhancement was not helpful but actually masked fractures. Scintigraphy was helpful. The radiologist might be the first clinician to raise the possibility of AN and should be aware of the difficulties in diagnosing stress fractures in bones with underlying serous bone marrow change. In this severe case of AN even the heel fat pad and the fat pad in Kager's triangle had undergone serous change.

  8. Marrow changes in anorexia nervosa masking the presence of stress fractures on MR imaging

    International Nuclear Information System (INIS)

    Tins, B.; Cassar-Pullicino, V.

    2006-01-01

    Patients with anorexia nervosa (AN) usually have abnormal bone and bone marrow metabolism resulting in osteopenia and serous bone marrow change. There is an increased risk of stress/insufficiency fractures and these can be the first presentation of AN. This case report describes a patient with previously undiagnosed AN who presented with foot pain. The serous bone marrow changes of AN were found to mask the MR imaging features of stress fractures, as both had low T1w and high T2w and STIR signal intensities. Contrast enhancement was not helpful but actually masked fractures. Scintigraphy was helpful. The radiologist might be the first clinician to raise the possibility of AN and should be aware of the difficulties in diagnosing stress fractures in bones with underlying serous bone marrow change. In this severe case of AN even the heel fat pad and the fat pad in Kager's triangle had undergone serous change

  9. The distribution of wall shear stress downstream of a change in roughness

    International Nuclear Information System (INIS)

    Loureiro, J.B.R.; Sousa, F.B.C.C.; Zotin, J.L.Z.; Silva Freire, A.P.

    2010-01-01

    In the present work, six different experimental techniques are used to characterize the non-equilibrium flow downstream of a rough-to-smooth step change in surface roughness. Over the rough surface, wall shear stress results obtained through the form drag and the Reynolds stress methods are shown to be mutually consistent. Over the smooth surface, reference wall shear stress data is obtained through two optical methods: linear velocity profiles obtained through laser-Doppler anemometry and a sensor surface, the diverging fringe Doppler sensor. The work shows that the two most commonly used methods to determine the wall shear stress, the log-law gradient method and the Reynolds shear stress method, are completely inappropriate in the developing flow region. Preston tubes, on the other hand, are shown to perform well in the region of a non-equilibrium flow.

  10. Perceived stress as a risk factor for changes in health behaviour and cardiac risk profile

    DEFF Research Database (Denmark)

    Rod, Naja Hulvej; Grønbaek, M; Schnohr, P

    2009-01-01

    in health behaviour (smoking, physical activity, alcohol consumption, overweight) and cardiac risk profile (cholesterol, HDL cholesterol, blood pressure, diabetes). RESULTS: Individuals with high levels of stress compared to those with low levels of stress were less likely to quit smoking (OR = 0.58; 95% CI......OBJECTIVE: The aim of this study was to evaluate the long-term effects of stress on changes in health behaviour and cardiac risk profile in men and women. DESIGN: A prospective cohort study. SETTING: The Copenhagen City Heart Study, Denmark. SUBJECTS: The analyses were based on 7066 women and men...... from the second (1981-1983) and third (1991-1993) wave of the Copenhagen City Heart Study. All participants were asked questions on stress and health behaviour and they had their weight, height, blood pressure and level of blood lipids measured by trained personnel. MAIN OUTCOME MEASURES: Changes...

  11. Restraint stress-induced morphological changes at the blood-brain barrier in adult rats

    Directory of Open Access Journals (Sweden)

    Petra eSántha

    2016-01-01

    Full Text Available Stress is well known to contribute to the development of both neurological and psychiatric diseases. While the role of the blood-brain barrier is increasingly recognised in the development of neurodegenerative disorders, such as Alzheimer’s disease, dysfunction of the blood-brain barrier has been linked to stress-related psychiatric diseases only recently. In the present study the effects of restraint stress with different duration (1, 3 and 21 days were investigated on the morphology of the blood-brain barrier in male adult Wistar rats. Frontal cortex and hippocampus sections were immunostained for markers of brain endothelial cells (claudin-5, occludin and glucose transporter-1 and astroglia (GFAP. Staining pattern and intensity were visualized by confocal microscopy and evaluated by several types of image analysis. The ultrastructure of brain capillaries was investigated by electron microscopy. Morphological changes and intensity alterations in brain endothelial tight junction proteins claudin-5 and occludin were induced by stress. Following restraint stress significant increases in the fluorescence intensity of glucose transporter-1 were detected in brain endothelial cells in the frontal cortex and hippocampus. Significant reductions in GFAP fluorescence intensity were observed in the frontal cortex in all stress groups. As observed by electron microscopy, one-day acute stress induced morphological changes indicating damage in capillary endothelial cells in both brain regions. After 21 days of stress thicker and irregular capillary basal membranes in the hippocampus and edema in astrocytes in both regions were seen. These findings indicate that stress exerts time-dependent changes in the staining pattern of tight junction proteins occludin, claudin-5 and glucose transporter-1 at the level of brain capillaries and in the ultrastructure of brain endothelial cells and astroglial endfeet, which may contribute to neurodegenerative processes

  12. Chronic stress and carbohydrate metabolism: persistent changes and slow return to normalcy in male albino rats.

    Science.gov (United States)

    Nirupama, R; Devaki, M; Yajurvedi, H N

    2012-05-01

    The present study tested the hypothesis that long-term repeated exposure to stressors results in irreversible changes in carbohydrate metabolism. Groups of adult male rats (five per group) were restrained for 1 h and 4 h later were forced to swim for 15 min everyday for 2, 4, or 24 weeks; five rats were autopsied after each interval. Groups of five rats exposed to stress for 2 or 4 weeks were maintained without further treatment (recovery groups) for up to 24 weeks. The fasting blood glucose concentration, measured at weekly intervals, was significantly higher in the stressed rats than in controls throughout the experiment, except in the 24th week, whereas that of the recovery groups was significantly higher than controls only up to the 8th week after the end of stress exposure and then reached normalcy. The blood concentrations of glucose, lactate, and pyruvate were significantly higher in the 2 and 4 weeks stress groups than in controls, whereas, except for lactate, in rats stressed for 24 weeks these values did not significantly differ from those in controls. These changes were accompanied by increased gluconeogenesis and glycogenolysis as shown by alterations in activities of hepatic carbohydrate metabolizing enzymes and unaltered blood insulin concentrations in rats stressed for 2, 4, and 24 weeks. Furthermore, the blood insulin levels did not significantly vary among controls and the 2, 4, and 24 weeks stress groups. The results reveal that though hyperglycemia induced by long-term stress exposure is reversible, it persists for a prolonged period, even after the termination of stress exposure, before reaching normalcy. Prevalence of hyperglycemia for a prolonged period through increased activities of hepatic enzymes in stressed rats exemplifies allostasis.

  13. Predicting the change of child’s behavior problems: sociodemographic and maternal parenting stress factors

    OpenAIRE

    Viduolienė, Evelina

    2013-01-01

    Purpose: evaluate 1) whether child’s externalizing problems increase or decrease within 12 months period; 2) the change of externalizing problems with respect to child gender and age, and 3) which maternal parenting stress factors and family sociodemographic characteristics can predict the increase and decrease of child’s externalizing problems. Design/methodology/approach: participants were evaluated 2 times (with the interval of 12 months) with the Parenting Stress Index (Abidin, 1990) and ...

  14. Gallic Acid Protects Against Immobilization Stress-Induced Changes In Wistar Rats

    Directory of Open Access Journals (Sweden)

    Shabir, Ahmad Rather

    2013-02-01

    Full Text Available Background: Stress triggers a wide range of body changes. Herbal medicines are rich in non specific antistress agents.Purpose: The present study was carried out to evaluate the antistress effect of gallic acid (GA, a naturally occurring plant phenol, on immobilization induced-stress in male albino Wistar rats.Methods: The immobilization stress was induced in rats by putting the rats in 20 cm Ч 7 cm plastic tubes for 2 h/day for 21 days. Rats were post orally treated with GA at a dose of 10 mg/kg body weight via intragastric intubations.Results:Treatment with GA significantly increased the food intake, body weight, organ weight (spleen, testis and brain and the significant reduction was found in weight of liver, kidney, heart and adrenal glands, which was altered in stressed rats. GA also significantly reduced the elevated levels of plasma glucose, plasma and tissue cholesterol (CHL, triglycerides (TG, Low Density Lipid (LDL, Very Low Density Lipid (VLDL and also significantly increased the level of High Density Lipid (HDL. A significant decrease in hematological parameters like RBC count, total and differential WBC count was also found which were increased in immobilization stress.Conclusion: GA prevented the stress-induced physiological, biochemical and hematological changes, indicating the preventive effect against stress.

  15. Variation in adult stress resistance does not explain vulnerability to climate change in copper butterflies.

    Science.gov (United States)

    Klockmann, Michael; Wallmeyer, Leonard; Fischer, Klaus

    2017-03-15

    Ongoing climate change is a major threat to biodiversity. However, although many species clearly suffer from ongoing climate change, others benefit from it, for example, by showing range expansions. However, which specific features determine a species' vulnerability to climate change? Phenotypic plasticity, which has been described as the first line of defence against environmental change, may be of utmost importance here. Against this background, we here compare plasticity in stress tolerance in 3 copper butterfly species, which differ arguably in their vulnerability to climate change. Specifically, we investigated heat, cold and desiccation resistance after acclimatization to different temperatures in the adult stage. We demonstrate that acclimation at a higher temperature increased heat but decreased cold tolerance and desiccation resistance. Contrary to our predictions, species did not show pronounced variation in stress resistance, though plastic capacities in temperature stress resistance did vary across species. Overall, our results seemed to reflect population-rather than species-specific patterns. We conclude that the geographical origin of the populations used should be considered even in comparative studies. However, our results suggest that, in the 3 species studied here, vulnerability to climate change is not in the first place determined by stress resistance in the adult stage. As entomological studies focus all too often on adults only, we argue that more research effort should be dedicated to other developmental stages when trying to understand insect responses to environmental change. © 2017 Institute of Zoology, Chinese Academy of Sciences.

  16. A terrified-sound stress induced proteomic changes in adult male rat hippocampus.

    Science.gov (United States)

    Yang, Juan; Hu, Lili; Wu, Qiuhua; Liu, Liying; Zhao, Lingyu; Zhao, Xiaoge; Song, Tusheng; Huang, Chen

    2014-04-10

    In this study, we investigated the biochemical mechanisms in the adult rat hippocampus underlying the relationship between a terrified-sound induced psychological stress and spatial learning. Adult male rats were exposed to a terrified-sound stress, and the Morris water maze (MWM) has been used to evaluate changes in spatial learning and memory. The protein expression profile of the hippocampus was examined using two-dimensional gel electrophoresis (2DE), matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, and bioinformatics analysis. The data from the MWM tests suggested that a terrified-sound stress improved spatial learning. The proteomic analysis revealed that the expression of 52 proteins was down-regulated, while that of 35 proteins were up-regulated, in the hippocampus of the stressed rats. We identified and validated six of the most significant differentially expressed proteins that demonstrated the greatest stress-induced changes. Our study provides the first evidence that a terrified-sound stress improves spatial learning in rats, and that the enhanced spatial learning coincides with changes in protein expression in rat hippocampus. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Climate change projections of heat stress in Europe: From meteorological variables to impacts on productivity

    Science.gov (United States)

    Casanueva, Ana; Kotlarski, Sven; Liniger, Mark A.

    2017-04-01

    Future climate change is likely to have important impacts in many socio-economic sectors. In particular, higher summer temperatures or more prolonged heat waves may be responsible for health problems and productivity losses related to heat stress, especially affecting people exposed to such situations (e.g. working under outside settings or in non-acclimatized workplaces). Heat stress on the body under work load and consequently their productivity loss can be described through heat stress indices that are based on multiple meteorological parameters such as temperature, humidity, wind and radiation. Exploring the changes of these variables under a warmer climate is of prime importance for the Impacts, Adaptation and Vulnerability communities. In particular, the H2020 project HEAT-SHIELD aims at analyzing the impact of climate change on heat stress in strategic industries in Europe (manufacturing, construction, transportation, tourism and agriculture) within an inter-sectoral framework (climate scientists, biometeorologists, physiologists and stakeholders). In the present work we explore present and future heat stress over Europe using an ensemble of the state-of-the-art RCMs from the EURO-CORDEX initiative. Since RCMs cannot be directly used in impact studies due to their partly substantial biases, a standard bias correction method (empirical quantile mapping) is applied to correct the individual variables that are then used to derive heat stress indices. The objectives of this study are twofold, 1) to test the ability of the separately bias corrected variables to reproduce the main characteristics of heat stress indices in present climate conditions and 2) to explore climate change projections of heat stress indices. We use the wet bulb globe temperature (WBGT) as primary heat stress index, considering two different versions for indoor (or in the shade, based on temperature and humidity conditions) and outdoor settings (including also wind and radiation). The WBGT

  18. Distribution Of Seismic Velocity Change Associated With The May 12, 2008 M7.9 Wenchuan Earthquake

    Science.gov (United States)

    Chen, J.; Froment, B.; Liu, Q.; Campillo, M.

    2009-12-01

    We used continuous recordings in Sichuan, China to track the temporal evolution of the seismic velocity in a 2 year period which includes the great Wenchuan earthquake. The data are recorded by a temporary network of 84 out of 297 broad-band seismometers run by the Institute of Geology of the China Earthquake Administration. We analyzed the data from the stations in a 400*300km2 region that includes the southern 2/3 of the fault system activated during the Wenchuan event. We computed the cross correlation functions of seismic noise in a 30-day moving window for period between 1 and 3 seconds. We interpret them as an approximation of the actual Green function between the recorders. We then performed a doublet analysis to detect temporal changes of velocity with respect to a reference correlation. We deduce a relative average velocity change from the high quality delay measurements obtained for the ensemble of stations pairs. We found clear evidences that the seismic velocity drops after the earthquake by an average amount of about 0.1% in the fault region when measured with waves in the period range 1-3 seconds. We found that, according to our measurements, the velocity fluctuates within 0.02% in the months before the earthquake. The co-seismic variation is therefore well above the resolution of the measurements. We found that the co-seismic variation has similar amplitude for station groups in the Sichuan basin or in the Longmen Shan range, indicating that the co-seismic change is not fully controlled by the non-linear response of the shallow sediments. To investigate the velocity variations for different part in the region, we used a 0.5-degree station searching radius on 0.5°×0.5° grids to define sub-arrays, and measured the velocity variation for station pairs in the sub-arrays. We compared the measurements of velocity changes in different sub-arrays with a map of stress change deduced from a kinematic rupture model (Ji and Shao, personal communication) and

  19. Climate change moisture stresses on northern coniferous forests

    International Nuclear Information System (INIS)

    Wein, R.W.; Hogg, E.H.

    1990-01-01

    The predictions of general circulation models suggest major climatic changes for high latitude tundra ecosystems and lower latitude forested ecosystems. Of particular interest to Canadians is the predicted shift in the boreal forest climate northward, with a considerable northern expansion of the grasslands of western Canada. Reductions in soil moisture would have both direct and indirect effects on forest composition and productivity. The most important likely physical factors subject to alteration are permafrost, hydrological regimes and fire. Under warmer and drier conditions, potential fire burn frequency will increase, and might lead to greater proportions of jack pine than previously present. It is anticipated that permafrost will disappear from the extensive discontinuous permafrost zone where soil permafrost temperatures are presently -3 degree C or higher. In wet sites, melting of the permafrost could lead to drowning of forests as soils subside and become temporarily waterlogged. In more northerly areas, forest growth may increase in drier areas as the depth of the active layer increases. Fire may be a significant feed-back mechanism that could enhance the greenhouse effect. The estimated proportion of carbon in Canadian peatlands is in the order of 170 gigatonnes, whereas one-tenth of a gigatonne of carbon is released annually by fossil fuel combustion in Canada. 11 refs

  20. Stability and change in stress, resources, and psychological distress following natural disaster: Findings from hurricane Andrew.

    Science.gov (United States)

    Norris, F H; Perilla, J L; Riad, J K; Kaniasty, K; Lavizzo, E A

    1999-01-01

    Abstract The stress, resource, and symptom levels of 241 residents of southern Dade County, Florida were assessed 6 and 30 months after Hurricane Andrew. Percentages meeting study criteria for depression and PTSD did not change over time. Whereas mean levels of intrusion and arousal decreased, depressive symptoms remained stable, and avoidance/numbing symptoms actually increased. Intrusion and arousal were associated more strongly with pre-disaster factors (gender, ethnicity) and within-disaster factors (injury, property loss) than with post-disaster factors (stress, resources), but the reverse was true for depression and avoidance. Changes over time in symptoms were largely explained by changes over time in stress and resources. The findings indicate that ongoing services are needed to supplement the crisis-oriented assistance typically offered to disaster victims.

  1. The Impact of Urban Growth and Climate Change on Heat Stress in an Australian City

    Science.gov (United States)

    Chapman, S.; Mcalpine, C. A.; Thatcher, M. J.; Salazar, A.; Watson, J. R.

    2017-12-01

    Over half of the world's population lives in urban areas. Most people will therefore be exposed to climate change in an urban environment. One of the climate risks facing urban residents is heat stress, which can lead to illness and death. Urban residents are at increased risk of heat stress due to the urban heat island effect. The urban heat island is a modification of the urban environment and increases temperatures on average by 2°C, though the increase can be much higher, up to 8°C when wind speeds and cloud cover are low. The urban heat island is also expected to increase in the future due to urban growth and intensification, further exacerbating urban heat stress. Climate change alters the urban heat island due to changes in weather (wind speed and cloudiness) and evapotranspiration. Future urban heat stress will therefore be affected by urban growth and climate change. The aim of this study was to examine the impact of urban growth and climate change on the urban heat island and heat stress in Brisbane, Australia. We used CCAM, the conformal cubic atmospheric model developed by the CSIRO, to examine temperatures in Brisbane using scenarios of urban growth and climate change. We downscaled the urban climate using CCAM, based on bias corrected Sea Surface Temperatures from the ACCESS1.0 projection of future climate. We used Representative Concentration Pathway (RCP) 8.5 for the periods 1990 - 2000, 2049 - 2060 and 2089 - 2090 with current land use and an urban growth scenario. The present day climatology was verified using weather station data from the Australian Bureau of Meteorology. We compared the urban heat island of the present day with the urban heat island with climate change to determine if climate change altered the heat island. We also calculated heat stress using wet-bulb globe temperature and apparent temperature for the climate change and base case scenarios. We found the urban growth scenario increased present day temperatures by 0.5°C in the

  2. Changes in Mindfulness and Posttraumatic Stress Disorder Symptoms Among Veterans Enrolled in Mindfulness-Based Stress Reduction.

    Science.gov (United States)

    Stephenson, Kyle R; Simpson, Tracy L; Martinez, Michelle E; Kearney, David J

    2017-03-01

    The current study assessed associations between changes in 5 facets of mindfulness (Acting With Awareness, Observing, Describing, Non-Reactivity, and Nonjudgment) and changes in 4 posttraumatic stress disorder (PTSD) symptom clusters (Re-Experiencing, Avoidance, Emotional Numbing, and Hyperarousal symptoms) among veterans participating in mindfulness-based stress reduction (MBSR). Secondary analyses were performed with a combined data set consisting of 2 published and 2 unpublished trials of MBSR conducted at a large Veterans Affairs hospital. The combined sample included 113 veterans enrolled in MBSR who screened positive for PTSD and completed measures of mindfulness and PTSD symptoms before and after the 8-week intervention. Increases in mindfulness were significantly associated with reduced PTSD symptoms. Increases in Acting With Awareness and Non-Reactivity were the facets of mindfulness most strongly and consistently associated with reduced PTSD symptoms. Increases in mindfulness were most strongly related to decreases in Hyperarousal and Emotional Numbing. These results extend previous research, provide preliminary support for changes in mindfulness as a viable mechanism of treatment, and have a number of potential practical and theoretical implications. © 2016 Wiley Periodicals, Inc.

  3. Species as Stressors: Heterospecific Interactions and the Cellular Stress Response under Global Change.

    Science.gov (United States)

    Gunderson, Alex R; King, Emily E; Boyer, Kirsten; Tsukimura, Brian; Stillman, Jonathon H

    2017-07-01

    Anthropogenic global change is predicted to increase the physiological stress of organisms through changes in abiotic conditions such as temperature, pH, and pollution. However, organisms can also experience physiological stress through interactions with other species, especially parasites, predators, and competitors. The stress of species interactions could be an important driver of species' responses to global change as the composition of biological communities change through factors such as distributional and phenological shifts. Interactions between biotic and abiotic stressors could also induce non-linear physiological stress responses under global change. One of the primary means by which organisms deal with physiological stress is through the cellular stress response (CSR), which is broadly the upregulation of a conserved set of genes that facilitate the removal and repair of damaged macromolecules. Here, we present data on behavioral interactions and CSR gene expression for two competing species of intertidal zone porcelain crab (Petrolisthes cinctipes and Petrolisthes manimaculis). We found that P. cinctipes and P. manimaculis engage in more agonistic behaviors when interacting with heterospecifics than conspecifics; however, we found no evidence that heterospecific interactions induced a CSR in these species. In addition to our new data, we review the literature with respect to CSR induction via species interactions, focusing on predator-prey systems and heterospecific competition. We find extensive evidence for predators to induce cellular stress and aspects of the CSR in prey, even in the absence of direct physical contact between species. Effects of heterospecific competition on the CSR have been studied far less, but we do find evidence that agonistic interactions with heterospecifics can induce components of the CSR. Across all published studies, there is clear evidence that species interactions can lead to cellular stress and induction of the CSR

  4. Coseismic landslides associated with the 2015 Gorkha earthquake sequence in Nepal

    Science.gov (United States)

    Clark, M. K.; Gallen, S. F.; West, A. J.; Chamlagain, D.; Roback, K.; Lowe, K.; Niemi, N. A.; Greenwood, W.; Bateman, J.; Zekkos, D.

    2015-12-01

    Coseismic landsliding due to the M7.8 Gorkha earthquake sequence poses immediate and prolonged hazards to communities in the Nepalese Himalaya, as well as a rare opportunity to study the effect of large earthquakes on erosion and sediment budgets in mountain belts. We present near-real time response models developed within hours of the event using a simplified Newmark analysis. These rapid response models were used to prioritize early scientific efforts and to guide rescue and recovery efforts by US and international agencies. Analyses included prediction of regional landslide occurrence and identification of potential landslide dam locations, which could cause flooding upstream and downstream if the dam is catastrophically breached. Subsequent investigations have included mapping of coseismic landslides using pre- and post- event satellite imagery and field observations, and inversion of mapped landslide distributions for estimates of near-surface rock strength. Compared to model predictions using regionally uniform rock strength, observed landslides are more concentrated north of the physiographic transition between the Lesser and Greater Himalaya where hillslope gradients suddenly steepen. Fewer landslides than predicted occurred in the high elevation, steep glaciated terrain and in areas of highest modeled PGA, just to the south of this physiographic transition. Discrepancies between model predictions and observations could arise from spatial variability in rock strength, in PGA or frequency content at specific site locations, or by pre-conditioning (topographic or otherwise) for landslide hazard. Co-seismic landsliding produces a prolonged hazard for years to come. In the near term, more frequent landslides are expected to occur during the summer monsoon seasons by remobilization of debris and due to a dynamic increase in pore-pressure on hillsides or near ridge tops that were pervasively cracked during the main earthquake or aftershocks, but did not

  5. The 2014, MW6.9 North Aegean Earthquake: Seismic and Geodetic Evidence for Coseismic Slip on Persistent Asperities

    Science.gov (United States)

    Konca, Ali Ozgun; Cetin, Seda; Karabulut, Hayrullah; Reilinger, Robert; Dogan, Ugur; Ergintav, Semih; Cakir, Ziyadin; Tari, Ergin

    2018-02-01

    We report that asperities with the highest coseismic slip in the 2014 of MW6.9 North Aegean Earthquake persisted through the interseismic, coseismic and immediate postseismic periods. We use GPS and seismic data to obtain the source model of the 2014 earthquake, which is located on the western extension of the North Anatolian Fault (NAF). The earthquake ruptured a bilateral, 90 km strike-slip fault with three slip patches; one asperity located west of the hypocenter and two to the east with a rupture duration of 40 s. Relocated pre-earthquake seismicity and aftershocks show that zones with significant coseismic slip were relatively quiet during both the 7-years of interseismic and the 3-month aftershock periods, while the surrounding regions generated significant seismicity during both the interseismic and postseismic periods. We interpret the unusually long fault length and source duration, and distribution of pre- and post-mainshock seismicity as evidence for a rupture of asperities that persisted through strain accumulation and coseismic strain release in a partially coupled fault zone. We further suggest that the association of seismicity with fault creep may characterize the adjacent Izmit, Marmara Sea and Saros segments of the NAF. Similar behavior has been reported for sections of the San Andreas Fault, and some large subduction zones, suggesting that the association of seismicity with creeping fault segments, and rapid re-locking of asperities may characterize many large earthquake faults.

  6. Structural features and seismotectonic implications of coseismic surface ruptures produced by the 2016 M w 7.1 Kumamoto earthquake

    Science.gov (United States)

    Lin, Aiming

    2017-09-01

    Field investigations and analyses of satellite images and aerial photographs reveal that the 2016 M w 7.1 (Mj 7.3) Kumamoto earthquake produced a ˜40-km surface rupture zone striking NE-SW on central Kyushu Island, Japan. Coseismic surface ruptures were characterized by shear faults, extensional cracks, and mole tracks, which mostly occurred along the pre-existing NE-SW-striking Hinagu-Futagawa fault zone in the southwest and central segments, and newly identified faults in the northeast segment. This study shows that (i) the Hinagu-Futagawa fault zone triggered the 2016 Kumamoto earthquake and controlled the spatial distribution of coseismic surface ruptures; (ii) the southwest and central segments were dominated by right-lateral strike-slip movement with a maximum in-site measured displacement of up to 2.5 m, accompanied by a minor vertical component. In contrast, the northeast segment was dominated by normal faulting with a maximum vertical offset of up to 1.75 m with a minor horizontal component that formed graben structures inside Aso caldera; (iii) coseismic rupturing initiated at the jog area between the Hinagu and Futagawa faults, then propagated northeastward into Aso caldera, where it terminated. The 2016 M w 7.1 Kumamoto earthquake therefore offers a rare opportunity to study the relationships between coseismic rupture processes and pre-existing active faults, as well as the seismotectonics of Aso volcano.

  7. Changes in stress and coping from a randomized controlled trial of a three-month stress management intervention

    DEFF Research Database (Denmark)

    Willert, M.V.; Thulstrup, A.M.; Hertz, J.

    2009-01-01

    Objectives The aim of this study was to investigate whether it group-based stress management intervention, based on principles from cognitive behavior therapy, call reduce stress and alter coping strategies in an occupationally diverse population with extensive symptoms of work-related stress...... dimensions front the Brief COPE questionnaire (range 2-8 points) at baseline and three-, six- and nine-months follow-up. Data were analyzed with a univariate analysis of variance. Results On the PSS-10 from baseline to three months, the intervention group changed -6.45 (95% CI -8.25-4.64) points, compared...... to -1.12 (95% CI -2.94-0.70) points in the wait list control group. The between-groups difference was -5.32 (95% CI -7.89-2.76) points, equalling a standardized mean difference of -0.84 (95% Cl -1.27-0.42) favouring the intervention. One coping dimension, "positive reframing", differed between the two...

  8. Pseudorabies Virus Induces Viability Changes and Oxidative Stress in Swine Testis Cell-Line

    Directory of Open Access Journals (Sweden)

    Xiao-Zhan Zhang§1, Ye Chen§1, Hong-Liang Huang§2, Dong-Lei Xu1, Chang-Bao Ren2, Bi-Tao Liu1, Shuo Su1 and Zhao-Xin Tang1, 2*

    2013-11-01

    Full Text Available In this study, we evaluated the association between pseudorabies (PRV virus-induced viability changes and oxidative stress in vitro cultivated swine testis (ST cells. The kinetic of 2, 12, 24, 36 and 48 h during the cell culture with PRV by using a multiplicity of infection (MOI of 1 TCID50 per cell were adopted. The results suggested a complex relation between cell viability and oxidative stress during PRV infection. In the early stages of PRV infection, the cell viability was higher than the control group, and the state of cellular oxidative stress remained relatively stable. After 24 h, the cell viability began to decrease, and the amount of the cellular malondialdehyde in ST cells increased significantly, and the activities of superoxide dismutase and catalase decreased significantly (P<0.05. Meanwhile, the rising concentrations of cellular hydrogen peroxide were detected prior to the changes in cell viability and oxidative stress. In conclusion, the PRV infection of ST cells leads to oxidative stress, and this stress could play a crucial role on the cell viability as the PRV infection time progresses.

  9. Soybean Roots Grown under Heat Stress Show Global Changes in Their Transcriptional and Proteomic Profiles

    Energy Technology Data Exchange (ETDEWEB)

    Valdés-López, Oswaldo; Batek, Josef; Gomez-Hernandez, Nicolas; Nguyen, Cuong T.; Isidra-Arellano, Mariel C.; Zhang, Ning; Joshi, Trupti; Xu, Dong; Hixson, Kim K.; Weitz, Karl K.; Aldrich, Joshua T.; Paša-Tolić, Ljiljana; Stacey, Gary

    2016-04-25

    Heat stress is likely to be a key factor in the negative impact of climate change on crop production. Roots provide support, water and nutrients to other plant organs. Likewise, roots play an important role in the establishment of symbiotic associations with different microorganisms. Despite the physiological relevance of roots, few studies have examined the response of these plant organs to heat stress. In this study, we performed genome-wide transcriptomic and proteomic analyses on isolated root hairs, which are a single, epidermal cell type, and compared their response to whole roots. We identified 2,013 genes differentially regulated in root hairs in response to heat stress. Our gene regulatory module analysis identified ten, key modules that controlled the majority of the transcriptional response to heat stress. We also conducted proteomic analysis on membrane fractions isolated from roots and root hairs. These experiments identified a variety of proteins whose expression changed within 3 hours of application of heat stress. Most of these proteins were predicted to play a role in thermotolerance, as well as in chromatin remodeling and post-transcriptional regulation. The data presented represent an in-depth analysis of the heat stress response of a single cell type in soybean.

  10. Interseismic, postseismic and co-seismic strain on the Sumatra megathrust and their relation to the megathrust frictional properties

    Science.gov (United States)

    Konca, A. O.; Avouac, J.-P.; Sladen, A.; Meltzner, A. J.; Kositsky, A.; Sieh, K.; Galetzka, J.; Genrich, J.; Natawidjaja, D. H.

    2009-04-01

    The Sumatra Megathrust has recently produced a flurry of large interplate earthquakes starting with the giant Mw 9.15, Aceh earthquake of 2004. All of these earthquakes occurred within the area monitored by the Sumatra Geodetic Array (SuGAr), which provided exceptional records of near-field co-seismic and postseismic ground displacements. In addition, based on coral growth pattern, it has also been possible to estimate the pattern of interseismic strain in this area over the last few decades preceding 2004. This earthquake sequence provides an exceptional opportunity to understand the eventual relationship between large megathrust ruptures, interseismic coupling and the frictional properties of the megathrust. The emerging view is a megathrust with strong down-dip and lateral variations of frictional properties. The 2005, Mw 8.6 Nias earthquake ruptured nearly entirely a patch that had ruptured already during a similar earthquake in 1861 and that had remained well locked in the interseismic period allowing for stress to build up to an amount comparable to, or even larger than the stress released in 1861 or 2005. This patch is inferred to obey dominantly velocity-weakening friction and the pattern or interseismic coupling and afterslip suggests that it is surrounded by areas with velocity-strengthening friction. The 2007 Mw 8.4 and 7.9 earthquakes ruptured a fraction of a strongly coupled in the Mentawai area. They each consist of 2 sub-events which are 50 to 100 km apart from each other. On the other hand, the northernmost slip patch of 8.4 and southern slip patch of 7.9 earthquakes abut each other, but they ruptured 12 hours apart. They released a moment much smaller than the giant earthquakes known to have occurred in the Mentawai area in 1833 or in 1797. Also the moment released in 2007 amounts to only a fraction of the deficit of moment that had accumulated as a result of interseismic strain since these historical events, the potential for a large megathrust

  11. Influencing Genomic Change and Cancer Disparities through Neighborhood Chronic Toxic Stress Exposure: A Research Framework.

    Science.gov (United States)

    DeGuzman, Pamela B; Schminkey, Donna L

    2016-11-01

    Black Americans have disproportionately higher incidence and mortality rates for many cancers. These disparities may be related to genomic changes that occur from exposure to chronic toxic stress and may result from conditions associated with living in racially segregated neighborhoods with high rates of concentrated poverty. The purpose of this article is to present a nursing research framework for developing and testing neighborhood-level interventions that have the potential to mitigate exposure to neighborhood-associated chronic toxic stress, improve individual-level genomic sequelae and cancer outcomes, and reduce cancer health disparities of Black Americans. Public health nursing researchers should collaborate with local officials to determine ways to reduce neighborhood-level stress. Intermediate outcomes can be measured using genomic or other stress biomarkers, and long-term outcomes can be measured by evaluating population-level cancer incidence and mortality. © 2016 Wiley Periodicals, Inc.

  12. Climate Change and the Emergent Epidemic of CKD from Heat Stress in Rural Communities: The Case for Heat Stress Nephropathy.

    Science.gov (United States)

    Glaser, Jason; Lemery, Jay; Rajagopalan, Balaji; Diaz, Henry F; García-Trabanino, Ramón; Taduri, Gangadhar; Madero, Magdalena; Amarasinghe, Mala; Abraham, Georgi; Anutrakulchai, Sirirat; Jha, Vivekanand; Stenvinkel, Peter; Roncal-Jimenez, Carlos; Lanaspa, Miguel A; Correa-Rotter, Ricardo; Sheikh-Hamad, David; Burdmann, Emmanuel A; Andres-Hernando, Ana; Milagres, Tamara; Weiss, Ilana; Kanbay, Mehmet; Wesseling, Catharina; Sánchez-Lozada, Laura Gabriela; Johnson, Richard J

    2016-08-08

    Climate change has led to significant rise of 0.8°C-0.9°C in global mean temperature over the last century and has been linked with significant increases in the frequency and severity of heat waves (extreme heat events). Climate change has also been increasingly connected to detrimental human health. One of the consequences of climate-related extreme heat exposure is dehydration and volume loss, leading to acute mortality from exacerbations of pre-existing chronic disease, as well as from outright heat exhaustion and heat stroke. Recent studies have also shown that recurrent heat exposure with physical exertion and inadequate hydration can lead to CKD that is distinct from that caused by diabetes, hypertension, or GN. Epidemics of CKD consistent with heat stress nephropathy are now occurring across the world. Here, we describe this disease, discuss the locations where it appears to be manifesting, link it with increasing temperatures, and discuss ongoing attempts to prevent the disease. Heat stress nephropathy may represent one of the first epidemics due to global warming. Government, industry, and health policy makers in the impacted regions should place greater emphasis on occupational and community interventions. Copyright © 2016 by the American Society of Nephrology.

  13. Survival, physical and physiological changes of Taenia hydatigena eggs under different conditions of water stress.

    Science.gov (United States)

    Sánchez Thevenet, Paula; Alvarez, Hector Manuel; Basualdo, Juan Angel

    2017-06-01

    Taenia hydatigena eggs were investigated for morphological and physiological changes under water stress conditions. Fresh eggs were exposed at 31%, 47% and 89% of relative humidity (RH), and survival, size and ultrastructural changes were accounted up to 365 days of exposition. The article shows how each RH environment affects the vitality of the eggs. Results of this study suggest that T. hydatigena eggs have mechanisms to withstand water stress, indicating that the eggs clustering improves protection against desiccation, and that endogenous metabolism using triacylglycerols play an important role in the maintenance of embryo vitality under low, medium and high relative humidity conditions. This contributes to understanding the water stress resistance mechanism in eggs belonging to Taeniidae family. The findings shown herein have provided a basis to better comprehend basic biology and epidemiology of the cysticercosis caused by T. hydatigena. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Electroconvulsive stimulations prevent stress-induced morphological changes in the hippocampus

    DEFF Research Database (Denmark)

    Hageman, I; Nielsen, M; Wörtwein, Gitta

    2008-01-01

    Stress can precipitate major depression and other disorders linked to hippocampal shrinkage. It is hypothesized but not established that treatment of these disorders reverses and prevents the hippocampal changes. Dendritic retraction of individual neurons might in concert with other pathophysiolo......Stress can precipitate major depression and other disorders linked to hippocampal shrinkage. It is hypothesized but not established that treatment of these disorders reverses and prevents the hippocampal changes. Dendritic retraction of individual neurons might in concert with other...... pathophysiological events contribute to the shrinkage phenomenon. Animal studies have shown that various stress paradigms can induce dendritic retraction in the CA3 pyramidal neurons of the hippocampus. Since electroconvulsive treatment is the most effective treatment in humans with major depression, we investigated...

  15. A Feasibility Study of an FEM Simulation Used in Co-Seismic Deformations: A Case Study of a Dip-Slip Fault

    Directory of Open Access Journals (Sweden)

    Xiaoguang Lin

    2013-01-01

    Full Text Available For this study, we conducted a numerical simulation on co-seismic displacement for a dip-slip fault in a half-space medium based upon a finite element method (FEM. After investigating technical problems of modeling, source and boundary treatment, we calculated co-seismic deformation with consideration to topography. To verify the numerical simulation results, the simulated co-seismic displacement was compared with that calculated using a dislocation theory. As a case study, considering the seismic parameters of the 2008 Wenchuan earthquake (M 8.0 as a source model, we calculate the co-seismic displacements with or without consideration of the terrain model in the finite element model to observe terrain effects on co-seismic deformation. Results show that topography has a non-negligible effect on co-seismic displacement, reaching from -11.59 to 4.0 cm in horizontal displacement, and from -3.28 to 3.28 cm in vertical displacement. The relative effects are 9.05 and 2.95% for horizontal and vertical displacement, respectively. Such a terrain effect is sufficiently large and can be detected by modern geodetic measurements such as GPS. Therefore, we conclude that the topography should be considered in applying dislocation theory to calculate co-seismic deformations.

  16. Intertidal biological indicators of coseismic subsidence during the Mw 7.8 Haida Gwaii, Canada, earthquake

    Science.gov (United States)

    Haeussler, Peter J.; Witter, Robert C.; Wang, Kelin

    2015-01-01

    The 28 October 2012 Mw 7.8 Haida Gwaii earthquake was a megathrust earthquake along the very obliquely convergent Queen Charlotte margin of British Columbia, Canada. Coseismic deformation is not well constrained by geodesy, with only six Global Positioning System (GPS) sites and two tide gauge stations within 250 km of the rupture area. To better constrain vertical coseismic deformation, we measured the upper growth limits of two sessile intertidal organisms, which are controlled by physical conditions, relative to sea level at 25 sites 5 months after the earthquake. We measured the positions of rockweed (Fucus distichus, 617 observations) and the common acorn barnacle (Balanus balanoides, 686 observations). The study focused on the western side of the islands where rupture models indicated that the greatest amount of vertical displacement, but we also investigated sites well away from the inferred rupture area to provide a control on the upper limit of the organisms unaffected by vertical displacement. We also made 322 measurements of sea level to relate the growth limits to a tidal datum using the TPXO7.2 tidal model, rather than ellipsoid heights determined by GPS. Three methods of examining the data all indicate 0.4–0.6 m subsidence along the western coast of Moresby Island as a result of the 28 October 2012 Haida Gwaii earthquake. Our data are, within the errors, consistent with data from two campaign GPS sites along the west coast of Haida Gwaii and with rupture models that indicate megathrust rupture offshore, but not beneath, the islands.

  17. Discovering Coseismic Traveling Ionospheric Disturbances Generated by the 2016 Kaikoura Earthquake

    Science.gov (United States)

    Li, J. D.; Rude, C. M.; Gowanlock, M.; Pankratius, V.

    2017-12-01

    Geophysical events and hazards, such as earthquakes, tsunamis, and volcanoes, have been shown to generate traveling ionospheric disturbances (TIDs). These disturbances can be measured by means of Total Electron Content fluctuations obtained from a network of multifrequency GPS receivers in the MIT Haystack Observatory Madrigal database. Analyzing the response of the ionosphere to such hazards enhances our understanding of natural phenomena and augments our large-scale monitoring capabilities in conjunction with other ground-based sensors. However, it is currently challenging for human investigators to spot and characterize such signatures, or whether a geophysical event has actually occurred, because the ionosphere can be noisy with multiple simultaneous phenomena taking place at the same time. This work therefore explores a systematic pipeline for the ex-post discovery and characterization of TIDs. Our technique starts by geolocating the event and gathering the corresponding data, then checks for potentially conflicting TID sources, and processes the raw total electron content data to generate differential measurements. A Kolmogorov-Smirnov test is applied to evaluate the statistical significance of detected deviations in the differential measurements. We present results from our successful application of this pipeline to the 2016 7.8 Mw Kaikoura earthquake occurring in New Zealand on November 13th. We detect a coseismic TID occurring 8 minutes after the earthquake and propagating towards the equator at 1050 m/s, with a 0.22 peak-to-peak TECu amplitude. Furthermore, the observed waveform exhibits more complex behavior than the expected N-wave for a coseismic TID, which potentially results from the complex multi-fault structure of the earthquake. We acknowledge support from NSF ACI1442997 (PI Pankratius), NASA AISTNNX15AG84G (PI Pankratius), and NSF AGS-1343967 (PI Pankratius), and NSF AGS-1242204 (PI Erickson).

  18. Pressure-Induced Changes in Inter-Diffusivity and Compressive Stress in Chemically Strengthened Glass

    DEFF Research Database (Denmark)

    Svenson, Mouritz Nolsøe; Thirion, Lynn M.; Youngman, Randall E.

    Glass exhibits a significant change in microstructure and properties when subjected to high pressure, since the short- and intermediate-range structures of a glass are tunable through compression. Understanding the link between the microscopic structure and macroscopic properties of glasses under...... and more damage resistant glasses. However, the interplay among isostatic compression, pressure-induced changes in alkali diffusivity, compressive stress generated through ion exchange, and the resulting mechanical properties are poorly understood. In this work, we employ a specially designed gas pressure...... stress, and slightly increased hardness. Compression after the ion exchange treatment changes the shape of the potassium-sodium diffusion profiles and significantly increases glass hardness. We discuss these results in terms of the underlying structural changes in network-modifier environments...

  19. Growth and nitrogen metabolism changes in NaCl-stressed tobacco ...

    African Journals Online (AJOL)

    Growth and nitrogen metabolism changes in NaCl-stressed tobacco (Nicotiana rustica L. var. Souffi) seedlings. Chokri Zaghdoud, Houda Maâroufi-Dguimi, Youssef Ouni, Mokhtar Guerfel, Houda Gouia, Kamel-Eddine Negaz, Ali Ferchichi, Mohamed Debouba ...

  20. Indicators of ecological change: comparison of the early response of four organism groups to stress gradients

    NARCIS (Netherlands)

    Johnson, R.K.; Hering, D.; Furse, M.T.; Verdonschot, P.F.M.

