WorldWideScience

Sample records for corticotropin-releasing factor binding

  1. Deletion of Corticotropin-releasing Factor Binding Protein Selectively Impairs Maternal, but not Intermale Aggression

    OpenAIRE

    Gammie, Stephen C.; Seasholtz, Audrey F.; Stevenson, Sharon A.

    2008-01-01

    Corticotropin-releasing factor (CRF) binding protein (CRF-BP) is a secreted protein that acts to bind and limit the activity of the neuropeptides, CRF and urocortin (Ucn) 1. We previously selected for high maternal defense (protection of offspring) in mice and found CRF-BP to be elevated in the CNS of selected mice. We also previously determined that both CRF and Ucn 1 are potent inhibitors of offspring protection when administered centrally. Thus, elevated CRF-BP could promote defense by lim...

  2. Corticotropin releasing factor (CRF) binding protein: a novel regulator of CRF and related peptides.

    Science.gov (United States)

    Behan, D P; De Souza, E B; Lowry, P J; Potter, E; Sawchenko, P; Vale, W W

    1995-10-01

    A 37-kDa corticotropin releasing factor (CRF) binding protein (CRF-BP) was purified from human plasma by repeated affinity purification and subsequently sequenced and cloned. The human and rat CRF-BP cDNAs encode proteins of 322 amino acids with one putative signal sequence, one N-glycosylation site, and 10 conserved cysteines. Human CRF-BP binds human CRF with high affinity but has low affinity for the ovine peptide. In contrast, sheep CRF-BP binds human and ovine CRF with high affinity. The CRF-BP gene consists of seven exons and six introns and is located on chromosome 13 and loci 5q of the mouse and human genomes, respectively. CRF-BP inhibits the adrenocorticotrophic hormone (ACTH) releasing properties of CRF in vitro. CRF-BP dimerizes after binding CRF and clears the peptide from blood. This clearance mechanism protects the maternal pituitary gland from elevated plasma CRF levels found during the third trimester of human pregnancy. CRF-BP is expressed in the brains of all species so far tested but is uniquely expressed in human liver and placenta. In brain, CRF-BP is membrane associated and is predominantly expressed in the cerebral cortex and subcortical limbic structures. In some brain areas CRF-BP colocalizes with CRF and CRF receptors. The protein is also present in pituitary corticotropes, where it is under positive glucocorticoid control, and is likely to locally modulate CRF-induced ACTH secretion. The ligand requirements of the CRF receptor and the CRF-BP can be distinguished in that central human CRF fragments, such as CRF (6-33) and CRF (9-33), have high affinity for CRF-BP but low affinity for the CRF receptor. The binding protein's ability to inhibit CRF-induced ACTH secretion can be reversed by CRF (6-33) and CRF (9-33), suggesting that ligand inhibitors may have utility in elevating free CRF levels in disease states associated with decreased CRF. Thus, by controlling the amount of free CRF which activates CRF receptors, it is likely that the CRF

  3. Regulation of gonadotropins by corticotropin-releasing factor and urocortin

    OpenAIRE

    Kageyama, Kazunori

    2013-01-01

    While stress activates the hypothalamic–pituitary–adrenal (HPA) axis, it suppresses the hypothalamic–pituitary–gonadal (HPG) axis. Corticotropin-releasing factor (CRF) is a major regulatory peptide in the HPA axis during stress. Urocortin 1 (Ucn1), a member of the CRF family of peptides, has a variety of physiological functions and both CRF and Ucn1 contribute to the stress response via G protein-coupled seven transmembrane receptors. Ucn2 and Ucn3, which belong to a separate paralogous linea...

  4. Sequences, expression patterns and regulation of the corticotropin releasing factor system in a teleost

    OpenAIRE

    Chen, Chun-Chun; Fernald, Russell D.

    2008-01-01

    Corticotropin-releasing factor (CRF) is well known for its role in regulating the stress response in vertebrate species by controlling release of glucocorticoids. CRF also influences other physiological processes via two distinct CRF receptors (CRF-Rs) and is co-regulated by a CRF binding protein (CRFBP). Although CRF was first discovered in mammals, it is important for the regulation of the stress response, motor behavior, and appetite in all vertebrates. However, it is unclear how the actio...

  5. Regulation of gonadotropins by corticotropin-releasing factor and urocortin

    Directory of Open Access Journals (Sweden)

    Kazunori eKageyama

    2013-02-01

    Full Text Available While stress activates the hypothalamic-pituitary-adrenal (HPA axis, it suppresses the hypothalamic-pituitary-gonadal (HPG axis. Corticotropin-releasing factor (CRF is a major regulatory peptide in the HPA axis during stress. Urocortin1 (Ucn1, a member of the CRF family of peptides, has a variety of physiological functions and both CRF and Ucn1 contribute to the stress response via G protein-coupled seven transmembrane receptors. Ucn2 and Ucn3, which belong to a separate paralogous lineage from CRF, are highly selective for the CRF type 2 receptor (CRF2 receptor. The HPA and HPG axes interact with each other, and gonadal function and reproduction are suppressed in response to various stressors. In this review, we focus on the regulation of gonadotropins by CRF and Ucn2 in pituitary gonadotrophs and of gonadotropin-releasing hormone (GnRH via CRF receptors in the hypothalamus. In corticotrophs, stress-induced increases in CRF stimulate Ucn2 production, which leads to the inhibition of gonadotropin secretion via the CRF2 receptor in the pituitary. GnRH in the hypothalamus is regulated by a variety of stress conditions. CRF is also involved in the suppression of the HPG axis, especially the GnRH pulse generator, via CRF receptors in the hypothalamus. Thus, complicated regulation of GnRH in the hypothalamus and gonadotropins in the pituitary via CRF receptors contributes to stress responses and adaptation of gonadal functions.

  6. Intrahypothalamic neuroendocrine actions of corticotropin-releasing factor.

    Science.gov (United States)

    Almeida, O F; Hassan, A H; Holsboer, F

    1993-01-01

    Most studies of the neuroendocrine effects of corticotropin-releasing factor (CRF) have focused on its role in the regulation of the pituitary-adrenal axis; activation of this axis follows release of the peptide from CRF-containing terminals in the median eminence. However, a sizeable proportion of CRF fibres terminate within the hypothalamus itself, where synaptic contacts with other hypothalamic neuropeptidergic neurons (e.g. gonadotropin-releasing hormone-containing and opioidergic neurons) have been identified. Here, we summarize physiological and pharmacological data which provide insights into the nature and significance of these intrahypothalamic connections. It is now clear that CRF is a potent secretagogue of the three major endogenous opioid peptides (beta-endorphin, Met-enkephalin and dynorphin) and that it stimulates opioidergic neurons tonically. In the case of beta-endorphin, another hypothalamic peptide, arginine vasopressin, appears to be an essential mediator of CRF's effect, suggesting the occurrence of CRF synapses on, or in the vicinity of, vasopressin neurons; morphological support for this assumption is still wanting. Evidence for direct and indirect inhibitory effects of CRF on sexual behaviour and secretion of reproductive hormones is also presented; the indirect pathways include opioidergic neurons. An important conclusion from all these studies is that, in addition to its better known functions in producing adaptive responses during stressful situations, CRF might also contribute to the coordinated functioning of various components of the neuroendocrine system under basal conditions. Although feedback regulation of hypothalamic neuronal activity by peripheral steroids is a well-established tenet of endocrinology, data on modulation of the intrahypothalamic actions of CRF by adrenal and sex steroids are just emerging. Some of these newer findings may be useful in framing questions related to the mechanisms underlying disease states (such as

  7. Physiological and behavioral effects of chronic intracerebroventricular infusion of corticotropin-releasing factor in the rat

    NARCIS (Netherlands)

    Buwalda, B; deBoer, SF; VanKalkeren, AA; Koolhaas, JM; Kalkeren, A.A. van

    1997-01-01

    The present study was conducted to investigate the Long-term effects of chronic elevation of centrally circulating levels of corticotropin-releasing factor (CRF) on behavior and physiology. For this purpose ovine CRF was infused continuously far a period of 10 days into the lateral ventricle of rats

  8. Physiological and behavioral effects of chronic intracerebroventricular infusion of corticotropin-releasing factor in the rat

    NARCIS (Netherlands)

    Buwalda, B; deBoer, SF; VanKalkeren, AA; Koolhaas, JM; Kalkeren, A.A. van

    1997-01-01

    The present study was conducted to investigate the Long-term effects of chronic elevation of centrally circulating levels of corticotropin-releasing factor (CRF) on behavior and physiology. For this purpose ovine CRF was infused continuously far a period of 10 days into the lateral ventricle of rats

  9. Ethanol and corticotropin releasing factor receptor modulation of central amygdala neurocircuitry: An update and future directions.

    Science.gov (United States)

    Silberman, Yuval; Winder, Danny G

    2015-05-01

    The central amygdala is a critical brain region for many aspects of alcohol dependence. Much of the work examining the mechanisms by which the central amygdala mediates the development of alcohol dependence has focused on the interaction of acute and chronic ethanol with central amygdala corticotropin releasing factor signaling. This work has led to a great deal of success in furthering the general understanding of central amygdala neurocircuitry and its role in alcohol dependence. Much of this work has primarily focused on the hypothesis that ethanol utilizes endogenous corticotropin releasing factor signaling to upregulate inhibitory GABAergic transmission in the central amygdala. Work that is more recent suggests that corticotropin releasing factor also plays an important role in mediating anxiety-like behaviors via the enhancement of central amygdala glutamatergic transmission, implying that ethanol/corticotropin releasing factor interactions may modulate excitatory neurotransmission in this brain region. In addition, a number of studies utilizing optogenetic strategies or transgenic mouse lines have begun to examine specific central amygdala neurocircuit dynamics and neuronal subpopulations to better understand overall central amygdala neurocircuitry and the role of neuronal subtypes in mediating anxiety-like behaviors. This review will provide a brief update on this literature and describe some potential future directions that may be important for the development of better treatments for alcohol addiction.

  10. Localization and functional roles of corticotropin-releasing factor receptor type 2 in the cerebellum

    NARCIS (Netherlands)

    Gounko, Natalia V.; Gramsbergen, Albert; van der Want, Johannes J. L.

    2008-01-01

    The corticotropin-releasing factor (CRF) type 2 receptor has three splice variants alpha, beta, and gamma. In the rodent brain only CRF-R2 alpha is present. In the cerebellum, CRF-R2 alpha has two different isoforms: a full-length form (fl) and truncated (tr). Both forms CRF-R2 have a unique cellula

  11. Molecular Recognition of Corticotropin releasing Factor by Its G protein-coupled Receptor CRFR1

    Energy Technology Data Exchange (ETDEWEB)

    Pioszak, Augen A.; Parker, Naomi R.; Suino-Powell, Kelly; Xu, H. Eric (Van Andel)

    2009-01-15

    The bimolecular interaction between corticotropin-releasing factor (CRF), a neuropeptide, and its type 1 receptor (CRFR1), a class B G-protein-coupled receptor (GPCR), is crucial for activation of the hypothalamic-pituitary-adrenal axis in response to stress, and has been a target of intense drug design for the treatment of anxiety, depression, and related disorders. As a class B GPCR, CRFR1 contains an N-terminal extracellular domain (ECD) that provides the primary ligand binding determinants. Here we present three crystal structures of the human CRFR1 ECD, one in a ligand-free form and two in distinct CRF-bound states. The CRFR1 ECD adopts the alpha-beta-betaalpha fold observed for other class B GPCR ECDs, but the N-terminal alpha-helix is significantly shorter and does not contact CRF. CRF adopts a continuous alpha-helix that docks in a hydrophobic surface of the ECD that is distinct from the peptide-binding site of other class B GPCRs, thereby providing a basis for the specificity of ligand recognition between CRFR1 and other class B GPCRs. The binding of CRF is accompanied by clamp-like conformational changes of two loops of the receptor that anchor the CRF C terminus, including the C-terminal amide group. These structural studies provide a molecular framework for understanding peptide binding and specificity by the CRF receptors as well as a template for designing potent and selective CRFR1 antagonists for therapeutic applications.

  12. Corticotropin-releasing factor receptors and stress-related alterations of gut motor function.

    OpenAIRE

    2007-01-01

    International audience; Over the past few decades, corticotropin-releasing factor (CRF) signaling pathways have been shown to be the main coordinators of the endocrine, behavioral, and immune responses to stress. Emerging evidence also links the activation of CRF receptors type 1 and type 2 with stress-related alterations of gut motor function. Here, we review the role of CRF receptors in both the brain and the gut as part of key mechanisms through which various stressors impact propulsive ac...

  13. Corticotropin-Releasing Factor and the Brain-Gut Motor Response to Stress

    OpenAIRE

    1999-01-01

    The characterization of corticotropin-releasing factor (CRF) and CRF receptors, and the development of specific CRF receptor antagonists selective for the receptor subtypes have paved the way to the understanding of the biochemical coding of stress-related alterations of gut motor function. Reports have consistently established that central administration of CRF acts in the brain to inhibit gastric emptying while stimulating colonic motor function through modulation of the vagal and sacral pa...

  14. Neuroendocrine Control of the Gut During Stress: Corticotropin-Releasing Factor Signaling Pathways in the Spotlight

    OpenAIRE

    2009-01-01

    Stress affects the gastrointestinal tract as part of the visceral response. Various stressors induce similar profiles of gut motor function alterations, including inhibition of gastric emptying, stimulation of colonic propulsive motility, and hypersensitivity to colorectal distension. In recent years, substantial progress has been made in our understanding of the underlying mechanisms of stress’s impact on gut function. Activation of corticotropin-releasing factor (CRF) signaling pathways med...

  15. Orexin-corticotropin-releasing factor receptor heteromers in the ventral tegmental area as targets for cocaine.

    Science.gov (United States)

    Navarro, Gemma; Quiroz, César; Moreno-Delgado, David; Sierakowiak, Adam; McDowell, Kimberly; Moreno, Estefanía; Rea, William; Cai, Ning-Sheng; Aguinaga, David; Howell, Lesley A; Hausch, Felix; Cortés, Antonio; Mallol, Josefa; Casadó, Vicent; Lluís, Carme; Canela, Enric I; Ferré, Sergi; McCormick, Peter J

    2015-04-29

    Release of the neuropeptides corticotropin-releasing factor (CRF) and orexin-A in the ventral tegmental area (VTA) play an important role in stress-induced cocaine-seeking behavior. We provide evidence for pharmacologically significant interactions between CRF and orexin-A that depend on oligomerization of CRF1 receptor (CRF1R) and orexin OX1 receptors (OX1R). CRF1R-OX1R heteromers are the conduits of a negative crosstalk between orexin-A and CRF as demonstrated in transfected cells and rat VTA, in which they significantly modulate dendritic dopamine release. The cocaine target σ1 receptor (σ1R) also associates with the CRF1R-OX1R heteromer. Cocaine binding to the σ1R-CRF1R-OX1R complex promotes a long-term disruption of the orexin-A-CRF negative crosstalk. Through this mechanism, cocaine sensitizes VTA cells to the excitatory effects of both CRF and orexin-A, thus providing a mechanism by which stress induces cocaine seeking.

  16. The corticotropin-releasing factor system in inflammatory bowel disease: prospects for new therapeutic approaches.

    Science.gov (United States)

    Paschos, Konstantinos A; Kolios, George; Chatzaki, Ekaterini

    2009-07-01

    Mounting evidence suggests that stress is implicated in the development of inflammatory bowel disease (IBD), via initial nervous disturbance and subsequent immune dysfunction through brain-gut interactions. The corticotropin-releasing factor (CRF) system, being the principal neuroendocrine coordinator of stress responses, is involved in the inflammatory process within the gastrointestinal tract, via vagal and peripheral pathways, as implied by multiple reports reviewed here. Blocking of CRF receptors could theoretically exert beneficial anti-inflammatory effects in colonic tissues. The recently synthesised small-molecule CRF(1) antagonists or alternatively non-peptide CRF(2) antagonists when available, may become new reliable options in the treatment of IBD.

  17. Corticotropin-releasing factor receptors and stress-related alterations of gut motor function.

    Science.gov (United States)

    Taché, Yvette; Bonaz, Bruno

    2007-01-01

    Over the past few decades, corticotropin-releasing factor (CRF) signaling pathways have been shown to be the main coordinators of the endocrine, behavioral, and immune responses to stress. Emerging evidence also links the activation of CRF receptors type 1 and type 2 with stress-related alterations of gut motor function. Here, we review the role of CRF receptors in both the brain and the gut as part of key mechanisms through which various stressors impact propulsive activity of the gastrointestinal system. We also examine how these mechanisms translate into the development of new approaches for irritable bowel syndrome, a multifactorial disorder for which stress has been implicated in the pathophysiology.

  18. Neuroendocrine control of the gut during stress: corticotropin-releasing factor signaling pathways in the spotlight.

    Science.gov (United States)

    Stengel, Andreas; Taché, Yvette

    2009-01-01

    Stress affects the gastrointestinal tract as part of the visceral response. Various stressors induce similar profiles of gut motor function alterations, including inhibition of gastric emptying, stimulation of colonic propulsive motility, and hypersensitivity to colorectal distension. In recent years, substantial progress has been made in our understanding of the underlying mechanisms of stress's impact on gut function. Activation of corticotropin-releasing factor (CRF) signaling pathways mediates both the inhibition of upper gastrointestinal (GI) and the stimulation of lower GI motor function through interaction with different CRF receptor subtypes. Here, we review how various stressors affect the gut, with special emphasis on the central and peripheral CRF signaling systems.

  19. Corticotropin-releasing factor overexpression gives rise to sex differences in Alzheimer's disease-related signaling.

    Science.gov (United States)

    Bangasser, D A; Dong, H; Carroll, J; Plona, Z; Ding, H; Rodriguez, L; McKennan, C; Csernansky, J G; Seeholzer, S H; Valentino, R J

    2016-10-18

    Several neuropsychiatric and neurodegenerative disorders share stress as a risk factor and are more prevalent in women than in men. Corticotropin-releasing factor (CRF) orchestrates the stress response, and excessive CRF is thought to contribute to the pathophysiology of these diseases. We previously found that the CRF1 receptor (CRF1) is sex biased whereby coupling to its GTP-binding protein, Gs, is greater in females, whereas β-arrestin-2 coupling is greater in males. This study used a phosphoproteomic approach in CRF-overexpressing (CRF-OE) mice to test the proof of principle that when CRF is in excess, sex-biased CRF1 coupling translates into divergent cell signaling that is expressed as different brain phosphoprotein profiles. Cortical phosphopeptides that distinguished female and male CRF-OE mice were overrepresented in unique pathways that were consistent with Gs-dependent signaling in females and β-arrestin-2 signaling in males. Notably, phosphopeptides that were more abundant in female CRF-OE mice were overrepresented in an Alzheimer's disease (AD) pathway. Phosphoproteomic results were validated by demonstrating that CRF overexpression in females was associated with increased tau phosphorylation and, in a mouse model of AD pathology, phosphorylation of β-secretase, the enzyme involved in the formation of amyloid β. These females exhibited increased formation of amyloid β plaques and cognitive impairments relative to males. Collectively, the findings are consistent with a mechanism whereby the excess CRF that characterizes stress-related diseases initiates distinct cellular processes in male and female brains, as a result of sex-biased CRF1 signaling. Promotion of AD-related signaling pathways through this mechanism may contribute to female vulnerability to AD.Molecular Psychiatry advance online publication, 18 October 2016; doi:10.1038/mp.2016.185.

  20. Expression and functional characterization of membrane-integrated mammalian corticotropin releasing factor receptors 1 and 2 in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Roberto Jappelli

    Full Text Available Corticotropin-Releasing Factor Receptors (CRFRs are class B1 G-protein-coupled receptors, which bind peptides of the corticotropin releasing factor family and are key mediators in the stress response. In order to dissect the receptors' binding specificity and enable structural studies, full-length human CRFR1α and mouse CRFR2β as well as fragments lacking the N-terminal extracellular domain, were overproduced in E. coli. The characteristics of different CRFR2β-PhoA gene fusion products expressed in bacteria were found to be in agreement with the predicted ones in the hepta-helical membrane topology model. Recombinant histidine-tagged CRFR1α and CRFR2β expression levels and bacterial subcellular localization were evaluated by cell fractionation and Western blot analysis. Protein expression parameters were assessed, including the influence of E. coli bacterial hosts, culture media and the impact of either PelB or DsbA signal peptide. In general, the large majority of receptor proteins became inserted in the bacterial membrane. Across all experimental conditions significantly more CRFR2β product was obtained in comparison to CRFR1α. Following a detergent screen analysis, bacterial membranes containing CRFR1α and CRFR2β were best solubilized with the zwitterionic detergent FC-14. Binding of different peptide ligands to CRFR1α and CRFR2β membrane fractions were similar, in part, to the complex pharmacology observed in eukaryotic cells. We suggest that our E. coli expression system producing functional CRFRs will be useful for large-scale expression of these receptors for structural studies.

  1. Expression and Regulation of Corticotropin-Releasing Factor Receptor Type 2 beta in Developing and Mature Mouse Skeletal Muscle

    NARCIS (Netherlands)

    Kuperman, Yael; Issler, Orna; Vaughan, Joan; Bilezikjian, Louise; Vale, Wylie; Chen, Alon

    2011-01-01

    Corticotropin-releasing factor receptor type 2 (CRFR2) is highly expressed in skeletal muscle (SM) tissue where it is suggested to inhibit interactions between insulin signaling pathway components affecting whole-body glucose homeostasis. However, little is known about factors regulating SM CRFR2 ex

  2. Corticotropin-releasing factor has an anxiogenic action in the social interaction test.

    Science.gov (United States)

    Dunn, A J; File, S E

    1987-06-01

    The effects of intracerebroventricular (icv) injections of corticotropin-releasing factor (CRF, 100 and 300 ng) were investigated in the social interaction test of anxiety in rats. Both doses of CRF significantly decreased active social interaction without a concomitant decrease in locomotor activity. CRF also significantly increased self-grooming, an effect that was independent of the decrease in social interaction. These results indicate an anxiogenic action for CRF. Chlordiazepoxide (CDP, 5 mg/kg ip) pretreatment reversed the anxiogenic effects of icv CRF (100 ng), but CRF did not prevent the sedative effects of CDP. There were no statistically significant changes due to CRF in locomotor activity or rears or head dipping in the holeboard test. Both doses of CRF significantly increased plasma concentrations of corticosterone. The possible mechanisms of the behavioral effects of CRF are discussed.

  3. Distribution of corticotropin-releasing factor neurons in the mouse brain: a study using corticotropin-releasing factor-modified yellow fluorescent protein knock-in mouse.

    Science.gov (United States)

    Kono, Junko; Konno, Kohtarou; Talukder, Ashraf Hossain; Fuse, Toshimitsu; Abe, Manabu; Uchida, Katsuya; Horio, Shuhei; Sakimura, Kenji; Watanabe, Masahiko; Itoi, Keiichi

    2017-05-01

    We examined the morphological features of corticotropin-releasing factor (CRF) neurons in a mouse line in which modified yellow fluorescent protein (Venus) was expressed under the CRF promoter. We previously generated the CRF-Venus knock-in mouse, in which Venus is inserted into the CRF gene locus by homologous recombination. In the present study, the neomycin phosphotransferase gene (Neo), driven by the pgk-1 promoter, was deleted from the CRF-Venus mouse genome, and a CRF-Venus∆Neo mouse was generated. Venus expression is much more prominent in the CRF-Venus∆Neo mouse when compared to the CRF-Venus mouse. In addition, most Venus-expressing neurons co-express CRF mRNA. Venus-expressing neurons constitute a discrete population of neuroendocrine neurons in the paraventricular nucleus of the hypothalamus (PVH) that project to the median eminence. Venus-expressing neurons were also found in brain regions outside the neuroendocrine PVH, including the olfactory bulb, the piriform cortex (Pir), the extended amygdala, the hippocampus, the neocortices, Barrington's nucleus, the midbrain/pontine dorsal tegmentum, the periaqueductal gray, and the inferior olivary nucleus (IO). Venus-expressing perikarya co-expressing CRF mRNA could be observed clearly even in regions where CRF-immunoreactive perikarya could hardly be identified. We demonstrated that the CRF neurons contain glutamate in the Pir and IO, while they contain gamma-aminobutyric acid in the neocortex, the bed nucleus of the stria terminalis, the hippocampus, and the amygdala. A population of CRF neurons was demonstrated to be cholinergic in the midbrain tegmentum. The CRF-Venus∆Neo mouse may be useful for studying the structural and functional properties of CRF neurons in the mouse brain.

  4. EFFECT OF CORTICOTROPIN-RELEASING FACTOR ANTAGONIST ON BEHAVIORAL AND NEUROENDOCRINE RESPONSES DURING EXPOSURE TO DEFENSIVE BURYING PARADIGM IN RATS

    NARCIS (Netherlands)

    KORTE, SM; KORTEBOUWS, GAH; BOHUS, B; KOOB, GF

    1994-01-01

    Defensive burying behavior is a coping strategy in rodents in response to an aversive stimulus where fear will facilitate burying and treatment with anxiolytics will result in less burying. To test the hypothesis that endogenous corticotropin-releasing factor (CRF) is involved in the defensive buryi

  5. Common Mechanisms Underlying the Proconflict Effects of Corticotropin-Releasing Factor, A Benzodiazepine Inverse Agonist and Electric Foot-Shock

    NARCIS (Netherlands)

    Boer, Sietse F. de; Katz, Jonathan L.; Valentino, Rita J.

    1992-01-01

    The effects of corticotropin-releasing factor (CRF), a benzodiazepine inverse agonist (methyl-6,7-dimethoxy-4-ethyl-β-carboline-3-carboxylate; DMCM) and electric foot-shock on rat conflict behavior were characterized and compared. Rats were trained to lever press under a multiple fixed-ratio schedul

  6. Stress, sex, and addiction: potential roles of corticotropin-releasing factor, oxytocin, and arginine-vasopressin.

    Science.gov (United States)

    Bisagno, Verónica; Cadet, Jean Lud

    2014-09-01

    Stress sensitivity and sex are predictive factors for the development of neuropsychiatric disorders. Life stresses are not only risk factors for the development of addiction but also are triggers for relapse to drug use. Therefore, it is imperative to elucidate the molecular mechanisms underlying the interactions between stress and drug abuse, as an understanding of this may help in the development of novel and more effective therapeutic approaches to block the clinical manifestations of drug addiction. The development and clinical course of addiction-related disorders do appear to involve neuroadaptations within neurocircuitries that modulate stress responses and are influenced by several neuropeptides. These include corticotropin-releasing factor, the prototypic member of this class, as well as oxytocin and arginine-vasopressin that play important roles in affiliative behaviors. Interestingly, these peptides function to balance emotional behavior, with sexual dimorphism in the oxytocin/arginine-vasopressin systems, a fact that might play an important role in the differential responses of women and men to stressful stimuli and the specific sex-based prevalence of certain addictive disorders. Thus, this review aims to summarize (i) the contribution of sex differences to the function of dopamine systems, and (ii) the behavioral, neurochemical, and anatomical changes in brain stress systems.

  7. Corticotropin releasing factor impairs sustained attention in male and female rats.

    Science.gov (United States)

    Cole, Robert D; Kawasumi, Yushi; Parikh, Vinay; Bangasser, Debra A

    2016-01-01

    Stressful life events and stress-related psychiatric disorders impair sustained attention, the ability to monitor rare and unpredictable stimulus events over prolonged periods of time. Despite the link between stress and attentional disruptions, the neurobiological basis for stress regulation of attention systems remains underexplored. Here we examined whether corticotropin releasing factor (CRF), which orchestrates stress responses and is hypersecreted in patients with stress-related psychiatric disorders, impairs sustained attention. To this end, male and female rats received central infusions of CRF prior to testing on an operant sustained attention task (SAT), where rats were trained to discriminate signaled from non-signaled events. CRF caused a dose-dependent decrease in SAT performance in both male and female rats. Females were more impaired than males following a moderate dose of CRF, particularly during the middle part of the session. This sex difference was moderated by ovarian hormones. Females in the estrous cycle stage characterized by lower ovarian hormones had a greater CRF-induced attentional impairment than males and females in other cycle stages. Collectively, these studies highlight CRF as a critical stress-related factor that can regulate attentional performance. As sustained attention subserves other cognitive processes, these studies suggest that mitigating high levels of CRF in patients with stress-related psychiatric disorders may ameliorate their cognitive deficits.

  8. Regulation of duodenal bicarbonate secretion during stress by corticotropin-releasing factor and beta-endorphin.

    Science.gov (United States)

    Lenz, H J

    1989-02-01

    Proximal duodenal mucosal bicarbonate secretion is an important factor in the pathogenesis of duodenal ulcer disease. To examine the central nervous system regulation of duodenal bicarbonate secretion, an animal model was developed that allowed cerebroventricular and intravenous injections as well as collection of duodenal perfusates in awake, freely moving rats. The hypothalamic peptide corticotropin-releasing factor (CRF) and stress (physical restraint) significantly stimulated duodenal bicarbonate secretion. These responses were abolished by pretreatment of the animals with the CRF receptor antagonist alpha-helical CRF-(9-41), hypophysectomy, and naloxone. In contrast, blockade of autonomic efferents by surgical and pharmacological means did not prevent the stimulatory effects of stress and CRF. Intravenous, but not cerebroventricular, administration of beta-endorphin that produced plasma concentrations of beta-endorphin that were similar to those produced by exogenous CRF and stress significantly stimulated duodenal bicarbonate secretion. These results indicate that endogenous CRF released during stress and exogenously administered CRF stimulate duodenal bicarbonate secretion by release of beta-endorphin from the pituitary, thus, demonstrating a functional hypothalamus-pituitary-gut axis.

  9. Corticotropin releasing factor and catecholamines enhance glutamatergic neurotransmission in the lateral subdivision of the central amygdala.

    Science.gov (United States)

    Silberman, Yuval; Winder, Danny G

    2013-07-01

    Glutamatergic neurotransmission in the central nucleus of the amygdala (CeA) plays an important role in many behaviors including anxiety, memory consolidation and cardiovascular responses. While these behaviors can be modulated by corticotropin releasing factor (CRF) and catecholamine signaling, the mechanism(s) by which these signals modify CeA glutamatergic neurotransmission remains unclear. Utilizing whole-cell patch-clamp electrophysiology recordings from neurons in the lateral subdivision of the CeA (CeAL), we show that CRF, dopamine (DA) and the β-adrenergic receptor agonist isoproterenol (ISO) all enhance the frequency of spontaneous excitatory postsynaptic currents (sEPSC) without altering sEPSC kinetics, suggesting they increase presynaptic glutamate release. The effect of CRF on sEPSCs was mediated by a combination of CRFR1 and CRFR2 receptors. While previous work from our lab suggests that CRFRs mediate the effect of catecholamines on excitatory transmission in other subregions of the extended amygdala, blockade of CRFRs in the CeAL failed to significantly alter effects of DA and ISO on glutamatergic transmission. These findings suggest that catecholamine and CRF enhancement of glutamatergic transmission onto CeAL neurons occurs via distinct mechanisms. While CRF increased spontaneous glutamate release in the CeAL, CRF caused no significant changes to optogenetically evoked glutamate release in this region. The dissociable effects of CRF on different types of glutamatergic neurotransmission suggest that CRF may specifically regulate spontaneous excitatory transmission. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Stress and addiction: contribution of the corticotropin releasing factor (CRF system in neuroplasticity

    Directory of Open Access Journals (Sweden)

    Carolina L Haass-Koffler

    2012-09-01

    Full Text Available Corticotropin releasing factor (CRF has been shown to induce various behavioral changes related to adaptation to stress. Dysregulation of the CRF system at any point can lead to a variety of psychiatric disorders, including substance use disorders (SUDs. CRF has been associated with stress-induced drug reinforcement. Extensive literature has identified CRF to play an important role in the molecular mechanisms that lead to an increase in susceptibility that precipitates relapse to SUDs. The CRF system has a heterogeneous role in SUDs. It enhances the acute effects of drugs of abuse and is also responsible for the potentiation of drug-induced neuroplasticity evoked during the withdrawal period. We present in this review the brain regions and circuitries where CRF is expressed and may participate in stress-induced drug abuse. Finally, we attempt to evaluate the role of modulating the CRF system as a possible therapeutic strategy for treating the dysregulation of emotional behaviors that result from the acute positive reinforcement of substances of abuse as well as the negative reinforcement produced by withdrawal.

  11. Structural evolution of urotensin-I: reflections of life before corticotropin releasing factor.

    Science.gov (United States)

    Lovejoy, David A

    2009-10-01

    Peptides have a long evolutionary history that predates the appearance of metazoans. The corticotropin releasing factor (CRF) family of peptides is among the most ancient peptide lineages. The identification and characterization of urotensin-I and related orthologues led the way for the elucidation of the entire CRF peptide family. A comparative analysis of the CRF paralogue sequences suggest that CRF is the most derived of these peptides and has lost many of its ancestral characteristics after it became associated with the hypothalamic-pituitary-adrenal/interrenal (HPA/I axis). In vertebrates, the urotensin-I group of orthologues, which includes sauvagine and urocortin, possess a number of shared characteristics that may be indicative of the ancestral peptide. Given the early origin of the CRF family peptides, it is likely that other peptide lineages are distantly related to the CRF family. In silico or cDNA library screening using probes based on urotensin-I/urocortin characteristics have been used to identify novel CRF family and related sequences that provide clues the evolutionary origin of the CRF family.

  12. Corticotropin-releasing factor secretion from dendritic cells stimulated by commensal bacteria

    Institute of Scientific and Technical Information of China (English)

    Mariko Hojo; Toshifumi Ohkusa; Harumi Tomeoku; Shigeo Koido; Daisuke Asaoka; Akihito Nagahara; Sumio Watanabe

    2011-01-01

    AIM: To study the production and secretion of corticotropin-releasing factor (CRF) by dendritic cells and the influence of commensal bacteria.METHODS: JAWSⅡ cells (ATCC CRL-11904), a mouse dendritic cell line, were seeded into 24-well culture plates and grown for 3 d. Commensal bacterial strains of Clostridium clostrodiiforme (JCM1291), Bacteroides vulgatus (B. vulgatus) (JCM5856), Escherichia coli (JCM1649), or Fusobacterium varium (F. varium) (ATCC8501) were added to the cells except for the control well, and incubated for 2 h. After incubation, we performed enzyme-linked immunosorbent assay for the cultured medium and reverse transcription polymerase chain reaction for the dendritic cells, and compared these values with controls.RESULTS: The level of CRF secretion by control dendritic cells was 40.4 ± 6.2 pg/mL. The CRF levels for cells incubated with F. varium and B. vulgatus were significantly higher than that of the control (P < 0.0001). CRF mRNA was present in the control sample without bacteria, and CRF mRNA levels in all samples treated with bacteria were above that of the control sample.F. varium caused the greatest increase in CRF mRNA expression. CONCLUSION: Our results suggest that dendritic cells produce CRF, a process augmented by commensal bacteria.

  13. Intrahypothalamic corticotropin-releasing factor elevates gastric bicarbonate and inhibits stress ulcers in rats.

    Science.gov (United States)

    Gunion, M W; Kauffman, G L; Taché, Y

    1990-01-01

    The effects of intrahyopthalamic microinfusions of corticotropin-releasing factor (CRF) on gastric bicarbonate, acid, and pepsin content and on cold restraint-induced gastric lesion formation were tested in three experiments. Bilateral microinfusions of CRF into the hypothalamic ventromedial nucleus (0.86 nmol/rat) significantly increased both gastric bicarbonate concentration and total bicarbonate output. These effects were observed irrespective of whether rats were pretreated with the acid antisecretory drug omeprazole. In nonomeprazole-pretreated rats, CRF microinfusions also significantly reduced acid secretion and raised pH. The increase in bicarbonate content accounted for half of the observed decrease in acid output, suggesting that CRF microinfusions activated separable bicarbonate-stimulating and acid-inhibiting hypothalamic systems. In non-omeprazole-pretreated rats, CRF microinfusions significantly increased serum gastrin, whereas pepsin output was unchanged. Gastric mucosal damage produced by 4 h of cold restraint was significantly diminished by CRF microinfusion into the ventromedial hypothalamus. These data demonstrate that ventromedial hypothalamic microinfusions of CRF increase bicarbonate content, decrease gastric acid content, and confer protection against cold restraint-induced gastric mucosal damage. Hypothalamic CRF neuronal terminals and receptors may be involved in the central regulation of gastric bicarbonate secretion as well as acid secretion.

  14. Stress and addiction: contribution of the corticotropin releasing factor (CRF) system in neuroplasticity.

    Science.gov (United States)

    Haass-Koffler, Carolina L; Bartlett, Selena E

    2012-01-01

    Corticotropin releasing factor (CRF) has been shown to induce various behavioral changes related to adaptation to stress. Dysregulation of the CRF system at any point can lead to a variety of psychiatric disorders, including substance use disorders (SUDs). CRF has been associated with stress-induced drug reinforcement. Extensive literature has identified CRF to play an important role in the molecular mechanisms that lead to an increase in susceptibility that precipitates relapse to SUDs. The CRF system has a heterogeneous role in SUDs. It enhances the acute effects of drugs of abuse and is also responsible for the potentiation of drug-induced neuroplasticity evoked during the withdrawal period. We present in this review the brain regions and circuitries where CRF is expressed and may participate in stress-induced drug abuse. Finally, we attempt to evaluate the role of modulating the CRF system as a possible therapeutic strategy for treating the dysregulation of emotional behaviors that result from the acute positive reinforcement of substances of abuse as well as the negative reinforcement produced by withdrawal.

  15. Corticotropin-releasing factor: a possible key to gut dysfunction in the critically ill.

    Science.gov (United States)

    Hill, Lauren T; Kidson, Susan H; Michell, William L

    2013-01-01

    Critically ill patients frequently display unexplained or incompletely explained features of gastrointestinal (GI) dysfunction, including gastric stasis, ileus, and diarrhea. This makes nutrition delivery challenging, and may contribute to poor outcomes. The typical bowel dysfunction seen in severely ill patients includes retarded gastric emptying, unsynchronized intestinal motility, and intestinal hyperpermeability. These functional changes appear similar to the corticotropin-releasing factor (CRF)-mediated bowel dysfunctions associated with stress of various types and some GI disorders and diseases. CRF has been shown to be present within the GI tract and its action on CRF receptors within the gut have been shown to reduce gastric emptying, alter intestinal motility, and increase intestinal permeability. However, the precise role of CRF in the GI dysfunction in critical illness remains unclear. In this short review, we provide an update on GI dysfunction during stress and review the possible role of CRF in the aetiology of gut dysfunction. We suggest that activation of CRF signaling pathways in critical illness might be key to understanding the mechanisms underlying the gut dysfunction that impairs enteral feeding in the intensive care unit.

  16. Corticotropin-releasing factor and the brain-gut motor response to stress.

    Science.gov (United States)

    Taché, Y; Martinez, V; Million, M; Rivier, J

    1999-03-01

    The characterization of corticotropin-releasing factor (CRF) and CRF receptors, and the development of specific CRF receptor antagonists selective for the receptor subtypes have paved the way to the understanding of the biochemical coding of stress-related alterations of gut motor function. Reports have consistently established that central administration of CRF acts in the brain to inhibit gastric emptying while stimulating colonic motor function through modulation of the vagal and sacral parasympathetic outflow in rodents. Endogenous CRF in the brain plays a role in mediating various forms of stressor-induced gastric stasis, including postoperative gastric ileus, and activates colonic transit and fecal excretion elicited by psychologically aversive or fearful stimuli. It is known that brain CRF is involved in the cross-talk between the immune and gastrointestinal systems because systemic or central administration of interleukin-1-beta delays gastric emptying while stimulating colonic motor activity through activation of CRF release in the brain. The paraventricular nucleus of the hypothalamus and the dorsal vagal complex are important sites of action for CRF to inhibit gastric motor function, while the paraventricular nucleus of the hypothalamus and the locus coeruleus complex are sites of action for CRF to stimulate colonic motor function. The inhibition of gastric emptying by CRF may be mediated by the interaction with the CRF2 receptors, while the anxiogenic and colonic motor responses may involve CRF1 receptors. Hypersecretion of CRF in the brain may contribute to the pathophysiology of stress-related exacerbation of irritable bowel syndrome.

  17. Stimulation of rat B-lymphocyte proliferation by corticotropin-releasing factor.

    Science.gov (United States)

    McGillis, J P; Park, A; Rubin-Fletter, P; Turck, C; Dallman, M F; Payan, D G

    1989-07-01

    The mitogenic effect of corticotropin-releasing factor (CRF) on rat lymphocytes was investigated. When rat splenocytes were cultured for 48 hr with CFR, a dose-dependent increase in incorporation of 3H-thymidine (3H-Tdr) was observed, with a maximal response at 10 nM CRF. Comparison of the proliferative effect of CRF on enriched populations of B lymphocytes, T lymphocytes, or macrophages revealed that only B lymphocytes responded following treatment with CRF. When lymphocytes derived from different lymphoid tissues were compared, CRF had a greater proliferative effect on lymphocytes derived from gut-associated lymphoid tissue (mesenteric lymph nodes and Peyer's patches) than on lymphocytes from spleen or inguinal lymph nodes; CRF had no effect on thymocytes. Synthetic fragments of CRF were used to determine which portions of the peptide are recognized by lymphocytes. The C-terminal fragments alpha-helical CRF9-41 and CRF21-41 were as potent as native CRF in stimulating B-lymphocyte proliferation, whereas CRF1-20 did not stimulate proliferation. The activity of these peptides suggests that CRF stimulates lymphocyte proliferation by cellular recognition of structural determinants in the C-terminal one-half of the peptide.

  18. Tyrosine Pretreatment Alleviates Suppression of Schedule-Controlled Responding Produced by Corticotropin Releasing Factor (CRF) in Rats

    Science.gov (United States)

    1992-01-01

    specific interaction with tyrosine hydroxylase . Thus, (3,13,14). alleviation of CRF with tyrosine may result from an affect of The 200 mg/kg dose of tyrosine...G., Dana, R.; Risch, S. C.; Koob, G. F. Activating aspartame, phenylalanine , and tyrosine. Fund. Appl. Toxicol. 16: and anxiogenic effects of...Onali, P. Corticotropin-releasing factor activates ty- Pharmacol. Biochem. Behav. 32:967-970: 1989. rosine hydroxylase in rat and mouse striatal

  19. Functional Impact of Corticotropin-Releasing Factor Exposure on Tau Phosphorylation and Axon Transport.

    Directory of Open Access Journals (Sweden)

    Michelle H Le

    Full Text Available Stress exposure or increased levels of corticotropin-releasing factor (CRF induce hippocampal tau phosphorylation (tau-P in rodent models, a process that is dependent on the type-1 CRF receptor (CRFR1. Although these preclinical studies on stress-induced tau-P provide mechanistic insight for epidemiological work that identifies stress as a risk factor for Alzheimer's disease (AD, the actual impact of stress-induced tau-P on neuronal function remains unclear. To determine the functional consequences of stress-induced tau-P, we developed a novel mouse neuronal cell culture system to explore the impact of acute (0.5hr and chronic (2hr CRF treatment on tau-P and integral cell processes such as axon transport. Consistent with in vivo reports, we found that chronic CRF treatment increased tau-P levels and caused globular accumulations of phosphorylated tau in dendritic and axonal processes. Furthermore, while both acute and chronic CRF treatment led to significant reduction in CREB activation and axon transport of brain-derived neurotrophic factor (BDNF, this was not the case with mitochondrial transport. Acute CRF treatment caused increased mitochondrial velocity and distance traveled in neurons, while chronic CRF treatment modestly decreased mitochondrial velocity and greatly increased distance traveled. These results suggest that transport of cellular energetics may take priority over growth factors during stress. Tau-P was required for these changes, as co-treatment of CRF with a GSK kinase inhibitor prevented CRF-induced tau-P and all axon transport changes. Collectively, our results provide mechanistic insight into the consequences of stress peptide-induced tau-P and provide an explanation for how chronic stress via CRF may lead to neuronal vulnerability in AD.

  20. Functional Impact of Corticotropin-Releasing Factor Exposure on Tau Phosphorylation and Axon Transport.

    Science.gov (United States)

    Le, Michelle H; Weissmiller, April M; Monte, Louise; Lin, Po Han; Hexom, Tia C; Natera, Orlangie; Wu, Chengbiao; Rissman, Robert A

    2016-01-01

    Stress exposure or increased levels of corticotropin-releasing factor (CRF) induce hippocampal tau phosphorylation (tau-P) in rodent models, a process that is dependent on the type-1 CRF receptor (CRFR1). Although these preclinical studies on stress-induced tau-P provide mechanistic insight for epidemiological work that identifies stress as a risk factor for Alzheimer's disease (AD), the actual impact of stress-induced tau-P on neuronal function remains unclear. To determine the functional consequences of stress-induced tau-P, we developed a novel mouse neuronal cell culture system to explore the impact of acute (0.5hr) and chronic (2hr) CRF treatment on tau-P and integral cell processes such as axon transport. Consistent with in vivo reports, we found that chronic CRF treatment increased tau-P levels and caused globular accumulations of phosphorylated tau in dendritic and axonal processes. Furthermore, while both acute and chronic CRF treatment led to significant reduction in CREB activation and axon transport of brain-derived neurotrophic factor (BDNF), this was not the case with mitochondrial transport. Acute CRF treatment caused increased mitochondrial velocity and distance traveled in neurons, while chronic CRF treatment modestly decreased mitochondrial velocity and greatly increased distance traveled. These results suggest that transport of cellular energetics may take priority over growth factors during stress. Tau-P was required for these changes, as co-treatment of CRF with a GSK kinase inhibitor prevented CRF-induced tau-P and all axon transport changes. Collectively, our results provide mechanistic insight into the consequences of stress peptide-induced tau-P and provide an explanation for how chronic stress via CRF may lead to neuronal vulnerability in AD.

  1. Isolation and characterisation of the corticotropin releasing factor receptor 1 (CRFR1) gene in a teleost fish, Fugu rubripes.

    Science.gov (United States)

    Cardoso, João C; Power, Deborah M; Elgar, Greg; Clark, Melody S

    2003-06-01

    Corticotropin releasing factor receptor (CRF) is a member of the secretin family of the G-protein coupled receptor superfamily. These are characterised by the presence of seven transmembrane domains and six conserved cysteines that are important for receptor conformation and ligand binding. IN vertebrates two CRF receptors (CRF1 and CRF2) have been isolated and characterised. In this study the complete structure of the CRF1 receptor was isolated and partially characterised for the first time in a vertebrate using the compact genome of the Japanese pufferfish, Fugu rubripes as a model. The Fugu CRF1 receptor gene is composed of 14 exons is approximately 27 kb in length. A tissue distribution of this receptor in Fugu reveals that it is expressed mainly in liver, gonads, heart and brain, however, expression in the kidney, gut and gills was also detected. In vertebrates this receptor appears to have a different tissue distribution and its presence in the gills may indicate a new role in osmoregulatory processes.

  2. Hypothalamic corticotropin-releasing factor is centrally involved in learning under moderate stress.

    Science.gov (United States)

    Lucas, Morgan; Chen, Alon; Richter-Levin, Gal

    2013-08-01

    The corticotropin-releasing factor (CRF) neuropeptide is found to have a pivotal role in the regulation of the behavioral and neuroendocrine responses to stressful challenges. Here, we studied the involvement of the hypothalamic CRF in learning under stressful conditions. We have used a site-specific viral approach to knockdown (KD) CRF expression in the paraventricular nucleus of the hypothalamus (PVN). The two-way shuttle avoidance (TWSA) task was chosen to assess learning and memory under stressful conditions. Control animals learned to shuttle from one side to the other to avoid electrical foot shock by responding to a tone. Novel object and social recognition tasks were used to assess memory under less stressful conditions. KD of PVN-CRF expression decreased the number of avoidance responses in a TWSA session under moderate (0.8 mA), but not strong (1.5 mA), stimulus intensity compared to control rats. On the other hand, KD of PVN-CRF had no effect on memory performance in the less stressful novel object or social recognition tasks. Interestingly, basal or stress-induced corticosterone levels in CRF KD rats were not significantly different from controls. Taken together, the data suggest that the observed impairment was not a result of alteration in HPA axis activity, but rather due to reduced PVN-CRF activity on other brain areas. We propose that hypothalamic CRF is centrally involved in learning under moderate stressful challenge. Under 'basal' (less stressful) conditions or when the intensity of the stress is more demanding, central CRF ceases to be the determinant factor, as was indicated by performances in the TWSA with higher stimulus intensity or in the less stressful tasks of object and social recognition.

  3. Expression of type 1 corticotropin-releasing factor receptor in the guinea pig enteric nervous system.

    Science.gov (United States)

    Liu, Sumei; Gao, Xiang; Gao, Na; Wang, Xiyu; Fang, Xiucai; Hu, Hong-Zhen; Wang, Guo-Du; Xia, Yun; Wood, Jackie D

    2005-01-17

    Reverse transcription-polymerase chain reaction (RT-PCR), immunohistochemistry, electrophysiological recording, and intraneuronal injection of the neuronal tracer biocytin were integrated in a study of the functional expression of corticotropin-releasing factor (CRF) receptors in the guinea pig enteric nervous system. RT-PCR revealed expression of CRF1 receptor mRNA, but not CRF2, in both myenteric and submucosal plexuses. Immunoreactivity for the CRF1 receptor was distributed widely in the myenteric plexus of the stomach and small and large intestine and in the submucosal plexus of the small and large intestine. CRF1 receptor immunoreactivity was coexpressed with calbindin, choline acetyltransferase, and substance P in the myenteric plexus. In the submucosal plexus, CRF1 receptor immunoreactivity was found in neurons that expressed calbindin, substance P, choline acetyltransferase, or neuropeptide Y. Application of CRF evoked slowly activating depolarizing responses associated with elevated excitability in both myenteric and submucosal neurons. Histological analysis of biocytin-filled neurons revealed that both uniaxonal neurons with S-type electrophysiological behavior and neurons with AH-type electrophysiological behavior and Dogiel II morphology responded to CRF. The CRF-evoked depolarizing responses were suppressed by the CRF1/CRF2 receptor antagonist astressin and the selective CRF1 receptor antagonist NBI27914 and were unaffected by the selective CRF2 receptor antagonist antisauvagine-30. The findings support the hypothesis that the CRF1 receptor mediates the excitatory actions of CRF on neurons in the enteric nervous system. Actions on enteric neurons might underlie the neural mechanisms by which stress-related release of CRF in the periphery alters intestinal propulsive motor function, mucosal secretion, and barrier functions.

  4. Corticotropin-releasing factor enhances locomotion and medullary neuronal firing in an amphibian.

    Science.gov (United States)

    Lowry, C A; Rose, J D; Moore, F L

    1996-03-01

    Corticotropin-releasing factor (CRF) administration has been shown to act centrally to enhance locomotion in rats and amphibians. In the present study we used an amphibian, the roughskin newt (Taricha granulosa), to characterize changes in medullary neuronal activity associated with CRF-induced walking and swimming in animals chronically implanted with fine-wire microelectrodes. Neuronal activity was recorded from the raphe and adjacent reticular region of the rostral medulla. Under baseline conditions most of the recorded neurons showed low to moderate amounts of neuronal activity during periods of immobility and pronounced increases in firing that were time-locked with episodes of walking. These neurons sometimes showed further increases in discharge during swimming. Injections of CRF but not saline into the lateral ventricle produced a rapidly appearing increase in walking and pronounced changes (mostly increases) in firing rates of the medullary neurons. CRF produced diverse changes in patterns of firing in different neurons, but for these neurons as a group, the effects of CRF showed a close temporal association with the onset and expression of the peptide's effect on locomotion. In neurons that were active exclusively during movement prior to CRF treatment, the post-CRF increase in firing was evident during episodes of walking; in other neurons that also were spontaneously active during immobility prior to CRF infusion, post-CRF activity changes were evident during immobility as well as during episodes of locomotion. Thus, a principal effect of CRF was to potentiate the level of neuronal firing in a population of medullary neurons with locomotor-related properties. Due to the route of administration CRF may have acted on multiple central nervous system sites to enhance locomotion, but the results are consistent with neurophysiological effects involving medullary locomotion-regulating neurons.

  5. Corticotropin releasing factor (CRF) modulates fear-induced alterations in sleep in mice.

    Science.gov (United States)

    Yang, Linghui; Tang, Xiangdong; Wellman, Laurie L; Liu, Xianling; Sanford, Larry D

    2009-06-18

    Contextual fear significantly reduces rapid eye movement sleep (REM) during post-exposure sleep in mice and rats. Corticotropin releasing factor (CRF) plays a major role in CNS responses to stressors. We examined the influence of CRF and astressin (AST), a non-specific CRF antagonist, on sleep after contextual fear in BALB/c mice. Male mice were implanted with transmitters for recording sleep via telemetry and with a guide cannula aimed into the lateral ventricle. Recordings for vehicle and handling control were obtained after ICV microinjection of saline (SAL) followed by exposure to a novel chamber. Afterwards, the mice were subjected to shock training (20 trials, 0.5 mA, 0.5 s duration) for 2 sessions. After training, separate groups of mice received ICV microinjections of SAL (0.2 microl, n=9), CRF (0.4 microg, n=8), or AST (1.0 microg, n=8) prior to exposure to the shock context alone. Sleep was then recorded for 20 h (8-hour light and 12-hour dark period). Compared to handling control, contextual fear significantly decreased REM during the 8-h light period in mice receiving SAL and in mice receiving CRF, but not in the mice receiving AST. Mice receiving CRF exhibited reductions in REM during the 12-h dark period after contextual fear, whereas mice receiving SAL or AST did not. CRF also reduced non-REM (NREM) delta (slow wave) amplitude in the EEG. Only mice receiving SAL prior to contextual fear exhibited significant reductions in NREM and total sleep. These findings demonstrate a role for the central CRF system in regulating alterations in sleep induced by contextual fear.

  6. Altered Responses to Cold Environment in Urocortin 1 and Corticotropin-Releasing Factor Deficient Mice

    Directory of Open Access Journals (Sweden)

    Bayan Chaker

    2013-01-01

    Full Text Available We examined core body temperature (CBT of urocortin 1 (UCN1 and corticotropin releasing factor (CRF knockout (KO mice exposed to 4°C for 2 h. UCN1KO mice showed higher average CBT during cold exposure as compared to WT. The CBT of male and female WT mice dropped significantly to 34.1 ± 2.4 and 34.9 ± 3.1 C at 4°C, respectively. In contrast, the CBT of male and female UCN1KO mice dropped only slightly after 2 h at 4°C to 36.8 ± 0.7 and 38.1 ± 0.5 C, respectively. WT female and male UCN1KO mice showed significant acclimatization to cold; however, female UCN1KO mice did not show such a significant acclimatization. CRFKO mice showed a dramatic decline in CBT from 38.2 ±  0.4 at 22°C to 26.1 ± 9.8 at 4°C for 2 h. The CRF/UCN1 double KO (dKO mice dropped their CBT to 32.5 ± 4.0 after 2 h exposure to 4°C. Dexamethasone treatment prevented the decline in CBT of the CRFKO and the dKO mice. Taken together, the data suggest a novel role for UCN1 in thermoregulation. The role of CRF is likely secondary to adrenal glucocorticoids, which have an important regulatory role on carbohydrate, fat, and protein metabolism.

  7. Delta opioid receptors colocalize with corticotropin releasing factor in hippocampal interneurons.

    Science.gov (United States)

    Williams, T J; Milner, T A

    2011-04-14

    The hippocampal formation (HF) is an important site at which stress circuits and endogenous opioid systems intersect, likely playing a critical role in the interaction between stress and drug addiction. Prior study findings suggest that the stress-related neuropeptide corticotropin releasing factor (CRF) and the delta opioid receptor (DOR) may localize to similar neuronal populations within HF lamina. Here, hippocampal sections of male and cycling female adult Sprague-Dawley rats were processed for immunolabeling using antisera directed against the DOR and CRF peptide, as well as interneuron subtype markers somatostatin or parvalbumin, and analyzed by fluorescence and electron microscopy. Both DOR- and CRF-labeling was observed in interneurons in the CA1, CA3, and dentate hilus. Males and normal cycling females displayed a similar number of CRF immunoreactive neurons co-labeled with DOR and a similar average number of CRF-labeled neurons in the dentate hilus and stratum oriens of CA1 and CA3. In addition, 70% of DOR/CRF dual-labeled neurons in the hilar region co-labeled with somatostatin, suggesting a role for these interneurons in regulating perforant path input to dentate granule cells. Ultrastructural analysis of CRF-labeled axon terminals within the hilar region revealed that proestrus females have a similar number of CRF-labeled axon terminals that contain DORs compared to males but an increased number of CRF-labeled axon terminals without DORs. Taken together, these findings suggest that while DORs are anatomically positioned to modulate CRF immunoreactive interneuron activity and CRF peptide release, their ability to exert such regulatory activity may be compromised in females when estrogen levels are high.

  8. Corticotropin-releasing factor receptor type 1 and type 2 interaction in irritable bowel syndrome.

    Science.gov (United States)

    Nozu, Tsukasa; Okumura, Toshikatsu

    2015-08-01

    Irritable bowel syndrome (IBS) displays chronic abdominal pain or discomfort with altered defecation, and stress-induced altered gut motility and visceral sensation play an important role in the pathophysiology. Corticotropin-releasing factor (CRF) is a main mediator of stress responses and mediates these gastrointestinal functional changes. CRF in brain and periphery acts through two subtype receptors such as CRF receptor type 1 (CRF1) and type 2 (CRF2), and activating CRF1 exclusively stimulates colonic motor function and induces visceral hypersensitivity. Meanwhile, several recent studies have demonstrated that CRF2 has a counter regulatory action against CRF1, which may imply that CRF2 inhibits stress response induced by CRF1 in order to prevent it from going into an overdrive state. Colonic contractility and sensation may be explained by the state of the intensity of CRF1 signaling. CRF2 signaling may play a role in CRF1-triggered enhanced colonic functions through modulation of CRF1 activity. Blocking CRF2 further enhances CRF-induced stimulation of colonic contractility and activating CRF2 inhibits stress-induced visceral sensitization. Therefore, we proposed the hypothesis, i.e., balance theory of CRF1 and CRF2 signaling as follows. Both CRF receptors may be activated simultaneously and the signaling balance of CRF1 and CRF2 may determine the functional changes of gastrointestinal tract induced by stress. CRF signaling balance might be abnormally shifted toward CRF1, leading to enhanced colonic motility and visceral sensitization in IBS. This theory may lead to understanding the pathophysiology and provide the novel therapeutic options targeting altered signaling balance of CRF1 and CRF2 in IBS.

  9. Corticotropin releasing factor dose-dependently modulates excitatory synaptic transmission in the noradrenergic nucleus locus coeruleus.

    Science.gov (United States)

    Prouty, Eric W; Waterhouse, Barry D; Chandler, Daniel J

    2017-03-01

    The noradrenergic nucleus locus coeruleus (LC) is critically involved in the stress response and receives afferent input from a number of corticotropin releasing factor (CRF) containing structures. Several in vivo and in vitro studies in rat have shown that CRF robustly increases the firing rate of LC neurons in a dose-dependent manner. While it is known that these increases are dependent on CRF receptor subtype 1 and mediated by effects of cAMP intracellular signaling cascades on potassium conductance, the impact of CRF on synaptic transmission within LC has not been clarified. In the present study, we used whole-cell patch clamp electrophysiology to assess how varying concentrations of bath-applied CRF affect AMPA-receptor dependent spontaneous excitatory post-synaptic currents (sEPSCs). Compared to vehicle, 10, 25, and 100 nm CRF had no significant effects on any sEPSC parameters. Fifty nanomolar CRF, however, significantly increased sEPSC amplitude, half-width, and charge transfer, while these measures were significantly decreased by 200 nm CRF. These observations suggest that stress may differentially affect ongoing excitatory synaptic transmission in LC depending on how much CRF is released from presynaptic terminals. Combined with the well-documented effects of CRF on membrane properties and spontaneous LC discharge, these observations may help explain how stress and CRF release are able to modulate the signal to noise ratio of LC neurons. These findings have implications for how stress affects the fidelity of signal transmission and information flow through LC and how it might impact norepinephrine release in the CNS.

  10. Synthesis and evaluation of carbamate and aryl ether substituted pyrazinones as corticotropin releasing factor-1 (CRF₁) receptor antagonists.

    Science.gov (United States)

    Ahuja, Vijay T; Hartz, Richard A; Molski, Thaddeus F; Mattson, Gail K; Lentz, Kimberley A; Grace, James E; Lodge, Nicholas J; Bronson, Joanne J; Macor, John E

    2016-05-01

    A series of pyrazinone-based compounds incorporating either carbamate or aryl ether groups was synthesized and evaluated as corticotropin-releasing factor-1 (CRF1) receptor antagonists. Structure-activity relationship studies led to the identification of highly potent CRF1 receptor antagonists 14a (IC50=0.74 nM) and 14b (IC50=1.9 nM). The synthesis, structure-activity relationships and in vitro metabolic stability properties of compounds in this series will be described. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Role of Corticotropin-releasing Factor Signaling in Stress-related Alterations of Colonic Motility and Hyperalgesia

    Science.gov (United States)

    Taché, Yvette; Million, Mulugeta

    2015-01-01

    The corticotropin-releasing factor (CRF) signaling systems encompass CRF and the structurally related peptide urocortin (Ucn) 1, 2, and 3 along with 2 G-protein coupled receptors, CRF1 and CRF2. CRF binds with high and moderate affinity to CRF1 and CRF2 receptors, respectively while Ucn1 is a high-affinity agonist at both receptors, and Ucn2 and Ucn3 are selective CRF2 agonists. The CRF systems are expressed in both the brain and the colon at the gene and protein levels. Experimental studies established that the activation of CRF1 pathway in the brain or the colon recaptures cardinal features of diarrhea predominant irritable bowel syndrome (IBS) (stimulation of colonic motility, activation of mast cells and serotonin, defecation/watery diarrhea, and visceral hyperalgesia). Conversely, selective CRF1 antagonists or CRF1/CRF2 antagonists, abolished or reduced exogenous CRF and stress-induced stimulation of colonic motility, defecation, diarrhea and colonic mast cell activation and visceral hyperalgesia to colorectal distention. By contrast, the CRF2 signaling in the colon dampened the CRF1 mediated stimulation of colonic motor function and visceral hyperalgesia. These data provide a conceptual framework that sustained activation of the CRF1 system at central and/or peripheral sites may be one of the underlying basis of IBS-diarrhea symptoms. While targeting these mechanisms by CRF1 antagonists provided a relevant novel therapeutic venue, so far these promising preclinical data have not translated into therapeutic use of CRF1 antagonists. Whether the existing or newly developed CRF1 antagonists will progress to therapeutic benefits for stress-sensitive diseases including IBS for a subset of patients is still a work in progress. PMID:25611064

  12. Urocortin 1, urocortin 3/stresscopin, and corticotropin-releasing factor receptors in human adrenal and its disorders.

    Science.gov (United States)

    Fukuda, Tsuyoshi; Takahashi, Kazuhiro; Suzuki, Takashi; Saruta, Masayuki; Watanabe, Mika; Nakata, Taisuke; Sasano, Hironobu

    2005-08-01

    Urocortin 1 (Ucn1) and urocortin 3 (Ucn3)/stresscopin are new members of the corticotropin-releasing factor (CRF) neuropeptide family. Ucn1 binds to both CRF type 1 (CRF1) and type 2 receptors (CRF2), whereas Ucn3 is a specific agonist for CRF2. Recently, direct involvement of the locally synthesized CRF family in adrenocortical function has been proposed. We examined in situ expression of Ucn and CRF receptors in nonpathological human adrenal gland and its disorders using immunohistochemistry and mRNA in situ hybridization. Ucn immunoreactivity was localized in the cortex and medulla of nonpathological adrenal glands. Ucn1 immunoreactivity was marked in the medulla, whereas Ucn3 was immunostained mostly in the cortex. Both CRF type 1 and CRF2 were expressed in the cortex, particularly in the zonae fasciculata and reticularis but very weakly or undetectably in the medulla. Immunohistochemistry in serial tissue sections with mirror images revealed that both Ucn3 and CRF2 were colocalized in more than 85% of the adrenocortical cells. mRNA in situ hybridization confirmed these findings above. In fetal adrenals, Ucn and CRF receptors were expressed in both fetal and definitive zones of the cortex. Ucn and CRF receptors were all expressed in the tumor cells of pheochromocytomas, adrenocortical adenomas, and carcinomas, but its positivity was less than that in nonpathological adrenal glands, suggesting that Ucn1, Ucn3, and CRF receptors were down-regulated in these adrenal neoplasms. Ucn1, Ucn3, and CRF receptors are all expressed in human adrenal cortex and medulla and may play important roles in physiological adrenal functions.

  13. Chronic stress induces sex-specific alterations in methylation and expression of corticotropin-releasing factor gene in the rat.

    Directory of Open Access Journals (Sweden)

    Linda Sterrenburg

    Full Text Available BACKGROUND: Although the higher prevalence of depression in women than in men is well known, the neuronal basis of this sex difference is largely elusive. METHODS: Male and female rats were exposed to chronic variable mild stress (CVMS after which immediate early gene products, corticotropin-releasing factor (CRF mRNA and peptide, various epigenetic-associated enzymes and DNA methylation of the Crf gene were determined in the hypothalamic paraventricular nucleus (PVN, oval (BSTov and fusiform (BSTfu parts of the bed nucleus of the stria terminalis, and central amygdala (CeA. RESULTS: CVMS induced site-specific changes in Crf gene methylation in all brain centers studied in female rats and in the male BST and CeA, whereas the histone acetyltransferase, CREB-binding protein was increased in the female BST and the histone-deacetylase-5 decreased in the male CeA. These changes were accompanied by an increased amount of c-Fos in the PVN, BSTfu and CeA in males, and of FosB in the PVN of both sexes and in the male BSTov and BSTfu. In the PVN, CVMS increased CRF mRNA in males and CRF peptide decreased in females. CONCLUSIONS: The data confirm our hypothesis that chronic stress affects gene expression and CRF transcriptional, translational and secretory activities in the PVN, BSTov, BSTfu and CeA, in a brain center-specific and sex-specific manner. Brain region-specific and sex-specific changes in epigenetic activity and neuronal activation may play, too, an important role in the sex specificity of the stress response and the susceptibility to depression.

  14. Over-expression of corticotropin-releasing factor mRNA in inferior olivary neurons of rolling mouse Nagoya.

    Science.gov (United States)

    Sawada, Kazuhiko; Kawano, Michihiro; Tsuji, Hiroshi; Sakata-Haga, Hiromi; Hisano, Setsuji; Fukui, Yoshihiro

    2003-10-01

    Expression of corticotropin-releasing factor (CRF) mRNA was examined in the inferior olivary nucleus (ION) of an ataxic mutant, rolling mouse Nagoya (RMN) by semi-quantitative in situ hybridization. The most marked difference in the level of CRF mRNA signals between RMN and non-ataxic littermates (control mice) was observed in the beta-subnucleus and ventrolateral protrusion of the ION. The level of signals in these subnuclei was about twofold higher in RMN than in the controls. Signal levels in the dorsal nucleus, principal nucleus and subnucleus A were slightly but significantly higher in RMN than in the controls. In the other subnuclei, there were no differences in signal level between RMN and controls. These results suggest a region-related over-expression of CRF mRNA in the ION of RMN. This may be responsible for the increased sensitivity of some Purkinje cells to glutamate, resulting in ataxic symptoms of RMN.

  15. Effects of morphine on hypothalamic corticotropin-releasing factor (CRF, norepinephrine and dopamine in non-stressed and stressed rats.

    Directory of Open Access Journals (Sweden)

    Suemaru,Shuso

    1985-12-01

    Full Text Available The effects of morphine on the hypothalamic corticotropin-releasing factor (CRF, norepinephrine (NE and dopamine (DA concentrations were investigated in non-stressed and stressed rats. Acutely administered morphine stimulated both the synthesis and release of CRF in the hypothalamus, thereby activating the pituitary-adrenocortical system in non-stressed rats, but inhibited the stress-induced CRF synthesis and ACTH-corticosterone secretion. Either a morphine or ether-laparotomy stress reduced NE and DA concentrations in the hypothalamus. A pretreatment with morphine inhibited the stress-induced reduction in the hypothalamic NE and DA concentrations, and induced a significant increase in the DA concentration. These observations suggest that hypothalamic NE and DA are involved in morphine-induced changes in hypothalamo-pituitary-adrenocortical (HPA activity and that endogenous opiates have a role in regulating CRF secretion by interacting with hypothalamic biogenic amines.

  16. Pavlovian conditioning of corticotropin-releasing factor-induced increase of blood pressure and corticosterone secretion in the rat.

    Science.gov (United States)

    Kreutz, M; Hellhammer, D; Murison, R; Vetter, H; Krause, U; Lehnert, H

    1992-05-01

    Corticotropin-releasing factor (CRF) is clearly involved in the central regulation of the pituitary-adrenal axis and, moreover, of autonomic nervous system functions. Enhanced sympathetic activity with subsequent increases in blood pressure and heart rate and attenuation of the baroreceptor reflex results from the intracerebroventricular (i.c.v.) administration of CRF. Additionally, the peptide has a variety of potent effects on behavioural responses in animals similar to those observed after an experimentally evoked stress. It was therefore of obvious interest to examine whether CRF is a possible mediator of the learning processes associated with physiological stress reaction patterns. This report clearly demonstrates a classical conditioning of the endocrine (i.e. corticosterone secretion) and haemodynamic (i.e. blood pressure) sequelae following central CRF application and thus indicates that this mechanism is of physiological significance for learned stress responses.

  17. Effect of central corticotropin releasing factor on hepatic circulation in rats: the role of the CRF2 receptor in the brain

    OpenAIRE

    2005-01-01

    Backgrounds: Corticotropin releasing factor (CRF) is distributed in the central nervous system and acts as a neurotransmitter to regulate gastric functions through vagal-muscarinic pathways. We have recently demonstrated that central CRF aggravates experimental acute liver injury in rats. In the present study, the central effect of CRF on hepatic circulation was investigated.

  18. Colorectal distention induces acute and delayed visceral hypersensitivity: role of peripheral corticotropin-releasing factor and interleukin-1 in rats.

    Science.gov (United States)

    Nozu, Tsukasa; Kumei, Shima; Miyagishi, Saori; Takakusaki, Kaoru; Okumura, Toshikatsu

    2015-12-01

    Most studies evaluating visceral sensation measure visceromotor response (VMR) to colorectal distention (CRD). However, CRD itself induces visceral sensitization, and little is known about the detailed characteristics of this response. The present study tried to clarify this question. VMR was determined by measuring abdominal muscle contractions as a response to CRD in rats. The CRD set consisted of two isobaric distentions (60 mmHg for 10 min twice, with a 30-min rest), and the CRD set was performed on two separate days, i.e., days 1 and 3, 8. On day 1, VMR to the second CRD was increased as compared with that to the first CRD, which is the acute sensitization. VMR to the first CRD on day 3 returned to the same level as that to the first CRD on day 1, and total VMR, i.e., the whole response to the CRD set, was not different between day 1 and day 3. However, total VMR was significantly increased on day 8 as compared with that on day 1, suggesting CRD induced the delayed sensitization. Intraperitoneally administered astressin (200 µg/kg), a corticotropin-releasing factor receptor antagonist, at the end of the first CRD blocked the acute sensitization, but anakinra (20 mg/kg, intraperitoneally), an interleukin-1 receptor antagonist, did not modify it. Astressin (200 µg/kg, twice before CRD on day 8) did not alter the delayed sensitization, but anakinra (20 mg/kg, twice) abolished it. CRD induced both acute sensitization and delayed sensitization, which were mediated through peripheral corticotropin-releasing factor and interleukin-1 pathways, respectively.

  19. Chronic traumatic stress impairs memory in mice: Potential roles of acetylcholine, neuroinflammation and corticotropin releasing factor expression in the hippocampus.

    Science.gov (United States)

    Bhakta, Ami; Gavini, Kartheek; Yang, Euitaek; Lyman-Henley, Lani; Parameshwaran, Kodeeswaran

    2017-09-29

    Chronic stress in humans can result in multiple adverse psychiatric and neurobiological outcomes, including memory deficits. These adverse outcomes can be more severe if each episode of stress is very traumatic. When compared to acute or short term stress relatively little is known about the effects of chronic traumatic stress on memory and molecular changes in hippocampus, a brain area involved in memory processing. Here we studied the effects of chronic traumatic stress in mice by exposing them to adult Long Evan rats for 28 consecutive days and subsequently analyzing behavioral outcomes and the changes in the hippocampus. Results show that stressed mice developed memory deficits when assayed with radial arm maze tasks. However, chronic traumatic stress did not induce anxiety, locomotor hyperactivity or anhedonia. In the hippocampus of stressed mice interleukin-1β protein expression was increased along with decreased corticotropin releasing hormone (CRH) gene expression. Furthermore, there was a reduction in acetylcholine levels in the hippocampus of stressed mice. There were no changes in brain derived neurotrophic factor (BDNF) or nerve growth factor (NGF) levels in the hippocampus of stressed mice. Gene expression of immediate early genes (Zif268, Arc, C-Fos) as well as glucocorticoid and mineralocorticoid receptors were also not affected by chronic stress. These data demonstrate that chronic traumatic stress followed by a recovery period might lead to development of resilience resulting in the development of selected, most vulnerable behavioral alterations and molecular changes in the hippocampus. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. HANS SELYE AND THE STRESS RESPONSE: FROM "THE FIRST MEDIATOR" TO THE IDENTIFICATION OF THE HYPOTHALAMIC CORTICOTROPIN-RELEASING FACTOR.

    Science.gov (United States)

    Tachè, Yvette

    2014-03-30

    Selye pioneered the stress concept that is ingrained in the vocabulary of daily life. This was originally build on experimental observations that divers noxious agents can trigger a similar triad of endocrine (adrenal enlargement), immune (involution of thymus) and gut (gastric erosion formation) responses as reported in a letter to Nature in 1936. Subsequently, he articulated the underlying mechanisms and hypothesized the existence of a "first mediator" in the hypothalamus able to orchestrate this bodily changes. However he took two generations to identify this mediator. The Nobel Laureate, Roger Guillemin, a former Selye's PhD student, demonstrated in 1955 the existence of a hypothalamic factor that elicited adrenocorticotropic hormone release from the rat pituitary and named it corticotropin releasing factor (CRF). In 1981, Wylie Vale, a former Guillemin's Ph Student, characterized CRF as 41 amino acid and cloned the CRF1 and CRF2 receptors. This paves the way to experimental studies establishing that the activation of the CRF signaling pathways in the brain plays a key role in mediating the stress-related endocrine, behavioral, autonomic and visceral responses. The unraveling of the biochemical coding of stress is rooted in Selye legacy continues to have increasing impact on the scientific community.

  1. Angiotensin type 1a receptors on corticotropin-releasing factor neurons contribute to the expression of conditioned fear.

    Science.gov (United States)

    Hurt, R C; Garrett, J C; Keifer, O P; Linares, A; Couling, L; Speth, R C; Ressler, K J; Marvar, P J

    2015-09-01

    Although generally associated with cardiovascular regulation, angiotensin II receptor type 1a (AT1a R) blockade in mouse models and humans has also been associated with enhanced fear extinction and decreased post-traumatic stress disorder (PTSD) symptom severity, respectively. The mechanisms mediating these effects remain unknown, but may involve alterations in the activities of corticotropin-releasing factor (CRF)-expressing cells, which are known to be involved in fear regulation. To test the hypothesis that AT1a R signaling in CRFergic neurons is involved in conditioned fear expression, we generated and characterized a conditional knockout mouse strain with a deletion of the AT1a R gene from its CRF-releasing cells (CRF-AT1a R((-/-)) ). These mice exhibit normal baseline heart rate, blood pressure, anxiety and locomotion, and freeze at normal levels during acquisition of auditory fear conditioning. However, CRF-AT1a R((-/-)) mice exhibit less freezing than wild-type mice during tests of conditioned fear expression-an effect that may be caused by a decrease in the consolidation of fear memory. These results suggest that central AT1a R activity in CRF-expressing cells plays a role in the expression of conditioned fear, and identify CRFergic cells as a population on which AT1 R antagonists may act to modulate fear extinction. © 2015 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  2. Tissue plasminogen activator promotes the effects of corticotropin-releasing factor on the amygdala and anxiety-like behavior.

    Science.gov (United States)

    Matys, Tomasz; Pawlak, Robert; Matys, Elzbieta; Pavlides, Constantine; McEwen, Bruce S; Strickland, Sidney

    2004-11-16

    Stress-induced plasticity in the brain requires a precisely orchestrated sequence of cellular events involving novel as well as well known mediators. We have previously demonstrated that tissue plasminogen activator (tPA) in the amygdala promotes stress-induced synaptic plasticity and anxiety-like behavior. Here, we show that tPA activity in the amygdala is up-regulated by a major stress neuromodulator, corticotropin-releasing factor (CRF), acting on CRF type-1 receptors. Compared with WT, tPA-deficient mice responded to CRF treatment with attenuated expression of c-fos (an indicator of neuronal activation) in the central and medial amygdala but had normal c-fos responses in paraventricular nuclei. They exhibited reduced anxiety-like behavior to CRF but had a sustained corticosterone response after CRF administration. This effect of tPA deficiency was not mediated by plasminogen, because plasminogen-deficient mice demonstrated normal behavioral and hormonal changes to CRF. These studies establish tPA as an important mediator of cellular, behavioral, and hormonal responses to CRF.

  3. Hypothalamic corticotropin-releasing factor immunoreactivity is reduced during induction of pituitary tumors by chronic estrogen treatment

    Energy Technology Data Exchange (ETDEWEB)

    Haas, D.A.; Borgundvaag, B.; Sturtridge, W.C.; George, S.R.

