WorldWideScience

Sample records for cortical strain rate

  1. Strain hardening rate sensitivity and strain rate sensitivity in TWIP steels

    Energy Technology Data Exchange (ETDEWEB)

    Bintu, Alexandra [TEMA, Department of Mechanical Engineering, University of Aveiro, Campus Universitário de Santiago, 3810-193 (Portugal); Vincze, Gabriela, E-mail: gvincze@ua.pt [TEMA, Department of Mechanical Engineering, University of Aveiro, Campus Universitário de Santiago, 3810-193 (Portugal); Picu, Catalin R. [Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States); Lopes, Augusto B. [CICECO, Department of Materials and Ceramic Engineering, University of Aveiro, Campus Universitário de Santiago, 3810-193 (Portugal); Grácio, Jose J. [TEMA, Department of Mechanical Engineering, University of Aveiro, Campus Universitário de Santiago, 3810-193 (Portugal); Barlat, Frederic [Materials Mechanics Laboratory, Graduate Institute of Ferrous Technology, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of)

    2015-04-01

    TWIP steels are materials with very high strength and exceptional strain hardening capability, parameters leading to large energy absorption before failure. However, TWIP steels also exhibit reduced (often negative) strain rate sensitivity (SRS) which limits the post-necking deformation. In this study we demonstrate for an austenitic TWIP steel with 18% Mn a strong dependence of the twinning rate on the strain rate, which results in negative strain hardening rate sensitivity (SHRS). The instantaneous component of SHRS is large and negative, while its transient is close to zero. The SRS is observed to decrease with strain, becoming negative for larger strains. Direct observations of the strain rate dependence of the twinning rate are made using electron microscopy and electron backscatter diffraction, which substantiate the proposed mechanism for the observed negative SHRS.

  2. Strain hardening rate sensitivity and strain rate sensitivity in TWIP steels

    International Nuclear Information System (INIS)

    Bintu, Alexandra; Vincze, Gabriela; Picu, Catalin R.; Lopes, Augusto B.; Grácio, Jose J.; Barlat, Frederic

    2015-01-01

    TWIP steels are materials with very high strength and exceptional strain hardening capability, parameters leading to large energy absorption before failure. However, TWIP steels also exhibit reduced (often negative) strain rate sensitivity (SRS) which limits the post-necking deformation. In this study we demonstrate for an austenitic TWIP steel with 18% Mn a strong dependence of the twinning rate on the strain rate, which results in negative strain hardening rate sensitivity (SHRS). The instantaneous component of SHRS is large and negative, while its transient is close to zero. The SRS is observed to decrease with strain, becoming negative for larger strains. Direct observations of the strain rate dependence of the twinning rate are made using electron microscopy and electron backscatter diffraction, which substantiate the proposed mechanism for the observed negative SHRS

  3. Integrated mechanisms of anticipation and rate-of-change computations in cortical circuits.

    Directory of Open Access Journals (Sweden)

    Gabriel D Puccini

    2007-05-01

    Full Text Available Local neocortical circuits are characterized by stereotypical physiological and structural features that subserve generic computational operations. These basic computations of the cortical microcircuit emerge through the interplay of neuronal connectivity, cellular intrinsic properties, and synaptic plasticity dynamics. How these interacting mechanisms generate specific computational operations in the cortical circuit remains largely unknown. Here, we identify the neurophysiological basis of both the rate of change and anticipation computations on synaptic inputs in a cortical circuit. Through biophysically realistic computer simulations and neuronal recordings, we show that the rate-of-change computation is operated robustly in cortical networks through the combination of two ubiquitous brain mechanisms: short-term synaptic depression and spike-frequency adaptation. We then show how this rate-of-change circuit can be embedded in a convergently connected network to anticipate temporally incoming synaptic inputs, in quantitative agreement with experimental findings on anticipatory responses to moving stimuli in the primary visual cortex. Given the robustness of the mechanism and the widespread nature of the physiological machinery involved, we suggest that rate-of-change computation and temporal anticipation are principal, hard-wired functions of neural information processing in the cortical microcircuit.

  4. Dynamic Mechanical Testing Techniques for Cortical and Cancellous Bone

    Science.gov (United States)

    Cloete, Trevor

    2017-06-01

    Bone fracture typically occurs as an impact loading event (sporting accidents, vehicle collisions), the simulation of which requires in-depth understanding of dynamic bone behavior. Bone is a natural composite material with a complex multi length-scale hierarchical microstructure. At a macroscopic level, it is classified into hard/compact cortical bone and soft/spongy cancellous (trabecular) bone, though both are low-impedance materials relative to steels. Cortical bone is predominant in long bones, while in complex bone geometries (joints, flat bones) a cancellous bone core supports a thin cortical shell. Bone has primarily been studied at quasi-static strain rates (ɛ˙ failure, with interrupted quasi-static tests revealing a strong microstructure dependence. However, bone specimens are typically destroyed during dynamic tests, leading to a lack of dynamic microstructural damage investigations. In this paper, a short overview of dynamic bone testing is presented to give context to the challenges of testing low impedance, strain-rate dependent, non-linear, visco-elastic-brittle materials. Recent state-of-the-art experimental developments in dynamic bone testing are reviewed, with emphasis on pulse shaping, momentum trapping and ISR testing. These techniques allow for dynamic bone testing at small strains and near-constant strain rates with intact specimen recovery. The results are compared to those obtained with varying strain rate tests. Interrupted dynamic test results with microstructural analysis of the recovered specimens are presented and discussed. The paper concludes with a discussion of the experimental and modeling challenges that lie ahead in the field of dynamic bone behavior. The financial assistance of the National Research Foundation and the University of Cape Town towards this research is hereby acknowledged. Opinions expressed and conclusions arrived at are those of the author alone.

  5. Assessment of compressive failure process of cortical bone materials using damage-based model.

    Science.gov (United States)

    Ng, Theng Pin; R Koloor, S S; Djuansjah, J R P; Abdul Kadir, M R

    2017-02-01

    The main failure factors of cortical bone are aging or osteoporosis, accident and high energy trauma or physiological activities. However, the mechanism of damage evolution coupled with yield criterion is considered as one of the unclear subjects in failure analysis of cortical bone materials. Therefore, this study attempts to assess the structural response and progressive failure process of cortical bone using a brittle damaged plasticity model. For this reason, several compressive tests are performed on cortical bone specimens made of bovine femur, in order to obtain the structural response and mechanical properties of the material. Complementary finite element (FE) model of the sample and test is prepared to simulate the elastic-to-damage behavior of the cortical bone using the brittle damaged plasticity model. The FE model is validated in a comparative method using the predicted and measured structural response as load-compressive displacement through simulation and experiment. FE results indicated that the compressive damage initiated and propagated at central region where maximum equivalent plastic strain is computed, which coincided with the degradation of structural compressive stiffness followed by a vast amount of strain energy dissipation. The parameter of compressive damage rate, which is a function dependent on damage parameter and the plastic strain is examined for different rates. Results show that considering a similar rate to the initial slope of the damage parameter in the experiment would give a better sense for prediction of compressive failure. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Evaluation of strain-rate sensitivity of ion-irradiated austenitic steel using strain-rate jump nanoindentation tests

    Energy Technology Data Exchange (ETDEWEB)

    Kasada, Ryuta, E-mail: r-kasada@iae.kyoto-u.ac.jp [Institute of Advanced Energy, Kyoto University Gokasho, Uji 611-0011, Kyoto (Japan); Konishi, Satoshi [Institute of Advanced Energy, Kyoto University Gokasho, Uji 611-0011, Kyoto (Japan); Hamaguchi, Dai; Ando, Masami; Tanigawa, Hiroyasu [Japan Atomic Energy Agency, Rokkasho, Aomori (Japan)

    2016-11-01

    Highlights: • We examined strain-rate jump nanoindentation on ion-irradiated stainless steel. • We observed irradiation hardening of the ion-irradiated stainless steel. • We found that strain-rate sensitivity parameter was slightly decreased after the ion-irradiation. - Abstract: The present study investigated strain-rate sensitivity (SRS) of a single crystal Fe–15Cr–20Ni austenitic steel before and after 10.5 MeV Fe{sup 3+} ion-irradiation up to 10 dpa at 300 °C using a strain-rate jump (SRJ) nanoindentation test. It was found that the SRJ nanoindentation test is suitable for evaluating the SRS at strain-rates from 0.001 to 0.2 s{sup −1}. Indentation size effect was observed for depth dependence of nanoindentation hardness but not the SRS. The ion-irradiation increased the hardness at the shallow depth region but decreased the SRS slightly.

  7. Constant strain rate and peri-implant bone modeling: an in vivo longitudinal micro-CT analysis.

    Science.gov (United States)

    De Smet, Els; Jaecques, Siegfried V N; Wevers, Martine; Sloten, Jos Vander; Naert, Ignace E

    2013-06-01

    Strain, frequency, loading time, and strain rate, among others, determine mechanical parameters in osteogenic loading. We showed a significant osteogenic effect on bone mass (BM) by daily peri-implant loading at 1.600µε.s(-1) after 4 weeks. To study the peri-implant osteogenic effect of frequency and strain in the guinea pig tibia by in vivo longitudinal micro-computed tomography (CT) analysis. One week after implant installation in both hind limb tibiae, one implant was loaded daily for 10' during 4 weeks, while the other served as control. Frequencies (3, 10, and 30Hz) and strains varied alike in the three series to keep the strain rate constant at 1.600µε.s(-1) . In vivo micro-CT scans were taken of both tibiae: 1 week after implantation but before loading (v1) and after 2 (v2) and 4 weeks (v3) of loading as well as postmortem (pm). BM (BM (%) bone-occupied area fraction) was calculated as well as the difference between test and control sides (delta BM) RESULTS: All implants (n=78) were clinically stable at 4 weeks. Significant increase in BM was measured between v1 and v2 (pimplant marrow 500 Region of Interest already 2 weeks after loading (p=.01) and was significantly larger (11%) in series 1 compared with series 2 (p=.006) and 3 (p=.016). Within the constraints of constant loading time and strain rate, the effect of early implant loading on the peri-implant bone is strongly dependent on strain and frequency. This cortical bone model has shown to be most sensitive for high force loading at low frequency. © 2011 Wiley Periodicals, Inc.

  8. Relationships between in vivo microdamage and the remarkable regional material and strain heterogeneity of cortical bone of adult deer, elk, sheep and horse calcanei

    Science.gov (United States)

    Skedros, John G; Sybrowsky, Christian L; Anderson, Wm Erick; Chow, Frank

    2011-01-01

    Natural loading of the calcanei of deer, elk, sheep and horses produces marked regional differences in prevalent/predominant strain modes: compression in the dorsal cortex, shear in medial–lateral cortices, and tension/shear in the plantar cortex. This consistent non-uniform strain distribution is useful for investigating mechanisms that mediate the development of the remarkable regional material variations of these bones (e.g. collagen orientation, mineralization, remodeling rates and secondary osteon morphotypes, size and population density). Regional differences in strain-mode-specific microdamage prevalence and/or morphology might evoke and sustain the remodeling that produces this material heterogeneity in accordance with local strain characteristics. Adult calcanei from 11 animals of each species (deer, elk, sheep and horses) were transversely sectioned and examined using light and confocal microscopy. With light microscopy, 20 linear microcracks were identified (deer: 10; elk: six; horse: four; sheep: none), and with confocal microscopy substantially more microdamage with typically non-linear morphology was identified (deer: 45; elk: 24; horse: 15; sheep: none). No clear regional patterns of strain-mode-specific microdamage were found in the three species with microdamage. In these species, the highest overall concentrations occurred in the plantar cortex. This might reflect increased susceptibility of microdamage in habitual tension/shear. Absence of detectable microdamage in sheep calcanei may represent the (presumably) relatively greater physical activity of deer, elk and horses. Absence of differences in microdamage prevalence/morphology between dorsal, medial and lateral cortices of these bones, and the general absence of spatial patterns of strain-mode-specific microdamage, might reflect the prior emergence of non-uniform osteon-mediated adaptations that reduce deleterious concentrations of microdamage by the adult stage of bone development. PMID

  9. Strain Rate Effect on Tensile Behavior for a High Specific Strength Steel: From Quasi-Static to Intermediate Strain Rates

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2017-12-01

    Full Text Available The strain rate effect on the tensile behaviors of a high specific strength steel (HSSS with dual-phase microstructure has been investigated. The yield strength, the ultimate strength and the tensile toughness were all observed to increase with increasing strain rates at the range of 0.0006 to 56/s, rendering this HSSS as an excellent candidate for an energy absorber in the automobile industry, since vehicle crushing often happens at intermediate strain rates. Back stress hardening has been found to play an important role for this HSSS due to load transfer and strain partitioning between two phases, and a higher strain rate could cause even higher strain partitioning in the softer austenite grains, delaying the deformation instability. Deformation twins are observed in the austenite grains at all strain rates to facilitate the uniform tensile deformation. The B2 phase (FeAl intermetallic compound is less deformable at higher strain rates, resulting in easier brittle fracture in B2 particles, smaller dimple size and a higher density of phase interfaces in final fracture surfaces. Thus, more energy need be consumed during the final fracture for the experiments conducted at higher strain rates, resulting in better tensile toughness.

  10. Cortical volumes and atrophy rates in FTD-3 CHMP2B mutation carriers and related non-carriers

    DEFF Research Database (Denmark)

    Eskildsen, Simon F; Østergaard, Lasse R; Rodell, Anders B

    2008-01-01

    with a mean interval of 16 months and surface based cortical segmentation we measured cortical thickness and volume, and quantified atrophy rates. Cortical thickness and atrophy rates were averaged within major lobes and focal effects were determined by parametric statistical maps. The volumetric atrophy...... in the frontal and occipital lobes, and in the left temporal lobe. Results indicated that cortical thickness has a higher sensitivity for detecting small changes than whole-brain volumetric measures. Comparing mutation carriers with non-carriers revealed increased atrophy rates in mutation carriers bilaterally...

  11. Stress-strain properties of railway steel at strain rates of upto 105 per second

    International Nuclear Information System (INIS)

    Hashmi, M.S.J.; Islam, M.N.

    1985-01-01

    This paper presents the stress-strain characteristics of railway steel at strain rates of up to 10 5 /s at room temperature determined by a new technique. In determining the results, account has been taken of the strain-rate variation, the total strain and the strain rate history. The effect of friction, material inertia and temperature rise is also assessed and an empirical constitutive equation describing the strain-rate and strain sensitive flow stress for this type of steel is proposed. (orig.)

  12. Measurement of Strain and Strain Rate during the Impact of Tennis Ball Cores

    Directory of Open Access Journals (Sweden)

    Ben Lane

    2018-03-01

    Full Text Available The aim of this investigation was to establish the strains and strain rates experienced by tennis ball cores during impact to inform material characterisation testing and finite element modelling. Three-dimensional surface strains and strain rates were measured using two high-speed video cameras and corresponding digital image correlation software (GOM Correlate Professional. The results suggest that material characterisation testing to a maximum strain of 0.4 and a maximum rate of 500 s−1 in tension and to a maximum strain of −0.4 and a maximum rate of −800 s−1 in compression would encapsulate the demands placed on the material during impact and, in turn, define the range of properties required to encapsulate the behavior of the material during impact, enabling testing to be application-specific and strain-rate-dependent properties to be established and incorporated in finite element models.

  13. Physical nature of strain rate sensitivity of metals and alloys at high strain rates

    Science.gov (United States)

    Borodin, E. N.; Gruzdkov, A. A.; Mayer, A. E.; Selyutina, N. S.

    2018-04-01

    The role of instabilities of plastic flow at plastic deformation of various materials is one of the important cross-disciplinary problems which is equally important in physics, mechanics and material science. The strain rate sensitivities under slow and high strain rate conditions of loading have different physical nature. In the case of low strain rate, the sensitivity arising from the inertness of the defect structures evolution can be expressed by a single parameter characterizing the plasticity mechanism. In our approach, this is the value of the characteristic relaxation time. In the dynamic case, there are additional effects of “high-speed sensitivity” associated with the micro-localization of the plastic flow near the stress concentrators. In the frames of mechanical description, this requires to introduce additional strain rate sensitivity parameters, which is realized in numerous modifications of Johnson–Cook and Zerilli–Armstrong models. The consideration of both these factors is fundamental for an adequate description of the problems of dynamic deformation of highly inhomogeneous metallic materials such as steels and alloys. The measurement of the dispersion of particle velocities on the free surface of a shock-loaded material can be regarded as an experimental expression of the effect of micro-localization. This is also confirmed by our results of numerical simulation of the propagation of shock waves in a two-dimensional formulation and analytical estimations.

  14. Strain-rate dependent plasticity in thermo-mechanical transient analysis

    International Nuclear Information System (INIS)

    Rashid, Y.R.; Sharabi, M.N.

    1980-01-01

    The thermo-mechanical transient behavior of fuel element cladding and other reactor components is generally governed by the strain-rate properties of the material. Relevant constitutive modeling requires extensive material data in the form of strain-rate response as function of true-stress, temperature, time and environmental conditions, which can then be fitted within a theoretical framework of an inelastic constitutive model. In this paper, we present a constitutive formulation that deals continuously with the entire strain-rate range and has the desirable advantage of utilizing existing material data. The derivation makes use of strain-rate sensitive stress-strain curve and strain-rate dependent yield surface. By postulating a strain-rate dependent on Mises yield function and a strain-rate dependent kinematic hardening rule, we are able to derive incremental stress-strain relations that describe the strain-rate behavior in the entire deformation range spanning high strain-rate plasticity and creep. The model is sufficiently general as to apply to any materials and loading histories for which data is available. (orig.)

  15. Mechanism of Strain Rate Effect Based on Dislocation Theory

    International Nuclear Information System (INIS)

    Kun, Qin; Shi-Sheng, Hu; Li-Ming, Yang

    2009-01-01

    Based on dislocation theory, we investigate the mechanism of strain rate effect. Strain rate effect and dislocation motion are bridged by Orowan's relationship, and the stress dependence of dislocation velocity is considered as the dynamics relationship of dislocation motion. The mechanism of strain rate effect is then investigated qualitatively by using these two relationships although the kinematics relationship of dislocation motion is absent due to complicated styles of dislocation motion. The process of strain rate effect is interpreted and some details of strain rate effect are adequately discussed. The present analyses agree with the existing experimental results. Based on the analyses, we propose that strain rate criteria rather than stress criteria should be satisfied when a metal is fully yielded at a given strain rate. (condensed matter: structure, mechanical and thermal properties)

  16. High strain rate studies in rock

    International Nuclear Information System (INIS)

    Grady, D.

    1977-01-01

    Dynamic compression studies using high velocity impact are usually considered to involve a catastrophic process of indeterminate loading rate by which a material is brough to a shock compressed state. Although this is frequently the case, methods are also available to control the rate of strain during the shock compression process. One of the most accurate of these methods makes use of the anomalous nonlinear elastic property of glass to transform an initial shock or step wave input into a ramp wave of known amplitude and duration. Fused silica is the most carefully calibrated material for this purpose and, when placed between the test specimen and the impact projectile, can provide loading strain rates in the range of 10 4 /s to 10 6 /s for final stress states of approximately 3.9 GPa or less.Ramp wave compression experiments have been conducted on dolomite at strain rates of 3 x 10 4 /s. Both initial yielding and subsequent deformation at this strain rate agrees well with previous shock wave studies (epsilon-dotapprox.10 6 /s) and differs substantially from quasi-static measurements (epsilon-dotapprox.10 -4 /s). The ramp wave studies have also uncovered a pressure-induced phase transition in dolomite initiating at 4.0 GPa

  17. Strain rate effects in stress corrosion cracking

    Energy Technology Data Exchange (ETDEWEB)

    Parkins, R.N. (Newcastle upon Tyne Univ. (UK). Dept. of Metallurgy and Engineering Materials)

    1990-03-01

    Slow strain rate testing (SSRT) was initially developed as a rapid, ad hoc laboratory method for assessing the propensity for metals an environments to promote stress corrosion cracking. It is now clear, however, that there are good theoretical reasons why strain rate, as opposed to stress per se, will often be the controlling parameter in determining whether or not cracks are nucleated and, if so, are propagated. The synergistic effects of the time dependence of corrosion-related reactions and microplastic strain provide the basis for mechanistic understanding of stress corrosion cracking in high-pressure pipelines and other structures. However, while this may be readily comprehended in the context of laboratory slow strain tests, its extension to service situations may be less apparent. Laboratory work involving realistic stressing conditions, including low-frequency cyclic loading, shows that strain or creep rates give good correlation with thresholds for cracking and with crack growth kinetics.

  18. Effect of strain rate and temperature at high strains on fatigue behavior of SAP alloys

    DEFF Research Database (Denmark)

    Blucher, J.T.; Knudsen, Per; Grant, N.J.

    1968-01-01

    Fatigue behavior of three SAP alloys of two nominal compositions (7 and 13% Al2O3) was studied in terms of strain rate and temperature at high strains; strain rate had no effect on life at 80 F, but had increasingly greater effect with increasing temperature above 500 F; life decreased with decre......Fatigue behavior of three SAP alloys of two nominal compositions (7 and 13% Al2O3) was studied in terms of strain rate and temperature at high strains; strain rate had no effect on life at 80 F, but had increasingly greater effect with increasing temperature above 500 F; life decreased...

  19. Effects of the Strain Rate Sensitivity and Strain Hardening on the Saturated Impulse of Plates

    Directory of Open Access Journals (Sweden)

    Ling Zhu

    Full Text Available Abstract This paper studies the stiffening effects of the material strain rate sensitivity and strain hardening on the saturated impulse of elastic, perfectly plastic plates. Finite element (FE code ABAQUS is employed to simulate the elastoplastic response of square plates under rectangular pressure pulse. Rigid-plastic analyses for saturated impulse, which consider strain rate sensitivity and strain hardening, are conducted. Satisfactory agreement between the finite element models (FEM and predictions of the rigid-plastic analysis is obtained, which verifies that the proposed rigid-plastic methods are effective to solve the problem including strain rate sensitivity and strain hardening. The quantitative results for the scale effect of the strain rate sensitivity are given. The results for the stiffening effects suggest that two general stiffening factors n 1 and n 2, which characterizes the strain rate sensitivity and strain hardening effect, respectively can be defined. The saturated displacement is inversely proportional to the stiffening factors (i.e. n 1 and n 2 and saturated impulse is inversely proportional to the square roots of the stiffening factors (i.e. n 1 and n 2. Formulae for displacement and saturated impulse are proposed based on the empirical analysis.

  20. Effects of age and loading rate on equine cortical bone failure.

    Science.gov (United States)

    Kulin, Robb M; Jiang, Fengchun; Vecchio, Kenneth S

    2011-01-01

    Although clinical bone fractures occur predominantly under impact loading (as occurs during sporting accidents, falls, high-speed impacts or other catastrophic events), experimentally validated studies on the dynamic fracture behavior of bone, at the loading rates associated with such events, remain limited. In this study, a series of tests were performed on femoral specimens obtained post-mortem from equine donors ranging in age from 6 months to 28 years. Fracture toughness and compressive tests were performed under both quasi-static and dynamic loading conditions in order to determine the effects of loading rate and age on the mechanical behavior of the cortical bone. Fracture toughness experiments were performed using a four-point bending geometry on single and double-notch specimens in order to measure fracture toughness, as well as observe differences in crack initiation between dynamic and quasi-static experiments. Compressive properties were measured on bone loaded parallel and transverse to the osteonal growth direction. Fracture propagation was then analyzed using scanning electron and scanning confocal microscopy to observe the effects of microstructural toughening mechanisms at different strain rates. Specimens from each horse were also analyzed for dry, wet and mineral densities, as well as weight percent mineral, in order to investigate possible influences of composition on mechanical behavior. Results indicate that bone has a higher compressive strength, but lower fracture toughness when tested dynamically as compared to quasi-static experiments. Fracture toughness also tends to decrease with age when measured quasi-statically, but shows little change with age under dynamic loading conditions, where brittle "cleavage-like" fracture behavior dominates. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Pretraining Cortical Thickness Predicts Subsequent Perceptual Learning Rate in a Visual Search Task.

    Science.gov (United States)

    Frank, Sebastian M; Reavis, Eric A; Greenlee, Mark W; Tse, Peter U

    2016-03-01

    We report that preexisting individual differences in the cortical thickness of brain areas involved in a perceptual learning task predict the subsequent perceptual learning rate. Participants trained in a motion-discrimination task involving visual search for a "V"-shaped target motion trajectory among inverted "V"-shaped distractor trajectories. Motion-sensitive area MT+ (V5) was functionally identified as critical to the task: after 3 weeks of training, activity increased in MT+ during task performance, as measured by functional magnetic resonance imaging. We computed the cortical thickness of MT+ from anatomical magnetic resonance imaging volumes collected before training started, and found that it significantly predicted subsequent perceptual learning rates in the visual search task. Participants with thicker neocortex in MT+ before training learned faster than those with thinner neocortex in that area. A similar association between cortical thickness and training success was also found in posterior parietal cortex (PPC). © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. Uniaxial tension test on Rubber at constant true strain rate

    Directory of Open Access Journals (Sweden)

    Sourne H.L.

    2012-08-01

    Full Text Available Elastomers are widely used for damping parts in different industrial contexts because of their remarkable dissipation properties. Indeed, they can undergo severe mechanical loading conditions, i.e., high strain rates and large strains. Nevertheless, the mechanical response of these materials can vary from purely rubber-like to glassy depending on the strain rate undergone. Classically, uniaxial tension tests are made in order to find a relation between the stress and the strain in the material at various strain rates. However, even if the strain rate is searched to be constant, it is the nominal strain rate that is considered. Here we develop a test at constant true strain rate, i.e. the strain rate that is experienced by the material. In order to do such a test, the displacement imposed by the machine is an exponential function of time. This test has been performed with a high speed hydraulic machine for strain rates between 0.01/s and 100/s. A specific specimen has been designed, yielding a uniform strain field (and so a uniform stress field. Furthermore, an instrumented aluminum bar has been used to take into account dynamic effects in the measurement of the applied force. A high speed camera enables the determination of strain in the sample using point tracking technique. Using this method, the stress-strain curve of a rubber-like material during a loading-unloading cycle has been determined, up to a stretch ratio λ = 2.5. The influence of the true strain rate both on stiffness and on dissipation of the material is then discussed.

  3. Attaining the rate-independent limit of a rate-dependent strain gradient plasticity theory

    DEFF Research Database (Denmark)

    El-Naaman, Salim Abdallah; Nielsen, Kim Lau; Niordson, Christian Frithiof

    2016-01-01

    The existence of characteristic strain rates in rate-dependent material models, corresponding to rate-independent model behavior, is studied within a back stress based rate-dependent higher order strain gradient crystal plasticity model. Such characteristic rates have recently been observed...... for steady-state processes, and the present study aims to demonstrate that the observations in fact unearth a more widespread phenomenon. In this work, two newly proposed back stress formulations are adopted to account for the strain gradient effects in the single slip simple shear case, and characteristic...... rates for a selected quantity are identified through numerical analysis. Evidently, the concept of a characteristic rate, within the rate-dependent material models, may help unlock an otherwise inaccessible parameter space....

  4. Strain rate effects on reinforcing steels in tension

    Science.gov (United States)

    Cadoni, Ezio; Forni, Daniele

    2015-09-01

    It is unquestionable the fact that a structural system should be able to fulfil the function for which it was created, without being damaged to an extent disproportionate to the cause of damage. In addition, it is an undeniable fact that in reinforced concrete structures under severe dynamic loadings, both concrete and reinforcing bars are subjected to high strain-rates. Although the behavior of the reinforcing steel under high strain rates is of capital importance in the structural assessment under the abovementioned conditions, only the behaviour of concrete has been widely studied. Due to this lack of data on the reinforcing steel under high strain rates, an experimental program on rebar reinforcing steels under high strain rates in tension is running at the DynaMat Laboratory. In this paper a comparison of the behaviour in a wide range of strain-rates of several types of reinforcing steel in tension is presented. Three reinforcing steels, commonly proposed by the European Standards, are compared: B500A, B500B and B500C. Lastly, an evaluation of the most common constitutive laws is performed.

  5. Cortical atrophy rates in Alzheimer's patients and subjects with mild cognitive impairment from the AddNeuroMed data collection

    DEFF Research Database (Denmark)

    Eskildsen, Simon Fristed; Westman, Eric; Gwadry-Sridhar, Femida

    2010-01-01

    Background: The AddNeuroMed project is a multi-centre European project which aims to identify biomarkers in Alzheimer's disease (AD). In this study we measured the rate of cortical atrophy in AD patients, subjects with mild cognitive impairment (MCI), and healthy controls (HC) using MRI. Methods...... quality control for both the acquisition and image processing were included in the study. Cortical thickness was measured using FACE (fast accurate cortex extraction) and averaged within main lobes using a stereotaxic atlas. Atrophy rates were calculated as percent decrease in cortical thickness and rate...

  6. Cortical bone resorption rate in elderly persons: Estimates from long-term in vivo measurements of 90Sr in the skeleton

    Energy Technology Data Exchange (ETDEWEB)

    Shagina, N. B.; Tolstykh, E. I.; Degteva, M. O.; Anspaugh, L. R.; Napier, Bruce A.

    2012-06-01

    The rate of cortical bone resorption was assessed from long-term in vivo measurements of 90Sr content in the skeleton for men aged 50-80 years and for women 0-30 years after menopause. Measurements of 90Sr were conducted with a whole body counter for residents of the Techa Riverside communities (Southern Urals, Russia), who ingested large amounts of 90Sr as a result of releases of liquid radioactive wastes into the river from the Mayak plutonium facility in early 1950s. The results of this study showed an increase in the rate of cortical bone resorption in both men and women, as based on the use of accidentally ingested 90Sr as a tracer for bone metabolism. In men there was a continuous gradual increase in the rate of cortical bone resorption after 55 years from 2.8 to 4.5%/year by the age of 75 years. In women, there was a doubled increase in the rate of cortical bone resorption after menopause of up to 6%/year; then the rate remained unchanged for 10-12 years with a subsequent gradual decline down to 5-5.5%/year. Comparison of the rate of cortical bone resorption in men and women older than 55 years showed that women expressed significantly higher levels of cortical bone resorption.

  7. Cortical bone resorption rate in elderly persons: Estimates from long-term in vivo measurements of 90Sr in the skeleton

    International Nuclear Information System (INIS)

    Shagina, N.B.; Tolstykh, E.I.; Degteva, M.O.; Anspaugh, L.R.; Napier, Bruce A.

    2012-01-01

    The rate of cortical bone resorption was assessed from long-term in vivo measurements of 90Sr content in the skeleton for men aged 50-80 years and for women 0-30 years after menopause. Measurements of 90Sr were conducted with a whole body counter for residents of the Techa Riverside communities (Southern Urals, Russia), who ingested large amounts of 90Sr as a result of releases of liquid radioactive wastes into the river from the Mayak plutonium facility in early 1950s. The results of this study showed an increase in the rate of cortical bone resorption in both men and women, as based on the use of accidentally ingested 90Sr as a tracer for bone metabolism. In men there was a continuous gradual increase in the rate of cortical bone resorption after 55 years from 2.8 to 4.5%/year by the age of 75 years. In women, there was a doubled increase in the rate of cortical bone resorption after menopause of up to 6%/year; then the rate remained unchanged for 10-12 years with a subsequent gradual decline down to 5-5.5%/year. Comparison of the rate of cortical bone resorption in men and women older than 55 years showed that women expressed significantly higher levels of cortical bone resorption.

  8. Deformation twinning: Influence of strain rate

    Energy Technology Data Exchange (ETDEWEB)

    Gray, G.T. III

    1993-11-01

    Twins in most crystal structures, including advanced materials such as intermetallics, form more readily as the temperature of deformation is decreased or the rate of deformation is increased. Both parameters lead to the suppression of thermally-activated dislocation processes which can result in stresses high enough to nucleate and grow deformation twins. Under high-strain rate or shock-loading/impact conditions deformation twinning is observed to be promoted even in high stacking fault energy FCC metals and alloys, composites, and ordered intermetallics which normally do not readily deform via twinning. Under such conditions and in particular under the extreme loading rates typical of shock wave deformation the competition between slip and deformation twinning can be examined in detail. In this paper, examples of deformation twinning in the intermetallics TiAl, Ti-48Al-lV and Ni{sub 3}A as well in the cermet Al-B{sub 4}C as a function of strain rate will be presented. Discussion includes: (1) the microstructural and experimental variables influencing twin formation in these systems and twinning topics related to high-strain-rate loading, (2) the high velocity of twin formation, and (3) the influence of deformation twinning on the constitutive response of advanced materials.

  9. Strain rate measurement by Electronic Speckle Pattern Interferometry: A new look at the strain localization onset

    International Nuclear Information System (INIS)

    Guelorget, Bruno; Francois, Manuel; Vial-Edwards, Cristian; Montay, Guillaume; Daniel, Laurent; Lu, Jian

    2006-01-01

    In-plane Electronic Speckle Pattern Interferometry has been successfully used during tensile testing of semi-hard copper sheets in order to measure the strain rate. On one hand, heterogeneity in strain rate field has been found before the maximum of the tensile force (ε t ≅ 19.4 and 25.4%, respectively). Thus, a localization phenomenon occurs before the classic Considere's criterion (dF = 0) for the diffuse neck initiation. On the other hand, strain rate measurement before fracture shows the moment where one of the two slip band systems becomes predominant, then strain concentrates in a small area, the shear band. Uncertainty evaluation has been carried out, which shows a very good accuracy of the total strain and the strain rate measurements

  10. Strain rate measurement by Electronic Speckle Pattern Interferometry: A new look at the strain localization onset

    Energy Technology Data Exchange (ETDEWEB)

    Guelorget, Bruno [Universite de Technologie de Troyes (UTT), Laboratoire des Systemes Mecaniques et d' ingenierie Simultanee (LASMIS, CNRS FRE 2719), 12 rue Marie Curie, B.P. 2060, 10010 Troyes Cedex (France)]. E-mail: bruno.guelorget@utt.fr; Francois, Manuel [Universite de Technologie de Troyes (UTT), Laboratoire des Systemes Mecaniques et d' ingenierie Simultanee (LASMIS, CNRS FRE 2719), 12 rue Marie Curie, B.P. 2060, 10010 Troyes Cedex (France); Vial-Edwards, Cristian [Departemento de Ingenieria Mecanica y Metalurgica, Pontificia Universidad Catolica de Chile, Vicuna Mackenna 4860, 6904411 Santiago (Chile); Montay, Guillaume [Universite de Technologie de Troyes (UTT), Laboratoire des Systemes Mecaniques et d' ingenierie Simultanee (LASMIS, CNRS FRE 2719), 12 rue Marie Curie, B.P. 2060, 10010 Troyes Cedex (France); Daniel, Laurent [Universite de Technologie de Troyes (UTT), Laboratoire des Systemes Mecaniques et d' ingenierie Simultanee (LASMIS, CNRS FRE 2719), 12 rue Marie Curie, B.P. 2060, 10010 Troyes Cedex (France); Lu, Jian [Universite de Technologie de Troyes (UTT), Laboratoire des Systemes Mecaniques et d' ingenierie Simultanee (LASMIS, CNRS FRE 2719), 12 rue Marie Curie, B.P. 2060, 10010 Troyes Cedex (France)

    2006-01-15

    In-plane Electronic Speckle Pattern Interferometry has been successfully used during tensile testing of semi-hard copper sheets in order to measure the strain rate. On one hand, heterogeneity in strain rate field has been found before the maximum of the tensile force ({epsilon} {sup t} {approx_equal} 19.4 and 25.4%, respectively). Thus, a localization phenomenon occurs before the classic Considere's criterion (dF = 0) for the diffuse neck initiation. On the other hand, strain rate measurement before fracture shows the moment where one of the two slip band systems becomes predominant, then strain concentrates in a small area, the shear band. Uncertainty evaluation has been carried out, which shows a very good accuracy of the total strain and the strain rate measurements.

  11. High Strain Rate Tensile Testing of Silver Nanowires: Rate-Dependent Brittle-to-Ductile Transition.

    Science.gov (United States)

    Ramachandramoorthy, Rajaprakash; Gao, Wei; Bernal, Rodrigo; Espinosa, Horacio

    2016-01-13

    The characterization of nanomaterials under high strain rates is critical to understand their suitability for dynamic applications such as nanoresonators and nanoswitches. It is also of great theoretical importance to explore nanomechanics with dynamic and rate effects. Here, we report in situ scanning electron microscope (SEM) tensile testing of bicrystalline silver nanowires at strain rates up to 2/s, which is 2 orders of magnitude higher than previously reported in the literature. The experiments are enabled by a microelectromechanical system (MEMS) with fast response time. It was identified that the nanowire plastic deformation has a small activation volume (ductile failure mode transition was observed at a threshold strain rate of 0.2/s. Transmission electron microscopy (TEM) revealed that along the nanowire, dislocation density and spatial distribution of plastic regions increase with increasing strain rate. Furthermore, molecular dynamic (MD) simulations show that deformation mechanisms such as grain boundary migration and dislocation interactions are responsible for such ductility. Finally, the MD and experimental results were interpreted using dislocation nucleation theory. The predicted yield stress values are in agreement with the experimental results for strain rates above 0.2/s when ductility is pronounced. At low strain rates, random imperfections on the nanowire surface trigger localized plasticity, leading to a brittle-like failure.

  12. High strain rate behaviour of polypropylene microfoams

    Science.gov (United States)

    Gómez-del Río, T.; Garrido, M. A.; Rodríguez, J.; Arencón, D.; Martínez, A. B.

    2012-08-01

    Microcellular materials such as polypropylene foams are often used in protective applications and passive safety for packaging (electronic components, aeronautical structures, food, etc.) or personal safety (helmets, knee-pads, etc.). In such applications the foams which are used are often designed to absorb the maximum energy and are generally subjected to severe loadings involving high strain rates. The manufacture process to obtain polymeric microcellular foams is based on the polymer saturation with a supercritical gas, at high temperature and pressure. This method presents several advantages over the conventional injection moulding techniques which make it industrially feasible. However, the effect of processing conditions such as blowing agent, concentration and microfoaming time and/or temperature on the microstructure of the resulting microcellular polymer (density, cell size and geometry) is not yet set up. The compressive mechanical behaviour of several microcellular polypropylene foams has been investigated over a wide range of strain rates (0.001 to 3000 s-1) in order to show the effects of the processing parameters and strain rate on the mechanical properties. High strain rate tests were performed using a Split Hopkinson Pressure Bar apparatus (SHPB). Polypropylene and polyethylene-ethylene block copolymer foams of various densities were considered.

  13. Strain rate effect on sooting characteristics in laminar counterflow diffusion flames

    KAUST Repository

    Wang, Yu

    2016-01-20

    The effects of strain rate, oxygen enrichment and fuel type on the sooting characteristics of counterflow diffusion flames were studied. The sooting structures and relative PAH concentrations were measured with laser diagnostics. Detailed soot modeling using recently developed PAH chemistry and surface reaction mechanism was performed and the results were compared with experimental data for ethylene flames, focusing on the effects of strain rates. The results showed that increase in strain rate reduced soot volume fraction, average size and peak number density. Increase in oxygen mole fraction increased soot loading and decreased its sensitivity on strain rate. The soot volume fractions of ethane, propene and propane flames were also measured as a function of global strain rate. The sensitivity of soot volume fraction to strain rate was observed to be fuel dependent at a fixed oxygen mole fraction, with the sensitivity being higher for more sooting fuels. However, when the soot loadings were matched at a reference strain rate for different fuels by adjusting oxygen mole fraction, the dependence of soot loading on strain rate became comparable among the tested fuels. PAH concentrations were shown to decrease with increase in strain rate and the dependence on strain rate is more pronounced for larger PAHs. Soot modeling was performed using detailed PAH growth chemistry with molecular growth up to coronene. A qualitative agreement was obtained between experimental and simulation results, which was then used to explain the experimentally observed strain rate effect on soot growth. However, quantitatively, the simulation result exhibits higher sensitivity to strain rate, especially for large PAHs and soot volume fractions.

  14. Sensitivity of the polypropylene to the strain rate: experiments and modeling

    International Nuclear Information System (INIS)

    Abdul-Latif, A.; Aboura, Z.; Mosleh, L.

    2002-01-01

    Full text.The main goal of this work is first to evaluate experimentally the strain rate dependent deformation of the polypropylene under tensile load; and secondly is to propose a model capable to appropriately describe the mechanical behavior of this material and especially its sensitivity to the strain rate. Several experimental tensile tests are performed at different quasi-static strain rates in the range of 10 -5 s -1 to 10 -1 s -1 . In addition to some relaxation tests are also conducted introducing the strain rate jumping state during testing. Within the framework of elastoviscoplasticity, a phenomenological model is developed for describing the non-linear mechanical behavior of the material under uniaxial loading paths. With the small strain assumption, the sensitivity of the polypropylene to the strain rate being of particular interest in this work, is accordingly taken into account. As a matter of fact, since this model is based on internal state variables, we assume thus that the material sensitivity to the strain rate is governed by the kinematic hardening variable notably its modulus and the accumulated viscoplastic strain. As far as the elastic behavior is concerned, it is noticed that such a behavior is slightly influenced by the employed strain rate rage. For this reason, the elastic behavior is classically determined, i.e. without coupling with the strain rate dependent deformation. It is obvious that the inelastic behavior of the used material is thoroughly dictated by the applied strain rate. Hence, the model parameters are well calibrated utilizing several experimental databases for different strain rates (10 -5 s -1 to 10 -1 s -1 ). Actually, among these experimental results, some experiments related to the relaxation phenomenon and strain rate jumping during testing (increasing or decreasing) are also used in order to more perfect the model parameters identification. To validate the calibrated model parameters, simulation tests are achieved

  15. High strain rate behaviour of polypropylene microfoams

    Directory of Open Access Journals (Sweden)

    Martínez A.B.

    2012-08-01

    Full Text Available Microcellular materials such as polypropylene foams are often used in protective applications and passive safety for packaging (electronic components, aeronautical structures, food, etc. or personal safety (helmets, knee-pads, etc.. In such applications the foams which are used are often designed to absorb the maximum energy and are generally subjected to severe loadings involving high strain rates. The manufacture process to obtain polymeric microcellular foams is based on the polymer saturation with a supercritical gas, at high temperature and pressure. This method presents several advantages over the conventional injection moulding techniques which make it industrially feasible. However, the effect of processing conditions such as blowing agent, concentration and microfoaming time and/or temperature on the microstructure of the resulting microcellular polymer (density, cell size and geometry is not yet set up. The compressive mechanical behaviour of several microcellular polypropylene foams has been investigated over a wide range of strain rates (0.001 to 3000 s−1 in order to show the effects of the processing parameters and strain rate on the mechanical properties. High strain rate tests were performed using a Split Hopkinson Pressure Bar apparatus (SHPB. Polypropylene and polyethylene-ethylene block copolymer foams of various densities were considered.

  16. Strain rate dependency of laser sintered polyamide 12

    Directory of Open Access Journals (Sweden)

    Cook J.E.T.

    2015-01-01

    Full Text Available Parts processed by Additive Manufacturing can now be found across a wide range of applications, such as those in the aerospace and automotive industry in which the mechanical response must be optimised. Many of these applications are subjected to high rate or impact loading, yet it is believed that there is no prior research on the strain rate dependence in these materials. This research investigates the effect of strain rate and laser energy density on laser sintered polyamide 12. In the study presented here, parts produced using four different laser sintered energy densities were exposed to uniaxial compression tests at strain rates ranging from 10−3 to 10+3 s−1 at room temperature, and the dependence on these parameters is presented.

  17. Strain rate effects for spallation of concrete

    Science.gov (United States)

    Häussler-Combe, Ulrich; Panteki, Evmorfia; Kühn, Tino

    2015-09-01

    Appropriate triaxial constitutive laws are the key for a realistic simulation of high speed dynamics of concrete. The strain rate effect is still an open issue within this context. In particular the question whether it is a material property - which can be covered by rate dependent stress strain relations - or mainly an effect of inertia is still under discussion. Experimental and theoretical investigations of spallation of concrete specimen in a Hopkinson Bar setup may bring some evidence into this question. For this purpose the paper describes the VERD model, a newly developed constitutive law for concrete based on a damage approach with included strain rate effects [1]. In contrast to other approaches the dynamic strength increase is not directly coupled to strain rate values but related to physical mechanisms like the retarded movement of water in capillary systems and delayed microcracking. The constitutive law is fully triaxial and implemented into explicit finite element codes for the investigation of a wide range of concrete structures exposed to impact and explosions. The current setup models spallation experiments with concrete specimen [2]. The results of such experiments are mainly related to the dynamic tensile strength and the crack energy of concrete which may be derived from, e.g., the velocity of spalled concrete fragments. The experimental results are compared to the VERD model and two further constitutive laws implemented in LS-Dyna. The results indicate that both viscosity and retarded damage are required for a realistic description of the material behaviour of concrete exposed to high strain effects [3].

  18. Strain rate effects for spallation of concrete

    Directory of Open Access Journals (Sweden)

    Häussler-Combe Ulrich

    2015-01-01

    Full Text Available Appropriate triaxial constitutive laws are the key for a realistic simulation of high speed dynamics of concrete. The strain rate effect is still an open issue within this context. In particular the question whether it is a material property – which can be covered by rate dependent stress strain relations – or mainly an effect of inertia is still under discussion. Experimental and theoretical investigations of spallation of concrete specimen in a Hopkinson Bar setup may bring some evidence into this question. For this purpose the paper describes the VERD model, a newly developed constitutive law for concrete based on a damage approach with included strain rate effects [1]. In contrast to other approaches the dynamic strength increase is not directly coupled to strain rate values but related to physical mechanisms like the retarded movement of water in capillary systems and delayed microcracking. The constitutive law is fully triaxial and implemented into explicit finite element codes for the investigation of a wide range of concrete structures exposed to impact and explosions. The current setup models spallation experiments with concrete specimen [2]. The results of such experiments are mainly related to the dynamic tensile strength and the crack energy of concrete which may be derived from, e.g., the velocity of spalled concrete fragments. The experimental results are compared to the VERD model and two further constitutive laws implemented in LS-Dyna. The results indicate that both viscosity and retarded damage are required for a realistic description of the material behaviour of concrete exposed to high strain effects [3].

  19. Behavior of quenched and tempered steels under high strain rate compression loading

    International Nuclear Information System (INIS)

    Meyer, L.W.; Seifert, K.; Abdel-Malek, S.

    1997-01-01

    Two quenched and tempered steels were tested under compression loading at strain rates of ε = 2.10 2 s -1 and ε = 2.10 3 s -1 . By applying the thermal activation theory, the flow stress at very high strain rates of 10 5 to 10 6 s -1 is derived from low temperature and high strain rate tests. Dynamic true stress - true strain behaviour presents, that stress increases with increasing strain until a maximum, then it decreases. Because of the adiabatic process under dynamic loading the maximum flow stress will occur at a lower strain if the strain rate is increased. Considering strain rate, strain hardening, strain rate hardening and strain softening, a constitutive equation with different additive terms is successfully used to describe the behaviour of material under dynamic compression loading. Results are compared with other models of constitutive equations. (orig.)

  20. High Strain Rate Characterisation of Composite Materials

    DEFF Research Database (Denmark)

    Eriksen, Rasmus Normann Wilken

    -reinforced polymers, were considered, and it was first shown that the loading history controls equilibrium process. Then the High-speed servo-hydraulic test machine was analysed in terms its ability to create a state of constant strain rate in the specimen. The invertible inertial forces in the load train prevented...... from designing and constructing a high-speed servo-hydraulic test machine and by performing a comprehensive test series. The difficulties encountered in the test work could be addressed with the developed analysis. The conclusion was that the High-speed servo-hydraulic test machine is less suited...... for testing fibre-reinforced polymers due to their elastic behaviour and low strain to failure. This is problematic as the High-speed servo-hydraulic test machine closes the gap between quasi-static tests rates and lower strain rates, which are achievable with the Split Hopkinson Pressure Bar. The Split...

  1. Mechanical characterization of rocks at high strain rate

    Directory of Open Access Journals (Sweden)

    Konstantinov A.

    2012-08-01

    Full Text Available The paper presents the dynamic characterization in tension and compression of three rocks, Carrara marble, Onsernone gneiss and Peccia Marble, at high strain-rates. Two versions of a Split Hopkinson Bar have been used. The version for direct tension tests is installed at the DynaMat Laboratory of the University of Applied Sciences of Southern Switzerland, while the traditional version in compression is installed at the Laboratory of Dynamic Investigation of Materials of Lobachevsky State University. Results of the tests show a significantly strain-rate sensitive behaviour, exhibiting dynamic strength increasing with strain-rate. The experimental research has been developed in the frame of the Swiss-Russian Joint Research Program.

  2. Strain and strain rate by two-dimensional speckle tracking echocardiography in a maned wolf Strain e strain rate por meio de ecocardiogratia speckle traking bidimensional em um lobo-guará

    Directory of Open Access Journals (Sweden)

    Matheus M. Mantovani

    2012-12-01

    Full Text Available The measurement of cardiovascular features of wild animals is important, as is the measurement in pets, for the assessment of myocardial function and the early detection of cardiac abnormalities, which could progress to heart failure. Speckle tracking echocardiography (2D STE is a new tool that has been used in veterinary medicine, which demonstrates several advantages, such as angle independence and the possibility to provide the early diagnosis of myocardial alterations. The aim of this study was to evaluate the left myocardial function in a maned wolf by 2D STE. Thus, the longitudinal, circumferential and radial strain and strain rate were obtained, as well as, the radial and longitudinal velocity and displacement values, from the right parasternal long axis four-chamber view, the left parasternal apical four chamber view and the parasternal short axis at the level of the papillary muscles. The results of the longitudinal variables were -13.52±7.88, -1.60±1.05, 4.34±2.52 and 3.86±3.04 for strain (%, strain rate (1/s, displacement (mm and velocity (cm/s, respectively. In addition, the radial and circumferential Strain and Strain rate were 24.39±14.23, 1.86±0.95 and -13.69±6.53, -1.01±0.48, respectively. Thus, the present study provides the first data regarding the use of this tool in maned wolves, allowing a more complete quantification of myocardial function in this species.A obtenção de parâmetros cardiovasculares em animais selvagens são importantes de serem avaliados, assim como em animais de companhia, para a obtenção da função miocárdica e determinação precoce de alterações cardíacas que poderiam evoluir para insuficiência cardíaca . A ecocardiografia speckle tracking (2D STE é uma ferramenta nova que tem sido utilizada em medicina veterinária, a qual tem demonstrado várias vantagens quanto ao seu uso, como a independência do ângulo de insonação e a possibilidade de se obter o diagnóstico precoce de altera

  3. Inverse strain rate effect on cyclic stress response in annealed Zircaloy-2

    Energy Technology Data Exchange (ETDEWEB)

    Sudhakar Rao, G.; Verma, Preeti [Center of Advanced Study, Department of Metallurgical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India); Chakravartty, J.K. [Mechanical Metallurgy Group, Bhabha Atomic Research Center, Trombay 400 085, Mumbai (India); Nudurupati, Saibaba [Nuclear Fuel Complex, Hyderabad 500 062 (India); Mahobia, G.S.; Santhi Srinivas, N.C. [Center of Advanced Study, Department of Metallurgical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India); Singh, Vakil, E-mail: vsingh.met@itbhu.ac.in [Center of Advanced Study, Department of Metallurgical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India)

    2015-02-15

    Low cycle fatigue behavior of annealed Zircaloy-2 was investigated at 300 and 400 °C at different strain amplitudes and strain rates of 10{sup −2}, 10{sup −3}, and 10{sup −4} s{sup −1}. Cyclic stress response showed initial hardening with decreasing rate of hardening, followed by linear cyclic hardening and finally secondary hardening with increasing rate of hardening for low strain amplitudes at both the temperatures. The rate as well the degree of linear hardening and secondary hardening decreased with decrease in strain rate at 300 °C, however, there was inverse effect of strain rate on cyclic stress response at 400 °C and cyclic stress was increased with decrease in strain rate. The fatigue life decreased with decrease in strain rate at both the temperatures. The occurrence of linear cyclic hardening, inverse effect of strain rate on cyclic stress response and deterioration in fatigue life with decrease in strain rate may be attributed to dynamic strain aging phenomena resulting from enhanced interaction of dislocations with solutes. Fracture surfaces revealed distinct striations, secondary cracking, and oxidation with decrease in strain rate. Deformation substructure showed parallel dislocation lines and dislocation band structure at 300 °C. Persistent slip band wall structure and development of fine Corduroy structure was observed at 400 °C.

  4. Inverse strain rate effect on cyclic stress response in annealed Zircaloy-2

    International Nuclear Information System (INIS)

    Sudhakar Rao, G.; Verma, Preeti; Chakravartty, J.K.; Nudurupati, Saibaba; Mahobia, G.S.; Santhi Srinivas, N.C.; Singh, Vakil

    2015-01-01

    Low cycle fatigue behavior of annealed Zircaloy-2 was investigated at 300 and 400 °C at different strain amplitudes and strain rates of 10 −2 , 10 −3 , and 10 −4 s −1 . Cyclic stress response showed initial hardening with decreasing rate of hardening, followed by linear cyclic hardening and finally secondary hardening with increasing rate of hardening for low strain amplitudes at both the temperatures. The rate as well the degree of linear hardening and secondary hardening decreased with decrease in strain rate at 300 °C, however, there was inverse effect of strain rate on cyclic stress response at 400 °C and cyclic stress was increased with decrease in strain rate. The fatigue life decreased with decrease in strain rate at both the temperatures. The occurrence of linear cyclic hardening, inverse effect of strain rate on cyclic stress response and deterioration in fatigue life with decrease in strain rate may be attributed to dynamic strain aging phenomena resulting from enhanced interaction of dislocations with solutes. Fracture surfaces revealed distinct striations, secondary cracking, and oxidation with decrease in strain rate. Deformation substructure showed parallel dislocation lines and dislocation band structure at 300 °C. Persistent slip band wall structure and development of fine Corduroy structure was observed at 400 °C

  5. A comparison of GPS strain rate and seismicity in mainland China

    Science.gov (United States)

    Ye, J.; Liu, M.

    2011-12-01

    The spatial distribution and moment release of earthquakes should correlate to crustal strain rates, assuming most of the crustal strain is released by earthquakes. However, the correlation between seismicity and crustal strain rates is not always clear, especially in continental interiors where large earthquakes are infrequent and earthquake records often incomplete. Here we compare seismicity and crustal strain rates in mainland China, where in the past decades the GPS measurements by the Crustal Motion Observation Network of China and other teams have determined the velocity at more than a thousand sites, allowing a meaningful calculation of the spatial distribution of the crustal strain rates. Our strain-rate map of mainland China is consistent with tectonic activities. The average scalar strain rate in West China is 17.5x10-16, contrasting to the much lower value (2.5x 10-16) in East China. The high strain rates are mainly found in the Tibetan Plateau, with the highest values clearly delineating the major active faults, including the Himalayan main boundary thrust, the Xianshuihe fault, the Longmanshan fault, the Haiyuan fault, and the southern Tianshan boundary fault. North China also has relatively high strain rates, but the high strain rates around the cities of Tangshan and Xingtai likely result from postseismic deformation following the 1966 Xingtai earthquake (M 7.2) and the 1976 Tangshan earthquake (M 7.8). We calculated the seismic moment release using the Chinese earthquake catalog that goes back to more than 2000 years. The spatial pattern of cumulative seismic moment release is generally comparable with that of the strain rates. Regions of major discrepancies include the Weihe-Shanxi grabens, which had numerous large earthquakes but have been quiescent in the past 300 years. When we use smaller time windows (200 or 500 years) to calculate the seismic moment release, we found strongly variable spatial patterns that is generally incomparable with the

  6. Mechanical strength model for plastic bonded granular materials at high strain rates and large strains

    International Nuclear Information System (INIS)

    Browning, R.V.; Scammon, R.J.

    1998-01-01

    Modeling impact events on systems containing plastic bonded explosive materials requires accurate models for stress evolution at high strain rates out to large strains. For example, in the Steven test geometry reactions occur after strains of 0.5 or more are reached for PBX-9501. The morphology of this class of materials and properties of the constituents are briefly described. We then review the viscoelastic behavior observed at small strains for this class of material, and evaluate large strain models used for granular materials such as cap models. Dilatation under shearing deformations of the PBX is experimentally observed and is one of the key features modeled in cap style plasticity theories, together with bulk plastic flow at high pressures. We propose a model that combines viscoelastic behavior at small strains but adds intergranular stresses at larger strains. A procedure using numerical simulations and comparisons with results from flyer plate tests and low rate uniaxial stress tests is used to develop a rough set of constants for PBX-9501. Comparisons with the high rate flyer plate tests demonstrate that the observed characteristic behavior is captured by this viscoelastic based model. copyright 1998 American Institute of Physics

  7. Spallation model for the high strain rates range

    Science.gov (United States)

    Dekel, E.; Eliezer, S.; Henis, Z.; Moshe, E.; Ludmirsky, A.; Goldberg, I. B.

    1998-11-01

    Measurements of the dynamic spall strength in aluminum and copper shocked by a high power laser to pressures of hundreds of kbars show a rapid increase in the spall strength with the strain rate at values of about 107 s-1. We suggest that this behavior is a result of a change in the spall mechanism. At low strain rates the spall is caused by the motion and coalescence of material's initial flaws. At high strain rates there is not enough time for the flaws to move and the spall is produced by the formation and coalescence of additional cavities where the interatomic forces become dominant. Material under tensile stress is in a metastable condition and cavities of a critical radius are formed in it due to thermal fluctuations. These cavities grow due to the tension. The total volume of the voids grow until the material disintegrates at the spall plane. Simplified calculations based on this model, describing the metal as a viscous liquid, give results in fairly good agreement with the experimental data and predict the increase in spall strength at high strain rates.

  8. Strain localization band width evolution by electronic speckle pattern interferometry strain rate measurement

    Energy Technology Data Exchange (ETDEWEB)

    Guelorget, Bruno [Institut Charles Delaunay-LASMIS, Universite de technologie de Troyes, FRE CNRS 2848, 12 rue Marie Curie, B.P. 2060, 10010 Troyes Cedex (France)], E-mail: bruno.guelorget@utt.fr; Francois, Manuel; Montay, Guillaume [Institut Charles Delaunay-LASMIS, Universite de technologie de Troyes, FRE CNRS 2848, 12 rue Marie Curie, B.P. 2060, 10010 Troyes Cedex (France)

    2009-04-15

    In this paper, electronic speckle pattern interferometry strain rate measurements are used to quantify the width of the strain localization band, which occurs when a sheet specimen is submitted to tension. It is shown that the width of this band decreases with increasing strain. Just before fracture, this measured width is about five times wider than the shear band and the initial sheet thickness.

  9. Evaluating location specific strain rates, temperatures, and accumulated strains in friction welds through microstructure modeling

    Directory of Open Access Journals (Sweden)

    Javed Akram

    2018-04-01

    Full Text Available A microstructural simulation method is adopted to predict the location specific strain rates, temperatures, grain evolution, and accumulated strains in the Inconel 718 friction welds. Cellular automata based 2D microstructure model was developed for Inconel 718 alloy using theoretical aspects of dynamic recrystallization. Flow curves were simulated and compared with experimental results using hot deformation parameter obtained from literature work. Using validated model, simulations were performed for friction welds of Inconel 718 alloy generated at three rotational speed i.e., 1200, 1500, and 1500 RPM. Results showed the increase in strain rates with increasing rotational speed. These simulated strain rates were found to match with the analytical results. Temperature difference of 150 K was noticed from center to edge of the weld. At all the rotational speeds, the temperature was identical implying steady state temperature (0.89Tm attainment. Keywords: Microstructure modeling, Dynamic recrystallization, Friction welding, Inconel 718, EBSD, Hot deformation, Strain map

  10. Strain Rate Dependence of Compressive Yield and Relaxation in DGEBA Epoxies

    Science.gov (United States)

    Arechederra, Gabriel K.; Reprogle, Riley C.; Clarkson, Caitlyn M.; McCoy, John D.; Kropka, Jamie M.; Long, Kevin N.; Chambers, Robert S.