    2006-01-01

    A central goal in monitoring and assessment programs is to detect change early before costly or irreversible damage occurs. To design robust early-warning monitoring programs requires knowledge of indicator response to stress as well as the uncertainty associated with the indicator(s) selected.

  1. Effects of heat stress on working populations when facing climate change.

    Science.gov (United States)

    Lundgren, Karin; Kuklane, Kalev; Gao, Chuansi; Holmér, Ingvar

    2013-01-01

    It is accepted that the earth's climate is changing in an accelerating pace, with already documented implications for human health and the environment. This literature review provides an overview of existing research findings about the effects of heat stress on the working population in relation to climate change. In the light of climate change adaptation, the purpose of the literature review was to explore recent and previous research into the impacts of heat stress on humans in an occupational setting. Heat stress in the workplace has been researched extensively in the past however, in the contemporary context of climate change, information is lacking on its extent and implications. The main factors found to exacerbate heat stress in the current and future workplace are the urban 'heat island effect', physical work, individual differences, and the developing country context where technological fixes are often not applicable. There is also a lack of information on the effects on vulnerable groups such as elderly people and pregnant women. As increasing temperatures reduce work productivity, world economic productivity could be condensed, affecting developing countries in the tropical climate zone disproportionately. Future research is needed taking an interdisciplinary approach, including social, economic, environmental and technical aspects.

  2. Stressful Events and Temperament Change during Early and Middle Adolescence : The TRAILS Study

    NARCIS (Netherlands)

    Laceulle, O. M.; Nederhof, E.; Karreman, A.; Ormel, J.; Van Aken, M. A. G.

    2012-01-01

    This project investigates how stressful events are related to deviations from normative temperament development during adolescence. Temperament traits were assessed at ages 11 and 16?years. Life-event data was captured using an interview (total n?=?1197). Normative changes were found in all traits.

  3. Effects of stress aging on changes in mechanical properties and microstructures of Hastelloy-X and Hastelloy-XR

    International Nuclear Information System (INIS)

    Watanabe, Katsutoshi; Kikuchi, Masahiko; Kondo, Tatsuo

    1977-11-01

    Mechanical property and Microstructural changes of Ni-base super alloys after aging with and without tensile stress were observed in the temperature range of 500-1000 0 C for durations to 305 hr. The materials tested are Hastelloy-X and its modified heat (Hastelloy-XR). Changes of the mechanical properties are appreciably enhanced by the application of stress during the aging. The changes are interpreted in connection with microstructural changes due to the enhanced carbide precipitation caused by the stress aging. Commercial grade Hastelloy-X is found to be more influenced by the stress than Hastelloy-XR. (auth.)

  4. Posttraumatic Stress Disorder in the DSM-5: Controversy, Change, and Conceptual Considerations

    OpenAIRE

    Pai, Anushka; Suris, Alina M.; North, Carol S.

    2017-01-01

    The criteria for posttraumatic stress disorder PTSD have changed considerably with the newest edition of the American Psychiatric Association’s (APA) Diagnostic and Statistical Manual of Mental Disorders (DSM-5). Changes to the diagnostic criteria from the DSM-IV to DSM-5 include: the relocation of PTSD from the anxiety disorders category to a new diagnostic category named “Trauma and Stressor-related Disorders”, the elimination of the subjective component to the definition of trauma, the exp...

  5. Observing coseismic gravity change from the Japan Tohoku-Oki 2011 earthquake with GOCE gravity gradiometry

    NARCIS (Netherlands)

    Fuchs, M.J.; Bouman, J.; Broerse, D.B.T.; Visser, P.N.A.M.; Vermeersen, L.L.A.

    2013-01-01

    The Japan Tohoku-Oki earthquake (9.0 Mw) of 11 March 2011 has left signatures in the Earth's gravity field that are detectable by data of the Gravity field Recovery and Climate Experiment (GRACE) mission. Because the European Space Agency's (ESA) satellite gravity mission Gravity field and

  6. Stress-induced changes of hippocampal NMDA receptors: modulation by duloxetine treatment.

    Directory of Open Access Journals (Sweden)

    Francesca Calabrese

    Full Text Available It is now well established that the glutamatergic system contributes to the pathophysiology of depression. Exposure to stress, a major precipitating factor for depression, enhances glutamate release that can contribute to structural abnormalities observed in the brain of depressed subjects. On the other hand, it has been demonstrated that NMDA antagonists, like ketamine, exert an antidepressant effect at preclinical and clinical levels. On these bases, the purpose of our study was to investigate whether chronic mild stress is associated with specific alterations of the NMDA receptor complex, in adult rats, and to establish whether concomitant antidepressant treatment could normalize such deficits. We found that chronic stress increases the expression of the obligatory GluN1 subunit, as well as of the accessory subunits GluN2A and GluN2B at transcriptional and translational levels, particularly in the ventral hippocampus. Concomitant treatment with the antidepressant duloxetine was able to normalize the increase of glutamatergic receptor subunit expression, and correct the changes in receptor phosphorylation produced by stress exposure. Our data suggest that prolonged stress, a condition that has etiologic relevance for depression, may enhance glutamate activity through post-synaptic mechanisms, by regulating NMDA receptors, and that antidepressants may in part normalize such changes. Our results provide support to the notion that antidepressants may exert their activity in the long-term also via modulation of the glutamatergic synapse.

  7. Perceived stress and freshman weight change: the moderating role of baseline body mass index.

    Science.gov (United States)

    Boyce, Jessica A; Kuijer, Roeline G

    2015-02-01

    The transition from high-school to university is a critical period of weight change. Popular media suggest that freshman students gain 15 lb (6.80 kg) of body weight during their first year at university (i.e., the freshman 15). In contrast, a recent meta-analysis calculated freshman weight gain to be 1.75 kg, with statistics suggesting that only a proportion of freshman students are prone to gain weight. Researchers are beginning to investigate how certain variables and interactions between such variables predict freshman weight status. The current study focused on body mass index (BMI) and psychological stress. In isolation, previous research has tested how these two variables predict freshman student's weight status. However, because BMI and stress interact to predict weight gain and weight loss in adult samples, the current study tested the interaction between student's baseline BMI and baseline stress levels to predict weight change in a New Zealand sample of freshman students (N=65). Participants completed two separate online surveys in March and October 2012 (i.e., New Zealand's academic year). Although only three students gained over 6.80 kg (i.e., the freshman 15), participants did gain a statistically significant 1.10 kg of body weight during the year. Consistent with previous research, students with a higher baseline BMI gained a higher amount of body weight. However, this main effect was qualified by an interaction between stress and BMI. Students who entered university with high levels of stress gained weight if they also had high BMIs; if they had lower BMIs then they lost weight. In order to reduce unhealthy levels of freshman weight change, vulnerable students need to be taught stress-reduction techniques and coping strategies early in the academic year. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. [Finite element analysis of stress changes of posterior spinal pedicle screw infixation].

    Science.gov (United States)

    Yan, Jia-Zhi; Wu, Zhi-Hong; Xu, Ri-Xin; Wang, Xue-Song; Xing, Ze-Jun; Zhao, Yu; Zhang, Jian-Guo; Shen, Jian-Xiong; Wang, Yi-Peng; Qiu, Gui-Xing

    2009-01-06

    To evaluate the mechanical response of L3-L4 segment after posterior interfixation with a transpedicle screw system. Spiral CT machine was used to conduct continuous parallel scan on the L3-L4 section of a 40-year-old healthy male Chinese. The image data thus obtained were introduced into MIMICS software to reconstruct the 2-D data into volume data and obtain 3-D models of every element.. Pro/3-D model construction software system was used to simulate the 3-D entity of L3-L4 fixed by screw robs through spinal pedicle via posterior approach that was introduced into the finite element software ABAQUS to construct a 3-D finite element model. The stress changes on the vertebrae and screw under the axial pressure of 0.5 mPa was analyzed. Under the evenly distributed pressure the displacement of the L4 model was 0.00125815 mm, with an error of only 0.8167% from the datum displacement. The convergence of the model was good. The stress of the fixed vertebral body, intervertebral disc, and internal fixators changed significantly. The stress concentration zone of the intervertebral disc turned from the posterolateral side to anterolateral side. The stress produced by the fixed vertebral bodies decreased significantly. Obvious stress concentration existed in the upper and lower sides of the base of screw and the fixed screw at the upper vertebral body bore greater stress than the lower vertebral body. Integration of computer aided device and finite element analysis can successfully stimulate the internal fixation of L3-IA visa posterior approach and observe the mechanic changes in the vertebral column more directly.

  9. Changes in seed water status as characterized by NMR in developing soybean seed grown under moisture stress conditions

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, P., E-mail: pkrishnan@iari.res.in; Singh, Ravender; Verma, A.P.S.; Joshi, D.K.; Singh, Sheoraj

    2014-02-21

    Highlights: • In developing soybean seeds, moisture stress resulted in more proportion of water to bound state. • These changes are further corroborated by concomitant changes in seed metabolites. • Thus there exists a moisture stress and development stage dependence of seed tissue water status. - Abstract: Changes in water status of developing seeds of Soybean (Glycine max L. Merrill.) grown under different moisture stress conditions were characterized by proton nuclear magnetic resonance (NMR)- spin–spin relaxation time (T{sub 2}). A comparison of the seed development characteristics, composition and physical properties indicated that, characteristics like seed weight, seed number/ear, rate of seed filling increased with development stages but decreased with moisture stress conditions. The NMR- spin–spin relaxation (T{sub 2}) component like bound water increased with seed maturation (40–50%) but decreased with moisture stress conditions (30–40%). The changes in seed water status to increasing levels of moisture stress and seed maturity indicates that moisture stress resulted in more proportion of water to bound state and intermediate state and less proportion of water in free-state. These changes are further corroborated by significant changes in protein and starch contents in seeds under high moisture stress treatments. Thus seed water status during its development is not only affected by development processes but also by moisture stress conditions. This study strongly indicated a clear moisture stress and development stage dependence of seed tissue water status in developing soybean seeds.

  10. Changes in seed water status as characterized by NMR in developing soybean seed grown under moisture stress conditions

    International Nuclear Information System (INIS)

    Krishnan, P.; Singh, Ravender; Verma, A.P.S.; Joshi, D.K.; Singh, Sheoraj

    2014-01-01

    Highlights: • In developing soybean seeds, moisture stress resulted in more proportion of water to bound state. • These changes are further corroborated by concomitant changes in seed metabolites. • Thus there exists a moisture stress and development stage dependence of seed tissue water status. - Abstract: Changes in water status of developing seeds of Soybean (Glycine max L. Merrill.) grown under different moisture stress conditions were characterized by proton nuclear magnetic resonance (NMR)- spin–spin relaxation time (T 2 ). A comparison of the seed development characteristics, composition and physical properties indicated that, characteristics like seed weight, seed number/ear, rate of seed filling increased with development stages but decreased with moisture stress conditions. The NMR- spin–spin relaxation (T 2 ) component like bound water increased with seed maturation (40–50%) but decreased with moisture stress conditions (30–40%). The changes in seed water status to increasing levels of moisture stress and seed maturity indicates that moisture stress resulted in more proportion of water to bound state and intermediate state and less proportion of water in free-state. These changes are further corroborated by significant changes in protein and starch contents in seeds under high moisture stress treatments. Thus seed water status during its development is not only affected by development processes but also by moisture stress conditions. This study strongly indicated a clear moisture stress and development stage dependence of seed tissue water status in developing soybean seeds

  11. Oxidative stress, gene expression, and protein changes induced in the human placenta during labor.

    Science.gov (United States)

    Cindrova-Davies, Tereza; Yung, Hong-Wa; Johns, Jemma; Spasic-Boskovic, Olivera; Korolchuk, Svitlana; Jauniaux, Eric; Burton, Graham J; Charnock-Jones, D Stephen

    2007-10-01

    Malperfusion of the placenta has been implicated as a cause of oxidative stress in complications of human pregnancy, leading to release of proinflammatory cytokines and anti-angiogenic factors into the maternal circulation. Uterine contractions during labor are known to be associated with intermittent utero-placental perfusion. We therefore tested whether oxidative stress, proinflammatory cytokines, and angiogenic regulators were increased in placentas subjected to short (15 hours) labor compared with nonlabored controls delivered by cesarean section. In addition, broader changes in gene transcripts were assessed by microarray analysis. Oxidative stress, activation of the nuclear factor-kappaB pathway, tumor necrosis factor-alpha and interleukin 1beta all increased in placental tissues after labor. Stabilization of hypoxia-inducible factor-1alpha and increased vascular endothelial growth factor soluble receptor-1 were also observed. By contrast, tissue levels of placenta growth factor decreased. Apoptosis was also activated in labored placentas. The magnitude of these changes related to the duration of labor. After labor, 55 gene transcripts were up-regulated and 35 down-regulated, and many of these changes were reflected at the protein level. In conclusion, labor is a powerful inducer of placental oxidative stress, inflammatory cytokines, and angiogenic regulators. Our findings are consistent with intermittent perfusion being the initiating cause. Placentas subjected to labor do not reflect the normal in vivo state at the molecular level.

  12. Glucocorticoid Mechanisms of Functional Connectivity Changes in Stress-Related Neuropsychiatric Disorders.

    Science.gov (United States)

    Hall, Baila S; Moda, Rachel N; Liston, Conor

    2015-01-01

    Stress-especially chronic, uncontrollable stress-is an important risk factor for many neuropsychiatric disorders. The underlying mechanisms are complex and multifactorial, but they involve correlated changes in structural and functional measures of neuronal connectivity within cortical microcircuits and across neuroanatomically distributed brain networks. Here, we review evidence from animal models and human neuroimaging studies implicating stress-associated changes in functional connectivity in the pathogenesis of PTSD, depression, and other neuropsychiatric conditions. Changes in fMRI measures of corticocortical connectivity across distributed networks may be caused by specific structural alterations that have been observed in the prefrontal cortex, hippocampus, and other vulnerable brain regions. These effects are mediated in part by glucocorticoids, which are released from the adrenal gland in response to a stressor and also oscillate in synchrony with diurnal rhythms. Recent work indicates that circadian glucocorticoid oscillations act to balance synapse formation and pruning after learning and during development, and chronic stress disrupts this balance. We conclude by considering how disrupted glucocorticoid oscillations may contribute to the pathophysiology of depression and PTSD in vulnerable individuals, and how circadian rhythm disturbances may affect non-psychiatric populations, including frequent travelers, shift workers, and patients undergoing treatment for autoimmune disorders.

  13. Coulomb stress change of crustal faults in Japan for 21 years, estimated from GNSS displacement

    Science.gov (United States)

    Nishimura, T.

    2017-12-01

    Coulomb stress is one of the simplest index to show how the fault is close to a brittle failure (e.g., earthquake). Many previous studies used the Coulomb stress change (ΔCFS) to evaluate whether the fault approaches failure and successfully explained an earthquake triggered by previous earthquakes and volcanic sources. Most studies use a model of a half-space medium with given rheological properties, boundary conditions, dislocation, etc. to calculate ΔCFS. However, Ueda and Takahashi (2005) proposed to calculate DCFS directly from surface displacement observed by GNSS. There are 6 independent components of stress tensor in an isotropic elastic medium. On the surface of the half-space medium, 3 components should be zero because of no traction on the surface. This means the stress change on the surface is calculated from the surface strain change using Hooke's law. Although an earthquake does not occur on surface, the stress change on the surface may approximate that at a depth of a shallow crustal earthquake (e.g., 10 km) if the source is far from the point at which we calculate the stress change. We tested it by comparing ΔCFS from the surface displacement and that from elastic fault models for past earthquakes. We first estimate a strain change with a method of Shen et al.(1996 JGR) from surface displacement and then calculate ΔCFS for a targeted focal mechanism. Although ΔCFS in the vicinity of the source fault cannot be reproduced from the surface displacement, surface displacement gives a good approximation of ΔCFS in a region 50 km away from the source if the target mechanism is a vertical strike-slip fault. It suggests that GNSS observation can give useful information on a recent change of earthquake potential. We, therefore, calculate the temporal evolution of ΔCFS on active faults in southwest Japan from April 1996 using surface displacement at GNSS stations. We used parameters for the active faults used for evaluation of strong motion by the

  14. Modelling climate change impacts on viticultural yield, phenology and stress conditions in Europe.

    Science.gov (United States)

    Fraga, Helder; García de Cortázar Atauri, Iñaki; Malheiro, Aureliano C; Santos, João A

    2016-11-01

    Viticulture is a key socio-economic sector in Europe. Owing to the strong sensitivity of grapevines to atmospheric factors, climate change may represent an important challenge for this sector. This study analyses viticultural suitability, yield, phenology, and water and nitrogen stress indices in Europe, for present climates (1980-2005) and future (2041-2070) climate change scenarios (RCP4.5 and 8.5). The STICS crop model is coupled with climate, soil and terrain databases, also taking into account CO 2 physiological effects, and simulations are validated against observational data sets. A clear agreement between simulated and observed phenology, leaf area index, yield and water and nitrogen stress indices, including the spatial differences throughout Europe, is shown. The projected changes highlight an extension of the climatic suitability for grapevines up to 55°N, which may represent the emergence of new winemaking regions. Despite strong regional heterogeneity, mean phenological timings (budburst, flowering, veraison and harvest) are projected to undergo significant advancements (e.g. budburst/harvest can be >1 month earlier), with implications also in the corresponding phenophase intervals. Enhanced dryness throughout Europe is also projected, with severe water stress over several regions in southern regions (e.g. southern Iberia and Italy), locally reducing yield and leaf area. Increased atmospheric CO 2 partially offsets dryness effects, promoting yield and leaf area index increases in central/northern Europe. Future biomass changes may lead to modifications in nitrogen demands, with higher stress in northern/central Europe and weaker stress in southern Europe. These findings are critical decision support systems for stakeholders from the European winemaking sector. © 2016 John Wiley & Sons Ltd.

  15. Thermo-Hydro-Micro-Mechanical 3D Modeling of a Fault Gouge During Co-seismic Slip

    Science.gov (United States)

    Papachristos, E.; Stefanou, I.; Sulem, J.; Donze, F. V.

    2017-12-01

    A coupled Thermo-Hydro-Micro-Mechanical (THMM) model based on the Discrete Elements method (DEM) is presented for studying the evolving fault gouge properties during pre- and co-seismic slip. Modeling the behavior of the fault gouge at the microscale is expected to improve our understanding on the various mechanisms that lead to slip weakening and finally control the transition from aseismic to seismic slip.The gouge is considered as a granular material of spherical particles [1]. Upon loading, the interactions between particles follow a frictional behavior and explicit dynamics. Using regular triangulation, a pore network is defined by the physical pore space between the particles. The network is saturated by a compressible fluid, and flow takes place following Stoke's equations. Particles' movement leads to pore deformation and thus to local pore pressure increase. Forces exerted from the fluid onto the particles are calculated using mid-step velocities. The fluid forces are then added to the contact forces resulting from the mechanical interactions before the next step.The same semi-implicit, two way iterative coupling is used for the heat-exchange through conduction.Simple tests have been performed to verify the model against analytical solutions and experimental results. Furthermore, the model was used to study the effect of temperature on the evolution of effective stress in the system and to highlight the role of thermal pressurization during seismic slip [2, 3].The analyses are expected to give grounds for enhancing the current state-of-the-art constitutive models regarding fault friction and shed light on the evolution of fault zone propertiesduring seismic slip.[1] Omid Dorostkar, Robert A Guyer, Paul A Johnson, Chris Marone, and Jan Carmeliet. On the role of fluids in stick-slip dynamics of saturated granular fault gouge using a coupled computational fluid dynamics-discrete element approach. Journal of Geophysical Research: Solid Earth, 122

  16. Coping with a changing environment: The effects of early life stress

    DEFF Research Database (Denmark)

    Vindas, Marco A.; Madaro, Angelico; Fraser, Thomas W.K.

    2016-01-01

    to environmental changes is particularly evident at early life stages. We investigated the performance of salmon, previously subjected to an unpredictable chronic stress (UCS) treatment at an early age (10 month old parr), over several months and life stages. The UCS fish showed overall higher specific growth...... rates compared with unstressed controls after smoltification, a particularly challenging life stage, and after seawater transfer. Furthermore, subjecting fish to acute stress at the end of the experiment, we found that UCS groups had an overall lower hypothalamic catecholaminergic and brain stem...... farming environments may be beneficial, because in such situations individuals may be able to reallocate energy from stress responses into other life processes, such as growth....

  17. The stress-buffering effects of hope on changes in adjustment to caregiving in multiple sclerosis.

    Science.gov (United States)

    Madan, Sindia; Pakenham, Kenneth I

    2015-09-01

    This study examined the direct and stress-buffering effects of global hope and its components (agency and pathways) on changes in adjustment to multiple sclerosis caregiving over 12 months. A total of 140 carers and their care-recipients completed questionnaires at Time 1 and 12 months later, Time 2. Focal predictors were stress, hope, agency and pathways, and the adjustment outcomes were anxiety, depression, positive affect, positive states of mind and life satisfaction. Results showed that as predicted, greater hope was associated with better adjustment after controlling for the effects of initial adjustment and caregiving and care-recipient illness variables. No stress-buffering effects of hope emerged. Regarding hope components, only the agency dimension emerged as a significant predictor of adjustment. Findings highlight hope as an important protective resource for coping with multiple sclerosis caregiving and underscore the role of agency thinking in this process. © The Author(s) 2013.

  18. The response of the yeast Saccharomyces cerevisiae to sudden vs. gradual changes in environmental stress monitored by expression of the stress response protein Hsp12p.

    Science.gov (United States)

    Nisamedtinov, Ildar; Lindsey, George G; Karreman, Robert; Orumets, Kerti; Koplimaa, Mariane; Kevvai, Kaspar; Paalme, Toomas

    2008-09-01

    The response of the yeast Saccharomyces cerevisiae to sudden vs. gradual changes in different environmental stress conditions during both respiratory growth and aerobic fermentative growth in the presence of excess glucose was investigated by monitoring the level and rate of expression of the stress response protein Hsp12p using the fluorescent fusion construct Hsp12p-Gfp2p. The initial expression level and the rate of Hsp12p synthesis was significantly greater under glucose-limited conditions in the chemostat (Dtemperature caused stress responses in both D-stat and auxo-accelerostat culture. The magnitude of the stress response depended on the stress factor, cultivation conditions as well as the rate of change of the stress factor. The rate of Hsp12p synthesis increased due to all applied stresses, with the observed increase between 2 and 20 times lower when the stress was applied gradually rather than rapidly. The results suggested that the Hsp12p expression rate is a good indicator of applied stress in S. cerevisiae.

  19. Acute and delayed restraint stress-induced changes in nitric oxide producing neurons in limbic regions.

    Science.gov (United States)

    Echeverry, M B; Guimarães, F S; Del Bel, E A

    2004-01-01

    Microinjection into the dentate gyrus of the hippocampus of N(omega)-nitro-l-arginine methyl ester hydrochloride (l-NAME), a nitric oxide synthase (NOS) inhibitor, induces antinociceptive effect 5 days after a single restraint episode. The mechanisms of this stress-antinociceptive modulatory effect have not been investigated but may involve plastic changes in the hippocampal formation (HF). The objective of the present study was to investigate possible mechanisms of the stress-modulating effect on antinociception induced by NOS inhibition in the hippocampus. We analyzed the effects of restraint stress on neuronal NOS (nNOS) expression and nicotinamide adenine dinucleotide phosphate-diaphorase histochemical activity (NADPH-d) in the HF and related brain regions. Male Wistar rats (n=6-11/group) were submitted to a single (acute stress) or repeated (5 days) episodes of 2-h restraint. Control animals remained in their home cages being all animals daily handled during this period. In the fifth day, animals received unilateral microinjection of l-NAME (150 nmol/0.2 microl) or saline (control) into the dentate gyrus of the dorsal hippocampus (DG). Immediately before and after drug microinjection tail-flick reflex latency or hotplate licking reaction was measured. Animals were killed i. immediately; ii. 5 days after acute stress; or iii. after repeated stress. NADPH-d and nNOS expression were quantified in the HF, caudate-putamen, secondary somatosensorial, entorhinal and piriform cortices and amygdaloid complex. Five days after one or five restraint episodes l-NAME microinjection into the DG elicited antinociceptive effect (analysis of variance [ANOVA], Psomatosensorial cortex. The results confirm that the dorsal hippocampus participates in the modulation of stress consequences. They also show that a single stress episode causes acute changes in nitric oxide system in the amygdala complex and delayed modifications in the HF. The delayed (5 days) antinociceptive effect of

  20. Changes in psychosocial well-being after mindfulness-based stress reduction: a prospective cohort study.

    Science.gov (United States)

    Hill, Renee J; McKernan, Lindsey C; Wang, Li; Coronado, Rogelio A

    2017-07-01

    Objectives: The primary purpose of the current study was to assess the effects of a mindfulness-based stress reduction (MBSR) program, facilitated by non-psychologist clinicians, for improving psychosocial well-being. A secondary purpose of the current study was to explore the role of self-compassion as a potential underlying factor for improvements in emotional distress. Application of these findings to a physical therapy setting is provided. Methods: One hundred and thirty participants with a variety of medical complaints completed an eight-week MBSR program at Vanderbilt University's Osher Center for Integrative Medicine. Prior to the intervention and at the eight-week time point, participants completed measures for emotional distress (Brief Symptom Inventory), stress (Perceived Stress Scale-10), mindfulness (Mindfulness Attention and Awareness Scale), and self-compassion (Self-Compassion Scale). Wilcoxon signed-rank test was used to evaluate changes in outcomes after MBSR. Linear model estimation using ordinary least squares was used to evaluate the association between changes in self-compassion with changes in emotional distress. Results: Following MBSR, participants reported significant reductions in emotional distress ( p  mindfulness and self-compassion ( p  < 0.001). Linear regression model revealed that changes in self-compassion were significantly associated with changes in emotional distress ( p  < 0.001). Discussion: An MBSR program conducted by non-psychologist clinicians was associated with improvements in emotional distress, stress, and self-compassion. MBSR is a promising adjunct intervention in which principles can be integrated within a physical therapy approach for chronic conditions. Level of Evidence : 3B.

  1. Effect of coseismic and postseismic deformation on homogeneous and layered half-space and spherical analysis: Model simulation of the 2006 Java, Indonesia, tsunami earthquake

    Science.gov (United States)

    Gunawan, Endra; Meilano, Irwan; Hanifa, Nuraini Rahma; Widiyantoro, Sri

    2017-12-01

    We simulate surface displacements calculated on homogeneous and layered half-space and spherical models as applied to the coseismic and postseismic (afterslip and viscoelastic relaxation) of the 2006 Java tsunami earthquake. Our analysis of coseismic and afterslip deformation suggests that the homogeneous half-space model generates a much broader displacement effect than the layered half-space and spherical models. Also, though the result for surface displacements is similar for the layered half-space and spherical models, noticeable displacements still occurred on top of the coseismic fault patches. Our displacement result in afterslip modeling suggests that significant displacements occurred on top of the main afterslip fault patches, differing from the viscoelastic relaxation model, which has displacements in the front region of coseismic fault patches. We propose this characteristic as one of the important features differentiating a postseismic deformation signal from afterslip and viscoelastic relaxation detected by geodetic data.

  2. Heat-stress increase under climate change twice as large in cities as in rural areas

    Science.gov (United States)

    Wouters, Hendrik; De Ridder, Koen; Poelmans, Lien; Willems, Patrick; Brouwers, Johan; Hosseinzadehtalaei, Parisa; Tabari, Hossein; Vanden Broucke, Sam; van Lipzig, Nicole P. M.; Demuzere, Matthias

    2017-04-01

    Urban areas, being warmer than their surroundings, are particularly vulnerable to global warming and associated increases in extreme temperatures. Yet ensemble climate-model projections are generally performed on a scale that is too coarse to represent the evolution of temperatures in cities. Here, for the first time, we combine a 35-year convection-permitting climate model integrations with information from an ensemble of general circulation models to assess heat stress in a typical densely populated mid-latitude maritime region. We show that the heat-stress increase for the mid-21st century is twice as large in cities compared to their surrounding rural areas. The exacerbation is driven by the urban heat island itself, its concurrence with heatwaves, and urban expansion. Cities experience a heat-stress multiplication by a factor 1.4 and 15 depending on the scenario. Remarkably, the future heat-stress surpasses everywhere the urban hot spots of today. Our novel insights exemplify the need to combine information from climate models, acting on different scales, for climate-change risk assessment in heterogeneous regions. Moreover, these results highlight the necessity for adaptation to increasing heat stress, especially in urban areas.

  3. Time course transcriptome changes in Shewanella algae in response to salt stress.

    Directory of Open Access Journals (Sweden)

    Xiuping Fu

    Full Text Available Shewanella algae, which produces tetrodotoxin and exists in various seafoods, can cause human diseases, such as spondylodiscitis and bloody diarrhea. In the present study, we focused on the temporal, dynamic process in salt-stressed S. algae by monitoring the gene transcript levels at different time points after high salt exposure. Transcript changes in amino acid metabolism, carbohydrate metabolism, energy metabolism, membrane transport, regulatory functions, and cellular signaling were found to be important for the high salt response in S. algae. The most common strategies used by bacteria to survive and grow in high salt environments, such as Na+ efflux, K+ uptake, glutamate transport and biosynthesis, and the accumulation of compatible solutes, were also observed in S. algae. In particular, genes involved in peptidoglycan biosynthesis and DNA repair were highly and steadily up-regulated, accompanied by rapid and instantaneous enhancement of the transcription of large- and small-ribosome subunits, which suggested that the structural changes in the cell wall and some stressful responses occurred in S. algae. Furthermore, the transcription of genes involved in the tricarboxylic acid (TCA cycle and the glycolytic pathway was decreased, whereas the transcription of genes involved in anaerobic respiration was increased. These results, demonstrating the multi-pathway reactions of S. algae in response to salt stress, increase our understanding of the microbial stress response mechanisms.

  4. Impacts of Wind Stress Changes on the Global Heat Transport, Baroclinic Instability, and the Thermohaline Circulation

    Directory of Open Access Journals (Sweden)

    Jeferson Prietsch Machado

    2016-01-01

    Full Text Available The wind stress is a measure of momentum transfer due to the relative motion between the atmosphere and the ocean. This study aims to investigate the anomalous pattern of atmospheric and oceanic circulations due to 50% increase in the wind stress over the equatorial region and the Southern Ocean. In this paper we use a coupled climate model of intermediate complexity (SPEEDO. The results show that the intensification of equatorial wind stress causes a decrease in sea surface temperature in the tropical region due to increased upwelling and evaporative cooling. On the other hand, the intensification of wind stress over the Southern Ocean induces a regional increase in the air and sea surface temperatures which in turn leads to a reduction in Antarctic sea ice thickness. This occurs in association with changes in the global thermohaline circulation strengthening the rate of Antarctic Bottom Water formation and a weakening of the North Atlantic Deep Water. Moreover, changes in the Southern Hemisphere thermal gradient lead to modified atmospheric and oceanic heat transports reducing the storm tracks and baroclinic activity.

  5. Metabolic changes in Citrus leaf volatiles in response to environmental stress.

    Science.gov (United States)

    Asai, Tomonori; Matsukawa, Tetsuya; Kajiyama, Shin'ichiro

    2016-02-01

    Citrus plants are well known as a rich source of VOCs, and several have important roles in defense responses. However, how VOCs are regulated in response to environmental stress is not yet well understood. In this study, we investigated dynamic changes of VOCs present in leaves of seven Citrus species (Citrus sinensis, C. limon, C. paradisi, C. unshiu, C. kinokuni, C. grandis, and C. hassaku) in response to mechanical wounding, jasmonic acid (JA), and salicylic acid (SA) as determined by gas chromatography/mass spectrometric analysis followed by multivariate analysis (principal component analysis, PCA, and orthogonal partial least squares-discriminant analysis, OPLS-DA). PCA and OPLS-DA suggested that changes in VOC profiles against stress stimuli were much diverse among Citrus species. OPLS-DA showed that C6 volatiles, such as hexanal and trans-2-hexenal, were induced in response to JA and SA stimuli in C. sinensis and C. grandis, while the other VOCs were decreased under all tested stress conditions. α-Farnesene was induced in all species except C. hassaku after wounding or JA treatment. In addition, α-farnesene was also induced in response to SA stimuli in C. unshiu and C. kinokuni. Therefore these volatiles can be candidates of the common stress biomarkers in Citrus. Our results will give a new insight into defense mechanisms in Citrus species. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  6. Comparison of mechanical stress and change in bone mineral density between two types of femoral implant using finite element analysis.

    Science.gov (United States)

    Hirata, Yasuhide; Inaba, Yutaka; Kobayashi, Naomi; Ike, Hiroyuki; Fujimaki, Hiroshi; Saito, Tomoyuki

    2013-12-01

    Stress shielding after total hip arthroplasty (THA) remains an unsolved issue. Various patterns of mechanical stress appear according to the type of femoral stem used. To compare differences in mechanical stress conditions between Zweymuller type and fit-and-fill type stems, finite element analysis (FEA) was performed. Differences in bone mineral density (BMD) changes in the femur were also compared. Maximum stress was confirmed in Gruen zone 4, whereas zone 1 had the minimum amount of stress with both types of implant. The Zweymuller stem group had less mechanical stress and lower BMD in zone 7 than the fit-and-fill stem group. In conclusion, differences in mechanical stress may be related to changes in BMD after THA. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Changes in facets of mindfulness and posttraumatic stress disorder treatment outcome.

    Science.gov (United States)

    Tyler Boden, Matthew; Bernstein, Amit; Walser, Robyn D; Bui, Leena; Alvarez, Jennifer; Bonn-Miller, Marcel O

    2012-12-30

    Though there has been a recent surge of interest in the relations between facets of mindfulness and Posttraumatic Stress Disorder (PTSD), there has been a dearth of empirical studies investigating the impact of changes in facets of mindfulness on PTSD treatment outcomes. The present study tested the prospective associations between pre- to post-treatment changes in facets of mindfulness and PTSD and depression severity at treatment discharge, among 48 military Veterans in residential PTSD treatment adhering to a cognitive-behavioral framework. Together, changes in facets of mindfulness significantly explained post-treatment PTSD and depression severity (19-24% of variance). Changes in acting with awareness explained unique variance in post-treatment PTSD severity and changes in nonjudgmental acceptance explained unique variance in post-treatment depression severity. These results remained significant after adjusting for shared variance with length of treatment stay. Published by Elsevier Ireland Ltd.

  8. Posttraumatic Stress Disorder in the DSM-5: Controversy, Change, and Conceptual Considerations

    Directory of Open Access Journals (Sweden)

    Anushka Pai

    2017-02-01

    Full Text Available The criteria for posttraumatic stress disorder PTSD have changed considerably with the newest edition of the American Psychiatric Association’s (APA Diagnostic and Statistical Manual of Mental Disorders (DSM-5. Changes to the diagnostic criteria from the DSM-IV to DSM-5 include: the relocation of PTSD from the anxiety disorders category to a new diagnostic category named “Trauma and Stressor-related Disorders”, the elimination of the subjective component to the definition of trauma, the explication and tightening of the definitions of trauma and exposure to it, the increase and rearrangement of the symptoms criteria, and changes in additional criteria and specifiers. This article will explore the nosology of the current diagnosis of PTSD by reviewing the changes made to the diagnostic criteria for PTSD in the DSM-5 and discuss how these changes influence the conceptualization of PTSD.

  9. 4D stress evolution models of the San Andreas Fault System: Investigating time- and depth-dependent stress thresholds over multiple earthquake cycles

    Science.gov (United States)

    Burkhard, L. M.; Smith-Konter, B. R.

    2017-12-01

    4D simulations of stress evolution provide a rare insight into earthquake cycle crustal stress variations at seismogenic depths where earthquake ruptures nucleate. Paleoseismic estimates of earthquake offset and chronology, spanning multiple earthquakes cycles, are available for many well-studied segments of the San Andreas Fault System (SAFS). Here we construct new 4D earthquake cycle time-series simulations to further study the temporally and spatially varying stress threshold conditions of the SAFS throughout the paleoseismic record. Interseismic strain accumulation, co-seismic stress drop, and postseismic viscoelastic relaxation processes are evaluated as a function of variable slip and locking depths along 42 major fault segments. Paleoseismic earthquake rupture histories provide a slip chronology dating back over 1000 years. Using GAGE Facility GPS and new Sentinel-1A InSAR data, we tune model locking depths and slip rates to compute the 4D stress accumulation within the seismogenic crust. Revised estimates of stress accumulation rate are most significant along the Imperial (2.8 MPa/100yr) and Coachella (1.2 MPa/100yr) faults, with a maximum change in stress rate along some segments of 11-17% in comparison with our previous estimates. Revised estimates of earthquake cycle stress accumulation are most significant along the Imperial (2.25 MPa), Coachella (2.9 MPa), and Carrizo (3.2 MPa) segments, with a 15-29% decrease in stress due to locking depth and slip rate updates, and also postseismic relaxation from the El Mayor-Cucapah earthquake. Because stress drops of major strike-slip earthquakes rarely exceed 10 MPa, these models may provide a lower bound on estimates of stress evolution throughout the historical era, and perhaps an upper bound on the expected recurrence interval of a particular fault segment. Furthermore, time-series stress models reveal temporally varying stress concentrations at 5-10 km depths, due to the interaction of neighboring fault

  10. Coseismic and postseismic slip ruptures for 2015 Mw 6.4 Pishan earthquake constrained by static GPS solutions

    Directory of Open Access Journals (Sweden)

    Ping He

    2016-09-01

    Full Text Available On 3 July 2015, a Mw 6.4 earthquake occurred on a blind fault struck Pishan, Xinjiang, China. By combining Crustal Movement Observation Network of China (CMONOC and other Static Global Positioning System (GPS sites surrounding Pishan region, it provides a rare chance for us to constrain the slip rupture for such a moderate event. The maximum displacement is up to 12 cm, 2 cm for coseismic and postseismic deformation, respectively, and both the deformation patterns show a same direction moving northeastward. With rectangular dislocation model, a magnitude of Mw6.48, Mw6.3 is calculated based on coseismic, postseismic deformation respectively. Our result indicates the western Kunlun range is still moving toward Tarim Basin followed by an obvious postseismic slip associated with this earthquake. To determine a more reasonable model for postseismic deformation, a longer GPS dataset will be needed.

  11. Changes in permeability caused by transient stresses: field observations, experiments, and mechanisms

    Science.gov (United States)

    Manga, Michael; Beresnev, Igor; Brodsky, Emily E.; Elkhoury, Jean E.; Elsworth, Derek; Ingebritsen, Steve E.; Mays, David C.; Wang, Chi-Yuen

    2012-01-01

    Oscillations in stress, such as those created by earthquakes, can increase permeability and fluid mobility in geologic media. In natural systems, strain amplitudes as small as 10–6 can increase discharge in streams and springs, change the water level in wells, and enhance production from petroleum reservoirs. Enhanced permeability typically recovers to prestimulated values over a period of months to years. Mechanisms that can change permeability at such small stresses include unblocking pores, either by breaking up permeability-limiting colloidal deposits or by mobilizing droplets and bubbles trapped in pores by capillary forces. The recovery time over which permeability returns to the prestimulated value is governed by the time to reblock pores, or for geochemical processes to seal pores. Monitoring permeability in geothermal systems where there is abundant seismicity, and the response of flow to local and regional earthquakes, would help test some of the proposed mechanisms and identify controls on permeability and its evolution.

  12. Using management to address vegetation stress related to land-use and climate change

    Science.gov (United States)

    Middleton, Beth A.; Boudell, Jere; Fisichelli, Nicholas

    2017-01-01

    While disturbances such as fire, cutting, and grazing can be an important part of the conservation of natural lands, some adjustments to management designed to mimic natural disturbance may be necessary with ongoing and projected climate change. Stressed vegetation that is incapable of regeneration will be difficult to maintain if adults are experiencing mortality, and/or if their early life-history stages depend on disturbance. A variety of active management strategies employing disturbance are suggested, including resisting, accommodating, or directing vegetation change by manipulating management intensity and frequency. Particularly if land-use change is the main cause of vegetation stress, amelioration of these problems using management may help vegetation resist change (e.g. strategic timing of water release if a water control structure is available). Managers could direct succession by using management to push vegetation toward a new state. Despite the historical effects of management, some vegetation change will not be controllable as climates shift, and managers may have to accept some of these changes. Nevertheless, proactive measures may help managers achieve important conservation goals in the future.

  13. Historical coseismic surface deformation of fluvial gravel deposits, Schafberg fault, Lower Rhine Graben, Germany

    Science.gov (United States)

    Kübler, Simon; Friedrich, Anke M.; Gold, Ryan D.; Strecker, Manfred R.

    2018-03-01

    Intraplate earthquakes pose a significant seismic hazard in densely populated rift systems like the Lower Rhine Graben in Central Europe. While the locations of most faults in this region are well known, constraints on their seismogenic potential and earthquake recurrence are limited. In particular, the Holocene deformation history of active faults remains enigmatic. In an exposure excavated across the Schafberg fault in the southwestern Lower Rhine Graben, south of Untermaubach, in the epicentral region of the 1756 Düren earthquake ( M L 6.2), we mapped a complex deformation zone in Holocene fluvial sediments. We document evidence for at least one paleoearthquake that resulted in vertical surface displacement of 1.2 ± 0.2 m. The most recent earthquake is constrained to have occurred after 815 AD, and we have modeled three possible earthquake scenarios constraining the timing of the latest event. Coseismic deformation is characterized by vertical offset of sedimentary contacts distributed over a 10-m-wide central damage zone. Faults were identified where they fracture and offset pebbles in the vertically displaced gravel layers and fracture orientation is consistent with the orientation of the Schafberg fault. This study provides the first constraint on the most recent surface-rupturing earthquake on the Schafberg fault. We cannot rule out that this fault acted as the source of the 1756 Düren earthquake. Our study emphasizes the importance of, and the need for, paleoseismic studies in this and other intracontinental regions, in particular on faults with subtle geomorphic expression that would not typically be recognized as being potentially seismically active. Our study documents textural features in unconsolidated sediment that formed in response to coseismic rupturing of the underlying bedrock fault. We suggest that these features, e.g., abundant oriented transgranular fractures in their context, should be added to the list of criteria used to identify a fault

  14. Stress !!!

    OpenAIRE

    Fledderus, M.

    2012-01-01

    Twee op de vijf UT-studenten hebben last van ernstige studiestress, zo erg zelfs dat het ze in hun privéleven belemmert. Die cijfers komen overeen met het landelijk beeld van stress onder studenten. Samen met 14 andere universiteits- en hogeschoolbladen enquêteerde UT Nieuws bijna 5500 studenten. Opvallend is dat mannelijke studenten uit Twente zich veel minder druk lijken te maken over hun studie. Onder vrouwen ligt de stress juist erg hoog ten opzichte van het landelijk gemiddelde.