    1987-11-02

    The role that estrogen plays in the regulation of corticotropin-releasing factor (CRF) is not known. A radioimmunoassay specific for rat CRF was utilized to measure the CRF-like immunoreactivity (CRF-ir) in the hypothalamus of ovariectomized rats treated with estradiol for periods up to 12 weeks. Compared to ovariectomized controls, estradiol treatment resulted in significantly reduced CRF-ir after 3 and 12 weeks, although no significant change was seen after 8 weeks. Anterior pituitary (AP) weight was greatly increased by estradiol treatment at all time points studied. Bromocriptine treatment for the last 3 weeks of the 12-week period, or removal of estradiol for 3 weeks after 9 weeks of treatment did not reverse the changes in CRF-ir even though significant regressions of tumor size was achieved. There was no correlation between AP weight and CRF-ir in individual animals. These data show that chronic treatment with estrogen reduced hypothalamic CRF-ir content. Neither a direct estrogenic effect or an indirect effect mediated through alterations in the adenohypophysis could be ruled out. 21 references, 3 figures.

  4. Cerebrospinal fluid corticotropin-releasing factor and perceived early-life stress in depressed patients and healthy control subjects.

    Science.gov (United States)

    Carpenter, Linda L; Tyrka, Audrey R; McDougle, Christopher J; Malison, Robert T; Owens, Michael J; Nemeroff, Charles B; Price, Lawrence H

    2004-04-01

    Previous studies have reported elevated concentrations of cerebrospinal fluid (CSF) corticotropin-releasing factor (CRF) in patients with major depression. Elevations of CSF CRF have also been reported in adult laboratory animals exposed to the stress of brief maternal deprivation or maternal neglect in the neonatal or preweaning period. The present study was designed to determine whether major depression and a history of perceived early adversity in childhood are independently associated with elevated CSF CRF concentrations in adults. In this case-control study, 27 medication-free adults with major depression and 25 matched controls underwent standardized lumbar puncture for collection of a single CSF sample at 1200. Subjects provided data about significant adverse early-life experiences and rated their global perceived level of stress during pre-school and preteen years on a six-point Likert scale. The mean difference in CSF CRF between depressed patients and controls did not reach statistical significance. In a regression model, perceived early-life stress was a significant predictor of CSF CRF, but depression was not. Perinatal adversity and perceived adversity in the preteen adversity years (ages 6-13 years) were both independently associated with decreasing CSF CRF concentrations. The relationship observed between perceived early-life stress and adult CSF CRF concentrations in this study closely parallels recent preclinical findings. More work is needed to elucidate the critical nature and timing of early events that may be associated with enduring neuroendocrine changes in humans.

  5. Noradrenergic inhibition of canine gallbladder contraction and murine pancreatic secretion during stress by corticotropin-releasing factor.

    Science.gov (United States)

    Lenz, H J; Messmer, B; Zimmerman, F G

    1992-02-01

    Gastrointestinal secretory and motor responses are profoundly altered during stress; but the effects of stress and its mediator(s) on the two major gut functions, exocrine pancreatic secretion and gallbladder motility, are unknown. We therefore developed two animal models that allowed us to examine the effects of acoustic stress on canine gallbladder contraction and restraint stress on rat exocrine pancreatic secretion. Acoustic stress inhibited cholecystokinin-8 (CCK)- and meal-induced gallbladder contraction, and restraint stress inhibited basal and CCK/secretin-stimulated pancreatic secretion. These inhibitory responses were mimicked by cerebral injection of corticotropin-releasing factor (CRF) and abolished by the CRF antagonist, alpha-helical CRF-(9-41). The effects of stress and exogenous CRF were simulated by intravenous infusion of norepinephrine but prevented by ganglionic, noradrenergic, and alpha-adrenergic but not beta-adrenergic receptor blockade. Vagotomy, adrenalectomy, and--in rats--hypophysectomy did not alter the effects produced by stress and CRF. These results indicate that endogenous CRF released in response to different stressors in distinct species inhibits canine gallbladder contraction and murine exocrine pancreatic secretion via activation of sympathetic efferents. Release of norepinephrine appears to be the final common pathway producing inhibition of biliary and pancreatic digestive function during stress mediated by cerebral CRF.

  6. Differential stress-induced alterations of colonic corticotropin-releasing factor receptors in the Wistar Kyoto rat.

    Science.gov (United States)

    o'malley, D; Julio-Pieper, M; Gibney, S M; Gosselin, R D; Dinan, T G; Cryan, J F

    2010-03-01

    BACKGROUND A growing body of data implicates increased life stresses with the initiation, persistence and severity of symptoms associated with functional gut disorders such as irritable bowel syndrome (IBS). Activation of central and peripheral corticotropin-releasing factor (CRF) receptors is key to stress-induced changes in gastrointestinal (GI) function. METHODS This study utilised immunofluorescent and Western blotting techniques to investigate colonic expression of CRF receptors in stress-sensitive Wistar Kyoto (WKY) and control Sprague Dawley (SD) rats. KEY RESULTS No intra-strain differences were observed in the numbers of colonic CRFR1 and CRFR2 positive cells. Protein expression of functional CRFR1 was found to be comparable in control proximal and distal colon samples. Sham levels of CRFR1 were also similar in the proximal colon but significantly higher in WKY distal colons (SD: 0.38 +/- 0.14, WKY: 2.06 +/- 0.52, P CRF receptor expression and further support a role for local colonic CRF signalling in stress-induced changes in GI function.

  7. Corticotropin-Releasing Factor-Overexpressing Mice Exhibit Reduced Neuronal Activation in the Arcuate Nucleus and Food Intake in Response to Fasting

    OpenAIRE

    2008-01-01

    Corticotropin-releasing factor (CRF) overexpressing (OE) mice are a genetic model that exhibits features of chronic stress. We investigated whether the adaptive feeding response to a hypocaloric challenge induced by food deprivation is impaired under conditions of chronic CRF overproduction. Food intake response to a 16-h overnight fast and ip injection of gut hormones regulating food intake were compared in CRF-OE and wild type (WT) littermate mice along with brain Fos expression, circulatin...

  8. Stress-related modulation of inflammation in experimental models of bowel disease and post-infectious irritable bowel syndrome: role of corticotropin releasing factor receptors

    OpenAIRE

    2009-01-01

    The interaction between gut inflammatory processes and stress is gaining increasing recognition. Corticotropin releasing factor (CRF)-receptor activation in the brain is well established as a key signaling pathway initiating the various components of the stress response including in the viscera. In addition, a local CRF signaling system has been recently established in the gut. This review summarize the present knowledge on mechanisms through which both brain and gut CRF receptors modulate in...

  9. The hypothalamo-hypophyseal system of the white seabream Diplodus sargus: immunocytochemical identification of arginine-vasotocin, isotocin, melanin-concentrating hormone and corticotropin-releasing factor.

    Science.gov (United States)

    Duarte, G; Segura-Noguera, M M; Martín del Río, M P; Mancera, J M

    2001-01-01

    The distribution of the neurosecretory hormones vasotocin, isotocin and melanin-concentrating hormone and the hypophysiotropic hormone corticotropin-releasing factor was studied in the hypothalamo-hypophyseal system of the white seabream (Diplodus sargus) using immunocytochemical techniques. Magnocellular and parvocellular perikarya immunoreactive for arginine-vasotocin and isotocin were present in the nucleus preopticus. Perikarya immunoreactive for arginine-vasotocin extended more caudally with respect to isotocin-immunoreactive perikarya. Parvocellular perikarya were located at rostroventral levels and magnocellular perikarya in the dorsocaudal portion of the nucleus. Arginine-vasotocin and isotocin did not coexist in the same neuron. Fibres immunoreactive for arginine-vasotocin and isotocin innervated all areas of neurohypophysis and terminate close to corticotropic and melanotropic cells. Perikarya immunoreactive for melanin-concentrating hormone and corticotropin-releasing factor were observed in the nucleus lateralis tuberis, with a few neurons in the nucleus periventricularis posterior. In addition, melanin-concentrating hormone immunoreactive perikarya were detected in the nucleus recessus lateralis. The preoptic nucleus did not show immunoreactivity for these antisera. Fibres showing melanin-concentrating hormone and corticotropin-releasing factor immunoreactivity ended close to the melanotropic and somatolactotrophic cells of the pars intermedia, and close to the corticotrophic cells of the rostral pars distalis.

  10. Immunolocalization of corticotropin-releasing factor (CRF) and corticotropin-releasing factor receptor 2 (CRF-R2) in the developing gut of the sea bass (Dicentrarchus labrax L.).

    Science.gov (United States)

    Mola, Lucrezia; Gambarelli, Andrea; Pederzoli, Aurora

    2011-05-01

    Our previous data indicated an important role for adrenocorticotropic (ACTH)-like molecules co-operating with macrophages to control the modifications in body homeostasis during the first period of the life of sea bass (up to 30 days post-hatching) before the lymphoid cells have reached complete maturation. The aim of the study was to determine the immunolocalization of corticotropin-releasing factor (CRF), which is a very important mediator of stress-related responses. Our data showed that immunostaining for CRF is localized already at 8 days after hatching in nerve fibers of the gastrointestinal tract wall from the pharynx to the anterior gut, when the larvae are still feeding on yolk. This pattern of immunolocalization appeared similar to that in 24-day-old larvae, but at this stage there were also large cells immunopositive to CRF located in the wall of the midgut and hindgut. Lipopolysaccharide (LPS) treatment, which is a known stimulator of stress hormone responses, did not modify the CRF immunostaining pattern, though it did affect the immunolocalization of the peripheral CRF receptor, i.e. CRF-R2. Immunolocalization of CRF-R2 appeared in nerve fibers of the gut wall in larvae fixed 1h after the end of lipopolysaccharide (LPS) treatment. The present results suggest that CRF plays important autocrine and/or paracrine roles in the early immune responses at the gut level in the larval stages of sea bass (Dicentrarchus labrax L.) as already proposed for ACTH. Moreover, our studies taken together with other research on fish, in comparison with mammals, suggest a phylogenetically old role of CRF in immune-endocrine interactions.

  11. Increased depression-like behaviors in corticotropin-releasing factor receptor-2-deficient mice: sexually dichotomous responses.

    Science.gov (United States)

    Bale, Tracy L; Vale, Wylie W

    2003-06-15

    Depressive disorders affect nearly 19 million American adults, making depression and the susceptibility for developing depression a critical focus of mental health research today. Females are twice as likely to develop depression as males. Stress is a known risk factor for developing depression, and recent hypotheses suggest an involvement of an overactive stress axis. As mediators of the stress response, corticotropin-releasing factor (CRF) and its receptors (CRFR1 and CRFR2) have been implicated in the propensity for developing stress-related mood disorders. Mice deficient in CRFR2 display increased anxiety-like behaviors and a hypersensitive stress response. As a possible animal model of depression, these mice were tested for depression-like behaviors in the forced swim test. Comparisons were made between wild-type and mutant animals, as well as between sexes. Male and female CRFR2-mutant mice showed increased immobility as an indicator of depression compared with wild-type mice of the same sex. In addition, mutant and wild-type female mice demonstrated increased immobile time compared with males of the same genotype. Treatment of CRFR2-deficient mice with the CRFR1 antagonist antalarmin decreased immobile time and increased swim time in both sexes. We found a significant effect of sex for both time spent immobile and swimming after antalarmin treatment. Because differences in behaviors in the forced swim test are good indicators of serotonergic and catecholaminergic involvement, our results may reveal an interaction of CRF pathways with other known antidepressant systems and may also support an involvement of CRF receptors in the development of depression such that elevated CRFR1 activity, in the absence of CRFR2, increases depression-like behaviors.

  12. Traumatic Stress Promotes Hyperalgesia via Corticotropin-Releasing Factor-1 Receptor (CRFR1) Signaling in Central Amygdala.

    Science.gov (United States)

    Itoga, Christy A; Roltsch Hellard, Emily A; Whitaker, Annie M; Lu, Yi-Ling; Schreiber, Allyson L; Baynes, Brittni B; Baiamonte, Brandon A; Richardson, Heather N; Gilpin, Nicholas W

    2016-09-01

    Hyperalgesia is an exaggerated response to noxious stimuli produced by peripheral or central plasticity. Stress modifies nociception, and humans with post-traumatic stress disorder (PTSD) exhibit co-morbid chronic pain and amygdala dysregulation. Predator odor stress produces hyperalgesia in rodents. Systemic blockade of corticotropin-releasing factor (CRF) type 1 receptors (CRFR1s) reduces stress-induced thermal hyperalgesia. We hypothesized that CRF-CRFR1 signaling in central amygdala (CeA) mediates stress-induced hyperalgesia in rats with high stress reactivity. Adult male Wistar rats were exposed to predator odor stress in a conditioned place avoidance paradigm and indexed for high (Avoiders) and low (Non-Avoiders) avoidance of predator odor-paired context, or were unstressed Controls. Rats were tested for the latency to withdraw hindpaws from thermal stimuli (Hargreaves test). We used pharmacological, molecular, and immunohistochemical techniques to assess the role of CRF-CRFR1 signaling in CeA in stress-induced hyperalgesia. Avoiders exhibited higher CRF peptide levels in CeA that did not appear to be locally synthesized. Intra-CeA CRF infusion mimicked stress-induced hyperalgesia. Avoiders exhibited thermal hyperalgesia that was reversed by systemic or intra-CeA injection of a CRFR1 antagonist. Finally, intra-CeA infusion of tetrodotoxin produced thermal hyperalgesia in unstressed rats and blocked the anti-hyperalgesic effect of systemic CRFR1 antagonist in stressed rats. These data suggest that rats with high stress reactivity exhibit hyperalgesia that is mediated by CRF-CRFR1 signaling in CeA.

  13. Distribution and chemical coding of corticotropin-releasing factor-immunoreactive neurons in the guinea pig enteric nervous system.

    Science.gov (United States)

    Liu, Sumei; Gao, Na; Hu, Hong-Zhen; Wang, Xiyu; Wang, Guo-Du; Fang, Xiucai; Gao, Xiang; Xia, Yun; Wood, Jackie D

    2006-01-01

    Immunofluorescence was used to study immunoreactivity (IR) for corticotropin-releasing factor (CRF) in the guinea pig enteric nervous system. CRF-IR was expressed in both the myenteric and the submucosal plexuses of all regions of the large and small intestine and the myenteric plexus of the stomach. CRF-IR nerve fibers were present in the myenteric and submucosal plexuses, in the circular muscle coat, and surrounding submucosal arterioles. Most of the CRF-IR fibers persisted in the myenteric and submucosal plexuses after 7 days in organotypic culture. CRF-IR was not coexpressed with tyrosine hydroxylase-IR or calcitonin gene-related peptide-IR fibers. The proportions of CRF-IR cell bodies in the myenteric plexus increased progressively from the stomach (0.6%) to the distal colon (2.8%). Most of the CRF-IR myenteric neurons (95%) had uniaxonal morphology; the remainder had Dogiel type II multipolar morphology. CRF-IR cell bodies in the myenteric plexus of the ileum expressed IR for choline acetyltransferase (56.9%), substance P (55.0%), and nitric oxide synthase (37.9%). CRF-IR never colocalized with IR for calbindin, calretinin, neuropeptide Y, serotonin, or somatostatin in the myenteric plexus. CRF-IR cell bodies were more abundant in the submucosal plexus (29.9-38.0%) than in the myenteric plexus. All CRF-IR neurons in submucosal ganglia expressed vasoactive intestinal peptide-IR and were likely to be secretomotor/vasodilator neurons. CRF-IR neurons did not express IR for the CRF(1) receptor. CRF(1)-IR was expressed in neuronal neighbors of those with CRF-IR. Collective evidence suggests that VIPergic secretomotor neurons might provide synaptic input to neighboring cholinergic neurons.

  14. Role of Corticotropin Releasing Factor 1 Signaling in Cocaine Seeking during Early Extinction in Female and Male Rats.

    Directory of Open Access Journals (Sweden)

    Angie M Cason

    Full Text Available Locus coeruleus norepinephrine (LC-NE and corticotropin releasing factor (CRF neurons are involved in stress responses, including stress's ability to drive drug relapse. Previous animal studies indicate that female rats exhibit greater drug seeking than male rats during initial drug abstinence. Moreover, females are more sensitive to the effect of stress to drive drug seeking than males. Finally, LC-NE neurons are more sensitive to CRF in females compared to males. We hypothesized that increased drug seeking in females on extinction day one (ED1 is due to increased response to the stress of early withdrawal and is dependent upon the increased response of LC in females to CRF. We predicted that LC-NE neurons would exhibit Fos activation on ED1, and that blocking CRF1 signaling would decrease drug seeking on ED1 measured by responding on an active lever previously associated with cocaine self- administration. After chronic cocaine self-administration, female and male rats underwent a test for initial extinction responding by measuring lever pressing in the absence of cocaine. Prior to this Extinction Day 1 (ED1 session, rats were injected with vehicle or the selective CRF1 antagonist (CP to measure effects of CRF antagonism on drug seeking during early abstinence. ED1 increased corticosterone in female rats, in proportion to lever responding in male and female, indicating that ED1 was stressful. Pretreatment with CP decreased cocaine seeking on ED1 more effectively in female compared to male rats. This increase in responding was associated with an increase in activation of LC NE neurons. Together, these findings indicate that stress, and signaling at CRF receptors in LC, may be involved in the increased drug seeking during initial abstinence.

  15. Predator stress engages corticotropin-releasing factor and opioid systems to alter the operating mode of locus coeruleus norepinephrine neurons.

    Science.gov (United States)

    Curtis, Andre L; Leiser, Steven C; Snyder, Kevin; Valentino, Rita J

    2012-03-01

    The norepinephrine nucleus, locus coeruleus (LC), has been implicated in cognitive aspects of the stress response, in part through its regulation by the stress-related neuropeptide, corticotropin-releasing factor (CRF). LC neurons discharge in tonic and phasic modes that differentially modulate attention and behavior. Here, the effects of exposure to an ethologically relevant stressor, predator odor, on spontaneous (tonic) and auditory-evoked (phasic) LC discharge were characterized in unanesthetized rats. Similar to the effects of CRF, stressor presentation increased tonic LC discharge and decreased phasic auditory-evoked discharge, thereby decreasing the signal-to-noise ratio of the sensory response. This stress-induced shift in LC discharge toward a high tonic mode was prevented by a CRF antagonist. Moreover, CRF antagonism during stress unmasked a large decrease in tonic discharge rate that was opioid mediated because it was prevented by pretreatment with the opiate antagonist, naloxone. Elimination of both CRF and opioid influences with an antagonist combination rendered LC activity unaffected by the stressor. These results demonstrate that both CRF and opioid afferents are engaged during stress to fine-tune LC activity. The predominant CRF influence shifts the operational mode of LC activity toward a high tonic state that is thought to facilitate behavioral flexibility and may be adaptive in coping with the stressor. Simultaneously, stress engages an opposing opioid influence that restrains the CRF influence and may facilitate recovery toward pre-stress levels of activity. Changes in the balance of CRF:opioid regulation of the LC could have consequences for stress vulnerability.

  16. Suppression of piriform cortex activity in rat by corticotropin-releasing factor 1 and serotonin 2A/C receptors.

    Science.gov (United States)

    Narla, Chakravarthi; Dunn, Henry A; Ferguson, Stephen S G; Poulter, Michael O

    2015-01-01

    The piriform cortex (PC) is richly innervated by corticotropin-releasing factor (CRF) and serotonin (5-HT) containing axons arising from central amygdala and Raphe nucleus. CRFR1 and 5-HT2A/2CRs have been shown to interact in manner where CRFR activation subsequently potentiates the activity of 5-HT2A/2CRs. The purpose of this study was to determine how the activation of CRFR1 and/or 5-HT2Rs modulates PC activity at both the circuit and cellular level. Voltage sensitive dye imaging showed that CRF acting through CRFR1 dampened activation of the Layer II of PC and interneurons of endopiriform nucleus. Application of the selective 5-HT2A/CR agonist 2,5-dimethoxy-4-iodoamphetamine (DOI) following CRFR1 activation potentiated this effect. Blocking the interaction between CRFR1 and 5-HT2R with a Tat-CRFR1-CT peptide abolished this potentiation. Application of forskolin did not mimic CRFR1 activity but instead blocked it, while a protein kinase A antagonist had no effect. However, activation and antagonism of protein kinase C (PKC) either mimicked or blocked CRF modulation, respectively. DOI had no effect when applied alone indicating that the prior activation of CRFR1 receptors was critical for DOI to show significant effects similar to CRF. Patch clamp recordings showed that both CRF and DOI reduced the synaptic responsiveness of Layer II pyramidal neurons. CRF had highly variable effects on interneurons within Layer III, both increasing and decreasing their excitability, but DOI had no effect on the excitability of this group of neurons. These data show that CRF and 5-HT, acting through both CRFR1 and 5-HT2A/CRs, reduce the activation of the PC. This modulation may be an important blunting mechanism of stressor behaviors mediated through the olfactory cortex.

  17. Constitutive Increases in Amygdalar Corticotropin-Releasing Factor and Fatty Acid Amide Hydrolase Drive an Anxious Phenotype.

    Science.gov (United States)

    Natividad, Luis A; Buczynski, Matthew W; Herman, Melissa A; Kirson, Dean; Oleata, Christopher S; Irimia, Cristina; Polis, Ilham; Ciccocioppo, Roberto; Roberto, Marisa; Parsons, Loren H

    2017-10-01

    Corticotropin-releasing factor (CRF) mediates anxiogenic responses by activating CRF type 1 (CRF1) receptors in limbic brain regions. Anxiety is further modulated by the endogenous cannabinoid (eCB) system that attenuates the synaptic effects of stress. In the amygdala, acute stress activates the enzymatic clearance of the eCB N-arachidonoylethanolamine via fatty acid amide hydrolase (FAAH), although it is unclear whether chronic dysregulation of CRF systems induces maladaptive changes in amygdalar eCB signaling. Here, we used genetically selected Marchigian Sardinian P (msP) rats carrying an innate overexpression of CRF1 receptors to study the role of constitutive upregulation in CRF systems on amygdalar eCB function and persistent anxiety-like effects. We applied behavioral, pharmacological, and biochemical methods to broadly characterize anxiety-like behaviors and amygdalar eCB clearance enzymes in msP versus nonselected Wistar rats. Subsequent studies examined the influence of dysregulated CRF and FAAH systems in altering excitatory transmission in the central amygdala (CeA). msPs display an anxious phenotype accompanied by elevations in amygdalar FAAH activity and reduced dialysate N-arachidonoylethanolamine levels in the CeA. Elevations in CRF-CRF1 signaling dysregulate FAAH activity, and this genotypic difference is normalized with pharmacological blockade of CRF1 receptors. msPs also exhibit elevated baseline glutamatergic transmission in the CeA, and dysregulated CRF-FAAH facilitates stress-induced increases in glutamatergic activity. Treatment with an FAAH inhibitor relieves sensitized glutamatergic responses in msPs and attenuates the anxiety-like phenotype. Pathological anxiety and stress hypersensitivity are driven by constitutive increases in CRF1 signaling that dysregulate N-arachidonoylethanolamine signaling mechanisms and reduce neuronal inhibitory control of CeA glutamatergic synapses. Copyright © 2017 Society of Biological Psychiatry. Published

  18. Corticotropin-releasing factor antagonist attenuates stress-induced inhibition of seasonal ovarian recrudescence in the lizard Mabuya carinata.

    Science.gov (United States)

    Ganesh, C B; Yajurvedi, H N

    2002-04-01

    Whether administration of the corticotropin-releasing factor (CRF) antagonist alpha-helical CRF(9-41) (hCRF) prevents stress response of the ovary, the oviduct, the adrenals, and the spleen was studied in the lizard Mabuya carinata. Stressors (handling, chasing, and noise) applied randomly, five times a day, for 1 month to lizards during the recrudescence phase of the ovarian cycle caused a significant increase in mean nuclear diameter of the adrenal cortical cells and a significant reduction in mean number of islands of white pulp in the spleen. These results, albeit indirectly, indicated an activation of the adrenal gland and immune suppression. There was a significant decrease in the mean relative weight of the ovary and the oviduct and in the mean number of oocytes and the primordial follicles compared to those of controls. Furthermore, vitellogenic follicles were absent in the ovary of lizards exposed to stressors in contrast to their presence in controls. However, administration of hCRF to the lizards exposed to stressors (stress + hCRF) resulted in vitellogenesis and follicular growth. The mean relative weight of the ovary and the oviduct and the mean number of oocytes and the primordial follicles in stress + hCRF-treated lizards were significantly higher than those in the lizards exposed to stressors, whereas they did not significantly differ from those of controls. The results indicate that hCRF attenuates stress-induced inhibition of ovarian follicular and oviductal development in M. carinata. To the best of our knowledge, this is the first report revealing that CRF antagonist can prevent ovarian stress response in lower vertebrates.

  19. Lipopolysaccharide induces visceral hypersensitivity: role of interleukin-1, interleukin-6, and peripheral corticotropin-releasing factor in rats.

    Science.gov (United States)

    Nozu, Tsukasa; Miyagishi, Saori; Nozu, Rintaro; Takakusaki, Kaoru; Okumura, Toshikatsu

    2017-01-01

    Lipopolysaccharide (LPS) induces visceral hypersensitivity, and corticotropin-releasing factor (CRF) also modulates visceral sensation. Besides, LPS increases CRF immunoreactivity in rat colon, which raises the possibility of the existence of a link between LPS and the CRF system in modulating visceral sensation. The present study tried to clarify this possibility. Visceral sensation was assessed by abdominal muscle contractions induced by colonic balloon distention, i.e., visceromotor response, electrophysiologically in conscious rats. The threshold of visceromotor response was measured before and after administration of drugs. LPS at a dose of 1 mg/kg subcutaneously (sc) decreased the threshold at 3 h after the administration. Intraperitoneal (ip) administration of anakinra (20 mg/kg), an interleukin-1 (IL-1) receptor antagonist, or interleukin-6 (IL-6) antibody (16.6 µg/kg) blocked this effect. Additionally, IL-1β (10 µg/kg, sc) or IL-6 (10 µg/kg, sc) induced visceral allodynia. Astressin (200 µg/kg, ip), a non-selective CRF receptor antagonist, abolished the effect of LPS, but astressin2-B (200 µg/kg, ip), a CRF receptor type 2 (CRF2) antagonist, did not alter it. Peripheral CRF receptor type 1 (CRF1) stimulation by cortagine (60 µg/kg, ip) exaggerated the effect of LPS, but activation of CRF2 by urocortin 2 (60 µg/kg, ip) abolished it. LPS induced visceral allodynia possibly through stimulating IL-1 and IL-6 release. In addition, this effect was mediated through peripheral CRF signaling. Since the LPS-cytokine system is thought to contribute to altered visceral sensation in the patients with irritable bowel syndrome, these results may further suggest that CRF plays a crucial role in the pathophysiology of this disease.

  20. Suppression of piriform cortex activity in rat by corticotropin-releasing factor 1 and serotonin 2A/C receptors

    Directory of Open Access Journals (Sweden)

    Chakravarthi eNarla

    2015-05-01

    Full Text Available The piriform cortex (PC is richly innervated by Corticotropin-releasing factor (CRF and Serotonin (5-HT containing axons arising from central amygdala and Raphe nucleus. CRFR1 and 5-HT2A/2CRs have been shown to interact in manner where CRFR activation subsequently potentiates the activity of 5-HT2A/2CRs. The purpose of this study was to determine how the activation of CRFR1 and/or 5-HT2Rs modulates PC activity at both the circuit and cellular level. Voltage sensitive dye imaging showed that CRF acting through CRFR1 dampened activation of the layer II of PC and interneurons of endopiriform nucleus. Application of the selective 5-HT2A/CR agonist 2,5-dimethoxy-4-iodoamphetamine (DOI following CRFR1 activation potentiated this effect. Blocking the interaction between CRFR1 and 5-HT2R with a Tat-CRFR1-CT peptide abolished this potentiation. Application of forskolin did not mimic CRFR1 activity but instead blocked it, while a protein kinase A antagonist had no effect. However, activation and antagonism of protein kinase C (PKC either mimicked or blocked CRF modulation respectively. DOI had no effect when applied alone indicating that the prior activation of CRFR1 receptors was critical for DOI to show significant effects similar to CRF. Patch clamp recordings showed that both CRF and DOI reduced the synaptic responsiveness of layer II pyramidal neurons. CRF had highly variable effects on interneurons within layer III, both increasing and decreasing their excitability, but DOI had no effect on the excitability of this group of neurons. These data show that CRF and serotonin, acting through both CRFR1 and 5-HT2A/CRs, reduce the activation of the PC. This modulation may be an important blunting mechanism of stressor behaviours mediated through the olfactory cortex.

  1. Ontogeny of corticotropin-releasing factor effects on locomotion and foraging in the Western spadefoot toad (Spea hammondii).

    Science.gov (United States)

    Crespi, Erica J; Denver, Robert J

    2004-11-01

    We investigated the effects of corticotropin-releasing factor (CRF) and corticosterone (CORT) on foraging and locomotion in Western spadefoot toad (Spea hammondii) tadpoles and juveniles to assess the behavioral functions of these hormones throughout development. We administered intracerebroventricular injections of ovine CRF or CRF receptor antagonist alphahelical CRF((9-41)) to tadpoles and juveniles, and observed behavior within 1.5 h after injection. In both premetamorphic (Gosner stage 33) and prometamorphic (Gosner stages 35-37) tadpoles, CRF injections increased locomotion and decreased foraging. Injections of alphahelical CRF((9-41)) reduced locomotion but did not affect foraging in premetamorphic tadpoles, but dramatically increased foraging in prometamorphic tadpoles compared to both placebo and uninjected controls. Similarly, alphahelical CRF((9-41)) injections stimulated food intake and prey-catching behavior in juveniles. These results suggest that in later-staged amphibians, endogenous CRF secretion modulates feeding by exerting a suppressive effect on appetite. By contrast to the inhibitory effect of CRF, 3-h exposure to CORT (500 nM added to the aquarium water) stimulated foraging in prometamorphic tadpoles. These tadpoles also exhibited a CORT-mediated increase in foraging 6 h after CRF injection, which was associated with elevated whole-body CORT content and blocked by glucocorticoid receptor (GR) antagonist (RU486) injections. Thus, exogenous CRF influences locomotion and foraging in both pre- and prometamorphic tadpoles, but endogenous CRF secretion in relatively unstressed animals does not affect foraging until prometamorphic stages. Furthermore, the opposing actions of CRF and CORT on foraging suggest that they are important regulators of energy balance and food intake in amphibians throughout development.

  2. Effects of corticotropin-releasing factor 1 receptor antagonism on the hypothalamic-pituitary-adrenal axis of rodents.

    Science.gov (United States)

    Gehlert, Donald R; Cramer, Jeffrey; Morin, S Michelle

    2012-06-01

    Corticotropin-releasing factor (CRF) is the major hypothalamic neuropeptide responsible for stimulation of the hypothalamic-pituitary-adrenal axis (HPAA), resulting in the synthesis and release of glucocorticoids from the adrenal cortex. In a recent study, we reported the discovery of the CRF1 receptor antagonist, 3-(4-chloro-2-morpholin-4-yl-thiazol-5-yl)-8-(1-ethylpropyl)-2,6-dimethyl-imidazo[1,2-b]pyridazine (MTIP), which has efficacy in preclinical models of stress-induced alcohol consumption. Because CRF1 is important in HPAA activation, we evaluated the effects of MTIP administration on rodent HPAA function. Initial studies established the MTIP doses required for brain and pituitary CRF1 occupancy and those associated with the inhibition of intracerebroventricular CRF on the HPAA in mice. Then, rat basal plasma corticosterone (CORT) concentrations were measured hourly by radioimmunoassay for 24 h after three daily doses of MTIP or vehicle. In these studies, the early phase of the nocturnal CORT surge was reduced; however, the area under the CORT curve was identical for the 24-h period. In subsequent studies, increases in plasma CORT due to direct pharmacological manipulation of the HPAA axis or by stressors were evaluated after MTIP treatment in mice. MTIP attenuated CORT responses generated by immediate bolus administration of insulin or ethanol; however, MTIP did not affect activation of the HPAA by other stressors and pharmacological agents. Therefore, MTIP can modulate basal HPAA activity during the CORT surge and reduced activation after a select number of stressors but does not produce a lasting suppression of basal CORT. The ability of MTIP to modulate plasma CORT after hyperinsulinemia may provide a surrogate strategy for a target occupancy biomarker.

  3. Corticotropin-releasing factor increases GABA synaptic activity and induces inward current in 5-hydroxytryptamine dorsal raphe neurons.

    Science.gov (United States)

    Kirby, Lynn G; Freeman-Daniels, Emily; Lemos, Julia C; Nunan, John D; Lamy, Christophe; Akanwa, Adaure; Beck, Sheryl G

    2008-11-26

    Stress-related psychiatric disorders such as anxiety and depression involve dysfunction of the serotonin [5-hydroxytryptamine (5-HT)] system. Previous studies have found that the stress neurohormone corticotropin-releasing factor (CRF) inhibits 5-HT neurons in the dorsal raphe nucleus (DRN) in vivo. The goals of the present study were to characterize the CRF receptor subtypes (CRF-R1 and -R2) and cellular mechanisms underlying CRF-5-HT interactions. Visualized whole-cell patch-clamp recording techniques in brain slices were used to measure spontaneous or evoked GABA synaptic activity in DRN neurons of rats and CRF effects on these measures. CRF-R1 and -R2-selective agonists were bath applied alone or in combination with receptor-selective antagonists. CRF increased presynaptic GABA release selectively onto 5-HT neurons, an effect mediated by the CRF-R1 receptor. CRF increased postsynaptic GABA receptor sensitivity selectively in 5-HT neurons, an effect to which both receptor subtypes contributed. CRF also had direct effects on DRN neurons, eliciting an inward current in 5-HT neurons mediated by the CRF-R2 receptor and in non-5-HT neurons mediated by the CRF-R1 receptor. These results indicate that CRF has direct membrane effects on 5-HT DRN neurons as well as indirect effects on GABAergic synaptic transmission that are mediated by distinct receptor subtypes. The inhibition of 5-HT DRN neurons by CRF in vivo may therefore be primarily an indirect effect via stimulation of inhibitory GABA synaptic transmission. These results regarding the cellular mechanisms underlying the complex interaction between CRF, 5-HT, and GABA systems could contribute to the development of novel treatments for stress-related psychiatric disorders.

  4. Corticotropin-releasing factor in ventromedial prefrontal cortex mediates avoidance of a traumatic stress-paired context.

    Science.gov (United States)

    Schreiber, Allyson L; Lu, Yi-Ling; Baynes, Brittni B; Richardson, Heather N; Gilpin, Nicholas W

    2017-02-01

    Post-traumatic stress disorder (PTSD) affects 7.7 million Americans. One diagnostic criterion for PTSD is avoidance of stimuli that are related to the traumatic stress. Using a predator odor stress conditioned place aversion (CPA) model, rats can be divided into groups based on stress reactivity, as measured by avoidance of the odor-paired context. Avoider rats, which show high stress reactivity, exhibit persistent avoidance of stress-paired context and escalated alcohol drinking. Here, we examined the potential role of corticotropin-releasing factor (CRF), a neuropeptide that promotes anxiety-like behavior in mediating avoidance and escalated alcohol drinking after stress. CRF is expressed in the medial prefrontal cortex (mPFC). The dorsal and ventral sub-regions of the mPFC (dmPFC and vmPFC) have opposing roles in stress reactivity and alcohol drinking. We hypothesized that vmPFC CRF-CRFR1 signaling contributes functionally to stress-induced avoidance and escalated alcohol self-administration. In Experiment 1, adult male Wistar rats were exposed to predator odor stress in a CPA paradigm, indexed for avoidance of odor-paired context, and brains processed for CRF-immunoreactive cell density in vmPFC and dmPFC. Post-stress, Avoiders exhibited higher CRF cell density in vmPFC, but not the dmPFC. In Experiment 2, rats were tested for avoidance of a context repeatedly paired with intra-vmPFC CRF infusions. In Experiment 3, rats were stressed and indexed, then tested for the effects of intra-vmPFC CRFR1 antagonism on avoidance and alcohol self-administration. Intra-vmPFC CRF infusion produced avoidance of a paired context, and intra-vmPFC CRFR1 antagonism reversed avoidance of a stress-paired context, but did not alter post-stress alcohol self-administration. These findings suggest that vmPFC CRF-CRFR1 signaling mediates avoidance of stimuli paired with traumatic stress. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Ethanol produces corticotropin releasing factor receptor-dependent enhancement of spontaneous glutamatergic transmission in the mouse central amygdala

    Science.gov (United States)

    Silberman, Yuval; Fetterly, Tracy L.; Awad, Elias K.; Milano, Elana J.; Usdin, Ted B.; Winder, Danny G.

    2015-01-01

    Background Ethanol modulation of Central Amygdala (CeA) neurocircuitry plays a key role in the development of alcoholism via activation of the corticotropin releasing factor (CRF) receptor system. Previous work has predominantly focused on ethanol/CRF interactions on the CeA GABA circuitry; however our lab recently showed that CRF enhances CeA glutamatergic transmission. Therefore, this study sought to determine if ethanol modulates CeA glutamate transmission via activation of CRF signaling. Methods The effects of ethanol on spontaneous excitatory postsynaptic currents (sEPSCs) and basal resting membrane potentials were examined via standard electrophysiology methods in adult male C57BL/6J mice. Local ablation of CeA CRF neurons (CRFCeAhDTR) was achieved by targeting the human diphtheria toxin receptor (hDTR) to CeA CRF neurons with an adeno-associated virus. Ablation was quantified post-hoc with confocal microscopy. Genetic targeting of the diphtheria toxin active subunit to CRF neurons (CRFDTA mice) ablated CRF neurons throughout the CNS, as assessed by qRT-PCR quantification of CRF mRNA. Results Acute bath application of ethanol significantly increased sEPSC frequency in a concentration dependent manner in CeA neurons, and this effect was blocked by pretreatment of co-applied CRF receptor 1 and CRF receptor 2 antagonists. In experiments utilizing a CRF-tomato reporter mouse, ethanol did not significantly alter the basal membrane potential of CeA CRF neurons. The ability of ethanol to enhance CeA sEPSC frequency was not altered in CRFCeAhDTR mice despite a ~78% reduction in CeA CRF cell counts. The ability of ethanol to enhance CeA sEPSC frequency was also not altered in the CRFDTA mice despite a three-fold reduction in CRF mRNA levels. Conclusion These findings demonstrate that ethanol enhances spontaneous glutamatergic transmission in the CeA via a CRF receptor dependent mechanism. Surprisingly, our data suggest that this action may not require endogenous CRF

  6. Effects of Corticotropin Releasing Factor (CRF on Sleep and Temperature Following Predictable Controllable and Uncontrollable Stress in Mice

    Directory of Open Access Journals (Sweden)

    Laurie eWellman

    2015-07-01

    Full Text Available Corticotropin releasing factor (CRF is a major mediator of central nervous system responses to stressors, including alterations in wakefulness and sleep. However, its role in mediating stress-induced alterations in sleep has not been fully delineated. In this study, we assessed the role of CRF and the non-specific CRF antagonist, astressin (AST, in regulating changes in sleep produced by signaled, escapable shock (SES and signaled inescapable shock (SIS, two stressors that can increase or decrease sleep, respectively. Male BALB/cJ mice were surgically implanted with transmitters (DataSciences ETA10-F20 for recording EEG, activity and core body temperature by telemetry and a cannula for intracerebroventricular microinjections. After baseline (Base sleep recording, mice were presented tones (90 dB, 2 kHz that started 5.0 sec prior to and co-terminated with footshock (0.5 mA; 5.0 sec maximum duration. SES mice (n=9 always received shock but could terminate it by moving to the non-occupied chamber in a shuttlebox. Yoked SIS mice (n=9 were treated identically, but could not alter shock duration. Training with SES or SIS was conducted over two days to stabilize responses. Afterwards, the mice received saline, CRF (0.4 µg (0.42 mM or AST (1.0 µg (1.4 mM prior to SES or SIS. Sleep was analyzed over 20 h post-stress recordings. After administration of saline, REM was significantly greater in SES mice than in SIS mice whereas after CRF or AST, REM was similar in both groups. Total 20 h NREM did not vary across condition or group. However, after administration of saline and CRF, NREM episode duration was significantly decreased, and NREM episode number significantly increased, in SIS mice compared to SES animals. SES and SIS mice showed similar stress induced hyperthermia (SIH across all conditions. These data demonstrate that CRF can mediate stress-induced changes in sleep independently of SIH, an index of hypothalamic-pituitary-adrenal axis activation.

  7. Nucleus accumbens corticotropin-releasing factor increases cue-triggered motivation for sucrose reward: paradoxical positive incentive effects in stress?

    Science.gov (United States)

    Peciña, Susana; Schulkin, Jay; Berridge, Kent C

    2006-01-01

    Background Corticotropin-releasing factor (CRF) is typically considered to mediate aversive aspects of stress, fear and anxiety. However, CRF release in the brain is also elicited by natural rewards and incentive cues, raising the possibility that some CRF systems in the brain mediate an independent function of positive incentive motivation, such as amplifying incentive salience. Here we asked whether activation of a limbic CRF subsystem magnifies the increase in positive motivation for reward elicited by incentive cues previously associated with that reward, in a way that might exacerbate cue-triggered binge pursuit of food or other incentives? We assessed the impact of CRF microinjections into the medial shell of nucleus accumbens using a pure incentive version of Pavlovian-Instrumental transfer, a measure specifically sensitive to the incentive salience of reward cues (which it separates from influences of aversive stress, stress reduction, frustration and other traditional explanations for stress-increased behavior). Rats were first trained to press one of two levers to obtain sucrose pellets, and then separately conditioned to associate a Pavlovian cue with free sucrose pellets. On test days, rats received microinjections of vehicle, CRF (250 or 500 ng/0.2 μl) or amphetamine (20 μg/0.2 μl). Lever pressing was assessed in the presence or absence of the Pavlovian cues during a half-hour test. Results Microinjections of the highest dose of CRF (500 ng) or amphetamine (20 μg) selectively enhanced the ability of Pavlovian reward cues to trigger phasic peaks of increased instrumental performance for a sucrose reward, each peak lasting a minute or so before decaying after the cue. Lever pressing was not enhanced by CRF microinjections in the baseline absence of the Pavlovian cue or during the presentation without a cue, showing that the CRF enhancement could not be explained as a result of generalized motor arousal, frustration or stress, or by persistent

  8. Nucleus accumbens corticotropin-releasing factor increases cue-triggered motivation for sucrose reward: paradoxical positive incentive effects in stress?

    Directory of Open Access Journals (Sweden)

    Schulkin Jay

    2006-04-01

    Full Text Available Abstract Background Corticotropin-releasing factor (CRF is typically considered to mediate aversive aspects of stress, fear and anxiety. However, CRF release in the brain is also elicited by natural rewards and incentive cues, raising the possibility that some CRF systems in the brain mediate an independent function of positive incentive motivation, such as amplifying incentive salience. Here we asked whether activation of a limbic CRF subsystem magnifies the increase in positive motivation for reward elicited by incentive cues previously associated with that reward, in a way that might exacerbate cue-triggered binge pursuit of food or other incentives? We assessed the impact of CRF microinjections into the medial shell of nucleus accumbens using a pure incentive version of Pavlovian-Instrumental transfer, a measure specifically sensitive to the incentive salience of reward cues (which it separates from influences of aversive stress, stress reduction, frustration and other traditional explanations for stress-increased behavior. Rats were first trained to press one of two levers to obtain sucrose pellets, and then separately conditioned to associate a Pavlovian cue with free sucrose pellets. On test days, rats received microinjections of vehicle, CRF (250 or 500 ng/0.2 μl or amphetamine (20 μg/0.2 μl. Lever pressing was assessed in the presence or absence of the Pavlovian cues during a half-hour test. Results Microinjections of the highest dose of CRF (500 ng or amphetamine (20 μg selectively enhanced the ability of Pavlovian reward cues to trigger phasic peaks of increased instrumental performance for a sucrose reward, each peak lasting a minute or so before decaying after the cue. Lever pressing was not enhanced by CRF microinjections in the baseline absence of the Pavlovian cue or during the presentation without a cue, showing that the CRF enhancement could not be explained as a result of generalized motor arousal, frustration or stress

  9. Cell-type specific deletion of GABA(A)α1 in corticotropin-releasing factor-containing neurons enhances anxiety and disrupts fear extinction

    OpenAIRE

    Gafford, Georgette M.; Guo, Ji-Dong; Flandreau, Elizabeth I.; Hazra, Rimi; Rainnie, Donald G.; Ressler, Kerry J.

    2012-01-01

    Corticotropin-releasing factor (CRF) is critical for the endocrine, autonomic, and behavioral responses to stressors, and it has been shown to modulate fear and anxiety. The CRF receptor is widely expressed across a variety of cell types, impeding progress toward understanding the contribution of specific CRF-containing neurons to fear dysregulation. We used a unique CRF-Cre driver transgenic mouse line to remove floxed GABA(A)α1 subunits specifically from CRF neurons [CRF-GABA(A)α1 KO]. This...

  10. From Hans Selye’s Discovery of Biological Stress to the Identification of Corticotropin Releasing Factor signaling pathways: Implication in Stress-Related Functional Bowel Diseases

    OpenAIRE

    2008-01-01

    Selye’s pioneer the concept of biological stress in 1936 culminating to the identification of the corticotropin releasing factor (CRF) signaling pathways by Vale’s group in the last two decades. The characterization of the 41 amino-acid CRF and other peptide members of the mammalian CRF family, urocortin 1, urocortin 2 and urocortin 3, the cloning of CRF1 and CRF2 receptors, which display distinct affinity for CRF ligands, combined with the development of selective CRF receptor antagonists en...

  11. Stress and the gastrointestinal tract III. Stress-related alterations of gut motor function: role of brain corticotropin-releasing factor receptors.

    Science.gov (United States)

    Taché, Y; Martinez, V; Million, M; Wang, L

    2001-02-01

    Alterations of gastrointestinal (GI) motor function are part of the visceral responses to stress. Inhibition of gastric emptying and stimulation of colonic motor function are the commonly encountered patterns induced by various stressors. Activation of brain corticotropin-releasing factor (CRF) receptors mediates stress-related inhibition of upper GI and stimulation of lower GI motor function through interaction with different CRF receptor subtypes. CRF subtype 1 receptors are involved in the colonic and anxiogenic responses to stress and may have clinical relevance in the comorbidity of anxiety/depression and irritable bowel syndrome.

  12. Stress-related modulation of inflammation in experimental models of bowel disease and post-infectious irritable bowel syndrome: role of corticotropin-releasing factor receptors.

    Science.gov (United States)

    Kiank, Cornelia; Taché, Yvette; Larauche, Muriel

    2010-01-01

    The interaction between gut inflammatory processes and stress is gaining increasing recognition. Corticotropin-releasing factor (CRF)-receptor activation in the brain is well established as a key signaling pathway initiating the various components of the stress response including in the viscera. In addition, a local CRF signaling system has been recently established in the gut. This review summarize the present knowledge on mechanisms through which both brain and gut CRF receptors modulate intestinal inflammatory processes and its relevance towards increased inflammatory bowel disease (IBD) activity and post-infectious irritable bowel syndrome (IBS) susceptibility induced by stress.

  13. Central nesfatin-1 reduces dark-phase food intake and gastric emptying in rats: differential role of corticotropin-releasing factor2 receptor.

    Science.gov (United States)

    Stengel, Andreas; Goebel, Miriam; Wang, Lixin; Rivier, Jean; Kobelt, Peter; Mönnikes, Hubert; Lambrecht, Nils W G; Taché, Yvette

    2009-11-01

    Nesfatin-1, derived from nucleobindin2, is expressed in the hypothalamus and reported in one study to reduce food intake (FI) in rats. To characterize the central anorexigenic action of nesfatin-1 and whether gastric emptying (GE) is altered, we injected nesfatin-1 into the lateral brain ventricle (intracerebroventricular, icv) or fourth ventricle (4v) in chronically cannulated rats or into the cisterna magna (intracisternal, ic) under short anesthesia and compared with ip injection. Nesfatin-1 (0.05 microg/rat, icv) decreased 2-3 h and 3-6 h dark-phase FI by 87 and 45%, respectively, whereas ip administration (2 microg/rat) had no effect. The corticotropin-releasing factor (CRF)(1)/CRF(2) antagonist astressin-B or the CRF(2) antagonist astressin(2)-B abolished icv nesfatin-1's anorexigenic action, whereas an astressin(2)-B analog, devoid of CRF-receptor binding affinity, did not. Nesfatin-1 icv induced a dose-dependent reduction of GE by 26 and 43% that was not modified by icv astressin(2)-B. Nesfatin-1 into the 4v (0.05 microg/rat) or ic (0.5 microg/rat) decreased cumulative dark-phase FI by 29 and 60% at 1 h and by 41 and 37% between 3 and 5 h, respectively. This effect was neither altered by ic astressin(2)-B nor associated with changes in GE. Cholecystokinin (ip) induced Fos expression in 43% of nesfatin-1 neurons in the paraventricular hypothalamic nucleus and 24% of those in the nucleus tractus solitarius. These data indicate that nesfatin-1 acts centrally to reduce dark phase FI through CRF(2)-receptor-dependent pathways after forebrain injection and CRF(2)-receptor-independent pathways after hindbrain injection. Activation of nesfatin-1 neurons by cholecystokinin at sites regulating food intake may suggest a role in gut peptide satiation effect.

  14. Blunted ACTH and cortisol responses to systemic injection of corticotropin-releasing hormone (CRH) in fibromyalgia: role of somatostatin and CRH-binding protein.

    Science.gov (United States)

    Riedel, Walter; Schlapp, Ulrike; Leck, Stefanie; Netter, Petra; Neeck, Gunther

    2002-06-01

    Thirteen female patients suffering from fibromyalgia (FM) and thirteen female age-matched controls were intravenously injected with a bolus dose of 100 microg corticotropin-releasing hormone (CRH), and the evoked secretion pattern of ACTH, cortisol, somatostatin, and growth hormone (GH) was followed up for two hours, together with the plasma levels of CRH. The increases of ACTH and cortisol following CRH were not significantly different between controls and FM patients. The increase of plasma CRH following its injection was significantly higher in FM patients and lasted about 45 min, paralleled by an increase of somatostatin with a similar time course. Basal GH levels were significantly lower in FM patients. GH increased in FM patients 90 min after injection of CRH, coincident with decreasing CRH and somatostatin levels, while GH levels in controls rather decreased with the lowest values occurring 90 min after CRH. The results support the concept that the hormonal secretion pattern frequently observed in FM patients is primarily caused by CRH, possibly as a response to chronic pain and stress. The elevated levels of CRH in the circulation of FM patients suggest elevated levels of CRH-binding protein, which could explain why the levels of ACTH and cortisol between controls and FM following CRH do not differ.

  15. [Role of the Periaqueductal Gray Matter of the Midbrain in Regulation of Somatic Pain Sensitivity During Stress: Participation of Corticotropin-Releasing Factor and Glucocorticoid Hormones].

    Science.gov (United States)

    Yarushkina, N I; Filaretova, L P

    2015-01-01

    Periaqueductal gray matter of the midbrain (PAGM) plays a crucial role in the regulation of pain sensitivity under stress, involving in the stress-induced analgesia. A key hormonal system of adaptation under stress is the hypothalamic-pituitary-adrenocortical (HPA) axis. HPA axis's hormones, corticotropin-releasing factor (CRF) and glucocorticoids, are involved in stress-induced analgesia. Exogenous hormones of the HPA axis, similarly to the hormones produced under stress, may cause an analgesic effect. CRF-induced analgesia may be provided by glucocorticoid hormones. CRF and glucocorticoids-induced effects on somatic pain sensitivity may be mediated by PAGM. The aim of the review was to analyze the data of literature on the role of PAGM in the regulation of somatic pain sensitivity under stress and in providing of CRF and glucocorticoid-induced analgesia.

  16. 促肾上腺皮质激素释放因子与肠易激综合征%Corticotropin-releasing factor and irritable bowel syndrome

    Institute of Scientific and Technical Information of China (English)

    常敏; 方秀才

    2011-01-01

    肠易激综合征( IBS)是一种个体特异性、多病因的异质性疾病,其发病和患者的精神状态、社会环境、生活应激等多种心理社会因素密切相关.促肾上腺皮质激素释放因子(CRF)是一种介导下丘脑-垂体-肾上腺(HPA)轴对应激反应的关键调节肽,参与脑-肠轴互动,通过影响胃肠道动力、内脏高敏感和肠道感染等参与IBS的发病.%Irritable bowel syndrome (IBS) is a heterogeneous disease. The occurrence of IBS is related to patient's mental status, social environment, life stress events and the other psychosocial factors. Corticotropin-releasing factor (GRF) is a key regulatory peptide in mediating the hypothalamus-pituitary-adrenal axis' response to stress and involves in the brain-gut axis interactions. CRF might be involved in IBS pathogenesis by altering gastrointestinal motility, visceral sensitivity, and the inflammation in the bowel.

  17. Corticotropin-releasing hormone, its binding protein and receptors in human cervical tissue at preterm and term labor in comparison to non-pregnant state

    Directory of Open Access Journals (Sweden)

    Byström Birgitta

    2006-05-01

    Full Text Available Abstract Background Preterm birth is still the leading cause of neonatal morbidity and mortality. The level of corticotropin-releasing hormone (CRH is known to be significantly elevated in the maternal plasma at preterm birth. Although, CRH, CRH-binding protein (CRH-BP, CRH-receptor 1 (CRH-R1 and CRH-R2 have been identified both at mRNA and protein level in human placenta, deciduas, fetal membranes, endometrium and myometrium, no corresponding information is yet available on cervix. Thus, the aim of this study was to compare the levels of the mRNA species coding for CRH, CRH-BP, CRH-R1 and CRH-R2 in human cervical tissue and myometrium at preterm and term labor and not in labor as well as in the non-pregnant state, and to localize the corresponding proteins employing immunohistochemical analysis. Methods Cervical, isthmic and fundal (from non-pregnant subjects only biopsies were taken from 67 women. Subjects were divided in 5 groups: preterm labor (14, preterm not in labor (7, term labor (18, term not in labor (21 and non-pregnant (7. Real-time RT-PCR was employed for quantification of mRNA levels and the corresponding proteins were localized by immunohistochemical analysis. Results The levels of CRH-BP, CRH-R1 and CRH-R2 mRNA in the pregnant tissues were lower than those in non-pregnant subjects. No significant differences were observed between preterm and term groups. CRH-BP and CRH-R2 mRNA and the corresponding proteins were present at lower levels in the laboring cervix than in the non-laboring cervix, irrespective of gestational age. In most of the samples, with the exception of four myometrial biopsies the level of CRH mRNA was below the limit of detection. All of these proteins could be detected and localized in the cervix and the myometrium by immunohistochemical analysis. Conclusion Expression of CRH-BP, CRH-R1 and CRH-R2 in uterine tissues is down-regulated during pregnancy. The most pronounced down-regulation of CRH-BP and CRH-R2

  18. Regional difference in corticotropin-releasing factor immunoreactivity in mossy fiber terminals innervating calretinin-immunoreactive unipolar brush cells in vestibulocerebellum of rolling mouse Nagoya.

    Science.gov (United States)

    Ando, Masahiro; Sawada, Kazuhiko; Sakata-Haga, Hiromi; Jeong, Young-Gil; Takeda, Noriaki; Fukui, Yoshihiro

    2005-11-23

    Unipolar brush cells (UBCs), a class of interneurons in the vestibulocerebellum, play roles in amplifying excitatory inputs from vestibulocerebellar mossy fibers. This study aimed to clarify whether corticotropin-releasing factor (CRF)-positive mossy fiber innervation of calretinin (CR)-positive UBCs was altered in rolling mouse Nagoya (RMN). The distribution and the number of CR-positive UBCs in the vestibulocerebellum were not different between RMN and control mice. Double immunofluorescence revealed that some CRF-positive mossy fiber terminals were in close apposition to CR-positive UBCs. In the lobule X of vermis, such mossy fiber terminals were about 5-fold greater in number in RMN than in controls. In contrast, the number of CRF-positive mossy fiber terminals adjoining CR-positive UBCs in the flocculus was not significantly different between RMN and controls. The results suggest increased number of CRF-positive mossy fiber terminals innervating CR-positive UBCs in the lobule X but not in the flocculus of RMN. CRF may alter CR-positive UBC-mediated excitatory pathways in the lobule X of RMN and may disturb functions of the lobule X such as cerebellar adaptation for linear motion of the head.

  19. Emerging role for corticotropin releasing factor signaling in the bed nucleus of the stria terminalis at the intersection of stress and reward.

    Science.gov (United States)

    Silberman, Yuval; Winder, Danny G

    2013-01-01

    Stress and anxiety play an important role in the development and maintenance of drug and alcohol addiction. The bed nucleus of the stria terminalis (BNST), a brain region involved in the production of long-term stress-related behaviors, plays an important role in animal models of relapse, such as reinstatement to previously extinguished drug-seeking behaviors. While a number of neurotransmitter systems have been suggested to play a role in these behaviors, recent evidence points to the neuropeptide corticotropin releasing factor (CRF) as being critically important in BNST-mediated reinstatement behaviors. Although numerous studies indicate that the BNST is a complex brain region with multiple afferent and efferent systems and a variety of cell types, there has only been limited work to determine how CRF modulates this complex neuronal system at the circuit level. Recent work from our lab and others have begun to unravel these BNST neurocircuits and explore their roles in CRF-related reinstatement behaviors. This review will examine the role of CRF signaling in drug addiction and reinstatement with an emphasis on critical neurocircuitry within the BNST that may offer new insights into treatments for addiction.

  20. Somatosensory regulation of serotonin release in the central nucleus of the amygdala is mediated via corticotropin releasing factor and gamma-aminobutyric acid in the dorsal raphe nucleus.

    Science.gov (United States)

    Tokunaga, Ryota; Shimoju, Rie; Shibata, Hideshi; Kurosawa, Mieko

    2016-10-15

    Noxious cutaneous stimulation increases, whereas innocuous cutaneous stimulation decreases serotonin (5-HT) release in the central nucleus of the amygdala (CeA) in anesthetized rats. In the present study, we investigated the contribution of corticotropin releasing factor (CRF) receptors and gamma-aminobutyric acid (GABA) receptors in the dorsal raphe nucleus (DRN) to those responses. Release of 5-HT in the CeA was monitored by microdialysis before and after 10-min stimulation by pinching or stroking. Increased 5-HT release in the CeA in response to pinching was abolished by CRF2 receptor antagonism in the DRN. Decreased 5-HT release in the CeA in response to stroking was abolished by either CRF1 receptor antagonism or GABAA receptor antagonism in the DRN. These results suggest that opposite responses of 5-HT release in the CeA to noxious versus innocuous stimulation of the skin are due to separate contributions of CRF2, CRF1 and GABAA receptors in the DRN.

  1. Effects of corticotropin releasing factor on spontaneous burst activity in the piriform-amygdala complex of in vitro brain preparations from newborn rats.

    Science.gov (United States)

    Fujii, Tomoko; Onimaru, Hiroshi; Homma, Ikuo

    2011-10-01

    The amygdala is an important higher regulatory center of the autonomic nervous system, involved in respiratory and cardiovascular control, and it also plays a role in the formation of emotions. Corticotropin-releasing factor (CRF) is a neuropeptide involved in stress responses. We have examined the effects of CRF on the spontaneous burst activity in the piriform-amygdala complex of rat brain preparations in vitro. Limbic-brainstem-spinal cord preparations of 0- to 1-day-old Wistar rats were isolated under deep ether anesthesia, and were superperfused in a modified Krebs solution. Bath application of 50nM CRF substantially increased the frequency of burst activity in the piriform-amygdala complex, whereas this polypeptide exerted only minor effects on C4 inspiratory activity. The excitatory effect of CRF on the amygdala burst was effectively blocked by the CRF1 antagonist, antalarmin, but not the CRF2 antagonist, astressin-2B, suggesting that CRF1 mediated the excitatory effect. The spatio-temporal pattern of the burst activity according to optical recordings was basically identical to the controls; the burst activity initially appeared in the piriform cortex and then propagated to the amygdala. The present experimental model could be useful for the study of role of the limbic system, including the amygdala, in stress responses.

  2. Comparative Immunohistochemistry of Placental Corticotropin-Releasing Hormone and the Transcription Factor RelB-NFκB2 Between Humans and Nonhuman Primates.

    Science.gov (United States)

    Rosen, Todd; Schulkin, Jay; Power, Michael; Tadesse, Serkalem; Norwitz, Errol R; Wen, Zhaoqin; Wang, Bingbing

    2015-04-01

    The transcription factor RelB-NFκB2, activated by the noncanonical NFκB pathway, positively regulates corticotropin-releasing hormone (CRH) and prostaglandin production in the term human placenta and may play an important role in the timing of human parturition. Here we explored whether RelB-NFκB2 signaling plays a role in parturition in nonhuman anthropoid primates. We performed immunohistochemical staining to assess the correlation between CRH and nuclear activity of RelB-NFκB2 heterodimers in term placentas from humans, 3 catarrhine primate species, and a single platyrrhine primate species. Consistent with our previous studies, the human placenta showed cytoplasmic staining for CRH and nuclear staining for RelB-NFκB2. Similar staining patterns were noted in the 3 catarrhine primates (chimpanzee, baboon, and rhesus macaque). The platyrrhine (marmoset) placentas stained positively for CRH and RelB but not for NFκB2. Catarrhine (but not platyrrhine) nonhuman primate term placentas demonstrate the same CRH staining and nuclear localization patterns of RelB and NFκB2 as does human placenta. These results suggest that catarrhine primates, particularly rhesus macaques, may serve as useful animal models to study the biologic significance of the noncanonical NFκB pathway in human pregnancy.

  3. Repeated intravenous administrations of teneurin-C terminal associated peptide (TCAP)-1 attenuates reinstatement of cocaine seeking by corticotropin-releasing factor (CRF) in rats.

    Science.gov (United States)

    Erb, Suzanne; McPhee, Matthew; Brown, Zenya J; Kupferschmidt, David A; Song, Lifang; Lovejoy, David A

    2014-08-01

    The teneurin c-terminal associated peptides (TCAP) have been implicated in the regulation of the stress response, possibly via a corticotropin-releasing factor (CRF)-related mechanism. We have previously shown that repeated intracerebroventricular (ICV) injections of TCAP-1 attenuate the reinstatement of cocaine seeking by CRF in rats. Here, we determined whether intravenous (IV) administrations of TCAP-1 would likewise attenuate CRF-induced reinstatement, and whether this effect would vary depending on the rat's history of cocaine self administration. Rats were trained to self-administer cocaine for 10 days, during once daily sessions that were either 3h ("short access"; ShA) or 6h ("long access"; LgA). Rats were then given five daily injections of TCAP-1 (0, 300, or 3,000 pmol, IV) in their home cage. Subsequently, they were returned to the self-administration chambers where extinction of cocaine seeking and testing for CRF-induced reinstatement of cocaine seeking was carried out. Repeated IV administrations of TCAP-1 were efficacious in attenuating CRF-induced reinstatement of cocaine seeking, but at different doses in ShA and LgA rats. Taken together, the findings extend previous work showing a consistent effect of repeated ICV TCAP-1 on CRF-induced reinstatement of cocaine seeking, and point to a potential therapeutic benefit of TCAP-1 in attenuating cocaine seeking behaviors.

  4. Galanin is Co-Expressed with Substance P, Calbindin and Corticotropin-Releasing Factor (CRF) in The Enteric Nervous System of the Wild Boar (Sus scrofa) Small Intestine.

    Science.gov (United States)

    Czujkowska, A; Arciszewski, M B

    2016-04-01

    Galanin is a neuropeptide widely present in the enteric nervous system of numerous animal species and exhibiting neurotransmittery/neuromodulatory roles. Colocalization patterns of galanin with substance P (SP), corticotropin-releasing factor (CRF) and calbindin were studied in the small intestine of the wild boar using immunofluorescence technique. We demonstrated the presence of SP in substantial populations of galanin-immunoreactive (IR) submucous neurons. Additionally, different amounts of nerve fibres exhibiting simultaneous presence of galanin and SP were noted in the small intestinal smooth musculature, submucous ganglia, lamina muscularis mucosae and mucosa. In the wild boar duodenum, jejunum and ileum, the co-expression of galanin and calbindin was limited to minor populations of submucous neurons only. Single galanin-/CRF-IR nerve fibres were exclusively present in the duodenal and jejunal (but not ileal) mucosa. These results strongly suggest that galanin participates in neuronal control of the wild boar small intestine also by functional co-operation with other biologically active neuropeptides.

  5. Interactions Between Anandamide and Corticotropin-Releasing Factor Signaling Modulate Human Amygdala Function and Risk for Anxiety Disorders: An Imaging Genetics Strategy for Modeling Molecular Interactions.

    Science.gov (United States)

    Demers, Catherine H; Drabant Conley, Emily; Bogdan, Ryan; Hariri, Ahmad R

    2016-09-01

    Preclinical models reveal that stress-induced amygdala activity and impairment in fear extinction reflect reductions in anandamide driven by corticotropin-releasing factor receptor type 1 (CRF1) potentiation of the anandamide catabolic enzyme fatty acid amide hydrolase. Here, we provide clinical translation for the importance of these molecular interactions using an imaging genetics strategy to examine whether interactions between genetic polymorphisms associated with differential anandamide (FAAH rs324420) and CRF1 (CRHR1 rs110402) signaling modulate amygdala function and anxiety disorder diagnosis. Analyses revealed that individuals with a genetic background predicting relatively high anandamide and CRF1 signaling exhibited blunted basolateral amygdala habituation, which further mediated increased risk for anxiety disorders among these same individuals. The convergence of preclinical and clinical data suggests that interactions between anandamide and CRF1 represent a fundamental molecular mechanism regulating amygdala function and anxiety. Our results further highlight the potential of imaging genetics to powerfully translate complex preclinical findings to clinically meaningful human phenotypes. Copyright © 2015 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  6. From Hans Selye's discovery of biological stress to the identification of corticotropin-releasing factor signaling pathways: implication in stress-related functional bowel diseases.

    Science.gov (United States)

    Taché, Yvette; Brunnhuber, Stefan

    2008-12-01

    Selye pioneered the concept of biological stress in 1936, culminating in the identification of the corticotropin-releasing factor (CRF) signaling pathways by Vale's group in the last two decades. The characterization of the 41 amino-acid CRF and other peptide members of the mammalian CRF family, urocortin 1, urocortin 2, and urocortin 3, and the cloning of CRF(1) and CRF(2) receptors, which display distinct affinity for CRF ligands, combined with the development of selective CRF receptor antagonists enable us to unravel the importance of CRF(1) receptor in the stress-related endocrine (activation of pituitary-adrenal axis), behavioral (anxiety/depression, altered feeding), autonomic (activation of sympathetic nervous system), and immune responses. The activation of CRF(1) receptors is also one of the key mechanisms through which various stressors impact the gut to stimulate colonic propulsive motor function and to induce hypersensitivity to colorectal distension as shown by the efficacy of the CRF(1) receptor antagonists in blunting these stress-related components. The importance of CRF(1) signaling pathway in the visceral response to stress in experimental animals provided new therapeutic approaches for treatment of functional bowel disorder such as irritable bowel syndrome, a multifactor functional disorder characterized by altered bowel habits and visceral pain, for which stress has been implicated in the pathophysiology and is associated with anxiety-depression in a subset of patients.

  7. [Effect of corticotropin releasing factor(CRF) on somatic pain sensitivity in conscious rats: involvement of CRF1 and CRF2 receptors].

    Science.gov (United States)

    Iarushkina, N I; Bagaeva, T R; Filaretova, L P

    2014-11-01

    Corticotropin-releasing factor (CRF) is involved in the regulation of pain sensitivity and can cause an analgesic effect in animals and humans. The aim of the study was to investigate the involvement of CRF1 and CRF2 receptors in CRF-induced analgesic effect (after intraperitoneal injection) on somatic pain sensitivity in conscious rats. Somatic pain sensitivity was tested by tail flick latency (tail flick test). The involvement of CRF1 and CRF2 receptors was studied by their selective antagonists NBI 27914 and astressin 2B, respectively. Systemic administration of CRF caused an increase in tail flick latency (analgesic effect). Pretreatment with NBI 27914 or astressin 2B eliminated CRF-induced analgesic effect. Besides, NBI 27914, but not astressin 2B, increased basal tail flick latency. The data obtained indicate that the analgesic effect can be mediated by both CRF1 and CRF2 receptors. CRF-1 receptor, in contrast to the CRF2 receptors, may be involved in the regulation of the basal level of pain sensitivity.

  8. CRF及其受体在胃肠疾病中的研究进展%Corticotropin-releasing factor and its receptor in gastrointestinal disease

    Institute of Scientific and Technical Information of China (English)

    马宝庆; 白光

    2008-01-01

    促肾上腺皮质激素释放因子(crticotropin releasing factor,CRF)是一种重要的神经内分泌肽.CRF在体内分布广泛,主要作用为促进腺垂体合成与释放促肾上腺皮质激素,与内分泌、神经化学、行为等多种生理反应有关,广泛参与消化管生理和病理活动的调控.CRF引起胃肠动力功能改变最常见的类型是胃排空延迟、延缓小肠蠕动及结肠运转加快.CRF通过CRFR2作用抑制胃排空,而刺激结肠动力是通过CRFRI调节的.CRF受体拮抗剂的研发为治疗应激相关胃肠疾病可能开辟新方向.%Corticotropin-releasing factor (CRF)is a neuroendoerine peptide that stimulates the synthesis and release of adrenecortieotropic hormone from the pituitary. CRF widely distributed in the body has been implicated in the regulation of endocrine, neural, behavioral responses and has relevance in the the physio- logical effects and pathophysiology of gut. The delayed gastric emptying, inhibited small intestinal transit and stimulated colonic transit are the most common responses evoked by CRF. CRF delay gastric emptying by ac- tivating CRF2 receptor while the stimulation of colonic motility is mediated by the activation of CRF1 recep- tor. Development of antagonists of CRF receptor may treat a new therapeutic strategy for treatment of stress- related gastrointestinal disease.

  9. Corticotropin-releasing factor-overexpressing mice exhibit reduced neuronal activation in the arcuate nucleus and food intake in response to fasting.

    Science.gov (United States)

    Stengel, Andreas; Goebel, Miriam; Million, Mulugeta; Stenzel-Poore, Mary P; Kobelt, Peter; Mönnikes, Hubert; Taché, Yvette; Wang, Lixin

    2009-01-01

    Corticotropin-releasing factor (CRF) overexpressing (OE) mice are a genetic model that exhibits features of chronic stress. We investigated whether the adaptive feeding response to a hypocaloric challenge induced by food deprivation is impaired under conditions of chronic CRF overproduction. Food intake response to a 16-h overnight fast and ip injection of gut hormones regulating food intake were compared in CRF-OE and wild type (WT) littermate mice along with brain Fos expression, circulating ghrelin levels, and gastric emptying of a nonnutrient meal. CRF-OE mice injected ip with saline showed a 47 and 44% reduction of 30-min and 4-h cumulative food intake response to an overnight fast, respectively, compared with WT. However, the 30-min food intake decrease induced by ip cholecystokinin (3 microg/kg) and increase by ghrelin (300 microg/kg) were similar in CRF-OE and WT mice. Overnight fasting increased the plasma total ghrelin to similar levels in CRF-OE and WT mice, although CRF-OE mice had a 2-fold reduction of nonfasting ghrelin levels. The number of Fos-immunoreactive cells induced by fasting in the arcuate nucleus was reduced by 5.9-fold in CRF-OE compared with WT mice whereas no significant changes were observed in other hypothalamic nuclei. In contrast, fasted CRF-OE mice displayed a 5.6-fold increase in Fos-immunoreactive cell number in the dorsal motor nucleus of the vagus nerve and a 34% increase in 20-min gastric emptying. These findings indicate that sustained overproduction of hypothalamic CRF in mice interferes with fasting-induced activation of arcuate nucleus neurons and the related hyperphagic response.

  10. Cell-type specific deletion of GABA(A)α1 in corticotropin-releasing factor-containing neurons enhances anxiety and disrupts fear extinction.

    Science.gov (United States)

    Gafford, Georgette M; Guo, Ji-Dong; Flandreau, Elizabeth I; Hazra, Rimi; Rainnie, Donald G; Ressler, Kerry J

    2012-10-02

    Corticotropin-releasing factor (CRF) is critical for the endocrine, autonomic, and behavioral responses to stressors, and it has been shown to modulate fear and anxiety. The CRF receptor is widely expressed across a variety of cell types, impeding progress toward understanding the contribution of specific CRF-containing neurons to fear dysregulation. We used a unique CRF-Cre driver transgenic mouse line to remove floxed GABA(A)α1 subunits specifically from CRF neurons [CRF-GABA(A)α1 KO]. This process resulted in mice with decreased GABA(A)α1 expression only in CRF neurons and increased CRF mRNA within the amygdala, bed nucleus of the stria terminalis (BNST) and paraventricular nucleus of the hypothalamus. These mice show normal locomotor and pain responses and no difference in depressive-like behavior or Pavlovian fear conditioning. However, CRF-GABA(A)α1 KO increased anxiety-like behavior and impaired extinction of conditioned fear, coincident with an increase in plasma corticosterone concentration. These behavioral impairments were rescued with systemic or BNST infusion of the CRF antagonist R121919. Infusion of Zolpidem, a GABA(A)α1-preferring benzodiazepine-site agonist, into the BNST of the CRF-GABA(A)α1 KO was ineffective at decreasing anxiety. Electrophysiological findings suggest a disruption in inhibitory current may play a role in these changes. These data indicate that disturbance of CRF containing GABA(A)α1 neurons causes increased anxiety and impaired fear extinction, both of which are symptoms diagnostic for anxiety disorders, such as posttraumatic stress disorder.

  11. Cardiac adverse effects of naloxone-precipitated morphine withdrawal on right ventricle: Role of corticotropin-releasing factor (CRF) 1 receptor

    Energy Technology Data Exchange (ETDEWEB)

    Navarro-Zaragoza, J.; Martínez-Laorden, E.; Mora, L.; Hidalgo, J.; Milanés, M.V.; Laorden, M.L., E-mail: laorden@um.es

    2014-02-15

    Opioid addiction is associated with cardiovascular disease. However, mechanisms linking opioid addiction and cardiovascular disease remain unclear. This study investigated the role of corticotropin-releasing factor (CRF) 1 receptor in mediating somatic signs and the behavioural states produced during withdrawal from morphine dependence. Furthermore, it studied the efficacy of CRF1 receptor antagonist, CP-154,526 to prevent the cardiac sympathetic activity induced by morphine withdrawal. In addition, tyrosine hydroxylase (TH) phosphorylation pathways were evaluated. Like stress, morphine withdrawal induced an increase in the hypothalamic–pituitary–adrenal (HPA) axis activity and an enhancement of noradrenaline (NA) turnover. Pre-treatment with CRF1 receptor antagonist significantly reduced morphine withdrawal-induced increases in plasma adrenocorticotropic hormone (ACTH) levels, NA turnover and TH phosphorylation at Ser31 in the right ventricle. In addition, CP-154,526 reduced the phosphorylation of extracellular signal-regulated kinase (ERK) after naloxone-precipitated morphine withdrawal. In addition, CP-154,526 attenuated the increases in body weight loss during morphine treatment and suppressed some of morphine withdrawal signs. Altogether, these results support the idea that cardiac sympathetic pathways are activated in response to naloxone-precipitated morphine withdrawal suggesting that treatment with a CRF1 receptor antagonist before morphine withdrawal would prevent the development of stress-induced behavioural and autonomic dysfunction in opioid addicts. - Highlights: • Morphine withdrawal caused an increase in myocardial sympathetic activity. • ERK regulates TH phosphorylation after naloxone-induced morphine withdrawal. • CRF1R is involved in cardiac adaptive changes during morphine dependence.

  12. Inhibition of corticotropin releasing factor expression in the central nucleus of the amygdala attenuates stress-induced behavioral and endocrine responses

    Directory of Open Access Journals (Sweden)

    Leah B. Callahan

    2013-10-01

    Full Text Available Corticotropin releasing factor (CRF is a primary mediator of endocrine, autonomic and behavioral stress responses. Studies in both humans and animal models have implicated CRF in a wide-variety of psychiatric conditions including anxiety disorders such as post-traumatic stress disorder (PTSD, depression, sleep disorders and addiction among others. The central nucleus of the amygdala (CeA, a key limbic structure with one of the highest concentrations of CRF-producing cells outside of the hypothalamus, has been implicated in anxiety-like behavior and a number of stress-induced disorders. This study investigated the specific role of CRF in the CeA on both endocrine and behavioral responses to stress. We used RNA Interference (RNAi techniques to locally and specifically knockdown CRF expression in CeA. Behavior was assessed using the elevated plus maze (EPM and open field test (OF. Knocking down CRF expression in the CeA had no significant effect on measures of anxiety-like behavior in these tests. However, it did have an effect on grooming behavior, a CRF-induced behavior. Prior exposure to a stressor sensitized an amygdalar CRF effect on stress-induced HPA activation. In these stress-challenged animals silencing CRF in the CeA significantly attenuated corticosterone responses to a subsequent behavioral stressor. Thus, it appears that while CRF projecting from the CeA does not play a significant role in the expression stress-induced anxiety-like behaviors on the EPM and OF it does play a critical role in stress-induced HPA activation.

  13. Enduring, Handling-Evoked Enhancement of Hippocampal Memory Function and Glucocorticoid Receptor Expression Involves Activation of the Corticotropin-Releasing Factor Type 1 Receptor

    Science.gov (United States)

    Fenoglio, Kristina A.; Brunson, Kristen L.; Avishai-Eliner, Sarit; Stone, Blake A.; Kapadia, Bhumika J.; Baram, Tallie Z.