    2015-03-01

    The mechanical response in uniaxial compression of two diglycidyl ether of bisphenol-A epoxies were studied. These were 828DEA (Epon 828 cured with diethanolamine (DEA)) and 828T403 (Epon 828 cured with Jeffamine T-403). Two types of uniaxial compression tests were performed: A) constant strain rate compression and B) constant strain rate compression followed by a constant strain relaxation. The peak (yield) stress was analyzed as a function of strain rate from Eyring theory for activation volume. Runs at different temperatures permitted the construction of a mastercurve, and the resulting shift factors resulted in an activation energy. Strain and hold tests were performed for a low strain rate where a peak stress was lacking and for a higher strain rate where the peak stress was apparent. Relaxation from strains at different places along the stress-strain curve was tracked and compared. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  11. Strain rate orientations near the Coso Geothermal Field

    Science.gov (United States)

    Ogasa, N. T.; Kaven, J. O.; Barbour, A. J.; von Huene, R.

    2016-12-01

    Many geothermal reservoirs derive their sustained capacity for heat exchange in large part due to continuous deformation of preexisting faults and fractures that permit permeability to be maintained. Similarly, enhanced geothermal systems rely on the creation of suitable permeability from fracture and faults networks to be viable. Stress measurements from boreholes or earthquake source mechanisms are commonly used to infer the tectonic conditions that drive deformation, but here we show that geodetic data can also be used. Specifically, we quantify variations in the horizontal strain rate tensor in the area surrounding the Coso Geothermal Field (CGF) by analyzing more than two decades of high accuracy differential GPS data from a network of 14 stations from the University of Nevada Reno Geodetic Laboratory. To handle offsets in the data, from equipment changes and coseismic deformation, we segment the data, perform a piecewise linear fit and take the average of each segment's strain rate to determine secular velocities at each station. With respect to North America, all stations tend to travel northwest at velocities ranging from 1 to 10 mm/yr. The nearest station to CGF shows anomalous motion compared to regional stations, which otherwise show a coherent increase in network velocity from the northeast to the southwest. We determine strain rates via linear approximation using GPS velocities in Cartesian reference frame due to the small area of our network. Principal strain rate components derived from this inversion show maximum extensional strain rates of 30 nanostrain/a occur at N87W with compressional strain rates of 37nanostrain/a at N3E. These results generally align with previous stress measurements from borehole breakouts, which indicate the least compressive horizontal principal stress is east-west oriented, and indicative of the basin and range tectonic setting. Our results suggest that the CGF represents an anomaly in the crustal deformation field, which

  12. Edge flame instability in low-strain-rate counterflow diffusion flames

    Energy Technology Data Exchange (ETDEWEB)

    Park, June Sung; Hwang, Dong Jin; Park, Jeong; Kim, Jeong Soo; Kim, Sungcho [School of Mechanical and Aerospace Engineering, Sunchon National University, 315 Maegok-dong, Suncheon, Jeonnam 540-742 (Korea, Republic of); Keel, Sang In [Environment & amp; Energy Research Division, Korea Institute of Machinery and Materials, P.O. Box 101, Yusung-gu, Taejon 305-343 (Korea, Republic of); Kim, Tae Kwon [School of Mechanical & amp; Automotive Engineering, Keimyung University, 1000 Sindang-dong, Dalseo-gu, Daegu 704-701 (Korea, Republic of); Noh, Dong Soon [Energy System Research Department, Korea Institute of Energy Research, 71-2 Jang-dong, Yusung-gu, Taejon 305-343 (Korea, Republic of)

    2006-09-15

    Experiments in low-strain-rate methane-air counterflow diffusion flames diluted with nitrogen have been conducted to study flame extinction behavior and edge flame oscillation in which flame length is less than the burner diameter and thus lateral conductive heat loss, in addition to radiative loss, could be high at low global strain rates. The critical mole fraction at flame extinction is examined in terms of velocity ratio and global strain rate. Onset conditions of the edge flame oscillation and the relevant modes are also provided with global strain rate and nitrogen mole fraction in the fuel stream or in terms of fuel Lewis number. It is observed that flame length is intimately relevant to lateral heat loss, and this affects flame extinction and edge flame oscillation considerably. Lateral heat loss causes flame oscillation even at fuel Lewis number less than unity. Edge flame oscillations, which result from the advancing and retreating edge flame motion of the outer flame edge of low-strain-rate flames, are categorized into three modes: a growing, a decaying, and a harmonic-oscillation mode. A flame stability map based on the flame oscillation modes is also provided for low-strain-rate flames. The important contribution of lateral heat loss even to edge flame oscillation is clarified finally. (author)

  13. Stretching of red blood cells at high strain rates

    Science.gov (United States)

    Mancuso, J. E.; Ristenpart, W. D.

    2017-10-01

    Most work on the mechanical behavior of red blood cells (RBCs) in flow has focused on simple shear flows. Relatively little work has examined RBC deformations in the physiologically important extensional flow that occurs at the entrance to a constriction. In particular, previous work suggests that RBCs rapidly stretch out and then retract upon entering the constriction, but to date no model predicts this behavior for the extremely high strain rates typically experienced there. In this Rapid Communication, we use high speed video to perform systematic measurements of the dynamic stretching behavior of RBCs as they enter a microfluidic constriction. We demonstrate that both the Kelvin-Voigt and Skalak viscoelastic models capture the observed stretching dynamics, up to strain rates as high as 2000 s-1. The results indicate that the effective elastic modulus of the RBC membrane at these strain rates is an order of magnitude larger than moduli measured by micropipette aspiration or other low strain rate techniques.

  14. Microstructural evolution at high strain rates in solution-hardened interstitial free steels

    International Nuclear Information System (INIS)

    Uenishi, A.; Teodosiu, C.; Nesterova, E.V.

    2005-01-01

    Comprehensive transmission electron microscopical studies have been conducted for solution-hardened steels deformed at high (1000 s -1 ) and low (0.001 s -1 ) strain rates, in order to clarify the effects of strain rate and a jump in strain rate on the evolution of the microstructure and its connection with the mechanical response. It was revealed that the various types of microstructure, observed even within the same specimen, depend on the corresponding grain orientations and their evolution with progressive deformation depends on these microstructure types. At high strain rates, the dislocation density increases especially at low strains and the onset of dislocation organization is delayed. A jump in strain rate causes an increase of the dislocation density inside an organized structure. These results corroborated the mechanical behaviour at high strain rates after compensation for the cross-sectional reduction and temperature increase. The higher work-hardening rate at high strain rates could be connected to a delay in the dislocation organization. The high work-hardening rate just after a jump could be due to an increase of the density of dislocations distributed uniformly inside an organized structure

  15. Strain rate behavior of magnetorheological materials

    International Nuclear Information System (INIS)

    Seminuk, Kenneth; Joshi, Vasant; Gump, Jared; Stoltz, Chad; Forbes, Jerry

    2014-01-01

    Strain rate response of two Hydroxyl-terminated Polybutadiene/ Iron (HTPB/Fe) compositions under electromagnetic fields has been investigated using a Split Hopkinson Pressure bar arrangement equipped with aluminum bars. Two HTPB/Fe compositions were developed, the first without plasticizer and the second containing plasticizer. Samples were tested with and without the application of a 0.01 Tesla magnetic field. Strain gauge data taken from the Split Hopkinson Pressure Bar has been used to determine the extent of change in mechanical properties by inducing a mild electromagnetic field onto each sample. Raw data from strain gages was processed using commercial software (Signo) and Excel spreadsheet. It is of particular interest to determine whether the mechanical properties of binder systems can be manipulated by adding ferrous or Magnetostrictive particulates. Data collected from the Split Hopkinson Pressure bar indicate changes in the Mechanical Stress-Strain curves and suggest that the impedance of a binder system can be altered by means of a magnetic field.

  16. Strain and strain rate by two-dimensional speckle tracking echocardiography in a maned wolf

    Directory of Open Access Journals (Sweden)

    Matheus M. Mantovani

    2012-12-01

    Full Text Available The measurement of cardiovascular features of wild animals is important, as is the measurement in pets, for the assessment of myocardial function and the early detection of cardiac abnormalities, which could progress to heart failure. Speckle tracking echocardiography (2D STE is a new tool that has been used in veterinary medicine, which demonstrates several advantages, such as angle independence and the possibility to provide the early diagnosis of myocardial alterations. The aim of this study was to evaluate the left myocardial function in a maned wolf by 2D STE. Thus, the longitudinal, circumferential and radial strain and strain rate were obtained, as well as, the radial and longitudinal velocity and displacement values, from the right parasternal long axis four-chamber view, the left parasternal apical four chamber view and the parasternal short axis at the level of the papillary muscles. The results of the longitudinal variables were -13.52±7.88, -1.60±1.05, 4.34±2.52 and 3.86±3.04 for strain (%, strain rate (1/s, displacement (mm and velocity (cm/s, respectively. In addition, the radial and circumferential Strain and Strain rate were 24.39±14.23, 1.86±0.95 and -13.69±6.53, -1.01±0.48, respectively. Thus, the present study provides the first data regarding the use of this tool in maned wolves, allowing a more complete quantification of myocardial function in this species.

  17. Twinning in copper deformed at high strain rates

    Indian Academy of Sciences (India)

    Abstract. Copper samples having varying microstructures were deformed at high strain rates using a split-. Hopkinson pressure bar. Transmission electron microscopy results show deformation twins present in samples that were both annealed and strained, whereas samples that were annealed and left unstrained, as well ...

  18. Split-Hopkinson Pressure Bar: an experimental technique for high strain rate tests

    International Nuclear Information System (INIS)

    Sharma, S.; Chavan, V.M.; Agrawal, R.G.; Patel, R.J.; Kapoor, R.; Chakravartty, J.K.

    2011-06-01

    Mechanical properties of materials are, in general, strain rate dependent, i.e. they respond differently at quasi-static and higher strain rate condition. The Split-Hopkinson Pressure Bar (SHPB), also referred to as Kolsky bar is a commonly used setup for high strain rate testing. SHPB is suitable for high strain rate test in strain rate range of 10 2 to 10 4 s -1 . These high strain rate data are required for safety and structural integrity assessment of structures subjected to dynamic loading. As high strain rate data are not easily available in open literature need was felt for setting up such high strain rate testing machine. SHPB at BARC was designed and set-up inhouse jointly by Refuelling Technology Division and Mechanical Metallurgy Division, at Hall no. 3, BARC. A number of conceptual designs for SHPB were thought of and the optimized design was worked out. The challenges of precision tolerance, straightness in bars and design and proper functioning of pneumatic gun were met. This setup has been used extensively to study the high strain rate material behavior. This report introduces the SHPB in general and the setup at BARC in particular. The history of development of SHPB, the basic formulations of one dimensional wave propagation, the relations between the wave velocity, particle velocity and elastic strain in a one dimensional bar, and the equations used to obtain the final stress vs. strain curves are described. The calibration of the present setup, the pre-test calculations and the posttest analysis of data are described. Finally some of the experimental results on different materials such as Cu, SS305, SA516 and Zr, at room temperature and elevated temperatures are presented. (author)

  19. Cortical tremor: a variant of cortical reflex myoclonus.

    Science.gov (United States)

    Ikeda, A; Kakigi, R; Funai, N; Neshige, R; Kuroda, Y; Shibasaki, H

    1990-10-01

    Two patients with action tremor that was thought to originate in the cerebral cortex showed fine shivering-like finger twitching provoked mainly by action and posture. Surface EMG showed relatively rhythmic discharge at a rate of about 9 Hz, which resembled essential tremor. However, electrophysiologic studies revealed giant somatosensory evoked potentials (SEPs) with enhanced long-loop reflex and premovement cortical spike by the jerk-locked averaging method. Treatment with beta-blocker showed no effect, but anticonvulsants such as clonazepam, valproate, and primidone were effective to suppress the tremor and the amplitude of SEPs. We call this involuntary movement "cortical tremor," which is in fact a variant of cortical reflex myoclonus.

  20. Strain differences in the response to morphine on incorporation of 3H-lysine into rat brain protein

    International Nuclear Information System (INIS)

    Ford, D.H.; Rhines, R.K.; Levi, M.A.

    1977-01-01

    The effect of morphine on the specific activity (SA) of lysine in the plasma free amino acid (FFA) fraction and in the cerebral cortical FAA and protein fractions, as well as on the specific accumulation and incorporation, was determined in male Sprague-Dawley and Wistar rats at various time intervals after intravenous injection of drug and amino acid into unanesthetized animals. The lysine SA was higher in Sprague-Dawley than in Wistar rats in the plasma and brain FAA fraction and in the protein fraction. In the SD strain, morphine decreased the SA of plasma FAA significantly, but had only slight effects in the Wistar strain. In the cortical gray matter, morphine elevated the SA of lysine significantly in both strains. SA of the lysine in cerebral cortical protein increased in both strains with time. When the data for the free amino acids were expressed in terms of specific accumulation, the observed rates were higher in the Sprague-Dawley animals and reached a point of maximal concentration, which was not observed in animals of the Wistar strain. Morphine elevated the levels of specific accumulation of lysine into the cortical free amino acid pool in both strains of rat. It is concluded that Sprague-Dawley and Wistar rats are not equivalent in relation to the accumulation of an amino acid in the brain FAA pool from the plasma and that the effect of morphine on specific incorporation of lysine into brain protein is greater in Wistar rats. (author)

  1. Relating high-temperature flow stress of AISI 316 stainless steel to strain and strain rate

    International Nuclear Information System (INIS)

    Matteazzi, S.; Paitti, G.; Boerman, D.

    1982-01-01

    The authors have performed an experimental determination of tensile stress-strain curves for different strain rates (4.67 x 10 - 5 , 4.67 x 10 - 2 s - 1 ) and for a variety of temperature conditions (773-1073 K) of AISI 316H stainless steel (annealed conditions) and also a computer analysis of the experimental curves using a fitting program which takes into consideration different constitutive relations describing the plastic flow behaviour of the metals. The results show that the materials tested are clearly affected by strain rate only at the highest temperature investigated (1073 K) and that the plastic strain is the more significant variable. Of the constitutive equations considered, Voce's relation gives the best fit for the true stress-time-strain curves. However, the Ludwik and Ludwigson equations also provide a description of the experimental data, whereas Hollomon's equation does not suitably characterize AISI 316H stainless steel and can be applied with some accuracy only at 1073 K. (author)

  2. Cyclic strength of metals at impact strain rates

    International Nuclear Information System (INIS)

    Eleiche, A.M.; El-Kady, M.M.

    1987-01-01

    Rigorous understanding of the effects of impact loading on the mechanical response of materials and structures is essential for the optimum design and safe operation of many sophisticated engineering systems and components, such as industrial high-energy-rate fabrication processes and nuclear reactor containments. Extensive data are available at present on the dynamic behaviour of most metals in uniaxial tension, compression, torsion and pure shear, when they are subjected to diversified loading conditions, ranging from those characterised by monotonic constant rates, to those involving forward or reverse strain-rate jumps of several orders of magnitude. What appears to be missing in the current material data banks, however, is detailed information concerning the mechanical response under cyclic loading at impact strain rates. Such data are needed for engineering design purposes on one hand, and for the formulation of proper constitutive equations and the accurate modeling of deformation processes on the other. In the present paper, typical stress-strain characteristics at ambient temperature for copper, mild steel and titanium are first exhibited. The application of the unified Bodner-Partom constitutive theory to these data is then presented and discussed. (orig./GL)

  3. Quantifying cortical surface harmonic deformation with stereovision during open cranial neurosurgery

    Science.gov (United States)

    Ji, Songbai; Fan, Xiaoyao; Roberts, David W.; Paulsen, Keith D.

    2012-02-01

    Cortical surface harmonic motion during open cranial neurosurgery is well observed in image-guided neurosurgery. Recently, we quantified cortical surface deformation noninvasively with synchronized blood pressure pulsation (BPP) from a sequence of stereo image pairs using optical flow motion tracking. With three subjects, we found the average cortical surface displacement can reach more than 1 mm and in-plane principal strains of up to 7% relative to the first image pair. In addition, the temporal changes in deformation and strain were in concert with BPP and patient respiration [1]. However, because deformation was essentially computed relative to an arbitrary reference, comparing cortical surface deformation at different times was not possible. In this study, we extend the technique developed earlier by establishing a more reliable reference profile of the cortical surface for each sequence of stereo image acquisitions. Specifically, fast Fourier transform (FFT) was applied to the dynamic cortical surface deformation, and the fundamental frequencies corresponding to patient respiration and BPP were identified, which were used to determine the number of image acquisitions for use in averaging cortical surface images. This technique is important because it potentially allows in vivo characterization of soft tissue biomechanical properties using intraoperative stereovision and motion tracking.

  4. A Model for High-Strain-Rate Deformation of Uranium-Niobium Alloys

    Energy Technology Data Exchange (ETDEWEB)

    F.L.Addessio; Q.H.Zuo; T.A.Mason; L.C.Brinson

    2003-05-01

    A thermodynamic approach is used to develop a framework for modeling uranium-niobium alloys under the conditions of high strain rate. Using this framework, a three-dimensional phenomenological model, which includes nonlinear elasticity (equation of state), phase transformation, crystal reorientation, rate-dependent plasticity, and porosity growth is presented. An implicit numerical technique is used to solve the evolution equations for the material state. Comparisons are made between the model and data for low-strain-rate loading and unloading as well as for heating and cooling experiments. Comparisons of the model and data also are made for low- and high-strain-rate uniaxial stress and uniaxial strain experiments. A uranium-6 weight percent niobium alloy is used in the comparisons of model and experiment.

  5. Strong strain rate effect on the plasticity of amorphous silica nanowires

    International Nuclear Information System (INIS)

    Yue, Yonghai; Zheng, Kun

    2014-01-01

    With electron-beam (e-beam) off, in-situ tensile experiments on amorphous silica nanowires (NWs) were performed inside a transmission electron microscope (TEM). By controlling the loading rates, the strain rate can be adjusted accurately in a wide range. The result shows a strong strain rate effect on the plasticity of amorphous silica NWs. At lower strain rate, the intrinsic brittle materials exhibit a pronounced elongation higher than 100% to failure with obvious necking near ambient temperature. At the strain rate higher than 5.23 × 10 −3 /s, the elongation of the NW decreased dramatically, and a brittle fracture feature behavior was revealed. This ductile feature of the amorphous silica NWs has been further confirmed with the in-situ experiments under optical microscopy while the effect of e-beam irradiation could be eliminated.

  6. Earthquake potential in California-Nevada implied by correlation of strain rate and seismicity

    Science.gov (United States)

    Zeng, Yuehua; Petersen, Mark D.; Shen, Zheng-Kang

    2018-01-01

    Rock mechanics studies and dynamic earthquake simulations show that patterns of seismicity evolve with time through (1) accumulation phase, (2) localization phase, and (3) rupture phase. We observe a similar pattern of changes in seismicity during the past century across California and Nevada. To quantify these changes, we correlate GPS strain rates with seismicity. Earthquakes of M > 6.5 are collocated with regions of highest strain rates. By contrast, smaller magnitude earthquakes of M ≥ 4 show clear spatiotemporal changes. From 1933 to the late 1980s, earthquakes of M ≥ 4 were more diffused and broadly distributed in both high and low strain rate regions (accumulation phase). From the late 1980s to 2016, earthquakes were more concentrated within the high strain rate areas focused on the major fault strands (localization phase). In the same time period, the rate of M > 6.5 events also increased significantly in the high strain rate areas. The strong correlation between current strain rate and the later period of seismicity indicates that seismicity is closely related to the strain rate. The spatial patterns suggest that before the late 1980s, the strain rate field was also broadly distributed because of the stress shadows from previous large earthquakes. As the deformation field evolved out of the shadow in the late 1980s, strain has refocused on the major fault systems and we are entering a period of increased risk for large earthquakes in California.

  7. Modelling of behaviour of metals at high strain rates

    OpenAIRE

    Panov, Vili

    2006-01-01

    The aim of the work presented in this thesis was to produce the improvement of the existing simulation tools used for the analysis of materials and structures, which are dynamically loaded and subjected to the different levels of temperatures and strain rates. The main objective of this work was development of tools for modelling of strain rate and temperature dependant behaviour of aluminium alloys, typical for aerospace structures with pronounced orthotropic properties, and their implementa...

  8. Analytical Modeling of the High Strain Rate Deformation of Polymer Matrix Composites

    Science.gov (United States)

    Goldberg, Robert K.; Roberts, Gary D.; Gilat, Amos

    2003-01-01

    The results presented here are part of an ongoing research program to develop strain rate dependent deformation and failure models for the analysis of polymer matrix composites subject to high strain rate impact loads. State variable constitutive equations originally developed for metals have been modified in order to model the nonlinear, strain rate dependent deformation of polymeric matrix materials. To account for the effects of hydrostatic stresses, which are significant in polymers, the classical 5 plasticity theory definitions of effective stress and effective plastic strain are modified by applying variations of the Drucker-Prager yield criterion. To verify the revised formulation, the shear and tensile deformation of a representative toughened epoxy is analyzed across a wide range of strain rates (from quasi-static to high strain rates) and the results are compared to experimentally obtained values. For the analyzed polymers, both the tensile and shear stress-strain curves computed using the analytical model correlate well with values obtained through experimental tests. The polymer constitutive equations are implemented within a strength of materials based micromechanics method to predict the nonlinear, strain rate dependent deformation of polymer matrix composites. In the micromechanics, the unit cell is divided up into a number of independently analyzed slices, and laminate theory is then applied to obtain the effective deformation of the unit cell. The composite mechanics are verified by analyzing the deformation of a representative polymer matrix composite (composed using the representative polymer analyzed for the correlation of the polymer constitutive equations) for several fiber orientation angles across a variety of strain rates. The computed values compare favorably to experimentally obtained results.

  9. Dynamic tensile fracture of mortar at ultra-high strain-rates

    International Nuclear Information System (INIS)

    Erzar, B.; Buzaud, E.; Chanal, P.-Y.

    2013-01-01

    During the lifetime of a structure, concrete and mortar may be exposed to highly dynamic loadings, such as impact or explosion. The dynamic fracture at high loading rates needs to be well understood to allow an accurate modeling of this kind of event. In this work, a pulsed-power generator has been employed to conduct spalling tests on mortar samples at strain-rates ranging from 2 × 10 4 to 4 × 10 4  s −1 . The ramp loading allowed identifying the strain-rate anytime during the test. A power law has been proposed to fit properly the rate-sensitivity of tensile strength of this cementitious material over a wide range of strain-rate. Moreover, a specimen has been recovered damaged but unbroken. Micro-computed tomography has been employed to study the characteristics of the damage pattern provoked by the dynamic tensile loading

  10. Increased effects of machining damage in beryllium observed at high strain rates

    International Nuclear Information System (INIS)

    Beitscher, S.; Brewer, A.W.; Corle, R.R.

    1980-01-01

    Tensile tests at both low and high strain rates, and also impact shear tests, were performed on a weldable grade powder-source beryllium. Impact energies increased by a factor of 2 to 3 from the as-machined level after etching or annealing. Similar increases in the ductility from machining damage removal were observed from the tensile data at the higher strain rate (10 s -1 ) while an insignificant increase in elongation was measured at the lower strain rate (10 -4 s -1 ). High strain-rate tests appear to be more sensitive and reliable for evaluating machining practice and damage removal methods for beryllium components subjected to sudden loads. 2 tables

  11. Strain rate dependent tensile behavior of advanced high strength steels: Experiment and constitutive modeling

    International Nuclear Information System (INIS)

    Kim, Ji-Hoon; Kim, Daeyong; Han, Heung Nam; Barlat, F.; Lee, Myoung-Gyu

    2013-01-01

    High strain rate tensile tests were conducted for three advanced high strength steels: DP780, DP980 and TRIP780. A high strain rate tensile test machine was used for applying the strain rate ranging from 0.1/s to 500/s. Details of the measured stress–strain responses were comparatively analyzed for the DP780 and TRIP780 steels which show similar microstructural feature and ultimate tensile strength, but different strengthening mechanisms. The experimental observations included: usual strain rate dependent plastic flow stress behavior in terms of the yield stress (YS), the ultimate tensile strength (UTS), the uniform elongation (UE) and the total elongation (TE) which were observed for the three materials. But, higher strain hardening rate at early plastic strain under quasi-static condition than that of some increased strain rates was featured for TRIP780 steel, which might result from more active transformation during deformation with lower velocity. The uniform elongation that explains the onset of instability and the total elongation were larger in case of TRIP steel than the DP steel for the whole strain rate range, but interestingly the fracture strain measured by the reduction of area (RA) method showed that the TRIP steel has lower values than DP steel. The fractographs using scanning electron microscopy (SEM) at the fractured surfaces were analyzed to relate measured fracture strain and the microstructural difference of the two materials during the process of fracture under various strain rates. Finally, constitutive modeling for the plastic flow stresses under various strain rates was provided in this study. The proposed constitutive law could represent both Hollomon-like and Voce-like hardening laws and the ratio between the two hardening types was efficiently controlled as a function of strain rate. The new strength model was validated successfully under various strain rates for several grades of steels such as mild steels, DP780, TRIP780, DP980 steels.

  12. Microtwin formation in the α phase of duplex titanium alloys affected by strain rate

    International Nuclear Information System (INIS)

    Lin, Yi-Hsiang; Wu, Shu-Ming; Kao, Fang-Hsin; Wang, Shing-Hoa; Yang, Jer-Ren; Yang, Chia-Chih; Chiou, Chuan-Sheng

    2011-01-01

    Research highlights: → The long and dense twins in α phase of SP700 alloy occurring at lower strain rates promote a good ductility. → The deformation in SP700 alloy changed to micro twins-controlled mechanism in α as the strain rate decreases. → The material has time to redistribute the deformed strain between α and β as the strain rate decreases. - Abstract: The effect of tensile strain rate on deformation microstructure was investigated in Ti-6-4 (Ti-6Al-4V) and SP700 (Ti-4.5Al-3V-2Mo-2Fe) of the duplex titanium alloys. Below a strain rate of 10 -2 s -1 , Ti-6-4 alloy had a higher ultimate tensile strength than SP700 alloy. However, the yield strength of SP700 was consistently greater than Ti-6-4 at different strain rates. The ductility of SP700 alloy associated with twin formation (especially at the slow strain rate of 10 -4 s -1 ), always exceeded that of Ti-6-4 alloy at different strain rates. It is caused by a large quantity of deformation twins took place in the α phase of SP700 due to the lower stacking fault energy by the β stabilizer of molybdenum alloying. In addition, the local deformation more was imposed on the α grains from the surrounding β-rich grains by redistributing strain as the strain rate decreased in SP700 duplex alloy.

  13. Strain rate effects in nuclear steels at room and higher temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Solomos, G. E-mail: george.solomos@jrc.it; Albertini, C.; Labibes, K.; Pizzinato, V.; Viaccoz, B

    2004-04-01

    An investigation of strain rate, temperature and size effects in three nuclear steels has been conducted. The materials are: ferritic steel 20MnMoNi55 (vessel head), austenitic steel X6CrNiNb1810 (upper internal structure), and ferritic steel 26NiCrMo146 (bolting). Smooth cylindrical tensile specimens of three sizes have been tested at strain rates from 0.001 to 300 s{sup -1}, at room and elevated temperatures (400-600 deg. C). Full stress-strain diagrams have been obtained, and additional parameters have been calculated based on them. The results demonstrate a clear influence of temperature, which amounts into reducing substantially mechanical strengths with respect to RT conditions. The effect of strain rate is also shown. It is observed that at RT the strain rate effect causes up shifting of the flow stress curves, whereas at the higher temperatures a mild downshifting of the flow curves is manifested. Size effect tendencies have also been observed. Some implications when assessing the pressure vessel structural integrity under severe accident conditions are considered.

  14. Inverse methods for the mechanical characterization of materials at high strain rates

    Directory of Open Access Journals (Sweden)

    Casas-Rodriguez J.P.

    2012-08-01

    Full Text Available Mechanical material characterization represents a research challenge. Furthermore, special attention is directed to material characterization at high strain rates as the mechanical properties of some materials are influenced by the rate of loading. Diverse experimental techniques at high strain rates are available, such as the drop-test, the Taylor impact test or the Split Hopkinson pressure bar among others. However, the determination of the material parameters associated to a given mathematical constitutive model from the experimental data is a complex and indirect problem. This paper presents a material characterization methodology to determine the material parameters of a given material constitutive model from a given high strain rate experiment. The characterization methodology is based on an inverse technique in which an inverse problem is formulated and solved as an optimization procedure. The input of the optimization procedure is the characteristic signal from the high strain rate experiment. The output of the procedure is the optimum set of material parameters determined by fitting a numerical simulation to the high strain rate experimental signal.

  15. High strain rate tensile properties of annealed 2 1/4 Cr--1 Mo steel

    International Nuclear Information System (INIS)

    Klueh, R.L.; Oakes, R.E. Jr.

    1975-01-01

    The high strain rate tensile properties of annealed 2 1 / 4 Cr-1 Mo steel were determined and the tensile behavior from 25 to 566 0 C and strain rates of 2.67 x 10 -6 to 144/s were described. Above 0.1/s at 25 0 C, both the yield stress and the ultimate tensile strength increased rapidly with increasing strain rate. As the temperature was increased, a dynamic strain aging peak appeared in the ultimate tensile strength-temperature curves. The peak height was a maximum at about 350 0 C and 2.67 x 10 -6 /s. With increasing strain rate, a peak of decreased height occurred at progressively higher temperatures. The major effect of strain rate on ductility occurred at elevated temperatures, where a decrease in strain rate caused an increase in total elongation and reduction in area

  16. Effect of strain rate on the tensile properties of α- and delta-stabilized plutonium

    International Nuclear Information System (INIS)

    Hecker, S.S.; Morgan, J.R.

    1975-01-01

    The tensile properties of unalloyed α-Pu and 3.4 at. percent Ga-stabilized delta-Pu were determined at strain rates from 10 -5 to 100/s. Tests at strain rates less than 10 -2 /s were conducted on an Instron Testing Machine; those at strain rates between 10 -2 and 3/s on a closed-loop electrohydraulic MTS system; and those at strain rates greater than 3/s on a specially modified Charpy Impact Tester. Three lots of delta-Pu, one rolled and annealed and the other two cast and homogenized, were tested. The 0.2 percent yield strengths and ultimate tensile strengths increased by an average of 5.2 and 6.0 MPa per factor of 10 increase in strain rate. This increase was achieved without penalty in tensile ductility as measured by total elongation to fracture and by reduction in area. The isostatically pressed α-Pu specimens also showed a large increase in fracture stress with strain rate (34.3 MPa per factor to 10 increase in strain rate). The fracture was macroscopically brittle (plastic strains less than 0.3 percent) although we observed extensive evidence of microscopic flow in the ductile dimple-type appearance of the fracture surfaces. The strain to fracture appeared to exhibit a minimum at a strain rate of 10 -2 /s. (U.S.)

  17. The cortical signature of amyotrophic lateral sclerosis.

    Directory of Open Access Journals (Sweden)

    Federica Agosta

    Full Text Available The aim of this study was to explore the pattern of regional cortical thickness in patients with non-familial amyotrophic lateral sclerosis (ALS and to investigate whether cortical thinning is associated with disease progression rate. Cortical thickness analysis was performed in 44 ALS patients and 26 healthy controls. Group differences in cortical thickness and the age-by-group effects were assessed using vertex-by-vertex and multivariate linear models. The discriminatory ability of MRI variables in distinguishing patients from controls was estimated using the Concordance Statistics (C-statistic within logistic regression analyses. Correlations between cortical thickness measures and disease progression rate were tested using the Pearson coefficient. Relative to controls, ALS patients showed a bilateral cortical thinning of the primary motor, prefrontal and ventral frontal cortices, cingulate gyrus, insula, superior and inferior temporal and parietal regions, and medial and lateral occipital areas. There was a significant age-by-group effect in the sensorimotor cortices bilaterally, suggesting a stronger association between age and cortical thinning in ALS patients compared to controls. The mean cortical thickness of the sensorimotor cortices distinguished patients with ALS from controls (C-statistic ≥ 0.74. Cortical thinning of the left sensorimotor cortices was related to a faster clinical progression (r = -0.33, p = 0.03. Cortical thickness measurements allowed the detection and quantification of motor and extramotor involvement in patients with ALS. Cortical thinning of the precentral gyrus might offer a marker of upper motor neuron involvement and disease progression.

  18. The cortical signature of amyotrophic lateral sclerosis.

    Science.gov (United States)

    Agosta, Federica; Valsasina, Paola; Riva, Nilo; Copetti, Massimiliano; Messina, Maria Josè; Prelle, Alessandro; Comi, Giancarlo; Filippi, Massimo

    2012-01-01

    The aim of this study was to explore the pattern of regional cortical thickness in patients with non-familial amyotrophic lateral sclerosis (ALS) and to investigate whether cortical thinning is associated with disease progression rate. Cortical thickness analysis was performed in 44 ALS patients and 26 healthy controls. Group differences in cortical thickness and the age-by-group effects were assessed using vertex-by-vertex and multivariate linear models. The discriminatory ability of MRI variables in distinguishing patients from controls was estimated using the Concordance Statistics (C-statistic) within logistic regression analyses. Correlations between cortical thickness measures and disease progression rate were tested using the Pearson coefficient. Relative to controls, ALS patients showed a bilateral cortical thinning of the primary motor, prefrontal and ventral frontal cortices, cingulate gyrus, insula, superior and inferior temporal and parietal regions, and medial and lateral occipital areas. There was a significant age-by-group effect in the sensorimotor cortices bilaterally, suggesting a stronger association between age and cortical thinning in ALS patients compared to controls. The mean cortical thickness of the sensorimotor cortices distinguished patients with ALS from controls (C-statistic ≥ 0.74). Cortical thinning of the left sensorimotor cortices was related to a faster clinical progression (r = -0.33, p = 0.03). Cortical thickness measurements allowed the detection and quantification of motor and extramotor involvement in patients with ALS. Cortical thinning of the precentral gyrus might offer a marker of upper motor neuron involvement and disease progression.

  19. Strain rate sensitivity and evolution of dislocations and twins in a twinning-induced plasticity steel

    International Nuclear Information System (INIS)

    Liang, Z.Y.; Wang, X.; Huang, W.; Huang, M.X.

    2015-01-01

    The present work investigated the effect of strain rates (10 −3 to 10 3 s −1 ) on the deformation behaviour of a twinning-induced plasticity (TWIP) steel. The strain rate sensitivity was studied in terms of instantaneous strain rate sensitivity (ISRS) and strain rate sensitivity of work-hardening (SRSW). While ISRS concerns the instantaneous flow stress change upon strain rate jump, SRSW deals with the subsequent modification in microstructure evolution, i.e. change of work-hardening rate. The present TWIP steel demonstrates a positive ISRS which remains stable during deformation and a negative SRSW, i.e. lower work-hardening rate at higher strain rate. Synchrotron X-ray diffraction experiments indicate that the negative SRSW should be attributed to the suppression of dislocations and deformation twins at high strain rate. This unexpected finding is different to conventional face-centred cubic (fcc) metals which generally show enhanced work-hardening rate at higher strain rate. A constitutive model which is strain rate- and temperature-dependent is developed to explain the stable ISRS and the negative SRSW. The modelling results reveal that the stable ISRS should be attributed to the thermally-activated dislocation motion dominated by interstitial carbon atoms and the negative SRSW should be due to the suppression of the dislocations and deformation twins caused by the adiabatic heating associated with high strain rate deformation

  20. Plastic Flow Characteristics of Uranium-Niobium as a Function of Strain Rate and Temperature

    International Nuclear Information System (INIS)

    Cady, C.M.; Gray, G.T. III; Hecker, S.S; Thoma, D.J.; Korzekwa, D.R.; Patterson, R.A.; Dunn, P.S.; Bingert, J.F.

    1999-01-01

    The stress-strain response of uranium-niobium alloys as a function of temperature, strain-rate and stress-state was investigated. The yield and flow stresses of the U-Nb alloys were found to exhibit a pronounced strain rate sensitivity, while the hardening rates were found to be insensitive to strain rate and temperature. The overall stress-strain response of the U-6Nb exhibits a sinusoidal hardening response, which is consistent with multiple deformation modes and is thought to be related to shape-memory behavior

  1. High Strain Rate Testing of Welded DOP-26 Iridium

    Energy Technology Data Exchange (ETDEWEB)

    Schneibel, J. H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Miller, R. G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Carmichael, C. A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Fox, E. E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ulrich, G. B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); George, E. P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    The iridium alloy DOP-26 is used to produce Clad Vent Set cups that protect the radioactive fuel in radioisotope thermoelectric generators (RTGs) which provide electric power for spacecraft and rovers. In a previous study, the tensile properties of DOP-26 were measured over a wide range of strain rates and temperatures and reported in ORNL/TM-2007/81. While that study established the properties of the base material, the fabrication of the heat sources requires welding, and the mechanical properties of welded DOP-26 have not been extensively characterized in the past. Therefore, this study was undertaken to determine the mechanical properties of DOP-26 specimens containing a transverse weld in the center of their gage sections. Tensile tests were performed at room temperature, 750, 900, and 1090°C and engineering strain rates of 1×10-3 and 10 s-1. Room temperature testing was performed in air, while testing at elevated temperatures was performed in a vacuum better than 1×10-4 Torr. The welded specimens had a significantly higher yield stress, by up to a factor of ~2, than the non-welded base material. The yield stress did not depend on the strain rate except at 1090°C, where it was slightly higher for the faster strain rate. The ultimate tensile stress, on the other hand, was significantly higher for the faster strain rate at temperatures of 750°C and above. At 750°C and above, the specimens deformed at 1×10-3 s-1 showed pronounced necking resulting sometimes in perfect chisel-edge fracture. The specimens deformed at 10 s-1 exhibited this fracture behavior only at the highest test temperature, 1090°C. Fracture occurred usually in the fusion zone of the weld and was, in most cases, primarily intergranular.

  2. High-Strain Rate Failure Modeling Incorporating Shear Banding and Fracture

    Science.gov (United States)

    2017-11-22

    High Strain Rate Failure Modeling Incorporating Shear Banding and Fracture The views, opinions and/or findings contained in this report are those of...SECURITY CLASSIFICATION OF: 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13. SUPPLEMENTARY NOTES 12. DISTRIBUTION AVAILIBILITY STATEMENT 6. AUTHORS...Report as of 05-Dec-2017 Agreement Number: W911NF-13-1-0238 Organization: Columbia University Title: High Strain Rate Failure Modeling Incorporating

  3. What is behind the plastic strain rate?

    NARCIS (Netherlands)

    Hütter, M.; Grmela, M.; Öttinger, H.C.

    2009-01-01

    The plastic strain rate plays a central role in macroscopic models on elasto-viscoplasticity. In order to discuss the concept behind this quantity, we propose, first, a kinetic toy model to describe the dynamics of sliding layers representative of plastic deformation of single crystalline metals.

  4. Dynamic High-Temperature Characterization of an Iridium Alloy in Compression at High Strain Rates

    Energy Technology Data Exchange (ETDEWEB)

    Song, Bo [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Experimental Environment Simulation Dept.; Nelson, Kevin [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Mechanics of Materials Dept.; Lipinski, Ronald J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Advanced Nuclear Fuel Cycle Technology Dept.; Bignell, John L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Structural and Thermal Analysis Dept.; Ulrich, G. B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Radioisotope Power Systems Program; George, E. P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Radioisotope Power Systems Program

    2014-06-01

    Iridium alloys have superior strength and ductility at elevated temperatures, making them useful as structural materials for certain high-temperature applications. However, experimental data on their high-temperature high-strain-rate performance are needed for understanding high-speed impacts in severe elevated-temperature environments. Kolsky bars (also called split Hopkinson bars) have been extensively employed for high-strain-rate characterization of materials at room temperature, but it has been challenging to adapt them for the measurement of dynamic properties at high temperatures. Current high-temperature Kolsky compression bar techniques are not capable of obtaining satisfactory high-temperature high-strain-rate stress-strain response of thin iridium specimens investigated in this study. We analyzed the difficulties encountered in high-temperature Kolsky compression bar testing of thin iridium alloy specimens. Appropriate modifications were made to the current high-temperature Kolsky compression bar technique to obtain reliable compressive stress-strain response of an iridium alloy at high strain rates (300 – 10000 s-1) and temperatures (750°C and 1030°C). Uncertainties in such high-temperature high-strain-rate experiments on thin iridium specimens were also analyzed. The compressive stress-strain response of the iridium alloy showed significant sensitivity to strain rate and temperature.

  5. High-rate operant behavior in two mouse strains: a response-bout analysis.

    Science.gov (United States)

    Johnson, Joshua E; Pesek, Erin F; Newland, M Christopher

    2009-06-01

    Operant behavior sometimes occurs in bouts characterized by an initiation rate, within-bout response rate, and bout length. The generality of this structure was tested using high-rate nose-poking in mice. Reinforcement of short interresponse times produced high response rates while a random-interval schedule held reinforcement rates constant. BALB/c mice produced bouts that were more frequent, longer, and contained a higher within-bout rate of responding (nine nose-pokes/s) than did the C57BL/6 mice (five nose-pokes/s). Adding a running wheel decreased total nose-pokes and bout length, and increased bout-initiation rate. Free-feeding reduced nose-poking by decreasing bout-initiation rate. Photoperiod reversal decreased bout-initiation rate but not total nose-poke rate. Despite strain differences in bout structure, both strains responded similarly to the interventions. The three bout measures were correlated with overall rate but not with each other. Log-survival analyses provided independent descriptors of the structure of high-rate responding in these two strains.

  6. Extent of cortical involvement in amyotrophic lateral sclerosis--an analysis based on cortical thickness.

    Science.gov (United States)

    Thorns, Johannes; Jansma, Henk; Peschel, Thomas; Grosskreutz, Julian; Mohammadi, Bahram; Dengler, Reinhard; Münte, Thomas F

    2013-10-18

    Besides the defining involvement of upper and lower motor neurons, the involvement of extramotor structures has been increasingly acknowledged in amyotrophic lateral sclerosis (ALS). Here we investigated a group of 14 mildly to moderately affected ALS patients and 14 age-matched healthy control participants using cortical thickness analysis. Cortical thickness was determined from high resolution 3D T1 magnetic resonance images and involved semiautomatic segmentation in grey and white matter, cortical alignment and determination of thickness using the Laplace method. In addition to a whole-cortex analysis a region of interest approach was applied. ALS patients showed regions of significant cortical thinning in the pre- and postcentral gyri bilaterally. Further regions of cortical thinning included superior and inferior parietal lobule, angular and supramarginal gyrus, insula, superior frontal, temporal and occipital regions, thus further substantiating extramotor involvement in ALS. A relationship between cortical thickness of the right superior frontal cortex and clinical severity (assessed by the ALS functional rating scale) was also demonstrated. Cortical thickness is reduced in ALS not only in motor areas but in widespread non-motor cortical areas. Cortical thickness is related to clinical severity.

  7. Recent advances in echocardiography: strain and strain rate imaging [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Oana Mirea

    2016-04-01

    Full Text Available Deformation imaging by echocardiography is a well-established research tool which has been gaining interest from clinical cardiologists since the introduction of speckle tracking. Post-processing of echo images to analyze deformation has become readily available at the fingertips of the user. New parameters such as global longitudinal strain have been shown to provide added diagnostic value, and ongoing efforts of the imaging societies and industry aimed at harmonizing methods will improve the technique further. This review focuses on recent advances in the field of echocardiographic strain and strain rate imaging, and provides an overview on its current and potential future clinical applications.

  8. Strain gradient effects on steady state crack growth in rate-sensitive materials

    DEFF Research Database (Denmark)

    Nielsen, Kim Lau; Niordson, Christian Frithiof; Hutchinson, John W.

    2012-01-01

    , a characteristic velocity, at which the toughness becomes independent of the rate-sensitivity, has been observed. It is the aim to bring forward a similar characteristic velocity for the current strain gradient visco-plastic model, as-well as to signify its use in future visco-plastic material modeling.......Steady state crack propagation produce substantial plastic strain gradients near the tip, which are accompanied by a high density of geometrically necessary dislocations and additional local strain hardening. Here, the objective is to study these gradient effects on Mode I toughness...... of a homogeneous rate-sensitive metal, using a higher order plasticity theory. Throughout, emphasis is on the toughness rate-sensitivity, as a recent numerical study of a conventional material (no gradient effects) has indicated a significant influence of both strain rate hardening and crack tip velocity. Moreover...

  9. Characteristic systolic waveform of left ventricular longitudinal strain rate in patients with hypertrophic cardiomyopathy.

    Science.gov (United States)

    Okada, Kazunori; Kaga, Sanae; Mikami, Taisei; Masauzi, Nobuo; Abe, Ayumu; Nakabachi, Masahiro; Yokoyama, Shinobu; Nishino, Hisao; Ichikawa, Ayako; Nishida, Mutsumi; Murai, Daisuke; Hayashi, Taichi; Shimizu, Chikara; Iwano, Hiroyuki; Yamada, Satoshi; Tsutsui, Hiroyuki

    2017-05-01

    We analyzed the waveform of systolic strain and strain-rate curves to find a characteristic left ventricular (LV) myocardial contraction pattern in patients with hypertrophic cardiomyopathy (HCM), and evaluated the utility of these parameters for the differentiation of HCM and LV hypertrophy secondary to hypertension (HT). From global strain and strain-rate curves in the longitudinal and circumferential directions, the time from mitral valve closure to the peak strains (T-LS and T-CS, respectively) and the peak systolic strain rates (T-LSSR and T-CSSR, respectively) were measured in 34 patients with HCM, 30 patients with HT, and 25 control subjects. The systolic strain-rate waveform was classified into 3 patterns ("V", "W", and "√" pattern). In the HCM group, T-LS was prolonged, but T-LSSR was shortened; consequently, T-LSSR/T-LS ratio was distinctly lower than in the HT and control groups. The "√" pattern of longitudinal strain-rate waveform was more frequently seen in the HCM group (74 %) than in the control (4 %) and HT (20 %) groups. Similar but less distinct results were obtained in the circumferential direction. To differentiate HCM from HT, the sensitivity and specificity of the T-LSSR/T-LS ratio patients with HCM, a reduced T-LSSR/T-LS ratio and a characteristic "√"-shaped waveform of LV systolic strain rate was seen, especially in the longitudinal direction. The timing and waveform analyses of systolic strain rate may be useful to distinguish between HCM and HT.

  10. Prognostic value of strain and strain rate in the prediction of postoperative atrial fibrillation in patients undergoing coronary artery bypass grafting: a systematic literature review

    Directory of Open Access Journals (Sweden)

    Leila Bigdelu

    2016-03-01

    Full Text Available Introduction: Atrial fibrillation (AF is a common dysrhythmia postoperatively after coronary artery bypass grafting (CABG. Myocardial strain and strain-rate imaging is used for the assessment of postoperative atrial fibrillation (POAF as a new echocardiographic method. Methods: PubMed and Scopus were searched thoroughly using the following search terms: (strain and strain rate AND (atrial fibrillation OR AF on March 2015 to find English articles in which the strain and strain-rate echocardiographic imaging had been used for the evaluation of AF in patients undergone CABG. Full text of the relevant papers was fully reviewed for data extraction.Result: Of overall 6 articles found in PubMed, 10 records found in Scopus and 4 articles found through reference list search, only 6 papers fully met the inclusion criteria for further assessment and data extraction. The results of strain and strain-rate assessment showed that in total of 542 patients undergoing CABG, POAF occurred in 106 patients. Studies showed that the reduction of left atrial (LA strain rate is correlated with AF. Consistently, the results of present review showed that LA strain and strain-rate in patients who developed AF postoperatively after CABG are significantly reduced, suggesting that strain and strain-rate could be a predictor of POAF.Conclusion: Based on the obtained results, strain and strain-rate is a suitable and accurate echocardiographic technique in the assessment of left atrial function , and it might be helpful to detect the patients who are at high risk of POAF.

  11. Cortical Network Models of Firing Rates in the Resting and Active States Predict BOLD Responses.

    Directory of Open Access Journals (Sweden)

    Maxwell R Bennett

    Full Text Available Measurements of blood oxygenation level dependent (BOLD signals have produced some surprising observations. One is that their amplitude is proportional to the entire activity in a region of interest and not just the fluctuations in this activity. Another is that during sleep and anesthesia the average BOLD correlations between regions of interest decline as the activity declines. Mechanistic explanations of these phenomena are described here using a cortical network model consisting of modules with excitatory and inhibitory neurons, taken as regions of cortical interest, each receiving excitatory inputs from outside the network, taken as subcortical driving inputs in addition to extrinsic (intermodular connections, such as provided by associational fibers. The model shows that the standard deviation of the firing rate is proportional to the mean frequency of the firing when the extrinsic connections are decreased, so that the mean BOLD signal is proportional to both as is observed experimentally. The model also shows that if these extrinsic connections are decreased or the frequency of firing reaching the network from the subcortical driving inputs is decreased, or both decline, there is a decrease in the mean firing rate in the modules accompanied by decreases in the mean BOLD correlations between the modules, consistent with the observed changes during NREM sleep and under anesthesia. Finally, the model explains why a transient increase in the BOLD signal in a cortical area, due to a transient subcortical input, gives rises to responses throughout the cortex as observed, with these responses mediated by the extrinsic (intermodular connections.

  12. Early detection of left ventricular dysfunction in asymptomatic diabetic patient using strain and strain rate echocardiographic imaging

    Directory of Open Access Journals (Sweden)

    Rania Gaber

    2014-03-01

    Conclusion: Type 2 diabetes mellitus deteriorate both LV systolic and diastolic performance. Strain and strain rate by tissue Doppler Imaging is superior to conventional Doppler in early detection and evaluation of systolic and diastolic dysfunction in type 2 diabetic patients.

  13. Effect of strain rate and temperature on strain hardening behavior of a dissimilar joint between Ti–6Al–4V and Ti17 alloys

    International Nuclear Information System (INIS)

    Wang, S.Q.; Liu, J.H.; Chen, D.L.

    2014-01-01

    Highlights: • Only stage III hardening occurs after yielding in Ti–6Al–4V/Ti17 dissimilar joints. • Voce stress and strength of the joints increase with increasing strain rate. • With increasing strain rate, hardening capacity and strain hardening exponent decrease. • With increasing temperature, hardening capacity and strain hardening exponent increase. • Strain rate sensitivity of the joints decreases as the true strain increases. - Abstract: The aim of this study was to evaluate the influence of strain rate and temperature on the tensile properties, strain hardening behavior, strain rate sensitivity, and fracture characteristics of electron beam welded (EBWed) dissimilar joints between Ti–6Al–4V and Ti17 (Ti–5Al–4Mo–4Cr–2Sn–2Zr) titanium alloys. The welding led to significant microstructural changes across the joint, with hexagonal close-packed martensite (α′) and orthorhombic martensite (α″) in the fusion zone (FZ), α′ in the heat-affected zone (HAZ) on the Ti–6Al–4V side, and coarse β in the HAZ on the Ti17 side. A distinctive asymmetrical hardness profile across the dissimilar joint was observed with the highest hardness in the FZ and a lower hardness on the Ti–6Al–4V side than on the Ti17 side, where a soft zone was present. Despite a slight reduction in ductility, the yield strength (YS) and ultimate tensile strength (UTS) of the joints lay in-between the two base metals (BMs) of Ti–6Al–4V and Ti17, with the Ti17 alloy having a higher strength. While the YS, UTS, and Voce stress of the joints increased, both hardening capacity and strain hardening exponent decreased with increasing strain rate or decreasing temperature. Stage III hardening occurred in the joints after yielding. The hardening rate was strongly dependent on the strain rate and temperature. As the strain rate increased or temperature decreased, the strain hardening rate increased at a given true stress. The strain rate sensitivity evaluated via

  14. A numerical basis for strain-gradient plasticity theory: Rate-independent and rate-dependent formulations

    DEFF Research Database (Denmark)

    Nielsen, Kim Lau; Niordson, Christian Frithiof

    2014-01-01

    of a single plastic zone is analyzed to illustrate the agreement with earlier published results, whereafter examples of (ii) multiple plastic zone interaction, and (iii) elastic–plastic loading/unloading are presented. Here, the simple shear problem of an infinite slab constrained between rigid plates......A numerical model formulation of the higher order flow theory (rate-independent) by Fleck and Willis [2009. A mathematical basis for strain-gradient plasticity theory – part II: tensorial plastic multiplier. Journal of the Mechanics and Physics of Solids 57, 1045-1057.], that allows for elastic–plastic...... loading/unloading and the interaction of multiple plastic zones, is proposed. The predicted model response is compared to the corresponding rate-dependent version of visco-plastic origin, and coinciding results are obtained in the limit of small strain-rate sensitivity. First, (i) the evolution...

  15. Strain differences of the effect of enucleation and anophthalmia on the size and growth of sensory cortices in mice.

    Science.gov (United States)

    Massé, Ian O; Guillemette, Sonia; Laramée, Marie-Eve; Bronchti, Gilles; Boire, Denis

    2014-11-07

    Anophthalmia is a condition in which the eye does not develop from the early embryonic period. Early blindness induces cross-modal plastic modifications in the brain such as auditory and haptic activations of the visual cortex and also leads to a greater solicitation of the somatosensory and auditory cortices. The visual cortex is activated by auditory stimuli in anophthalmic mice and activity is known to alter the growth pattern of the cerebral cortex. The size of the primary visual, auditory and somatosensory cortices and of the corresponding specific sensory thalamic nuclei were measured in intact and enucleated C57Bl/6J mice and in ZRDCT anophthalmic mice (ZRDCT/An) to evaluate the contribution of cross-modal activity on the growth of the cerebral cortex. In addition, the size of these structures were compared in intact, enucleated and anophthalmic fourth generation backcrossed hybrid C57Bl/6J×ZRDCT/An mice to parse out the effects of mouse strains and of the different visual deprivations. The visual cortex was smaller in the anophthalmic ZRDCT/An than in the intact and enucleated C57Bl/6J mice. Also the auditory cortex was larger and the somatosensory cortex smaller in the ZRDCT/An than in the intact and enucleated C57Bl/6J mice. The size differences of sensory cortices between the enucleated and anophthalmic mice were no longer present in the hybrid mice, showing specific genetic differences between C57Bl/6J and ZRDCT mice. The post natal size increase of the visual cortex was less in the enucleated than in the anophthalmic and intact hybrid mice. This suggests differences in the activity of the visual cortex between enucleated and anophthalmic mice and that early in-utero spontaneous neural activity in the visual system contributes to the shaping of functional properties of cortical networks. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Dynamics of a seismogenic fault subject to variable strain rate

    OpenAIRE

    M. Dragoni; A. Piombo

    2011-01-01

    The behaviour of seismogenic faults is generally investigated under the assumption that they are subject to a constant strain rate. We consider the effect of a slowly variable strain rate on the recurrence times of earthquakes generated by a single fault. To this aim a spring-block system is employed as a low-order analog of the fault. Two cases are considered: a sinusoidal oscillation in the driver velocity and a monotonic change from one velocity value to another. In the f...

  17. Strain rate effects of AM60

    International Nuclear Information System (INIS)

    Rehkopf, J.D.; Krause, A.R.

    2002-01-01

    Magnesium is seeing increasing use in the automotive industry due to its high strength-to-weight ratio and its ability to be cast to tight dimensional tolerances. Presently, main applications include interior components such as instrument panels, steering wheels and seat frames. Consequently, there is a strong need for understanding the rate effect on the behaviour of magnesium under impact type loading. In this work the effect of strain rate on AM60 tensile behaviour was investigated through both high and cold temperature testing, at ranges relevant to the automotive environment. Microstructural analysis, presented in this paper, includes porosity, grain size and fracture surface analyses. (author)

  18. Strain rate sensitivity studies on bulk nanocrystalline aluminium by nanoindentation

    Energy Technology Data Exchange (ETDEWEB)

    Varam, Sreedevi; Rajulapati, Koteswararao V., E-mail: kvrse@uohyd.ernet.in; Bhanu Sankara Rao, K.

    2014-02-05

    Nanocrystalline aluminium powder synthesized using high energy ball milling process was characterized by X-ray Diffraction (XRD) and Transmission Electron Microscopy (TEM). The studies indicated the powder having an average grain size of ∼42 nm. The consolidation of the powder was carried out by high-pressure compaction using a uni-axial press at room temperature by applying a pressure of 1.5 GPa. The cold compacted bulk sample having a density of ∼98% was subjected to nanoindentation which showed an average hardness and elastic modulus values of 1.67 ± 0.09 GPa and 83 ± 8 GPa respectively at a peak force of 8000 μN and a strain rate of 10{sup −2} s{sup −1}. Achieving good strength along with good ductility is challenging in nanocrystalline metals. When enough sample sizes are not available to measure ductility and other mechanical properties as per ASTM standards, as is the case with nanocrystalline materials, nanoindentation is a very promising technique to evaluate strain rate sensitivity. Strain rate sensitivity is a good measure of ductility and in the present work it is measured by performing indentation at various loads with varying loading rates. Strain rate sensitivity values of 0.024–0.054 are obtained for nanocrystalline Al which are high over conventional coarse grained Al. In addition, Scanning Probe Microscopy (SPM) image of the indent shows that there is some plastically flown region around the indent suggesting that this nanocrystalline aluminium is ductile.

  19. Determination of the strain hardening rate of metals and alloys by X ray diffraction

    International Nuclear Information System (INIS)

    Cadalbert, Robert

    1977-01-01

    This report for engineering graduation is based on the study of X ray diffraction line profile which varies with the plastic strain rate of the metal. After some generalities of strain hardening (consequence of a plastic deformation on the structure of a polycrystalline metal, means to study a strain hardened structure, use of X ray diffraction to analyse the strain hardened crystalline structure), the author reports the strain hardening rate measurement by using X ray diffraction. Several aspects are addressed: principles, experimental technique, apparatus, automation and programming of the measurement cycle, method sensitivity and precision. In the next part, the author reports applications: measurement of the strain hardening rate in different materials (tubes with hexagonal profile, cylindrical tubes in austenitic steel), and study of the evolution of strain hardening with temperature [fr

  20. Abnormal Strain Rate Sensitivity Driven by a Unit Dislocation-Obstacle Interaction in bcc Fe

    Science.gov (United States)

    Bai, Zhitong; Fan, Yue

    2018-03-01

    The interaction between an edge dislocation and a sessile vacancy cluster in bcc Fe is investigated over a wide range of strain rates from 108 down to 103 s-1 , which is enabled by employing an energy landscape-based atomistic modeling algorithm. It is observed that, at low strain rates regime less than 105 s-1 , such interaction leads to a surprising negative strain rate sensitivity behavior because of the different intermediate microstructures emerged under the complex interplays between thermal activation and applied strain rate. Implications of our findings regarding the previously established global diffusion model are also discussed.

  1. The effects of strain rate and carbon concentration on the dynamic strain aging of cold rolled Ni-based alloy in high temperature water

    International Nuclear Information System (INIS)

    Kuang, Wenjun; Was, Gary S.