  15. Stress

    DEFF Research Database (Denmark)

    Keller, Hanne Dauer

    2015-01-01

    Kapitlet handler om stress som følelse, og det trækker primært på de få kvalitative undersøgelser, der er lavet af stressforløb.......Kapitlet handler om stress som følelse, og det trækker primært på de få kvalitative undersøgelser, der er lavet af stressforløb....

  16. Blood Glukose Response of Giant Gouramy (Osphronemus gaouramy, Lac. to the Stress of Environmental Temperature Changes

    Directory of Open Access Journals (Sweden)

    S. Hastuti

    2007-08-01

    Full Text Available This experiment was conducted to investigate blood glucose performance of giant gouramy (Osphronemus gouramy, Lac. to environmental changes. Fish with body weight of about 52,15 g was used in the experiment. A hundred and twenty fish were subjected to stress by moving them to another aquarium containing cooler water for 5 minute before put them back to the origin aquarium. The stress treatments were Δ 0°C (A, Δ-3°C (B, Δ-6°C(C, and Δ-9°C(D. Blood glucose was measured at 0, 1, 2, 3, 4 and 5 hours post stress, each for 5 fish. During stress treatment, the survival offish were recorded. To study the role of insulin activation on reducing the stress effects, thirty fish were injected with insulin 2 IU/100 g body weight before subjected them to stressar. Blood glucose level of fish subjected to temperature stress of Δ-9°C was the greatest. The blood glucose response to temperature changes was linear, Y = 4,4543 X + 35,553 with R2 = 0,09976. The survival rate of fish was 100% for all treatments. Injected of insulin 2 IU/100 g body weight was able to reduce hyperglycemia that caused by stress. Key words: Blood glucose, giant gouramy, Osphronemus gouramy, stress   ABSTRAK Penelitian ini dilakukan dengan tujuan untuk mengetahui performa glukosa darah ikan gurami (Osphronemus gouramy, Lac. dalam merespon perubahan suhu lingkungan. Ikan berbobot rata-rata 52,15 g sebanyak 120 ekor diberi stres dengan cara diangkat dan dipindahkan ke suatu wadah yang bersuhu lebih dingin selama 5 menit dan dikembalikan lagi ke wadah mula-mula. Perlakuan stres perubahan suhu dingin tersebut adalah A (Δ 0°C, B (Δ- 3°C, C (Δ-6°C dan D (Δ-9°C. Glukosa darah diukur dari 5 ekor ikan pada jam ke 0, 1, 2, 3, 4 dan 5 jam pascastres. Kelangsungan hidup dihitung pada saat perlakuan stres. Untuk melihat peran aktivasi insulin dalam menekan efek stres, ikan sebanyak 30 ekor diinjeksi insulin 2 iu/100 g bobot badan sebelum diberi stres. Kadar glukosa darah ikan gurame

  17. Post-Traumatic Stress Disorder Predicts Future Weight Change in the Millennium Cohort Study

    Science.gov (United States)

    2015-04-01

    eating and dieting behaviors (12), and (4) medications prescribed for PTSD that may affect body weight (13). Since obesity increases the risk of...al. Posttraumatic stress disorder in anorexia nervosa. Psychosom Med 2011;73:491-497. 30. Geliebter A, Aversa A. Emotional eating in overweight...weight changes in individuals with PTSD: (1) sleep deprivation caused by PTSD, as shorter sleep duration has been linked to higher obesity prevalence

  18. Phosphoenolpyruvate carboxylase from pennywort (Umbilicus rupestris). Changes in properties after exposure to water stress.

    OpenAIRE

    Daniel, P P; Bryant, J A; Woodward, F I

    1984-01-01

    Umbilicus rupestris (pennywort) switches from C3 photosynthesis to an incomplete form of crassulacean acid metabolism (referred to as 'CAM-idling') when exposed to water stress (drought). This switch is accompanied by an increase in the activity of phosphoenolpyruvate carboxylase. This enzyme also shows several changes in properties, including a marked decrease in sensitivity to acid pH, a lower Km for phosphoenolpyruvate, very much decreased sensitivity to the allosteric inhibitor malate, an...

  19. New Approaches for Crop Genetic Adaptation to the Abiotic Stresses Predicted with Climate Change

    Directory of Open Access Journals (Sweden)

    Robert Redden

    2013-05-01

    Full Text Available Extreme climatic variation is predicted with climate change this century. In many cropping regions, the crop environment will tend to be warmer with more irregular rainfall and spikes in stress levels will be more severe. The challenge is not only to raise agricultural production for an expanding population, but to achieve this under more adverse environmental conditions. It is now possible to systematically explore the genetic variation in historic local landraces by using GPS locators and world climate maps to describe the natural selection for local adaptation, and to identify candidate germplasm for tolerances to extreme stresses. The physiological and biochemical components of these expressions can be genomically investigated with candidate gene approaches and next generation sequencing. Wild relatives of crops have largely untapped genetic variation for abiotic and biotic stress tolerances, and could greatly expand the available domesticated gene pools to assist crops to survive in the predicted extremes of climate change, a survivalomics strategy. Genomic strategies can assist in the introgression of these valuable traits into the domesticated crop gene pools, where they can be better evaluated for crop improvement. The challenge is to increase agricultural productivity despite climate change. This calls for the integration of many disciplines from eco-geographical analyses of genetic resources to new advances in genomics, agronomy and farm management, underpinned by an understanding of how crop adaptation to climate is affected by genotype × environment interaction.

  20. Changes in inflammation, oxidative stress and adipokines following bariatric surgery among adolescents with severe obesity.

    Science.gov (United States)

    Kelly, A S; Ryder, J R; Marlatt, K L; Rudser, K D; Jenkins, T; Inge, T H

    2016-02-01

    Inflammation, oxidative stress and dysregulation of adipokines are thought to be pathophysiological mechanisms linking obesity to the development of insulin resistance and atherosclerosis. In adults, bariatric surgery reduces inflammation and oxidative stress, and beneficially changes the levels of several adipokines, but little is known about the postsurgical changes among adolescents. In two separate longitudinal cohorts we evaluated change from baseline of interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), monocyte chemo-attractant protein-1 (MCP-1), oxidized low-density lipoprotein cholesterol (oxLDL), adiponectin, leptin and resistin up to 12 months following elective laparoscopic Roux-en-Y gastric bypass (RYGB) or vertical sleeve gastrectomy (VSG) surgery in adolescents with severe obesity. In cohort 1, which consisted of 39 adolescents (mean age 16.5±1.6 years; 29 females) undergoing either RYGB or VSG, IL-6 (baseline: 2.3±3.4 pg ml(-1) vs 12 months: 0.8±0.6 pg ml(-1), Padolescents (mean age 16.5±1.6 years; 10 females) undergoing RYGB, results were similar: IL-6 (baseline: 1.7±0.9 pg ml(-1) vs 12 months: 0.4±0.9 pg ml(-1), PBariatric surgery produced robust improvements in markers of inflammation, oxidative stress and several adipokines among adolescents with severe obesity, suggesting potential reductions in risk for type 2 diabetes and cardiovascular disease.

  1. Cell cytoskeletal changes effected by static compressive stress lead to changes in the contractile properties of tissue regenerative collagen membranes

    Directory of Open Access Journals (Sweden)

    K Gellynck

    2013-06-01

    Full Text Available Static compressive stress can influence the matrix, which subsequently affects cell behaviour and the cell’s ability to further transform the matrix. This study aimed to assess response to static compressive stress at different stages of osteoblast differentiation and assess the cell cytoskeleton’s role as a conduit of matrix-derived stimuli. Mouse bone marrow mesenchymal stem cells (MSCs (D1 ORL UVA, osteoblastic cells (MC3T3-E1 and post-osteoblast/pre-osteocyte-like cells (MLO-A5 were seeded in hydrated and compressed collagen gels. Contraction was quantified macroscopically, and cell morphology, survival, differentiation and mineralisation assessed using confocal microscopy, alamarBlue® assay, real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR and histological stains, respectively. Confocal microscopy demonstrated cell shape changes and favourable microfilament organisation with static compressive stress of the collagen matrix; furthermore, cell survival was greater compared to the hydrated gels. The stage of osteoblast differentiation determined the degree of matrix contraction, with MSCs demonstrating the greatest amount. Introduction of microfilament disrupting inhibitors confirmed that pre-stress and tensegrity forces were under the influence of gel density, and there was increased survival and differentiation of the cells within the compressed collagen compared to the hydrated collagen. There was also relative stiffening and differentiation with time of the compressed cell-seeded collagen, allowing for greater manipulation. In conclusion, the combined collagen chemistry and increased density of the microenvironment can promote upregulation of osteogenic genes and mineralisation; MSCs can facilitate matrix contraction to form an engineered membrane with the potential to serve as a ‘pseudo-periosteum’ in the regeneration of bone defects.

  2. Model approach for stress induced steroidal hormone cascade changes in severe mental diseases.

    Science.gov (United States)

    Volko, Claus D; Regidor, Pedro A; Rohr, Uwe D

    2016-03-01

    Stress was described by Cushing and Selye as an adaptation to a foreign stressor by the anterior pituitary increasing ACTH, which stimulates the release of glucocorticoid and mineralocorticoid hormones. The question is raised whether stress can induce additional steroidal hormone cascade changes in severe mental diseases (SMD), since stress is the common denominator. A systematic literature review was conducted in PubMed, where the steroidal hormone cascade of patients with SMD was compared to the impact of increasing stress on the steroidal hormone cascade (a) in healthy amateur marathon runners with no overtraining; (b) in healthy well-trained elite soldiers of a ranger training unit in North Norway, who were under extreme physical and mental stress, sleep deprivation, and insufficient calories for 1 week; and, (c) in soldiers suffering from post traumatic stress disorder (PTSD), schizophrenia (SI), and bipolar disorders (BD). (a) When physical stress is exposed moderately to healthy men and women for 3-5 days, as in the case of amateur marathon runners, only few steroidal hormones are altered. A mild reduction in testosterone, cholesterol and triglycerides is detected in blood and in saliva, but there was no decrease in estradiol. Conversely, there is an increase of the glucocorticoids, aldosterone and cortisol. Cellular immunity, but not specific immunity, is reduced for a short time in these subjects. (b) These changes are also seen in healthy elite soldiers exposed to extreme physical and mental stress but to a somewhat greater extent. For instance, the aldosterone is increased by a factor of three. (c) In SMD, an irreversible effect on the entire steroidal hormone cascade is detected. Hormones at the top of the cascade, such as cholesterol, dehydroepiandrosterone (DHEA), aldosterone and other glucocorticoids, are increased. However, testosterone and estradiol and their metabolites, and other hormones at the lower end of the cascade, seem to be reduced. 1

  3. Theoretical Analysis of the Influence of Longitudinal Stress Changes on Band Dimensions During Continuous Rolling Process

    Directory of Open Access Journals (Sweden)

    Sygut P.

    2016-03-01

    Full Text Available The paper presents the results of studies on the effect of nonuniform temperature distribution over the length of feedstock on the variation of longitudinal stresses in the rolling direction and band dimension change during the continuous rolling process. The studies were performed based on actual engineering data for a 160x160 mm square cross-section feedstock of steel S355J0. Numerical modelling of the rolling process was performed using Forge 2008®, a finite-element based computer program. Thermovision measurements and bars geometrical dimension changes were carried out in a domestic steelworks.

  4. Managing Positive Stress for Change in the Implementation of Technology in Schools

    Directory of Open Access Journals (Sweden)

    Carol Vanvooren

    2011-04-01

    Full Text Available In the Information Age, faculty and staff in large institutions and schools make transformative changes slowly. The implementation of technology as a tool for communication and in classroom integration for instruction is also slow for many educators. However, today there is an urgency to bring the most recent technology systems, applications, and strategies into the educational organization, creating an environment that requires knowledgeable leaders to manage the rapid change. With resistance just a parking lot whisper away, leaders must orchestrate the right amount of stress to create a need in the staff to constantly evolve to a new level of technology implementation. The five positive stress inducing strategies for change, first introduced by DeVore in 1994 [4], have proven to be used by highly effective leaders from elementary schools through college. With leaders trained in these key strategies, the likelihood of faculty and staff commitment to the needed changes in technology integration is greatly increased. Leaders can’t wait for the experienced employee to consider using technology as a tool; even elementary students race past the limited and readily outdated technology skills of most teachers. Leaders must create the positive stressors to initiate change for technology in their organizations now.

  5. Coseismic landslides reveal near-surface rock strength in a high-relief tectonically active setting

    Science.gov (United States)

    Gallen, Sean F.; Clark, Marin K.; Godt, Jonathan W.

    2014-01-01

    We present quantitative estimates of near-surface rock strength relevant to landscape evolution and landslide hazard assessment for 15 geologic map units of the Longmen Shan, China. Strength estimates are derived from a novel method that inverts earthquake peak ground acceleration models and coseismic landslide inventories to obtain material proper- ties and landslide thickness. Aggregate rock strength is determined by prescribing a friction angle of 30° and solving for effective cohesion. Effective cohesion ranges are from 70 kPa to 107 kPa for 15 geologic map units, and are approximately an order of magnitude less than typical laboratory measurements, probably because laboratory tests on hand-sized specimens do not incorporate the effects of heterogeneity and fracturing that likely control near-surface strength at the hillslope scale. We find that strength among the geologic map units studied varies by less than a factor of two. However, increased weakening of units with proximity to the range front, where precipitation and active fault density are the greatest, suggests that cli- matic and tectonic factors overwhelm lithologic differences in rock strength in this high-relief tectonically active setting.

  6. Measuring co-seismic deformation of the Sichuan earthquake by satellite differential INSAR

    Science.gov (United States)

    Zhang, Yonghong; Gong, Wenyu; Zhang, Jixian

    2008-12-01

    The Sichuan Earthquake, occurred on May 12, 2008, is the strongest earthquake to hit China since the 1976 Tangshan earthquake. The earthquake had a magnitude of M 8.0, and caused surface deformation greater than 3 meters. This paper presents the research work of measuring the co-seismic deformations of the earthquake with satellite differential interferometric SAR technique. Four L-band SAR images were used to form the interferogram with 2 pre- scenes imaged on Feb 17, 2008 and 2 post- scenes on May 19, 2008. The Digital Elevation Models extracted from 1:50,000-scale national geo-spatial database were used to remove the topographic contribution and form a differential interferogram. The interferogram presents very high coherence in most areas, although the pre- and post- images were acquired with time interval of 92 days. This indicates that the L-band PALSAR sensor is very powerful for interferometry applications. The baseline error is regarded as the main phase error source in the differential interferogram. Due to the difficulties of doing field works immediately after the earthquake, only one deformation measurement recorded by a permanent GPS station is obtained for this research. An approximation method is proposed to eliminate the orbital phase error with one control point. The derived deformation map shows similar spatial pattern and deformation magnitude compared with deformation field generated by seismic inversion method.

  7. Impact of water saturation on seismoelectric transfer functions: a laboratory study of coseismic phenomenon

    Science.gov (United States)

    Bordes, C.; Sénéchal, P.; Barrière, J.; Brito, D.; Normandin, E.; Jougnot, D.

    2015-03-01

    Seismic waves propagating in a porous medium, under favourable conditions, generate measurable electromagnetic fields due to electrokinetic effects. It has been proposed, following experimental and numerical studies, that these so-called `seismoelectromagnetic' couplings depend on pore fluid properties. The theoretical frame describing these phenomena are based on the original Biot's theory, assuming that pores are fluid-filled. We study here the impact of a partially saturated medium on amplitudes of those seismoelectric couplings by comparing experimental data to an effective fluid model. We have built a 1-m-length-scale experiment designed for imbibition and drainage of an homogeneous silica sand; the experimental set-up includes a seismic source, accelerometers, electric dipoles and capacitance probes in order to monitor seismic and seismoelectric fields during water saturation. Apparent velocities and frequency spectra (in the kiloHertz range) are derived from seismic and electrical measurements during experiments in varying saturation conditions. Amplitudes of seismic and seismoelectric waves and their ratios (i.e. transfer functions) are discussed using a spectral analysis performed by continuous wavelet transform. The experiments reveal that amplitude ratios of seismic to coseismic electric signals remain rather constant as a function of the water saturation in the Sw = [0.2-0.9] range, consistently with theoretically predicted transfer functions.

  8. Tridimensional reconstruction of the Co-Seismic Ionospheric Disturbance around the time of 2015 Nepal earthquake

    Science.gov (United States)

    Kong, Jian; Yao, Yibin; Zhou, Chen; Liu, Yi; Zhai, Changzhi; Wang, Zemin; Liu, Lei

    2018-01-01

    The Co-Seismic Ionospheric Disturbance of the 2015 Nepal earthquake is analyzed in this paper. GNSS data are used to obtain the Satellite-Station TEC sequences. After removing the de-trended TEC variation, a clear ionospheric disturbance was observed 10 min after the earthquake, while the geomagnetic conditions, solar activity, and weather condition remained calm according to the Kp, Dst, F10.7 indices and meteorological records during the period of interest. Computerized ionosphere tomography (CIT) is then used to present the tridimensional ionosphere variation with a 10-min time resolution. The CIT results indicate that (1) the disturbance of the ionospheric electron density above the epicenter during the 2015 Nepal earthquake is confined at a relatively low altitude (approximately 150-300 km); (2) the ionospheric disturbances on the west side and east sides of the epicenter are precisely opposite. A newly established electric field penetration model of the lithosphere-atmosphere-ionosphere coupling is used to investigate the potential physical mechanism.

  9. Inversion of GPS-measured coseismic displacements for source parameters of Taiwan earthquake

    Science.gov (United States)

    Lin, J. T.; Chang, W. L.; Hung, H. K.; Yu, W. C.

    2016-12-01

    We performed a method of determining earthquake location, focal mechanism, and centroid moment tensor by coseismic surface displacements from daily and high-rate GPS measurements. Unlike commonly used dislocation model where fault geometry is calculated nonlinearly, our method makes a point source approach to evaluate these parameters in a solid and efficient way without a priori fault information and can thus provide constrains to subsequent finite source modeling of fault slip. In this study, we focus on the resolving ability of GPS data for moderate (Mw=6.0 7.0) earthquakes in Taiwan, and four earthquakes were investigated in detail: the March 27 2013 Nantou (Mw=6.0), the June 2 2013 Nantou (Mw=6.3) , the October 31 2013 Ruisui (Mw=6.3), and the March 31 2002 Hualien (ML=6.8) earthquakes. All these events were recorded by the Taiwan continuous GPS network with data sampling rates of 30-second and 1 Hz, where the Mw6.3 Ruisui earthquake was additionally recorded by another local GPS network with a sampling rate of 20 Hz. Our inverted focal mechanisms of all these earthquakes are consistent with the results of GCMT and USGS that evaluates source parameters by dynamic information from seismic waves. We also successfully resolved source parameters of the Mw6.3 Ruisui earthquake within only 10 seconds following the earthquake occurrence, demonstrating the potential of high-rate GPS data on earthquake early warning and real-time determination of earthquake source parameters.

  10. [Changes in psychological stress after interventions in children and adolescents with mathematical learning disabilities].

    Science.gov (United States)

    Lambert, Katharina; Spinath, Birgit

    2013-01-01

    The present study examined the effects of the Waterglass Intervention Program on children with mathematical learning disabilities compared to dyscalculic children who received private tutoring. In a pre-post-control group design, N = 46 children (age 7-12) and their parents were questioned about changes in test anxiety, school reluctance, anxiety disorder, and internal and external abnormality. Children who attended the Waterglass Intervention Program reported a higher reduction of test anxiety, school reluctance, and attention problems. A trend toward a higher reduction of the CBCL-score was also found. These changes were mediated by the changes in math school grades. Furthermore, results showed that more children showed internal disorders than would be expected. An intervention specific for children with mathematical learning disabilities has positive effects on the psychological stress level of these children. Further research is required to investigate the mechanisms related to these changes and the effects on mathematical achievement.

  11. To what extent can vegetation change and plant stress be surveyed by remote sensing?

    Energy Technology Data Exchange (ETDEWEB)

    Toemmervik, Hans

    1998-12-31

    Air pollution from the nickel processing industry in the Kola region of Russia accounts for a large part of the environmental problems in the north-eastern parts of Norway and Finland. The objectives of this thesis were to examine if vegetation damage and plant stress can be surveyed by remote sensing and to assess the use of chlorophyll fluorescence measurements to detect plant stress in the field. The study was carried out in the border area between Norway and Russia. Two spaceborne and one airborne sensors were used. Changes in vegetation cover could be monitored with a degree of accuracy varying from 75 to 83%. A hybrid classification method monitored changes in both lichen dominated vegetation and in vegetation cover types dominated by dwarf shrubs and green plants, which were significantly associated with the differences in SO{sub 2} emission during the period from 1973 to 1994. Vegetation indices, change detection maps and prediction maps provided information on biomass and coverage of green vegetation. This was associated with the differences in the SO{sub 2} emissions during the same period. The vegetation and land cover types with the greatest stress and damage had the largest modelled SO{sub 2} concentration levels in the ground air layer while the vegetation cover types with the lowest degree of stress had the lowest. Comparison of the airborne casi map with the previously processed Landsat TM map from the same area showed that the casi map separated the complete vegetation cover into more detail than the Landsat TM map. The casi images indicated a red-edge shift for the medium to heavily damaged vegetation cover types. Problems with using airborne remote sensing by casi include variable clouds, lack of synoptic view, and cost. The variation in chlorophyll fluorescence of 11 plant species at 16 sites was most influenced by precipitation, temperature and continentality. 373 refs., 49 figs., 37 tabs.

  12. Lithosphere stress changes due to groundwater unloading in North China Plain

    Science.gov (United States)

    Pang, Yajin; Zhang, Huai; Shi, Yaolin

    2015-04-01

    During the past 50 years, excessive groundwater pumping has led to the continuous decline of groundwater table in North China Plain, which becomes one of the global hotspots of groundwater depletion. Over most of the rural areas of the plain, the shallow aquifer has experienced a water-table decline of more than 15m, with greater declines up to 50m in most urban centres, such as Beijing, Tangshan, Shijiangzhuang and so forth in 1960-2000. The entire groundwater depletion area covers a total area of approximately 56,273 km2 , more than 40% of the North China Plain. The vast area of enormous groundwater exploitation in North China Plain will definitely unload the lithosphere and create stress perturbations, the problem is if the stresses change large enough to affect tectonic activities. In this essay, we set up a 3 dimensional numerical visco-elastic model to discuss the effect of groundwater over-pumping on the lithosphere deformation and stress state in North China Plain. Based on the records of total groundwater-table decline during 1960-2010 in North China Plain, we estimate the accumulated deformation and lithosphere stress due to unloading of human-induced groundwater depletion. The area in the model ranges from 34° To 42°N, and 112° To 119°E, including the major groundwater depression cones in North China Plain. According to the simulating result, the maximum surface vertical uplift caused by groundwater unloading is 8cm. Meanwhile cumulative horizontal crustal stress changes near the surface goes up to 100kPa, and up to 40kPa at 15km depth where most earthquakes occurred in this area. The tectonic compressive stress rate is about 0.25kPa per year. Therefore, the stress changes due to groundwater pumping is significant compared with the tectonic driven stress changes. As China developed rapidly since 1978, the groundwater table mainly declined after 1978. Taking the earthquake catalog in the vicinity of groundwater depression zone into consideration, we

  13. Stress hormonal changes in the brain and plasma after acute noise exposure in mice.

    Science.gov (United States)

    Jin, Sang Gyun; Kim, Min Jung; Park, So Young; Park, Shi Nae

    2017-06-01

    To investigate the effects of acute noise stress on two amine stress hormones, norepinephrine (NE) and 5-hydroxyindoleacetic acid (5-HIAA) in the brain and plasma of mice after noise exposure. Mice were grouped into the control and noise groups. Mice in the noise group were exposed to white noise of 110dB sound pressure level for 60min. Auditory brainstem response thresholds, distortion product otoacoustic emissions, the organ of Corti grading scores, western blots of NE/5-HIAA in the whole brain and hippocampus, and the plasma levels of NE/5-HIAA were compared between the two groups. Significant hearing loss and cochlear damage were demonstrated in the noise group. NE and 5-HIAA in the hippocampus were elevated in the noise group (p=0.019/0.022 for NE/5-HIAA vs. the control). Plasma levels of NE and 5-HIAA were not statistically different between the groups (p=0.052/0.671 for NE/5-HIAA). Hearing loss with outer hair cell dysfunction and morphological changes of the organ of Corti after noise exposure in C57BL/6 mice proved the reliability of our animal model as an acute noise stress model. NE and 5-HIAA are suggested to be the potential biomarkers for acute noise stress in the hippocampus. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Feather corticosterone reveals stress associated with dietary changes in a breeding seabird.

    Science.gov (United States)

    Will, Alexis; Watanuki, Yutaka; Kikuchi, Dale M; Sato, Nobuhiko; Ito, Motohiro; Callahan, Matt; Wynne-Edwards, Katherine; Hatch, Scott; Elliott, Kyle; Slater, Leslie; Takahashi, Akinori; Kitaysky, Alexander

    2015-10-01

    Changes in climate and anthropogenic pressures might affect the composition and abundance of forage fish in the world's oceans. The junk-food hypothesis posits that dietary shifts that affect the quality (e.g., energy content) of food available to marine predators may impact their physiological state and consequently affect their fitness. Previously, we experimentally validated that deposition of the adrenocortical hormone, corticosterone, in feathers is a sensitive measure of nutritional stress in seabirds. Here, we use this method to examine how changes in diet composition and prey quality affect the nutritional status of free-living rhinoceros auklets (Cerorhinca monocerata). Our study sites included the following: Teuri Is. Japan, Middleton Is. central Gulf of Alaska, and St. Lazaria Is. Southeast Alaska. In 2012 and 2013, we collected "bill loads" delivered by parents to feed their chicks (n = 758) to document dietary changes. We deployed time-depth-temperature recorders on breeding adults (n = 47) to evaluate whether changes in prey coincided with changes in foraging behavior. We measured concentrations of corticosterone in fledgling (n = 71) and adult breeders' (n = 82) feathers to determine how birds were affected by foraging conditions. We found that seasonal changes in diet composition occurred on each colony, adults dove deeper and engaged in longer foraging bouts when capturing larger prey and that chicks had higher concentrations of corticosterone in their feathers when adults brought back smaller and/or lower energy prey. Corticosterone levels in feathers of fledglings (grown during the breeding season) and those in feathers of adult breeders (grown during the postbreeding season) were positively correlated, indicating possible carryover effects. These results suggest that seabirds might experience increased levels of nutritional stress associated with moderate dietary changes and that physiological responses to changes in prey composition

  15. Effects on Chilean Vertical Reference Frame due to the Maule Earthquake co-seismic and post-seismic effects

    Science.gov (United States)

    Montecino, Henry D.; de Freitas, Silvio R. C.; Báez, Juan C.; Ferreira, Vagner G.

    2017-12-01

    The Maule Earthquake (Mw = 8.8) of February 27, 2010 is among the strongest earthquakes that occurred in recent years throughout the world. The crustal deformation caused by this earthquake has been widely studied using GNSS, InSAR and gravity observations. However, there is currently no estimation of the possible vertical deformations produced by co-seismic and post-seismic effects in segments of the Chilean Vertical Reference Frame (CHVRF). In this paper, we present an estimation of co-seismic and post-seismic deformations on the CHVRF using an indirect approach based on GNSS and Gravity Recovery and Climate Experiment (GRACE) data as well as by applying a trajectory model. GNSS time series were used from 10 continuous GNSS stations in the period from 2007 to 2015, as well as 28 GNSS temporary stations realized before and after the earthquake, and 34 vertical deformation vectors in the region most affected by the earthquake. We considered a set of 147 monthly solutions of spherical harmonic gravity field that were expanded up to degree, as well as order 96 of the GRACE mission provided by Center for Space Research, University of Texas at Austin (UT-CSR) process center. The magnitude of vertical deformation was estimated in part of the Chilean vertical network due to the co-seismic and post-seismic effects. Once we evaluated the hydrological effect, natural and artificial jumps, and the effect of glacial isostatic adjustment in GNSS and GRACE time series, the maximum values associated to co- and post-seismic deformations on orthometric height were found to be ∼-34 cm and 5 cm, respectively. Overall, the deformation caused by the Maule earthquake in orthometric heights is almost entirely explained by the variation in the ellipsoidal heights (over 85% in co-seismic jump); however, coseismic jump in the geoid reached -3.3 mm, and could influence the maintenance of a modern vertical reference network in a medium to long term. We evaluated the consistency for a

  16. Two-dimensional Co-Seismic Surface Displacements Field of the Chi-Chi Earthquake Inferred from SAR Image Matching.

    Science.gov (United States)

    Hu, Jun; Li, Zhi-Wei; Ding, Xiao-Li; Zhu, Jian-Jun

    2008-10-21

    The M w =7.6 Chi-Chi earthquake in Taiwan occurred in 1999 over the Chelungpu fault and caused a great surface rupture and severe damage. Differential Synthetic Aperture Radar Interferometry (DInSAR) has been applied previously to study the co-seismic ground displacements. There have however been significant limitations in the studies. First, only one-dimensional displacements along the Line-of-Sight (LOS) direction have been measured. The large horizontal displacements along the Chelungpu fault are largely missing from the measurements as the fault is nearly perpendicular to the LOS direction. Second, due to severe signal decorrelation on the hangling wall of the fault, the displacements in that area are un-measurable by differential InSAR method. We estimate the co-seismic displacements in both the azimuth and range directions with the method of SAR amplitude image matching. GPS observations at the 10 GPS stations are used to correct for the orbital ramp in the amplitude matching and to create the two-dimensional (2D) co-seismic surface displacements field using the descending ERS-2 SAR image pair. The results show that the co-seismic displacements range from about -2.0 m to 0.7 m in the azimuth direction (with the positive direction pointing to the flight direction), with the footwall side of the fault moving mainly southwards and the hanging wall side northwards. The displacements in the LOS direction range from about -0.5 m to 1.0 m, with the largest displacement occuring in the northeastern part of the hanging wall (the positive direction points to the satellite from ground). Comparing the results from amplitude matching with those from DInSAR, we can see that while only a very small fraction of the LOS displacement has been recovered by the DInSAR mehtod, the azimuth displacements cannot be well detected with the DInSAR measurements as they are almost perpendicular to the LOS. Therefore, the amplitude matching method is obviously more advantageous than the

  17. Changes in stress and coping from a randomized controlled trial of a three-month stress management intervention

    DEFF Research Database (Denmark)

    Willert, M.V.; Thulstrup, A.M.; Hertz, J.

    2009-01-01

    . Methods Using a randomized wait list control design, 102 participants were divided into two groups: intervention and wait list control. The intervention was a three-month group-based stress management program. Outcomes measures were the Perceived Stress Scale (PSS-10, range 0-40 points) and five......% Cl -0.89-0.07) favouring the intervention. The gains achieved during treatment were maintained when followed up three months later. Conclusions Treatment is Superior to the control condition in positively affecting perceived stress and positive reframing. When followed up, the gains achieved......Objectives The aim of this study was to investigate whether it group-based stress management intervention, based on principles from cognitive behavior therapy, call reduce stress and alter coping strategies in an occupationally diverse population with extensive symptoms of work-related stress...

  18. Climatic and anthropogenic changes in Western Switzerland: Impacts on water stress.

    Science.gov (United States)

    Milano, Marianne; Reynard, Emmanuel; Köplin, Nina; Weingartner, Rolf

    2015-12-01

    Recent observed hydro-climatic changes in mountainous areas are of concern as they may directly affect capacity to fulfill water needs. The canton of Vaud in Western Switzerland is an example of such a region as it has experienced water shortage episodes during the past decade. Based on an integrated modeling framework, this study explores how hydro-climatic conditions and water needs could evolve in mountain environments and assesses their potential impacts on water stress by the 2060 horizon. Flows were simulated based on a daily semi-distributed hydrological model. Future changes were derived from Swiss climate scenarios based on two regional climate models. Regarding water needs, the authorities of the canton of Vaud provided a population growth scenario while irrigation and livestock trends followed a business-as-usual scenario. Currently, the canton of Vaud experiences moderate water stress from June to August, except in its Alpine area where no stress is noted. In the 2060 horizon, water needs could exceed 80% of the rivers' available resources in low- to mid-altitude environments in mid-summer. This arises from the combination of drier and warmer climate that leads to longer and more severe low flows, and increasing urban (+40%) and irrigation (+25%) water needs. Highlighting regional differences supports the development of sustainable development pathways to reduce water tensions. Based on a quantitative assessment, this study also calls for broader impact studies including water quality issues. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Food insecurity among Inuit women exacerbated by socioeconomic stresses and climate change.

    Science.gov (United States)

    Beaumier, Maude C; Ford, James D

    2010-01-01

    To identify and characterize the determinants of food insecurity among Inuit women. A community-based study in Igloolik, Nunavut, using semi-structured interviews (n = 36) and focus groups (n = 5) with Inuit women, and key informants interviews with health professionals (n = 13). There is a high prevalence of food insecurity among Inuit females in Igloolik, with women in the study reporting skipping meals and reducing food intake on a regular basis. Food insecurity is largely transitory in nature and influenced by food affordability and budgeting; food knowledge; education and preferences; food quality and availability; absence of a full-time hunter in the household; cost of harvesting; poverty; and addiction. These determinants are operating in the context of changing livelihoods and climate-related stresses. Inuit women's food insecurity in Igloolik is the outcome of multiple determinants operating at different spatial-temporal scales. Climate change and external socio-economic stresses are exacerbating difficulties in obtaining sufficient food. Coping strategies currently utilized to manage food insecurity are largely reactive and short-term in nature, and could increase food system vulnerability to future stresses. Intervention by local, territorial and federal governments is required to implement, coordinate and monitor strategies to enhance women's food security, strengthen the food system, and reduce vulnerability to future stressors.

  20. Confronting Future Risks of Global Water Stress and Sustainability: Avoided Changes Versus Adaptive Actions

    Science.gov (United States)

    Schlosser, C. A.; Strzepek, K. M.; Gao, X.; Fant, C.; Paltsev, S.; Monier, E.; Sokolov, A. P.; Winchester, N.; Chen, H.; Kicklighter, D. W.; Ejaz, Q.

    2016-12-01

    We examine the fate of global water resources under a range of self-consistent socio-economic projections using the MIT Integrated Global System Model (IGSM) under a range of plausible mitigation and adaptation scenarios of development to the water-energy-land systems and against an assessment of the results from the UN COP-21 meeting. We assess the trends of an index of managed water stress as well as unmet water demands as simulated by the Water Resource System within the IGSM framework (IGSM-WRS). The WRS is forced by the simulations of the global climate response, variations in regional climate pattern changes, as well as the socio-economic drivers from the IGSM scenarios. We focus on the changes in water-stress metrics in the coming decades and going into the latter half of this century brought about by our projected climate and socio-economic changes, as well as the total (additional) populations affected by increased stress. We highlight selected basins to demonstrate sensitivities and interplay between supply and demand, the uncertainties in global climate sensitivity as well as regional climate change, and their implications to assessing and reducing water risks and the populations affected by water scarcity. We also evaluate the impact of explicitly representing irrigated land and water scarcity in an economy-wide model on food prices, bioenergy production and deforestation both with and without a global carbon policy. We highlight the importance of adaptive measures that will be required, worldwide, to meet surface-water shortfalls even under more aggressive and certainly under intermediate climate mitigation pathways - and further analyses is presented in this context quantifying risks averted and their associated costs. In addition, we also demonstrate that the explicit representation of irrigated land within this intergrated modeling frameowork has a small impact on food, bioenergy and deforestation outcomes within the scenarios considered

  1. Stress memory induced transcriptional and metabolic changes of perennial ryegrass (Lolium perenne) in response to salt stress.

    Science.gov (United States)

    Hu, Tao; Jin, Yupei; Li, Huiying; Amombo, Erick; Fu, Jinmin

    2016-01-01

    Preexposure to a stress could induce stable signals and reactions on plant physiology and gene expression during future encounters as a 'stress memory'. In this study, we found that two trainable genes, BPSP encoding putative brown plant hopper susceptibility protein and sucs encoding sucrose synthase displayed transcriptional memory for their considerably higher transcript levels during two or more subsequent stresses (S3, S4) relative to the initial stress (S0), and their expression returning to basal transcript levels (non-stressed) during the recovery states (R1, R2 and R3). Removing the repetitive stress/recovery exercise, activated transcriptional memory from two trainable genes persisted for at least 4 days in perennial ryegrass. The pretrainable genes with stress memory effort had higher response to the subsequent elevated NaCl concentration treatment than the non-trainable plants, which was confirmed by lower electrolyte leakage and minimum H2 O2 and O2 (-) accumulation. Salt stress elevated the content of 41 metabolites in perennial ryegrass leaves, and sugars and sugar alcohol accounted for more than 74.1% of the total metabolite content. The salt stress memory was associated with higher contents of 11 sugars and 1 sugar alcohol in the pretrainable grass leaves. Similarly, six sugars showed greater content in the pretrainable grass roots. These novel phenomena associated with transcriptional memory and metabolite profiles could lead to new insights into improving plant salinity acclimation process. © 2015 Scandinavian Plant Physiology Society.

  2. Stress !!!

    NARCIS (Netherlands)

    Fledderus, M.

    2012-01-01

    Twee op de vijf UT-studenten hebben last van ernstige studiestress, zo erg zelfs dat het ze in hun privéleven belemmert. Die cijfers komen overeen met het landelijk beeld van stress onder studenten. Samen met 14 andere universiteits- en hogeschoolbladen enquêteerde UT Nieuws bijna 5500 studenten.

  3. Climate change induced occupational stress and reported morbidity among cocoa farmers in South-Western Nigeria

    Directory of Open Access Journals (Sweden)

    Abayomi Samuel Oyekale

    2015-05-01

    Full Text Available Introduction and objective. Climate change is one of the major development hurdles in many developing countries. The health outcome of farm households are related to climate change, which is related to several external and internal health-related issues, such as management of occupational stressors. This study seeks, inter alia, to determine the climate related occupational stress and factors influencing reported sick times among cocoa farmers. Material and Method. Data were collected from selected cocoa farmers in South-Western Nigeria. Descriptive statistics and Negative Binomial regression were used for data analyses. Results. The results showed that cocoa farmers were ageing, and that the majority had cultivating cocoa for most of their years of farming. Cocoa was the primary crop for the majority of the farmers, while 92.00% of the farmers in Osun state owned the cultivated cocoa farms. The forms of reported climate change induced occupational stresses were increase in pest infestation (74.5% in Ekiti state, difficulties in weed control (82.1% in Ekiti state, missing regular times scheduled for spraying cocoa pods (45.7% in Ondo state, inability to spray cocoa effectively (58.5% in Ondo state, and reduction in cocoa yield (71.7% in Ekiti state. The Negative Binomial regression results showed that the age of farmers (0.0103, their education (-0.0226, years of cocoa farming (-0.0112, malaria infection (0.4901, missed spraying (0.5061, re-spraying of cocoa (0.2630, reduction in cocoa yield (0.20154, contact with extension (0.2411 and residence in Ondo state (-0.2311 were statistically significant (p<0.05. Conclusion. Climate change influences the farm operations of cocoa farmers with resultant occupational stresses. Efforts to assist cocoa farmers should include, among others, provision of weather forecasts and some form of insurance.

  4. Climate change induced occupational stress and reported morbidity among cocoa farmers in South-Western Nigeria.

    Science.gov (United States)

    Oyekale, Abayomi Samuel

    2015-01-01

    Climate change is one of the major development hurdles in many developing countries. The health outcome of farm households are related to climate change, which is related to several external and internal health-related issues, such as management of occupational stressors. This study seeks, inter alia, to determine the climate related occupational stress and factors influencing reported sick times among cocoa farmers. Data were collected from selected cocoa farmers in South-Western Nigeria. Descriptive statistics and Negative Binomial regression were used for data analyses. The results showed that cocoa farmers were ageing, and that the majority had cultivating cocoa for most of their years of farming. Cocoa was the primary crop for the majority of the farmers, while 92.00% of the farmers in Osun state owned the cultivated cocoa farms. The forms of reported climate change induced occupational stresses were increase in pest infestation (74.5% in Ekiti state), difficulties in weed control (82.1% in Ekiti state), missing regular times scheduled for spraying cocoa pods (45.7% in Ondo state), inability to spray cocoa effectively (58.5% in Ondo state), and reduction in cocoa yield (71.7% in Ekiti state). The Negative Binomial regression results showed that the age of farmers (0.0103), their education (-0.0226), years of cocoa farming (-0.0112), malaria infection (0.4901), missed spraying (0.5061), re-spraying of cocoa (0.2630), reduction in cocoa yield (0.20154), contact with extension (0.2411) and residence in Ondo state (-0.2311) were statistically significant (pClimate change influences the farm operations of cocoa farmers with resultant occupational stresses. Efforts to assist cocoa farmers should include, among others, provision of weather forecasts and some form of insurance.

  5. Dynamic of bioelectric activity back hypothalamus changes in conditions of pyroxan application on the background of stress-reaction developmen

    Directory of Open Access Journals (Sweden)

    T. G. Chaus

    2005-04-01

    Full Text Available The dynamic of changes of capacity of electroencephalogram’s rhythms back hypothalamus at animals of control group and group in stress conditions in parallel with rats who on a background of stress development accepted pyroxan is analyzed. The submitted results have shown influence of a pharmacological preparation pyroxan on bioelectric activity of back hypothalamus in stress conditions that restoration of electric activity under action of this preparation was more shown at 3 weeks of its application.

  6. Assessing Heat Stress and Health among Construction Workers in a Changing Climate: A Review

    Directory of Open Access Journals (Sweden)

    Payel Acharya

    2018-02-01

    Full Text Available Construction workers are at an elevated risk of heat stress, due to the strenuous nature of the work, high temperature work condition, and a changing climate. An increasing number of workers are at risk, as the industry’s growth has been fueled by high demand and vast numbers of immigrant workers entering into the U.S., the Middle East and Asia to meet the demand. The risk of heat-related illnesses is increased by the fact that little to no regulations are present and/or enforced to protect these workers. This review recognizes the issues by summarizing epidemiological studies both in the U.S. and internationally. These studies have assessed the severity with which construction workers are affected by heat stress, risk factors and co-morbidities associated with heat-related illnesses in the construction industry, vulnerable populations, and efforts in implementing preventive measures.

  7. US Power Production at Risk from Water Stress in a Changing Climate.

    Science.gov (United States)

    Ganguli, Poulomi; Kumar, Devashish; Ganguly, Auroop R

    2017-09-20

    Thermoelectric power production in the United States primarily relies on wet-cooled plants, which in turn require water below prescribed design temperatures, both for cooling and operational efficiency. Thus, power production in US remains particularly vulnerable to water scarcity and rising stream temperatures under climate change and variability. Previous studies on the climate-water-energy nexus have primarily focused on mid- to end-century horizons and have not considered the full range of uncertainty in climate projections. Technology managers and energy policy makers are increasingly interested in the decadal time scales to understand adaptation challenges and investment strategies. Here we develop a new approach that relies on a novel multivariate water stress index, which considers the joint probability of warmer and scarcer water, and computes uncertainties arising from climate model imperfections and intrinsic variability. Our assessments over contiguous US suggest consistent increase in water stress for power production with about 27% of the production severely impacted by 2030s.