    2011-01-01

    Early-life experience, including maternal care, influences hippocampus-dependent learning and memory throughout life. Handling of pups during postnatal d 2–9 (P2–9) stimulates maternal care and leads to improved memory function and stress-coping. The underlying molecular mechanisms may involve early (by P9) and enduring reduction of hypothalamic corticotropin-releasing factor (CRF) expression and subsequent (by P45) increase in hippocampal glucocorticoid receptor (GR) expression. However, whether hypothalamic CRF levels influence changes in hippocampal GR expression (and memory function), via reduced CRF receptor activation and consequent lower plasma glucocorticoid levels, is unclear. In this study we administered selective antagonist for the type 1 CRF receptor, NBI 30775, to nonhandled rats post hoc from P10–17 and examined hippocampus-dependent learning and memory later (on P50–70), using two independent paradigms, compared with naive and vehicle-treated nonhandled, and naive and antagonist-treated handled rats. Hippocampal GR and hypothalamic CRF mRNA levels and stress-induced plasma corticosterone levels were also examined. Transient, partial selective blockade of CRF1 in nonhandled rats improved memory functions on both the Morris watermaze and object recognition tests to levels significantly better than in naive and vehicle-treated controls and were indistinguishable from those in handled (naive, vehicle-treated, and antagonist-treated) rats. GR mRNA expression was increased in hippocampal CA1 and the dentate gyrus of CRF1-antagonist treated nonhandled rats to levels commensurate with those in handled cohorts. Thus, the extent of CRF1 activation, probably involving changes in hypothalamic CRF levels and release, contributes to the changes in hippocampal GR expression and learning and memory functions. PMID:15932935

  14. Contrasting effects of nitric oxide and corticotropin-releasing factor within the dorsal periaqueductal gray on defensive behavior and nociception in mice

    Energy Technology Data Exchange (ETDEWEB)

    Miguel, T.T. [Programa Interinstitucional de Pós-Graduação em Ciências Fisiológicas, Universidade Federal de São Carlos and Universidade Estadual Paulista, Araraquara, SP (Brazil); Laboratório de Farmacologia, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista, Araraquara, SP (Brazil); Gomes, K.S. [Laboratório de Farmacologia, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista, Araraquara, SP (Brazil); Nunes-de-Souza, R.L. [Programa Interinstitucional de Pós-Graduação em Ciências Fisiológicas, Universidade Federal de São Carlos and Universidade Estadual Paulista, Araraquara, SP (Brazil); Laboratório de Farmacologia, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista, Araraquara, SP (Brazil)

    2012-03-30

    The anxiogenic and antinociceptive effects produced by glutamate N-methyl-D-aspartate receptor activation within the dorsal periaqueductal gray (dPAG) matter have been related to nitric oxide (NO) production, since injection of NO synthase (NOS) inhibitors reverses these effects. dPAG corticotropin-releasing factor receptor (CRFr) activation also induces anxiety-like behavior and antinociception, which, in turn, are selectively blocked by local infusion of the CRF type 1 receptor (CRFr1) antagonist, NBI 27914 [5-chloro-4-(N-(cyclopropyl)methyl-N-propylamino)-2-methyl-6- (2,4,6-trichlorophenyl)aminopyridine]. Here, we determined whether i) the blockade of the dPAG by CRFr1 attenuates the anxiogenic/antinociceptive effects induced by local infusion of the NO donor, NOC-9 [6-(2-hydroxy-1-methyl-2-nitrosohydrazino)-N-methyl-1-hexanamine], and ii) the anxiogenic/antinociceptive effects induced by intra-dPAG CRF are prevented by local infusion of N{sup ω}-propyl-L-arginine (NPLA), a neuronal NOS inhibitor, in mice. Male Swiss mice (12 weeks old, 25-35 g, N = 8-14/group) were stereotaxically implanted with a 7-mm cannula aimed at the dPAG. Intra-dPAG NOC-9 (75 nmol) produced defensive-like behavior (jumping and running) and antinociception (assessed by the formalin test). Both effects were reversed by prior local infusion of NBI 27914 (2 nmol). Conversely, intra-dPAG NPLA (0.4 nmol) did not modify the anxiogenic/antinociceptive effects of CRF (150 pmol). These results suggest that CRFr1 plays an important role in the defensive behavior and antinociception produced by NO within the dPAG. In contrast, the anxiogenic and antinociceptive effects produced by intra-dPAG CRF are not related to NO synthesis in this limbic midbrain structure.

  15. A corticotropin releasing factor pathway for ethanol regulation of the ventral tegmental area in the bed nucleus of the stria terminalis.

    Science.gov (United States)

    Silberman, Yuval; Matthews, Robert T; Winder, Danny G

    2013-01-16

    A growing literature suggests that catecholamines and corticotropin-releasing factor (CRF) interact in a serial manner to activate the bed nucleus of the stria terminalis (BNST) to drive stress- or cue-induced drug- and alcohol-seeking behaviors. Data suggest that these behaviors are driven in part by BNST projections to the ventral tegmental area (VTA). Together, these findings suggest the existence of a CRF-signaling pathway within the BNST that is engaged by catecholamines and regulates the activity of BNST neurons projecting to the VTA. Here we test three aspects of this model to determine: (1) whether catecholamines modify CRF neuron activity in the BNST; (2) whether CRF regulates excitatory drive onto VTA-projecting BNST neurons; and (3) whether this system is altered by ethanol exposure and withdrawal. A CRF neuron fluorescent reporter strategy was used to identify BNST CRF neurons for whole-cell patch-clamp analysis in acutely prepared slices. Using this approach, we found that both dopamine and isoproterenol significantly depolarized BNST CRF neurons. Furthermore, using a fluorescent microsphere-based identification strategy we found that CRF enhances the frequency of spontaneous EPSCs onto VTA-projecting BNST neurons in naive mice. This action of CRF was occluded during acute withdrawal from chronic intermittent ethanol exposure. These findings suggest that dopamine and isoproterenol may enhance CRF release from local BNST sources, leading to enhancement of excitatory neurotransmission on VTA-projecting neurons, and that this pathway is engaged by patterns of alcohol exposure and withdrawal known to drive excessive alcohol intake.

  16. Dopamine D2 receptor desensitization by dopamine or corticotropin releasing factor in ventral tegmental area neurons is associated with increased glutamate release.

    Science.gov (United States)

    Nimitvilai, Sudarat; Herman, Melissa; You, Chang; Arora, Devinder S; McElvain, Maureen A; Roberto, Marisa; Brodie, Mark S

    2014-07-01

    Neurons of the ventral tegmental area (VTA) are the source of dopaminergic (DAergic) input to important brain regions related to addiction. Prolonged exposure of these VTA neurons to moderate concentrations of dopamine (DA) causes a time-dependent decrease in DA-induced inhibition, a complex desensitization called DA inhibition reversal (DIR). DIR is mediated by conventional protein kinase C (cPKC) through concurrent stimulation of D2 and D1-like DA receptors, or by D2 stimulation concurrent with activation of some Gq-linked receptors. Corticotropin releasing factor (CRF) acts via Gq, and can modulate glutamater neurotransmission in the VTA. In the present study, we used brain slice electrophysiology to characterize the interaction of DA, glutamate antagonists, and CRF agonists in the induction and maintenance of DIR in the VTA. Glutamate receptor antagonists blocked induction but not maintenance of DIR. Putative blockers of neurotransmitter release and store-operated calcium channels blocked and reversed DIR. CRF and the CRF agonist urocortin reversed inhibition produced by the D2 agonist quinpirole, consistent with our earlier work indicating that Gq activation reverses quinpirole-mediated inhibition. In whole cell recordings, the combination of urocortin and quinpirole, but not either agent alone, increased spontaneous excitatory postsynaptic currents (sEPSCs) in VTA neurons. Likewise, the combination of a D1-like receptor agonist and quinpirole, but not either agent alone, increased sEPSCs in VTA neurons. In summary, desensitization of D2 receptors induced by dopamine or CRF on DAergic VTA neurons is associated with increased glutamatergic signaling in the VTA.

  17. A balance theory of peripheral corticotropin-releasing factor receptor type 1 and type 2 signaling to induce colonic contractions and visceral hyperalgesia in rats.

    Science.gov (United States)

    Nozu, Tsukasa; Takakusaki, Kaoru; Okumura, Toshikatsu

    2014-12-01

    Several recent studies suggest that peripheral corticotropin-releasing factor (CRF) receptor type 1 (CRF1) and CRF2 have a counter regulatory action on gastrointestinal functions. We hypothesized that the activity balance of each CRF subtype signaling may determine the changes in colonic motility and visceral sensation. Colonic contractions were assessed by the perfused manometry, and contractions of colonic muscle strips were measured in vitro in rats. Visceromotor response was determined by measuring contractions of abdominal muscle in response to colorectal distensions (CRDs) (60 mm Hg for 10 min twice with a 30-min rest). All drugs were administered through ip route in in vivo studies. CRF increased colonic contractions. Pretreatment with astressin, a nonselective CRF antagonist, blocked the CRF-induced response, but astressin2-B, a selective CRF2 antagonist, enhanced the response by CRF. Cortagine, a selective CRF1 agonist, increased colonic contractions. In in vitro study, CRF increased contractions of muscle strips. Urocortin 2, a selective CRF2 agonist, itself did not alter the contractions but blocked this increased response by CRF. Visceromotor response to the second CRD was significantly higher than that of the first. Astressin blocked this CRD-induced sensitization, but astressin2-B or CRF did not affect it. Meanwhile, astressin2-B together with CRF significantly enhanced the sensitization. Urocortin 2 blocked, but cortagine significantly enhanced, the sensitization. These results indicated that peripheral CRF1 signaling enhanced colonic contractility and induced visceral sensitization, and these responses were modulated by peripheral CRF2 signaling. The activity balance of each subtype signaling may determine the colonic functions in response to stress.

  18. Acute stress modulates the histamine content of mast cells in the gastrointestinal tract through interleukin-1 and corticotropin-releasing factor release in rats.

    Science.gov (United States)

    Eutamene, Helene; Theodorou, Vassilia; Fioramonti, Jean; Bueno, Lionel

    2003-12-15

    Stress results in activation of the hypothalamic pituitary adrenal axis and affects illnesses such as neuroinflammatory syndrome. In vivo acute stress (restraint stress) induces gastrointestinal function disturbances through colonic mast cell activation. This study investigated the effect of acute stress in histamine content of colonic mast cells, and the central role of interleukin-1 (IL-1) and corticotropin-releasing factor (CRF) in this effect. After a restraint stress session colonic segments were isolated and submitted to three protocols: (i) determination of histamine levels by radioimmunoassay (RIA) after incubation with 48/80 compound, (ii) evaluation by histology of mucosal mast cell (MMC) number and (iii) determination of histamine immunoreactivity of MMC. These procedures were conducted (1) in sham or stressed rats, (2) in stressed rats previously treated with intracerebroventricular (I.C.V.) IL-1ra or alpha-helical CRF9-41, (3) in naive rats pretreated with I.C.V. rhIL-1beta or CRF and (4) in rats treated with central IL-1beta and CRF plus alpha-helical CRF and IL-1ra, respectively (cross-antagonism reaction). Acute stress increases histamine content in colonic mast cells, without degranulation. I.C.V. pretreatment with IL-1ra or alpha-helical CRF9-41 blocked stress-induced mast cell histamine content increase. Both I.C.V. rhIL-1beta and CRF injections reproduced the stress-linked changes. I.C.V. treatment with CRF antagonist blocked I.C.V. rhIL-1beta-induced mast cell histamine content increase, whereas central IL-1ra did not affect stress events induced by I.C.V. CRF administration. These results suggest that in rats acute stress increases colonic mast cell histamine content. This effect is mediated by the release in cascade in the brain first of IL-1 and secondly of CRF.

  19. Adolescent binge drinking leads to changes in alcohol drinking, anxiety, and amygdalar corticotropin releasing factor cells in adulthood in male rats.

    Directory of Open Access Journals (Sweden)

    Nicholas W Gilpin

    Full Text Available Heavy episodic drinking early in adolescence is associated with increased risk of addiction and other stress-related disorders later in life. This suggests that adolescent alcohol abuse is an early marker of innate vulnerability and/or binge exposure impacts the developing brain to increase vulnerability to these disorders in adulthood. Animal models are ideal for clarifying the relationship between adolescent and adult alcohol abuse, but we show that methods of involuntary alcohol exposure are not effective. We describe an operant model that uses multiple bouts of intermittent access to sweetened alcohol to elicit voluntary binge alcohol drinking early in adolescence (~postnatal days 28-42 in genetically heterogeneous male Wistar rats. We next examined the effects of adolescent binge drinking on alcohol drinking and anxiety-like behavior in dependent and non-dependent adult rats, and counted corticotropin-releasing factor (CRF cell in the lateral portion of the central amygdala (CeA, a region that contributes to regulation of anxiety- and alcohol-related behaviors. Adolescent binge drinking did not alter alcohol drinking under baseline drinking conditions in adulthood. However, alcohol-dependent and non-dependent adult rats with a history of adolescent alcohol binge drinking did exhibit increased alcohol drinking when access to alcohol was intermittent. Adult rats that binged alcohol during adolescence exhibited increased exploration on the open arms of the elevated plus maze (possibly indicating either decreased anxiety or increased impulsivity, an effect that was reversed by a history of alcohol dependence during adulthood. Finally, CRF cell counts were reduced in the lateral CeA of rats with adolescent alcohol binge history, suggesting semi-permanent changes in the limbic stress peptide system with this treatment. These data suggest that voluntary binge drinking during early adolescence produces long-lasting neural and behavioral effects

  20. Effects of prolonged ethanol vapor exposure on forced swim behavior, and neuropeptide Y and corticotropin-releasing factor levels in rat brains.

    Science.gov (United States)

    Walker, Brendan M; Drimmer, David A; Walker, Jennifer L; Liu, Tianmin; Mathé, Aleksander A; Ehlers, Cindy L

    2010-09-01

    Depressive symptoms in alcohol-dependent individuals are well-recognized and clinically relevant phenomena. The etiology has not been elucidated although it is clear that the depressive symptoms may be alcohol independent or alcohol induced. To contribute to the understanding of the neurobiology of chronic ethanol use, we investigated the effects of chronic intermittent ethanol vapor exposure on behaviors in the forced swim test (FST) and neuropeptide Y (NPY) and corticotropin-releasing factor (CRF) levels in specific brain regions. Adult male Wistar rats were subjected to intermittent ethanol vapor (14 h on/10 h off) or air exposure for 2 weeks and were then tested at three time points corresponding to acute withdrawal (8-12 h into withdrawal) and protracted withdrawal (30 and 60 days of withdrawal) in the FST. The behaviors that were measured in the five-min FST consisted of latency to immobility, swim time, immobility time, and climbing time. The FST results showed that the vapor-exposed animals displayed depressive-like behaviors; for instance, decreased latency to immobility in acute withdrawal and decreased latency to immobility, decreased swim time and increased immobility time in protracted withdrawal, with differences between air- and vapor-exposed animals becoming more pronounced over the 60-day withdrawal period. NPY levels in the frontal cortex of the vapor-exposed animals were decreased compared with the control animals, and CRF levels in the amygdala were correlated with increased immobility time. Thus, extended ethanol vapor exposure produced long-lasting changes in FST behavior and NPY levels in the brain.

  1. Effects of Prolonged Ethanol Vapor Exposure on Forced Swim Behavior, and Neuropeptide Y and Corticotropin Releasing Factor Levels in Rat Brains

    Science.gov (United States)

    Walker, Brendan M.; Drimmer, David A.; Walker, Jennifer L.; Liu, Tianmin; Mathé, Aleksander A.; Ehlers, Cindy L.

    2010-01-01

    Depressive symptoms in alcohol-dependent individuals are well recognized and clinically relevant phenomena. The etiology has not been elucidated although it is clear that the depressive symptoms may be alcohol independent or alcohol-induced. In order to contribute to the understanding of the neurobiology of chronic ethanol use, we investigated the effects of chronic intermittent ethanol vapor exposure on behaviors in the forced swim test (FST) and neuropeptide Y (NPY) and corticotropin releasing factor (CRF) levels in specific brain regions. Adult male Wistar rats were subjected to intermittent ethanol vapor (14 hours on / 10 hours off) or air exposure for two weeks and were then tested at three time points corresponding to acute withdrawal (8–12 hours into withdrawal) and protracted withdrawal (30 and 60 days of withdrawal) in the FST. The behaviors that were measured in the five minute FST consisted of latency to immobility, swim time, immobility time and climbing time. The FST results showed that the vapor-exposed animals displayed depressive-like behaviors, for instance decreased latency to immobility in acute withdrawal and decreased latency to immobility, decreased swim time and increased immobility time in protracted withdrawal, with differences between air- and vapor-exposed animals becoming more pronounced over the 60 day withdrawal period. NPY levels in the frontal cortex of the vapor-exposed animals were decreased compared to the control animals and CRF levels in the amygdala were correlated with increased immobility time. Thus, extended ethanol vapor exposure produced long-lasting changes in FST behavior and NPY levels in the brain. PMID:20705420

  2. Opposing roles of corticotropin-releasing factor and neuropeptide Y within the dorsolateral bed nucleus of the stria terminalis in the negative affective component of pain in rats.

    Science.gov (United States)

    Ide, Soichiro; Hara, Taiki; Ohno, Atsushi; Tamano, Ryuta; Koseki, Kana; Naka, Tomonori; Maruyama, Chikashi; Kaneda, Katsuyuki; Yoshioka, Mitsuhiro; Minami, Masabumi

    2013-04-01

    Pain is a complex experience composed of sensory and affective components. Although the neural systems of the sensory component of pain have been studied extensively, those of its affective component remain to be determined. In the present study, we examined the effects of corticotropin-releasing factor (CRF) and neuropeptide Y (NPY) injected into the dorsolateral bed nucleus of the stria terminalis (dlBNST) on pain-induced aversion and nociceptive behaviors in rats to examine the roles of these peptides in affective and sensory components of pain, respectively. In vivo microdialysis showed that formalin-evoked pain enhanced the release of CRF in this brain region. Using a conditioned place aversion (CPA) test, we found that intra-dlBNST injection of a CRF1 or CRF2 receptor antagonist suppressed pain-induced aversion. Intra-dlBNST CRF injection induced CPA even in the absence of pain stimulation. On the other hand, intra-dlBNST NPY injection suppressed pain-induced aversion. Coadministration of NPY inhibited CRF-induced CPA. This inhibitory effect of NPY was blocked by coadministration of a Y1 or Y5 receptor antagonist. Furthermore, whole-cell patch-clamp electrophysiology in dlBNST slices revealed that CRF increased neuronal excitability specifically in type II dlBNST neurons, whereas NPY decreased it in these neurons. Excitatory effects of CRF on type II dlBNST neurons were suppressed by NPY. These results have uncovered some of the neuronal mechanisms underlying the affective component of pain by showing opposing roles of intra-dlBNST CRF and NPY in pain-induced aversion and opposing actions of these peptides on neuronal excitability converging on the same target, type II neurons, within the dlBNST.

  3. Chronic psychosocial stress induces reversible mitochondrial damage and corticotropin-releasing factor receptor type-1 upregulation in the rat intestine and IBS-like gut dysfunction.

    Science.gov (United States)

    Vicario, María; Alonso, Carmen; Guilarte, Mar; Serra, Jordi; Martínez, Cristina; González-Castro, Ana M; Lobo, Beatriz; Antolín, María; Andreu, Antoni L; García-Arumí, Elena; Casellas, Montserrat; Saperas, Esteban; Malagelada, Juan Ramón; Azpiroz, Fernando; Santos, Javier

    2012-01-01

    The association between psychological and environmental stress with functional gastrointestinal disorders, especially irritable bowel syndrome (IBS), is well established. However, the underlying pathogenic mechanisms remain unknown. We aimed to probe chronic psychosocial stress as a primary inducer of intestinal dysfunction and investigate corticotropin-releasing factor (CRF) signaling and mitochondrial damage as key contributors to the stress-mediated effects. Wistar-Kyoto rats were submitted to crowding stress (CS; 8 rats/cage) or sham-crowding stress (SC; 2 rats/cage) for up to 15 consecutive days. Hypothalamic-pituitary-adrenal (HPA) axis activity was evaluated. Intestinal tissues were obtained 1h, 1, 7, or 30 days after stress exposure, to assess neutrophil infiltration, epithelial ion transport, mitochondrial function, and CRF receptors expression. Colonic response to CRF (10 μg/kg i.p.) and hyperalgesia were evaluated after ending stress exposure. Chronic psychosocial stress activated HPA axis and induced reversible intestinal mucosal inflammation. Epithelial permeability and conductance were increased in CS rats, effect that lasted for up to 7 days after stress cessation. Visceral hypersensitivity persisted for up to 30 days post stress. Abnormal colonic response to exogenous CRF lasted for up to 7 days after stress. Mitochondrial activity was disturbed throughout the intestine, although mitochondrial response to CRF was preserved. Colonic expression of CRF receptor type-1 was increased in CS rats, and negatively correlated with body weight gain. In conclusion, chronic psychosocial stress triggers reversible inflammation, persistent epithelial dysfunction, and colonic hyperalgesia. These findings support crowding stress as a suitable animal model to unravel the complex pathophysiology underlying to common human intestinal stress-related disorders, such as IBS.

  4. Appetite-suppressing effects and interactions of centrally administered corticotropin-releasing factor, urotensin I and serotonin in rainbow trout (Oncorhynchus mykiss

    Directory of Open Access Journals (Sweden)

    Van A. Ortega

    2013-10-01

    Full Text Available Corticotropin-releasing factor (CRF, urotensin I (UI and serotonin (5-HT are generally recognized as key regulators of the anorexigenic stress response in vertebrates, yet the proximal effects and potential interactions of these central messengers on food intake in salmonids are not known. Moreover, no study to date in fishes has compared the appetite-suppressing effects of CRF and UI using species-specific peptides. Therefore, the objectives of this study were to 1 assess the individual effects of synthesized rainbow trout CRF (rtCRF, rtUI as well as 5-HT on food intake in rainbow trout, and 2 determine whether the CRF and serotonergic systems interact in the regulation of food intake in this species. Intracerebroventricular (icv injections of rtCRF and rtUI both suppressed food intake in a dose-related manner but rtUI (ED50 = 17.4 ng/g body weight [BW] was significantly more potent than rtCRF (ED50 = 105.9 ng/g BW. Co-injection of either rtCRF or rtUI with the CRF receptor antagonist a-hCRF(9-41 blocked the reduction in food intake induced by CRF-related peptides. Icv injections of 5-HT also inhibited feeding in a dose-related manner (ED50 = 14.7 ng/g BW and these effects were blocked by the serotonergic receptor antagonist methysergide. While the anorexigenic effects of 5-HT were reversed by a-hCRF(9-41 co-injection, the appetite-suppressing effects of either rtCRF or rtUI were not affected by methysergide co-injection. These results identify CRF, UI and 5-HT as anorexigenic agents in rainbow trout, and suggest that 5-HT-induced anorexia may be at least partially mediated by CRF- and/or UI-secreting neurons.

  5. Is it really a matter of simple dualism? Corticotropin-releasing factor receptors in body and mental health

    Directory of Open Access Journals (Sweden)

    Donny eJanssen

    2013-03-01

    Full Text Available Physiological responses to stress coordinated by the hypothalamo-pituitary-adrenal (HPA- axis are concerned with maintaining homeostasis in the presence of real or perceived challenges. Regulators of this axis are corticotrophin releasing hormone (CRF and CRF related neuropeptides, including urocortins (Ucn 1, 2 and 3. They mediate their actions by binding to CRF receptors (CRFR 1 and 2, which are located in several stress related brain regions. The prevailing theory has been that the initiation of and the recovery from an elicited stress response is coordinated by two elements, viz. the (mainly opposing, but well balanced actions of CRFR1 and CRFR2. Such a dualistic view suggests that CRF/CRFR1 controls the initiation of, and urocortins/CRFR2 mediate the recovery from stress to maintain body and mental health. Consequently, failed adaptation to stress can lead to neuropathology, including anxiety and depression. Recent literature, however, challenges such dualistic and complementary actions of CRFR1 and CRFR2, and suggests that stress recruits CRF system components in a brain area and neuron specific manner to promote adaptation as conditions dictate.

  6. Overexpression of corticotropin-releasing factor receptor type 2 in the bed nucleus of stria terminalis improves posttraumatic stress disorder-like symptoms in a model of incubation of fear.

    Science.gov (United States)

    Elharrar, Einat; Warhaftig, Gal; Issler, Orna; Sztainberg, Yehezkel; Dikshtein, Yahav; Zahut, Roy; Redlus, Lior; Chen, Alon; Yadid, Gal

    2013-12-01

    Posttraumatic stress disorder (PTSD) is a severe, persistent psychiatric disorder in response to a traumatic event, causing intense anxiety and fear. These responses may increase over time upon conditioning with fear-associated cues, a phenomenon termed fear incubation. Corticotropin-releasing factor receptor type 1 (CRFR1) is involved in activation of the central stress response, while corticotropin-releasing factor receptor type 2 (CRFR2) has been suggested to mediate termination of this response. Corticotropin-releasing factor (CRF) receptors are found in stress-related regions, including the bed nucleus of stria terminalis (BNST), which is implicated in sustained fear. Fear-related behaviors were analyzed in rats exposed to predator-associated cues, a model of psychological trauma, over 10 weeks. Rats were classified as susceptible (PTSD-like) or resilient. Expression levels of CRF receptors were measured in the amygdala nuclei and BNST of the two groups. In addition, lentiviruses overexpressing CRFR2 were injected into the medial division, posterointermediate part of the BNST (BSTMPI) of susceptible and resilient rats and response to stress cues was measured. We found that exposure to stress and stress-associated cues induced a progressive increase in fear response of susceptible rats. The behavioral manifestations of these rats were correlated both with sustained elevation in CRFR1 expression and long-term downregulation in CRFR2 expression in the BSTMPI. Intra-BSTMPI injection of CRFR2 overexpressing lentiviruses attenuated behavioral impairments of susceptible rats. These results implicate the BNST CRF receptors in the mechanism of coping with stress. Our findings suggest increase of CRFR2 levels as a new approach for understanding stress-related atypical psychiatric syndromes such as PTSD. © 2013 Society of Biological Psychiatry.

  7. Glucocorticoids regulate the expression of the mouse urocortin II gene: a putative connection between the corticotropin-releasing factor receptor pathways.

    Science.gov (United States)

    Chen, Alon; Vaughan, Joan; Vale, Wylie W

    2003-08-01

    Peptides encoded by the urocortin II (Ucn II) gene were recently identified as new members of the corticotropin-releasing factor (CRF) family. Ucn II is a specific ligand for the type 2 CRF receptor. Using RT-PCR, DNA sequencing, and immunofluorescence staining, we report the expression of Ucn II mRNA in several human and mouse (m) neuronal cell lines. Using these neuronal cell lines, we provide evidence that exposure to glucocorticoid hormones increases mUcn II mRNA expression and promoter activation. The effect of glucocorticoids on mUcn II mRNA expression was tested in the Ucn II/glucocorticoid receptor-positive cell line NG108-15. The results demonstrate that mUcn II mRNA expression is up-regulated by dexamethasone in a dose- and time-dependent fashion. Computer analysis revealed the presence of 14 putative half-palindrome glucocorticoid response element sequences within 1.2 kb of the mUcn II 5' flanking region. Transfections with different fragments of the 5'-flanking region of the mUcn II gene fused to a luciferase reporter gene showed a promoter-dependent expression of the reporter gene and regulation by dexamethasone. Promoter deletion studies clarify the sufficient putative glucocorticoid response element site mediating this effect. The steroid hormone antagonist RU486 blocked the effect of dexamethasone on mUcn II mRNA expression and promoter activation, suggesting a direct glucocorticoid receptor-mediated effect of dexamethasone on mUcn II mRNA expression. Ucn II is expressed in vivo in the hypothalamus, brainstem, olfactory bulb, and pituitary. Low levels were also detected in the mouse cortex, hippocampus, and spinal cord. We demonstrated that mUcn II gene transcription was stimulated by glucocorticoid administration in vivo and inhibited by removal of glucocorticoids by adrenalectomy. Administration of dexamethasone to mice resulted in an increase of mUcn II levels in the hypothalamus and brainstem but not in the olfactory bulb region 12 h following

  8. Involvement of Nurr-1/Nur77 in corticotropin-releasing factor/urocortin1-induced tyrosinase-related protein 1 gene transcription in human melanoma HMV-II cells.

    Science.gov (United States)

    Watanuki, Yutaka; Takayasu, Shinobu; Kageyama, Kazunori; Iwasaki, Yasumasa; Sakihara, Satoru; Terui, Ken; Nigawara, Takeshi; Suda, Toshihiro

    2013-05-06

    Recent molecular and biochemical analyses have revealed the presence of corticotropin-releasing factor (CRF) and urocortin (Ucn), together with their corresponding receptors in mammalian skin. The melanosomal enzyme tyrosinase-related protein 1 (TRP1) is involved in modulation of pigment production in response to stressors. Although CRF and Ucn are thought to have potent effects on the skin system, their possible roles and regulation have yet to be fully determined. This study aimed to explore the effects of CRF and Ucn on TRP1 gene expression using human melanoma HMV-II cells. The mRNA of CRF, Ucn1, Ucn2, and CRF receptor type 1 (CRF1 receptor) was detected in HMV-II cells. CRF and Ucn1 stimulated TRP1 gene transcription via the CRF1 receptor, and increased both Nurr-1 and Nur77 mRNA expression levels. Both CRF- and Ucn1-induced Nurr-1/Nur77 acted via a NGFI-B response element on the TRP1 promoter. The combination of Nurr-1/Nur77 and microphthalmia-associated transcription factor, a melanocyte-specific transcription factor gene induced by α-melanocyte-stimulating hormone, had additive effects on activation of TRP1 gene transcription. The findings suggest that in human melanoma HMV-II cells both CRF and Ucn1 regulate TRP1 gene expression via Nurr-1/Nur77 production, independent of pro-opiomelanocortin or α-melanocyte-stimulating hormone stimulation.

  9. Advances in Study on Corticotropin-releasing Factor in Inflammatory Bowel Disease%促肾上腺皮质激素释放因子在炎症性肠病中的研究进展

    Institute of Scientific and Technical Information of China (English)

    马俊方; 张予蜀; 孔超美

    2013-01-01

    近年来,越来越多的证据表明应激可干扰神经系统,进而通过脑-肠轴的交互作用引起免疫紊乱,在炎症性肠病(IBD)的发病中起重要作用.促肾上腺皮质激素释放因子(CRF)是一种与应激反应密切相关的神经内分泌肽,其家族成员通过与受体结合,调节机体在应激状态下的下丘脑-垂体-肾上腺(HPA)轴功能,在协调应激相关内分泌、自主神经、免疫、行为等反应中起重要作用.在慢性肠道炎症中,脑和肠黏膜中的CRF系统成员被激活以调节肠道局部和中枢免疫反应.本文对CRF在IBD中作用的研究进展作一综述.%It has become increasingly evident that stress is implicated in the development of inflammatory bowel disease (IBD) via initial nervous disturbance and subsequent immune dysfunction through brain-gut interaction. Being a principal neuroendocrine coordinator of stress responses, corticotropin-releasing factor ( CRF) and its related peptides regulate the hypothalamic-pituitary-adrenal (HPA) axis and coordinate the endocrine, autonomic, immune and behavioral responses to stress through its receptors. In chronic intestinal inflammation, the members of CRF system in brain and colonic mucosa are activated, regulating both the local and central immune response. This article reviewed the advances in study on the role of CRF in IBD.

  10. The corticotropin-releasing factor-like diuretic hormone 44 (DH44) and kinin neuropeptides modulate desiccation and starvation tolerance in Drosophila melanogaster

    DEFF Research Database (Denmark)

    Cannell, Elizabeth; Dornan, Anthony J.; Halberg, Kenneth Agerlin

    2016-01-01

    (Drome-kinin, DK) in desiccation and starvation tolerance. Gene expression and labelled DH44 ligand binding data, as well as highly selective knockdowns and/or neuronal ablations of DH44 in neurons of the pars intercerebralis and DH44 receptor (DH44-R2) in Malpighian tubule principal cells, indicate...... that suppression of DH44 signalling improves desiccation tolerance of the intact fly. Drome-kinin receptor, encoded by the leucokinin receptor gene, LKR, is expressed in DH44 neurons as well as in stellate cells of the Malpighian tubules. LKR knockdown in DH44-expressing neurons reduces Malpighian tubule......-specific LKR, suggesting interactions between DH44 and LK signalling pathways. Finally, although a role for DK in desiccation tolerance was not defined, we demonstrate a novel role for Malpighian tubule cell-specific LKR in starvation tolerance. Starvation increases gene expression of epithelial LKR. Also...

  11. The corticotropin-releasing factor-like diuretic hormone 44 (DH44) and kinin neuropeptides modulate desiccation and starvation tolerance in Drosophila melanogaster.

    Science.gov (United States)

    Cannell, Elizabeth; Dornan, Anthony J; Halberg, Kenneth A; Terhzaz, Selim; Dow, Julian A T; Davies, Shireen-A

    2016-06-01

    Malpighian tubules are critical organs for epithelial fluid transport and stress tolerance in insects, and are under neuroendocrine control by multiple neuropeptides secreted by identified neurons. Here, we demonstrate roles for CRF-like diuretic hormone 44 (DH44) and Drosophila melanogaster kinin (Drome-kinin, DK) in desiccation and starvation tolerance. Gene expression and labelled DH44 ligand binding data, as well as highly selective knockdowns and/or neuronal ablations of DH44 in neurons of the pars intercerebralis and DH44 receptor (DH44-R2) in Malpighian tubule principal cells, indicate that suppression of DH44 signalling improves desiccation tolerance of the intact fly. Drome-kinin receptor, encoded by the leucokinin receptor gene, LKR, is expressed in DH44 neurons as well as in stellate cells of the Malpighian tubules. LKR knockdown in DH44-expressing neurons reduces Malpighian tubule-specific LKR, suggesting interactions between DH44 and LK signalling pathways. Finally, although a role for DK in desiccation tolerance was not defined, we demonstrate a novel role for Malpighian tubule cell-specific LKR in starvation tolerance. Starvation increases gene expression of epithelial LKR. Also, Malpighian tubule stellate cell-specific knockdown of LKR significantly reduced starvation tolerance, demonstrating a role for neuropeptide signalling during starvation stress. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  12. High-altitude hypoxia induces disorders of the brain-endocrine-immune network through activation of corticotropin-releasing factor and its type-1 receptors

    Institute of Scientific and Technical Information of China (English)

    Xue-qun CHEN; Fan-ping KONG; Yang ZHAO; Ji-zeng DU

    2012-01-01

    High-altitude hypoxia can induce physiological dysfunction and mountain sickness,but the underlying mechanism is not fully understood.Corticotrophin-releasing factor (CRF) and CRF type-1 receptors (CRFR1) are members of the CRF family and the essential controllers of the physiological activity of the hypothalamo-pituitary-adrenal (HPA) axis and modulators of endocrine and behavioral activity in response to various stressors.We have previously found that high-altitude hypoxia induces disorders of the brain-endocrine-immune network through activation of CRF and CRFR1 in the brain and periphery that include activation of the HPA axis in a time-and dose-dependent manner,impaired or improved learning and memory,and anxiety-like behavioral change.Meanwhile,hypoxia induces dysfunctions of the hypothalamo-pituitary-endocrine and immune systems,including suppression of growth and development,as well as inhibition of reproductive,metabolic and immune functions.In contrast,the small mammals that live on the Qinghai-Tibet Plateau alpine meadow display low responsiveness to extreme high-altitudehypoxia challenge,suggesting well-acclimatized genes and a physiological strategy that developed during evolution through interact-ions between the genes and environment.All the findings provide evidence for understanding the neuroendocrine mechanisms of hypoxia-induced physiological dysfunction.This review extends these findings.

  13. Role of a genetic polymorphism in the corticotropin-releasing factor receptor 1 gene in alcohol drinking and seeking behaviors of Marchigian Sardinian alcohol-preferring (msP rats

    Directory of Open Access Journals (Sweden)

    Lydia Ojonemile Ayanwuyi

    2013-04-01

    Full Text Available Marchigian Sardinian alcohol-preferring (msP rats exhibit innate preference for alcohol, are highly sensitive to stress and stress-induced alcohol seeking. Genetic analysis showed that over-expression of the corticotropin-releasing factor (CRF system of msP rats is correlated with the presence of two single nucleotide polymorphisms (SNPs occurring in the promoter region (position -1836 and -2097 of the CRF1 receptor (CRF1-R gene. Here we examined whether these point mutations were associated to the innate alcohol preference, stress-induced drinking and seeking.We have recently re-derived the msP rats to obtain two distinct lines carrying the wild type (GG and the point mutations (AA, respectively. The phenotypic characteristics of these two lines were compared with those of unselected Wistar rats. Both AA and GG rats showed similar patterns of voluntary alcohol intake and preference. Similarly, the pharmacological stressor yohimbine (0.0, 0.625, 1.25 and 2.5 mg/kg elicited increased operant alcohol self-administration under fixed and progressive ratio reinforcement schedules in all three lines. Following extinction, yohimbine (0.0, 0.625, 1.25 and 2.5 mg/kg significantly reinstated alcohol seeking in the three groups. However, at the highest dose this effect was no longer evident in AA rats. Treatment with the CRF1-R antagonist antalarmin (0, 5, 10 and 20 mg/kg significantly reduced alcohol-reinforced lever pressing in the AA line (10 and 20 mg/kg while a weaker or no effect was observed in the Wistar and the GG group, respectively. Finally, antalarmin significantly reduced yohimbine-induced increase in alcohol drinking in all three groups.In conclusion, these specific SNPs in the CRF1-R gene do not seem to play a primary role in the expression of the msP excessive-drinking phenotype or stress-induced drinking but may be associated with a decreased threshold for stress-induced alcohol seeking and an increased sensitivity to the effects of

  14. Sex differences in NMDA GluN1 plasticity in rostral ventrolateral medulla neurons containing corticotropin-releasing factor type 1 receptor following slow-pressor angiotensin II hypertension.

    Science.gov (United States)

    Van Kempen, T A; Dodos, M; Woods, C; Marques-Lopes, J; Justice, N J; Iadecola, C; Pickel, V M; Glass, M J; Milner, T A

    2015-10-29

    There are profound, yet incompletely understood, sex differences in the neurogenic regulation of blood pressure. Both corticotropin signaling and glutamate receptor plasticity, which differ between males and females, are known to play important roles in the neural regulation of blood pressure. However, the relationship between hypertension and glutamate plasticity in corticotropin-releasing factor (CRF)-receptive neurons in brain cardiovascular regulatory areas, including the rostral ventrolateral medulla (RVLM) and paraventricular nucleus of the hypothalamus (PVN), is not understood. In the present study, we used dual-label immuno-electron microscopy to analyze sex differences in slow-pressor angiotensin II (AngII) hypertension with respect to the subcellular distribution of the obligatory NMDA glutamate receptor subunit 1 (GluN1) subunit of the N-methyl-D-aspartate receptor (NMDAR) in the RVLM and PVN. Studies were conducted in mice expressing the enhanced green fluorescence protein (EGFP) under the control of the CRF type 1 receptor (CRF1) promoter (i.e., CRF1-EGFP reporter mice). By light microscopy, GluN1-immunoreactivity (ir) was found in CRF1-EGFP neurons of the RVLM and PVN. Moreover, in both regions tyrosine hydroxylase (TH) was found in CRF1-EGFP neurons. In response to AngII, male mice showed an elevation in blood pressure that was associated with an increase in the proportion of GluN1 on presumably functional areas of the plasma membrane (PM) in CRF1-EGFP dendritic profiles in the RVLM. In female mice, AngII was neither associated with an increase in blood pressure nor an increase in PM GluN1 in the RVLM. Unlike the RVLM, AngII-mediated hypertension had no effect on GluN1 localization in CRF1-EGFP dendrites in the PVN of either male or female mice. These studies provide an anatomical mechanism for sex-differences in the convergent modulation of RVLM catecholaminergic neurons by CRF and glutamate. Moreover, these results suggest that sexual dimorphism in

  15. Contents of corticotropin-releasing hormone and arginine vasopressin immunoreativity in the spleen and thymus during a chronic inflammatory stress

    DEFF Research Database (Denmark)

    Chowdrey, H.S.; Lightman, S.L.; Harbuz, M.S.;

    1994-01-01

    Corticotropin-releasing hormone, spleen, thymus, immune system, stress, arthritis, arginine vasopressin......Corticotropin-releasing hormone, spleen, thymus, immune system, stress, arthritis, arginine vasopressin...

  16. HPA axis dysregulation in mice overexpressing corticotropin releasing hormone.

    NARCIS (Netherlands)

    Groenink, L.; Dirks, A.; Verdouw, P.M.; Schipholt, M.; Veening, J.G.; Gugten, J. van der; Olivier, B.

    2002-01-01

    BACKGROUND: Hypersecretion of corticotropin-releasing hormone (CRH) in the brain has been implicated in stress-related human pathologies. We developed a transgenic mouse line overexpressing CRH (CRH-OE) exclusively in neural tissues to assess the effect of long-term CRH overproduction on regulation

  17. A central theory of preterm and term labor: putative role for corticotropin-releasing hormone.

    Science.gov (United States)

    Majzoub, J A; McGregor, J A; Lockwood, C J; Smith, R; Taggart, M S; Schulkin, J

    1999-01-01

    Near the end of human pregnancy the concentration of placental corticotropin-releasing hormone in maternal blood rises exponentially. The rate of elevation of corticotropin-releasing hormone and its duration through time have been linked to the time of onset of labor. Paradoxically, although glucocorticoids are known to inhibit corticotropin-releasing hormone production within the hypothalamic-pituitary-adrenal axis, cortisol actually increases corticotropin-releasing hormone levels in several areas outside the hypothalamus, including the placenta. Placental corticotropin-releasing hormone may be an important component of a system that controls the normal maturation of the fetus and signals the initiation of labor. Abnormal elevations in corticotropin-releasing hormone, which may be a hormonal response to stressors arising in either the mother, placenta, or fetus, may prove to participate in the premature onset of parturition.

  18. Genetic moderation of child maltreatment effects on depression and internalizing symptoms by serotonin transporter linked polymorphic region (5-HTTLPR), brain-derived neurotrophic factor (BDNF), norepinephrine transporter (NET), and corticotropin releasing hormone receptor 1 (CRHR1) genes in African American children.

    Science.gov (United States)

    Cicchetti, Dante; Rogosch, Fred A

    2014-11-01

    Genetic moderation of the effects of child maltreatment on depression and internalizing symptoms was investigated in a sample of low-income maltreated and nonmaltreated African American children (N = 1,096). Lifetime child maltreatment experiences were independently coded from Child Protective Services records and maternal report. Child depression and internalizing problems were assessed in the context of a summer research camp by self-report on the Children's Depression Inventory and adult counselor report on the Teacher Report Form. DNA was obtained from buccal cell or saliva samples and genotyped for polymorphisms of the following genes: serotonin transporter linked polymorphic region (5-HTTLPR), brain-derived neurotrophic factor (BDNF), norepinephrine transporter, and corticotropin releasing hormone receptor 1. Analyses of covariance with age and gender as covariates were conducted, with maltreatment status and respective polymorphism as main effects and their Gene × Environment (G × E) interactions. Maltreatment consistently was associated with higher Children's Depression Inventory and Teacher Report Form symptoms. The results for child self-report symptoms indicated a G × E interaction for BDNF and maltreatment. In addition, BDNF and triallelic 5-HTTLPR interacted with child maltreatment in a G × G × E interaction. Analyses for counselor report of child anxiety/depression symptoms on the Teacher Report Form indicated moderation of child maltreatment effects by triallelic 5-HTTLPR. These effects were elaborated based on variation in developmental timing of maltreatment experiences. Norepinephrine transporter was found to further moderate the G × E interaction of 5-HTTLPR and maltreatment status, revealing a G × G × E interaction. This G × G × E was extended by consideration of variation in maltreatment subtype experiences. Finally, G × G × E effects were observed for the co-action of BDNF and the corticotropin releasing hormone receptor 1

  19. Regulation of feeding behavior and psychomotor activity by corticotropin-releasing hormone (CRH in fish

    Directory of Open Access Journals (Sweden)

    Kouhei eMatsuda

    2013-05-01

    Full Text Available Corticotropin-releasing hormone (CRH is a hypothalamic neuropeptide belonging to a family of neuropeptides that includes urocortins, urotensin I and sauvagine in vertebrates. CRH and urocortin act as anorexigenic factors for satiety regulation in fish. In a goldfish model, intracerebroventricular (ICV administration of CRH has been shown to affect not only food intake, but also locomotor and psychomotor activities. In particular, CRH elicits anxiety-like behavior as an anxiogenic neuropeptide in goldfish, as is the case in rodents. This paper reviews current knowledge of CRH and its related peptides derived from studies of teleost fish, as representative non-mammals, focusing particularly on the role of the CRH system, and examines its significance from a comparative viewpoint.

  20. Estrogen inhibits corticotropin-releasing hormone production in primary human placental cells

    Institute of Scientific and Technical Information of China (English)

    唐晓露; 倪鑫; 由振东; 何平; 惠宁; 顾清; 孙刚

    2003-01-01

    Objective: To study the inhibition effects of estrogen on the production of corticotropin-releasing hormone in human placental cells. Methods: Primary cultured placental cells were treated by ICI182, 780, a complete ER antagonist, and Tamoxifen, an ERα-mixed agonist/antagonist and ERβ antagonist for 24 h. The supernatant was havested for the radioimmunoassay of CRH. Results: 17β-estradiol inhibited the secretion of corticotropin-releasing hormone in human placental (P<0.05). ICI182, 780 stimulated the secretion of corticotropin-releasing hormone in human placental (P<0.05). Conclusion: Estrogen represses the synthesis and secretion of corticotropin-releasing hormone in human placental, which is possibly mediated by ERα.

  1. Role of corticotropin-releasing hormone in onset of labour.

    Science.gov (United States)

    Grammatopoulos, D K; Hillhouse, E W

    1999-10-30

    Corticotropin-releasing hormone (CRH) derived from the placenta is secreted into the maternal circulation in large amounts during the third trimester of human pregnancy and may have an important role in the onset of labour. Although the biological role of CRH remains enigmatic, the presence of functional CRH receptors in the myometrium suggests that CRH may modulate myometrial contractility and hence parturition. CRH action is mediated via multiple receptor subtypes and pregnancy results in differential receptor expression. These receptors are primarily linked to the adenylate cyclase second messenger system, which would help the intracellular microenvironment to maintain the required myometrial quiescence. CRH can exert further actions such as inhibition of prostaglandin production to prevent contractions. At term under the influence of oxytocin there is a modification in the coupling mechanisms that leads to a decrease in the biological activity of the CRH receptor and in the generation of cyclic adenosine monophosphate which favours myometrial contractions. CRH, via distinct receptor subtypes, is then able to enhance the contractile response of the myometrium. This hypothesis places CRH in a central role in coordinating the smooth transition from a state of relaxation to one of contraction.

  2. Cutaneous induction of corticotropin releasing hormone by Propionibacterium acnes extracts.

    Science.gov (United States)

    Isard, Olivia; Knol, Anne-Chantal; Castex-Rizzi, Nathalie; Khammari, Amir; Charveron, Marie; Dréno, Brigitte

    2009-03-01

    The skin commensal bacillus Propionibacterium acnes is known to play a major role in the development of acne vulgaris and it is established that this bacteria is involved both in the induction and maintenance of the inflammatory phase of acne. The corticotropin releasing hormone (CRH), a neuropeptide originally isolated from the hypothalamus, is also produced by the skin. CRH has been reported to play a role in the inflammation, the production of sebum and finally the differentiation of keratinocytes. At the therapeutic level, zinc is known to act specifically on inflammatory lesions with still partially known mechanisms and thus could play an important role in the development of inflammatory acne lesions. Our objective was to study the modulation of CRH expression by keratinocytes induced by P. acnes extracts. CRH expression was examined using immunohistochemistry technique on deep-frozen sections of normal human skin explants incubated with two different extracts of P. acnes and with or without zinc salts. We observed that the membrane fraction (FM) of P. acnes increased the CRH expression in the epidermis. This result indicates that P. acnes, by stimulating the production of CRH, can both modulate the differentiation of keratinocytes and increase the local inflammation, arguing that this bacterium plays a role not only in the development of inflammatory acne lesions but also in the formation of the microcomedo in the early stages of acne.

  3. Corticotropin-releasing hormone: Mediator of vertebrate life stage transitions?

    Science.gov (United States)

    Watanabe, Yugo; Grommen, Sylvia V H; De Groef, Bert

    2016-03-01

    Hormones, particularly thyroid hormones and corticosteroids, play critical roles in vertebrate life stage transitions such as amphibian metamorphosis, hatching in precocial birds, and smoltification in salmonids. Since they synergistically regulate several metabolic and developmental processes that accompany vertebrate life stage transitions, the existence of extensive cross-communication between the adrenal/interrenal and thyroidal axes is not surprising. Synergies of corticosteroids and thyroid hormones are based on effects at the level of tissue hormone sensitivity and gene regulation. In addition, in representative nonmammalian vertebrates, corticotropin-releasing hormone (CRH) stimulates hypophyseal thyrotropin secretion, and thus functions as a common regulator of both the adrenal/interrenal and thyroidal axes to release corticosteroids and thyroid hormones. The dual function of CRH has been speculated to control or affect the timing of vertebrate life history transitions across taxa. After a brief overview of recent insights in the molecular mechanisms behind the synergic actions of thyroid hormones and corticosteroids during life stage transitions, this review examines the evidence for a possible role of CRH in controlling vertebrate life stage transitions. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Human fear acquisition deficits in relation to genetic variants of the corticotropin releasing hormone receptor 1 and the serotonin transporter.

    Directory of Open Access Journals (Sweden)

    Ivo Heitland

    Full Text Available The ability to identify predictors of aversive events allows organisms to appropriately respond to these events, and failure to acquire these fear contingencies can lead to maladaptive contextual anxiety. Recently, preclinical studies demonstrated that the corticotropin-releasing factor and serotonin systems are interactively involved in adaptive fear acquisition. Here, 150 healthy medication-free human subjects completed a cue and context fear conditioning procedure in a virtual reality environment. Fear potentiation of the eyeblink startle reflex (FPS was measured to assess both uninstructed fear acquisition and instructed fear expression. All participants were genotyped for polymorphisms located within regulatory regions of the corticotropin releasing hormone receptor 1 (CRHR1 - rs878886 and the serotonin transporter (5HTTLPR. These polymorphisms have previously been linked to panic disorder and anxious symptomology and personality, respectively. G-allele carriers of CRHR1 (rs878886 showed no acquisition of fear conditioned responses (FPS to the threat cue in the uninstructed phase, whereas fear acquisition was present in C/C homozygotes. Moreover, carrying the risk alleles of both rs878886 (G-allele and 5HTTLPR (short allele was associated with increased FPS to the threat context during this phase. After explicit instructions regarding the threat contingency were given, the cue FPS and context FPS normalized in all genotype groups. The present results indicate that genetic variability in the corticotropin-releasing hormone receptor 1, especially in interaction with the 5HTTLPR, is involved in the acquisition of fear in humans. This translates prior animal findings to the human realm.

  5. Differential actions of peripheral corticotropin-releasing factor (CRF), urocortin II, and urocortin III on gastric emptying and colonic transit in mice: role of CRF receptor subtypes 1 and 2.

    Science.gov (United States)

    Martínez, Vicente; Wang, Lixin; Rivier, Jean E; Vale, Wylie; Taché, Yvette

    2002-05-01

    Peripheral CRF inhibits gastric emptying and stimulates colonic motor function in rats. We investigated the role of CRF(1) and CRF(2) receptors in i.p. CRF-induced alterations of gut transit in conscious mice using selective CRF(1) and CRF(2) ligands injected i.p. Gastric emptying 2 h after ingestion of a solid chow meal and colonic transit (time to expel a bead inserted into the distal colon) were determined simultaneously. Rat/human (r/h)CRF, which has CRF(1) > CRF(2) binding affinity, decreased distal colonic transit time at lower doses (6-12 microg/kg) than those inhibiting gastric emptying (20-60 microg/kg). Ovine CRF, a preferential CRF(1) receptor agonist (6-60 microg/kg), reduced significantly the colonic transit time without altering gastric emptying, whereas the selective CRF(2) receptor agonists mouse urocortin II (20-60 microg/kg) and urocortin III (120 microg/kg) inhibited significantly gastric emptying without modifying colonic transit. The CRF(1)/CRF(2) receptor antagonist, astressin (30-120 microg/kg), dose dependently prevented r/hCRF (20 microg/kg)-induced inhibition of gastric emptying and reduction of colonic transit time. The selective CRF(1) receptor antagonists, NBI-27914 (C(18)H(20)Cl(4)N(4)C(7)H(8)O(3)S) and CP-154,526 (butyl-[2,5-dimethyl-7-(2,4,6-trimethylphenyl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl]ethylamine) (5-30 mg/kg), dose dependently blocked r/hCRF action on the colon without influencing the gastric response, whereas the CRF(2) receptor antagonist, antisauvagine-30 (30-100 microg/kg), dose dependently abolished r/hCRF-induced delayed gastric emptying and had no effect on colonic response. These data show that i.p. r/hCRF-induced opposite actions on upper and lower gut transit in conscious mice are mediated by different CRF receptor subtypes: the activation of CRF(1) receptors stimulates colonic propulsive activity, whereas activation of CRF(2) receptors inhibits gastric emptying.

  6. Role of Corticotropin-releasing Factor in Gastrointestinal Permeability

    OpenAIRE

    2015-01-01

    The interface between the intestinal lumen and the mucosa is the location where the majority of ingested immunogenic particles face the scrutiny of the vast gastrointestinal immune system. Upon regular physiological conditions, the intestinal micro-flora and the epithelial barrier are well prepared to process daily a huge amount of food-derived antigens and non-immunogenic particles. Similarly, they are ready to prevent environmental toxins and microbial antigens to penetrate further and inte...

  7. A novel role of peripheral corticotropin-releasing hormone (CRH on dermal fibroblasts.

    Directory of Open Access Journals (Sweden)

    Olga Rassouli

    Full Text Available Corticotropin-releasing hormone, or factor, (CRH or CRF exerts important biological effects in multiple peripheral tissues via paracrine/autocrine actions. The aim of our study was to assess the effects of endogenous CRH in the biology of mouse and human skin fibroblasts, the primary cell type involved in wound healing. We show expression of CRH and its receptors in primary fibroblasts, and we demonstrate the functionality of fibroblast CRH receptors by induction of cAMP. Fibroblasts genetically deficient in Crh (Crh-/- had higher proliferation and migration rates and compromised production of IL-6 and TGF-β1 compared to the wildtype (Crh+/+ cells. Human primary cultures of foreskin fibroblasts exposed to the CRF(1 antagonist antalarmin recapitulated the findings in the Crh-/- cells, exhibiting altered proliferative and migratory behavior and suppressed production of IL-6. In conclusion, our findings show an important role of fibroblast-expressed CRH in the proliferation, migration, and cytokine production of these cells, processes associated with the skin response to injury. Our data suggest that the immunomodulatory effects of CRH may include an important, albeit not explored yet, role in epidermal tissue remodeling and regeneration and maintenance of tissue homeostasis.

  8. Adrenocorticotropic hormone and cortisol in calves after corticotropin-releasing hormone

    NARCIS (Netherlands)

    Veissier, I.; Reenen, van C.G.; Andanson, S.; Leushuis, I.E.

    1999-01-01

    The aim for this study was to analyze responsiveness of the hypothalamo-pituitary-adrenocortical axis to exogenous bovine corticotropin-releasing hormone (bCRH) in calves. Two dose-response studies were carried out, using either bCRH alone (dose rates of 0, .01, .03, and .1 μg bCRH/kg live weight) o

  9. Mid-pregnancy corticotropin-releasing hormone levels in association with postpartum depressive symptoms

    NARCIS (Netherlands)

    Iliadis, Stavros I; Sylvén, Sara; Hellgren, Charlotte; Olivier, Jocelien D.; Schijven, Dick; Comasco, Erika; Chrousos, George P; Sundström Poromaa, Inger; Skalkidou, Alkistis

    2016-01-01

    BACKGROUND: Peripartum depression is a common cause of pregnancy- and postpartum-related morbidity. The production of corticotropin-releasing hormone (CRH) from the placenta alters the profile of hypothalamus-pituitary-adrenal axis hormones and may be associated with postpartum depression. The purpo

  10. NEURONAL ACTIVITY AND STRESS DIFFERENTIALLY REGULATE HIPPOCAMPAL AND HYPOTHALAMIC CORTICOTROPIN-RELEASING HORMONE EXPRESSION IN THE IMMATURE RAT

    OpenAIRE

    Hatalski, C G; Brunson, K. L.; TANTAYANUBUTR, B.; Chen, Y.(California Institute of Technology, Pasadena, USA); Baram, T. Z.

    2000-01-01

    Corticotropin-releasing hormone, a major neuromodulator of the neuroendocrine stress response, is expressed in the immature hippocampus, where it enhances glutamate receptor-mediated excitation of principal cells. Since the peptide influences hippocampal synaptic efficacy, its secretion from peptidergic interneuronal terminals may augment hippocampal-mediated functions such as learning and memory. However, whereas information regarding the regulation of corticotropin-releasing hormone’s abund...

  11. Effects of injection of anti-corticotropin release hormone serum in the lateral ventricles and electroacupuncture analgesia on pain threshold in rats with adjuvant arthritis

    Institute of Scientific and Technical Information of China (English)

    Yunying Qiao; Fudong Wu; Jian Wang; Xiaolu Cui; Congcong Liu; Xinlong Zhu

    2012-01-01

    Rat models of adjuvant arthritis were established, and anti-corticotropin release hormone serum injection in the lateral ventricles and electroacupuncture at right Jiaji (EX-B2) were performed. The pain threshold was decreased at 45 and 60 minutes after injection of the anti-corticotropin release hormone serum. Electroacupuncture at Jiaji can resist this effect. Immunohistochemical staining results showed that the expression of corticotropin release hormone in the hypothalamic paraven-tricular nucleus was greater in the electroacupuncture + anti-corticotropin release hormone serum group compared with the anti-corticotropin release hormone serum group. The expression of corti-cotropin release hormone was correlated with the pain threshold. The effect of endogenous corti-cotropin release hormone in pain modulation can be obstructed by anti-corticotropin release hor-mone serum. The analgesia of electroacupuncture can partially resist the depressed pain threshold caused by injection of anti-corticotropin release hormone serum. The analgesic effect of elec-troacupuncture is associated with the corticotropin release hormone content in the hypothalamus.

  12. Corticotropin-releasing hormone: an autocrine hormone that promotes lipogenesis in human sebocytes.

    Science.gov (United States)

    Zouboulis, Christos C; Seltmann, Holger; Hiroi, Naoki; Chen, WenChieh; Young, Maggie; Oeff, Marina; Scherbaum, Werner A; Orfanos, Constantin E; McCann, Samuel M; Bornstein, Stefan R

    2002-05-14

    Sebaceous glands may be involved in a pathway conceptually similar to that of the hypothalamic-pituitary-adrenal (HPA) axis. Such a pathway has been described and may occur in human skin and lately in the sebaceous glands because they express neuropeptide receptors. Corticotropin-releasing hormone (CRH) is the most proximal element of the HPA axis, and it acts as central coordinator for neuroendocrine and behavioral responses to stress. To further examine the probability of an HPA equivalent pathway, we investigated the expression of CRH, CRH-binding protein (CRH-BP), and CRH receptors (CRH-R) in SZ95 sebocytes in vitro and their regulation by CRH and several other hormones. CRH, CRH-BP, CRH-R1, and CRH-R2 were detectable in SZ95 sebocytes at the mRNA and protein levels: CRH-R1 was the predominant type (CRH-R1/CRH-R2 = 2). CRH was biologically active on human sebocytes: it induced biphasic increase in synthesis of sebaceous lipids with a maximum stimulation at 10(-7) M and up-regulated mRNA levels of 3 beta- hydroxysteroid dehydrogenase/Delta(5-4) isomerase, although it did not affect cell viability, cell proliferation, or IL-1 beta-induced IL-8 release. CRH, dehydroepiandrosterone, and 17 beta-estradiol did not modulate CRH-R expression, whereas testosterone at 10(-7) M down-regulated CRH-R1 and CRH-R2 mRNA expression at 6 to 24 h, and growth hormone (GH) switched CRH-R1 mRNA expression to CRH-R2 at 24 h. Based on these findings, CRH may be an autocrine hormone for human sebocytes that exerts homeostatic lipogenic activity, whereas testosterone and growth hormone induce CRH negative feedback. The findings implicate CRH in the clinical development of acne, seborrhea, androgenetic alopecia, skin aging, xerosis, and other skin disorders associated with alterations in lipid formation of sebaceous origin.

  13. Corticotropin-releasing hormone expression in patients with intrahepatic cholestasis of pregnancy after ursodeoxycholic acid treatment: an initial experience.

    Science.gov (United States)

    Zhou, Fan; Zhang, Li; He, Mao Mao; Liu, Zheng Fei; Gao, Bing Xin; Wang, Xiao Dong

    2014-08-01

    Corticotropin-releasing hormone (CRH) is one of the most potent vasodilatory factors in the human feto-placental circulation. The expression of CRH was significantly down-regulated in patients with intrahepatic cholestasis of pregnancy (ICP). One hundred pregnant women diagnosed with ICP at 34-34(+6) weeks of gestation agreed to participate in this prospective nested case-control study. Thirty ICP patients were finally recruited in this study, with 16 cases in the ursodeoxycholic acid (UDCA) group (UDCA 750 mg/d) and 14 cases in the control group (Transmetil 1000 mg/d or Essentiale 1368 mg/d). Maternal serum samples were obtained in diagnosis and at 37-37(+6) weeks of gestation. Placental tissues were obtained from participants after delivery. ELISA, enzymatic colorimetric and Western blotting were used to evaluate the concentrations of alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bile acid (TBA) and CRH in maternal serum and expression of CRH in placenta tissues. The UDCA group had greater reduction in maternal serum ALT, AST and TBA levels in ICP patients (all p cholestasis (TBA ≥ 40 µmol/L). Further studies are warranted in different gestational weeks and TBA levels to provide more evidence for the correlation between UDCA treatment and CRH expression in ICP patients.

  14. Levels of maternal serum corticotropin-releasing hormone (CRH) at midpregnancy in relation to maternal characteristics

    Science.gov (United States)

    Chen, Yumin; Holzman, Claudia; Chung, Hwan; Senagore, Patricia; Talge, Nicole M; Siler-Khodr, Theresa

    2009-01-01

    Summary BACKGROUND Corticotropin-releasing hormone (CRH) in maternal blood originates primarily from gestational tissues and elevated levels in midpregnancy have been linked to adverse pregnancy outcomes. Investigators have hypothesized that high levels of maternal stress might lead to elevated CRH levels in pregnancy. Yet a few studies have measured maternal CRH levels among subgroups of women who experience disproportionate socioeconomic disadvantage, such as African-American and Hispanic women, and found that these groups have lower CRH levels in pregnancy. Our goal was to identify maternal characteristics related to CRH levels in midpregnancy and examine which if any of these factors help to explain race differences in CRH levels. METHODS The Pregnancy Outcomes and Community Health (POUCH) Study prospectively enrolled women at 15–27 weeks’ gestation from 52 clinics in five Michigan communities (1998–2004). Data from the POUCH Study were used to examine maternal demographics, anthropometrics, health behaviors, and psychosocial factors (independent variables) in relation to midpregnancy blood CRH levels modeled as log CRH pg/ml (dependent variable). Analyses were conducted within a subcohort from the POUCH Study (671 non-Hispanic Whites, 545 African Americans) and repeated in the subcohort subset with uncomplicated pregnancies (n=746). Blood levels of CRH and independent variables were ascertained at the time of enrollment. All regression models included week of enrollment as a covariate. In addition, final multivariable regression models alternately incorporated different psychosocial measures along with maternal demographics and weight. Psychosocial variables included measures of current depressive symptoms, perceived stress, coping style, hostility, mastery, anomie, and a chronic stressor (history of abuse as a child and adult). RESULTS In subcohort models, the adjusted mean CRH level was significantly lower in African Americans vs. non-Hispanic whites

  15. Corticotropin-releasing hormone in the teleost stress response: rapid appearance of the peptide in plasma of tilapia (Oreochromis mossambicus).

    NARCIS (Netherlands)

    Pepels, P.P.L.M.; Helvoort, H.A.C. van; Wendelaar Bonga, S.E.; Balm, P.H.

    2004-01-01

    High concentrations (up to 600 pg/ml) of corticotropin-releasing hormone (CRH) were detected in plasma of the teleost fish Oreochromis mossambicus (tilapia) when screening peripheral tissues of tilapia exposed to stress. Notably, the plasma CRH response to stressors in tilapia is much more pronounce

  16. Corticotropin-releasing hormone in the teleost stress response: rapid appearance of the peptide in plasma of tilapia (Oreochromis mossambicus)

    NARCIS (Netherlands)

    Pepels, P.P.L.M.; Helvoort, H.A.C. van; Wendelaar Bonga, S.E.; Balm, P.H.M.

    2004-01-01

    High concentrations (tip to 600 pg/ml) of corticotropin-releasing hormone (CRH) were detected in plasma of the teleost fish Oreochromis mossambicus (tilapia) when screening peripheral tissues of tilapia exposed to stress. Notably, the plasma CRH response to stressors in tilapia is much more pronounc

  17. CORTICOTROPIN-RELEASING HORMONE MICROINFUSION IN THE CENTRAL AMYGDALA DIMINISHES A CARDIAC PARASYMPATHETIC OUTFLOW UNDER STRESS-FREE CONDITIONS

    NARCIS (Netherlands)

    WIERSMA, A; BOHUS, B; KOOLHAAS, JM

    1993-01-01

    The central nucleus of the amygdala (CeA) is known to be involved in the regulation of autonomic, neuroendocrine and behavioural responses in stress situations. The CeA contains large numbers of corticotropin-releasing hormone (CRH) cell bodies. Neuroanatomical studies revealed that the majority of

  18. Overproduction of corticotropin-releasing hormone blocks germinal center formation: role of corticosterone and impaired follicular dendritic cell networks

    NARCIS (Netherlands)

    Murray, S.E.; Rosenzweig, H.L.; Johnson, M.; Huising, M.O.; Sawicki, K.; Stenzel-Poore, M.P.

    2004-01-01

    xCorticotropin-releasing hormone (CRH) is a central mediator in the response to stress, coordinating behavioral, autonomic and neuroendocrine activation. CRH overproduction is implicated in several affective disorders, including major depression, panic-anxiety disorder and anorexia-diseases also ass

  19. In vivo effects of corticotropin-releasing hormone on femoral adipose tissue metabolism in women.

    Science.gov (United States)

    Wellhöner, P; Welzel, M; Rolle, D; Dodt, C

    2007-04-01

    To investigate whether i.v. injected corticotropin-releasing hormone (CRH) (1 microg/kg) has a direct effect on adipose tissue metabolism in humans. Double-blinded, placebo-controlled, crossover study. Twelve healthy normal weight female volunteers (age 20-37 years, body mass index: 22.75+/-1.33 kg/m(2)) Assessment of local generation of glycerol, and glucose in adipose tissue by microdialysis. Measurement of adipose tissue and skin blood flow by laser Doppler flowmetry. Injection of CRH acutely increases interstitial concentrations of glycerol (19.0+/-5.4%, Ptissue blood flow do not explain interstitial metabolite alterations. Initial CRH effects on adipose tissue metabolism are short lasting and disappear after 15 min. The importance of CRH on human energy metabolism is underlined by the present in vivo study demonstrating peptidergic effects on lipolysis and glucose homeostasis in human subcutaneous adipose tissue.

  20. Corticotropin-releasing hormone and progesterone plasma levels association with the onset and progression of labor.

    Science.gov (United States)

    Stamatelou, F; Deligeoroglou, E; Vrachnis, N; Iliodromiti, S; Iliodromiti, Z; Sifakis, S; Farmakides, G; Creatsas, G

    2013-01-01

    PURPOSE OF LNVESTIGATION: To examine the relationship between maternal plasma progesterone along with corticotropin- releasing hormone (CRH) plasma levels and the progression of labor. Maternal serum CRH and progesterone were measured during the latent phase of labor, active labor, and 24 hours postpartum in women who went into spontaneous labor and delivered vaginally at term. Progesterone (P) levels in women delivered by an elective cesarean section at term were also measured as baseline. Mean maternal plasma P was 18% higher in the active phase than in the latent phase of labor (p labor (p labor progresses, P and CRH increase and subsequently decrease precipitously in the immediate postpartal period. P levels tend to drop in women who are in early labor compared with non-laboring full-term women.

  1. Characterization of a novel subtype of hippocampal interneurons that express corticotropin-releasing hormone.

    Science.gov (United States)

    Hooper, Andrew; Maguire, Jamie

    2016-01-01

    A subset of corticotropin-releasing hormone (CRH) neurons was previously identified in the hippocampus with unknown function. Here we demonstrate that hippocampal CRH neurons represent a novel subtype of interneurons in the hippocampus, exhibiting unique morphology, electrophysiological properties, molecular markers, and connectivity. This subset of hippocampal CRH neurons in the mouse reside in the CA1 pyramidal cell layer and tract tracing studies using AAV-Flex-ChR2-tdTomato reveal dense back-projections of these neurons onto principal neurons in the CA3 region of the hippocampus. These hippocampal CRH neurons express both GABA and GAD67 and using in vitro optogenetic techniques, we demonstrate that these neurons make functional connections and release GABA onto CA3 principal neurons. The location, morphology, and importantly the functional connectivity of these neurons demonstrate that hippocampal CRH neurons represent a unique subtype of hippocampal interneurons. The connectivity of these neurons has significant implications for hippocampal function.

  2. Associations between Single-Nucleotide Polymorphisms in Corticotropin-Releasing Hormone-Related Genes and Irritable Bowel Syndrome.

    Directory of Open Access Journals (Sweden)

    Ayaka Sasaki

    Full Text Available Irritable bowel syndrome (IBS is a common functional disorder with distinct features of stress-related pathophysiology. A key mediator of the stress response is corticotropin-releasing hormone (CRH. Although some candidate genes have been identified in stress-related disorders, few studies have examined CRH-related gene polymorphisms. Therefore, we tested our hypothesis that single-nucleotide polymorphisms (SNPs in CRH-related genes influence the features of IBS.In total, 253 individuals (123 men and 130 women participated in this study. They comprised 111 IBS individuals and 142 healthy controls. The SNP genotypes in CRH (rs28364015 and rs6472258 and CRH-binding protein (CRH-BP (rs10474485 were determined by direct sequencing and real-time polymerase chain reaction. The emotional states of the subjects were evaluated using the State-Trait Anxiety Inventory, Perceived Stress Scale, and the Self-rating Depression Scale.Direct sequencing of the rs28364015 SNP of CRH revealed no genetic variation among the study subjects. There was no difference in the genotype distributions and allele frequencies of rs6472258 and rs10474485 between IBS individuals and controls. However, IBS subjects with diarrhea symptoms without the rs10474485 A allele showed a significantly higher emotional state score than carriers.These results suggest that the CRH and CRH-BP genes have no direct effect on IBS status. However, the CRH-BP SNP rs10474485 has some effect on IBS-related emotional abnormalities and resistance to psychosocial stress.

  3. Corticotropin-releasing hormone receptor type 1 (CRHR1) genetic variation and stress interact to influence reward learning.

    Science.gov (United States)

    Bogdan, Ryan; Santesso, Diane L; Fagerness, Jesen; Perlis, Roy H; Pizzagalli, Diego A

    2011-09-14

    Stress is a general risk factor for psychopathology, but the mechanisms underlying this relationship remain largely unknown. Animal studies and limited human research suggest that stress can induce anhedonic behavior. Moreover, emerging data indicate that genetic variation within the corticotropin-releasing hormone type 1 receptor gene (CRHR1) at rs12938031 may promote psychopathology, particularly in the context of stress. Using an intermediate phenotypic neurogenetics approach, we assessed how stress and CRHR1 genetic variation (rs12938031) influence reward learning, an important component of anhedonia. Psychiatrically healthy female participants (n = 75) completed a probabilistic reward learning task during stress and no-stress conditions while 128-channel event-related potentials were recorded. Fifty-six participants were also genotyped across CRHR1. Response bias, an individual's ability to modulate behavior as a function of reward, was the primary behavioral variable of interest. The feedback-related positivity (FRP) in response to reward feedback was used as a neural index of reward learning. Relative to the no-stress condition, acute stress was associated with blunted response bias as well as a smaller and delayed FRP (indicative of disrupted reward learning) and reduced anterior cingulate and orbitofrontal cortex activation to reward. Critically, rs12938031 interacted with stress to influence reward learning: both behaviorally and neurally, A homozygotes showed stress-induced reward learning abnormalities. These findings indicate that acute, uncontrollable stressors reduce participants' ability to modulate behavior as a function of reward, and that such effects are modulated by CRHR1 genotype. Homozygosity for the A allele at rs12938031 may increase risk for psychopathology via stress-induced reward learning deficits.

  4. Regulation of corticotropin releasing hormone receptor type 1 messenger RNA level in Y-79 retinoblastoma cells: potential implications for human stress response and immune/inflammatory reaction

    Directory of Open Access Journals (Sweden)

    N. C. Vamvakopoulos

    1996-01-01

    Full Text Available We report the regulation of type 1 receptor mRNA in Y-79 human retinoblastoma cells, grown in the absence or presence of pharmacological levels of phorbol esters, forskolin, glucocorticoids and their combinations. To control for inducibility and for assessing the sensitivity of the Y-79 system to glucocorticoids, corticotropin releasing hormone mRNA levels were measured in parallel. All treatments stimulated corticotropin releasing hormone receptor type 1 gene expression relative to baseline. A weak suppression of corticotropin releasing hormone mRNA level was observed during dexamethasone treatment. The cell line expressed ten-fold excess of receptor to ligand mRNA under basal conditions. The findings predict the presence of functional phorbol ester, cyclic AMP and glucocorticoid response elements in the promoter region of corticotropin releasing hormone receptor type 1 gene and support a potential role for its product during chronic stress and immune/inflammatory reaction.

  5. Effect of a corticotropin releasing hormone receptor antagonist on colonic sensory and motor function in patients with irritable bowel syndrome

    OpenAIRE

    2004-01-01

    Background and aims: Corticotropin releasing hormone (CRH) is a major mediator of the stress response in the brain-gut axis. Irritable bowel syndrome (IBS) is presumed to be a disorder of the brain-gut link associated with an exaggerated response to stress. We hypothesised that peripheral administration of α-helical CRH (αhCRH), a non-selective CRH receptor antagonist, would improve gastrointestinal motility, visceral perception, and negative mood in response to gut stimulation in IBS patient...

  6. Modulation of Sleep Homeostasis by Corticotropin Releasing Hormone in REM Sleep-Deprived Rats

    Directory of Open Access Journals (Sweden)

    Ricardo Borges Machado

    2010-01-01

    Full Text Available Studies have shown that sleep recovery following different protocols of forced waking varies according to the level of stress inherent to each method. Sleep deprivation activates the hypothalamic-pituitary-adrenal axis and increased corticotropin-releasing hormone (CRH impairs sleep. The purpose of the present study was to evaluate how manipulations of the CRH system during the sleep deprivation period interferes with subsequent sleep rebound. Throughout 96 hours of sleep deprivation, separate groups of rats were treated i.c.v. with vehicle, CRH or with alphahelical CRH9−41, a CRH receptor blocker, twice/day, at 07:00 h and 19:00 h. Both treatments impaired sleep homeostasis, especially in regards to length of rapid eye movement sleep (REM and theta/delta ratio and induced a later decrease in NREM and REM sleep and increased waking bouts. These changes suggest that activation of the CRH system impact negatively on the homeostatic sleep response to prolonged forced waking. These results indicate that indeed, activation of the HPA axis—at least at the hypothalamic level—is capable to reduce the sleep rebound induced by sleep deprivation.

  7. Cloning and tissue distribution of the chicken type 2 corticotropin-releasing hormone receptor.

    Science.gov (United States)

    de Groef, Bert; Grommen, Sylvia V H; Mertens, Inge; Schoofs, Liliane; Kühn, Eduard R; Darras, Veerle M

    2004-08-01

    We report the cloning of the complete coding sequence of the putative chicken type 2 corticotropin-releasing hormone receptor (CRH-R2) by rapid amplification of cDNA ends (RACE). The chicken CRH-R2 is a 412-amino acid 7-transmembrane G protein-coupled receptor, showing 87% identity to the Xenopus laevis and Oncorhynchus keta CRH-R2s, and 78-80% to mammalian CRH-R2s. The distribution of CRH-R2 mRNA was studied by RT-PCR analysis and compared to CRH-R1 distribution. Both CRH-R1 and CRH-R2 mRNA are expressed in the main chicken brain parts. In peripheral organs, CRH-R1 mRNA shows a more restricted distribution, whereas CRH-R2 mRNA is expressed in every tissue investigated, indicating that a number of actions of CRH and/or CRH-like peptides remain to be discovered in the chicken as well as in other vertebrates.