    2015-01-01

    Graphical abstract: The stress amplitude of serrations first increases with decreasing strain rate and then gradually saturates. The matrix carbon concentration affects the stress amplitude and the tendency to saturation. - Abstract: The effect of strain rate on dynamic strain aging of cold-rolled Ni-based alloy was investigated. With decreasing strain rate, the stress amplitude of serrations first increased and then saturated. Compared with the solution-annealed condition, the thermally-treated condition produced smaller stress amplitudes that saturated at a lower strain rate. Observations are consistent with a mechanism in which the locking strength of solute atmospheres first increases with increasing solute atom arrival at dislocations and gradually saturates as solute reaches a critical level

  2. Morphometric golgi study of some cortical locations in wag/rij and aci rat strains

    NARCIS (Netherlands)

    Karpova, A.V.; Bikbaev, A.F.; Coenen, A.M.L.; Luijtelaar, E.L.J.M. van; Luijtelaar, E.L.J.M. van; Kuznetsova, G.D.; Coenen, A.M.L.; Chepurnov, S.A.

    2004-01-01

    The present study was aimed to investigate the neuronal organization of two neocortical frontal zones using a Golgi staining technique in genetic epileptic rats, WAG/Rij's. One cortical zone was a specific part of the somatosensory cortex, which was recently proposed to contain a cortical epileptic

  3. High Strain Rate and Shock-Induced Deformation in Metals

    Science.gov (United States)

    Ravelo, Ramon

    2012-02-01

    Large-scale non-equilibrium molecular Dynamics (MD) simulations are now commonly used to study material deformation at high strain rates (10^9-10^12 s-1). They can provide detailed information-- such as defect morphology, dislocation densities, and temperature and stress profiles, unavailable or hard to measure experimentally. Computational studies of shock-induced plasticity and melting in fcc and bcc single, mono-crystal metals, exhibit generic characteristics: high elastic limits, large directional anisotropies in the yield stress and pre-melting much below the equilibrium melt temperature for shock wave propagation along specific crystallographic directions. These generic features in the response of single crystals subjected to high strain rates of deformation can be explained from the changes in the energy landscape of the uniaxially compressed crystal lattice. For time scales relevant to dynamic shock loading, the directional-dependence of the yield strength in single crystals is shown to be due to the onset of instabilities in elastic-wave propagation velocities. The elastic-plastic transition threshold can accurately be predicted by a wave-propagation stability analysis. These strain-induced instabilities create incipient defect structures, which can be quite different from the ones, which characterize the long-time, asymptotic state of the compressed solid. With increase compression and strain rate, plastic deformation via extended defects gives way to amorphization associated with the loss in shear rigidity along specific deformation paths. The hot amorphous or (super-cooled liquid) metal re-crystallizes at rates, which depend on the temperature difference between the amorphous solid and the equilibrium melt line. This plastic-amorphous transition threshold can be computed from shear-waves stability analyses. Examples from selected fcc and bcc metals will be presented employing semi-empirical potentials of the embedded atom method (EAM) type as well as

  4. Strain Rate and Anisotropic Microstructure Dependent Mechanical Behaviors of Silkworm Cocoon Shells.

    Directory of Open Access Journals (Sweden)

    Jun Xu

    Full Text Available Silkworm cocoons are multi-layered composite structures comprised of high strength silk fiber and sericin, and their mechanical properties have been naturally selected to protect pupas during metamorphosis from various types of external attacks. The present study attempts to gain a comprehensive understanding of the mechanical properties of cocoon shell materials from wild silkworm species Antheraea pernyi under dynamic loading rates. Five dynamic strain rates from 0.00625 s-1 to 12.5 s-1 are tested to show the strain rate sensitivity of the cocoon shell material. In the meantime, the anisotropy of the cocoon shell is considered and the cocoon shell specimens are cut along 0°, 45° and 90° orientation to the short axis of cocoons. Typical mechanical properties including Young's modulus, yield strength, ultimate strength and ultimate strain are extracted and analyzed from the stress-strain curves. Furthermore, the fracture morphologies of the cocoon shell specimens are observed under scanning electron microscopy to help understand the relationship between the mechanical properties and the microstructures of the cocoon material. A discussion on the dynamic strain rate effect on the mechanical properties of cocoon shell material is followed by fitting our experimental results to two previous models, and the effect could be well explained. We also compare natural and dried cocoon materials for the dynamic strain rate effect and interestingly the dried cocoon shells show better overall mechanical properties. This study provides a different perspective on the mechanical properties of cocoon material as a composite material, and provides some insight for bio-inspired engineering materials.

  5. Variation of strain rate sensitivity index of a superplastic aluminum alloy in different testing methods

    Science.gov (United States)

    Majidi, Omid; Jahazi, Mohammad; Bombardier, Nicolas; Samuel, Ehab

    2017-10-01

    The strain rate sensitivity index, m-value, is being applied as a common tool to evaluate the impact of the strain rate on the viscoplastic behaviour of materials. The m-value, as a constant number, has been frequently taken into consideration for modeling material behaviour in the numerical simulation of superplastic forming processes. However, the impact of the testing variables on the measured m-values has not been investigated comprehensively. In this study, the m-value for a superplastic grade of an aluminum alloy (i.e., AA5083) has been investigated. The conditions and the parameters that influence the strain rate sensitivity for the material are compared with three different testing methods, i.e., monotonic uniaxial tension test, strain rate jump test and stress relaxation test. All tests were conducted at elevated temperature (470°C) and at strain rates up to 0.1 s-1. The results show that the m-value is not constant and is highly dependent on the applied strain rate, strain level and testing method.

  6. Effect of Strengthening Mechanism on Strain-Rate Related Tensile Properties of Low-Carbon Sheet Steels for Automotive Application

    Science.gov (United States)

    Das, Anindya; Biswas, Pinaki; Tarafder, S.; Chakrabarti, D.; Sivaprasad, S.

    2018-05-01

    In order to ensure crash resistance of the steels used in automotive components, the ensile deformation behavior needs to be studied and predicted not only under quasi-static condition, but also under dynamic loading rates. In the present study, tensile tests have been performed on four different automobile grade sheet steels, namely interstitial free steel, dual-phase 600 and 800, and a carbon manganese steel over the strain rate regime of 0.001-800/s. Apart from the variation in strength (which always increased with strain rate), the effect of strengthening mechanism on strain rate sensitivity and strain hardening behavior has been evaluated. Strain rate sensitivity was found to increase at high-strain rate regime for all the steels. Contribution of solid solution hardening on strain rate sensitivity at lower plastic strains was found to be higher compared to dislocation strengthening and second-phase hardening. However, precipitation hardening coupled with solid solution hardening produced the highest strain rate sensitivity, in C-Mn-440 steel at high strain rates. Different strain-rate-sensitive models which take into account the change in yield stress and strain hardening behavior with strain rate for ductile materials were used to predict the flow behavior of these sheet steels at strain rates up to 800/s.

  7. Three-dimensional modeling for deformation of austenitic NiTi shape memory alloys under high strain rate

    Science.gov (United States)

    Yu, Hao; Young, Marcus L.

    2018-01-01

    A three-dimensional model for phase transformation of shape memory alloys (SMAs) during high strain rate deformation is developed and is then calibrated based on experimental results from an austenitic NiTi SMA. Stress, strain, and martensitic volume fraction distribution during high strain rate deformation are simulated using finite element analysis software ABAQUS/standard. For the first time, this paper presents a theoretical study of the microscopic band structure during high strain rate compressive deformation. The microscopic transformation band is generated by the phase front and leads to minor fluctuations in sample deformation. The strain rate effect on phase transformation is studied using the model. Both the starting stress for transformation and the slope of the stress-strain curve during phase transformation increase with increasing strain rate.

  8. A Constitutive Model for Superelastic Shape Memory Alloys Considering the Influence of Strain Rate

    Directory of Open Access Journals (Sweden)

    Hui Qian

    2013-01-01

    Full Text Available Shape memory alloys (SMAs are a relatively new class of functional materials, exhibiting special thermomechanical behaviors, such as shape memory effect and superelasticity, which enable their applications in seismic engineering as energy dissipation devices. This paper investigates the properties of superelastic NiTi shape memory alloys, emphasizing the influence of strain rate on superelastic behavior under various strain amplitudes by cyclic tensile tests. A novel constitutive equation based on Graesser and Cozzarelli’s model is proposed to describe the strain-rate-dependent hysteretic behavior of superelastic SMAs at different strain levels. A stress variable including the influence of strain rate is introduced into Graesser and Cozzarelli’s model. To verify the effectiveness of the proposed constitutive equation, experiments on superelastic NiTi wires with different strain rates and strain levels are conducted. Numerical simulation results based on the proposed constitutive equation and experimental results are in good agreement. The findings in this paper will assist the future design of superelastic SMA-based energy dissipation devices for seismic protection of structures.

  9. Fault on-off versus strain rate and earthquakes energy

    Directory of Open Access Journals (Sweden)

    C. Doglioni

    2015-03-01

    Full Text Available We propose that the brittle-ductile transition (BDT controls the seismic cycle. In particular, the movements detected by space geodesy record the steady state deformation in the ductile lower crust, whereas the stick-slip behavior of the brittle upper crust is constrained by its larger friction. GPS data allow analyzing the strain rate along active plate boundaries. In all tectonic settings, we propose that earthquakes primarily occur along active fault segments characterized by relative minima of strain rate, segments which are locked or slowly creeping. We discuss regional examples where large earthquakes happened in areas of relative low strain rate. Regardless the tectonic style, the interseismic stress and strain pattern inverts during the coseismic stage. Where a dilated band formed during the interseismic stage, this will be shortened at the coseismic stage, and vice-versa what was previously shortened, it will be dilated. The interseismic energy accumulation and the coseismic expenditure rather depend on the tectonic setting (extensional, contractional, or strike-slip. The gravitational potential energy dominates along normal faults, whereas the elastic energy prevails for thrust earthquakes and performs work against the gravity force. The energy budget in strike-slip tectonic setting is also primarily due elastic energy. Therefore, precursors may be different as a function of the tectonic setting. In this model, with a given displacement, the magnitude of an earthquake results from the coseismic slip of the deformed volume above the BDT rather than only on the fault length, and it also depends on the fault kinematics.

  10. Effect of Strain Rate on Microscopic Deformation Behavior of High-density Polyethylene under Uniaxial Stretching

    Directory of Open Access Journals (Sweden)

    Kida Takumitsu

    2017-01-01

    Full Text Available The microscopic deformation behaviors such as the load sharing and the molecular orientation of high-density polyethylene under uniaxial stretching at various strain rates were investigated by using in-situ Raman spectroscopy. The chains within crystalline phase began to orient toward the stretching direction beyond the yielding region and the orientation behavior was not affected by the strain rate. While the stretching stress along the crystalline chains was also not affected by the strain rate, the peak shifts of the Raman bands at 1130, 1418, 1440 and 1460 cm-1, which are sensitive to the interchain interactions obviously, depended on the strain rate; the higher strain rates lead to the stronger stretching stress or negative pressure on the crystalline and amorphous chains. These effects of the strain rate on the microscopic deformation was associated with the cavitation and the void formation leading to the release of the internal pressure.

  11. Mechanical Characterization of Immature Porcine Brainstem in Tension at Dynamic Strain Rates.

    Science.gov (United States)

    Zhao, Hui; Yin, Zhiyong; Li, Kui; Liao, Zhikang; Xiang, Hongyi; Zhu, Feng

    2016-01-21

    Many brain injury cases involve pediatric road traffic accidents, and among these, brainstem injury causes disastrous outcomes. A thorough understanding of the tensile characterization of immature brainstem tissue is crucial in modeling traumatic brain injury sustained by children, but limited experimental data in tension is available for the immature brain tissue at dynamic strain rates. We harvested brainstem tissue from immature pigs (about 4 weeks old, and at a developmental stage similar to that of human toddlers) as a byproduct from a local slaughter house and very carefully prepared the samples. Tensile tests were performed on specimens at dynamic strain rates of 2/s, 20/s, and 100/s using a biological material instrument. The constitutive models, Fung, Ogden, Gent, and exponential function, for immature brainstem tissue material property were developed for the recorded experimental data using OriginPro 8.0 software. The t test was performed for infinitesimal shear modules. The curves of stress-versus-stretch ratio were convex in shape, and inflection points were found in all the test groups at the strain of about 2.5%. The average Lagrange stress of the immature brainstem specimen at the 30% strain at the strain rates of 2, 20, and 100/s was 273±114, 515±107, and 1121±197 Pa, respectively. The adjusted R-Square (R2) of Fung, Ogden, Gent, and exponential model was 0.820≤R2≤0.933, 0.774≤R2≤0.940, 0.650≤R2≤0.922, and 0.852≤R2≤0.981, respectively. The infinitesimal shear modulus of the strain energy functions showed a significant association with the strain rate (pmaterial in dynamic tensile tests, and the tissue becomes stiffer with increased strain rate. The reported results may be useful in the study of brain injuries in children who sustain injuries in road traffic accidents. Further research in more detail should be performed in the future.

  12. Measurement test on creep strain rate of uranium-zirconium solid solutions

    International Nuclear Information System (INIS)

    Ogata, Takanari; Akabori, Mitsuo; Ogawa, Toru

    1996-11-01

    In order to measure creep strain rate of a small specimen of U-Zr solid solution, authors proposed an estimation method which was based upon the stress relaxation after compression. It was applied to measurement test on creep strain rate of the U-10wt%Zr specimen in the temperature range of 757 to 911degC. It may be concluded that the proposed method is valid, provided that the strain is within the appropriate range and that sufficient amount of the load decrement is observed. The obtained creep rate of U-10wt%Zr alloy indicated significantly smaller value, compared to the experimental data for pure U metal and evaluated data for U-Pu-Zr alloy. However, more careful measurement is desired in future since the present data are thought to be influenced by the precipitations included in the specimen. (author)

  13. High strain rate tensile behavior of Al-4.8Cu-1.2Mg alloy

    International Nuclear Information System (INIS)

    Bobbili, Ravindranadh; Paman, Ashish; Madhu, V.

    2016-01-01

    The purpose of the current study is to perform quasi static and high strain rate tensile tests on Al-4.8Cu-1.2Mg alloy under different strain rates ranging from 0.01–3500/s and also at temperatures of 25,100, 200 and 300 °C. The combined effect of strain rate, temperature and stress triaxiality on the material behavior is studied by testing both smooth and notched specimens. Johnson–Cook (J–C) constitutive and fracture models are established based on high strain rate tensile data obtained from Split hopkinson tension bar (SHTB) and quasi-static tests. By modifying the strain hardening and strain rate hardening terms in the Johnson–Cook (J–C) constitutive model, a new J–C constitutive model of Al-4.8Cu-1.2Mg alloy was obtained. The improved Johnson–Cook constitutive model matched the experiment results very well. With the Johnson–Cook constitutive and fracture models, numerical simulations of tensile tests at different conditions for Al-4.8Cu-1.2Mg alloy were conducted. Numerical simulations are performed using a non-linear explicit finite element code autodyn. Good agreement is obtained between the numerical simulation results and the experiment results. The fracture surfaces of specimens tested under various strain rates and temperatures were studied under scanning electron microscopy (SEM).

  14. Strain-rate dependent fatigue behavior of 316LN stainless steel in high-temperature water

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Jibo [CAS Key Laboratory of Nuclear Materials and Safety Assessment, Liaoning Key Laboratory for Safety and Assessment Technique of Nuclear Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Wu, Xinqiang, E-mail: xqwu@imr.ac.cn [CAS Key Laboratory of Nuclear Materials and Safety Assessment, Liaoning Key Laboratory for Safety and Assessment Technique of Nuclear Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Han, En-Hou; Ke, Wei; Wang, Xiang [CAS Key Laboratory of Nuclear Materials and Safety Assessment, Liaoning Key Laboratory for Safety and Assessment Technique of Nuclear Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Sun, Haitao [Nuclear and Radiation Safety Center, SEPA, Beijing 100082 (China)

    2017-06-15

    Low cycle fatigue behavior of forged 316LN stainless steel was investigated in high-temperature water. It was found that the fatigue life of 316LN stainless steel decreased with decreasing strain rate from 0.4 to 0.004 %s{sup −1} in 300 °C water. The stress amplitude increased with decreasing strain rate during fatigue tests, which was a typical characteristic of dynamic strain aging. The fatigue cracks mainly initiated at pits and slip bands. The interactive effect between dynamic strain aging and electrochemical factors on fatigue crack initiation is discussed. - Highlights: •The fatigue lives of 316LN stainless steel decrease with decreasing strain rate. •Fatigue cracks mainly initiated at pits and persistent slip bands. •Dynamic strain aging promoted fatigue cracks initiation in high-temperature water.

  15. Mapping cortical mesoscopic networks of single spiking cortical or sub-cortical neurons.

    Science.gov (United States)

    Xiao, Dongsheng; Vanni, Matthieu P; Mitelut, Catalin C; Chan, Allen W; LeDue, Jeffrey M; Xie, Yicheng; Chen, Andrew Cn; Swindale, Nicholas V; Murphy, Timothy H

    2017-02-04

    Understanding the basis of brain function requires knowledge of cortical operations over wide-spatial scales, but also within the context of single neurons. In vivo, wide-field GCaMP imaging and sub-cortical/cortical cellular electrophysiology were used in mice to investigate relationships between spontaneous single neuron spiking and mesoscopic cortical activity. We make use of a rich set of cortical activity motifs that are present in spontaneous activity in anesthetized and awake animals. A mesoscale spike-triggered averaging procedure allowed the identification of motifs that are preferentially linked to individual spiking neurons by employing genetically targeted indicators of neuronal activity. Thalamic neurons predicted and reported specific cycles of wide-scale cortical inhibition/excitation. In contrast, spike-triggered maps derived from single cortical neurons yielded spatio-temporal maps expected for regional cortical consensus function. This approach can define network relationships between any point source of neuronal spiking and mesoscale cortical maps.

  16. Microcrack Evolution and Associated Deformation and Strength Properties of Sandstone Samples Subjected to Various Strain Rates

    Directory of Open Access Journals (Sweden)

    Chong-Feng Chen

    2018-05-01

    Full Text Available The evolution of micro-cracks in rocks under different strain rates is of great importance for a better understanding of the mechanical properties of rocks under complex stress states. In the present study, a series of tests were carried out under various strain rates, ranging from creep tests to intermediate strain rate tests, so as to observe the evolution of micro-cracks in rock and to investigate the influence of the strain rate on the deformation and strength properties of rocks. Thin sections from rock samples at pre- and post-failure were compared and analyzed at the microscale using an optical microscope. The results demonstrate that the main crack propagation in the rock is intergranular at a creep strain rate and transgranular at a higher strain rate. However, intergranular cracks appear mainly around the quartz and most of the punctured grains are quartz. Furthermore, the intergranular and transgranular cracks exhibit large differences in the different loading directions. In addition, uniaxial compressive tests were conducted on the unbroken rock samples in the creep tests. A comparison of the stress–strain curves of the creep tests and the intermediate strain rate tests indicate that Young’s modulus and the peak strength increase with the strain rate. In addition, more deformation energy is released by the generation of the transgranular cracks than the generation of the intergranular cracks. This study illustrates that the conspicuous crack evolution under different strain rates helps to understand the crack development on a microscale, and explains the relationship between the micro- and macro-behaviors of rock before the collapse under different strain rates.

  17. Effects of the strain rate on the tensile properties of a TRIP-aided duplex stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jeom Yong [Stainless Steel Product Group, Technical Research Laboratories, POSCO, Pohang 790-785 (Korea, Republic of); Lee, Jaeeun; Lee, Keunho; Koh, Ji-Yeon [Department of Materials Science and Engineering, RIAM, Seoul National University, Seoul 151–744 (Korea, Republic of); Cho, Jae-Hyung [Light Metal Division, Korea Institute of Materials Science, Changwon, Gyeongnam 642-831 (Korea, Republic of); Han, Heung Nam, E-mail: hnhan@snu.ac.kr [Department of Materials Science and Engineering, RIAM, Seoul National University, Seoul 151–744 (Korea, Republic of); Park, Kyung-Tae, E-mail: ktpark@hanbat.ac.kr [Department of Materials Science and Engineering, Hanbat National University, Daejeon 305-719 (Korea, Republic of)

    2016-06-01

    Factors influencing the strain-rate dependence of the tensile properties of TRIP-aided lean duplex stainless steel were investigated by employing several characterization techniques of EBSD, TEM, and nanoindentation. The steel exhibited excellent tensile strength over 800 MPa and elongation, which exceeded 70% at a strain rate of 10{sup −3} s{sup −1} due to strain-induced martensitic transformation (SIMT), but both values decreased considerably with an increase in the strain rate. The hardness and the maximum shear stress for dislocation nucleation of the austenite were found to be higher than those of the ferrite by sub-grain scale nanoindentation tests. As a result, strain partitioning to the ferrite rather than the austenite was more significant from an early stage of deformation, suppressing the SIMT in the austenite. An EBSD strain analysis on the intra- and inter-grain scale revealed that this strain partitioning became more pronounced as the strain rate increased. Adiabatic heating, which induces austenite stabilization, also became more significant as the strain rate increased. Therefore, the present results indicate that the diminishing TRIP effects at high strain rates can be attributed to preferential strain partitioning to the soft ferrite phase from an early stage of deformation, as well as adiabatic heating.

  18. Mechanical response of AA7075 aluminum alloy over a wide range of temperatures and strain rates

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Z.; Cassada, W.A. [Reynolds Metals Co., Chester, VA (United States). Corp. Res. and Dev.; Cady, C.M.; Gray, G.T. III

    2000-07-01

    The influence of temperature and strain rate on the flow stress and work hardening rate of a 7075 aluminum alloy was studied under compressive loading over the temperature range from 23 C to 470 C, and strain rates from 0.001 s{sup -1} and 2100 s{sup -1}. While the temperature dependence of the flow stress was found to be most significant at temperatures below 300 C, the strain rate dependence of the flow stress was found to be pronounced at temperatures above 23 C. Concurrently, the work hardening rate decreases significantly with increasing temperature between 23 C and 300 C and increases slightly at higher temperatures. The minimum work hardening rate is observed to occur at temperatures between 200 C and 300 C and shift to higher temperatures with increasing strain rate. A negative strain rate dependence of work hardening rate was observed at 23 C, although a positive strain rate dependence of work hardening rate occurs at higher temperatures. Analysis of the experimental data revealed three deformation regimes. (orig.)

  19. Effect of the Strain Rate on the Tensile Properties of the AZ31 Magnesium Alloy

    International Nuclear Information System (INIS)

    Jeong, Seunghun; Park, Jiyoun; Choi, Ildong; Park, Sung Hyuk

    2013-01-01

    The effect of the strain rate at a range of 10‒4 ⁓ 3 × 10"2s"-1 on the tensile characteristics of a rolled AZ31 magnesium alloy was studied. The normal tensile specimens were tested using a high rate hydraulic testing machine. Specimens were machined from four sheets with different thicknesses, 1, 1.5, 2 and 3 mm, along three directions, 0°, 45°, and 90° to the rolling direction. The results revealed that all the specimens had a positive strain rate sensitivity of strength, that is, the strength increased with increasing strain rate. This is the same tendency as other automotive steels have. Our results suggest that the AZ31 magnesium alloy has better collision characteristics at high strain rates because of improved strength with an increasing strain rate. Ductility decreased with an increasing strain rate with a strain rate under 1 s"-1, but it increased with an increasing strain rate over 1 s"-1. The mechanical properties of the AZ31 magnesium alloy depend on the different microstructures according to the thickness. Two and 3 mm thickness specimens with a coarse and non-uniform grain structure exhibited worse mechanical properties while the 1.5 mm thickness specimens with a fine and uniform grain structure had better mechanical properties. Specimens machined at 0° and 45° to the rolling direction had higher absorbed energy than that of the 90° specimen. Thus, we demonstrate it is necessary to choose materials with proper thickness and machining direction for use in automotive applications.

  20. Strain Rate Dependent Ductile-to-Brittle Transition of Graphite Platelet Reinforced Vinyl Ester Nanocomposites

    Directory of Open Access Journals (Sweden)

    Brahmananda Pramanik

    2014-01-01

    Full Text Available In previous research, the fractal dimensions of fractured surfaces of vinyl ester based nanocomposites were estimated applying classical method on 3D digital microscopic images. The fracture energy and fracture toughness were obtained from fractal dimensions. A noteworthy observation, the strain rate dependent ductile-to-brittle transition of vinyl ester based nanocomposites, is reinvestigated in the current study. The candidate materials of xGnP (exfoliated graphite nanoplatelets reinforced and with additional CTBN (Carboxyl Terminated Butadiene Nitrile toughened vinyl ester based nanocomposites that are subjected to both quasi-static and high strain rate indirect tensile load using the traditional Brazilian test method. High-strain rate indirect tensile testing is performed with a modified Split-Hopkinson Pressure Bar (SHPB. Pristine vinyl ester shows ductile deformation under quasi-static loading and brittle failure when subjected to high-strain rate loading. This observation reconfirms the previous research findings on strain rate dependent ductile-to-brittle transition of this material system. Investigation of both quasi-static and dynamic indirect tensile test responses show the strain rate effect on the tensile strength and energy absorbing capacity of the candidate materials. Contribution of nanoreinforcement to the tensile properties is reported in this paper.

  1. Rheology of arc dacite lavas: experimental determination at low strain rates

    Science.gov (United States)

    Avard, Geoffroy; Whittington, Alan G.

    2012-07-01

    Andesitic-dacitic volcanoes exhibit a large variety of eruption styles, including explosive eruptions, endogenous and exogenous dome growth, and kilometer-long lava flows. The rheology of these lavas can be investigated through field observations of flow and dome morphology, but this approach integrates the properties of lava over a wide range of temperatures. Another approach is through laboratory experiments; however, previous studies have used higher shear stresses and strain rates than are appropriate to lava flows. We measured the apparent viscosity of several lavas from Santiaguito and Bezymianny volcanoes by uniaxial compression, between 1,109 and 1,315 K, at low shear stress (0.085 to 0.42 MPa), low strain rate (between 1.1 × 10-8 and 1.9 × 10-5 s-1), and up to 43.7 % total deformation. The results show a strong variability of the apparent viscosity between different samples, which can be ascribed to differences in initial porosity and crystallinity. Deformation occurs primarily by compaction, with some cracking and/or vesicle coalescence. Our experiments yield apparent viscosities more than 1 order of magnitude lower than predicted by models based on experiments at higher strain rates. At lava flow conditions, no evidence of a yield strength is observed, and the apparent viscosity is best approached by a strain rate- and temperature-dependent power law equation. The best fit for Santiaguito lava, for temperatures between 1,164 and 1,226 K and strain rates lower than 1.8 × 10-4 s-1, is log {η_{{app}}} = - 0.738 + 9.24 × {10^3}{/}T(K) - 0.654 \\cdot log dot{\\varepsilon } where η app is apparent viscosity and dot{\\varepsilon } is strain rate. This equation also reproduced 45 data for a sample from Bezymianny with a root mean square deviation of 0.19 log unit Pa s. Applying the rheological model to lava flow conditions at Santiaguito yields calculated apparent viscosities that are in reasonable agreement with field observations and suggests that

  2. Effect of strain rate and dislocation density on the twinning behavior in tantalum

    Energy Technology Data Exchange (ETDEWEB)

    Florando, Jeffrey N., E-mail: florando1@llnl.gov; Swift, Damian C.; Barton, Nathan R.; McNaney, James M.; Kumar, Mukul [Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, CA 94550 (United States); El-Dasher, Bassem S. [TerraPower LLC, Bellevue, WA 98005 (United States); Chen, Changqiang [Materials Research Laboratory, University of Illinois at Urbana Champaign, Urbana, IL 61801 (United States); Ramesh, K. T.; Hemker, Kevin J. [Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218 (United States)

    2016-04-15

    The conditions which affect twinning in tantalum have been investigated across a range of strain rates and initial dislocation densities. Tantalum samples were subjected to a range of strain rates, from 10{sup −4}/s to 10{sup 3}/s under uniaxial stress conditions, and under laser-induced shock-loading conditions. In this study, twinning was observed at 77 K at strain rates from 1/s to 10{sup 3}/s, and during laser-induced shock experiments. The effect of the initial dislocation density, which was imparted by deforming the material to different amounts of pre-strain, was also studied, and it was shown that twinning is suppressed after a given amount of pre-strain, even as the global stress continues to increase. These results indicate that the conditions for twinning cannot be represented solely by a critical global stress value, but are also dependent on the evolution of the dislocation density. In addition, the analysis shows that if twinning is initiated, the nucleated twins may continue to grow as a function of strain, even as the dislocation density continues to increase.

  3. Dynamic tensile behaviour and deformational mechanism of C5191 phosphor bronze under high strain rates deformation

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Dao-chun [College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); College of Mechanical and Electrical Engineering, Taizhou Vocational & Technical College, Taizhou 318000 (China); Chen, Ming-he, E-mail: meemhchen@nuaa.edu.cn [College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Wang, Lei; Cheng, Hu [College of Mechanical Engineering, Taizhou University, Taizhou 318000 (China)

    2016-01-01

    High speed stamping process is used to high strength and high electrical conductivity phosphor bronze with extremely high strain rates more than 10{sup 3} s{sup −1}. This study on the dynamic tensile behaviour and deformational mechanism is to optimise the high speed stamping processes and improve geometrical precision in finished products. Thus, the tensile properties and deformation behaviour of C5191 phosphor bronze under quasi-static tensile condition at a strain rate of 0.001 s{sup −1} by electronic universal testing machine, and dynamic tensile condition at strain rate of 500, 1000 and 1500 s{sup −1} by split Hopkinson tensile bar (SHTB) apparatus were studied. The effects of strain rate and the deformation mechanism were investigated by means of SEM and TEM. The results showed that the yield strength and tensile strength of C5191 phosphor bronze under high strain rates deformation increased by 32.77% and 11.07% respectively compared with quasi-static condition, the strain hardening index increases from 0.075 to 0.251, and the strength of the material strain rates sensitivity index change from 0.005 to 0.022, which presented a clear sensitive to strain rates. Therefore, it is claimed that the dominant deformation mechanism was changed by the dislocation motion under different strain rates, and the ability of plastic deformation of C5191 phosphor bronze increased due to the number of movable dislocations increased significantly, started multi-line slip, and the soft effect of adiabatic temperature rise at the strain rate ranging from 500 to 1500 s{sup −1}.

  4. Influence of mesh density, cortical thickness and material properties on human rib fracture prediction.

    Science.gov (United States)

    Li, Zuoping; Kindig, Matthew W; Subit, Damien; Kent, Richard W

    2010-11-01

    The purpose of this paper was to investigate the sensitivity of the structural responses and bone fractures of the ribs to mesh density, cortical thickness, and material properties so as to provide guidelines for the development of finite element (FE) thorax models used in impact biomechanics. Subject-specific FE models of the second, fourth, sixth and tenth ribs were developed to reproduce dynamic failure experiments. Sensitivity studies were then conducted to quantify the effects of variations in mesh density, cortical thickness, and material parameters on the model-predicted reaction force-displacement relationship, cortical strains, and bone fracture locations for all four ribs. Overall, it was demonstrated that rib FE models consisting of 2000-3000 trabecular hexahedral elements (weighted element length 2-3mm) and associated quadrilateral cortical shell elements with variable thickness more closely predicted the rib structural responses and bone fracture force-failure displacement relationships observed in the experiments (except the fracture locations), compared to models with constant cortical thickness. Further increases in mesh density increased computational cost but did not markedly improve model predictions. A ±30% change in the major material parameters of cortical bone lead to a -16.7 to 33.3% change in fracture displacement and -22.5 to +19.1% change in the fracture force. The results in this study suggest that human rib structural responses can be modeled in an accurate and computationally efficient way using (a) a coarse mesh of 2000-3000 solid elements, (b) cortical shells elements with variable thickness distribution and (c) a rate-dependent elastic-plastic material model. Copyright © 2010 IPEM. Published by Elsevier Ltd. All rights reserved.

  5. Identification of strain-rate and thermal sensitive material model with an inverse method

    CERN Document Server

    Peroni, L; Peroni, M

    2010-01-01

    This paper describes a numerical inverse method to extract material strength parameters from the experimental data obtained via mechanical tests at different strain-rates and temperatures. It will be shown that this procedure is particularly useful to analyse experimental results when the stress-strain fields in the specimen cannot be correctly described via analytical models. This commonly happens in specimens with no regular shape, in specimens with a regular shape when some instability phenomena occur (for example the necking phenomena in tensile tests that create a strongly heterogeneous stress-strain fields) or in dynamic tests (where the strain-rate field is not constant due to wave propagation phenomena). Furthermore the developed procedure is useful to take into account thermal phenomena generally affecting high strain-rate tests due to the adiabatic overheating related to the conversion of plastic work. The method presented requires strong effort both from experimental and numerical point of view, an...

  6. Study of creep behaviour in P-doped copper with slow strain rate tensile tests

    International Nuclear Information System (INIS)

    Xuexing Yao; Sandstroem, Rolf

    2000-08-01

    Pure copper with addition of phosphorous is planned to be used to construct the canisters for spent nuclear fuel. The copper canisters can be exposed to a creep deformation up to 2-4% at temperatures in services. The ordinary creep strain tests with dead weight loading are generally employed to study the creep behaviour; however, it is reported that an initial plastic deformation of 5-15% takes place when loading the creep specimens at lower temperatures. The slow strain rate tensile test is an alternative to study creep deformation behaviour of materials. Ordinary creep test and slow strain rate tensile test can give the same information in the secondary creep stage. The advantage of the tensile test is that the starting phase is much more controlled than in a creep test. In a tensile test the initial deformation behaviour can be determined and the initial strain of less than 5% can be modelled. In this study slow strain rate tensile tests at strain rate of 10 -4 , 10 -5 , 10 -6 , and 10 -7 /s at 75, 125 and 175 degrees C have been performed on P-doped pure Cu to supplement creep data from conventional creep tests. The deformation behaviour has successfully been modelled. It is shown that the slow strain rate tensile tests can be implemented to study the creep deformation behaviours of pure Cu

  7. Effect of the Strain Rate on the Tensile Properties of the AZ31 Magnesium Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Seunghun; Park, Jiyoun; Choi, Ildong [Korea Maritime University, Busan (Korea, Republic of); Park, Sung Hyuk [Korea Institute of Materials Science, Changwon (Korea, Republic of)

    2013-10-15

    The effect of the strain rate at a range of 10‒4 ⁓ 3 × 10{sup 2}s{sup -}1 on the tensile characteristics of a rolled AZ31 magnesium alloy was studied. The normal tensile specimens were tested using a high rate hydraulic testing machine. Specimens were machined from four sheets with different thicknesses, 1, 1.5, 2 and 3 mm, along three directions, 0°, 45°, and 90° to the rolling direction. The results revealed that all the specimens had a positive strain rate sensitivity of strength, that is, the strength increased with increasing strain rate. This is the same tendency as other automotive steels have. Our results suggest that the AZ31 magnesium alloy has better collision characteristics at high strain rates because of improved strength with an increasing strain rate. Ductility decreased with an increasing strain rate with a strain rate under 1 s{sup -}1, but it increased with an increasing strain rate over 1 s{sup -}1. The mechanical properties of the AZ31 magnesium alloy depend on the different microstructures according to the thickness. Two and 3 mm thickness specimens with a coarse and non-uniform grain structure exhibited worse mechanical properties while the 1.5 mm thickness specimens with a fine and uniform grain structure had better mechanical properties. Specimens machined at 0° and 45° to the rolling direction had higher absorbed energy than that of the 90° specimen. Thus, we demonstrate it is necessary to choose materials with proper thickness and machining direction for use in automotive applications.

  8. High strain rates spallation phenomena with relation to the equation of state

    International Nuclear Information System (INIS)

    Dekel, E.

    1997-11-01

    Theoretical spall strength, defined as the stress needed to separate a material along a plane surface instantaneously, is one order of magnitude larger then the measured spell strength at strain rates up to 10 6 s -1 . The discrepancy is explained by material initial flaws and cavities which grow and coalesce under stress and weaken the material. Measurements of spall strength of materials shocked by a high power laser shows a rapid increase in the spall strength with the strain rate at strain rates of about 10 7 s -1 . This indicates that the initial flaws does not have time to coalesce and the interatomic forces become dominant. In order to break the material more cavities must be created. This cavities are characterized by the interatomic forces and are created statistically: material under tensile stress is in a metastable condition and due to thermal fluctuations cavities are formed. Cavities larger than a certain critical size grow due to the stress. They grow until the material disintegrates at the spall plane. The theoretical results predict the increase in spall strength at high strain rates, as observed experimentally. (authors)

  9. Effect of Strain Rate on Hot Ductility Behavior of a High Nitrogen Cr-Mn Austenitic Steel

    Science.gov (United States)

    Wang, Zhenhua; Meng, Qing; Qu, Minggui; Zhou, Zean; Wang, Bo; Fu, Wantang

    2016-03-01

    18Mn18Cr0.6N steel specimens were tensile tested between 1173 K and 1473 K (900 °C and 1200 °C) at 9 strain rates ranging from 0.001 to 10 s-1. The tensile strained microstructures were analyzed through electron backscatter diffraction analysis. The strain rate was found to affect hot ductility by influencing the strain distribution, the extent of dynamic recrystallization and the resulting grain size, and dynamic recovery. The crack nucleation sites were primarily located at grain boundaries and were not influenced by the strain rate. At 1473 K (1200 °C), a higher strain rate was beneficial for grain refinement and preventing hot cracking; however, dynamic recovery appreciably occurred at 0.001 s-1 and induced transgranular crack propagation. At 1373 K (1100 °C), a high extent of dynamic recrystallization and fine new grains at medium strain rates led to good hot ductility. The strain gradient from the interior of the grain to the grain boundary increased with decreasing strain rate at 1173 K and 1273 K (900 °C and 1000 °C), which promoted hot cracking. Grain boundary sliding accompanied grain rotation and did not contribute to hot cracking.

  10. A nanoindentation investigation of local strain rate sensitivity in dual-phase Ti alloys

    Energy Technology Data Exchange (ETDEWEB)

    Jun, Tea-Sung, E-mail: t.jun@imperial.ac.uk [Department of Materials, Royal School of Mines, Imperial College London, London, SW7 2AZ (United Kingdom); Armstrong, David E.J. [Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH (United Kingdom); Britton, T. Benjamin [Department of Materials, Royal School of Mines, Imperial College London, London, SW7 2AZ (United Kingdom)

    2016-07-05

    Using nanoindentation we have investigated the local strain rate sensitivity in dual-phase Ti alloys, Ti–6Al–2Sn–4Zr-xMo (x = 2 and 6), as strain rate sensitivity could be a potential factor causing cold dwell fatigue. Electron backscatter diffraction (EBSD) was used to select hard and soft grain orientations within each of the alloys. Nanoindentation based tests using the continuous stiffness measurement (CSM) method were performed with variable strain rates, on the order of 10{sup −1} to 10{sup −3}s{sup −1}. Local strain rate sensitivity is determined using a power law linking equivalent flow stress and equivalent plastic strain rate. Analysis of residual impressions using both a scanning electron microscope (SEM) and a focused ion beam (FIB) reveals local deformation around the indents and shows that nanoindentation tested structures containing both α and β phases within individual colonies. This indicates that the indentation results are derived from averaged α/β properties. The results show that a trend of local rate sensitivity in Ti6242 and Ti6246 is strikingly different; as similar rate sensitivities are found in Ti6246 regardless of grain orientation, whilst a grain orientation dependence is observed in Ti6242. These findings are important for understanding dwell fatigue deformation modes, and the methodology demonstrated can be used for screening new alloy designs and microstructures. - Highlights: • Nanoindentation-based CSM tests were performed on dual-phase Ti alloys. • EBSD was effectively used to select target grains within isolated morphologies. • A trend of local rate sensitivity in Ti6242 and Ti6246 is strikingly different. • A significant grain orientation dependent rate sensitivity is observed in Ti6242. • Similar rate sensitivities are found in Ti6246 regardless of grain orientation.

  11. Constant strain accumulation rate between major earthquakes on the North Anatolian Fault.

    Science.gov (United States)

    Hussain, Ekbal; Wright, Tim J; Walters, Richard J; Bekaert, David P S; Lloyd, Ryan; Hooper, Andrew

    2018-04-11

    Earthquakes are caused by the release of tectonic strain accumulated between events. Recent advances in satellite geodesy mean we can now measure this interseismic strain accumulation with a high degree of accuracy. But it remains unclear how to interpret short-term geodetic observations, measured over decades, when estimating the seismic hazard of faults accumulating strain over centuries. Here, we show that strain accumulation rates calculated from geodetic measurements around a major transform fault are constant for its entire 250-year interseismic period, except in the ~10 years following an earthquake. The shear strain rate history requires a weak fault zone embedded within a strong lower crust with viscosity greater than ~10 20  Pa s. The results support the notion that short-term geodetic observations can directly contribute to long-term seismic hazard assessment and suggest that lower-crustal viscosities derived from postseismic studies are not representative of the lower crust at all spatial and temporal scales.

  12. Cerebral near-infrared spectroscopy to evaluate anti-G straining maneuvers in centrifuge training.

    Science.gov (United States)

    Kobayashi, Asao; Kikukawa, Azusa; Kimura, Mikihiko; Inui, Takuo; Miyamoto, Yoshinori

    2012-08-01

    Over the past decade, near-infrared spectroscopy (NIRS) has emerged as an easily manageable noninvasive method for the continuous monitoring of cerebral cortical oxygenation during +Gz exposure. NIRS is also used to evaluate pilot trainees' ability to adequately perform anti-G straining maneuvers in the course of centrifuge training. This study aimed to determine the general patterns and individual differences in NIRS recordings during +Gz exposure. There were 22 healthy male cadets who participated in the study. The centrifuge training profiles included a gradual onset run (GOR, onset rate of 0.1 Gz x s(-1)) and short-term repeated exposures, with Gz levels from 4 to 7 Gz at an onset rate of 1.0 Gz x s(-1) (rapid onset run, ROR). Cortical tissue hemoglobin saturation (tissue oxygenation index, TOI) and changes in the concentration of oxygenated hemoglobin (O2Hb) were recorded from the right forehead during the period of Gz exposure. Most of the subjects successfully performed an anti-G straining maneuver and maintained or increased the cerebral oxygenation level during Gz exposure. In four subjects, however, oxygenation decline was observed at levels over 4 Gz, even though their anti-G systems were functioning. In contrast to the O2Hb response, TOI, which reflects intracranial oxygenation changes, was decreased during the anti-G straining maneuver at Gz onset or during the countdown to a ROR exposure. Although NIRS is an effective tool for monitoring anti-G straining maneuver performance, it should be carefully evaluated in terms of intracranial oxygenation results.

  13. Energy absorption at high strain rate of glass fiber reinforced mortars

    Directory of Open Access Journals (Sweden)

    Fenu Luigi

    2015-01-01

    Full Text Available In this paper, the dynamic behaviour of cement mortars reinforced with glass fibers was studied. The influence of the addition of glass fibers on energy absorption and tensile strength at high strain-rate was investigated. Static tests in compression, in tension and in bending were first performed. Dynamic tests by means of a Modified Hopkinson Bar were then carried out in order to investigate how glass fibers affected energy absorption and tensile strength at high strain-rate of the fiber reinforced mortar. The Dynamic Increase Factor (DIF was finally evaluated.

  14. Strain Rate Effect on Tensile Flow Behavior and Anisotropy of a Medium-Manganese TRIP Steel

    Science.gov (United States)

    Alturk, Rakan; Hector, Louis G.; Matthew Enloe, C.; Abu-Farha, Fadi; Brown, Tyson W.

    2018-06-01

    The dependence of the plastic anisotropy on the nominal strain rate for a medium-manganese (10 wt.% Mn) transformation-induced plasticity (TRIP) steel with initial austenite volume fraction of 66% (balance ferrite) has been investigated. The material exhibited yield point elongation, propagative instabilities during hardening, and austenite transformation to α'-martensite either directly or through ɛ-martensite. Uniaxial strain rates within the range of 0.005-500 s-1 along the 0°, 45°, and 90° orientations were selected based upon their relevance to automotive applications. The plastic anisotropy ( r) and normal anisotropy ( r n) indices corresponding to each direction and strain rate were determined using strain fields obtained from stereo digital image correlation systems that enabled both quasistatic and dynamic measurements. The results provide evidence of significant, orientation-dependent strain rate effects on both the flow stress and the evolution of r and r n with strain. This has implications not only for material performance during forming but also for the development of future strain-rate-dependent anisotropic yield criteria. Since tensile data alone for the subject medium-manganese TRIP steel do not satisfactorily determine the microstructural mechanisms responsible for the macroscopic-scale behavior observed on tensile testing, additional tests that must supplement the mechanical test results presented herein are discussed.

  15. Strain Rate Effect on Tensile Flow Behavior and Anisotropy of a Medium-Manganese TRIP Steel

    Science.gov (United States)

    Alturk, Rakan; Hector, Louis G.; Matthew Enloe, C.; Abu-Farha, Fadi; Brown, Tyson W.

    2018-04-01

    The dependence of the plastic anisotropy on the nominal strain rate for a medium-manganese (10 wt.% Mn) transformation-induced plasticity (TRIP) steel with initial austenite volume fraction of 66% (balance ferrite) has been investigated. The material exhibited yield point elongation, propagative instabilities during hardening, and austenite transformation to α'-martensite either directly or through ɛ-martensite. Uniaxial strain rates within the range of 0.005-500 s-1 along the 0°, 45°, and 90° orientations were selected based upon their relevance to automotive applications. The plastic anisotropy (r) and normal anisotropy (r n) indices corresponding to each direction and strain rate were determined using strain fields obtained from stereo digital image correlation systems that enabled both quasistatic and dynamic measurements. The results provide evidence of significant, orientation-dependent strain rate effects on both the flow stress and the evolution of r and r n with strain. This has implications not only for material performance during forming but also for the development of future strain-rate-dependent anisotropic yield criteria. Since tensile data alone for the subject medium-manganese TRIP steel do not satisfactorily determine the microstructural mechanisms responsible for the macroscopic-scale behavior observed on tensile testing, additional tests that must supplement the mechanical test results presented herein are discussed.

  16. Influence of stress triaxiality and strain rate on the failure behavior of a dual-phase DP780 steel

    International Nuclear Information System (INIS)

    Anderson, D.; Winkler, S.; Bardelcik, A.; Worswick, M.J.

    2014-01-01

    Highlights: • DP780 steel sheet sensitive to strain rate and triaxiality. • Specimens failed due to ductile-shear mode. • Extent of transverse cracking due to martensitic islands increased with triaxiality. • Uniaxial stress decreased with strain rate then increased after 0.1 s −1 . • Predicted effective plastic strain, triaxiality at failure increased with strain rate. - Abstract: To better understand the in-service mechanical behavior of advanced high-strength steels, the influence of stress triaxiality and strain rate on the failure behavior of a dual-phase (DP) 780 steel sheet was investigated. Three flat, notched mini-tensile geometries with varying notch severities and initial stress triaxialities of 0.36, 0.45, and 0.74 were considered in the experiments. Miniature specimens were adopted to facilitate high strain rate testing in addition to quasi-static experiments. Tensile tests were conducted at strain rates of 0.001, 0.01, 0.1, 1, 10, and 100 s −1 for all three notched geometries and compared to mini-tensile uniaxial samples. Additional tests at a strain rate of 1500 s −1 were performed using a tensile split Hopkinson bar apparatus. The results showed that the stress–strain response of the DP780 steel exhibited mainly positive strain rate sensitivity for all geometries, with mild negative strain rate sensitivity up to 0.1 s −1 for the uniaxial specimens. The strain at failure was observed to decrease with strain rate at low strain rates of 0.001–0.1 s −1 ; however, it increased by 26% for an increase in strain rate from 0.1 to 1500 s −1 for the uniaxial condition. Initial triaxiality was found to have a significant negative impact on true failure strain with a decrease of 32% at the highest triaxiality compared to the uniaxial condition at a strain rate of 0.001 s −1 . High resolution scanning electron microscopy images of the failure surfaces revealed a dimpled surface while optical micrographs revealed shearing through the

  17. Refinement of the wedge bar technique for compression tests at intermediate strain rates

    Directory of Open Access Journals (Sweden)

    Stander M.

    2012-08-01

    Full Text Available A refined development of the wedge-bar technique [1] for compression tests at intermediate strain rates is presented. The concept uses a wedge mechanism to compress small cylindrical specimens at strain rates in the order of 10s−1 to strains of up to 0.3. Co-linear elastic impact principles are used to accelerate the actuation mechanism from rest to test speed in under 300μs while maintaining near uniform strain rates for up to 30 ms, i.e. the transient phase of the test is less than 1% of the total test duration. In particular, a new load frame, load cell and sliding anvil designs are presented and shown to significantly reduce the noise generated during testing. Typical dynamic test results for a selection of metals and polymers are reported and compared with quasistatic and split Hopkinson pressure bar results.

  18. Determination of Strain Rate Sensitivity of Micro-struts Manufactured Using the Selective Laser Melting Method

    Science.gov (United States)

    Gümrük, Recep; Mines, R. A. W.; Karadeniz, Sami

    2018-03-01

    Micro-lattice structures manufactured using the selective laser melting (SLM) process provides the opportunity to realize optimal cellular materials for impact energy absorption. In this paper, strain rate-dependent material properties are measured for stainless steel 316L SLM micro-lattice struts in the strain rate range of 10-3 to 6000 s-1. At high strain rates, a novel version of the split Hopkinson Bar has been developed. Strain rate-dependent materials data have been used in Cowper-Symonds material model, and the scope and limit of this model in the context of SLM struts have been discussed. Strain rate material data and the Cowper-Symonds model have been applied to the finite element analysis of a micro-lattice block subjected to drop weight impact loading. The model output has been compared to experimental results, and it has been shown that the increase in crush stress due to impact loading is mainly the result of strain rate material behavior. Hence, a systematic methodology has been developed to investigate the impact energy absorption of a micro-lattice structure manufactured using additive layer manufacture (SLM). This methodology can be extended to other micro-lattice materials and configurations, and to other impact conditions.

  19. Quantitative regional validation of the visual rating scale for posterior cortical atrophy

    International Nuclear Information System (INIS)

    Moeller, Christiane; Benedictus, Marije R.; Koedam, Esther L.G.M.; Scheltens, Philip; Flier, Wiesje M. van der; Versteeg, Adriaan; Wattjes, Mike P.; Barkhof, Frederik; Vrenken, Hugo

    2014-01-01

    Validate the four-point visual rating scale for posterior cortical atrophy (PCA) on magnetic resonance images (MRI) through quantitative grey matter (GM) volumetry and voxel-based morphometry (VBM) to justify its use in clinical practice. Two hundred twenty-nine patients with probable Alzheimer's disease and 128 with subjective memory complaints underwent 3T MRI. PCA was rated according to the visual rating scale. GM volumes of six posterior structures and the total posterior region were extracted using IBASPM and compared among PCA groups. To determine which anatomical regions contributed most to the visual scores, we used binary logistic regression. VBM compared local GM density among groups. Patients were categorised according to their PCA scores: PCA-0 (n = 122), PCA-1 (n = 143), PCA-2 (n = 79), and PCA-3 (n = 13). All structures except the posterior cingulate differed significantly among groups. The inferior parietal gyrus volume discriminated the most between rating scale levels. VBM showed that PCA-1 had a lower GM volume than PCA-0 in the parietal region and other brain regions, whereas between PCA-1 and PCA-2/3 GM atrophy was mostly restricted to posterior regions. The visual PCA rating scale is quantitatively validated and reliably reflects GM atrophy in parietal regions, making it a valuable tool for the daily radiological assessment of dementia. (orig.)

  20. Quantitative regional validation of the visual rating scale for posterior cortical atrophy

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, Christiane; Benedictus, Marije R.; Koedam, Esther L.G.M.; Scheltens, Philip [VU University Medical Center, Alzheimer Center and Department of Neurology, Neuroscience Campus Amsterdam, P.O. Box 7057, Amsterdam (Netherlands); Flier, Wiesje M. van der [VU University Medical Center, Alzheimer Center and Department of Neurology, Neuroscience Campus Amsterdam, P.O. Box 7057, Amsterdam (Netherlands); VU University Medical Center, Department of Epidemiology and Biostatistics, Neuroscience Campus Amsterdam, P.O. Box 7057, Amsterdam (Netherlands); Versteeg, Adriaan; Wattjes, Mike P.; Barkhof, Frederik [VU University Medical Center, Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam, P.O. Box 7057, Amsterdam (Netherlands); Vrenken, Hugo [VU University Medical Center, Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam, P.O. Box 7057, Amsterdam (Netherlands); VU University Medical Center, Department of Physics and Medical Technology, Neuroscience Campus Amsterdam, P.O. Box 7057, Amsterdam (Netherlands)

    2014-02-15

    Validate the four-point visual rating scale for posterior cortical atrophy (PCA) on magnetic resonance images (MRI) through quantitative grey matter (GM) volumetry and voxel-based morphometry (VBM) to justify its use in clinical practice. Two hundred twenty-nine patients with probable Alzheimer's disease and 128 with subjective memory complaints underwent 3T MRI. PCA was rated according to the visual rating scale. GM volumes of six posterior structures and the total posterior region were extracted using IBASPM and compared among PCA groups. To determine which anatomical regions contributed most to the visual scores, we used binary logistic regression. VBM compared local GM density among groups. Patients were categorised according to their PCA scores: PCA-0 (n = 122), PCA-1 (n = 143), PCA-2 (n = 79), and PCA-3 (n = 13). All structures except the posterior cingulate differed significantly among groups. The inferior parietal gyrus volume discriminated the most between rating scale levels. VBM showed that PCA-1 had a lower GM volume than PCA-0 in the parietal region and other brain regions, whereas between PCA-1 and PCA-2/3 GM atrophy was mostly restricted to posterior regions. The visual PCA rating scale is quantitatively validated and reliably reflects GM atrophy in parietal regions, making it a valuable tool for the daily radiological assessment of dementia. (orig.)

  1. Characterization of a New Fully Recycled Carbon Fiber Reinforced Composite Subjected to High Strain Rate Tension

    Science.gov (United States)

    Meftah, H.; Tamboura, S.; Fitoussi, J.; BenDaly, H.; Tcharkhtchi, A.

    2018-06-01

    The aim of this study is the complete physicochemical characterization and strain rate effect multi-scale analysis of a new fully recycled carbon fiber reinforced composites for automotive crash application. Two composites made of 20% wt short recycled carbon fibers (CF) are obtained by injection molding. The morphology and the degree of dispersion of CF in the matrixes were examined using a new ultrasonic method and SEM. High strain tensile behavior up to 100 s-1 is investigated. In order to avoid perturbation due to inertial effect and wave propagation, the specimen geometry was optimized. The elastic properties appear to be insensitive to the strain rate. However, a high strain rate effect on the local visco-plasticity of the matrix and fiber/matrix interface visco-damageable behavior is emphasized. The predominant damage mechanisms evolve from generalized matrix local ductility at low strain rate regime to fiber/matrix interface debonding and fibers pull-out at high strain rate regime.

  2. Effect of axial tibial torque direction on ACL relative strain and strain rate in an in vitro simulated pivot landing.

    Science.gov (United States)

    Oh, Youkeun K; Kreinbrink, Jennifer L; Wojtys, Edward M; Ashton-Miller, James A

    2012-04-01

    Anterior cruciate ligament (ACL) injuries most frequently occur under the large loads associated with a unipedal jump landing involving a cutting or pivoting maneuver. We tested the hypotheses that internal tibial torque would increase the anteromedial (AM) bundle ACL relative strain and strain rate more than would the corresponding external tibial torque under the large impulsive loads associated with such landing maneuvers. Twelve cadaveric female knees [mean (SD) age: 65.0 (10.5) years] were tested. Pretensioned quadriceps, hamstring, and gastrocnemius muscle-tendon unit forces maintained an initial knee flexion angle of 15°. A compound impulsive test load (compression, flexion moment, and internal or external tibial torque) was applied to the distal tibia while recording the 3D knee loads and tibofemoral kinematics. AM-ACL relative strain was measured using a 3 mm DVRT. In this repeated measures experiment, the Wilcoxon signed-rank test was used to test the null hypotheses with p < 0.05 considered significant. The mean (±SD) peak AM-ACL relative strains were 5.4 ± 3.7% and 3.1 ± 2.8% under internal and external tibial torque, respectively. The corresponding mean (± SD) peak AM-ACL strain rates reached 254.4 ± 160.1%/s and 179.4 ± 109.9%/s, respectively. The hypotheses were supported in that the normalized mean peak AM-ACL relative strain and strain rate were 70 and 42% greater under internal than under external tibial torque, respectively (p = 0.023, p = 0.041). We conclude that internal tibial torque is a potent stressor of the ACL because it induces a considerably (70%) larger peak strain in the AM-ACL than does a corresponding external tibial torque. Copyright © 2011 Orthopaedic Research Society.

  3. Strain rate dependent deformation and failure behavior of laser welded DP780 steel joint under dynamic tensile loading

    International Nuclear Information System (INIS)

    Liu, Yang; Dong, Danyang; Wang, Lei; Chu, Xi; Wang, Pengfei; Jin, Mengmeng

    2015-01-01

    Laser welded DP steel joints are used widely in the automotive industry for weight reduction. Understanding the deformation and fracture behavior of the base metal (BM) and its welded joint (WJ), especially at high strain rates, is critical for the design of vehicle structures. This paper is concerned with the effects of strain rate on the tensile properties, deformation and fracture behavior of the laser welded DP780 steel joint. Quasi-static and dynamic tensile tests were performed on the WJ and BM of the DP780 steel using an electromechanical universal testing machine and a high-speed tensile testing machine over a wide range of strain rate (0.0001–1142 s −1 ). The microstructure change and microhardness distribution of the DP780 steel after laser welding were examined. Digital image correlation (DIC) and high-speed photography were employed for the strain measurement of the DP780 WJ during dynamic tensile tests. The DP780 WJ is a heterogeneous structure with hardening in fusion zone (FZ) and inner heat-affected zone (HAZ), and softening in outer HAZ. The DP780 BM and WJ exhibit positive strain rate dependence on the YS and UTS, which is smaller at lower strain rates and becomes larger with increasing strain rate, while ductility in terms of total elongation (TE) tends to increase under dynamic loading. Laser welding leads to an overall reduction in the ductility of the DP780 steel. However, the WJ exhibits a similar changing trend of the ductility to that of the BM with respect to the strain rate over the whole strain rate range. As for the DP780 WJ, the distance of tensile failure location from the weld centerline decreases with increasing strain rate. The typical ductile failure characteristics of the DP780 BM and WJ do not change with increasing strain rate. DIC measurements reveal that the strain localization starts even before the maximum load is attained in the DP780 WJ and gradual transition from uniform strains to severely localized strains occurs

  4. Strain rate dependent deformation and failure behavior of laser welded DP780 steel joint under dynamic tensile loading

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yang, E-mail: liuyang@mail.neu.edu.cn [Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang 110819 (China); Dong, Danyang, E-mail: dongdanyang@mail.neu.edu.cn [College of Science, Northeastern University, Shenyang 110819 (China); Wang, Lei, E-mail: wanglei@mail.neu.edu.cn [Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang 110819 (China); Chu, Xi, E-mail: chuxi.ok@163.com [College of Science, Northeastern University, Shenyang 110819 (China); Wang, Pengfei, E-mail: wpf1963871400@163.com [College of Science, Northeastern University, Shenyang 110819 (China); Jin, Mengmeng, E-mail: 24401878@163.com [College of Science, Northeastern University, Shenyang 110819 (China)

    2015-03-11

    Laser welded DP steel joints are used widely in the automotive industry for weight reduction. Understanding the deformation and fracture behavior of the base metal (BM) and its welded joint (WJ), especially at high strain rates, is critical for the design of vehicle structures. This paper is concerned with the effects of strain rate on the tensile properties, deformation and fracture behavior of the laser welded DP780 steel joint. Quasi-static and dynamic tensile tests were performed on the WJ and BM of the DP780 steel using an electromechanical universal testing machine and a high-speed tensile testing machine over a wide range of strain rate (0.0001–1142 s{sup −1}). The microstructure change and microhardness distribution of the DP780 steel after laser welding were examined. Digital image correlation (DIC) and high-speed photography were employed for the strain measurement of the DP780 WJ during dynamic tensile tests. The DP780 WJ is a heterogeneous structure with hardening in fusion zone (FZ) and inner heat-affected zone (HAZ), and softening in outer HAZ. The DP780 BM and WJ exhibit positive strain rate dependence on the YS and UTS, which is smaller at lower strain rates and becomes larger with increasing strain rate, while ductility in terms of total elongation (TE) tends to increase under dynamic loading. Laser welding leads to an overall reduction in the ductility of the DP780 steel. However, the WJ exhibits a similar changing trend of the ductility to that of the BM with respect to the strain rate over the whole strain rate range. As for the DP780 WJ, the distance of tensile failure location from the weld centerline decreases with increasing strain rate. The typical ductile failure characteristics of the DP780 BM and WJ do not change with increasing strain rate. DIC measurements reveal that the strain localization starts even before the maximum load is attained in the DP780 WJ and gradual transition from uniform strains to severely localized strains

  5. Dynamic Behavior of AA2519-T8 Aluminum Alloy Under High Strain Rate Loading in Compression

    Science.gov (United States)

    Olasumboye, A. T.; Owolabi, G. M.; Odeshi, A. G.; Yilmaz, N.; Zeytinci, A.