  8. Changes in Galanin Systems in a Rat Model of Post-Traumatic Stress Disorder (PTSD).

    Science.gov (United States)

    Barnabas, Karen; Zhang, Lin; Wang, Huiying; Kirouac, Gilbert; Vrontakis, Maria

    2016-01-01

    Post-traumatic stress disorder (PTSD) is a chronic syndrome triggered by exposure to trauma and a failure to recover from a normal negative emotional reaction to traumatic stress. The neurobiology of PTSD and the participation of neuropeptides in the neural systems and circuits that control fear and anxiety are not fully understood. The long-term dysregulation of neuropeptide systems contributes to the development of anxiety disorders, including PTSD. The neuropeptide galanin (Gal) and its receptors participate in anxiety-like and depression-related behaviors via the modulation of neuroendocrine and monoaminergic systems. The objective of this research was to investigate how Gal expression changes in the brain of rats 2 weeks after exposure to footshock. Rats exposed to footshocks were subdivided into high responders (HR; immobility>60%) and low responders (LR; immobilityPTSD development.

  9. Stress-induced changes of neurosteroid profiles in rat brain and plasma under immobilized condition.

    Science.gov (United States)

    Park, Myeong Hyeon; Rehman, Shaheed Ur; Kim, In Sook; Choi, Min Sun; Yoo, Hye Hyun

    2017-05-10

    In this study, various neurosteroids in brain and plasma were simultaneously determined using liquid chromatography-tandem mass spectrometry and their profile changes in a stress-induced rats were investigated. The investigated neurosteroids are as follows: progesterone (P4), 5α-dihydroprogesterone (5α-DHP), 5β-dihydroprogesterone, estrone, androstenedione (AE), cortisol, cortisone, corticosterone (CORT), dehydroepiandrosterone (DHEA), pregnanolone (3α,5β-THP), allopregnanolone (ALLO), 11-deoxycorticosterone (DOC), 11-deoxycortisol, pregnenolone (PREG), and 5α/5β-tetrahydrodeoxycorticosterone (5α/5β-THDOC). Brain and plasma samples were processed using solid-phase extraction with methanol and acetic acid (99:1), and derivatized with a hydroxylamine reagent. Separation was achieved within 13min at a flow rate of 0.4mL/min with a C18 column (3.0×50mm, 2.7μm). The triple quadrupole mass spectrometer was operated in the positive electrospray ionization mode. Using this method, the neurosteroid level variation was quantitated and investigated in the brain and plasma upon immobilization stress in rats. As a result, AE, CORT, DOC, P4, 5α-DHP, 5α/5β-THDOC, DHEA, 3α,5β-THP, ALLO, and PREG levels were significantly altered in both the brain and plasma samples when stress was induced. These findings demonstrated that stress leads to the alteration of the GABAergic neurosteroid profile. The present results will be helpful for furthering an understanding of the role of neurosteroids in stressed conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Stress Management Apps With Regard to Emotion-Focused Coping and Behavior Change Techniques: A Content Analysis.

    Science.gov (United States)

    Christmann, Corinna Anna; Hoffmann, Alexandra; Bleser, Gabriele

    2017-02-23

    Chronic stress has been shown to be associated with disease. This link is not only direct but also indirect through harmful health behavior such as smoking or changing eating habits. The recent mHealth trend offers a new and promising approach to support the adoption and maintenance of appropriate stress management techniques. However, only few studies have dealt with the inclusion of evidence-based content within stress management apps for mobile phones. The aim of this study was to evaluate stress management apps on the basis of a new taxonomy of effective emotion-focused stress management techniques and an established taxonomy of behavior change techniques. Two trained and independent raters evaluated 62 free apps found in Google Play with regard to 26 behavior change and 15 emotion-focused stress management techniques in October 2015. The apps included an average of 4.3 behavior change techniques (SD 4.2) and 2.8 emotion-focused stress management techniques (SD 2.6). The behavior change technique score and stress management technique score were highly correlated (r=.82, P=.01). The broad variation of different stress management strategies found in this sample of apps goes in line with those found in conventional stress management interventions and self-help literature. Moreover, this study provided a first step toward more detailed and standardized taxonomies, which can be used to investigate evidence-based content in stress management interventions and enable greater comparability between different intervention types. ©Corinna Anna Christmann, Alexandra Hoffmann, Gabriele Bleser. Originally published in JMIR Mhealth and Uhealth (http://mhealth.jmir.org), 23.02.2017.

  11. Plant physiological models of heat, water and photoinhibition stress for climate change modelling and agricultural prediction

    Science.gov (United States)

    Nicolas, B.; Gilbert, M. E.; Paw U, K. T.

    2015-12-01

    Soil-Vegetation-Atmosphere Transfer (SVAT) models are based upon well understood steady state photosynthetic physiology - the Farquhar-von Caemmerer-Berry model (FvCB). However, representations of physiological stress and damage have not been successfully integrated into SVAT models. Generally, it has been assumed that plants will strive to conserve water at higher temperatures by reducing stomatal conductance or adjusting osmotic balance, until potentially damaging temperatures and the need for evaporative cooling become more important than water conservation. A key point is that damage is the result of combined stresses: drought leads to stomatal closure, less evaporative cooling, high leaf temperature, less photosynthetic dissipation of absorbed energy, all coupled with high light (photosynthetic photon flux density; PPFD). This leads to excess absorbed energy by Photosystem II (PSII) and results in photoinhibition and damage, neither are included in SVAT models. Current representations of photoinhibition are treated as a function of PPFD, not as a function of constrained photosynthesis under heat or water. Thus, it seems unlikely that current models can predict responses of vegetation to climate variability and change. We propose a dynamic model of damage to Rubisco and RuBP-regeneration that accounts, mechanistically, for the interactions between high temperature, light, and constrained photosynthesis under drought. Further, these predictions are illustrated by key experiments allowing model validation. We also integrated this new framework within the Advanced Canopy-Atmosphere-Soil Algorithm (ACASA). Preliminary results show that our approach can be used to predict reasonable photosynthetic dynamics. For instances, a leaf undergoing one day of drought stress will quickly decrease its maximum quantum yield of PSII (Fv/Fm), but it won't recover to unstressed levels for several days. Consequently, cumulative effect of photoinhibition on photosynthesis can cause

  12. Talofibular interval changes after acute ankle sprain: a stress ultrasonography study of ankle laxity.

    Science.gov (United States)

    Croy, Theodore; Saliba, Susan; Saliba, Ethan; Anderson, Mark W; Hertel, Jay

    2013-11-01

    Quantifying talocrural joint laxity after ankle sprain is problematic. Stress ultrasonography (US) can image the lateral talocrural joint and allow the measurement of the talofibular interval, which may suggest injury to the anterior talofibular ligament (ATFL). The acute talofibular interval changes after lateral ankle sprain are unknown. Twenty-five participants (9 male, 16 female; age 21.8 ± 3.2 y, height 167.8 ± 34.1 cm, mass 72.7 ± 13.8 kg) with 27 acute, lateral ankle injuries underwent bilateral stress US imaging at baseline (ankle at 3 wk and 6 wk from injury in 3 ankle conditions: neutral, anterior drawer, and inversion. Talofibular interval (mm) was measured using imaging software and self-reported function (activities of daily living [ADL] and sports) by the Foot and Ankle Ability Measure (FAAM). The talofibular interval increased with anterior-drawer stress in the involved ankle (22.65 ± 3.75 mm; P = .017) over the uninvolved ankle (19.45 ± 2.35 mm; limb × position F1,26 = 4.9, P = .035) at baseline. Inversion stress also resulted in greater interval changes (23.41 ± 2.81 mm) than in the uninvolved ankles (21.13 ± 2.08 mm). A main effect for time was observed for inversion (F2,52 = 4.3, P = .019, 21.93 ± 2.24 mm) but not for anterior drawer (F2,52 = 3.1, P = .055, 21.18 ± 2.34 mm). A significant reduction in the talofibular interval took place between baseline and week 3 inversion measurements only (F1,26 = 5.6, P = .026). FAAM-ADL and sports results increased significantly from baseline to wk 3 (21.9 ± 16.2, P ankle sprain. Stress US provides a safe, repeatable, and quantifiable method of measuring the talofibular interval and may augment manual stress examinations in acute ankle injuries.

  13. The MMPI-2 as a predictor of symptom change following treatment for posttraumatic stress disorder.

    Science.gov (United States)

    Forbes, David; Creamer, Mark; Allen, Nicholas; Elliott, Peter; McHugh, Tony; Debenham, Paul; Hopwood, Malcolm

    2002-10-01

    This study sought to examine the impact of personality factors on symptom change following treatment for 141 Vietnam veterans with chronic combat-related posttraumatic stress disorder (PTSD) using the Minnesota Multiphasic Personality Inventory-2 (Butcher, Dahlstrom, Graham, Tellegen, & Kaemmer, 1989). A series of partial correlation and linear multivariate regression analyses identified social alienation, associated with anger and substance use, as the most potent negative predictor of symptom change. Of the scales assessing personality disorder, Borderline Personality was identified as the strongest negative predictor of outcome. Regression analyses examining the most salient scales identified 5 items that contributed 14% of the variance in the prediction of change scores independently of the 21% accounted for by pretreatment PTSD severity.

  14. Correction of stress-depended changes of glucoproteid platelet receptors activity by electromagnetic radiation of terahertz range

    Directory of Open Access Journals (Sweden)

    V.F. Kirichuk

    2010-09-01

    Full Text Available The research goal is correction of stress-depended changes of glucoproteid (Gp platelet receptors activity by electromagnetic radiation of terahertz range. Influence of electromagnetic waves of terahertz range at the frequency of molecular spectrum of radiation and absorption of nitrogen oxide on lectin-induced platelet aggregation of white rats in the stressed condition was investigated

  15. Examining the Influence of Perceived Stress on Developmental Change in Memory and Perceptual Speed for Adopted and Nonadopted Individuals

    Science.gov (United States)

    Ricker, Ashley A.; Corley, Robin; DeFries, John C.; Wadsworth, Sally J.; Reynolds, Chandra A.

    2018-01-01

    The present study prospectively evaluated cumulative early life perceived stress in relation to differential change in memory and perceptual speed from middle childhood to early adulthood. We aimed to identify periods of cognitive development susceptible to the effects of perceived stress among both adopted and nonadopted individuals. The sample…

  16. Caffeine and sleep-deprivation mediated changes in open-field behaviours, stress response and antioxidant status in mice

    Directory of Open Access Journals (Sweden)

    J. Olakunle Onaolapo

    2016-07-01

    Conclusion: Repeated caffeine consumption and/or acute sleep-deprivation led to significant changes in pattern of open-field behaviour and stress/antioxidant response in mice. Responses seen in the study are probably due to modulatory effects of caffeine on the total body response to stressful stimuli.

  17. Changes of Germination Properties, Photosynthetic Pigments and Anti Oxidant Enzymes Activity of Safflower as Affected by Drought and Salinity Stresses

    Directory of Open Access Journals (Sweden)

    A Sirousmehr

    2015-01-01

    Full Text Available To evaluate the effects of drought and salinity stresses on some germination characteristics, contents of photosynthetic pigments and antioxidant enzymes (CAT, APX and GPX in the leaves of safflower, a factorial experiment based on CRD was conducted during 2012 at both laboratory and greenhouse of Zabol University with four replications. To expose the plants to drought (0, -6 and -8 bars and salinity stresses (5, 10 and 15 ds.m-1 PEG 6000 and NaCl were used respectively. The results indicated that the effects of factors on germination percentage and rate, chlorophyll a and b contents and antioxidants enzymes activities were significant. The result of laboratory study revealed a reduction in percentage and speed of germination when plants exposed to negative osmotic potential. Photosynthetic pigments of plant leaves grown in greenhouse significantly decreased by increasing drought and salinity stresses. Increasing drought stress along with soluble salts changed the activity of some antioxidant enzymes. Enzymes’ activity of both CAT and GPX were increased when the plants expose to PEG drought stress, but decreased against the levels of salt stress. APX activity also increased due to drought stress. Interactive effects of drought×salinity stresses indicated that under lower stress GPX enzymes increased salinity, and under severe stress APX was highly increased. It means the production and activity of plant defensive system like these enzymes in recent tensions and leads to protect or make plants tolerate against oxidative stress induced by drought and salinity.

  18. Changes in tau phosphorylation levels in the hippocampus and frontal cortex following chronic stress

    Energy Technology Data Exchange (ETDEWEB)

    Yang, C.; Guo, X. [Wuhan University, Renmin Hospital, Department of Psychiatry, Wuhan, China, Department of Psychiatry, Renmin Hospital, Wuhan University, Wuhan (China); Wang, G.H. [Wuhan University, Renmin Hospital, Department of Psychiatry, Wuhan, China, Department of Psychiatry, Renmin Hospital, Wuhan University, Wuhan (China); Wuhan University, Institute of Neuropsychiatry, Wuhan, China, Institute of Neuropsychiatry, Wuhan University, Wuhan (China); Wang, H.L.; Liu, Z.C.; Liu, H.; Zhu, Z.X.; Li, Y. [Wuhan University, Renmin Hospital, Department of Psychiatry, Wuhan, China, Department of Psychiatry, Renmin Hospital, Wuhan University, Wuhan (China)

    2014-03-03

    Studies have indicated that early-life or early-onset depression is associated with a 2- to 4-fold increased risk of developing Alzheimers disease (AD). In AD, aggregation of an abnormally phosphorylated form of the tau protein may be a key pathological event. Tau is known to play a major role in promoting microtubule assembly and stabilization, and in maintaining the normal morphology of neurons. Several studies have reported that stress may induce tau phosphorylation. The main aim of the present study was to investigate possible alterations in the tau protein in the hippocampus and frontal cortex of 32 male Sprague-Dawley rats exposed to chronic unpredictable mild stress (CUMS) and then re-exposed to CUMS to mimic depression and the recurrence of depression, respectively, in humans. We evaluated the effects of CUMS, fluoxetine, and CUMS re-exposure on tau and phospho-tau. Our results showed that a single exposure to CUMS caused a significant reduction in sucrose preference, indicating a state of anhedonia. The change in behavior was accompanied by specific alterations in phospho-tau protein levels, but fluoxetine treatment reversed the CUMS-induced impairments. Moreover, changes in sucrose preference and phospho-tau were more pronounced in rats re-exposed to CUMS than in those subjected to a single exposure. Our results suggest that changes in tau phosphorylation may contribute to the link between depression and AD.

  19. Glucocorticoid mechanisms of functional connectivity changes in stress-related neuropsychiatric disorders

    Directory of Open Access Journals (Sweden)

    Baila S. Hall

    2015-01-01

    Full Text Available Stress—especially chronic, uncontrollable stress—is an important risk factor for many neuropsychiatric disorders. The underlying mechanisms are complex and multifactorial, but they involve correlated changes in structural and functional measures of neuronal connectivity within cortical microcircuits and across neuroanatomically distributed brain networks. Here, we review evidence from animal models and human neuroimaging studies implicating stress-associated changes in functional connectivity in the pathogenesis of PTSD, depression, and other neuropsychiatric conditions. Changes in fMRI measures of corticocortical connectivity across distributed networks may be caused by specific structural alterations that have been observed in the prefrontal cortex, hippocampus, and other vulnerable brain regions. These effects are mediated in part by glucocorticoids, which are released from the adrenal gland in response to a stressor and also oscillate in synchrony with diurnal rhythms. Recent work indicates that circadian glucocorticoid oscillations act to balance synapse formation and pruning after learning and during development, and chronic stress disrupts this balance. We conclude by considering how disrupted glucocorticoid oscillations may contribute to the pathophysiology of depression and PTSD in vulnerable individuals, and how circadian rhythm disturbances may affect non-psychiatric populations, including frequent travelers, shift workers, and patients undergoing treatment for autoimmune disorders.

  20. Changes in tau phosphorylation levels in the hippocampus and frontal cortex following chronic stress

    International Nuclear Information System (INIS)

    Yang, C.; Guo, X.; Wang, G.H.; Wang, H.L.; Liu, Z.C.; Liu, H.; Zhu, Z.X.; Li, Y.

    2014-01-01

    Studies have indicated that early-life or early-onset depression is associated with a 2- to 4-fold increased risk of developing Alzheimers disease (AD). In AD, aggregation of an abnormally phosphorylated form of the tau protein may be a key pathological event. Tau is known to play a major role in promoting microtubule assembly and stabilization, and in maintaining the normal morphology of neurons. Several studies have reported that stress may induce tau phosphorylation. The main aim of the present study was to investigate possible alterations in the tau protein in the hippocampus and frontal cortex of 32 male Sprague-Dawley rats exposed to chronic unpredictable mild stress (CUMS) and then re-exposed to CUMS to mimic depression and the recurrence of depression, respectively, in humans. We evaluated the effects of CUMS, fluoxetine, and CUMS re-exposure on tau and phospho-tau. Our results showed that a single exposure to CUMS caused a significant reduction in sucrose preference, indicating a state of anhedonia. The change in behavior was accompanied by specific alterations in phospho-tau protein levels, but fluoxetine treatment reversed the CUMS-induced impairments. Moreover, changes in sucrose preference and phospho-tau were more pronounced in rats re-exposed to CUMS than in those subjected to a single exposure. Our results suggest that changes in tau phosphorylation may contribute to the link between depression and AD

  1. Source characteristics of the Yutian earthquake in 2008 from inversion of the co-seismic deformation field mapped by InSAR

    Science.gov (United States)

    Shan, Xinjian; Zhang, Guohong; Wang, Chisheng; Qu, Chunyan; Song, Xiaogang; Zhang, Guifang; Guo, Liming

    2011-03-01

    On 21 March 2008, an Ms7.3 earthquake occurred at Yutian County, Xinjiang Uygur Autonomous Region, which is in the same year as 2008 Mw 7.9 Wenchuan earthquake. These two earthquakes both took place in the Bayar Har block, while Yutian earthquake is located in the west edge and Wenchuan earthquake is in the east. The research on source characteristics of Yutian earthquake can serve to better understand Wenchuan earthquake mechanism. We attempt to reveal the features of the causative fault of Yutian shock and its co-seismic deformation field by a sensitivity-based iterative fitting (SBIF) method. Our work is based on analysis and interpretation to high-resolution satellite (Quickbird) images as well as D-InSAR data from the satellite Envisat ASAR, in conjunction with the analysis of seismicity, focal mechanism solutions and active tectonics in this region. The result shows that the 22 km long, nearly NS trending surface rupture zone by this event lies on a range-front alluvial platform in the Qira County. It is characterized by distinct linear traces and a simple structure with 1-3 m-wide individual seams and maximum 6.5 m width of a collapse fracture. Along the rupture zone are seen many secondary fractures and fault-bounded blocks by collapse, exhibiting remarkable extension. The co-seismic deformation affected a big range 100 km × 40 km. D-InSAR analysis indicates that the interferometric deformation field is dominated by extensional faulting with a small strike-slip component. Along the causative fault, the western wall fell down and the eastern wall, that is the active unit, rose up, both with westerly vergence. The maximum subsidence displacement is ˜2.6 m in the LOS, and the maximum uplift is 1.2 m. The maximum relative vertical dislocation reaches 4.1 m, which is 10 km distant from the starting rupture point to south. The 42 km-long seismogenic fault in the subsurface extends in NS direction as an arc, and it dipping angle changes from 70° near the

  2. The Southern Ocean ecosystem under multiple climate change stresses--an integrated circumpolar assessment.

    Science.gov (United States)

    Gutt, Julian; Bertler, Nancy; Bracegirdle, Thomas J; Buschmann, Alexander; Comiso, Josefino; Hosie, Graham; Isla, Enrique; Schloss, Irene R; Smith, Craig R; Tournadre, Jean; Xavier, José C

    2015-04-01

    A quantitative assessment of observed and projected environmental changes in the Southern Ocean (SO) with a potential impact on the marine ecosystem shows: (i) large proportions of the SO are and will be affected by one or more climate change processes; areas projected to be affected in the future are larger than areas that are already under environmental stress, (ii) areas affected by changes in sea-ice in the past and likely in the future are much larger than areas affected by ocean warming. The smallest areas (Changes in iceberg impact resulting from further collapse of ice-shelves can potentially affect large parts of shelf and ephemerally in the off-shore regions. However, aragonite undersaturation (acidification) might become one of the biggest problems for the Antarctic marine ecosystem by affecting almost the entire SO. Direct and indirect impacts of various environmental changes to the three major habitats, sea-ice, pelagic and benthos and their biota are complex. The areas affected by environmental stressors range from 33% of the SO for a single stressor, 11% for two and 2% for three, to changes, and together cover almost 86% of the SO ecosystem. © 2014 John Wiley & Sons Ltd.

  3. Temporal changes of the adrenal endocrine system in a restraint stressed mouse and possibility of postmortem indicators of prolonged psychological stress.

    Science.gov (United States)

    Hayashi, Takahito; Ikematsu, Kazuya; Abe, Yuki; Ihama, Yoko; Ago, Kazutoshi; Ago, Mihoko; Miyazaki, Tetsuji; Ogata, Mamoru

    2014-07-01

    We investigated temporal changes of adrenal endocrine systems through the hypothalamic-pituitary-adrenal (HPA) and sympathetic-adrenomedullary (SA) axis in restraint stressed mice. Restraint stress for 1 day to 3 weeks caused a significant increase in serum levels of ACTH and glucocorticoids accompanied with an increase in adrenal weights, indicating activation of the HPA axis. Reflecting the overproduction of glucocorticoids, adrenal cholesterol content decreased. Moreover, adrenal gene expression involved in cholesterol supply, including scavenger receptor-class B type I, HMG-CoA reductase, and hormone-sensitive lipase, was increased over the same period. After 4 weeks stress, all of these changes returned to control levels. In contrast, adrenal gene expression of chromogranin A, which is cosecreted with catecholamine via the SA axis, was increased with 1 day to 2 weeks of stress, and decreased with 3-4 weeks of stress. Our results suggest that analyses of adrenal endocrine systems based on the combination of several markers examined here would be useful for not only proving prolonged psychological stress experience but also determining its duration. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. Stress transfer among en echelon and opposing thrusts and tear faults: Triggering caused by the 2003 Mw = 6.9 Zemmouri, Algeria, earthquake

    Science.gov (United States)

    Lin, J.; Stein, R.S.; Meghraoui, M.; Toda, S.; Ayadi, A.; Dorbath, C.; Belabbes, S.

    2011-01-01

    The essential features of stress interaction among earthquakes on en echelon thrusts and tear faults were investigated, first through idealized examples and then by study of thrust faulting in Algeria. We calculated coseismic stress changes caused by the 2003 Mw = 6.9 Zemmouri earthquake, finding that a large majority of the Zemmouri afterslip sites were brought several bars closer to Coulomb failure by the coseismic stresses, while the majority of aftershock nodal planes were brought closer to failure by an average of ~2 bars. Further, we calculated that the shallow portions of the adjacent Thenia tear fault, which sustained ~0.25 m slip, were brought >2 bars closer to failure. We calculated that the Coulomb stress increased by 1.5 bars on the deeper portions of the adjacent Boumerdes thrust, which lies just 10–20 km from the city of Algiers; both the Boumerdes and Thenia faults were illuminated by aftershocks. Over the next 6 years, the entire south dipping thrust system extending 80 km to the southwest experienced an increased rate of seismicity. The stress also increased by 0.4 bar on the east Sahel thrust fault west of the Zemmouri rupture. Algiers suffered large damaging earthquakes in A.D. 1365 and 1716 and is today home to 3 million people. If these shocks occurred on the east Sahel fault and if it has a ~2 mm/yr tectonic loading rate, then enough loading has accumulated to produce a Mw = 6.6–6.9 shock today. Thus, these potentially lethal faults need better understanding of their slip rate and earthquake history.

  5. The rheology of a growing leaf: stress-induced changes in the mechanical properties of leaves.

    Science.gov (United States)

    Sahaf, Michal; Sharon, Eran

    2016-10-01

    We study in situ the mechanics and growth of a leaf. Young Nicotiana tabacum leaves respond to applied mechanical stress by altering both their mechanical properties and the characteristics of their growth. We observed two opposite behaviours, each with its own typical magnitude and timescale. On timescales of the order of minutes, the leaf deforms in response to applied tensile stress. During this phase we found a high correlation between the applied stress field and the local strain field throughout the leaf surface. For times over 12 hours the mechanical properties of the leaf become anisotropic, making it more resilient to deformation and restoring a nearly isotropic growth field despite the highly anisotropic load. These observations suggest that remodelling of the tissue allows the leaf to respond to mechanical perturbations by changing its properties. We discuss the relevance of the observed behaviour to the growth regulation that leads to proper leaf shape during growth. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  6. Dynamic changes in the sperm quality of Mytilus galloprovincialis under continuous thermal stress.

    Science.gov (United States)

    Boni, Raffaele; Gallo, Alessandra; Montanino, Melania; Macina, Alberto; Tosti, Elisabetta

    2016-02-01

    Global warming is an increasingly serious problem underlying ecological change in marine flora and fauna. Mytilus galloprovincialis is an intertidal species that colonizes coasts in moderate and warm climates, and can thus withstand extreme climatic conditions; however, it successfully reproduces only within a certain temperature range. The effects of prolonged exposure to 28 °C, a temperature unsuitable for breeding activity, on sperm quality were evaluated in this study. Such heat stress induced the following: a significant reduction in concentration; a biphasic pattern of motility and mitochondrial membrane potential that first increased, and then collapsed; a decrease in the intracellular calcium concentration; a rapid increase in lipid peroxidation that was normalized after the third week of heat stress; an increase in DNA fragmentation after the third week of heat stress; and atypical morphology (i.e., sperm with a globular head, asymmetrical tail, and acrosome loss). Currently, these elevated-temperature conditions are achieved along the Mediterranean coast during the late summer, when the reproductive activity of M. galloprovincialis is suspended after massive spawning in the spring. The increasing global temperature, however, may shift their breeding season, thus significantly impacting marine ecosystems and mussel production. © 2015 Wiley Periodicals, Inc.

  7. Changes in transcript related to osmosis and intracellular ion homeostasis in Paulownia tomentosa under salt stress

    Directory of Open Access Journals (Sweden)

    Guoqiang eFan

    2016-03-01

    Full Text Available Paulownia tomentosa is an important economic and greening tree species that is cultivated widely, including salt environment. Our previous studies indicated its autotetraploid induced by colchicine showed better stress tolerance, but the underlying molecular mechanism related to ploidy and salt stress is still unclear. To investigate this issue, physiological measurements and transcriptome profiling of diploid and autotetraploid plants untreated and treated with NaCl were performed. Through the comparisons among four accessions, for one thing, we found different physiological changes between diploid and autotetraploid P. tomentosa; for another, and we detected many differentially expressed unigenes involved in salt stress response. These differentially expressed unigenes were assigned to several metabolic pathways, including plant hormone signal transduction, RNA transporter, protein processing in endoplasmic reticulum and plant-pathogen interaction, which constructed the complex regulatory network to maintain osmotic and intracellular ion homeostasis. Quantitative real-time polymerase chain reaction was used to confirm the expression patterns of 20 unigenes. The results establish the foundation for the genetic basis of salt tolerance in P. tomentosa, which in turn accelerates Paulownia breeding and expands available arable land.

  8. Long-range correlations and fractal dynamics in C. elegans: Changes with aging and stress

    Science.gov (United States)

    Alves, Luiz G. A.; Winter, Peter B.; Ferreira, Leonardo N.; Brielmann, Renée M.; Morimoto, Richard I.; Amaral, Luís A. N.

    2017-08-01

    Reduced motor control is one of the most frequent features associated with aging and disease. Nonlinear and fractal analyses have proved to be useful in investigating human physiological alterations with age and disease. Similar findings have not been established for any of the model organisms typically studied by biologists, though. If the physiology of a simpler model organism displays the same characteristics, this fact would open a new research window on the control mechanisms that organisms use to regulate physiological processes during aging and stress. Here, we use a recently introduced animal-tracking technology to simultaneously follow tens of Caenorhabdits elegans for several hours and use tools from fractal physiology to quantitatively evaluate the effects of aging and temperature stress on nematode motility. Similar to human physiological signals, scaling analysis reveals long-range correlations in numerous motility variables, fractal properties in behavioral shifts, and fluctuation dynamics over a wide range of timescales. These properties change as a result of a superposition of age and stress-related adaptive mechanisms that regulate motility.

  9. Affect systems, changes in body mass index, disordered eating and stress: an 18-month longitudinal study in women

    OpenAIRE

    Kupeli, N.; Norton, S.; Chilcot, J.; Campbell, I. C.; Schmidt, U. H.; Troop, N. A.

    2017-01-01

    ABSTRACT Background: Evidence suggests that stress plays a role in changes in body weight and disordered eating. The present study examined the effect of mood, affect systems (attachment and social rank) and affect regulatory processes (self-criticism, self-reassurance) on the stress process and how this impacts on changes in weight and disordered eating. Methods: A large sample of women participated in a community-based prospective, longitudinal online study in which measures of body mass in...

  10. Some Structural and Chemical Changes in Endocardial Endothelium of Rats in Emotional and Pain Stress Complicated by Hypercholesterolemia

    Directory of Open Access Journals (Sweden)

    Igor M Luchko

    2017-06-01

    Conclusions. In acute emotional and pain stress, changes in lipid spectrum of membrane structures of endocardial endotheliocytes the main manifestation of which is the accumulation of free cholesterol in cells and increase in the levels of free fatty acids take place. The increase in the number of desquamated endothelial cells is the result of stress action as well. Alimentary hypercholesterolemia significantly increases such pathological changes.

  11. Xylem diameter changes during osmotic stress, desiccation and freezing in Pinus sylvestris and Populus tremula.

    Science.gov (United States)

    Lintunen, Anna; Lindfors, Lauri; Nikinmaa, Eero; Hölttä, Teemu

    2017-04-01

    Trees experience low apoplastic water potential frequently in most environments. Low apoplastic water potential increases the risk of embolism formation in xylem conduits and creates dehydration stress for the living cells. We studied the magnitude and rate of xylem diameter change in response to decreasing apoplastic water potential and the role of living parenchyma cells in it to better understand xylem diameter changes in different environmental conditions. We compared responses of control and heat-injured xylem of Pinus sylvestris (L.) and Populus tremula (L.) branches to decreasing apoplastic water potential created by osmotic stress, desiccation and freezing. It was shown that xylem in control branches shrank more in response to decreasing apoplastic water potential in comparison with the samples that were preheated to damage living xylem parenchyma. By manipulating the osmotic pressure of the xylem sap, we observed xylem shrinkage due to decreasing apoplastic water potential even in the absence of water tension within the conduits. These results indicate that decreasing apoplastic water potential led to withdrawal of intracellular water from the xylem parenchyma, causing tissue shrinkage. The amount of xylem shrinkage per decrease in apoplastic water potential was higher during osmotic stress or desiccation compared with freezing. During desiccation, xylem diameter shrinkage involved both dehydration-related shrinkage of xylem parenchyma and water tension-induced shrinkage of conduits, whereas dehydration-related shrinkage of xylem parenchyma was accompanied by swelling of apoplastic ice during freezing. It was also shown that the exchange of water between symplast and apoplast within xylem is clearly faster than previously reported between the phloem and the xylem. Time constant of xylem shrinkage was 40 and 2 times higher during osmotic stress than during freezing stress in P. sylvestris and P. tremula, respectively. Finally, it was concluded that the

  12. Physico-chemical changes in karkade (Hibiscus sabdariffa L.) seedlings responding to salt stress.

    Science.gov (United States)

    Galal, Abdelnasser

    2017-03-01

    Salinity is one of the major abiotic stress factors affecting series of morphological, physiological, metabolic and molecular changes in plant growth. The effect of different concentrations (0, 25, 50, 100 and 150 mM) of NaCl on the vegetative growth and some physiological parameters of karkade (Hibiscus sabdariffa var. sabdariffa) seedling were investigated. NaCl affected the germination rate, delayed emergence and retarded vegetative growth of seedlings. The length of seedling as well as the leaf area was significantly reduced. The fresh weight remained lower in NaCl treated seedlings compared to control. NaCl at 100 and 150 mM concentrations had significant effect on the dry matter contents of the treated seedlings. The chloroplast pigments in the treated seedlings were affected, suggesting that the NaCl had a significant effect on the chlorophyll and carotenoid biosynthesis. The results showed that the salt treatments induced an increase in proline concentration of the seedlings. The osmotic potential (ψs) of NaCl treated seedlings decreased with increasing NaCl concentrations. Salt treatments resulted in dramatic quantitative reduction in the total sterol percent compared with control ones. Salt stress resulted in increase and decrease of Na + and K + ions, respectively. NaCl salinity increased lipid peroxidation. SDS-PAGE was used to evaluate protein pattern after applying salt stress. High molecular weight proteins were intensified, while low molecular weight proteins were faint. NaCl at 100 and 150 mM concentration distinguished with new protein bands. Salt stress induced a new peroxidase bands and increased the band intensity, indicating the protective role of peroxidase enzyme.

  13. Animal response to drastic changes in oxygen availability and physiological oxidative stress.

    Science.gov (United States)

    Hermes-Lima, Marcelo; Zenteno-Savín, Tania

    2002-12-01

    Oxygen is essential for most life forms, but it is also inherently toxic due to its biotransformation into reactive oxygen species (ROS). In fact, the development of many animal and plant pathological conditions, as well as natural aging, is associated with excessive ROS production and/or decreased antioxidant capacity. However, a number of animal species are able to tolerate, under natural conditions, situations posing a large potential for oxidative stress. Situations range from anoxia in fish, frogs and turtles, to severe hypoxia in organs of freeze-tolerant snakes, frogs and insect larvae, or diving seals and turtles, and mild hypoxia in organs of dehydrated frogs and toads or estivating snails. All situations are reminiscent of ischemia/reperfusion events that are highly damaging to most mammals and birds. This article reviews the responses of anoxia/hypoxia-tolerant animals when subjected to environmental and metabolic stresses leading to oxygen limitation. Abrupt changes in metabolic rate in ground squirrels arousing from hibernation, as well as snails arousing from estivation, may also set up a condition of increased ROS formation. Comparing the responses from these diverse animals, certain patterns emerge. The most commonly observed response is an enhancement of the antioxidant defense. The increase in the baseline activity of key antioxidant enzymes, as well as 'secondary' enzymatic defenses, and/or glutathione levels in preparation for a putative oxidative stressful situation arising from tissue reoxygenation seem to be the preferred evolutionary adaptation. Increasing the overall antioxidant capacity during anoxia/hypoxia is of relevance for species such as garter snakes (Thamnophis sirtalis parietalis) and wood fogs (Rana sylvatica), while diving freshwater turtles (Trachemys scripta elegans) appear to rely mainly upon high constitutive activities of antioxidant enzymes to deal with oxidative stress arising during tissue reoxygenation. The possibility

  14. Repeated Predictable Stress Causes Resilience against Colitis-Induced Behavioral Changes in Mice

    Directory of Open Access Journals (Sweden)

    Ahmed M Hassan

    2014-11-01

    Full Text Available Inflammatory bowel disease is associated with an increased risk of mental disorders and can be exacerbated by stress. In this study which was performed with male 10-week old C57Bl/6N mice, we used dextran sulfate sodium (DSS-induced colitis to evaluate behavioral changes caused by intestinal inflammation, to assess the interaction between repeated psychological stress (water avoidance stress, WAS and colitis in modifying behavior, and to analyze neurochemical correlates of this interaction. A 7-day treatment with DSS (2 % in drinking water decreased locomotion and enhanced anxiety-like behavior in the open field test and reduced social interaction. Repeated exposure to WAS for 7 days had little influence on behavior but prevented the DSS-induced behavioral disturbances in the open field and social interaction tests. In contrast, repeated WAS did not modify colon length, colonic myeloperoxidase content and circulating proinflammatory cytokines, parameters used to assess colitis severity. DSS-induced colitis was associated with an increase in circulating neuropeptide Y (NPY, a rise in the hypothalamic expression of cyclooxygenase-2 mRNA and a decrease in the hippocampal expression of NPY mRNA, brain-derived neurotrophic factor mRNA and mineralocorticoid receptor mRNA. Repeated WAS significantly decreased the relative expression of corticotropin-releasing factor mRNA in the hippocampus. The effect of repeated WAS to blunt the DSS-evoked behavioral disturbances was associated with a rise of circulating corticosterone and an increase in the expression of hypothalamic NPY mRNA. These results show that experimental colitis leads to a particular range of behavioral alterations which can be prevented by repeated WAS, a model of predictable chronic stress, while the severity of colitis remains unabated. We conclude that the mechanisms underlying the resilience effect of repeated WAS involves hypothalamic NPY and the hypothalamic-pituitary-adrenal axis.

  15. Time Course Changes in Selected Biochemical Stress Indices in Broilers Exposed to Short-term Noise

    Directory of Open Access Journals (Sweden)

    Iveta Bedáňová

    2010-01-01

    Full Text Available Time course changes in selected biochemical stress indices (corticosterone, triglycerides, glucose, cholesterol following short-term noise exposure at 100 dB for 28 min were studied in broilers aged 42 days. Corticosterone concentrations were found to increase during the first 10 min of noise exposure and to differ significantly from the control (background sound – 50 dB at Time 10 min and 14 min, then decreased continually and at 28 min returned to the initial prestress value. Triglyceride concentrations increased in broilers exposed to 100 dB noise during the first 12 min with a significant difference from the control at 12 min and 14 min. Glucose concentrations were higher due to 100 dB noise exposure for almost the entire period monitored, with significant differences between 100 dB and control broilers at 6 min and from 10 min to 14 min. Similarly as for the corticosterone concentration, a drop in triglycerides and glucose concentrations was seen approximately from Time 14 min and a return to the pre-stress value at 28 min. The cholesterol concentrations showed various temporal patterns with no significant difference between 100 dB and control broilers in this experiment. The pattern of response found in the study indicates that 100 dB noise represents a stress factor in broilers, however, there is the ability of broilers to adapt to an increased level of noise at this intensity after the first 14 min of exposure. The findings obtained in the study may contribute to expanding detailed knowledge of physiological stress responses to this specific noise stimulus in poultry, and could thereby be used to improve the welfare of broilers in intensive housing systems.

  16. Moisture and Salinity Stress Induced Changes in Biochemical Constituents and Water Relations of Different Grape Rootstock Cultivars

    Directory of Open Access Journals (Sweden)

    Satisha Jogaiah

    2014-01-01

    Full Text Available Ten grape rootstocks were subjected to moisture and salinity stress in two separate experiments. The influence of these stresses on gas exchange, water relation, and biochemical parameters was monitored at various stages of stress cycle. Both stresses indicated significant changes in the physiological and biochemical parameters studied. Some biochemical constituents increased by several folds in few rootstock cultivars which also recorded increased osmotic potential suggesting their role in osmotic adjustment. Some of the rootstock cultivars such as 110R, 1103P, 99R, Dogridge, and B2/56 recorded increased phenolic compounds under stressed conditions. The same rootstock also recorded increased water use efficiency. The increased accumulation of phenolic compounds in these cultivars may indicate the possible role of phenolic compounds as antioxidants for scavenging the reactive oxygen species generated during abiotic stresses thus maintaining normal physiological and biochemical process in leaves of resistant cultivars.

  17. Physiological and metabolic changes of purslane (Portulaca oleracea L. in response to drought, heat and combined stresses

    Directory of Open Access Journals (Sweden)

    Rui eJin

    2016-01-01

    Full Text Available Purslane (Portulaca oleracea L. is a fleshy herbaceous plant. So far, little information is available on the response of this plant to combined drought and heat stress. In this study, changes in physiological and metabolic levels were characterized after treatments with drought, heat and combined stresses. Both individual and combined stress treatments increased malondialdehyde (MDA, electrolyte leakage (EL, O2•− and activities of superoxide dismutase (SOD, peroxidase (POD, while declined chlorophyll content. No significant differences were found between control and treatments in leaf water content (LWC and catalase (CAT activity. Additionally, 37 metabolic compounds were detected in purslane. Through pathway analysis, 17 metabolites were directly involved in the glycolysis metabolic pathway. The present study indicated that combined drought and heat stress caused more serious damage in purslane than individual stress. To survive, purslane has a high capability to cope with environmental stress conditions through activation of physiological and metabolic pathways.

  18. Physiological and Metabolic Changes of Purslane (Portulaca oleracea L.) in Response to Drought, Heat, and Combined Stresses

    Science.gov (United States)

    Jin, Rui; Wang, Yanping; Liu, Ruijie; Gou, Junbo; Chan, Zhulong

    2016-01-01

    Purslane (Portulaca oleracea L.) is a fleshy herbaceous plant. So far, little information is available on the response of this plant to combined drought and heat stress. In this study, changes in physiological and metabolic levels were characterized after treatments with drought, heat and combined stresses. Both individual and combined stress treatments increased malondialdehyde (MDA), electrolyte leakage (EL), O2•− and activities of superoxide dismutase (SOD), peroxidase (POD), while declined chlorophyll content. No significant differences were found between control and treatments in leaf water content (LWC) and catalase (CAT) activity. Additionally, 37 metabolic compounds were detected in purslane. Through pathway analysis, 17 metabolites were directly involved in the glycolysis metabolic pathway. The present study indicated that combined drought and heat stress caused more serious damage in purslane than individual stress. To survive, purslane has a high capability to cope with environmental stress conditions through activation of physiological and metabolic pathways. PMID:26779204

  19. NMR-Based Metabonomic Investigation of Heat Stress in Myotubes Reveals a Time-Dependent Change in the Metabolites

    DEFF Research Database (Denmark)

    Straadt, Ida K; Young, Jette F; Bross, Peter

    2010-01-01

    NMR-based metabonomics was applied to elucidate the time-dependent stress responses in mouse myotubes after heat exposure of either 42 or 45 degrees C for 1 h. Principal component analysis (PCA) revealed that the gradual time-dependent changes in metabolites contributing to the clustering...... and separation of the control samples from the different time points after heat stress primarily are in the metabolites glucose, leucine, lysine, phenylalanine, creatine, glutamine, and acetate. In addition, PC scores revealed a maximum change in metabolite composition 4 h after the stress exposure; thereafter......, samples returned toward control samples, however, without reaching the control samples even 10 h after stress. The results also indicate that the myotubes efficiently regulate the pH level by release of lactate to the culture medium at a heat stress level of 42 degrees C, which is a temperature level...