  8. Corticotropin releasing hormone in colonic mucosa in patients with ulcerative colitis.

    Science.gov (United States)

    Kawahito, Y; Sano, H; Mukai, S; Asai, K; Kimura, S; Yamamura, Y; Kato, H; Chrousos, G P; Wilder, R L; Kondo, M

    1995-01-01

    Corticotropin releasing hormone (CRH) is a key hormone in integrated response to stress, acting as the major regulator of the hypothalamic-pituitary-adrenal axis. Recently, local production of CRH has been detected in normal human colonic enterochromaffin cells. CRH is locally secreted in granulomatous and arthritic tissues in rats and humans, where it seems to act as a local proinflammatory agent. To find out if CRH is present in colonic tissues of patients with ulcerative colitis, this study examined the expression of this peptide in the large bowel of patients with ulcerative colitis. Colonic tissues of patients with ulcerative colitis obtained by endoscopic biopsy were immunostained with anti-CRH antibody. CRH messenger (m) RNA was also examined in biopsy specimens of ulcerative colitis by the reverse transcribed polymerase chain reaction method and by in situ hybridisation. Considerably enhanced expression of immunoreactive CRH was found in mucosal inflammatory cells. Intense staining with anti-CRH antibody was also shown in mucosal macrophages. CRH mRNA was expressed in mucosal epithelial cells. The expression of immunoreactive CRH in colonic mucosal epithelial cells of ulcerative colitis slightly increased, but not significantly, compared with normal colonic mucosal epithelial cells. These results suggest that CRH may play a part in the modulation of intestinal immune and inflammatory system, and as a modulator in the pathogenesis of ulcerative colitis. Images Figure 1 Figure 2 Figure 4A Figure 4B-4C Figure 5 PMID:7489943

  9. Molecular diversity of corticotropin-releasing hormone mRNA-containing neurons in the hypothalamus.

    Science.gov (United States)

    Romanov, Roman A; Alpár, Alán; Hökfelt, Tomas; Harkany, Tibor

    2017-03-01

    Hormonal responses to acute stress rely on the rapid induction of corticotropin-releasing hormone (CRH) production in the mammalian hypothalamus, with subsequent instructive steps culminating in corticosterone release at the periphery. Hypothalamic CRH neurons in the paraventricular nucleus of the hypothalamus are therefore considered as 'stress neurons'. However, significant morphological and functional diversity among neurons that can transiently produce CRH in other hypothalamic nuclei has been proposed, particularly as histochemical and molecular biology evidence associates CRH to both GABA and glutamate neurotransmission. Here, we review recent advances through single-cell RNA sequencing and circuit mapping to suggest that CRH production reflects a state switch in hypothalamic neurons and thus confers functional competence rather than being an identity mark of phenotypically segregated neurons. We show that CRH mRNA transcripts can therefore be seen in GABAergic, glutamatergic and dopaminergic neuronal contingents in the hypothalamus. We then distinguish 'stress neurons' of the paraventricular nucleus that constitutively express secretagogin, a Ca(2+) sensor critical for the stimulus-driven assembly of the molecular machinery underpinning the fast regulated exocytosis of CRH at the median eminence. Cumulatively, we infer that CRH neurons are functionally and molecularly more diverse than previously thought. © 2017 Society for Endocrinology.

  10. Regulation of corticotropin releasing hormone receptor type 1 messenger RNA level in Y-79 retinoblastoma cells: potential implications for human stress response and immune/inflammatory reaction

    OpenAIRE

    Vamvakopoulos, N C; Sioutopoulou, T. O.; Mamuris, Z.; Marcoulatos, P.; Avgerinos, P. C.

    1996-01-01

    We report the regulation of type 1 receptor mRNA in Y-79 human retinoblastoma cells, grown in the absence or presence of pharmacological levels of phorbol esters, forskolin, glucocorticoids and their combinations. To control for inducibility and for assessing the sensitivity of the Y-79 system to glucocorticoids, corticotropin releasing hormone mRNA levels were measured in parallel. All treatments stimulated corticotropin releasing hormone receptor type 1 gene expression relative to baseline....

  11. Elevated Corticotropin-Releasing Hormone in Human Pregnancy Increases the Risk of Postpartum Depressive Symptoms

    Science.gov (United States)

    Yim, Ilona S.; Glynn, Laura M.; Schetter, Christine Dunkel; Hobel, Calvin J.; Chicz-DeMet, Aleksandra; Sandman, Curt A.

    2009-01-01

    Context Postpartum depression (PPD) is common and has serious implications for the mother and her newborn. A possible link between placental corticotropin-releasing hormone (pCRH) and PPD incidence has been discussed, but there is a lack of empirical evidence. Objective To determine whether accelerated pCRH increases throughout pregnancy are associated with PPD symptoms. Design Pregnant women were recruited into this longitudinal cohort study. Blood samples were obtained at 15, 19, 25, 31 and 37 weeks gestational age (GA) for assessment of pCRH, cortisol and ACTH. Depressive symptoms were assessed with a standardized questionnaire at the last four pregnancy visits and postpartum. Setting Subjects were recruited from two Southern California Medical Centers, and visits were conducted in university research laboratories. Participants 100 adult women with a singleton pregnancy. Main Outcome Measure PPD symptoms were assessed 8.7 weeks (SD = 2.94 wks) after delivery with the Edinburgh Postnatal Depression Scale. Results Sixteen women developed PPD symptoms. At 25 weeks GA, pCRH was a strong predictor of PPD symptoms (R2 = .21, β = .46, p < .001), an effect that remained significant after controlling for prenatal depressive symptoms. No significant associations were found for cortisol and ACTH. Receiver Operating Characteristic curve analyses revealed that pCRH at 25 weeks GA is a useful diagnostic test (area under the curve = .78, p = .001). Sensitivity (.75) and specificity (.74) at the ideal cut-off point (56.86 pg/ml pCRH) were high. Growth curve analyses indicated that pCRH trajectories in women with PPD symptoms are significantly accelerated between 23 and 26 weeks GA. Conclusion There is a critical period in mid-pregnancy during which pCRH is a sensitive and specific early diagnostic test for PPD symptoms. If replicated, these results have implications for identification and treatment of pregnant women at risk of PPD. PMID:19188538

  12. Risk of postpartum depressive symptoms with elevated corticotropin-releasing hormone in human pregnancy.

    Science.gov (United States)

    Yim, Ilona S; Glynn, Laura M; Dunkel-Schetter, Christine; Hobel, Calvin J; Chicz-DeMet, Aleksandra; Sandman, Curt A

    2009-02-01

    Postpartum depression (PPD) is common and has serious implications for the mother and her newborn infant. A possible link between placental corticotropin-releasing hormone (pCRH) and PPD incidence has been hypothesized, but empirical evidence is lacking. To determine whether accelerated increases in pCRH throughout pregnancy are associated with PPD symptoms. Pregnant women were recruited into this longitudinal cohort study. Blood samples were obtained at 15, 19, 25, 31, and 37 weeks' gestational age (GA) for assessment of pCRH, cortisol, and adrenocorticotropic hormone (ACTH). Depressive symptoms were assessed with a standardized questionnaire at the last 4 pregnancy visits and post partum. Subjects were recruited from 2 southern California medical centers, and visits were conducted in research laboratories. One hundred adult women with a singleton pregnancy. Main Outcome Measure Symptoms of PPD were assessed at a mean (SD) of 8.7 (2.94) weeks after delivery with the Edinburgh Postnatal Depression Scale. Sixteen women developed PPD symptoms. At 25 weeks' GA, pCRH was a strong predictor of PPD symptoms (R(2) = 0.21; beta = 0.46 [P < .001]), an effect that remained significant after controlling for prenatal depressive symptoms. No significant associations were found for cortisol and ACTH. Receiver operating characteristic curve analyses revealed that pCRH at 25 weeks' GA is a possible diagnostic tool (area under the curve, 0.78 [P = .001]). Sensitivity (0.75) and specificity (0.74) at the ideal cutoff point (pCRH, 56.86 pg/mL) were moderate. Growth curve analyses indicated that the trajectories of pCRH in women with PPD symptoms are significantly accelerated from 23 to 26 weeks' GA. At a critical period in midpregnancy, pCRH is a sensitive and specific early diagnostic test for PPD symptoms. If replicated, these results have implications for the identification and treatment of pregnant women at risk for PPD.

  13. Corticotropin-releasing hormone family evolution: five ancestral genes remain in some lineages.

    Science.gov (United States)

    Cardoso, João C R; Bergqvist, Christina A; Félix, Rute C; Larhammar, Dan

    2016-07-01

    The evolution of the peptide family consisting of corticotropin-releasing hormone (CRH) and the three urocortins (UCN1-3) has been puzzling due to uneven evolutionary rates. Distinct gene duplication scenarios have been proposed in relation to the two basal rounds of vertebrate genome doubling (2R) and the teleost fish-specific genome doubling (3R). By analyses of sequences and chromosomal regions, including many neighboring gene families, we show here that the vertebrate progenitor had two peptide genes that served as the founders of separate subfamilies. Then, 2R resulted in a total of five members: one subfamily consists of CRH1, CRH2, and UCN1. The other subfamily contains UCN2 and UCN3. All five peptide genes are present in the slowly evolving genomes of the coelacanth Latimeria chalumnae (a lobe-finned fish), the spotted gar Lepisosteus oculatus (a basal ray-finned fish), and the elephant shark Callorhinchus milii (a cartilaginous fish). The CRH2 gene has been lost independently in placental mammals and in teleost fish, but is present in birds (except chicken), anole lizard, and the nonplacental mammals platypus and opossum. Teleost 3R resulted in an additional surviving duplicate only for crh1 in some teleosts including zebrafish (crh1a and crh1b). We have previously reported that the two vertebrate CRH/UCN receptors arose in 2R and that CRHR1 was duplicated in 3R. Thus, we can now conclude that this peptide-receptor system was quite complex in the ancestor of the jawed vertebrates with five CRH/UCN peptides and two receptors, and that crh and crhr1 were duplicated in the teleost fish tetraploidization. © 2016 Society for Endocrinology.

  14. Loss of hypothalamic corticotropin-releasing hormone markedly reduces anxiety behaviors in mice

    Science.gov (United States)

    Zhang, Rong; Asai, Masato; Mahoney, Carrie E; Joachim, Maria; Shen, Yuan; Gunner, Georgia; Majzoub, Joseph A

    2016-01-01

    A long-standing paradigm posits that hypothalamic corticotropin-releasing hormone (CRH) regulates neuroendocrine functions such as adrenal glucocorticoid release, while extra-hypothalamic CRH plays a key role in stressor-triggered behaviors. Here we report that hypothalamus-specific Crh knockout mice (Sim1CrhKO mice, created by crossing Crhflox with Sim1Cre mice) have absent Crh mRNA and peptide mainly in the paraventricular nucleus of the hypothalamus (PVH) but preserved Crh expression in other brain regions including amygdala and cerebral cortex. As expected, Sim1CrhKO mice exhibit adrenal atrophy as well as decreased basal, diurnal and stressor-stimulated plasma corticosterone secretion and basal plasma ACTH, but surprisingly, have a profound anxiolytic phenotype when evaluated using multiple stressors including open field, elevated plus maze, holeboard, light-dark box, and novel object recognition task. Restoring plasma corticosterone did not reverse the anxiolytic phenotype of Sim1CrhKO mice. Crh-Cre driver mice revealed that PVHCrh fibers project abundantly to cingulate cortex and the nucleus accumbens shell, and moderately to medial amygdala, locus coeruleus, and solitary tract, consistent with the existence of PVHCrh-dependent behavioral pathways. Although previous, nonselective attenuation of CRH production or action, genetically in mice and pharmacologically in humans, respectively, has not produced the anticipated anxiolytic effects, our data show that targeted interference specifically with hypothalamic Crh expression results in anxiolysis. Our data identify neurons that express both Sim1 and Crh as a cellular entry point into the study of CRH-mediated, anxiety-like behaviors and their therapeutic attenuation. PMID:27595593

  15. Combined Dexamethasone Suppression-Corticotropin-Releasing Hormone Stimulation Test in Studies of Depression, Alcoholism, and Suicidal Behavior

    Directory of Open Access Journals (Sweden)

    Leo Sher

    2006-01-01

    Full Text Available The hypothalamic-pituitary-adrenal (HPA axis controls the secretion of corticotropin-releasing hormone (CRH, corticotropin (adrenocorticotropic hormone, ACTH, and cortisol. The dexamethasone suppression test (DST is the most frequently used test to assess HPA system function in psychiatric disorders. Patients who have failed to suppress plasma cortisol secretion, i.e., who escape from the suppressive effect of dexamethasone, have a blunted glucocorticoid receptor response. After CRH became available for clinical studies, the DST was combined with CRH administration. The resulting combined dexamethasone suppression-corticotropin-releasing hormone stimulation (DST–CRH test proved to be more sensitive in detecting HPA system changes than the DST. There is a growing interest in the use of the DEX-CRH test for psychiatric research. The DEX-CRH test has been used to study different psychiatric conditions. Major depression, alcoholism, and suicidal behavior are public health problems around the world. Considerable evidence suggests that HPA dysregulation is involved in the pathogenesis of depressive disorders, alcoholism, and suicidal behavior. Over the past 2 decades, there has been a shift from viewing excessive HPA activity in depression as an epiphenomenon to its having specific effects on symptom formation and cognition. The study of HPA function in depression, alcoholism, and suicidal behavior may yield new understanding of the pathophysiolgy of these conditions, and suggest new approaches for therapeutic interventions. The combined DEX-CRH test may become a useful neuroendocrinological tool for evaluating psychiatric patients.

  16. Role of corticotropin-releasing hormone in irritable bowel syndrome and intestinal inflammation.

    Science.gov (United States)

    Fukudo, Shin

    2007-01-01

    Corticotropin-releasing hormone (CRH) is a major mediator of stress response in the brain-gut axis. Irritable bowel syndrome (IBS) is presumed to be a disorder of the brain-gut link associated with exaggerated response to stress. We first showed that peripheral administration of CRH aggravated visceral sensorimotor function as well as adrenocorticotropic hormone (ACTH) response in IBS patients. We then administered alpha-helical CRH (alphahCRH), a non-selective CRH receptor antagonist among IBS patients. Electrical stimulation of the rectum induced significantly higher motility indices of the colon in IBS patients than in the controls. This response was significantly suppressed in IBS patients but not in the controls after administration of alphahCRH. Administration of alphahCRH induced a significant increase in the barostat bag volume of the controls but not in that of IBS patients. alphahCRH significantly reduced the ordinate scale of abdominal pain and anxiety evoked by electrical stimulation in IBS patients. Plasma ACTH and serum cortisol were generally not suppressed by alphahCRH. Last, administration of CRH1-receptor (CRH-R1) specific antagonist blocked colorectal distention-induced sensitization of the visceral perception in rats. Moreover, pretreatment with CRH-R1 antagonist blocked colorectal distention-induced anxiety, which was measured with elevated plus-maze, in rats. Evidence supporting the concept that peripheral CRH and CRH-R1 play important roles in brain-gut sensitization is increasing. Several studies have identified immunoreactive CRH and urocortin as well as CRH-R1 and CRH-R2 mRNAs in human colonic mucosa. In addition, reverse transcription-polymerase chain reaction has revealed the expression of CRH-R1 mRNA in both the myenteric and submucosal plexus in the guinea pig. Application of CRH has been shown to evoke depolarizing responses associated with elevated excitability in both myenteric and submucosal neurons. On the other hand, peripheral

  17. Human fear acquisition deficits in relation to genetic variants of the corticotropin releasing hormone receptor 1 and the serotonin transporter - revisited

    NARCIS (Netherlands)

    Heitland, I; Groenink, L; van Gool, J M; Domschke, K; Reif, A; Baas, J M P

    We recently showed that a genetic polymorphism (rs878886) in the human corticotropin releasing hormone receptor 1 (CRHR1) is associated with reduced fear conditioned responses to a threat cue. This is a potentially important finding considering that the failure to acquire fear contingencies can

  18. Gender difference in age-related number of corticotropin-releasing hormone-expressing neurons in the human hypothalamic paraventricular nucleus and the role of sex hormones

    NARCIS (Netherlands)

    Bao, A.-M.; Swaab, D.F.

    2007-01-01

    Previous studies have shown that the total number of corticotropin-releasing hormone (CRH)-stained neurons in the human hypothalamic paraventricular nucleus (PVN) increases with age. To determine whether this age-related change depends on gender and whether circulating sex hormones play a role, we

  19. The Impact of Stress on Tumor Growth; the Significance of Peripheral Corticotropin Releasing Factor

    Science.gov (United States)

    2009-05-01

    visualize the architecture of actin in the cell. Cells treated with CRF showed more intense staining compared to the untreated controls, most extensively...time points. Tumor growth was monitored every 4 days using a Fluorescent Molecular Tomography approach ( FMT ) (13) as shown in Figure 12. During the... FMT analysis of the tumors revealed that in mice not exposed to stress, administration of antalarmin resulted in reduced tumor burden. Upon stress

  20. Corticotropin-releasing factor administration elicits a stress-like activation of cerebral catecholaminergic systems.

    Science.gov (United States)

    Dunn, A J; Berridge, C W

    1987-08-01

    The cerebral content of the biogenic amines, dopamine (DA), norepinephrine (NE), and serotonin (5-HT) and their catabolites 30 min after CRF or saline injections was determined using HPLC with electrochemical detection. Injection of CRF (1.0 micrograms) into the lateral ventricles (ICV) of mice produced a behavioral activation in which their motor movements appeared as bursts of activity followed by periods of immobility. CRF administration (ICV or SC) did not alter the concentrations of DA, NE, tryptophan, 5-HT, or 5-hydroxyindoleacetic acid (5-HIAA) in any brain region measured. ICV CRF increased the concentrations of dihydroxyphenylacetic acid (DOPAC), the major catabolite of DA, and of 3-methoxy,4-hydroxyphenylethyleneglycol (MHPG), the major catabolite of NE, in several brain regions. DOPAC:DA ratios were consistently increased in prefrontal cortex, septum, hypothalamus, and brain stem relative to animals injected with saline. MHPG:NE ratios were also increased in the prefrontal cortex and hypothalamus, with a marginal effect (p = 0.06) in brain stem. SC CRF significantly increased DOPAC:DA in prefrontal cortex, and MHPG:NE in prefrontal cortex, hypothalamus and brain stem. Pretreatment with naloxone did not prevent any of the neurochemical responses to ICV CRF, but naloxone alone increased DOPAC:DA in medial profrontal cortex, and decreased MHPG:NE in nucleus accumbens in CRF-injected mice. These results suggest that administration of CRF either centrally or peripherally induces an activation of both dopaminergic and noradrenergic systems in several regions of mouse brain.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Combined dexamethasone/corticotropin-releasing factor test in chronic fatigue syndrome

    NARCIS (Netherlands)

    Eede, F. van den; Moorkens, G.; Hulstijn, W.; Houdenhove, B. van; Cosyns, P.; Claes, S.J.

    2008-01-01

    Background Studies of hypothalamic–pituitary–adrenal (HPA) axis function in chronic fatigue syndrome (CFS) point to hypofunction, although there are negative reports. Suggested mechanisms include a reduced hypothalamic or supra-hypothalamic stimulus to the HPA axis and enhanced sensitivity to the ne

  2. Association between corticotropin-releasing hormone receptor 1 and 2 (CRHR1 and CRHR2) gene polymorphisms and personality traits.

    Science.gov (United States)

    Ishitobi, Yoshinobu; Nakayama, Shinya; Kanehisa, Masayuki; Higuma, Haruka; Maruyama, Yoshihiro; Okamoto, Shizuko; Inoue, Ayako; Imanaga, Junko; Tanaka, Yoshihiro; Tsuru, Jusen; Hanada, Hiroaki; Akiyoshi, Jotaro

    2013-12-01

    Previous studies have reported that the hypothalamic-pituitary-adrenal axis is involved with personality traits. We examined the association between corticotropin-releasing hormone receptor (CRHR) genes and personality traits. We investigated the 12 single-nucleotide polymorphisms of intron CRHR (six in CRHR1 and six in CRHR2, respectively) in 218 healthy volunteers using TaqMan PCR assays. Personality traits were assessed using the Revised NEO-Personality Inventory, the Temperament and Character Inventory, and the State-Trait Anxiety Inventory. No significant associations were observed between CRHR1 and CRHR2 expression and personality traits. These results fail to provide support for an association of CRHR1 and CRHR2 with personality traits in a Japanese adult population.

  3. Corticotropin-releasing hormone (CRH)-containing neurons in the immature rat hippocampal formation: light and electron microscopic features and colocalization with glutamate decarboxylase and parvalbumin.

    Science.gov (United States)

    Yan, X X; Toth, Z; Schultz, L; Ribak, C E; Baram, T Z

    1998-01-01

    Corticotropin-releasing hormone (CRH) excites hippocampal neurons and induces death of selected CA3 pyramidal cells in immature rats. These actions of CRH require activation of specific receptors that are abundant in CA3 during early postnatal development. Given the dramatic effects of CRH on hippocampal neurons and the absence of CRH-containing afferents to this region, we hypothesized that a significant population of CRHergic neurons exists in developing rat hippocampus. This study defined and characterized hippocampal CRH-containing cells by using immunocytochemistry, ultrastructural examination, and colocalization with gamma-aminobutyric acid (GABA)-synthesizing enzyme and calcium-binding proteins. Numerous, large CRH-immunoreactive (ir) neurons were demonstrated in CA3 strata pyramidale and oriens, fewer were observed in the corresponding layers of CA1, and smaller CRH-ir cells were found in stratum lacunosum-moleculare of Ammon's horn. In the dentate gyrus, CRH-ir somata resided in the granule cell layer and hilus. Ultrastructurally, CRH-ir neurons had aspiny dendrites and were postsynaptic to both asymmetric and symmetric synapses. CRH-ir axon terminals formed axosomatic and axodendritic symmetric synapses with pyramidal and granule cells. Other CRH-ir terminals synapsed on axon initial segments of principal neurons. Most CRH-ir neurons were coimmunolabeled for glutamate decarboxylase (GAD)-65 and GAD-67 and the majority also contained parvalbumin, but none were labeled for calbindin. These results confirm the identity of hippocampal CRH-ir cells as GABAergic interneurons. Further, a subpopulation of neurons immunoreactive for both CRH and parvalbumin and located within and adjacent to the principal cell layers consists of basket and chandelier cells. Thus, axon terminals of CRH-ir interneurons are strategically positioned to influence the excitability of the principal hippocampal neurons via release of both CRH and GABA.

  4. Corticotropin-releasing hormone (CRH) stimulates cocaine- and amphetamine-regulated transcript gene (CART1) expression through CRH type 1 receptor (CRHR1) in chicken anterior pituitary.

    Science.gov (United States)

    Mo, Chunheng; Cai, Guoqing; Huang, Long; Deng, Qiuyang; Lin, Dongliang; Cui, Lin; Wang, Yajun; Li, Juan

    2015-12-01

    Cocaine- and amphetamine-regulated transcript (CART) peptide(s) is generally viewed as neuropeptide(s) and can control food intake in vertebrates, however, our recent study revealed that CART1 peptide is predominantly expressed in chicken anterior pituitary, suggesting that cCART1 peptide is a novel pituitary hormone in chickens and its expression is likely controlled by hypothalamic factor(s). To test this hypothesis, in this study, we examined the spatial expression of CART1 in chicken anterior pituitary and investigated the effect of hypothalamic corticotropin-releasing hormone (CRH) on pituitary cCART1 expression. The results showed that: 1) CART1 is expressed in both caudal and cephalic lobes of chicken anterior pituitary, revealed by quantitative real-time PCR (qPCR), western blot and immuno-histochemical staining; 2) CRH potently stimulates cCART1 mRNA expression in cultured chick pituitary cells, as examined by qPCR, and this effect is blocked by CP154526 (and not K41498), an antagonist specific for chicken CRH type I receptor (cCRHR1), suggesting that cCRHR1 expressed on corticotrophs mediates this action; 3) the stimulatory effect of CRH on pituitary cCART1 expression is inhibited by pharmacological drugs targeting the intracellular AC/cAMP/PKA, PLC/IP3/Ca(2+), and MEK/ERK signaling pathways. This finding, together with the functional coupling of these signaling pathways to cCRHR1 expressed in CHO cells demonstrated by luciferase reporter assay systems, indicates that these intracellular signaling pathways coupled to cCRHR1 can mediate CRH action. Collectively, our present study offers the first substantial evidence that hypothalamic CRH can stimulate pituitary CART1 expression via activation of CRHR1 in a vertebrate species.

  5. Plasma adiponectin levels are increased despite insulin resistance in corticotropin-releasing hormone transgenic mice, an animal model of Cushing syndrome.

    Science.gov (United States)

    Shinahara, Masayuki; Nishiyama, Mitsuru; Iwasaki, Yasumasa; Nakayama, Shuichi; Noguchi, Toru; Kambayashi, Machiko; Okada, Yasushi; Tsuda, Masayuki; Stenzel-Poore, Mary P; Hashimoto, Kozo; Terada, Yoshio

    2009-01-01

    Adiponectin (AdN), an adipokine derived from the adipose tissue, has an insulin-sensitizing effect, and plasma AdN is shown to be decreased in obesity and/or insulin resistant state. To clarify whether changes in AdN are also responsible for the development of glucocorticoid-induced insulin resistance, we examined AdN concentration in plasma and AdN expression in the adipose tissue, using corticotropin-releasing hormone (CRH) transgenic mouse (CRH-Tg), an animal model of Cushing syndrome. We found, unexpectedly, that plasma AdN levels in CRHTg were significantly higher than those in wild-type littermates (wild-type: 19.7+/-2.5, CRH-Tg: 32.4+/-3.1 microg/mL, pAdN mRNA and protein levels were significantly decreased in the adipose tissue of CRH-Tg. Bilateral adrenalectomy in CRH-Tg eliminated both their Cushing's phenotype and their increase in plasma AdN levels (wild-type/sham: 9.4+/-0.5, CRH-Tg/sham: 15.7+/-2.0, CRH-Tg/ADX: 8.5+/-0.4 microg/mL). These results strongly suggest that AdN is not a major factor responsible for the development of insulin resistance in Cushing syndrome. Our data also suggest that glucocorticoid increases plasma AdN levels but decreases AdN expression in adipocytes, the latter being explained possibly by the decrease in AdN metabolism in the Cushing state.

  6. Corticotropin-Releasing Hormone (CRH)-Containing Neurons in the Immature Rat Hippocampal Formation: Light and Electron Microscopic Features and Colocalization With Glutamate Decarboxylase and Parvalbumin

    OpenAIRE

    Yan, Xiao-Xin; Toth, Zsolt; Schultz, Linda; Ribak, Charles E; Tallie Z. Baram

    1998-01-01

    Corticotropin-releasing hormone (CRH) excites hippocampal neurons and induces death of selected CA3 pyramidal cells in immature rats. These actions of CRH require activation of specific receptors that are abundant in CA3 during early postnatal development. Given the dramatic effects of CRH on hippocampal neurons and the absence of CRH-containing afferents to this region, we hypothesized that a significant population of CRHergic neurons exists in developing rat hippocampus. This study defined ...

  7. Impact of corticotropin-releasing hormone on gastrointestinal motility and adrenocorticotropic hormone in normal controls and patients with irritable bowel syndrome

    OpenAIRE

    1998-01-01

    Background—Corticotropin-releasing hormone (CRH) plays a key role in modulating intestinal motility in stressed animals. 
Aims—To evaluate the effect of CRH on intestinal motility in humans and to determine whether patients with irritable bowel syndrome (IBS) have an exaggerated response to CRH. 
Subjects—Ten IBS patients diagnosed by Rome criteria and 10 healthy controls. 
Methods—CRH (2 µg/kg) was intravenously administered during duodenal and colonic manometry and plasma ...

  8. Low levels of corticotropin-releasing hormone during early pregnancy are associated with precocious maturation of the human fetus.

    Science.gov (United States)

    Class, Quetzal A; Buss, Claudia; Davis, Elysia Poggi; Gierczak, Matt; Pattillo, Carol; Chicz-DeMet, Aleksandra; Sandman, Curt A

    2008-01-01

    Elevation in placental corticotropin-releasing hormone (pCRH) during the last trimester of pregnancy has been associated with an increased risk for preterm delivery. Less is known about the consequences for the human fetus exposed to high levels of pCRH early in pregnancy. pCRH levels were measured in 138 pregnant women at least once at 15, 20 and 25 weeks of gestation. At 25 weeks of gestation, fetal heart rate (FHR) responses to a startling vibroacoustic stimulus (VAS) were recorded as an index of maturity. pCRH levels at 15 weeks of gestation, but at no later point, predicted FHR responses to the VAS. Fetuses exposed to the lowest concentrations of pCRH at 15 weeks of gestation exhibited a distinguishable response to the VAS, whereas fetuses exposed to higher levels of pCRH did not respond. The findings suggest that exposure to low levels of pCRH early in gestation may be optimal and associated with a response pattern indicating greater maturity. (c) 2009 S. Karger AG, Basel.

  9. On the function of placental corticotropin-releasing hormone: a role in maternal-fetal conflicts over blood glucose concentrations.

    Science.gov (United States)

    Gangestad, Steven W; Caldwell Hooper, Ann E; Eaton, Melissa A

    2012-11-01

    Throughout the second and third trimesters, the human placenta (and the placenta in other anthropoid primates) produces substantial quantities of corticotropin-releasing hormone (placental CRH), most of which is secreted into the maternal bloodstream. During pregnancy, CRH concentrations rise over 1000-fold. The advantages that led selection to favour placental CRH production and secretion are not yet fully understood. Placental CRH stimulates the production of maternal adrenocorticotropin hormone (ACTH) and cortisol, leading to substantial increases in maternal serum cortisol levels during the third trimester. These effects are puzzling in light of widespread theory that cortisol has harmful effects on the fetus. The maternal hypothalamic-pituitary-adrenal (HPA) axis becomes less sensitive to cortisol during pregnancy, purportedly to protect the fetus from cortisol exposure. Researchers, then, have often looked for beneficial effects of placental CRH that involve receptors outside the HPA system, such as the uterine myometrium (e.g. the placental clock hypothesis). An alternative view is proposed here: the beneficial effect of placental CRH to the fetus lies in the fact that it does stimulate the production of cortisol, which, in turn, leads to greater concentrations of glucose in the maternal bloodstream available for fetal consumption. In this view, maternal HPA insensitivity to placental CRH likely reflects counter-adaptation, as the optimal rate of cortisol production for the fetus exceeds that for the mother. Evidence pertaining to this proposal is reviewed. © 2012 The Authors. Biological Reviews © 2012 Cambridge Philosophical Society.

  10. Low Levels of Corticotropin-Releasing Hormone during Early Pregnancy Are Associated with Precocious Maturation of the Human Fetus

    Science.gov (United States)

    Class, Quetzal A.; Buss, Claudia; Davis, Elysia Poggi; Gierczak, Matt; Pattillo, Carol; Chicz-DeMet, Aleksandra; Sandman, Curt A.

    2010-01-01

    Elevation in placental corticotropin-releasing hormone (pCRH) during the last trimester of pregnancy has been associated with an increased risk for preterm delivery. Less is known about the consequences for the human fetus exposed to high levels of pCRH early in pregnancy. pCRH levels were measured in 138 pregnant women at least once at 15, 20 and 25 weeks of gestation. At 25 weeks of gestation, fetal heart rate (FHR) responses to a startling vibroacoustic stimulus (VAS) were recorded as an index of maturity. pCRH levels at 15 weeks of gestation, but at no later point, predicted FHR responses to the VAS. Fetuses exposed to the lowest concentrations of pCRH at 15 weeks of gestation exhibited a distinguishable response to the VAS, whereas fetuses exposed to higher levels of pCRH did not respond. The findings suggest that exposure to low levels of pCRH early in gestation may be optimal and associated with a response pattern indicating greater maturity. PMID:19127063

  11. Correlated memory defects and hippocampal dendritic spine loss after acute stress involve corticotropin-releasing hormone signaling.

    Science.gov (United States)

    Chen, Yuncai; Rex, Christopher S; Rice, Courtney J; Dubé, Céline M; Gall, Christine M; Lynch, Gary; Baram, Tallie Z

    2010-07-20

    Stress affects the hippocampus, a brain region crucial for memory. In rodents, acute stress may reduce density of dendritic spines, the location of postsynaptic elements of excitatory synapses, and impair long-term potentiation and memory. Steroid stress hormones and neurotransmitters have been implicated in the underlying mechanisms, but the role of corticotropin-releasing hormone (CRH), a hypothalamic hormone also released during stress within hippocampus, has not been elucidated. In addition, the causal relationship of spine loss and memory defects after acute stress is unclear. We used transgenic mice that expressed YFP in hippocampal neurons and found that a 5-h stress resulted in profound loss of learning and memory. This deficit was associated with selective disruption of long-term potentiation and of dendritic spine integrity in commissural/associational pathways of hippocampal area CA3. The degree of memory deficit in individual mice correlated significantly with the reduced density of area CA3 apical dendritic spines in the same mice. Moreover, administration of the CRH receptor type 1 (CRFR(1)) blocker NBI 30775 directly into the brain prevented the stress-induced spine loss and restored the stress-impaired cognitive functions. We conclude that acute, hours-long stress impairs learning and memory via mechanisms that disrupt the integrity of hippocampal dendritic spines. In addition, establishing the contribution of hippocampal CRH-CRFR(1) signaling to these processes highlights the complexity of the orchestrated mechanisms by which stress impacts hippocampal structure and function.

  12. Linkage of congenital isolated adrenocorticotropic hormone deficiency to the corticotropin releasing hormone locus using simple sequence repeat polymorphisms

    Energy Technology Data Exchange (ETDEWEB)

    Kyllo, J.H.; Collins, M.M.; Vetter, K.L. [Univ. of Iowa College of Medicine, Iowa City, IA (United States)] [and others

    1996-03-29

    Genetic screening techniques using simple sequence repeat polymorphisms were applied to investigate the molecular nature of congenital isolated adrenocorticotropic hormone (ACTH) deficiency. We hypothesize that this rare cause of hypocortisolism shared by a brother and sister with two unaffected sibs and unaffected parents is inherited as an autosomal recessive single gene mutation. Genes involved in the hypothalamic-pituitary axis controlling cortisol sufficiency were investigated for a causal role in this disorder. Southern blotting showed no detectable mutations of the gene encoding pro-opiomelanocortin (POMC), the ACTH precursor. Other candidate genes subsequently considered were those encoding neuroendocrine convertase-1, and neuroendocrine convertase-2 (NEC-1, NEC-2), and corticotropin releasing hormone (CRH). Tests for linkage were performed using polymorphic di- and tetranucleotide simple sequence repeat markers flanking the reported map locations for POMC, NEC-1, NEC-2, and CRH. The chromosomal haplotypes determined by the markers flanking the loci for POMC, NEC-1, and NEC-2 were not compatible with linkage. However, 22 individual markers defining the chromosomal haplotypes flanking CRH were compatible with linkage of the disorder to the immediate area of this gene of chromosome 8. Based on these data, we hypothesize that the ACTH deficiency in this family is due to an abnormality of CRH gene structure or expression. These results illustrate the useful application of high density genetic maps constructed with simple sequence repeat markers for inclusion/exclusion studies of candidate genes in even very small nuclear families segregating for unusual phenotypes. 25 refs., 5 figs., 2 tabs.

  13. Periconceptional undernutrition suppresses cortisol response to arginine vasopressin and corticotropin-releasing hormone challenge in adult sheep offspring.

    Science.gov (United States)

    Oliver, M H; Bloomfield, F H; Jaquiery, A L; Todd, S E; Thorstensen, E B; Harding, J E

    2012-02-01

    Poor maternal nutrition during pregnancy can result in increased disease risk in adult offspring. Many of these effects are proposed to be mediated via altered hypothalamo-pituitary-adrenal axis (HPAA) function, and are sex and age specific. Maternal undernutrition around the time of conception alters HPAA function in foetal and early postnatal life, but there are limited conflicting data about later effects. The aim of this study was to investigate the effect of moderate periconceptional undernutrition on HPAA function of offspring of both sexes longitudinally, from juvenile to adult life. Ewes were undernourished from 61 days before until 30 days after conception or fed ad libitum. HPAA function in offspring was assessed by arginine vasopressin plus corticotropin-releasing hormone challenge at 4, 10 and 18 months. Plasma cortisol response was lower in males than in females, and was not different between singles and twins. Periconceptional undernutrition suppressed offspring plasma cortisol but not adrenocorticotropic hormone responses. In males, this suppression was apparent by 4 months, and was more profound by 10 months, with no further change by 18 months. In females, suppression was first observed at 10 months and became more profound by 18 months. Maternal undernutrition limited to the periconceptional period has a prolonged, sex-dependent effect on adrenal function in the offspring.

  14. Corticotropin releasing hormone- and adreno-corticotropin-like immunoreactivity in human placenta, peripheral and uterine vein plasma.

    Science.gov (United States)

    Schulte, H M; Healy, D L

    1987-01-01

    The presence of corticotropin releasing hormone (CRH)-like immunoreactivity (IR) in human placenta and maternal peripheral blood has been reported by many investigators. However, its physiological role has not yet been defined. We investigated plasma and placental tissue from women at different times of pregnancy and performed peripheral and uterine vein sampling during caesarean section before and after removal of the placenta. Beside IR-CRH, IR-GRF and -GnRH as well as -ACTH and cortisol were measured. The highest content of CRH was found in placental extracts from end term (40 weeks) pregnancies and lower levels at an earlier stage (10 weeks). Plasma CRH from peripheral blood could be detected in some samples and was higher as pregnancy advanced. Thirty minutes after removal of the placenta CRH levels dropped in peripheral plasma and could not be detected in uterine vein samples. IR-ACTH plasma levels were within the range of normals, cortisol was elevated. Gel- and HPLC-chromatographie revealed that placental extracts coeluted with synthetic human CRH. The material from endterm placenta showed full bioactivity in the rat pituitary bio-assay. IR-GRF could only be detected in 10 weeks placental tissue and no IR-GnRH was measured. We conclude that CRH from the placenta is biologically active, however, cannot stimulate the maternal pituitary-adrenal-axis.

  15. Association of corticotropin releasing hormone receptor 2 (CRHR2) genetic variants with acute bronchodilator response in asthma

    Science.gov (United States)

    Poon, Audrey H.; Tantisira, Kelan G.; Litonjua, Augusto A.; Lazarus, Ross; Xu, Jingsong; Lasky-Su, Jessica; Lima, John J.; Irvin, Charles G.; Hanrahan, John P.; Lange, Christoph; Weiss, Scott T.

    2011-01-01

    Objective Corticotropin - releasing hormone receptor 2 (CRHR2) participates in smooth muscle relaxation response and may influence acute airway bronchodilator response to short – acting β2 agonist treatment of asthma. We aim to assess associations between genetic variants of CRHR2 and acute bronchodilator response in asthma. Methods We investigated 28 single nucleotide polymorphisms in CRHR2 for associations with acute bronchodilator response to albuterol in 607 Caucasian asthmatic subjects recruited as part of the Childhood Asthma Management Program (CAMP). Replication was conducted in two Caucasian adult asthma cohorts – a cohort of 427 subjects enrolled in a completed clinical trial conducted by Sepracor Inc. (MA, USA) and a cohort of 152 subjects enrolled in the Clinical Trial of Low-Dose Theopylline and Montelukast (LODO) conducted by the American Lung Association Asthma Clinical Research Centers. Results Five variants were significantly associated with acute bronchodilator response in at least one cohort (p-value ≤ 0.05). Variant rs7793837 was associated in CAMP and LODO (p-value = 0.05 and 0.03, respectively) and haplotype blocks residing at the 5’ end of CRHR2 were associated with response in all three cohorts. Conclusion We report for the first time, at the gene level, replicated associations between CRHR2 and acute bronchodilator response. While no single variant was significantly associated in all three cohorts, the findings that variants at the 5’ end of CRHR2 are associated in each of three cohorts strongly suggest that the causative variants reside in this region and its genetic effect, although present, is likely to be weak. PMID:18408560

  16. Effect of a corticotropin releasing hormone receptor antagonist on colonic sensory and motor function in patients with irritable bowel syndrome.

    Science.gov (United States)

    Sagami, Y; Shimada, Y; Tayama, J; Nomura, T; Satake, M; Endo, Y; Shoji, T; Karahashi, K; Hongo, M; Fukudo, S

    2004-07-01

    Corticotropin releasing hormone (CRH) is a major mediator of the stress response in the brain-gut axis. Irritable bowel syndrome (IBS) is presumed to be a disorder of the brain-gut link associated with an exaggerated response to stress. We hypothesised that peripheral administration of alpha-helical CRH (alphahCRH), a non-selective CRH receptor antagonist, would improve gastrointestinal motility, visceral perception, and negative mood in response to gut stimulation in IBS patients. Ten normal healthy subjects and 10 IBS patients, diagnosed according to the Rome II criteria, were studied. The tone of the descending colon and intraluminal pressure of the sigmoid colon were measured at baseline, during rectal electrical stimulation (ES), and at recovery after administration of saline. Visceral perception after colonic distension or rectal ES was evaluated as threshold values on an ordinate scale. The same measurements were repeated after administration of alphahCRH (10 micro g/kg). ES induced significantly higher motility indices of the colon in IBS patients compared with controls. This response was significantly suppressed in IBS patients but not in controls after administration of alphahCRH. Administration of alphahCRH induced a significant increase in the barostat bag volume of controls but not in that of IBS patients. alphahCRH significantly reduced the ordinate scale of abdominal pain and anxiety evoked by ES in IBS patients. Plasma adrenocorticotropic hormone and serum cortisol levels were generally not suppressed by alphahCRH. Peripheral administration of alphahCRH improves gastrointestinal motility, visceral perception, and negative mood in response to gut stimulation, without affecting the hypothalamo-pituitary-adrenal axis in IBS patients.

  17. Neural circuitry underlying the central hypertensive action of nesfatin-1: melanocortins, corticotropin-releasing hormone, and oxytocin.

    Science.gov (United States)

    Yosten, Gina L C; Samson, Willis K

    2014-05-15

    Nesfatin-1 is produced in the periphery and in the brain where it has been demonstrated to regulate appetite, stress hormone secretion, and cardiovascular function. The anorexigenic action of central nesfatin-1 requires recruitment of neurons producing the melanocortins and centrally projecting oxytocin (OT) and corticotropin-releasing hormone (CRH) neurons. We previously have shown that two components of this pathway, the central melanocortin and oxytocin systems, contribute to the hypertensive action of nesfatin-1 as well. We hypothesized that the cardiovascular effect of nesfatin-1 also was dependent on activation of neurons expressing CRH receptors, and that the order of activation of the melanocortin-CRH-oxytocin circuit was preserved for both the anorexigenic and hypertensive actions of the peptide. Pretreatment of male rats with the CRH-2 receptor antagonist astressin2B abrogated nesfatin-1-induced increases in mean arterial pressure (MAP). Furthermore, the hypertensive action of CRH was blocked by pretreatment with an oxytocin receptor antagonist ornithine vasotocin (OVT), indicating that the hypertensive effect of nesfatin-1 may require activation of oxytocinergic (OTergic) neurons in addition to recruitment of CRH neurons. Interestingly, we found that the hypertensive effect of α-melanocyte stimulating hormone (α-MSH) itself was not blocked by either astressin2B or OVT. These data suggest that while α-MSH-producing neurons are part of a core melanocortin-CRH-oxytocin circuit regulating food intake, and a subpopulation of melanocortin neurons activated by nesfatin-1 do mediate the hypertensive action of the peptide, α-MSH can signal independently from this circuit to increase MAP.

  18. Gene × Environment interaction and resilience: effects of child maltreatment and serotonin, corticotropin releasing hormone, dopamine, and oxytocin genes.

    Science.gov (United States)

    Cicchetti, Dante; Rogosch, Fred A

    2012-05-01

    In this investigation, gene-environment interaction effects in predicting resilience in adaptive functioning among maltreated and nonmaltreated low-income children (N = 595) were examined. A multicomponent index of resilient functioning was derived and levels of resilient functioning were identified. Variants in four genes (serotonin transporter linked polymorphic region, corticotropin releasing hormone receptor 1, dopamine receptor D4-521C/T, and oxytocin receptor) were investigated. In a series of analyses of covariance, child maltreatment demonstrated a strong negative main effect on children's resilient functioning, whereas no main effects for any of the genotypes of the respective genes were found. However, gene-environment interactions involving genotypes of each of the respective genes and maltreatment status were obtained. For each respective gene, among children with a specific genotype, the relative advantage in resilient functioning of nonmaltreated compared to maltreated children was stronger than was the case for nonmaltreated and maltreated children with other genotypes of the respective gene. Across the four genes, a composite of the genotypes that more strongly differentiated resilient functioning between nonmaltreated and maltreated children provided further evidence of genetic variations influencing resilient functioning in nonmaltreated children, whereas genetic variation had a negligible effect on promoting resilience among maltreated children. Additional effects were observed for children based on the number of subtypes of maltreatment children experienced, as well as for abuse and neglect subgroups. Finally, maltreated and nonmaltreated children with high levels of resilience differed in their average number of differentiating genotypes. These results suggest that differential resilient outcomes are based on the interaction between genes and developmental experiences.

  19. Corticotropin-releasing hormone stimulates expression of leptin, 11beta-HSD2 and syncytin-1 in primary human trophoblasts

    Directory of Open Access Journals (Sweden)

    Fahlbusch Fabian B

    2012-09-01

    Full Text Available Abstract Background The placental syncytiotrophoblast is the major source of maternal plasma corticotropin-releasing hormone (CRH in the second half of pregnancy. Placental CRH exerts multiple functions in the maternal organism: It induces the adrenal secretion of cortisol via the stimulation of adrenocorticotropic hormone, regulates the timing of birth via its actions in the myometrium and inhibits the invasion of extravillous trophoblast cells in vitro. However, the auto- and paracrine actions of CRH on the syncytiotrophoblast itself are unknown. Intrauterine growth restriction (IUGR is accompanied by an increase in placental CRH, which could be of pathophysiological relevance for the dysregulation in syncytialisation seen in IUGR placentas. Methods We aimed to determine the effect of CRH on isolated primary trophoblastic cells in vitro. After CRH stimulation the trophoblast syncytialisation rate was monitored via syncytin-1 gene expression and beta-hCG (beta-human chorionic gonadotropine ELISA in culture supernatant. The expression of the IUGR marker genes leptin and 11beta-hydroxysteroid dehydrogenase 2 (11beta-HSD2 was measured continuously over a period of 72 h. We hypothesized that CRH might attenuate syncytialisation, induce leptin, and reduce 11beta-HSD2 expression in primary villous trophoblasts, which are known features of IUGR. Results CRH did not influence the differentiation of isolated trophoblasts into functional syncytium as determined by beta-hCG secretion, albeit inducing syncytin-1 expression. Following syncytialisation, CRH treatment significantly increased leptin and 11beta-HSD2 expression, as well as leptin secretion into culture supernatant after 48 h. Conclusion The relevance of CRH for placental physiology is underlined by the present in vitro study. The induction of leptin and 11beta-HSD2 in the syncytiotrophoblast by CRH might promote fetal nutrient supply and placental corticosteroid metabolism in the phase

  20. Dehydration-induced drinking decreases Fos expression in hypothalamic paraventricular neurons expressing vasopressin but not corticotropin-releasing hormone.

    Science.gov (United States)

    Wotus, Cheryl; Arnhold, Michelle M; Engeland, William C

    2007-03-01

    Water-restricted (WR) rats exhibit a rapid suppression of plasma corticosterone following drinking. The present study monitored Fos-like immunoreactivity (Fos) to assess the effect of WR-induced drinking on the activity of vasopressin (VP)-positive magnocellular and parvocellular neurons and corticotropin-releasing hormone (CRH)-positive parvocellular neurons in the paraventricular nucleus of the hypothalamus. Adult male rats received water for 30 min (WR) in the post meridiem (PM) each day for 6 days and were killed without receiving water or at 1 h after receiving water for 15 min. In WR rats, Fos increased in VP magnocellular and parvocellular neurons but not CRH neurons. After drinking, Fos was reduced in VP magnocellular and parvocellular neurons but did not change in CRH neurons. To assess the severity of osmotic stress, rats were sampled throughout the final day of WR. Plasma osmolality, hematocrit and plasma VP were increased throughout the day before PM rehydration, and plasma ACTH and corticosterone were elevated at 1230 and 1430, respectively, showing that WR activates hypothalamic-pituitary-adrenal activity during the early PM before the time of rehydration. To determine the effects of WR-induced drinking on CRH neurons activated by acute stress, WR rats underwent restraint. Restraint increased plasma ACTH and corticosterone and Fos in CRH neurons; although rehydration reduced plasma ACTH and Fos expression in VP neurons, Fos in CRH neurons was not affected. These results suggest that inhibition of VP magnocellular and parvocellular neurons, but not CRH parvocellular neurons, contributes to the suppression of corticosterone after WR-induced drinking.

  1. Serum blood metabolite response and evaluation of select organ weight, histology and cardiac morphology of beef heifers exposed to a dual corticotropin-releasing hormone and vasopressin challenge following supplementation of

    Science.gov (United States)

    The objective of this study was to: 1) determine if supplementation of Zilpaterol Hydrochloride (ZH) altered select organ weights, histology and cardiac anatomical features at harvest and 2) determine if administration of a corticotropin-releasing hormone (CRH) and vasopressin (VP) challenge followi...

  2. Spectrum of Adrenal Dysfunction in Patients with Acquired Immunodeficiency Syndrome Evaluation of Adrenal and Pituitary Reserve with ACTH and Corticotropin-Releasing Hormone Testing.

    Science.gov (United States)

    Freda, P U; Papadopoulos, A D; Wardlaw, S L; Goland, R S

    1997-07-01

    Patients with acquired immunodeficiency syndrome (AIDS) have been reported to develop abnormalities of the endocrine system and in particular of the hypothalamic-pituitary-adrenal (HPA) axis. To define the abnormalities of HPA function in AIDS patients better, we performed ACTH and ovine corticotropin-releasing hormone (oCRH) testing in a group of AIDS patients and oCRH testing in a group of healthy subjects. Our study found that in AIDS patients with normal ACTH testing, oCRH testing revealed a variety of subclinical abnormalities of ACTH and cortisol responses. Although we did not find frank adrenal insufficiency in any of these AIDS patients, it remains to be determined if any of the subclinical abnormalities we identified are predictive of clinically significant adrenal insufficiency; it may be that as AIDS patients live longer, the subclinical abnormalities will progress to adrenal insufficiency. (Trends Endocrinol Metab 1997;8:173-180). (c) 1997, Elsevier Science Inc.

  3. Effect of angiotensin II, catecholamines and glucocorticoid on corticotropin releasing factor (CRF-induced ACTH release in pituitary cell cultures.

    Directory of Open Access Journals (Sweden)

    Murakami,Kazuharu

    1984-08-01

    Full Text Available The effects of angiotensin II, catecholamines and glucocorticoid on CRF-induced ACTH release were examined using rat anterior pituitary cells in monolayer culture. Synthetic ovine CRF induced a significant ACTH release in this system. Angiotensin II produced an additive effect on CRF-induced ACTH release. The ACTH releasing activity of CRF was potentiated by epinephrine and norepinephrine. Dopamine itself at 0.03-30 ng/ml did not show any significant effect on ACTH release, but it inhibited CRF-induced ACTH release. Corticosterone at 10(-7 and 10(-6M inhibited CRF-induced ACTH release. These results indicate that angiotensin II, catecholamines and glucocorticoid modulate ACTH release at the pituitary level.

  4. Noradrenergic inhibition of canine gallbladder contraction and murine pancreatic secretion during stress by corticotropin-releasing factor.

    OpenAIRE

    1992-01-01

    Gastrointestinal secretory and motor responses are profoundly altered during stress; but the effects of stress and its mediator(s) on the two major gut functions, exocrine pancreatic secretion and gallbladder motility, are unknown. We therefore developed two animal models that allowed us to examine the effects of acoustic stress on canine gallbladder contraction and restraint stress on rat exocrine pancreatic secretion. Acoustic stress inhibited cholecystokinin-8 (CCK)- and meal-induced gallb...

  5. Combined quantification of corticotropin-releasing hormone, cortisol-to-cortisone ratio and progesterone by liquid chromatography-Tandem mass spectrometry in placental tissue.

    Science.gov (United States)

    Fahlbusch, Fabian B; Ruebner, Matthias; Rascher, Wolfgang; Rauh, Manfred

    2013-09-01

    With mid-gestation the production of placental corticotropin-releasing hormone (CRH) starts to steadily increase. The fetal peptide CRH excerts direct functions at the feto-maternal interface (vasodilatation, timing of birth) via its interaction with progesterone and indirectly ensures maturation and growth of fetal organ systems for delivery by driving fetal cortisol production via its induction of adrenocorticotropic hormone release. This feedback loop is tightly controlled by the amount of enzymatic cortisol/cortisone turnover in the placental syncytiotrophoblast by 11β-hydroxy-steroid dehydrogenase type 2 (11β-HSD2). Traditionally, placental tissue hormones have been quantified by immunological methods (e.g. RIA or ELISA), which have the drawback of possible cross-reactivity and tissue perturbations. Most importantly, it is not possible to quantify CRH and steroid hormones, such as cortisol, cortisone and progesterone together in the same sample with these methods. Hence, we aimed to develop and validate a quantitative mass spectrometry (MS) method for multi-modal quantification of these placental hormones: While CRH was readily detectable throughout the placenta, the placental levels of progesterone and especially cortisol and cortisone were higher at the placental base facing the maternal side. The HPLC-MS/MS procedure showed excellent selectivity and sufficient limit of quantification in placental tissue homogenates to allow for simultaneous detection of CRH, cortisol and cortisone, and progesterone. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Association of glucocorticoid and type 1 corticotropin-releasing hormone receptors gene variants and risk for depression during pregnancy and post-partum.

    Science.gov (United States)

    Engineer, Neelam; Darwin, Lucy; Nishigandh, Deole; Ngianga-Bakwin, Kandala; Smith, Steve C; Grammatopoulos, Dimitris K

    2013-09-01

    Women with postnatal depression (PND) appear to have abnormal hypothalamic pituitary adrenal (HPA) axis responses to stress, which might involve a genetic variability component. We investigated association of genetic variants in the glucocorticoid receptor (GR, NR3C1) and corticotropin releasing hormone receptor 1 (CRHR1) genes with increased risk for PND. Two hundred pregnant women were recruited prospectively and PND risk was assessed by the Edinburgh Postnatal Depression Scale (EPDS) during pregnancy and again 2-8 weeks post-natally (CW-GAPND study). The BclI and ER22/23EK single nucleotide polymorphisms (SNPs) of the GR and the haplotype-tagged rs1876828, rs242939 and rs242941 SNPs of the CRHR1 associated with genetic risk to depressive disorders were genotyped. A cut-off score of 10 was used to detect increased risk of PND. Association analysis was carried out in 140 patients that completed the study protocol. The BclI and rs242939 SNPs were over-represented in women with postnatal EPDS score ≥10 with significant allele association (p = 0.011 and genetics of high-risk for depression during pregnancy and postpartum. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Corticotropin-releasing hormone stimulates mitotic kinesin-like protein 1 expression via a PLC/PKC-dependent signaling pathway in hippocampal neurons.

    Science.gov (United States)

    Sheng, Hui; Xu, Yongjun; Chen, Yanming; Zhang, Yanmin; Ni, Xin

    2012-10-15

    Corticotropin-releasing hormone (CRH) has been shown to modulate dendritic development in hippocampus. Mitotic kinesin-like protein 1 (MKLP1) plays key roles in dendritic differentiation. In the present study, we examined the effects of CRH on MKLP1 expression in cultured hippocampal neurons and determine subsequent signaling pathways involved. CRH dose-dependently increased MKLP1 mRNA and protein expression. This effect can be reversed by CRHR1 antagonist but not by CRHR2 antagonist. CRHR1 knockdown impaired this effect of CRH. CRH stimulated GTP-bound Gαs protein and phosphorylated phospholipase C (PLC)-β3 expression, which were blocked by CRHR1 antagonist. Transfection of GP antagonist-2A, an inhibitory peptide of Gαq protein, blocked CRH-induced phosphorylated PLC-β3 expression. PLC and PKC inhibitors completely blocked whereas adenylyl cyclase (AC) and PKA inhibitors did not affect CRH-induced MKLP1 expression. Our results indicate that CRH act on CRHR1 to induce MKLP1 expression via PLC/PKC signaling pathway. CRH may regulate MKLP1 expression, thereby modulating dendritic development.

  8. Corticotropin-releasing hormone-mediated metamorphosis in the neotenic axolotl Ambystoma mexicanum: synergistic involvement of thyroxine and corticoids on brain type II deiodinase.

    Science.gov (United States)

    Kühn, Eduard R; De Groef, Bert; Van der Geyten, Serge; Darras, Veerle M

    2005-08-01

    In the present study, morphological changes leading to complete metamorphosis have been induced in the neotenic axolotl Ambystoma mexicanum using a submetamorphic dose of T(4) together with an injection of corticotropin-releasing hormone (CRH). An injection of CRH alone is ineffective in this regard presumably due to a lack of thyrotropic stimulation. Using this low hormone profile for induction of metamorphosis, the deiodinating enzymes D2 and D3 known to be present in amphibians were measured in liver and brain 24h following an intraperitoneal injection. An injection of T(4) alone did not influence liver nor brain D2 and D3, but dexamethasone (DEX) or CRH alone or in combination with T(4) decreased liver D2 and D3. Brain D2 activity was slightly increased with a higher dose of DEX, though CRH did not have this effect. A profound synergistic effect occurred when T(4) and DEX or CRH were injected together, in the dose range leading to metamorphosis, increasing brain D2 activity more than fivefold. This synergistic effect was not found in the liver. It is concluded that brain T(3) availability may play an important role for the onset of metamorphosis in the neotenic axolotl.

  9. Endogenous GLP-1 acts on paraventricular nucleus to suppress feeding: projection from nucleus tractus solitarius and activation of corticotropin-releasing hormone, nesfatin-1 and oxytocin neurons.

    Science.gov (United States)

    Katsurada, Kenichi; Maejima, Yuko; Nakata, Masanori; Kodaira, Misato; Suyama, Shigetomo; Iwasaki, Yusaku; Kario, Kazuomi; Yada, Toshihiko

    2014-08-22

    Glucagon-like peptide-1 (GLP-1) receptor agonists have been used to treat type 2 diabetic patients and shown to reduce food intake and body weight. The anorexigenic effects of GLP-1 and GLP-1 receptor agonists are thought to be mediated primarily via the hypothalamic paraventricular nucleus (PVN). GLP-1, an intestinal hormone, is also localized in the nucleus tractus solitarius (NTS) of the brain stem. However, the role of endogenous GLP-1, particularly that in the NTS neurons, in feeding regulation remains to be established. The present study examined whether the NTS GLP-1 neurons project to PVN and whether the endogenous GLP-1 acts on PVN to restrict feeding. Intra-PVN injection of GLP-1 receptor antagonist exendin (9-39) increased food intake. Injection of retrograde tracer into PVN combined with immunohistochemistry for GLP-1 in NTS revealed direct projection of NTS GLP-1 neurons to PVN. Moreover, GLP-1 evoked Ca(2+) signaling in single neurons isolated from PVN. The majority of GLP-1-responsive neurons were immunoreactive predominantly to corticotropin-releasing hormone (CRH) and nesfatin-1, and less frequently to oxytocin. These results indicate that endogenous GLP-1 targets PVN to restrict feeding behavior, in which the projection from NTS GLP-1 neurons and activation of CRH and nesfatin-1 neurons might be implicated. This study reveals a neuronal basis for the anorexigenic effect of endogenous GLP-1 in the brain.

  10. Sexually dimorphic stress and pro-inflammatory cytokine responses to an intravenous corticotropin-releasing hormone challenge of Brahman cattle following transportation.

    Science.gov (United States)

    Hulbert, Lindsey E; Carroll, Jeffery A; Ballou, Michael A; Burdick, Nicole C; Dailey, Jeffery W; Caldwell, Lisa C; Loyd, Andrea N; Vann, Rhonda C; Welsh, Thomas H; Randel, Ronald D

    2013-01-01

    This study was designed to characterize potential sexually dimorphic stress and immunological responses following a corticotropin-releasing hormone (CRH) challenge in beef cattle. Six female (heifers) and six male (bulls) Brahman calves (264 ± 12 d of age) were administered CRH intravenously (0.5 µg of CRH/kg body mass) after which serum concentrations of cortisol increased from 0.5 h to 4 h. From 1 h to 4 h after CRH administration, serum cortisol concentrations were greater in heifers than in bulls. In all cattle, increased serum concentrations of TNF-α, IL-6 and IFN-γ were observed from 2.5 h to 3 h after CRH, with greater concentrations of IFN-γ and IL-6 in heifers than bulls. Heifer total leukocyte counts decreased 1 h after CRH administration, while bull leukocyte counts and percent neutrophils decreased 2 h after CRH administration. Heifers had greater rectal temperatures than bulls, yet rectal temperatures did not change following administration of CRH. There was no effect of CRH administration on heart rate. However, bulls tended to have increased heart rate 2 h after CRH administration than before CRH. Heifer heart rate was greater than bulls throughout the study. These data demonstrate that acute CRH administration can elicit a pro-inflammatory response, and cattle exhibit a sexually dimorphic pro-inflammatory cytokine and cortisol response to acute CRH administration.

  11. Consolidation of remote fear memories involves Corticotropin-Releasing Hormone (CRH) receptor type 1-mediated enhancement of AMPA receptor GluR1 signaling in the dentate gyrus.

    Science.gov (United States)

    Thoeringer, Christoph K; Henes, Kathrin; Eder, Matthias; Dahlhoff, Maik; Wurst, Wolfgang; Holsboer, Florian; Deussing, Jan M; Moosmang, Sven; Wotjak, Carsten T

    2012-02-01

    Persistent dreadful memories and hyperarousal constitute prominent psychopathological features of posttraumatic stress disorder (PTSD). Here, we used a contextual fear conditioning paradigm to demonstrate that conditional genetic deletion of corticotropin-releasing hormone (CRH) receptor 1 within the limbic forebrain in mice significantly reduced remote, but not recent, associative and non-associative fear memories. Per os treatment with the selective CRHR1 antagonist DMP696 (3 mg/kg) attenuated consolidation of remote fear memories, without affecting their expression and retention. This could be achieved, if DMP696 was administered for 1 week starting as late as 24 h after foot shock. Furthermore, by combining electrophysiological recordings and western blot analyses, we demonstrate a delayed-onset and long-lasting increase in AMPA receptor (AMPAR) GluR1-mediated signaling in the dentate gyrus (DG) of the dorsal hippocampus 1 month after foot shock. These changes were absent from CRHR1-deficient mice and after DMP696 treatment. Inactivation of hippocampal GluR1-containing AMPARs by antisense oligonucleotides or philantotoxin 433 confirmed the behavioral relevance of AMPA-type glutamatergic neurotransmission in maintaining the high levels of remote fear in shocked mice with intact CRHR1 signaling. We conclude that limbic CRHR1 receptors enhance the consolidation of remote fear memories in the first week after foot shock by increasing the expression of Ca(2+)-permeable GluR1-containing AMPARs in the DG. These findings suggest both receptors as rational targets for the prevention and therapy, respectively, of psychopathology associated with exaggerated fear memories, such as PTSD.

  12. Neuronal histamine and expression of corticotropin-releasing hormone, vasopressin and oxytocin in the hypothalamus: relative importance of H1 and H2 receptors.

    Science.gov (United States)

    Kjaer, A; Larsen, P J; Knigge, U; Jørgensen, H; Warberg, J

    1998-08-01

    Centrally administered histamine (HA) stimulates the secretion of the pro-opiomelanocortin-derived peptides ACTH and beta-endorphin as well as prolactin. The effect of HA on secretion of these adenohypophysial hormones is indirect and may involve activation of hypothalamic neurons containing corticotropin-releasing hormone (CRH), arginine-vasopressin (AVP) or oxytocin (OT). We studied the effect of activating central HA receptors by central infusion of HA, HA agonists or antagonists on expression of CRH, AVP and OT mRNA in the hypothalamic paraventricular (PVN) and supraoptic (SON) nuclei. Intracerebroventricular infusion of HA (270 nmol), the H1-receptor agonist 2-thiazolylethylamine or the H2-receptor agonist 4-methylhistamine increased the level of CRH mRNA in the PVN, and OT mRNA in the SON. In contrast, none of these compounds had any effect on expression of AVP mRNA in the PVN or SON. Administration of the H1-receptor antagonist mepyramine or the H2-receptor antagonist cimetidine had no effect on basal expression of CRH, AVP or OT mRNA in the PVN and/or SON except for a slight inhibitory effect of cimetidine on CRH mRNA expression in the PVN. Pretreatment with mepyramine or cimetidine before HA administration inhibited the HA-induced increase in OT mRNA levels but had no effect on the HA-induced increase in CRH mRNA levels in the PVN. We conclude that HA stimulates hypothalamic CRH and OT neurons by increasing mRNA levels, and this effect seems to be mediated via activation of both HA H1 and H2 receptors.

  13. Corticotropin-Releasing Hormone As the Homeostatic Rheostat of Feto-Maternal Symbiosis and Developmental Programming In Utero and Neonatal Life.

    Science.gov (United States)

    Alcántara-Alonso, Viridiana; Panetta, Pamela; de Gortari, Patricia; Grammatopoulos, Dimitris K

    2017-01-01

    A balanced interaction between the homeostatic mechanisms of mother and the developing organism during pregnancy and in early neonatal life is essential in order to ensure optimal fetal development, ability to respond to various external and internal challenges, protection from adverse programming, and safeguard maternal care availability after parturition. In the majority of pregnancies, this relationship is highly effective resulting in successful outcomes. However, in a number of pathological settings, perturbations of the maternal homeostasis disrupt this symbiosis and initiate adaptive responses with unpredictable outcomes for the fetus or even the neonate. This may lead to development of pathological phenotypes arising from developmental reprogramming involving interaction of genetic, epigenetic, and environmental-driven pathways, sometimes with acute consequences (e.g., growth impairment) and sometimes delayed (e.g., enhanced susceptibility to disease) that last well into adulthood. Most of these adaptive mechanisms are activated and controlled by hormones of the hypothalamo-pituitary adrenal axis under the influence of placental steroid and peptide hormones. In particular, the hypothalamic peptide corticotropin-releasing hormone (CRH) plays a key role in feto-maternal communication by orchestrating and integrating a series of neuroendocrine, immune, metabolic, and behavioral responses. CRH also regulates neural networks involved in maternal behavior and this determines efficiency of maternal care and neonate interactions. This review will summarize our current understanding of CRH actions during the perinatal period, focusing on the physiological roles for both mother and offspring and also how external challenges can alter CRH actions and potentially impact on fetus/neonate health.

  14. Marked changes of arginine vasopressin, oxytocin, and corticotropin-releasing hormone in hypophysial portal plasma after pituitary stalk damage in the rat.

    Science.gov (United States)

    Makara, G B; Sutton, S; Otto, S; Plotsky, P M

    1995-05-01

    Mechanical compression of the pituitary stalk with the help of a blunt stereotaxic knife results in posterior pituitary denervation (PPD) and sprouting proximal to the injury, leading to formation of an ectopic neurohypophysis in the stalk. This provides an experimental model for those cases in which traumatic damage severs the nerve fibers to the neural lobe but does not obliterate the hypophysial-portal circulation. The effect of PPD on the hypophysial-portal concentration profile of putative ACTH secretagogues as well as basal and stimulated ACTH secretion in vitro were investigated at varying times after PPD. The contents of arginine vasopressin (AVP) and oxytocin (OT) in extracts of the stalk median eminence 1 week after PPD were markedly elevated, whereas corticotropin-releasing hormone (CRH) content was unaffected. Levels of these three neuropeptides in hypophysial-portal blood collected under anesthesia from the proximal stump of the transected stalk (or the ectopic neural lobe) were measured at weekly intervals in groups of rats after sham or PPD surgery. Hypophysial-portal AVP levels showed a monotonic increase with time after PPD from a 1.8-fold elevation at 1 week post-PPD to a maximum concentration 6-fold greater than that in sham groups at 4 weeks post-PPD. Portal plasma OT levels also exhibited extreme elevation. In contrast, portal plasma CRH levels showed an initial 72% decline 1 week post-PPD. We suggest that mechanical damage to the pituitary stalk and the subsequent sprouting redirected secretion of AVP and OT from the neural lobe to the pituitary stalk. This caused sustained elevations of portal plasma concentrations of AVP and OT. The resulting tonic exposure to AVP and/or OT may down-regulate anterior pituitary receptors to these neurohypophyseal peptides and indirectly decrease CRH release into the portal circulation.

  15. Modified dexamethasone suppression-corticotropin-releasing hormone stimulation test: A pilot study of young healthy volunteers and implications for alcoholism research in adolescents and young adults.

    Science.gov (United States)

    Sher, Leo; Cooper, Thomas B; Mann, J John; Oquendo, Maria A

    2006-01-01

    The key neuroendocrine component of a response to stress is the hypothalamic-pituitary-adrenocortical (HPA) system. Abnormalities in the HPA system have been implicated in the pathophysiology of psychiatric disorders such as depression, post-traumatic stress disorder, alcoholism and suicide. The dexamethasone suppression test (DST) is the most frequently used test to assess HPA-system function in psychiatric disorders. This neuroendocrine test consists of the administration of a low dose of dexamethasone at 11 pm and the measurement of cortisol levels at one or more time points on the following day. After corticotropin-releasing hormone (CRH) became available for clinical studies, the DST was combined with CRH administration. In this test, patients are pretreated with a single dose of dexamethasone at 11 pm and receive human CRH intravenously at 3 pm the following day. The resulting DST-CRH test proved to be much more sensitive in detecting HPA system alterations than the DST. We have modified the DST-CRH test and used ovine CRH instead of human CRH in a pilot study of a group of young healthy volunteers. Results indicated that it produces results similar to the results obtained with human CRH. This suggests that ovine CRH can be used in psychiatric research. Alcoholism is associated with abnormalities in HPA function. Nonalcoholic subjects with a family history of alcoholism exhibit lower plasma ACTH and beta-endorphin as well as lower ACTH, cortisol, and beta-endorphin responses to psychological stress and CRH stimulation. This suggests that in children of alcoholics, alterations in the mechanisms that regulate HPA axis activity predate the development of alcohol dependence and may be considered inherited traits. Therefore, studies of the HPA system in persons at risk for alcoholism may help understand the neurobiological mechanisms of predisposition to alcoholism.

  16. Effect of electro-acupuncture on substance P, its receptor and corticotropin-releasing hormone in rats with irritable bowel syndrome

    Institute of Scientific and Technical Information of China (English)

    Xiao-Peng Ma; Lin-Ying Tan; Yun Yang; Huan-Gan Wu; Bin Jiang; Hui-Rong Liu; Ling Yang

    2009-01-01

    AIM: To investigate the effect and mechanism of electro-acupuncture (EA) at ST25 and ST37 on irritable bowel syndrome (IBS) of rats. METHODS: A total of 21 male Sprague-Dawley rats were randomly divided into normal group, model group and EA group. A rat model of IBS was established by constraining the limbs and distending the colorectum of rats. Rats in EA group received bilateral EA at ST25 and ST37 with a sparse and intense waveform at a frequency of 2/50 Hz for 15 min, once a day for 7 d as a course. Rats in normal and model groups were stimulated by distending colorectum (CR). An abdominal withdrawal reflex (AWR) scoring system was used to evaluate improvements in visceral hypersensitivity. Toluidine blue-improved method, immunohistochemistry and radioimmunoassay were used to observe mucosal mast cells (MC), changes of substance P (SP) and substance P receptor (SPR) in colon and change of corticotropin-releasing hormone (CRH) in hypothalamus. RESULTS: The threshold of visceral sense was significantly lower in model group than in normal group, and significantly higher in EA group than in model group. The number of mucosal MC was greater in model group than in normal group and significantly smaller in EA group than in model group. The CRH level in hypothalamus of rats was significantly higher in model group than in normal group, which was remarkably decreased after electro-acupuncture treatment. The SP and SPR expression in colon of rats in model group was decreased after electro-acupuncture treatment.CONCLUSION:EA at ST25 and ST37 can decrease the number of mucosal MC and down-regulate the expression of CRH in hypothalamus,and the expression of SP and SPR in colon of rats with IBS.

  17. Differential Activation in Amygdala and Plasma Noradrenaline during Colorectal Distention by Administration of Corticotropin-Releasing Hormone between Healthy Individuals and Patients with Irritable Bowel Syndrome.

    Directory of Open Access Journals (Sweden)

    Yukari Tanaka

    Full Text Available Irritable bowel syndrome (IBS often comorbids mood and anxiety disorders. Corticotropin-releasing hormone (CRH is a major mediator of the stress response in the brain-gut axis, but it is not clear how CRH agonists change human brain responses to interoceptive stimuli. We tested the hypothesis that brain activation in response to colorectal distention is enhanced after CRH injection in IBS patients compared to healthy controls. Brain H215O- positron emission tomography (PET was performed in 16 male IBS patients and 16 age-matched male controls during baseline, no distention, mild and intense distention of the colorectum using barostat bag inflation. Either CRH (2 μg/kg or saline (1:1 was then injected intravenously and the same distention protocol was repeated. Plasma adrenocorticotropic hormone (ACTH, serum cortisol and plasma noradrenaline levels were measured at each stimulation. At baseline, CRH without colorectal distention induced more activation in the right amygdala in IBS patients than in controls. During intense distention after CRH injection, controls showed significantly greater activation than IBS patients in the right amygdala. Plasma ACTH and serum cortisol secretion showed a significant interaction between drug (CRH, saline and distention. Plasma noradrenaline at baseline significantly increased after CRH injection compared to before injection in IBS. Further, plasma noradrenaline showed a significant group (IBS, controls by drug by distention interaction. Exogenous CRH differentially sensitizes brain regions of the emotional-arousal circuitry within the visceral pain matrix to colorectal distention and synergetic activation of noradrenergic function in IBS patients and healthy individuals.

  18. Moderation of the Association between Childhood Maltreatment and Neuroticism by the Corticotropin-Releasing Hormone Receptor 1 Gene

    Science.gov (United States)

    DeYoung, Colin G.; Cicchetti, Dante; Rogosch, Fred A.

    2011-01-01

    Background: Neuroticism is a personality trait reflecting the tendency to experience negative affect. It is a major risk for psychopathology, especially depression and anxiety disorders. Childhood maltreatment is another major risk factor for psychopathology and may influence personality. Maltreatment may interact with genotype to predict…

  19. Synthetic heparin-binding growth factor analogs

    Science.gov (United States)

    Pena, Louis A.; Zamora, Paul; Lin, Xinhua; Glass, John D.

    2007-01-23

    The invention provides synthetic heparin-binding growth factor analogs having at least one peptide chain that binds a heparin-binding growth factor receptor, covalently bound to a hydrophobic linker, which is in turn covalently bound to a non-signaling peptide that includes a heparin-binding domain. The synthetic heparin-binding growth factor analogs are useful as soluble biologics or as surface coatings for medical devices.

  20. Deducing corticotropin-releasing hormone receptor type 1 signaling networks from gene expression data by usage of genetic algorithms and graphical Gaussian models.

    Science.gov (United States)

    Trümbach, Dietrich; Graf, Cornelia; Pütz, Benno; Kühne, Claudia; Panhuysen, Marcus; Weber, Peter; Holsboer, Florian; Wurst, Wolfgang; Welzl, Gerhard; Deussing, Jan M

    2010-11-19

    Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis is a hallmark of complex and multifactorial psychiatric diseases such as anxiety and mood disorders. About 50-60% of patients with major depression show HPA axis dysfunction, i.e. hyperactivity and impaired negative feedback regulation. The neuropeptide corticotropin-releasing hormone (CRH) and its receptor type 1 (CRHR1) are key regulators of this neuroendocrine stress axis. Therefore, we analyzed CRH/CRHR1-dependent gene expression data obtained from the pituitary corticotrope cell line AtT-20, a well-established in vitro model for CRHR1-mediated signal transduction. To extract significantly regulated genes from a genome-wide microarray data set and to deduce underlying CRHR1-dependent signaling networks, we combined supervised and unsupervised algorithms. We present an efficient variable selection strategy by consecutively applying univariate as well as multivariate methods followed by graphical models. First, feature preselection was used to exclude genes not differentially regulated over time from the dataset. For multivariate variable selection a maximum likelihood (MLHD) discriminant function within GALGO, an R package based on a genetic algorithm (GA), was chosen. The topmost genes representing major nodes in the expression network were ranked to find highly separating candidate genes. By using groups of five genes (chromosome size) in the discriminant function and repeating the genetic algorithm separately four times we found eleven genes occurring at least in three of the top ranked result lists of the four repetitions. In addition, we compared the results of GA/MLHD with the alternative optimization algorithms greedy selection and simulated annealing as well as with the state-of-the-art method random forest. In every case we obtained a clear overlap of the selected genes independently confirming the results of MLHD in combination with a genetic algorithm. With two unsupervised algorithms

  1. The metabolic, stress axis, and hematology response of zilpaterol hydrochloride supplemented beef heifers when exposed to a dual corticotropin-releasing hormone and vasopressin challenge.