    2018-02-01

    In this study, the effects of strain rate on the dynamic behavior, microstructure evolution and hence, failure of the AA2519-T8 aluminum alloy were investigated under compression at strain rates ranging from 1000 to 3500 s-1. Cylindrical specimens of dimensions 3.3 mm × 3.3 mm (L/D = 1) were tested using the split-Hopkinson pressure bar integrated with a digital image correlation system. The microstructure of the alloy was assessed using optical and scanning electron microscopes. Results showed that the dynamic yield strength of the alloy is strain rate dependent, with the maximum yield strength attained by the material being 500 MPa. The peak flow stress of 562 MPa was attained by the material at 3500 s-1. The alloy also showed a significant rate of strain hardening that is typical of other Al-Cu alloys; the rate of strain hardening, however, decreased with increase in strain rate. It was determined that the strain rate sensitivity coefficient of the alloy within the range of high strain rates used in this study is approximately 0.05 at 0.12 plastic strain; a more significant value than what was reported in literature under quasi-static loading. Micrographs obtained showed potential sites for the evolution of adiabatic shear band at 3500 s-1, with a characteristic circular-shaped surface profile comprising partially dissolved second phase particles in the continuous phase across the incident plane of the deformed specimen. The regions surrounding the site showed little or no change in the size of particles. However, the constituent coarse particles were observed as agglomerations of fractured pieces, thus having a shape factor different from those contained in the as-received alloy. Since the investigated alloy is a choice material for military application where it can be exposed to massive deformation at high strain rates, this study provides information on its microstructural and mechanical responses to such extreme loading condition.

  6. Effects of strain rate, mixing ratio, and stress-strain definition on the mechanical behavior of the polydimethylsiloxane (PDMS) material as related to its biological applications.

    Science.gov (United States)

    Khanafer, Khalil; Duprey, Ambroise; Schlicht, Marty; Berguer, Ramon

    2009-04-01

    Tensile tests on Polydimethylsiloxane (PDMS) materials were conducted to illustrate the effects of mixing ratio, definition of the stress-strain curve, and the strain rate on the elastic modulus and stress-strain curve. PDMS specimens were prepared according to the ASTM standards for elastic materials. Our results indicate that the physiological elastic modulus depends strongly on the definition of the stress-strain curve, mixing ratio, and the strain rate. For various mixing ratios and strain rates, true stress-strain definition results in higher stress and elastic modulus compared with engineering stress-strain and true stress-engineering strain definitions. The elastic modulus increases as the mixing ratio increases up-to 9:1 ratio after which the elastic modulus begins to decrease even as the mixing ratio continues to increase. The results presented in this study will be helpful to assist the design of in vitro experiments to mimic blood flow in arteries and to understand the complex interaction between blood flow and the walls of arteries using PDMS elastomer.

  7. Effect of temperature and strain rate on the compressive behaviour of supramolecular polyurethane

    Directory of Open Access Journals (Sweden)

    Tang Xuegang

    2015-01-01

    Full Text Available Supramolecular polyurethanes (SPUs possess thermoresponsive and thermoreversible properties, and those characteristics are highly desirable in both bulk commodity and value-added applications such as adhesives, shape-memory materials, healable coatings and lightweight, impact-resistant structures (e.g. protection for mobile electronics. A better understanding of the mechanical properties, especially the rate and temperature sensitivity, of these materials are required to assess their suitability for different applications. In this paper, a newly developed SPU with tuneable thermal properties was studied, and the response of this SPU to compressive loading over strain rates from 10−3 to 104 s−1 was presented. Furthermore, the effect of temperature on the mechanical response was also demonstrated. The sample was tested using an Instron mechanical testing machine for quasi-static loading, a home-made hydraulic system for moderate rates and a traditional split Hopkinson pressure bars (SHPBs for high strain rates. Results showed that the compression stress-strain behaviour was affected significantly by the thermoresponsive nature of SPU, but that, as expected for polymeric materials, the general trends of the temperature and the rate dependence mirror each other. However, this behaviour is more complicated than observed for many other polymeric materials, as a result of the richer range of transitions that influence the behaviour over the range of temperatures and strain rates tested.

  8. Modelling plastic deformation of metals over a wide range of strain rates using irreversible thermodynamics

    International Nuclear Information System (INIS)

    Huang Mingxin; Rivera-Diaz-del-Castillo, Pedro E J; Zwaag, Sybrand van der; Bouaziz, Olivier

    2009-01-01

    Based on the theory of irreversible thermodynamics, the present work proposes a dislocation-based model to describe the plastic deformation of FCC metals over wide ranges of strain rates. The stress-strain behaviour and the evolution of the average dislocation density are derived. It is found that there is a transitional strain rate (∼ 10 4 s -1 ) over which the phonon drag effects appear, resulting in a significant increase in the flow stress and the average dislocation density. The model is applied to pure Cu deformed at room temperature and at strain rates ranging from 10 -5 to 10 6 s -1 showing good agreement with experimental results.

  9. A new analytical method for estimating lumped parameter constants of linear viscoelastic models from strain rate tests

    Science.gov (United States)

    Mattei, G.; Ahluwalia, A.

    2018-04-01

    We introduce a new function, the apparent elastic modulus strain-rate spectrum, E_{app} ( \\dot{ɛ} ), for the derivation of lumped parameter constants for Generalized Maxwell (GM) linear viscoelastic models from stress-strain data obtained at various compressive strain rates ( \\dot{ɛ}). The E_{app} ( \\dot{ɛ} ) function was derived using the tangent modulus function obtained from the GM model stress-strain response to a constant \\dot{ɛ} input. Material viscoelastic parameters can be rapidly derived by fitting experimental E_{app} data obtained at different strain rates to the E_{app} ( \\dot{ɛ} ) function. This single-curve fitting returns similar viscoelastic constants as the original epsilon dot method based on a multi-curve global fitting procedure with shared parameters. Its low computational cost permits quick and robust identification of viscoelastic constants even when a large number of strain rates or replicates per strain rate are considered. This method is particularly suited for the analysis of bulk compression and nano-indentation data of soft (bio)materials.

  10. Strain rate dependency of bovine trabecular bone under impact loading at sideways fall velocity.

    Science.gov (United States)

    Enns-Bray, William S; Ferguson, Stephen J; Helgason, Benedikt

    2018-05-03

    There is currently a knowledge gap in scientific literature concerning the strain rate dependent properties of trabecular bone at intermediate strain rates. Meanwhile, strain rates between 10 and 200/s have been observed in previous dynamic finite element models of the proximal femur loaded at realistic sideways fall speeds. This study aimed to quantify the effect of strain rate (ε̇) on modulus of elasticity (E), ultimate stress (σ u ), failure energy (U f ), and minimum stress (σ m ) of trabecular bone in order to improve the biofidelity of material properties used in dynamic simulations of sideways fall loading on the hip. Cylindrical cores of trabecular bone (D = 8 mm, L gauge  = 16 mm, n = 34) from bovine proximal tibiae and distal femurs were scanned in µCT (10 µm), quantifying apparent density (ρ app ) and degree of anisotropy (DA), and subsequently impacted within a miniature drop tower. Force of impact was measured using a piezoelectric load cell (400 kHz), while displacement during compression was measured from high speed video (50,000 frames/s). Four groups, with similar density distributions, were loaded at different impact velocities (0.84, 1.33, 1.75, and 2.16 m/s) with constant kinetic energy (0.4 J) by adjusting the impact mass. The mean strain rates of each group were significantly different (p < 0.05) except for the two fastest impact speeds (p = 0.09). Non-linear regression models correlated strain rate, DA, and ρ app with ultimate stress (R 2  = 0.76), elastic modulus (R 2  = 0.63), failure energy (R 2  = 0.38), and minimum stress (R 2  = 0.57). These results indicate that previous estimates of σ u could be under predicting the mechanical properties at strain rates above 10/s. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Influence of temperature, strain rate and thermal aging on the structure/property behavior of uranium 6 wt% Nb

    Energy Technology Data Exchange (ETDEWEB)

    Cady, C.M.; Gray, G.T.; Chen, S.R.; Lopez, M.F. [Los Alamos National Lab., MST-8, MS G-755, NM (United States); Field, R.D.; Korzekwa, D.R. [Los Alamos National Lab., MST-6, MS G-770, NM (United States); Hixson, R.S. [Los Alamos National Lab, DX-9, MS P-952, NM (United States)

    2006-08-15

    A rigorous experimentation and validation program is being undertaken to create constitutive models that elucidate the fundamental mechanisms controlling plasticity in uranium-6 wt% niobium alloys (U-6Nb). These models should accurately predict high-strain-rate large-strain plasticity, damage evolution and failure. The goal is a physically-based constitutive model that captures 1) an understanding of how strain rate, temperature, and aging affects the mechanical response of a material, and 2) an understanding of the operative deformation mechanisms. The stress-strain response of U-6Nb has been studied as a function of temperature, strain-rate, and thermal aging. U-6Nb specimens in a solution-treated and quenched condition and after subsequent aging at 473 K for 2 hours were studied. The constitutive behavior was evaluated over the range of strain rates from quasi-static (0.001 s{sup -1}) to dynamic ({approx} 2000 s{sup -1}) and temperatures ranging from 77 to 773 K. The yield stress of U-6Nb was exhibited pronounced temperature sensitivity. The strain hardening rate is seen to be less sensitive to strain rate and temperature beyond plastic strains of 0.10. The yield strength of the aged material is less significantly affected by temperature and the work hardening rate shows adiabatic heating at lower strains rates (1/s). (authors)

  12. Hot Tensile and Fracture Behavior of 35CrMo Steel at Elevated Temperature and Strain Rate

    Directory of Open Access Journals (Sweden)

    Zhengbing Xiao

    2016-08-01

    Full Text Available To better understand the tensile deformation and fracture behavior of 35CrMo steel during hot processing, uniaxial tensile tests at elevated temperatures and strain rates were performed. Effects of deformation condition on the flow behavior, strain rate sensitivity, microstructure transformation, and fracture characteristic were characterized and discussed. The results indicated that the flow stress was sensitive to the deformation condition, and fracture occurs immediately after the peak stress level is reached, especially when the temperature is low or the strain rate is high. The strain rate sensitivity increases with the deformation temperature, which indicates that formability could improve at high temperatures. Photographs showing both the fracture surfaces and the matrix near the fracture section indicated the ductile nature of the material. However, the fracture mechanisms varied according to the deformation condition, which influences the dynamic recrystallization (DRX condition, and the DRX was accompanied by the formation of voids. For samples deformed at high temperatures or low strain rates, coalescence of numerous voids formed in the recrystallized grains is responsible for fracture, while at high strain rates or low temperatures, the grains rupture mainly by splitting because of cracks formed around the inclusions.

  13. Assessment of strain and strain rate by two-dimensional speckle tracking in mice: comparison with tissue Doppler echocardiography and conductance catheter measurements.

    Science.gov (United States)

    Ferferieva, V; Van den Bergh, A; Claus, P; Jasaityte, R; La Gerche, A; Rademakers, F; Herijgers, P; D'hooge, J

    2013-08-01

    This study was designed in order to compare the strain and strain rate deformation parameters assessed by speckle tracking imaging (STI) with those of tissue Doppler imaging (TDI) and conductance catheter measurements in chronic murine models of left ventricular (LV) dysfunction. Twenty-four male C57BL/6J mice were assigned to wild-type (n = 8), myocardial infarction (n = 8) and transaortic constriction (n = 8) groups. Echocardiographic and conductance measurements were simultaneously performed at rest and during dobutamine infusion (5 µg/kg/min) in all animals 10 weeks post-surgery. The LV circumferential strain (Scirc) and the strain rate (SRcirc) were derived from grey scale and tissue Doppler data at frame rates of 224 and 375 Hz, respectively. Scirc and SRcirc by TDI/STI correlated well with the preload recruitable stroke work (PRSW) (r = -0.64 and -0.71 for TDI; r = -0.46 and -0.50 for STI, P < 0.05). Both modalities showed a good agreement with respect to Scirc and SRcirc (r = 0.60 and r = 0.63, P < 0.05). During stress, however, TDI-estimated Scirc and SRcirc values were predominantly higher than those measured by STI (P < 0.05). The similarity of Scirc and SRcirc measurements with respect to the STI/TDI data was examined by the Bland-Altman analysis. In mice, the STI- and TDI-derived strain and strain rate deformation parameters relate closely to intrinsic myocardial function. At low heart rate-to-frame rate ratios (HR/FR), both STI and TDI are equally acceptable for assessing the LV function non-invasively in these animals. At HR/FR (e.g. dobutamine challenge), however, these methods cannot be used interchangeably as STI underestimates S and SR at high values.

  14. Some contributions to the high strain rate deformation of solids and the thermally activated deformation of wood

    International Nuclear Information System (INIS)

    Ferguson, W George

    2009-01-01

    The behaviour of metals as a function of rate of loading, strain rate, and temperature is discussed in terms of previous work by the author. Strain rates range from 10 -3 s -1 , obtained in a standard tensile testing machine, to 10 2 s -1 obtained in a hydraulic piston driven machine and up to 10 4 s -1 , very high strain rates with a Kolsky split Hopkinson bar using shear type loading. At rates less 10 3 s -1 the strength is a function of strain rate and temperature, is thermally activated and governed by the stress-assisted thermal activation of dislocations across short-range barriers in the crystal. At very high strain rates however the behaviour is controlled by interaction of dislocations with either phonons or electrons, giving a strength proportional to strain rate. The compressive strength of small clear samples of wood, Pinus radiata and Kahikatea, determined over the strain rate range 10 -3 s -1 to 10 3 s -1 as a function of strain rate, temperature and moisture content shows the behaviour to again be thermally activated with the strength a function of stain rate, temperature and moisture content. A rate theory of deformation is developed where the yield behaviour of wood is assumed to result from the stress-assisted thermally activated motion of elementary fibrils over short-range barriers. The moisture is assumed to affect the bond energy between elementary fibrils and the barrier energy is taken to be a linear decreasing function of increasing moisture content and the moisture to act like a plasticiser in separating the elementary fibrils. The theory more than adequately explains the observed behaviour.

  15. Effect of strain rate on the mechanical properties of magnesium alloy AMX602

    Energy Technology Data Exchange (ETDEWEB)

    Shen, J. [Department of Mechanical Engineering, University of North Carolina at Charlotte, Charlotte, NC 28223-0001 (United States); Kondoh, K. [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaragi, Osaka 567-0047 (Japan); Jones, T.L. [WMRD, US Army Research Laboratory, 4600 Deer Creek Loop, MD 21005-5069 (United States); Mathaudhu, S.N. [Department of Mechanical Engineering, University of California Riverside, Riverside, CA 92521 (United States); Kecskes, L.J. [WMRD, US Army Research Laboratory, 4600 Deer Creek Loop, MD 21005-5069 (United States); Wei, Q., E-mail: qwei@uncc.edu [Department of Mechanical Engineering, University of North Carolina at Charlotte, Charlotte, NC 28223-0001 (United States)

    2016-01-01

    In the present work, the effect of strain rate on the mechanical properties, particularly the plastic deformation behavior of a magnesium alloy, AMX602 (Mg–6%Al–0.5%Mn–2%Ca; all wt%), fabricated by powder metallurgy, has been investigated under both quasi-static (strain rate 1×10{sup −3} s{sup −1}) and dynamic (strain rate 4×10{sup 3} s{sup −1}) compressive loading. The alloyed powder was extruded at three different temperatures. The microstructure of the alloy was examined by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). It was found that AMX602 exhibits an impressive mechanical behavior but with a slight anisotropy along different directions in both strength and compressive ductility (or malleability). The strength was found to be nearly independent of the extrusion temperature, particularly, under dynamic loading. Nanoindentation strain rate jump test reveals a strain rate sensitivity of ~0.018 to ~0.015, depending on the extrusion temperature. Sub-micrometer-scale particles of the intermetallic compound Al{sub 2}Ca were found with sizes ranging from ~100 nm to ~1.0 μm. These intermetallic particles are believed to have precipitated out during the extrusion process. They contribute to the formation of the ultrafine equiaxed grains which, in turn, help to improve the strength of the alloy by acting as barriers to dislocation motion. Adiabatic shear bands (ASBs) were observed in the dynamically loaded samples, the propagation of which eventually leads to final fracture of the specimens.

  16. Strain rate effect on fault slip and rupture evolution: Insight from meter-scale rock friction experiments

    Science.gov (United States)

    Xu, Shiqing; Fukuyama, Eiichi; Yamashita, Futoshi; Mizoguchi, Kazuo; Takizawa, Shigeru; Kawakata, Hironori

    2018-05-01

    We conduct meter-scale rock friction experiments to study strain rate effect on fault slip and rupture evolution. Two rock samples made of Indian metagabbro, with a nominal contact dimension of 1.5 m long and 0.1 m wide, are juxtaposed and loaded in a direct shear configuration to simulate the fault motion. A series of experimental tests, under constant loading rates ranging from 0.01 mm/s to 1 mm/s and under a fixed normal stress of 6.7 MPa, are performed to simulate conditions with changing strain rates. Load cells and displacement transducers are utilized to examine the macroscopic fault behavior, while high-density arrays of strain gauges close to the fault are used to investigate the local fault behavior. The observations show that the macroscopic peak strength, strength drop, and the rate of strength drop can increase with increasing loading rate. At the local scale, the observations reveal that slow loading rates favor generation of characteristic ruptures that always nucleate in the form of slow slip at about the same location. In contrast, fast loading rates can promote very abrupt rupture nucleation and along-strike scatter of hypocenter locations. At a given propagation distance, rupture speed tends to increase with increasing loading rate. We propose that a strain-rate-dependent fault fragmentation process can enhance the efficiency of fault healing during the stick period, which together with healing time controls the recovery of fault strength. In addition, a strain-rate-dependent weakening mechanism can be activated during the slip period, which together with strain energy selects the modes of fault slip and rupture propagation. The results help to understand the spectrum of fault slip and rock deformation modes in nature, and emphasize the role of heterogeneity in tuning fault behavior under different strain rates.

  17. High strain-rate soft material characterization via inertial cavitation

    Science.gov (United States)

    Estrada, Jonathan B.; Barajas, Carlos; Henann, David L.; Johnsen, Eric; Franck, Christian

    2018-03-01

    Mechanical characterization of soft materials at high strain-rates is challenging due to their high compliance, slow wave speeds, and non-linear viscoelasticity. Yet, knowledge of their material behavior is paramount across a spectrum of biological and engineering applications from minimizing tissue damage in ultrasound and laser surgeries to diagnosing and mitigating impact injuries. To address this significant experimental hurdle and the need to accurately measure the viscoelastic properties of soft materials at high strain-rates (103-108 s-1), we present a minimally invasive, local 3D microrheology technique based on inertial microcavitation. By combining high-speed time-lapse imaging with an appropriate theoretical cavitation framework, we demonstrate that this technique has the capability to accurately determine the general viscoelastic material properties of soft matter as compliant as a few kilopascals. Similar to commercial characterization algorithms, we provide the user with significant flexibility in evaluating several constitutive laws to determine the most appropriate physical model for the material under investigation. Given its straightforward implementation into most current microscopy setups, we anticipate that this technique can be easily adopted by anyone interested in characterizing soft material properties at high loading rates including hydrogels, tissues and various polymeric specimens.

  18. Dynamic Response of AA2519 Aluminum Alloy under High Strain Rates

    Science.gov (United States)

    Olasumboye, Adewale Taiwo

    Like others in the AA2000 series, AA2519 is a heat-treatable Al-Cu alloy. Its excellent ballistic properties and stress corrosion cracking resistance, combined with other properties, qualify it as a prime candidate for armored vehicle and aircraft applications. However, available data on its high strain-rate response remains limited. In this study, AA2519 aluminum alloy was investigated in three different temper conditions: T4, T6, and T8, to determine the effects of heat treatment on the microstructure and dynamic deformation behavior of the material at high strain rates ranging within 1000 ≤ epsilon ≤ 4000 s-1. Split Hopkinson pressure bar integrated with digital image correlation system was used for mechanical response characterization. Optical microscopy and scanning electron microscopy were used to assess the microstructure of the material after following standard metallographic specimen preparation techniques. Results showed heterogeneous deformation in the three temper conditions. It was observed that dynamic behavior in each condition was dependent on strength properties due to the aging type controlling the strengthening precipitates produced and initial microstructure. At 1500 s -1, AA2519-T6 exhibited peak dynamic yield strength and flow stress of 509 and 667 MPa respectively, which are comparable with what were observed in T8 condition at higher rate of 3500 s-1 but AA2519-T4 showed the least strength and flow stress properties. Early stress collapse, dynamic strain aging, and higher susceptibility to shear band formation and fracture were observed in the T6 condition within the selected range of high strain rates. The alloy's general mode of damage evolution was by dispersoid particle nucleation, shearing and cracking.

  19. Exploration of mechanisms underlying the strain-rate-dependent mechanical property of single chondrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Trung Dung; Gu, YuanTong, E-mail: yuantong.gu@qut.edu.au [School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, Queensland (Australia)

    2014-05-05

    Based on the characterization by Atomic Force Microscopy, we report that the mechanical property of single chondrocytes has dependency on the strain-rates. By comparing the mechanical deformation responses and the Young's moduli of living and fixed chondrocytes at four different strain-rates, we explore the deformation mechanisms underlying this dependency property. We found that the strain-rate-dependent mechanical property of living cells is governed by both of the cellular cytoskeleton and the intracellular fluid when the fixed chondrocytes are mainly governed by their intracellular fluid, which is called the consolidation-dependent deformation behavior. Finally, we report that the porohyperelastic constitutive material model which can capture the consolidation-dependent behavior of both living and fixed chondrocytes is a potential candidature to study living cell biomechanics.

  20. Strain-rate effect on initial crush stress of irregular honeycomb under dynamic loading and its deformation mechanism

    Science.gov (United States)

    Wang, Peng; Zheng, Zhijun; Liao, Shenfei; Yu, Jilin

    2018-02-01

    The seemingly contradictory understandings of the initial crush stress of cellular materials under dynamic loadings exist in the literature, and a comprehensive analysis of this issue is carried out with using direct information of local stress and strain. Local stress/strain calculation methods are applied to determine the initial crush stresses and the strain rates at initial crush from a cell-based finite element model of irregular honeycomb under dynamic loadings. The initial crush stress under constant-velocity compression is identical to the quasi-static one, but less than the one under direct impact, i.e. the initial crush stresses under different dynamic loadings could be very different even though there is no strain-rate effect of matrix material. A power-law relation between the initial crush stress and the strain rate is explored to describe the strain-rate effect on the initial crush stress of irregular honeycomb when the local strain rate exceeds a critical value, below which there is no strain-rate effect of irregular honeycomb. Deformation mechanisms of the initial crush behavior under dynamic loadings are also explored. The deformation modes of the initial crush region in the front of plastic compaction wave are different under different dynamic loadings.

  1. The High Strain Rate Deformation Behavior of High Purity Magnesium and AZ31B Magnesium Alloy

    Science.gov (United States)

    Livescu, Veronica; Cady, Carl M.; Cerreta, Ellen K.; Henrie, Benjamin L.; Gray, George T.

    The deformation in compression of pure magnesium and AZ31B magnesium alloy, both with a strong basal pole texture, has been investigated as a function of temperature, strain rate, and specimen orientation. The mechanical response of both metals is highly dependent upon the orientation of loading direction with respect to the basal pole. Specimens compressed along the basal pole direction have a high sensitivity to strain rate and temperature and display a concave down work hardening behavior. Specimens loaded perpendicularly to the basal pole have a yield stress that is relatively insensitive to strain rate and temperature and a work hardening behavior that is parabolic and then linearly upwards. Both specimen orientations display a mechanical response that is sensitive to temperature and strain rate. Post mortem characterization of the pure magnesium was conducted on a subset of specimens to determine the microstructural and textural evolution during deformation and these results are correlated with the observed work hardening behavior and strain rate sensitivities were calculated.

  2. Strain rates estimated by geodetic observations in the Borborema Province, Brazil

    Science.gov (United States)

    Marotta, Giuliano Sant'Anna; França, George Sand; Monico, João Francisco Galera; Bezerra, Francisco Hilário R.; Fuck, Reinhardt Adolfo

    2015-03-01

    The strain rates for the Borborema Province, located in northeastern Brazil, were estimated in this study. For this purpose, we used GNSS tracking stations with a minimum of two years data. The data were processed using the software GIPSY, version 6.2, provided by the JPL of the California Institute of Technology. The PPP method was used to process the data using the non-fiducial approach. Satellite orbits and clock were supplied by the JPL. Absolute phase center offsets and variations for both the receiver and the satellite antennaes were applied, together with ambiguity resolution; corrections of the first and second order effects of the ionosphere and troposphere models adopting the VMF1 mapping function; 10° elevation mask; FES2004 oceanic load model and terrestrial tide WahrK1 PolTid FreqDepLove OctTid. From a multi annual solution, involving at least 2 years of continuous data, the coordinates and velocities as well as their accuracies were estimated. The strain rates were calculated using the Delaunay triangulation and the Finite Element Method. The results show that the velocity direction is predominantly west and north, with maximum variation of 4.0 ± 1.5 mm/year and 4.1 ± 0.5 mm/year for the x and y components, respectively. The highest strain values of extension and contraction were 0.109552 × 10-6 ± 3.65 × 10-10/year and -0.072838 × 10-6 ± 2.32 × 10-10/year, respectively. In general, the results show that the highest strain and variation of velocity values are located close to the Potiguar Basin, region that concentrates seismic activities of magnitudes of up to 5.2 mb. We conclude that the contraction direction of strain is consistent with the maximum horizontal stress derived from focal mechanism and breakout data. In addition, we conclude that the largest strain rates occur around the Potiguar Basin, an area already recognized as one of the major sites of seismicity in intraplate South America.

  3. High Strain Rate Testing of Rocks using a Split-Hopkinson-Pressure Bar

    Science.gov (United States)

    Zwiessler, Ruprecht; Kenkmann, Thomas; Poelchau, Michael; Nau, Siegfried; Hess, Sebastian

    2016-04-01

    Dynamic mechanical testing of rocks is important to define the onset of rate dependency of brittle failure. The strain rate dependency occurs through the propagation velocity limit (Rayleigh wave speed) of cracks and their reduced ability to coalesce, which, in turn, significantly increases the strength of the rock. We use a newly developed pressurized air driven Split-Hopkinson-Pressure Bar (SHPB), that is specifically designed for the investigation of high strain rate testing of rocks, consisting of several 10 to 50 cm long strikers and bar components of 50 mm in diameter and 2.5 meters in length each. The whole set up, composed of striker, incident- and transmission bar is available in aluminum, titanium and maraging steel to minimize the acoustic impedance contrast, determined by the change of density and speed of sound, to the specific rock of investigation. Dynamic mechanical parameters are obtained in compression as well as in spallation configuration, covering a wide spectrum from intermediate to high strain rates (100-103 s-1). In SHPB experiments [1] one-dimensional longitudinal compressive pulses of diverse shapes and lengths - formed with pulse shapers - are used to generate a variety of loading histories under 1D states of stress in cylindrical rock samples, in order to measure the respective stress-strain response at specific strain rates. Subsequent microstructural analysis of the deformed samples is aimed at quantification fracture orientation, fracture pattern, fracture density, and fracture surface properties as a function of the loading rate. Linking mechanical and microstructural data to natural dynamic deformation processes has relevance for the understanding of earthquakes, landslides, impacts, and has several rock engineering applications. For instance, experiments on dynamic fragmentation help to unravel super-shear rupture events that pervasively pulverize rocks up to several hundred meters from the fault core [2, 3, 4]. The dynamic, strain

  4. The effect of strain-rate on the tensile and compressive behavior of graphene reinforced epoxy/nanocomposites

    International Nuclear Information System (INIS)

    Shadlou, Shahin; Ahmadi-Moghadam, Babak; Taheri, Farid

    2014-01-01

    Highlights: • The epoxy/graphene nanocomposites were studied at various strain rates. • The variations in constitutive stress–strain response were scrutinized. • Positive reinforcing attributes of graphene diminished at higher strain rates. • Graphene particles have higher efficiency under compression loading than tension. • A new modification factor for Halpin–Tsai model was proposed. - Abstract: The effect of strain rate on the mechanical behavior of epoxy reinforced with graphene nanoplatelets (GNPs) is investigated. Nanocomposites containing various amounts of GNP are prepared and tested at four different strain rates (0.01, 0.1, 1 and 10/s) under compressive and tensile loading regimes. The results show that incorporation of GNP highly affects the behavior of epoxy. The fracture surfaces of tensile specimens are also investigated using scanning electron microscopy (SEM) to discern the surface features and dispersion state of GNP. Finally, the predictive capability of some of the available models for evaluating the strength of nanocomposites are assessed and compared against the experimental results. Moreover, a modification factor to the widely used Halpin–Tsai model is proposed to improve the accuracy of the model when evaluating the Young’s modulus of nanocomposites at various strain rates

  5. Measuring Local Strain Rates In Ductile Shear Zones: A New Approach From Deformed Syntectonic Dykes

    Science.gov (United States)

    Sassier, C.; Leloup, P.; Rubatto, D.; Galland, O.; Yue, Y.; Ding, L.

    2006-12-01

    At the Earth surface, deformation is mostly localized in fault zones in between tectonic plates. In the upper crust, the deformation is brittle and the faults are narrow and produce earthquakes. In contrast, deformation in the lower ductile crust results in larger shear zones. While it is relatively easy to measure in situ deformation rates at the surface using for example GPS data, it is more difficult to determinate in situ values of strain rate in the ductile crust. Such strain rates can only be estimated in paleo-shear zones. Various methods have been used to assess paleo-strain rates in paleo-shear zones. For instance, cooling and/or decompression rates associated with assumptions on geothermic gradients and shear zone geometry can lead to such estimates. Another way to estimate strain rates is the integration of paleo-stress measurements in a power flow law. But these methods are indirect and imply strong assumptions. Dating of helicitic garnets or syntectonic fibres are more direct estimates. However these last techniques have been only applied in zones of low deformation and not in major shear zones. We propose a new direct method to measure local strain rates in major ductile shear zones from syntectonic dykes by coupling quantification of deformation and geochronology. We test our method in a major shear zone in a well constrained tectonic setting: the Ailao-Shan - Red River Shear Zone (ASRRsz) located in SE Asia. For this 10 km wide shear zone, large-scale fault rates, determined in three independent ways, imply strain rates between 1.17×10^{-13 s-1 and 1.52×10^{-13 s-1 between 35 and 16 Ma. Our study focused on one outcrop where different generations of syntectonic dykes are observed. First, we quantified the minimum shear strain γ for each dyke using several methods: (1) by measuring the stretching of dykes with a surface restoration method (2) by measuring the final angle of the dykes with respect to the shear direction and (3) by combining the two

  6. Measurement of mean rotation and strain-rate tensors by using stereoscopic PIV

    DEFF Research Database (Denmark)

    Özcan, Oktay; Meyer, Knud Erik; Larsen, Poul Scheel

    2005-01-01

    A technique is described for measuring the mean velocity gradient (rate-of-displacement) tensor by using a conventional stereoscopic particle image velocimetry (SPIV) system. Planar measurement of the mean vorticity vector, rate-of-rotation and rate-of-strain tensors and the production of turbule...

  7. Strain rate effects on localized necking in substrate-supported metal layers

    OpenAIRE

    BEN BETTAIEB, Mohamed; ABED-MERAIM, Farid

    2017-01-01

    Due to their good mechanical and technological performances, thin substrate-supported metal layers are increasingly used as functional components in flexible electronic devices. Consequently, the prediction of necking, and the associated limit strains, for such components is of major academic and industrial importance. The current contribution aims to numerically investigate the respective and combined effects of strain rate sensitivity of the metal layer and the addition of an elastomer l...

  8. Microstructure and Strain Rate-Dependent Tensile Deformation Behavior of Fiber Laser-Welded Butt Joints of Dual-Phase Steels

    Science.gov (United States)

    Liu, Yang; Dong, Danyang; Han, Zhiqiang; Yang, Zhibin; Wang, Lu; Dong, Qingwei

    2018-05-01

    The microstructure and tensile deformation behavior of the fiber laser-welded similar and dissimilar dual-phase (DP) steel joints over a wide range of strain rates from 10-3 to 103 s-1 were investigated for the further applications on the lightweight design of vehicles. The high strain rate dynamic tensile deformation process and full-field strain distribution of the base metals and welded joints were examined using the digital image correlation method and high-speed photography. The strain rate effects on the stress-strain responses, tensile properties, deformation, and fracture behavior of the investigated materials were analyzed. The yield stress (YS) and ultimate tensile strength (UTS) of the dissimilar DP780/DP980 welded joints were lying in-between those of the DP780 and DP980 base metals, and all materials exhibited positive strain rate dependence on the YS and UTS. Owing to the microstructure heterogeneity, the welded joints showed relatively lower ductility in terms of total elongation (TE) than those of the corresponding base metals. The strain localization started before the maximum load was reached, and the strain localization occurred earlier during the whole deformation process with increasing strain rate. As for the dissimilar welded joint, the strain localization tended to occur in the vicinity of the lowest hardness value across the welded joint, which was in the subcritical HAZ at the DP780 side. As the strain rate increased, the typical ductile failure characteristic of the investigated materials did not change.

  9. Microstructure and Strain Rate-Dependent Tensile Deformation Behavior of Fiber Laser-Welded Butt Joints of Dual-Phase Steels

    Science.gov (United States)

    Liu, Yang; Dong, Danyang; Han, Zhiqiang; Yang, Zhibin; Wang, Lu; Dong, Qingwei

    2018-04-01

    The microstructure and tensile deformation behavior of the fiber laser-welded similar and dissimilar dual-phase (DP) steel joints over a wide range of strain rates from 10-3 to 103 s-1 were investigated for the further applications on the lightweight design of vehicles. The high strain rate dynamic tensile deformation process and full-field strain distribution of the base metals and welded joints were examined using the digital image correlation method and high-speed photography. The strain rate effects on the stress-strain responses, tensile properties, deformation, and fracture behavior of the investigated materials were analyzed. The yield stress (YS) and ultimate tensile strength (UTS) of the dissimilar DP780/DP980 welded joints were lying in-between those of the DP780 and DP980 base metals, and all materials exhibited positive strain rate dependence on the YS and UTS. Owing to the microstructure heterogeneity, the welded joints showed relatively lower ductility in terms of total elongation (TE) than those of the corresponding base metals. The strain localization started before the maximum load was reached, and the strain localization occurred earlier during the whole deformation process with increasing strain rate. As for the dissimilar welded joint, the strain localization tended to occur in the vicinity of the lowest hardness value across the welded joint, which was in the subcritical HAZ at the DP780 side. As the strain rate increased, the typical ductile failure characteristic of the investigated materials did not change.

  10. Interaction of heat production, strain rate and stress power in a plastically deforming body under tensile test

    Science.gov (United States)

    Paglietti, A.

    1982-01-01

    At high strain rates the heat produced by plastic deformation can give rise to a rate dependent response even if the material has rate independent constitutive equations. This effect has to be evaluated when interpreting a material test, or else it could erroneously be ascribed to viscosity. A general thermodynamic theory of tensile testing of elastic-plastic materials is given in this paper; it is valid for large strain at finite strain rates. It enables discovery of the parameters governing the thermodynamic strain rate effect, provides a method for proper interpretation of the results of the tests of dynamic plasticity, and suggests a way of planning experiments in order to detect the real contribution of viscosity.

  11. The Microstructure Evolution of Dual-Phase Pipeline Steel with Plastic Deformation at Different Strain Rates

    Science.gov (United States)

    Ji, L. K.; Xu, T.; Zhang, J. M.; Wang, H. T.; Tong, M. X.; Zhu, R. H.; Zhou, G. S.

    2017-07-01

    Tensile properties of the high-deformability dual-phase ferrite-bainite X70 pipeline steel have been investigated at room temperature under the strain rates of 2.5 × 10-5, 1.25 × 10-4, 2.5 × 10-3, and 1.25 × 10-2 s-1. The microstructures at different amount of plastic deformation were examined by using scanning and transmission electron microscopy. Generally, the ductility of typical body-centered cubic steels is reduced when its stain rate increases. However, we observed a different ductility dependence on strain rates in the dual-phase X70 pipeline steel. The uniform elongation (UEL%) and elongation to fracture (EL%) at the strain rate of 2.5 × 10-3 s-1 increase about 54 and 74%, respectively, compared to those at 2.5 × 10-5 s-1. The UEL% and EL% reach to their maximum at the strain rate of 2.5 × 10-3 s-1. This phenomenon was explained by the observed grain structures and dislocation configurations. Whether or not the ductility can be enhanced with increasing strain rates depends on the competition between the homogenization of plastic deformation among the microconstituents (ultra-fine ferrite grains, relatively coarse ferrite grains as well as bainite) and the progress of cracks formed as a consequence of localized inconsistent plastic deformation.

  12. Effect of Strain Rate on Joint Strength and Failure Mode of Lead-Free Solder Joints

    Science.gov (United States)

    Lin, Jian; Lei, Yongping; Fu, Hanguang; Guo, Fu

    2018-03-01

    In surface mount technology, the Sn-3.0Ag-0.5Cu solder joint has a shorter impact lifetime than a traditional lead-tin solder joint. In order to improve the impact property of SnAgCu lead-free solder joints and identify the effect of silver content on tensile strength and impact property, impact experiments were conducted at various strain rates on three selected SnAgCu based solder joints. It was found that joint failure mainly occurred in the solder material with large plastic deformation under low strain rate, while joint failure occurred at the brittle intermetallic compound layer without any plastic deformation at a high strain rate. Joint strength increased with the silver content in SnAgCu alloys in static tensile tests, while the impact property of the solder joint decreased with increasing silver content. When the strain rate was low, plastic deformation occurred with failure and the tensile strength of the Sn-3.0Ag-0.5Cu solder joint was higher than that of Sn-0.3Ag-0.7Cu; when the strain rate was high, joint failure mainly occurred at the brittle interface layer and the Sn-0.3Ag-0.7Cu solder joint had a better impact resistance with a thinner intermetallic compound layer.

  13. Effects of strain rate, stress condition and environment on iodine embrittlement of Ziracloy-2

    International Nuclear Information System (INIS)

    Une, K.

    1979-01-01

    Iodine stress corrosion cracking (SCC) susceptibility of Zircaloy became higher with decreasing strain rate. Critical strain rate, below which high SCC severity was observed, substantially depended on Zircaloy stress condition. This strain rate (7 x 10 -3 min -1 ) under plane strain condition was about 3.5 times as fast as that (2 x 10 -3 min -1 ) under uniaxial condition. The maximum iodine embrittlement in Zircaloy was found in stress ratio α (axial/tangential stress) range of 0.5 to 0.7. No embrittlement occurred at α = infinity because of its texture effect. The SCC fracture stresses were about 39 kg/mm 2 for unirradiated and stress-relieved material, and about 34 kg/mm 2 for recrystallized material, whose ratios to yield strength of each material were 0.8 and 1.2. Impurity gases of oxygen and moisture in the iodine had the effects of reducing Zircaloy SCC susceptibility. Stress-relieved material was more sensitive to environmental impurities than recrystallized material

  14. Influence of Strain Rate on Heat Release under Quasi-Static Stretching of Metals. Experiment

    Science.gov (United States)

    Zimin, B. A.; Sventitskaya, V. E.; Smirnov, I. V.; Sud'enkov, Yu. V.

    2018-04-01

    The paper presents the results of experimental studies of energy dissipation during a quasi-static stretching of metals and alloys at room temperature. The strain rates varied in the range of 10-3-10-2 s-1. Samples of M1 copper, AZ31B magnesium alloy, BT6 titanium, 12Cr18Ni10Ti steel, and D16AM aluminum alloy were analyzed. The experimental results demonstrated a significant dependence of the heat release on the strain rate in the absence of its influence on stress-strain diagrams for all the metals studied in this range of strain rates. The correlation of the changes in the character of heat release with the processes of structural transformations at various stages of plastic flow is shown on the qualitative level. A difference in the nature of the processes of heat release in materials with different ratios of the plasticity and strength is noted.

  15. Strain-rate behavior in tension of the tempered martensitic reduced activation steel Eurofer97

    Energy Technology Data Exchange (ETDEWEB)

    Cadoni, Ezio; Dotta, Matteo; Forni, Daniele [University of Applied Sciences of Southern Switzerland, P.O. Box 105, CH-6952 Canobbio (Switzerland); Spaetig, Philippe, E-mail: philippe.spatig@psi.ch [Ecole Polytechnique Federale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas, Association Euratom-Confederation Suisse, CH-5232 Villigen PSI (Switzerland)

    2011-07-31

    The tensile properties of the high-chromium tempered martensitic reduced activation steel Eurofer97 were determined from tests carried out over a wide range of strain-rates on cylindrical specimens. The quasi-static tests were performed with a universal electro-mechanical machine, whereas a hydro-pneumatic machine and a JRC-split Hopkinson tensile bar apparatus were used for medium and high strain-rates respectively. This tempered martensitic stainless steel showed significant strain-rate sensitivity. The constitutive behavior was investigated within a framework of dislocations dynamics model using Kock's approach. The parameters of the model were determined and then used to predict the deformation range of the tensile deformation stability. A very good agreement between the experimental results and predictions of the model was found.

  16. Strain-rate behavior in tension of the tempered martensitic reduced activation steel Eurofer97

    International Nuclear Information System (INIS)

    Cadoni, Ezio; Dotta, Matteo; Forni, Daniele; Spaetig, Philippe

    2011-01-01

    The tensile properties of the high-chromium tempered martensitic reduced activation steel Eurofer97 were determined from tests carried out over a wide range of strain-rates on cylindrical specimens. The quasi-static tests were performed with a universal electro-mechanical machine, whereas a hydro-pneumatic machine and a JRC-split Hopkinson tensile bar apparatus were used for medium and high strain-rates respectively. This tempered martensitic stainless steel showed significant strain-rate sensitivity. The constitutive behavior was investigated within a framework of dislocations dynamics model using Kock's approach. The parameters of the model were determined and then used to predict the deformation range of the tensile deformation stability. A very good agreement between the experimental results and predictions of the model was found.

  17. Strain Rate Dependent Behavior and Modeling for Compression Response of Hybrid Fiber Reinforced Concrete

    Directory of Open Access Journals (Sweden)

    S.M. Ibrahim

    Full Text Available Abstract This paper investigates the stress-strain characteristics of Hybrid fiber reinforced concrete (HFRC composites under dynamic compression using Split Hopkinson Pressure Bar (SHPB for strain rates in the range of 25 to 125 s-1. Three types of fibers - hooked ended steel fibers, monofilament crimped polypropylene fibers and staple Kevlar fibers were used in the production of HFRC composites. The influence of different fibers in HFRC composites on the failure mode, dynamic increase factor (DIF of strength, toughness and strain are also studied. Degree of fragmentation of HFRC composite specimens increases with increase in the strain rate. Although the use of high percentage of steel fibers leads to the best performance but among the hybrid fiber combinations studied, HFRC composites with relatively higher percentage of steel fibers and smaller percentage of polypropylene and Kevlar fibers seem to reflect the equally good synergistic effects of fibers under dynamic compression. A rate dependent analytical model is proposed for predicting complete stress-strain curves of HFRC composites. The model is based on a comprehensive fiber reinforcing index and complements well with the experimental results.

  18. The Influence of Forming Directions and Strain Rate on Dynamic Shear Properties of Aerial Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Ying Meng

    2018-03-01

    Full Text Available Dynamic shear properties under high strain rate are an important basis for studying the dynamic mechanical properties and microscopic mechanisms of materials. Dynamic impact shear tests of aerial aluminum alloy 7050-T7451 in rolling direction (RD, transverse direction (TD and normal direction (ND were performed at a range of strain rates from 2.5 × 104 s−1 to 4.5 × 104 s−1 by High Split Hopkinson Pressure Bar (SHPB. The influence of different forming directions and strain rates on the dynamic shear properties of material and the microstructure evolution under dynamic shear were emphatically analyzed. The results showed that aluminum alloy 7050-T7451 had a certain strain rate sensitivity and positive strain rate strengthening effect, and also the material had no obvious strain strengthening effect. Different forming directions had a great influence on dynamic shear properties. The shear stress in ND was the largest, followed by that in RD, and the lowest was that in TD. The microstructure observation showed that the size and orientation of the grain structure were different in three directions, which led to the preferred orientation of the material. All of those were the main reasons for the difference of dynamic shear properties of the material.

  19. Longitudinal course of cortical thickness decline in amyotrophic lateral sclerosis.

    Science.gov (United States)

    Schuster, Christina; Kasper, Elisabeth; Machts, Judith; Bittner, Daniel; Kaufmann, Jörn; Benecke, Reiner; Teipel, Stefan; Vielhaber, Stefan; Prudlo, Johannes

    2014-10-01

    To determine longitudinal rates of cortical atrophy in classical Amyotrophic lateral sclerosis (ALS) and ALS variants. Rates of cortical thinning were determined between 2 scans, 3-15 months apart, in 77 ALS patients: 51 classical, 12 upper motor neuron (UMN), and 14 lower motor neuron (LMN) ALS variants. Cortical thickness at the first assessment was compared with 60 healthy controls matched by age and gender. Atrophy rates were compared between patient sub-groups and correlated with disease duration, progression, and severity. Using a cross-sectional analysis, we found a significant difference in cortical thickness between ALS patients and controls in the motor and extra-motor areas (left medial orbito frontal gyrus, left inferior parietal gyrus, bilateral insular cortex, right fusiform gyrus, bilateral precuneus). Using a longitudinal analysis, we found a significant decline of cortical thickness in frontal, temporal, and parietal regions over the course of the study in ALS patients. Effects were independent of the clinical subtype, with exception of the precentral gyrus (p gyrus, the UMN-dominant subjects exhibited intermediate rates of atrophy, and the classical ALS patients exhibited no such change. Atrophy of the precentral gyrus in classical ALS indicates a floor effect at the first assessment, resulting in a lack of further atrophy over time. Structural loss of the precentral gyrus appears to be an early sign of classical ALS. Over time, patterns of cortical thinning in extra-motor areas can be identified in ALS, regardless of the phenotype.

  20. Tensile characterisation of the aorta across quasi-static to blast loading strain rates

    Science.gov (United States)

    Magnus, Danyal; Proud, William; Haller, Antoine; Jouffroy, Apolline

    2017-06-01

    The dynamic tensile failure mechanisms of the aorta during Traumatic Aortic Injury (TAI) are poorly understood. In automotive incidents, where the aorta may be under strains of the order of 100/s, TAI is the second largest cause of mortality. In these studies, the proximal descending aorta is the most common site where rupture is observed. In particular, the transverse direction is most commonly affected due to the circumferential orientation of elastin, and hence the literature generally concentrates upon axial samples. This project extends these dynamic studies to the blast loading regime where strain-rates are of the order of 1000/s. A campaign of uniaxial tensile experiments are conducted at quasi-static, intermediate (drop-weight) and high (tensile Split-Hopkinson Pressure Bar) strain rates. In each case, murine and porcine aorta models are considered and the extent of damage assessed post-loading using histology. Experimental data will be compared against current viscoelastic models of the aorta under axial stress. Their applicability across strain rates will be discussed. Using a multi-disciplinary approach, the conditions applied to the samples replicate in vivo conditions, employing a blood simulant-filled tubular specimen surrounded by a physiological solution.

  1. Tantalum strength model incorporating temperature, strain rate and pressure

    Science.gov (United States)

    Lim, Hojun; Battaile, Corbett; Brown, Justin; Lane, Matt

    Tantalum is a body-centered-cubic (BCC) refractory metal that is widely used in many applications in high temperature, strain rate and pressure environments. In this work, we propose a physically-based strength model for tantalum that incorporates effects of temperature, strain rate and pressure. A constitutive model for single crystal tantalum is developed based on dislocation kink-pair theory, and calibrated to measurements on single crystal specimens. The model is then used to predict deformations of single- and polycrystalline tantalum. In addition, the proposed strength model is implemented into Sandia's ALEGRA solid dynamics code to predict plastic deformations of tantalum in engineering-scale applications at extreme conditions, e.g. Taylor impact tests and Z machine's high pressure ramp compression tests, and the results are compared with available experimental data. Sandia National Laboratories is a multi program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  2. Probiotics protect mice from ovariectomy-induced cortical bone loss.

    Science.gov (United States)

    Ohlsson, Claes; Engdahl, Cecilia; Fåk, Frida; Andersson, Annica; Windahl, Sara H; Farman, Helen H; Movérare-Skrtic, Sofia; Islander, Ulrika; Sjögren, Klara

    2014-01-01

    The gut microbiota (GM) modulates the hosts metabolism and immune system. Probiotic bacteria are defined as live microorganisms which when administered in adequate amounts confer a health benefit on the host and can alter the composition of the GM. Germ-free mice have increased bone mass associated with reduced bone resorption indicating that the GM also regulates bone mass. Ovariectomy (ovx) results in bone loss associated with altered immune status. The purpose of this study was to determine if probiotic treatment protects mice from ovx-induced bone loss. Mice were treated with either a single Lactobacillus (L) strain, L. paracasei DSM13434 (L. para) or a mixture of three strains, L. paracasei DSM13434, L. plantarum DSM 15312 and DSM 15313 (L. mix) given in the drinking water during 6 weeks, starting two weeks before ovx. Both the L. para and the L. mix treatment protected mice from ovx-induced cortical bone loss and bone resorption. Cortical bone mineral content was higher in both L. para and L. mix treated ovx mice compared to vehicle (veh) treated ovx mice. Serum levels of the resorption marker C-terminal telopeptides and the urinary fractional excretion of calcium were increased by ovx in the veh treated but not in the L. para or the L. mix treated mice. Probiotic treatment reduced the expression of the two inflammatory cytokines, TNFα and IL-1β, and increased the expression of OPG, a potent inhibitor of osteoclastogenesis, in cortical bone of ovx mice. In addition, ovx decreased the frequency of regulatory T cells in bone marrow of veh treated but not probiotic treated mice. In conclusion, treatment with L. para or the L. mix prevents ovx-induced cortical bone loss. Our findings indicate that these probiotic treatments alter the immune status in bone resulting in attenuated bone resorption in ovx mice.

  3. Probiotics protect mice from ovariectomy-induced cortical bone loss.

    Directory of Open Access Journals (Sweden)

    Claes Ohlsson

    Full Text Available The gut microbiota (GM modulates the hosts metabolism and immune system. Probiotic bacteria are defined as live microorganisms which when administered in adequate amounts confer a health benefit on the host and can alter the composition of the GM. Germ-free mice have increased bone mass associated with reduced bone resorption indicating that the GM also regulates bone mass. Ovariectomy (ovx results in bone loss associated with altered immune status. The purpose of this study was to determine if probiotic treatment protects mice from ovx-induced bone loss. Mice were treated with either a single Lactobacillus (L strain, L. paracasei DSM13434 (L. para or a mixture of three strains, L. paracasei DSM13434, L. plantarum DSM 15312 and DSM 15313 (L. mix given in the drinking water during 6 weeks, starting two weeks before ovx. Both the L. para and the L. mix treatment protected mice from ovx-induced cortical bone loss and bone resorption. Cortical bone mineral content was higher in both L. para and L. mix treated ovx mice compared to vehicle (veh treated ovx mice. Serum levels of the resorption marker C-terminal telopeptides and the urinary fractional excretion of calcium were increased by ovx in the veh treated but not in the L. para or the L. mix treated mice. Probiotic treatment reduced the expression of the two inflammatory cytokines, TNFα and IL-1β, and increased the expression of OPG, a potent inhibitor of osteoclastogenesis, in cortical bone of ovx mice. In addition, ovx decreased the frequency of regulatory T cells in bone marrow of veh treated but not probiotic treated mice. In conclusion, treatment with L. para or the L. mix prevents ovx-induced cortical bone loss. Our findings indicate that these probiotic treatments alter the immune status in bone resulting in attenuated bone resorption in ovx mice.

  4. Dynamic Brazilian Test of Rock Under Intermediate Strain Rate: Pendulum Hammer-Driven SHPB Test and Numerical Simulation

    Science.gov (United States)

    Zhu, W. C.; Niu, L. L.; Li, S. H.; Xu, Z. H.

    2015-09-01

    The tensile strength of rock subjected to dynamic loading constitutes many engineering applications such as rock drilling and blasting. The dynamic Brazilian test of rock specimens was conducted with the split Hopkinson pressure bar (SHPB) driven by pendulum hammer, in order to determine the indirect tensile strength of rock under an intermediate strain rate ranging from 5.2 to 12.9 s-1, which is achieved when the incident bar is impacted by pendulum hammer with different velocities. The incident wave excited by pendulum hammer is triangular in shape, featuring a long rising time, and it is considered to be helpful for achieving a constant strain rate in the rock specimen. The dynamic indirect tensile strength of rock increases with strain rate. Then, the numerical simulator RFPA-Dynamics, a well-recognized software for simulating the rock failure under dynamic loading, is validated by reproducing the Brazilian test of rock when the incident stress wave retrieved at the incident bar is input as the boundary condition, and then it is employed to study the Brazilian test of rock under the higher strain rate. Based on the numerical simulation, the strain-rate dependency of tensile strength and failure pattern of the Brazilian disc specimen under the intermediate strain rate are numerically simulated, and the associated failure mechanism is clarified. It is deemed that the material heterogeneity should be a reason for the strain-rate dependency of rock.

  5. Surface strain rate colour map of the Tatra Mountains region (Slovakia based on GNSS data

    Directory of Open Access Journals (Sweden)

    Bednárik Martin

    2016-12-01

    Full Text Available The surface deformation of the Tatra Mountains region in Western Carpathians can nowadays be studied directly thanks to precise geodetic measurements using the GNSS. The strain or stress tensor field is, however, a rather complex “data structure” difficult to present legibly and with sufficient resolution in the form of a classical map. A novel and promising approach to the solution of this problem is coding the three principal strain or stress values into the three colour channels (red, green, blue of an RGB colour. In our previous study, the colour depended on the stress tensor shape descriptors. In the current study, the adapted colouring scheme uses a subset of shape descriptors common to stress and strain, which differ only in the scaling factor. In this manner, we generate the colour map of the surface strain rate field, where the colour of each grid point carries the information about the shape of the strain rate tensor at that point. The resulting strain rate colour map can be displayed simultaneously with the map of the faults or elevations and be easily checked for the data or interpolation method errors and incompatibility with the geophysical and geological expectations.

  6. Influence of strain rate and temperature on tensile properties and flow behaviour of a reduced activation ferritic-martensitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Vanaja, J., E-mail: jvanaja4@gmail.com [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Laha, K. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Sam, Shiju [Institute for Plasma Research, Gandhinagar, Gujarat (India); Nandagopal, M.; Panneer Selvi, S.; Mathew, M.D.; Jayakumar, T. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Rajendra Kumar, E. [Institute for Plasma Research, Gandhinagar, Gujarat (India)

    2012-05-15

    Tensile strength and flow behaviour of a Reduced Activation Ferritic-Martensitic (RAFM) steel (9Cr-1W-0.06Ta-0.22V-0.08C) have been investigated over a temperature range of 300-873 K at different strain rates. Tensile strength of the steel decreased with temperature and increased with strain rate except at intermediate temperatures. Negative strain rate sensitivity of flow stress of the steel at intermediate temperatures revealed the occurrence of dynamic strain ageing in the steel, even though no serrated flow was observed. The tensile flow behaviour of the material was well represented by the Voce strain hardening equation for all the test conditions. Temperature and strain rate dependence of the various parameters of Voce equation were interpreted with the possible deformation mechanisms. The equivalence between the saturation stress at a given strain rate in tensile test and steady state deformation rate at a given stress in creep test was found to be satisfied by the RAFM steel.

  7. Influence of strain rate and temperature on tensile properties and flow behaviour of a reduced activation ferritic-martensitic steel

    Science.gov (United States)

    Vanaja, J.; Laha, K.; Sam, Shiju; Nandagopal, M.; Panneer Selvi, S.; Mathew, M. D.; Jayakumar, T.; Rajendra Kumar, E.

    2012-05-01

    Tensile strength and flow behaviour of a Reduced Activation Ferritic-Martensitic (RAFM) steel (9Cr-1W-0.06Ta-0.22V-0.08C) have been investigated over a temperature range of 300-873 K at different strain rates. Tensile strength of the steel decreased with temperature and increased with strain rate except at intermediate temperatures. Negative strain rate sensitivity of flow stress of the steel at intermediate temperatures revealed the occurrence of dynamic strain ageing in the steel, even though no serrated flow was observed. The tensile flow behaviour of the material was well represented by the Voce strain hardening equation for all the test conditions. Temperature and strain rate dependence of the various parameters of Voce equation were interpreted with the possible deformation mechanisms. The equivalence between the saturation stress at a given strain rate in tensile test and steady state deformation rate at a given stress in creep test was found to be satisfied by the RAFM steel.

  8. Influence of strain rate and temperature on tensile properties and flow behaviour of a reduced activation ferritic–martensitic steel

    International Nuclear Information System (INIS)

    Vanaja, J.; Laha, K.; Sam, Shiju; Nandagopal, M.; Panneer Selvi, S.; Mathew, M.D.; Jayakumar, T.; Rajendra Kumar, E.