  20. Exercise-induced changes in stress hormones and cell adhesion molecules in obese men

    Directory of Open Access Journals (Sweden)

    Park J

    2018-03-01

    Full Text Available Jinkyung Park,1 Darryn S Willoughby,2 Joon Jin Song,3 Brian C Leutholtz,2 Yunsuk Koh2 1Department of Kinesiology, George Mason University, Manassas, VA, USA; 2Department of Health, Human Performance, Recreation, Baylor University, Waco, TX, USA; 3Department of Statistical Science, Baylor University, Waco, TX, USA Purpose: The current study examined the relationship between exercise-induced changes in stress hormones (epinephrine, norepinephrine, and cortisol and vascular inflammatory markers (soluble intracellular adhesion molecule-1 [sICAM-1], soluble endothelial selectin [sE-selectin], and soluble vascular adhesion molecule-1 [sVCAM-1] in obese men over a 24-hour period following exercise at lower and higher intensity.Patients and methods: Fifteen physically inactive, obese, college-aged men performed a single bout of cycling exercise at lower and higher intensities (lower intensity: 50% of maximal heart rate, and higher intensity: 80% of maximal heart rate in random order. Overnight fasting blood samples were collected at baseline, immediately postexercise (IPE, 1-hour PE (1-h PE, and 24-hour PE. Changes in stress hormones and inflammatory markers were analyzed with a repeated-measures analysis of variance using Bonferroni multiple comparisons and a linear regression analysis (p<0.05.Results: sICAM-1, sVCAM-1, epinephrine, and norepinephrine did not change over time, while sE-selectin was significantly lower at 1-h PE (10.25±1.07 ng/mL, p=0.04 than at baseline (12.22±1.39 ng/mL. Cortisol and sICAM-1 were negatively related at 1-h PE following lower-intensity exercise (r2=0.34, p=0.02, whereas cortisol and sVCAM-1 were positively related at IPE following higher-intensity exercise (r2=0.36, p=0.02.Conclusion: Regardless of intensity, an acute bout of aerobic exercise may lower sE-selectin in sedentary obese men. Responses of cortisol are dependent on exercise intensity, and cortisol may be a key stress hormone playing a major role in

  1. Coseismic displacement estimate of the 2013 M S7.0 Lushan, China earthquake based on the simulation of near-fault displacement field

    Directory of Open Access Journals (Sweden)

    Hong Zhou

    2016-11-01

    Full Text Available Abstract Usually, GPS observation provides direct evidence to estimate coseismic displacement. However, GPS stations are scattered, sparse and cannot provide a detailed distribution of coseismic displacement. Strong ground motion records share the same disadvantages as GPS in estimating coseismic displacement. Estimations from InSAR data can provide displacement distributions; however, the resolution of such methods is limited by the analysis techniques. The paper focuses on estimating the coseismic displacement of the M S7.0 Lushan earthquake on April 20, 2013 using a simulation of the wave field based on the elastic wave equation instead of a quasi-static equation. First, the media and source models were constructed by comparing the simulated velocity and the record velocity of the ground motion. Then simulated static displacements were compared with GPS records. Their agreement validates our results. Careful analysis of the distribution of simulated coseismic displacements near the fault reveals more details of the ground motion. For example, an uplift appears on the hanging wall of the fault, rotation is associated with the horizontal displacement, the fault strike and earthquake epicenter provide the main control on motion near the faults, and the motion on the hanging wall is stronger than that on the footwall. These results reveal additional characteristics of the ground motion of the Lushan earthquake.

  2. Phosphoenolpyruvate carboxylase from pennywort (Umbilicus rupestris). Changes in properties after exposure to water stress.

    Science.gov (United States)

    Daniel, P P; Bryant, J A; Woodward, F I

    1984-03-01

    Umbilicus rupestris (pennywort) switches from C3 photosynthesis to an incomplete form of crassulacean acid metabolism (referred to as 'CAM-idling') when exposed to water stress (drought). This switch is accompanied by an increase in the activity of phosphoenolpyruvate carboxylase. This enzyme also shows several changes in properties, including a marked decrease in sensitivity to acid pH, a lower Km for phosphoenolpyruvate, very much decreased sensitivity to the allosteric inhibitor malate, and increased responsiveness to the allosteric effector glucose 6-phosphate. The Mr of the enzyme remains unchanged, at approx. 185 000. These changes in properties of phosphoenolpyruvate carboxylase are discussed in relation to the roles of the enzyme in C3 and in CAM plants.

  3. Identification of deep subaqueous co-seismic scarps through specific coeval sedimentation in Lesser Antilles: implication for seismic hazard

    Directory of Open Access Journals (Sweden)

    C. Beck

    2012-05-01

    Full Text Available During the GWADASEIS cruise (Lesser Antilles volcanic arc, February–March 2009 a very high resolution (VHR seismic-reflection survey was performed in order to constrain Late Quaternary to Present faulting. The profiles we obtained evidence frequent "ponding" of reworked sediments in the deepest areas, similar to the deposition of Mediterranean "homogenites". These bodies are acoustically transparent (few ms t.w.t. thick and are often deposited on the hanging walls of dominantly normal faults, at the base of scarps. Their thickness appears sufficient to compensate (i.e. bury co-seismic scarps between successive earthquakes, resulting in a flat and horizontal sea floor through time. In a selected area (offshore Montserrat and Nevis islands, piston coring (4 to 7 m long was dedicated to a sedimentological analysis of the most recent of these particular layers. It corresponds to non-stratified homogenous calcareous silty sand (reworked calcareous plankton and minor volcanoclastics. This layer can be up to 2 m thick, and overlies fine-grained hemipelagites. The upper centimeters of the latter represent the normal RedOx water/sediment interface. 210Pb and 137Cs activities lack in the massive sands, while a normal profile of unsupported 210Pb decrease is observed in the hemipelagite below, together with a 137Cs peak corresponding to the Atmospheric Nuclear Experiments (1962. The RedOx level was thus capped by a recent instantaneous major sedimentary event considered as post-1970 AD; candidate seismic events to explain this sedimentary deposits are either the 16 March 1985 earthquake or the 8 October 1974 one (Mw = 6.3 and Mw = 7.4, respectively. This leads to consider that the syntectonic sedimentation in this area is not continuous but results from accumulation of thick homogenites deposited after the earthquakes (as observed in the following weeks after Haiti January

  4. Affect systems, changes in body mass index, disordered eating and stress: an 18-month longitudinal study in women.

    Science.gov (United States)

    Kupeli, N; Norton, S; Chilcot, J; Campbell, I C; Schmidt, U H; Troop, N A

    2017-01-01

    Background: Evidence suggests that stress plays a role in changes in body weight and disordered eating. The present study examined the effect of mood, affect systems (attachment and social rank) and affect regulatory processes (self-criticism, self-reassurance) on the stress process and how this impacts on changes in weight and disordered eating. Methods: A large sample of women participated in a community-based prospective, longitudinal online study in which measures of body mass index (BMI), disordered eating, perceived stress, attachment, social rank, mood and self-criticism/reassurance were measured at 6-monthly intervals over an 18-month period. Results: Latent Growth Curve Modelling showed that BMI increased over 18 months while stress and disordered eating decreased and that these changes were predicted by high baseline levels of these constructs. Independently of this, however, increases in stress predicted a reduction in BMI which was, itself, predicted by baseline levels of self-hatred and unfavourable social comparison. Conclusions: This study adds support to the evidence that stress is important in weight change. In addition, this is the first study to show in a longitudinal design, that social rank and self-criticism (as opposed to self-reassurance) at times of difficulty predict increases in stress and, thus, suggests a role for these constructs in weight regulation.

  5. Compounding Impacts of Human-Induced Water Stress and Climate Change on Water Availability

    Science.gov (United States)

    Mehran, Ali; AghaKouchak, Amir; Nakhjiri, Navid; Stewardson, Michael J.; Peel, Murray C.; Phillips, Thomas J.; Wada, Yoshihide; Ravalico, Jakin K.

    2017-01-01

    The terrestrial phase of the water cycle can be seriously impacted by water management and human water use behavior (e.g., reservoir operation, and irrigation withdrawals). Here we outline a method for assessing water availability in a changing climate, while explicitly considering anthropogenic water demand scenarios and water supply infrastructure designed to cope with climatic extremes. The framework brings a top-down and bottom-up approach to provide localized water assessment based on local water supply infrastructure and projected water demands. When our framework is applied to southeastern Australia we find that, for some combinations of climatic change and water demand, the region could experience water stress similar or worse than the epic Millennium Drought. We show considering only the influence of future climate on water supply, and neglecting future changes in water demand and water storage augmentation might lead to opposing perspectives on future water availability. While human water use can significantly exacerbate climate change impacts on water availability, if managed well, it allows societies to react and adapt to a changing climate. The methodology we present offers a unique avenue for linking climatic and hydrologic processes to water resource supply and demand management and other human interactions.

  6. Expression profiling of Chrysanthemum crassum under salinity stress and the initiation of morphological changes.

    Science.gov (United States)

    Guan, Zhiyong; Feng, Yitong; Song, Aiping; Shi, Xiaomeng; Mao, Yachao; Chen, Sumei; Jiang, Jiafu; Ding, Lian; Chen, Fadi

    2017-01-01

    Chrysanthemum crassum is a decaploid species of Chrysanthemum with high stress tolerance that allows survival under salinity stress while maintaining a relatively ideal growth rate. We previously recorded morphological changes after salt treatment, such as the expansion of leaf cells. To explore the underlying salinity tolerance mechanisms, we used an Illumina platform and obtained three sequencing libraries from samples collected after 0 h, 12 h and 24 h of salt treatment. Following de novo assembly, 154,944 transcripts were generated, and 97,833 (63.14%) transcripts were annotated, including 55 Gene Ontology (GO) terms and 128 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The expression profile of C. crassum was globally altered after salt treatment. We selected functional genes and pathways that may contribute to salinity tolerance and identified some factors involved in the salinity tolerance strategies of C. crassum, such as signal transduction, transcription factors and plant hormone regulation, enhancement of energy metabolism, functional proteins and osmolyte synthesis, reactive oxygen species (ROS) scavenging, photosystem protection and recovery, and cell wall protein modifications. Forty-six genes were selected for quantitative real-time polymerase chain reaction detection, and their expression patterns were shown to be consistent with the changes in their transcript abundance determined by RNA sequencing.

  7. Oxidative stress associated with pathological changes in the pancreas of cattle naturally infected by Eurytrema coelomaticum.

    Science.gov (United States)

    Schwertz, Claiton I; Gabriel, Mateus E; Henker, Luan C; Bottari, Nathieli B; Carmo, Guilherme do; Guarda, Naiara Dos S; Moresco, Rafael N; Machado, Gustavo; Morsch, Vera M; Schetinger, Maria Rosa C; Stedille, Fernanda A; Baska, Piotr; Mattei, Vanessa; da Silva, Aleksandro S; Mendes, Ricardo E

    2016-06-15

    Although Eurytrema coelomaticum is considered a parasite with low pathogenicity, it may be associated with mortality and loss of productive performance in animals due to chronic pancreatitis. The aim of this study was to evaluate the occurrence of oxidative stress caused by E. coelomaticum in naturally infected cattle, correlating the biochemical findings with the parasite load and histopathological changes. For this study, blood and pancreas samples from 51 cattle were collected, and levels of the thiobarbituric acid reactive substances (TBARS), advanced oxidation protein products (AOPP) and ferric reducing ability of plasma (FRAP) were measured in the serum and pancreas, and superoxide dismutase (SOD) activity was measured in total blood. Parasite burden was determined opening the pancreatic ducts, and then fragments of pancreas were collected and fixed in 10% buffered formalin and routinely processed for histopathology. From the 51 collected pancreas, 33 (63.5%) were parasitized. The average parasite burden per pancreas was 532 (12-2,578). TBARS and FRAP showed higher levels in serum and pancreas of infected animals (p<0.05), with a positive correlation between the histopathological changes and the number of parasites. SOD level in blood was 42% higher in parasitized group compared with control group (p<0.05), as well as AOPP in serum. Based on these results, we concluded that in natural infection by E. coelomaticum in cattle, oxidative stress occurs, characterized by the occurrence of protein oxidation, lipid peroxidation and activation of antioxidant system. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Increased rate of acceleration on Pine Island Glacier strongly coupled to changes in gravitational driving stress

    Directory of Open Access Journals (Sweden)

    J. B. T. Scott

    2009-05-01

    Full Text Available Pine Island Glacier, Antarctica, has been undergoing several related changes for at least two decades; these include acceleration, thinning and grounding line retreat. During the first major ground-based study between 2006 and 2008, GPS receivers were used to monitor ice flow from 55 km to 171 km inland, along the central flowline. At four sites both acceleration and thinning rates over the last two years exceeded rates observed at any other time over the last two decades. At the downstream site acceleration was 6.4% over 2007 and thinning was 3.5±0.5 ma−1. Acceleration and thinning have spread rapidly inland with the acceleration 171 km inland at 4.1% over 2007, greater than any measured annual flow increase along the whole glacier prior to 2006. Increases in surface slope, and hence gravitational driving stress, correlate well with the acceleration and no sustained change in longitudinal stress gradient is needed to explain the force balance. There is no indication that the glacier is approaching a new steady state.

  9. Do physiological and pathological stresses produce different changes in heart rate variability?

    Directory of Open Access Journals (Sweden)

    Andrea eBravi

    2013-07-01

    Full Text Available Although physiological (e.g. exercise and pathological (e.g. infection stress affecting the cardiovascular system have both been documented to be associated with a reduction in overall heart rate variability (HRV, it remains unclear if loss of HRV is ubiquitously similar across different domains of variability analysis or if distinct patterns of altered HRV exist depending on the stressor. Using Continuous Individualized Multiorgan Variability Analysis (CIMVATM software, heart rate (HR and four selected measures of variability were measured over time (windowed analysis from two datasets, a set (n=13 of patients who developed systemic infection (i.e. sepsis after bone marrow transplant, and a matched set of healthy subjects undergoing physical exercise under controlled conditions. HR and the four HRV measures showed similar trends in both sepsis and exercise. The comparison through Wilcoxon sign-rank test of the levels of variability at baseline and during the stress (i.e. exercise or after days of sepsis development showed similar changes, except for LF/HF, ratio of power at low and high frequencies (associated with sympathovagal modulation, which was affected by exercise but did not show any change during sepsis. Furthermore, HRV measures during sepsis showed a lower level of correlation with each other, as compared to HRV during exercise. In conclusion, this exploratory study highlights similar responses during both exercise and infection, with differences in terms of correlation and inter-subject fluctuations, whose physiologic significance merits further investigation.

  10. Stress tolerance and biocontrol performance of the yeast antagonist, Candida diversa, change with morphology transition.

    Science.gov (United States)

    Li, Guangkun; Chi, Mengshan; Chen, Huizhen; Sui, Yuan; Li, Yan; Liu, Yongsheng; Zhang, Xiaojing; Sun, Zhiqiang; Liu, Guoqing; Wang, Qi; Liu, Jia

    2016-02-01

    As an eco-friendly management method, biological control of postharvest diseases, utilizing antagonistic yeasts, is a research topic receiving considerable attention. Detailed knowledge on the biology of yeast antagonists is crucial when considering their potential application and development as biocontrol products. Changes in the growth form, such as single-cell to pseudohyphae, have been associated with the mode of action in postharvest biocontrol yeasts. In this study, the antagonistic yeast, Candida diversa, reversibly shifted from a single-cell morphology on yeast peptone dextrose (YPD) medium with 2 % agar to a pseudohyphal morphology on YPD with 0.3 % agar. The tolerance of the pseudohyphal form to heat and oxidative stresses, as well as the biocontrol efficacy against Botrytis cinerea on apple and kiwifruit stored at 25 and 4 °C, was significantly higher as compared to the single-cell form. This study provides new information on the ability of C. diversa to change its morphology and the impact of the morphology shift on stress tolerance and biocontrol performance.

  11. Combination of change in hematological parameters with exercise stress test to predict coronary artery disease.

    Science.gov (United States)

    Korkmaz, Ahmet; Yıldız, Abdulkadir; Türker Duyuler, Pınar; Duyuler, Serkan; Yılmaz, Samet; Basyigit, Funda; Elalmis, Ozgul Ucar; Guray, Umit; Ileri, Mehmet

    2018-01-01

    Treadmill exercise stress testing for identifying patients with a higher likelihood of coronary artery disease (CAD) before elective coronary angiography is recommended in the current guidelines. In this study, we aimed to evaluate the changes in the hematological parameters before and after exercise stress test in relation with the presence of CAD. A total of 113 patients with chest pain who underwent treadmill exercise testing and coronary angiography were included in this study. Neutrophil count (4.38±0.99 vs 5.19±0.93, Pexercise test in all the patients. Increase in the NLR after exercise test was significantly higher in patients with positive exercise test (n=68) than negative exercise test (n=45) (0.49±0.58 vs 0.19±0.44, P=.016). The sensitivity and specificity of treadmill exercise testing according to coronary angiography was 79% and 64%, respectively. A cut-off point of 0.2 for the change in the NLR in addition to positive treadmill exercise testing had 91% sensitivity and 92% specificity in predicting significant coronary artery stenosis (AUC:0.913, 95% CI: 0.805-1.000, P<.001). Neutrophil to lymphocyte ratio is an important inflammatory marker that can contribute to treadmill ECG testing in predicting CAD. © 2017 Wiley Periodicals, Inc.

  12. Stress.

    Science.gov (United States)

    Chambers, David W

    2008-01-01

    We all experience stress as a regular, and sometimes damaging and sometimes useful, part of our daily lives. In our normal ups and downs, we have our share of exhaustion, despondency, and outrage--matched with their corresponding positive moods. But burnout and workaholism are different. They are chronic, dysfunctional, self-reinforcing, life-shortening habits. Dentists, nurses, teachers, ministers, social workers, and entertainers are especially susceptible to burnout; not because they are hard-working professionals (they tend to be), but because they are caring perfectionists who share control for the success of what they do with others and perform under the scrutiny of their colleagues (they tend to). Workaholics are also trapped in self-sealing cycles, but the elements are ever-receding visions of control and using constant activity as a barrier against facing reality. This essay explores the symptoms, mechanisms, causes, and successful coping strategies for burnout and workaholism. It also takes a look at the general stress response on the physiological level and at some of the damage American society inflicts on itself.

  13. MRI assessment of mid-urethral ligament changes in female stress urinary incontinence

    International Nuclear Information System (INIS)

    Bai Mei; Liu Hongyi; Han Yue; Xu Guoping; Fang Ping; Zhao Yang; Li Jingjin

    2012-01-01

    Objective: To evaluate the MRI value in changes of mid-urethral ligament injury of female stress urinary incontinence (SUI). Methods: Comparison of MRI changes of mid-urethral ligament on 30 healthy female volunteers and 20 female SUI patients. Chi-square test was used to compare the form of SUI patient's mid-urethral support ligaments. Results: The female mid-urethral support ligaments were composed of 4 groups of ligaments, including the periurethral ligament and pubourethral ligaments (1 pair), and at both sides of the urethra's paraurethral ligaments (1 pair) and suburethral ligament lying dorsal urethra, connecting the urethra and pelvic arcus tendinous fasciae. In normal MRI, ligament was a thin strip and showed low signal on both T 1 WI and T 2 WI, T 2 WI sagittal and cross-section scan was the best combination to show the middle urethral support ligaments changes, with tension; 6 patients (20%) in the 30 patients normal control group could be seen tortuously and slack like around the urethra ligaments. Twenty SUI patients mid-urethral support ligaments were performance laxity or rupture,rates were 39% (47/120) and 42% (50/120) (χ 2 =43.191, P<0.05). On T 2 WI, the ligamentous laxity was floating,and loss tension, also could performance one side extension and thinner than the other side. The ligament rupture was performance of the signal interruption, ligament contracture and one end of ligament attachment points separation. Conclusion: MRI can objective effective evaluate the mid-urethral support ligaments' pathological changes in stress urinary incontinence patients. (authors)

  14. Systematic losses of outdoor production from heat stress and climate change

    Science.gov (United States)

    Buzan, J. R.; Huber, M.

    2017-12-01

    Heat stress impacts humans today with heat waves, worker reductions, and health issues. Here we show novel results in labor productivity for outdoor work due to global warming. We use the HumanIndexMod to calculate 4x daily values of Simplified Wet Bulb Globe Temperature index (sWBGT) from the CMIP5 archive normalized by global mean surface temperature changes. Previous work shows that scaling of sWBGT is robust across the CMIP5 archive. We calculate total annual outdoor labor capacity from our scaled sWBGT results. Our results show modern day losses due to heat stress impacting outdoor work for low latitudes (and parts of Eastern China and the Southern United States). At 2°C of climate change, up to 20% losses to total capacity impact Midwestern United States, while the Southern United States suffers >20% losses. Western Coastal Africa suffers annual losses at >80%, along with the Amazon Basin and the greater South East Asia region. India suffers losses >50% annually. At +5°C, the estimated mean global change by 2100, the Equatorial region (Northern Australia and Northern Bolivia to Western Coastal Africa and Southern India) has complete cessation of annual outdoor work. The Midwest United States suffers losses up to 30%, and the Gulf of Mexico suffers losses >50%. Our results imply that small changes in global mean surface temperature (2°C) will lead to crippling losses to outdoor work annually, and ≥5°C losses will lead to cessation of labor for more than half the world's population.

  15. Rapid estimation of the moment magnitude of the 2011 off the Pacific coast of Tohoku earthquake from coseismic strain steps

    Science.gov (United States)

    Itaba, S.; Matsumoto, N.; Kitagawa, Y.; Koizumi, N.

    2012-12-01

    The 2011 off the Pacific coast of Tohoku earthquake, of moment magnitude (Mw) 9.0, occurred at 14:46 Japan Standard Time (JST) on March 11, 2011. The coseismic strain steps caused by the fault slip of this earthquake were observed in the Tokai, Kii Peninsula and Shikoku by the borehole strainmeters which were carefully set by Geological Survey of Japan, AIST. Using these strain steps, we estimated a fault model for the earthquake on the boundary between the Pacific and North American plates. Our model, which is estimated only from several minutes' strain data, is largely consistent with the final fault models estimated from GPS and seismic wave data. The moment magnitude can be estimated about 6 minutes after the origin time, and 4 minutes after wave arrival. According to the fault model, the moment magnitude of the earthquake is 8.7. On the other hand, based on the seismic wave, the prompt report of the magnitude which the Japan Meteorological Agency announced just after earthquake occurrence was 7.9. Generally coseismic strain steps are considered to be less reliable than seismic waves and GPS data. However our results show that the coseismic strain steps observed by the borehole strainmeters, which were carefully set and monitored, can be relied enough to decide the earthquake magnitude precisely and rapidly. In order to grasp the magnitude of a great earthquake earlier, several methods are now being suggested to reduce the earthquake disasters including tsunami. Our simple method of using strain steps is one of the strong methods for rapid estimation of the magnitude of great earthquakes.

  16. Use of Coral Microatolls and a Tide Model to Measure Coseismic Vertical Deformation: Potential Utility and Common Mistakes

    Science.gov (United States)

    Meltzner, A. J.

    2007-12-01

    In the past few years, several great ( M>8) subduction megathrust ruptures have occurred beneath tropical seas and their fringing coral reefs. As predicted by elastic-dislocation theory, coastlines above the rupture patch rose, and adjacent regions subsided. Several investigators have used emerged or submerged coastal features to document land-level changes associated with these events. Unfortunately, when referencing these measurements to their high- or low-tide datums, some have overlooked the fact that both high and low tide levels can vary by more than a meter in some regions. In locations where tides are semidiurnal, a measured local high- tide value may be either the lower or higher high tide of the day, and a measured low-tide value may be either the higher or lower low tide. Furthermore, a measured high or low tide may be anywhere between the fortnightly spring and neap tides. Finally, even the elevations of spring and neap tides vary from month to month. One must know these variations to properly reference geological measurements. Some researchers have also made questionable assumptions about how the geological features they measured relate to tidal levels. As a result, published uplift or subsidence values in some studies may have errors of a meter or more, despite stated uncertainties of a few centimeters or less. A new approach, highlighted below, couples geological observations with a tide model to dramatically reduce uncertainties and produce more accurate estimates of uplift or subsidence. The upward growth of coral microatolls is controlled by low tide. Off the west coast of northern Sumatra, Porites microatolls' highest level of survival (HLS) is typically ~5 cm above annual low tide, but this is different for other genera and may be different in other regions. A comparison of pre- and post-earthquake HLS on a microatoll is the best method for documenting coseismic uplift; however, in cases where an entire reef was killed (and post-earthquake HLS

  17. GPS constraints on the Mw = 7.5 Ometepec earthquake sequence, southern Mexico: coseismic and post-seismic deformation

    Science.gov (United States)

    Graham, Shannon E.; DeMets, Charles; Cabral-Cano, Enrique; Kostoglodov, Vladimir; Walpersdorf, Andrea; Cotte, Nathalie; Brudzinski, Michael; McCaffrey, Robert; Salazar-Tlaczani, Luis

    2014-10-01

    We use continuous GPS measurements from 31 stations in southern Mexico to model coseismic slip and post-seismic deformation from the 2012 March 20 Mw = 7.5 Ometepec earthquake, the first large thrust earthquake to occur below central Mexico during the modern GPS era. Coseismic offsets ranging from ˜280 mm near the epicentre to 5 mm or less at sites far from the epicentre are fit best by a rupture focused between ˜15 and 35 km depth, consistent with an independent seismological estimate. The corresponding geodetic moment of 1.4 × 1020 N·m is within 10 per cent of two independent seismic estimates. Transient post-seismic motion recorded by GPS sites as far as 300 km from the rupture has a different horizontal deformation gradient and opposite sense of vertical motion than do the coseismic offsets. A forward model of viscoelastic relaxation as a result of our new coseismic slip solution incorrectly predicts uplift in areas where post-seismic subsidence was recorded and indicates that viscoelastic deformation was no more than a few per cent of the measured post-seismic deformation. The deformation within 6 months of the earthquake was thus strongly dominated by fault afterslip. The post-seismic GPS time-series are well fit as logarithmically decaying fault afterslip on an area of the subduction interface up to 10 times larger than the earthquake rupture zone, extending as far as 220 km inland. Afterslip had a cumulative geodetic moment of 2.0 × 1020 N·m, ˜40 per cent larger than the Ometepec earthquake. Tests for the shallow and deep limits for the afterslip require that it included much of the earthquake rupture zone as well as regions of the subduction interface where slow slip events and non-volcanic tremor have been recorded and areas even farther downdip on the flat interface. Widespread afterslip below much of central Mexico suggests that most of the nearly flat subduction interface in this region is conditionally stable and thus contributes measurable

  18. GPS Constraints on the Mw=7.5 Ometepec Earthquake Sequence, Southern Mexico: Coseismic and Postseismic Deformation

    Science.gov (United States)

    Graham, S. E.; DeMets, C.; Cabral, E.; Kostoglodov, V.; Walpersdorf, A.; Cotte, N.; Brudzinski, M. R.; McCaffrey, R.; Salazar-Tlaczani, L.

    2014-12-01

    We use continuous GPS measurements from 31 stations in southern Mexico to model coseismic slip and postseismic deformation from the 20 March 2012 Mw=7.5 Ometepec earthquake, the first large thrust earthquake to occur below central Mexico during the modern GPS era. Coseismic offsets ranging from ~280 mm near the epicenter to 5 mm or less at sites far from the epicenter are fit best by a rupture focused between ~15 km and 35 km depth, consistent with an independent seismological estimate. Transient postseismic motion recorded by GPS sites as far as 300 km from the rupture has a different horizontal deformation gradient and opposite sense of vertical motion than do the coseismic offsets. A forward model of viscoelastic relaxation as a result of our new coseismic slip solution incorrectly predicts uplift in areas where postseismic subsidence was recorded and indicates that viscoelastic deformation was no more than a few percent of the measured postseismic deformation. The deformation within six months of the earthquake was thus strongly dominated by fault afterslip. The postseismic GPS time series are well fit as logarithmically decaying fault afterslip on an area of the subduction interface up to 10 times larger than the earthquake rupture zone, extending as far as 220 km inland. Afterslip had a cumulative geodetic moment of 2.0×1020 N·m, ~40% larger than the Ometepec earthquake. Tests for the shallow and deep limits for the afterslip require that it included much of the earthquake rupture zone as well as regions of the subduction interface where slow slip events and non-volcanic tremor have been recorded and areas even farther downdip on the flat interface. We examine whether aftershocks accommodated a significant fraction of the shallow postseismic slip, but find that the energy released by aftershocks accounted for no more than 10% of the postseismic moment release at any depth. Widespread afterslip below much of central Mexico suggests that most of the nearly

  19. Sensitivity of total stress to changes in externally applied water pressure in KBS-3 buffer bentonite

    International Nuclear Information System (INIS)

    Harrington, J.F.; Birchall, D.J.

    2007-04-01

    In the current Swedish repository design concept, composite copper and steel canisters containing spent nuclear fuel will be placed in large diameter disposal boreholes drilled into the floor of the repository tunnels. The space around each canister will be filled with pre-compacted bentonite which over time will draw in the surrounding ground water and swell, closing up any construction joints. However, for the purposes of performance assessment, it is necessary to consider the effect of glacial loading of a future repository and its impact on the mechanical behaviour of the bentonite, in particular, the sensitivity of total stress to changes in porewater pressure (backpressure). Two experimental histories have been undertaken using a custom-designed constant volume and radial flow (CVRF) apparatus. In both tests backpressure was varied in a number of incremental and decremental cycles while total stress, porewater pressure and volumetric flow rate were continuously monitored. The swelling pressure of the buffer clay at dry densities of 1.8 Mg/m 3 and 1.61 Mg/m 3 was determined to be around 5.5 MPa and 7.2 MPa respectively. For initial ascending porewater pressure histories the average proportionality factor α ranged from 0.86 and 0.92. Data exhibited a general trend of increasing α with increasing backpressure. In test Mx80-11 this was supported by analysis of the water inflow data which indicated a reduction in system compressibility. Asymptotic values of porewater pressure within the clay are in good agreement with externally applied backpressure values. Inspection of data provides no evidence for the development of hydraulic thresholds within the clay, subject to the boundary conditions of this test geometry. Analysis of the stress data demonstrates significant hysteresis between ascending and descending porewater pressure histories. The amount of hysteresis appears to be linked to the magnitude of the backpressure applied to the specimen, suggesting some

  20. Global crop yield response to extreme heat stress under multiple climate change futures

    International Nuclear Information System (INIS)

    Deryng, Delphine; Warren, Rachel; Conway, Declan; Ramankutty, Navin; Price, Jeff

    2014-01-01

    Extreme heat stress during the crop reproductive period can be critical for crop productivity. Projected changes in the frequency and severity of extreme climatic events are expected to negatively impact crop yields and global food production. This study applies the global crop model PEGASUS to quantify, for the first time at the global scale, impacts of extreme heat stress on maize, spring wheat and soybean yields resulting from 72 climate change scenarios for the 21st century. Our results project maize to face progressively worse impacts under a range of RCPs but spring wheat and soybean to improve globally through to the 2080s due to CO 2 fertilization effects, even though parts of the tropic and sub-tropic regions could face substantial yield declines. We find extreme heat stress at anthesis (HSA) by the 2080s (relative to the 1980s) under RCP 8.5, taking into account CO 2 fertilization effects, could double global losses of maize yield (ΔY = −12.8 ± 6.7% versus − 7.0 ± 5.3% without HSA), reduce projected gains in spring wheat yield by half (ΔY = 34.3 ± 13.5% versus 72.0 ± 10.9% without HSA) and in soybean yield by a quarter (ΔY = 15.3 ± 26.5% versus 20.4 ± 22.1% without HSA). The range reflects uncertainty due to differences between climate model scenarios; soybean exhibits both positive and negative impacts, maize is generally negative and spring wheat generally positive. Furthermore, when assuming CO 2 fertilization effects to be negligible, we observe drastic climate mitigation policy as in RCP 2.6 could avoid more than 80% of the global average yield losses otherwise expected by the 2080s under RCP 8.5. We show large disparities in climate impacts across regions and find extreme heat stress adversely affects major producing regions and lower income countries. (paper)

  1. Stress induced gene expression drives transient DNA methylation changes at adjacent repetitive elements

    Science.gov (United States)

    Secco, David; Wang, Chuang; Shou, Huixia; Schultz, Matthew D; Chiarenza, Serge; Nussaume, Laurent; Ecker, Joseph R; Whelan, James; Lister, Ryan

    2015-01-01

    Cytosine DNA methylation (mC) is a genome modification that can regulate the expression of coding and non-coding genetic elements. However, little is known about the involvement of mC in response to environmental cues. Using whole genome bisulfite sequencing to assess the spatio-temporal dynamics of mC in rice grown under phosphate starvation and recovery conditions, we identified widespread phosphate starvation-induced changes in mC, preferentially localized in transposable elements (TEs) close to highly induced genes. These changes in mC occurred after changes in nearby gene transcription, were mostly DCL3a-independent, and could partially be propagated through mitosis, however no evidence of meiotic transmission was observed. Similar analyses performed in Arabidopsis revealed a very limited effect of phosphate starvation on mC, suggesting a species-specific mechanism. Overall, this suggests that TEs in proximity to environmentally induced genes are silenced via hypermethylation, and establishes the temporal hierarchy of transcriptional and epigenomic changes in response to stress. DOI: http://dx.doi.org/10.7554/eLife.09343.001 PMID:26196146

  2. Comparison of stress-induced changes in adults and pups: is aldosterone the main adrenocortical stress hormone during the perinatal period in rats?

    Directory of Open Access Journals (Sweden)

    János Varga

    Full Text Available Positive developmental impact of low stress-induced glucocorticoid levels in early development has been recognized for a long time, while possible involvement of mineralocorticoids in the stress response during the perinatal period has been neglected. The present study aimed at verifying the hypothesis that balance between stress-induced glucocorticoid and mineralocorticoid levels is changing during postnatal development. Hormone responses to two different stressors (insulin-induced hypoglycaemia and immune challenge induced by bacterial lipopolysaccharid measured in 10-day-old rats were compared to those in adults. In pups corticosterone responses to both stressors were significantly lower than in adults, which corresponded well with the stress hyporesponsive period. Importantly, stress-induced elevations in aldosterone concentration were significantly higher in pups compared both to corticosterone elevations and to those in adulthood with comparable adrenocorticotropin concentrations in the two age groups. Greater importance of mineralocorticoids compared to glucocorticoids in postnatal period is further supported by changes in gene expression and protein levels of gluco- (GR and mineralocorticoid receptors (MR and selected enzymes measured by quantitative PCR and immunohystochemistry in the hypothalamus, hippocampus, prefrontal cortex, liver and kidney. Gene expression of 11beta-hydroxysteroid dehydrogenase 2 (11β-HSD2, an enzyme enabling preferential effects of aldosterone on mineralocorticoid receptors, was higher in 10-day-old pups compared to adult animals. On the contrary, the expression and protein levels of GR, MR and 11β-HSD1 were decreased. Presented results clearly show higher stress-induced release of aldosterone in pups compared to adults and strongly suggest greater importance of mineralocorticoids compared to glucocorticoids in stress during the postnatal period.

  3. Octocorals in a changing environment: Seasonal response of stress biomarkers in natural populations of Veretillum cynomorium

    Science.gov (United States)

    Madeira, Carolina; Madeira, Diana; Vinagre, Catarina; Diniz, Mário

    2015-09-01

    Current concerns about climate change emphasize the need for an accurate monitoring of physiological conditions in wild populations. Therefore, the aims of this work were to a) assess the response of the octocoral Veretillum cynomorium to thermal variation in natural populations during low tide, by quantifying several biochemical indicators of thermal and oxidative stress and b) evaluate the effect of seasonality in the results and the adequacy of the use of biochemical indicators of stress in field monitoring studies in octocorals. Sampling took place during spring (April) and summer (June). Heat shock protein (Hsp70) and ubiquitin (Ub) content, enzyme activities - superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase (GST), and lipid peroxidation (LPO) were assessed in rachis and peduncle tissues separately. The results showed significant seasonal fluctuations in the set of biomarkers tested. Differences were detected between spring and summer, with significant decreases in biomarker levels from April to June being a major observed trend. These results suggest that V. cynomorium is thermo-tolerant during summer low tide conditions. Seasonal variation seems to reflect a metabolic suppression strategy and/or may also be related to seasonal changes in food availability and reproductive status. Differences in activity between tissue types were also found significant for GST, LPO and Ub. Biomarker levels were correlated with total protein concentration, but not with wet body weight of the specimens. This study suggests that season influences the expression of biomarkers and must be taken into consideration in the preliminary stages of sampling design for climate change biomonitoring studies. In addition, the results suggest that this octocoral species is likely to survive in future challenging thermal conditions.

  4. Seasonal stress drives predictable changes in inbreeding depression in field-tested captive populations of Drosophila melanogaster.

    Science.gov (United States)

    Enders, Laramy S; Nunney, Leonard

    2012-09-22

    Recent meta-analyses conducted across a broad range of taxa have demonstrated a strong linear relationship between the change in magnitude of inbreeding depression under stress and stress level, measured as fitness loss in outbred individuals. This suggests that a general underlying response may link stress and inbreeding depression. However, this relationship is based primarily on laboratory data, and it is unknown whether natural environments with multiple stressors and fluctuating stress levels alter how stress affects inbreeding depression. To test whether the same pattern persists in the field, we investigated the effect of seasonal variation on stress level and inbreeding depression in a 3-year field study measuring the productivity of captive populations of inbred and outbred Drosophila melanogaster. We found cold winter temperatures were most stressful and induced the greatest inbreeding depression. Furthermore, these data, collected under natural field conditions, conformed to the same predictive linear relationship seen in Drosophila laboratory studies, with inbreeding depression increasing by 0.17 lethal equivalents for every 10 per cent increase in stress level. Our results suggest that under natural conditions stress level is a primary determinant of the magnitude of inbreeding depression and should be considered when assessing extinction vulnerability in small populations.

  5. Workers' load and job-related stress after a reform and work system change in a hospital kitchen in Japan.

    Science.gov (United States)

    Matsuzuki, Hiroe; Haruyama, Yasuo; Muto, Takashi; Aikawa, Kaoru; Ito, Akiyoshi; Katamoto, Shizuo

    2013-03-01

    Many kitchen work environments are considered to be severe; however, when kitchens are reformed or work systems are changed, the question of how this influences kitchen workers and environments arises. The purpose of this study is to examine whether there was a change in workload and job-related stress for workers after a workplace environment and work system change in a hospital kitchen. The study design is a pre-post comparison of a case, performed in 2006 and 2008. The air temperature and humidity in the workplace were measured. Regarding workload, work hours, fluid loss, heart rate, and amount of activity [metabolic equivalents of task (METs)] of 7 and 8 male subjects pre- and post-reform, respectively, were measured. Job-related stress was assessed using a self-reporting anonymous questionnaire for 53 and 45 workers pre- and post-system change, respectively. After the reform and work system change, the kitchen space had increased and air-conditioners had been installed. The workplace environment changes included the introduction of temperature-controlled wagons whose operators were limited to male workers. The kitchen air temperature decreased, so fluid loss in the subjects decreased significantly. However, heart rate and METs in the subjects increased significantly. As for job-related stress, although workplace environment scores improved, male workers' total job stress score increased. These results suggest that not only the workplace environment but also the work system influenced the workload and job stress on workers.

  6. Changes in oxidative stress in transgenic RNAi ACO1 tomato fruit during ripening

    Science.gov (United States)

    Eglous, Najat Mohamed; Ali, Zainon Mohd; Hassan, Maizom; Zainal, Zamri

    2013-11-01

    Tomato (Solanum Lycopersicum L.) is the second most cultivated vegetable in the world and widely used as a system for studying the role of ethylene during fruit ripening. Our objective was to study the oxidative stress and antioxidative metabolism during ripening of non transgenic tomato and transgenic line-21 tomato which reduced ethylene. The line-21 of transgenic tomato plants (RNAi ACO1) had lower ethylene production and longer shelf-life more than 32 days as compared to the wild-type fruits which have very short shelf-life. In this study, tomato fruit were divided into five different stages (MG: mature green 5%, B: breaker 25%, T: turning 50%, O: orange75%, RR: red ripe100%). The activity of lipoxygenase (LOX) and lipid peroxidation (MDA) were measured to assess changes in oxidative stress. The LOX activity and MDA content decreased significantly obtaining 2.6-fold and 1.2-fold, respectively, as compared to the wild type fruit. However, superoxide dismutase (SOD) and catalase (CAT) activities were increased to 1.9 and 1.2 folds from the mature green to the fully ripe stage in transgenic tomatoes. Furthermore, the wild type tomato increases 1.3 in SOD and 1.6 in CAT activities. The overall results indicate that the wild type tomato fruit showed a faster rate of ripening, parallel to decline in the rate of enzymatic antioxidative systems as compared to the transgenic line-21 tomato fruit. In addition, the results show that the antioxidant capacity is improved during the ripening process and is accompanied by an increase in the oxidative stress.

  7. Changes in carbohydrate content in zucchini fruit (Cucurbita pepo L.) under low temperature stress.

    Science.gov (United States)

    Palma, Francisco; Carvajal, Fátima; Lluch, Carmen; Jamilena, Manuel; Garrido, Dolores

    2014-03-01

    The postharvest handling of zucchini fruit includes low-temperature storage, making cold stress unavoidable. We have investigated the changes of soluble carbohydrates under this stress and its relation with weight loss and chilling injury in zucchini fruit during postharvest storage at 4 °C and 20 °C for up to 14 days. Two varieties with different degrees of chilling tolerance were compared: Natura, the more tolerant variety, and Sinatra, the variety that suffered more severe chilling-injury symptoms and weight loss. In both varieties, total soluble carbohydrates, reducing soluble carbohydrates and polyols content was generally higher during storage at 4 °C than at 20 °C, thus these parameters are related to the physiological response of zucchini fruit to cold stress. However, the raffinose content increased in Natura and Sinatra fruits during storage at 4 °C and 20 °C, although at 20 °C the increase in raffinose was more remarkable than at 4 °C in both varieties, so that the role of raffinose could be more likely related to dehydration than to chilling susceptibility of zucchini fruit. Glucose, fructose, pinitol, and acid invertase activity registered opposite trends in both varieties against chilling, increasing in Natura and decreasing in Sinatra. The increase in acid invertase activity in Natura fruit during cold storage could contribute in part to the increase of these reducing sugars, whose metabolism could be involved in the adaptation to postharvest cold storage. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  8. Psychological Stress and Changes of Hypothalamic-Pituitary-Adrenal Axis in Patients with "De Novo" Parkinson's Disease.

    Science.gov (United States)

    Ibrahimagic, Omer C; Jakubovic, Amra Cickusic; Smajlovic, Dzevdet; Dostovic, Zikrija; Kunic, Suljo; Iljazovic, Amra

    2016-12-01

    Psychological stress and changes in hypothalamic-pituitary-adrenal (HPA) axis in period after diagnosis of "de novo" Parkinson disease (PD) could be a big problem for patients. We measured psychological stress and changes in hypothalamic-pituitary-adrenal axis (HPA) in thirty patients (15:15) with "de novo" Parkinson's disease, average age 64.17 ± 13.19 (28-82) years (Department of Neurology, University Clinical Center Tuzla). We used Impact of events scale (with 15 questions) to evaluate psychological stress. Normal level of morning cortisol was 201-681 nmol/l, and morning adrenocorticotropic hormone (ACTH) up to 50 pg/ml. Almost 55% patients suffered from mild or serious psychological stress according to IES testing (Horowitz et al.). Non-iatrogenic changes in HPA axis were noticed at 30% patients. The differences between female and male patients regarding to the age (p=0.561), value of cortisol (p=0.745), value of ACTH (p=0.886) and IES testing (p=0.318) were not noticed. The value of cortisol was the predictor of value of ACTH (r=0.427). Psychological stress and changes in hypothalamic-pituitary-adrenal axis are present in patients with "de novo" PD. There is significant relation between values of cortisol and ACTH. Psychological stress is frequent problem for "de novo" PD patients.