    Science.gov (United States)

    Buntyn, J O; Burdick Sanchez, N C; Schmidt, T B; Erickson, G E; Sieren, S E; Jones, S J; Carroll, J A

    2016-07-01

    The objective of this study was to determine the metabolic, stress, and hematology response of beef heifers supplemented with zilpaterol hydrochloride (ZH) when exposed to an endocrine stress challenge. Heifers ( = 20; 556 ± 7 kg BW) were randomized into 2 treatment groups: 1) control (CON), no ZH supplementation, and 2) zilpaterol (ZIL), supplemented with ZH at 8.33 mg/kg (DM basis). The ZIL group was supplemented ZH for 20 d, with a 3-d withdrawal period. On d 24, heifers received an intravenous bolus of corticotropin-releasing hormone (CRH; 0.3 µg/kg BW) and arginine vasopressin (VP; 1.0 µg/kg BW) to activate the stress axis. Blood samples were collected at 30-min intervals for serum and 60-min intervals for plasma and whole blood, from -2 to 8 h relative to the challenge at 0 h (1000 h). Samples were analyzed for glucose, insulin, NEFA, blood urea nitrogen (BUN), cortisol, epinephrine, norepinephrine, and complete blood cell counts. Following the challenge, cattle were harvested over a 3-d period. Liver, LM, and biceps femoris (BF) samples were collected and analyzed for glucose, lactate, and glycolytic potential (GP). There was a treatment ( ≤ 0.001) effect for vaginal temperature (VT), with ZIL having a 0.1°C decrease in VT when compared with CON. A treatment × time effect ( = 0.002) was observed for NEFA. A treatment effect was observed for BUN; ZIL had decreased BUN concentrations compared with CON ( challenge; however, no treatment × time effect was observed. There was also a treatment effect for cortisol ( ≤ 0.01) and epinephrine ( = 0.003); ZIL had decreased cortisol and epinephrine during the CRH/VP challenge when compared with CON. There was a time effect for total white blood cells, lymphocytes, and monocytes; each variable increased ( ≤ 0.01) 2 h postchallenge. Additionally, neutrophil counts decreased ( ≤ 0.01) in response to CRH/VP challenge in both treatment groups. Glucose concentrations within the LM were greater ( = 0.03) in CON

  2. Deducing corticotropin-releasing hormone receptor type 1 signaling networks from gene expression data by usage of genetic algorithms and graphical Gaussian models

    Directory of Open Access Journals (Sweden)

    Holsboer Florian

    2010-11-01

    Full Text Available Abstract Background Dysregulation of the hypothalamic-pituitary-adrenal (HPA axis is a hallmark of complex and multifactorial psychiatric diseases such as anxiety and mood disorders. About 50-60% of patients with major depression show HPA axis dysfunction, i.e. hyperactivity and impaired negative feedback regulation. The neuropeptide corticotropin-releasing hormone (CRH and its receptor type 1 (CRHR1 are key regulators of this neuroendocrine stress axis. Therefore, we analyzed CRH/CRHR1-dependent gene expression data obtained from the pituitary corticotrope cell line AtT-20, a well-established in vitro model for CRHR1-mediated signal transduction. To extract significantly regulated genes from a genome-wide microarray data set and to deduce underlying CRHR1-dependent signaling networks, we combined supervised and unsupervised algorithms. Results We present an efficient variable selection strategy by consecutively applying univariate as well as multivariate methods followed by graphical models. First, feature preselection was used to exclude genes not differentially regulated over time from the dataset. For multivariate variable selection a maximum likelihood (MLHD discriminant function within GALGO, an R package based on a genetic algorithm (GA, was chosen. The topmost genes representing major nodes in the expression network were ranked to find highly separating candidate genes. By using groups of five genes (chromosome size in the discriminant function and repeating the genetic algorithm separately four times we found eleven genes occurring at least in three of the top ranked result lists of the four repetitions. In addition, we compared the results of GA/MLHD with the alternative optimization algorithms greedy selection and simulated annealing as well as with the state-of-the-art method random forest. In every case we obtained a clear overlap of the selected genes independently confirming the results of MLHD in combination with a genetic

  3. Synthetic heparin-binding factor analogs

    Science.gov (United States)

    Pena, Louis A.; Zamora, Paul O.; Lin, Xinhua; Glass, John D.

    2010-04-20

    The invention provides synthetic heparin-binding growth factor analogs having at least one peptide chain, and preferably two peptide chains branched from a dipeptide branch moiety composed of two trifunctional amino acid residues, which peptide chain or chains bind a heparin-binding growth factor receptor and are covalently bound to a non-signaling peptide that includes a heparin-binding domain, preferably by a linker, which may be a hydrophobic linker. The synthetic heparin-binding growth factor analogs are useful as pharmaceutical agents, soluble biologics or as surface coatings for medical devices.

  4. Adaptive evolution of transcription factor binding sites

    Directory of Open Access Journals (Sweden)

    Berg Johannes

    2004-10-01

    Full Text Available Abstract Background The regulation of a gene depends on the binding of transcription factors to specific sites located in the regulatory region of the gene. The generation of these binding sites and of cooperativity between them are essential building blocks in the evolution of complex regulatory networks. We study a theoretical model for the sequence evolution of binding sites by point mutations. The approach is based on biophysical models for the binding of transcription factors to DNA. Hence we derive empirically grounded fitness landscapes, which enter a population genetics model including mutations, genetic drift, and selection. Results We show that the selection for factor binding generically leads to specific correlations between nucleotide frequencies at different positions of a binding site. We demonstrate the possibility of rapid adaptive evolution generating a new binding site for a given transcription factor by point mutations. The evolutionary time required is estimated in terms of the neutral (background mutation rate, the selection coefficient, and the effective population size. Conclusions The efficiency of binding site formation is seen to depend on two joint conditions: the binding site motif must be short enough and the promoter region must be long enough. These constraints on promoter architecture are indeed seen in eukaryotic systems. Furthermore, we analyse the adaptive evolution of genetic switches and of signal integration through binding cooperativity between different sites. Experimental tests of this picture involving the statistics of polymorphisms and phylogenies of sites are discussed.

  5. Statistics for Transcription Factor Binding Sites

    OpenAIRE

    2008-01-01

    Transcription factors (TFs) play a key role in gene regulation. They interact with specific binding sites or motifs on the DNA sequence and regulate expression of genes downstream of these binding sites. In silico prediction of potential binding of a TF to a binding site is an important task in computational biology. From a statistical point of view, the DNA sequence is a long text consisting of four different letters ('A','C','G', and 'T'). The binding of a TF to the sequence corresponds to ...

  6. Urocortin, a novel peptide of the corticotropin releasing hormone family%Urocortin--促肾上腺皮质激素释放激素肽类家族的最新成员

    Institute of Scientific and Technical Information of China (English)

    顾清; 沙金燕

    2002-01-01

    @@ 促肾上腺皮质激素释放激素(corticotropin releasing hormone,CRH)家族是包括CRH、硬骨鱼紧张肽(urotensin)、蛙皮降压肽(sauvagine)以及新近发现的urocortin在内的一组肽类物质,这组肽类物质在分子结构和生物学活性方面都有很高的同源性.CRH是一个41氨基酸肽,由下丘脑分泌后刺激垂体前叶细胞释放促肾上腺皮质激素(adrenocorticotropin,ACTH)和β-内啡肽(β-endorphin,β EP)[1].

  7. Corticotropin-releasing factor (CRF) in stress and disease: A review of literature and treatment perspectives with special emphasis on psychiatric disorders

    DEFF Research Database (Denmark)

    Krohg, K.; Hageman, I.; Jorgensen, M.B.

    2008-01-01

    The CRF family of neuropeptides and receptors is involved in a variety of stress responses, in the regulation of appetite, metabolic and inflammatory processes as well as intestinal movements. From a primarily psychiatric perspective, the present paper reviews the literature on its anatomy......, physiology and its involvement in psychiatric, neurological and inflammatory diseases. Finally, recent developments in the pharmacological aspects of CRF in these diseases are reviewed Udgivelsesdato: 2008...

  8. Enduring Effects Of Traumatic Stress On Brain Neuropeptide Y (NPY) and Corticotropin-Releasing Factor (CRF) Systems: Molecular and Neuropharmacologic Studies

    Science.gov (United States)

    2009-12-01

    nucleus of the hypothalamus, and medial amygdala post-defeat. AcN Control Defeated 0 10 20 30 40 50 60 70 80 # Treatment VMH Control Defeated 0 10 20...ains to be determined. Defeat also increased the number of Fos-positive cells n the VMH, another androgen receptor–expressing nu- leus that is larger...Finally, the androgen - ependent sexual dimorphism of VMH volume is seen electively in the ventrolateral, but not dorsomedial, sub- ivision (Dugger et al

  9. Corticotropin-releasing factor and urocortin regulate spine and synapse formation : structural basis for stress-induced neuronal remodeling and pathology

    NARCIS (Netherlands)

    Gounko, N. V.; Swinny, J. D.; Kalicharan, D.; Jafari, S.; Corteen, N.; Seifi, M.; Bakels, R.; van der Want, J. J. L.

    2013-01-01

    Dendritic spines are important sites of excitatory neurotransmission in the brain with their function determined by their structure and molecular content. Alterations in spine number, morphology and receptor content are a hallmark of many psychiatric disorders, most notably those because of stress.

  10. Early life adversity and serotonin transporter gene variation interact to affect DNA methylation of the corticotropin-releasing factor gene promoter region in the adult rat brain

    NARCIS (Netherlands)

    Doelen, R.H. van der; Arnoldussen, I.A.C.; Ghareh, H.; Och, L. van; Homberg, J.R.; Kozicz, L.T.

    2015-01-01

    The interaction between childhood maltreatment and the serotonin transporter (5-HTT) gene linked polymorphic region has been associated with increased risk to develop major depression. This Gene x Environment interaction has furthermore been linked with increased levels of anxiety and glucocorticoid

  11. The Nutrient and Energy Sensor Sirt1 Regulates the Hypothalamic-Pituitary-Adrenal (HPA) Axis by Altering the Production of the Prohormone Convertase 2 (PC2) Essential in the Maturation of Corticotropin-releasing Hormone (CRH) from Its Prohormone in Male Rats.

    Science.gov (United States)

    Toorie, Anika M; Cyr, Nicole E; Steger, Jennifer S; Beckman, Ross; Farah, George; Nillni, Eduardo A

    2016-03-11

    Understanding the role of hypothalamic neuropeptides and hormones in energy balance is paramount in the search for approaches to mitigate the obese state. Increased hypothalamic-pituitary-adrenal axis activity leads to increased levels of glucocorticoids (GC) that are known to regulate body weight. The axis initiates the production and release of corticotropin-releasing hormone (CRH) from the paraventricular nucleus (PVN) of the hypothalamus. Levels of active CRH peptide are dependent on the processing of its precursor pro-CRH by the action of two members of the family of prohormone convertases 1 and 2 (PC1 and PC2). Here, we propose that the nutrient sensor sirtuin 1 (Sirt1) regulates the production of CRH post-translationally by affecting PC2. Data suggest that Sirt1 may alter the preproPC2 gene directly or via deacetylation of the transcription factor Forkhead box protein O1 (FoxO1). Data also suggest that Sirt1 may alter PC2 via a post-translational mechanism. Our results show that Sirt1 levels in the PVN increase in rats fed a high fat diet for 12 weeks. Furthermore, elevated Sirt1 increased PC2 levels, which in turn increased the production of active CRH and GC. Collectively, this study provides the first evidence supporting the hypothesis that PVN Sirt1 activates the hypothalamic-pituitary-adrenal axis and basal GC levels by enhancing the production of CRH through an increase in the biosynthesis of PC2, which is essential in the maturation of CRH from its prohormone, pro-CRH.

  12. Factor VIIa binding and internalization in hepatocytes

    DEFF Research Database (Denmark)

    Hjortoe, G; Sorensen, B B; Petersen, L C

    2005-01-01

    The liver is believed to be the primary clearance organ for coagulation proteases, including factor VIIa (FVIIa). However, at present, clearance mechanisms for FVIIa in liver are unknown. To obtain information on the FVIIa clearance mechanism, we investigated the binding and internalization...

  13. Effects of sex and early maternal abuse on adrenocorticotropin hormone and cortisol responses to the corticotropin-releasing hormone challenge during the first 3 years of life in group-living rhesus monkeys.

    Science.gov (United States)

    Sanchez, Mar M; McCormack, Kai; Grand, Alison P; Fulks, Richelle; Graff, Anne; Maestripieri, Dario

    2010-01-01

    In this study we investigated the development of the hypothalamic-pituitary-adrenal (HPA) axis in 21 group-living rhesus monkeys infants that were physically abused by their mothers in the first few months of life and in 21 nonabused controls. Cortisol and adrenocorticotropin hormone (ACTH) responses to a corticotropin-releasing hormone (CRH) challenge were assessed at 6-month intervals during the subjects' first 3 years of life. Abused infants exhibited greater cortisol responses to CRH than controls across the 3 years. Abused infants also exhibited blunted ACTH secretion in response to CRH, especially at 6 months of age. Although there were no significant sex differences in abuse experienced early in life, females showed a greater cortisol response to CRH than males at all ages. There were no significant sex differences in the ACTH response to CRH, or significant interactions between sex and abuse in the ACTH or cortisol response. Our findings suggest that early parental maltreatment results in greater adrenocortical, and possibly also pituitary, responsiveness to challenges later in life. These long-term alterations in neuroendocrine function may be one the mechanisms through which infant abuse results in later psychopathologies. Our study also suggests that there are developmental sex differences in adrenal function that occur irrespective of early stressful experience. The results of this study can enhance our understanding of the long-term effects of child maltreatment as well as our knowledge of the development of the HPA axis in human and nonhuman primates.

  14. Comparison of Transcription Factor Binding Site Models

    KAUST Repository

    Bhuyan, Sharifulislam

    2012-05-01

    Modeling of transcription factor binding sites (TFBSs) and TFBS prediction on genomic sequences are important steps to elucidate transcription regulatory mechanism. Dependency of transcription regulation on a great number of factors such as chemical specificity, molecular structure, genomic and epigenetic characteristics, long distance interaction, makes this a challenging problem. Different experimental procedures generate evidence that DNA-binding domains of transcription factors show considerable DNA sequence specificity. Probabilistic modeling of TFBSs has been moderately successful in identifying patterns from a family of sequences. In this study, we compare performances of different probabilistic models and try to estimate their efficacy over experimental TFBSs data. We build a pipeline to calculate sensitivity and specificity from aligned TFBS sequences for several probabilistic models, such as Markov chains, hidden Markov models, Bayesian networks. Our work, containing relevant statistics and evaluation for the models, can help researchers to choose the most appropriate model for the problem at hand.

  15. A second corticotropin-releasing hormone gene (CRH2) is conserved across vertebrate classes and expressed in the hindbrain of a basal neopterygian fish, the spotted gar (Lepisosteus oculatus).

    Science.gov (United States)

    Grone, Brian P; Maruska, Karen P

    2015-05-01

    To investigate the origins of the vertebrate stress-response system, we searched sequenced vertebrate genomes for genes resembling corticotropin-releasing hormone (CRH). We found that vertebrate genomes possess, in addition to CRH, another gene that resembles CRH in sequence and syntenic environment. This paralogous gene was previously identified only in the elephant shark (a holocephalan), but we find it also in marsupials, monotremes, lizards, turtles, birds, and fishes. We examined the relationship of this second vertebrate CRH gene, which we name CRH2, to CRH1 (previously known as CRH) and urocortin1/urotensin1 (UCN1/UTS1) in primitive fishes, teleosts, and tetrapods. The paralogs CRH1 and CRH2 likely evolved via duplication of CRH during a whole-genome duplication early in the vertebrate lineage. CRH2 was subsequently lost in both teleost fishes and eutherian mammals but retained in other lineages. To determine where CRH2 is expressed relative to CRH1 and UTS1, we used in situ hybridization on brain tissue from spotted gar (Lepisosteus oculatus), a neopterygian fish closely related to teleosts. In situ hybridization revealed widespread distribution of both crh1 and uts1 in the brain. Expression of crh2 was restricted to the putative secondary gustatory/secondary visceral nucleus, which also expressed calcitonin-related polypeptide alpha (calca), a marker of parabrachial nucleus in mammals. Thus, the evolutionary history of CRH2 includes restricted expression in the brain, sequence changes, and gene loss, likely reflecting release of selective constraints following whole-genome duplication. The discovery of CRH2 opens many new possibilities for understanding the diverse functions of the CRH family of peptides across vertebrates. © 2015 Wiley Periodicals, Inc.

  16. 中枢精氨酸加压素在大鼠促肾上腺皮质激素释放激素引起发热机制中的作用%The role of central arginine vasopressin in corticotropin releasing hormone-induced fever in rats

    Institute of Scientific and Technical Information of China (English)

    王华东; 王彦平; 胡巢凤; 戚仁斌; 严玉霞; 陆大祥; 李楚杰

    2001-01-01

    实验对大鼠进行第三脑室和脑腹中隔区插管, 用数字体温计测量大鼠的结肠温度, 用放射免疫分析法测定脑中隔区精氨酸加压素(arginine vasopressin, AVP)含量, 观察脑中隔区AVP在大鼠促肾上腺皮质激素释放激素(corticotrophin releasing hormone, CRH)性发热机制中的作用.结果发现: 脑室注射CRH (5.0 μg)引起大鼠结肠温度明显升高, 同时明显增高脑中隔区 AVP的含量.脑腹中隔区注射AVP V1受体拮抗剂本身并不导致大鼠结肠温度明显改变, 但能显著增强脑室注射CRH引起的发热反应.而且, 腹中隔区注射AVP显著抑制大鼠CRH性发热.结果提示: 发热时CRH是引起脑腹中隔区AVP释放的因素之一, 脑腹中隔区内源性AVP抑制中枢注射CRH引起的体温升高.%The purpose of the present study was to investigate the role of central arginine vasopressin (AVP) in corticotropin releasing hormone (CRH)-induced fever in the rat. Guide cannulae were inserted into the third ventricle and placed over the ventral septal area (VSA). The content of arginine vasopressin in the VSA of the brain was determined by radioimmunoassay. Colon temperature was monitored in lightly restrained rats by insertion of a catheter-mounted thermistor probe 5 cm in the rectum. The results demonstrated that intracerebroventricular (icv) injection of CRH increased AVP level in the VSA and the colonic temperature of the rats. Microinjection of AVP V1 antagonist into the VSA 10 min before CRH administration significantly enhanced CRH-induced febrile response, while AVP V1 antagonist itself did not have a significant effect on the colonic temperature. Furthermore, injection of AVP into the VSA 5 min before CRH administration (icv) suppressed the fever evoked by CRH. These findings suggest that CRH is an important factor that stimulates the release of AVP in the VSA during fever, and endogenous AVP in the VSA has an antipyretic action on the CRH-induced fever.

  17. Corticotropin-releasing hormone interacts with interleukin-1β to regulate prostaglandin H synthase-2 expression in human myometrium during pregnancy and labor.

    Science.gov (United States)

    Markovic, Danijela; Bari, Muhammad F; Lu, Buyu; Vatish, Manu; Grammatopoulos, Dimitris K

    2013-07-01

    The onset of labor appears to involve the activation of myometrial inflammatory pathways, and transcription factors such as nuclear factor-κB (NF-κB) control expression of the contraction-associated proteins required to induce a procontractile phenotype. These responses might involve CRH, which integrates immune and neuroendocrine systems. In human myometrium we investigated cyclooxygenase 2 (PGHS2) expression and regulation by CRH and the proinflammatory cytokine IL-1β before and after labor. Myometrial tissues obtained from pregnant women at term before (n = 12) or during labor (n = 10) and pathological cases of choriamnionitis-associated term labor (n = 5) were used to isolate primary myocytes and investigate in vitro, CRH effects on basal and IL-1β regulated p65 activation and PGHS2 expression. In nonlaboring myometrial cells, CRH was unable to induce NF-κB nuclear translocation; however, it altered the temporal dynamics of IL-1β-driven NF-κB nuclear entry by initially delaying entry and subsequently prolonging retention. These CRH-R1-driven effects were associated with a modest inhibitory action in the early phase (within 2 hours) of IL-1β stimulated PGHS2 mRNA expression, whereas prolonged stimulation for 6-18 hours augmented the IL-1β effects. The early-phase effect required intact protein kinase A activity and was diminished after the onset of labor. The presence of chorioamnionitis led to exaggerated PGHS2 mRNA responses to IL-1β but diminished effects of CRH. CRH is involved in the inflammatory regulation of PGHS2 expression before and during labor; these actions might be important in priming and preparing the myometrium for labor and cellular adaptive responses to inflammatory mediators.

  18. The binding of bovine factor XII to kaolin.

    Science.gov (United States)

    Kirby, E P; McDevitt, P J

    1983-04-01

    Purified bovine factor XII was radiolabeled with iodine-125 and its binding to kaolin studied. Binding was rapid and was not readily reversible upon adding unlabeled factor XII. The optimum pH for binding was in the region of pH 5-7. The isoelectric point of factor XII was pH 5.7. High concentrations of urea or increasing the ionic strength of the medium did not inhibit binding. Polyvalent macromolecules, such as Polybrene and polylysine, were effective inhibitors of factor XII binding to kaolin. Polylysine caused the release of factor XII that had bound to the kaolin surface.

  19. Physical factors affecting chloroquine binding to melanin.

    Science.gov (United States)

    Schroeder, R L; Pendleton, P; Gerber, J P

    2015-10-01

    Chloroquine is an antimalarial drug but is also prescribed for conditions such as rheumatoid arthritis. Long-term users risk toxic side effects, including retinopathy, thought to be caused by chloroquine accumulation on ocular melanin. Although the binding potential of chloroquine to melanin has been investigated previously, our study is the first to demonstrate clear links between chloroquine adsorption by melanin and system factors including temperature, pH, melanin type, and particle size. In the current work, two Sepia melanins were compared with bovine eye as a representative mammalian melanin. Increasing the surface anionic character due to a pH change from 4.7 to 7.4 increased each melanin's affinity for chloroquine. Although the chloroquine isotherms exhibited an apparently strong interaction with each melanin, isosteric heat analysis indicated a competitive interaction. Buffer solution cations competed effectively at low surface coverage; chloroquine adsorption occurs via buffer cation displacement and is promoted by temperature-influenced secondary structure swelling.

  20. Reproduction and genotype identification of corticotropin-releasing hormone gene knockout mice%促肾上腺皮质激素释放激素基因敲除小鼠的繁殖与基因型鉴定

    Institute of Scientific and Technical Information of China (English)

    王海燕; 刘庆; 钟河江; 杨策; 黄苏娜; 严军; 蒋建新

    2011-01-01

    目的 探讨促肾上腺皮质激素释放激素(CRH)基因敲除(KO)小鼠饲养、繁殖及基因型鉴定的方法.方法 从美国Jackson实验室引进CRH KO小鼠,按照遗传学规则,对杂合子型(CRH+/-)小鼠进行配对繁殖,提取幼鼠尾部组织全基因组DNA,通过聚合酶链反应(PCR)对幼鼠基因型进行鉴定.结果 CRH KO纯合子型(CRH-/-)小鼠的繁殖和饲养均获得成功,采用PCR成功地对所获得的小鼠进行基因分析,在子代小鼠中存在野生纯合子型(CRH+/+)、杂合子型(CRH+/-)及CRH KO纯合子型(CRH-/-)小鼠.CRH-/-小鼠较另外2种基因型小鼠存活率明显下降,但3种基因型小鼠在出生后10 d及30 d体质量无明显差异.结论 正确的饲养繁殖以及鉴定方法可从杂合子型(CRH+/-)小鼠中获得CRH KO纯合子型(CRH-/-)小鼠.%Objective To explore the methods of breeding, reproductin and genotype identification of corticotropin-releasing hormone ( CRH)knockout( KO) mice.Methods CRH knockout mice were obtained from Jackson laboratory in USA.Heterozygous type (CRH+/- )mice were inbreeded according to genetic rules to yield CRH knockout mice.The genotypes of offspring were identified by polymerase chain reaction(PCR)using genomic DNA extracted from tissue of mice tails.Results Both breeding and reproductin of CRH KO heterozygous type(CRH+/- )mice were successful.PCR was used successfully for genetic analysis in mice obtained.There were wild homozygous genotype( CRH+ /+ ) , heterozygous genotype ( CRH + /- ) and CRH KO homozygous genotype( CRH-/- )in the offspring.Compared with other two genotype mice,survival rate of CRH- /- mice were significantly decreased.however, body mass of the three genotypes mice had no significant difference at 10 and 30 days after birth.Conclusion Appropriate reproductin , breeding and identification are effective methods to obtain CRH KO homozygous genotype( CRH -/- ) mice from heterozygous genotype( CRH+ / - ) mice.

  1. Dual chain synthetic heparin-binding growth factor analogs

    Science.gov (United States)

    Zamora, Paul O.; Pena, Louis A.; Lin, Xinhua

    2009-10-06

    The invention provides synthetic heparin-binding growth factor analogs having two peptide chains each branched from a branch moiety, such as trifunctional amino acid residues, the branch moieties separated by a first linker of from 3 to about 20 backbone atoms, which peptide chains bind a heparin-binding growth factor receptor and are covalently bound to a non-signaling peptide that includes a heparin-binding domain, preferably by a second linker, which may be a hydrophobic second linker. The synthetic heparin-binding growth factor analogs are useful as pharmaceutical agents, soluble biologics or as surface coatings for medical devices.

  2. Dual chain synthetic heparin-binding growth factor analogs

    Energy Technology Data Exchange (ETDEWEB)

    Zamora, Paul O. (Gaithersburg, MD); Pena, Louis A. (Poquott, NY); Lin, Xinhua (Plainview, NY)

    2012-04-24

    The invention provides synthetic heparin-binding growth factor analogs having two peptide chains each branched from a branch moiety, such as trifunctional amino acid residues, the branch moieties separated by a first linker of from 3 to about 20 backbone atoms, which peptide chains bind a heparin-binding growth factor receptor and are covalently bound to a non-signaling peptide that includes a heparin-binding domain, preferably by a second linker, which may be a hydrophobic second linker. The synthetic heparin-binding growth factor analogs are useful as pharmaceutical agents, soluble biologics or as surface coatings for medical devices.

  3. Binding site turnover produces pervasive quantitative changes in transcription factor binding between closely related Drosophila species.

    Directory of Open Access Journals (Sweden)

    Robert K Bradley

    2010-03-01

    Full Text Available Changes in gene expression play an important role in evolution, yet the molecular mechanisms underlying regulatory evolution are poorly understood. Here we compare genome-wide binding of the six transcription factors that initiate segmentation along the anterior-posterior axis in embryos of two closely related species: Drosophila melanogaster and Drosophila yakuba. Where we observe binding by a factor in one species, we almost always observe binding by that factor to the orthologous sequence in the other species. Levels of binding, however, vary considerably. The magnitude and direction of the interspecies differences in binding levels of all six factors are strongly correlated, suggesting a role for chromatin or other factor-independent forces in mediating the divergence of transcription factor binding. Nonetheless, factor-specific quantitative variation in binding is common, and we show that it is driven to a large extent by the gain and loss of cognate recognition sequences for the given factor. We find only a weak correlation between binding variation and regulatory function. These data provide the first genome-wide picture of how modest levels of sequence divergence between highly morphologically similar species affect a system of coordinately acting transcription factors during animal development, and highlight the dominant role of quantitative variation in transcription factor binding over short evolutionary distances.

  4. High resolution genome wide binding event finding and motif discovery reveals transcription factor spatial binding constraints.

    Directory of Open Access Journals (Sweden)

    Yuchun Guo

    Full Text Available An essential component of genome function is the syntax of genomic regulatory elements that determine how diverse transcription factors interact to orchestrate a program of regulatory control. A precise characterization of in vivo spacing constraints between key transcription factors would reveal key aspects of this genomic regulatory language. To discover novel transcription factor spatial binding constraints in vivo, we developed a new integrative computational method, genome wide event finding and motif discovery (GEM. GEM resolves ChIP data into explanatory motifs and binding events at high spatial resolution by linking binding event discovery and motif discovery with positional priors in the context of a generative probabilistic model of ChIP data and genome sequence. GEM analysis of 63 transcription factors in 214 ENCODE human ChIP-Seq experiments recovers more known factor motifs than other contemporary methods, and discovers six new motifs for factors with unknown binding specificity. GEM's adaptive learning of binding-event read distributions allows it to further improve upon previous methods for processing ChIP-Seq and ChIP-exo data to yield unsurpassed spatial resolution and discovery of closely spaced binding events of the same factor. In a systematic analysis of in vivo sequence-specific transcription factor binding using GEM, we have found hundreds of spatial binding constraints between factors. GEM found 37 examples of factor binding constraints in mouse ES cells, including strong distance-specific constraints between Klf4 and other key regulatory factors. In human ENCODE data, GEM found 390 examples of spatially constrained pair-wise binding, including such novel pairs as c-Fos:c-Jun/USF1, CTCF/Egr1, and HNF4A/FOXA1. The discovery of new factor-factor spatial constraints in ChIP data is significant because it proposes testable models for regulatory factor interactions that will help elucidate genome function and the

  5. High resolution genome wide binding event finding and motif discovery reveals transcription factor spatial binding constraints.

    Science.gov (United States)

    Guo, Yuchun; Mahony, Shaun; Gifford, David K

    2012-01-01

    An essential component of genome function is the syntax of genomic regulatory elements that determine how diverse transcription factors interact to orchestrate a program of regulatory control. A precise characterization of in vivo spacing constraints between key transcription factors would reveal key aspects of this genomic regulatory language. To discover novel transcription factor spatial binding constraints in vivo, we developed a new integrative computational method, genome wide event finding and motif discovery (GEM). GEM resolves ChIP data into explanatory motifs and binding events at high spatial resolution by linking binding event discovery and motif discovery with positional priors in the context of a generative probabilistic model of ChIP data and genome sequence. GEM analysis of 63 transcription factors in 214 ENCODE human ChIP-Seq experiments recovers more known factor motifs than other contemporary methods, and discovers six new motifs for factors with unknown binding specificity. GEM's adaptive learning of binding-event read distributions allows it to further improve upon previous methods for processing ChIP-Seq and ChIP-exo data to yield unsurpassed spatial resolution and discovery of closely spaced binding events of the same factor. In a systematic analysis of in vivo sequence-specific transcription factor binding using GEM, we have found hundreds of spatial binding constraints between factors. GEM found 37 examples of factor binding constraints in mouse ES cells, including strong distance-specific constraints between Klf4 and other key regulatory factors. In human ENCODE data, GEM found 390 examples of spatially constrained pair-wise binding, including such novel pairs as c-Fos:c-Jun/USF1, CTCF/Egr1, and HNF4A/FOXA1. The discovery of new factor-factor spatial constraints in ChIP data is significant because it proposes testable models for regulatory factor interactions that will help elucidate genome function and the implementation of combinatorial

  6. DNA-binding specificities of human transcription factors.

    Science.gov (United States)

    Jolma, Arttu; Yan, Jian; Whitington, Thomas; Toivonen, Jarkko; Nitta, Kazuhiro R; Rastas, Pasi; Morgunova, Ekaterina; Enge, Martin; Taipale, Mikko; Wei, Gonghong; Palin, Kimmo; Vaquerizas, Juan M; Vincentelli, Renaud; Luscombe, Nicholas M; Hughes, Timothy R; Lemaire, Patrick; Ukkonen, Esko; Kivioja, Teemu; Taipale, Jussi

    2013-01-17

    Although the proteins that read the gene regulatory code, transcription factors (TFs), have been largely identified, it is not well known which sequences TFs can recognize. We have analyzed the sequence-specific binding of human TFs using high-throughput SELEX and ChIP sequencing. A total of 830 binding profiles were obtained, describing 239 distinctly different binding specificities. The models represent the majority of human TFs, approximately doubling the coverage compared to existing systematic studies. Our results reveal additional specificity determinants for a large number of factors for which a partial specificity was known, including a commonly observed A- or T-rich stretch that flanks the core motifs. Global analysis of the data revealed that homodimer orientation and spacing preferences, and base-stacking interactions, have a larger role in TF-DNA binding than previously appreciated. We further describe a binding model incorporating these features that is required to understand binding of TFs to DNA.

  7. Modulation of DNA binding by gene-specific transcription factors.

    Science.gov (United States)

    Schleif, Robert F

    2013-10-01

    The transcription of many genes, particularly in prokaryotes, is controlled by transcription factors whose activity can be modulated by controlling their DNA binding affinity. Understanding the molecular mechanisms by which DNA binding affinity is regulated is important, but because forming definitive conclusions usually requires detailed structural information in combination with data from extensive biophysical, biochemical, and sometimes genetic experiments, little is truly understood about this topic. This review describes the biological requirements placed upon DNA binding transcription factors and their consequent properties, particularly the ways that DNA binding affinity can be modulated and methods for its study. What is known and not known about the mechanisms modulating the DNA binding affinity of a number of prokaryotic transcription factors, including CAP and lac repressor, is provided.

  8. The effects of neonatal handling on adrenocortical responsiveness, morphological development and corticosterone binding globulin in nestling American kestrels (Falco sparverius).

    Science.gov (United States)

    Whitman, Buddy A; Breuner, Creagh W; Dufty, Alfred M

    2011-06-01

    Early developmental experiences play an important role in development of the adult phenotype. We investigated the effects of neonatal handling on the hypothalamic-pituitary-adrenal axis in a free-living avian species, the American kestrel (Falco sparverius). In the handled group (H), kestrel chicks were handled for 15 min/day from hatching until 26 days of age, after which time blood samples were collected for analysis of adrenal responsiveness and corticosterone binding globulin (CBG) levels. The non-handled control group (NH) was left undisturbed until 26 days of age when blood samples were collected and analyzed as above. Handled and NH kestrels did not differ in body condition index. Both total corticosterone (CORT) and CBG capacity were dampened significantly in H kestrels. However, free CORT did not differ between the two groups. In addition, hormone challenges of corticotropin releasing factor and adrenocorticotropin hormone were compared to saline injections to determine if the pituitary or the adrenal glands, respectively, were rendered more or less sensitive by handling. There was no difference in the responsiveness of H and NH kestrels to either hormone challenge. It is clear from these data that handling had an affect on fledgling phenotypic development, although whether the effects are permanent or ephemeral is unknown. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Genome Binding and Gene Regulation by Stem Cell Transcription Factors

    NARCIS (Netherlands)

    J.H. Brandsma (Johan)

    2016-01-01

    markdownabstractNearly all cells of an individual organism contain the same genome. However, each cell type transcribes a different set of genes due to the presence of different sets of cell type-specific transcription factors. Such transcription factors bind to regulatory regions such as promoters

  10. Frequent gain and loss of functional transcription factor binding sites.

    Directory of Open Access Journals (Sweden)

    Scott W Doniger

    2007-05-01

    Full Text Available Cis-regulatory sequences are not always conserved across species. Divergence within cis-regulatory sequences may result from the evolution of species-specific patterns of gene expression or the flexible nature of the cis-regulatory code. The identification of functional divergence in cis-regulatory sequences is therefore important for both understanding the role of gene regulation in evolution and annotating regulatory elements. We have developed an evolutionary model to detect the loss of constraint on individual transcription factor binding sites (TFBSs. We find that a significant fraction of functionally constrained binding sites have been lost in a lineage-specific manner among three closely related yeast species. Binding site loss has previously been explained by turnover, where the concurrent gain and loss of a binding site maintains gene regulation. We estimate that nearly half of all loss events cannot be explained by binding site turnover. Recreating the mutations that led to binding site loss confirms that these sequence changes affect gene expression in some cases. We also estimate that there is a high rate of binding site gain, as more than half of experimentally identified S. cerevisiae binding sites are not conserved across species. The frequent gain and loss of TFBSs implies that cis-regulatory sequences are labile and, in the absence of turnover, may contribute to species-specific patterns of gene expression.

  11. Identifying differential transcription factor binding in ChIP-seq

    Directory of Open Access Journals (Sweden)

    Dai-Ying eWu

    2015-04-01

    Full Text Available ChIP seq is a widely used assay to measure genome-wide protein binding. The decrease in costs associated with sequencing has led to a rise in the number of studies that investigate protein binding across treatment conditions or cell lines. In addition to the identification of binding sites, new studies evaluate the variation in protein binding between conditions. A number of approaches to study differential transcription factor binding have recently been developed. Several of these methods build upon established methods from RNA-seq to quantify differences in read counts. We compare how these new approaches perform on different data sets from the ENCODE project to illustrate the impact of data processing pipelines under different study designs. The performance of normalization methods for differential ChIP-seq depends strongly on the variation in total amount of protein bound between conditions, with total read count outperforming effective library size, or variants thereof, when a large variation in binding was studied. Use of input subtraction to correct for non-specific binding showed a relatively modest impact on the number of differential peaks found and the fold change accuracy to biological validation, however a larger impact might be expected for samples with more extreme copy number variations between them. Still, it did identify a small subset of novel differential regions while excluding some differential peaks in regions with high background signal.These results highlight proper scaling for between-sample data normalization as critical for differential transcription factor binding analysis and suggest bioinformaticians need to know about the variation in level of total protein binding between conditions to select the best analysis method. At the same time, validation using fold-change estimates from qRT-PCR suggests there is still room for further method improvement.

  12. Identifying differential transcription factor binding in ChIP-seq.

    Science.gov (United States)

    Wu, Dai-Ying; Bittencourt, Danielle; Stallcup, Michael R; Siegmund, Kimberly D

    2015-01-01

    ChIP seq is a widely used assay to measure genome-wide protein binding. The decrease in costs associated with sequencing has led to a rise in the number of studies that investigate protein binding across treatment conditions or cell lines. In addition to the identification of binding sites, new studies evaluate the variation in protein binding between conditions. A number of approaches to study differential transcription factor binding have recently been developed. Several of these methods build upon established methods from RNA-seq to quantify differences in read counts. We compare how these new approaches perform on different data sets from the ENCODE project to illustrate the impact of data processing pipelines under different study designs. The performance of normalization methods for differential ChIP-seq depends strongly on the variation in total amount of protein bound between conditions, with total read count outperforming effective library size, or variants thereof, when a large variation in binding was studied. Use of input subtraction to correct for non-specific binding showed a relatively modest impact on the number of differential peaks found and the fold change accuracy to biological validation, however a larger impact might be expected for samples with more extreme copy number variations between them. Still, it did identify a small subset of novel differential regions while excluding some differential peaks in regions with high background signal. These results highlight proper scaling for between-sample data normalization as critical for differential transcription factor binding analysis and suggest bioinformaticians need to know about the variation in level of total protein binding between conditions to select the best analysis method. At the same time, validation using fold-change estimates from qRT-PCR suggests there is still room for further method improvement.

  13. Microbes bind complement inhibitor factor H via a common site.

    Directory of Open Access Journals (Sweden)

    T Meri

    Full Text Available To cause infections microbes need to evade host defense systems, one of these being the evolutionarily old and important arm of innate immunity, the alternative pathway of complement. It can attack all kinds of targets and is tightly controlled in plasma and on host cells by plasma complement regulator factor H (FH. FH binds simultaneously to host cell surface structures such as heparin or glycosaminoglycans via domain 20 and to the main complement opsonin C3b via domain 19. Many pathogenic microbes protect themselves from complement by recruiting host FH. We analyzed how and why different microbes bind FH via domains 19-20 (FH19-20. We used a selection of FH19-20 point mutants to reveal the binding sites of several microbial proteins and whole microbes (Haemophilus influenzae, Bordetella pertussis, Pseudomonas aeruginosa, Streptococcus pneumonia, Candida albicans, Borrelia burgdorferi, and Borrelia hermsii. We show that all studied microbes use the same binding region located on one side of domain 20. Binding of FH to the microbial proteins was inhibited with heparin showing that the common microbial binding site overlaps with the heparin site needed for efficient binding of FH to host cells. Surprisingly, the microbial proteins enhanced binding of FH19-20 to C3b and down-regulation of complement activation. We show that this is caused by formation of a tripartite complex between the microbial protein, FH, and C3b. In this study we reveal that seven microbes representing different phyla utilize a common binding site on the domain 20 of FH for complement evasion. Binding via this site not only mimics the glycosaminoglycans of the host cells, but also enhances function of FH on the microbial surfaces via the novel mechanism of tripartite complex formation. This is a unique example of convergent evolution resulting in enhanced immune evasion of important pathogens via utilization of a "superevasion site."

  14. Design of meningococcal factor H binding protein mutant vaccines that do not bind human complement factor H.

    Science.gov (United States)

    Pajon, Rolando; Beernink, Peter T; Granoff, Dan M

    2012-08-01

    Meningococcal factor H binding protein (fHbp) is a human species-specific ligand for the complement regulator, factor H (fH). In recent studies, fHbp vaccines in which arginine at position 41 was replaced by serine (R41S) had impaired fH binding. The mutant vaccines elicited bactericidal responses in human fH transgenic mice superior to those elicited by control fHbp vaccines that bound human fH. Based on sequence similarity, fHbp has been classified into three variant groups. Here we report that although R41 is present in fHbp from variant groups 1 and 2, the R41S substitution eliminated fH binding only in variant group 1 proteins. To identify mutants in variant group 2 with impaired fH binding, we generated fHbp structural models and predicted 63 residues influencing fH binding. From these, we created 11 mutants with one or two amino acid substitutions in a variant group 2 protein and identified six that decreased fH binding. Three of these six mutants retained conformational epitopes recognized by all six anti-fHbp monoclonal antibodies (MAbs) tested and elicited serum complement-mediated bactericidal antibody titers in wild-type mice that were not significantly different from those obtained with the control vaccine. Thus, fHbp amino acid residues that affect human fH binding differ across variant groups. This result suggests that fHbp sequence variation induced by immune selection also affects fH binding motifs via coevolution. The three new fHbp mutants from variant group 2, which do not bind human fH, retained important epitopes for eliciting bactericidal antibodies and may be promising vaccine candidates.

  15. Structural Fingerprints of Transcription Factor Binding Site Regions

    Directory of Open Access Journals (Sweden)

    Peter Willett

    2009-03-01

    Full Text Available Fourier transforms are a powerful tool in the prediction of DNA sequence properties, such as the presence/absence of codons. We have previously compiled a database of the structural properties of all 32,896 unique DNA octamers. In this work we apply Fourier techniques to the analysis of the structural properties of human chromosomes 21 and 22 and also to three sets of transcription factor binding sites within these chromosomes. We find that, for a given structural property, the structural property power spectra of chromosomes 21 and 22 are strikingly similar. We find common peaks in their power spectra for both Sp1 and p53 transcription factor binding sites. We use the power spectra as a structural fingerprint and perform similarity searching in order to find transcription factor binding site regions. This approach provides a new strategy for searching the genome data for information. Although it is difficult to understand the relationship between specific functional properties and the set of structural parameters in our database, our structural fingerprints nevertheless provide a useful tool for searching for function information in sequence data. The power spectrum fingerprints provide a simple, fast method for comparing a set of functional sequences, in this case transcription factor binding site regions, with the sequences of whole chromosomes. On its own, the power spectrum fingerprint does not find all transcription factor binding sites in a chromosome, but the results presented here show that in combination with other approaches, this technique will improve the chances of identifying functional sequences hidden in genomic data.

  16. Experimental strategies for studying transcription factor-DNA binding specificities.

    Science.gov (United States)

    Geertz, Marcel; Maerkl, Sebastian J

    2010-12-01

    Specific binding of transcription factors (TFs) determines in a large part the connectivity of gene regulatory networks as well as the quantitative level of gene expression. A multiplicity of both experimental and computational methods is currently used to discover and characterize the underlying TF-DNA interactions. Experimental methods can be further subdivided into in vitro- and in vivo-based approaches, each accenting different aspects of TF-binding events. In this review we summarize the flexibility and performance of a selection of both types of experimental methods. In conclusion, we argue that a serial combination of methods with different throughput and data type constitutes an optimal experimental strategy.

  17. Variable structure motifs for transcription factor binding sites.

    Science.gov (United States)

    Reid, John E; Evans, Kenneth J; Dyer, Nigel; Wernisch, Lorenz; Ott, Sascha

    2010-01-14

    Classically, models of DNA-transcription factor binding sites (TFBSs) have been based on relatively few known instances and have treated them as sites of fixed length using position weight matrices (PWMs). Various extensions to this model have been proposed, most of which take account of dependencies between the bases in the binding sites. However, some transcription factors are known to exhibit some flexibility and bind to DNA in more than one possible physical configuration. In some cases this variation is known to affect the function of binding sites. With the increasing volume of ChIP-seq data available it is now possible to investigate models that incorporate this flexibility. Previous work on variable length models has been constrained by: a focus on specific zinc finger proteins in yeast using restrictive models; a reliance on hand-crafted models for just one transcription factor at a time; and a lack of evaluation on realistically sized data sets. We re-analysed binding sites from the TRANSFAC database and found motivating examples where our new variable length model provides a better fit. We analysed several ChIP-seq data sets with a novel motif search algorithm and compared the results to one of the best standard PWM finders and a recently developed alternative method for finding motifs of variable structure. All the methods performed comparably in held-out cross validation tests. Known motifs of variable structure were recovered for p53, Stat5a and Stat5b. In addition our method recovered a novel generalised version of an existing PWM for Sp1 that allows for variable length binding. This motif improved classification performance. We have presented a new gapped PWM model for variable length DNA binding sites that is not too restrictive nor over-parameterised. Our comparison with existing tools shows that on average it does not have better predictive accuracy than existing methods. However, it does provide more interpretable models of motifs of variable

  18. Variable structure motifs for transcription factor binding sites

    Directory of Open Access Journals (Sweden)

    Wernisch Lorenz

    2010-01-01

    Full Text Available Abstract Background Classically, models of DNA-transcription factor binding sites (TFBSs have been based on relatively few known instances and have treated them as sites of fixed length using position weight matrices (PWMs. Various extensions to this model have been proposed, most of which take account of dependencies between the bases in the binding sites. However, some transcription factors are known to exhibit some flexibility and bind to DNA in more than one possible physical configuration. In some cases this variation is known to affect the function of binding sites. With the increasing volume of ChIP-seq data available it is now possible to investigate models that incorporate this flexibility. Previous work on variable length models has been constrained by: a focus on specific zinc finger proteins in yeast using restrictive models; a reliance on hand-crafted models for just one transcription factor at a time; and a lack of evaluation on realistically sized data sets. Results We re-analysed binding sites from the TRANSFAC database and found motivating examples where our new variable length model provides a better fit. We analysed several ChIP-seq data sets with a novel motif search algorithm and compared the results to one of the best standard PWM finders and a recently developed alternative method for finding motifs of variable structure. All the methods performed comparably in held-out cross validation tests. Known motifs of variable structure were recovered for p53, Stat5a and Stat5b. In addition our method recovered a novel generalised version of an existing PWM for Sp1 that allows for variable length binding. This motif improved classification performance. Conclusions We have presented a new gapped PWM model for variable length DNA binding sites that is not too restrictive nor over-parameterised. Our comparison with existing tools shows that on average it does not have better predictive accuracy than existing methods. However, it does

  19. Leveraging cross-species transcription factor binding site patterns

    DEFF Research Database (Denmark)

    Claussnitzer, Melina; Dankel, Simon N; Klocke, Bernward

    2014-01-01

    to disease susceptibility. We show that integrative computational analysis of phylogenetic conservation with a complexity assessment of co-occurring transcription factor binding sites (TFBS) can identify cis-regulatory variants and elucidate their mechanistic role in disease. Analysis of established type 2...... diabetes risk loci revealed a striking clustering of distinct homeobox TFBS. We identified the PRRX1 homeobox factor as a repressor of PPARG2 expression in adipose cells and demonstrate its adverse effect on lipid metabolism and systemic insulin sensitivity, dependent on the rs4684847 risk allele...... that triggers PRRX1 binding. Thus, cross-species conservation analysis at the level of co-occurring TFBS provides a valuable contribution to the translation of genetic association signals to disease-related molecular mechanisms....

  20. Effect of the principle for soothing the liver and strengthening the spleen, regulating stomach and refresh spirit on corticotropin releasing hormone content of functional diarrhoea rats%疏肝健脾、安神和胃法治疗功能性腹泻模型大鼠的作用机制

    Institute of Scientific and Technical Information of China (English)

    吴文江; 陶双友; 韩棉梅; 梁嘉恺; 罗琦; 何丽英; 周福生

    2013-01-01

    corticotropin releasing hormone level expression was tested. Results After 2 weeks of the treatment, intestinal propulsion rate of functional diarrhoea rats was significantly reduced (P < 0. 05 ). Compared with the normal group, the corticotropin releasing hormone level of model group was significantly increased (P <0. 05). Conclusions The corticotropin releasing hormone expression levels in brain stem, hypothalamus, intestinal mucosa of functional diarrhoea rat are often associated with the pathogenesis of functional diarrhoea. The principle for soothing the liver and strengthening the spleen, regulating stomach and refresh spirit lower the expression of corticotropin releasing hormone explains the pathogenesis of functional diarrhoea.

  1. Cooperative binding of transcription factors promotes bimodal gene expression response.

    Directory of Open Access Journals (Sweden)

    Pablo S Gutierrez

    Full Text Available In the present work we extend and analyze the scope of our recently proposed stochastic model for transcriptional regulation, which considers an arbitrarily complex cis-regulatory system using only elementary reactions. Previously, we determined the role of cooperativity on the intrinsic fluctuations of gene expression for activating transcriptional switches, by means of master equation formalism and computer simulation. This model allowed us to distinguish between two cooperative binding mechanisms and, even though the mean expression levels were not affected differently by the acting mechanism, we showed that the associated fluctuations were different. In the present generalized model we include other regulatory functions in addition to those associated to an activator switch. Namely, we introduce repressive regulatory functions and two theoretical mechanisms that account for the biphasic response that some cis-regulatory systems show to the transcription factor concentration. We have also extended our previous master equation formalism in order to include protein production by stochastic translation of mRNA. Furthermore, we examine the graded/binary scenarios in the context of the interaction energy between transcription factors. In this sense, this is the first report to show that the cooperative binding of transcription factors to DNA promotes the "all-or-none" phenomenon observed in eukaryotic systems. In addition, we confirm that gene expression fluctuation levels associated with one of two cooperative binding mechanism never exceed the fluctuation levels of the other.

  2. Comprehensive human transcription factor binding site map for combinatory binding motifs discovery.

    Directory of Open Access Journals (Sweden)

    Arnoldo J Müller-Molina

    Full Text Available To know the map between transcription factors (TFs and their binding sites is essential to reverse engineer the regulation process. Only about 10%-20% of the transcription factor binding motifs (TFBMs have been reported. This lack of data hinders understanding gene regulation. To address this drawback, we propose a computational method that exploits never used TF properties to discover the missing TFBMs and their sites in all human gene promoters. The method starts by predicting a dictionary of regulatory "DNA words." From this dictionary, it distills 4098 novel predictions. To disclose the crosstalk between motifs, an additional algorithm extracts TF combinatorial binding patterns creating a collection of TF regulatory syntactic rules. Using these rules, we narrowed down a list of 504 novel motifs that appear frequently in syntax patterns. We tested the predictions against 509 known motifs confirming that our system can reliably predict ab initio motifs with an accuracy of 81%-far higher than previous approaches. We found that on average, 90% of the discovered combinatorial binding patterns target at least 10 genes, suggesting that to control in an independent manner smaller gene sets, supplementary regulatory mechanisms are required. Additionally, we discovered that the new TFBMs and their combinatorial patterns convey biological meaning, targeting TFs and genes related to developmental functions. Thus, among all the possible available targets in the genome, the TFs tend to regulate other TFs and genes involved in developmental functions. We provide a comprehensive resource for regulation analysis that includes a dictionary of "DNA words," newly predicted motifs and their corresponding combinatorial patterns. Combinatorial patterns are a useful filter to discover TFBMs that play a major role in orchestrating other factors and thus, are likely to lock/unlock cellular functional clusters.

  3. Incorporating evolution of transcription factor binding sites into annotated alignments

    Indian Academy of Sciences (India)

    Abha S Bais; Steffen Grossmann; Martin Vingron

    2007-08-01

    Identifying transcription factor binding sites (TFBSs) is essential to elucidate putative regulatory mechanisms. A common strategy is to combine cross-species conservation with single sequence TFBS annotation to yield ``conserved TFBSs”. Most current methods in this field adopt a multi-step approach that segregates the two aspects. Again, it is widely accepted that the evolutionary dynamics of binding sites differ from those of the surrounding sequence. Hence, it is desirable to have an approach that explicitly takes this factor into account. Although a plethora of approaches have been proposed for the prediction of conserved TFBSs, very few explicitly model TFBS evolutionary properties, while additionally being multi-step. Recently, we introduced a novel approach to simultaneously align and annotate conserved TFBSs in a pair of sequences. Building upon the standard Smith-Waterman algorithm for local alignments, SimAnn introduces additional states for profiles to output extended alignments or annotated alignments. That is, alignments with parts annotated as gaplessly aligned TFBSs (pair-profile hits) are generated. Moreover, the pair-profile related parameters are derived in a sound statistical framework. In this article, we extend this approach to explicitly incorporate evolution of binding sites in the SimAnn framework. We demonstrate the extension in the theoretical derivations through two position-specific evolutionary models, previously used for modelling TFBS evolution. In a simulated setting, we provide a proof of concept that the approach works given the underlying assumptions, as compared to the original work. Finally, using a real dataset of experimentally verified binding sites in human-mouse sequence pairs, we compare the new approach (eSimAnn) to an existing multi-step tool that also considers TFBS evolution. Although it is widely accepted that binding sites evolve differently from the surrounding sequences, most comparative TFBS identification

  4. A systems biology approach to transcription factor binding site prediction.

    Directory of Open Access Journals (Sweden)

    Xiang Zhou

    Full Text Available BACKGROUND: The elucidation of mammalian transcriptional regulatory networks holds great promise for both basic and translational research and remains one the greatest challenges to systems biology. Recent reverse engineering methods deduce regulatory interactions from large-scale mRNA expression profiles and cross-species conserved regulatory regions in DNA. Technical challenges faced by these methods include distinguishing between direct and indirect interactions, associating transcription regulators with predicted transcription factor binding sites (TFBSs, identifying non-linearly conserved binding sites across species, and providing realistic accuracy estimates. METHODOLOGY/PRINCIPAL FINDINGS: We address these challenges by closely integrating proven methods for regulatory network reverse engineering from mRNA expression data, linearly and non-linearly conserved regulatory region discovery, and TFBS evaluation and discovery. Using an extensive test set of high-likelihood interactions, which we collected in order to provide realistic prediction-accuracy estimates, we show that a careful integration of these methods leads to significant improvements in prediction accuracy. To verify our methods, we biochemically validated TFBS predictions made for both transcription factors (TFs and co-factors; we validated binding site predictions made using a known E2F1 DNA-binding motif on E2F1 predicted promoter targets, known E2F1 and JUND motifs on JUND predicted promoter targets, and a de novo discovered motif for BCL6 on BCL6 predicted promoter targets. Finally, to demonstrate accuracy of prediction using an external dataset, we showed that sites matching predicted motifs for ZNF263 are significantly enriched in recent ZNF263 ChIP-seq data. CONCLUSIONS/SIGNIFICANCE: Using an integrative framework, we were able to address technical challenges faced by state of the art network reverse engineering methods, leading to significant improvement in direct

  5. Imputation for transcription factor binding predictions based on deep learning

    Science.gov (United States)

    Qin, Qian

    2017-01-01

    Understanding the cell-specific binding patterns of transcription factors (TFs) is fundamental to studying gene regulatory networks in biological systems, for which ChIP-seq not only provides valuable data but is also considered as the gold standard. Despite tremendous efforts from the scientific community to conduct TF ChIP-seq experiments, the available data represent only a limited percentage of ChIP-seq experiments, considering all possible combinations of TFs and cell lines. In this study, we demonstrate a method for accurately predicting cell-specific TF binding for TF-cell line combinations based on only a small fraction (4%) of the combinations using available ChIP-seq data. The proposed model, termed TFImpute, is based on a deep neural network with a multi-task learning setting to borrow information across transcription factors and cell lines. Compared with existing methods, TFImpute achieves comparable accuracy on TF-cell line combinations with ChIP-seq data; moreover, TFImpute achieves better accuracy on TF-cell line combinations without ChIP-seq data. This approach can predict cell line specific enhancer activities in K562 and HepG2 cell lines, as measured by massively parallel reporter assays, and predicts the impact of SNPs on TF binding. PMID:28234893

  6. Understanding variation in transcription factor binding by modeling transcription factor genome-epigenome interactions.

    Directory of Open Access Journals (Sweden)

    Chieh-Chun Chen

    Full Text Available Despite explosive growth in genomic datasets, the methods for studying epigenomic mechanisms of gene regulation remain primitive. Here we present a model-based approach to systematically analyze the epigenomic functions in modulating transcription factor-DNA binding. Based on the first principles of statistical mechanics, this model considers the interactions between epigenomic modifications and a cis-regulatory module, which contains multiple binding sites arranged in any configurations. We compiled a comprehensive epigenomic dataset in mouse embryonic stem (mES cells, including DNA methylation (MeDIP-seq and MRE-seq, DNA hydroxymethylation (5-hmC-seq, and histone modifications (ChIP-seq. We discovered correlations of transcription factors (TFs for specific combinations of epigenomic modifications, which we term epigenomic motifs. Epigenomic motifs explained why some TFs appeared to have different DNA binding motifs derived from in vivo (ChIP-seq and in vitro experiments. Theoretical analyses suggested that the epigenome can modulate transcriptional noise and boost the cooperativity of weak TF binding sites. ChIP-seq data suggested that epigenomic boost of binding affinities in weak TF binding sites can function in mES cells. We showed in theory that the epigenome should suppress the TF binding differences on SNP-containing binding sites in two people. Using personal data, we identified strong associations between H3K4me2/H3K9ac and the degree of personal differences in NFκB binding in SNP-containing binding sites, which may explain why some SNPs introduce much smaller personal variations on TF binding than other SNPs. In summary, this model presents a powerful approach to analyze the functions of epigenomic modifications. This model was implemented into an open source program APEG (Affinity Prediction by Epigenome and Genome, http://systemsbio.ucsd.edu/apeg.

  7. Understanding variation in transcription factor binding by modeling transcription factor genome-epigenome interactions.

    Science.gov (United States)

    Chen, Chieh-Chun; Xiao, Shu; Xie, Dan; Cao, Xiaoyi; Song, Chun-Xiao; Wang, Ting; He, Chuan; Zhong, Sheng

    2013-01-01

    Despite explosive growth in genomic datasets, the methods for studying epigenomic mechanisms of gene regulation remain primitive. Here we present a model-based approach to systematically analyze the epigenomic functions in modulating transcription factor-DNA binding. Based on the first principles of statistical mechanics, this model considers the interactions between epigenomic modifications and a cis-regulatory module, which contains multiple binding sites arranged in any configurations. We compiled a comprehensive epigenomic dataset in mouse embryonic stem (mES) cells, including DNA methylation (MeDIP-seq and MRE-seq), DNA hydroxymethylation (5-hmC-seq), and histone modifications (ChIP-seq). We discovered correlations of transcription factors (TFs) for specific combinations of epigenomic modifications, which we term epigenomic motifs. Epigenomic motifs explained why some TFs appeared to have different DNA binding motifs derived from in vivo (ChIP-seq) and in vitro experiments. Theoretical analyses suggested that the epigenome can modulate transcriptional noise and boost the cooperativity of weak TF binding sites. ChIP-seq data suggested that epigenomic boost of binding affinities in weak TF binding sites can function in mES cells. We showed in theory that the epigenome should suppress the TF binding differences on SNP-containing binding sites in two people. Using personal data, we identified strong associations between H3K4me2/H3K9ac and the degree of personal differences in NFκB binding in SNP-containing binding sites, which may explain why some SNPs introduce much smaller personal variations on TF binding than other SNPs. In summary, this model presents a powerful approach to analyze the functions of epigenomic modifications. This model was implemented into an open source program APEG (Affinity Prediction by Epigenome and Genome, http://systemsbio.ucsd.edu/apeg).

  8. The human enhancer blocker CTC-binding factor interacts with the transcription factor Kaiso.

    Science.gov (United States)

    Defossez, Pierre-Antoine; Kelly, Kevin F; Filion, Guillaume J P; Pérez-Torrado, Roberto; Magdinier, Frédérique; Menoni, Hervé; Nordgaard, Curtis L; Daniel, Juliet M; Gilson, Eric

    2005-12-30

    CTC-binding factor (CTCF) is a DNA-binding protein of vertebrates that plays essential roles in regulating genome activity through its capacity to act as an enhancer blocker. We performed a yeast two-hybrid screen to identify protein partners of CTCF that could regulate its activity. Using full-length CTCF as bait we recovered Kaiso, a POZ-zinc finger transcription factor, as a specific binding partner. The interaction occurs through a C-terminal region of CTCF and the POZ domain of Kaiso. CTCF and Kaiso are co-expressed in many tissues, and CTCF was specifically co-immunoprecipitated by several Kaiso monoclonal antibodies from nuclear lysates. Kaiso is a bimodal transcription factor that recognizes methylated CpG dinucleotides or a conserved unmethylated sequence (TNGCAGGA, the Kaiso binding site). We identified one consensus unmethylated Kaiso binding site in close proximity to the CTCF binding site in the human 5' beta-globin insulator. We found, in an insulation assay, that the presence of this Kaiso binding site reduced the enhancer-blocking activity of CTCF. These data suggest that the Kaiso-CTCF interaction negatively regulates CTCF insulator activity.

  9. LASAGNA: A novel algorithm for transcription factor binding site alignment

    Science.gov (United States)

    2013-01-01

    Background Scientists routinely scan DNA sequences for transcription factor (TF) binding sites (TFBSs). Most of the available tools rely on position-specific scoring matrices (PSSMs) constructed from aligned binding sites. Because of the resolutions of assays used to obtain TFBSs, databases such as TRANSFAC, ORegAnno and PAZAR store unaligned variable-length DNA segments containing binding sites of a TF. These DNA segments need to be aligned to build a PSSM. While the TRANSFAC database provides scoring matrices for TFs, nearly 78% of the TFs in the public release do not have matrices available. As work on TFBS alignment algorithms has been limited, it is highly desirable to have an alignment algorithm tailored to TFBSs. Results We designed a novel algorithm named LASAGNA, which is aware of the lengths of input TFBSs and utilizes position dependence. Results on 189 TFs of 5 species in the TRANSFAC database showed that our method significantly outperformed ClustalW2 and MEME. We further compared a PSSM method dependent on LASAGNA to an alignment-free TFBS search method. Results on 89 TFs whose binding sites can be located in genomes showed that our method is significantly more precise at fixed recall rates. Finally, we described LASAGNA-ChIP, a more sophisticated version for ChIP (Chromatin immunoprecipitation) experiments. Under the one-per-sequence model, it showed comparable performance with MEME in discovering motifs in ChIP-seq peak sequences. Conclusions We conclude that the LASAGNA algorithm is simple and effective in aligning variable-length binding sites. It has been integrated into a user-friendly webtool for TFBS search and visualization called LASAGNA-Search. The tool currently stores precomputed PSSM models for 189 TFs and 133 TFs built from TFBSs in the TRANSFAC Public database (release 7.0) and the ORegAnno database (08Nov10 dump), respectively. The webtool is available at http://biogrid.engr.uconn.edu/lasagna_search/. PMID:23522376

  10. Insulin-like growth factor binding proteins 4-6.

    Science.gov (United States)

    Bach, Leon A

    2015-10-01

    Insulin-like growth factor binding proteins (IGFBPs) 4-6 have important roles as modulators of IGF actions. IGFBP-4 and IGFBP-6 predominantly inhibit IGF actions, whereas IGFBP-5 may enhance these actions under some circumstances. IGFBP-6 is unique among the IGFBPs for its marked IGF-II binding preference. IGFBPs 4-6 are found in the circulation as binary complexes with IGFs that can enter tissues. Additionally, about half of the circulating IGFBP-5 is found in ternary complexes with IGFs and an acid labile subunit; this high molecular complex cannot leave the circulation and acts as an IGF reservoir. IGFBPs 4-6 also have IGF-independent actions. These IGFBPs are regulated in a cell-specific manner and their dysregulation may play a role in a range of diseases including cancer. However, there is no clear clinical indication for measuring serum levels of these IGFBPs at present. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Characterization of Binding Sites of Eukaryotic Transcription Factors

    Institute of Scientific and Technical Information of China (English)

    Jiang Qian; Jimmy Lin; Donald J. Zack

    2006-01-01

    To explore the nature of eukaryotic transcription factor (TF) binding sites and determine how they differ from surrounding DNA sequences, we examined four features associated with DNA binding sites: G+C content, pattern complexity,palindromic structure, and Markov sequence ordering. Our analysis of the regulatory motifs obtained from the TRANSFAC database, using yeast intergenic sequences as background, revealed that these four features show variable enrichment in motif sequences. For example, motif sequences were more likely to have palindromic structure than were background sequences. In addition, these features were tightly localized to the regulatory motifs, indicating that they are a property of the motif sequences themselves and are not shared by the general promoter "environment" in which the regulatory motifs reside. By breaking down the motif sequences according to the TF classes to which they bind, more specific associations were identified. Finally, we found that some correlations, such as G+C content enrichment, were species-specific, while others, such as complexity enrichment, were universal across the species examined. The quantitative analysis provided here should increase our understanding of protein-DNA interactions and also help facilitate the discovery of regulatory motifs through bioinformatics.

  12. Clumping factor A, von Willebrand factor-binding protein and von Willebrand factor anchor Staphylococcus aureus to the vessel wall.

    Science.gov (United States)

    Claes, J; Liesenborghs, L; Peetermans, M; Veloso, T R; Missiakas, D; Schneewind, O; Mancini, S; Entenza, J M; Hoylaerts, M F; Heying, R; Verhamme, P; Vanassche, T

    2017-02-09

    Essentials Staphylococcus aureus (S. aureus) binds to endothelium via von Willebrand factor (VWF). Secreted VWF-binding protein (vWbp) mediates S. aureus adhesion to VWF under shear stress. vWbp interacts with VWF and the Sortase A-dependent surface protein Clumping factor A (ClfA). VWF-vWbp-ClfA anchor S. aureus to vascular endothelium under shear stress.

  13. Heterogeneity in rhesus macaque complement factor H binding to meningococcal factor H binding protein (FHbp) informs selection of primates to assess immunogenicity of FHbp-based vaccines.

    Science.gov (United States)

    Beernink, Peter T; Shaughnessy, Jutamas; Stefek, Heather; Ram, Sanjay; Granoff, Dan M

    2014-11-01

    Neisseria meningitidis causes disease only in humans. An important mechanism underlying this host specificity is the ability of the organism to resist complement by recruiting the complement downregulator factor H (FH) to the bacterial surface. In previous studies, binding of FH to one of the major meningococcal FH ligands, factor H binding protein (FHbp), was reported to be specific for human FH. Here we report that sera from 23 of 73 rhesus macaques (32%) tested had high FH binding to FHbp. Similar to human FH, binding of macaque FH to the meningococcal cell surface inhibited the complement alternative pathway by decreasing deposition of C3b. FH contains 20 domains (or short consensus repeats), with domains 6 and 7 being responsible for binding of human FH to FHbp. DNA sequence analyses of FH domains 6 and 7 from macaques with high or low FH binding showed a polymorphism at residue 352 in domain 6, with Tyr being associated with high binding and His with low binding. A recombinant macaque FH 6,7/Fc fragment with Tyr352 showed higher binding to FHbp than the corresponding fragment with His352. In previous studies in human FH transgenic mice, binding of FH to FHbp vaccines decreased protective antibody responses, and mutant FHbp vaccines with decreased FH binding elicited serum antibodies with greater protective activity. Thus, macaques with high FH binding to FHbp represent an attractive nonhuman primate model to investigate further the effects of FH binding on the immunogenicity of FHbp vaccines.

  14. Prediction of nucleosome positioning based on transcription factor binding sites.

    Directory of Open Access Journals (Sweden)

    Xianfu Yi

    Full Text Available BACKGROUND: The DNA of all eukaryotic organisms is packaged into nucleosomes, the basic repeating units of chromatin. The nucleosome consists of a histone octamer around which a DNA core is wrapped and the linker histone H1, which is associated with linker DNA. By altering the accessibility of DNA sequences, the nucleosome has profound effects on all DNA-dependent processes. Understanding the factors that influence nucleosome positioning is of great importance for the study of genomic control mechanisms. Transcription factors (TFs have been suggested to play a role in nucleosome positioning in vivo. PRINCIPAL FINDINGS: Here, the minimum redundancy maximum relevance (mRMR feature selection algorithm, the nearest neighbor algorithm (NNA, and the incremental feature selection (IFS method were used to identify the most important TFs that either favor or inhibit nucleosome positioning by analyzing the numbers of transcription factor binding sites (TFBSs in 53,021 nucleosomal DNA sequences and 50,299 linker DNA sequences. A total of nine important families of TFs were extracted from 35 families, and the overall prediction accuracy was 87.4% as evaluated by the jackknife cross-validation test. CONCLUSIONS: Our results are consistent with the notion that TFs are more likely to bind linker DNA sequences than the sequences in the nucleosomes. In addition, our results imply that there may be some TFs that are important for nucleosome positioning but that play an insignificant role in discriminating nucleosome-forming DNA sequences from nucleosome-inhibiting DNA sequences. The hypothesis that TFs play a role in nucleosome positioning is, thus, confirmed by the results of this study.

  15. Heterogeneity in Rhesus Macaque Complement Factor H Binding to Meningococcal Factor H Binding Protein (FHbp) Informs Selection of Primates To Assess Immunogenicity of FHbp-Based Vaccines

    OpenAIRE

    2014-01-01

    Neisseria meningitidis causes disease only in humans. An important mechanism underlying this host specificity is the ability of the organism to resist complement by recruiting the complement downregulator factor H (FH) to the bacterial surface. In previous studies, binding of FH to one of the major meningococcal FH ligands, factor H binding protein (FHbp), was reported to be specific for human FH. Here we report that sera from 23 of 73 rhesus macaques (32%) tested had high FH binding to FHbp....

  16. Functional identification of central afferent projections conveying information of acute "stress" to the hypothalamic paraventricular nucleus

    DEFF Research Database (Denmark)

    Larsen, P.J.; Mikkelsen, J.D.

    1995-01-01

    c-fos, corticotropin-releasing factor, neurosecretory neurons, paraventricular nucleus, transcription factors, neuroendocrinology, cholera toxin subunit B, retrograde tracing......c-fos, corticotropin-releasing factor, neurosecretory neurons, paraventricular nucleus, transcription factors, neuroendocrinology, cholera toxin subunit B, retrograde tracing...

  17. Effects of cytosine methylation on transcription factor binding sites

    KAUST Repository

    Medvedeva, Yulia A

    2014-03-26

    Background: DNA methylation in promoters is closely linked to downstream gene repression. However, whether DNA methylation is a cause or a consequence of gene repression remains an open question. If it is a cause, then DNA methylation may affect the affinity of transcription factors (TFs) for their binding sites (TFBSs). If it is a consequence, then gene repression caused by chromatin modification may be stabilized by DNA methylation. Until now, these two possibilities have been supported only by non-systematic evidence and they have not been tested on a wide range of TFs. An average promoter methylation is usually used in studies, whereas recent results suggested that methylation of individual cytosines can also be important.Results: We found that the methylation profiles of 16.6% of cytosines and the expression profiles of neighboring transcriptional start sites (TSSs) were significantly negatively correlated. We called the CpGs corresponding to such cytosines " traffic lights" We observed a strong selection against CpG " traffic lights" within TFBSs. The negative selection was stronger for transcriptional repressors as compared with transcriptional activators or multifunctional TFs as well as for core TFBS positions as compared with flanking TFBS positions.Conclusions: Our results indicate that direct and selective methylation of certain TFBS that prevents TF binding is restricted to special cases and cannot be considered as a general regulatory mechanism of transcription. 2013 Medvedeva et al.; licensee BioMed Central Ltd.

  18. Trigger Factor Binds to Ribosome-Signal-Recognition Particle (SRP) Complexes and Is Excluded by Binding of the SRP Receptor

    National Research Council Canada - National Science Library

    Iwona Buskiewicz; Elke Deuerling; Shan-Qing Gu; Johannes Jöckel; Marina V. Rodnina; Bernd Bukau; Wolfgang Wintermeyer; Thomas A. Steitz

    2004-01-01

    Trigger factor (TF) and signal recognition particle (SRP) bind to the bacterial ribosome and are both crosslinked to protein L23 at the peptide exit, where they interact with emerging nascent peptide chains...

  19. MONKEY: Identifying conserved transcription-factor binding sitesin multiple alignments using a binding site-specific evolutionarymodel

    Energy Technology Data Exchange (ETDEWEB)

    Moses, Alan M.; Chiang, Derek Y.; Pollard, Daniel A.; Iyer, VenkyN.; Eisen, Michael B.

    2004-10-28

    We introduce a method (MONKEY) to identify conserved transcription-factor binding sites in multispecies alignments. MONKEY employs probabilistic models of factor specificity and binding site evolution, on which basis we compute the likelihood that putative sites are conserved and assign statistical significance to each hit. Using genomes from the genus Saccharomyces, we illustrate how the significance of real sites increases with evolutionary distance and explore the relationship between conservation and function.

  20. Mutations and binding sites of human transcription factors

    KAUST Repository

    Kamanu, Frederick Kinyua

    2012-06-01

    Mutations in any genome may lead to phenotype characteristics that determine ability of an individual to cope with adaptation to environmental challenges. In studies of human biology, among the most interesting ones are phenotype characteristics that determine responses to drug treatments, response to infections, or predisposition to specific inherited diseases. Most of the research in this field has been focused on the studies of mutation effects on the final gene products, peptides, and their alterations. Considerably less attention was given to the mutations that may affect regulatory mechanism(s) of gene expression, although these may also affect the phenotype characteristics. In this study we make a pilot analysis of mutations observed in the regulatory regions of 24,667 human RefSeq genes. Our study reveals that out of eight studied mutation types, insertions are the only one that in a statistically significant manner alters predicted transcription factor binding sites (TFBSs). We also find that 25 families of TFBSs have been altered by mutations in a statistically significant manner in the promoter regions we considered. Moreover, we find that the related transcription factors are, for example, prominent in processes related to intracellular signaling; cell fate; morphogenesis of organs and epithelium; development of urogenital system, epithelium, and tube; neuron fate commitment. Our study highlights the significance of studying mutations within the genes regulatory regions and opens way for further detailed investigations on this topic, particularly on the downstream affected pathways. 2012 Kamanu, Medvedeva, Schaefer, Jankovic, Archer and Bajic.

  1. Factor XII binding to endothelial cells depends on caveolae

    DEFF Research Database (Denmark)

    Schousboe, Inger; Thomsen, Peter; van Deurs, Bo

    2004-01-01

    to human umbilical vein endothelial cells (HUVEC) has never been shown to be localized to these specialized membrane structures. Using microscopical techniques, we here report that FXII binds to specific patches of the HUVEC plasma membrane with a high density of caveolae. Further investigations of FXII...... lipid rafts. Accordingly, cholesterol-depleted cells were found to bind significantly reduced amounts of FXII. These observations, combined with the presence of a minority of u-PAR in caveolae concomitant with FXII binding, indicate that FXII binding to u-PAR may be secondary and depends upon...... the structural elements within caveolae. Thus, FXII binding to HUVEC depends on intact caveolae on the cellular surface....

  2. Mechanisms of in vivo binding site selection of the hematopoietic master transcription factor PU.1.

    Science.gov (United States)

    Pham, Thu-Hang; Minderjahn, Julia; Schmidl, Christian; Hoffmeister, Helen; Schmidhofer, Sandra; Chen, Wei; Längst, Gernot; Benner, Christopher; Rehli, Michael

    2013-07-01

    The transcription factor PU.1 is crucial for the development of many hematopoietic lineages and its binding patterns significantly change during differentiation processes. However, the 'rules' for binding or not-binding of potential binding sites are only partially understood. To unveil basic characteristics of PU.1 binding site selection in different cell types, we studied the binding properties of PU.1 during human macrophage differentiation. Using in vivo and in vitro binding assays, as well as computational prediction, we show that PU.1 selects its binding sites primarily based on sequence affinity, which results in the frequent autonomous binding of high affinity sites in DNase I inaccessible regions (25-45% of all occupied sites). Increasing PU.1 concentrations and the availability of cooperative transcription factor interactions during lineage differentiation both decrease affinity thresholds for in vivo binding and fine-tune cell type-specific PU.1 binding, which seems to be largely independent of DNA methylation. Occupied sites were predominantly detected in active chromatin domains, which are characterized by higher densities of PU.1 recognition sites and neighboring motifs for cooperative transcription factors. Our study supports a model of PU.1 binding control that involves motif-binding affinity, PU.1 concentration, cooperativeness with neighboring transcription factor sites and chromatin domain accessibility, which likely applies to all PU.1 expressing cells.

  3. Chlamydial entry involves TARP binding of guanine nucleotide exchange factors.

    Directory of Open Access Journals (Sweden)

    B Josh Lane

    2008-03-01

    Full Text Available Chlamydia trachomatis attachment to cells induces the secretion of the elementary body-associated protein TARP (Translocated Actin Recruiting Protein. TARP crosses the plasma membrane where it is immediately phosphorylated at tyrosine residues by unknown host kinases. The Rac GTPase is also activated, resulting in WAVE2 and Arp2/3-dependent recruitment of actin to the sites of chlamydia attachment. We show that TARP participates directly in chlamydial invasion activating the Rac-dependent signaling cascade to recruit actin. TARP functions by binding two distinct Rac guanine nucleotide exchange factors (GEFs, Sos1 and Vav2, in a phosphotyrosine-dependent manner. The tyrosine phosphorylation profile of the sequence YEPISTENIYESI within TARP, as well as the transient activation of the phosphatidylinositol 3-kinase (PI3-K, appears to determine which GEF is utilized to activate Rac. The first and second tyrosine residues, when phosphorylated, are utilized by the Sos1/Abi1/Eps8 and Vav2, respectively, with the latter requiring the lipid phosphatidylinositol 3,4,5-triphosphate. Depletion of these critical signaling molecules by siRNA resulted in inhibition of chlamydial invasion to varying degrees, owing to a possible functional redundancy of the two pathways. Collectively, these data implicate TARP in signaling to the actin cytoskeleton remodeling machinery, demonstrating a mechanism by which C.trachomatis invades non-phagocytic cells.

  4. Effects of the binding of a dextran derivative on fibroblast growth factor 2: secondary structure and receptor-binding studies.