    2012-01-01

    Tensile strength and flow behaviour of a Reduced Activation Ferritic–Martensitic (RAFM) steel (9Cr–1W–0.06Ta–0.22V–0.08C) have been investigated over a temperature range of 300–873 K at different strain rates. Tensile strength of the steel decreased with temperature and increased with strain rate except at intermediate temperatures. Negative strain rate sensitivity of flow stress of the steel at intermediate temperatures revealed the occurrence of dynamic strain ageing in the steel, even though no serrated flow was observed. The tensile flow behaviour of the material was well represented by the Voce strain hardening equation for all the test conditions. Temperature and strain rate dependence of the various parameters of Voce equation were interpreted with the possible deformation mechanisms. The equivalence between the saturation stress at a given strain rate in tensile test and steady state deformation rate at a given stress in creep test was found to be satisfied by the RAFM steel.

  9. Effects of vitamin K2 on cortical and cancellous bone mass, cortical osteocyte and lacunar system, and porosity in sciatic neurectomized rats.

    Science.gov (United States)

    Iwamoto, Jun; Matsumoto, Hideo; Takeda, Tsuyoshi; Sato, Yoshihiro; Yeh, James K

    2010-09-01

    The purpose of the present study was to examine the effects of vitamin K2 on cortical and cancellous bone mass, cortical osteocyte and lacunar system, and porosity in sciatic neurectomized rats. Thirty-four female Sprague-Dawley retired breeder rats were randomized into three groups: age-matched control, sciatic neurectomy (NX), and NX + vitamin K2 administration (menatetrenone, 30 mg/kg/day p.o., three times a week). At the end of the 8-week experiment, bone histomorphometric analysis was performed on cortical and cancellous bone of the tibial diaphysis and proximal metaphysis, respectively, and osteocyte lacunar system and porosity were evaluated on cortical bone of the tibial diaphysis. NX decreased cortical and cancellous bone mass compared with age-matched controls as a result of increased endocortical and trabecular bone erosion and decreased trabecular mineral apposition rate (MAR). Vitamin K2 ameliorated the NX-induced increase in bone erosion, prevented the NX-induced decrease in MAR, and increased bone formation rate (BFR/bone surface) in cancellous bone, resulting in an attenuation of NX-induced cancellous bone loss. However, vitamin K2 did not significantly influence cortical bone mass. NX also decreased osteocyte density and lacunar occupancy and increased porosity in cortical bone compared with age-matched controls. Vitamin K2 ameliorated the NX-induced decrease in lacunar occupancy by viable osteocytes and the NX-induced increase in porosity. The present study showed the efficacy of vitamin K2 for cancellous bone mass and cortical lacunar occupancy by viable osteocytes and porosity in sciatic NX rats.

  10. Tensile strength of concrete under static and intermediate strain rates: Correlated results from different testing methods

    International Nuclear Information System (INIS)

    Wu Shengxing; Chen Xudong; Zhou Jikai

    2012-01-01

    Highlights: ► Tensile strength of concrete increases with increase in strain rate. ► Strain rate sensitivity of tensile strength of concrete depends on test method. ► High stressed volume method can correlate results from various test methods. - Abstract: This paper presents a comparative experiment and analysis of three different methods (direct tension, splitting tension and four-point loading flexural tests) for determination of the tensile strength of concrete under low and intermediate strain rates. In addition, the objective of this investigation is to analyze the suitability of the high stressed volume approach and Weibull effective volume method to the correlation of the results of different tensile tests of concrete. The test results show that the strain rate sensitivity of tensile strength depends on the type of test, splitting tensile strength of concrete is more sensitive to an increase in the strain rate than flexural and direct tensile strength. The high stressed volume method could be used to obtain a tensile strength value of concrete, free from the influence of the characteristics of tests and specimens. However, the Weibull effective volume method is an inadequate method for describing failure of concrete specimens determined by different testing methods.

  11. Effects of Strain Rate and Temperature on the Mechanical Properties of Medium Manganese Steels

    Energy Technology Data Exchange (ETDEWEB)

    Rana, Radhakanta [Colorado School of Mines, Golden, CO (United States); Matlock, David K [Colorado School of Mines, Golden, CO (United States); Speer, John G [Colorado School of Mines, Golden, CO (United States); De Moor, Emmanuel [Colorado School of Mines, Golden, CO (United States)

    2016-11-16

    The effects of temperature (-60 to 100 °C) and strain rate (0.002 to 0.2 s-1) on the properties of Al-alloyed 7 and 10 wt-% Mn steels containing 34.8 and 57.3 vol-% austenite respectively were evaluated by tensile tests in isothermal liquid baths. The tensile strengths of both medium Mn steels increased with a decrease in temperature owing to the decreased austenite stability with a decrease in temperature. At lower temperatures the strength of the 10MnAl steel was highest, a consequence of the higher strain hardening rate caused by more austenite transformation to martensite with deformation. The resulting properties are assessed with a consideration of the effects of strain rate and deformation on adiabatic heating which was observed to be as high as 95o C.

  12. Is cortical bone hip? What determines cortical bone properties?

    Science.gov (United States)

    Epstein, Sol

    2007-07-01

    Increased bone turnover may produce a disturbance in bone structure which may result in fracture. In cortical bone, both reduction in turnover and increase in hip bone mineral density (BMD) may be necessary to decrease hip fracture risk and may require relatively greater proportionate changes than for trabecular bone. It should also be noted that increased porosity produces disproportionate reduction in bone strength, and studies have shown that increased cortical porosity and decreased cortical thickness are associated with hip fracture. Continued studies for determining the causes of bone strength and deterioration show distinct promise. Osteocyte viability has been observed to be an indicator of bone strength, with viability as the result of maintaining physiological levels of loading and osteocyte apoptosis as the result of a decrease in loading. Osteocyte apoptosis and decrease are major factors in the bone loss and fracture associated with aging. Both the osteocyte and periosteal cell layer are assuming greater importance in the process of maintaining skeletal integrity as our knowledge of these cells expand, as well being a target for pharmacological agents to reduce fracture especially in cortical bone. The bisphosphonate alendronate has been seen to have a positive effect on cortical bone by allowing customary periosteal growth, while reducing the rate of endocortical bone remodeling and slowing bone loss from the endocortical surface. Risedronate treatment effects were attributed to decrease in bone resorption and thus a decrease in fracture risk. Ibandronate has been seen to increase BMD as the spine and femur as well as a reduced incidence of new vertebral fractures and non vertebral on subset post hoc analysis. And treatment with the anabolic agent PTH(1-34) documented modeling and remodelling of quiescent and active bone surfaces. Receptor activator of nuclear factor kappa B ligand (RANKL) plays a key role in bone destruction, and the human monoclonal

  13. Hydrostatic Stress Effects Incorporated Into the Analysis of the High-Strain-Rate Deformation of Polymer Matrix Composites

    Science.gov (United States)

    Goldberg, Robert K.; Roberts, Gary D.

    2003-01-01

    Procedures for modeling the effect of high strain rate on composite materials are needed for designing reliable composite engine cases that are lighter than the metal cases in current use. The types of polymer matrix composites that are likely to be used in such an application have a deformation response that is nonlinear and that varies with strain rate. The nonlinearity and strain rate dependence of the composite response is primarily due to the matrix constituent. Therefore, in developing material models to be used in the design of impact-resistant composite engine cases, the deformation of the polymer matrix must be correctly analyzed. However, unlike in metals, the nonlinear response of polymers depends on the hydrostatic stresses, which must be accounted for within an analytical model. An experimental program has been carried out through a university grant with the Ohio State University to obtain tensile and shear deformation data for a representative polymer for strain rates ranging from quasi-static to high rates of several hundred per second. This information has been used at the NASA Glenn Research Center to develop, characterize, and correlate a material model in which the strain rate dependence and nonlinearity (including hydrostatic stress effects) of the polymer are correctly analyzed. To obtain the material data, Glenn s researchers designed and fabricated test specimens of a representative toughened epoxy resin. Quasi-static tests at low strain rates and split Hopkinson bar tests at high strain rates were then conducted at the Ohio State University. The experimental data confirmed the strong effects of strain rate on both the tensile and shear deformation of the polymer. For the analytical model, Glenn researchers modified state variable constitutive equations previously used for the viscoplastic analysis of metals to allow for the analysis of the nonlinear, strain-rate-dependent polymer deformation. Specifically, we accounted for the effects of

  14. Establishment and comparison of four constitutive relationships of PC/ABS from low to high uniaxial strain rates

    Science.gov (United States)

    Wang, Haitao; Zhang, Yun; Huang, Zhigao; Tang, Zhongbin; Wang, Yanpei; Zhou, Huamin

    2017-10-01

    The objective of this paper is to accurately predict the rate/temperature-dependent deformation of a polycarbonate (PC) and acrylonitrile-butadiene-styrene (ABS) blend at low, moderate, and high strain rates for various temperatures. Four constitutive models have been employed to predict stress-strain responses of PC/ABS under these conditions, including the DSGZ model, the original Mulliken-Boyce (M-B) model, the modified M-B model, and an adiabatic model named the Wang model. To more accurately capture the large deformation of PC/ABS under the high strain rate loading, the original M-B model is modified by allowing for the evolution of the internal shear strength. All of the four constitutive models above have been implemented in the finite element software ABAQUS/Explicit. A comparison of prediction accuracies of the four constitutive models over a wide range of strain rates and temperatures has been presented. The modified M-B model is observed to be more accurate in predicting the deformation of PC/ABS at high strain rates for various temperatures than the original M-B model, and the Wang model is demonstrated to be the most accurate in simulating the deformation of PC/ABS at low, moderate, and high strain rates for various temperatures.

  15. Analyzing Reaction Rates with the Distortion/Interaction-Activation Strain Model

    NARCIS (Netherlands)

    Bickelhaupt, F. Matthias; Houk, Kendall N.

    2017-01-01

    The activation strain or distortion/interaction model is a tool to analyze activation barriers that determine reaction rates. For bimolecular reactions, the activation energies are the sum of the energies to distort the reactants into geometries they have in transition states plus the interaction

  16. Bands of respiratory rate and cloacal temperature for different broiler chicken strains

    Directory of Open Access Journals (Sweden)

    Sheila Tavares Nascimento

    2012-05-01

    Full Text Available The objective of this investigation was to estimate ideal bands of respiratory rate and cloacal temperature for broiler chicken strains during the rearing period and to evaluate the influence of time of exposure on bird physiological variables under different thermal stress conditions. The research was conducted in a climatic chamber during the six weeks of the rearing period, with Avian and Cobb strains exposed to two climatic conditions (comfort and stress, in three distinct times of exposure, in three conditions (before going to the chamber; at the end of exposure time; 30 minutes after the end of exposure, in four treatments: comfort with 60 minutes of exposure; stress with 30 minutes of exposure; stress with 60 minutes of exposure; stress with 90 minutes of exposure. Bands of respiratory rate and cloacal temperature were elaborated for both strains, for each one of the weeks of the rearing period. Strains differed, regardless of treatments and conditions adopted in the research on the third, fifth and sixth weeks of life in relation to the cloacal temperature. The Cobb strain is more tolerant to thermal stress in comparison with the Avian. There was difference for both variables between comfort and stress, but time of exposure to stress did not influence the physiological response of birds, except for cloacal temperature on the second week of life.

  17. Identification of strain-rate and thermal sensitive material model with an inverse method

    Directory of Open Access Journals (Sweden)

    Peroni M.

    2010-06-01

    Full Text Available This paper describes a numerical inverse method to extract material strength parameters from the experimental data obtained via mechanical tests at different strainrates and temperatures. It will be shown that this procedure is particularly useful to analyse experimental results when the stress-strain fields in the specimen cannot be correctly described via analytical models. This commonly happens in specimens with no regular shape, in specimens with a regular shape when some instability phenomena occur (for example the necking phenomena in tensile tests that create a strongly heterogeneous stress-strain fields or in dynamic tests (where the strain-rate field is not constant due to wave propagation phenomena. Furthermore the developed procedure is useful to take into account thermal phenomena generally affecting high strain-rate tests due to the adiabatic overheating related to the conversion of plastic work. The method presented requires strong effort both from experimental and numerical point of view, anyway it allows to precisely identify the parameters of different material models. This could provide great advantages when high reliability of the material behaviour is necessary. Applicability of this method is particularly indicated for special applications in the field of aerospace engineering, ballistic, crashworthiness studies or particle accelerator technologies, where materials could be submitted to strong plastic deformations at high-strain rate in a wide range of temperature. Thermal softening effect has been investigated in a temperature range between 20°C and 1000°C.

  18. Different transcriptional responses from slow and fast growth rate strains of Listeria monocytogenes adapted to low temperature

    Directory of Open Access Journals (Sweden)

    Ninoska eCordero

    2016-03-01

    Full Text Available Listeria monocytogenes has become one of the principal foodborne pathogens worldwide. The capacity of this bacterium to grow at low temperatures has opened an interesting field of study in terms of the identification and classification of new strains of L. monocytogenes with different growth capacities at low temperatures. We determined the growth rate at 8 ºC of 110 strains of L. monocytogenes isolated from different food matrices. We identified a group of slow and fast strains according to their growth rate at 8 °C and performed a global transcriptomic assay in strains previously adapted to low temperature. We then identified shared and specific transcriptional mechanisms, metabolic and cellular processes of both groups; bacterial motility was the principal process capable of differentiating the adaptation capacity of L. monocytogenes strains with different ranges of tolerance to low temperatures. Strains belonging to the fast group were less motile, which may allow these strains to achieve a greater rate of proliferation at low temperature.

  19. Multi-scale Modeling of the Impact Response of a Strain Rate Sensitive High-Manganese Austenitic Steel

    Directory of Open Access Journals (Sweden)

    Orkun eÖnal

    2014-09-01

    Full Text Available A multi-scale modeling approach was applied to predict the impact response of a strain rate sensitive high-manganese austenitic steel. The roles of texture, geometry and strain rate sensitivity were successfully taken into account all at once by coupling crystal plasticity and finite element (FE analysis. Specifically, crystal plasticity was utilized to obtain the multi-axial flow rule at different strain rates based on the experimental deformation response under uniaxial tensile loading. The equivalent stress – equivalent strain response was then incorporated into the FE model for the sake of a more representative hardening rule under impact loading. The current results demonstrate that reliable predictions can be obtained by proper coupling of crystal plasticity and FE analysis even if the experimental flow rule of the material is acquired under uniaxial loading and at moderate strain rates that are significantly slower than those attained during impact loading. Furthermore, the current findings also demonstrate the need for an experiment-based multi-scale modeling approach for the sake of reliable predictions of the impact response.

  20. Mechanical characterization of alloys in extreme conditions of high strain rates and high temperature

    Science.gov (United States)

    Cadoni, Ezio

    2018-03-01

    The aim of this paper is the description of the mechanical characterization of alloys under extreme conditions of temperature and loading. In fact, in the frame of the Cost Action CA15102 “Solutions for Critical Raw Materials Under Extreme Conditions (CRM-EXTREME)” this aspect is crucial and many industrial applications have to consider the dynamic response of materials. Indeed, for a reduction and substitution of CRMs in alloys is necessary to design the materials and understand if the new materials behave better or if the substitution or reduction badly affect their performance. For this reason, a deep knowledge of the mechanical behaviour at high strain-rates of considered materials is required. In general, machinery manufacturing industry or transport industry as well as energy industry have important dynamic phenomena that are simultaneously affected by extended strain, high strain-rate, damage and pressure, as well as conspicuous temperature gradients. The experimental results in extreme conditions of high strain rate and high temperature of an austenitic stainless steel as well as a high-chromium tempered martensitic reduced activation steel Eurofer97 are presented.

  1. Elongational flow of polymer melts at constant strain rate, constant stress and constant force

    Science.gov (United States)

    Wagner, Manfred H.; Rolón-Garrido, Víctor H.

    2013-04-01

    Characterization of polymer melts in elongational flow is typically performed at constant elongational rate or rarely at constant tensile stress conditions. One of the disadvantages of these deformation modes is that they are hampered by the onset of "necking" instabilities according to the Considère criterion. Experiments at constant tensile force have been performed even more rarely, in spite of the fact that this deformation mode is free from necking instabilities and is of considerable industrial relevance as it is the correct analogue of steady fiber spinning. It is the objective of the present contribution to present for the first time a full experimental characterization of a long-chain branched polyethylene melt in elongational flow. Experiments were performed at constant elongation rate, constant tensile stress and constant tensile force by use of a Sentmanat Extensional Rheometer (SER) in combination with an Anton Paar MCR301 rotational rheometer. The accessible experimental window and experimental limitations are discussed. The experimental data are modelled by using the Wagner I model. Predictions of the steady-start elongational viscosity in constant strain rate and creep experiments are found to be identical, albeit only by extrapolation of the experimental data to Hencky strains of the order of 6. For constant stress experiments, a minimum in the strain rate and a corresponding maximum in the elongational viscosity is found at a Hencky strain of the order of 3, which, although larger than the steady-state value, follows roughly the general trend of the steady-state elongational viscosity. The constitutive analysis also reveals that constant tensile force experiments indicate a larger strain hardening potential than seen in constant elongation rate or constant tensile stress experiments. This may be indicative of the effect of necking under constant elongation rate or constant tensile stress conditions according to the Considère criterion.

  2. Theoretical and experimental study of high strain, high strain rate materials viscoplastic behaviour. Application to Mars 190 steel and tantalum

    International Nuclear Information System (INIS)

    Juanicotena, A.

    1998-01-01

    This work enters in the general framework of the study and modelling of metallic materials viscoplastic behaviour in the area of high strain and high strain rate, from 10 4 to 10 5 s -1 . We define a methodology allowing to describe the behaviour of armor steel Mars 190 and tantalum in the initial area. In a first time, the study of visco-plasticity physical mechanisms shows the necessity to take into account some fundamental processes of the plastic deformation. Then, the examination of various constitutive relations allows to select the Preston-Tonks-Wallace model, that notably reproduce the physical phenomenon of the flow stress saturation. In a second part, a mechanical characterization integrating loading direction, strain rate and temperature effects is conducted on the two materials. Moreover, these experimental results allow to calculate associated constants to Preston-Tonks-Wallace, Zerilli-Armstrong and Johnson-Cook models for each material. In a third time, in order to evaluate and to validate these constitutive laws, we conceive and develop an experimental device open to reach the area of study: the expanding spherical shell test. It concerns to impose a free radial expanding to a thin spherical shell by means a shock wave generated by an explosive. By the radial expanding velocity measure, we can determine stress, strain rate and strain applied on the spherical shell at each time. In a four and last part, we evaluate constitutive models out of their optimization area's. This validation is undertaken by comparisons 'experimental results/calculations' with the help of global experiences like expanding spherical shell test and Taylor test. (author)

  3. Evaluation of the strain rate effects on environmental fatigue life of CF8M cast stainless steel

    International Nuclear Information System (INIS)

    Jeong, Ill Seok; Ha, Gak Hyun; Jeon, Hyun Ik

    2009-01-01

    The environmental fatigue life of CF8M cast stainless steel is influenced by mechanical, environmental and metallurgical parameters, such as strain rate, strain amplitude, temperature, dissolved oxygen concentration, water flow rate and so on. In an actual plant, the mechanical and environmental parameters are changing during the plant operation. Therefore, the effect of such mechanical and environmental parameter changes on fatigue life evaluation have to be studied. Low cycle fatigue life of structural materials diminishes remarkably as functions of various parameters in high temperature and high pressure environments. Such reduction can be estimated by the fatigue life reduction factor(F en ). In this study, fatigue tests were performed under changing conditions of strain amplitude, strain rate. Fatigue life was measured in terms of the number of cycles with the variation of strain amplitudes at 0.004 %/s strain rate, and the fatigue life correction factor was evaluated according to the equation modified by U. S. Nuclear Regulatory Commission(U.S.NRC) and Japanese Environmental Fatigue Tests committee (JEFT).

  4. Cortical-Cortical Interactions And Sensory Information Processing in Autism

    Science.gov (United States)

    2008-04-30

    significant development for disseminating the results of biomedical research in our lifetime." Sir Paul Nurse , Cancer Research UK Your research papers...of the evidence for local cortical over-connectivity is anecdotal. Belmonte and colleagues suggested the co-morbidity with epilepsy that is highly...Tomma-Halme J, Lahti-Nuuttila P, Service E, Virsu V: Rate of information segregation in developmentally dyslexic children . Brain Lang 2000, 75:66-81

  5. The effects of temperature and strain rate on the dynamic flow behaviour of different steels

    International Nuclear Information System (INIS)

    Lee, W.-S.; Liu, C.-Y.

    2006-01-01

    A compressive type split-Hopkinson pressure bar is utilized to compare the impact plastic behaviour of three steels with different levels of carbon content. S15C low carbon steel, S50C medium alloy heat treatable steel (abbreviated hereafter to medium carbon steel) and SKS93 tool steel with a high carbon and low alloy content (abbreviated hereafter to high carbon steel) are tested under strain rates ranging from 1.1 x 10 3 s -1 to 5.5 x 10 3 s -1 and temperatures ranging from 25 to 800 deg. C. The effects of the carbon content, strain rate and temperature on the mechanical responses of the three steels are evaluated. The microstructures of the impacted specimens are studied using a transmission electron microscope (TEM). It is found that an increased carbon content enhances the dynamic flow resistance of the three steels. Additionally, the flow stress increases with strain and strain rate in every case. A thermal softening effect is identified in the plastic behaviour of the three steels. The activation energy, ΔG * , varies as a function of the strain rate and temperature, but is apparently insensitive to the carbon content level. The present study identifies maximum ΔG * values of 58 kJ/mol for the S15C low carbon steel, 54.9 kJ/mol for the S50C medium carbon steel, and 56.4 kJ/mol for the SKS93 high carbon steel. A Zerilli-Armstrong BCC constitutive model with appropriate coefficients is applied to describe the high strain rate plastic behaviours of the S15C, S50C and SKS93 steels. The errors between the calculated stress and the measured stress are found to be less than 5%. The microstructural observations reveal that the dislocation density and the degree of dislocation tangling increase with increasing strain rate in all three steels. Additionally, the TEM observations indicate that a higher strain rate reduces the size of the dislocation cells. The annihilation of dislocations occurs more readily at elevated temperatures. The square root of the dislocation

  6. Evaluation of resilient abutment components on measured strain using dynamic loading conditions.

    Science.gov (United States)

    Morton, D; Stanford, C M; Aquilino, S A

    1998-07-01

    Factors that affect transmission of strain from prostheses to bone may affect the long-term success of loaded implants. Current in vitro models are theoretically predictive (finite element modeling) or facsimile (photoelastic) in nature. A more clinically relevant in vitro model for strain evaluation should be investigated. This study attempted: (1) to validate a human cadaver bone model for vitro measurement of cortical bone strain, and (2) to evaluate the effect on cortical strain measurements of a resilient plastic component incorporated within a titanium implant in response to variable dynamic loading. Two IMZ (Interpore International) abutment alternatives were used: the titanium Abutment Complete and the polyoxymethylene Intra-mobile Element. The model system consisted of two implants placed in unfixed human cadaver ulna bone to simulate an implant bound edentulous region. Four biaxial rosette strain gauges simultaneously recorded cortical bone strain immediately mesial and distal to each implant. During experimentation a simulated prosthetic framework supported by either titanium or polyoxymethylene abutments was dynamically loaded 6 min from the terminal abutment along a cantilever extension. Cyclic nominal peak loads were applied with a materials testing machine at 20-N intervals from 20 to 200 N at a crosshead speed of 5 mm/minute. The protocol allowed frequency of load application to vary. A Newtonian linear correlation (r2 > or = 0.98) between load application and strain output was determined for each gauge position except for the terminal gauge located opposite the cantilever. Cortical strains recorded were within reported physiologic ranges involved in bone modeling and remodeling. Further, the polyoxymethylene abutment components did not result in reduction of peak microstrain at any gauge position. The Intra-mobile Element abutments, however, did increase the time required to complete 10 loading cycles when compared with the titanium Abutment

  7. Strain rate effect on sooting characteristics in laminar counterflow diffusion flames

    KAUST Repository

    Wang, Yu; Chung, Suk-Ho

    2016-01-01

    The effects of strain rate, oxygen enrichment and fuel type on the sooting characteristics of counterflow diffusion flames were studied. The sooting structures and relative PAH concentrations were measured with laser diagnostics. Detailed soot

  8. IMPACT OF STRAIN RATE ON MICROALLOYED STEEL SHEET BREAKING

    Directory of Open Access Journals (Sweden)

    Mária Mihaliková

    2014-08-01

    Full Text Available Strain rate is a significant external factor and its influence on material behavior in forming process is a function of its internal structure. The contribution is analysis of the impact of loading rate from 1.6 x 10-4 ms-1 to 24 ms-1 to changes in the fracture of steel sheet used for bodywork components in cars. Experiments were performed on samples taken from HC420LA grade strips produced by cold rolling and hot dip galvanizing. Material strength properties were compared based on measured values, and changes to fracture surface character were observed.

  9. Soft Tissue Strain Rates in Side-Blast Incidents

    Science.gov (United States)

    2014-11-02

    increase of strain rate is known to cause the stiffening of soft connective tissues ( Haut and Haut 1997 [49]; Panjabi et al. 1998 [50]; Crisco et al...Réseau Québécois de Calcul de Haute Performance, with a peak compute performance of 27 596 GFlops). Figure 2: Torso motion imposed in the model...Yan YP. 2003. Mechanical properties of nasal fascia and periosteum. Clinical Biomechanics. 18:760-764. [49] Haut TL, Haut RC. 1997. The state of

  10. The effect of cooling rate from the γ-phase on the strain-rate sensitivity of a uranium 2 sup(w)/o molybdenum alloy

    International Nuclear Information System (INIS)

    Boyd, G.A.C.; Harding, J.

    1983-01-01

    Tensile tests have been performed at strain rates from 10 -4 to about 2000/s and temperatures from -150 deg C to +250 deg C on a uranium 2 w/o molybdenum alloy which had been aged for 2 hours at 500 deg C after a fast gas cool from the γ-phase at a controlled rate of 40 deg C/minute. The results are compared with those for standard as-extruded material which had received the same aging treatment. Stress-strain curves are presented and the effect of strain rate and temperature on the flow stress, the ultimate tensile stress and the elongation to fracture is determined. A thorough structural characterisation of the specimen materials, using X-ray analysis and scanning and transmission electron microscopy, allows the different mechanical responses to be related to the corresponding microstructural state of the material. Flow stress data at different temperatures and strain rates are analysed in terms of the theory of thermally-activated flow and estimates made of the various activation parameters. (author)

  11. Reduced cortical thickness in gambling disorder

    DEFF Research Database (Denmark)

    Grant, Jon E; Odlaug, Brian Lawrence; Chamberlain, Samuel R

    2015-01-01

    with significant reductions (average 15.8-19.9 %) in cortical thickness, versus controls, predominantly in right frontal cortical regions. Pronounced right frontal morphometric brain abnormalities occur in gambling disorder, supporting neurobiological overlap with substance disorders and its recent......Gambling disorder has recently been recognized as a prototype 'behavioral addiction' by virtue of its inclusion in the DSM-5 category of 'Substance-Related and Addictive Disorders.' Despite its newly acquired status and prevalence rate of 1-3 % globally, relatively little is known regarding...... the neurobiology of this disorder. The aim of this study was to explore cortical morphometry in untreated gambling disorder, for the first time. Subjects with gambling disorder (N = 16) free from current psychotropic medication or psychiatric comorbidities, and healthy controls (N = 17), were entered...

  12. A Study of the Mechanical Behavior of OFHC Copper in Tension at Various Strain Rates and Heating Rates Using the Two-Dimensional Integrated Speckle Measuring System

    National Research Council Canada - National Science Library

    Durant, Brian

    2000-01-01

    .... A modified dog bone specimen was heated using resistive heating techniques. The effects of high temperature, medium strain rates, and high heating rates on the stress-strain results were observed...

  13. Experimental investigation of the behaviour of tungsten and molybdenum alloys at high strain-rate and temperature

    CERN Document Server

    Scapin, Martina; Carra, Federico; Peroni, Lorenzo

    2015-01-01

    The introduction in recent years of new, extremely energetic particle accelerators such as the Large Hadron Collider (LHC) gives impulse to the development and testing of refractory metals and alloys based on molybdenum and tungsten to be used as structural materials. In this perspective, in this work the experimental results of a tests campaign on Inermet® IT180 and pure Molybdenum (sintered by two different producers) are presented. The investigation of the mechanical behaviour was performed in tension varying the strain-rates, the temperatures and both of them. Overall six orders of magnitude in strain-rate (between 10−3 and 103 s−1) were covered, starting from quasi-static up to high dynamic loading conditions. The high strain-rate tests were performed using a direct Hopkinson Bar setup. Both in quasi-static and high strain-rate conditions, the heating of the specimens was obtained with an induction coil system, controlled in feedback loop, based on measurements from thermocouples directly welded on...

  14. Biaxial direct tensile tests in a large range of strain rates. Results on a ferritic nuclear steel

    Energy Technology Data Exchange (ETDEWEB)

    Albertini, C.; Labibes, K.; Montagnani, M.; Pizzinato, E.V.; Solomos, G.; Viaccoz, B. [Commission of the European Communities, Ispra (Italy). Joint Research Centre

    2000-09-01

    Constitutive equations are usually calibrated only trough the experimental results obtained by means of unixial tests because of the lack of adequate biaxial experimental data especially at high strain rate conditions. These data are however important for the validation of analytical models and also for the predictions of mechanical behaviour of real structures subjected to multiaxial loading by numerical simulations. In this paper some developments are shown concerning biaxial cruciform specimens and different experimental machines allowing biaxial tests in a large range of strain rates. This experimental campaign has also allowed study of the influence of changing the strain paths. Diagrams of equivalent stress versus straining direction and also equivalent plastic fracture strain versus straining direction are shown. (orig.)

  15. Strain rate effects on mechanical properties in tension of aluminium alloys used in armour applications

    Science.gov (United States)

    Cadoni, E.; Dotta, M.; Forni, D.; Bianchi, S.; Kaufmann, H.

    2012-08-01

    The mechanical properties in tension of two aluminium alloys (AA5059-H131 and AA7039-T651) used in armour applications were determined from tests carried out over a wide range of strain-rates on round specimens. The experimental research was developed in the DynaMat laboratory of the University of Applied Sciences of Southern Switzerland. The target strain rates were set at the following four levels: 10-3, 30, 300 and 1000s-1. The quasi-static tests were performed with a universal electromechanical machine, whereas a hydro-pneumatic machine and a Split Hopkinson Tensile Bar apparatus were used for medium and high strain-rates respectively. The required parameters by the Johnson-Cook constitutive law were also determined.

  16. Increased Cortical Thickness in Professional On-Line Gamers

    Science.gov (United States)

    Hyun, Gi Jung; Shin, Yong Wook; Kim, Bung-Nyun; Cheong, Jae Hoon; Jin, Seong Nam

    2013-01-01

    Objective The bulk of recent studies have tested whether video games change the brain in terms of activity and cortical volume. However, such studies are limited by several factors including cross-sectional comparisons, co-morbidity, and short-term follow-up periods. In the present study, we hypothesized that cognitive flexibility and the volume of brain cortex would be correlated with the career length of on-line pro-gamers. Methods High-resolution magnetic resonance scans were acquired in twenty-three pro-gamers recruited from StarCraft pro-game teams. We measured cortical thickness in each individual using FreeSurfer and the cortical thickness was correlated with the career length and the performance of the pro-gamers. Results Career length was positively correlated with cortical thickness in three brain regions: right superior frontal gyrus, right superior parietal gyrus, and right precentral gyrus. Additionally, increased cortical thickness in the prefrontal cortex was correlated with winning rates of the pro-game league. Increased cortical thickness in the prefrontal and parietal cortices was also associated with higher performance of Wisconsin Card Sorting Test. Conclusion Our results suggest that in individuals without pathologic conditions, regular, long-term playing of on-line games is associated with volume changes in the prefrontal and parietal cortices, which are associated with cognitive flexibility. PMID:24474988

  17. The compressive behaviour and constitutive equation of polyimide foam in wide strain rate and temperature

    Directory of Open Access Journals (Sweden)

    Yoshimoto Akifumi

    2015-01-01

    Full Text Available These days, polymer foams, such as polyurethane foam and polystyrene foam, are used in various situations as a thermal insulator or shock absorber. In general, however, their strength is insufficient in high temperature environments because of their low glass transition temperature. Polyimide is a polymer which has a higher glass transition temperature and high strength. Its mechanical properties do not vary greatly, even in low temperature environments. Therefore, polyimide foam is expected to be used in the aerospace industry. Thus, the constitutive equation of polyimide foam that can be applied across a wide range of strain rates and ambient temperature is very useful. In this study, a series of compression tests at various strain rates, from 10−3 to 103 s−1 were carried out in order to examine the effect of strain rate on the compressive properties of polyimide foam. The flow stress of polyimide foam increased rapidly at dynamic strain rates. The effect of ambient temperature on the properties of polyimide foam was also investigated at temperature from − 190 °C to 270°∘C. The flow stress decreased with increasing temperature.

  18. Effects of strain rate and confining pressure on the deformation and failure of shale

    Energy Technology Data Exchange (ETDEWEB)

    Cook, J.M. (Schlumberger Cambridge Research (GB)); Sheppard, M.C. (Anadrill/Schlumberger (US)); Houwen, O.H. (Sedco Forex (FR))

    1991-06-01

    Previous work on shale mechanical properties has focused on the slow deformation rates appropriate to wellbore deformation. Deformation of shale under a drill bit occurs at a very high rate, and the failure properties of the rock under these conditions are crucial in determining bit performance and in extracting lithology and pore-pressure information from drilling parameters. Triaxial tests were performed on two nonswelling shales under a wide range of strain rates and confining and pore pressures. At low strain rates, when fluid is relatively free to move within the shale, shale deformation and failure are governed by effective stress or pressure (i.e., total confining pressure minus pore pressure), as is the case for ordinary rock. If the pore pressure in the shale is high, increasing the strain rate beyond about 0.1%/sec causes large increases in the strength and ductility of the shale. Total pressure begins to influence the strength. At high stain rates, the influence of effective pressure decreases, except when it is very low (i.e., when pore pressure is very high); ductility then rises rapidly. This behavior is opposite that expected in ordinary rocks. This paper briefly discusses the reasons for these phenomena and their impact on wellbore and drilling problems.

  19. Spall damage of a mild carbon steel: Effects of peak stress, strain rate and pulse duration

    International Nuclear Information System (INIS)

    Li, C.; Li, B.; Huang, J.Y.; Ma, H.H.; Zhu, M.H.; Zhu, J.; Luo, S.N.

    2016-01-01

    We investigate spall damage of a mild carbon steel under high strain-rate loading, regarding the effects of peak stress, strain rate, and pulse duration on spall strength and damage, as well as related microstructure features, using gas gun plate impact, laser velocimetry, and electron backscatter diffraction analysis. Our experiments demonstrate strong dependences of spall strength on peak stress and strain rate, and its weak dependence on pulse duration. We establish numerical relations between damage and peak stress or pulse duration. Brittle and ductile spall fracture modes are observed at different loading conditions. Damage nucleates at grain boundaries and triple junctions, either as transgranular cleavage cracks or voids.

  20. Spall damage of a mild carbon steel: Effects of peak stress, strain rate and pulse duration

    Energy Technology Data Exchange (ETDEWEB)

    Li, C. [College of Physical Science and Technology, Sichuan University, Chengdu, Sichuan 610064 (China); Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); The Peac Institute of Multiscale Sciences, Chengdu, Sichuan 610031 (China); Li, B.; Huang, J.Y. [The Peac Institute of Multiscale Sciences, Chengdu, Sichuan 610031 (China); CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027 (China); Ma, H.H. [CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027 (China); Zhu, M.H. [Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Zhu, J., E-mail: zhujun01@163.com [College of Physical Science and Technology, Sichuan University, Chengdu, Sichuan 610064 (China); Luo, S.N., E-mail: sluo@pims.ac.cn [The Peac Institute of Multiscale Sciences, Chengdu, Sichuan 610031 (China); Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China)

    2016-04-13

    We investigate spall damage of a mild carbon steel under high strain-rate loading, regarding the effects of peak stress, strain rate, and pulse duration on spall strength and damage, as well as related microstructure features, using gas gun plate impact, laser velocimetry, and electron backscatter diffraction analysis. Our experiments demonstrate strong dependences of spall strength on peak stress and strain rate, and its weak dependence on pulse duration. We establish numerical relations between damage and peak stress or pulse duration. Brittle and ductile spall fracture modes are observed at different loading conditions. Damage nucleates at grain boundaries and triple junctions, either as transgranular cleavage cracks or voids.

  1. Characterization of strain rate sensitivity and activation volume using the indentation relaxation test

    International Nuclear Information System (INIS)

    Xu Baoxing; Chen Xi; Yue Zhufeng

    2010-01-01

    We present the possibility of extracting the strain rate sensitivity, activation volume and Helmholtz free energy (for dislocation activation) using just one indentation stress relaxation test, and the approach is demonstrated with polycrystalline copper. The Helmholtz free energy measured from indentation relaxation agrees well with that from the conventional compression relaxation test, which validates the proposed approach. From the indentation relaxation test, the measured indentation strain rate sensitivity exponent is found to be slightly larger, and the indentation activation volume much smaller, than their counterparts from the compression test. The results indicate the involvement of multiple dislocation mechanisms in the indentation test.

  2. Magnetic field effect on microplastic strain rate in C690 single crystals

    International Nuclear Information System (INIS)

    Smirnov, B.I.; Shpejzman, V.V.; Peschanskaya, N.N.; Nikolaev, R.K.

    2002-01-01

    Microplastic strain in magnetic field and beyond it, as well as, subsequent to preliminary exposure of C 60 crystals to magnetic field was investigated by means of laser interferometer enabling to measure rate of strain on the basis of 0.15 μm linear shifting. It is shown that introduction and removal of specimen from 0.2 T induction field immediately during deformation of specimen result in variation of its rate, and at reduction of rate one observes discontinuous interruption of deformation. Sign of effect depends on temperature: at room temperature magnetic field promotes deformation, at 100 K - shows it down. Effect of preliminary exposure within 0.2 and 2T induction field turned to be analogous one. One analyzed possible reasons of the observed manifestation of magnetoplastic effect in C 60 and relation of its sign with phase transition under 260 K temperature [ru

  3. Fracto-mechanoluminescent light emission of EuD4TEA-PDMS composites subjected to high strain-rate compressive loading

    Science.gov (United States)

    Ryu, Donghyeon; Castaño, Nicolas; Bhakta, Raj; Kimberley, Jamie

    2017-08-01

    The objective of this study is to understand light emission characteristics of fracto-mechanoluminescent (FML) europium tetrakis(dibenzoylmethide)-triethylammonium (EuD4TEA) crystals under high strain-rate compressive loading. As a sensing material that can play a pivotal role for the self-powered impact sensor technology, it is important to understand transformative light emission characteristics of the FML EuD4TEA crystals under high strain-rate compressive loading. First, EuD4TEA crystals were synthesized and embedded into polydimethylsiloxane (PDMS) elastomer to fabricate EuD4TEA-PDMS composite test specimens. Second, the prepared EuD4TEA-PDMS composites were tested using the modified Kolsky bar setup equipped with a high-speed camera. Third, FML light emission was captured to yield 12 bit grayscale video footage, which was processed to quantify the FML light emission. Finally, quantitative parameters were generated by taking into account pixel values and population of pixels of the 12 bit grayscale images to represent FML light intensity. The FML light intensity was correlated with high strain-rate compressive strain and strain rate to understand the FML light emission characteristics under high strain-rate compressive loading that can result from impact occurrences.

  4. Behavior of fiber reinforced metal laminates at high strain rate

    Science.gov (United States)

    Newaz, Golam; Sasso, Marco; Amodio, Dario; Mancini, Edoardo

    2018-05-01

    Carbon Fiber Reinforced Aluminum Laminate (CARALL) is a good system for energy absorption through plastic deformation in aluminum and micro-cracking in the composite layers. Moreover, CARALL FMLs also provide excellent impact resistance due to the presence of aluminum layer. The focus of this research is to characterize the CARALL behavior under dynamic conditions. High strain rate tests on sheet laminate samples have been carried out by means of direct Split Hopkinson Tension Bar. The sample geometry and the clamping system were optimized by FEM simulations. The clamping system has been designed and optimized in order reduce impedance disturbance due to the fasteners and to avoid the excessive plastic strain outside the gauge region of the samples.

  5. An improved model for considering strain rate effects on reinforced concrete elements behavior under dynamic loads

    International Nuclear Information System (INIS)

    Sim, J.; Soroushian, P.

    1989-01-01

    An improved model for predicting the reinforced concrete element behavior under dynamic strain rates was developed using the layer modeling technique. The developed strain rate sensitive model for axial/flexural analysis of reinforced concrete elements was used to predict the test results, performed at different loading rates, and the predictions were reasonable. The developed analysis technique was used to study the loading rate sensitivity of reinforced concrete beams and columns with different geometry and material properties. Two design formulas for computing the loading rate dependent axial and flexural strengths of reinforced concrete sections are suggested

  6. Cyclic behavior of Ta at low temperatures under low stresses and strain rates

    International Nuclear Information System (INIS)

    Stickler, C.; Knabl, W.; Stickler, R.; Weiss, B.

    2001-01-01

    The cyclic stress-strain response of recrystallized technically pure Ta was investigated in the stress range well below the technical flow stress, for temperatures between 173 K and 423 K, at loading rates between 0.042 Mpa/s and 4.2 Mpa/s with resulting plastic strains between -5 up to 1X10 -2 . Cyclic hardening-softening curves were recorded in multiple step tests. Cyclic stress strain curves exhibit straight portions associated with microplastic, transition range and macroplastic deformation mechanisms. The microstructure of the deformed specimens was characterized by SEM and TEM techniques which revealed typical dislocation arrangements related to plastic strain amplitudes and test temperatures. A mechanism of the microstrain deformation of Ta is proposed. (author)

  7. The effect of strain rate and temperature on the tensile behaviour of uranium 2 w/o molybdenum

    International Nuclear Information System (INIS)

    Harding, J.; Boyd, G.A.C.

    1983-01-01

    This report describes the uniaxial tensile behaviour of uranium 2 w/o molybdenum alloy over a wide range of temperature and strain rate. Specimen blanks taken from co-reduced and extruded U 2 w/o Mo rods were given one of two heat treatments. Longitudinal tensile test pieces, taken from these blanks at near surface locations were tested in the temperature range -150 deg C to +100 deg C at strain rates from quasistatic (10 -4 s -1 ) to 10 3 s -1 . To achieve this range of testing rates three machines were required: an Instron screw driven machine for rates up to 0.1 s -1 , a second specially constructed hydraulic machine for the range 0.1 s -1 to 50 s -1 and a drop weight machine for the highest strain rates. The ways in which the mechanical properties - elongation to fracture, flow stresses and ultimate tensile stress - vary with both temperature and strain rate are presented and discussed for material in both heat treatment conditions. (author)

  8. Morphology and mycelial growth rate of Pleurotus spp. strains from the Mexican mixtec region

    Science.gov (United States)

    Guadarrama-Mendoza, P.C.; del Toro, G. Valencia; Ramírez-Carrillo, R.; Robles-Martínez, F.; Yáñez-Fernández, J.; Garín-Aguilar, M.E.; Hernández, C.G.; Bravo-Villa, G.

    2014-01-01

    Two native Pleurotus spp. strains (white LB-050 and pale pink LB-051) were isolated from rotten tree trunks of cazahuate (Ipomoea murucoides) from the Mexican Mixtec Region. Both strains were chemically dedikaryotized to obtain their symmetrical monokaryotic components (neohaplonts). This was achieved employing homogenization time periods from 60 to 65 s, and 3 day incubation at 28 °C in a peptone-glucose solution (PGS). Pairing of compatible neohaplonts resulted in 56 hybrid strains which were classified into the four following hybrid types: (R1-nxB1-n, R1-nxB2-1, R2-nxB1-n and R2-nxB2-1). The mycelial growth of Pleurotus spp. monokaryotic and dikaryotic strains showed differences in texture (cottony or floccose), growth (scarce, regular or abundant), density (high, regular or low), and pigmentation (off-white, white or pale pink). To determine the rate and the amount of mycelium growth in malt extract agar at 28 °C, the diameter of the colony was measured every 24 h until the Petri dish was completely colonized. A linear model had the best fit to the mycelial growth kinetics. A direct relationship between mycelial morphology and growth rate was observed. Cottony mycelium presented significantly higher growth rates (p < 0.01) in comparison with floccose mycelium. Thus, mycelial morphology can be used as criterion to select which pairs must be used for optimizing compatible-mating studies. Hybrids resulting from cottony neohaplonts maintained the characteristically high growth rates of their parental strains with the hybrid R1-nxB1-n being faster than the latter. PMID:25477920

  9. Effects of different aging statuses and strain rate on the adiabatic shear susceptibility of 2195 aluminum–lithium alloy

    International Nuclear Information System (INIS)

    Yang, Y.; Tan, G.Y.; Chen, P.X.; Zhang, Q.M.

    2012-01-01

    The adiabatic shear susceptibility of 2195 aluminum–lithium alloy was investigated by means of split Hopkinson pressure bar. The stress collapse in true stress–true strain curves and true stress–time curves was observed. The adiabatic shear susceptibility of different aging statuses and strain rate were discussed by means of metallography observation. The critical strain, stress collapse time and formation energy of adiabatic shear bands were compared. The results show that different aging statuses and strain rate have significant influences on adiabatic shear behaviors of 2195 aluminum–lithium alloy. The peak-aged specimen has the highest adiabatic shearing susceptibility, while the under-aged specimen has the least adiabatic shear susceptibility. The susceptibility of adiabatic shearing increases with the increases of strain rate.

  10. Effects of different aging statuses and strain rate on the adiabatic shear susceptibility of 2195 aluminum-lithium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Y. [School of Materials Science and Engineering, Central South University, Changsha 410083, Hunan (China); State Key Laboratory of Explosion Science and Technology, Beijing 100081 (China); Tan, G.Y., E-mail: yangyanggroup@163.com [School of Materials Science and Engineering, Central South University, Changsha 410083, Hunan (China); Chen, P.X. [School of Materials Science and Engineering, Central South University, Changsha 410083, Hunan (China); Zhang, Q.M. [State Key Laboratory of Explosion Science and Technology, Beijing 100081 (China)

    2012-06-01

    The adiabatic shear susceptibility of 2195 aluminum-lithium alloy was investigated by means of split Hopkinson pressure bar. The stress collapse in true stress-true strain curves and true stress-time curves was observed. The adiabatic shear susceptibility of different aging statuses and strain rate were discussed by means of metallography observation. The critical strain, stress collapse time and formation energy of adiabatic shear bands were compared. The results show that different aging statuses and strain rate have significant influences on adiabatic shear behaviors of 2195 aluminum-lithium alloy. The peak-aged specimen has the highest adiabatic shearing susceptibility, while the under-aged specimen has the least adiabatic shear susceptibility. The susceptibility of adiabatic shearing increases with the increases of strain rate.

  11. Forming limit curves of DP600 determined in high-speed Nakajima tests and predicted by two different strain-rate-sensitive models

    Science.gov (United States)

    Weiß-Borkowski, Nathalie; Lian, Junhe; Camberg, Alan; Tröster, Thomas; Münstermann, Sebastian; Bleck, Wolfgang; Gese, Helmut; Richter, Helmut

    2018-05-01

    Determination of forming limit curves (FLC) to describe the multi-axial forming behaviour is possible via either experimental measurements or theoretical calculations. In case of theoretical determination, different models are available and some of them consider the influence of strain rate in the quasi-static and dynamic strain rate regime. Consideration of the strain rate effect is necessary as many material characteristics such as yield strength and failure strain are affected by loading speed. In addition, the start of instability and necking depends not only on the strain hardening coefficient but also on the strain rate sensitivity parameter. Therefore, the strain rate dependency of materials for both plasticity and the failure behaviour is taken into account in crash simulations for strain rates up to 1000 s-1 and FLC can be used for the description of the material's instability behaviour at multi-axial loading. In this context, due to the strain rate dependency of the material behaviour, an extrapolation of the quasi-static FLC to dynamic loading condition is not reliable. Therefore, experimental high-speed Nakajima tests or theoretical models shall be used to determine the FLC at high strain rates. In this study, two theoretical models for determination of FLC at high strain rates and results of experimental high-speed Nakajima tests for a DP600 are presented. One of the theoretical models is the numerical algorithm CRACH as part of the modular material and failure model MF GenYld+CrachFEM 4.2, which is based on an initial imperfection. Furthermore, the extended modified maximum force criterion considering the strain rate effect is also used to predict the FLC. These two models are calibrated by the quasi-static and dynamic uniaxial tensile tests and bulge tests. The predictions for the quasi-static and dynamic FLC by both models are presented and compared with the experimental results.

  12. Improvement of life prediction accuracy by introduction of strain-rate effect into modified ductility exhaustion method

    International Nuclear Information System (INIS)

    Takahashi, Yukio

    1994-01-01

    It is important to use a reliable creep-fatigue damage evaluation method to prevent failures due to creep-fatigue damage accumulated during operation life in the structural design for fast breeder reactor plants. In this study, slow strain-rate fatigue tests were conducted for SUS316 steel for fast breeder application (316FR) and the improvement of creep-fatigue life estimation method was proposed based on test results. Main results can be summarized as follows: (1) In the slow strain-rate fatigue tests, life reduction caused by creep damage was observed as in the case of strain-hold creep-fatigue tests. (2) Strain-rate dependency of creep damage was introduced into the modified ductility exhaustion method previously proposed by the author. Good agreement of predicted lives with observed lives was achieved for SUS304 and 316FR steels with the method proposed here. (author)

  13. A real-time heat strain risk classifier using heart rate and skin temperature

    International Nuclear Information System (INIS)

    Buller, Mark J; Latzka, William A; Yokota, Miyo; Tharion, William J; Moran, Daniel S

    2008-01-01

    Heat injury is a real concern to workers engaged in physically demanding tasks in high heat strain environments. Several real-time physiological monitoring systems exist that can provide indices of heat strain, e.g. physiological strain index (PSI), and provide alerts to medical personnel. However, these systems depend on core temperature measurement using expensive, ingestible thermometer pills. Seeking a better solution, we suggest the use of a model which can identify the probability that individuals are 'at risk' from heat injury using non-invasive measures. The intent is for the system to identify individuals who need monitoring more closely or who should apply heat strain mitigation strategies. We generated a model that can identify 'at risk' (PSI ≥ 7.5) workers from measures of heart rate and chest skin temperature. The model was built using data from six previously published exercise studies in which some subjects wore chemical protective equipment. The model has an overall classification error rate of 10% with one false negative error (2.7%), and outperforms an earlier model and a least squares regression model with classification errors of 21% and 14%, respectively. Additionally, the model allows the classification criteria to be adjusted based on the task and acceptable level of risk. We conclude that the model could be a valuable part of a multi-faceted heat strain management system. (note)

  14. Hardening and strengthening behavior in rate-independent strain gradient crystal plasticity

    DEFF Research Database (Denmark)

    Nellemann, C.; Niordson, C. F.; Nielsen, K.L.

    2018-01-01

    Two rate-independent strain gradient crystal plasticity models, one new and one previously published, are compared and a numerical framework that encompasses both is developed. The model previously published is briefly outlined, while an in-depth description is given for the new, yet somewhat...... related,model. The difference between the two models is found in the definitions of the plastic work expended in the material and their relation to spatial gradients of plastic strains. The model predictions are highly relevant to the ongoing discussion in the literature, concerning 1) what governs...... the increase in the apparent yield stress due to strain gradients (also referred to as strengthening)? And 2), what is the implication of such strengthening in relation to crystalline material behavior at the micron scale? The present work characterizes material behavior, and the corresponding plastic slip...

  15. Cortical visual impairment

    OpenAIRE

    Koželj, Urša

    2013-01-01

    In this thesis we discuss cortical visual impairment, diagnosis that is in the developed world in first place, since 20 percent of children with blindness or low vision are diagnosed with it. The objectives of the thesis are to define cortical visual impairment and the definition of characters suggestive of the cortical visual impairment as well as to search for causes that affect the growing diagnosis of cortical visual impairment. There are a lot of signs of cortical visual impairment. ...

  16. Parameters identification in strain-rate and thermal sensitive visco-plastic material model for an alumina dispersion strengthened copper

    CERN Document Server

    Scapin, M; Peroni, M

    2011-01-01

    The main objective of this paper is getting strain-hardening, thermal and strain-rate parameters for a material model in order to correctly reproduce the deformation process that occurs in high strain-rate scenario, in which the material reaches also high levels of plastic deformation and temperature. In particular, in this work the numerical inverse method is applied to extract material strength parameters from experimental data obtained via mechanical tests at different strain-rates (from quasi-static loading to high strain-rate) and temperatures (between 20 C and 1000 C) for an alumina dispersion strengthened copper material, which commercial name is GLIDCOP. Thanks to its properties GLIDCOP finds several applications in particle accelerator technologies, where problems of thermal management, combined with structural requirements, play a key role. Currently, it is used for the construction of structural and functional parts of the particle beam collimation system. Since the extreme condition in which the m...

  17. Characterization of high-strain rate mechanical behavior of AZ31 magnesium alloy using 3D digital image correlation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yanli; Xu, Hanbing; Erdman, Donald L.; Starbuck, Michael J.; Simunovic, Srdjan [Oak Ridge National Laboratory, Oak Ridge, TN (United States)

    2011-10-15

    Characterization of the material mechanical behavior at sub-Hopkinson regime (0.1 to 1 000 s{sup -1}) is very challenging due to instrumentation limitations and the complexity of data analysis involved in dynamic loading. In this study, AZ31 magnesium alloy sheet specimens are tested using a custom designed servo-hydraulic machine in tension at nominal strain rates up to 1 000 s{sup -1}. In order to resolve strain measurement artifacts, the specimen displacement is measured using 3D Digital Image correlation instead from actuator motion. The total strain is measured up to {approx} 30%, which is far beyond the measurable range of electric resistance strain gages. Stresses are calculated based on the elastic strains in the tab of a standard dog-bone shaped specimen. Using this technique, the stresses measured for strain rates of 100 s{sup -1} and lower show little or no noise comparing to load cell signals. When the strain rates are higher than 250 s{sup -1}, the noises and oscillations in the stress measurements are significantly decreased from {approx} 250 to 50 MPa. Overall, it is found that there are no significant differences in the elongation, although the material exhibits slight work hardening when the strain rate is increased from 1 to 100 s{sup -1}. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Strain and rate-dependent neuronal injury in a 3D in vitro compression model of traumatic brain injury

    Science.gov (United States)

    Bar-Kochba, Eyal; Scimone, Mark T.; Estrada, Jonathan B.; Franck, Christian

    2016-01-01

    In the United States over 1.7 million cases of traumatic brain injury are reported yearly, but predictive correlation of cellular injury to impact tissue strain is still lacking, particularly for neuronal injury resulting from compression. Given the prevalence of compressive deformations in most blunt head trauma, this information is critically important for the development of future mitigation and diagnosis strategies. Using a 3D in vitro neuronal compression model, we investigated the role of impact strain and strain rate on neuronal lifetime, viability, and pathomorphology. We find that strain magnitude and rate have profound, yet distinctively different effects on the injury pathology. While strain magnitude affects the time of neuronal death, strain rate influences the pathomorphology and extent of population injury. Cellular injury is not initiated through localized deformation of the cytoskeleton but rather driven by excess strain on the entire cell. Furthermore we find that, mechanoporation, one of the key pathological trigger mechanisms in stretch and shear neuronal injuries, was not observed under compression. PMID:27480807

  19. Experimental and numerical investigation of strain rate effect on low cycle fatigue behaviour of AA 5754 alloy

    Science.gov (United States)

    Kumar, P.; Singh, A.

    2018-04-01

    The present study deals with evaluation of low cycle fatigue (LCF) behavior of aluminum alloy 5754 (AA 5754) at different strain rates. This alloy has magnesium (Mg) as main alloying element (Al-Mg alloy) which makes this alloy suitable for Marines and Cryogenics applications. The testing procedure and specimen preparation are guided by ASTM E606 standard. The tests are performed at 0.5% strain amplitude with three different strain rates i.e. 0.5×10-3 sec-1, 1×10-3 sec-1 and 2×10-3 sec-1 thus the frequency of tests vary accordingly. The experimental results show that there is significant decrease in the fatigue life with the increase in strain rate. LCF behavior of AA 5754 is also simulated at different strain rates by finite element method. Chaboche kinematic hardening cyclic plasticity model is used for simulating the hardening behavior of the material. Axisymmetric finite element model is created to reduce the computational cost of the simulation. The material coefficients used for “Chaboche Model” are determined by experimentally obtained stabilized hysteresis loop. The results obtained from finite element simulation are compared with those obtained through LCF experiments.

  20. Deformation patterning driven by rate dependent non-convex strain gradient plasticity

    NARCIS (Netherlands)

    Yalcinkaya, T.; Brekelmans, W.A.M.; Geers, M.G.D.

    2011-01-01

    A rate dependent strain gradient plasticity framework for the description of plastic slip patterning in a system with non-convex energetic hardening is presented. Both the displacement and the plastic slip fields are considered as primary variables. These fields are determined on a global level by

  1. Motor unit recruitment patterns 2: the influence of myoelectric intensity and muscle fascicle strain rate.

    Science.gov (United States)

    Hodson-Tole, Emma F; Wakeling, James M

    2008-06-01

    To effectively meet the force requirements of a given movement an appropriate number and combination of motor units must be recruited between and within muscles. Orderly recruitment of motor units has been shown to occur in a wide range of skeletal muscles, however, alternative strategies do occur. Faster motor units are better suited to developing force rapidly, and produce higher mechanical power with greater efficiency at faster shortening strain rates than slower motor units. As the frequency content of the myoelectric signal is related to the fibre type of the active motor units, we hypothesised that, in addition to an association between myoelectric frequency and intensity, there would be a significant association between muscle fascicle shortening strain rate and myoelectric frequency content. Myoelectric and sonomicrometric data were collected from the three ankle extensor muscles of the rat hind limb during walking and running. Myoelectric signals were analysed using wavelet transformation and principal component analysis to give a measure of the signal frequency content. Sonomicrometric signals were analysed to give measures of muscle fascicle strain and strain rate. The relationship between myoelectric frequency and both intensity and muscle fascicle strain rate was found to change across the time course of a stride, with differences also occurring in the strength of the associations between and within muscles. In addition to the orderly recruitment of motor units, a mechanical strategy of motor unit recruitment was therefore identified. Motor unit recruitment is therefore a multifactorial phenomenon, which is more complex than typically thought.

  2. Job strain and resting heart rate: a cross-sectional study in a Swedish random working sample

    Directory of Open Access Journals (Sweden)

    Peter Eriksson

    2016-03-01

    Full Text Available Abstract Background Numerous studies have reported an association between stressing work conditions and cardiovascular disease. However, more evidence is needed, and the etiological mechanisms are unknown. Elevated resting heart rate has emerged as a possible risk factor for cardiovascular disease, but little is known about the relation to work-related stress. This study therefore investigated the association between job strain, job control, and job demands and resting heart rate. Methods We conducted a cross-sectional survey of randomly selected men and women in Västra Götalandsregionen, Sweden (West county of Sweden (n = 1552. Information about job strain, job demands, job control, heart rate and covariates was collected during the period 2001–2004 as part of the INTERGENE/ADONIX research project. Six different linear regression models were used with adjustments for gender, age, BMI, smoking, education, and physical activity in the fully adjusted model. Job strain was operationalized as the log-transformed ratio of job demands over job control in the statistical analyses. Results No associations were seen between resting heart rate and job demands. Job strain was associated with elevated resting heart rate in the unadjusted model (linear regression coefficient 1.26, 95 % CI 0.14 to 2.38, but not in any of the extended models. Low job control was associated with elevated resting heart rate after adjustments for gender, age, BMI, and smoking (linear regression coefficient −0.18, 95 % CI −0.30 to −0.02. However, there were no significant associations in the fully adjusted model. Conclusions Low job control and job strain, but not job demands, were associated with elevated resting heart rate. However, the observed associations were modest and may be explained by confounding effects.