  9. Application of Fuzzy Logic GIS to Modelling Coseismic Landslide Susceptibility in the Southern Alps, New Zealand, from a Potential Alpine Fault Earthquake

    Science.gov (United States)

    Robinson, T.; Davies, T. R.; Wilson, T. M.; Orchiston, C.; Kritikos, T.

    2014-12-01

    Recent earthquakes such as the 1999 Chi-Chi and 2008 Wenchuan events have demonstrated that the hazard from large earthquakes in mountains is not simply that of strong ground shaking. Coseismic landsliding can be as devastating as, or more devastating than, the initial earthquake. In mountainous areas with high seismic hazard, understanding the potential scale and spatial distribution of coseismic landsliding is therefore vital to fully describing the earthquake hazard. Currently however, estimating coseismic landslide susceptibility requires either: a substantially complete coseismic landslide inventory from an historic event in the region; densely spaced, detailed geotechnical data; expert knowledge; or some combination of these. In regions where these are not available, estimating the extent of coseismic landsliding is not currently possible. This study uses statistical analysis of substantially complete coseismic landslide inventories from Northridge, CA and Wenchuan, China to identify common regional factors which appear to control the spatial distribution of landsliding in both locations. These factors were: shaking intensity (MMI), slope angle, distance to faults and streams, and slope position. Factors such as slope curvature, slope aspect, and elevation played no consistent role in the formation of landslides. Combining these observations with fuzzy logic in GIS we are able to successfully model landslide susceptibility for the 1999 Chi-Chi, Taiwan earthquake. This suggests that modelling susceptibility for a given earthquake scenario is possible, using observations of historic events in similar geotectonic environments. Applying the result to a potential M8 Alpine fault earthquake in New Zealand yields a susceptibility map for the entire South Island. High susceptibility is modelled across an area >50,000 km2, predominantly focussed on the western rangefront of the Southern Alps. Landsliding therefore has the potential to be widespread, presenting a range

  10. Interpretation of Offshore Crustal Movements Following the 2011 Tohoku-Oki Earthquake by the Combined Effect of Afterslip and Viscoelastic Stress Relaxation

    Science.gov (United States)

    Noda, Akemi; Takahama, Tsutomu; Kawasato, Takeshi; Matsu'ura, Mitsuhiro

    2017-10-01

    On the 11th March 2011, a megathrust event, called the Tohoku-oki earthquake, occurred at the North American-Pacific plate interface off northeast Japan. Transient crustal movements following this earthquake were clearly observed by a dense GPS network (GEONET) on land and a sparse GPS/Acoustic positioning network on seafloor. The observed crustal movements are in accordance with ordinary expectations on land, but not on seafloor; that is, slowly decaying landward movements above the main rupture area and rapidly decaying trench-ward movements in its southern extension. To reveal the cause of such curious offshore crustal movements, we analyzed the coseismic and postseismic GPS array data on land with a sequential stepwise inversion method considering viscoelastic stress relaxation in the asthenosphere, and obtained the following results: The afterslip of the Tohoku-oki earthquake rapidly proceeds for the first 1 year on a high-angle downdip extension of the main rupture, which occurred on the low-angle offshore plate interface. The theoretical patterns of seafloor horizontal movements due to the afterslip and the viscoelastic relaxation of coseismic stress changes in the asthenosphere are essentially different both in space and time; inshore trench-ward movements and offshore landward movements for the afterslip, while overall landward movements for the viscoelastic stress relaxation. General agreement between the computed horizontal movements and the GPS/Acoustic observations demonstrates that the postseismic curious offshore crustal movements can be ascribed to the combined effect of afterslip on a high-angle downdip extension of the main rupture and viscoelastic stress relaxation in the asthenosphere.

  11. Interpretation of Offshore Crustal Movements Following the 2011 Tohoku-Oki Earthquake by the Combined Effect of Afterslip and Viscoelastic Stress Relaxation

    Science.gov (United States)

    Noda, Akemi; Takahama, Tsutomu; Kawasato, Takeshi; Matsu'ura, Mitsuhiro

    2018-02-01

    On the 11th March 2011, a megathrust event, called the Tohoku-oki earthquake, occurred at the North American-Pacific plate interface off northeast Japan. Transient crustal movements following this earthquake were clearly observed by a dense GPS network (GEONET) on land and a sparse GPS/Acoustic positioning network on seafloor. The observed crustal movements are in accordance with ordinary expectations on land, but not on seafloor; that is, slowly decaying landward movements above the main rupture area and rapidly decaying trench-ward movements in its southern extension. To reveal the cause of such curious offshore crustal movements, we analyzed the coseismic and postseismic GPS array data on land with a sequential stepwise inversion method considering viscoelastic stress relaxation in the asthenosphere, and obtained the following results: The afterslip of the Tohoku-oki earthquake rapidly proceeds for the first 1 year on a high-angle downdip extension of the main rupture, which occurred on the low-angle offshore plate interface. The theoretical patterns of seafloor horizontal movements due to the afterslip and the viscoelastic relaxation of coseismic stress changes in the asthenosphere are essentially different both in space and time; inshore trench-ward movements and offshore landward movements for the afterslip, while overall landward movements for the viscoelastic stress relaxation. General agreement between the computed horizontal movements and the GPS/Acoustic observations demonstrates that the postseismic curious offshore crustal movements can be ascribed to the combined effect of afterslip on a high-angle downdip extension of the main rupture and viscoelastic stress relaxation in the asthenosphere.

  12. Chemical Sensor Based Upon Stress-Induced Changes in the Permeability of a Magnetoelastic Wire.

    Science.gov (United States)

    Hatab, Nahla A; Crane, Nichole A; Mee, David K; Howell, L Neville; Mooney, Larry R; Hallman, Russell L; Sepaniak, Michael J; Lamberti, Vincent E

    2017-07-05

    We introduce a chemical sensing technology, named ChIMES (Chemical Identification through Magneto-Elastic Sensing), that can detect a broad range of targets and that has the capability of untethered communication through a metallic or nonmetallic barrier. These features enable many applications in which penetrations into the sampled environment are unwanted or infeasible because of health, safety, or environmental concerns, such as following the decomposition of a dangerous material in a sealed container. The sensing element is passive and consists of a target response material hard-coupled to a magnetoelastic wire. When the response material encounters a target, it expands, imposing mechanical stress on the wire and altering its magnetic permeability. Using a remote excitation-detection coil set, the changes in permeability are observed by switching the magnetic domains in the wire and measuring the modifications in the Faraday voltage as the stress is varied. Sensors with different response materials can be arrayed and interrogated individually. We describe the sensor and its associated instrumentation, compare the performance of several types of wire, and evaluate analytical metrics of single and arrayed ChIMES sensors against a suite of volatile organic compounds.

  13. Luteolin Modulates 6-Hydroxydopamine-Induced Transcriptional Changes of Stress Response Pathways in PC12 Cells

    Science.gov (United States)

    Hu, Ling-Wei; Yen, Jui-Hung; Shen, Yi-Ting; Wu, Kuan-Yi; Wu, Ming-Jiuan

    2014-01-01

    The neurotoxin 6-hydroxydopamine (6-OHDA), which causes transcriptional changes associated with oxidative and proteotoxic stress, has been widely used to generate an experimental model of Parkinson’s disease. The food-derived compound luteolin has multi-target actions including antioxidant, anti-inflammatory and neurotrophic activities. The aim of this study is to investigate how luteolin affects 6-OHDA-mediated stress response pathways. The results showed that when PC12 cells were pre-treated with luteolin (20 µM) 30 min prior to 6-OHDA (100 µM) exposure, 6-OHDA-induced ROS overproduction, cytotoxicity, caspase-3 activation, and mRNA expression of BIM, TRB3 and GADD34 were significantly attenuated. Moreover, 6-OHDA-mediated cell cycle arrest and transcription of p53 target genes, p21, GADD45α and PUMA, were reduced by luteolin. Luteolin also significantly down-regulated 6-OHDA-mediated unfolded protein response (UPR), leading to decreases in phospho-eIF2α, ATF4, GRP78 and CHOP. In addition, luteolin attenuated 6-OHDA-induced Nrf2-mediated HO-1 and GCLC. Taken together, these results suggest that diminishing intracellular ROS formation and down-regulation of p53, UPR and Nrf2-ARE pathways may be involved in the neuroprotective effect of luteolin. PMID:24846311

  14. Changes in Galanin Systems in a Rat Model of Post-Traumatic Stress Disorder (PTSD.

    Directory of Open Access Journals (Sweden)

    Karen Barnabas

    Full Text Available Post-traumatic stress disorder (PTSD is a chronic syndrome triggered by exposure to trauma and a failure to recover from a normal negative emotional reaction to traumatic stress. The neurobiology of PTSD and the participation of neuropeptides in the neural systems and circuits that control fear and anxiety are not fully understood. The long-term dysregulation of neuropeptide systems contributes to the development of anxiety disorders, including PTSD. The neuropeptide galanin (Gal and its receptors participate in anxiety-like and depression-related behaviors via the modulation of neuroendocrine and monoaminergic systems. The objective of this research was to investigate how Gal expression changes in the brain of rats 2 weeks after exposure to footshock. Rats exposed to footshocks were subdivided into high responders (HR; immobility>60% and low responders (LR; immobility<40% based on immobility elicited by a novel tone one day after exposure. On day 14, rats were anesthetized, and the amygdala, hypothalamus, pituitary and adrenal glands were removed for analysis using real-time polymerase chain reaction (RT-PCR. Gal mRNA levels were increased in the amygdala and hypothalamus of HR compared with the control and LR. In contrast, Gal mRNA levels were decreased in the adrenal and pituitary glands of HR compared with the control and LR. Thus, the differential regulation (dysregulation of the neuropeptide Gal in these tissues may contribute to anxiety and PTSD development.

  15. BnNHL18A shows a localization change by stress-inducing chemical treatments

    International Nuclear Information System (INIS)

    Lee, Suk-Bae; Ham, Byung-Kook; Park, Jeong Mee; Kim, Young Jin; Paek, Kyung-Hee

    2006-01-01

    The two genes, named BnNHL18A and BnNHL18B, showing sequence homology with Arabidopsis NDR1/HIN1-like (NHL) genes, were isolated from cDNA library prepared with oilseed rape (Brassica napus) seedlings treated with NaCl. The transcript level of BnNHL18A was increased by sodium chloride, ethephon, hydrogen peroxide, methyl jasmonate, or salicylic acid treatment. The coding regions of BnNHL18A and BnNHL18B contain a sarcolipin (SLN)-like sequence. Analysis of the localization of smGFP fusion proteins showed that BnNHL18A is mainly localized to endoplasmic reticulum (ER). This result suggests that the SLN-like sequence plays a role in retaining proteins in ER membrane in plants. In response to NaCl, hydrogen peroxide, ethephon, and salicylic acid treatments, the protein localization of BnNHL18A was changed. Our findings suggest a common function of BnNHL18A in biotic and abiotic stresses, and demonstrate the presence of the shared mechanism of protein translocalization between the responses to plant pathogen and to osmotic stress

  16. Luteolin modulates 6-hydroxydopamine-induced transcriptional changes of stress response pathways in PC12 cells.

    Directory of Open Access Journals (Sweden)

    Ling-Wei Hu

    Full Text Available The neurotoxin 6-hydroxydopamine (6-OHDA, which causes transcriptional changes associated with oxidative and proteotoxic stress, has been widely used to generate an experimental model of Parkinson's disease. The food-derived compound luteolin has multi-target actions including antioxidant, anti-inflammatory and neurotrophic activities. The aim of this study is to investigate how luteolin affects 6-OHDA-mediated stress response pathways. The results showed that when PC12 cells were pre-treated with luteolin (20 µM 30 min prior to 6-OHDA (100 µM exposure, 6-OHDA-induced ROS overproduction, cytotoxicity, caspase-3 activation, and mRNA expression of BIM, TRB3 and GADD34 were significantly attenuated. Moreover, 6-OHDA-mediated cell cycle arrest and transcription of p53 target genes, p21, GADD45α and PUMA, were reduced by luteolin. Luteolin also significantly down-regulated 6-OHDA-mediated unfolded protein response (UPR, leading to decreases in phospho-eIF2α, ATF4, GRP78 and CHOP. In addition, luteolin attenuated 6-OHDA-induced Nrf2-mediated HO-1 and GCLC. Taken together, these results suggest that diminishing intracellular ROS formation and down-regulation of p53, UPR and Nrf2-ARE pathways may be involved in the neuroprotective effect of luteolin.

  17. Hormonal changes in the grains of rice subjected to water stress during grain filling.

    Science.gov (United States)

    Yang, J; Zhang, J; Wang, Z; Zhu, Q; Wang, W

    2001-09-01

    Lodging-resistant rice (Oryza sativa) cultivars usually show slow grain filling when nitrogen is applied in large amounts. This study investigated the possibility that a hormonal change may mediate the effect of water deficit that enhances whole plant senescence and speeds up grain filling. Two rice cultivars showing high lodging resistance and slow grain filling were field grown and applied with either normal or high amount nitrogen (HN) at heading. Well-watered and water-stressed (WS) treatments were imposed 9 days post anthesis to maturity. Results showed that WS increased partitioning of fixed (14)CO(2) into grains, accelerated the grain filling rate but shortened the grain filling period, whereas the HN did the opposite way. Cytokinin (zeatin + zeatin riboside) and indole-3-acetic acid contents in the grains transiently increased at early filling stage and WS treatments hastened their declines at the late grain filling stage. Gibberellins (GAs; GA(1) + GA(4)) in the grains were also high at early grain filling but HN enhanced, whereas WS substantially reduced, its accumulation. Opposite to GAs, abscisic acid (ABA) in the grains was low at early grain filling but WS remarkably enhanced its accumulation. The peak values of ABA were significantly correlated with the maximum grain filling rates (r = 0.92**, P water stress during grain filling, especially a decrease in GAs and an increase in ABA, enhances the remobilization of prestored carbon to the grains and accelerates the grain filling rate.

  18. Adsorption stress changes the elasticity of liquid argon confined in a nanopore.

    Science.gov (United States)

    Gor, Gennady Y

    2014-11-18

    Knowledge of the elastic properties of a fluid is crucial for predicting its flow under high pressure, particularly in porous media. However, when a fluid is confined to a nanopore, many of its thermodynamic properties change as compared to bulk. Here we study the effect of confinement on the bulk modulus of liquid argon adsorbed in mesopores using classical density functional theory. We show that, at pressures lower than the saturation pressure, high adsorption stress in the pore causes the lowering of the fluid bulk modulus, a phenomenon which was recently observed experimentally [ Schappert, K.; Pelster, R. Europhys. Lett. 2014 , 105 , 5600 ]. Furthermore, we find that the pore size has a strong effect on the fluid bulk modulus, so that even at saturation, the elastic properties of nanoconfined fluid differ from the bulk values. We show that this difference is also due to the adsorption stress. Our results provide a basis for a new method for characterization of porous materials and have implications for modeling fluids in nanoporous geological formations, such as coal or shale.

  19. The association between changes in pressure pain sensitivity and changes in cardiovascular physiological factors associated with persistent stress

    DEFF Research Database (Denmark)

    Ballegaard, Søren; Petersen, Pernille B.; Harboe, Gitte S.

    2014-01-01

    -two office workers with an elevated PPS (≥ 60 arbitrary units) as a sign of increased level of persistent stress, completed a single-blinded cluster randomized controlled trial. The active treatment was a PPS (self-measurement)-guided stress management programme. Primary endpoints: Blood pressure (BP), heart......Abstract Objectives. To evaluate the possible association between pressure pain sensitivity of the chest bone (PPS) and cardiovascular physiological factors related to persistent stress in connection with a three-month PPS-guided stress-reducing experimental intervention programme. Methods. Forty...

  20. Oxidative Stress to the Cornea, Changes in Corneal Optical Properties, and Advances in Treatment of Corneal Oxidative Injuries

    Directory of Open Access Journals (Sweden)

    Cestmir Cejka

    2015-01-01

    Full Text Available Oxidative stress is involved in many ocular diseases and injuries. The imbalance between oxidants and antioxidants in favour of oxidants (oxidative stress leads to the damage and may be highly involved in ocular aging processes. The anterior eye segment and mainly the cornea are directly exposed to noxae of external environment, such as air pollution, radiation, cigarette smoke, vapors or gases from household cleaning products, chemical burns from splashes of industrial chemicals, and danger from potential oxidative damage evoked by them. Oxidative stress may initiate or develop ocular injury resulting in decreased visual acuity or even vision loss. The role of oxidative stress in the pathogenesis of ocular diseases with particular attention to oxidative stress in the cornea and changes in corneal optical properties are discussed. Advances in the treatment of corneal oxidative injuries or diseases are shown.

  1. Chronic psychological stress and racial disparities in body mass index change between Black and White girls aged 10-19.

    Science.gov (United States)

    Tomiyama, A Janet; Puterman, Eli; Epel, Elissa S; Rehkopf, David H; Laraia, Barbara A

    2013-02-01

    One of the largest health disparities in the USA is in obesity rates between Black and White females. The objective of this study was to test the hypothesis that the stress-obesity link is stronger in Black females than in White females aged 10-19. Multilevel modeling captured the dynamic of acute (1 month) and chronic (10 years) stress and body mass index (BMI; weight in kilograms divided by height in meters squared) change in the National Heart, Lung, and Blood Institute Growth and Health Study, which consists of 2,379 Black and White girls across a span of socioeconomic status. The girls were assessed longitudinally from ages 10 to 19. Higher levels of stress during the 10 years predicted significantly greater increases in BMI over time compared to lower levels of stress. This relationship was significantly stronger for Black compared to White girls. Psychological stress is a modifiable risk factor that may moderate early racial disparities in BMI.

  2. Changes in intestinal microbiota composition and metabolism coincide with increased intestinal permeability in young adults under prolonged physiological stress.

    Science.gov (United States)

    Karl, J Philip; Margolis, Lee M; Madslien, Elisabeth H; Murphy, Nancy E; Castellani, John W; Gundersen, Yngvar; Hoke, Allison V; Levangie, Michael W; Kumar, Raina; Chakraborty, Nabarun; Gautam, Aarti; Hammamieh, Rasha; Martini, Svein; Montain, Scott J; Pasiakos, Stefan M

    2017-06-01

    The magnitude, temporal dynamics, and physiological effects of intestinal microbiome responses to physiological stress are poorly characterized. This study used a systems biology approach and a multiple-stressor military training environment to determine the effects of physiological stress on intestinal microbiota composition and metabolic activity, as well as intestinal permeability (IP). Soldiers ( n = 73) were provided three rations per day with or without protein- or carbohydrate-based supplements during a 4-day cross-country ski-march (STRESS). IP was measured before and during STRESS. Blood and stool samples were collected before and after STRESS to measure inflammation, stool microbiota, and stool and plasma global metabolite profiles. IP increased 62 ± 57% (mean ± SD, P Intestinal microbiota responses were characterized by increased α-diversity and changes in the relative abundance of >50% of identified genera, including increased abundance of less dominant taxa at the expense of more dominant taxa such as Bacteroides Changes in intestinal microbiota composition were linked to 23% of metabolites that were significantly altered in stool after STRESS. Together, pre-STRESS Actinobacteria relative abundance and changes in serum IL-6 and stool cysteine concentrations accounted for 84% of the variability in the change in IP. Findings demonstrate that a multiple-stressor military training environment induced increases in IP that were associated with alterations in markers of inflammation and with intestinal microbiota composition and metabolism. Associations between IP, the pre-STRESS microbiota, and microbiota metabolites suggest that targeting the intestinal microbiota could provide novel strategies for preserving IP during physiological stress. NEW & NOTEWORTHY Military training, a unique model for studying temporal dynamics of intestinal barrier and intestinal microbiota responses to stress, resulted in increased intestinal permeability concomitant with

  3. Coseismic deformation and slip model of the 17 November 2015 M=6.5 earthquake, Lefkada Island, Greece

    Science.gov (United States)

    Ganas, Athanassios; Melgar, Diego; Briole, Pierre; Geng, Jianghui; Papathanassiou, George; Bozionelos, George; Avallone, Antonio; Valkaniotis, Sotirios; Mendonidis, Evangelos; Argyrakis, Panagiotis; Moshou, Alexandra; Elias, Panagiotis

    2016-04-01

    On November 17, 2015 a strong, shallow earthquake, Mw 6.5, occurred on the island of Lefkada along a strike-slip fault with right-lateral sense of slip. The event triggered widespread environmental effects that were mainly reported at the south and western part of the island while moving towards the eastern part, the intensity and severity of these earthquake-induced deformations were decreased. Coseismic deformation was measured in the order of tens of centimeters of horizontal motion by continuous GPS stations of NOANET (the NOA GPS network) and by InSAR (Sentinel 1A image pairs). Released interferograms from various groups show a large decorrelation area that extends almost along all the western coast of Lefkada, observation which provides strong support of landsliding. We also found extensive landslides during field work and no surface ruptures. A coseismic slip model was produced from the ascending InSAR, which it's cleaner than the GPS only and both data sets have ~90% variance reduction. The fault dips to the east-southeast at an angle of 65-70 degrees.

  4. A new approach to model strain change of gelled waxy crude oil under constant stress

    DEFF Research Database (Denmark)

    Hou, Lei; Song, Changyu; Yan, Wei

    2014-01-01

    Deformation of gelled waxy crude oil with loaded stress is worthy of research for the flow assurance of pipelining system. A dispersion parameter was introduced to characterize the disruption degree of wax crystal structure in crude oil with shear action. Based on fractional calculus theory......, a rheological model incorporating dispersion parameter was proposed to describe creep of gelled waxy crude. A discrete and numerical algorithm was proposed to solve the model. Combining with the experimental results of five kinds of waxy crude oil, the model parameters were regressed and found to change...... monotonously with test temperature. Multiple creep curves of gelled waxy crude oil at a certain temperature can be described with this model....

  5. Reflex sympathetic dystrophy and repetitive strain injury: temperature and microcirculatory changes following mild cold stress.

    Science.gov (United States)

    Cooke, E D; Steinberg, M D; Pearson, R M; Fleming, C E; Toms, S L; Elusade, J A

    1993-01-01

    Temperature and blood flow studies were performed in the upper limbs of six patients with reflex sympathetic dystrophy (RSD), nine patients with repetitive strain injury (RSI) and 12 control subjects using thermography, laser Doppler flowmetry, infrared photoplethysmography and venous occlusion strain gauge plethysmography. The contralateral responses of the symptomatic and asymptomatic limbs were examined after being subjected, separately, to mild cold stress (20 degrees C for 1 min). Altered thermoregulation and haemodynamics were evident in RSD. Though the pattern of response to contralateral cold challenge is similar to normal in RSI, vasodilatation and reduced vasomotion appears to be characteristic in this condition. Such changes may assist in distinguishing between RSD and RSI from other causes of chronic upper limb pain. PMID:8308805

  6. The change in body stressed to relaxed body through breathing, visualization and a protective environment together

    Directory of Open Access Journals (Sweden)

    Evelyn I. Rodríguez Morrill

    2009-11-01

    Full Text Available This work shows several ways to meet and relax the body through personal knowledge and techniques encounter with nature. Modern life and fast, the constant pressure from childhood to adulthood, in the modes of interaction between individuals and groups, they lead to construction of bodies that reflect emotional anatomy visible loss of balance, contractures, inflammation, multiple imbalances by lack of knowledge and awareness especially being in the world fully, the person has moved away from its ecological relationship with itself and the environment. Methods are shown to positively change a condition of constant stress and chronic discomfort, a learned condition of physical and psychological wellbeing, with a series of movements, recovering the body through exercise, to tend to personal balance, obtaining a positive relationship with the environment and the people attended. The proposal starts promoting new habits that can be saved in consciousness. Partly, mainly of breath, alignment with the music and the environment and personal and group work

  7. Conformational changes in oxidatively stressed monoclonal antibodies studied by hydrogen exchange mass spectrometry

    Science.gov (United States)

    Burkitt, William; Domann, Paula; O'Connor, Gavin

    2010-01-01

    Oxidation of methionine residues in biopharmaceuticals is a common and often unwanted modification that frequently occurs during their manufacture and storage. It often results in a lack of stability and biological function of the product, necessitating continuous testing for the modification throughout the product shelf life. A major class of biopharmaceutical products are monoclonal antibodies (mAbs), however, techniques for their detailed structural analysis have until recently been limited. Hydrogen/deuterium exchange mass spectrometry (HXMS) has recently been successfully applied to the analysis of mAbs. Here we used HXMS to identify and localise the structural changes that occurred in a mAb (IgG1) after accelerated oxidative stress. Structural alterations in a number of segments of the Fc region were observed and these related to oxidation of methionine residues. These included a large change in the hydrogen exchange profile of residues 247–253 of the heavy chain, while smaller changes in hydrogen exchange profile were identified for peptides that contained residues in the interface of the CH2 and CH3 domains. PMID:20162626

  8. Resistance to thermal stress in corals without changes in symbiont composition.

    Science.gov (United States)

    Bellantuono, Anthony J; Hoegh-Guldberg, Ove; Rodriguez-Lanetty, Mauricio

    2012-03-22

    Discovering how corals can adjust their thermal sensitivity in the context of global climate change is important in understanding the long-term persistence of coral reefs. In this study, we showed that short-term preconditioning to higher temperatures, 3°C below the experimentally determined bleaching threshold, for a period of 10 days provides thermal tolerance for the symbiosis stability between the scleractinian coral, Acropora millepora and Symbiodinium. Based on genotypic analysis, our results indicate that the acclimatization of this coral species to thermal stress does not come down to simple changes in Symbiodinium and/or the bacterial communities that associate with reef-building corals. This suggests that the physiological plasticity of the host and/or symbiotic components appears to play an important role in responding to ocean warming. The further study of host and symbiont physiology, both of Symbiodinium and prokaryotes, is of paramount importance in the context of global climate change, as mechanisms for rapid holobiont acclimatization will become increasingly important to the long-standing persistence of coral reefs.

  9. Early life stress induces long-term changes in limbic areas of a teleost fish: the role of catecholamine systems in stress coping

    DEFF Research Database (Denmark)

    Vindas, Marco A.; Fokos, Stefanos; Pavlidis, Michail

    2018-01-01

    Early life stress (ELS) shapes the way individuals cope with future situations. Animals use cognitive flexibility to cope with their ever-changing environment and this is mainly processed in forebrain areas. We investigated the performance of juvenile gilthead seabream, previously subjected...... to an ELS regime. ELS fish showed overall higher brain catecholaminergic (CA) signalling and lower brain derived neurotrophic factor (bdnf) and higher cfos expression in region-specific areas. All fish showed a normal cortisol and serotonergic response to acute stress. Brain dopaminergic activity...... and the expression of the α2Α adrenergic receptor were overall higher in the fish homologue to the lateral septum (Vv), suggesting that the Vv is important in CA system regulation. Interestingly, ELS prevented post-acute stress downregulation of the α2Α receptor in the amygdala homologue (Dm3). There was a lack...

  10. Neuronal changes and oxidative stress in adolescent rats after repeated exposure to mephedrone

    International Nuclear Information System (INIS)

    López-Arnau, Raúl; Martínez-Clemente, José; Rodrigo, Teresa; Pubill, David; Camarasa, Jorge; Escubedo, Elena

    2015-01-01

    Mephedrone is a new designer drug of abuse. We have investigated the neurochemical/enzymatic changes after mephedrone administration to adolescent rats (3 × 25 mg/kg, s.c. in a day, with a 2 h interval between doses, for two days) at high ambient temperature (26 ± 2 °C), a schedule that intends to model human recreational abuse. In addition, we have studied the effect of mephedrone in spatial learning and memory. The drug caused a transient decrease in weight gain. After the first dose, animals showed hypothermia but, after the subsequent doses, temperature raised over the values of saline-treated group. We observed the development of tolerance to these thermoregulatory effects of mephedrone. Mephedrone induced a reduction of the densities of dopamine (30% in the frontal cortex) and serotonin (40% in the frontal cortex and the hippocampus and 48% in the striatum) transporters without microgliosis. These deficits were also accompanied by a parallel decrease in the expression of tyrosine hydroxylase and tryptophan hydroxylase 2. These changes matched with a down-regulation of D 2 dopamine receptors in the striatum. Mephedrone also induced an oxidative stress evidenced by an increase of lipid peroxidation in the frontal cortex, and accompanied by a rise in glutathione peroxidase levels in all studied brain areas. Drug-treated animals displayed an impairment of the reference memory in the Morris water maze one week beyond the cessation of drug exposure, while the spatial learning process seems to be preserved. These findings raise concerns about the neuronal long-term effects of mephedrone. - Highlights: • We studied the dopaminergic and serotonergic neurotoxicity of mephedrone in rats. • Mephedrone induced a transient hypothermia following sustained hyperthermia. • In a weekend consumption pattern, mephedrone induced selective neurotoxicity. • Mephedrone generated oxidative stress. • Mephedrone induced an impairment in memory function

  11. Osmotic stress changes the expression and subcellular localization of the Batten disease protein CLN3.

    Directory of Open Access Journals (Sweden)

    Amanda Getty

    Full Text Available Juvenile CLN3 disease (formerly known as juvenile neuronal ceroid lipofuscinosis is a fatal childhood neurodegenerative disorder caused by mutations in the CLN3 gene. CLN3 encodes a putative lysosomal transmembrane protein with unknown function. Previous cell culture studies using CLN3-overexpressing vectors and/or anti-CLN3 antibodies with questionable specificity have also localized CLN3 in cellular structures other than lysosomes. Osmoregulation of the mouse Cln3 mRNA level in kidney cells was recently reported. To clarify the subcellular localization of the CLN3 protein and to investigate if human CLN3 expression and localization is affected by osmotic changes we generated a stably transfected BHK (baby hamster kidney cell line that expresses a moderate level of myc-tagged human CLN3 under the control of the human ubiquitin C promoter. Hyperosmolarity (800 mOsm, achieved by either NaCl/urea or sucrose, dramatically increased the mRNA and protein levels of CLN3 as determined by quantitative real-time PCR and Western blotting. Under isotonic conditions (300 mOsm, human CLN3 was found in a punctate vesicular pattern surrounding the nucleus with prominent Golgi and lysosomal localizations. CLN3-positive early endosomes, late endosomes and cholesterol/sphingolipid-enriched plasma membrane microdomain caveolae were also observed. Increasing the osmolarity of the culture medium to 800 mOsm extended CLN3 distribution away from the perinuclear region and enhanced the lysosomal localization of CLN3. Our results reveal that CLN3 has multiple subcellular localizations within the cell, which, together with its expression, prominently change following osmotic stress. These data suggest that CLN3 is involved in the response and adaptation to cellular stress.

  12. Neuronal changes and oxidative stress in adolescent rats after repeated exposure to mephedrone

    Energy Technology Data Exchange (ETDEWEB)

    López-Arnau, Raúl; Martínez-Clemente, José [Department of Pharmacology and Therapeutic Chemistry (Pharmacology Section), Faculty of Pharmacy, University of Barcelona (Spain); Institute of Biomedicine (IBUB), Faculty of Pharmacy, University of Barcelona (Spain); Rodrigo, Teresa [Animal Experimentation Unit of Psychology and Pharmacy, University of Barcelona (Spain); Pubill, David [Department of Pharmacology and Therapeutic Chemistry (Pharmacology Section), Faculty of Pharmacy, University of Barcelona (Spain); Institute of Biomedicine (IBUB), Faculty of Pharmacy, University of Barcelona (Spain); Camarasa, Jorge, E-mail: jcamarasa@ub.edu [Department of Pharmacology and Therapeutic Chemistry (Pharmacology Section), Faculty of Pharmacy, University of Barcelona (Spain); Institute of Biomedicine (IBUB), Faculty of Pharmacy, University of Barcelona (Spain); Escubedo, Elena [Department of Pharmacology and Therapeutic Chemistry (Pharmacology Section), Faculty of Pharmacy, University of Barcelona (Spain); Institute of Biomedicine (IBUB), Faculty of Pharmacy, University of Barcelona (Spain)

    2015-07-01

    Mephedrone is a new designer drug of abuse. We have investigated the neurochemical/enzymatic changes after mephedrone administration to adolescent rats (3 × 25 mg/kg, s.c. in a day, with a 2 h interval between doses, for two days) at high ambient temperature (26 ± 2 °C), a schedule that intends to model human recreational abuse. In addition, we have studied the effect of mephedrone in spatial learning and memory. The drug caused a transient decrease in weight gain. After the first dose, animals showed hypothermia but, after the subsequent doses, temperature raised over the values of saline-treated group. We observed the development of tolerance to these thermoregulatory effects of mephedrone. Mephedrone induced a reduction of the densities of dopamine (30% in the frontal cortex) and serotonin (40% in the frontal cortex and the hippocampus and 48% in the striatum) transporters without microgliosis. These deficits were also accompanied by a parallel decrease in the expression of tyrosine hydroxylase and tryptophan hydroxylase 2. These changes matched with a down-regulation of D{sub 2} dopamine receptors in the striatum. Mephedrone also induced an oxidative stress evidenced by an increase of lipid peroxidation in the frontal cortex, and accompanied by a rise in glutathione peroxidase levels in all studied brain areas. Drug-treated animals displayed an impairment of the reference memory in the Morris water maze one week beyond the cessation of drug exposure, while the spatial learning process seems to be preserved. These findings raise concerns about the neuronal long-term effects of mephedrone. - Highlights: • We studied the dopaminergic and serotonergic neurotoxicity of mephedrone in rats. • Mephedrone induced a transient hypothermia following sustained hyperthermia. • In a weekend consumption pattern, mephedrone induced selective neurotoxicity. • Mephedrone generated oxidative stress. • Mephedrone induced an impairment in memory function.

  13. Prevalence of ECG changes during adenosine stress and its association with perfusion defect on myocardial perfusion scintigraphy.

    Science.gov (United States)

    Taywade, Sameer K; Ramaiah, Vijayaraghavan L; Basavaraja, Harish; Venkatasubramaniam, Parameswaran R; Selvakumar, Job

    2017-04-01

    Myocardial perfusion scintigraphy (MPS) is a valuable, noninvasive imaging modality in the evaluation of patients with coronary artery disease. Adenosine stress may occasionally be associated with ECG changes. This study evaluated the strength of association between adenosine stress-related ECG changes and perfusion defects on Tc-MPS. 117 (mean age: 61.25±9.27 years; sex: men 87, women 30) patients with known/suspected coronary artery disease underwent adenosine stress MPS. ECG was monitored continuously during adenosine stress for ST-depression. On the basis of the summed difference score, reversible perfusion defects were categorized as follows: normal: less than 4, mild: 4-8, moderate: 9-13, and severe: more than 13. ST-depression was observed in 27/117 (23.1%) and reversible perfusion defects were observed in 18/27 (66.66%) patients. 2/27, 6/27, and 10/27 patients had mild, moderate, and severe ischemia, respectively. 9/27 patients had normal perfusion. ECG changes and perfusion defects showed a moderate strength of association (correlation coefficient r=0.35, P=0.006). The sensitivity, specificity, positive predictive value, and negative predictive value of ECG findings for prediction of ischemia were 35.29, 86.36, 67.67, and 63.33%, respectively. ECG changes during adenosine stress are not uncommon. It shows a moderate strength of association with reversible perfusion defects. ECG changes during adenosine merit critical evaluation of MPS findings.

  14. Two-dimensional Co-Seismic Surface Displacements Field of the Chi-Chi Earthquake Inferred from SAR Image Matching

    Directory of Open Access Journals (Sweden)

    Jian-Jun Zhu

    2008-10-01

    Full Text Available The Mw=7.6 Chi-Chi earthquake in Taiwan occurred in 1999 over the Chelungpu fault and caused a great surface rupture and severe damage. Differential Synthetic Aperture Radar Interferometry (DInSAR has been applied previously to study the co-seismic ground displacements. There have however been significant limitations in the studies. First, only one-dimensional displacements along the Line-of-Sight (LOS direction have been measured. The large horizontal displacements along the Chelungpu fault are largely missing from the measurements as the fault is nearly perpendicular to the LOS direction. Second, due to severe signal decorrelation on the hangling wall of the fault, the displacements in that area are un-measurable by differential InSAR method. We estimate the co-seismic displacements in both the azimuth and range directions with the method of SAR amplitude image matching. GPS observations at the 10 GPS stations are used to correct for the orbital ramp in the amplitude matching and to create the two-dimensional (2D co-seismic surface displacements field using the descending ERS-2 SAR image pair. The results show that the co-seismic displacements range from about -2.0 m to 0.7 m in the azimuth direction (with the positive direction pointing to the flight direction, with the footwall side of the fault moving mainly southwards and the hanging wall side northwards. The displacements in the LOS direction range from about -0.5 m to 1.0 m, with the largest displacement occuring in the northeastern part of the hanging wall (the positive direction points to the satellite from ground. Comparing the results from amplitude matching with those from DInSAR, we can see that while only a very small fraction of the LOS displacement has been recovered by the DInSAR mehtod, the azimuth displacements cannot be well detected with the DInSAR measurements as they are almost perpendicular to the LOS. Therefore, the amplitude matching method is obviously more

  15. Spatio-temporal modelling of heat stress and climate change implications for the Murray dairy region, Australia

    Science.gov (United States)

    Nidumolu, Uday; Crimp, Steven; Gobbett, David; Laing, Alison; Howden, Mark; Little, Stephen

    2014-08-01

    The Murray dairy region produces approximately 1.85 billion litres of milk each year, representing about 20 % of Australia's total annual milk production. An ongoing production challenge in this region is the management of the impacts of heat stress during spring and summer. An increase in the frequency and severity of extreme temperature events due to climate change may result in additional heat stress and production losses. This paper assesses the changing nature of heat stress now, and into the future, using historical data and climate change projections for the region using the temperature humidity index (THI). Projected temperature and relative humidity changes from two global climate models (GCMs), CSIRO MK3.5 and CCR-MIROC-H, have been used to calculate THI values for 2025 and 2050, and summarized as mean occurrence of, and mean length of consecutive high heat stress periods. The future climate scenarios explored show that by 2025 an additional 12-15 days (compared to 1971 to 2000 baseline data) of moderate to severe heat stress are likely across much of the study region. By 2050, larger increases in severity and occurrence of heat stress are likely (i.e. an additional 31-42 moderate to severe heat stress days compared with baseline data). This increasing trend will have a negative impact on milk production among dairy cattle in the region. The results from this study provide useful insights on the trends in THI in the region. Dairy farmers and the dairy industry could use these results to devise and prioritise adaptation options to deal with projected increases in heat stress frequency and severity.

  16. Spatio-temporal modelling of heat stress and climate change implications for the Murray dairy region, Australia.

    Science.gov (United States)

    Nidumolu, Uday; Crimp, Steven; Gobbett, David; Laing, Alison; Howden, Mark; Little, Stephen

    2014-08-01

    The Murray dairy region produces approximately 1.85 billion litres of milk each year, representing about 20 % of Australia's total annual milk production. An ongoing production challenge in this region is the management of the impacts of heat stress during spring and summer. An increase in the frequency and severity of extreme temperature events due to climate change may result in additional heat stress and production losses. This paper assesses the changing nature of heat stress now, and into the future, using historical data and climate change projections for the region using the temperature humidity index (THI). Projected temperature and relative humidity changes from two global climate models (GCMs), CSIRO MK3.5 and CCR-MIROC-H, have been used to calculate THI values for 2025 and 2050, and summarized as mean occurrence of, and mean length of consecutive high heat stress periods. The future climate scenarios explored show that by 2025 an additional 12-15 days (compared to 1971 to 2000 baseline data) of moderate to severe heat stress are likely across much of the study region. By 2050, larger increases in severity and occurrence of heat stress are likely (i.e. an additional 31-42 moderate to severe heat stress days compared with baseline data). This increasing trend will have a negative impact on milk production among dairy cattle in the region. The results from this study provide useful insights on the trends in THI in the region. Dairy farmers and the dairy industry could use these results to devise and prioritise adaptation options to deal with projected increases in heat stress frequency and severity.

  17. Antarctic fish in a changing world: metabolic, osmoregulatory and endocrine stress response

    Directory of Open Access Journals (Sweden)

    Pedro Miguel Guerreiro

    2015-10-01

    Full Text Available Fish around Antarctic Peninsula are exposed to the fastest climate change rate in the planet, up to ten times higher than the global average. The evolution in extreme stenothermal isolation was a strong selective pressure for the development of a highly endemic fish fauna, with likely structural and functional constraints. To which extent can coastal notothenioid fish adjust to the conditions forecasted by the models of climate change? Experiments were run in the Arctowski (PL station at Admiralty Bay, King George Island, in 2012/13. Fish, Notothenia rossii and N. coriiceps, were collected by boat at 5-25 meter deep using fishing poles and were transferred to experimental tanks in cold rooms acclimated to natural temperatures (0-2°C. Fish were exposed to rapid/ gradual changes in water temperature or/and salinity (to 6-8°C using thermostat-controlled heaters, to 20-10‰ by addition of freshwater to recirculating tanks, over a period of up to 10 days to evaluate the response of several physiological processes. The stress endocrine axis was tested by injecting known blockers/ agonists of cortisol release and receptors. Exposure to altered conditions had no effect in immediate mortality. Increased temperature reduced overall activity and behavioral response to stimuli, although it had no clear effect on mobilization of energetic substrate. Both cortisol and gene expression of metabolic-related proteins and glucocorticoid- and mineralocorticoid receptors were modified after heat shock, but that the cortisol response to handling was reduced. The rise in temperature induced a dependent decrease in plasma osmolality while increasing branchial Na+/K+-ATPase activity, thus decreasing osmoregulatory efficiency. In conclusion, Antarctic fish are reactive to environmental change, but that their ability to accommodate rapid or adaptive responses may be compromised.

  18. Dynamic body weight and body composition changes in response to subordination stress

    OpenAIRE

    Tamashiro, Kellie L. K.; Hegeman, Maria A.; Nguyen, Mary M. N.; Melhorn, Susan J.; Ma, Li Yun; Woods, Stephen C.; Sakai, Randall R.

    2007-01-01

    Social stress is prevalent in many facets of modern society. Epidemiological data suggest that stress is linked to the development of overweight, obesity and metabolic disease. Although there are strong associations between the incidence of obesity with stress and elevated levels of hormones such as cortisol, there are limited animal models to allow investigation of the etiology of increased adiposity resulting from exposure to stress. Perhaps more importantly, an animal model that mirrors th...

  19. Bacterial economics: adaptation to stress conditions via stage-wise changes in the response mechanism.

    Science.gov (United States)

    Baranyi, J; Metris, A; George, S M

    2015-02-01

    Common features of microbial adaptation are analysed with mathematical models and extended to stress conditions when the bacterial population declines before growing again. A parallel is drawn between bacterial and human communities in terms of non-mutation-based adaptation (acclimation) to stress. For a case study, the behaviour of Escherichia coli under osmotic stress, is detailed. It is suggested that stress modelling adaptation should be the focus of further developments in predictive food microbiology. Copyright © 2014. Published by Elsevier Ltd.