    Science.gov (United States)

    Bittoun, P; Bagheri-Yarmand, R; Chaubet, F; Crépin, M; Jozefonvicz, J; Fermandjian, S

    1999-06-15

    CMDB (carboxymethyldextran-benzylamide) are dextrans statistically substituted with carboxymethyl and benzylamide groups which can mimick some of the biological properties of heparin. It has previously been shown that CMDB inhibit autocrine growth of breast tumor cells (Bagheri-Yarmand et al., Biochem. Biophys. Res. Commun. 239: 424-428, 1997) and selectively displace fibroblast growth factor 2 (FGF-2) from its receptor. Here, we used circular dichroism and fluorescence anisotropy measurements to show that the conformation of FGF-2 was significantly altered upon its binding to CMDB and to short CMDB fragments prepared within this study. CMDB and fragments formed a stable 1:1 complex with FGF-2, with affinities being estimated as 20+/-10 nM from fluorescence anisotropy analysis. No such a complex was formed with insulin-like growth factor (IGF-1) or epidermal growth factor (EGF). CMDB competed with the FGF-2 receptor for binding to FGF-2 but did not disturb the binding of IGF-1 and EGF to their receptors. Thus, our results highlight the selectivity of CMDB and their fragments towards FGF-2. Heparin, however, competes with CMDB and their fragments for binding to FGF-2. The carboxymethyl and benzylamide groups of these molecules likely interact directly with a heparin-binding region of FGF-2. The resulting change in conformation disturbs the binding of FGF-2 to its receptor and consecutively its mitogenic activity.

  5. Factors Affecting the Binding of a Recombinant Heavy Metal-Binding Domain (CXXC motif Protein to Heavy Metals

    Directory of Open Access Journals (Sweden)

    Kamala Boonyodying

    2012-06-01

    Full Text Available A number of heavy metal-binding proteins have been used to study bioremediation. CXXC motif, a metal binding domain containing Cys-X-X-Cys motif, has been identified in various organisms. These proteins are capable of binding various types of heavy metals. In this study, heavy metal binding domain (CXXC motif recombinant protein encoded from mcsA gene of S. aureus were cloned and overexpressed in Escherichia coli. The factors involved in the metal-binding activity were determined in order to analyze the potential of recombinant protein for bioremediation. A recombinant protein can be bound to Cd2+, Co2+, Cu2+ and Zn2+. The thermal stability of a recombinant protein was tested, and the results showed that the metal binding activity to Cu2+ and Zn2+ still exist after treating the protein at 85ºC for 30 min. The temperature and pH that affected the metal binding activity was tested and the results showed that recombinant protein was still bound to Cu2+ at 65ºC, whereas a pH of 3-7 did not affect the metal binding E. coli harboring a pRset with a heavy metal-binding domain CXXC motif increased the resistance of heavy metals against CuCl2 and CdCl2. This study shows that metal binding domain (CXXC motif recombinant protein can be effectively bound to various types of heavy metals and may be used as a potential tool for studying bioremediation.

  6. Probabilistic inference of transcription factor binding from multiple data sources.

    Directory of Open Access Journals (Sweden)

    Harri Lähdesmäki

    Full Text Available An important problem in molecular biology is to build a complete understanding of transcriptional regulatory processes in the cell. We have developed a flexible, probabilistic framework to predict TF binding from multiple data sources that differs from the standard hypothesis testing (scanning methods in several ways. Our probabilistic modeling framework estimates the probability of binding and, thus, naturally reflects our degree of belief in binding. Probabilistic modeling also allows for easy and systematic integration of our binding predictions into other probabilistic modeling methods, such as expression-based gene network inference. The method answers the question of whether the whole analyzed promoter has a binding site, but can also be extended to estimate the binding probability at each nucleotide position. Further, we introduce an extension to model combinatorial regulation by several TFs. Most importantly, the proposed methods can make principled probabilistic inference from multiple evidence sources, such as, multiple statistical models (motifs of the TFs, evolutionary conservation, regulatory potential, CpG islands, nucleosome positioning, DNase hypersensitive sites, ChIP-chip binding segments and other (prior sequence-based biological knowledge. We developed both a likelihood and a Bayesian method, where the latter is implemented with a Markov chain Monte Carlo algorithm. Results on a carefully constructed test set from the mouse genome demonstrate that principled data fusion can significantly improve the performance of TF binding prediction methods. We also applied the probabilistic modeling framework to all promoters in the mouse genome and the results indicate a sparse connectivity between transcriptional regulators and their target promoters. To facilitate analysis of other sequences and additional data, we have developed an on-line web tool, ProbTF, which implements our probabilistic TF binding prediction method using multiple

  7. Assessment of algorithms for inferring positional weight matrix motifs of transcription factor binding sites using protein binding microarray data.

    Directory of Open Access Journals (Sweden)

    Yaron Orenstein

    Full Text Available The new technology of protein binding microarrays (PBMs allows simultaneous measurement of the binding intensities of a transcription factor to tens of thousands of synthetic double-stranded DNA probes, covering all possible 10-mers. A key computational challenge is inferring the binding motif from these data. We present a systematic comparison of four methods developed specifically for reconstructing a binding site motif represented as a positional weight matrix from PBM data. The reconstructed motifs were evaluated in terms of three criteria: concordance with reference motifs from the literature and ability to predict in vivo and in vitro bindings. The evaluation encompassed over 200 transcription factors and some 300 assays. The results show a tradeoff between how the methods perform according to the different criteria, and a dichotomy of method types. Algorithms that construct motifs with low information content predict PBM probe ranking more faithfully, while methods that produce highly informative motifs match reference motifs better. Interestingly, in predicting high-affinity binding, all methods give far poorer results for in vivo assays compared to in vitro assays.

  8. NCBI nr-aa BLAST: CBRC-CJAC-01-0121 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-CJAC-01-0121 sp|P34998|CRFR1_HUMAN Corticotropin-releasing factor receptor 1 p...recursor (CRF-R) (CRF1) (Corticotropin-releasing hormone receptor 1) (CRH-R 1) gb|AAA35719.1| corticotropin releasing... factor receptor gb|AAC69993.1| corticotropin-releasing factor type 1 receptor [Homo sapiens] P34998 0.0 90% ...

  9. NCBI nr-aa BLAST: CBRC-CFAM-09-0011 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-CFAM-09-0011 sp|P34998|CRFR1_HUMAN Corticotropin-releasing factor receptor 1 p...recursor (CRF-R) (CRF1) (Corticotropin-releasing hormone receptor 1) (CRH-R 1) gb|AAA35719.1| corticotropin releasing... factor receptor gb|AAC69993.1| corticotropin-releasing factor type 1 receptor [Homo sapiens] P34998 0.0 91% ...

  10. NCBI nr-aa BLAST: CBRC-FCAT-01-1136 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-FCAT-01-1136 sp|P34998|CRFR1_HUMAN Corticotropin-releasing factor receptor 1 p...recursor (CRF-R) (CRF1) (Corticotropin-releasing hormone receptor 1) (CRH-R 1) gb|AAA35719.1| corticotropin releasing... factor receptor gb|AAC69993.1| corticotropin-releasing factor type 1 receptor [Homo sapiens] P34998 3e-51 45% ...

  11. Transcriptome Profiling of Pediatric Core Binding Factor AML.

    Directory of Open Access Journals (Sweden)

    Chih-Hao Hsu

    Full Text Available The t(8;21 and Inv(16 translocations disrupt the normal function of core binding factors alpha (CBFA and beta (CBFB, respectively. These translocations represent two of the most common genomic abnormalities in acute myeloid leukemia (AML patients, occurring in approximately 25% pediatric and 15% of adult with this malignancy. Both translocations are associated with favorable clinical outcomes after intensive chemotherapy, and given the perceived mechanistic similarities, patients with these translocations are frequently referred to as having CBF-AML. It remains uncertain as to whether, collectively, these translocations are mechanistically the same or impact different pathways in subtle ways that have both biological and clinical significance. Therefore, we used transcriptome sequencing (RNA-seq to investigate the similarities and differences in genes and pathways between these subtypes of pediatric AMLs. Diagnostic RNA from patients with t(8;21 (N = 17, Inv(16 (N = 14, and normal karyotype (NK, N = 33 were subjected to RNA-seq. Analyses compared the transcriptomes across these three cytogenetic subtypes, using the NK cohort as the control. A total of 1291 genes in t(8;21 and 474 genes in Inv(16 were differentially expressed relative to the NK controls, with 198 genes differentially expressed in both subtypes. The majority of these genes (175/198; binomial test p-value < 10(-30 are consistent in expression changes among the two subtypes suggesting the expression profiles are more similar between the CBF cohorts than in the NK cohort. Our analysis also revealed alternative splicing events (ASEs differentially expressed across subtypes, with 337 t(8;21-specific and 407 Inv(16-specific ASEs detected, the majority of which were acetylated proteins (p = 1.5 x 10(-51 and p = 1.8 x 10(-54 for the two subsets. In addition to known fusions, we identified and verified 16 de novo fusions in 43 patients, including three fusions involving NUP98 in six

  12. Detection and properties of A-factor-binding protein from Streptomyces griseus

    Energy Technology Data Exchange (ETDEWEB)

    Miyake, K.; Horinouchi, S.; Yoshida, M.; Chiba, N.; Mori, K.; Nogawa, N.; Morikawa, N.; Beppu, T. (Univ. of Tokyo (Japan))

    1989-08-01

    The optically active form of tritium-labeled A-factor (2-isocapryloyl-3R-hydroxymethyl-gamma-butyrolactone), a pleiotropic autoregulator responsible for streptomycin production, streptomycin resistance, and sporulation in Streptomyces griseus, was chemically synthesized. By using the radioactive A-factor, a binding protein for A-factor was detected in the cytoplasmic fraction of this organism. The binding protein had an apparent molecular weight of approximately 26,000, as determined by gel filtration. Scatchard analysis suggested that A-factor bound the protein in the molar ratio of 1:1 with a binding constant, Kd, of 0.7 nM. The number of the binding protein was roughly estimated to be 37 per genome. The inducing material virginiae butanolide C (VB-C), which has a structure very similar to that of A-factor and is essential for virginiamycin production in Streptomyces virginiae, did not inhibit binding. In addition, no protein capable of specifically binding {sup 3}H-labeled VB-C was found in S. griseus. Together with the observation that VB-C had almost no biological activity on the restoration of streptomycin production or sporulation in an A-factor-deficient mutant of S. griseus, these results indicated that the binding protein had a strict ligand specificity. Examination for an A-factor-binding protein in Streptomyces coelicolor A3(2) and Streptomyces lividans showed the absence of any specifically binding protein.

  13. Using TESS to predict transcription factor binding sites in DNA sequence.

    Science.gov (United States)

    Schug, Jonathan

    2008-03-01

    This unit describes how to use the Transcription Element Search System (TESS). This Web site predicts transcription factor binding sites (TFBS) in DNA sequence using two different kinds of models of sites, strings and positional weight matrices. The binding of transcription factors to DNA is a major part of the control of gene expression. Transcription factors exhibit sequence-specific binding; they form stronger bonds to some DNA sequences than to others. Identification of a good binding site in the promoter for a gene suggests the possibility that the corresponding factor may play a role in the regulation of that gene. However, the sequences transcription factors recognize are typically short and allow for some amount of mismatch. Because of this, binding sites for a factor can typically be found at random every few hundred to a thousand base pairs. TESS has features to help sort through and evaluate the significance of predicted sites.

  14. Genome-scale study of the importance of binding site context for transcription factor binding and gene regulation

    Directory of Open Access Journals (Sweden)

    Ronne Hans

    2008-11-01

    Full Text Available Abstract Background The rate of mRNA transcription is controlled by transcription factors that bind to specific DNA motifs in promoter regions upstream of protein coding genes. Recent results indicate that not only the presence of a motif but also motif context (for example the orientation of a motif or its location relative to the coding sequence is important for gene regulation. Results In this study we present ContextFinder, a tool that is specifically aimed at identifying cases where motif context is likely to affect gene regulation. We used ContextFinder to examine the role of motif context in S. cerevisiae both for DNA binding by transcription factors and for effects on gene expression. For DNA binding we found significant patterns of motif location bias, whereas motif orientations did not seem to matter. Motif context appears to affect gene expression even more than it affects DNA binding, as biases in both motif location and orientation were more frequent in promoters of co-expressed genes. We validated our results against data on nucleosome positioning, and found a negative correlation between preferred motif locations and nucleosome occupancy. Conclusion We conclude that the requirement for stable binding of transcription factors to DNA and their subsequent function in gene regulation can impose constraints on motif context.

  15. Pleiotropic virulence factor - Streptococcus pyogenes fibronectin-binding proteins.

    Science.gov (United States)

    Yamaguchi, Masaya; Terao, Yutaka; Kawabata, Shigetada

    2013-04-01

    Streptococcus pyogenes causes a broad spectrum of infectious diseases, including pharyngitis, skin infections and invasive necrotizing fasciitis. The initial phase of infection involves colonization, followed by intimate contact with the host cells, thus promoting bacterial uptake by them. S. pyogenes recognizes fibronectin (Fn) through its own Fn-binding proteins to obtain access to epithelial and endothelial cells in host tissue. Fn-binding proteins bind to Fn to form a bridge to α5 β1 -integrins, which leads to rearrangement of cytoskeletal actin in host cells and uptake of invading S. pyogenes. Recently, several structural analyses of the invasion mechanism showed molecular interactions by which Fn converts from a compact plasma protein to a fibrillar component of the extracellular matrix. After colonization, S. pyogenes must evade the host innate immune system to spread into blood vessels and deeper organs. Some Fn-binding proteins contribute to evasion of host innate immunity, such as the complement system and phagocytosis. In addition, Fn-binding proteins have received focus as non-M protein vaccine candidates, because of their localization and conservation among different M serotypes.Here, we review the roles of Fn-binding proteins in the pathogenesis and speculate regarding possible vaccine antigen candidates. © 2012 Blackwell Publishing Ltd.

  16. Arabidopsis sigma factor binding proteins are activators of the WRKY33 transcription factor in plant defense.

    Science.gov (United States)

    Lai, Zhibing; Li, Ying; Wang, Fei; Cheng, Yuan; Fan, Baofang; Yu, Jing-Quan; Chen, Zhixiang

    2011-10-01

    Necrotrophic pathogens are important plant pathogens that cause many devastating plant diseases. Despite their impact, our understanding of the plant defense response to necrotrophic pathogens is limited. The WRKY33 transcription factor is important for plant resistance to necrotrophic pathogens; therefore, elucidation of its functions will enhance our understanding of plant immunity to necrotrophic pathogens. Here, we report the identification of two WRKY33-interacting proteins, nuclear-encoded SIGMA FACTOR BINDING PROTEIN1 (SIB1) and SIB2, which also interact with plastid-encoded plastid RNA polymerase SIGMA FACTOR1. Both SIB1 and SIB2 contain an N-terminal chloroplast targeting signal and a putative nuclear localization signal, suggesting that they are dual targeted. Bimolecular fluorescence complementation indicates that WRKY33 interacts with SIBs in the nucleus of plant cells. Both SIB1 and SIB2 contain a short VQ motif that is important for interaction with WRKY33. The two VQ motif-containing proteins recognize the C-terminal WRKY domain and stimulate the DNA binding activity of WRKY33. Like WRKY33, both SIB1 and SIB2 are rapidly and strongly induced by the necrotrophic pathogen Botrytis cinerea. Resistance to B. cinerea is compromised in the sib1 and sib2 mutants but enhanced in SIB1-overexpressing transgenic plants. These results suggest that dual-targeted SIB1 and SIB2 function as activators of WRKY33 in plant defense against necrotrophic pathogens.

  17. NCBI nr-aa BLAST: CBRC-PTRO-08-0018 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-PTRO-08-0018 ref|NP_073205.1| corticotropin releasing hormone receptor 2 [Ratt...us norvegicus] sp|P47866|CRFR2_RAT Corticotropin-releasing factor receptor 2 precursor (CRF-R 2) (CRF2) (Corticotropin-releasing... hormone receptor 2) (CRH-R 2) gb|AAC52159.1| corticotropin-releasing factor receptor subtype 2 NP_073205.1 0.0 93% ...

  18. NCBI nr-aa BLAST: CBRC-DRER-03-0035 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-DRER-03-0035 ref|NP_989652.1| corticotropin releasing hormone receptor 1 [Gall...us gallus] sp|Q90812|CRFR1_CHICK Corticotropin-releasing factor receptor 1 precursor (CRF-R) (CRF1) (Corticotropin-releasing... hormone receptor 1) (CRH-R 1) gb|AAA96656.1| corticotropin releasing factor receptor NP_989652.1 0.0 88% ...

  19. NCBI nr-aa BLAST: CBRC-TGUT-30-0010 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-TGUT-30-0010 ref|NP_989652.1| corticotropin releasing hormone receptor 1 [Gall...us gallus] sp|Q90812|CRFR1_CHICK Corticotropin-releasing factor receptor 1 precursor (CRF-R) (CRF1) (Corticotropin-releasing... hormone receptor 1) (CRH-R 1) gb|AAA96656.1| corticotropin releasing factor receptor NP_989652.1 0.0 97% ...

  20. NCBI nr-aa BLAST: CBRC-MMUS-06-0056 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-MMUS-06-0056 ref|NP_073205.1| corticotropin releasing hormone receptor 2 [Ratt...us norvegicus] sp|P47866|CRFR2_RAT Corticotropin-releasing factor receptor 2 precursor (CRF-R 2) (CRF2) (Corticotropin-releasing... hormone receptor 2) (CRH-R 2) gb|AAC52159.1| corticotropin-releasing factor receptor subtype 2 NP_073205.1 0.0 97% ...

  1. NCBI nr-aa BLAST: CBRC-TNIG-02-0001 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-TNIG-02-0001 ref|NP_989652.1| corticotropin releasing hormone receptor 1 [Gall...us gallus] sp|Q90812|CRFR1_CHICK Corticotropin-releasing factor receptor 1 precursor (CRF-R) (CRF1) (Corticotropin-releasing... hormone receptor 1) (CRH-R 1) gb|AAA96656.1| corticotropin releasing factor receptor NP_989652.1 0.0 83% ...

  2. NCBI nr-aa BLAST: CBRC-ACAR-01-0746 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-ACAR-01-0746 ref|NP_989652.1| corticotropin releasing hormone receptor 1 [Gall...us gallus] sp|Q90812|CRFR1_CHICK Corticotropin-releasing factor receptor 1 precursor (CRF-R) (CRF1) (Corticotropin-releasing... hormone receptor 1) (CRH-R 1) gb|AAA96656.1| corticotropin releasing factor receptor NP_989652.1 0.0 90% ...

  3. NCBI nr-aa BLAST: CBRC-HSAP-07-0016 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-HSAP-07-0016 ref|NP_073205.1| corticotropin releasing hormone receptor 2 [Ratt...us norvegicus] sp|P47866|CRFR2_RAT Corticotropin-releasing factor receptor 2 precursor (CRF-R 2) (CRF2) (Corticotropin-releasing... hormone receptor 2) (CRH-R 2) gb|AAC52159.1| corticotropin-releasing factor receptor subtype 2 NP_073205.1 0.0 93% ...

  4. NCBI nr-aa BLAST: CBRC-XTRO-01-2480 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-XTRO-01-2480 ref|NP_073205.1| corticotropin releasing hormone receptor 2 [Ratt...us norvegicus] sp|P47866|CRFR2_RAT Corticotropin-releasing factor receptor 2 precursor (CRF-R 2) (CRF2) (Corticotropin-releasing... hormone receptor 2) (CRH-R 2) gb|AAC52159.1| corticotropin-releasing factor receptor subtype 2 NP_073205.1 0.0 81% ...

  5. NCBI nr-aa BLAST: CBRC-GGAL-27-0004 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-GGAL-27-0004 ref|NP_989652.1| corticotropin releasing hormone receptor 1 [Gall...us gallus] sp|Q90812|CRFR1_CHICK Corticotropin-releasing factor receptor 1 precursor (CRF-R) (CRF1) (Corticotropin-releasing... hormone receptor 1) (CRH-R 1) gb|AAA96656.1| corticotropin releasing factor receptor NP_989652.1 0.0 99% ...

  6. NCBI nr-aa BLAST: CBRC-CFAM-14-0058 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-CFAM-14-0058 ref|NP_073205.1| corticotropin releasing hormone receptor 2 [Ratt...us norvegicus] sp|P47866|CRFR2_RAT Corticotropin-releasing factor receptor 2 precursor (CRF-R 2) (CRF2) (Corticotropin-releasing... hormone receptor 2) (CRH-R 2) gb|AAC52159.1| corticotropin-releasing factor receptor subtype 2 NP_073205.1 0.0 93% ...

  7. NCBI nr-aa BLAST: CBRC-XTRO-01-0916 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-XTRO-01-0916 ref|NP_989652.1| corticotropin releasing hormone receptor 1 [Gall...us gallus] sp|Q90812|CRFR1_CHICK Corticotropin-releasing factor receptor 1 precursor (CRF-R) (CRF1) (Corticotropin-releasing... hormone receptor 1) (CRH-R 1) gb|AAA96656.1| corticotropin releasing factor receptor NP_989652.1 0.0 84% ...

  8. NCBI nr-aa BLAST: CBRC-RMAC-03-0038 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-RMAC-03-0038 ref|NP_073205.1| corticotropin releasing hormone receptor 2 [Ratt...us norvegicus] sp|P47866|CRFR2_RAT Corticotropin-releasing factor receptor 2 precursor (CRF-R 2) (CRF2) (Corticotropin-releasing... hormone receptor 2) (CRH-R 2) gb|AAC52159.1| corticotropin-releasing factor receptor subtype 2 NP_073205.1 0.0 93% ...

  9. NCBI nr-aa BLAST: CBRC-GACU-05-0008 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-GACU-05-0008 ref|NP_989652.1| corticotropin releasing hormone receptor 1 [Gall...us gallus] sp|Q90812|CRFR1_CHICK Corticotropin-releasing factor receptor 1 precursor (CRF-R) (CRF1) (Corticotropin-releasing... hormone receptor 1) (CRH-R 1) gb|AAA96656.1| corticotropin releasing factor receptor NP_989652.1 0.0 79% ...

  10. NCBI nr-aa BLAST: CBRC-CJAC-01-0313 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-CJAC-01-0313 ref|NP_073205.1| corticotropin releasing hormone receptor 2 [Ratt...us norvegicus] sp|P47866|CRFR2_RAT Corticotropin-releasing factor receptor 2 precursor (CRF-R 2) (CRF2) (Corticotropin-releasing... hormone receptor 2) (CRH-R 2) gb|AAC52159.1| corticotropin-releasing factor receptor subtype 2 NP_073205.1 0.0 92% ...

  11. NCBI nr-aa BLAST: CBRC-OANA-01-0265 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-OANA-01-0265 ref|NP_989652.1| corticotropin releasing hormone receptor 1 [Gall...us gallus] sp|Q90812|CRFR1_CHICK Corticotropin-releasing factor receptor 1 precursor (CRF-R) (CRF1) (Corticotropin-releasing... hormone receptor 1) (CRH-R 1) gb|AAA96656.1| corticotropin releasing factor receptor NP_989652.1 1e-152 84% ...

  12. Discovery and information-theoretic characterization of transcription factor binding sites that act cooperatively

    CERN Document Server

    Clifford, Jacob

    2015-01-01

    Transcription factor binding to the surface of DNA regulatory regions is one of the primary causes of regulating gene expression levels. A probabilistic approach to model protein-DNA interactions at the sequence level is through Position Weight Matrices (PWMs) that estimate the joint probability of a DNA binding site sequence by assuming positional independence within the DNA sequence. Here we construct conditional PWMs that depend on the motif signatures in the flanking DNA sequence, by conditioning known binding site loci on the presence or absence of additional binding sites in the flanking sequence of each site's locus. Pooling known sites with similar flanking sequence patterns allows for the estimation of the conditional distribution function over the binding site sequences. We apply our model to the Dorsal transcription factor binding sites active in patterning the Dorsal-Ventral axis of Drosophila development. We find that those binding sites that cooperate with nearby Twist sites on average contain a...

  13. Insulinlike growth factor-binding protein proteolysis an emerging paradigm in insulinlike growth factor physiology.

    Science.gov (United States)

    Fowlkes, J L

    1997-10-01

    In biologic fluids, insulinlike growth factors (IGF-I and IGF-II) are bound to high-affinity insulinlike growth factor binding proteins (IGFBPs) of which seven have now been identified (IGFBPs 1-7). In a variety of biologic fluids, several IGFBPs undergo proteolytic degradation. Such degradation can lead to increased IGF bioavailability at the cell surface, facilitating receptor interactions. Herein, recent data identifying several IGFBP-degrading proteinases and their effects on IGF bioactivity is reviewed, and how IGFBP proteolysis is regulated by IGFs and IGFBPs, as well as how IGFBP cleavage analysis provides insights into the structure and function of IGFBPs, is explored. (Trends Endocrinol Metab 1997;8:299-306). (c) 1997, Elsevier Science Inc.

  14. Tenascin C promiscuously binds growth factors via its fifth fibronectin type III-like domain.

    Directory of Open Access Journals (Sweden)

    Laura De Laporte

    Full Text Available Tenascin C (TNC is an extracellular matrix protein that is upregulated during development as well as tissue remodeling. TNC is comprised of multiple independent folding domains, including 15 fibronectin type III-like (TNCIII domains. The fifth TNCIII domain (TNCIII5 has previously been shown to bind heparin. Our group has shown that the heparin-binding fibronectin type III domains of fibronectin (FNIII, specifically FNIII12-14, possess affinity towards a large number of growth factors. Here, we show that TNCIII5 binds growth factors promiscuously and with high affinity. We produced recombinant fragments of TNC representing the first five TNCIII repeats (TNCIII1-5, as well as subdomains, including TNCIII5, to study interactions with various growth factors. Multiple growth factors of the platelet-derived growth factor (PDGF family, the fibroblast growth factor (FGF family, the transforming growth factor beta (TGF-β superfamily, the insulin-like growth factor binding proteins (IGF-BPs, and neurotrophins were found to bind with high affinity to this region of TNC, specifically to TNCIII5. Surface plasmon resonance was performed to analyze the kinetics of binding of TNCIII1-5 with TGF-β1, PDGF-BB, NT-3, and FGF-2. The promiscuous yet high affinity of TNC for a wide array of growth factors, mediated mainly by TNCIII5, may play a role in multiple physiological and pathological processes involving TNC.

  15. Functional comparison of the binding of factor H short consensus repeat 6 (SCR 6) to factor H binding protein from Neisseria meningitidis and the binding of factor H SCR 18 to 20 to Neisseria gonorrhoeae porin.

    Science.gov (United States)

    Shaughnessy, Jutamas; Lewis, Lisa A; Jarva, Hanna; Ram, Sanjay

    2009-05-01

    Both Neisseria meningitidis and Neisseria gonorrhoeae recruit the alternative pathway complement inhibitory protein factor H (fH) to their surfaces to evade complement-dependent killing. Meningococci bind fH via fH binding protein (fHbp), a surface-exposed lipoprotein that is subdivided into three variant families based on one classification scheme. Chimeric proteins that comprise contiguous domains of fH fused to murine Fc were used to localize the binding site for all three fHbp variants on fH to short consensus repeat 6 (SCR 6). As expected, fH-like protein 1 (FHL-1), which contains fH SCR 6, also bound to fHbp-expressing meningococci. Using site-directed mutagenesis, we identified histidine 337 and histidine 371 in SCR 6 as important for binding to fHbp. These findings may provide the molecular basis for recent observations that demonstrated human-specific fH binding to meningococci. Differences in the interactions of fHbp variants with SCR 6 were evident. Gonococci bind fH via their porin (Por) molecules (PorB.1A or PorB.1B); sialylation of lipooligosaccharide enhances fH binding. Both sialylated PorB.1B- and (unsialylated) PorB.1A-bearing gonococci bind fH through SCR 18 to 20; PorB.1A can also bind SCR 6, but only weakly, as evidenced by a low level of binding of FHL-1 relative to that of fH. Using isogenic strains expressing either meningococcal fHbp or gonococcal PorB.1B, we discovered that strains expressing gonococcal PorB.1B in the presence of sialylated lipooligosaccharide bound more fH, more effectively limited C3 deposition, and were more serum resistant than their isogenic counterparts expressing fHbp. Differences in fH binding to these two related pathogens may be important for modulating their individual responses to host immune attack.

  16. Insulin-like growth factors, insulin-like growth factor-binding proteins, insulin-like growth factor-binding protein-3 protease, and growth hormone-binding protein in lipodystrophic human immunodeficiency virus-infected patients

    DEFF Research Database (Denmark)

    Haugaard, Steen B; Andersen, Ove; Hansen, Birgitte Rønde;

    2004-01-01

    Human immunodeficiency virus (HIV)-lipodystrophy is associated with impaired growth hormone (GH) secretion. It remains to be elucidated whether insulin-like growth factors (IGFs), IGF-binding proteins (IGFBPs), IGFBP-3 protease, and GH-binding protein (GHBP) are abnormal in HIV-lipodystrophy....... These parameters were measured in overnight fasting serum samples from 16 Caucasian males with HIV-lipodystrophy (LIPO) and 15 Caucasian HIV-infected males without lipodystrophy (NONLIPO) matched for age, weight, duration of HIV infection, and antiretroviral therapy. In LIPO, abdominal fat mass and insulin...... of bioactive IGF-I in HIV-lipodystrophy....

  17. Discovery and information-theoretic characterization of transcription factor binding sites that act cooperatively.

    Science.gov (United States)

    Clifford, Jacob; Adami, Christoph

    2015-09-02

    Transcription factor binding to the surface of DNA regulatory regions is one of the primary causes of regulating gene expression levels. A probabilistic approach to model protein-DNA interactions at the sequence level is through position weight matrices (PWMs) that estimate the joint probability of a DNA binding site sequence by assuming positional independence within the DNA sequence. Here we construct conditional PWMs that depend on the motif signatures in the flanking DNA sequence, by conditioning known binding site loci on the presence or absence of additional binding sites in the flanking sequence of each site's locus. Pooling known sites with similar flanking sequence patterns allows for the estimation of the conditional distribution function over the binding site sequences. We apply our model to the Dorsal transcription factor binding sites active in patterning the Dorsal-Ventral axis of Drosophila development. We find that those binding sites that cooperate with nearby Twist sites on average contain about 0.5 bits of information about the presence of Twist transcription factor binding sites in the flanking sequence. We also find that Dorsal binding site detectors conditioned on flanking sequence information make better predictions about what is a Dorsal site relative to background DNA than detection without information about flanking sequence features.

  18. Transcription factor binding site positioning in yeast: proximal promoter motifs characterize TATA-less promoters.

    Science.gov (United States)

    Erb, Ionas; van Nimwegen, Erik

    2011-01-01

    The availability of sequence specificities for a substantial fraction of yeast's transcription factors and comparative genomic algorithms for binding site prediction has made it possible to comprehensively annotate transcription factor binding sites genome-wide. Here we use such a genome-wide annotation for comprehensively studying promoter architecture in yeast, focusing on the distribution of transcription factor binding sites relative to transcription start sites, and the architecture of TATA and TATA-less promoters. For most transcription factors, binding sites are positioned further upstream and vary over a wider range in TATA promoters than in TATA-less promoters. In contrast, a group of 6 'proximal promoter motifs' (GAT1/GLN3/DAL80, FKH1/2, PBF1/2, RPN4, NDT80, and ROX1) occur preferentially in TATA-less promoters and show a strong preference for binding close to the transcription start site in these promoters. We provide evidence that suggests that pre-initiation complexes are recruited at TATA sites in TATA promoters and at the sites of the other proximal promoter motifs in TATA-less promoters. TATA-less promoters can generally be classified by the proximal promoter motif they contain, with different classes of TATA-less promoters showing different patterns of transcription factor binding site positioning and nucleosome coverage. These observations suggest that different modes of regulation of transcription initiation may be operating in the different promoter classes. In addition we show that, across all promoter classes, there is a close match between nucleosome free regions and regions of highest transcription factor binding site density. This close agreement between transcription factor binding site density and nucleosome depletion suggests a direct and general competition between transcription factors and nucleosomes for binding to promoters.

  19. Transcription factor binding site positioning in yeast: proximal promoter motifs characterize TATA-less promoters.

    Directory of Open Access Journals (Sweden)

    Ionas Erb

    Full Text Available The availability of sequence specificities for a substantial fraction of yeast's transcription factors and comparative genomic algorithms for binding site prediction has made it possible to comprehensively annotate transcription factor binding sites genome-wide. Here we use such a genome-wide annotation for comprehensively studying promoter architecture in yeast, focusing on the distribution of transcription factor binding sites relative to transcription start sites, and the architecture of TATA and TATA-less promoters. For most transcription factors, binding sites are positioned further upstream and vary over a wider range in TATA promoters than in TATA-less promoters. In contrast, a group of 6 'proximal promoter motifs' (GAT1/GLN3/DAL80, FKH1/2, PBF1/2, RPN4, NDT80, and ROX1 occur preferentially in TATA-less promoters and show a strong preference for binding close to the transcription start site in these promoters. We provide evidence that suggests that pre-initiation complexes are recruited at TATA sites in TATA promoters and at the sites of the other proximal promoter motifs in TATA-less promoters. TATA-less promoters can generally be classified by the proximal promoter motif they contain, with different classes of TATA-less promoters showing different patterns of transcription factor binding site positioning and nucleosome coverage. These observations suggest that different modes of regulation of transcription initiation may be operating in the different promoter classes. In addition we show that, across all promoter classes, there is a close match between nucleosome free regions and regions of highest transcription factor binding site density. This close agreement between transcription factor binding site density and nucleosome depletion suggests a direct and general competition between transcription factors and nucleosomes for binding to promoters.

  20. The DNA-binding factor Ctcf critically controls gene expression in macrophages

    NARCIS (Netherlands)

    T. Nikolic (Tatjana); D. Movita (Dowty); M.E.H. Lambers (Margaretha); C. Ribeiro de Almeida (Claudia); P.J. Biesta (Paula); K. Kreefft (Kim); M.J.W. de Bruijn (Marjolein); I.M. Bergen (Ingrid); N.J. Galjart (Niels); P.A. Boonstra (André); R.W. Hendriks (Rudi)

    2014-01-01

    textabstractMacrophages play an important role in immunity and homeostasis. Upon pathogen recognition via specific receptors, they rapidly induce inflammatory responses. This process is tightly controlled at the transcriptional level. The DNA binding zinc-finger protein CCCTC-binding factor (Ctcf) i

  1. CRITERIA FOR AN UPDATED CLASSIFICATION OF HUMAN TRANSCRIPTION FACTOR DNA-BINDING DOMAINS

    NARCIS (Netherlands)

    Wingender, Edgar

    2013-01-01

    By binding to cis-regulatory elements in a sequence-specific manner, transcription factors regulate the activity of nearby genes. Here, we discuss the criteria for a comprehensive classification of human TFs based on their DNA-binding domains. In particular, classification of basic leucine zipper (b

  2. CRITERIA FOR AN UPDATED CLASSIFICATION OF HUMAN TRANSCRIPTION FACTOR DNA-BINDING DOMAINS

    NARCIS (Netherlands)

    Wingender, Edgar

    By binding to cis-regulatory elements in a sequence-specific manner, transcription factors regulate the activity of nearby genes. Here, we discuss the criteria for a comprehensive classification of human TFs based on their DNA-binding domains. In particular, classification of basic leucine zipper

  3. DNA-binding specificity and molecular functions of NAC transcription factors

    DEFF Research Database (Denmark)

    Olsen, Addie Nina; Ernst, Heidi Asschenfeldt; Lo Leggio, Leila;

    2005-01-01

    The family of NAC (NAM/ATAF1,2/CUC2) transcription factors has been implicated in a wide range of plant processes, but knowledge on the DNA-binding properties of the family is limited. Using a reiterative selection procedure on random oligonucleotides, we have identified consensus binding sites f...

  4. Evolving Transcription Factor Binding Site Models From Protein Binding Microarray Data

    KAUST Repository

    Wong, Ka-Chun

    2016-02-02

    Protein binding microarray (PBM) is a high-throughput platform that can measure the DNA binding preference of a protein in a comprehensive and unbiased manner. In this paper, we describe the PBM motif model building problem. We apply several evolutionary computation methods and compare their performance with the interior point method, demonstrating their performance advantages. In addition, given the PBM domain knowledge, we propose and describe a novel method called kmerGA which makes domain-specific assumptions to exploit PBM data properties to build more accurate models than the other models built. The effectiveness and robustness of kmerGA is supported by comprehensive performance benchmarking on more than 200 datasets, time complexity analysis, convergence analysis, parameter analysis, and case studies. To demonstrate its utility further, kmerGA is applied to two real world applications: 1) PBM rotation testing and 2) ChIP-Seq peak sequence prediction. The results support the biological relevance of the models learned by kmerGA, and thus its real world applicability.

  5. Statistical Mechanics of Transcription-Factor Binding Site Discovery Using Hidden Markov Models

    Science.gov (United States)

    Mehta, Pankaj; Schwab, David J.; Sengupta, Anirvan M.

    2011-04-01

    Hidden Markov Models (HMMs) are a commonly used tool for inference of transcription factor (TF) binding sites from DNA sequence data. We exploit the mathematical equivalence between HMMs for TF binding and the "inverse" statistical mechanics of hard rods in a one-dimensional disordered potential to investigate learning in HMMs. We derive analytic expressions for the Fisher information, a commonly employed measure of confidence in learned parameters, in the biologically relevant limit where the density of binding sites is low. We then use techniques from statistical mechanics to derive a scaling principle relating the specificity (binding energy) of a TF to the minimum amount of training data necessary to learn it.

  6. New Insights into Cooperative Binding of Homeodomain Transcription Factors PREP1 and PBX1 to DNA

    Science.gov (United States)

    Zucchelli, Chiara; Ferrari, Elena; Blasi, Francesco; Musco, Giovanna; Bruckmann, Chiara

    2017-01-01

    PREP1 and PBX1 are homeodomain (HD) transcription factors that play crucial roles in embryonic development. Here, we present the first biophysical characterization of a PREP1 HD, and the NMR spectroscopic study of its DNA binding pocket. The data show that residues flanking the HD participate in DNA binding. The kinetic parameters for DNA binding of individual PREP1 and PBX1 HDs, and of their combination, show that isolated PREP1 and PBX1 HDs bind to DNA in a cooperative manner. A novel PREP1 motif, flanking the HD at the C-terminus, is required for cooperativity. PMID:28094776

  7. Statistical Mechanics of Transcription-Factor Binding Site Discovery Using Hidden Markov Models.

    Science.gov (United States)

    Mehta, Pankaj; Schwab, David J; Sengupta, Anirvan M

    2011-04-01

    Hidden Markov Models (HMMs) are a commonly used tool for inference of transcription factor (TF) binding sites from DNA sequence data. We exploit the mathematical equivalence between HMMs for TF binding and the "inverse" statistical mechanics of hard rods in a one-dimensional disordered potential to investigate learning in HMMs. We derive analytic expressions for the Fisher information, a commonly employed measure of confidence in learned parameters, in the biologically relevant limit where the density of binding sites is low. We then use techniques from statistical mechanics to derive a scaling principle relating the specificity (binding energy) of a TF to the minimum amount of training data necessary to learn it.

  8. Position specific variation in the rate of evolution intranscription factor binding sites

    Energy Technology Data Exchange (ETDEWEB)

    Moses, Alan M.; Chiang, Derek Y.; Kellis, Manolis; Lander, EricS.; Eisen, Michael B.

    2003-08-28

    The binding sites of sequence specific transcription factors are an important and relatively well-understood class of functional non-coding DNAs. Although a wide variety of experimental and computational methods have been developed to characterize transcription factor binding sites, they remain difficult to identify. Comparison of non-coding DNA from related species has shown considerable promise in identifying these functional non-coding sequences, even though relatively little is known about their evolution. Here we analyze the genome sequences of the budding yeasts Saccharomyces cerevisiae, S. bayanus, S. paradoxus and S. mikataeto study the evolution of transcription factor binding sites. As expected, we find that both experimentally characterized and computationally predicted binding sites evolve slower than surrounding sequence, consistent with the hypothesis that they are under purifying selection. We also observe position-specific variation in the rate of evolution within binding sites. We find that the position-specific rate of evolution is positively correlated with degeneracy among binding sites within S. cerevisiae. We test theoretical predictions for the rate of evolution at positions where the base frequencies deviate from background due to purifying selection and find reasonable agreement with the observed rates of evolution. Finally, we show how the evolutionary characteristics of real binding motifs can be used to distinguish them from artifacts of computational motif finding algorithms. As has been observed for protein sequences, the rate of evolution in transcription factor binding sites varies with position, suggesting that some regions are under stronger functional constraint than others. This variation likely reflects the varying importance of different positions in the formation of the protein-DNA complex. The characterization of the pattern of evolution in known binding sites will likely contribute to the effective use of comparative

  9. Insulin-like growth factors, insulin-like growth factor-binding proteins, insulin-like growth factor-binding protein-3 protease, and growth hormone-binding protein in lipodystrophic human immunodeficiency virus-infected patients

    DEFF Research Database (Denmark)

    Haugaard, Steen B; Andersen, Ove; Hansen, Birgitte R;

    2004-01-01

    Human immunodeficiency virus (HIV)-lipodystrophy is associated with impaired growth hormone (GH) secretion. It remains to be elucidated whether insulin-like growth factors (IGFs), IGF-binding proteins (IGFBPs), IGFBP-3 protease, and GH-binding protein (GHBP) are abnormal in HIV-lipodystrophy. The......Human immunodeficiency virus (HIV)-lipodystrophy is associated with impaired growth hormone (GH) secretion. It remains to be elucidated whether insulin-like growth factors (IGFs), IGF-binding proteins (IGFBPs), IGFBP-3 protease, and GH-binding protein (GHBP) are abnormal in HIV......-lipodystrophy. These parameters were measured in overnight fasting serum samples from 16 Caucasian males with HIV-lipodystrophy (LIPO) and 15 Caucasian HIV-infected males without lipodystrophy (NONLIPO) matched for age, weight, duration of HIV infection, and antiretroviral therapy. In LIPO, abdominal fat mass and insulin...... study groups, including suppressed GH, and increased GHBP in LIPO, argue against GH resistance of GH-sensitive tissues in LIPO compared with NONLIPO; however, this notion awaits examination in dose-response studies. Furthermore, our data suggest that IGFBP-3 protease is a significant regulator...

  10. Structural Basis for Negative Cooperativity in Growth Factor Binding to an EGF Receptor

    Energy Technology Data Exchange (ETDEWEB)

    Alvarado, Diego; Klein, Daryl E.; Lemmon, Mark A. (UPENN-MED)

    2010-09-27

    Transmembrane signaling by the epidermal growth factor receptor (EGFR) involves ligand-induced dimerization and allosteric regulation of the intracellular tyrosine kinase domain. Crystallographic studies have shown how ligand binding induces dimerization of the EGFR extracellular region but cannot explain the high-affinity and low-affinity classes of cell-surface EGF-binding sites inferred from curved Scatchard plots. From a series of crystal structures of the Drosophila EGFR extracellular region, we show here how Scatchard plot curvature arises from negatively cooperative ligand binding. The first ligand-binding event induces formation of an asymmetric dimer with only one bound ligand. The unoccupied site in this dimer is structurally restrained, leading to reduced affinity for binding of the second ligand, and thus negative cooperativity. Our results explain the cell-surface binding characteristics of EGF receptors and suggest how individual EGFR ligands might stabilize distinct dimeric species with different signaling properties.

  11. rVISTA for Comparative Sequence-Based Discovery of Functional Transcription Factor Binding Sites

    Energy Technology Data Exchange (ETDEWEB)

    Loots, Gabriela G.; Ovcharenko, Ivan; Pachter, Lior; Dubchak, Inna; Rubin, Edward M.

    2002-03-08

    Identifying transcriptional regulatory elements represents a significant challenge in annotating the genomes of higher vertebrates. We have developed a computational tool, rVISTA, for high-throughput discovery of cis-regulatory elements that combines transcription factor binding site prediction and the analysis of inter-species sequence conservation. Here, we illustrate the ability of rVISTA to identify true transcription factor binding sites through the analysis of AP-1 and NFAT binding sites in the 1 Mb well-annotated cytokine gene cluster1 (Hs5q31; Mm11). The exploitation of orthologous human-mouse data set resulted in the elimination of 95 percent of the 38,000 binding sites predicted upon analysis of the human sequence alone, while it identified 87 percent of the experimentally verified binding sites in this region.

  12. ProteDNA: a sequence-based predictor of sequence-specific DNA-binding residues in transcription factors

    OpenAIRE

    2009-01-01

    This article presents the design of a sequence-based predictor named ProteDNA for identifying the sequence-specific binding residues in a transcription factor (TF). Concerning protein–DNA interactions, there are two types of binding mechanisms involved, namely sequence-specific binding and nonspecific binding. Sequence-specific bindings occur between protein sidechains and nucleotide bases and correspond to sequence-specific recognition of genes. Therefore, sequence-specific bindings are esse...

  13. An AP1 binding site upstream of the kappa immunoglobulin intron enhancer binds inducible factors and contributes to expression.

    Science.gov (United States)

    Schanke, J T; Marcuzzi, A; Podzorski, R P; Van Ness, B

    1994-01-01

    Expression of the kappa immunoglobulin light chain gene requires developmental- and tissue-specific regulation by trans-acting factors which interact with two distinct enhancer elements. A new protein-DNA interaction has been identified upstream of the intron enhancer, within the matrix-associated region of the J-C intron. The binding activity is greatly inducible in pre-B cells by bacterial lipopolysaccharide and interleukin-1 but specific complexes are found at all stages of B cell development tested. The footprinted binding site is homologous to the consensus AP1 motif. The protein components of this complex are specifically competed by an AP1 consensus motif and were shown by supershift to include c-Jun and c-Fos, suggesting that this binding site is an AP1 motif and that the Jun and Fos families of transcription factors play a role in the regulation of the kappa light chain gene. Mutation of the AP1 motif in the context of the intron enhancer was shown to decrease enhancer-mediated activation of the promoter in both pre-B cells induced with LPS and constitutive expression in mature B cells. Images PMID:7816634

  14. Photochemically enhanced binding of small molecules to the tumor necrosis factor receptor-1 inhibits the binding of TNF-[alpha

    Energy Technology Data Exchange (ETDEWEB)

    Carter, Percy H.; Scherle, Peggy A.; Muckelbauer, Jodi K.; Voss, Matthew E.; Liu, Rui-qin; Thompson III, Lorin A.; Xu, Meizhong; Lo, Yvonne C.; Li, Zhong; Strzemienski, Paul; Yang, Gengjie; Falahatpishen, Nikoo; Farrow, Neil A.; Tebben, Andrew J.; Underwood, Denis; Trzaskos, James M.; Friedman, Steven M.; Newton, Robert C.; Decicco, Carl P. (DuPont)

    2010-03-05

    The binding of tumor necrosis factor alpha (TNF-{alpha}) to the type-1 TNF receptor (TNFRc1) plays an important role in inflammation. Despite the clinical success of biologics (antibodies, soluble receptors) for treating TNF-based autoimmune conditions, no potent small molecule antagonists have been developed. Our screening of chemical libraries revealed that N-alkyl 5-arylidene-2-thioxo-1,3-thiazolidin-4-ones were antagonists of this protein-protein interaction. After chemical optimization, we discovered IW927, which potently disrupted the binding of TNF-{alpha} to TNFRc1 (IC{sub 50} = 50 nM) and also blocked TNF-stimulated phosphorylation of I{kappa}-B in Ramos cells (IC{sub 50} = 600 nM). This compound did not bind detectably to the related cytokine receptors TNFRc2 or CD40, and did not display any cytotoxicity at concentrations as high as 100 {micro}M. Detailed evaluation of this and related molecules revealed that compounds in this class are 'photochemically enhanced' inhibitors, in that they bind reversibly to the TNFRc1 with weak affinity (ca. 40-100 mM) and then covalently modify the receptor via a photochemical reaction. We obtained a crystal structure of IV703 (a close analog of IW927) bound to the TNFRc1. This structure clearly revealed that one of the aromatic rings of the inhibitor was covalently linked to the receptor through the main-chain nitrogen of Ala-62, a residue that has already been implicated in the binding of TNF-{alpha} to the TNFRc1. When combined with the fact that our inhibitors are reversible binders in light-excluded conditions, the results of the crystallography provide the basis for the rational design of nonphotoreactive inhibitors of the TNF-{alpha}-TNFRc1 interaction.

  15. Photochemically enhanced binding of small molecules to the tumor necrosis factor receptor-1 inhibits the binding of TNF-alpha.

    Science.gov (United States)

    Carter, P H; Scherle, P A; Muckelbauer, J K; Voss, M E; Liu, R Q; Thompson, L A; Tebben, A J; Solomon, K A; Lo, Y C; Li, Z; Strzemienski, P; Yang, G; Falahatpisheh, N; Xu, M; Wu, Z; Farrow, N A; Ramnarayan, K; Wang, J; Rideout, D; Yalamoori, V; Domaille, P; Underwood, D J; Trzaskos, J M; Friedman, S M; Newton, R C; Decicco, C P; Muckelbauer, J A

    2001-10-09

    The binding of tumor necrosis factor alpha (TNF-alpha) to the type-1 TNF receptor (TNFRc1) plays an important role in inflammation. Despite the clinical success of biologics (antibodies, soluble receptors) for treating TNF-based autoimmune conditions, no potent small molecule antagonists have been developed. Our screening of chemical libraries revealed that N-alkyl 5-arylidene-2-thioxo-1,3-thiazolidin-4-ones were antagonists of this protein-protein interaction. After chemical optimization, we discovered IW927, which potently disrupted the binding of TNF-alpha to TNFRc1 (IC(50) = 50 nM) and also blocked TNF-stimulated phosphorylation of Ikappa-B in Ramos cells (IC(50) = 600 nM). This compound did not bind detectably to the related cytokine receptors TNFRc2 or CD40, and did not display any cytotoxicity at concentrations as high as 100 microM. Detailed evaluation of this and related molecules revealed that compounds in this class are "photochemically enhanced" inhibitors, in that they bind reversibly to the TNFRc1 with weak affinity (ca. 40-100 microM) and then covalently modify the receptor via a photochemical reaction. We obtained a crystal structure of IV703 (a close analog of IW927) bound to the TNFRc1. This structure clearly revealed that one of the aromatic rings of the inhibitor was covalently linked to the receptor through the main-chain nitrogen of Ala-62, a residue that has already been implicated in the binding of TNF-alpha to the TNFRc1. When combined with the fact that our inhibitors are reversible binders in light-excluded conditions, the results of the crystallography provide the basis for the rational design of nonphotoreactive inhibitors of the TNF-alpha-TNFRc1 interaction.

  16. NCBI nr-aa BLAST: CBRC-RNOR-10-0233 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-RNOR-10-0233 ref|NP_112261.1| corticotropin releasing hormone receptor 1 [Ratt...us norvegicus] sp|P35353|CRFR1_RAT Corticotropin-releasing factor receptor 1 precursor (CRF-R) (CRF1) (Corticotropin-releasing... hormone receptor 1) (CRH-R 1) gb|AAA16441.1| corticotropin-releasing factor receptor gb|A...AC53519.1| corticotropin releasing factor receptor [Rattus norvegicus] gb|EDM06294.1| corticotropin releas...ing hormone receptor 1 [Rattus norvegicus] NP_112261.1 0.0 99% ...

  17. NCBI nr-aa BLAST: CBRC-MMUS-11-0131 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-MMUS-11-0131 ref|NP_112261.1| corticotropin releasing hormone receptor 1 [Ratt...us norvegicus] sp|P35353|CRFR1_RAT Corticotropin-releasing factor receptor 1 precursor (CRF-R) (CRF1) (Corticotropin-releasing... hormone receptor 1) (CRH-R 1) gb|AAA16441.1| corticotropin-releasing factor receptor gb|A...AC53519.1| corticotropin releasing factor receptor [Rattus norvegicus] gb|EDM06294.1| corticotropin releas...ing hormone receptor 1 [Rattus norvegicus] NP_112261.1 0.0 98% ...

  18. Kinetic properties of a single nucleotide binding site on chloroplast coupling factor 1 (CF1).

    Science.gov (United States)

    Günther, S; Huchzermeyer, B

    1998-12-01

    The kinetics of nucleotide binding to spinach chloroplast coupling factor CF1 in a fully inhibited state were investigated by stopped-flow experiments using the fluorescent trinitrophenyl analogue (NO2)3Ph-ADP. The CF1 was in a state in which two of the three binding sites on the beta subunits were irreversibly blocked with ADP, Mg2+ and fluoroaluminate, while the three binding sites on the alpha subunits were occupied by nucleotides [Garin, J., Vincon, M., Gagnon, J. & Vignais, P. V. (1994) Biochemistry 33, 3772-3777)]. Thus, it was possible to characterise a single nucleotide-binding site without superimposed nucleotide exchange or binding to an additional site. (NO2)3Ph-ADP binding to the remaining site on the third beta subunit was characterised by a high dissociation rate of 15 s(-1), leading to a very low affinity (dissociation constant higher than 150 microM). Subsequent to isolation, CF1 preparations contained two endogenously bound nucleotides. Pre-loading with ATP yielded CF1 with five tightly bound nucleotides and one free nucleotide-binding site on a beta subunit. Pre-loading with ADP, however, resulted in a CF1 preparation containing four tightly bound nucleotides and two free nucleotide binding sites. One of the two free binding sites was located on a beta subunit, while the other was probably located on an alpha subunit.

  19. Multiplexed massively parallel SELEX for characterization of human transcription factor binding specificities

    Science.gov (United States)

    Jolma, Arttu; Kivioja, Teemu; Toivonen, Jarkko; Cheng, Lu; Wei, Gonghong; Enge, Martin; Taipale, Mikko; Vaquerizas, Juan M.; Yan, Jian; Sillanpää, Mikko J.; Bonke, Martin; Palin, Kimmo; Talukder, Shaheynoor; Hughes, Timothy R.; Luscombe, Nicholas M.; Ukkonen, Esko; Taipale, Jussi

    2010-01-01

    The genetic code—the binding specificity of all transfer-RNAs—defines how protein primary structure is determined by DNA sequence. DNA also dictates when and where proteins are expressed, and this information is encoded in a pattern of specific sequence motifs that are recognized by transcription factors. However, the DNA-binding specificity is only known for a small fraction of the ∼1400 human transcription factors (TFs). We describe here a high-throughput method for analyzing transcription factor binding specificity that is based on systematic evolution of ligands by exponential enrichment (SELEX) and massively parallel sequencing. The method is optimized for analysis of large numbers of TFs in parallel through the use of affinity-tagged proteins, barcoded selection oligonucleotides, and multiplexed sequencing. Data are analyzed by a new bioinformatic platform that uses the hundreds of thousands of sequencing reads obtained to control the quality of the experiments and to generate binding motifs for the TFs. The described technology allows higher throughput and identification of much longer binding profiles than current microarray-based methods. In addition, as our method is based on proteins expressed in mammalian cells, it can also be used to characterize DNA-binding preferences of full-length proteins or proteins requiring post-translational modifications. We validate the method by determining binding specificities of 14 different classes of TFs and by confirming the specificities for NFATC1 and RFX3 using ChIP-seq. Our results reveal unexpected dimeric modes of binding for several factors that were thought to preferentially bind DNA as monomers. PMID:20378718

  20. NCBI nr-aa BLAST: CBRC-STRI-01-2355 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-STRI-01-2355 ref|NP_004373.2| corticotropin releasing hormone receptor 1 isofo...rm 2 [Homo sapiens] gb|AAA35718.1| corticotropin releasing factor receptor [Homo sapiens] emb|CAA51052.1| corticotrophin releasing... factor receptor [Homo sapiens] gb|AAR19768.1| corticotropin releasing hormone recepto...r 1 [Homo sapiens] gb|AAH96836.1| Corticotropin releasing hormone receptor 1 [Hom...o sapiens] dbj|BAG70280.1| corticotropin releasing hormone receptor 1 [Homo sapiens] NP_004373.2 1e-165 80% ...

  1. NCBI nr-aa BLAST: CBRC-PCAP-01-1661 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-PCAP-01-1661 ref|NP_004373.2| corticotropin releasing hormone receptor 1 isofo...rm 2 [Homo sapiens] gb|AAA35718.1| corticotropin releasing factor receptor [Homo sapiens] emb|CAA51052.1| corticotrophin releasing... factor receptor [Homo sapiens] gb|AAR19768.1| corticotropin releasing hormone recepto...r 1 [Homo sapiens] gb|AAH96836.1| Corticotropin releasing hormone receptor 1 [Hom...o sapiens] dbj|BAG70280.1| corticotropin releasing hormone receptor 1 [Homo sapiens] NP_004373.2 1e-125 71% ...

  2. NCBI nr-aa BLAST: CBRC-PVAM-01-1208 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-PVAM-01-1208 ref|NP_004373.2| corticotropin releasing hormone receptor 1 isofo...rm 2 [Homo sapiens] gb|AAA35718.1| corticotropin releasing factor receptor [Homo sapiens] emb|CAA51052.1| corticotrophin releasing... factor receptor [Homo sapiens] gb|AAR19768.1| corticotropin releasing hormone recepto...r 1 [Homo sapiens] gb|AAH96836.1| Corticotropin releasing hormone receptor 1 [Hom...o sapiens] dbj|BAG70280.1| corticotropin releasing hormone receptor 1 [Homo sapiens] NP_004373.2 0.0 96% ...

  3. NCBI nr-aa BLAST: CBRC-OPRI-01-1504 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-OPRI-01-1504 ref|NP_004373.2| corticotropin releasing hormone receptor 1 isofo...rm 2 [Homo sapiens] gb|AAA35718.1| corticotropin releasing factor receptor [Homo sapiens] emb|CAA51052.1| corticotrophin releasing... factor receptor [Homo sapiens] gb|AAR19768.1| corticotropin releasing hormone recepto...r 1 [Homo sapiens] gb|AAH96836.1| Corticotropin releasing hormone receptor 1 [Hom...o sapiens] dbj|BAG70280.1| corticotropin releasing hormone receptor 1 [Homo sapiens] NP_004373.2 0.0 97% ...

  4. NCBI nr-aa BLAST: CBRC-VPAC-01-0911 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-VPAC-01-0911 ref|NP_004373.2| corticotropin releasing hormone receptor 1 isofo...rm 2 [Homo sapiens] gb|AAA35718.1| corticotropin releasing factor receptor [Homo sapiens] emb|CAA51052.1| corticotrophin releasing... factor receptor [Homo sapiens] gb|AAR19768.1| corticotropin releasing hormone recepto...r 1 [Homo sapiens] gb|AAH96836.1| Corticotropin releasing hormone receptor 1 [Hom...o sapiens] dbj|BAG70280.1| corticotropin releasing hormone receptor 1 [Homo sapiens] NP_004373.2 5e-71 57% ...

  5. NCBI nr-aa BLAST: CBRC-GGOR-01-1460 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-GGOR-01-1460 ref|NP_004373.2| corticotropin releasing hormone receptor 1 isofo...rm 2 [Homo sapiens] gb|AAA35718.1| corticotropin releasing factor receptor [Homo sapiens] emb|CAA51052.1| corticotrophin releasing... factor receptor [Homo sapiens] gb|AAR19768.1| corticotropin releasing hormone recepto...r 1 [Homo sapiens] gb|AAH96836.1| Corticotropin releasing hormone receptor 1 [Hom...o sapiens] dbj|BAG70280.1| corticotropin releasing hormone receptor 1 [Homo sapiens] NP_004373.2 0.0 82% ...

  6. NCBI nr-aa BLAST: CBRC-MDOM-02-0161 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-MDOM-02-0161 ref|NP_004373.2| corticotropin releasing hormone receptor 1 isofo...rm 2 [Homo sapiens] gb|AAA35718.1| corticotropin releasing factor receptor [Homo sapiens] emb|CAA51052.1| corticotrophin releasing... factor receptor [Homo sapiens] gb|AAR19768.1| corticotropin releasing hormone recepto...r 1 [Homo sapiens] gb|AAH96836.1| Corticotropin releasing hormone receptor 1 [Hom...o sapiens] dbj|BAG70280.1| corticotropin releasing hormone receptor 1 [Homo sapiens] NP_004373.2 0.0 92% ...

  7. NCBI nr-aa BLAST: CBRC-MEUG-01-2017 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-MEUG-01-2017 ref|NP_004373.2| corticotropin releasing hormone receptor 1 isofo...rm 2 [Homo sapiens] gb|AAA35718.1| corticotropin releasing factor receptor [Homo sapiens] emb|CAA51052.1| corticotrophin releasing... factor receptor [Homo sapiens] gb|AAR19768.1| corticotropin releasing hormone recepto...r 1 [Homo sapiens] gb|AAH96836.1| Corticotropin releasing hormone receptor 1 [Hom...o sapiens] dbj|BAG70280.1| corticotropin releasing hormone receptor 1 [Homo sapiens] NP_004373.2 0.0 88% ...

  8. NCBI nr-aa BLAST: CBRC-MLUC-01-0880 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-MLUC-01-0880 ref|NP_004373.2| corticotropin releasing hormone receptor 1 isofo...rm 2 [Homo sapiens] gb|AAA35718.1| corticotropin releasing factor receptor [Homo sapiens] emb|CAA51052.1| corticotrophin releasing... factor receptor [Homo sapiens] gb|AAR19768.1| corticotropin releasing hormone recepto...r 1 [Homo sapiens] gb|AAH96836.1| Corticotropin releasing hormone receptor 1 [Hom...o sapiens] dbj|BAG70280.1| corticotropin releasing hormone receptor 1 [Homo sapiens] NP_004373.2 0.0 91% ...

  9. NCBI nr-aa BLAST: CBRC-TTRU-01-0603 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-TTRU-01-0603 ref|NP_004373.2| corticotropin releasing hormone receptor 1 isofo...rm 2 [Homo sapiens] gb|AAA35718.1| corticotropin releasing factor receptor [Homo sapiens] emb|CAA51052.1| corticotrophin releasing... factor receptor [Homo sapiens] gb|AAR19768.1| corticotropin releasing hormone recepto...r 1 [Homo sapiens] gb|AAH96836.1| Corticotropin releasing hormone receptor 1 [Hom...o sapiens] dbj|BAG70280.1| corticotropin releasing hormone receptor 1 [Homo sapiens] NP_004373.2 0.0 95% ...

  10. Having it both ways: transcription factors that bind DNA and RNA.

    Science.gov (United States)

    Cassiday, Laura A; Maher, L James

    2002-10-01

    Multifunctional proteins challenge the conventional 'one protein-one function' paradigm. Here we note apparent multifunctional proteins with nucleic acid partners, tabulating eight examples. We then focus on eight additional cases of transcription factors that bind double-stranded DNA with sequence specificity, but that also appear to lead alternative lives as RNA-binding proteins. Exemplified by the prototypic Xenopus TFIIIA protein, and more recently by mammalian p53, this list of transcription factors includes WT-1, TRA-1, bicoid, the bacterial sigma(70) subunit, STAT1 and TLS/FUS. The existence of transcription factors that bind both DNA and RNA provides an interesting puzzle. Little is known concerning the biological roles of these alternative protein-nucleic acid interactions, and even less is known concerning the structural basis for dual nucleic acid specificity. We discuss how these natural examples have motivated us to identify artificial RNA sequences that competitively inhibit a DNA-binding transcription factor not known to have a natural RNA partner. The identification of such RNAs raises the possibility that RNA binding by DNA-binding proteins is more common than currently appreciated.

  11. DNA-MATRIX: a tool for constructing transcription factor binding sites Weight matrix

    Directory of Open Access Journals (Sweden)

    Chandra Prakash Singh,

    2009-12-01

    Full Text Available Despite considerable effort to date, DNA transcription factor binding sites prediction in whole genome remains a challenge for the researchers. Currently the genome wide transcription factor binding sites prediction tools required either direct pattern sequence or weight matrix. Although there are known transcription factor binding sites pattern databases and tools for genome level prediction but no tool for weight matrix construction. Considering this, we developed a DNA-MATRIX tool for searching putative transcription factor binding sites in genomic sequences. DNA-MATRIX uses the simple heuristic approach for weight matrix construction, which can be transformed into different formats as per the requirement of researcher’s for further genome wide prediction and therefore provides the possibility to identify the conserved known DNA binding sites in the coregulated genes and also to search for a great variety of different regulatory binding patterns. The user may construct and save specific weight or frequency matrices in different formats derived through user selected set of known motif sequences.

  12. Binding of factor VIII to von willebrand factor is enabled by cleavage of the von Willebrand factor propeptide and enhanced by formation of disulfide-linked multimers.

    Science.gov (United States)

    Bendetowicz, A V; Morris, J A; Wise, R J; Gilbert, G E; Kaufman, R J

    1998-07-15

    von Willebrand factor (vWF) is a multimeric adhesive glycoprotein with one factor VIII binding site/subunit. Prior reports suggest that posttranslational modifications of vWF, including formation of N-terminal intersubunit disulfide bonds and subsequent cleavage of the propeptide, influence availability and/or affinity of factor VIII binding sites. We found that deletion of the vWF propeptide produced a dimeric vWF molecule lacking N-terminal intersubunit disulfide bonds. This molecule bound fluorescein-labeled factor VIII with sixfold lower affinity than multimeric vWF in an equilibrium flow cytometry assay (approximate KDs, 5 nmol/L v 0.9 nmol/L). Coexpression of propeptide-deleted vWF with the vWF propeptide in trans yielded multimeric vWF that displayed increased affinity for factor VIII. Insertion of an alanine residue at the N-terminus of the mature vWF subunit destroyed binding to factor VIII, indicating that the native mature N-terminus is required for factor VIII binding. The requirement for vWF propeptide cleavage was shown by (1) a point mutation of the vWF propeptide cleavage site yielding pro-vWF that was defective in factor VIII binding and (2) correlation between efficiency of intracellular propeptide cleavage and factor VIII binding. Furthermore, in a cell-free system, addition of the propeptide-cleaving enzyme PACE/furin enabled factor VIII binding in parallel with propeptide cleavage. Our results indicate that high-affinity factor VIII binding sites are located on N-terminal disulfide-linked vWF subunits from which the propeptide has been cleaved.

  13. Effects of calmodulin on DNA-binding activity of heat shock transcription factor in vitro

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The DNA-binding activity of heat shock transcription factor (HSF) was induced by heat shock (HS) of a whole cell extract. Addition of antiserum, specific to CaM, to a whole cell extract reduced bind of the HSF to the heat shock element (HSE) with maize, and the re-addition of CaM to the sample restored the activity of the HSF for binding to HSE. In addition, DNA-binding activity of the HSF was also induced by directly adding CaM to a whole cell extract at non-HS temperature with maize. Similar results were obtained with wheat and tomato. Our observations provide the first example of the involvement of CaM in regulation of the DNA-binding activity of the HSF.

  14. SELEX-Seq: A Method to Determine DNA Binding Specificities of Plant Transcription Factors.

    Science.gov (United States)

    Smaczniak, Cezary; Angenent, Gerco C; Kaufmann, Kerstin

    2017-01-01

    Systematic evolution of ligands by exponential enrichment (SELEX) is a method that allows isolating specific nucleotide sequences that interact with a DNA binding protein of choice. By using a transcription factor (TF) and a randomized pool of double-stranded DNA, this technique can be used to characterize TF DNA binding specificities and affinities. The method is based on protein-DNA complex immunoprecipitation with protein-specific antibodies and subsequent DNA selection and amplification. Application of massively parallel sequencing (-seq) at each cycle of SELEX allows determining the relative affinities to any DNA sequence for any transcription factor or TF complex. The resulting TF DNA binding motifs can be used to predict potential DNA binding sites in genomes and thereby direct target genes of TFs.

  15. Effects of Heat Stress on Yeast Heat Shock Factor-Promoter Binding In Vivo

    Institute of Scientific and Technical Information of China (English)

    Ning LI; Le-Min ZHANG; Ke-Qin ZHANG; Jing-Shi DENG; Ralf PR(A)NDL; Fritz SCH(O)FFL

    2006-01-01

    Heat shock factor-DNA interaction is critical for understanding the regulatory mechanisms of stress-induced gene expression in eukaryotes. In this study, we analyzed the in vivo binding of yeast heat shock factor (HSF) to the promoters of target genes ScSSA1, ScSSA4, HSP30 and HSP104, using chromatin immunoprecipitation. Previous work suggested that yeast HSF is constitutively bound to DNA at all temperatures. Expression of HSF target genes is regulated at the post-transcriptional level. However, our results indicated that HSF does not bind to the promoters of ScSSA4 and HSP30 at normal temperature (23 ℃). Binding to these promoters is rapidly induced by heat stress at 39 ℃. HSF binds to ScSSA1 and HSP104 promoters under non-stress conditions, but at a low level. Heat stress rapidly leads to a notable increase in the binding of HSF to these two genes. The kinetics of the level of HSF-promoter binding correlate well with the expression of target genes, suggesting that the expression of HSF target genes is at least partially the result of HSF-promoter binding stability and subsequent transcription stimulation.

  16. Growth factors induce monocyte binding to vascular smooth muscle cells: implications for monocyte retention in atherosclerosis.

    Science.gov (United States)

    Cai, Qiangjun; Lanting, Linda; Natarajan, Rama

    2004-09-01

    Adhesive interactions between monocytes and vascular smooth muscle cells (VSMC) may contribute to subendothelial monocyte-macrophage retention in atherosclerosis. We investigated the effects of angiotensin II (ANG II) and platelet-derived growth factor (PDGF)-BB on VSMC-monocyte interactions. Treatment of human aortic VSMC (HVSMC) with ANG II or PDGF-BB significantly increased binding to human monocytic THP-1 cells and to peripheral blood monocytes. This was inhibited by antibodies to monocyte beta(1)- and beta(2)-integrins. The binding was also attenuated by blocking VSMC arachidonic acid (AA) metabolism by inhibitors of 12/15-lipoxygenase (12/15-LO) or cyclooxygenase-2 (COX-2). Conversely, binding was enhanced by overexpression of 12/15-LO or COX-2. Direct treatment of HVSMC with AA or its metabolites also increased binding. Furthermore, VSMC derived from 12/15-LO knockout mice displayed reduced binding to mouse monocytic cells relative to genetic control mice. Using specific signal transduction inhibitors, we demonstrated the involvement of Src, phosphoinositide 3-kinase, and MAPKs in ANG II- or PDGF-BB-induced binding. Interestingly, after coculture with HVSMC, THP-1 cell surface expression of the scavenger receptor CD36 was increased. These results show for the first time that growth factors may play additional roles in atherosclerosis by increasing monocyte binding to VSMC via AA metabolism and key signaling pathways. This can lead to monocyte subendothelial retention, CD36 expression, and foam cell formation.

  17. Statistical Mechanics of Transcription-Factor Binding Site Discovery Using Hidden Markov Models

    OpenAIRE

    Mehta, Pankaj; Schwab, David J.; Sengupta, Anirvan M.

    2011-01-01

    Hidden Markov Models (HMMs) are a commonly used tool for inference of transcription factor (TF) binding sites from DNA sequence data. We exploit the mathematical equivalence between HMMs for TF binding and the "inverse" statistical mechanics of hard rods in a one-dimensional disordered potential to investigate learning in HMMs. We derive analytic expressions for the Fisher information, a commonly employed measure of confidence in learned parameters, in the biologically relevant limit where th...

  18. An information transmission model for transcription factor binding at regulatory DNA sites.

    Science.gov (United States)

    Tan, Mingfeng; Yu, Dong; Jin, Yuan; Dou, Lei; Li, Beiping; Wang, Yuelan; Yue, Junjie; Liang, Long

    2012-06-06

    Computational identification of transcription factor binding sites (TFBSs) is a rapid, cost-efficient way to locate unknown regulatory elements. With increased potential for high-throughput genome sequencing, the availability of accurate computational methods for TFBS prediction has never been as important as it currently is. To date, identifying TFBSs with high sensitivity and specificity is still an open challenge, necessitating the development of novel models for predicting transcription factor-binding regulatory DNA elements. Based on the information theory, we propose a model for transcription factor binding of regulatory DNA sites. Our model incorporates position interdependencies in effective ways. The model computes the information transferred (TI) between the transcription factor and the TFBS during the binding process and uses TI as the criterion to determine whether the sequence motif is a possible TFBS. Based on this model, we developed a computational method to identify TFBSs. By theoretically proving and testing our model using both real and artificial data, we found that our model provides highly accurate predictive results. In this study, we present a novel model for transcription factor binding regulatory DNA sites. The model can provide an increased ability to detect TFBSs.

  19. Combining transcription factor binding affinities with open-chromatin data for accurate gene expression prediction.

    Science.gov (United States)

    Schmidt, Florian; Gasparoni, Nina; Gasparoni, Gilles; Gianmoena, Kathrin; Cadenas, Cristina; Polansky, Julia K; Ebert, Peter; Nordström, Karl; Barann, Matthias; Sinha, Anupam; Fröhler, Sebastian; Xiong, Jieyi; Dehghani Amirabad, Azim; Behjati Ardakani, Fatemeh; Hutter, Barbara; Zipprich, Gideon; Felder, Bärbel; Eils, Jürgen; Brors, Benedikt; Chen, Wei; Hengstler, Jan G; Hamann, Alf; Lengauer, Thomas; Rosenstiel, Philip; Walter, Jörn; Schulz, Marcel H

    2017-01-09

    The binding and contribution of transcription factors (TF) to cell specific gene expression is often deduced from open-chromatin measurements to avoid costly TF ChIP-seq assays. Thus, it is important to develop computational methods for accurate TF binding prediction in open-chromatin regions (OCRs). Here, we report a novel segmentation-based method, TEPIC, to predict TF binding by combining sets of OCRs with position weight matrices. TEPIC can be applied to various open-chromatin data, e.g. DNaseI-seq and NOMe-seq. Additionally, Histone-Marks (HMs) can be used to identify candidate TF binding sites. TEPIC computes TF affinities and uses open-chromatin/HM signal intensity as quantitative measures of TF binding strength. Using machine learning, we find low affinity binding sites to improve our ability to explain gene expression variability compared to the standard presence/absence classification of binding sites. Further, we show that both footprints and peaks capture essential TF binding events and lead to a good prediction performance. In our application, gene-based scores computed by TEPIC with one open-chromatin assay nearly reach the quality of several TF ChIP-seq data sets. Finally, these scores correctly predict known transcriptional regulators as illustrated by the application to novel DNaseI-seq and NOMe-seq data for primary human hepatocytes and CD4+ T-cells, respectively.

  20. Receptor binding sites for atrial natriuretic factor are expressed by brown adipose tissue

    Energy Technology Data Exchange (ETDEWEB)

    Bacay, A.C.; Mantyh, C.R.; Vigna, S.R.; Mantyh, P.W. (Wadsworth VA Medical Center, Los Angeles, CA (USA))

    1988-09-01

    To explore the possibility that atrial natriuretic factor (ANF) is involved in thermoregulation we used quantitative receptor autoradiography and homogenate receptor binding assays to identify ANF bindings sites in neonatal rat and sheep brown adipose tissue, respectively. Using quantitative receptor autoradiography were were able to localize high levels of specific binding sites for {sup 125}I-rat ANF in neonatal rat brown adipose tissue. Homogenate binding assays on sheep brown fat demonstrated that the radioligand was binding to the membrane fraction and that the specific binding was not due to a lipophilic interaction between {sup 125}I-rat ANF and brown fat. Specific binding of {sup 125}I-rat ANF to the membranes of brown fat cells was inhibited by unlabeled rat ANF with a Ki of 8.0 x 10(-9) M, but not by unrelated peptides. These studies demonstrate that brown fat cells express high levels of ANF receptor binding sites in neonatal rat and sheep and suggest that ANF may play a role in thermoregulation.

  1. Combining transcription factor binding affinities with open-chromatin data for accurate gene expression prediction

    Science.gov (United States)

    Schmidt, Florian; Gasparoni, Nina; Gasparoni, Gilles; Gianmoena, Kathrin; Cadenas, Cristina; Polansky, Julia K.; Ebert, Peter; Nordström, Karl; Barann, Matthias; Sinha, Anupam; Fröhler, Sebastian; Xiong, Jieyi; Dehghani Amirabad, Azim; Behjati Ardakani, Fatemeh; Hutter, Barbara; Zipprich, Gideon; Felder, Bärbel; Eils, Jürgen; Brors, Benedikt; Chen, Wei; Hengstler, Jan G.; Hamann, Alf; Lengauer, Thomas; Rosenstiel, Philip; Walter, Jörn; Schulz, Marcel H.

    2017-01-01

    The binding and contribution of transcription factors (TF) to cell specific gene expression is often deduced from open-chromatin measurements to avoid costly TF ChIP-seq assays. Thus, it is important to develop computational methods for accurate TF binding prediction in open-chromatin regions (OCRs). Here, we report a novel segmentation-based method, TEPIC, to predict TF binding by combining sets of OCRs with position weight matrices. TEPIC can be applied to various open-chromatin data, e.g. DNaseI-seq and NOMe-seq. Additionally, Histone-Marks (HMs) can be used to identify candidate TF binding sites. TEPIC computes TF affinities and uses open-chromatin/HM signal intensity as quantitative measures of TF binding strength. Using machine learning, we find low affinity binding sites to improve our ability to explain gene expression variability compared to the standard presence/absence classification of binding sites. Further, we show that both footprints and peaks capture essential TF binding events and lead to a good prediction performance. In our application, gene-based scores computed by TEPIC with one open-chromatin assay nearly reach the quality of several TF ChIP-seq data sets. Finally, these scores correctly predict known transcriptional regulators as illustrated by the application to novel DNaseI-seq and NOMe-seq data for primary human hepatocytes and CD4+ T-cells, respectively. PMID:27899623

  2. Spatial distribution of predicted transcription factor binding sites in Drosophila ChIP peaks.

    Science.gov (United States)

    Pettie, Kade P; Dresch, Jacqueline M; Drewell, Robert A

    2016-08-01

    In the development of the Drosophila embryo, gene expression is directed by the sequence-specific interactions of a large network of protein transcription factors (TFs) and DNA cis-regulatory binding sites. Once the identity of the typically 8-10bp binding sites for any given TF has been determined by one of several experimental procedures, the sequences can be represented in a position weight matrix (PWM) and used to predict the location of additional TF binding sites elsewhere in the genome. Often, alignments of large (>200bp) genomic fragments that have been experimentally determined to bind the TF of interest in Chromatin Immunoprecipitation (ChIP) studies are trimmed under the assumption that the majority of the binding sites are located near the center of all the aligned fragments. In this study, ChIP/chip datasets are analyzed using the corresponding PWMs for the well-studied TFs; CAUDAL, HUNCHBACK, KNIRPS and KRUPPEL, to determine the distribution of predicted binding sites. All four TFs are critical regulators of gene expression along the anterio-posterior axis in early Drosophila development. For all four TFs, the ChIP peaks contain multiple binding sites that are broadly distributed across the genomic region represented by the peak, regardless of the prediction stringency criteria used. This result suggests that ChIP peak trimming may exclude functional binding sites from subsequent analyses.