  3. Associations between strain in domestic work and self-rated health: a study of employed women in Sweden.

    Science.gov (United States)

    Staland-Nyman, Carin; Alexanderson, Kristina; Hensing, Gunnel

    2008-01-01

    The aim of this study was to analyse the association between strain in domestic work and self-rated health among employed women in Sweden, using two different methods of measuring strain in domestic work. Questionnaire data were collected on health and living conditions in paid and unpaid work for employed women (n=1,417), aged 17-64 years. "Domestic job strain'' was an application of the demand-control model developed by Karasek and Theorell, and "Domestic work equity and marital satisfaction'' was measured by questions on the division of and responsibility for domestic work and relationship with spouse/cohabiter. Self-rated health was measured using the SF-36 Health Survey. Associations were analysed by bivariate and multivariate linear regression analyses, and reported as standardized regression coefficients. Higher strain in domestic work was associated with lower self-rated health, also after controlling for potential confounders and according to both strain measures. "Domestic work equity and marital satisfaction'' showed for example negative associations with mental health beta -0.211 (p<0.001), vitality beta -0.195 (p<0.001), social function -0.132 (p<0.01) and physical role beta -0.115 (p<0.01). The highest associations between "Domestic job strain'' and SF-36 were found for vitality beta -0.156 (p<0.001), mental health beta -0.123 (p<0.001). Strain in domestic work, including perceived inequity in the relationship and lack of a satisfactory relationship with a spouse/cohabiter, was associated with lower self-rated health in this cross-sectional study. Future research needs to address the specific importance of strain in domestic work as a contributory factor to women's ill-health.

  4. Analytical and experimental studies on the strain rate effects in penetration of 10wt % ballistic gelatin

    International Nuclear Information System (INIS)

    Liu, L; Jia, Z; Ma, X L; Fan, Y R

    2013-01-01

    This work concentrates on modeling the super-elastic behavior of 10wt% ballistic gelatin at 4°C and the mechanical responses at quasi-static and high-speed penetrations. Uniaxial compression and simple shearing experiments were carried out to determine the moduli in Mooney-Rivlin model describing the elastic behavior of gelatin at low strain rates. The failure mode is determined to be elastic fracture as the tensile stretch ratio exceeds a critical value. For high compression strain rates, the available results from the split Hopkinson pressure bar (SHPB) experiments for 10wt% gelatin were carefully examined and assessed. Linear relationship between the moduli and the strain rate is established. Based on these material parameters, an analytic solution of stress for the quasi-static and quasi-dynamic expansion of spherical cavity in gelatin is derived. As a consequence, the work needed to open unit volume of cavity, P s , which is the key parameter in studying penetration problems, is linearly increasing with the characteristic strain rate. The application of P s to our quasi-static and high-speed penetration experiments is discussed and assessed

  5. TEM sample preparation by femtosecond laser machining and ion milling for high-rate TEM straining experiments

    Energy Technology Data Exchange (ETDEWEB)

    Voisin, Thomas; Grapes, Michael D. [Dept. of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218 (United States); Zhang, Yong [Dept. of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218 (United States); Lorenzo, Nicholas; Ligda, Jonathan; Schuster, Brian [US Army Research Laboratory, Aberdeen Proving Ground, Aberdeen, MD 21005 (United States); Weihs, Timothy P. [Dept. of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218 (United States)

    2017-04-15

    To model mechanical properties of metals at high strain rates, it is important to visualize and understand their deformation at the nanoscale. Unlike post mortem Transmission Electron Microscopy (TEM), which allows one to analyze defects within samples before or after deformation, in situ TEM is a powerful tool that enables imaging and recording of deformation and the associated defect motion during mechanical loading. Unfortunately, all current in situ TEM mechanical testing techniques are limited to quasi-static strain rates. In this context, we are developing a new test technique that utilizes a rapid straining stage and the Dynamic TEM (DTEM) at the Lawrence Livermore National Laboratory (LLNL). The new straining stage can load samples in tension at strain rates as high as 4×10{sup 3}/s using two piezoelectric actuators operating in bending while the DTEM at LLNL can image in movie mode with a time resolution as short as 70 ns. Given the piezoelectric actuators are limited in force, speed, and displacement, we have developed a method for fabricating TEM samples with small cross-sectional areas to increase the applied stresses and short gage lengths to raise the applied strain rates and to limit the areas of deformation. In this paper, we present our effort to fabricate such samples from bulk materials. The new sample preparation procedure combines femtosecond laser machining and ion milling to obtain 300 µm wide samples with control of both the size and location of the electron transparent area, as well as the gage cross-section and length. - Highlights: • Tensile straining TEM specimens made by femtosecond laser machining and ion milling. • Accurate positioning of the electron transparent area within a controlled gauge region. • Optimization of femtosecond laser and ion milling parameters. • Fast production of numerous samples with a highly repeatable geometry.

  6. The mechanical behavior of metal alloys with grain size distribution in a wide range of strain rates

    Science.gov (United States)

    Skripnyak, V. A.; Skripnyak, V. V.; Skripnyak, E. G.

    2017-12-01

    The paper discusses a multiscale simulation approach for the construction of grain structure of metals and alloys, providing high tensile strength with ductility. This work compares the mechanical behavior of light alloys and the influence of the grain size distribution in a wide range of strain rates. The influence of the grain size distribution on the inelastic deformation and fracture of aluminium and magnesium alloys is investigated by computer simulations in a wide range of strain rates. It is shown that the yield stress depends on the logarithm of the normalized strain rate for light alloys with a bimodal grain distribution and coarse-grained structure.

  7. Flow and failure of an aluminium alloy from low to high temperature and strain rate

    Science.gov (United States)

    Sancho, Rafael; Cendón, David; Gálvez, Francisco

    2015-09-01

    The mechanical behaviour of an aluminium alloy is presented in this paper. The study has been carried out to analyse the flow and failure of the aluminium alloy 7075-T73. An experimental study has been planned performing tests of un-notched and notched tensile specimens at low strain rates using a servo-hydraulic machine. High strain rate tests have been carried out using the same geometry in a Hopkinson Split Tensile Bar. The dynamic experiments at low temperature were performed using a cryogenic chamber, and the high temperature ones with a furnace, both incorporated to the Hopkinson bar. Testing temperatures ranged from - 50 ∘C to 100 ∘C and the strain rates from 10-4 s-1 to 600 s-1. The material behaviour was modelled using the Modified Johnson-Cook model and simulated using LS-DYNA. The results show that the Voce type of strain hardening is the most accurate for this material, while the traditional Johnson-Cook is not enough accurate to reproduce the necking of un-notched specimens. The failure criterion was obtained by means of the numerical simulations using the analysis of the stress triaxiality versus the strain to failure. The diameters at the failure time were measured using the images taken with an image camera, and the strain to failure was computed for un-notched and notched specimens. The numerical simulations show that the analysis of the evolution of the stress triaxiality is crucial to achieve accurate results. A material model using the Modified Johnson-Cook for flow and failure is proposed.

  8. Effects of strain rate and temperature on deformation behaviour of IN 718 during high temperature deformation

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, L X [Dept. of Metallurgy and Engineering Materials, Univ. of Strathclyde, Glasgow (United Kingdom); Baker, T N [Dept. of Metallurgy and Engineering Materials, Univ. of Strathclyde, Glasgow (United Kingdom)

    1994-04-15

    The hot deformation characteristics of a wrought IN 718 alloy were investigated by compression testing at constant strain rates in the range of 0.1 to 5 x 10[sup -3] s[sup -1], and testing temperatures in the range of 950 to 1100 C using a 200 ton capacity microprocessor controlled Fielding hydraulic press. Examination of the microstructures was carried out by optical microscopy and TEM. The flow stress of the compression tests showed a single peak in the flow stress-strain curves, and indicated that a dynamic recrystallization transition took place during the hot compression. The relationship between the peak stresses ([sigma][sub p]) and the Zener-Hollomon parameter (z) can be expressed by [sigma][sub p] = 0.5 Z[sup 0.17]. Necklace'' microstructures were observed at testing temperatures below 1050 C, for strain of 0.7. The fraction of recrystallized grains increased with the increasing temperature and strain, and decreasing strain rate. Fully recrystallized microstructures were observed at temperatures 1050 C or greater, with a strain of 0.7. (orig.)

  9. On the response of rubbers at high strain rates.

    Energy Technology Data Exchange (ETDEWEB)

    Niemczura, Johnathan Greenberg (University of Texas-Austin)

    2010-02-01

    In this report, we examine the propagation of tensile waves of finite deformation in rubbers through experiments and analysis. Attention is focused on the propagation of one-dimensional dispersive and shock waves in strips of latex and nitrile rubber. Tensile wave propagation experiments were conducted at high strain-rates by holding one end fixed and displacing the other end at a constant velocity. A high-speed video camera was used to monitor the motion and to determine the evolution of strain and particle velocity in the rubber strips. Analysis of the response through the theory of finite waves and quantitative matching between the experimental observations and analytical predictions was used to determine an appropriate instantaneous elastic response for the rubbers. This analysis also yields the tensile shock adiabat for rubber. Dispersive waves as well as shock waves are also observed in free-retraction experiments; these are used to quantify hysteretic effects in rubber.

  10. Finite element analysis of dental implant loading on atrophic and non-atrophic cancellous and cortical mandibular bone - a feasibility study

    NARCIS (Netherlands)

    Marcián, P.; Borák, L.; Valášek, J.; Kaiser, J.; Florian, Z.; Wolff, J.

    2014-01-01

    The first aim of this study was to assess displacements and micro-strain induced on different grades of atrophic cortical and trabecular mandibular bone by axially loaded dental implants using finite element analysis (FEA). The second aim was to assess the micro-strain induced by different implant

  11. Comminution of solids caused by kinetic energy of high shear strain rate, with implications for impact, shock, and shale fracturing.

    Science.gov (United States)

    Bazant, Zdenek P; Caner, Ferhun C

    2013-11-26

    Although there exists a vast literature on the dynamic comminution or fragmentation of rocks, concrete, metals, and ceramics, none of the known models suffices for macroscopic dynamic finite element analysis. This paper outlines the basic idea of the macroscopic model. Unlike static fracture, in which the driving force is the release of strain energy, here the essential idea is that the driving force of comminution under high-rate compression is the release of the local kinetic energy of shear strain rate. The density of this energy at strain rates >1,000/s is found to exceed the maximum possible strain energy density by orders of magnitude, making the strain energy irrelevant. It is shown that particle size is proportional to the -2/3 power of the shear strain rate and the 2/3 power of the interface fracture energy or interface shear stress, and that the comminution process is macroscopically equivalent to an apparent shear viscosity that is proportional (at constant interface stress) to the -1/3 power of this rate. A dimensionless indicator of the comminution intensity is formulated. The theory was inspired by noting that the local kinetic energy of shear strain rate plays a role analogous to the local kinetic energy of eddies in turbulent flow.

  12. The effect of strain rate and temperature on the tensile behaviour of uranium - 2sup(w)/o molybdenum

    International Nuclear Information System (INIS)

    Harding, J.; Boyd, G.A.C.

    1983-01-01

    This report describes the uniaxial tensile behaviour of uranium 2 w/o molybdenum alloy over a wide range of temperature and strain rate. Specimen blanks taken from co-reduced and extruded U2 w/o Mo rods were given one of two heat treatments. Longitudinal tensile test pieces, taken from these blanks at near surface locations were tested in the temperature range -150 deg C to +100 deg C at strain rates from quasistatic (10 -4 s -1 ) to 10 3 s -1 . To achieve this range of testing rates three machines were required: an Instron screw driven machine for rates up to 0.1 s -1 , a second specially constructed hydraulic machine for the range 0.1 s -1 to 50 s -1 and a drop weight machine for the highest strain rates. The ways in which the mechanical properties - elongation to fracture, flow stresses and ultimate tensile stress - vary with both temperature and strain rate are presented and discussed for material in both heat treatment conditions. (author)

  13. Ductile fracture mechanism of low-temperature In-48Sn alloy joint under high strain rate loading.

    Science.gov (United States)

    Kim, Jong-Woong; Jung, Seung-Boo

    2012-04-01

    The failure behaviors of In-48Sn solder ball joints under various strain rate loadings were investigated with both experimental and finite element modeling study. The bonding force of In-48Sn solder on an Ni plated Cu pad increased with increasing shear speed, mainly due to the high strain-rate sensitivity of the solder alloy. In contrast to the cases of Sn-based Pb-free solder joints, the transition of the fracture mode from a ductile mode to a brittle mode was not observed in this solder joint system due to the soft nature of the In-48Sn alloy. This result is discussed in terms of the relationship between the strain-rate of the solder alloy, the work-hardening effect and the resulting stress concentration at the interfacial regions.

  14. Experimental Study and Modelling of Poly (Methyl Methacrylate) and Polycarbonate Compressive Behavior from Low to High Strain Rates

    Science.gov (United States)

    El-Qoubaa, Z.; Colard, L.; Matadi Boumbimba, R.; Rusinek, A.

    2018-03-01

    This paper concerns an experimental investigation of Polycarbonate and Poly (methyl methacrylate) compressive behavior from low to high strain rates. Experiments were conducted from 0.001/s to ≈ 5000/s for PC and from 0.001/s to ≈ 2000/s for PMMA. The true strain-stress behavior is established and analyzed at various stain rates. Both PC and PMMA mechanical behavior appears as known, to be strain rate and temperature dependent. The DSGZ model is selected for modelling the strain-stress curves while the yield stress is reproduced using the cooperative model and a modified Eyring equation based on Eyring first process theory. All the three models predictions are in agreement with experiments performed on PC and PMMA.

  15. Left ventricular strain and strain rate by 2D speckle tracking in chronic thromboembolic pulmonary hypertension before and after pulmonary thromboendarterectomy

    Directory of Open Access Journals (Sweden)

    Waltman Thomas J

    2010-09-01

    Full Text Available Abstract Background Echocardiographic evaluation of left ventricular (LV strain and strain rate (SR by 2D speckle tracking may be useful tools to assess chronic thromboembolic pulmonary hypertension (CTEPH severity as well as response to successful pulmonary thromboendarterectomy (PTE. Methods We evaluated 30 patients with CTEPH before and after PTE using 2D speckle tracking measurements of LV radial and circumferential strain and SR in the short axis, and correlated the data with right heart catheterization (RHC. Results PTE resulted in a decrease in mean PA pressure (44 ± 15 to 29 ± 9 mmHg, decrease in PVR (950 ± 550 to 31 ± 160 [dyne-sec]/cm5, and an increase in cardiac output (3.9 ± 1.0 to 5.0 ± 1.0 L/min, p change in circumferential strain and change in posterior wall radial strain correlated moderately well with changes in PVR, mean PA pressure and cardiac output (r = 0.69, 0.76, and 0.51 for circumferential strain [p Conclusions LV circumferential and posterior wall radial strain change after relief of pulmonary arterial obstruction in patients with CTEPH, and these improvements occur rapidly. These changes in LV strain may reflect effects from improved LV diastolic filling, and may be useful non-invasive markers of successful PTE.

  16. Effect of strain rate on cavity closure during compression between flat platens using superplastic tin-lead alloy

    International Nuclear Information System (INIS)

    Zaid, A.I.O.; Al-Tamimi, M.M.

    2011-01-01

    Superplasticity is a feature of a material or alloy which allows the material to deform plastically to an extremely large strain at low values of stress under certain loading conditions of strain rate and temperature. Eutectic tin-lead alloy is a practical material for research investigations as it possesses a superplastic behavior at room temperature and low strain rate which makes it a useful tool in simulating the ordinary engineering materials at high strain rate and temperature. This alloy has been extensively used as a model material to simulate behavior of engineering materials at high strain rates and temperatures. In this paper, superplastic tin-lead alloy was used at room temperature to simulate the closure of cavities in steels at high temperatures in the hot region under dynamic loading (high strain rate) under the effect of compressive loads using flat platens (open dies). Hollow specimens having different values of bore diameter (D/sub b/) to outer diameter (D/sub out/), of the same height and volume were investigated under different values of height reduction percentages ranging from 20% to 80% , and the percentage of cavity closure at each reduction percentage was determined. It was found that the cavity closure percentage increases or decreases at slow rate for reduction percentage in height less than 40% and increases more rapidly for reduction percentages in height above this value. Furthermore, specimens having smaller values of ratio (D/sub b//D/sub out/) resulted in higher percentage of cavity closure than specimens having higher ratios at the same value of reduction in height percentage. Complete cavity closure has occurred in specimens having the ratios of 0.1 and 0.2 at 75% reduction in height. (author)

  17. Adiabatic shear bands as predictors of strain rate in high speed machining of ramax-2

    International Nuclear Information System (INIS)

    Zeb, M.A.; Irfan, M.A.; Velduis, A.C.

    2008-01-01

    Shear band formation was studied in the chips obtained by turning of stainless steel- Ramax-2 (AISI 420F). The machining was performed on a CNC lathe using a PVD (Physical Vapor Deposition) cutting tool insert. The cutting speeds ranged from 50 m/ min to 250 m/min. Dry cutting conditions were employed. At cutting speeds higher than 30 m/mill, the chip did not remain intact with the workpiece using quick stop device. It was difficult to get the chip root SEM (Scanning Electron Microscope) micrographs at further higher speeds. Therefore, the width of the shear bands was used as the predictor of the strain rates involved at various cutting speeds. The results showed that the strain rates are quite in agreement with the amount of strain rate found during machining of such types of stainless steels. It was also observed that shear band density increased with increasing cutting speed. (author)

  18. The importance of the strain rate and creep on the stress corrosion cracking mechanisms and models

    International Nuclear Information System (INIS)

    Aly, Omar F.; Mattar Neto, Miguel; Schvartzman, Monica M.A.M.

    2011-01-01

    Stress corrosion cracking is a nuclear, power, petrochemical, and other industries equipment and components (like pressure vessels, nozzles, tubes, accessories) life degradation mode, involving fragile fracture. The stress corrosion cracking failures can produce serious accidents, and incidents which can put on risk the safety, reliability, and efficiency of many plants. These failures are of very complex prediction. The stress corrosion cracking mechanisms are based on three kinds of factors: microstructural, mechanical and environmental. Concerning the mechanical factors, various authors prefer to consider the crack tip strain rate rather than stress, as a decisive factor which contributes to the process: this parameter is directly influenced by the creep strain rate of the material. Based on two KAPL-Knolls Atomic Power Laboratory experimental studies in SSRT (slow strain rate test) and CL (constant load) test, for prediction of primary water stress corrosion cracking in nickel based alloys, it has done a data compilation of the film rupture mechanism parameters, for modeling PWSCC of Alloy 600 and discussed the importance of the strain rate and the creep on the stress corrosion cracking mechanisms and models. As derived from this study, a simple theoretical model is proposed, and it is showed that the crack growth rate estimated with Brazilian tests results with Alloy 600 in SSRT, are according with the KAPL ones and other published literature. (author)

  19. Warming Affects Growth Rates and Microcystin Production in Tropical Bloom-Forming Microcystis Strains

    Directory of Open Access Journals (Sweden)

    Trung Bui

    2018-03-01

    Full Text Available Warming climate is predicted to promote cyanobacterial blooms but the toxicity of cyanobacteria under global warming is less well studied. We tested the hypothesis that raising temperature may lead to increased growth rates but to decreased microcystin (MC production in tropical Microcystis strains. To this end, six Microcystis strains were isolated from different water bodies in Southern Vietnam. They were grown in triplicate at 27 °C (low, 31 °C (medium, 35 °C (high and 37 °C (extreme. Chlorophyll-a-, particle- and MC concentrations as well as dry-weights were determined. All strains yielded higher biomass in terms of chlorophyll-a concentration and dry-weight at 31 °C compared to 27 °C and then either stabilised, slightly increased or declined with higher temperature. Five strains easily grew at 37 °C but one could not survive at 37 °C. When temperature was increased from 27 °C to 37 °C total MC concentration decreased by 35% in strains with MC-LR as the dominant variant and by 94% in strains with MC-RR. MC quota expressed per particle, per unit chlorophyll-a and per unit dry-weight significantly declined with higher temperatures. This study shows that warming can prompt the growth of some tropical Microcystis strains but that these strains become less toxic.

  20. Evaluation of the effects of strain rate on material properties of the high strength concrete used in nuclear facilities

    International Nuclear Information System (INIS)

    Kawaguchi, Shohei; Shirai, Koji; Takayanagi, Hideaki

    2011-01-01

    Concrete physical properties (compressive strength, tensile strength, initial elastic modulus and maximum strain) affected by strain rate weren't fully utilize for material model in dynamic response analysis for seismic and impact load because of few reports and various difficulties of impact tests. Split Hopkinson Pressure Bar (SHPB) methods are the most popular high-speed material testing and were also applied for composite material. We applied SHPB for concrete specimen and reported the strain rate effect to the concrete physical property. We used hydraulic testing device for 10 -5 /s to 10 0 /s strain rate and SHPB methods for over 10 1 /s. Four cases of concrete tests (high (50MPa at 28days)/low (35MPa at 28days) compressive strength (based on the test of exiting nuclear power facilities) and dry/wet condition) were done. And we formulated strain rate effect about compressive strength and initial elastic modulus from comparing with previous studies. (author)

  1. About the inevitable compromise between spatial resolution and accuracy of strain measurement for bone tissue: a 3D zero-strain study.

    Science.gov (United States)

    Dall'Ara, E; Barber, D; Viceconti, M

    2014-09-22

    The accurate measurement of local strain is necessary to study bone mechanics and to validate micro computed tomography (µCT) based finite element (FE) models at the tissue scale. Digital volume correlation (DVC) has been used to provide a volumetric estimation of local strain in trabecular bone sample with a reasonable accuracy. However, nothing has been reported so far for µCT based analysis of cortical bone. The goal of this study was to evaluate accuracy and precision of a deformable registration method for prediction of local zero-strains in bovine cortical and trabecular bone samples. The accuracy and precision were analyzed by comparing scans virtually displaced, repeated scans without any repositioning of the sample in the scanner and repeated scans with repositioning of the samples. The analysis showed that both precision and accuracy errors decrease with increasing the size of the region analyzed, by following power laws. The main source of error was found to be the intrinsic noise of the images compared to the others investigated. The results, once extrapolated for larger regions of interest that are typically used in the literature, were in most cases better than the ones previously reported. For a nodal spacing equal to 50 voxels (498 µm), the accuracy and precision ranges were 425-692 µε and 202-394 µε, respectively. In conclusion, it was shown that the proposed method can be used to study the local deformation of cortical and trabecular bone loaded beyond yield, if a sufficiently high nodal spacing is used. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Parametric Study of Strain Rate Effects on Nanoparticle-Reinforced Polymer Composites

    Directory of Open Access Journals (Sweden)

    B. Soltannia

    2016-01-01

    Full Text Available Crashworthiness, energy absorption capacity, and safety are important factors in the design of lightweight vehicles made of fiber-reinforced polymer composite (FRP components. The relatively recent emergence of the nanotechnology industry has presented a novel means to augment the mechanical properties of various materials. As a result, recent attempts have contemplated the use of nanoparticles to further improve the resiliency of resins, especially when resins are used for mating FRP components. Therefore, a comprehensive understanding of the response of nanoreinforced polymer composites, subjected to various rates of loading, is of paramount importance for developing reliable structures. In this paper, the effects of nanoreinforcement on the mechanical response of a commonly used epoxy resin subjected to four different strain rates, are systematically investigated. The results are then compared to those of the neat resin. To characterize the mechanical properties of the nanocomposite, a combination of the strain rate-dependent mechanical (SRDM model of Goldberg and his coworkers and Halpin-Tsai’s micromechanical approach is employed. Subsequently, a parametric study is conducted to ascertain the influences of particle type and their weight percentage. Finally, the numerical results are compared to the experimental data obtained from testing of the neat and the nanoreinforced epoxy resin.

  3. Determination of strain rate in Friction Stir Welding by three-dimensional visualization of material flow using X-ray radiography

    International Nuclear Information System (INIS)

    Morisada, Y.; Imaizumi, T.; Fujii, H.

    2015-01-01

    Recrystallization, which is mainly caused by the induced strain, is one of the most important factors of Friction Stir Welding. In this study, strain and strain rate are directly obtained by the change in the material flow velocity which is observed by three-dimensional visualization of the material flow. The grain size of the pure aluminum in the stir zone estimated by the Zener–Hollomon parameter using the obtained strain rate shows good agreement with that observed by Electron Back-Scatter Diffraction mapping

  4. Microstructure and strain rate effects on the mechanical behavior of particle reinforced epoxy-based reactive materials

    Science.gov (United States)

    White, Bradley William

    The effects of reactive metal particles on the microstructure and mechanical properties of epoxy-based composites is investigated in this work. Particle reinforced polymer composites show promise as structural energetic materials that can provide structural strength while simultaneously being capable of releasing large amounts of chemical energy through highly exothermic reactions occurring between the particles and with the matrix. This advanced class of materials is advantageous due to the decreased amount of high density inert casings needed for typical energetic materials and for their ability to increase payload expectancy and decrease collateral damage. Structural energetic materials can be comprised of reactive particles that undergo thermite or intermetallic reactions. In this work nickel (Ni) and aluminum (Al) particles were chosen as reinforcing constituents due to their well characterized mechanical and energetic properties. Although, the reactivity of nickel and aluminum is well characterized, the effects of their particle size, volume fractions, and spatial distribution on the mechanical behavior of the epoxy matrix and composite, across a large range of strain rates, are not well understood. To examine these effects castings of epoxy reinforced with 20--40 vol.% Al and 0--10 vol.% Ni were prepared, while varying the aluminum nominal particle size from 5 to 50 mum and holding the nickel nominal particle size constant at 50 mum. Through these variations eight composite materials were produced, possessing unique microstructures exhibiting different particle spatial distributions and constituent makeup. In order to correlate the microstructure to the constitutive response of the composites, techniques such as nearest-neighbor distances, and multiscale analysis of area fractions (MSAAF) were used to quantitatively characterize the microstructures. The composites were investigated under quasi-static and dynamic compressive loading conditions to characterize

  5. Influence of particle size on the low and high strain rate behavior of dense colloidal dispersions of nanosilica

    Energy Technology Data Exchange (ETDEWEB)

    Asija, Neelanchali; Chouhan, Hemant; Gebremeskel, Shishay Amare; Bhatnagar, Naresh, E-mail: nareshb@mech.iitd.ac.in [Indian Institute of Technology Delhi, Mechanical Engineering Department (India)

    2017-01-15

    Shear thickening is a non-Newtonian flow behavior characterized by the increase in apparent viscosity with the increase in applied shear rate, particularly when the shear rate exceeds a critical value termed as the critical shear rate (CSR). Due to this remarkable property of shear-thickening fluids (STFs), they are extensively used in hip protection pads, protective gear for athletes, and more recently in body armor. The use of STFs in body armor has led to the development of the concept of liquid body armor. In this study, the effect of particle size is explored on the low and high strain rate behavior of nanosilica dispersions, so as to predict the efficacy of STF-aided personal protection systems (PPS), specifically for ballistic applications. The low strain rate study was conducted on cone and plate rheometer, whereas the high strain rate characterization of STF was conducted on in-house fabricated split Hopkinson pressure bar (SHPB) system. Spherical nanosilica particles of three different sizes (100, 300, and 500 nm) as well as fumed silica particles of four different specific surface areas (Aerosil A-90, A-130, A-150, and A-200), respectively, were used in this study. The test samples were prepared by dispersing nanosilica particles in polypropylene glycol (PPG) using ultrasonic homogenization method. The low strain rate studies aided in determining the CSR of the synthesized STF dispersions, whereas the high strain rate studies explored the impact-resisting ability of STFs in terms of the impact toughness and the peak stress attained during the impact loading of STF in SHPB testing.

  6. Finite element analysis of dental implant loading on atrophic and non-atrophic cancellous and cortical mandibular bone – a feasibility study

    NARCIS (Netherlands)

    Marcian, P.; Borak, L.; Valasek, J.; Kaiser, J.; Florian, Z.; Wolff, J.E.H.

    2014-01-01

    The first aim of this study was to assess displacements and micro-strain induced on different grades of atrophic cortical and trabecular mandibular bone by axially loaded dental implants using finite element analysis (FEA). The second aim was to assess the micro-strain induced by different implant

  7. Determination of a tissue-level failure evaluation standard for rat femoral cortical bone utilizing a hybrid computational-experimental method.

    Science.gov (United States)

    Fan, Ruoxun; Liu, Jie; Jia, Zhengbin; Deng, Ying; Liu, Jun

    2018-01-01

    Macro-level failure in bone structure could be diagnosed by pain or physical examination. However, diagnosing tissue-level failure in a timely manner is challenging due to the difficulty in observing the interior mechanical environment of bone tissue. Because most fractures begin with tissue-level failure in bone tissue caused by continually applied loading, people attempt to monitor the tissue-level failure of bone and provide corresponding measures to prevent fracture. Many tissue-level mechanical parameters of bone could be predicted or measured; however, the value of the parameter may vary among different specimens belonging to a kind of bone structure even at the same age and anatomical site. These variations cause difficulty in representing tissue-level bone failure. Therefore, determining an appropriate tissue-level failure evaluation standard is necessary to represent tissue-level bone failure. In this study, the yield and failure processes of rat femoral cortical bones were primarily simulated through a hybrid computational-experimental method. Subsequently, the tissue-level strains and the ratio between tissue-level failure and yield strains in cortical bones were predicted. The results indicated that certain differences existed in tissue-level strains; however, slight variations in the ratio were observed among different cortical bones. Therefore, the ratio between tissue-level failure and yield strains for a kind of bone structure could be determined. This ratio may then be regarded as an appropriate tissue-level failure evaluation standard to represent the mechanical status of bone tissue.

  8. Effect of strain rate and stress triaxiality on tensile behavior of Titanium alloy Ti-10-2-3 at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Bobbili, Ravindranadh, E-mail: ravindranadh@dmrl.drdo.in; Madhu, Vemuri

    2016-06-14

    In this study, Split hopkinson tension bar (SHTB) has been employed to investigate the dynamic tensile flow behavior of Ti-10-2-3 alloy at high strain rates and elevated temperatures. The combined effect of stress triaxiality, strain rate and temperature and on the tensile behavior of the alloy was evaluated. Johnson-Cook (J-C) constitutive and fracture models were developed based on high strain rate tensile data. A modified Johnson–Cook model was established and proved to have high accuracy. A comparative assessment has been done to confirm the accuracy of modified J–C model based on finite element method (FEM). The improved model provides better description on the influence of equivalent plastic strain rate and temperature on the plastic flow. The simulation results proved to be in good agreement with the experimental data. The fracture surfaces of specimens tested under various strain rates and temperatures were studied under scanning electron microscopy (SEM).

  9. Tensile behaviour of geopolymer-based materials under medium and high strain rates

    Science.gov (United States)

    Menna, Costantino; Asprone, Domenico; Forni, Daniele; Roviello, Giuseppina; Ricciotti, Laura; Ferone, Claudio; Bozza, Anna; Prota, Andrea; Cadoni, Ezio

    2015-09-01

    Geopolymers are a promising class of inorganic materials typically obtained from an alluminosilicate source and an alkaline solution, and characterized by an amorphous 3-D framework structure. These materials are particularly attractive for the construction industry due to mechanical and environmental advantages they exhibit compared to conventional systems. Indeed, geopolymer-based concretes represent a challenge for the large scale uses of such a binder material and many research studies currently focus on this topic. However, the behaviour of geopolymers under high dynamic loads is rarely investigated, even though it is of a fundamental concern for the integrity/vulnerability assessment under extreme dynamic events. The present study aims to investigate the effect of high dynamic loading conditions on the tensile behaviour of different geopolymer formulations. The dynamic tests were performed under different strain rates by using a Hydro-pneumatic machine and a modified Hopkinson bar at the DynaMat laboratory of the University of Applied Sciences of Southern Switzerland. The results are processed in terms of stress-strain relationships and strength dynamic increase factor at different strain-rate levels. The dynamic increase factor was also compared with CEB recommendations. The experimental outcomes can be used to assess the constitutive laws of geopolymers under dynamic load conditions and implemented into analytical models.

  10. Strain rate dependent orthotropic properties of pristine and impulsively loaded porcine temporomandibular joint disk.

    Science.gov (United States)

    Beatty, M W; Bruno, M J; Iwasaki, L R; Nickel, J C

    2001-10-01

    The purpose of this study was to characterize the tensile stress-strain behavior of the porcine temporomandibular joint (TMJ) disk with respect to collagen orientation and strain rate dependency. The apparent elastic modulus, ultimate tensile strength, and strain at maximum stress were measured at three elongation rates (0.5, 50, and 500 mm/min) for dumbbell-shaped samples oriented along either anteroposterior or mediolateral axes of the disks. In order to study the effects of impact-induced fissuring on the mechanical behavior, the same properties were measured along each orientation at an elongation rate of 500 mm/min for disks subjected to impulsive loads of 0.5 N. s. The results suggested a strongly orthotropic nature to the healthy pristine disk. The values for the apparent modulus and ultimate strength were 10-fold higher along the anteroposterior axis (p disks for either orientation (p > 0.05). The results demonstrated the importance of choosing an orthotropic model for the TMJ disk to conduct finite element modeling, to develop failure criteria, and to construct tissue-engineered replacements. Impact-induced fissuring requires further study to determine if the TMJ disk is orthotropic with respect to fatigue.

  11. Spatial relationship between bone formation and mechanical stimulus within cortical bone: Combining 3D fluorochrome mapping and poroelastic finite element modelling.

    Science.gov (United States)

    Carrieroa, A; Pereirab, A F; Wilson, A J; Castagno, S; Javaheri, B; Pitsillides, A A; Marenzana, M; Shefelbine, S J

    2018-06-01

    Bone is a dynamic tissue and adapts its architecture in response to biological and mechanical factors. Here we investigate how cortical bone formation is spatially controlled by the local mechanical environment in the murine tibia axial loading model (C57BL/6). We obtained 3D locations of new bone formation by performing 'slice and view' 3D fluorochrome mapping of the entire bone and compared these sites with the regions of high fluid velocity or strain energy density estimated using a finite element model, validated with ex-vivo bone surface strain map acquired ex-vivo using digital image correlation. For the comparison, 2D maps of the average bone formation and peak mechanical stimulus on the tibial endosteal and periosteal surface across the entire cortical surface were created. Results showed that bone formed on the periosteal and endosteal surface in regions of high fluid flow. Peak strain energy density predicted only the formation of bone periosteally. Understanding how the mechanical stimuli spatially relates with regions of cortical bone formation in response to loading will eventually guide loading regime therapies to maintain or restore bone mass in specific sites in skeletal pathologies.

  12. Determination of dynamic fracture initiation toughness of elastic-plastic materials at intermediate strain rates

    International Nuclear Information System (INIS)

    Fernandez-Saez, J.; Luna de, S.; Rubio, L.; Perez-Castellanos, J. L.; Navarro, C.

    2001-01-01

    An earlier paper dealt with the experimental techniques used to determine the dynamic fracture properties of linear elastic materials. Here we describe those most commonly used as elastoplastic materials, limiting the study to the initiation fracture toughness at the intermediate strain rate (of around 10''2 s''-1). In this case the inertial forces are negligible and it is possible to apply the static solutions. With this stipulation, the analysis can be based on the methods of testing in static conditions. The dynamic case differs basically, from the static one, in the influence of the strain rate on the properties of the material. (Author) 57 refs

  13. Quantitation of stress echocardiography by tissue Doppler and strain rate imaging: a dream come true?

    Science.gov (United States)

    Galderisi, Maurizio; Mele, Donato; Marino, Paolo Nicola

    2005-01-01

    Tissue Doppler (TD) is an ultrasound tool providing a quantitative agreement of left ventricular regional myocardial function in different modalities. Spectral pulsed wave (PW) TD, performed online during the examination, measures instantaneous myocardial velocities. By means of color TD, velocity images are digitally stored for subsequent off-line analysis and mean myocardial velocities are measured. An implementation of color TD includes strain rate imaging (SRI), based on post-processing conversion of regional velocities in local myocardial deformation rate (strain rate) and percent deformation (strain). These three modalities have been applied to stress echocardiography for quantitative evaluation of regional left ventricular function and detection of ischemia and viability. They present advantages and limitations. PWTD does not permit the simultaneous assessment of multiple walls and therefore is not compatible with clinical stress echocardiography while it could be used in a laboratory setting. Color TD provides a spatial map of velocity throughout the myocardium but its results are strongly affected by the frame rate. Both color TD and PWTD are also influenced by overall cardiac motion and tethering from adjacent segments and require reference velocity values for interpretation of regional left ventricular function. High frame rate (i.e. > 150 ms) post-processing-derived SRI can potentially overcome these limitations, since measurements of myocardial deformation have not any significant apex-to-base gradient. Preliminary studies have shown encouraging results about the ability of SRI to detect ischemia and viability, in terms of both strain rate changes and/or evidence of post-systolic thickening. SRI is, however, Doppler-dependent and time-consuming. Further technical refinements are needed to improve its application and introduce new ultrasound modalities to overcome the limitations of the Doppler-derived deformation analysis.

  14. Continent-Wide Estimates of Antarctic Strain Rates from Landsat 8-Derived Velocity Grids and Their Application to Ice Shelf Studies

    Science.gov (United States)

    Alley, K. E.; Scambos, T.; Anderson, R. S.; Rajaram, H.; Pope, A.; Haran, T.

    2017-12-01

    Strain rates are fundamental measures of ice flow used in a wide variety of glaciological applications including investigations of bed properties, calculations of basal mass balance on ice shelves, application to Glen's flow law, and many other studies. However, despite their extensive application, strain rates are calculated using widely varying methods and length scales, and the calculation details are often not specified. In this study, we compare the results of nominal and logarithmic strain-rate calculations based on a satellite-derived velocity field of the Antarctic ice sheet generated from Landsat 8 satellite data. Our comparison highlights the differences between the two commonly used approaches in the glaciological literature. We evaluate the errors introduced by each code and their impacts on the results. We also demonstrate the importance of choosing and specifying a length scale over which strain-rate calculations are made, which can have large local impacts on other derived quantities such as basal mass balance on ice shelves. We present strain-rate data products calculated using an approximate viscous length-scale with satellite observations of ice velocity for the Antarctic continent. Finally, we explore the applications of comprehensive strain-rate maps to future ice shelf studies, including investigations of ice fracture, calving patterns, and stability analyses.

  15. Strain rate effects on the mechanical properties and fracture mode of skeletal muscle

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, Michael; Tovar, Nick; Yoo, Daniel [Biomaterials and Biomimetics, New York University College of Dentistry (United States); Sobieraj, Micheal [Orthopedic Surgery, Hospital for Joint Diseases (United States); Gupta, Nikhil [Mechanical and Aerospace Engineering, NYU-Poly (United States); Branski, Ryan C. [Dept of Otolaryngology, New York University School of Medicine (United States); Coelho, Paulo G., E-mail: pc92@nyu.edu [Biomaterials and Biomimetics, New York University College of Dentistry (United States)

    2014-06-01

    The present study aimed to characterize the mechanical response of beagle sartorius muscle fibers under strain rates that increase logarithmically (0.1 mm/min, 1 mm/min and 10 mm/min), and provide an analysis of the fracture patterns of these tissues via scanning electron microscopy (SEM). Muscle tissue from dogs' sartorius was excised and test specimens were sectioned with a lancet into sections with nominal length, width, and thickness of 7, 2.5 and 0.6 mm, respectively. Trimming of the tissue was done so that the loading would be parallel to the direction of the muscle fiber. Samples were immediately tested following excision and failures were observed under the SEM. No statistically significant difference was observed in strength between the 0.1 mm/min (2.560 ± 0.37 MPa) and the 1 mm/min (2.702 ± 0.55 MPa) groups. However, the 10 mm/min group (1.545 ± 0.50 MPa) had a statistically significant lower strength than both the 1 mm/min group and the 0.1 mm/min group with p < 0.01 in both cases. At the 0.1 mm/min rate the primary fracture mechanism was that of a shear mode failure of the endomysium with a significant relative motion between fibers. At 1 mm/min this continues to be the predominant failure mode. At the 10 mm/min strain rate there is a significant change in the fracture pattern relative to other strain rates, where little to no evidence of endomysial shear failure nor of significant motion between fibers was detected.

  16. The stability of mandibular prognathism corrected by bilateral sagittal split osteotomies: a comparison of bi-cortical osteosynthesis and mono-cortical osteosynthesis.

    Science.gov (United States)

    Hsu, S S-P; Huang, C-S; Chen, P K-T; Ko, E W-C; Chen, Y-R

    2012-02-01

    This study evaluated the differences in surgical changes and post-surgical changes between bi-cortical and mono-cortical osteosynthesis (MCO) in the correction of skeletal Class III malocclusion with bilateral sagittal split osteotomies (BSSOs). Twenty-five patients had bi-cortical osteosynthesis (BCO), 32 patients had mono-cortical fixation. Lateral and postero-anterior cephalometric radiographs, taken at the time of surgery, before surgery, 1 month after surgery, and on completion of orthodontic treatment (mean 9.9 months after surgery), were obtained for evaluation. Cephalometric analysis and superimposition were used to investigate the surgical and post-surgical changes. Independent t-test was performed to compare the difference between the two groups. Pearson's correlations were tested to evaluate the factors related to the relapse of the mandible. The sagittal relapse rate was 20% in the bi-cortical and 25% in the mono-cortical group. The forward-upward rotation of the mandible in the post-surgical period contributed most of the sagittal relapse. There were no statistically significant differences in sagittal and vertical changes between the two groups during surgery and in the post-surgical period. No factors were found to correlate with post-surgical relapse, but the intergonial width increased more in the bi-cortical group. The study suggested that both methods of skeletal fixation had similar postoperative stability. Copyright © 2011 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  17. The contribution of the expanding shell test to the modeling of elastoplaticity at high strain rates

    International Nuclear Information System (INIS)

    Llorca, Fabrice; Buy, Francois

    2002-01-01

    The expanding shell test allows to load a material in the domain of high strain levels while strain rate is about 104s-1. This test submits an hemisphere to a radial expanding free flight, using a pyrotechnic device. The experiment (experimental apparatus, measurements...) is described with the difficulties encountered for the interpretation of the experimental data. Under some assumptions, the numerical transformation of radial velocities gives indications about the evolution of the strain, stress, strain rate and temperature rise, this last one being related to plastic work. We show how it is possible to associate both analytical and numerical approaches. Numerical simulation of the test is presented in a companion paper (see [Buy01]). Results obtained for copper, tantalum and TA6V4 are presented. The contribution of this test to the modeling of elastoplastic behavior is discussed and further works are proposed

  18. Reactive Molecular Dynamics Simulations to Understand Mechanical Response of Thaumasite under Temperature and Strain Rate Effects.

    Science.gov (United States)

    Hajilar, Shahin; Shafei, Behrouz; Cheng, Tao; Jaramillo-Botero, Andres

    2017-06-22

    Understanding the structural, thermal, and mechanical properties of thaumasite is of great interest to the cement industry, mainly because it is the phase responsible for the aging and deterioration of civil infrastructures made of cementitious materials attacked by external sources of sulfate. Despite the importance, effects of temperature and strain rate on the mechanical response of thaumasite had remained unexplored prior to the current study, in which the mechanical properties of thaumasite are fully characterized using the reactive molecular dynamics (RMD) method. With employing a first-principles based reactive force field, the RMD simulations enable the description of bond dissociation and formation under realistic conditions. From the stress-strain curves of thaumasite generated in the x, y, and z directions, the tensile strength, Young's modulus, and fracture strain are determined for the three orthogonal directions. During the course of each simulation, the chemical bonds undergoing tensile deformations are monitored to reveal the bonds responsible for the mechanical strength of thaumasite. The temperature increase is found to accelerate the bond breaking rate and consequently the degradation of mechanical properties of thaumasite, while the strain rate only leads to a slight enhancement of them for the ranges considered in this study.

  19. Genomic regulation of natural variation in cortical and noncortical brain volume

    Directory of Open Access Journals (Sweden)

    Laughlin Rick E

    2006-02-01

    Full Text Available Abstract Background The relative growth of the neocortex parallels the emergence of complex cognitive functions across species. To determine the regions of the mammalian genome responsible for natural variations in cortical volume, we conducted a complex trait analysis using 34 strains of recombinant inbred (Rl strains of mice (BXD, as well as their two parental strains (C57BL/6J and DBA/2J. We measured both neocortical volume and total brain volume in 155 coronally sectioned mouse brains that were Nissl stained and embedded in celloidin. After correction for shrinkage, the measured cortical and noncortical brain volumes were entered into a multiple regression analysis, which removed the effects of body size and age from the measurements. Marker regression and interval mapping were computed using WebQTL. Results An ANOVA revealed that more than half of the variance of these regressed phenotypes is genetically determined. We then identified the regions of the genome regulating this heritability. We located genomic regions in which a linkage disequilibrium was present using WebQTL as both a mapping engine and genomic database. For neocortex, we found a genome-wide significant quantitative trait locus (QTL on chromosome 11 (marker D11Mit19, as well as a suggestive QTL on chromosome 16 (marker D16Mit100. In contrast, for noncortex the effect of chromosome 11 was markedly reduced, and a significant QTL appeared on chromosome 19 (D19Mit22. Conclusion This classic pattern of double dissociation argues strongly for different genetic factors regulating relative cortical size, as opposed to brain volume more generally. It is likely, however, that the effects of proximal chromosome 11 extend beyond the neocortex strictly defined. An analysis of single nucleotide polymorphisms in these regions indicated that ciliary neurotrophic factor (Cntf is quite possibly the gene underlying the noncortical QTL. Evidence for a candidate gene modulating neocortical

  20. Firing-rate based network modeling of the dLGN circuit: Effects of cortical feedback on spatiotemporal response properties of relay cells.

    Science.gov (United States)

    Mobarhan, Milad Hobbi; Halnes, Geir; Martínez-Cañada, Pablo; Hafting, Torkel; Fyhn, Marianne; Einevoll, Gaute T

    2018-05-01

    Visually evoked signals in the retina pass through the dorsal geniculate nucleus (dLGN) on the way to the visual cortex. This is however not a simple feedforward flow of information: there is a significant feedback from cortical cells back to both relay cells and interneurons in the dLGN. Despite four decades of experimental and theoretical studies, the functional role of this feedback is still debated. Here we use a firing-rate model, the extended difference-of-Gaussians (eDOG) model, to explore cortical feedback effects on visual responses of dLGN relay cells. For this model the responses are found by direct evaluation of two- or three-dimensional integrals allowing for fast and comprehensive studies of putative effects of different candidate organizations of the cortical feedback. Our analysis identifies a special mixed configuration of excitatory and inhibitory cortical feedback which seems to best account for available experimental data. This configuration consists of (i) a slow (long-delay) and spatially widespread inhibitory feedback, combined with (ii) a fast (short-delayed) and spatially narrow excitatory feedback, where (iii) the excitatory/inhibitory ON-ON connections are accompanied respectively by inhibitory/excitatory OFF-ON connections, i.e. following a phase-reversed arrangement. The recent development of optogenetic and pharmacogenetic methods has provided new tools for more precise manipulation and investigation of the thalamocortical circuit, in particular for mice. Such data will expectedly allow the eDOG model to be better constrained by data from specific animal model systems than has been possible until now for cat. We have therefore made the Python tool pyLGN which allows for easy adaptation of the eDOG model to new situations.

  1. Growth rates of three geographically separated strains of the ichthyotoxic Prymnesium parvum (Prymnesiophyceae) in response to six different pH levels

    Science.gov (United States)

    Lysgaard, Maria L.; Eckford-Soper, Lisa; Daugbjerg, Niels

    2018-05-01

    Continued anthropogenic carbon emissions are expected to cause a decline in global average pH of the oceans to a projected value of 7.8 by the end of the century. Understanding how harmful algal bloom (HAB) species will respond to lowered pH levels will be important when predicting future HAB events and their ecological consequences. In this study, we examined how manipulated pH levels affected the growth rate of three strains of Prymnesium parvum from North America, Denmark and Japan. Triplicate strains were grown under pH conditions ranging from 6.6 to 9.1 to simulate plausible future levels. Different tolerances were evident for all strains. Significantly higher growth rates were observed at pH 6.6-8.1 compared to growth rates at pH 8.6-9.1 and a lower pH limit was not observed. The Japanese strain (NIES-1017) had the highest maximum growth rate of 0.39 divisions day-1 at pH 6.6 but a low tolerance (0.22 divisions day-1) to high levels (pH 9.1) with growth declining markedly after pH 7.6. The Danish (SCCAP K-0081) and North American (UTEX LB 2797) strains had maximum growth rates of 0.26 and 0.35 divisions day-1, respectively between pH 6.6-8.1. Compared to the other two strains the Danish strain had a statistically lower growth rate across all pH treatments. Strain differences were either attributed to their provenance or the length of time the strain had been in culture.

  2. Stereotypic wheel running decreases cortical activity in mice

    Science.gov (United States)

    Fisher, Simon P.; Cui, Nanyi; McKillop, Laura E.; Gemignani, Jessica; Bannerman, David M.; Oliver, Peter L.; Peirson, Stuart N.; Vyazovskiy, Vladyslav V.

    2016-01-01

    Prolonged wakefulness is thought to gradually increase ‘sleep need' and influence subsequent sleep duration and intensity, but the role of specific waking behaviours remains unclear. Here we report the effect of voluntary wheel running during wakefulness on neuronal activity in the motor and somatosensory cortex in mice. We find that stereotypic wheel running is associated with a substantial reduction in firing rates among a large subpopulation of cortical neurons, especially at high speeds. Wheel running also has longer-term effects on spiking activity across periods of wakefulness. Specifically, cortical firing rates are significantly higher towards the end of a spontaneous prolonged waking period. However, this increase is abolished when wakefulness is dominated by running wheel activity. These findings indicate that wake-related changes in firing rates are determined not only by wake duration, but also by specific waking behaviours. PMID:27748455

  3. Prospective detection of cortical dysplasia on clinical MRI in pediatric intractable epilepsy

    Energy Technology Data Exchange (ETDEWEB)

    Radhakrishnan, Rupa; Leach, James L.; Gelfand, Michael J. [Cincinnati Children' s Hospital Medical Center, Department of Radiology, Cincinnati, OH (United States); Mangano, Francesco T. [Cincinnati Children' s Hospital Medical Center, Department of Neurosurgery, Cincinnati, OH (United States); Rozhkov, Leonid; Greiner, Hansel M. [Cincinnati Children' s Hospital Medical Center, Department of Neurology, Comprehensive Epilepsy Treatment Center, Cincinnati, OH (United States); Miles, Lili [Cincinnati Children' s Hospital Medical Center, Department of Pathology, Cincinnati, OH (United States)

    2016-09-15

    Cortical dysplasia is the most common cause of pediatric refractory epilepsy. MRI detection of epileptogenic lesion is associated with good postsurgical outcome. Additional electrophysiological information is suggested to be helpful in localization of cortical dysplasia. Educational measures were taken to increase the awareness of cortical dysplasia at our institution in the context of a recent International League Against Epilepsy (ILAE 2011) classification of cortical dysplasia. To determine changes in the rate of prospective identification of cortical dysplasia on an initial radiology report and also evaluate the benefit of MRI review as part of a multidisciplinary epilepsy conference in identifying previously overlooked MRI findings. We retrospectively evaluated surgically treated children with refractory epilepsy from 2007 to 2014 with cortical dysplasia on histopathology. We analyzed the initial radiology report, preoperative MRI interpretation at multidisciplinary epilepsy conference and subsequent retrospective MRI review with knowledge of the resection site. We recorded additional electrophysiological data and the presence of lobar concordance with the MRI findings. Of 78 children (44 MRI lesional) evaluated, 18 had initially overlooked MRI findings. Comparing 2007-2010 to 2011-2014, there was improvement in the rate of overlooked findings on the initial radiology report (54% vs. 13% of lesional cases, respectively; P = 0.008). The majority (72%) were identified at a multidisciplinary conference with lobar concordance of findings with at least one additional electrophysiological investigation in 89%. Awareness of current classification schemes of cortical dysplasia and image review in the context of a multidisciplinary conference can lead to improved MRI detection of cortical dysplasia in children. (orig.)

  4. Prospective detection of cortical dysplasia on clinical MRI in pediatric intractable epilepsy

    International Nuclear Information System (INIS)

    Radhakrishnan, Rupa; Leach, James L.; Gelfand, Michael J.; Mangano, Francesco T.; Rozhkov, Leonid; Greiner, Hansel M.; Miles, Lili

    2016-01-01

    Cortical dysplasia is the most common cause of pediatric refractory epilepsy. MRI detection of epileptogenic lesion is associated with good postsurgical outcome. Additional electrophysiological information is suggested to be helpful in localization of cortical dysplasia. Educational measures were taken to increase the awareness of cortical dysplasia at our institution in the context of a recent International League Against Epilepsy (ILAE 2011) classification of cortical dysplasia. To determine changes in the rate of prospective identification of cortical dysplasia on an initial radiology report and also evaluate the benefit of MRI review as part of a multidisciplinary epilepsy conference in identifying previously overlooked MRI findings. We retrospectively evaluated surgically treated children with refractory epilepsy from 2007 to 2014 with cortical dysplasia on histopathology. We analyzed the initial radiology report, preoperative MRI interpretation at multidisciplinary epilepsy conference and subsequent retrospective MRI review with knowledge of the resection site. We recorded additional electrophysiological data and the presence of lobar concordance with the MRI findings. Of 78 children (44 MRI lesional) evaluated, 18 had initially overlooked MRI findings. Comparing 2007-2010 to 2011-2014, there was improvement in the rate of overlooked findings on the initial radiology report (54% vs. 13% of lesional cases, respectively; P = 0.008). The majority (72%) were identified at a multidisciplinary conference with lobar concordance of findings with at least one additional electrophysiological investigation in 89%. Awareness of current classification schemes of cortical dysplasia and image review in the context of a multidisciplinary conference can lead to improved MRI detection of cortical dysplasia in children. (orig.)

  5. Strain rate sensitivity of the tensile strength of two silicon carbides: experimental evidence and micromechanical modelling.

    Science.gov (United States)

    Zinszner, Jean-Luc; Erzar, Benjamin; Forquin, Pascal

    2017-01-28

    Ceramic materials are commonly used to design multi-layer armour systems thanks to their favourable physical and mechanical properties. However, during an impact event, fragmentation of the ceramic plate inevitably occurs due to its inherent brittleness under tensile loading. Consequently, an accurate model of the fragmentation process is necessary in order to achieve an optimum design for a desired armour configuration. In this work, shockless spalling tests have been performed on two silicon carbide grades at strain rates ranging from 10 3 to 10 4  s -1 using a high-pulsed power generator. These spalling tests characterize the tensile strength strain rate sensitivity of each ceramic grade. The microstructural properties of the ceramics appear to play an important role on the strain rate sensitivity and on the dynamic tensile strength. Moreover, this experimental configuration allows for recovering damaged, but unbroken specimens, giving unique insight on the fragmentation process initiated in the ceramics. All the collected data have been compared with corresponding results of numerical simulations performed using the Denoual-Forquin-Hild anisotropic damage model. Good agreement is observed between numerical simulations and experimental data in terms of free surface velocity, size and location of the damaged zones along with crack density in these damaged zones.This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'. © 2016 The Author(s).

  6. Strain rate sensitivity of the tensile strength of two silicon carbides: experimental evidence and micromechanical modelling

    Science.gov (United States)

    Zinszner, Jean-Luc; Erzar, Benjamin; Forquin, Pascal

    2017-01-01

    Ceramic materials are commonly used to design multi-layer armour systems thanks to their favourable physical and mechanical properties. However, during an impact event, fragmentation of the ceramic plate inevitably occurs due to its inherent brittleness under tensile loading. Consequently, an accurate model of the fragmentation process is necessary in order to achieve an optimum design for a desired armour configuration. In this work, shockless spalling tests have been performed on two silicon carbide grades at strain rates ranging from 103 to 104 s-1 using a high-pulsed power generator. These spalling tests characterize the tensile strength strain rate sensitivity of each ceramic grade. The microstructural properties of the ceramics appear to play an important role on the strain rate sensitivity and on the dynamic tensile strength. Moreover, this experimental configuration allows for recovering damaged, but unbroken specimens, giving unique insight on the fragmentation process initiated in the ceramics. All the collected data have been compared with corresponding results of numerical simulations performed using the Denoual-Forquin-Hild anisotropic damage model. Good agreement is observed between numerical simulations and experimental data in terms of free surface velocity, size and location of the damaged zones along with crack density in these damaged zones. This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'.

  7. A quantitative prediction model of SCC rate for nuclear structure materials in high temperature water based on crack tip creep strain rate

    International Nuclear Information System (INIS)

    Yang, F.Q.; Xue, H.; Zhao, L.Y.; Fang, X.R.

    2014-01-01

    Highlights: • Creep is considered to be the primary mechanical factor of crack tip film degradation. • The prediction model of SCC rate is based on crack tip creep strain rate. • The SCC rate calculated at the secondary stage of creep is recommended. • The effect of stress intensity factor on SCC growth rate is discussed. - Abstract: The quantitative prediction of stress corrosion cracking (SCC) of structure materials is essential in safety assessment of nuclear power plants. A new quantitative prediction model is proposed by combining the Ford–Andresen model, a crack tip creep model and an elastic–plastic finite element method. The creep at the crack tip is considered to be the primary mechanical factor of protective film degradation, and the creep strain rate at the crack tip is suggested as primary mechanical factor in predicting the SCC rate. The SCC rates at secondary stage of creep are recommended when using the approach introduced in this study to predict the SCC rates of materials in high temperature water. The proposed approach can be used to understand the SCC crack growth in structural materials of light water reactors

  8. Strain Rate Dependent Deformation of a Polymer Matrix Composite with Different Microstructures Subjected to Off-Axis Loading

    Directory of Open Access Journals (Sweden)

    Xiaojun Zhu

    2014-01-01

    Full Text Available This paper aims to investigate the comprehensive influence of three microstructure parameters (fiber cross-section shape, fiber volume fraction, and fiber off-axis orientation and strain rate on the macroscopic property of a polymer matrix composite. During the analysis, AS4 fibers are considered as elastic solids, while the surrounding PEEK resin matrix exhibiting rate sensitivities are described using the modified Ramaswamy-Stouffer viscoplastic state variable model. The micromechanical method based on generalized model of cells has been used to analyze the representative volume element of composites. An acceptable agreement is observed between the model predictions and experimental results found in the literature. The research results show that the stress-strain curves are sensitive to the strain rate and the microstructure parameters play an important role in the behavior of polymer matrix.

  9. Evaluation of Dynamic Deformation Behaviors in Metallic Materials under High Strain-Rates Using Taylor Bar Impact Test

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Kyung Oh; Shin, Hyung Seop [Andong National Univ., Andong (Korea, Republic of)

    2016-09-15

    To ensure the reliability and safety of various mechanical systems in accordance with their high-speed usage, it is necessary to evaluate the dynamic deformation behavior of structural materials under impact load. However, it is not easy to understand the dynamic deformation behavior of the structural materials using experimental methods in the high strain-rate range exceeding 10{sup 4} s{sup -1}. In this study, the Taylor bar impact test was conducted to investigate the dynamic deformation behavior of metallic materials in the high strain-rate region, using a high-speed photography system. Numerical analysis of the Taylor bar impact test was performed using AUTODYN S/W. The results of the analysis were compared with the experimental results, and the material behavior in the high strain-rate region was discussed.