  20. The interactive effect of change in perceived stress and trait anxiety on vagal recovery from cognitive challenge

    Science.gov (United States)

    Crowley, Olga V.; McKinley, Paula S.; Burg, Matthew M.; Schwartz, Joseph E.; Ryff, Carol D.; Weinstein, Maxine; Seeman, Teresa E.; Sloan, Richard P.

    2012-01-01

    The present study tested the hypothesis that the change in state negative affect (measured as perceived stress) after cognitive challenge moderates the relationship of trait anxiety and anger to vagal recovery from that challenge. Cardiac vagal control (assessed using heart rate variability) and respiratory rate were measured in a sample of 905 participants from the Midlife in the United States Study. Cognitive challenges consisted of computerized mental arithmetic and Stroop color-word matching tasks. Multiple regression analyses controlling for the effects of the demographic, lifestyle, and medical factors influencing cardiac vagal control showed a significant moderating effect of change in perceived stress on the relationship of trait anxiety to vagal recovery from cognitive challenges (Beta = .253, p= .013). After adjustment for respiratory rate, this effect became marginally significant (Beta = .177, p= .037). In contrast, for the relationship of trait anger to vagal recovery, this effect was not significant either before (Beta = .141, p=.257) or after (Beta = .186, p=.072) adjusting for respiratory rate. Secondary analyses revealed that among the individuals with higher levels of trait anxiety, greater reductions in perceived stress were associated with greater increases in cardiac vagal control after the challenge. In contrast, among the individuals with lower levels of trait anxiety, changes in perceived stress had no impact on vagal recovery. Therefore, change in perceived stress moderates the relationship of trait anxiety, but not trait anger, to vagal recovery from cognitive challenge. PMID:21945037

  1. Uniconazole-induced tolerance of soybean to water deficit stress in relation to changes in photosynthesis, hormones and antioxidant system.

    Science.gov (United States)

    Zhang, Mingcai; Duan, Liusheng; Tian, Xiaoli; He, Zhongpei; Li, Jianmin; Wang, Baomin; Li, Zhaohu

    2007-06-01

    This study investigated whether uniconazole confers drought tolerance to soybean and if such tolerance is correlated with changes in photosynthesis, hormones and antioxidant system of leaves. Soybean plants were foliar treated with uniconazole at 50 mg L-1 at the beginning of bloom and then exposed to water deficit stress at pod initiation for 7 d. Uniconazole promoted biomass accumulation and seed yield under both water conditions. Plants treated with uniconazole showed higher leaf water potential only in water-stressed condition. Water stress decreased the chlorophyll content and photosynthetic rate, but those of uniconazole-treated plants were higher than the stressed control. Uniconazole increased the maximum quantum yield of photosystemand ribulose-1,5-bisphosphate carboxylase/oxygenase activity of water-stressed plants. Water stress decreased partitioning of assimilated 14C from labeled leaf to the other parts of the plant. In contrast, uniconazole enhanced translocation of assimilated 14C from labeled leaves to the other parts, except stems, regardless of water treatment. Uniconazole-treated plants contained less GA3, GA4 and ABA under well-watered condition than untreated plants, while the IAA and zeatin levels were increased substantially under both water conditions, and ABA concentration was also increased under water stressed condition. Under water-stressed conditions, uniconazole increased the content of proline and soluble sugars, and the activities of superoxide dismutase and peroxidase in soybean leaves but not the malondialdehyde content or electrical conductivity. These results suggest that uniconazole-induced tolerance to water deficit stress in soybean was related to the changes of photosynthesis, hormones and antioxidant system of leaves.

  2. Electroconvulsive stimulations normalizes stress-induced changes in the glucocorticoid receptor and behaviour

    DEFF Research Database (Denmark)

    Hageman, Ida; Nielsen, Marianne; Wörtwein, Gitta

    2009-01-01

    stress paradigm influences expression of hippocampal glucocorticoid receptor mRNA, (2) to study the effect of previous repeated restraint stress on the behaviours executed in the forced swim test (FST) (e.g. a novel inescapable stress situation) and (3) to investigate the modulating effect...

  3. Academics Job Satisfaction and Job Stress across Countries in the Changing Academic Environments

    Science.gov (United States)

    Shin, Jung Cheol; Jung, Jisun

    2014-01-01

    This study examined job satisfaction and job stress across 19 higher education systems. We classified the 19 countries according to their job satisfaction and job stress and applied regression analysis to test whether new public management has impacts on either or both job satisfaction and job stress. According to this study, strong market driven…

  4. Stress/aggressiveness-induced immune changes are altered in adult rats submitted to neonatal malnutrition.

    Science.gov (United States)

    Barreto-Medeiros, Jairza; Queiros-Santos, Adenilda; Cabral-Filho, José Eulálio; Ferreira E Silva, Wylla Tatiana; Leandro, Carol Góis; Deiró, Tereza Cristina; Manhaes-de-Castro, Raul; Machado Barbosa de-Castro, Célia Maria

    2007-01-01

    Neonatal malnutrition induces metabolic and endocrine changes that have beneficial effects on the neonatal in the short term but, in the longer term, these alterations lead to maladaptations. We investigated the effect of neonatal malnutrition on immune responses in adult rats submitted or not to an aggressiveness test. Male Wistar rats were distributed to one of two groups according to their mothers' diet during lactation: the well-nourished group (group C, n = 42, receiving 23% of protein) and the malnourished group (group MN, n = 42, receiving 8% of protein). After weaning, all rats received normoproteic diet. Ninety days after birth, each group was subdivided into three subgroups: control rats (n = 14, respectively), aggressive rats (n = 14, respectively) and rats receiving foot shock (FS; n = 14, respectively). Plasma corticosterone concentration was measured after FS sessions. Leukocyte counts and humoral immunity were evaluated. In neonatal malnourished animals, FS-induced stress reduced plasma corticosterone concentration. Intraspecific aggressiveness induced alterations in leukocyte counts and antibody titers 7 and 15 days after immunization. Neonatal malnourished animals showed no changes in the immune parameters evaluated. Expression of intraspecific aggressiveness activates the immune system. Neonatal malnutrition seems to have a long-lasting effect on components of both neuroendocrine and immune functions.

  5. Sleep Quality Among Low-Income Young Women in Southeast Texas Predicts Changes in Perceived Stress Through Hurricane Ike.

    Science.gov (United States)

    Wu, Zhao Helen; Stevens, Richard G; Tennen, Howard; North, Carol S; Grady, James J; Holzer, Charles

    2015-07-01

    To document the time course of perceived stress among women through the period of a natural disaster, to determine the effect of sleep quality on this time course, and to identify risk factors that predict higher levels of perceived stress. Longitudinal study from 2006-2012. Community-based family planning clinics in southeast Texas. There were 296 women aged 18-31 y who experienced Hurricane Ike, September 2008. Cohen Perceived Stress Scale (PSS) was administered every 2 mo from 6 mo before to 12 mo after Hurricane Ike. Sleep quality was assessed 1 mo after Hurricane Ike using the Pittsburg Sleep Quality Index (PSQI). Good sleep was defined as a PSQI summary score sleep as a score ≥ 5. Hurricane Ike stressors (e.g., property damage, subjective stressors) and pre-Ike lifetime major life events and emotional health (e.g., emotional dysregulation, self-control) were also assessed. Over the entire period of 18 mo (6 mo before and 12 mo after the hurricane), perceived stress was significantly higher among poor sleepers compared to good sleepers, and only good sleepers showed a significant decrease in perceived stress after Hurricane Ike. In addition, a higher level of perceived stress was positively associated with greater Ike damage among poor sleepers, whereas this correlation was not observed among good sleepers. In the final multivariate longitudinal model, Ike-related subjective stressors as well as baseline major life events and emotional dysregulation among poor sleepers predicted higher levels of perceived stress over time; among good sleepers, additional factors such as lower levels of self-control and having a history of a psychiatric disorder also predicted higher levels of perceived stress. Sleep quality after Hurricane Ike, an intense natural disaster producing substantial damage, impacted changes in perceived stress over time. Our findings suggest the possibility that providing victims of disasters with effective interventions to improve sleep quality

  6. History of stress-related health changes: a cue to pursue a diagnosis of latent primary adrenal insufficiency.

    Science.gov (United States)

    Yamamoto, Toshihide

    2014-01-01

    Routine delays in the diagnosis of primary adrenal insufficiency (PAI) are well known and conceivably attributable to the absence of cues, other than anti-adrenal autoantibodies, to pursue subclinical PAI. Subclinical PAI is latent unless the afflicted patient encounters stress such as an acute illness, surgery, psychosocial burden, etc. It remains to be demonstrated whether a history of stress-related health changes is a useful cue to pursue a diagnosis of latent PAI. The patients were selected for a history of recurrent symptoms, i.e., gastrointestinal symptoms, fatigue, or lassitude, aggravated by stress and alleviated by the removal of stress, and signs, i.e., weight loss, hypotension, and hyperpigmentation. As the early morning cortisol levels were low or low-normal and the adrenocorticotropic hormone (ACTH) levels were within the reference ranges, provocation tests, i.e., insulin-induced hypoglycemia tests and low-dose (1 μg) corticotropin tests (LDTs), were used to estimate the hypothalamus-pituitary-adrenal (HPA) axis status. Patients with the HPA axis dysfunction on two provocation tests were supplemented with physiologic doses of glucocorticoids (GCs). The effects of GC supplementation on stress-related health changes were observed. The ACTH levels after insulin-induced hypoglycemia were higher and the cortisol levels were lower in the patients than in the control subjects. The cortisol levels in the patients were increased less significantly by LDT than those observed in the control subjects. Stress-related health changes ceased to recur and signs, i.e., a low body weight, hypotension, and hyperpigmentation, were ameliorated following GC supplementation. A history of stress-related health changes is useful as a cue to pursue latent PAI in patients with low or low-normal early morning cortisol levels.

  7. Regulation of perioperative immunological changes following laparotomy: effects of biological response modifier (BRM) on surgical stress.

    Science.gov (United States)

    Ooshiro, Mitsuru; Sugishita, Yu-i; Tanaka, Hiroshi; Koide, Kazuki; Nagashima, Makoto; Katoh, Ryoji

    2004-04-30

    Immune responses have been reported to decline following surgical stress, leading to an increased susceptibility to infection or to the growth of tumors. In this study, we report that pre-operative treatment with the biological response modifier (BRM) polysaccharide Kureha (PSK) can inhibit the decline of immunocompetence during the perioperative period. BALB/c mice were laparotomized, the intestinal tracts were exposed to room air for 1.5 h, and then the abdomens were closed. Six hours after the operation, the spleen and serum were collected. The concentrations of IL-6 in the serum and of IFNgamma and IL-4 in the supernatant of splenocyte cultures were measured. In the surgical stress group that received surgical stress and the PSK treatment, the serum IL-6 concentration was significantly elevated in the group with surgical stress. PSK treatment controlled the stress-induced elevation. IFNgamma concentrations were measured in the supernatant of Concanavalin A (Con A) stimulated splenocyte cultures. It was lower in the group with surgical stress than in the cultures derived from the non-treated group. The IFNgamma concentration in the group with surgical stress plus PSK treatment was significantly higher than the level in the group with surgical stress alone. The IL-4 concentration was significantly lower in the surgical stress group than in the control group, however, the concentration tended to be higher in the surgical stress plus PSK treatment group than in the group with surgical stress alone. The IFNgamma/IL-4 ratio in the group with surgical stress was lower than the ratio in the non-treated group. The ratio in the group with surgical stress plus PSK treatment was significantly higher than the ratio in the group with surgical stress alone. These results suggest that PSK restores the abnormality of the biological responses induced by surgical stress and corrects the reduced Th1/Th2 cytokine balance to a normal level.

  8. Longitudinal changes of telomere length and epigenetic age related to traumatic stress and post-traumatic stress disorder.

    Science.gov (United States)

    Boks, Marco P; van Mierlo, Hans C; Rutten, Bart P F; Radstake, Timothy R D J; De Witte, Lot; Geuze, Elbert; Horvath, Steve; Schalkwyk, Leonard C; Vinkers, Christiaan H; Broen, Jasper C A; Vermetten, Eric

    2015-01-01

    Several studies have reported an association between traumatic stress and telomere length suggesting that traumatic stress has an impact on ageing at the cellular level. A newly derived tool provides an additional means to investigate cellular ageing by estimating epigenetic age based on DNA methylation profiles. We therefore hypothesise that in a longitudinal study of traumatic stress both indicators of cellular ageing will show increased ageing. We expect that particularly in individuals that developed symptoms of post-traumatic stress disorder (PTSD) increases in these ageing parameters would stand out. From an existing longitudinal cohort study, ninety-six male soldiers were selected based on trauma exposure and the presence of symptoms of PTSD. All military personnel were deployed in a combat zone in Afghanistan and assessed before and 6 months after deployment. The Self-Rating Inventory for PTSD was used to measure the presence of PTSD symptoms, while exposure to combat trauma during deployment was measured with a 19-item deployment experiences checklist. These groups did not differ for age, gender, alcohol consumption, cigarette smoking, military rank, length, weight, or medication use. In DNA from whole blood telomere length was measured and DNA methylation levels were assessed using the Illumina 450K DNA methylation arrays. Epigenetic ageing was estimated using the DNAm age estimator procedure. The association of trauma with telomere length was in the expected direction but not significant (B=-10.2, p=0.52). However, contrary to our expectations, development of PTSD symptoms was associated with the reverse process, telomere lengthening (B=1.91, p=0.018). In concordance, trauma significantly accelerated epigenetic ageing (B=1.97, p=0.032) and similar to the findings in telomeres, development of PTSD symptoms was inversely associated with epigenetic ageing (B=-0.10, p=0.044). Blood cell count, medication and premorbid early life trauma exposure did not

  9. Raman spectroscopic study of acute oxidative stress induced changes in mice skeletal muscles

    Science.gov (United States)

    Sriramoju, Vidyasagar; Alimova, Alexandra; Chakraverty, Rahul; Katz, A.; Gayen, S. K.; Larsson, L.; Savage, H. E.; Alfano, R. R.

    2008-02-01

    The oxidative stress due to free radicals is implicated in the pathogenesis of tissue damage in diseases such as muscular dystrophy, Alzheimer dementia, diabetes mellitus, and mitochrondrial myopathies. In this study, the acute oxidative stress induced changes in nicotinamide adenine dinucleotides in mouse skeletal muscles are studied in vitro using Raman spectroscopy. Mammalian skeletal muscles are rich in nicotinamide adenine dinucleotides in both reduced (NADH) and oxidized (NAD) states, as they are sites of aerobic and anaerobic respiration. The relative levels of NAD and NADH are altered in certain physiological and pathological conditions of skeletal muscles. In this study, near infrared Raman spectroscopy is used to identify the molecular fingerprints of NAD and NADH in five-week-old mice biceps femoris muscles. A Raman vibrational mode of NADH is identified in fresh skeletal muscle samples suspended in buffered normal saline. In the same samples, when treated with 1% H IIO II for 5 minutes and 15 minutes, the Raman spectrum shows molecular fingerprints specific to NAD and the disappearance of NADH vibrational bands. The NAD bands after 15 minutes were more intense than after 5 minutes. Since NADH fluoresces and NAD does not, fluorescence spectroscopy is used to confirm the results of the Raman measurements. Fluorescence spectra exhibit an emission peak at 460 nm, corresponding to NADH emission wavelength in fresh muscle samples; while the H IIO II treated muscle samples do not exhibit NADH fluorescence. Raman spectroscopy may be used to develop a minimally invasive, in vivo optical biopsy method to measure the relative NAD and NADH levels in muscle tissues. This may help to detect diseases of muscle, including mitochondrial myopathies and muscular dystrophies.

  10. Perceived parenting change and child posttraumatic stress following a natural disaster.

    Science.gov (United States)

    Cobham, Vanessa E; McDermott, Brett

    2014-02-01

    Recent research suggests that not only parental psychopathology, but also parenting practices, have a role to play in the development of child posttraumatic stress symptoms (PTSS) following a natural disaster. The current study aimed to investigate the relationship between parents' perceptions of their parenting in the aftermath of a natural disaster, and child PTSS. A cross-sectional design was used to explore the associations among child PTSS, parents' perceptions of altered (more anxious) parenting, and parental disaster-related distress (altered cognitions and behaviors) in 874 elementary school children (ages 8-12 years) and their parents following a severe storm of cyclonic proportions. With parental consent, school-based screening was conducted in impacted communities 3 months after the storm. Children completed a screening questionnaire consisting of the Child Trauma Screening Questionnaire (CTSQ; used for identifying children at risk for posttraumatic stress disorder [PTSD]), as well as a range of questions assessing disaster exposure and threat perception. Parents completed questions relating to their perceptions of changes in their parenting since the storm, as well as two items relating to their own disaster-related distress. Independent of other significant associations with child PTSS (such as age, gender, and disaster exposure), a high level of parent-perceived altered parenting appeared to put children at increased risk for PTSS 3 months after the disaster. However, when the sample was stratified for the presence or absence of altered parent cognitions and behaviors following the storm, altered parenting was found to have a unique relationship with child PTSS only when parents reported altered disaster-related cognitions and behaviors. When parents report disaster-related cognitions and behaviors, their perception of altered parenting practices (becoming more protective, less granting of autonomy, and communicating a sense of current danger) is

  11. Sex differences in drug-related stress-system changes: implications for treatment in substance-abusing women.

    Science.gov (United States)

    Fox, Helen C; Sinha, Rajita

    2009-01-01

    Extensive research indicates that chronic substance abuse disrupts stress and reward systems of the brain. Gender variation within these stress-system alterations, including the impact of sex hormones on these changes, may influence sex-specific differences in both the development of, and recovery from, dependency. As such, gender variations in stress-system function may also provide a viable explanation for why women are markedly more vulnerable than men to the negative consequences of drug use. This article therefore initially reviews studies that have examined gender differences in emotional and biophysiological changes to the stress and reward system following the acute administration of drugs, including cocaine, alcohol, and nicotine. The article then reviews studies that have examined gender differences in response to various types of stress in both healthy and drug-abusing populations. Studies examining the impact of sex hormones on these gender-related responses are also reported. The implications of these sex-specific variations in stress and reward system function are discussed in terms of both comorbid psychopathology and treatment outcome.

  12. Transgenerational changes in plant physiology and in transposon expression in response to UV-C stress in Arabidopsis thaliana.

    Science.gov (United States)

    Migicovsky, Zoe; Kovalchuk, Igor

    2014-01-01

    Stress has a negative impact on crop yield by altering a gain in biomass and affecting seed set. Recent reports suggest that exposure to stress also influences the response of the progeny. In this paper, we analyzed seed size, leaf size, bolting time and transposon expression in 2 consecutive generations of Arabidopsis thaliana plants exposed to moderate UV-C stress. Since previous reports suggested a potential role of Dicer-like (DCL) proteins in the establishment of transgenerational response, we used dcl2, dcl3 and dcl4 mutants in parallel with wild-type plants. These studies revealed that leaf number decreased in the progeny of UV-C stressed plants, and bolting occurred later. Transposons were also re-activated in the progeny of stressed plants. Changes in the dcl mutants were less prominent than in wild-type plants. DCL2 and DCL3 appeared to be more important in the transgenerational stress memory than DCL4 because transgenerational changes were less profound in the dcl2 and dcl3 mutants.

  13. Increased fitness of rice plants to abiotic stress via habitat adapted symbiosis: A strategy for mitigating impacts of climate change

    Science.gov (United States)

    Redman, R.S.; Kim, Y.-O.; Woodward, C.J.D.A.; Greer, C.; Espino, L.; Doty, S.L.; Rodriguez, R.J.

    2011-01-01

    Climate change and catastrophic events have contributed to rice shortages in several regions due to decreased water availability and soil salinization. Although not adapted to salt or drought stress, two commercial rice varieties achieved tolerance to these stresses by colonizing them with Class 2 fungal endophytes isolated from plants growing across moisture and salinity gradients. Plant growth and development, water usage, ROS sensitivity and osmolytes were measured with and without stress under controlled conditions. The endophytes conferred salt, drought and cold tolerance to growth chamber and greenhouse grown plants. Endophytes reduced water consumption by 20–30% and increased growth rate, reproductive yield, and biomass of greenhouse grown plants. In the absence of stress, there was no apparent cost of the endophytes to plants, however, endophyte colonization decreased from 100% at planting to 65% compared to greenhouse plants grown under continual stress (maintained 100% colonization). These findings indicate that rice plants can exhibit enhanced stress tolerance via symbiosis with Class 2 endophytes, and suggest that symbiotic technology may be useful in mitigating impacts of climate change on other crops and expanding agricultural production onto marginal lands.

  14. Increased fitness of rice plants to abiotic stress via habitat adapted symbiosis: a strategy for mitigating impacts of climate change.

    Directory of Open Access Journals (Sweden)

    Regina S Redman

    Full Text Available Climate change and catastrophic events have contributed to rice shortages in several regions due to decreased water availability and soil salinization. Although not adapted to salt or drought stress, two commercial rice varieties achieved tolerance to these stresses by colonizing them with Class 2 fungal endophytes isolated from plants growing across moisture and salinity gradients.Plant growth and development, water usage, ROS sensitivity and osmolytes were measured with and without stress under controlled conditions.The endophytes conferred salt, drought and cold tolerance to growth chamber and greenhouse grown plants. Endophytes reduced water consumption by 20-30% and increased growth rate, reproductive yield, and biomass of greenhouse grown plants. In the absence of stress, there was no apparent cost of the endophytes to plants, however, endophyte colonization decreased from 100% at planting to 65% compared to greenhouse plants grown under continual stress (maintained 100% colonization.These findings indicate that rice plants can exhibit enhanced stress tolerance via symbiosis with Class 2 endophytes, and suggest that symbiotic technology may be useful in mitigating impacts of climate change on other crops and expanding agricultural production onto marginal lands.

  15. Increased fitness of rice plants to abiotic stress via habitat adapted symbiosis: a strategy for mitigating impacts of climate change.

    Science.gov (United States)

    Redman, Regina S; Kim, Yong Ok; Woodward, Claire J D A; Greer, Chris; Espino, Luis; Doty, Sharon L; Rodriguez, Rusty J

    2011-01-01

    Climate change and catastrophic events have contributed to rice shortages in several regions due to decreased water availability and soil salinization. Although not adapted to salt or drought stress, two commercial rice varieties achieved tolerance to these stresses by colonizing them with Class 2 fungal endophytes isolated from plants growing across moisture and salinity gradients.Plant growth and development, water usage, ROS sensitivity and osmolytes were measured with and without stress under controlled conditions.The endophytes conferred salt, drought and cold tolerance to growth chamber and greenhouse grown plants. Endophytes reduced water consumption by 20-30% and increased growth rate, reproductive yield, and biomass of greenhouse grown plants. In the absence of stress, there was no apparent cost of the endophytes to plants, however, endophyte colonization decreased from 100% at planting to 65% compared to greenhouse plants grown under continual stress (maintained 100% colonization).These findings indicate that rice plants can exhibit enhanced stress tolerance via symbiosis with Class 2 endophytes, and suggest that symbiotic technology may be useful in mitigating impacts of climate change on other crops and expanding agricultural production onto marginal lands.

  16. Life satisfaction and perceived stress among young offenders in a residential therapeutic community: Latent change score analysis.

    Science.gov (United States)

    Tang, Kristen N S; Chan, Christian S

    2017-06-01

    Recent rehabilitation frameworks underscore the importance of strength-based interventions for young offenders who may lack internal and external resources to manage their stress and plan for their life. This multi-wave longitudinal study investigated the dynamic relationship between perceived stress and life satisfaction among a group of young ex-offenders in a residential therapeutic community. Four waves of data were collected from 117 Hong Kong youths (24.0% female, mean age = 17.7) over one year. Latent change score analysis was employed to examine the univairate and bivariate changes of their perceived stress and life satisfaction. Results suggest a positive growth trajectory in life satisfaction over time. The results of perceived stress were less conclusive. Bivariate models indicated that the previous level of life satisfaction was negatively linked to the subsequent perceived stress level but not vice versa. The findings suggest that improvement in life satisfaction may reduce perceived stress in young ex-offenders. Copyright © 2017 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.

  17. High-rate (1 Hz to 20 Hz GPS coseismic dynamic displacements carried out during the Emilia 2012 seismic sequence

    Directory of Open Access Journals (Sweden)

    Antonio Avallone

    2012-10-01

    Full Text Available In May-July 2012, Emilia Romagna (northern Italy was struck by a significant seismic sequence, which was characterized by two moderate-magnitude earthquakes: a Ml 5.9 event on May 20, 2012, at 02:03:53 UTC, and a Ml 5.8 event on May 29, 2012, at 07:00:03 UTC, about 12 km to the west of the first mainshock. The earthquake sequence produced a total of 20 casualties and severe and widespread damage, mainly to historical and commercial buildings. A detailed description of the seismic sequence can be found in Sco-gnamiglio et al. [2012, this volume]. The largest of the earthquake static displacements were recorded by tens of continuous global positioning system (cGPS stations, as described in Serpelloni et al. [2012, this volume]. Most of these stations were operating with a sampling frequency of 1 Hz, and they belonged to scientific or commercial networks: RING (http://ring.gm.ingv.it; ITALPOS (http://smartnet.leica-geosystems.it; GeoTop (http://www.netgeo.it; Fondazione Geometri Emilia Romagna (http://www.gpsemiliaromagna.it; Lombardia [http://www.gpslombardia.it; and Veneto (http://147.162.229.63. Some hours after the first mainshock, the sampling frequency of the near-field RING stations (SBPO and MODE were switched to 20 Hz, thus recording the coseismic displacements produced by the May 29, 2012, earthquake at higher frequency. This sampling frequency was previously used for the detection of coseismic dynamic displacements only for the Mw 9 Tohoku-Oki 2011 event [Colosimo et al. 2011b]. Thus, the 20-Hz-sampling displacements for the Tohoku-Oki 2011 earthquake and the May 29, 2012, Emilia event might represent important recordings to investigate coseismic contributions at frequencies higher than 1 Hz with GPS. In the present study, after the description of the high-rate GPS (HRGPS data analysis, we will show and compare the preliminary results. Then, for the two mainshocks, we will compare the displacements recorded by the HRGPS (1 Hz up to 20 Hz

  18. Source characteristics of Yutian earthquake in 2008 inversed from co-seismic deformation field mapped by InSAR

    Science.gov (United States)

    Shan, X.; Qu, C.; Zhang, G.; Wang, C.; Song, X.; Zhang, G.

    2009-12-01

    On 21 March 2008, an Ms7.3 earthquake occurred at Quickbird, Yutian County, Xinjiang. The earthquake is located in the depopulated Kunlun Mountains of an elevation over 5000m, featured by thin air, cold weather and extremely bad conditions, where field investigations would be formidable. Besides, there is no station for deformation measurements in an area of several hundreds km2 surrounding the epicenter. Consequently, there is little knowledge on the causative fault and coseismic deformation of this event. We attempt to fill this gap by means of satellite remote sensing and DInSAR (Differential Interferometric Synthetic Aperture Rader).We attempt to reveal the features of the causative fault of this shock and its coseismic deformation field by a sensitivity- based iterative fitting (SBIF) method. Our work is based on analysis and interpretation to high-resolution satellite images as well as DInSAR data from the satellite Envisat SAR, coupled with seismicity, focal mechanism solutions and active tectonics in this region. The result shows that the 22km-long, nearly NS trending surface rupture zone by this event lies on a range-front alluvial platform in the Qira County. It is characterized by distinct linear traces and simple structure with 1~3m-wide individual seams and maximum 6.5m width of a collapse fracture. Along the rupture zone are seen many secondary fractures and fault-bounded blocks by collapse, exhibiting remarkable extension. The coseismic deformation affected a big range 100km and 40km. D-InSAR analysis indicates that the interferometric deformation field is dominated by extensional faulting with a small strike-slip component. Along the causative fault, the western wall fell down and the eastern wall, that is the active unit, rose up, both with westerly vergence.The minimum subsidence displacement is -2.6m in the LOS, and the maximum uplift is 1.2m. The maximum relative vertical dislocation reaches 4.1m,which is located at the distance of 10km along

  19. First Observation of Coseismic Seafloor Crustal Deformation due to M7 Class Earthquakes in the Philippine Sea Plate

    Science.gov (United States)

    Tadokoro, K.; Ikuta, R.; Ando, M.; Okuda, T.; Sugimoto, S.; Besana, G. M.; Kuno, M.

    2005-12-01

    The Mw7.3 and 7.5 earthquakes (Off Kii-Peninsula Earthquakes) occurred close to the source region of the anticipated Tonankai Trough in September 5, 2004. The focal mechanisms of the two earthquakes have no low angle nodal planes, which shows that the earthquakes are intraplate earthquakes in the Philippine Sea Plate. We observed coseismic horizontal displacement due to the Off Kii-Peninsula Earthquakes by means of a system for observing seafloor crustal deformation, which is the first observation of coseismic seafloor displacement in the world. We have developed a system for observing seafloor crustal deformation. The observation system is composed of 1) acoustic measurement between a ship transducer and sea-bottom transponders, and 2) kinematic GPS positioning of the observation vessel. We have installed a seafloor benchmark close to the epicenters of the Off Kii-Peninsula Earthquakes. The benchmark is composed of three sea-bottom transponders. The location of benchmark is defined as the weight center of the three transponders. We can determine the location of benchmark with an accuracy of about 5 cm at each observation. We have repeatedly measured the seafloor benchmark six times up to now: 1) July 12-16 and 21-22, 2004, 2) November 9-10, 3) January 19, 2005, 4) May 18-20, 5) July 19-20, and 6) August 18-19 and 29-30. The Off Kii-Peninsula Earthquakes occurred during the above monitoring period. The coseismic horizontal displacement of about 21 cm toward SSE was observed at our seafloor benchmark. The displacement is 3.5 times as large as the maximum displacement observed by on land GPS network in Japan, GEONET. The monitoring of seafloor crustal deformation is effective to detect the deformations associated with earthquakes occurring in ocean areas. This study is promoted by "Research Revolution 2002" of Ministry of Education, Culture, Sports, Science and Technology, Japan. We are grateful to the captain and crews of Research Vessel, Asama, of Mie Prefectural

  20. Hematological and clinical chemistry changes induced by acute stress during handling and capture of catfish (Ictalurus punctatus

    Directory of Open Access Journals (Sweden)

    Gabriel Aguirre-Guzman

    2016-05-01

    Full Text Available Objetive. Evaluation of hematological and biochemical parameters of culture channel catfish (Ictalurus punctatus under acute stress by management and capture practice. Materials and methods. Fish (200 g mean were maintained in culture tanks and divided in two treatments, in duplicate, (n=15x2x2=60 fishes. Thirty catfish were exposed for 5 min to acute stress (TE by management and capture practice, while other group not (control group, TnE. 10 fish for treatment were collected at 0, 6, and 24 h post-stress for blood collection, where TnE fishes were anesthetized along work. Complete blood count (manual method and blood biochemical (spectrophotometry of fish samples were evaluated and their results were analyzed using a Student’s t-distribution. Results. The erythrocytes, hematocrit, hemoglobin and glucose level of TE animals was significantly higher (p<0.05 at 6 h post-stress, in comparison of TnE. Immune cells in fish TE decreased at 6 and 24 h post-stress, where leukocytes and lymphocytes were significantly lower that TnE (p < 0.05 at 24 h post-stress. Other evaluated parameters did not show significant differences along this study. Conclusions. Those results suggest that several hematological and blood biochemical parameters in fish changed by acute stress generated by management and capture practice

  1. Shape change of the vitreous chamber influences retinal detachment and reattachment processes: is mechanical stress during eye rotations a factor?

    Science.gov (United States)

    Meskauskas, Julia; Repetto, Rodolfo; Siggers, Jennifer H

    2012-09-19

    We aim to understand how mechanical causation influences retinal detachment and reattachment processes. In particular, myopes suffer retinal detachment more frequently than emmetropes, and following a retinal detachment, scleral buckling promotes retinal reattachment. We test the hypothesis that stresses arising from saccadic eye rotations are involved in the processes, and that the alteration in the stress due to the change in the vitreous chamber geometry is sufficient to explain the phenomena. The vitreous chamber of the eye has an approximately spherical shape and it is filled with vitreous humor. We developed a mathematical model, treating the vitreous chamber in emmetropic and myopic eyes as a spheroid and in eyes subjected to scleral buckling as a sphere with a circumferential indentation. We assume that the eye performs prescribed small-amplitude, periodic, torsional rotations and we solve semi-analytically for the fluid pressure, velocity, and stress distributions. The shape of the vitreous chamber has a large effect on the retinal stress. The vitreous and the retina of a highly myopic eye continuously experience shear stresses significantly higher than those of an emmetropic eye. An eye fitted with a scleral buckle experiences large stress levels localized around the buckle. Our results provide a mechanical explanation for the more frequent occurrence of posterior vitreous detachment and retinal detachment in myopic eyes. To understand how the stress distribution in a buckled eye facilitates reattachment, an additional model of the details of the reattachment process should be coupled to this model.

  2. Interseismic and coseismic surface deformation deduced from space geodetic observations : with inferences on seismic hazard, tectonic processes, earthquake complexity, and slip distribution

    NARCIS (Netherlands)

    Bos, A.G. (Annemarie Gerredina)

    2003-01-01

    In this thesis I am concerned with modeling the kinematics of surface deformation using space geodetic observations in order to advance insight in both interseismic and coseismic surface response. To model the surface deformation field I adopt the method of Spakman and Nyst (2002) which resolves the

  3. Comment to a paper "The origin of high magnetic remanence in the fault pseudotachylites: Theoretical considerations and implication for coseismic electrical currents"

    Czech Academy of Sciences Publication Activity Database

    Kletetschka, Günther

    2006-01-01

    Roč. 419, 1-4 (2006), s. 99-99 ISSN 0040-1951 Institutional research plan: CEZ:AV0Z30130516 Keywords : coseismic electric currents * magnetic remanence * REM * magnetite Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.675, year: 2006

  4. Oral administration of Cimicifuga racemosa extract affects immobilization stress-induced changes in murine cerebral monoamine metabolism.

    Science.gov (United States)

    Nadaoka, Isao; Yasue, Masaaki; Sami, Manabu; Kitagawa, Yasushi

    2012-04-01

    We investigated the effects of Cimicifuga racemosa (CR) plant extracts on the changes in levels of the cerebral monoamines norepinephrine (NE), dopamine (DA), and serotonin (5-HT), the respective metabolites 3-methoxy-4-hydroxyphenylglycol (MHPG), 3,4-dihydroxyphenylacetic acid (DOPAC), and 5-hydroxyindoleacetic acid (5-HIAA), and plasma corticosterone in mice subjected to acute immobilization stress. Single oral administration of the CR extract (1,000 mg/kg) significantly attenuated plasma corticosterone levels that had been increased as a result of enforced immobilization. Acute immobilization stress caused significant changes in the corresponding amine-to-metabolite ratios in the hypothalamus, hippocampus, and cortex; however, CR-extract treatment significantly attenuated the MHPG/NE change in the hypothalamus, and the 5-HIAA/5- HT changes in each region of the brain. Our results suggest that the CR extract interacts not only with the hypothalamic-pituitary-adrenal (HPA) axis but also with the sympathetic adrenomedullary (SAM) system under stress conditions. Thus the CR extract can alleviate acute stress responses by suppressing the changes of amine-to-metabolite ratio in brain.

  5. Clinical significance of ischemic electrocardiographic changes during stress myocardial perfusion imaging: sub-analysis of the J-ACCESS study.

    Science.gov (United States)

    Takehana, Kazuya; Nishimura, Shigeyuki; Maeba, Hirofumi; Ueyama, Takanao; Iwasaka, Toshiji; Nishimura, Tsunehiko

    2010-04-01

    The cardiac event rate among the countries varies according to ethnicity. Some reports have identified that ischemic heart disease often occurs at a low incidence and is often milder in Japan compared to other countries. Therefore, the present study was designed to determine the clinical significance and prediction for cardiac events in patients who showed ischemic ECG changes during stress myocardial perfusion SPECT. Among 4,670 registered patients for Japanese-assessment of cardiac event and survival (J-ACCESS) study, patients with conduction abnormality on baseline were excluded and revascularization within 60 days of SPECT study were censored from the prognostic portion of analysis. Stress and rest myocardial perfusion SPECT imaging with (99m)Tc-tetrofosmin were performed and occurrence and nature of cardiac events were investigated at 1, 2 and 3 years after registration. Both PCI and CABG, as well as recurrent angina and non-severe heart failure were classified as soft events. Cardiac death, non-fatal MI and heart failure requiring hospitalization were classified as major cardiac events, and hard events comprised cardiac death and non-fatal MI. A total of 3,125 patients performed exercise (n = 2,383) or vasodilator (n = 742) stress MPI and significant ischemic ECG changes were obtained in 538 during exercise and 35 during vasodilator stress. Kaplan-Meier analysis revealed that the patients with both ischemic ECG changes and reversible perfusion defect on MPI had significantly higher incidence for major cardiac events, such as cardiac death, non-fatal MI and severe heart failure (P = 0.0038), and for cardiac hard events, such as cardiac death and non-fatal MI (P = 0.0028), in exercise stress. Interestingly, patients without reversible perfusion defect showed significantly fewer events despite presence of ischemic ECG changes. Ischemic ECG changes during exercise stress are well associated with higher incidence of cardiac events in patients demonstrated

  6. THE EXPERIMENTAL STUDY OF STRESS-RELATED PATHOLOGICAL CHANGES IN CEREBRAL VENOUS BLOOD FLOW IN NEWBORN RATS ASSESSED BY DOCT

    Directory of Open Access Journals (Sweden)

    OXANA V. SEMYACHKINA-GLUSHKOVSKAYA

    2013-07-01

    Full Text Available In experiments on newborn rats with stress-related intracranial hemorrhage (ICH using Doppler optical coherence tomography (DOCT we have shown that latent stage of ICH (4 h after stress is characterized by decrease of venous blood outflow and the loss of sensitivity of sagittal vein to vasoconstrictor effect of adrenaline. The incidence of ICH (24 h after stress was accompanied by progression of early pathological changes in cerebral venous blood flow (CVBF and development of venous insufficiency. Taking into consideration of this fact, we suggest that the suppression of CVBF related to the severity to the deleterious effect of stress on the brain hemodynamics in newborn rats. These facts allow us to conclude that the venous insufficiency with the loss of vasoconstrictor response to adrenaline is an informative and sensitive component of pattern of CVBF that can be important diagnostic criteria of risk of ICH development in newborns.

  7. Preliminary approach on early post mortem stress and quality indexes changes in large size bluefin tuna (Thunnus thynnus

    Directory of Open Access Journals (Sweden)

    R. Ugolini

    2010-01-01

    Full Text Available Bluefin tuna (Thunnus thynnus is very appreciated on Japan and USA market for the preparation of sushi and sahimi. The market price of the fresh product can vary from 8 to 33 Euro/kg (gate farm/producers prices according to size, shape, fat level, meat colour, consistency and freshness (absence of “hyake”, all parameters strictly connected to feeding quality and quantity, rearing and killing stress factors and refrigeration times and conditions after death. Excessive levels of stress during the slaughtering can affect meat quality, contributing to significantly decrease of tuna’s price. The present trial was carried out to evaluate the possible harvesting/slaughtering stress effect on reared bluefin tuna meat quality, starting from the examination of the most important stress and quality parameters changes during the early post mortem period.

  8. The change in the amount of immunoglobulins as a response to stress experienced by soldiers on a peacekeeping mission.

    Science.gov (United States)

    Kvietkauskaite, Raimonda; Vaicaitiene, Ramute; Mauricas, Mykolas

    2014-08-01

    Recent studies have demonstrated various changes in systemic and mucosal immunity in people undergoing psychological stress. This study was designated for an assay of associations between the stress experienced by Lithuanian soldiers as a response to changed job conditions (deployment to Afghanistan) and level of immunoglobulins. Salivary and sera immunoglobulin concentrations were assessed and compared before and after the military mission; the associations between the deployment-related stress and the immunoglobulin level were examined. Special questionnaires covering state of health and strain experienced were used. Quantitative detection of immunoglobulins was performed by sandwich ELISA. Comparison of the medians at three time points (before, after the deployment and 1 year after the mission) showed an increased level of salivary secretory immunoglobulin A (S-IgA) in association with deployment. Chi-square test of independence indicated statistically significant relationship between the stress and S-IgA amount. Correlation analysis using different health control methods revealed masked fear of soldiers to be expelled from the military service. The results indicated that salivary S-IgA is the most sensitive representative of mucosal immunity system to psychological stress related to changed job conditions in military service.

  9. Projections of Water Stress Based on an Ensemble of Socioeconomic Growth and Climate Change Scenarios: A Case Study in Asia

    Science.gov (United States)

    Fant, Charles; Schlosser, C. Adam; Gao, Xiang; Strzepek, Kenneth; Reilly, John

    2016-01-01

    The sustainability of future water resources is of paramount importance and is affected by many factors, including population, wealth and climate. Inherent in current methods to estimate these factors in the future is the uncertainty of their prediction. In this study, we integrate a large ensemble of scenarios—internally consistent across economics, emissions, climate, and population—to develop a risk portfolio of water stress over a large portion of Asia that includes China, India, and Mainland Southeast Asia in a future with unconstrained emissions. We isolate the effects of socioeconomic growth from the effects of climate change in order to identify the primary drivers of stress on water resources. We find that water needs related to socioeconomic changes, which are currently small, are likely to increase considerably in the future, often overshadowing the effect of climate change on levels of water stress. As a result, there is a high risk of severe water stress in densely populated watersheds by 2050, compared to recent history. There is strong evidence to suggest that, in the absence of autonomous adaptation or societal response, a much larger portion of the region’s population will live in water-stressed regions in the near future. Tools and studies such as these can effectively investigate large-scale system sensitivities and can be useful in engaging and informing decision makers. PMID:27028871

  10. Projections of Water Stress Based on an Ensemble of Socioeconomic Growth and Climate Change Scenarios: A Case Study in Asia.

    Science.gov (United States)

    Fant, Charles; Schlosser, C Adam; Gao, Xiang; Strzepek, Kenneth; Reilly, John

    2016-01-01

    The sustainability of future water resources is of paramount importance and is affected by many factors, including population, wealth and climate. Inherent in current methods to estimate these factors in the future is the uncertainty of their prediction. In this study, we integrate a large ensemble of scenarios--internally consistent across economics, emissions, climate, and population--to develop a risk portfolio of water stress over a large portion of Asia that includes China, India, and Mainland Southeast Asia in a future with unconstrained emissions. We isolate the effects of socioeconomic growth from the effects of climate change in order to identify the primary drivers of stress on water resources. We find that water needs related to socioeconomic changes, which are currently small, are likely to increase considerably in the future, often overshadowing the effect of climate change on levels of water stress. As a result, there is a high risk of severe water stress in densely populated watersheds by 2050, compared to recent history. There is strong evidence to suggest that, in the absence of autonomous adaptation or societal response, a much larger portion of the region's population will live in water-stressed regions in the near future. Tools and studies such as these can effectively investigate large-scale system sensitivities and can be useful in engaging and informing decision makers.