  3. Systematic dissection of genomic features determining transcription factor binding and enhancer function

    Science.gov (United States)

    Grossman, Sharon R.; Zhang, Xiaolan; Wang, Li; Engreitz, Jesse; Melnikov, Alexandre; Rogov, Peter; Tewhey, Ryan; Isakova, Alina; Deplancke, Bart; Bernstein, Bradley E.; Mikkelsen, Tarjei S.; Lander, Eric S.

    2017-01-01

    Enhancers regulate gene expression through the binding of sequence-specific transcription factors (TFs) to cognate motifs. Various features influence TF binding and enhancer function—including the chromatin state of the genomic locus, the affinities of the binding site, the activity of the bound TFs, and interactions among TFs. However, the precise nature and relative contributions of these features remain unclear. Here, we used massively parallel reporter assays (MPRAs) involving 32,115 natural and synthetic enhancers, together with high-throughput in vivo binding assays, to systematically dissect the contribution of each of these features to the binding and activity of genomic regulatory elements that contain motifs for PPARγ, a TF that serves as a key regulator of adipogenesis. We show that distinct sets of features govern PPARγ binding vs. enhancer activity. PPARγ binding is largely governed by the affinity of the specific motif site and higher-order features of the larger genomic locus, such as chromatin accessibility. In contrast, the enhancer activity of PPARγ binding sites depends on varying contributions from dozens of TFs in the immediate vicinity, including interactions between combinations of these TFs. Different pairs of motifs follow different interaction rules, including subadditive, additive, and superadditive interactions among specific classes of TFs, with both spatially constrained and flexible grammars. Our results provide a paradigm for the systematic characterization of the genomic features underlying regulatory elements, applicable to the design of synthetic regulatory elements or the interpretation of human genetic variation. PMID:28137873

  4. Cell-type specificity of ChIP-predicted transcription factor binding sites

    Directory of Open Access Journals (Sweden)

    Håndstad Tony

    2012-08-01

    Full Text Available Abstract Background Context-dependent transcription factor (TF binding is one reason for differences in gene expression patterns between different cellular states. Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq identifies genome-wide TF binding sites for one particular context—the cells used in the experiment. But can such ChIP-seq data predict TF binding in other cellular contexts and is it possible to distinguish context-dependent from ubiquitous TF binding? Results We compared ChIP-seq data on TF binding for multiple TFs in two different cell types and found that on average only a third of ChIP-seq peak regions are common to both cell types. Expectedly, common peaks occur more frequently in certain genomic contexts, such as CpG-rich promoters, whereas chromatin differences characterize cell-type specific TF binding. We also find, however, that genotype differences between the cell types can explain differences in binding. Moreover, ChIP-seq signal intensity and peak clustering are the strongest predictors of common peaks. Compared with strong peaks located in regions containing peaks for multiple transcription factors, weak and isolated peaks are less common between the cell types and are less associated with data that indicate regulatory activity. Conclusions Together, the results suggest that experimental noise is prevalent among weak peaks, whereas strong and clustered peaks represent high-confidence binding events that often occur in other cellular contexts. Nevertheless, 30-40% of the strongest and most clustered peaks show context-dependent regulation. We show that by combining signal intensity with additional data—ranging from context independent information such as binding site conservation and position weight matrix scores to context dependent chromatin structure—we can predict whether a ChIP-seq peak is likely to be present in other cellular contexts.

  5. Transcription factor binding sites are highly enriched within microRNA precursor sequences

    Directory of Open Access Journals (Sweden)

    Piriyapongsa Jittima

    2011-12-01

    Full Text Available Abstract Background Transcription factors are thought to regulate the transcription of microRNA genes in a manner similar to that of protein-coding genes; that is, by binding to conventional transcription factor binding site DNA sequences located in or near promoter regions that lie upstream of the microRNA genes. However, in the course of analyzing the genomics of human microRNA genes, we noticed that annotated transcription factor binding sites commonly lie within 70- to 110-nt long microRNA small hairpin precursor sequences. Results We report that about 45% of all human small hairpin microRNA (pre-miR sequences contain at least one predicted transcription factor binding site motif that is conserved across human, mouse and rat, and this rises to over 75% if one excludes primate-specific pre-miRs. The association is robust and has extremely strong statistical significance; it affects both intergenic and intronic pre-miRs and both isolated and clustered microRNA genes. We also confirmed and extended this finding using a separate analysis that examined all human pre-miR sequences regardless of conservation across species. Conclusions The transcription factor binding sites localized within small hairpin microRNA precursor sequences may possibly regulate their transcription. Transcription factors may also possibly bind directly to nascent primary microRNA gene transcripts or small hairpin microRNA precursors and regulate their processing. Reviewers This article was reviewed by Guillaume Bourque (nominated by Jerzy Jurka, Dmitri Pervouchine (nominated by Mikhail Gelfand, and Yuriy Gusev.

  6. Functional diversification of paralogous transcription factors via divergence in DNA binding site motif and in expression.

    Directory of Open Access Journals (Sweden)

    Larry N Singh

    Full Text Available BACKGROUND: Gene duplication is a major driver of evolutionary innovation as it allows for an organism to elaborate its existing biological functions via specialization or diversification of initially redundant gene paralogs. Gene function can diversify in several ways. Transcription factor gene paralogs in particular, can diversify either by changes in their tissue-specific expression pattern or by changes in the DNA binding site motif recognized by their protein product, which in turn alters their gene targets. The relationship between these two modes of functional diversification of transcription factor paralogs has not been previously investigated, and is essential for understanding adaptive evolution of transcription factor gene families. FINDINGS: Based on a large set of human paralogous transcription factor pairs, we show that when the DNA binding site motifs of transcription factor paralogs are similar, the expressions of the genes that encode the paralogs have diverged, so in general, at most one of the paralogs is highly expressed in a tissue. Moreover, paralogs with diverged DNA binding site motifs tend to be diverged in their function. Conversely, two paralogs that are highly expressed in a tissue tend to have dissimilar DNA binding site motifs. We have also found that in general, within a paralogous family, tissue-specific decrease in gene expression is more frequent than what is expected by chance. CONCLUSIONS: While previous investigations of paralogous gene diversification have only considered coding sequence divergence, by explicitly quantifying divergence in DNA binding site motif, our work presents a new paradigm for investigating functional diversification. Consistent with evolutionary expectation, our quantitative analysis suggests that paralogous transcription factors have survived extinction in part, either through diversification of their DNA binding site motifs or through alterations in their tissue-specific expression

  7. Discovery and validation of information theory-based transcription factor and cofactor binding site motifs.

    Science.gov (United States)

    Lu, Ruipeng; Mucaki, Eliseos J; Rogan, Peter K

    2016-11-28

    Data from ChIP-seq experiments can derive the genome-wide binding specificities of transcription factors (TFs) and other regulatory proteins. We analyzed 765 ENCODE ChIP-seq peak datasets of 207 human TFs with a novel motif discovery pipeline based on recursive, thresholded entropy minimization. This approach, while obviating the need to compensate for skewed nucleotide composition, distinguishes true binding motifs from noise, quantifies the strengths of individual binding sites based on computed affinity and detects adjacent cofactor binding sites that coordinate with the targets of primary, immunoprecipitated TFs. We obtained contiguous and bipartite information theory-based position weight matrices (iPWMs) for 93 sequence-specific TFs, discovered 23 cofactor motifs for 127 TFs and revealed six high-confidence novel motifs. The reliability and accuracy of these iPWMs were determined via four independent validation methods, including the detection of experimentally proven binding sites, explanation of effects of characterized SNPs, comparison with previously published motifs and statistical analyses. We also predict previously unreported TF coregulatory interactions (e.g. TF complexes). These iPWMs constitute a powerful tool for predicting the effects of sequence variants in known binding sites, performing mutation analysis on regulatory SNPs and predicting previously unrecognized binding sites and target genes.

  8. Genome-wide conserved consensus transcription factor binding motifs are hyper-methylated

    Directory of Open Access Journals (Sweden)

    Down Thomas A

    2010-09-01

    Full Text Available Abstract Background DNA methylation can regulate gene expression by modulating the interaction between DNA and proteins or protein complexes. Conserved consensus motifs exist across the human genome ("predicted transcription factor binding sites": "predicted TFBS" but the large majority of these are proven by chromatin immunoprecipitation and high throughput sequencing (ChIP-seq not to be biological transcription factor binding sites ("empirical TFBS". We hypothesize that DNA methylation at conserved consensus motifs prevents promiscuous or disorderly transcription factor binding. Results Using genome-wide methylation maps of the human heart and sperm, we found that all conserved consensus motifs as well as the subset of those that reside outside CpG islands have an aggregate profile of hyper-methylation. In contrast, empirical TFBS with conserved consensus motifs have a profile of hypo-methylation. 40% of empirical TFBS with conserved consensus motifs resided in CpG islands whereas only 7% of all conserved consensus motifs were in CpG islands. Finally we further identified a minority subset of TF whose profiles are either hypo-methylated or neutral at their respective conserved consensus motifs implicating that these TF may be responsible for establishing or maintaining an un-methylated DNA state, or whose binding is not regulated by DNA methylation. Conclusions Our analysis supports the hypothesis that at least for a subset of TF, empirical binding to conserved consensus motifs genome-wide may be controlled by DNA methylation.

  9. The Role of Genome Accessibility in Transcription Factor Binding in Bacteria.

    Directory of Open Access Journals (Sweden)

    Antonio L C Gomes

    2016-04-01

    Full Text Available ChIP-seq enables genome-scale identification of regulatory regions that govern gene expression. However, the biological insights generated from ChIP-seq analysis have been limited to predictions of binding sites and cooperative interactions. Furthermore, ChIP-seq data often poorly correlate with in vitro measurements or predicted motifs, highlighting that binding affinity alone is insufficient to explain transcription factor (TF-binding in vivo. One possibility is that binding sites are not equally accessible across the genome. A more comprehensive biophysical representation of TF-binding is required to improve our ability to understand, predict, and alter gene expression. Here, we show that genome accessibility is a key parameter that impacts TF-binding in bacteria. We developed a thermodynamic model that parameterizes ChIP-seq coverage in terms of genome accessibility and binding affinity. The role of genome accessibility is validated using a large-scale ChIP-seq dataset of the M. tuberculosis regulatory network. We find that accounting for genome accessibility led to a model that explains 63% of the ChIP-seq profile variance, while a model based in motif score alone explains only 35% of the variance. Moreover, our framework enables de novo ChIP-seq peak prediction and is useful for inferring TF-binding peaks in new experimental conditions by reducing the need for additional experiments. We observe that the genome is more accessible in intergenic regions, and that increased accessibility is positively correlated with gene expression and anti-correlated with distance to the origin of replication. Our biophysically motivated model provides a more comprehensive description of TF-binding in vivo from first principles towards a better representation of gene regulation in silico, with promising applications in systems biology.

  10. Insulin-like growth factor binding protein-I-6 expression in activated microglia

    NARCIS (Netherlands)

    Chesik, D.; Glazenburg, K.; Wilczak, N.; Geeraedts, Felix; De Keyser, J.

    2004-01-01

    In the CNS insulin-like growth factor-1 (IGF-1) enhances survival of neurons, promotes myelin synthesis and acts as a mitogen for microglia. The effects of IGF-1 are regulated by a family of 6 IGF binding proteins (IGFBPs). We investigated mRNA expression patterns of IGFBPs in primary rat microglia

  11. Structural Basis for DNA Binding Specificity by the Auxin-Dependent ARF Transcription Factors

    NARCIS (Netherlands)

    Boer, D.R.; Freire Rios, A.; Berg, van den W.A.M.; Saaki, T.; Manfield, I.W.; Kepinski, S.; López-Vidrieo, I.; Franco-Zorilla, J.M.; Vries, de S.C.; Solano, R.; Weijers, D.; Coll, M.

    2014-01-01

    Auxin regulates numerous plant developmental processes by controlling gene expression via a family of functionally distinct DNA-binding auxin response factors (ARFs), yet the mechanistic basis for generating specificity in auxin response is unknown. Here, we address this question by solving

  12. The neural cell adhesion molecule binds to fibroblast growth factor receptor 2

    DEFF Research Database (Denmark)

    Christensen, Claus; Lauridsen, Jes B; Berezin, Vladimir;

    2006-01-01

    The neural cell adhesion molecule (NCAM) can bind to and activate fibroblast growth factor receptor 1 (FGFR1). However, there are four major FGFR isoforms (FGFR1-FGFR4), and it is not known whether NCAM also interacts directly with the other three FGFR isoforms. In this study, we show by surface...

  13. Binding of the Covalent Flavin Assembly Factor to the Flavoprotein Subunit of Complex II.

    Science.gov (United States)

    Maklashina, Elena; Rajagukguk, Sany; Starbird, Chrystal A; McDonald, W Hayes; Koganitsky, Anna; Eisenbach, Michael; Iverson, Tina M; Cecchini, Gary

    2016-02-05

    Escherichia coli harbors two highly conserved homologs of the essential mitochondrial respiratory complex II (succinate:ubiquinone oxidoreductase). Aerobically the bacterium synthesizes succinate:quinone reductase as part of its respiratory chain, whereas under microaerophilic conditions, the quinol:fumarate reductase can be utilized. All complex II enzymes harbor a covalently bound FAD co-factor that is essential for their ability to oxidize succinate. In eukaryotes and many bacteria, assembly of the covalent flavin linkage is facilitated by a small protein assembly factor, termed SdhE in E. coli. How SdhE assists with formation of the covalent flavin bond and how it binds the flavoprotein subunit of complex II remain unknown. Using photo-cross-linking, we report the interaction site between the flavoprotein of complex II and the SdhE assembly factor. These data indicate that SdhE binds to the flavoprotein between two independently folded domains and that this binding mode likely influences the interdomain orientation. In so doing, SdhE likely orients amino acid residues near the dicarboxylate and FAD binding site, which facilitates formation of the covalent flavin linkage. These studies identify how the conserved SdhE assembly factor and its homologs participate in complex II maturation.

  14. JASPAR 2010: the greatly expanded open-access database of transcription factor binding profiles

    DEFF Research Database (Denmark)

    Portales-Casamar, Elodie; Thongjuea, Supat; Kwon, Andrew T

    2009-01-01

    JASPAR (http://jaspar.genereg.net) is the leading open-access database of matrix profiles describing the DNA-binding patterns of transcription factors (TFs) and other proteins interacting with DNA in a sequence-specific manner. Its fourth major release is the largest expansion of the core database...

  15. Binding of von Willebrand factor and plasma proteins to the eggshell of Schistosoma mansoni

    NARCIS (Netherlands)

    Dewalick, Saskia; Hensbergen, Paul J; Bexkens, Michiel L; Grosserichter-Wagener, Christina; Hokke, Cornelis H; Deelder, André M; de Groot, Philip G; Tielens, Aloysius G M; van Hellemond, Jaap J

    2014-01-01

    Schistosoma mansoni eggs have to cross the endothelium and intestinal wall to leave the host and continue the life cycle. Mechanisms involved in this essential step are largely unknown. Here we describe direct binding to the S. mansoni eggshell of von Willebrand factor and other plasma proteins invo

  16. Mapping Escherichia coli elongation factor Tu residues involved in binding of aminoacyl-tRNA

    DEFF Research Database (Denmark)

    Wiborg, Ove; Andersen, C; Knudsen, Charlotte Rohde

    1996-01-01

    -tRNA, which suggested an important role of Lys-89 and Asn-90 in tRNA binding. Furthermore, our results indicate helix B to be an important target site for nucleotide exchange factor EF-Ts. Also the mutants His-66 to Ala and His-118 to either Ala or Glu were characterized in an in vitro translation assay...

  17. Binding of von Willebrand factor and plasma proteins to the eggshell of Schistosoma mansoni

    NARCIS (Netherlands)

    Dewalick, Saskia; Hensbergen, Paul J; Bexkens, Michiel L; Grosserichter-Wagener, Christina; Hokke, Cornelis H; Deelder, André M; de Groot, Philip G; Tielens, Aloysius G M; van Hellemond, Jaap J

    Schistosoma mansoni eggs have to cross the endothelium and intestinal wall to leave the host and continue the life cycle. Mechanisms involved in this essential step are largely unknown. Here we describe direct binding to the S. mansoni eggshell of von Willebrand factor and other plasma proteins

  18. NMR studies of the GTP/GDP binding domain of translation initiation factor IF2

    NARCIS (Netherlands)

    Tishchenko, Evgeny Vladimirovich

    2005-01-01

    Translation Initiation Factor 2 (IF2) plays an important role in the initiation stage of bacterial protein biosynthesis. This protein binds both fMet-tRNA and 30S ribosomal subunit in the presence of GTP, and it stimulates the formation of the 70S initiation complex. The NMR samples of the 15N-, 15N

  19. The genome-wide binding profile of the Sulfolobus solfataricus transcription factor Ss-LrpB shows binding events beyond direct transcription regulation.

    Science.gov (United States)

    Nguyen-Duc, Trong; van Oeffelen, Liesbeth; Song, Ningning; Hassanzadeh-Ghassabeh, Gholamreza; Muyldermans, Serge; Charlier, Daniel; Peeters, Eveline

    2013-11-25

    Gene regulatory processes are largely resulting from binding of transcription factors to specific genomic targets. Leucine-responsive Regulatory Protein (Lrp) is a prevalent transcription factor family in prokaryotes, however, little information is available on biological functions of these proteins in archaea. Here, we study genome-wide binding of the Lrp-like transcription factor Ss-LrpB from Sulfolobus solfataricus. Chromatin immunoprecipitation in combination with DNA microarray analysis (ChIP-chip) has revealed that Ss-LrpB interacts with 36 additional loci besides the four previously identified local targets. Only a subset of the newly identified binding targets, concentrated in a highly variable IS-dense genomic region, is also bound in vitro by pure Ss-LrpB. There is no clear relationship between the in vitro measured DNA-binding specificity of Ss-LrpB and the in vivo association suggesting a limited permissivity of the crenarchaeal chromatin for transcription factor binding. Of 37 identified binding regions, 29 are co-bound by LysM, another Lrp-like transcription factor in S. solfataricus. Comparative gene expression analysis in an Ss-lrpB mutant strain shows no significant Ss-LrpB-mediated regulation for most targeted genes, with exception of the CRISPR B cluster, which is activated by Ss-LrpB through binding to a specific motif in the leader region. The genome-wide binding profile presented here implies that Ss-LrpB is associated at additional genomic binding sites besides the local gene targets, but acts as a specific transcription regulator in the tested growth conditions. Moreover, we have provided evidence that two Lrp-like transcription factors in S. solfataricus, Ss-LrpB and LysM, interact in vivo.

  20. Recent Insights into Insulin-Like Growth Factor Binding Protein 2 Transcriptional Regulation

    OpenAIRE

    Shin, Minsang; Kang, Hye Suk; Park, Jae-Hyung; Bae, Jae-Hoon; Song, Dae-Kyu; Im, Seung-Soon

    2017-01-01

    Insulin-like growth factor binding proteins (IGFBPs) are major regulators of insulin-like growth factor bioavailability and activity in metabolic signaling. Seven IGFBP family isoforms have been identified. Recent studies have shown that IGFBPs play a pivotal role in metabolic signaling and disease, including the pathogenesis of obesity, diabetes, and cancer. Although many studies have documented the various roles played by IGFBPs, transcriptional regulation of IGFBPs is not well understood. ...

  1. Conversion of MyoD to a Neurogenic Factor: Binding Site Specificity Determines Lineage

    Directory of Open Access Journals (Sweden)

    Abraham P. Fong

    2015-03-01

    Full Text Available MyoD and NeuroD2, master regulators of myogenesis and neurogenesis, bind to a “shared” E-box sequence (CAGCTG and a “private” sequence (CAGGTG or CAGATG, respectively. To determine whether private-site recognition is sufficient to confer lineage specification, we generated a MyoD mutant with the DNA-binding specificity of NeuroD2. This chimeric mutant gained binding to NeuroD2 private sites but maintained binding to a subset of MyoD-specific sites, activating part of both the muscle and neuronal programs. Sequence analysis revealed an enrichment for PBX/MEIS motifs at the subset of MyoD-specific sites bound by the chimera, and point mutations that prevent MyoD interaction with PBX/MEIS converted the chimera to a pure neurogenic factor. Therefore, redirecting MyoD binding from MyoD private sites to NeuroD2 private sites, despite preserved binding to the MyoD/NeuroD2 shared sites, is sufficient to change MyoD from a master regulator of myogenesis to a master regulator of neurogenesis.

  2. Arsenic Directly Binds to and Activates the Yeast AP-1-Like Transcription Factor Yap8

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Nallani Vijay; Yang, Jianbo; Pillai, Jitesh K.; Rawat, Swati; Solano, Carlos; Kumar, Abhay; Grøtli, Morten; Stemmler, Timothy L.; Rosen, Barry P.; Tamás, Markus J.

    2015-12-28

    The AP-1-like transcription factor Yap8 is critical for arsenic tolerance in the yeastSaccharomyces cerevisiae. However, the mechanism by which Yap8 senses the presence of arsenic and activates transcription of detoxification genes is unknown. Here we demonstrate that Yap8 directly binds to trivalent arsenite [As(III)]in vitroandin vivoand that approximately one As(III) molecule is bound per molecule of Yap8. As(III) is coordinated by three sulfur atoms in purified Yap8, and our genetic and biochemical data identify the cysteine residues that form the binding site as Cys132, Cys137, and Cys274. As(III) binding by Yap8 does not require an additional yeast protein, and Yap8 is regulated neither at the level of localization nor at the level of DNA binding. Instead, our data are consistent with a model in which a DNA-bound form of Yap8 acts directly as an As(III) sensor. Binding of As(III) to Yap8 triggers a conformational change that in turn brings about a transcriptional response. Thus, As(III) binding to Yap8 acts as a molecular switch that converts inactive Yap8 into an active transcriptional regulator. This is the first report to demonstrate how a eukaryotic protein couples arsenic sensing to transcriptional activation.

  3. A Potential Structural Switch for Regulating DNA-Binding by TEAD Transcription Factors.

    Science.gov (United States)

    Lee, Dong-Sun; Vonrhein, Clemens; Albarado, Diana; Raman, C S; Veeraraghavan, Sudha

    2016-06-19

    TEA domain (TEAD) transcription factors are essential for the normal development of eukaryotes and are the downstream effectors of the Hippo tumor suppressor pathway. Whereas our earlier work established the three-dimensional structure of the highly conserved DNA-binding domain using solution NMR spectroscopy, the structural basis for regulating the DNA-binding activity remains unknown. Here, we present the X-ray crystallographic structure and activity of a TEAD mutant containing a truncated L1 loop, ΔL1 TEAD DBD. Unexpectedly, the three-dimensional structure of the ΔL1 TEAD DBD reveals a helix-swapped homodimer wherein helix 1 is swapped between monomers. Furthermore, each three-helix bundle in the domain-swapped dimer is a structural homolog of MYB-like domains. Our investigations of the DNA-binding activity reveal that although the formation of the three-helix bundle by the ΔL1 TEAD DBD is sufficient for binding to an isolated M-CAT-like DNA element, multimeric forms are deficient for cooperative binding to tandemly duplicated elements, indicating that the L1 loop contributes to the DNA-binding activity of TEAD. These results suggest that switching between monomeric and domain-swapped forms may regulate DNA selectivity of TEAD proteins. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Sequence2Vec: A novel embedding approach for modeling transcription factor binding affinity landscape

    KAUST Repository

    Dai, Hanjun

    2017-07-26

    Motivation: An accurate characterization of transcription factor (TF)-DNA affinity landscape is crucial to a quantitative understanding of the molecular mechanisms underpinning endogenous gene regulation. While recent advances in biotechnology have brought the opportunity for building binding affinity prediction methods, the accurate characterization of TF-DNA binding affinity landscape still remains a challenging problem. Results: Here we propose a novel sequence embedding approach for modeling the transcription factor binding affinity landscape. Our method represents DNA binding sequences as a hidden Markov model (HMM) which captures both position specific information and long-range dependency in the sequence. A cornerstone of our method is a novel message passing-like embedding algorithm, called Sequence2Vec, which maps these HMMs into a common nonlinear feature space and uses these embedded features to build a predictive model. Our method is a novel combination of the strength of probabilistic graphical models, feature space embedding and deep learning. We conducted comprehensive experiments on over 90 large-scale TF-DNA data sets which were measured by different high-throughput experimental technologies. Sequence2Vec outperforms alternative machine learning methods as well as the state-of-the-art binding affinity prediction methods.

  5. The bZip transcription factor vitellogenin-binding protein is post transcriptional down regulated in chicken liver

    NARCIS (Netherlands)

    Smidt, MP; Snippe, L; Van Keulen, G; Ab, G

    1998-01-01

    The vitellogenin-binding protein (VBP) is a member of the proline and acidic-region rich (PAR) family of bZip transcription factors. PAR is located N-terminally to the DNA-binding domain. VBP binds to specific sites within the 300-bp 5'-flanking region of the chicken-liver-specific estrogen-dependen

  6. Effect of positional dependence and alignment strategy on modeling transcription factor binding sites

    Directory of Open Access Journals (Sweden)

    Quader Saad

    2012-07-01

    Full Text Available Abstract Background Many consensus-based and Position Weight Matrix-based methods for recognizing transcription factor binding sites (TFBS are not well suited to the variability in the lengths of binding sites. Besides, many methods discard known binding sites while building the model. Moreover, the impact of Information Content (IC and the positional dependence of nucleotides within an aligned set of TFBS has not been well researched for modeling variable-length binding sites. In this paper, we propose ML-Consensus (Mixed-Length Consensus: a consensus model for variable-length TFBS which does not exclude any reported binding sites. Methods We consider Pairwise Score (PS as a measure of positional dependence of nucleotides within an alignment of TFBS. We investigate how the prediction accuracy of ML-Consensus is affected by the incorporation of IC and PS with a particular binding site alignment strategy. We perform cross-validations for datasets of six species from the TRANSFAC public database, and analyze the results using ROC curves and the Wilcoxon matched-pair signed-ranks test. Results We observe that the incorporation of IC and PS in ML-Consensus results in statistically significant improvement in the prediction accuracy of the model. Moreover, the existence of a core region among the known binding sites (of any length is witnessed by the pairwise coexistence of nucleotides within the core length. Conclusions These observations suggest the possibility of an efficient multiple sequence alignment algorithm for aligning TFBS, accommodating known binding sites of any length, for optimal (or near-optimal TFBS prediction. However, designing such an algorithm is a matter of further investigation.

  7. Insulin-like growth factor-I and insulin-like growth factor-binding proteins in the nephrotic syndrome.

    Science.gov (United States)

    Feld, S M; Hirschberg, R

    1996-06-01

    Similar to findings in the nephrotic syndrome in humans, rats with the doxorubicin-induced nephrotic syndrome (which resembles minimal change disease) have reduced serum levels of insulin-like growth factor-I (IGF-I). This is mainly caused by glomerular ultrafiltration of IGF-I-containing binding protein complexes, primarily of a molecular weight of approximately 50 kilodaltons, and urinary losses of the peptide. Despite urinary excretion of IGF-binding protein (IGFBP)-2, serum levels are increased more than twofold in the nephrotic syndrome compared with controls, because of increased synthesis of this binding protein by the liver. In contrast, the liver synthesis of IGFBP-3, the predominant binding protein in normal serum, is unchanged in the nephrotic syndrome. However, binding and serum levels of IGFBP-3 are reduced in nephrotic rat serum, apparently due to proteolytic degradation of IGFBP-3. The glomerular ultrafiltration of IGF-I, which leads to biologically significant IGF-I concentrations of about 1.35 nM in proximal tubule fluid, may have metabolic consequences, such as increased tubular phosphate absorption. Hypothetically, tubule fluid IGF-I may also contribute to progressive tubulointerstitial fibrosis which is sometimes present in protractive nephrotic glomerulopathies. The profound changes in the IGF-I/IGFBP system in the nephrotic syndrome may also contribute to systemic metabolic abnormalities and growth failure.

  8. Core Binding Factor β Protects HIV, Type 1 Accessory Protein Viral Infectivity Factor from MDM2-mediated Degradation.

    Science.gov (United States)

    Matsui, Yusuke; Shindo, Keisuke; Nagata, Kayoko; Yoshinaga, Noriyoshi; Shirakawa, Kotaro; Kobayashi, Masayuki; Takaori-Kondo, Akifumi

    2016-11-25

    HIV, type 1 overcomes host restriction factor apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3) proteins by organizing an E3 ubiquitin ligase complex together with viral infectivity factor (Vif) and a host transcription cofactor core binding factor β (CBFβ). CBFβ is essential for Vif to counteract APOBEC3 by enabling the recruitment of cullin 5 to the complex and increasing the steady-state level of Vif protein; however, the mechanisms by which CBFβ up-regulates Vif protein remains unclear. Because we have reported previously that mouse double minute 2 homolog (MDM2) is an E3 ligase for Vif, we hypothesized that CBFβ might protect Vif from MDM2-mediated degradation. Co-immunoprecipitation analyses showed that Vif mutants that do not bind to CBFβ preferentially interact with MDM2 and that overexpression of CBFβ disrupts the interaction between MDM2 and Vif. Knockdown of CBFβ reduced the steady-state level of Vif in MDM2-proficient cells but not in MDM2-null cells. Cycloheximide chase analyses revealed that Vif E88A/W89A, which does not interact with CBFβ, degraded faster than wild-type Vif in MDM2-proficient cells but not in MDM2-null cells, suggesting that Vif stabilization by CBFβ is mainly caused by impairing MDM2-mediated degradation. We identified Vif R93E as a Vif variant that does not bind to MDM2, and the virus with this substitution mutation was more resistant to APOBEC3G than the parental virus. Combinatory substitution of Vif residues required for CBFβ binding and MDM2 binding showed full recovery of Vif steady-state levels, supporting our hypothesis. Our data provide new insights into the mechanism of Vif augmentation by CBFβ.

  9. Liver-type fatty acid binding protein interacts with hepatocyte nuclear factor

    OpenAIRE

    McIntosh, Avery L.; Petrescu, Anca D.; Hostetler, Heather A.; Kier, Ann B.; Schroeder, Friedhelm

    2013-01-01

    Hepatocyte nuclear factor 4α (HNF4α) regulates liver type fatty acid binding protein (L-FABP) gene expression. Conversely as shown herein, L-FABP structurally and functionally also interacts with HNF4α. Fluorescence resonance energy transfer (FRET) between Cy3-HNF4α (donor) and Cy5-L-FABP (acceptor) as well as FRET microscopy detected L-FABP in close proximity (~80 Å) to HNF4α, binding with high affinity Kd ~250–300 nM. Circular dichroism (CD) determined that the HNF4α/L-FABP interaction alte...

  10. Complement factor H binds malondialdehyde epitopes and protects from oxidative stress

    DEFF Research Database (Denmark)

    Weismann, David; Hartvigsen, Karsten; Lauer, Nadine

    2011-01-01

    peroxidation product that accumulates in many pathophysiological processes, including AMD. Here we identify complement factor H (CFH) as a major MDA-binding protein that can block both the uptake of MDA-modified proteins by macrophages and MDA-induced proinflammatory effects in vivo in mice. The CFH...... polymorphism H402, which is strongly associated with AMD, markedly reduces the ability of CFH to bind MDA, indicating a causal link to disease aetiology. Our findings provide important mechanistic insights into innate immune responses to oxidative stress, which may be exploited in the prevention of and therapy...

  11. Fibronectin Growth Factor-Binding Domains Are Required for Fibroblast Survival

    Science.gov (United States)

    Lin, Fubao; Ren, Xiang-Dong; Pan, Zhi; Macri, Lauren; Zong, Wei-Xing; Tonnesen, Marcia G.; Rafailovich, Miriam; Bar-Sagi, Dafna; Clark, Richard A.F.

    2011-01-01

    Fibronectin (FN) is required for embryogenesis, morphogenesis, and wound repair, and its Arg–Gly–Asp-containing central cell-binding domain (CCBD) is essential for mesenchymal cell survival and growth. Here, we demonstrate that FN contains three growth factor-binding domains (FN-GFBDs) that bind platelet-derived growth factor-BB (PDGF-BB), a potent fibroblast survival and mitogenic factor. These sites bind PDGF-BB with dissociation constants of 10–100 nm. FN-null cells cultured on recombinant CCBD (FNIII8–11) without a FN-GFBD demonstrated minimal metabolism and underwent autophagy at 24 hours, followed by apoptosis at 72 hours, even in the presence of PDGF-BB. In contrast, FN-null cells plated on FNIII8–11 contiguous with FN-GFBD survived without, and proliferated with, PDGF-BB. FN-null cell survival on FNIII8–11 and noncontiguous arrays of FN-GFBDs required these domains to be adsorbed on the same surface, suggesting the existence of a mesenchymal cell-extracellular matrix synapse. Thus, fibroblast survival required GF stimulation in the presence of a FN-GFBD, as well as adhesion to FN through the CCBD. The findings that fibroblast survival is dependent on FN-GFBD underscore the critical importance of pericellular matrix for cell survival and have significant implications for cutaneous wound healing and regeneration. PMID:20811396

  12. Energy-dependent fitness: a quantitative model for the evolution of yeast transcription factor binding sites.

    Science.gov (United States)

    Mustonen, Ville; Kinney, Justin; Callan, Curtis G; Lässig, Michael

    2008-08-26

    We present a genomewide cross-species analysis of regulation for broad-acting transcription factors in yeast. Our model for binding site evolution is founded on biophysics: the binding energy between transcription factor and site is a quantitative phenotype of regulatory function, and selection is given by a fitness landscape that depends on this phenotype. The model quantifies conservation, as well as loss and gain, of functional binding sites in a coherent way. Its predictions are supported by direct cross-species comparison between four yeast species. We find ubiquitous compensatory mutations within functional sites, such that the energy phenotype and the function of a site evolve in a significantly more constrained way than does its sequence. We also find evidence for substantial evolution of regulatory function involving point mutations as well as sequence insertions and deletions within binding sites. Genes lose their regulatory link to a given transcription factor at a rate similar to the neutral point mutation rate, from which we infer a moderate average fitness advantage of functional over nonfunctional sites. In a wider context, this study provides an example of inference of selection acting on a quantitative molecular trait.

  13. G =  MAT: linking transcription factor expression and DNA binding data.

    Directory of Open Access Journals (Sweden)

    Konstantin Tretyakov

    Full Text Available Transcription factors are proteins that bind to motifs on the DNA and thus affect gene expression regulation. The qualitative description of the corresponding processes is therefore important for a better understanding of essential biological mechanisms. However, wet lab experiments targeted at the discovery of the regulatory interplay between transcription factors and binding sites are expensive. We propose a new, purely computational method for finding putative associations between transcription factors and motifs. This method is based on a linear model that combines sequence information with expression data. We present various methods for model parameter estimation and show, via experiments on simulated data, that these methods are reliable. Finally, we examine the performance of this model on biological data and conclude that it can indeed be used to discover meaningful associations. The developed software is available as a web tool and Scilab source code at http://biit.cs.ut.ee/gmat/.

  14. G = MAT: Linking Transcription Factor Expression and DNA Binding Data

    Science.gov (United States)

    Tretyakov, Konstantin; Laur, Sven; Vilo, Jaak

    2011-01-01

    Transcription factors are proteins that bind to motifs on the DNA and thus affect gene expression regulation. The qualitative description of the corresponding processes is therefore important for a better understanding of essential biological mechanisms. However, wet lab experiments targeted at the discovery of the regulatory interplay between transcription factors and binding sites are expensive. We propose a new, purely computational method for finding putative associations between transcription factors and motifs. This method is based on a linear model that combines sequence information with expression data. We present various methods for model parameter estimation and show, via experiments on simulated data, that these methods are reliable. Finally, we examine the performance of this model on biological data and conclude that it can indeed be used to discover meaningful associations. The developed software is available as a web tool and Scilab source code at http://biit.cs.ut.ee/gmat/. PMID:21297945

  15. G =  MAT: linking transcription factor expression and DNA binding data.

    Science.gov (United States)

    Tretyakov, Konstantin; Laur, Sven; Vilo, Jaak

    2011-01-31

    Transcription factors are proteins that bind to motifs on the DNA and thus affect gene expression regulation. The qualitative description of the corresponding processes is therefore important for a better understanding of essential biological mechanisms. However, wet lab experiments targeted at the discovery of the regulatory interplay between transcription factors and binding sites are expensive. We propose a new, purely computational method for finding putative associations between transcription factors and motifs. This method is based on a linear model that combines sequence information with expression data. We present various methods for model parameter estimation and show, via experiments on simulated data, that these methods are reliable. Finally, we examine the performance of this model on biological data and conclude that it can indeed be used to discover meaningful associations. The developed software is available as a web tool and Scilab source code at http://biit.cs.ut.ee/gmat/.

  16. Binding Mode Analysis of Zerumbone to Key Signal Proteins in the Tumor Necrosis Factor Pathway

    Directory of Open Access Journals (Sweden)

    Ayesha Fatima

    2015-01-01

    Full Text Available Breast cancer is the second most common cancer among women worldwide. Several signaling pathways have been implicated as causative and progression agents. The tumor necrosis factor (TNF α protein plays a dual role in promoting and inhibiting cancer depending largely on the pathway initiated by the binding of the protein to its receptor. Zerumbone, an active constituent of Zingiber zerumbet, Smith, is known to act on the tumor necrosis factor pathway upregulating tumour necrosis factor related apoptosis inducing ligand (TRAIL death receptors and inducing apoptosis in cancer cells. Zerumbone is a sesquiterpene that is able to penetrate into the hydrophobic pockets of proteins to exert its inhibiting activity with several proteins. We found a good binding with the tumor necrosis factor, kinase κB (IKKβ and the Nuclear factor κB (NF-κB component proteins along the TNF pathway. Our results suggest that zerumbone can exert its apoptotic activities by inhibiting the cytoplasmic proteins. It inhibits the IKKβ kinase that activates the NF-κB and also binds to the NF-κB complex in the TNF pathway. Blocking both proteins can lead to inhibition of cell proliferating proteins to be downregulated and possibly ultimate induction of apoptosis.

  17. PhyloScan: identification of transcription factor binding sites using cross-species evidence

    Directory of Open Access Journals (Sweden)

    Newberg Lee A

    2007-01-01

    Full Text Available Abstract Background When transcription factor binding sites are known for a particular transcription factor, it is possible to construct a motif model that can be used to scan sequences for additional sites. However, few statistically significant sites are revealed when a transcription factor binding site motif model is used to scan a genome-scale database. Methods We have developed a scanning algorithm, PhyloScan, which combines evidence from matching sites found in orthologous data from several related species with evidence from multiple sites within an intergenic region, to better detect regulons. The orthologous sequence data may be multiply aligned, unaligned, or a combination of aligned and unaligned. In aligned data, PhyloScan statistically accounts for the phylogenetic dependence of the species contributing data to the alignment and, in unaligned data, the evidence for sites is combined assuming phylogenetic independence of the species. The statistical significance of the gene predictions is calculated directly, without employing training sets. Results In a test of our methodology on synthetic data modeled on seven Enterobacteriales, four Vibrionales, and three Pasteurellales species, PhyloScan produces better sensitivity and specificity than MONKEY, an advanced scanning approach that also searches a genome for transcription factor binding sites using phylogenetic information. The application of the algorithm to real sequence data from seven Enterobacteriales species identifies novel Crp and PurR transcription factor binding sites, thus providing several new potential sites for these transcription factors. These sites enable targeted experimental validation and thus further delineation of the Crp and PurR regulons in E. coli. Conclusion Better sensitivity and specificity can be achieved through a combination of (1 using mixed alignable and non-alignable sequence data and (2 combining evidence from multiple sites within an intergenic

  18. Allelic mutations in noncoding genomic sequences construct novel transcription factor binding sites that promote gene overexpression.

    Science.gov (United States)

    Tian, Erming; Børset, Magne; Sawyer, Jeffrey R; Brede, Gaute; Våtsveen, Thea K; Hov, Håkon; Waage, Anders; Barlogie, Bart; Shaughnessy, John D; Epstein, Joshua; Sundan, Anders

    2015-11-01

    The growth and survival factor hepatocyte growth factor (HGF) is expressed at high levels in multiple myeloma (MM) cells. We report here that elevated HGF transcription in MM was traced to DNA mutations in the promoter alleles of HGF. Sequence analysis revealed a previously undiscovered single-nucleotide polymorphism (SNP) and crucial single-nucleotide variants (SNVs) in the promoters of myeloma cells that produce large amounts of HGF. The allele-specific mutations functionally reassembled wild-type sequences into the motifs that affiliate with endogenous transcription factors NFKB (nuclear factor kappa-B), MZF1 (myeloid zinc finger 1), and NRF-2 (nuclear factor erythroid 2-related factor 2). In vitro, a mutant allele that gained novel NFKB-binding sites directly responded to transcriptional signaling induced by tumor necrosis factor alpha (TNFα) to promote high levels of luciferase reporter. Given the recent discovery by genome-wide sequencing (GWS) of numerous non-coding mutations in myeloma genomes, our data provide evidence that heterogeneous SNVs in the gene regulatory regions may frequently transform wild-type alleles into novel transcription factor binding properties to aberrantly interact with dysregulated transcriptional signals in MM and other cancer cells.

  19. A Novel DNA Binding Mechanism for maf Basic Region-Leucine Zipper Factors Inferred from a MafA-DNA Complex Structure and Binding Specificities

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Xun; Guanga, Gerald P; Wan, Cheng; Rose, Robert B [Z; (W Elec.); (NCSU)

    2012-11-13

    MafA is a proto-oncoprotein and is critical for insulin gene expression in pancreatic β-cells. Maf proteins belong to the AP1 superfamily of basic region-leucine zipper (bZIP) transcription factors. Residues in the basic helix and an ancillary N-terminal domain, the Extended Homology Region (EHR), endow maf proteins with unique DNA binding properties: binding a 13 bp consensus site consisting of a core AP1 site (TGACTCA) flanked by TGC sequences and binding DNA stably as monomers. To further characterize maf DNA binding, we determined the structure of a MafA–DNA complex. MafA forms base-specific hydrogen bonds with the flanking G–5C–4 and central C0/G0 bases, but not with the core-TGA bases. However, in vitro binding studies utilizing a pulse–chase electrophoretic mobility shift assay protocol revealed that mutating either the core-TGA or flanking-TGC bases dramatically increases the binding off rate. Comparing the known maf structures, we propose that DNA binding specificity results from positioning the basic helix through unique phosphate contacts. The EHR does not contact DNA directly but stabilizes DNA binding by contacting the basic helix. Collectively, these results suggest a novel multistep DNA binding process involving a conformational change from contacting the core-TGA to contacting the flanking-TGC bases.

  20. The repertoire of DNA-binding transcription factors in prokaryotes: functional and evolutionary lessons.

    Science.gov (United States)

    Perez-Rueda, Ernesto; Martinez-Nuñez, Mario Alberto

    2012-01-01

    The capabilities of organisms to contend with environmental changes depend on their genes and their ability to regulate their expression. DNA-binding transcription factors (TFs) play a central role in this process, because they regulate gene expression positively and/or negatively, depending on the operator context and ligand-binding status. In this review, we summarise recent findings regarding the function and evolution of TFs in prokaryotes. We consider the abundance of TFs in bacteria and archaea, the role of DNA-binding domains and their partner domains, and the effects of duplication events in the evolution of regulatory networks. Finally, a comprehensive picture for how regulatory networks have evolved in prokaryotes is provided.

  1. Identification and Structural Basis of Binding to Host Lung Glycogen by Streptococcal Virulence Factors

    Energy Technology Data Exchange (ETDEWEB)

    Lammerts van Bueren,A.; Higgins, M.; Wang, D.; Burke, R.; Boraston, A.

    2007-01-01

    The ability of pathogenic bacteria to recognize host glycans is often essential to their virulence. Here we report structure-function studies of previously uncharacterized glycogen-binding modules in the surface-anchored pullulanases from Streptococcus pneumoniae (SpuA) and Streptococcus pyogenes (PulA). Multivalent binding to glycogen leads to a strong interaction with alveolar type II cells in mouse lung tissue. X-ray crystal structures of the binding modules reveal a novel fusion of tandem modules into single, bivalent functional domains. In addition to indicating a structural basis for multivalent attachment, the structure of the SpuA modules in complex with carbohydrate provides insight into the molecular basis for glycogen specificity. This report provides the first evidence that intracellular lung glycogen may be a novel target of pathogenic streptococci and thus provides a rationale for the identification of the streptococcal {alpha}-glucan-metabolizing machinery as virulence factors.

  2. A Common Structural Motif in the Binding of Virulence Factors to Bacterial Secretion Chaperones

    Energy Technology Data Exchange (ETDEWEB)

    Lilic,M.; Vujanac, M.; Stebbins, C.

    2006-01-01

    Salmonella invasion protein A (SipA) is translocated into host cells by a type III secretion system (T3SS) and comprises two regions: one domain binds its cognate type III secretion chaperone, InvB, in the bacterium to facilitate translocation, while a second domain functions in the host cell, contributing to bacterial uptake by polymerizing actin. We present here the crystal structures of the SipA chaperone binding domain (CBD) alone and in complex with InvB. The SipA CBD is found to consist of a nonglobular polypeptide as well as a large globular domain, both of which are necessary for binding to InvB. We also identify a structural motif that may direct virulence factors to their cognate chaperones in a diverse range of pathogenic bacteria. Disruption of this structural motif leads to a destabilization of several chaperone-substrate complexes from different species, as well as an impairment of secretion in Salmonella.

  3. Adhesion properties of Lactobacillus rhamnosus mucus-binding factor to mucin and extracellular matrix proteins.

    Science.gov (United States)

    Nishiyama, Keita; Nakamata, Koichi; Ueno, Shintaro; Terao, Akari; Aryantini, Ni Putu Desy; Sujaya, I Nengah; Fukuda, Kenji; Urashima, Tadasu; Yamamoto, Yuji; Mukai, Takao

    2015-01-01

    We previously described potential probiotic Lactobacillus rhamnosus strains, isolated from fermented mare milk produced in Sumbawa Island, Indonesia, which showed high adhesion to porcine colonic mucin (PCM) and extracellular matrix (ECM) proteins. Recently, mucus-binding factor (MBF) was found in the GG strain of L. rhamnosus as a mucin-binding protein. In this study, we assessed the ability of recombinant MBF protein from the FSMM22 strain, one of the isolates of L. rhamnosus from fermented Sumbawa mare milk, to adhere to PCM and ECM proteins by overlay dot blot and Biacore assays. MBF bound to PCM, laminin, collagen IV, and fibronectin with submicromolar dissociation constants. Adhesion of the FSMM22 mbf mutant strain to PCM and ECM proteins was significantly less than that of the wild-type strain. Collectively, these results suggested that MBF contribute to L. rhamnosus host colonization via mucin and ECM protein binding.

  4. Quantitative models of the mechanisms that control genome-wide patterns of transcription factor binding during early Drosophila development.

    Directory of Open Access Journals (Sweden)

    Tommy Kaplan

    2011-02-01

    Full Text Available Transcription factors that drive complex patterns of gene expression during animal development bind to thousands of genomic regions, with quantitative differences in binding across bound regions mediating their activity. While we now have tools to characterize the DNA affinities of these proteins and to precisely measure their genome-wide distribution in vivo, our understanding of the forces that determine where, when, and to what extent they bind remains primitive. Here we use a thermodynamic model of transcription factor binding to evaluate the contribution of different biophysical forces to the binding of five regulators of early embryonic anterior-posterior patterning in Drosophila melanogaster. Predictions based on DNA sequence and in vitro protein-DNA affinities alone achieve a correlation of ∼0.4 with experimental measurements of in vivo binding. Incorporating cooperativity and competition among the five factors, and accounting for spatial patterning by modeling binding in every nucleus independently, had little effect on prediction accuracy. A major source of error was the prediction of binding events that do not occur in vivo, which we hypothesized reflected reduced accessibility of chromatin. To test this, we incorporated experimental measurements of genome-wide DNA accessibility into our model, effectively restricting predicted binding to regions of open chromatin. This dramatically improved our predictions to a correlation of 0.6-0.9 for various factors across known target genes. Finally, we used our model to quantify the roles of DNA sequence, accessibility, and binding competition and cooperativity. Our results show that, in regions of open chromatin, binding can be predicted almost exclusively by the sequence specificity of individual factors, with a minimal role for protein interactions. We suggest that a combination of experimentally determined chromatin accessibility data and simple computational models of transcription

  5. Cycle modulation of insulin-like growth factor-binding protein 1 in human endometrium

    Directory of Open Access Journals (Sweden)

    Corleta H.

    2000-01-01

    Full Text Available Endometrium is one of the fastest growing human tissues. Sex hormones, estrogen and progesterone, in interaction with several growth factors, control its growth and differentiation. Insulin-like growth factor 1 (IGF-1 interacts with cell surface receptors and also with specific soluble binding proteins. IGF-binding proteins (IGF-BP have been shown to modulate IGF-1 action. Of six known isoforms, IGF-BP-1 has been characterized as a marker produced by endometrial stromal cells in the late secretory phase and in the decidua. In the current study, IGF-1-BP concentration and affinity in the proliferative and secretory phase of the menstrual cycle were measured. Endometrial samples were from patients of reproductive age with regular menstrual cycles and taking no steroid hormones. Cytosolic fractions were prepared and binding of 125I-labeled IGF-1 performed. Cross-linking reaction products were analyzed by SDS-polyacrylamide gel electrophoresis (7.5% followed by autoradiography. 125I-IGF-1 affinity to cytosolic proteins was not statistically different between the proliferative and secretory endometrium. An approximately 35-kDa binding protein was identified when 125I-IGF-1 was cross-linked to cytosol proteins. Secretory endometrium had significantly more IGF-1-BP when compared to proliferative endometrium. The specificity of the cross-linking process was evaluated by the addition of 100 nM unlabeled IGF-1 or insulin. Unlabeled IGF-1 totally abolished the radioactivity from the band, indicating specific binding. Insulin had no apparent effect on the intensity of the labeled band. These results suggest that IGF-BP could modulate the action of IGF-1 throughout the menstrual cycle. It would be interesting to study this binding protein in other pathologic conditions of the endometrium such as adenocarcinomas and hyperplasia.

  6. Molecular determinants of epidermal growth factor binding: a molecular dynamics study.

    Directory of Open Access Journals (Sweden)

    Jeffrey M Sanders

    Full Text Available The epidermal growth factor receptor (EGFR is a member of the receptor tyrosine kinase family that plays a role in multiple cellular processes. Activation of EGFR requires binding of a ligand on the extracellular domain to promote conformational changes leading to dimerization and transphosphorylation of intracellular kinase domains. Seven ligands are known to bind EGFR with affinities ranging from sub-nanomolar to near micromolar dissociation constants. In the case of EGFR, distinct conformational states assumed upon binding a ligand is thought to be a determining factor in activation of a downstream signaling network. Previous biochemical studies suggest the existence of both low affinity and high affinity EGFR ligands. While these studies have identified functional effects of ligand binding, high-resolution structural data are lacking. To gain a better understanding of the molecular basis of EGFR binding affinities, we docked each EGFR ligand to the putative active state extracellular domain dimer and 25.0 ns molecular dynamics simulations were performed. MM-PBSA/GBSA are efficient computational approaches to approximate free energies of protein-protein interactions and decompose the free energy at the amino acid level. We applied these methods to the last 6.0 ns of each ligand-receptor simulation. MM-PBSA calculations were able to successfully rank all seven of the EGFR ligands based on the two affinity classes: EGF>HB-EGF>TGF-α>BTC>EPR>EPG>AR. Results from energy decomposition identified several interactions that are common among binding ligands. These findings reveal that while several residues are conserved among the EGFR ligand family, no single set of residues determines the affinity class. Instead we found heterogeneous sets of interactions that were driven primarily by electrostatic and Van der Waals forces. These results not only illustrate the complexity of EGFR dynamics but also pave the way for structure-based design of

  7. Measurement of immunotargeted plasmonic nanoparticles' cellular binding: a key factor in optimizing diagnostic efficacy

    Science.gov (United States)

    Fu, Kun; Sun, Jiantang; Bickford, Lissett R.; Lin, Alex W. H.; Halas, Naomi J.; Yu, Tse-Kuan; Drezek, Rebekah A.

    2008-01-01

    In this study, we use polarized light scattering to study immunotargeted plasmonic nanoparticles which bind to live SK-BR-3 human breast carcinoma cells. Gold nanoparticles can be conjugated to various biomolecules in order to target specific molecular signatures of disease. This specific targeting provides enhanced contrast in scattering-based optical imaging techniques. While there are papers which report the number of antibodies that bind per nanoparticle, there are almost no reports of the key factor which influences diagnostic or therapeutic efficacy using nanoparticles: the number of targeted nanoparticles that bind per cell. To achieve this goal, we have developed a 'negative' method of determining the binding concentration of those antibody/nanoparticle bioconjugates which are targeted specifically to breast cancer cells. Unlike previously reported methods, we collected unbound nanoparticle bioconjugates and measured the light scattering from dilute solutions of these particles so that quantitative binding information can be obtained. By following this process, the interaction effects of adjacent bound nanoparticles on the cell membrane can be avoided simply by measuring the light scattering from the unbound nanoparticles. Specifically, using nanoshells of two different sizes, we compared the binding concentrations of anti-HER2/nanoshell and anti-IgG/nanoshell bioconjugates targeted to HER2-positive SK-BR-3 breast cancer cells. The results indicate that, for anti-HER2/nanoshell bioconjugates, there are approximately 800-1600 nanoshells bound per cell; for anti-IgG/nanoshell bioconjugates, the binding concentration is significantly lower at nearly 100 nanoshells bound per cell. These results are also supported by dark-field microscopy images of the cells labeled with anti-HER2/nanoshell and anti-IgG/nanoshell bioconjugates.

  8. Measurement of immunotargeted plasmonic nanoparticles' cellular binding: a key factor in optimizing diagnostic efficacy

    Energy Technology Data Exchange (ETDEWEB)

    Fu Kun [Department of Bioengineering, Rice University, 6100 Main Street, MS-142, Houston, TX 77005 (United States); Sun Jiantang [Department of Bioengineering, Rice University, 6100 Main Street, MS-142, Houston, TX 77005 (United States); Bickford, Lissett R [Department of Bioengineering, Rice University, 6100 Main Street, MS-142, Houston, TX 77005 (United States); Lin, Alex W H [Department of Bioengineering, Rice University, 6100 Main Street, MS-142, Houston, TX 77005 (United States); Halas, Naomi J [Department of Electrical and Computer Engineering, Rice University, 6100 Main Street, MS-142, Houston, TX 77005 (United States); Yu, T-K [Department of Radiation Oncology, University of Texas, M D Anderson Cancer Center, Box 1202, 1515 Holcombe Boulevard, Houston, TX 77030 (United States); Drezek, Rebekah A [Department of Bioengineering, Rice University, 6100 Main Street, MS-142, Houston, TX 77005 (United States)

    2008-01-30

    In this study, we use polarized light scattering to study immunotargeted plasmonic nanoparticles which bind to live SK-BR-3 human breast carcinoma cells. Gold nanoparticles can be conjugated to various biomolecules in order to target specific molecular signatures of disease. This specific targeting provides enhanced contrast in scattering-based optical imaging techniques. While there are papers which report the number of antibodies that bind per nanoparticle, there are almost no reports of the key factor which influences diagnostic or therapeutic efficacy using nanoparticles: the number of targeted nanoparticles that bind per cell. To achieve this goal, we have developed a 'negative' method of determining the binding concentration of those antibody/nanoparticle bioconjugates which are targeted specifically to breast cancer cells. Unlike previously reported methods, we collected unbound nanoparticle bioconjugates and measured the light scattering from dilute solutions of these particles so that quantitative binding information can be obtained. By following this process, the interaction effects of adjacent bound nanoparticles on the cell membrane can be avoided simply by measuring the light scattering from the unbound nanoparticles. Specifically, using nanoshells of two different sizes, we compared the binding concentrations of anti-HER2/nanoshell and anti-IgG/nanoshell bioconjugates targeted to HER2-positive SK-BR-3 breast cancer cells. The results indicate that, for anti-HER2/nanoshell bioconjugates, there are approximately 800-1600 nanoshells bound per cell; for anti-IgG/nanoshell bioconjugates, the binding concentration is significantly lower at nearly 100 nanoshells bound per cell. These results are also supported by dark-field microscopy images of the cells labeled with anti-HER2/nanoshell and anti-IgG/nanoshell bioconjugates.

  9. Binding of insulin-like growth factors to Tera-2 human embryonal carcinoma cells during differentiation.

    Science.gov (United States)

    Fleck, J F; Sledge, G W; Benenati, S V; Frolik, C A; Roth, B J; Hirsch, K S

    1991-08-15

    Differentiation of Tera-2 human embryonal carcinoma cells by exposure to 2.1 mM alpha-difluoromethylornithine resulted in changes in morphology, a decrease in growth rate, and changes in the expression of SSEA-1 differentiation antigen. While the binding of 125I-insulin-like growth factor I (IGF-I) remained relatively constant during differentiation, binding of 125I-IGF-II increased 2-3-fold. Further, the binding of IGF-II was 87 times greater than IGF-I in both undifferentiated and differentiated cells. Undifferentiated Tera-2 cells exhibited a single class of binding sites for both IGF-I (KD = 1.2 nM, 7.0 x 10(3) sites/cell) and IGF-II (KD = 8.3 nM, 3.4 x 10(5) sites/cell). Following differentiation, IGF-I continued to bind to a single class of binding sites (KD 1.0 nM, 6.7 x 10(3) sites/cell) whereas IGF-II bound to both high-affinity sites (KDH 0.3 nM, 2.2 x 10(5) sites/cell) and low-affinity sites (KDL 15.1 nM, 1.6 x 10(7) sites/cell). The binding of iodinated IGF-II was blocked by unlabeled IGF-II but not IGF-I. In contrast, 125I-IGF-I binding was prevented by either IGF-I or IGF-II. Affinity cross-linking experiments demonstrated the presence of both type I and type II IGF receptors along with a number of IGF binding proteins. IGF-I failed to stimulate the incorporation of [3H]thymidine in both undifferentiated and differentiated cells. Although IGF-II caused a significant increase in [3H]thymidine incorporation in both undifferentiated and differentiated Tera-2 cells, the magnitude of the response and the sensitivity of the cells to IGF-II stimulation was diminished following differentiation. The observed changes in IGF-II binding, which occur in conjunction with cellular differentiation, may be an important feature of the expression of the differentiated phenotype by human germ cell tumors.

  10. Identification of amino acids in the Dr adhesin required for binding to decay-accelerating factor.

    Science.gov (United States)

    Van Loy, Cristina P; Sokurenko, Evgeni V; Samudrala, Ram; Moseley, Steve L

    2002-07-01

    Members of the Dr family of adhesins of Escherichia coli recognize as a receptor the Dr(a) blood-group antigen present on the complement regulatory and signalling molecule, decay-accelerating factor (DAF). One member of this family, the Dr haemagglutinin, also binds to a second receptor, type IV collagen. Structure/function information regarding these adhesins has been limited and domains directly involved in the interaction with DAF have not been determined. We devised a strategy to identify amino acids in the Dr haemagglutinin that are specifically involved in the interaction with DAF. The gene encoding the adhesive subunit, draE, was subjected to random mutagenesis and used to complement a strain defective for its expression. The resulting mutants were enriched and screened to obtain those that do not bind to DAF, but retain binding to type IV collagen. Individual amino acid changes at positions 10, 63, 65, 75, 77, 79 and 131 of the mature DraE sequence significantly reduced the ability of the DraE adhesin to bind DAF, but not collagen. Over half of the mutants obtained had substitutions within amino acids 63-81. Analysis of predicted structures of DraE suggest that these proximal residues may cluster to form a binding domain for DAF.

  11. Heparin binding preference and structures in the fibroblast growth factor family parallel their evolutionary diversification

    Science.gov (United States)

    Jiang, Chao; Wilkinson, Mark C.

    2016-01-01

    The interaction of a large number of extracellular proteins with heparan sulfate (HS) regulates their transport and effector functions, but the degree of molecular specificity underlying protein–polysaccharide binding is still debated. The 15 paracrine fibroblast growth factors (FGFs) are one of the paradigms for this interaction. Here, we measure the binding preferences of six FGFs (FGF3, FGF4, FGF6, FGF10, FGF17, FGF20) for a library of modified heparins, representing structures in HS, and model glycosaminoglycans, using differential scanning fluorimetry. This is complemented by the identification of the lysine residues in the primary and secondary binding sites of the FGFs by a selective labelling approach. Pooling these data with previous sets provides good coverage of the FGF phylogenetic tree, deduced from amino acid sequence alignment. This demonstrates that the selectivity of the FGFs for binding structures in sulfated polysaccharides and the pattern of secondary binding sites on the surface of FGFs follow the phylogenetic relationship of the FGFs, and so are likely to be the result of the natural selection pressures that led to the expansion of the FGF family in the course of the evolution of more complex animal body plans. PMID:27030175

  12. JASPAR 2016: a major expansion and update of the open-access database of transcription factor binding profiles

    DEFF Research Database (Denmark)

    Mathelier, Anthony; Fornes, Oriol; Arenillas, David J;

    2016-01-01

    JASPAR (http://jaspar.genereg.net) is an open-access database storing curated, non-redundant transcription factor (TF) binding profiles representing transcription factor binding preferences as position frequency matrices for multiple species in six taxonomic groups. For this 2016 release, we...

  13. The human mitochondrial transcription factor A is a versatile G-quadruplex binding protein

    Science.gov (United States)

    Lyonnais, Sébastien; Tarrés-Soler, Aleix; Rubio-Cosials, Anna; Cuppari, Anna; Brito, Reicy; Jaumot, Joaquim; Gargallo, Raimundo; Vilaseca, Marta; Silva, Cristina; Granzhan, Anton; Teulade-Fichou, Marie-Paule; Eritja, Ramon; Solà, Maria

    2017-01-01

    The ability of the guanine-rich strand of the human mitochondrial DNA (mtDNA) to form G-quadruplex structures (G4s) has been recently highlighted, suggesting potential functions in mtDNA replication initiation and mtDNA stability. G4 structures in mtDNA raise the question of their recognition by factors associated with the mitochondrial nucleoid. The mitochondrial transcription factor A (TFAM), a high-mobility group (HMG)-box protein, is the major binding protein of human mtDNA and plays a critical role in its expression and maintenance. HMG-box proteins are pleiotropic sensors of DNA structural alterations. Thus, we investigated and uncovered a surprising ability of TFAM to bind to DNA or RNA G4 with great versatility, showing an affinity similar than to double-stranded DNA. The recognition of G4s by endogenous TFAM was detected in mitochondrial extracts by pull-down experiments using a G4-DNA from the mtDNA conserved sequence block II (CSBII). Biochemical characterization shows that TFAM binding to G4 depends on both the G-quartets core and flanking single-stranded overhangs. Additionally, it shows a structure-specific binding mode that differs from B-DNA, including G4-dependent TFAM multimerization. These TFAM-G4 interactions suggest functional recognition of G4s in the mitochondria. PMID:28276514

  14. SNP2TFBS – a database of regulatory SNPs affecting predicted transcription factor binding site affinity

    Science.gov (United States)

    Kumar, Sunil; Ambrosini, Giovanna; Bucher, Philipp

    2017-01-01

    SNP2TFBS is a computational resource intended to support researchers investigating the molecular mechanisms underlying regulatory variation in the human genome. The database essentially consists of a collection of text files providing specific annotations for human single nucleotide polymorphisms (SNPs), namely whether they are predicted to abolish, create or change the affinity of one or several transcription factor (TF) binding sites. A SNP's effect on TF binding is estimated based on a position weight matrix (PWM) model for the binding specificity of the corresponding factor. These data files are regenerated at regular intervals by an automatic procedure that takes as input a reference genome, a comprehensive SNP catalogue and a collection of PWMs. SNP2TFBS is also accessible over a web interface, enabling users to view the information provided for an individual SNP, to extract SNPs based on various search criteria, to annotate uploaded sets of SNPs or to display statistics about the frequencies of binding sites affected by selected SNPs. Homepage: http://ccg.vital-it.ch/snp2tfbs/. PMID:27899579

  15. Asap: a framework for over-representation statistics for transcription factor binding sites

    DEFF Research Database (Denmark)

    Marstrand, Troels T; Frellsen, Jes; Moltke, Ida

    2008-01-01

    BACKGROUND: In studies of gene regulation the efficient computational detection of over-represented transcription factor binding sites is an increasingly important aspect. Several published methods can be used for testing whether a set of hypothesised co-regulated genes share a common regulatory...... promoter sequences. Controlling all aspects of our input data we are able to identify the optimal statistics across multiple threshold values and for sequence sets containing different distributions of transcription factor binding sites. CONCLUSIONS: We show that our implementation is significantly faster...... than more naïve scanning algorithms when searching with many weight matrices in large sequence sets. When comparing the various statistics, we show that those based on binomial over-representation and Fisher's exact test performs almost equally good and better than the others. An online server...

  16. New Insights into the Functions of Transcription Factors that Bind the RNA Polymerase Secondary Channel.

    Science.gov (United States)

    Zenkin, Nikolay; Yuzenkova, Yulia

    2015-06-25

    Transcription elongation is regulated at several different levels, including control by various accessory transcription elongation factors. A distinct group of these factors interacts with the RNA polymerase secondary channel, an opening at the enzyme surface that leads to its active center. Despite investigation for several years, the activities and in vivo roles of some of these factors remain obscure. Here, we review the recent progress in understanding the functions of the secondary channel binding factors in bacteria. In particular, we highlight the surprising role of global regulator DksA in fidelity of RNA synthesis and the resolution of RNA polymerase traffic jams by the Gre factor. These findings indicate a potential link between transcription fidelity and collisions of the transcription and replication machineries.

  17. New Insights into the Functions of Transcription Factors that Bind the RNA Polymerase Secondary Channel

    Directory of Open Access Journals (Sweden)

    Nikolay Zenkin

    2015-06-01

    Full Text Available Transcription elongation is regulated at several different levels, including control by various accessory transcription elongation factors. A distinct group of these factors interacts with the RNA polymerase secondary channel, an opening at the enzyme surface that leads to its active center. Despite investigation for several years, the activities and in vivo roles of some of these factors remain obscure. Here, we review the recent progress in understanding the functions of the secondary channel binding factors in bacteria. In particular, we highlight the surprising role of global regulator DksA in fidelity of RNA synthesis and the resolution of RNA polymerase traffic jams by the Gre factor. These findings indicate a potential link between transcription fidelity and collisions of the transcription and replication machineries.

  18. Identification of human IgG1 variant with enhanced FcRn binding and without increased binding to rheumatoid factor autoantibody

    Science.gov (United States)

    Maeda, Atsuhiko; Iwayanagi, Yuki; Haraya, Kenta; Tachibana, Tatsuhiko; Nakamura, Genki; Nambu, Takeru; Esaki, Keiko; Hattori, Kunihiro; Igawa, Tomoyuki

    2017-01-01

    ABSTRACT Various studies have demonstrated that Fc engineering to enhance neonatal Fc receptor (FcRn) binding is effective for elongating half-life or increasing cellular uptake of IgG. A previous study has shown that a N434H mutation to enhance FcRn binding resulted in increased binding to rheumatoid factor (RF) autoantibody, which is not desirable for therapeutic use in autoimmune disease. In this study, we first showed that all the existing Fc variants with enhanced FcRn binding also show increased RF binding, and then identified specific mutations that could be introduced to those Fc variants to reduce the RF binding. Furthermore, we generated novel Fc variants that do not increase RF binding and show half-lives of 45 d in cynomolgus monkey, which is longer than those of previously reported Fc variants. In addition, we generated novel Fc variants with antigen sweeping activity that do not increase RF binding. We expect that these novel Fc variants will be useful as antibody therapeutics against autoimmune diseases. PMID:28387635

  19. Sperm and spermatids contain different proteins and bind distinct egg factors.

    Science.gov (United States)

    Teperek, Marta; Miyamoto, Kei; Simeone, Angela; Feret, Renata; Deery, Michael J; Gurdon, John B; Jullien, Jerome

    2014-09-19

    Spermatozoa are more efficient at supporting normal embryonic development than spermatids, their immature, immediate precursors. This suggests that the sperm acquires the ability to support embryonic development during spermiogenesis (spermatid to sperm maturation). Here, using Xenopus laevis as a model organism, we performed 2-D Fluorescence Difference Gel Electrophoresis (2D-DIGE) and mass spectrometry analysis of differentially expressed proteins between sperm and spermatids in order to identify factors that could be responsible for the efficiency of the sperm to support embryonic development. Furthermore, benefiting from the availability of egg extracts in Xenopus, we also tested whether the chromatin of sperm could attract different egg factors compared to the chromatin of spermatids. Our analysis identified: (1) several proteins which were present exclusively in sperm; but not in spermatid nuclei and (2) numerous egg proteins binding to the sperm (but not to the spermatid chromatin) after incubation in egg extracts. Amongst these factors we identified many chromatin-associated proteins and transcriptional repressors. Presence of transcriptional repressors binding specifically to sperm chromatin could suggest its preparation for the early embryonic cell cycles, during which no transcription is observed and suggests that sperm chromatin has a unique protein composition, which facilitates the recruitment of egg chromatin remodelling factors. It is therefore likely that the acquisition of these sperm-specific factors during spermiogenesis makes the sperm chromatin suitable to interact with the maternal factors and, as a consequence, to support efficient embryonic development.

  20. Reconstruction of adenovirus replication origins with a human nuclear factor I binding site.

    Science.gov (United States)

    Adhya, S; Shneidman, P S; Hurwitz, J

    1986-03-05

    Nuclear factor I is a host-coded DNA-binding protein that stimulates initiation of adenovirus DNA replication. To understand the mechanism of action of nuclear factor I, we have constructed, by recombinant DNA techniques, origins of replication in which the adenovirus type 5 nuclear factor I binding site (FIB site) has been replaced by a FIB site isolated from human genomic DNA (Gronostajski, R. M., Nagata, K., and Hurwitz, J. (1984) Proc. Natl. Acad. Sci. U. S. A. 81, 4013-4017). Assays of such recombinants for initiation and elongation in vitro showed that nuclear factor I was active only when the FIB site was relatively close to the DNA terminus, i.e. the FIB site was centered at nucleotides 30-36 from the end of the DNA. Nuclear factor I was active in either orientation within this distance range. The presence of one or two additional FIB sites in the downstream region had no effect. The implications of these results for the mechanism of nuclear factor I action are discussed.

  1. Complement factor H binds malondialdehyde epitopes and protects from oxidative stress

    OpenAIRE

    Weismann, David; Hartvigsen, Karsten; Lauer, Nadine; Keiryn L Bennett; Scholl, Hendrik P N; Issa, Peter Charbel; Cano, Marisol; Brandstätter, Hubert; Tsimikas, Sotirios; Skerka, Christine; Superti-Furga, Giulio; Handa, James T.; Zipfel, Peter F.; Witztum, Joseph L.; Binder, Christoph J.

    2011-01-01

    Oxidative stress and enhanced lipid peroxidation are linked to many chronic inflammatory diseases, including age-related macular degeneration (AMD). AMD is the leading cause of blindness in Western societies, but its aetiology remains largely unknown. Malondialdehyde (MDA) is a common lipid peroxidation product that accumulates in many pathophysiological processes, including AMD. Here we identify complement factor H (CFH) as a major MDA-binding protein that can block both the uptake of MDA-mo...

  2. Quantitative Proteomics Identifies Serum Response Factor Binding Protein 1 as a Host Factor for Hepatitis C Virus Entry

    Directory of Open Access Journals (Sweden)

    Gisa Gerold

    2015-08-01

    Full Text Available Hepatitis C virus (HCV enters human hepatocytes through a multistep mechanism involving, among other host proteins, the virus receptor CD81. How CD81 governs HCV entry is poorly characterized, and CD81 protein interactions after virus binding remain elusive. We have developed a quantitative proteomics protocol to identify HCV-triggered CD81 interactions and found 26 dynamic binding partners. At least six of these proteins promote HCV infection, as indicated by RNAi. We further characterized serum response factor binding protein 1 (SRFBP1, which is recruited to CD81 during HCV uptake and supports HCV infection in hepatoma cells and primary human hepatocytes. SRFBP1 facilitates host cell penetration by all seven HCV genotypes, but not of vesicular stomatitis virus and human coronavirus. Thus, SRFBP1 is an HCV-specific, pan-genotypic host entry factor. These results demonstrate the use of quantitative proteomics to elucidate pathogen entry and underscore the importance of host protein-protein interactions during HCV invasion.

  3. Structural basis of human transcription factor Sry-related box 17 binding to DNA.

    Science.gov (United States)

    Gao, Nana; Jiang, Wei; Gao, Hai; Cheng, Zhong; Qian, Huolian; Si, Shuyi; Xie, Yong

    2013-04-01

    Sry-related box (Sox) transcription factors share a conserved high-mobility-group box domain (HMG-domain) that binds DNA in the minor groove and bends DNA for further assembly of transcriptional machineries. During organogenesis, each member of the Sox family triggers a specific cell lineage differentiation, indicating that their interactions with DNA are different from each other. Therefore, investigating structural rearrangement of each Sox transcription factor HMG-domain upon binding to DNA would help to elucidate the distinctive molecular mechanism by which they interact with DNA. Previous studies have determined the crystal structures of Sox2 HMG-domain/DNA, Sox4 HMGdomain/ DNA, Sox9 HMG-domain/DNA and Sox17 HMG-domain/DNA complexes. However, major gaps remain in the structural information on the Sox transcription factor HMG-domains. Here, we report the crystal structure of the human Sox17 HMG-domain alone at 2.4 A resolution. Comparing this structure and the structure of the mouse Sox17 HMGdomain/ DNA complex provides structural understanding of the mechanism of Sox17 binding to DNA. Specifically, after electrostatic interactions attract Sox17 to DNA, Asn73, Ser99, and Trp106 form hydrogen bonds with DNA, Arg70, Lys80, Arg83, His94, and Asn95 on Sox17 undergo conformational changes and form hydrogen bonds with DNA, contributing to the electrostatic interaction between Sox17 and DNA.

  4. FF domains of CA150 bind transcription and splicing factors through multiple weak interactions.

    Science.gov (United States)

    Smith, Matthew J; Kulkarni, Sarang; Pawson, Tony

    2004-11-01

    The human transcription factor CA150 modulates human immunodeficiency virus type 1 gene transcription and contains numerous signaling elements, including six FF domains. Repeated FF domains are present in several transcription and splicing factors and can recognize phosphoserine motifs in the C-terminal domain (CTD) of RNA polymerase II (RNAPII). Using mass spectrometry, we identify a number of nuclear binding partners for the CA150 FF domains and demonstrate a direct interaction between CA150 and Tat-SF1, a protein involved in the coupling of splicing and transcription. CA150 FF domains recognize multiple sites within the Tat-SF1 protein conforming to the consensus motif (D/E)(2/5)-F/W/Y-(D/E)(2/5). Individual FF domains are capable of interacting with Tat-SF1 peptide ligands in an equivalent and noncooperative manner, with affinities ranging from 150 to 500 microM. Repeated FF domains therefore appear to bind their targets through multiple weak interactions with motifs comprised of negatively charged residues flanking aromatic amino acids. The RNAPII CTD represents a consensus FF domain-binding site, contingent on generation of the requisite negative charges by phosphorylation of serines 2 and 5. We propose that CA150, through the dual recognition of acidic motifs in proteins such as Tat-SF1 and the phosphorylated CTD, could mediate the recruitment of transcription and splicing factors to actively transcribing RNAPII.

  5. Amblyomma americanum tick saliva insulin-like growth factor binding protein-related protein 1 binds insulin but not insulin-like growth factors.

    Science.gov (United States)

    Radulović, Ž M; Porter, L M; Kim, T K; Bakshi, M; Mulenga, A

    2015-10-01

    Silencing Amblyomma americanum insulin-like growth factor binding protein-related protein 1 (AamIGFBP-rP1) mRNA prevented ticks from feeding to repletion. In this study, we used recombinant (r)AamIGFBP-rP1 in a series of assays to obtain further insight into the role(s) of this protein in tick feeding regulation. Our results suggest that AamIGFBP-1 is an antigenic protein that is apparently exclusively expressed in salivary glands. We found that both males and females secrete AamIGFBP-rP1 into the host during feeding and confirmed that female ticks secrete this protein from within 24-48 h after attachment. Our data suggest that native AamIGFBP-rP1 is a functional insulin binding protein in that both yeast- and insect cell-expressed rAamIGFBP-rP1 bound insulin, but not insulin-like growth factors. When subjected to anti-blood clotting and platelet aggregation assays, rAamIGFBP-rP1 did not have any effect. Unlike human IGFBP-rP1, which is controlled by trypsinization, rAamIGFBP-rP1 is resistant to digestion, suggesting that the tick protein may not be under mammalian host control at the tick feeding site. The majority of tick-borne pathogens are transmitted 48 h after the tick has attached. Thus, the demonstrated antigenicity and secretion into the host within 24-48 h of the tick starting to feed makes AamIGFBP-rP1 an attractive target for antitick vaccine development.