  10. Strain rate dependence of twinning at 450 Degree-Sign C and its effect on microstructure of an extruded magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Q., E-mail: qma@cavs.msstate.edu [Center for Advanced Vehicular Systems, Mississippi State University, Starkville, MS 39759 (United States); Li, B.; Oppedal, A.L.; Whittington, W.R.; Horstemeyer, S.J.; Marin, E.B.; Wang, P.T. [Center for Advanced Vehicular Systems, Mississippi State University, Starkville, MS 39759 (United States); Horstemeyer, M.F. [Center for Advanced Vehicular Systems, Mississippi State University, Starkville, MS 39759 (United States); Department of Mechanical Engineering, Mississippi State University, Starkville, MS 39762 (United States)

    2013-01-01

    Deformation twinning in magnesium alloys at elevated temperatures has received relatively little attention because it is generally deemed that dislocation slip dominates plastic deformation. In this work, twinning at 450 Degree-Sign C in an extruded Mg-Al-Mn magnesium alloy (AM30) was studied by interrupted compression tests at various strain rates within a practical range for lab-scale extrusion (<1.0 s{sup -1}). Microstructure and texture evolution were examined by electron backscatter diffraction (EBSD) at different strain levels. The results show that sporadic twins started to appear at strain rate of 0.1 s{sup -1}, whereas profuse twinning was activated at strain rates of 0.5 and 0.8 s{sup -1}. The deformation twins quickly lost original morphology because of dynamic recrystallization. These results show that deformation twinning has a significant effect on microstructural and texture evolution of wrought Mg alloys at elevated temperatures within practical strain rate range.

  11. Yield strength of molybdenum, tantalum and tungsten at high strain rates and very high temperatures

    International Nuclear Information System (INIS)

    Škoro, G.P.; Bennett, J.R.J.; Edgecock, T.R.; Booth, C.N.

    2012-01-01

    Highlights: ► New experimental data on the yield strength of molybdenum, tantalum and tungsten. ► High strain rate effects at record high temperatures (up to 2700 K). ► Test of the consistency of the Zerilli–Armstrong model at very high temperatures. - Abstract: Recently reported results of the high strain rate, high temperature measurements of the yield strength of tantalum and tungsten have been analyzed along with new experimental results on the yield strength of molybdenum. Thin wires are subjected to high stress by passing a short, fast, high current pulse through a thin wire; the amplitude of the current governs the stress and the repetition rate of the pulses determines the temperature of the wire. The highest temperatures reached in the experiments were 2100 °C (for molybdenum), 2250 °C (for tantalum) and 2450 °C (for tungsten). The strain-rates in the tests were in the range from 500 to 1500 s −1 . The parameters for the constitutive equation developed by Zerilli and Armstrong have been determined from the experimental data and the results have been compared with the data obtained at lower temperatures. An exceptionally good fit is obtained for the deformation of tungsten.

  12. Experimental investigation of the failure envelope of unidirectional carbon-epoxy composite under high strain rate transverse and off-axis tensile loading

    Directory of Open Access Journals (Sweden)

    Kuhn Peter

    2015-01-01

    Full Text Available The mechanical response of the carbon-epoxy material system HexPly IM7-8552 was investigated under transverse tension and combined transverse tension / in-plane shear loading at quasi-static and dynamic strain rates. The dynamic tests of the transverse tension and off-axis tension specimens were carried out on a split-Hopkinson tension bar system, while the quasi-static reference tests were performed on a standard electro-mechanical testing machine. Digital image correlation was used for data reduction at both strain rate regimes. For the high rate tests, the strain rate in loading direction was adjusted to reach approximately the same strain rate value in the fracture plane for each specimen. The measured axial strengths were transformed from the global coordinate system into the combined transverse tension-shear stress space of the material coordinate system and compared with the Puck Mode A criterion for inter-fibre failure. A good correlation between the experimental data and the predicted failure envelopes was found for both investigated strain rate regimes.

  13. Recovery of strain-hardening rate in Ni-Si alloys

    Science.gov (United States)

    Yang, C. L.; Zhang, Z. J.; Cai, T.; Zhang, P.; Zhang, Z. F.

    2015-10-01

    In this study, the recovery of strain-hardening rate (RSHR) was discovered for the first time in polycrystalline materials (Ni-Si alloys) that have only dislocation activities during tensile test. Detailed microstructure characterizations show that the activation of dislocations in the secondary slip systems during tensile deformation is the major reason for this RSHR. By taking into account other metals that also exhibit RSHR during tension, a more general mechanism for the RSHR was proposed, i.e. the occurrence of a sharp decrease of dislocation mean free path (Λ) during plastic deformation, caused by either planar defects or linear defects.

  14. Perceptual incongruence influences bistability and cortical activation

    NARCIS (Netherlands)

    Brouwer, G.J.; Tong, F.; Hagoort, P.; van Ee, R.

    2009-01-01

    We employed a parametric psychophysical design in combination with functional imaging to examine the influence of metric changes in perceptual incongruence on perceptual alternation rates and cortical responses. Subjects viewed a bistable stimulus defined by incongruent depth cues; bistability

  15. High strain rate deformation of layered nanocomposites

    Science.gov (United States)

    Lee, Jae-Hwang; Veysset, David; Singer, Jonathan P.; Retsch, Markus; Saini, Gagan; Pezeril, Thomas; Nelson, Keith A.; Thomas, Edwin L.

    2012-11-01

    Insight into the mechanical behaviour of nanomaterials under the extreme condition of very high deformation rates and to very large strains is needed to provide improved understanding for the development of new protective materials. Applications include protection against bullets for body armour, micrometeorites for satellites, and high-speed particle impact for jet engine turbine blades. Here we use a microscopic ballistic test to report the responses of periodic glassy-rubbery layered block-copolymer nanostructures to impact from hypervelocity micron-sized silica spheres. Entire deformation fields are experimentally visualized at an exceptionally high resolution (below 10 nm) and we discover how the microstructure dissipates the impact energy via layer kinking, layer compression, extreme chain conformational flattening, domain fragmentation and segmental mixing to form a liquid phase. Orientation-dependent experiments show that the dissipation can be enhanced by 30% by proper orientation of the layers.

  16. High strain rate deformation of layered nanocomposites.

    Science.gov (United States)

    Lee, Jae-Hwang; Veysset, David; Singer, Jonathan P; Retsch, Markus; Saini, Gagan; Pezeril, Thomas; Nelson, Keith A; Thomas, Edwin L

    2012-01-01

    Insight into the mechanical behaviour of nanomaterials under the extreme condition of very high deformation rates and to very large strains is needed to provide improved understanding for the development of new protective materials. Applications include protection against bullets for body armour, micrometeorites for satellites, and high-speed particle impact for jet engine turbine blades. Here we use a microscopic ballistic test to report the responses of periodic glassy-rubbery layered block-copolymer nanostructures to impact from hypervelocity micron-sized silica spheres. Entire deformation fields are experimentally visualized at an exceptionally high resolution (below 10 nm) and we discover how the microstructure dissipates the impact energy via layer kinking, layer compression, extreme chain conformational flattening, domain fragmentation and segmental mixing to form a liquid phase. Orientation-dependent experiments show that the dissipation can be enhanced by 30% by proper orientation of the layers.

  17. Populations of auditory cortical neurons can accurately encode acoustic space across stimulus intensity.

    Science.gov (United States)

    Miller, Lee M; Recanzone, Gregg H

    2009-04-07

    The auditory cortex is critical for perceiving a sound's location. However, there is no topographic representation of acoustic space, and individual auditory cortical neurons are often broadly tuned to stimulus location. It thus remains unclear how acoustic space is represented in the mammalian cerebral cortex and how it could contribute to sound localization. This report tests whether the firing rates of populations of neurons in different auditory cortical fields in the macaque monkey carry sufficient information to account for horizontal sound localization ability. We applied an optimal neural decoding technique, based on maximum likelihood estimation, to populations of neurons from 6 different cortical fields encompassing core and belt areas. We found that the firing rate of neurons in the caudolateral area contain enough information to account for sound localization ability, but neurons in other tested core and belt cortical areas do not. These results provide a detailed and plausible population model of how acoustic space could be represented in the primate cerebral cortex and support a dual stream processing model of auditory cortical processing.

  18. Fracture and strain rate behavior of airplane fuselage materials under blast loading

    NARCIS (Netherlands)

    Mediavilla Varas, J.; Soetens, F.; Kroon, E.; Aanhold, van J.E.; Meulen, van der O.R.; Sagimon, M.

    2010-01-01

    The dynamic behavior of three commonly used airplane fuselage materials is investigated, namely of Al2024-T3, Glare-3 and CFRP. Dynamic tensile tests using a servo-hydraulic and a light weight shock testing machine (LSM) have been performed. The results showed no strain rate effect on Al2024-T3 and

  19. Dynamic behaviour and shock-induced martensite transformation in near-beta Ti-5553 alloy under high strain rate loading

    Directory of Open Access Journals (Sweden)

    Wang Lin

    2015-01-01

    Full Text Available Ti-5553 alloy is a near-beta titanium alloy with high strength and high fracture toughness. In this paper, the dynamic behaviour and shock-induced martensite phase transformation of Ti-5553 alloy with alpha/beta phases were investigated. Split Hopkinson Pressure Bar was employed to investigate the dynamic properties. Microstructure evolutions were characterized by Scanning Electronic Microscopy and Transmission Electron Microscope. The experimental results have demonstrated that Ti-5553 alloy with alpha/beta phases exhibits various strain rate hardening effects, both failure through adiabatic shear band. Ti-5553 alloy with Widmannstatten microstructure exhibit more obvious strain rate hardening effect, lower critical strain rate for ASB nucleation, compared with the alloy with Bimodal microstructures. Under dynamic compression, shock-induced beta to alpha” martensite transformation occurs.

  20. Early and phasic cortical metabolic changes in vestibular neuritis onset.

    Directory of Open Access Journals (Sweden)

    Marco Alessandrini

    Full Text Available Functional brain activation studies described the presence of separate cortical areas responsible for central processing of peripheral vestibular information and reported their activation and interactions with other sensory modalities and the changes of this network associated to strategic peripheral or central vestibular lesions. It is already known that cortical changes induced by acute unilateral vestibular failure (UVF are various and undergo variations over time, revealing different cortical involved areas at the onset and recovery from symptoms. The present study aimed at reporting the earliest change in cortical metabolic activity during a paradigmatic form of UVF such as vestibular neuritis (VN, that is, a purely peripheral lesion of the vestibular system, that offers the opportunity to study the cortical response to altered vestibular processing. This research reports [(18F]fluorodeoxyglucose positron emission tomography brain scan data concerning the early cortical metabolic activity associated to symptoms onset in a group of eight patients suffering from VN. VN patients' cortical metabolic activity during the first two days from symptoms onset was compared to that recorded one month later and to a control healthy group. Beside the known cortical response in the sensorimotor network associated to vestibular deafferentation, we show for the first time the involvement of Entorhinal (BAs 28, 34 and Temporal (BA 38 cortices in early phases of symptomatology onset. We interpret these findings as the cortical counterparts of the attempt to reorient oneself in space counteracting the vertigo symptom (Bas 28, 34 and of the emotional response to the new pathologic condition (BA 38 respectively. These interpretations were further supported by changes in patients' subjective ratings in balance, anxiety, and depersonalization/derealization scores when tested at illness onset and one month later. The present findings contribute in expanding

  1. Fracture and strain rate behavior of airplane fuselage materials under blast loading

    NARCIS (Netherlands)

    Mediavilla Varas, J.; Soetens, F.; Kroon, E.; Aanhold, J.E. van; Meulen, O.R. van der; Sagimon, M.

    2010-01-01

    The dynamic behavior of three commonly used airplane fuselage materials is investigated, namely of Al2024-T3, Glare-3 and CFRP. Dynamic tensile tests using a servo-hydraulic and a light weight shock testing machine (LSM) have been performed. The results showed no strain rate effect on Al2024-T3 and

  2. Elastic-plastic potential functionals for rates and increments of stress and strain

    International Nuclear Information System (INIS)

    Feijoo, R.A.; Zouain, N.

    1990-03-01

    In this work attention is focused in the derivation of variational formulations of the constutive relationship in the form of conjugate potential functionals from which stress and strain rates are derived as elements of the corresponding sub-differential sets. The main result obtained is a pair of potential functionals. (A.C.A.S.) [pt

  3. Computational model of 18650 lithium-ion battery with coupled strain rate and SOC dependencies

    International Nuclear Information System (INIS)

    Xu, Jun; Liu, Binghe; Wang, Xinyi; Hu, Dayong

    2016-01-01

    Highlights: • An anisotropic model to describe mechanical behaviors of LIB is established. • SOC dependency is included in the mechanical model of the jellyroll. • Dynamic effect is considered in the model for LIB. - Abstract: Highly nonlinear structures and constituent materials and hazardous experiment situations have resulted in a pressing need for a numerical mechanical model for lithium-ion battery (LIB). However, such a model is still not well established. In this paper, an anisotropic homogeneous model describing the jellyroll and the battery shell is established and validated through compression, indentation, and bending tests at quasi-static loadings. In this model, state-of-charge (SOC) dependency of the LIB is further included through an analogy with the strain-rate effect. Moreover, with consideration of the inertia and strain-rate effects, the anisotropic homogeneous model is extended into the dynamic regime and proven capable of predicting the dynamic response of the LIB using the drop-weight test. The established model may help to predict extreme cases with high SOCs and crashing speeds with an over 135% improved accuracy compared to traditional models. The established coupled strain rate and SOC dependencies of the numerical mechanical model for the LIB aims to provide a solid step toward unraveling and quantifying the complicated problems for research on LIB mechanical integrity.

  4. A Combined Precipitation, Yield Stress, and Work Hardening Model for Al-Mg-Si Alloys Incorporating the Effects of Strain Rate and Temperature

    Science.gov (United States)

    Myhr, Ole Runar; Hopperstad, Odd Sture; Børvik, Tore

    2018-05-01

    In this study, a combined precipitation, yield strength, and work hardening model for Al-Mg-Si alloys known as NaMo has been further developed to include the effects of strain rate and temperature on the resulting stress-strain behavior. The extension of the model is based on a comprehensive experimental database, where thermomechanical data for three different Al-Mg-Si alloys are available. In the tests, the temperature was varied between 20 °C and 350 °C with strain rates ranging from 10-6 to 750 s-1 using ordinary tension tests for low strain rates and a split-Hopkinson tension bar system for high strain rates, respectively. This large span in temperatures and strain rates covers a broad range of industrial relevant problems from creep to impact loading. Based on the experimental data, a procedure for calibrating the different physical parameters of the model has been developed, starting with the simplest case of a stable precipitate structure and small plastic strains, from which basic kinetic data for obstacle limited dislocation glide were extracted. For larger strains, when work hardening becomes significant, the dynamic recovery was linked to the Zener-Hollomon parameter, again using a stable precipitate structure as a basis for calibration. Finally, the complex situation of concurrent work hardening and dynamic evolution of the precipitate structure was analyzed using a stepwise numerical solution algorithm where parameters representing the instantaneous state of the structure were used to calculate the corresponding instantaneous yield strength and work hardening rate. The model was demonstrated to exhibit a high degree of predictive power as documented by a good agreement between predictions and measurements, and it is deemed well suited for simulations of thermomechanical processing of Al-Mg-Si alloys where plastic deformation is carried out at various strain rates and temperatures.

  5. Effects of aging and sensory loss on glial cells in mouse visual and auditory cortices

    Science.gov (United States)

    Tremblay, Marie-Ève; Zettel, Martha L.; Ison, James R.; Allen, Paul D.; Majewska, Ania K.

    2011-01-01

    Normal aging is often accompanied by a progressive loss of receptor sensitivity in hearing and vision, whose consequences on cellular function in cortical sensory areas have remained largely unknown. By examining the primary auditory (A1) and visual (V1) cortices in two inbred strains of mice undergoing either age-related loss of audition (C57BL/6J) or vision (CBA/CaJ), we were able to describe cellular and subcellular changes that were associated with normal aging (occurring in A1 and V1 of both strains) or specifically with age-related sensory loss (only in A1 of C57BL/6J or V1 of CBA/CaJ), using immunocytochemical electron microscopy and light microscopy. While the changes were subtle in neurons, glial cells and especially microglia were transformed in aged animals. Microglia became more numerous and irregularly distributed, displayed more variable cell body and process morphologies, occupied smaller territories, and accumulated phagocytic inclusions that often displayed ultrastructural features of synaptic elements. Additionally, evidence of myelination defects were observed, and aged oligodendrocytes became more numerous and were more often encountered in contiguous pairs. Most of these effects were profoundly exacerbated by age-related sensory loss. Together, our results suggest that the age-related alteration of glial cells in sensory cortical areas can be accelerated by activity-driven central mechanisms that result from an age-related loss of peripheral sensitivity. In light of our observations, these age-related changes in sensory function should be considered when investigating cellular, cortical and behavioral functions throughout the lifespan in these commonly used C57BL/6J and CBA/CaJ mouse models. PMID:22223464

  6. Cortico-cortical communication dynamics

    Directory of Open Access Journals (Sweden)

    Per E Roland

    2014-05-01

    Full Text Available IIn principle, cortico-cortical communication dynamics is simple: neurons in one cortical area communicate by sending action potentials that release glutamate and excite their target neurons in other cortical areas. In practice, knowledge about cortico-cortical communication dynamics is minute. One reason is that no current technique can capture the fast spatio-temporal cortico-cortical evolution of action potential transmission and membrane conductances with sufficient spatial resolution. A combination of optogenetics and monosynaptic tracing with virus can reveal the spatio-temporal cortico-cortical dynamics of specific neurons and their targets, but does not reveal how the dynamics evolves under natural conditions. Spontaneous ongoing action potentials also spread across cortical areas and are difficult to separate from structured evoked and intrinsic brain activity such as thinking. At a certain state of evolution, the dynamics may engage larger populations of neurons to drive the brain to decisions, percepts and behaviors. For example, successfully evolving dynamics to sensory transients can appear at the mesoscopic scale revealing how the transient is perceived. As a consequence of these methodological and conceptual difficulties, studies in this field comprise a wide range of computational models, large-scale measurements (e.g., by MEG, EEG, and a combination of invasive measurements in animal experiments. Further obstacles and challenges of studying cortico-cortical communication dynamics are outlined in this critical review.

  7. Slow strain rate stress corrosion cracking under multiaxial deformation conditions: technique and application to admiralty brass

    International Nuclear Information System (INIS)

    Blanchard, W.K.; Heldt, L.A.; Koss, D.

    1984-01-01

    A set of straightforward experimental techniques are described for the examination of slow strain rate stress corrosion cracking (SCC) of sheet deforming under nearly all multiaxial deformation conditions which result in sheet thinning. Based on local fracture strain as a failure criterion, the results contrast stress corrosion susceptibility in uniaxial tension with those in both plane strain and balanced biaxial tension. These results indicate that the loss of ductility of the brass increases as the stress state changes from uniaxial toward balanced biaxial tension

  8. Cortical entrainment to music and its modulation by expertise.

    Science.gov (United States)

    Doelling, Keith B; Poeppel, David

    2015-11-10

    Recent studies establish that cortical oscillations track naturalistic speech in a remarkably faithful way. Here, we test whether such neural activity, particularly low-frequency (music and whether experience modifies such a cortical phenomenon. Music of varying tempi was used to test entrainment at different rates. In three magnetoencephalography experiments, we recorded from nonmusicians, as well as musicians with varying years of experience. Recordings from nonmusicians demonstrate cortical entrainment that tracks musical stimuli over a typical range of tempi, but not at tempi below 1 note per second. Importantly, the observed entrainment correlates with performance on a concurrent pitch-related behavioral task. In contrast, the data from musicians show that entrainment is enhanced by years of musical training, at all presented tempi. This suggests a bidirectional relationship between behavior and cortical entrainment, a phenomenon that has not previously been reported. Additional analyses focus on responses in the beta range (∼15-30 Hz)-often linked to delta activity in the context of temporal predictions. Our findings provide evidence that the role of beta in temporal predictions scales to the complex hierarchical rhythms in natural music and enhances processing of musical content. This study builds on important findings on brainstem plasticity and represents a compelling demonstration that cortical neural entrainment is tightly coupled to both musical training and task performance, further supporting a role for cortical oscillatory activity in music perception and cognition.

  9. Comparing the influence of crestal cortical bone and sinus floor cortical bone in posterior maxilla bi-cortical dental implantation: a three-dimensional finite element analysis.

    Science.gov (United States)

    Yan, Xu; Zhang, Xinwen; Chi, Weichao; Ai, Hongjun; Wu, Lin

    2015-05-01

    This study aimed to compare the influence of alveolar ridge cortical bone and sinus floor cortical bone in sinus areabi-cortical dental implantation by means of 3D finite element analysis. Three-dimensional finite element (FE) models in a posterior maxillary region with sinus membrane and the same height of alveolar ridge of 10 mm were generated according to the anatomical data of the sinus area. They were either with fixed thickness of crestal cortical bone and variable thickness of sinus floor cortical bone or vice versa. Ten models were assumed to be under immediate loading or conventional loading. The standard implant model based on the Nobel Biocare implant system was created via computer-aided design software. All materials were assumed to be isotropic and linearly elastic. An inclined force of 129 N was applied. Von Mises stress mainly concentrated on the surface of crestal cortical bone around the implant neck. For all the models, both the axial and buccolingual resonance frequencies of conventional loading were higher than those of immediate loading; however, the difference is less than 5%. The results showed that bi-cortical implant in sinus area increased the stability of the implant, especially for immediately loading implantation. The thickness of both crestal cortical bone and sinus floor cortical bone influenced implant micromotion and stress distribution; however, crestal cortical bone may be more important than sinus floor cortical bone.

  10. Strain rate sensitivity of the tensile strength of two silicon carbides: experimental evidence and micromechanical modelling

    Science.gov (United States)

    Erzar, Benjamin

    2017-01-01

    Ceramic materials are commonly used to design multi-layer armour systems thanks to their favourable physical and mechanical properties. However, during an impact event, fragmentation of the ceramic plate inevitably occurs due to its inherent brittleness under tensile loading. Consequently, an accurate model of the fragmentation process is necessary in order to achieve an optimum design for a desired armour configuration. In this work, shockless spalling tests have been performed on two silicon carbide grades at strain rates ranging from 103 to 104 s−1 using a high-pulsed power generator. These spalling tests characterize the tensile strength strain rate sensitivity of each ceramic grade. The microstructural properties of the ceramics appear to play an important role on the strain rate sensitivity and on the dynamic tensile strength. Moreover, this experimental configuration allows for recovering damaged, but unbroken specimens, giving unique insight on the fragmentation process initiated in the ceramics. All the collected data have been compared with corresponding results of numerical simulations performed using the Denoual–Forquin–Hild anisotropic damage model. Good agreement is observed between numerical simulations and experimental data in terms of free surface velocity, size and location of the damaged zones along with crack density in these damaged zones. This article is part of the themed issue ‘Experimental testing and modelling of brittle materials at high strain rates’. PMID:27956504

  11. Numerical studies of tool diameter on strain rates, temperature rises and grain sizes in friction stir welding

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhao; Qi, Wu [Dalian University of Technology, Dalian (China)

    2015-10-15

    Fully coupled thermo-mechanical model is used to obtain the true strain components. The sizes of the TMAZ and the SZ are predicted according to the different behaviors of the traced material particles. The strain rate and the temperature histories are used to calculate the Zener-Hollomon parameter and then the grain size in the SZ. Results indicate that the contribution from the temperatures is much more important than the one from the deformations. The strain rates at the advancing side are higher than the ones at the retreating side on the top surface but become symmetrical on the bottom surface. The widths of the TMAZ and the SZ become narrower in smaller shoulder diameter. Smaller shoulder can lead to smaller grain size in the SZ.

  12. Strain Rate Dependant Material Model for Orthotropic Metals

    International Nuclear Information System (INIS)

    Vignjevic, Rade

    2016-01-01

    In manufacturing processes anisotropic metals are often exposed to the loading with high strain rates in the range from 10"2 s"-"1 to 10"6 s"-"1 (e.g. stamping, cold spraying and explosive forming). These types of loading often involve generation and propagation of shock waves within the material. The material behaviour under such a complex loading needs to be accurately modelled, in order to optimise the manufacturing process and achieve appropriate properties of the manufactured component. The presented research is related to development and validation of a thermodynamically consistent physically based constitutive model for metals under high rate loading. The model is capable of modelling damage, failure and formation and propagation of shock waves in anisotropic metals. The model has two main parts: the strength part which defines the material response to shear deformation and an equation of state (EOS) which defines the material response to isotropic volumetric deformation [1]. The constitutive model was implemented into the transient nonlinear finite element code DYNA3D [2] and our in house SPH code. Limited model validation was performed by simulating a number of high velocity material characterisation and validation impact tests. The new damage model was developed in the framework of configurational continuum mechanics and irreversible thermodynamics with internal state variables. The use of the multiplicative decomposition of deformation gradient makes the model applicable to arbitrary plastic and damage deformations. To account for the physical mechanisms of failure, the concept of thermally activated damage initially proposed by Tuller and Bucher [3], Klepaczko [4] was adopted as the basis for the new damage evolution model. This makes the proposed damage/failure model compatible with the Mechanical Threshold Strength (MTS) model Follansbee and Kocks [5], 1988; Chen and Gray [6] which was used to control evolution of flow stress during plastic

  13. SDOF models for reinforced concrete beams under impulsive loads accounting for strain rate effects

    Energy Technology Data Exchange (ETDEWEB)

    Stochino, F., E-mail: fstochino@unica.it [Department of Civil and Environmental Engineering and Architecture, University of Cagliari, Via Marengo 2, 09123 Cagliari (Italy); Carta, G., E-mail: giorgio_carta@unica.it [Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Via Marengo 2, 09123 Cagliari (Italy)

    2014-09-15

    Highlights: • Flexural failure of reinforced concrete beams under blast and impact loads is studied. • Two single degree of freedom models are formulated to predict the beam response. • Strain rate effects are taken into account for both models. • The theoretical response obtained from each model is compared with experimental data. • The two models give a good estimation of the maximum deflection at collapse. - Abstract: In this paper, reinforced concrete beams subjected to blast and impact loads are examined. Two single degree of freedom models are proposed to predict the response of the beam. The first model (denoted as “energy model”) is developed from the law of energy balance and assumes that the deformed shape of the beam is represented by its first vibration mode. In the second model (named “dynamic model”), the dynamic behavior of the beam is simulated by a spring-mass oscillator. In both formulations, the strain rate dependencies of the constitutive properties of the beams are considered by varying the parameters of the models at each time step of the computation according to the values of the strain rates of the materials (i.e. concrete and reinforcing steels). The efficiency of each model is evaluated by comparing the theoretical results with experimental data found in literature. The comparison shows that the energy model gives a good estimation of the maximum deflection of the beam at collapse, defined as the attainment of the ultimate strain in concrete. On the other hand, the dynamic model generally provides a smaller value of the maximum displacement. However, both approaches yield reliable results, even though they are based on some approximations. Being also very simple to implement, they may serve as an useful tool in practical applications.

  14. Mechanisms of large strain, high strain rate plastic flow in the explosively driven collapse of Ni-Al laminate cylinders

    International Nuclear Information System (INIS)

    Olney, K L; Chiu, P H; Nesterenko, V F; Higgins, A; Serge, M; Weihs, T P; Fritz, G; Stover, A; Benson, D J

    2014-01-01

    Ni-Al laminates have shown promise as reactive materials due to their high energy release through intermetallic reaction. In addition to the traditional ignition methods, the reaction may be initiated in hot spots that can be created during mechanical loading. The explosively driven thick walled cylinder (TWC) technique was performed on two Ni-Al laminates composed of thin foil layers with different mesostructues: concentric and corrugated. These experiments were conducted to examine how these materials accommodate large plastic strain under high strain rates. Finite element simulations of these specimens with mesostuctures digitized from the experimental samples were conducted to provide insight into the mesoscale mechanisms of plastic flow. The dependence of dynamic behaviour on mesostructure may be used to tailor the hot spot formation and therefore the reactivity of the material system.

  15. Unified Hall-Petch description of nano-grain nickel hardness, flow stress and strain rate sensitivity measurements

    Science.gov (United States)

    Armstrong, R. W.; Balasubramanian, N.

    2017-08-01

    It is shown that: (i) nano-grain nickel flow stress and hardness data at ambient temperature follow a Hall-Petch (H-P) relation over a wide range of grain size; and (ii) accompanying flow stress and strain rate sensitivity measurements follow an analogous H-P relationship for the reciprocal "activation volume", (1/v*) = (1/A*b) where A* is activation area. Higher temperature flow stress measurements show a greater than expected reduction both in the H-P kɛ and in v*. The results are connected with smaller nano-grain size (tested at very low imposed strain rates.

  16. A constitutive model for particulate-reinforced titanium matrix composites subjected to high strain rates and high temperatures

    Directory of Open Access Journals (Sweden)

    Song Wei-Dong

    2013-01-01

    Full Text Available Quasi-static and dynamic tension tests were conducted to study the mechanical properties of particulate-reinforced titanium matrix composites at strain rates ranging from 0.0001/s to 1000/s and at temperatures ranging from 20 °C to 650 °C Based on the experimental results, a constitutive model, which considers the effects of strain rate and temperature on hot deformation behavior, was proposed for particulate-reinforced titanium matrix composites subjected to high strain rates and high temperatures by using Zener-Hollomon equations including Arrhenius terms. All the material constants used in the model were identified by fitting Zener-Hollomon equations against the experimental results. By comparison of theoretical predictions presented by the model with experimental results, a good agreement was achieved, which indicates that this constitutive model can give an accurate and precise estimate for high temperature flow stress for the studied titanium matrix composites and can be used for numerical simulations of hot deformation behavior of the composites.

  17. Strain rate and temperature effects on the stress corrosion cracking of Inconel 600 steam generator tubing in the primary water conditions

    International Nuclear Information System (INIS)

    Kim, U.C.; van Rooyen, D.

    1985-01-01

    A single heat of Inconel Alloy 600 was examined in this work, using slow strain rate tests (SSRT) in simulated primary water at temperatures of 325 0 -345 0 -365 0 C. The best measure of stress corrosion cracking (SCC) was percent SCC present on the fracture surface. Strain rate did not seem to affect crack growth rate significantly, but there is some question about the accuracy of calculating these values in the absence of a direct indication of when a crack initiates. Demarcation was determined between domains of temperature/strain rate where SCC either did, or did not, occur. Slower extension rates were needed to produce SCC as the temperature was lowered. 10 figs

  18. Recruitment of faster motor units is associated with greater rates of fascicle strain and rapid changes in muscle force during locomotion.

    Science.gov (United States)

    Lee, Sabrina S M; de Boef Miara, Maria; Arnold, Allison S; Biewener, Andrew A; Wakeling, James M

    2013-01-15

    Animals modulate the power output needed for different locomotor tasks by changing muscle forces and fascicle strain rates. To generate the necessary forces, appropriate motor units must be recruited. Faster motor units have faster activation-deactivation rates than slower motor units, and they contract at higher strain rates; therefore, recruitment of faster motor units may be advantageous for tasks that involve rapid movements or high rates of work. This study identified motor unit recruitment patterns in the gastrocnemii muscles of goats and examined whether faster motor units are recruited when locomotor speed is increased. The study also examined whether locomotor tasks that elicit faster (or slower) motor units are associated with increased (or decreased) in vivo tendon forces, force rise and relaxation rates, fascicle strains and/or strain rates. Electromyography (EMG), sonomicrometry and muscle-tendon force data were collected from the lateral and medial gastrocnemius muscles of goats during level walking, trotting and galloping and during inclined walking and trotting. EMG signals were analyzed using wavelet and principal component analyses to quantify changes in the EMG frequency spectra across the different locomotor conditions. Fascicle strain and strain rate were calculated from the sonomicrometric data, and force rise and relaxation rates were determined from the tendon force data. The results of this study showed that faster motor units were recruited as goats increased their locomotor speeds from level walking to galloping. Slow inclined walking elicited EMG intensities similar to those of fast level galloping but different EMG frequency spectra, indicating that recruitment of the different motor unit types depended, in part, on characteristics of the task. For the locomotor tasks and muscles analyzed here, recruitment patterns were generally associated with in vivo fascicle strain rates, EMG intensity and tendon force. Together, these data provide

  19. Recruitment of faster motor units is associated with greater rates of fascicle strain and rapid changes in muscle force during locomotion

    Science.gov (United States)

    Lee, Sabrina S. M.; de Boef Miara, Maria; Arnold, Allison S.; Biewener, Andrew A.; Wakeling, James M.

    2013-01-01

    SUMMARY Animals modulate the power output needed for different locomotor tasks by changing muscle forces and fascicle strain rates. To generate the necessary forces, appropriate motor units must be recruited. Faster motor units have faster activation–deactivation rates than slower motor units, and they contract at higher strain rates; therefore, recruitment of faster motor units may be advantageous for tasks that involve rapid movements or high rates of work. This study identified motor unit recruitment patterns in the gastrocnemii muscles of goats and examined whether faster motor units are recruited when locomotor speed is increased. The study also examined whether locomotor tasks that elicit faster (or slower) motor units are associated with increased (or decreased) in vivo tendon forces, force rise and relaxation rates, fascicle strains and/or strain rates. Electromyography (EMG), sonomicrometry and muscle-tendon force data were collected from the lateral and medial gastrocnemius muscles of goats during level walking, trotting and galloping and during inclined walking and trotting. EMG signals were analyzed using wavelet and principal component analyses to quantify changes in the EMG frequency spectra across the different locomotor conditions. Fascicle strain and strain rate were calculated from the sonomicrometric data, and force rise and relaxation rates were determined from the tendon force data. The results of this study showed that faster motor units were recruited as goats increased their locomotor speeds from level walking to galloping. Slow inclined walking elicited EMG intensities similar to those of fast level galloping but different EMG frequency spectra, indicating that recruitment of the different motor unit types depended, in part, on characteristics of the task. For the locomotor tasks and muscles analyzed here, recruitment patterns were generally associated with in vivo fascicle strain rates, EMG intensity and tendon force. Together, these

  20. Influence of cold rolling and strain rate on plastic response of powder metallurgy and chemical vapor deposition rhenium

    International Nuclear Information System (INIS)

    Koeppel, B.J.; Subhash, G.

    1999-01-01

    The plastic response of two kinds of rhenium processed via powder metallurgy (PM) and chemical vapor deposition (CVD) were investigated under uniaxial compression over a range of strain rates. The PM rhenium, further cold rolled to 50 and 80 pct of the original thickness, was also investigated to assess the influence of cold work on the plastic behavior. A strong basal texture was detected in all the preceding materials as a result of processing and cold work. Both CVD and PM rhenium exhibited an increase in yield strength and flow stress with increasing strain rate. In PM rhenium, cold work resulted in an increase in hardness and yield strength and a decrease in the work hardening rate. The deformed microstructures revealed extensive twinning in CVD rhenium. At large strains, inhomogeneous deformation mode in the form of classical cup and cone fracture was noticed

  1. Verification of a mechanistic model for the strain rate of zircaloy-4 fuel sheaths during transient heating

    International Nuclear Information System (INIS)

    Hunt, C.E.L.

    1980-10-01

    A mechanistic strain rate model for Zircaloy-4, named NIRVANA, was tested against experiments where pressurized fuel sheaths were strained during complex temperature-stress-time histories. The same histories were then examined to determine the spread in calculated strain which may be expected because of variations in dimensions, chemical content and mechanical properties which are allowed in the fuel sheath specifications. It was found that the variations allowed by the specifications could result in a probable spread in the predicted strain of plus or minus a factor of two from the mean value. The experimental results were well within this range. (auth)

  2. Effect of strain rate and notch geometry on tensile properties and fracture mechanism of creep strength enhanced ferritic P91 steel

    Science.gov (United States)

    Pandey, Chandan; Mahapatra, M. M.; Kumar, Pradeep; Saini, N.

    2018-01-01

    Creep strength enhanced ferritic (CSEF) P91 steel were subjected to room temperature tensile test for quasi-static (less than 10-1/s) strain rate by using the Instron Vertical Tensile Testing Machine. Effect of different type of notch geometry, notch depth and angle on mechanical properties were also considered for different strain rate. In quasi-static rates, the P91 steel showed a positive strain rate sensitivity. On the basis of tensile data, fracture toughness of P91 steel was also calculated numerically. For 1 mm notch depth (constant strain rate), notch strength and fracture toughness were found to be increased with increase in notch angle from 45° to 60° while the maximum value attained in U-type notch. Notch angle and notch depth has found a minute effect on P91 steel strength and fracture toughness. The fracture surface morphology was studied by field emission scanning electron microscopy (FESEM).

  3. Scale dependence of the alignment between strain rate and rotation in turbulent shear flow

    KAUST Repository

    Fiscaletti, D.

    2016-10-24

    The scale dependence of the statistical alignment tendencies of the eigenvectors of the strain-rate tensor e(i), with the vorticity vector omega, is examined in the self-preserving region of a planar turbulent mixing layer. Data from a direct numerical simulation are filtered at various length scales and the probability density functions of the magnitude of the alignment cosines between the two unit vectors vertical bar e(i) . (omega) over cap vertical bar are examined. It is observed that the alignment tendencies are insensitive to the concurrent large-scale velocity fluctuations, but are quantitatively affected by the nature of the concurrent large-scale velocity-gradient fluctuations. It is confirmed that the small-scale (local) vorticity vector is preferentially aligned in parallel with the large-scale (background) extensive strain-rate eigenvector e(1), in contrast to the global tendency for omega to be aligned in parallelwith the intermediate strain-rate eigenvector [Hamlington et al., Phys. Fluids 20, 111703 (2008)]. When only data from regions of the flow that exhibit strong swirling are included, the so-called high-enstrophy worms, the alignment tendencies are exaggerated with respect to the global picture. These findings support the notion that the production of enstrophy, responsible for a net cascade of turbulent kinetic energy from large scales to small scales, is driven by vorticity stretching due to the preferential parallel alignment between omega and nonlocal e(1) and that the strongly swirling worms are kinematically significant to this process.

  4. Scale dependence of the alignment between strain rate and rotation in turbulent shear flow

    KAUST Repository

    Fiscaletti, D.; Elsinga, G. E.; Attili, Antonio; Bisetti, Fabrizio; Buxton, O. R. H.

    2016-01-01

    The scale dependence of the statistical alignment tendencies of the eigenvectors of the strain-rate tensor e(i), with the vorticity vector omega, is examined in the self-preserving region of a planar turbulent mixing layer. Data from a direct numerical simulation are filtered at various length scales and the probability density functions of the magnitude of the alignment cosines between the two unit vectors vertical bar e(i) . (omega) over cap vertical bar are examined. It is observed that the alignment tendencies are insensitive to the concurrent large-scale velocity fluctuations, but are quantitatively affected by the nature of the concurrent large-scale velocity-gradient fluctuations. It is confirmed that the small-scale (local) vorticity vector is preferentially aligned in parallel with the large-scale (background) extensive strain-rate eigenvector e(1), in contrast to the global tendency for omega to be aligned in parallelwith the intermediate strain-rate eigenvector [Hamlington et al., Phys. Fluids 20, 111703 (2008)]. When only data from regions of the flow that exhibit strong swirling are included, the so-called high-enstrophy worms, the alignment tendencies are exaggerated with respect to the global picture. These findings support the notion that the production of enstrophy, responsible for a net cascade of turbulent kinetic energy from large scales to small scales, is driven by vorticity stretching due to the preferential parallel alignment between omega and nonlocal e(1) and that the strongly swirling worms are kinematically significant to this process.

  5. Rab3A, a possible marker of cortical granules, participates in cortical granule exocytosis in mouse eggs

    Energy Technology Data Exchange (ETDEWEB)

    Bello, Oscar Daniel; Cappa, Andrea Isabel; Paola, Matilde de; Zanetti, María Natalia [Instituto de Histología y Embriología, CONICET – Universidad Nacional de Cuyo, Av. Libertador 80, 5500 Mendoza (Argentina); Fukuda, Mitsunori [Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578 (Japan); Fissore, Rafael A. [Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, 661 North Pleasant Street, Amherst, MA 01003 (United States); Mayorga, Luis S. [Instituto de Histología y Embriología, CONICET – Universidad Nacional de Cuyo, Av. Libertador 80, 5500 Mendoza (Argentina); Michaut, Marcela A., E-mail: mmichaut@gmail.com [Instituto de Histología y Embriología, CONICET – Universidad Nacional de Cuyo, Av. Libertador 80, 5500 Mendoza (Argentina); Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo (Argentina)

    2016-09-10

    Fusion of cortical granules with the oocyte plasma membrane is the most significant event to prevent polyspermy. This particular exocytosis, also known as cortical reaction, is regulated by calcium and its molecular mechanism is still not known. Rab3A, a member of the small GTP-binding protein superfamily, has been implicated in calcium-dependent exocytosis and is not yet clear whether Rab3A participates in cortical granules exocytosis. Here, we examine the involvement of Rab3A in the physiology of cortical granules, particularly, in their distribution during oocyte maturation and activation, and their participation in membrane fusion during cortical granule exocytosis. Immunofluorescence and Western blot analysis showed that Rab3A and cortical granules have a similar migration pattern during oocyte maturation, and that Rab3A is no longer detected after cortical granule exocytosis. These results suggested that Rab3A might be a marker of cortical granules. Overexpression of EGFP-Rab3A colocalized with cortical granules with a Pearson correlation coefficient of +0.967, indicating that Rab3A and cortical granules have almost a perfect colocalization in the egg cortical region. Using a functional assay, we demonstrated that microinjection of recombinant, prenylated and active GST-Rab3A triggered cortical granule exocytosis, indicating that Rab3A has an active role in this secretory pathway. To confirm this active role, we inhibited the function of endogenous Rab3A by microinjecting a polyclonal antibody raised against Rab3A prior to parthenogenetic activation. Our results showed that Rab3A antibody microinjection abolished cortical granule exocytosis in parthenogenetically activated oocytes. Altogether, our findings confirm that Rab3A might function as a marker of cortical granules and participates in cortical granule exocytosis in mouse eggs. - Highlights: • Rab3A has a similar migration pattern to cortical granules in mouse oocytes. • Rab3A can be a marker of

  6. A COMPARATIVE STUDY OF ROLE OF CORTICAL MASTOIDECTOMY IN MYRINGOPLASTY

    Directory of Open Access Journals (Sweden)

    Rahul Kawatra

    2015-01-01

    Full Text Available BACKGROUND : Chronic suppurative otitis media is an inflammatory process of mucoperiosteal lining of middle ear space and mastoid. Effect of mastoidectomy on patients without evidence of active infectious disease remains highly debated and unproven. In this study the role of cortical mastoidectomy in myringoplasty in patients of CSOM in dry as well as wet ears was evaluated. OBJECTIVE : To evaluate the efficacy and role of cortical mastoidectomy in patients with CSOM (safe type in dry as well as wet ears. STUDY DESIGN: Prospective randomized. METHODS : Data was collected from the patients undergoing myringoplasty with or without cortical mastoidectomy. Study was carried out on a total of 80 patients undergoing the surgery. Study period was 18 months with 6 months of follow up. Outcome was evaluated in terms of graft rejection, lateralization and change in AB gap. STATISTICAL ANALYSIS: The statistical analysis was done using SPSS (Statistical Package for Social Sciences Version 15.0 statistical Analysis Software. RESULT S : overall success rate was 77.5%. It was higher in dry ear (87.5% as compared to wet ear (67.5% and this difference was significant statistically. On evaluating odds of failure for wet ear, it was observed that group 1 had higher odds of failure for wet ear as compared to that of group 2. CONCLUSION : In both myringoplasty alone or with cortical mastoidectomy, failure rates were higher in wet as compared to dry ears, however odds of failure in wet cases were much higher in myringoplasty alone group as compared to myringoplasty with cortic al mastoidectomy

  7. Statistics of strain rates and surface density function in a flame-resolved high-fidelity simulation of a turbulent premixed bluff body burner

    Science.gov (United States)

    Sandeep, Anurag; Proch, Fabian; Kempf, Andreas M.; Chakraborty, Nilanjan

    2018-06-01

    The statistical behavior of the surface density function (SDF, the magnitude of the reaction progress variable gradient) and the strain rates, which govern the evolution of the SDF, have been analyzed using a three-dimensional flame-resolved simulation database of a turbulent lean premixed methane-air flame in a bluff-body configuration. It has been found that the turbulence intensity increases with the distance from the burner, changing the flame curvature distribution and increasing the probability of the negative curvature in the downstream direction. The curvature dependences of dilatation rate ∇ṡu → and displacement speed Sd give rise to variations of these quantities in the axial direction. These variations affect the nature of the alignment between the progress variable gradient and the local principal strain rates, which in turn affects the mean flame normal strain rate, which assumes positive values close to the burner but increasingly becomes negative as the effect of turbulence increases with the axial distance from the burner exit. The axial distance dependences of the curvature and displacement speed also induce a considerable variation in the mean value of the curvature stretch. The axial distance dependences of the dilatation rate and flame normal strain rate govern the behavior of the flame tangential strain rate, and its mean value increases in the downstream direction. The current analysis indicates that the statistical behaviors of different strain rates and displacement speed and their curvature dependences need to be included in the modeling of flame surface density and scalar dissipation rate in order to accurately capture their local behaviors.

  8. Perceptual incongruence influences bistability and cortical activation.

    Directory of Open Access Journals (Sweden)

    Gijs Joost Brouwer

    Full Text Available We employed a parametric psychophysical design in combination with functional imaging to examine the influence of metric changes in perceptual incongruence on perceptual alternation rates and cortical responses. Subjects viewed a bistable stimulus defined by incongruent depth cues; bistability resulted from incongruence between binocular disparity and monocular perspective cues that specify different slants (slant rivalry. Psychophysical results revealed that perceptual alternation rates were positively correlated with the degree of perceived incongruence. Functional imaging revealed systematic increases in activity that paralleled the psychophysical results within anterior intraparietal sulcus, prior to the onset of perceptual alternations. We suggest that this cortical activity predicts the frequency of subsequent alternations, implying a putative causal role for these areas in initiating bistable perception. In contrast, areas implicated in form and depth processing (LOC and V3A were sensitive to the degree of slant, but failed to show increases in activity when these cues were in conflict.

  9. Effect of Particle Size on Mechanical Properties of Sawdust-High Density Polyethylene Composites under Various Strain Rates

    Directory of Open Access Journals (Sweden)

    Haliza Jaya

    2016-06-01

    Full Text Available There is a need to understand the effect of wood particle size, as it affects the characteristics of wood-based composites. This study considers the effect of wood particle size relative to the dynamic behavior of wood composites. The compression Split Hopkinson Pressure Bar (SHPB was introduced to execute dynamic compression testing at the strain rate of 650 s-1, 900 s-1, and 1100 s-1, whereas a conventional universal testing machine (UTM was used to perform static compression testing at the strain rate of 0.1 s-1, 0.01 s-1, and 0.001 s-1 for four different particle sizes (63 µm, 125 µm, 250 µm, and 500 µm. The results showed that mechanical properties of composites were positively affected by the particle sizes, where the smallest particle size gave the highest values compared to the others. Moreover, the particle size also affected the rate sensitivity and the thermal activation volume of sawdust/HDPE, where smaller particles resulted in lower rate sensitivity. For the post-damage analysis, the applied strain rates influenced deformation behavior differently for all particle sizes of the specimens. In a fractographic analysis under dynamic loading, the composites with large particles experienced severe catastrophic deformation and damages compared to the smaller particles.

  10. Cortical Visual Impairment

    Science.gov (United States)

    ... resolves by one year of life. Is “cortical blindness” the same thing as CVI? Cortical blindness is ... What visual characteristics are associated with CVI? • Distinct color preferences • Variable level of vision loss, often demonstrating ...

  11. Dependence of Subduction Zone seismicity on Strain-Rate-Dependent Critical Homologous Temperature

    Science.gov (United States)

    Davis, P. M.

    2016-12-01

    Earthquakes mainly occur in crust or mantle that is below a critical temperature for the tectonic strain-rate, such that stress builds up to the breaking point before it can relax due to creep. Then long-range stress correlation gives rise to power law seismicity with large events. The limiting temperature depends on pressure, which is taken into account by finding a critical homologous temperature THc=T/TM above which earthquakes are rarely observed. We find that THc for ocean plates is ˜0.55. For California earthquakes, it is also close to 0.55. The uppermost mantle layer of oceanic plates of thickness ˜50 km is composed of harzburgite and depleted peridotite from which basalt has been removed to form ocean crust. Thus it has a higher melting temperature than the peridotite of the surrounding mantle, or the lower halves of plates. Thicknesses of seismicity in deep subduction zones, determined from 2D polynomial fits to a relocated catalog, are ˜50 km, which suggests that the earthquake channel is confined to this layer. We construct models to find homologous temperatures in slabs, and find that seismicity thicknesses are also, on average, confined to TH ≤ 0.55 ± 0.05. The associated rheology is compared with that obtained from flexure models of ocean lithosphere. The brittle-ductile transition occurs where viscosity drops from high values in the cold cores of slabs to values of 1022 to $1023 Pa s, i.e., where creep strain-rates become comparable to tectonic rates. The cutoff for deep earthquakes is not sharp. However they appear unlikely to occur if homologous temperature is high TH>0.55. Exceptions to the rule are anomalously deep earthquakes such as those beneath the Iceland and the Hawaiian hotspots, and the Newport Inglewood Fault. These are smaller events with short-range stress correlation, and can be explained if strain-rates are 2 to 3 orders of magnitude higher than those associated with earthquakes located where TH ≤0.55. We conclude that the

  12. Predictions and Experimental Microstructural Characterization of High Strain Rate Failure Modes in Layered Aluminum Composites

    Science.gov (United States)

    Khanikar, Prasenjit

    Different aluminum alloys can be combined, as composites, for tailored dynamic applications. Most investigations pertaining to metallic alloy layered composites, however, have been based on quasi-static approaches. The dynamic failure of layered metallic composites, therefore, needs to be characterized in terms of strength, toughness, and fracture response. A dislocation-density based crystalline plasticity formulation, finite-element techniques, rational crystallographic orientation relations and a new fracture methodology were used to predict the failure modes associated with the high strain rate behavior of aluminum layered composites. Two alloy layers, a high strength alloy, aluminum 2195, and an aluminum alloy 2139, with high toughness, were modeled with representative microstructures that included precipitates, dispersed particles, and different grain boundary (GB) distributions. The new fracture methodology, based on an overlap method and phantom nodes, is used with a fracture criteria specialized for fracture on different cleavage planes. One of the objectives of this investigation, therefore, was to determine the optimal arrangements of the 2139 and 2195 aluminum alloys for a metallic layered composite that would combine strength, toughness and fracture resistance for high strain-rate applications. Different layer arrangements were investigated for high strain-rate applications, and the optimal arrangement was with the high toughness 2139 layer on the bottom, which provided extensive shear strain localization, and the high strength 2195 layer on the top for high strength resistance. The layer thickness of the bottom high toughness layer also affected the bending behavior of the roll-boned interface and the potential delamination of the layers. Shear strain localization, dynamic cracking and delamination were the mutually competing failure mechanisms for the layered metallic composite, and control of these failure modes can be optimized for high strain-rate

  13. Creep of ex-service AISI-316H steel at very low strain rates

    Energy Technology Data Exchange (ETDEWEB)

    Kloc, Lubos; Sklenicka, Vaclav [Academy of Sciences of the Czech Republic, Brno (Czech Republic). Inst. of Physics of Materials; Spindler, Michael [British Energy Generation, Barbwood, Gloucester (United Kingdom)

    2010-07-01

    The creep response of ex-service Type 316H austenitic steel was investigated at temperatures from 470 to 550 C and stresses from 80 to 120 MPa. These conditions lead to very low strain rates. Both helicoid spring specimen tests and conventional uniaxial creep tests were used to measure these very low creep strains. An internal stress model was used to analyse the creep curves and the results were compared to creep curves obtained on a Type 316H in the as-received condition, which for austenitic steels is after solution heat treatment. The creep behavior of the ex-service steel was very similar to that of the as-received steel. Thus, no creep damage or significant change of microstructure was detected during the service period of 65,000 hours at {proportional_to} 520 C. It was found that the helicoid spring specimen technique provides results compatible with that of conventional creep tests, but with superior accuracy with very low creep strains. (orig.)

  14. Temperature-strain rate dependence of mechanical properties of a beryllium of the DShG-200 brand

    International Nuclear Information System (INIS)

    Khomutov, A.M.; Gorokhov, V.A.; Mikhailov, V.S.; Nikolaev, G.N.; Timofeev, R.Yu.; Chernov, V.M.

    2000-01-01

    Beryllium preforms of the DShG-200 brand of improved quality were manufactured by the method of a powder metallurgy and the mechanical tests on tension in longitudinal and transversal directions in temperature range 20-600 C and strain rates of 0,02 - 20 mm/min were held. It was shown, that at an alteration of strain rate within the indicated limits the values of stresses of flow and of the relative elongation can vary by several times. Comparison testing for tension by the Russian and American procedures (GOST and ASTM) was made. The obtained results can be beneficial at calculations of thermal stresses originating in fusion reactors (FR). (orig.)

  15. High strain and strain-rate behaviour of PTFE/aluminium/tungsten mixtures

    International Nuclear Information System (INIS)

    Addiss, John; Walley, Stephen; Proud, William; Cai Jing; Nesterenko, Vitali

    2007-01-01

    Conventional drop-weight techniques were modified to accommodate low-amplitude force transducer signals from low-strength, cold isostatically pressed 'heavy' composites of polytetrafluoroethylene, aluminum and tungsten (W). The failure strength, strain and the post-critical behavior of failed samples were measured for samples of different porosity and tungsten grain size. Unusual phenomenon of significantly higher strength (55 MPa) of porous composites (density 5.9 g/cm 3 ) with small W particles ( 3 ) with larger W particles (44 μm) at the same volume content of components was observed. This is attributed to force chains created by a network of small W particles. Interrupted tests at different levels of strain revealed the mechanisms of fracture under dynamic compression

  16. Effects of temperature and strain rate on the tensile behaviors of SIMP steel in static lead bismuth eutectic

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jian, E-mail: jliu12b@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016 (China); University of Chinese Academy of Sciences, Beijing, 100049 (China); Yan, Wei [Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016 (China); Sha, Wei [School of Planning, Architecture and Civil Engineering, Queen' s University Belfast, Belfast, BT9 5AG (United Kingdom); Wang, Wei; Shan, Yiyin [Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016 (China); Yang, Ke, E-mail: kyang@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016 (China)

    2016-05-15

    In order to assess the susceptibility of candidate structural materials to liquid metal embrittlement, this work investigated the tensile behaviors of ferritic-martensitic steel in static lead bismuth eutectic (LBE). The tensile tests were carried out in static lead bismuth eutectic under different temperatures and strain rates. Pronounced liquid metal embrittlement phenomenon is observed between 200 °C and 450 °C. Total elongation is reduced greatly due to the liquid metal embrittlement in LBE environment. The range of ductility trough is larger under slow strain rate tensile (SSRT) test. - Highlights: • The tensile behaviors of SIMP steel in LBE are investigated for the first time. • The SIMP is susceptible to LME at different strain rates and temperatures. • The total elongation is reduced greatly. • The ductility trough is wider under SSRT. • The tensile specimens rupture in brittle manner without obvious necking.

  17. Effects of temperature and strain rate on the tensile behaviors of SIMP steel in static lead bismuth eutectic

    International Nuclear Information System (INIS)

    Liu, Jian; Yan, Wei; Sha, Wei; Wang, Wei; Shan, Yiyin; Yang, Ke

    2016-01-01

    In order to assess the susceptibility of candidate structural materials to liquid metal embrittlement, this work investigated the tensile behaviors of ferritic-martensitic steel in static lead bismuth eutectic (LBE). The tensile tests were carried out in static lead bismuth eutectic under different temperatures and strain rates. Pronounced liquid metal embrittlement phenomenon is observed between 200 °C and 450 °C. Total elongation is reduced greatly due to the liquid metal embrittlement in LBE environment. The range of ductility trough is larger under slow strain rate tensile (SSRT) test. - Highlights: • The tensile behaviors of SIMP steel in LBE are investigated for the first time. • The SIMP is susceptible to LME at different strain rates and temperatures. • The total elongation is reduced greatly. • The ductility trough is wider under SSRT. • The tensile specimens rupture in brittle manner without obvious necking.

  18. Human cortical responses to slow and fast binaural beats reveal multiple mechanisms of binaural hearing.

    Science.gov (United States)

    Ross, Bernhard; Miyazaki, Takahiro; Thompson, Jessica; Jamali, Shahab; Fujioka, Takako

    2014-10-15

    When two tones with slightly different frequencies are presented to both ears, they interact in the central auditory system and induce the sensation of a beating sound. At low difference frequencies, we perceive a single sound, which is moving across the head between the left and right ears. The percept changes to loudness fluctuation, roughness, and pitch with increasing beat rate. To examine the neural representations underlying these different perceptions, we recorded neuromagnetic cortical responses while participants listened to binaural beats at a continuously varying rate between 3 Hz and 60 Hz. Binaural beat responses were analyzed as neuromagnetic oscillations following the trajectory of the stimulus rate. Responses were largest in the 40-Hz gamma range and at low frequencies. Binaural beat responses at 3 Hz showed opposite polarity in the left and right auditory cortices. We suggest that this difference in polarity reflects the opponent neural population code for representing sound location. Binaural beats at any rate induced gamma oscillations. However, the responses were largest at 40-Hz stimulation. We propose that the neuromagnetic gamma oscillations reflect postsynaptic modulation that allows for precise timing of cortical neural firing. Systematic phase differences between bilateral responses suggest that separate sound representations of a sound object exist in the left and right auditory cortices. We conclude that binaural processing at the cortical level occurs with the same temporal acuity as monaural processing whereas the identification of sound location requires further interpretation and is limited by the rate of object representations. Copyright © 2014 the American Physiological Society.

  19. Tension–compression asymmetry in an extruded Mg alloy AM30: Temperature and strain rate effects

    International Nuclear Information System (INIS)

    Zachariah, Z.; Tatiparti, Sankara Sarma V.; Mishra, S.K.; Ramakrishnan, N.; Ramamurty, U.