  11. Prestate of Stress and Fault Behavior During the 2016 Kumamoto Earthquake (M7.3)

    Science.gov (United States)

    Matsumoto, Satoshi; Yamashita, Yusuke; Nakamoto, Manami; Miyazaki, Masahiro; Sakai, Shinichi; Iio, Yoshihisa; Shimizu, Hiroshi; Goto, Kazuhiko; Okada, Tomomi; Ohzono, Mako; Terakawa, Toshiko; Kosuga, Masahiro; Yoshimi, Masayuki; Asano, Youichi

    2018-01-01

    Fault behavior during an earthquake is controlled by the state of stress on the fault. Complex coseismic fault slip on large earthquake faults has recently been observed by dense seismic networks, which complicates strong motion evaluations for potential faults. Here we show the three-dimensional prestress field related to the 2016 Kumamoto earthquake. The estimated stress field reveals a spatially variable state of stress that forced the fault to slip in a direction predicted by the "Wallace and Bott Hypothesis." The stress field also exposes the pre-condition of pore fluid pressure on the fault. Large coseismic slip occurred in the low-pressure part of the fault. However, areas with highly pressured fluid also showed large displacement, indicating that the seismic moment of the earthquake was magnified by fluid pressure. These prerupture data could contribute to improved seismic hazard evaluations.

  12. Relationships between along-fault heterogeneous normal stress and fault slip patterns during the seismic cycle: Insights from a strike-slip fault laboratory model

    Science.gov (United States)

    Caniven, Yannick; Dominguez, Stéphane; Soliva, Roger; Peyret, Michel; Cattin, Rodolphe; Maerten, Frantz

    2017-12-01

    We use a strike-slip fault analog model to study experimentally the role played by along-fault non-uniform and asymmetric applied normal stress on both coseismic slip and long-term fault behavior. Our model is based on a visco-elasto-plastic multi-layered rheology that allows to produce several hundreds of scaled analog microquakes and associated seismic cycles. Uniform or heterogeneous applied normal stress along the fault plane is imposed and maintained constant during the whole experiment durations. Our results suggest that coseismic slip patterns are strongly controlled by spatial normal stress variations and subsequent accumulated shear stress along fault strike. Major microquakes occur preferentially in zones of major shear stress asperities. Coseismic slip distributions exhibit a pattern similar to the along-fault applied normal stress distribution. The occurrence of isolated low to moderate microquakes where residual stresses persist around secondary stress asperities, indicates that stress conditions along the fault also control the whole variability of fault slip events. Moreover, when fault slip stability conditions are modulated by normal stress distribution, our experiments suggest that the along-fault stress heterogeneity influences the seismic cycle regularity and, consequently, long-term fault slip behavior. Uniform applied normal stress favors irregular seismic cycles and the occurrence of earthquakes clustering, whereas non-uniform normal stress with a single high amplitude stress asperity generates strong characteristic microquake events with stable return periods. Together our results strengthen the assumption that coseismic slip distribution and earthquake variability along an active fault may provide relevant information on long term tectonic stress and could thus improve seismic hazard assessment.

  13. The Impact of Stress and Inflammatory Processes on Cognitive Change in Late Adulthood

    OpenAIRE

    Balasubramanian, Archana Bavani

    2010-01-01

    Stress and inflammation are two very common, but also very complex processes that may affect cognitive decline in late adulthood. This study examined how the self-report of psychological stress and inflammatory biomarkers levels may be related to differences in trajectories of cognitive performance in late adulthood. We found weak, non-significant association between psychological stress and inflammatory biomarkers levels. Analyses also suggested that the inflammatory pathway may be important...

  14. Transcript profiles uncover temporal and stress-induced changes of metabolic pathways in germinating sugar beet seeds.

    Science.gov (United States)

    Pestsova, Elena; Meinhard, Juliane; Menze, Andreas; Fischer, Uwe; Windhövel, Andrea; Westhoff, Peter

    2008-12-01

    With a cultivation area of 1.75 Mio ha and sugar yield of 16.7 Mio tons in 2006, sugar beet is a crop of great economic importance in Europe. The productivity of sugar beet is determined significantly by seed vigour and field emergence potential; however, little is known about the molecular mechanisms underlying these traits. Both traits exhibit large variations within sugar beet germplasm that have been difficult to ascribe to either environmental or genetic causes. Among potential targets for trait improvement, an enhancement of stress tolerance is considered because of the high negative influence of environmental stresses on trait parameters. Extending our knowledge of genetic and molecular determinants of sugar beet germination, stress response and adaptation mechanisms would facilitate the detection of new targets for breeding crop with an enhanced field emergence potential. To gain insight into the sugar beet germination we initiated an analysis of gene expression in a well emerging sugar beet hybrid showing high germination potential under various environmental conditions. A total of 2,784 ESTs representing 2,251 'unigenes' was generated from dry mature and germinating seeds. Analysis of the temporal expression of these genes during germination under non-stress conditions uncovered drastic transcriptional changes accompanying a shift from quiescent to metabolically active stages of the plant life cycle. Assay of germination under stressful conditions revealed 157 genes showing significantly different expression patterns in response to stress. As deduced from transcriptome data, stress adaptation mechanisms included an alteration in reserve mobilization pathways, an accumulation of the osmoprotectant glycine betaine, late embryogenesis abundant proteins and detoxification enzymes. The observed transcriptional changes are supposed to be regulated by ABA-dependent signal transduction pathway. This study provides an important step toward the understanding of

  15. Transcript profiles uncover temporal and stress-induced changes of metabolic pathways in germinating sugar beet seeds

    Directory of Open Access Journals (Sweden)

    Windhövel Andrea

    2008-12-01

    Full Text Available Abstract Background With a cultivation area of 1.75 Mio ha and sugar yield of 16.7 Mio tons in 2006, sugar beet is a crop of great economic importance in Europe. The productivity of sugar beet is determined significantly by seed vigour and field emergence potential; however, little is known about the molecular mechanisms underlying these traits. Both traits exhibit large variations within sugar beet germplasm that have been difficult to ascribe to either environmental or genetic causes. Among potential targets for trait improvement, an enhancement of stress tolerance is considered because of the high negative influence of environmental stresses on trait parameters. Extending our knowledge of genetic and molecular determinants of sugar beet germination, stress response and adaptation mechanisms would facilitate the detection of new targets for breeding crop with an enhanced field emergence potential. Results To gain insight into the sugar beet germination we initiated an analysis of gene expression in a well emerging sugar beet hybrid showing high germination potential under various environmental conditions. A total of 2,784 ESTs representing 2,251 'unigenes' was generated from dry mature and germinating seeds. Analysis of the temporal expression of these genes during germination under non-stress conditions uncovered drastic transcriptional changes accompanying a shift from quiescent to metabolically active stages of the plant life cycle. Assay of germination under stressful conditions revealed 157 genes showing significantly different expression patterns in response to stress. As deduced from transcriptome data, stress adaptation mechanisms included an alteration in reserve mobilization pathways, an accumulation of the osmoprotectant glycine betaine, late embryogenesis abundant proteins and detoxification enzymes. The observed transcriptional changes are supposed to be regulated by ABA-dependent signal transduction pathway. Conclusion This study

  16. Climate Change Increases Drought Stress of Juniper Trees in the Mountains of Central Asia.

    Science.gov (United States)

    Seim, Andrea; Omurova, Gulzar; Azisov, Erlan; Musuraliev, Kanaat; Aliev, Kumar; Tulyaganov, Timur; Nikolyai, Lyutsian; Botman, Evgeniy; Helle, Gerd; Dorado Liñan, Isabel; Jivcov, Sandra; Linderholm, Hans W

    2016-01-01

    Assessments of climate change impacts on forests and their vitality are essential for semi-arid environments such as Central Asia, where the mountain regions belong to the globally important biodiversity hotspots. Alterations in species distribution or drought-induced tree mortality might not only result in a loss of biodiversity but also in a loss of other ecosystem services. Here, we evaluate spatial trends and patterns of the growth-climate relationship in a tree-ring network comprising 33 juniper sites from the northern Pamir-Alay and Tien Shan mountain ranges in eastern Uzbekistan and across Kyrgyzstan for the common period 1935-2011. Junipers growing at lower elevations are sensitive to summer drought, which has increased in intensity during the studied period. At higher elevations, juniper growth, previously favored by warm summer temperatures, has in the recent few decades become negatively affected by increasing summer aridity. Moreover, response shifts are observed during all seasons. Rising temperatures and alterations in precipitation patterns during the past eight decades can account for the observed increase in drought stress of junipers at all altitudes. The implications of our findings are vital for the application of adequate long-term measures of ecosystem conservation, but also for paleo-climatic approaches and coupled climate-vegetation model simulations for Central Asia.

  17. Climate Change Increases Drought Stress of Juniper Trees in the Mountains of Central Asia

    Science.gov (United States)

    Seim, Andrea; Omurova, Gulzar; Azisov, Erlan; Musuraliev, Kanaat; Aliev, Kumar; Tulyaganov, Timur; Nikolyai, Lyutsian; Botman, Evgeniy; Helle, Gerd; Dorado Liñan, Isabel; Jivcov, Sandra; Linderholm, Hans W.

    2016-01-01

    Assessments of climate change impacts on forests and their vitality are essential for semi-arid environments such as Central Asia, where the mountain regions belong to the globally important biodiversity hotspots. Alterations in species distribution or drought-induced tree mortality might not only result in a loss of biodiversity but also in a loss of other ecosystem services. Here, we evaluate spatial trends and patterns of the growth-climate relationship in a tree-ring network comprising 33 juniper sites from the northern Pamir-Alay and Tien Shan mountain ranges in eastern Uzbekistan and across Kyrgyzstan for the common period 1935–2011. Junipers growing at lower elevations are sensitive to summer drought, which has increased in intensity during the studied period. At higher elevations, juniper growth, previously favored by warm summer temperatures, has in the recent few decades become negatively affected by increasing summer aridity. Moreover, response shifts are observed during all seasons. Rising temperatures and alterations in precipitation patterns during the past eight decades can account for the observed increase in drought stress of junipers at all altitudes. The implications of our findings are vital for the application of adequate long-term measures of ecosystem conservation, but also for paleo-climatic approaches and coupled climate-vegetation model simulations for Central Asia. PMID:27100092

  18. Exercise-mediated changes in conduit artery wall thickness in humans: role of shear stress.

    Science.gov (United States)

    Thijssen, Dick H J; Dawson, Ellen A; van den Munckhof, Inge C L; Tinken, Toni M; den Drijver, Evert; Hopkins, Nicola; Cable, N Timothy; Green, Daniel J

    2011-07-01

    Episodic increases in shear stress have been proposed as a mechanism that induces training-induced adaptation in arterial wall remodeling in humans. To address this hypothesis in humans, we examined bilateral brachial artery wall thickness using high-resolution ultrasound in healthy men across an 8-wk period of bilateral handgrip training. Unilaterally, shear rate was attenuated by cuff inflation around the forearm to 60 mmHg. Grip strength, forearm volume, and girth improved similarly between the limbs. Acute bouts of handgrip exercise increased shear rate (P < 0.005) in the noncuffed limb, whereas cuff inflation successfully decreased exercise-induced increases in shear. Brachial blood pressure responses similarly increased during exercise in both the cuffed and noncuffed limbs. Handgrip training had no effect on baseline brachial artery diameter, blood flow, or shear rate but significantly decreased brachial artery wall thickness after 6 and 8 wk (ANOVA, P < 0.001) and wall-to-lumen ratio after week 8 (ANOVA, P = 0.005). The magnitude of decrease in brachial artery wall thickness and wall-to-lumen ratio after exercise training was similar in the noncuffed and cuffed arms. These results suggest that exercise-induced changes in shear rate are not obligatory for arterial wall remodeling during a period of 8 wk of exercise training in healthy humans.

  19. Oxidative Stress Markers and Their Dynamic Changes in Patients after Acute Ischemic Stroke

    Directory of Open Access Journals (Sweden)

    Ingrid Žitňanová

    2016-01-01

    Full Text Available We have focused on determining the range of oxidative stress biomarkers and their dynamic changes in patients at different time points after the acute ischemic stroke (AIS. 82 patients with AIS were involved in our study and were tested: within 24 h from the onset of the attack (group A; at 7-day follow-up (group B; and at 3-month follow-up (group C. 81 gender and age matched volunteers were used as controls. Stroke patients in group A had significantly higher concentrations of plasma lipid peroxides and urine 8-isoprostanes when compared with controls. Protein carbonyls were not significantly different in any experimental group compared to controls. Antioxidant capacity of plasma was increased only in experimental group C. Activities of superoxide dismutase and catalase were elevated in all three experimental AIS groups compared to controls. Paraoxonase activity was reduced in groups A and B and unchanged in group C when compared to controls. Glutathione peroxide activity was elevated only in group A. Our results suggest that free radical damage is the highest within 24 h after the attack. During the next 3 months oxidative damage to lipids caused by free radicals is reduced due to activated antioxidant system.

  20. Static stress changes and fault interactions in Lefkada Island, Western Greece

    Science.gov (United States)

    Mitsakaki, C.; Rondoyanni, Th.; Anastasiou, D.; Papazissi, K.; Marinou, A.; Sakellariou, M.

    2013-07-01

    The complicated tectonics of the Mediterranean region, dominated by the subduction of the African plate under Eurasia, affects the whole of Greece. A significant extension rate across the Aegean sea is estimated from satellite geodetic observations, while intense seismicity is observed in parts of the Hellenic arc, manifested by strong earthquakes (Ms > 6) of intermediate depth that take place along it. In Western Greece, the Ionian Islands are situated in a transitional zone (from the Hellenic subduction to the Adriatic collision), characterised by a high crustal deformation rate as revealed by the high seismicity of this zone, the highest in Greece, and the GPS velocity field estimated for the region. In this part of the Aegean plate, transcurrent fault systems dominate, one of which is the Kephalonia Transform Fault (KTF), located offshore the Kephalonia and Lefkada Islands, with a right-lateral slip of the order of 3 cm/year. In the present work an attempt is made to assess the Coulomb stress change associated with well documented earthquake activity, from 1973 to 2003, in the Ionian Island of Lefkada. The results of this study suggest that the early 1973 event did not influence any subsequent moderate earthquakes in the area. On the other hand, the 1994 earthquake may have triggered the north segment of the 2003 event, while the 2003 earthquake ruptured two segments with the north one initiating rupture on the south segment.

  1. Development and heat stress-induced transcriptomic changes during embryogenesis of the scleractinian coral Acropora palmata

    KAUST Repository

    Portune, Kevin J.

    2010-03-01

    Projected elevation of seawater temperatures poses a threat to the reproductive success of Caribbean reef-building corals that have planktonic development during the warmest months of the year. This study examined the transcriptomic changes that occurred during embryonic and larval development of the elkhorn coral, Acropora palmata, at a non-stressful temperature (28 °C) and further assessed the effects of two elevated temperatures (30 °C and 31.5 °C) on these expression patterns. Using cDNA microarrays, we compared expression levels of 2051 genes from early embryos and larvae at multiple developmental stages (including pre-blastula, blastula, gastrula, and planula stages) at each of the three temperatures. At 12 h post-fertilization in 28 °C treatments, genes involved in cell replication/cell division and transcription were up-regulated in A. palmata embryos, followed by a reduction in expression of these genes during later growth stages. From 24.5 to 131 h post-fertilization at 28 °C, A. palmata altered its transcriptome by up-regulating genes involved in protein synthesis and metabolism. Temperatures of 30 °C and 31.5 °C caused major changes to the A. palmata embryonic transcriptomes, particularly in the samples from 24.5 hpf post-fertilization, characterized by down-regulation of numerous genes involved in cell replication/cell division, metabolism, cytoskeleton, and transcription, while heat shock genes were up-regulated compared to 28 °C treatments. These results suggest that increased temperature may cause a breakdown in proper gene expression during development in A. palmata by down-regulation of genes involved in essential cellular processes, which may lead to the abnormal development and reduced survivorship documented in other studies. © 2010 Elsevier B.V. All rights reserved.

  2. Is de novo stress incontinence after sacrocolpopexy related to anatomical changes and surgical approach?

    Science.gov (United States)

    LeClaire, Edgar L; Mukati, Marium S; Juarez, Dianna; White, Dena; Quiroz, Lieschen H

    2014-09-01

    The objective was to investigate the relationship between new onset postoperative stress urinary incontinence (SUI) after sacrocolpopexy (SCP) and anatomical change/surgical approach. We analyzed a retrospective cohort of patients with negative preoperative testing for SUI who underwent SCP from 2005 to 2012. Our primary outcome was new onset postoperative SUI. Logistic regression was used to examine the relationship among anatomical change, defined as ΔAa, ΔBa, ΔC, and ΔTVL, and surgical approach, categorized as abdominal (ASCP) for open cases and minimally invasive (MISCP) for laparoscopic and robot-assisted cases, and postoperative SUI. Of 795 cases, 33 ASCP (43%) and 44 MISCP (57%) met the inclusion criteria for analysis. New onset SUI was demonstrated by 15 patients (45%) of the ASCP group and 7 patients (15%) of the MISCP group (p = 0.005). New onset SUI was significantly associated with route of SCP and ΔAa (p = 0.006 and p = 0.033 respectively). Controlling for ΔAa, the odds of new onset SUI were 4.4 times higher in the ASCP group compared with the MISCP group (OR 4.37, 95% CI 1.42, 13.48). Controlling for route of SCP, the odds of new onset SUI were 2.2 times higher with moderate ΔAa compared with low ΔAa (OR 2.16 95% CI 1.07, 4.38). The odds of new onset SUI was 4.7 times higher in those with high ΔAa than in those with low ΔAa (OR 4.67 95% CI 1.14, 19.22). ΔBa, ΔC, and ΔTVL were not associated with new onset SUI. Greater reduction in point Aa and abdominal surgical route are risk factors for new onset postoperative SUI after SCP.

  3. Development and heat stress-induced transcriptomic changes during embryogenesis of the scleractinian coral Acropora palmata.

    Science.gov (United States)

    Portune, Kevin J; Voolstra, Christian R; Medina, Mónica; Szmant, Alina M

    2010-03-01

    Projected elevation of seawater temperatures poses a threat to the reproductive success of Caribbean reef-building corals that have planktonic development during the warmest months of the year. This study examined the transcriptomic changes that occurred during embryonic and larval development of the elkhorn coral, Acropora palmata, at a non-stressful temperature (28°C) and further assessed the effects of two elevated temperatures (30°C and 31.5°C) on these expression patterns. Using cDNA microarrays, we compared expression levels of 2051 genes from early embryos and larvae at multiple developmental stages (including pre-blastula, blastula, gastrula, and planula stages) at each of the three temperatures. At 12h post-fertilization in 28°C treatments, genes involved in cell replication/cell division and transcription were up-regulated in A. palmata embryos, followed by a reduction in expression of these genes during later growth stages. From 24.5 to 131h post-fertilization at 28°C, A. palmata altered its transcriptome by up-regulating genes involved in protein synthesis and metabolism. Temperatures of 30°C and 31.5°C caused major changes to the A. palmata embryonic transcriptomes, particularly in the samples from 24.5hpf post-fertilization, characterized by down-regulation of numerous genes involved in cell replication/cell division, metabolism, cytoskeleton, and transcription, while heat shock genes were up-regulated compared to 28°C treatments. These results suggest that increased temperature may cause a breakdown in proper gene expression during development in A. palmata by down-regulation of genes involved in essential cellular processes, which may lead to the abnormal development and reduced survivorship documented in other studies. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Coseismic deformation, field observations and seismic fault of the 17 November 2015 M = 6.5, Lefkada Island, Greece earthquake

    Science.gov (United States)

    Ganas, Athanassios; Elias, Panagiotis; Bozionelos, George; Papathanassiou, George; Avallone, Antonio; Papastergios, Asterios; Valkaniotis, Sotirios; Parcharidis, Issaak; Briole, Pierre

    2016-09-01

    On November 17, 2015 07:10:07 UTC a strong, shallow Mw6.5 earthquake, occurred on the island of Lefkada along a strike-slip fault with right-lateral sense of slip. The event triggered widespread environmental effects at the south and western part of the island while, the intensity and severity of these earthquake-induced deformations is substantially decreased towards the eastern part of the island. Relocation of seismicity and inversion of geophysical (GPS, InSAR) data indicate that the seismic fault runs parallel to the west coast of Lefkada, along the Aegean - Apulia plate boundary. The fault plane strikes N20 ± 5°E and dips to east with an angle of about 70 ± 5°. Coseismic deformation was measured in the order of tens of centimeters of horizontal motion by continuous GPS stations of NOANET (the NOA GPS network) and by InSAR (Sentinel 1 A image pairs). A coseismic uniform-slip model was produced from inversion of InSAR data and permanent GPS stations. The earthquake measured Mw = 6.5 using both the geodetic moment produced by the slip model, as well as the PGD relation of Melgar et al. (2015, GRL). In the field we observed no significant vertical motion of the shoreline or surface expression of faulting, this is consistent with the predictions of the model. The interferograms show a large decorrelation area that extends almost along all the western coast of Lefkada. This area correlates well with the mapped landslides. The 2003-2015 pattern of seismicity in the Ionian Sea region indicates the existence of a 15-km seismic gap offshore NW Cephalonia.

  5. Exploring the stress-buffering effects of religiousness in relation to social and economic change: evidence from Poland

    OpenAIRE

    Lechner, Clemens M; Tomasik, Martin J; Silbereisen, Rainer K; Wasilewski, Jacek

    2013-01-01

    Religiousness has been found to act as a protective factor against the adverse effects of stressors originating from a variety of sources. Despite ample precedent in sociological theories of religion, however, the potential stress-buffering role of religiousness in relation to stressors arising from macrolevel societal trends has not received empirical scrutiny. Recent psychological conceptualizations of social and economic change (SEC) suggest that such change manifests itself in people's li...

  6. Two Prospective Studies of Changes in Stress Generation across Depressive Episodes in Adolescents and Emerging Adults

    Science.gov (United States)

    Morris, Matthew C.; Kouros, Chrystyna D.; Hellman, Natalie; Rao, Uma; Garber, Judy

    2014-01-01

    The stress generation hypothesis was tested in two different longitudinal studies examining relations between weekly depression symptom ratings and stress levels in adolescents and emerging adults at varied risk for depression. Participants in Study 1 included 240 adolescents who differed with regard to their mother’s history of depressive disorders. Youth were assessed annually across 6 years (Grades 6 through 12). Consistent with the depression autonomy model, higher numbers of prior major depressive episodes (MDEs) were associated with weaker stress generation effects, such that higher levels of depressive symptoms predicted increases in levels of dependent stressors for adolescents with ≤ 2 prior MDEs, but depressive symptoms were not significantly related to dependent stress levels for youth with ≥ 3 prior MDEs. In Study 2, participants were 32 remitted-depressed and 36 never-depressed young adults who completed a psychosocial stress task to determine cortisol reactivity and were re-assessed for depression and stress approximately eight months later. Stress generation effects were moderated by cortisol responses to a laboratory psychosocial stressor, such that individuals with higher cortisol responses exhibited a pattern consistent with the depression autonomy model, whereas individuals with lower cortisol responses showed a pattern more consistent with the depression sensitization model. Finally, comparing across the two samples, stress generation effects were weaker for older participants and for those with more prior MDEs. The complex, multi-factorial relation between stress and depression is discussed. PMID:25422968

  7. Physiological Signals and Their Fractal Response to Stress Conditions, Environmental Changes and Neurodegenerative Diseases

    National Research Council Canada - National Science Library

    Scafetta, N; Moon, R. E; West, B. J

    2006-01-01

    .... Some of these studies have been intended to develop more reliable methodologies for understanding how biological systems respond to peculiar altered conditions induced by internal stress, environment...

  8. Fluorescence lifetime imaging study of a single cell: stress-induced environmental change and electric field effects on fluorescence

    Science.gov (United States)

    Ohta, Nobuhiro; Nakabayashi, Takakazu; Nagao, Issei; Kinjo, Masataka; Aoki, Yumiko; Tanaka, Minoru

    2009-02-01

    A dramatic change occurs in the cellular microenvironment during cell stress, but it has been difficult to follow these changes in vivo. Here, fluorescence lifetime imaging (FLIM) microscopy has been used to examine stress-induced changes in the microenvironment in a single cell. It is observed that the fluorescence lifetime of HeLa cells expressing an enhanced green fluorescent protein (EGFP)-tudor fusion protein changes under stress. The change in the fluorescence lifetime appears to be due to an alteration in the local electric field in the protein matrix surrounding the chromophore of EGFP. In fact, the fluorescence lifetime of the GFP chromophore in a polyvinyl alcohol film is found to decrease in the presence of an electric field, based on the measurements of the field-induced change in the fluorescence decay profile. The results indicate that the rate of the non-radiative process of the chromophore of GFP is enhanced by an applied electric field. The FLIM method allows noninvasive determination of the status of the individual cells.

  9. A comprehensive analysis of root morphological changes and nitrogen allocation in maize in response to low nitrogen stress.

    Science.gov (United States)

    Gao, Kun; Chen, Fanjun; Yuan, Lixing; Zhang, Fusuo; Mi, Guohua

    2015-04-01

    The plasticity of root architecture is crucial for plants to acclimate to unfavourable environments including low nitrogen (LN) stress. How maize roots coordinate the growth of axile roots and lateral roots (LRs), as well as longitudinal and radial cell behaviours in response to LN stress, remains unclear. Maize plants were cultivated hydroponically under control (4 mm nitrate) and LN (40 μm) conditions. Temporal and spatial samples were taken to analyse changes in the morphology, anatomical structure and carbon/nitrogen (C/N) ratio in the axile root and LRs. LN stress increased axile root elongation, reduced the number of crown roots and decreased LR density and length. LN stress extended cell elongation zones and increased the mature cell length in the roots. LN stress reduced the cell diameter and total area of vessels and increased the amount of aerenchyma, but the number of cell layers in the crown root cortex was unchanged. The C/N ratio was higher in the axile roots than in the LRs. Maize roots acclimate to LN stress by optimizing the anatomical structure and N allocation. As a result, axile root elongation is favoured to efficiently find available N in the soil. © 2014 John Wiley & Sons Ltd.

  10. The potential role of exercise in chronic stress-related changes in AMPA receptor phenotype underlying synaptic plasticity.

    Science.gov (United States)

    Leem, Yea-Hyun

    2017-12-31

    Chronic stress can cause disturbances in synaptic plasticity, such as longterm potentiation, along with behavioral defects including memory deficits. One major mechanism sustaining synaptic plasticity involves the dynamics and contents of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) in the central nervous system. In particular, chronic stress-induced disruption of AMPARs includes it abnormal expression, trafficking, and calcium conductance at glutamatergic synapses, which contributes to synaptic plasticity at excitatory synapses. Exercise has the effect of promoting synaptic plasticity in neurons. However, the contribution of exercise to AMPAR behavior under chronic stressful maladaptation remains unclear. The present article reviews the information about the chronic stress-related synaptic plasticity and the role of exercise from the previous-published articles. AMPAR-mediated synaptic transmission is an important for chronic stress-related changes of synaptic plasticity, and exercise may at least partly contribute to these episodes. The present article discusses the relationship between AMPARs and synaptic plasticity in chronic stress, as well as the potential role of exercise.

  11. Changes in numbers of leukocytes in immune organs of juvenile coho salmon after acute stress or cortisol treatment

    Science.gov (United States)

    Maule, Alec G.; Schreck, Carl B.

    1990-01-01

    We examined the effects of acute stress and cortisol treatment on the number of leukocytes (normalized for fish body weight) in the blood, thymus, spleen, and anterior kidney of juvenile coho salmon Oncorhynchus kisutch. In acutely stressed or cortisol-fed fish, the numbers of leukocytes increased significantly in the thymus and anterior kidney, and decreased significantly in blood and spleen within 1 d after treatment. Numbers of cells in the anterior kidney, blood, and spleen returned to control levels by 3 d after treatment, but cell numbers in the thymus remained significantly greater than control values until 3–7 d after acute stress. Although dietary cortisol resulted in increased plasma cortisol titers and caused the same changes in leukocyte distribution as those caused by acute stress, the magnitude or duration of elevated cortisol levels and leukocyte numbers were not correlated. These results suggest that, although increased plasma cortisol titers induced by stress may be involved in the change in number of cells in various immune organs, factors other than cortisol are involved as well.

  12. Changes in the Arabidopsis thaliana Proteome Implicate cAMP in Biotic and Abiotic Stress Responses and Changes in Energy Metabolism

    KAUST Repository

    Alquraishi, May Majed

    2016-06-01

    The second messenger 3′,5′-cyclic adenosine monophosphate (cAMP) is increasingly recognized as having many different roles in plant responses to environmental stimuli. To gain further insights into these roles, Arabidopsis thaliana cell suspension culture was treated with 100 nM of cell permeant 8-bromo-cAMP for 5 or 10 min. Here, applying mass spectrometry and comparative proteomics, 20 proteins were identified as differentially expressed and we noted a specific bias in proteins with a role in abiotic stress, particularly cold and salinity, biotic stress as well as proteins with a role in glycolysis. These findings suggest that cAMP is sufficient to elicit specific stress responses that may in turn induce complex changes to cellular energy homeostasis.

  13. Predicting Change in Parenting Stress across Early Childhood: Child and Maternal Factors

    Science.gov (United States)

    Williford, Amanda P.; Calkins, Susan D.; Keane, Susan P.

    2007-01-01

    This study examined maternal parenting stress in a sample of 430 boys and girls including those at risk for externalizing behavior problems. Children and their mothers were assessed when the children were ages 2, 4, and 5. Hierarchical linear modeling (HLM) was used to examine stability of parenting stress across early childhood and to examine…

  14. Metabolic Profiles Reveal Changes in Wild and Cultivated Soybean Seedling Leaves under Salt Stress

    Science.gov (United States)

    Zhang, Jing; Yang, Dongshuang; Li, Mingxia; Shi, Lianxuan

    2016-01-01

    Clarification of the metabolic mechanisms underlying salt stress responses in plants will allow further optimization of crop breeding and cultivation to obtain high yields in saline-alkali land. Here, we characterized 68 differential metabolites of cultivated soybean (Glycine max) and wild soybean (Glycine soja) under neutral-salt and alkali-salt stresses using gas chromatography-mass spectrometry (GC-MS)-based metabolomics, to reveal the physiological and molecular differences in salt tolerance. According to comparisons of growth parameters under the two kinds of salt stresses, the level of inhibition in wild soybean was lower than in cultivated soybean, especially under alkali-salt stress. Moreover, wild soybean contained significantly higher amounts of phenylalanine, asparagine, citraconic acid, citramalic acid, citric acid and α-ketoglutaric acid under neutral-salt stress, and higher amounts of palmitic acid, lignoceric acid, glucose, citric acid and α-ketoglutaric acid under alkali-salt stress, than cultivated soybean. Further investigations demonstrated that the ability of wild soybean to salt tolerance was mainly based on the synthesis of organic and amino acids, and the more active tricarboxylic acid cycle under neutral-salt stress. In addition, the metabolite profiling analysis suggested that the energy generation from β-oxidation, glycolysis and the citric acid cycle plays important roles under alkali-salt stress. Our results extend the understanding of mechanisms involved in wild soybean salt tolerance and provide an important reference for increasing yields and developing salt-tolerant soybean cultivars. PMID:27442489

  15. Changes in Teacher Stress through Participation in Pre-Referral Intervention Teams

    Science.gov (United States)

    Lhospital, Ann Shargo; Gregory, Anne

    2009-01-01

    Teachers today face high stress that can compromise their well-being, longevity in the profession, and the quality of their interactions with students. Pre-referral interventions, which address individual student difficulties before consideration for special education, may help buffer teacher stress through student interventions and team support.…

  16. Alerted default mode: functional connectivity changes in the aftermath of social stress

    NARCIS (Netherlands)

    Clemens, B.; Wagels, L.; Bauchmuller, M.; Bergs, R.; Habel, U.; Kohn, N.

    2017-01-01

    Stress affects the brain at a network level: the salience network is supposedly upregulated, while at the same time the executive control network is downregulated. While theoretically described, the effects in the aftermath of stress have thus far not been tested empirically. Here, we compared for

  17. Changes in perceived stress and recovery in overreached young elite soccer players

    NARCIS (Netherlands)

    C. Visscher; Koen A.P.M. Lemmink; M.S. Brink; A.J. Coutts

    2012-01-01

    Abstract: The aim of this study was to prospectively monitor sport-specific performance and assess the stress-recovery balance in overreached (OR) soccer players and controls. During two competitive seasons, 94 players participated in the study. The stress-recovery balance (RESTQ-Sport) and

  18. Job-Stress and Burnout of the Venezuelan Teachers: Related to Educational Systems Change (Educacion Basica).

    Science.gov (United States)

    Kim, Young Mi; And Others

    Beginning with a review of the increasing literature concerning job-related teacher stress, this study examines the particular stress and burnout experiences of school teachers in Venezuela since the incorporation by law in 1980 of "Educacion Basica" (basic education) as a new level of the school system (grades 1-9). To compare teachers…

  19. iTRAQ-based quantitative proteome revealed metabolic changes of Flammulina velutipes mycelia in response to cold stress.

    Science.gov (United States)

    Liu, Jing-Yu; Men, Jun-Long; Chang, Ming-Chang; Feng, Cui-Ping; Yuan, Ling-Gang

    2017-03-06

    Temperature is one of the pivotal factors influencing mycelium growth and fruit-body formation of Flammulina velutipes. To gain insights into hyphae growth and fruit-body formation events and facilitate the identification of potential stage-specific biomarker candidates, we investigated the proteome response of F. velutipes mycelia to cold stresses using iTRAQ-coupled two-dimensional liquid chromatography tandem mass spectrometry (2D LC-MS/MS) technique. Among 1198 proteins identified with high confidence, a total of 63 displayed altered expression level after cold stress treatments. In-depth data analysis reveals that differentially expressed proteins were involved in a variety of cellular processes, particularly metabolic processes. Among the 31 up-regulated proteins, 24 (77.42%) were associated with 22 specific KEGG pathways. These up-regulated proteins could possibly serve as potential biomarkers to study the molecular mechanisms of F. velutipes mycelia response to cold stresses. These data of the proteins might provide valuable evidences to better understand the molecular mechanisms of mycelium resistance to cold stress and fruit-body formation in fungi. Low-temperature is one of the pivotal factors in some Flammulina velutipes industrial processes influencing mycelium growth, inducing primordia and controlling fruit-body development. Preliminary study has indicated that effectively regulating cultivation could augment the yield by controlling optimal cold stress level on mycelia. However, we are still far from understanding the molecular and physiological mechanisms of adaptation of these fungi at cold stress. In the present study, the experiments reported above were undertaken to investigate chronological changes of protein expression during F. velutipes mycelia in response to cold stress by using iTRAQ-coupled 2D LC-MS/MS technique. This result would provide new insights to the underlying mycelium growth and fruit-body formation mechanisms of basidiomycetes

  20. Chronic psychological stress and racial disparities in body mass index change between Black and White girls aged 10-19

    OpenAIRE

    Tomiyama, AJ; Puterman, E; Epel, ES; Rehkopf, DH; Laraia, BA

    2013-01-01

    Background: One of the largest health disparities in the USA is in obesity rates between Black and White females. Purpose: The objective of this study was to test the hypothesis that the stress-obesity link is stronger in Black females than in White females aged 10-19. Methods: Multilevel modeling captured the dynamic of acute (1 month) and chronic (10 years) stress and body mass index (BMI; weight in kilograms divided by height in meters squared) change in the National Heart, Lung, and Blood...

  1. Seed priming with chitosan improves maize germination and seedling growth in relation to physiological changes under low temperature stress*

    OpenAIRE

    Guan, Ya-jing; Hu, Jin; Wang, Xian-ju; Shao, Chen-xia

    2009-01-01

    Low temperature stress during germination and early seedling growth is an important constraint of global production of maize. The effects of seed priming with 0.25%, 0.50%, and 0.75% (w/v) chitosan solutions at 15 °C on the growth and physiological changes were investigated using two maize (Zea mays L.) inbred lines, HuangC (chilling-tolerant) and Mo17 (chilling-sensitive). While seed priming with chitosan had no significant effect on germination percentage under low temperature stress, it en...

  2. Changes in religious beliefs and the relation of religiosity to posttraumatic stress and life satisfaction after a natural disaster.

    Science.gov (United States)

    Hussain, Ajmal; Weisaeth, Lars; Heir, Trond

    2011-10-01

    To study changes in religious beliefs and predictors of such changes in a community sample exposed to a natural disaster, and to investigate whether religiosity was linked to post-disaster mental distress or life satisfaction. An adult population of 1,180 Norwegian tourists who experienced the 2004 tsunami was surveyed by a postal questionnaire 2 years after the disaster. Data included religiosity, disaster exposure, general psychopathology, posttraumatic stress and life satisfaction. Among the respondents, 8% reported strengthening and 5% reported weakening of their religious beliefs. Strengthening was associated with pre-tsunami mental health problems (OR: 1.82, 95% CI: 1.12-2.95) and posttraumatic stress (OR: 1.62, 95% CI: 1.22-2.16). Weakening was associated with younger age (OR: 0.98, 95% CI: 0.96-1.00) and posttraumatic stress (OR: 1.72, 95% CI: 1.23-2.41). Two years after the tsunami, 11% of the sample considered themselves to be positively religious. There were no significant differences in posttraumatic stress, general psychopathology or life satisfaction between religious and non-religious groups. Religion did not play an important role in the lives of Norwegian tsunami survivors in general. Respondents who had the greatest disaster exposure were more likely to report changes in religious beliefs in both directions. Religious beliefs did not prevent post-disaster long-term mental distress, and religiosity was not related to higher levels of life satisfaction.

  3. 8-week Mindfulness Based Stress Reduction induces brain changes similar to traditional long-term meditation practice - A systematic review.

    Science.gov (United States)

    Gotink, Rinske A; Meijboom, Rozanna; Vernooij, Meike W; Smits, Marion; Hunink, M G Myriam

    2016-10-01

    The objective of the current study was to systematically review the evidence of the effect of secular mindfulness techniques on function and structure of the brain. Based on areas known from traditional meditation neuroimaging results, we aimed to explore a neuronal explanation of the stress-reducing effects of the 8-week Mindfulness Based Stress Reduction (MBSR) and Mindfulness Based Cognitive Therapy (MBCT) program. We assessed the effect of MBSR and MBCT (N=11, all MBSR), components of the programs (N=15), and dispositional mindfulness (N=4) on brain function and/or structure as assessed by (functional) magnetic resonance imaging. 21 fMRI studies and seven MRI studies were included (two studies performed both). The prefrontal cortex, the cingulate cortex, the insula and the hippocampus showed increased activity, connectivity and volume in stressed, anxious and healthy participants. Additionally, the amygdala showed decreased functional activity, improved functional connectivity with the prefrontal cortex, and earlier deactivation after exposure to emotional stimuli. Demonstrable functional and structural changes in the prefrontal cortex, cingulate cortex, insula and hippocampus are similar to changes described in studies on traditional meditation practice. In addition, MBSR led to changes in the amygdala consistent with improved emotion regulation. These findings indicate that MBSR-induced emotional and behavioral changes are related to functional and structural changes in the brain. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Breast Cancer Surgery: Comparing Surgical Groups and Determining Individual Differences in Postoperative Sexuality and Body Change Stress

    Science.gov (United States)

    Yurek, Debora; Farrar, William; Andersen, Barbara L.

    2007-01-01

    Women diagnosed and surgically treated for regional breast cancer (N = 190) were studied to determine the sexual and body change sequelae for women receiving modified radical mastectomy (MRM) with breast reconstruction in comparison with the sequelae for women receiving breast-conserving therapy (BCT) or MRM without breast reconstruction. The sexuality pattern for women receiving reconstructive surgery was one that was significantly different—with lower rates of activity and fewer signs of sexual responsiveness—than that for women in either of the other groups. Significantly higher levels of traumatic stress and situational distress regarding the breast changes were reported by the women receiving an MRM in contrast to the women treated with BCT. Using a model to predict sexual morbidity, regression analyses revealed that individual differences in sexual self-schema were related to both sexual and body change stress outcomes. PMID:10965644

  5. Age related changes in NAD+ metabolism oxidative stress and Sirt1 activity in wistar rats.

    Directory of Open Access Journals (Sweden)

    Nady Braidy

    2011-04-01

    Full Text Available The cofactor nicotinamide adenine dinucleotide (NAD+ has emerged as a key regulator of metabolism, stress resistance and longevity. Apart from its role as an important redox carrier, NAD+ also serves as the sole substrate for NAD-dependent enzymes, including poly(ADP-ribose polymerase (PARP, an important DNA nick sensor, and NAD-dependent histone deacetylases, Sirtuins which play an important role in a wide variety of processes, including senescence, apoptosis, differentiation, and aging. We examined the effect of aging on intracellular NAD+ metabolism in the whole heart, lung, liver and kidney of female wistar rats. Our results are the first to show a significant decline in intracellular NAD+ levels and NAD:NADH ratio in all organs by middle age (i.e.12 months compared to young (i.e. 3 month old rats. These changes in [NAD(H] occurred in parallel with an increase in lipid peroxidation and protein carbonyls (o- and m- tyrosine formation and decline in total antioxidant capacity in these organs. An age dependent increase in DNA damage (phosphorylated H2AX was also observed in these same organs. Decreased Sirt1 activity and increased acetylated p53 were observed in organ tissues in parallel with the drop in NAD+ and moderate over-expression of Sirt1 protein. Reduced mitochondrial activity of complex I-IV was also observed in aging animals, impacting both redox status and ATP production. The strong positive correlation observed between DNA damage associated NAD+ depletion and Sirt1 activity suggests that adequate NAD+ concentrations may be an important longevity assurance factor.

  6. Behavioral changes, stress, and survival following reintroduction of Persian fallow deer from two breeding facilities.

    Science.gov (United States)

    Zidon, Royi; Saltz, David; Shore, Laurence S; Motro, Uzi

    2009-08-01

    Reintroductions often rely on captive-raised, naïve animals that have not been exposed to the various threats present in natural environments. Wild animals entering new areas are timid and invest much time and effort in antipredator behavior. On the other hand, captive animals reared in predator-free conditions and in close proximity to humans may initially lack this tendency, but can reacquire some antipredator behavior over time. We monitored the changes in antipredator-related behaviors of 16 radio-collared Persian fallow deer (Dama mesopotamica) reintroduced to the Soreq Valley in Israel from 2 breeding facilities: one heavily visited by the public (The Biblical Zoo of Jerusalem, Israel) and the other with reduced human presence (Hai-Bar Carmel, Israel). We monitored each individual for up to 200 days after release, focusing on flush and flight distance, flight mode (running or walking), and use of cover. In addition, we compa