  6. The relationship between transcription initiation RNAs and CCCTC-binding factor (CTCF localization

    Directory of Open Access Journals (Sweden)

    Taft Ryan J

    2011-08-01

    Full Text Available Abstract Background Transcription initiation RNAs (tiRNAs are nuclear localized 18 nucleotide RNAs derived from sequences immediately downstream of RNA polymerase II (RNAPII transcription start sites. Previous reports have shown that tiRNAs are intimately correlated with gene expression, RNA polymerase II binding and behaviors, and epigenetic marks associated with transcription initiation, but not elongation. Results In the present work, we show that tiRNAs are commonly found at genomic CCCTC-binding factor (CTCF binding sites in human and mouse, and that CTCF sites that colocalize with RNAPII are highly enriched for tiRNAs. To directly investigate the relationship between tiRNAs and CTCF we examined tiRNAs originating near the intronic CTCF binding site in the human tumor suppressor gene, p21 (cyclin-dependent kinase inhibitor 1A gene, also known as CDKN1A. Inhibition of CTCF-proximal tiRNAs resulted in increased CTCF localization and increased p21 expression, while overexpression of CTCF-proximal tiRNA mimics decreased CTCF localization and p21 expression. We also found that tiRNA-regulated CTCF binding influences the levels of trimethylated H3K27 at the alternate upstream p21 promoter, and affects the levels of alternate p21 (p21alt transcripts. Extending these studies to another randomly selected locus with conserved CTCF binding we found that depletion of tiRNA alters nucleosome density proximal to sites of tiRNA biogenesis. Conclusions Taken together, these data suggest that tiRNAs modulate local epigenetic structure, which in turn regulates CTCF localization.

  7. Insulin-like growth factor binding proteins increase intracellular calcium levels in two different cell lines.

    Directory of Open Access Journals (Sweden)

    Danielle Seurin

    Full Text Available BACKGROUND: Insulin-like growth factor binding proteins (IGFBPs are six related secreted proteins that share IGF-dependent and -independent functions. If the former functions begin to be well described, the latter are somewhat more difficult to investigate and to characterize. At the cellular level, IGFBPs were shown to modulate numerous processes including cell growth, differentiation and apoptosis. However, the molecular mechanisms implicated remain largely unknown. We previously demonstrated that IGFBP-3, but not IGFBP-1 or IGFBP-5, increase intracellular calcium concentration in MCF-7 cells (Ricort J-M et al. (2002 FEBS lett 527: 293-297. METHODOLOGY/PRINCIPAL FINDINGS: We perform a global analysis in which we studied, by two different approaches, the binding of each IGFBP isoform (i.e., IGFBP-1 to -6 to the surface of two different cellular models, MCF-7 breast adenocarcinoma cells and C2 myoblast proliferative cells, as well as the IGFBP-induced increase of intracellular calcium concentration. Using both confocal fluorescence microscopy and flow cytometry analysis, we showed that all IGFBPs bind to MCF-7 cell surface. By contrast, only four IGFBPs can bind to C2 cell surface since neither IGFBP-2 nor IGFBP-4 were detected. Among the six IGFBPs tested, only IGFBP-1 did not increased intracellular calcium concentration whatever the cellular model studied. By contrast, IGFBP-2, -3, -4 and -6, in MCF-7 cells, and IGFBP-3, -5 and -6, in C2 proliferative cells, induce a rapid and transient increase in intracellular free calcium concentration. Moreover, IGFBP-2 and -3 (in MCF-7 cells and IGFBP-5 (in C2 cells increase intracellular free calcium concentration by a pertussis toxin sensitive signaling pathway. CONCLUSIONS: Our results demonstrate that IGFBPs are able to bind to cell surface and increase intracellular calcium concentration. By characterizing the IGFBPs-induced cell responses and intracellular couplings, we highlight the cellular

  8. Storage of factor VIII variants with impaired von Willebrand factor binding in Weibel-Palade bodies in endothelial cells.

    Directory of Open Access Journals (Sweden)

    Maartje van den Biggelaar

    Full Text Available BACKGROUND: Point mutations resulting in reduced factor VIII (FVIII binding to von Willebrand factor (VWF are an important cause of mild/moderate hemophilia A. Treatment includes desmopressin infusion, which concomitantly increases VWF and FVIII plasma levels, apparently from storage pools containing both proteins. The source of these VWF/FVIII co-storage pools and the mechanism of granule biogenesis are not fully understood. METHODOLOGY/PRINCIPAL FINDINGS: We studied intracellular trafficking of FVIII variants implicated in mild/moderate hemophilia A together with VWF in HEK293 cells and primary endothelial cells. The role of VWF binding was addressed using FVIII variants displaying reduced VWF interaction. Binding studies using purified FVIII proteins revealed moderate (Arg2150His, Del2201, Pro2300Ser to severe (Tyr1680Phe, Ser2119Tyr VWF binding defects. Expression studies in HEK293 cells and primary endothelial cells revealed that all FVIII variants were present within VWF-containing organelles. Quantitative studies showed that the relative amount of FVIII storage was independent of various mutations. Substantial amounts of FVIII variants are co-stored in VWF-containing storage organelles, presumably by virtue of their ability to interact with VWF at low pH. CONCLUSIONS: Our data suggest that the potential of FVIII co-storage with VWF is not affected in mild/moderate hemophilia A caused by reduced FVIII/VWF interaction in the circulation. These data support the hypothesis that Weibel-Palade bodies comprise the desmopressin-releasable FVIII storage pool in vivo.

  9. Number of active transcription factor binding sites is essential for the Hes7 oscillator

    Directory of Open Access Journals (Sweden)

    de Angelis Martin

    2006-02-01

    Full Text Available Abstract Background It is commonly accepted that embryonic segmentation of vertebrates is regulated by a segmentation clock, which is induced by the cycling genes Hes1 and Hes7. Their products form dimers that bind to the regulatory regions and thereby repress the transcription of their own encoding genes. An increase of the half-life of Hes7 protein causes irregular somite formation. This was shown in recent experiments by Hirata et al. In the same work, numerical simulations from a delay differential equations model, originally invented by Lewis, gave additional support. For a longer half-life of the Hes7 protein, these simulations exhibited strongly damped oscillations with, after few periods, severely attenuated the amplitudes. In these simulations, the Hill coefficient, a crucial model parameter, was set to 2 indicating that Hes7 has only one binding site in its promoter. On the other hand, Bessho et al. established three regulatory elements in the promoter region. Results We show that – with the same half life – the delay system is highly sensitive to changes in the Hill coefficient. A small increase changes the qualitative behaviour of the solutions drastically. There is sustained oscillation and hence the model can no longer explain the disruption of the segmentation clock. On the other hand, the Hill coefficient is correlated with the number of active binding sites, and with the way in which dimers bind to them. In this paper, we adopt response functions in order to estimate Hill coefficients for a variable number of active binding sites. It turns out that three active transcription factor binding sites increase the Hill coefficient by at least 20% as compared to one single active site. Conclusion Our findings lead to the following crucial dichotomy: either Hirata's model is correct for the Hes7 oscillator, in which case at most two binding sites are active in its promoter region; or at least three binding sites are active, in which

  10. SELMAP - SELEX affinity landscape MAPping of transcription factor binding sites using integrated microfluidics.

    Science.gov (United States)

    Chen, Dana; Orenstein, Yaron; Golodnitsky, Rada; Pellach, Michal; Avrahami, Dorit; Wachtel, Chaim; Ovadia-Shochat, Avital; Shir-Shapira, Hila; Kedmi, Adi; Juven-Gershon, Tamar; Shamir, Ron; Gerber, Doron

    2016-09-15

    Transcription factors (TFs) alter gene expression in response to changes in the environment through sequence-specific interactions with the DNA. These interactions are best portrayed as a landscape of TF binding affinities. Current methods to study sequence-specific binding preferences suffer from limited dynamic range, sequence bias, lack of specificity and limited throughput. We have developed a microfluidic-based device for SELEX Affinity Landscape MAPping (SELMAP) of TF binding, which allows high-throughput measurement of 16 proteins in parallel. We used it to measure the relative affinities of Pho4, AtERF2 and Btd full-length proteins to millions of different DNA binding sites, and detected both high and low-affinity interactions in equilibrium conditions, generating a comprehensive landscape of the relative TF affinities to all possible DNA 6-mers, and even DNA10-mers with increased sequencing depth. Low quantities of both the TFs and DNA oligomers were sufficient for obtaining high-quality results, significantly reducing experimental costs. SELMAP allows in-depth screening of hundreds of TFs, and provides a means for better understanding of the regulatory processes that govern gene expression.

  11. The actinobacterial transcription factor RbpA binds to the principal sigma subunit of RNA polymerase.

    Science.gov (United States)

    Tabib-Salazar, Aline; Liu, Bing; Doughty, Philip; Lewis, Richard A; Ghosh, Somadri; Parsy, Marie-Laure; Simpson, Peter J; O'Dwyer, Kathleen; Matthews, Steve J; Paget, Mark S

    2013-06-01

    RbpA is a small non-DNA-binding transcription factor that associates with RNA polymerase holoenzyme and stimulates transcription in actinobacteria, including Streptomyces coelicolor and Mycobacterium tuberculosis. RbpA seems to show specificity for the vegetative form of RNA polymerase as opposed to alternative forms of the enzyme. Here, we explain the basis of this specificity by showing that RbpA binds directly to the principal σ subunit in these organisms, but not to more diverged alternative σ factors. Nuclear magnetic resonance spectroscopy revealed that, although differing in their requirement for structural zinc, the RbpA orthologues from S. coelicolor and M. tuberculosis share a common structural core domain, with extensive, apparently disordered, N- and C-terminal regions. The RbpA-σ interaction is mediated by the C-terminal region of RbpA and σ domain 2, and S. coelicolor RbpA mutants that are defective in binding σ are unable to stimulate transcription in vitro and are inactive in vivo. Given that RbpA is essential in M. tuberculosis and critical for growth in S. coelicolor, these data support a model in which RbpA plays a key role in the σ cycle in actinobacteria.

  12. A structural-based strategy for recognition of transcription factor binding sites.

    Directory of Open Access Journals (Sweden)

    Beisi Xu

    Full Text Available Scanning through genomes for potential transcription factor binding sites (TFBSs is becoming increasingly important in this post-genomic era. The position weight matrix (PWM is the standard representation of TFBSs utilized when scanning through sequences for potential binding sites. However, many transcription factor (TF motifs are short and highly degenerate, and methods utilizing PWMs to scan for sites are plagued by false positives. Furthermore, many important TFs do not have well-characterized PWMs, making identification of potential binding sites even more difficult. One approach to the identification of sites for these TFs has been to use the 3D structure of the TF to predict the DNA structure around the TF and then to generate a PWM from the predicted 3D complex structure. However, this approach is dependent on the similarity of the predicted structure to the native structure. We introduce here a novel approach to identify TFBSs utilizing structure information that can be applied to TFs without characterized PWMs, as long as a 3D complex structure (TF/DNA exists. This approach utilizes an energy function that is uniquely trained on each structure. Our approach leads to increased prediction accuracy and robustness compared with those using a more general energy function. The software is freely available upon request.

  13. Identification of potential nuclear reprogramming and differentiation factors by a novel selection method for cloning chromatin-binding proteins

    Institute of Scientific and Technical Information of China (English)

    LiuWang; AihuaZheng; LingYi; ChongrenXu; MingxiaoDing; HongkuiDeng

    2005-01-01

    Nuclear reprogramming is critical for animal cloning and stem cell creation through nuclear transfer, which requires extensive remodeling of chromosomal architecture involving dramatic changes in chromatin-binding proteins. To understand the mechanism of nuclear reprogramming, it is critical to identify chromatin-binding factors specify the reprogramming process. In this report, we have developed a high-throughput selection method, based on T7 phage display and chromatin immunoprecipitation, to isolate chromatin-binding factors expressed in mouse embryonic stem cells using primary mouse embryonic fibroblast chromatin. Seven chromatin-binding proteins have been isolated by this method. We have also isolated several chromatin-binding proteins involved in hepatocyte differentiation. Our method provides a powerful tool to rapidly and selectively identify chromatin-binding proteins. The method can be used to study epigenetic modification of chromatin during nuclear reprogramming, cell differentiation, and transdifferentiation.

  14. Binding of vitronectin and Factor H to Hic contributes to immune evasion of Streptococcus pneumoniae serotype 3.

    Science.gov (United States)

    Kohler, Sylvia; Hallström, Teresia; Singh, Birendra; Riesbeck, Kristian; Spartà, Giuseppina; Zipfel, Peter F; Hammerschmidt, Sven

    2015-01-01

    Streptococcus pneumoniae serotype 3 strains are highly resistant to opsonophagocytosis due to recruitment of the complement inhibitor Factor H via Hic, a member of the pneumococcal surface protein C (PspC) family. In this study, we demonstrated that Hic also interacts with vitronectin, a fluid-phase regulator involved in haemostasis, angiogenesis, and the terminal complement cascade as well as a component of the extracellular matrix. Blocking of Hic by specific antiserum or genetic deletion significantly reduced pneumococcal binding to soluble and immobilised vitronectin and to Factor H, respectively. In parallel, ectopic expression of Hic on the surface of Lactococcus lactis conferred binding to soluble and immobilised vitronectin as well as Factor H. Molecular analyses with truncated Hic fragments narrowed down the vitronectin-binding site to the central core of Hic (aa 151-201). This vitronectin-binding region is separate from that of Factor H, which binds to the N-terminus of Hic (aa 38-92). Binding of pneumococcal Hic was localised to the C-terminal heparin-binding domain (HBD3) of vitronectin. However, an N-terminal region to HBD3 was further involved in Hic-binding to immobilised vitronectin. Finally, vitronectin bound to Hic was functionally active and inhibited formation of the terminal complement complex. In conclusion, Hic interacts with vitronectin and simultaneously with Factor H, and both human proteins may contribute to colonisation and invasive disease caused by serotype 3 pneumococci.

  15. Promiscuous stimulation of ParF protein polymerization by heterogeneous centromere binding factors.

    Science.gov (United States)

    Machón, Cristina; Fothergill, Timothy J G; Barillà, Daniela; Hayes, Finbarr

    2007-11-16

    The segrosome is the nucleoprotein complex that mediates accurate segregation of bacterial plasmids. The segrosome of plasmid TP228 comprises ParF and ParG proteins that assemble on the parH centromere. ParF, which exemplifies one clade of the ubiquitous ParA superfamily of segregation proteins, polymerizes extensively in response to ATP binding. Polymerization is modulated by the ParG centromere binding factor (CBF). The segrosomes of plasmids pTAR, pVT745 and pB171 include ParA homologues of the ParF subgroup, as well as diverse homodimeric CBFs with no primary sequence similarity to ParG, or each other. Centromere binding by these analogues is largely specific. Here, we establish that the ParF homologues of pTAR and pB171 filament modestly with ATP, and that nucleotide hydrolysis is not required for this polymerization, which is more prodigious when the cognate CBF is also present. By contrast, the ParF homologue of plasmid pVT745 did not respond appreciably to ATP alone, but polymerized extensively in the presence of both its cognate CBF and ATP. The co-factors also stimulated nucleotide-independent polymerization of cognate ParF proteins. Moreover, apart from the CBF of pTAR, the disparate ParG analogues promoted polymerization of non-cognate ParF proteins suggesting that filamentation of the ParF proteins is enhanced by a common mechanism. Like ParG, the co-factors may be modular, possessing a centromere-specific interaction domain linked to a flexible region containing determinants that promiscuously stimulate ParF polymerization. The CBFs appear to function as bacterial analogues of formins, microtubule-associated proteins or related ancillary factors that regulate eucaryotic cytoskeletal dynamics.

  16. Divergence of Pumilio/fem-3 mRNA binding factor (PUF) protein specificity through variations in an RNA-binding pocket.

    Science.gov (United States)

    Qiu, Chen; Kershner, Aaron; Wang, Yeming; Holley, Cynthia P; Wilinski, Daniel; Keles, Sunduz; Kimble, Judith; Wickens, Marvin; Hall, Traci M Tanaka

    2012-02-24

    mRNA control networks depend on recognition of specific RNA sequences. Pumilio-fem-3 mRNA binding factor (PUF) RNA-binding proteins achieve that specificity through variations on a conserved scaffold. Saccharomyces cerevisiae Puf3p achieves specificity through an additional binding pocket for a cytosine base upstream of the core RNA recognition site. Here we demonstrate that this chemically simple adaptation is prevalent and contributes to the diversity of RNA specificities among PUF proteins. Bioinformatics analysis shows that mRNAs associated with Caenorhabditis elegans fem-3 mRNA binding factor (FBF)-2 in vivo contain an upstream cytosine required for biological regulation. Crystal structures of FBF-2 and C. elegans PUF-6 reveal binding pockets structurally similar to that of Puf3p, whereas sequence alignments predict a pocket in PUF-11. For Puf3p, FBF-2, PUF-6, and PUF-11, the upstream pockets and a cytosine are required for maximal binding to RNA, but the quantitative impact on binding affinity varies. Furthermore, the position of the upstream cytosine relative to the core PUF recognition site can differ, which in the case of FBF-2 originally masked the identification of this consensus sequence feature. Importantly, other PUF proteins lack the pocket and so do not discriminate upstream bases. A structure-based alignment reveals that these proteins lack key residues that would contact the cytosine, and in some instances, they also present amino acid side chains that interfere with binding. Loss of the pocket requires only substitution of one serine, as appears to have occurred during the evolution of certain fungal species.

  17. In Vitro Whole Genome DNA Binding Analysis of the Bacterial Replication Initiator and Transcription Factor DnaA.

    Directory of Open Access Journals (Sweden)

    Janet L Smith

    2015-05-01

    Full Text Available DnaA, the replication initiation protein in bacteria, is an AAA+ ATPase that binds and hydrolyzes ATP and exists in a heterogeneous population of ATP-DnaA and ADP-DnaA. DnaA binds cooperatively to the origin of replication and several other chromosomal regions, and functions as a transcription factor at some of these regions. We determined the binding properties of Bacillus subtilis DnaA to genomic DNA in vitro at single nucleotide resolution using in vitro DNA affinity purification and deep sequencing (IDAP-Seq. We used these data to identify 269 binding regions, refine the consensus sequence of the DnaA binding site, and compare the relative affinity of binding regions for ATP-DnaA and ADP-DnaA. Most sites had a slightly higher affinity for ATP-DnaA than ADP-DnaA, but a few had a strong preference for binding ATP-DnaA. Of the 269 sites, only the eight strongest binding ones have been observed to bind DnaA in vivo, suggesting that other cellular factors or the amount of available DnaA in vivo restricts DnaA binding to these additional sites. Conversely, we found several chromosomal regions that were bound by DnaA in vivo but not in vitro, and that the nucleoid-associated protein Rok was required for binding in vivo. Our in vitro characterization of the inherent ability of DnaA to bind the genome at single nucleotide resolution provides a backdrop for interpreting data on in vivo binding and regulation of DnaA, and is an approach that should be adaptable to many other DNA binding proteins.

  18. SELEX-seq, a method for characterizing the complete repertoire of binding site preferences for transcription factor complexes

    Science.gov (United States)

    Riley, Todd R.; Slattery, Matthew; Abe, Namiko; Rastogi, Chaitanya; Mann, Richard; Bussemaker, Harmen

    2014-01-01

    Summary The closely related members of the Hox family of homeodomain transcription factors have similar DNA-binding preferences as monomers, yet carry out distinct functions in vivo. Transcription factors often bind DNA as multiprotein complexes, raising the possibility that complex formation might modify their DNA binding specificities. To test this hypothesis we developed a new experimental and computational platform, termed SELEX-seq, to characterize DNA binding specificities of Hox-based multiprotein complexes. We found that complex formation with the same cofactor reveals latent specificities that are not observed for monomeric Hox factors. The findings from this in vitro platform are consistent with in vivo data, and the ‘latent specificity’ concept serves as a precedent for how the specificities of similar transcription factors might be distinguished in vivo. Importantly, the SELEX-seq platform is flexible and can be used to determine the relative affinities to any DNA sequence for any transcription factor or multiprotein complex. PMID:25151169

  19. Transcription Factors Bind Thousands of Active and InactiveRegions in the Drosophila Blastoderm

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiao-Yong; MacArthur, Stewart; Bourgon, Richard; Nix, David; Pollard, Daniel A.; Iyer, Venky N.; Hechmer, Aaron; Simirenko, Lisa; Stapleton, Mark; Luengo Hendriks, Cris L.; Chu, Hou Cheng; Ogawa, Nobuo; Inwood, William; Sementchenko, Victor; Beaton, Amy; Weiszmann, Richard; Celniker, Susan E.; Knowles, David W.; Gingeras, Tom; Speed, Terence P.; Eisen, Michael B.; Biggin, Mark D.

    2008-01-10

    Identifying the genomic regions bound by sequence-specific regulatory factors is central both to deciphering the complex DNA cis-regulatory code that controls transcription in metazoans and to determining the range of genes that shape animal morphogenesis. Here, we use whole-genome tiling arrays to map sequences bound in Drosophila melanogaster embryos by the six maternal and gap transcription factors that initiate anterior-posterior patterning. We find that these sequence-specific DNA binding proteins bind with quantitatively different specificities to highly overlapping sets of several thousand genomic regions in blastoderm embryos. Specific high- and moderate-affinity in vitro recognition sequences for each factor are enriched in bound regions. This enrichment, however, is not sufficient to explain the pattern of binding in vivo and varies in a context-dependent manner, demonstrating that higher-order rules must govern targeting of transcription factors. The more highly bound regions include all of the over forty well-characterized enhancers known to respond to these factors as well as several hundred putative new cis-regulatory modules clustered near developmental regulators and other genes with patterned expression at this stage of embryogenesis. The new targets include most of the microRNAs (miRNAs) transcribed in the blastoderm, as well as all major zygotically transcribed dorsal-ventral patterning genes, whose expression we show to be quantitatively modulated by anterior-posterior factors. In addition to these highly bound regions, there are several thousand regions that are reproducibly bound at lower levels. However, these poorly bound regions are, collectively, far more distant from genes transcribed in the blastoderm than highly bound regions; are preferentially found in protein-coding sequences; and are less conserved than highly bound regions. Together these observations suggest that many of these poorly-bound regions are not involved in early

  20. Transcription factors bind thousands of active and inactive regions in the Drosophila blastoderm.

    Directory of Open Access Journals (Sweden)

    Xiao-yong Li

    2008-02-01

    Full Text Available Identifying the genomic regions bound by sequence-specific regulatory factors is central both to deciphering the complex DNA cis-regulatory code that controls transcription in metazoans and to determining the range of genes that shape animal morphogenesis. We used whole-genome tiling arrays to map sequences bound in Drosophila melanogaster embryos by the six maternal and gap transcription factors that initiate anterior-posterior patterning. We find that these sequence-specific DNA binding proteins bind with quantitatively different specificities to highly overlapping sets of several thousand genomic regions in blastoderm embryos. Specific high- and moderate-affinity in vitro recognition sequences for each factor are enriched in bound regions. This enrichment, however, is not sufficient to explain the pattern of binding in vivo and varies in a context-dependent manner, demonstrating that higher-order rules must govern targeting of transcription factors. The more highly bound regions include all of the over 40 well-characterized enhancers known to respond to these factors as well as several hundred putative new cis-regulatory modules clustered near developmental regulators and other genes with patterned expression at this stage of embryogenesis. The new targets include most of the microRNAs (miRNAs transcribed in the blastoderm, as well as all major zygotically transcribed dorsal-ventral patterning genes, whose expression we show to be quantitatively modulated by anterior-posterior factors. In addition to these highly bound regions, there are several thousand regions that are reproducibly bound at lower levels. However, these poorly bound regions are, collectively, far more distant from genes transcribed in the blastoderm than highly bound regions; are preferentially found in protein-coding sequences; and are less conserved than highly bound regions. Together these observations suggest that many of these poorly bound regions are not involved in

  1. DNA-binding factor CTCF and long-range gene interactions in V(D)J recombination and oncogene activation

    NARCIS (Netherlands)

    C. Ribeiro de Almeida (Claudia); R. Stadhouders (Ralph); S. Thongjuea (Supat); E. Soler (Eric); R.W. Hendriks (Rudi)

    2012-01-01

    textabstractRegulation of V(D)J recombination events at immunoglobulin (Ig) and T-cell receptor loci in lymphoid cells is complex and achieved via changes in substrate accessibility. Various studies over the last year have identified the DNA-binding zinc-finger protein CCCTC-binding factor (CTCF) as

  2. Dwarfism and impaired gut development in insulin-like growth factor II mRNA-binding protein 1-deficient mice

    DEFF Research Database (Denmark)

    Hansen, Thomas V O; Hammer, Niels A; Nielsen, Jacob

    2004-01-01

    Insulin-like growth factor II mRNA-binding protein 1 (IMP1) belongs to a family of RNA-binding proteins implicated in mRNA localization, turnover, and translational control. Mouse IMP1 is expressed during early development, and an increase in expression occurs around embryonic day 12.5 (E12.5). T...

  3. The nucleotide-binding site of bacterial translation initiation factor 2 (IF2) as a metabolic sensor

    NARCIS (Netherlands)

    Milon, P.; Tischenko, E.V.; Tomsic, J.; Caserta, E.; Folkers, G.E.; La Teana, A.; Rodnina, M.V.; Pon, C.L.; Boelens, R.; Gualerzi, C.O.

    2006-01-01

    Translational initiation factor 2 (IF2) is a guanine nucleotide-binding protein that can bind guanosine 3′,5′-(bis) diphosphate (ppGpp), an alarmone involved in stringent response in bacteria. In cells growing under optimal conditions, the GTP concentration is very high, and that of ppGpp very low.

  4. Regulation of Nucleosome Architecture and Factor Binding Revealed by Nuclease Footprinting of the ESC Genome.

    Science.gov (United States)

    Hainer, Sarah J; Fazzio, Thomas G

    2015-10-06

    Functional interactions between gene regulatory factors and chromatin architecture have been difficult to directly assess. Here, we use micrococcal nuclease (MNase) footprinting to probe the functions of two chromatin-remodeling complexes. By simultaneously quantifying alterations in small MNase footprints over the binding sites of 30 regulatory factors in mouse embryonic stem cells (ESCs), we provide evidence that esBAF and Mbd3/NuRD modulate the binding of several regulatory proteins. In addition, we find that nucleosome occupancy is reduced at specific loci in favor of subnucleosomes upon depletion of esBAF, including sites of histone H2A.Z localization. Consistent with these data, we demonstrate that esBAF is required for normal H2A.Z localization in ESCs, suggesting esBAF either stabilizes H2A.Z-containing nucleosomes or promotes subnucleosome to nucleosome conversion by facilitating H2A.Z deposition. Therefore, integrative examination of MNase footprints reveals insights into nucleosome dynamics and functional interactions between chromatin structure and key gene-regulatory factors.

  5. Regulation of Nucleosome Architecture and Factor Binding Revealed by Nuclease Footprinting of the ESC Genome

    Directory of Open Access Journals (Sweden)

    Sarah J. Hainer

    2015-10-01

    Full Text Available Functional interactions between gene regulatory factors and chromatin architecture have been difficult to directly assess. Here, we use micrococcal nuclease (MNase footprinting to probe the functions of two chromatin-remodeling complexes. By simultaneously quantifying alterations in small MNase footprints over the binding sites of 30 regulatory factors in mouse embryonic stem cells (ESCs, we provide evidence that esBAF and Mbd3/NuRD modulate the binding of several regulatory proteins. In addition, we find that nucleosome occupancy is reduced at specific loci in favor of subnucleosomes upon depletion of esBAF, including sites of histone H2A.Z localization. Consistent with these data, we demonstrate that esBAF is required for normal H2A.Z localization in ESCs, suggesting esBAF either stabilizes H2A.Z-containing nucleosomes or promotes subnucleosome to nucleosome conversion by facilitating H2A.Z deposition. Therefore, integrative examination of MNase footprints reveals insights into nucleosome dynamics and functional interactions between chromatin structure and key gene-regulatory factors.

  6. GTRD: a database of transcription factor binding sites identified by ChIP-seq experiments

    Science.gov (United States)

    Yevshin, Ivan; Sharipov, Ruslan; Valeev, Tagir; Kel, Alexander; Kolpakov, Fedor

    2017-01-01

    GTRD—Gene Transcription Regulation Database (http://gtrd.biouml.org)—is a database of transcription factor binding sites (TFBSs) identified by ChIP-seq experiments for human and mouse. Raw ChIP-seq data were obtained from ENCODE and SRA and uniformly processed: (i) reads were aligned using Bowtie2; (ii) ChIP-seq peaks were called using peak callers MACS, SISSRs, GEM and PICS; (iii) peaks for the same factor and peak callers, but different experiment conditions (cell line, treatment, etc.), were merged into clusters; (iv) such clusters for different peak callers were merged into metaclusters that were considered as non-redundant sets of TFBSs. In addition to information on location in genome, the sets contain structured information about cell lines and experimental conditions extracted from descriptions of corresponding ChIP-seq experiments. A web interface to access GTRD was developed using the BioUML platform. It provides: (i) browsing and displaying information; (ii) advanced search possibilities, e.g. search of TFBSs near the specified gene or search of all genes potentially regulated by a specified transcription factor; (iii) integrated genome browser that provides visualization of the GTRD data: read alignments, peaks, clusters, metaclusters and information about gene structures from the Ensembl database and binding sites predicted using position weight matrices from the HOCOMOCO database. PMID:27924024

  7. Platelet-activating factor (PAF) receptor-binding antagonist activity of Malaysian medicinal plants.

    Science.gov (United States)

    Jantan, I; Rafi, I A A; Jalil, J

    2005-01-01

    Forty-nine methanol extracts of 37 species of Malaysian medicinal plants were investigated for their inhibitory effects on platelet-activating factor (PAF) binding to rabbit platelets, using 3H-PAF as a ligand. Among them, the extracts of six Zingiberaceae species (Alpinia galanga Swartz., Boesenbergia pandurata Roxb., Curcuma ochorrhiza Val., C. aeruginosa Roxb., Zingiber officinale Rosc. and Z. zerumbet Koenig.), two Cinnamomum species (C. altissimum Kosterm. and C. pubescens Kochummen.), Goniothalamus malayanus Hook. f. Momordica charantia Linn. and Piper aduncum L. are potential sources of new PAF antagonists, as they showed significant inhibitory effects with IC50 values ranging from 1.2 to 18.4 microg ml(-1).

  8. Treatment strategies in patients with core-binding factor acute myeloid leukemia.

    Science.gov (United States)

    Solis, Erick Crespo

    2011-10-01

    Core-binding factor acute myeloid leukemias (CBF AML) are characterized by sensitivity to high-dose cytarabine. Due to good prognosis in CBF AML patients, it is important to determine the optimal treatment. Long-term RFS (relapse-free survival) is reported among 40-60%. Experience with FA/FLAG vs. IA/IAG as front-line chemotherapy has been reported by some authors. Other studies, regarding treatment strategies such as high-dose daunorubicin, do not determine survival curves in this precise subgroup of patients. Preliminary data with gemtuzumab ozogamicin plus FLAG has been reported. There are not studies with FLAG using oral fludarabine in acute leukemia patients.

  9. HOCOMOCO: A comprehensive collection of human transcription factor binding sites models

    KAUST Repository

    Kulakovskiy, Ivan V.

    2012-11-21

    Transcription factor (TF) binding site (TFBS) models are crucial for computational reconstruction of transcription regulatory networks. In existing repositories, a TF often has several models (also called binding profiles or motifs), obtained from different experimental data. Having a single TFBS model for a TF is more pragmatic for practical applications. We show that integration of TFBS data from various types of experiments into a single model typically results in the improved model quality probably due to partial correction of source specific technique bias. We present the Homo sapiens comprehensive model collection (HOCOMOCO, http://autosome.ru/HOCOMOCO/, http://cbrc.kaust.edu.sa/ hocomoco/) containing carefully hand-curated TFBS models constructed by integration of binding sequences obtained by both low- and high-throughput methods. To construct position weight matrices to represent these TFBS models, we used ChIPMunk software in four computational modes, including newly developed periodic positional prior mode associated with DNA helix pitch. We selected only one TFBS model per TF, unless there was a clear experimental evidence for two rather distinct TFBS models. We assigned a quality rating to each model. HOCOMOCO contains 426 systematically curated TFBS models for 401 human TFs, where 172 models are based on more than one data source. The Author(s) 2012.

  10. Selective influence of Sox2 on POU transcription factor binding in embryonic and neural stem cells.

    Science.gov (United States)

    Mistri, Tapan Kumar; Devasia, Arun George; Chu, Lee Thean; Ng, Wei Ping; Halbritter, Florian; Colby, Douglas; Martynoga, Ben; Tomlinson, Simon R; Chambers, Ian; Robson, Paul; Wohland, Thorsten

    2015-09-01

    Embryonic stem cell (ESC) identity is orchestrated by co-operativity between the transcription factors (TFs) Sox2 and the class V POU-TF Oct4 at composite Sox/Oct motifs. Neural stem cells (NSCs) lack Oct4 but express Sox2 and class III POU-TFs Oct6, Brn1 and Brn2. This raises the question of how Sox2 interacts with POU-TFs to transcriptionally specify ESCs versus NSCs. Here, we show that Oct4 alone binds the Sox/Oct motif and the octamer-containing palindromic MORE equally well. Sox2 binding selectively increases the affinity of Oct4 for the Sox/Oct motif. In contrast, Oct6 binds preferentially to MORE and is unaffected by Sox2. ChIP-Seq in NSCs shows the MORE to be the most enriched motif for class III POU-TFs, including MORE subtypes, and that the Sox/Oct motif is not enriched. These results suggest that in NSCs, co-operativity between Sox2 and class III POU-TFs may not occur and that POU-TF-driven transcription uses predominantly the MORE cis architecture. Thus, distinct interactions between Sox2 and POU-TF subclasses distinguish pluripotent ESCs from multipotent NSCs, providing molecular insight into how Oct4 alone can convert NSCs to pluripotency.

  11. Mitochondrial transcription termination factor 2 binds to entire mitochondrial DNA and negatively regulates mitochondrial gene expression

    Institute of Scientific and Technical Information of China (English)

    Weiwei Huang; Min Yu; Yang Jiao; Jie Ma; Mingxing Ma; Zehua Wang; Hong Wu; Deyong Tan

    2011-01-01

    Mitochondrial transcription termination factor 2 (mTERF2) is a mitochondriai matrix protein that binds to the mitochondriai DNA.Previous studies have shown that overexpression of mTERF2 can inhibit cell proliferation, but the mechanism has not been well defined so far.This study aimed to present the binding pattern of mTERF2 to the mitochondrial DNA (mtDNA) in vivo, and investigated the biological function of mTERF2 on the replication of mtDNA, mRNA transcription, and protein translation.The mTERF2 binding to entire mtDNA was identified via the chromatin immunoprecipitation analysis.The mtDNA replication efficiency and expression levels of mitochondria genes were significantly inhibited when the mTERF2 was overexpressed in HeLa cells.The inhibition level of mtDNA content was the same with the decreased levels of mRNA and mitochondrial protein expression.Overall, the mTERF2 might be a cell growth inhibitor based on its negative effect on mtDNA replication, which eventually own-regulated all of the oxidative phosphorylation components in the mitochondria that were essential for the cell's energy metabolism.

  12. The Influence of Adnectin Binding on the Extracellular Domain of Epidermal Growth Factor Receptor

    Science.gov (United States)

    Iacob, Roxana E.; Chen, Guodong; Ahn, Joomi; Houel, Stephane; Wei, Hui; Mo, Jingjie; Tao, Li; Cohen, Daniel; Xie, Dianlin; Lin, Zheng; Morin, Paul E.; Doyle, Michael L.; Tymiak, Adrienne A.; Engen, John R.

    2014-12-01

    The precise and unambiguous elucidation and characterization of interactions between a high affinity recognition entity and its cognate protein provides important insights for the design and development of drugs with optimized properties and efficacy. In oncology, one important target protein has been shown to be the epidermal growth factor receptor (EGFR) through the development of therapeutic anticancer antibodies that are selective inhibitors of EGFR activity. More recently, smaller protein derived from the 10th type III domain of human fibronectin termed an adnectin has also been shown to inhibit EGFR in clinical studies. The mechanism of EGFR inhibition by either an adnectin or an antibody results from specific binding of the high affinity protein to the extracellular portion of EGFR (exEGFR) in a manner that prevents phosphorylation of the intracellular kinase domain of the receptor and thereby blocks intracellular signaling. Here, the structural changes induced upon binding were studied by probing the solution conformations of full length exEGFR alone and bound to a cognate adnectin through hydrogen/deuterium exchange mass spectrometry (HDX MS). The effects of binding in solution were identified and compared with the structure of a bound complex determined by X-ray crystallography.

  13. A chemokine-binding domain in the tumor necrosis factor receptor from variola (smallpox) virus.

    Science.gov (United States)

    Alejo, Alí; Ruiz-Argüello, M Begoña; Ho, Yin; Smith, Vincent P; Saraiva, Margarida; Alcami, Antonio

    2006-04-11

    Variola virus (VaV) is the causative agent of smallpox, one of the most devastating diseases encountered by man, that was eradicated in 1980. The deliberate release of VaV would have catastrophic consequences on global public health. However, the mechanisms that contribute to smallpox pathogenesis are poorly understood at the molecular level. The ability of viruses to evade the host defense mechanisms is an important determinant of viral pathogenesis. Here we show that the tumor necrosis factor receptor (TNFR) homologue CrmB encoded by VaV functions not only as a soluble decoy TNFR but also as a highly specific binding protein for several chemokines that mediate recruitment of immune cells to mucosal surfaces and the skin, sites of virus entry and viral replication at late stages of smallpox. CrmB binds chemokines through its C-terminal domain, which is unrelated to TNFRs, was named smallpox virus-encoded chemokine receptor (SECRET) domain and uncovers a family of poxvirus chemokine inhibitors. An active SECRET domain was found in another viral TNFR (CrmD) and three secreted proteins encoded by orthopoxviruses. These findings identify a previously undescribed chemokine-binding and inhibitory domain unrelated to host chemokine receptors and a mechanism of immune modulation in VaV that may influence smallpox pathogenesis.

  14. Self-assembly and DNA binding of the blocking factor in x chromosome inactivation.

    Directory of Open Access Journals (Sweden)

    Mario Nicodemi

    2007-11-01

    Full Text Available X chromosome inactivation (XCI is the phenomenon occurring in female mammals whereby dosage compensation of X-linked genes is obtained by transcriptional silencing of one of their two X chromosomes, randomly chosen during early embryo development. The earliest steps of random X-inactivation, involving counting of the X chromosomes and choice of the active and inactive X, are still not understood. To explain "counting and choice," the longstanding hypothesis is that a molecular complex, a "blocking factor" (BF, exists. The BF is present in a single copy and can randomly bind to just one X per cell which is protected from inactivation, as the second X is inactivated by default. In such a picture, the missing crucial step is to explain how the molecular complex is self-assembled, why only one is formed, and how it binds only one X. We answer these questions within the framework of a schematic Statistical Physics model, investigated by Monte Carlo computer simulations. We show that a single complex is assembled as a result of a thermodynamic process relying on a phase transition occurring in the system which spontaneously breaks the symmetry between the X's. We discuss, then, the BF interaction with X chromosomes. The thermodynamics of the mechanism that directs the two chromosomes to opposite fates could be, thus, clarified. The insights on the self-assembling and X binding properties of the BF are used to derive a quantitative scenario of biological implications describing current experimental evidences on "counting and choice."

  15. DNA-binding mechanism of the Hippo pathway transcription factor TEAD4.

    Science.gov (United States)

    Shi, Z; He, F; Chen, M; Hua, L; Wang, W; Jiao, S; Zhou, Z

    2017-07-27

    TEA domain (TEAD) family transcription factors are key regulators in development, tissue homeostasis and cancer progression. TEAD4 acts as a critical downstream effector of the evolutionarily conserved Hippo signaling pathway. The well-studied oncogenic protein YAP forms a complex with TEAD4 to regulate gene transcription; so does the tumor suppressor VGLL4. Although it is known that TEAD proteins can bind promoter regions of target genes through the TEA domain, the specific and detailed mechanism of DNA recognition by the TEA domain remains partially understood. Here, we report the crystal structure of TEAD4 TEA domain in complex with a muscle-CAT DNA element. The structure revealed extensive interactions between the TEA domain and the DNA duplex involving both the major and minor grooves of DNA helix. The DNA recognition helix, α3 helix, determines the specificity of the TEA domain binding to DNA sequence. Structure-guided biochemical analysis identified two major binding sites on the interface of the TEA domain-DNA complex. Mutation of TEAD4 at either site substantially decreases its occupancy on the promoter region of target genes, and largely impaired YAP-induced TEAD4 transactivation and target gene transcription, leading to inhibition of growth and colony formation of gastric cancer cell HGC-27. Collectively, our work provides a structural basis for understanding the regulatory mechanism of TEAD-mediated gene transcription.

  16. HOCOMOCO: a comprehensive collection of human transcription factor binding sites models

    Science.gov (United States)

    Kulakovskiy, Ivan V.; Medvedeva, Yulia A.; Schaefer, Ulf; Kasianov, Artem S.; Vorontsov, Ilya E.; Bajic, Vladimir B.; Makeev, Vsevolod J.

    2013-01-01

    Transcription factor (TF) binding site (TFBS) models are crucial for computational reconstruction of transcription regulatory networks. In existing repositories, a TF often has several models (also called binding profiles or motifs), obtained from different experimental data. Having a single TFBS model for a TF is more pragmatic for practical applications. We show that integration of TFBS data from various types of experiments into a single model typically results in the improved model quality probably due to partial correction of source specific technique bias. We present the Homo sapiens comprehensive model collection (HOCOMOCO, http://autosome.ru/HOCOMOCO/, http://cbrc.kaust.edu.sa/hocomoco/) containing carefully hand-curated TFBS models constructed by integration of binding sequences obtained by both low- and high-throughput methods. To construct position weight matrices to represent these TFBS models, we used ChIPMunk software in four computational modes, including newly developed periodic positional prior mode associated with DNA helix pitch. We selected only one TFBS model per TF, unless there was a clear experimental evidence for two rather distinct TFBS models. We assigned a quality rating to each model. HOCOMOCO contains 426 systematically curated TFBS models for 401 human TFs, where 172 models are based on more than one data source. PMID:23175603

  17. Theory on the mechanisms of combinatorial binding of transcription factors with DNA

    CERN Document Server

    Murugan, R

    2016-01-01

    We develop a theoretical framework on the mechanism of combinatorial binding of transcription factors (TFs) with their specific binding sites on DNA. We consider three possible mechanisms viz. monomer, hetero-oligomer and coordinated recruitment pathways. In the monomer pathway, combinatorial TFs search for their targets in an independent manner and the protein-protein interactions among them will be insignificant. The protein-protein interactions are very strong so that the hetero-oligomer complex of TFs as a whole searches for the cognate sites in case of hetero-oligomer pathway. The TF which arrived first will recruit the adjacent TFs in a sequential manner in the recruitment pathway. The free energy released from the protein-protein interactions among TFs will be in turn utilized to stabilize the TFs-DNA complex. Such coordinated binding of TFs in fact emerges as the cooperative effect. Monomer and hetero-oligomer pathways are efficient only when few TFs are involved in the combinatorial regulation. Detai...

  18. Free energy simulations of a GTPase: GTP and GDP binding to archaeal initiation factor 2.

    Science.gov (United States)

    Satpati, Priyadarshi; Clavaguéra, Carine; Ohanessian, Gilles; Simonson, Thomas

    2011-05-26

    Archaeal initiation factor 2 (aIF2) is a protein involved in the initiation of protein biosynthesis. In its GTP-bound, "ON" conformation, aIF2 binds an initiator tRNA and carries it to the ribosome. In its GDP-bound, "OFF" conformation, it dissociates from tRNA. To understand the specific binding of GTP and GDP and its dependence on the ON or OFF conformational state of aIF2, molecular dynamics free energy simulations (MDFE) are a tool of choice. However, the validity of the computed free energies depends on the simulation model, including the force field and the boundary conditions, and on the extent of conformational sampling in the simulations. aIF2 and other GTPases present specific difficulties; in particular, the nucleotide ligand coordinates a divalent Mg(2+) ion, which can polarize the electronic distribution of its environment. Thus, a force field with an explicit treatment of electronic polarizability could be necessary, rather than a simpler, fixed charge force field. Here, we begin by comparing a fixed charge force field to quantum chemical calculations and experiment for Mg(2+):phosphate binding in solution, with the force field giving large errors. Next, we consider GTP and GDP bound to aIF2 and we compare two fixed charge force fields to the recent, polarizable, AMOEBA force field, extended here in a simple, approximate manner to include GTP. We focus on a quantity that approximates the free energy to change GTP into GDP. Despite the errors seen for Mg(2+):phosphate binding in solution, we observe a substantial cancellation of errors when we compare the free energy change in the protein to that in solution, or when we compare the protein ON and OFF states. Finally, we have used the fixed charge force field to perform MDFE simulations and alchemically transform GTP into GDP in the protein and in solution. With a total of about 200 ns of molecular dynamics, we obtain good convergence and a reasonable statistical uncertainty, comparable to the force

  19. Multiple DNA-binding modes for the ETS family transcription factor PU.1.

    Science.gov (United States)

    Esaki, Shingo; Evich, Marina G; Erlitzki, Noa; Germann, Markus W; Poon, Gregory M K

    2017-09-29

    The eponymous DNA-binding domain of ETS (E26 transformation-specific) transcription factors binds a single sequence-specific site as a monomer over a single helical turn. Following our previous observation by titration calorimetry that the ETS member PU.1 dimerizes sequentially at a single sequence-specific DNA-binding site to form a 2:1 complex, we have carried out an extensive spectroscopic and biochemical characterization of site-specific PU.1 ETS complexes. Whereas 10 bp of DNA was sufficient to support PU.1 binding as a monomer, additional flanking bases were required to invoke sequential dimerization of the bound protein. NMR spectroscopy revealed a marked loss of signal intensity in the 2:1 complex, and mutational analysis implicated the distal surface away from the bound DNA as the dimerization interface. Hydroxyl radical DNA footprinting indicated that the site-specifically bound PU.1 dimers occupied an extended DNA interface downstream from the 5'-GGAA-3' core consensus relative to its 1:1 counterpart, thus explaining the apparent site size requirement for sequential dimerization. The site-specifically bound PU.1 dimer resisted competition from nonspecific DNA and showed affinities similar to other functionally significant PU.1 interactions. As sequential dimerization did not occur with the ETS domain of Ets-1, a close structural homolog of PU.1, 2:1 complex formation may represent an alternative autoinhibitory mechanism in the ETS family at the protein-DNA level. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Identification of factors in human urine that inhibit the binding of Escherichia coli adhesins.

    Science.gov (United States)

    Parkkinen, J; Virkola, R; Korhonen, T K

    1988-10-01

    Earlier studies on the binding of Escherichia coli adhesins to the human urinary tract have indicated that the ability to recognize binding sites on the urinary tract epithelial cells is not a characteristic for P fimbriae only, but is also shared by some other adhesins that are not associated with pyelonephritis, especially S fimbriae. In the present study we have investigated whether human urine contains inhibitors of the binding of E. coli adhesins. Normal human urine was found to inhibit hemagglutination by S and type 1 fimbriae but not P fimbriae. The major inhibitor of S fimbriae in normal urine was identified as Tamm-Horsfall glycoprotein, and the interaction with S fimbriae is probably mediated by its sialyloligosaccharide chains. No significant variation was observed in the inhibitory effect of T-H glycoprotein preparations originating from different individuals. In contrast to S fimbriae, the major inhibitors of type 1 fimbriae in urine were identified as low-molecular-weight compounds. Gel filtration and ion-exchange chromatography and alpha-mannosidase treatment indicated that they were neutral alpha-mannosides, probably manno-oligosaccharides with three to five saccharides. Studies of urine samples collected from several individuals indicated the common occurrence of these inhibitory alpha-mannosides. Type 1 fimbriae bound to immobilized T-H glycoprotein, but, unlike S fimbriae, their binding was poorly inhibited by soluble T-H glycoprotein. Some urine samples were also found to contain low-molecular-weight inhibitors for the O75X adhesin of E. coli. These results emphasize that to function as a virulence factor in human urinary tract infections, an adhesin must evidently recognize such receptor structures at the infection sites that are not excreted in soluble form in urine. This prerequisite is filled by P fimbriae but not by type 1 or S fimbriae.

  1. Tuftsin binds neuropilin-1 through a sequence similar to that encoded by exon 8 of vascular endothelial growth factor.

    Science.gov (United States)

    von Wronski, Mathew A; Raju, Natarajan; Pillai, Radhakrishna; Bogdan, Nancy J; Marinelli, Edmund R; Nanjappan, Palaniappa; Ramalingam, Kondareddiar; Arunachalam, Thangavel; Eaton, Steve; Linder, Karen E; Yan, Feng; Pochon, Sibylle; Tweedle, Michael F; Nunn, Adrian D

    2006-03-03

    Tuftsin, Thr-Lys-Pro-Arg (TKPR), is an immunostimulatory peptide with reported nervous system effects as well. We unexpectedly found that tuftsin and a higher affinity antagonist, TKPPR, bind selectively to neuropilin-1 and block vascular endothelial growth factor (VEGF) binding to that receptor. Dimeric and tetrameric forms of TKPPR had greatly increased affinity for neuropilin-1 based on competition binding experiments. On endothelial cells tetrameric TKPPR inhibited the VEGF(165)-induced autophosphorylation of vascular endothelial growth factor receptor-2 (VEGFR-2) even though it did not directly inhibit VEGF binding to VEGFR-2. Homology between exon 8 of VEGF and TKPPR suggests that the sequence coded for by exon 8 may stabilize VEGF binding to neuropilin-1 to facilitate signaling through VEGFR-2. Given the overlap between processes involving neuropilin-1 and tuftsin, we propose that at least some of the previously reported effects of tuftsin are mediated through neuropilin-1.

  2. Promoter-proximal transcription factor binding is transcriptionally active when coupled with nucleosome repositioning in immediate vicinity

    Science.gov (United States)

    Yadav, Vinod Kumar; Thakur, Ram Krishna; Eckloff, Bruce; Baral, Aradhita; Singh, Ankita; Halder, Rashi; Kumar, Akinchan; Alam, Mohammad Parwez; Kundu, Tapas K.; Pandita, Raj; Pandita, Tej K.; Wieben, Eric D.; Chowdhury, Shantanu

    2014-01-01

    Previous studies have analyzed patterns of transcription, transcription factor (TF) binding or mapped nucleosome occupancy across the genome. These suggest that the three aspects are genetically connected but the cause and effect relationships are still unknown. For example, physiologic TF binding studies involve many TFs, consequently, it is difficult to assign nucleosome reorganization to the binding site occupancy of any particular TF. Therefore, several aspects remain unclear: does TF binding influence nucleosome (re)organizations locally or impact the chromatin landscape at a more global level; are all or only a fraction of TF binding a result of reorganization in nucleosome occupancy and do all TF binding and associated changes in nucleosome occupancy result in altered gene expression? With these in mind, following characterization of two states (before and after induction of a single TF of choice) we determined: (i) genomic binding sites of the TF, (ii) promoter nucleosome occupancy and (iii) transcriptome profiles. Results demonstrated that promoter-proximal TF binding influenced expression of the target gene when it was coupled to nucleosome repositioning at or close to its binding site in most cases. In contrast, only in few cases change in target gene expression was found when TF binding occurred without local nucleosome reorganization. PMID:25081206

  3. A general pairwise interaction model provides an accurate description of in vivo transcription factor binding sites.

    Directory of Open Access Journals (Sweden)

    Marc Santolini

    Full Text Available The identification of transcription factor binding sites (TFBSs on genomic DNA is of crucial importance for understanding and predicting regulatory elements in gene networks. TFBS motifs are commonly described by Position Weight Matrices (PWMs, in which each DNA base pair contributes independently to the transcription factor (TF binding. However, this description ignores correlations between nucleotides at different positions, and is generally inaccurate: analysing fly and mouse in vivo ChIPseq data, we show that in most cases the PWM model fails to reproduce the observed statistics of TFBSs. To overcome this issue, we introduce the pairwise interaction model (PIM, a generalization of the PWM model. The model is based on the principle of maximum entropy and explicitly describes pairwise correlations between nucleotides at different positions, while being otherwise as unconstrained as possible. It is mathematically equivalent to considering a TF-DNA binding energy that depends additively on each nucleotide identity at all positions in the TFBS, like the PWM model, but also additively on pairs of nucleotides. We find that the PIM significantly improves over the PWM model, and even provides an optimal description of TFBS statistics within statistical noise. The PIM generalizes previous approaches to interdependent positions: it accounts for co-variation of two or more base pairs, and predicts secondary motifs, while outperforming multiple-motif models consisting of mixtures of PWMs. We analyse the structure of pairwise interactions between nucleotides, and find that they are sparse and dominantly located between consecutive base pairs in the flanking region of TFBS. Nonetheless, interactions between pairs of non-consecutive nucleotides are found to play a significant role in the obtained accurate description of TFBS statistics. The PIM is computationally tractable, and provides a general framework that should be useful for describing and predicting

  4. Insulin-like growth factor binding protein 3 in inflammatory bowel disease

    DEFF Research Database (Denmark)

    Kirman, Irena; Whelan, Richard Larry; Jain, Suvinit;

    2005-01-01

    Epithelial cell growth regulation has been reported to be altered in inflammatory bowel disease (IBD) patients. The cell growth regulatory factor, insulin-like growth factor binding protein 3 (IGFBP-3), may be partly responsible for this phenomenon. So far, IGFBP-3 levels have been assessed...... as values of total protein, which is a sum of bioactive intact 43- to 45-kDa protein and its inactive proteolytic cleavage fragments. We aimed to assess the levels of intact IGFBP-3 and its cleaving protease MMP-9 in IBD. Patients with IBD and controls were included. Total plasma IGFBP-3 concentration...... and MMP-9 levels were determined in ELISA. The concentration of intact IGFBP-3 was significantly decreased in patients with moderate to severe IBD activity compared to those in remission or controls. Of note, a dramatic depletion of intact IGFBP-3 was found in 7.4% of patients with IBD. Zymography...

  5. Discovery, optimization and validation of an optimal DNA-binding sequence for the Six1 homeodomain transcription factor.

    Science.gov (United States)

    Liu, Yubing; Nandi, Soumyadeep; Martel, André; Antoun, Alen; Ioshikhes, Ilya; Blais, Alexandre

    2012-09-01

    The Six1 transcription factor is a homeodomain protein involved in controlling gene expression during embryonic development. Six1 establishes gene expression profiles that enable skeletal myogenesis and nephrogenesis, among others. While several homeodomain factors have been extensively characterized with regards to their DNA-binding properties, relatively little is known of the properties of Six1. We have used the genomic binding profile of Six1 during the myogenic differentiation of myoblasts to obtain a better understanding of its preferences for recognizing certain DNA sequences. DNA sequence analyses on our genomic binding dataset, combined with biochemical characterization using binding assays, reveal that Six1 has a much broader DNA-binding sequence spectrum than had been previously determined. Moreover, using a position weight matrix optimization algorithm, we generated a highly sensitive and specific matrix that can be used to predict novel Six1-binding sites with highest accuracy. Furthermore, our results support the idea of a mode of DNA recognition by this factor where Six1 itself is sufficient for sequence discrimination, and where Six1 domains outside of its homeodomain contribute to binding site selection. Together, our results provide new light on the properties of this important transcription factor, and will enable more accurate modeling of Six1 function in bioinformatic studies.

  6. HOCOMOCO: expansion and enhancement of the collection of transcription factor binding sites models

    KAUST Repository

    Kulakovskiy, Ivan V.

    2015-11-19

    Models of transcription factor (TF) binding sites provide a basis for a wide spectrum of studies in regulatory genomics, from reconstruction of regulatory networks to functional annotation of transcripts and sequence variants. While TFs may recognize different sequence patterns in different conditions, it is pragmatic to have a single generic model for each particular TF as a baseline for practical applications. Here we present the expanded and enhanced version of HOCOMOCO (http://hocomoco.autosome.ru and http://www.cbrc.kaust.edu.sa/hocomoco10), the collection of models of DNA patterns, recognized by transcription factors. HOCOMOCO now provides position weight matrix (PWM) models for binding sites of 601 human TFs and, in addition, PWMs for 396 mouse TFs. Furthermore, we introduce the largest up to date collection of dinucleotide PWM models for 86 (52) human (mouse) TFs. The update is based on the analysis of massive ChIP-Seq and HT-SELEX datasets, with the validation of the resulting models on in vivo data. To facilitate a practical application, all HOCOMOCO models are linked to gene and protein databases (Entrez Gene, HGNC, UniProt) and accompanied by precomputed score thresholds. Finally, we provide command-line tools for PWM and diPWM threshold estimation and motif finding in nucleotide sequences.

  7. Dynamic nucleocytoplasmic shuttling of an Arabidopsis SR splicing factor: role of the RNA-binding domains.

    Science.gov (United States)

    Rausin, Glwadys; Tillemans, Vinciane; Stankovic, Nancy; Hanikenne, Marc; Motte, Patrick

    2010-05-01

    Serine/arginine-rich (SR) proteins are essential nuclear-localized splicing factors. We have investigated the dynamic subcellular distribution of the Arabidopsis (Arabidopsis thaliana) RSZp22 protein, a homolog of the human 9G8 SR factor. Little is known about the determinants underlying the control of plant SR protein dynamics, and so far most studies relied on ectopic transient overexpression. Here, we provide a detailed analysis of the RSZp22 expression profile and describe its nucleocytoplasmic shuttling properties in specific cell types. Comparison of transient ectopic- and stable tissue-specific expression highlights the advantages of both approaches for nuclear protein dynamic studies. By site-directed mutagenesis of RSZp22 RNA-binding sequences, we show that functional RNA recognition motif RNP1 and zinc-knuckle are dispensable for the exclusive protein nuclear localization and speckle-like distribution. Fluorescence resonance energy transfer imaging also revealed that these motifs are implicated in RSZp22 molecular interactions. Furthermore, the RNA-binding motif mutants are defective for their export through the CRM1/XPO1/Exportin-1 receptor pathway but retain nucleocytoplasmic mobility. Moreover, our data suggest that CRM1 is a putative export receptor for mRNPs in plants.

  8. Role of insulin-like growth factor binding protein-4 in prevention of colon cancer

    Directory of Open Access Journals (Sweden)

    Seifalian Alexander M

    2007-11-01

    Full Text Available Abstract Background Insulin-like growth factors (IGFs are important for the proliferation of cancer cells. One of their binding proteins, known as insulin-like growth factor binding protein -4 (IGFBP-4 is well known for its inhibitory action on IGFs in vitro. We assessed the effect of IGFBP-4 in prevention of development of colon cancer in vivo. Methods Nude mice were subcutaneously inoculated with HT-29 colon cancer cells and they were also simultaneously injected either gene construct containing mammalian expression vector pcDNA3 with or without IGFBP-4 gene or phosphate buffered saline. The effect was assessed 4 weeks later by evaluating the tumours for mitosis, necrosis, apoptosis, and expressions of IGFBP-4, Bcl-2 and Bax proteins. Results The results showed that the IGFBP-4 gene therapy did not prevent the tumour establishment but it increased the tumour apoptosis which was associated with an increase in Bcl-2 and Bax expressions. The IGFBP-4 protein was low in tumours which received IGFBP-4 gene construct which may be due to a feed back mechanism of IGFBP-4 upon its own cells. Conclusion IGFBP-4 gene therapy in the form localised gene transfer did not prevent colon cancer initiation and establishment but it resulted in increased apoptosis and Bax protein expression and a decrease in tumour cellular mitosis

  9. Insulin-like Growth Factor Binding Protein 7 Mediates Glioma Cell Growth and Migration

    Directory of Open Access Journals (Sweden)

    Wei Jiang

    2008-12-01

    Full Text Available Insulin-like growth factor binding protein 7 (IGFBP-7 is the only member of the IGFBP superfamily that binds strongly to insulin, suggesting that IGFBP-7 may have different functions from other IGFBPs. Unlike other IGFBPs, the expression and functions of IGFBP-7 in glioma tumors have not been reported. Using cDNA microarray analysis, we found that expression of IGFBP-7 correlated with the grade of glioma tumors and the overall patient survival. This finding was further validated by real-time reverse transcription-polymerase chain reaction and Western blot analysis. We used RNAi to examine the role of IGFBP-7 in glioma cells, inhibiting IGFBP-7 expression by short interfering RNA transfection. Cell proliferation was suppressed after IGFBP-7 expression was inhibited for 5 days, and glioma cell growth was stimulated consistently by the addition of recombinant IGFBP-7 protein. Moreover, glioma cell migration was attenuated by IGFBP-7 depletion but enhanced by IGFBP-7 overexpression and addition. Overexpression of AKT1 in IGFBP-7-overxpressed cells attenuated the IGFBP-7-promoted migration and further enhanced inhibition of IGFBP-7 depletion on the migration. Phosphorylation of AKT and Erk1/2 was also inversely regulated by IGFBP-7 expression. These two factors together suggest that IGFBP-7 can regulate glioma cell migration through the AKT-ERK pathway, thereby playing an important role in glioma growth and migration.

  10. Alpha-bungarotoxin binding to hippocampal interneurons: immunocytochemical characterization and effects on growth factor expression.

    Science.gov (United States)

    Freedman, R; Wetmore, C; Strömberg, I; Leonard, S; Olson, L

    1993-05-01

    The nicotinic cholinergic antagonist alpha-bungarotoxin (alpha-BT) binds throughout the rat hippocampal formation. The binding is displaceable by d-tubocurarine. The most heavily labeled cells are GABA-containing interneurons in the dentate and in Ammon's horn. These neurons have several different morphologies and contain several neuropeptides. alpha-BT-labeled interneurons in the dentate are small cells between the granular and molecular layers that often contain neuropeptide Y. alpha-BT-labeled interneurons in CA1 are medium-sized interneurons, occasionally found in stratum pyramidale, but more often found in stratum radiatum and stratum lacunosum moleculare. These neurons often contain cholecystokinin. The largest alpha-BT-labeled interneurons are found in CA3, in both stratum radiatum and stratum lucidum. These neurons are multipolar and frequently are autofluorescent. They often contain somatostatin or cholecystokinin. These large interneurons have been found to receive medial septal innervation and may also have projections that provide inhibitory feedback directly to the medial septal nucleus. The cholinergic innervation of the hippocampus from the medial septal nucleus is under the trophic regulation of NGF and brain-derived neurotrophic factor, even in adult life. Expression of mRNA for both these factors is increased in CA3 and the dentate after intraventricular administration of alpha-BT, but not after administration of the muscarinic antagonist atropine. alpha-BT-sensitive cholinergic receptors on inhibitory interneurons may be critical to medial septal regulation of the hippocampal activity, including the habituation of response to sensory input.

  11. Evolutionarily conserved binding of translationally controlled tumor protein to eukaryotic elongation factor 1B.

    Science.gov (United States)

    Wu, Huiwen; Gong, Weibin; Yao, Xingzhe; Wang, Jinfeng; Perrett, Sarah; Feng, Yingang

    2015-04-03

    Translationally controlled tumor protein (TCTP) is an abundant protein that is highly conserved in eukaryotes. However, its primary function is still not clear. Human TCTP interacts with the metazoan-specific eukaryotic elongation factor 1Bδ (eEF1Bδ) and inhibits its guanine nucleotide exchange factor (GEF) activity, but the structural mechanism remains unknown. The interaction between TCTP and eEF1Bδ was investigated by NMR titration, structure determination, paramagnetic relaxation enhancement, site-directed mutagenesis, isothermal titration calorimetry, and HADDOCK docking. We first demonstrated that the catalytic GEF domain of eEF1Bδ is not responsible for binding to TCTP but rather a previously unnoticed central acidic region (CAR) domain in eEF1Bδ. The mutagenesis data and the structural model of the TCTP-eEF1Bδ CAR domain complex revealed the key binding residues. These residues are highly conserved in eukaryotic TCTPs and in eEF1B GEFs, including the eukaryotically conserved eEF1Bα, implying the interaction may be conserved in all eukaryotes. Interactions were confirmed between TCTP and the eEF1Bα CAR domain for human, fission yeast, and unicellular photosynthetic microalgal proteins, suggesting that involvement in protein translation through the conserved interaction with eEF1B represents a primary function of TCTP. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Human vascular smooth muscle cells both express and respond to heparin-binding growth factor I (endothelial cell growth factor)

    Energy Technology Data Exchange (ETDEWEB)

    Winkles, J.A.; Friesel, R.; Burgess, W.H.; Howk, R.; Mehlman, T.; Weinstein, R.; Maciag, T.

    1987-10-01

    The control of vascular endothelial and muscle cell proliferation is important in such processes as tumor angiogenesis, wound healing, and the pathogenesis of atherosclerosis. Class I heparin-binding growth factor (HBGF-I) is a potent mitogen and chemoattractant for human endothelial cells in vitro and will induce angiogenesis in vivo. RNA gel blot hybridization experiments demonstrate that cultured human vascular smooth muscle cells, but not human umbilical cells also synthesize an HBGF-I mRNA. Smooth muscle cells also synthesize an HBGF-I-like polypeptide since (i) extract prepared from smooth muscle cells will compete with /sup 125/I-labeled HBGF-I for binding to the HBGF-I cell surface receptor, and (ii) the competing ligand is eluted from heparin-Sepharose affinity resin at a NaCl concentration similar to that required by purified bovine brain HBGF-I and stimulates endothelial cell proliferation in vitro. Furthermore, like endothelial cells, smooth muscle cells possess cell-surface-associated HBGF-I receptors and respond to HBGF-I as a mitogen. These results indicate the potential for an additional autocrine component of vascular smooth muscle cell growth control and establish a vessel wall source of HBGF-I for endothelial cell division in vivo.

  13. DPI-ELISA: a fast and versatile method to specify the binding of plant transcription factors to DNA in vitro

    Directory of Open Access Journals (Sweden)

    Chaban Christina

    2010-11-01

    Full Text Available Abstract Background About 10% of all genes in eukaryote genomes are predicted to encode transcription factors. The specific binding of transcription factors to short DNA-motifs influences the expression of neighbouring genes. However, little is known about the DNA-protein interaction itself. To date there are only a few suitable methods to characterise DNA-protein-interactions, among which the EMSA is the method most frequently used in laboratories. Besides EMSA, several protocols describe the effective use of an ELISA-based transcription factor binding assay e.g. for the analysis of human NFκB binding to specific DNA sequences. Results We provide a unified protocol for this type of ELISA analysis, termed DNA-Protein-Interaction (DPI-ELISA. Qualitative analyses with His-epitope tagged plant transcription factors expressed in E. coli revealed that EMSA and DPI-ELISA result in comparable and reproducible data. The binding of AtbZIP63 to the C-box and AtWRKY11 to the W2-box could be reproduced and validated by both methods. We next examined the physical binding of the C-terminal DNA-binding domains of AtWRKY33, AtWRKY50 and AtWRKY75 to the W2-box. Although the DNA-binding domain is highly conserved among the WRKY proteins tested, the use of the DPI-ELISA discloses differences in W2-box binding properties between these proteins. In addition to these well-studied transcription factor families, we applied our protocol to AtBPC2, a member of the so far uncharacterised plant specific Basic Pentacysteine transcription factor family. We could demonstrate binding to GA/TC-dinucleotide repeat motifs by our DPI-ELISA protocol. Different buffers and reaction conditions were examined. Conclusions We successfully applied our DPI-ELISA protocol to investigate the DNA-binding specificities of three different classes of transcription factors from Arabidopsis thaliana. However, the analysis of the binding affinity of any DNA-binding protein to any given DNA

  14. Analysis of Specific Binding and Subcellular Localization of Wheat ERF Transcription Factor W17

    Institute of Scientific and Technical Information of China (English)

    ZHAO Yun-xiang; LIU Pei; XU Zhao-shi; CHEN Ming; LI Lian-cheng; CHEN Yao-feng; XIONG Xiang-jin; MA You-zhi

    2008-01-01

    The study aims to detect the subcellular localization of ERF (ethylene-responsive element binding factor) transcription factor W17 protein, the interaction between W17 and cis-acting regulatory elements GCC-box and DRE in vitro, the binding and transactivating ability in vivo, and the role of W17 in higher plant stress-signal pathway. Recombinant plasmid W17/163hGFP was introduced into onion epidermal cells by the particle bombardment method with a PDS1000/He. Transformed cells were incubated for 24h at 22℃ in the dark and green fluorescence was monitored under a confocal microscope. The gene W17 was fused N-terminus of GST (glutathione-S-transferase) in prokaryotic expression vector pGEX-4T-1 and then transformed into E. coli strain BL21 (DE3). IPTG (0.5mmol L-1) was added to induce the expression of recombinant GST/W17 for 3h. The fused proteins were purified by GST purification columns, and then subjected to gel retardation assay with a 32P-labeled GCC or DRE sequence. The different reporter and effector plasmids were introduced into tobacco leaves through agroinfiltration, then transformed leaves stained by X-Gluc, faded with 75% alcohol and monitored under a Stereozooming microscope. The GFP fused with W17 protein was localized in the nuclei; SDS-PAGE assay demonstrated that the fused protein GST/W17 could be induced and purified with molecular weight at around 42.2kD under the induction of IPTG. Purified fused protein was able to specifically bind to both the wild-type GCC-box and DRE element, but had no interaction with either the mutant DRE or GCC-box; W17 protein can bind to GCC-box and transactive downstream GUS gene in vivo. W17 can localize into the nuclei, and it may be involved not only in biotic stresses controlled by GCC-box, but also in abiotic stresses (e. g., salt-) induced signaling pathway.

  15. Binding specificities and potential roles of isoforms of eukaryotic initiation factor 4E in Leishmania.

    Science.gov (United States)

    Yoffe, Yael; Zuberek, Joanna; Lerer, Asaf; Lewdorowicz, Magdalena; Stepinski, Janusz; Altmann, Michael; Darzynkiewicz, Edward; Shapira, Michal

    2006-12-01

    The 5' cap structure of trypanosomatid mRNAs, denoted cap 4, is a complex structure that contains unusual modifications on the first four nucleotides. We examined the four eukaryotic initiation factor 4E (eIF4E) homologues found in the Leishmania genome database. These proteins, denoted LeishIF4E-1 to LeishIF4E-4, are located in the cytoplasm. They show only a limited degree of sequence homology with known eIF4E isoforms and among themselves. However, computerized structure prediction suggests that the cap-binding pocket is conserved in each of the homologues, as confirmed by binding assays to m(7)GTP, cap 4, and its intermediates. LeishIF4E-1 and LeishIF4E-4 each bind m(7)GTP and cap 4 comparably well, and only these two proteins could interact with the mammalian eIF4E binding protein 4EBP1, though with different efficiencies. 4EBP1 is a translation repressor that competes with eIF4G for the same residues on eIF4E; thus, LeishIF4E-1 and LeishIF4E-4 are reasonable candidates for serving as translation factors. LeishIF4E-1 is more abundant in amastigotes and also contains a typical 3' untranslated region element that is found in amastigote-specific genes. LeishIF4E-2 bound mainly to cap 4 and comigrated with polysomal fractions on sucrose gradients. Since the consensus eIF4E is usually found in 48S complexes, LeishIF4E-2 could possibly be associated with the stabilization of trypanosomatid polysomes. LeishIF4E-3 bound mainly m(7)GTP, excluding its involvement in the translation of cap 4-protected mRNAs. It comigrates with 80S complexes which are resistant to micrococcal nuclease, but its function is yet unknown. None of the isoforms can functionally complement the Saccharomyces cerevisiae eIF4E, indicating that despite their structural conservation, they are considerably diverged.

  16. Cryptic DNA-binding domain in the C terminus of RNA polymerase II general transcription factor RAP30.

    Science.gov (United States)

    Tan, S; Garrett, K P; Conaway, R C; Conaway, J W

    1994-10-11

    The C terminus of mammalian transcription factor RAP30 has been found to be a cryptic DNA-binding domain strikingly similar to the C-terminal DNA-binding domain present in conserved region 4 of members of the sigma 70 family of bacterial sigma factors. This RAP30 domain shares strongest sequence similarity with the DNA-binding domain present in region 4 of Bacillus subtilis sporulation-specific sigma K. Like the region 4 DNA-binding activity of Escherichia coli sigma 70, the RAP30 C-terminal DNA binding activity is masked in intact RAP30 but is readily detectable when the RAP30 C terminus is expressed as a fusion protein. Consistent with a role for RAP30 DNA-binding activity in transcription, mutations that abolish DNA binding also abolish transcription. Therefore, RAP30 may function at least in part through the action of an evolutionarily ancient DNA-binding domain that first appeared prior to the divergence of bacteria and eukaryotes.

  17. Lyso-Sulfatide Binds Factor Xa and Inhibits Thrombin Generation by the Prothrombinase Complex.

    Directory of Open Access Journals (Sweden)

    Subramanian Yegneswaran

    Full Text Available Blood coagulation reactions are strongly influenced by phospholipids, but little is known about the influence of sphingolipids on coagulation mechanisms. Lysosulfatide (lyso-SF (sulfogalactosyl sphingosine prolonged factor Xa (fXa 1-stage plasma clotting assays, showing it had robust anticoagulant activity. In studies using purified clotting factors, lyso-SF inhibited >90% of prothrombin (II activation for reaction mixtures containing fXa/factor Va (fVa/II, and also inhibited II activation generation by fXa/ phospholipids and by Gla-domainless-fXa/fVa/phospholipids. When lyso-SF analogs were tested, results showed that N-acetyl-sulfatide was not anticoagulant, implying that the free amine group was essential for the anticoagulant effects of lyso-SF. Lyso-SF did not inhibit fXa enzymatic hydrolysis of small peptide substrates, showing it did not directly inhibit the fXa activity. In surface plasmon resonance studies, lyso-SF bound to immobilized inactivated fXa as well as inactivated Gla-domainless-fXa. Confirming this lyso-SF:fXa interaction, fluorescence studies showed that fluorescently-labeled-fXa in solution bound to lyso-SF. Thus, lyso-SF is an anticoagulant lipid that inhibits fXa when this enzyme is bound to either phospholipids or to fVa. Mechanisms for inhibition of procoagulant activity are likely to involve lyso-SF binding to fXa domain(s that are distinct from the fXa Gla domain. This suggests that certain sphingolipids, including lyso-SF and some of its analogs, may down-regulate fXa activity without inhibiting the enzyme's active site or binding to the fXa Gla domain.

  18. Recognition rules for binding of Zn-Cys2His2 transcription factors to operator DNA.

    Science.gov (United States)

    Polozov, R V; Sivozhelezov, V S; Chirgadze, Yu N; Ivanov, V V

    2015-01-01

    The molecules of Zn-finger transcription factors consist of several similar small protein units. We analyzed the crystal structures 46 basic units of 22 complexes of Zn-Cys2His2 family with the fragments of operator DNA. We showed that the recognition of DNA occurs via five protein contacts. The canonical binding positions of the recognizing α-helix were -1, 3, 6, and 7, which make contacts with the tetra-nucleotide sequence ZXYZ of the coding DNA strand; here the canonical binding triplet is underlined. The non-coding DNA strand forms only one contact at α-helix position 2. We have discovered that there is a single highly conservative contact His7α with the phosphate group of nucleotide Z, which precedes each triplet XYZ of the coding DNA chain. This particular contact is invariant for the all Zn-Cys2His2 family with high frequency of occurrence 83%, which we considered as an invariant recognition rule. We have also selected a previously unreported Zn-Cys2His2-Arg subfamily of 21 Zn-finger units bound with DNA triplets, which make two invariant contacts with residues Arg6α and His7α with the coding DNA chain. These contacts show frequency of occurrence 100 and 90%, and are invariant recognition rule. Three other variable protein-DNA contacts are formed mainly with the bases and specify the recognition patterns of individual factor units. The revealed recognition rules are inherent for the Zn-Cys2His2 family and Zn-Cys2His2-Arg subfamily of different taxonomic groups and can distinguish members of these families from any other family of transcription factors.

  19. Wide-scale analysis of human functional transcription factor binding reveals a strong bias towards the transcription start site.

    Directory of Open Access Journals (Sweden)

    Yuval Tabach

    Full Text Available BACKGROUND: Transcription factors (TF regulate expression by binding to specific DNA sequences. A binding event is functional when it affects gene expression. Functionality of a binding site is reflected in conservation of the binding sequence during evolution and in over represented binding in gene groups with coherent biological functions. Functionality is governed by several parameters such as the TF-DNA binding strength, distance of the binding site from the transcription start site (TSS, DNA packing, and more. Understanding how these parameters control functionality of different TFs in different biological contexts is a must for identifying functional TF binding sites and for understanding regulation of transcription. METHODOLOGY/PRINCIPAL FINDINGS: We introduce a novel method to screen the promoters of a set of genes with shared biological function (obtained from the functional Gene Ontology (GO classification against a precompiled library of motifs, and find those motifs which are statistically over-represented in the gene set. More than 8,000 human (and 23,000 mouse genes, were assigned to one of 134 GO sets. Their promoters were searched (from 200 bp downstream to 1,000 bp upstream the TSS for 414 known DNA motifs. We optimized the sequence similarity score threshold, independently for every location window, taking into account nucleotide heterogeneity along the promoters of the target genes. The method, combined with binding sequence and location conservation between human and mouse, identifies with hig