    2013-01-01

    The effect of strain rate, ε, and temperature, T, on the tension–compression asymmetry (TCA) in a dilute and wrought Mg alloy, AM30, over a temperature range that covers both twin accommodated deformation (below 250 °C in compression) as well as dislocation-mediated plasticity (above 250 °C) has been investigated. For this purpose, uniaxial tension and compression tests were conducted at T ranging from 25 to 400 °C with ε varying between 10 −2 and 10 s −1 . In most of the cases, the stress–strain responses in tension and compression are distinctly different; with compression responses ‘concaving upward,’ due to {101-bar 2} tensile twinning at lower plastic strains followed by slip and strain hardening at higher levels of deformation, for T below 250 °C. This results in significant levels of TCA at T −1 , suggesting that twin-mediated plastic deformation takes precedence at high rates of loading even at sufficiently high T. TCA becomes negligible at T=350 °C; however at T=400 °C, as ε increases TCA gets higher. Microscopy of the deformed samples, carried out by using electron back-scattered diffraction (EBSD), suggests that at T>250 °C dynamic recrystallization begins between accompanied by reduction in the twinned fraction that contributes to the decrease of the TCA

  20. A Modified Eyring Equation for Modeling Yield and Flow Stresses of Metals at Strain Rates Ranging from 10−5 to 5 × 104 s−1

    Directory of Open Access Journals (Sweden)

    Ramzi Othman

    2015-01-01

    Full Text Available In several industrial applications, metallic structures are facing impact loads. Therefore, there is an important need for developing constitutive equations which take into account the strain rate sensitivity of their mechanical properties. The Johnson-Cook equation was widely used to model the strain rate sensitivity of metals. However, it implies that the yield and flow stresses are linearly increasing in terms of the logarithm of strain rate. This is only true up to a threshold strain rate. In this work, a three-constant constitutive equation, assuming an apparent activation volume which decreases as the strain rate increases, is applied here for some metals. It is shown that this equation fits well the experimental yield and flow stresses for a very wide range of strain rates, including quasi-static, high, and very high strain rates (from 10−5 to 5 × 104 s−1. This is the first time that a constitutive equation is showed to be able to fit the yield stress over a so large strain rate range while using only three material constants.

  1. Yield and strength properties of the Ti-6-22-22S alloy over a wide strain rate and temperature range

    International Nuclear Information System (INIS)

    Krueger, L.; Kanel, G.I.; Razorenov, S.V.; Bezrouchko, G.S.; Meyer, L.

    2002-01-01

    A mechanical behavior of the Ti-6-22-22S alloy was studied under uniaxial strain conditions at shock-wave loading and under uniaxial compressive stress conditions over a strain rate range of 10-4 s-1 to 103 s-1. The test temperature was varied from -175 deg. C to 620 deg. C. The strain-rate and the temperature dependencies of the yield stress obtained from the uniaxial stress tests and from the shock-wave experiments are in a good agreement and demonstrate a significant decrease in the yield strength as the temperature increases. This indicates the thermal activation mechanism of plastic deformation of the alloy is maintained at strain rates up to 106 s-1. Variation of sample thickness from 2.24 to 10 mm results in relatively small variations in the dynamic yield strength and the spall strength over the whole temperature range

  2. Effect of test temperature and strain rate on the tensile properties of high-strength, high-conductivity copper alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zinkle, S.J.; Eatherly, W.S. [Oak Ridge National Lab., TN (United States)

    1997-04-01

    The unirradiated tensile properties of wrought GlidCop AL25 (ITER grade zero, IGO) solutionized and aged CuCrZr, and cold-worked and aged and solutionized and aged Hycon 3HP{trademark} CuNiBe have been measured over the temperature range of 20-500{degrees}C at strain rates between 4 x 10{sup {minus}4} s{sup {minus}1} and 0.06 s{sup {minus}1}. The measured room temperature electrical conductivity ranged from 64 to 90% IACS for the different alloys. All of the alloys were relatively insensitive to strain rate at room temperature, but the strain rate sensitivity of GlidCop Al25 increased significantly with increasing temperature. The CuNiBe alloys exhibited the best combination of high strength and high conductivity at room temperature. The strength of CuNiBe decreased slowly with increasing temperature. However, the ductility of CuNiBe decreased rapidly with increasing temperature due to localized deformation near grain boundaries, making these alloy heats unsuitable for typical structural applications above 300{degrees}C. The strength and uniform elongation of GlidCop Al25 decreased significantly with increasing temperature at a strain rate of 1 x 10{sup {minus}3} s{sup {minus}1}, whereas the total elongation was independent of test temperature. The strength and ductility of CuCrZr decreased slowly with increasing temperature.

  3. High Strain Rate Deformation Mechanisms of Body Centered Cubic Material Subjected to Impact Loading

    Science.gov (United States)

    Visser, William

    Low carbon steel is the most common grade of structural steel used; it has carbon content of 0.05% to 0.25% and very low content of alloying elements. It is produced in great quantities and provides material properties that are acceptable for many engineering applications, particularly in the construction industry in which low carbon steel is widely used as the strengthening phase in civil structures. The overall goal of this dissertation was to investigate the deformation response of A572 grade 50 steel when subjected to impact loading. This steel has a 0.23% by weight carbon content and has less than 2% additional alloying elements. The deformation mechanisms of this steel under shock loading conditions include both dislocation motion and twin formation. The goal of this work was achieved by performing experimental, analytical and numerical research in three integrated tasks. The first is to determine the relationship between the evolution of deformation twins and the impact pressure. Secondly, a stress criterion for twin nucleation during high strain rate loading was developed which can account for the strain history or initial dislocation density. Lastly, a method was applied for separating the effects of dislocations and twins generated by shock loading in order to determine their role in controlling the flow stress of the material. In this regard, the contents of this work have been categorically organized. First, the active mechanisms in body centered cubic (BCC) low carbon steel during shock loading have been determined as being a composed of the competing mechanisms of dislocations and deformation twins. This has been determined through a series of shock loading tests of the as-received steel. The shock loading tests were done by plate impact experiments at several impact pressures ranging from 2GPa up to 13GPa using a single stage light gas gun. A relationship between twin volume fraction and impact pressure was determined and an analytical model was

  4. Effect of hydriding temperature and strain rate on the ductile-brittle transition in β treated Zircaloy-4

    International Nuclear Information System (INIS)

    Bai, J.B.

    1996-01-01

    In this paper, the effect of hydriding temperature and strain rate on the ductile-brittle transition in β treated Zircaloy-4 has been investigated. The hydriding temperature used is 700degC, strain rates being 4x10 -4 s -1 and 4x10 -3 s -1 . The results show that at same conditions the ductility of hydrides decreases as the hydriding temperature decreases. There exists a critical temperature (transition temperature) of 250degC for hydriding at 700degC, below which the hydrided specimens (and so for the hydrides) are brittle, while above it they are ductile. This transition temperature is lower than the one mentioned by various authors obtained for hydriding at 400degC. For the same hydriding temperature of 700degC, the specimens tested at 4x10 -3 s -1 are less ductile than those tested at 4x10 -4 s -1 . Furthermore, unlike at a strain rate of 4x10 -4 s -1 , there is no more a clear ductile-brittle transition behaviour. (author)

  5. Finite element analysis of dental implant loading on atrophic and non-atrophic cancellous and cortical mandibular bone - a feasibility study.

    Science.gov (United States)

    Marcián, Petr; Borák, Libor; Valášek, Jiří; Kaiser, Jozef; Florian, Zdeněk; Wolff, Jan

    2014-12-18

    The first aim of this study was to assess displacements and micro-strain induced on different grades of atrophic cortical and trabecular mandibular bone by axially loaded dental implants using finite element analysis (FEA). The second aim was to assess the micro-strain induced by different implant geometries and the levels of bone-to-implant contact (BIC) on the surrounding bone. Six mandibular bone segments demonstrating different grades of mandibular bone atrophy and various bone volume fractions (from 0.149 to 0.471) were imaged using a micro-CT device. The acquired bone STL models and implant (Brånemark, Straumann, Ankylos) were merged into a three-dimensional finite elements structure. The mean displacement value for all implants was 3.1 ±1.2 µm. Displacements were lower in the group with a strong BIC. The results indicated that the maximum strain values of cortical and cancellous bone increased with lower bone density. Strain distribution is the first and foremost dependent on the shape of bone and architecture of cancellous bone. The geometry of the implant, thread patterns, grade of bone atrophy and BIC all affect the displacement and micro-strain on the mandible bone. Preoperative finite element analysis could offer improved predictability in the long-term outlook of dental implant restorations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Uniaxial Compressive Strength and Fracture Mode of Lake Ice at Moderate Strain Rates Based on a Digital Speckle Correlation Method for Deformation Measurement

    Directory of Open Access Journals (Sweden)

    Jijian Lian

    2017-05-01

    Full Text Available Better understanding of the complex mechanical properties of ice is the foundation to predict the ice fail process and avoid potential ice threats. In the present study, uniaxial compressive strength and fracture mode of natural lake ice are investigated over moderate strain-rate range of 0.4–10 s−1 at −5 °C and −10 °C. The digital speckle correlation method (DSCM is used for deformation measurement through constructing artificial speckle on ice sample surface in advance, and two dynamic load cells are employed to measure the dynamic load for monitoring the equilibrium of two ends’ forces under high-speed loading. The relationships between uniaxial compressive strength and strain-rate, temperature, loading direction, and air porosity are investigated, and the fracture mode of ice at moderate rates is also discussed. The experimental results show that there exists a significant difference between true strain-rate and nominal strain-rate derived from actuator displacement under dynamic loading conditions. Over the employed strain-rate range, the dynamic uniaxial compressive strength of lake ice shows positive strain-rate sensitivity and decreases with increasing temperature. Ice obtains greater strength values when it is with lower air porosity and loaded vertically. The fracture mode of ice seems to be a combination of splitting failure and crushing failure.

  7. Mechanical properties of biaxially strained poly(L-lactide) tubes: Strain rate and temperature dependence

    DEFF Research Database (Denmark)

    Løvdal, Alexandra Liv Vest; Andreasen, Jens Wenzel; Mikkelsen, Lars Pilgaard

    2017-01-01

    Poly(l-lactide) (PLLA) is a bioabsorbable polymer with high stiffness and strength compared to the other commercially available bioabsorbable polymers. The properties of PLLA can be improved by straining, causing deformation-mediated molecular orientation. PLLA tubes were biaxially strained above...

  8. Effect of strain rate on sooting limits in counterflow diffusion flames of gaseous hydrocarbon fuels: Sooting temperature index and sooting sensitivity index

    KAUST Repository

    Wang, Yu

    2014-05-01

    The effect of the strain rate on the sooting limits in counterflow diffusion flames was investigated in various gaseous hydrocarbon fuels by varying the nitrogen dilution in the fuel and oxidizer streams. The sooting limit was defined as the critical fuel and oxygen mole fraction at which soot started to appear in the elastic light scattering signal. The sooting region for normal alkane fuels at a specified strain rate, in terms of the fuel and oxygen mole fraction, expanded as the number of carbon atoms increased. The alkene fuels (ethylene, propene) tested had a higher propensity for sooting as compared with alkane fuels with the same carbon numbers (ethane, propane). Branched iso-butane had a higher propensity for sooting than did n-butane. An increase in the strain rate reduced the tendency for sooting in all the fuels tested. The sensitivity of the sooting limit to the strain rate was more pronounced for less sooting fuels. When plotted in terms of calculated flame temperature, the critical oxygen mole fraction exhibited an Arrhenius form under sooting limit conditions, which can be utilized to significantly reduce the effort required to determine sooting limits at different strain rates. We found that the limiting temperatures of soot formation flames are viable sooting metrics for quantitatively rating the sooting tendency of various fuels, based on comparisons with threshold soot index and normalized smoke point data. We also introduce a sooting temperature index and a sooting sensitivity index, two quantitative measures to describe sooting propensity and its dependence on strain rate. © 2013 The Combustion Institute.

  9. Strain rate effects on fracture behavior of Austempered Ductile Irons

    Science.gov (United States)

    Ruggiero, Andrew; Bonora, Nicola; Gentile, Domenico; Iannitti, Gianluca; Testa, Gabriel; Hörnqvist Colliander, Magnus; Masaggia, Stefano; Vettore, Federico

    2017-06-01

    Austempered Ductile Irons (ADIs), combining high strength, good ductility and low density, are candidates to be a suitable alternative to high-strength steels. Nevertheless, the concern about a low ductility under dynamic loads often leads designers to exclude cast irons for structural applications. However, results from dynamic tensile tests contradict this perception showing larger failure strain with respect to quasistatic data. The fracture behaviour of ADIs depends on damage mechanisms occurring in the spheroids of graphite, in the matrix and at their interface, with the matrix (ausferrite) consisting of acicular ferrite in carbon-enriched austenite. Here, a detailed microstructural analysis was performed on the ADI 1050-6 deformed under different conditions of strain rates, temperatures, and states of stress. Beside the smooth specimens used for uniaxial tensile tests, round notched bars to evaluate the ductility reduction with increasing stress triaxiality and tophat geometries to evaluate the propensity to shear localization and the associated microstructural alterations were tested. The aim of the work is to link the mechanical and fracture behavior of ADIs to the load condition through the microstructural modifications that occur for the corresponding deformation path.

  10. A Geodetic Strain Rate Model for the Pacific-North American Plate Boundary, western United States

    Science.gov (United States)

    Kreemer, C.; Hammond, W. C.; Blewitt, G.; Holland, A. A.; Bennett, R. A.

    2012-04-01

    We present a model of crustal strain rates derived from GPS measurements of horizontal station velocities in the Pacific-North American plate boundary in the western United States. The model reflects a best estimate of present-day deformation from the San Andreas fault system in the west to the Basin and Range province in the east. Of the total 2,846 GPS velocities used in the model, 1,197 are derived by ourselves, and 1,649 are taken from (mostly) published results. The velocities derived by ourselves (the "UNR solution") are estimated from GPS position time-series of continuous and semi-continuous stations for which data are publicly available. We estimated ITRF2005 positions from 2002-2011.5 using JPL's GIPSY-OASIS II software with ambiguity resolution applied using our custom Ambizap software. Only stations with time-series that span at least 2.25 years are considered. We removed from the time-series continental-scale common-mode errors using a spatially-varying filtering technique. Velocity uncertainties (typically 0.1-0.3 mm/yr) assume that the time-series contain flicker plus white noise. We used a subset of stations on the stable parts of the Pacific and North American plates to estimate the Pacific-North American pole of rotation. This pole is applied as a boundary condition to the model and the North American - ITRF2005 pole is used to rotate our velocities into a North America fixed reference frame. We do not include parts of the time-series that show curvature due to post-seismic deformation after major earthquakes and we also exclude stations whose time-series display a significant unexplained non-linearity or that are near volcanic centers. Transient effects longer than the observation period (i.e., slow viscoelastic relaxation) are left in the data. We added to the UNR solution velocities from 12 other studies. The velocities are transformed onto the UNR solution's reference frame by estimating and applying a translation and rotation that minimizes

  11. Monotonic and cyclic responses of impact polypropylene and continuous glass fiber-reinforced impact polypropylene composites at different strain rates

    KAUST Repository

    Yudhanto, Arief

    2016-03-08

    Impact copolymer polypropylene (IPP), a blend of isotactic polypropylene and ethylene-propylene rubber, and its continuous glass fiber composite form (glass fiber-reinforced impact polypropylene, GFIPP) are promising materials for impact-prone automotive structures. However, basic mechanical properties and corresponding damage of IPP and GFIPP at different rates, which are of keen interest in the material development stage and numerical tool validation, have not been reported. Here, we applied monotonic and cyclic tensile loads to IPP and GFIPP at different strain rates (0.001/s, 0.01/s and 0.1/s) to study the mechanical properties, failure modes and the damage parameters. We used monotonic and cyclic tests to obtain mechanical properties and define damage parameters, respectively. We also used scanning electron microscopy (SEM) images to visualize the failure mode. We found that IPP generally exhibits brittle fracture (with relatively low failure strain of 2.69-3.74%) and viscoelastic-viscoplastic behavior. GFIPP [90]8 is generally insensitive to strain rate due to localized damage initiation mostly in the matrix phase leading to catastrophic transverse failure. In contrast, GFIPP [±45]s is sensitive to the strain rate as indicated by the change in shear modulus, shear strength and failure mode.

  12. Effect of strain rate on the mechanical properties of a gum metal with various microstructures

    International Nuclear Information System (INIS)

    Liu, Silu; Pan, Z.L.; Zhao, Y.H.; Topping, T.; Valiev, R.Z.; Liao, X.Z.; Lavernia, E.J.; Zhu, Y.T.; Wei, Q.

    2017-01-01

    In this work, a bulk gum metal (GM) was fabricated via arc melting from high purity powders. The ingots were first extruded using a conventional route followed by equal channel angular pressing (ECAP). The mechanical behavior of the extruded GM and ECAP-processed GM was studied under both quasi-static and high strain rate compression conditions to evaluate the influence of strain rate. In addition, the associated mechanical anisotropy, or the lack thereof, was investigated through loading in different orientations with respect to the extrusion or ECAP direction. Precipitous stress drops were observed under dynamic compression of both extruded and ECAP-processed GM specimens when loading perpendicular to the extrusion direction. Adiabatic shear banding (ASB) was found to be associated with the precipitous stress drops on the dynamic stress-strain curves. The details of the ASBs were characterized by optical and scanning electron microscopy, with emphasis on electron backscattered diffraction (EBSD). The mechanisms responsible for the formation of ASB were examined both from thermal softening and geometrical softening perspectives. Significant microstructure refinement within ASBs was established, and a possible grain refinement mechanism was proposed.

  13. UP-DOWN cortical dynamics reflect state transitions in a bistable network.

    Science.gov (United States)

    Jercog, Daniel; Roxin, Alex; Barthó, Peter; Luczak, Artur; Compte, Albert; de la Rocha, Jaime

    2017-08-04

    In the idling brain, neuronal circuits transition between periods of sustained firing (UP state) and quiescence (DOWN state), a pattern the mechanisms of which remain unclear. Here we analyzed spontaneous cortical population activity from anesthetized rats and found that UP and DOWN durations were highly variable and that population rates showed no significant decay during UP periods. We built a network rate model with excitatory (E) and inhibitory (I) populations exhibiting a novel bistable regime between a quiescent and an inhibition-stabilized state of arbitrarily low rate. Fluctuations triggered state transitions, while adaptation in E cells paradoxically caused a marginal decay of E-rate but a marked decay of I-rate in UP periods, a prediction that we validated experimentally. A spiking network implementation further predicted that DOWN-to-UP transitions must be caused by synchronous high-amplitude events. Our findings provide evidence of bistable cortical networks that exhibit non-rhythmic state transitions when the brain rests.

  14. Assessment of cortical maturation with prenatal MRI. Part I: normal cortical maturation

    Energy Technology Data Exchange (ETDEWEB)

    Fogliarini, Celine [Faculte Timone, Centre de Resonance Magnetique Biologique et Medicale, Marseille (France); Chaumoitre, Katia [Hopital Nord, Department of Radiology, Marseille (France); Chapon, Frederique; Levrier, Olivier; Girard, Nadine [Hopital Timone, Department of Neuroradiology, Marseille Cedex 5 (France); Fernandez, Carla; Figarella-Branger, Dominique [Hopital Timone, Department of Pathology, Marseille (France)

    2005-08-01

    Cortical maturation, especially gyral formation, follows a temporospatial schedule and is a good marker of fetal maturation. Although ultrasonography is still the imaging method of choice to evaluate fetal anatomy, MRI has an increasingly important role in the detection of brain abnormalities, especially of cortical development. Knowledge of MRI techniques in utero with the advantages and disadvantages of some sequences is necessary, in order to try to optimize the different magnetic resonance sequences to be able to make an early diagnosis. The different steps of cortical maturation known from histology represent the background necessary for the understanding of maturation in order to be then able to evaluate brain maturation through neuroimaging. Illustrations of the normal cortical maturation are given for each step accessible to MRI for both the cerebral hemispheres and the posterior fossa. (orig.)

  15. Assessment of cortical maturation with prenatal MRI. Part I: normal cortical maturation

    International Nuclear Information System (INIS)

    Fogliarini, Celine; Chaumoitre, Katia; Chapon, Frederique; Levrier, Olivier; Girard, Nadine; Fernandez, Carla; Figarella-Branger, Dominique

    2005-01-01

    Cortical maturation, especially gyral formation, follows a temporospatial schedule and is a good marker of fetal maturation. Although ultrasonography is still the imaging method of choice to evaluate fetal anatomy, MRI has an increasingly important role in the detection of brain abnormalities, especially of cortical development. Knowledge of MRI techniques in utero with the advantages and disadvantages of some sequences is necessary, in order to try to optimize the different magnetic resonance sequences to be able to make an early diagnosis. The different steps of cortical maturation known from histology represent the background necessary for the understanding of maturation in order to be then able to evaluate brain maturation through neuroimaging. Illustrations of the normal cortical maturation are given for each step accessible to MRI for both the cerebral hemispheres and the posterior fossa. (orig.)

  16. Cortical thinning in cognitively normal elderly cohort of 60 to 89 year old from AIBL database and vulnerable brain areas

    Science.gov (United States)

    Lin, Zhongmin S.; Avinash, Gopal; Yan, Litao; McMillan, Kathryn

    2014-03-01

    Age-related cortical thinning has been studied by many researchers using quantitative MR images for the past three decades and vastly differing results have been reported. Although results have shown age-related cortical thickening in elderly cohort statistically in some brain regions under certain conditions, cortical thinning in elderly cohort requires further systematic investigation. This paper leverages our previously reported brain surface intensity model (BSIM)1 based technique to measure cortical thickness to study cortical changes due to normal aging. We measured cortical thickness of cognitively normal persons from 60 to 89 years old using Australian Imaging Biomarkers and Lifestyle Study (AIBL) data. MRI brains of 56 healthy people including 29 women and 27 men were selected. We measured average cortical thickness of each individual in eight brain regions: parietal, frontal, temporal, occipital, visual, sensory motor, medial frontal and medial parietal. Unlike the previous published studies, our results showed consistent age-related thinning of cerebral cortex in all brain regions. The parietal, medial frontal and medial parietal showed fastest thinning rates of 0.14, 0.12 and 0.10 mm/decade respectively while the visual region showed the slowest thinning rate of 0.05 mm/decade. In sensorimotor and parietal areas, women showed higher thinning (0.09 and 0.16 mm/decade) than men while in all other regions men showed higher thinning than women. We also created high resolution cortical thinning rate maps of the cohort and compared them to typical patterns of PET metabolic reduction of moderate AD and frontotemporal dementia (FTD). The results seemed to indicate vulnerable areas of cortical deterioration that may lead to brain dementia. These results validate our cortical thickness measurement technique by demonstrating the consistency of the cortical thinning and prediction of cortical deterioration trend with AIBL database.

  17. Scaling Up Cortical Control Inhibits Pain

    Directory of Open Access Journals (Sweden)

    Jahrane Dale

    2018-05-01

    Full Text Available Summary: Acute pain evokes protective neural and behavioral responses. Chronic pain, however, disrupts normal nociceptive processing. The prefrontal cortex (PFC is known to exert top-down regulation of sensory inputs; unfortunately, how individual PFC neurons respond to an acute pain signal is not well characterized. We found that neurons in the prelimbic region of the PFC increased firing rates of the neurons after noxious stimulations in free-moving rats. Chronic pain, however, suppressed both basal spontaneous and pain-evoked firing rates. Furthermore, we identified a linear correlation between basal and evoked firing rates of PFC neurons, whereby a decrease in basal firing leads to a nearly 2-fold reduction in pain-evoked response in chronic pain states. In contrast, enhancing basal PFC activity with low-frequency optogenetic stimulation scaled up prefrontal outputs to inhibit pain. These results demonstrate a cortical gain control system for nociceptive regulation and establish scaling up prefrontal outputs as an effective neuromodulation strategy to inhibit pain. : Dale et al. find that acute pain increases activity levels in the prefrontal cortex. Chronic pain reduces both basal spontaneous and pain-evoked activity in this region, whereas neurostimulation to restore basal activities can in turn enhance nociception-evoked prefrontal activities to inhibit pain. Keywords: chronic pain, neuromodulation, prefrontal cortex, PFC, cortical gain control

  18. High strain rate superplasticity in a friction stir processed 7075 Al alloy

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, R.S.; Mahoney, M.W.; McFaden, S.X.; Mara, N.A.; Mukherjee, A.K.

    1999-12-31

    In this paper, the authors report the first results using friction stir processing (FSP). In the last ten years, a new technique of Friction Stir Welding (FSW) has emerged as an exciting solid state joining technique for aluminum alloys. This technique, developed by The Welding Institute (TWI), involves traversing a rotating tool that produces intense plastic deformation through a stirring action. The localized heating is produced by friction between the tool shoulder and the sheet top surface, as well as plastic deformation of the material in contact with the tool. This results in a stirred zone with a very fine grain size in a single pass. Mahoney et al. observed a grain size of 3 {micro}m in a 7075 Al alloy. This process can be easily adopted as a processing technique to obtain fine grain size. FSP of a commercial 7075 Al alloy resulted in significant enhancement of superplastic properties. The optimum superplastic strain rate was 10{sup {minus}2}s{sup {minus}1} at 490 C in the FSP 7075 Al alloy, an improvement of more than an order of magnitude in strain rate. The present results suggest an exciting possibility to use a simple FSP technique to enhance grain size dependent properties.

  19. Cortical bone metastases

    International Nuclear Information System (INIS)

    Davis, T.M. Jr.; Rogers, L.F.; Hendrix, R.W.

    1986-01-01

    Twenty-five cases of bone metastases involving the cortex alone are reviewed. Seven patients had primary lung carcinoma, while 18 had primary tumors not previously reported to produce cortical bone metastases (tumors of the breast, kidney, pancreas, adenocarcinoma of unknown origin, multiple myeloma). Radiographically, these cortical lesions were well circumscribed, osteolytic, and produced soft-tissue swelling and occasional periosteal reaction. A recurrent pattern of metadiaphyseal involvement of the long bones of the lower extremity (particularly the femur) was noted, and is discussed. Findings reported in the literature, review, pathophysiology, and the role of skeletal radiographs, bone scans, and CT scans in evaluating cortical bone metastases are addressed

  20. Experimental characterization and modelling of UO2 mechanical behaviour at high temperatures and high strain rates

    International Nuclear Information System (INIS)

    Salvo, Maxime

    2014-01-01

    The aim of this work is to characterize and model the mechanical behavior of uranium dioxide (UO 2 ) during a Reactivity Initiated Accident (RIA). The fuel loading during a RIA is characterized by high strain rates (up to 1/s) and high temperatures (1000 C - 2500 C). Two types of UO 2 pellets (commercial and high density) were therefore tested in compression with prescribed displacement rates (0.1 to 100 mm/min corresponding to strain rates of 10 -4 - 10 -1 /s) and temperatures (1100 C - 1350 C - 1550 C et 1700 C). Experimental results (geometry, yield stress and microstructure) allowed us to define a hyperbolic sine creep law and a Drucker-Prager criterion with associated plasticity, in order to model grain boundaries fragmentation at the macroscopic scale. Finite Element Simulations of these tests and of more than 200 creep tests were used to assess the model response to a wide range of temperatures (1100 C - 1700 C) and strain rates (10 -9 /s - 10 -1 /s). Finally, a constitutive law called L3F was developed for UO 2 by adding to the previous model irradiation creep and tensile macroscopic cracking. The L3F law was then introduced in the 1.5D scheme of the fuel performance code ALCYONE-RIA to simulate the REP-Na tests performed in the experimental reactor CABRI. Simulation results are in good agreement with post tests examinations. (author) [fr

  1. Development of transformation bands in TiNi SMA for various stress and strain rates studied by a fast and sensitive infrared camera

    International Nuclear Information System (INIS)

    Pieczyska, E A; Kulasinski, K; Tobushi, H

    2013-01-01

    TiNi shape memory alloy (SMA) was subjected to tension at various strain rates for stress- and strain-controlled tests. The nucleation, development and saturation of the stress-induced martensitic transformation were investigated, based on the specimen temperature changes, measured by a fast and sensitive infrared camera. It was found that the initial, macroscopically homogeneous phase transformation occurs at the same stress level for all strain rates applied, regardless of the loading manner, while the stress of the localized transformation increases with the strain rate. At higher strain rate, a more dynamic course of the transformation process was observed, revealed in the creation of numerous fine transformation bands. An inflection point was noticed on the stress–strain curve, dividing the transformation range into two stages: the first heterogeneous, where transformation bands nucleate and evolve throughout the sample; the second, where the bands overlap, related to significant temperature increase and an upswing region of the curve. In the final part of the SMA loading a decrease of the average sample temperature revealed the saturation stage of the transformation. It was also observed that nucleation of the localized martensitic forward transformation takes place in the weakest area of the sample in both approaches, whereas the reverse transformation always initiates in its central part. (paper)

  2. Dose-Dependent Cortical Thinning After Partial Brain Irradiation in High-Grade Glioma

    Energy Technology Data Exchange (ETDEWEB)

    Karunamuni, Roshan [Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California (United States); Bartsch, Hauke; White, Nathan S. [Department of Radiology, University of California San Diego, La Jolla, California (United States); Moiseenko, Vitali; Carmona, Ruben; Marshall, Deborah C.; Seibert, Tyler M. [Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California (United States); McDonald, Carrie R. [Department of Psychiatry, University of California San Diego, La Jolla, California (United States); Farid, Nikdokht; Krishnan, Anithapriya; Kuperman, Joshua [Department of Radiology, University of California San Diego, La Jolla, California (United States); Mell, Loren [Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California (United States); Brewer, James B.; Dale, Anders M. [Department of Radiology, University of California San Diego, La Jolla, California (United States); Hattangadi-Gluth, Jona A., E-mail: jhattangadi@ucsd.edu [Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California (United States)

    2016-02-01

    Purpose: Radiation-induced cognitive deficits may be mediated by tissue damage to cortical regions. Volumetric changes in cortex can be reliably measured using high-resolution magnetic resonance imaging (MRI). We used these methods to study the association between radiation therapy (RT) dose and change in cortical thickness in high-grade glioma (HGG) patients. Methods and Materials: We performed a voxel-wise analysis of MRI from 15 HGG patients who underwent fractionated partial brain RT. Three-dimensional MRI was acquired pre- and 1 year post RT. Cortex was parceled with well-validated segmentation software. Surgical cavities were censored. Each cortical voxel was assigned a change in cortical thickness between time points, RT dose value, and neuroanatomic label by lobe. Effects of dose, neuroanatomic location, age, and chemotherapy on cortical thickness were tested using linear mixed effects (LME) modeling. Results: Cortical atrophy was seen after 1 year post RT with greater effects at higher doses. Estimates from LME modeling showed that cortical thickness decreased by −0.0033 mm (P<.001) for every 1-Gy increase in RT dose. Temporal and limbic cortex exhibited the largest changes in cortical thickness per Gy compared to that in other regions (P<.001). Age and chemotherapy were not significantly associated with change in cortical thickness. Conclusions: We found dose-dependent thinning of the cerebral cortex, with varying neuroanatomical regional sensitivity, 1 year after fractionated partial brain RT. The magnitude of thinning parallels 1-year atrophy rates seen in neurodegenerative diseases and may contribute to cognitive decline following high-dose RT.

  3. Crash simulation of hybrid structures considering the stress and strain rate dependent material behavior of thermoplastic materials

    Science.gov (United States)

    Hopmann, Ch.; Schöngart, M.; Weber, M.; Klein, J.

    2015-05-01

    Thermoplastic materials are more and more used as a light weight replacement for metal, especially in the automotive industry. Since these materials do not provide the mechanical properties, which are required to manufacture supporting elements like an auto body or a cross bearer, plastics are combined with metals in so called hybrid structures. Normally, the plastics components are joined to the metal structures using different technologies like welding or screwing. Very often, the hybrid structures are made of flat metal parts, which are stiffened by a reinforcement structure made of thermoplastic materials. The loads on these structures are very often impulsive, for example in the crash situation of an automobile. Due to the large stiffness variation of metal and thermoplastic materials, complex states of stress and very high local strain rates occur in the contact zone under impact conditions. Since the mechanical behavior of thermoplastic materials is highly dependent on these types of load, the crash failure of metal plastic hybrid parts is very complex. The problem is that the normally used strain rate dependent elastic/plastic material models are not capable to simulate the mechanical behavior of thermoplastic materials depended on the state of stress. As part of a research project, a method to simulate the mechanical behavior of hybrid structures under impact conditions is developed at the IKV. For this purpose, a specimen for the measurement of mechanical properties dependet on the state of stress and a method for the strain rate depended characterization of thermoplastic materials were developed. In the second step impact testing is performed. A hybrid structure made from a metal sheet and a reinforcement structure of a Polybutylenterephthalat Polycarbonate blend is tested under impact conditions. The measured stress and strain rate depended material data are used to simulate the mechanical behavior of the hybrid structure under highly dynamic load with

  4. Length-scale and strain rate-dependent mechanism of defect formation and fracture in carbon nanotubes under tensile loading

    Energy Technology Data Exchange (ETDEWEB)

    Javvaji, Brahmanandam [Indian Institute of Science, Department of Aerospace Engineering (India); Raha, S. [Indian Institute of Science, Department of Computational and Data Sciences (India); Mahapatra, D. Roy, E-mail: droymahapatra@aero.iisc.ernet.in [Indian Institute of Science, Department of Aerospace Engineering (India)

    2017-02-15

    Electromagnetic and thermo-mechanical forces play a major role in nanotube-based materials and devices. Under high-energy electron transport or high current densities, carbon nanotubes fail via sequential fracture. The failure sequence is governed by certain length scale and flow of current. We report a unified phenomenological model derived from molecular dynamic simulation data, which successfully captures the important physics of the complex failure process. Length-scale and strain rate-dependent defect nucleation, growth, and fracture in single-walled carbon nanotubes with diameters in the range of 0.47 to 2.03 nm and length which is about 6.17 to 26.45 nm are simulated. Nanotubes with long length and small diameter show brittle fracture, while those with short length and large diameter show transition from ductile to brittle fracture. In short nanotubes with small diameters, we observe several structural transitions like Stone-Wales defect initiation, its propagation to larger void nucleation, formation of multiple chains of atoms, conversion to monatomic chain of atoms, and finally complete fracture of the carbon nanotube. Hybridization state of carbon-carbon bonds near the end cap evolves, leading to the formation of monatomic chain in short nanotubes with small diameter. Transition from ductile to brittle fracture is also observed when strain rate exceeds a critical value. A generalized analytical model of failure is established, which correlates the defect energy during the formation of atomic chain with aspect ratio of the nanotube and strain rate. Variation in the mechanical properties such as elastic modulus, tensile strength, and fracture strain with the size and strain rate shows important implications in mitigating force fields and ways to enhance the life of electronic devices and nanomaterial conversion via fracture in manufacturing.

  5. How fault evolution changes strain partitioning and fault slip rates in Southern California: Results from geodynamic modeling

    Science.gov (United States)

    Ye, Jiyang; Liu, Mian

    2017-08-01

    In Southern California, the Pacific-North America relative plate motion is accommodated by the complex southern San Andreas Fault system that includes many young faults (faults and their impact on strain partitioning and fault slip rates are important for understanding the evolution of this plate boundary zone and assessing earthquake hazard in Southern California. Using a three-dimensional viscoelastoplastic finite element model, we have investigated how this plate boundary fault system has evolved to accommodate the relative plate motion in Southern California. Our results show that when the plate boundary faults are not optimally configured to accommodate the relative plate motion, strain is localized in places where new faults would initiate to improve the mechanical efficiency of the fault system. In particular, the Eastern California Shear Zone, the San Jacinto Fault, the Elsinore Fault, and the offshore dextral faults all developed in places of highly localized strain. These younger faults compensate for the reduced fault slip on the San Andreas Fault proper because of the Big Bend, a major restraining bend. The evolution of the fault system changes the apportionment of fault slip rates over time, which may explain some of the slip rate discrepancy between geological and geodetic measurements in Southern California. For the present fault configuration, our model predicts localized strain in western Transverse Ranges and along the dextral faults across the Mojave Desert, where numerous damaging earthquakes occurred in recent years.

  6. Effect of strain, substrate surface and growth rate on B-doping in selectively grown SiGe layers

    International Nuclear Information System (INIS)

    Ghandi, R.; Kolahdouz, M.; Hallstedt, J.; Wise, R.; Wejtmans, Hans; Radamson, H.H.

    2008-01-01

    In this work, the role of strain and growth rate on boron incorporation in selective epitaxial growth (SEG) of B-doped Si 1-x Ge x (x = 0.15-0.25) layers in recessed or unprocessed (elevated) openings for source/drain applications in CMOS has been studied. A focus has been made on the strain distribution and B incorporation in SEG of SiGe layers

  7. Effect of strain, substrate surface and growth rate on B-doping in selectively grown SiGe layers

    Energy Technology Data Exchange (ETDEWEB)

    Ghandi, R. [School of Information and Communication Technology, KTH (Royal Institute of Technology), Isafjordsg. 22-26, Electrum 229, 16640 Kista (Sweden)], E-mail: ghandi@kth.se; Kolahdouz, M.; Hallstedt, J. [School of Information and Communication Technology, KTH (Royal Institute of Technology), Isafjordsg. 22-26, Electrum 229, 16640 Kista (Sweden); Wise, R.; Wejtmans, Hans [Texas Instrument, 13121 TI Boulevard, Dallas, Tx 75243 (United States); Radamson, H.H. [School of Information and Communication Technology, KTH (Royal Institute of Technology), Isafjordsg. 22-26, Electrum 229, 16640 Kista (Sweden)

    2008-11-03

    In this work, the role of strain and growth rate on boron incorporation in selective epitaxial growth (SEG) of B-doped Si{sub 1-x}Ge{sub x} (x = 0.15-0.25) layers in recessed or unprocessed (elevated) openings for source/drain applications in CMOS has been studied. A focus has been made on the strain distribution and B incorporation in SEG of SiGe layers.

  8. Static and dynamic strain energy release rates in toughened thermosetting composite laminates

    Science.gov (United States)

    Cairns, Douglas S.

    1992-01-01

    In this work, the static and dynamic fracture properties of several thermosetting resin based composite laminates are presented. Two classes of materials are explored. These are homogeneous, thermosetting resins and toughened, multi-phase, thermosetting resin systems. Multi-phase resin materials have shown enhancement over homogenous materials with respect to damage resistance. The development of new dynamic tests are presented for composite laminates based on Width Tapered Double Cantilevered Beam (WTDCB) for Mode 1 fracture and the End Notched Flexure (ENF) specimen. The WTDCB sample was loaded via a low inertia, pneumatic cylinder to produce rapid cross-head displacements. A high rate, piezo-electric load cell and an accelerometer were mounted on the specimen. A digital oscilloscope was used for data acquisition. Typical static and dynamic load versus displacement plots are presented. The ENF specimen was impacted in three point bending with an instrumented impact tower. Fracture initiation and propagation energies under static and dynamic conditions were determined analytically and experimentally. The test results for Mode 1 fracture are relatively insensitive to strain rate effects for the laminates tested in this study. The test results from Mode 2 fracture indicate that the toughened systems provide superior fracture initiation and higher resistance to propagation under dynamic conditions. While the static fracture properties of the homogeneous systems may be relatively high, the apparent Mode 2 dynamic critical strain energy release rate drops significantly. The results indicate that static Mode 2 fracture testing is inadequate for determining the fracture performance of composite structures subjected to conditions such as low velocity impact. A good correlation between the basic Mode 2 dynamic fracture properties and the performance is a combined material/structural Compression After Impact (CAI) test is found. These results underscore the importance of

  9. Membrane potential dynamics of populations of cortical neurons during auditory streaming

    Science.gov (United States)

    Farley, Brandon J.

    2015-01-01

    How a mixture of acoustic sources is perceptually organized into discrete auditory objects remains unclear. One current hypothesis postulates that perceptual segregation of different sources is related to the spatiotemporal separation of cortical responses induced by each acoustic source or stream. In the present study, the dynamics of subthreshold membrane potential activity were measured across the entire tonotopic axis of the rodent primary auditory cortex during the auditory streaming paradigm using voltage-sensitive dye imaging. Consistent with the proposed hypothesis, we observed enhanced spatiotemporal segregation of cortical responses to alternating tone sequences as their frequency separation or presentation rate was increased, both manipulations known to promote stream segregation. However, across most streaming paradigm conditions tested, a substantial cortical region maintaining a response to both tones coexisted with more peripheral cortical regions responding more selectively to one of them. We propose that these coexisting subthreshold representation types could provide neural substrates to support the flexible switching between the integrated and segregated streaming percepts. PMID:26269558

  10. Cortical reaction as an egg quality indicator in artificial reproduction of pikeperch, Sander lucioperca.

    Science.gov (United States)

    Zarski, Daniel; Krejszeff, Sławomir; Palińska, Katarzyna; Targońska, Katarzyna; Kupren, Krzysztof; Fontaine, Pascal; Kestemont, Patrick; Kucharczyk, Dariusz

    2012-01-01

    The aim of this study was to investigate the process of the cortical reaction in eggs of pikeperch, Sander lucioperca (L.), as well as the application of microscopic assessment of this process in egg quality evaluation. The analysis was carried out with eggs obtained from 10 females by artificial reproduction, in which hormonal stimulation with hCG was applied. Subsequently, each sample of eggs (separately from each female fish) was analysed. The analysis included observation of the cortical reaction and the process of egg swelling, and determination of the effect of temperature (12, 14 and 16°C) and the presence of spermatozoa on the cortical reaction. The results indicate that the cortical reaction in pikeperch eggs is quite violent, resulting in visible deformation of eggs between 3 and 5 min after activation. No effect of temperature or the presence of spermatozoa on the cortical reaction was observed. A strong correlation was recorded for the percentage of egg deformations observed and embryo survival rate. The described method of determination of pikeperch egg quality (based on egg deformation rate between 3 and 5 min after activation) may be highly useful, both in scientific research (where high-quality eggs are required) and in hatchery practice.

  11. Dependence of the brittle ductile transition on strain-rate-dependent critical homologous temperature

    Science.gov (United States)

    Davis, Paul M.

    2017-05-01

    Earthquakes mainly occur in crust or mantle that is below a critical temperature for the tectonic strain-rate, \\dot{e}_t, such that stress builds up to the breaking point before it can relax due to creep. Then long-range stress correlation gives rise to power law seismicity including large events. The limiting temperature depends on pressure, which is taken into account by finding a critical homologous temperature THc = T/TM above which earthquakes are rarely observed (where T, TM are temperature and average melting temperature of constituent minerals). We find that THc for ocean plates is ∼0.55. For California earthquakes, it is also close to 0.55. The uppermost mantle layer of oceanic plates of thickness ∼50 km is composed of harzburgite and depleted peridotite from which basalt has been removed to form ocean crust. Thus it has a higher melting temperature than the peridotite of the surrounding mantle, or the lower halves of plates. Thicknesses of seismicity in deep subduction zones, determined from 2-D polynomial fits to a relocated catalogue, are ∼50 km, which suggests that the earthquake channel is confined to this layer. We construct models to find homologous temperatures in slabs, and find that seismicity thicknesses are also, on average, confined to TH ≤ 0.55 ± 0.05. The associated rheology is compared with that obtained from flexure models of ocean lithosphere. The brittle-ductile transition occurs where viscosity drops from high values in the cold cores of slabs to values of 1022-1023 Pa s, that is, where creep strain-rates become comparable to tectonic rates. The cut-off for deep earthquakes is not sharp. However they appear unlikely to occur if homologous temperature is high TH > 0.55. Exceptions to the rule are anomalously deep earthquakes such as those beneath the Iceland and the Hawaiian hotspots, and the Newport Inglewood Fault. These are smaller events with short-range stress correlation, and can be explained if strain-rates are two to

  12. Analysis of the Lankford coefficient evolution at different strain rates for AA6016-T4, DP800 and DC06

    Science.gov (United States)

    Lenzen, Matthias; Merklein, Marion

    2017-10-01

    In the automotive sector, a major challenge is the deep-drawing of modern lightweight sheet metals with limited formability. Thus, conventional material models lack in accuracy due to the complex material behavior. A current field of research takes into account the evolution of the Lankford coefficient. Today, changes in anisotropy under increasing degree of deformation are not considered. Only a consolidated average value of the Lankford coefficient is included in conventional material models. This leads to an increasing error in prediction of the flow behavior and therefore to an inaccurate prognosis of the forming behavior. To increase the accuracy of the prediction quality, the strain dependent Lankford coefficient should be respected, because the R-value has a direct effect on the contour of the associated flow rule. Further, the investigated materials show a more or less extinct rate dependency of the yield stress. For this reason, the rate dependency of the Lankford coefficient during uniaxial tension is focused within this contribution. To quantify the influence of strain rate on the Lankford coefficient, tensile tests are performed for three commonly used materials, the aluminum alloy AA6016-T4, the advanced high strength steel DP800 and the deep drawing steel DC06 at three different strain rates. The strain measurement is carried out by an optical strain measurement system. An evolution of the Lankford coefficient was observed for all investigated materials. Also, an influence of the deformation velocity on the anisotropy could be detected.

  13. Censoring distances based on labeled cortical distance maps in cortical morphometry.

    Science.gov (United States)

    Ceyhan, Elvan; Nishino, Tomoyuki; Alexopolous, Dimitrios; Todd, Richard D; Botteron, Kelly N; Miller, Michael I; Ratnanather, J Tilak

    2013-01-01

    It has been demonstrated that shape differences in cortical structures may be manifested in neuropsychiatric disorders. Such morphometric differences can be measured by labeled cortical distance mapping (LCDM) which characterizes the morphometry of the laminar cortical mantle of cortical structures. LCDM data consist of signed/labeled distances of gray matter (GM) voxels with respect to GM/white matter (WM) surface. Volumes and other summary measures for each subject and the pooled distances can help determine the morphometric differences between diagnostic groups, however they do not reveal all the morphometric information contained in LCDM distances. To extract more information from LCDM data, censoring of the pooled distances is introduced for each diagnostic group where the range of LCDM distances is partitioned at a fixed increment size; and at each censoring step, the distances not exceeding the censoring distance are kept. Censored LCDM distances inherit the advantages of the pooled distances but also provide information about the location of morphometric differences which cannot be obtained from the pooled distances. However, at each step, the censored distances aggregate, which might confound the results. The influence of data aggregation is investigated with an extensive Monte Carlo simulation analysis and it is demonstrated that this influence is negligible. As an illustrative example, GM of ventral medial prefrontal cortices (VMPFCs) of subjects with major depressive disorder (MDD), subjects at high risk (HR) of MDD, and healthy control (Ctrl) subjects are used. A significant reduction in laminar thickness of the VMPFC in MDD and HR subjects is observed compared to Ctrl subjects. Moreover, the GM LCDM distances (i.e., locations with respect to the GM/WM surface) for which these differences start to occur are determined. The methodology is also applicable to LCDM-based morphometric measures of other cortical structures affected by disease.

  14. Censoring Distances Based on Labeled Cortical Distance Maps in Cortical Morphometry

    Directory of Open Access Journals (Sweden)

    Elvan eCeyhan

    2013-10-01

    Full Text Available It has been demonstrated that shape differences are manifested in cortical structures due to neuropsychiatric disorders. Such morphometric differences can be measured by labeled cortical distance mapping (LCDM which characterizes the morphometry of the laminar cortical mantle of cortical structures. LCDM data consist of signed/labeled distances of gray matter (GM voxels with respect to GM/white matter (WM surface. Volumes and other summary measures for each subject and the pooled distances can help determine the morphometric differences between diagnostic groups, however they do not reveal all the morphometric information con-tained in LCDM distances. To extract more information from LCDM data, censoring of the pooled distances is introduced for each diagnostic group where the range of LCDM distances is partitioned at a fixed increment size; and at each censoring step, the distances not exceeding the censoring distance are kept. Censored LCDM distances inherit the advantages of the pooled distances but also provide information about the location of morphometric differences which cannot be obtained from the pooled distances. However, at each step, the censored distances aggregate, which might confound the results. The influence of data aggregation is investigated with an extensive Monte Carlo simulation analysis and it is demonstrated that this influence is negligible. As an illustrative example, GM of ventral medial prefrontal cortices (VMPFCs of subjects with major depressive disorder (MDD, subjects at high risk (HR of MDD, and healthy control (Ctrl subjects are used. A significant reduction in laminar thickness of the VMPFC in MDD and HR subjects is observed compared to Ctrl subjects. Moreover, the GM LCDM distances (i.e., locations with respect to the GM/WM surface for which these differences start to occur are determined. The methodology is also applicable to LCDM-based morphometric measures of other cortical structures affected by disease.

  15. Tension–compression asymmetry in an extruded Mg alloy AM30: Temperature and strain rate effects

    Energy Technology Data Exchange (ETDEWEB)

    Zachariah, Z. [Department of Materials Engineering, Indian Institute of Science, Bangalore 560012 (India); Tatiparti, Sankara Sarma V.; Mishra, S.K.; Ramakrishnan, N. [General Motors Technical Center, ITPL, Whitefield, Bangalore 560066 (India); Ramamurty, U., E-mail: ramu@materials.iisc.ernet.in [Department of Materials Engineering, Indian Institute of Science, Bangalore 560012 (India)

    2013-06-10

    The effect of strain rate, ε, and temperature, T, on the tension–compression asymmetry (TCA) in a dilute and wrought Mg alloy, AM30, over a temperature range that covers both twin accommodated deformation (below 250 °C in compression) as well as dislocation-mediated plasticity (above 250 °C) has been investigated. For this purpose, uniaxial tension and compression tests were conducted at T ranging from 25 to 400 °C with ε varying between 10{sup −2} and 10 s{sup −1}. In most of the cases, the stress–strain responses in tension and compression are distinctly different; with compression responses ‘concaving upward,’ due to {101-bar 2} tensile twinning at lower plastic strains followed by slip and strain hardening at higher levels of deformation, for T below 250 °C. This results in significant levels of TCA at T<250 °C, reducing substantially at high temperatures. At T=150 and 250 °C, high ε leads to high TCA, in particular at T=250 °C and ε=10 s{sup −1}, suggesting that twin-mediated plastic deformation takes precedence at high rates of loading even at sufficiently high T. TCA becomes negligible at T=350 °C; however at T=400 °C, as ε increases TCA gets higher. Microscopy of the deformed samples, carried out by using electron back-scattered diffraction (EBSD), suggests that at T>250 °C dynamic recrystallization begins between accompanied by reduction in the twinned fraction that contributes to the decrease of the TCA.

  16. Assessment of cortical and sub-cortical function in neonates by electrophysiological monitoring

    NARCIS (Netherlands)

    Jennekens, W.

    2012-01-01

    The aim of this thesis was the assessment of cortical and sub-cortical function in neonates by electrophysiological monitoring, i.e. to evaluate the function of the neonatal cortex and brainstem through quantitative analysis of signals readily available in the NICU. These signals include

  17. Modelling and simulation of dynamic recrystallization (DRX) in OFHC copper at very high strain rates

    Science.gov (United States)

    Testa, G.; Bonora, N.; Ruggiero, A.; Iannitti, G.; Persechino, I.; Hörnqvist, M.; Mortazavi, N.

    2017-01-01

    At high strain rates, deformation processes are essentially adiabatic and if the plastic work is large enough dynamic recrystallization can occur. In this work, an examination on microstructure evolution of OFHC copper in Dynamic Tensile Extrusion (DTE) test, performed at 400 m/s, was carried out. EBSD investigations, along the center line of the fragment remaining in the extrusion die, showed a progressive elongation of the grains, and an accompanying development of a strong + dual fiber texture. Discontinuous dynamic recrystallization (DRX) occurred at larger strains, and it was showed that nucleation occurred during straining. A criterion for DRX to occur, based on the evolution of Zener-Hollomon parameter during the dynamic deformation process, is proposed. Finally, DTE test was simulated using the modified Rusinek-Klepaczko constitutive model incorporating a model for the prediction of DRX initiation.

  18. Dendritic nonlinearities are tuned for efficient spike-based computations in cortical circuits.

    Science.gov (United States)

    Ujfalussy, Balázs B; Makara, Judit K; Branco, Tiago; Lengyel, Máté

    2015-12-24

    Cortical neurons integrate thousands of synaptic inputs in their dendrites in highly nonlinear ways. It is unknown how these dendritic nonlinearities in individual cells contribute to computations at the level of neural circuits. Here, we show that dendritic nonlinearities are critical for the efficient integration of synaptic inputs in circuits performing analog computations with spiking neurons. We developed a theory that formalizes how a neuron's dendritic nonlinearity that is optimal for integrating synaptic inputs depends on the statistics of its presynaptic activity patterns. Based on their in vivo preynaptic population statistics (firing rates, membrane potential fluctuations, and correlations due to ensemble dynamics), our theory accurately predicted the responses of two different types of cortical pyramidal cells to patterned stimulation by two-photon glutamate uncaging. These results reveal a new computational principle underlying dendritic integration in cortical neurons by suggesting a functional link between cellular and systems--level properties of cortical circuits.

  19. Frontal cortical control of posterior sensory and association cortices through the claustrum.

    Science.gov (United States)

    White, Michael G; Mathur, Brian N

    2018-04-06

    The claustrum is a telencephalic gray matter nucleus that is richly interconnected with the neocortex. This structure subserves top-down executive functions that require frontal cortical control of posterior cortical regions. However, functional anatomical support for the claustrum allowing for long-range intercortical communication is lacking. To test this, we performed a channelrhodopsin-assisted long-circuit mapping strategy in mouse brain slices. We find that anterior cingulate cortex input to the claustrum is transiently amplified by claustrum neurons that, in turn, project to parietal association cortex or to primary and secondary visual cortices. Additionally, we observe that claustrum drive of cortical neurons in parietal association cortex is layer-specific, eliciting action potential generation briefly in layers II/III, IV, and VI but not V. These data are the first to provide a functional anatomical substrate through claustrum that may underlie top-down functions, such as executive attention or working memory, providing critical insight to this most interconnected and enigmatic nucleus.

  20. Influence of primary α-phase volume fraction on the mechanical properties of Ti-6Al-4V alloy at different strain rates and temperatures

    Science.gov (United States)

    Ren, Yu; Zhou, Shimeng; Luo, Wenbo; Xue, Zhiyong; Zhang, Yajing

    2018-03-01

    Bimodal microstructures with primary α-phase volume fractions ranging from 14.3% to 57.1% were gained in Ti-6Al-4V (Ti-64) alloy through annealed in two-phase region at various temperatures below the β-transus point. Then the influence of the primary α-phase volume fraction on the mechanical properties of Ti-64 were studied. The results show that, at room temperature and a strain rate of 10‑3 s‑1, the yield stress decreases but the fracture strain augments with added primary α-phase volume fraction. The equiaxed primary α-phase possesses stronger ability to coordinate plastic deformation, leading to the improvement of the ductile as well as degradation of the strength of Ti-64 with higher primary α-phase volume fraction. As the temperature goes up to 473 K, the quasi-static yield stress and ultimate strength decrease first and then increase with the incremental primary α-phase volume fraction, due to the interaction between the work hardening and the softening caused by the DRX and the growth of the primary α-phase. At room temperature and a strain rate of 3×103 s‑1, the varying pattern of strength with the primary α-phase volume fraction resembles that at a quasi-static strain rate. However, the flow stress significantly increases but the strain-hardening rate decreases compared to those at quasi-static strain rate due to the competition between the strain rate hardening and the thermal softening during dynamic compression process.

  1. Trade-off of cerebello-cortical and cortico-cortical functional networks for planning in 6-year-old children.

    Science.gov (United States)

    Kipping, Judy A; Margulies, Daniel S; Eickhoff, Simon B; Lee, Annie; Qiu, Anqi

    2018-05-03

    Childhood is a critical period for the development of cognitive planning. There is a lack of knowledge on its neural mechanisms in children. This study aimed to examine cerebello-cortical and cortico-cortical functional connectivity in association with planning skills in 6-year-olds (n = 76). We identified the cerebello-cortical and cortico-cortical functional networks related to cognitive planning using activation likelihood estimation (ALE) meta-analysis on existing functional imaging studies on spatial planning, and data-driven independent component analysis (ICA) of children's resting-state functional MRI (rs-fMRI). We investigated associations of cerebello-cortical and cortico-cortical functional connectivity with planning ability in 6-year-olds, as assessed using the Stockings of Cambridge task. Long-range functional connectivity of two cerebellar networks (lobules VI and lateral VIIa) with the prefrontal and premotor cortex were greater in children with poorer planning ability. In contrast, cortico-cortical association networks were not associated with the performance of planning in children. These results highlighted the key contribution of the lateral cerebello-frontal functional connectivity, but not cortico-cortical association functional connectivity, for planning ability in 6-year-olds. Our results suggested that brain adaptation to the acquisition of planning ability during childhood is partially achieved through the engagement of the cerebello-cortical functional connectivity. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Spatial integration and cortical dynamics.

    Science.gov (United States)

    Gilbert, C D; Das, A; Ito, M; Kapadia, M; Westheimer, G

    1996-01-23

    Cells in adult primary visual cortex are capable of integrating information over much larger portions of the visual field than was originally thought. Moreover, their receptive field properties can be altered by the context within which local features are presented and by changes in visual experience. The substrate for both spatial integration and cortical plasticity is likely to be found in a plexus of long-range horizontal connections, formed by cortical pyramidal cells, which link cells within each cortical area over distances of 6-8 mm. The relationship between horizontal connections and cortical functional architecture suggests a role in visual segmentation and spatial integration. The distribution of lateral interactions within striate cortex was visualized with optical recording, and their functional consequences were explored by using comparable stimuli in human psychophysical experiments and in recordings from alert monkeys. They may represent the substrate for perceptual phenomena such as illusory contours, surface fill-in, and contour saliency. The dynamic nature of receptive field properties and cortical architecture has been seen over time scales ranging from seconds to months. One can induce a remapping of the topography of visual cortex by making focal binocular retinal lesions. Shorter-term plasticity of cortical receptive fields was observed following brief periods of visual stimulation. The mechanisms involved entailed, for the short-term changes, altering the effectiveness of existing cortical connections, and for the long-term changes, sprouting of axon collaterals and synaptogenesis. The mutability of cortical function implies a continual process of calibration and normalization of the perception of visual attributes that is dependent on sensory experience throughout adulthood and might further represent the mechanism of perceptual learning.

  3. Internal state variable plasticity-damage modeling of AISI 4140 steel including microstructure-property relations: temperature and strain rate effects

    Science.gov (United States)

    Nacif el Alaoui, Reda

    Mechanical structure-property relations have been quantified for AISI 4140 steel. under different strain rates and temperatures. The structure-property relations were used. to calibrate a microstructure-based internal state variable plasticity-damage model for. monotonic tension, compression and torsion plasticity, as well as damage evolution. Strong stress state and temperature dependences were observed for the AISI 4140 steel. Tension tests on three different notched Bridgman specimens were undertaken to study. the damage-triaxiality dependence for model validation purposes. Fracture surface. analysis was performed using Scanning Electron Microscopy (SEM) to quantify the void. nucleation and void sizes in the different specimens. The stress-strain behavior exhibited. a fairly large applied stress state (tension, compression dependence, and torsion), a. moderate temperature dependence, and a relatively small strain rate dependence.

  4. Effects of strain rate and temperature on the mechanical behavior of carbon black reinforced elastomers based on butyl rubber and high molecular weight polyethylene

    Science.gov (United States)

    Hussein, M.

    2018-06-01

    The influence of the mechanical property and morphology of different blend ratio of Butyl rubber (IIR)/high molecular weight polyethylene (PE) by temperature and strain rate are performed. Special attention has been considered to a ductile-brittle transition that is known to occur at around 60 °C. The idea is to explain the unexpected phenomenon of brittleness which directly related to all tensile mechanical properties such as the strength of blends, modulus of elasticity of filled and unfilled IIR-polyethylene blends. In particular, the initial Young's modulus, tensile strength and strain at failure exhibit similar dependency on strain rate and temperature. These quantities lowered and increased with an increment of temperature, whereas the increased with increasing of strain rate. Furthermore, the tensile strength and strain at failure decreases for all temperatures range with the increase of PE content in the blend, except Young's modulus in reverse. The strain rate sensitivity index parameter of the examined polymeric materials is consistent with the micro-mechanisms of deformation and the behavior was well described by an Eyring relationship leading to an activation volume of ∼1 nm3, except for the highest value of unfilled IIR ∼8.45 nm3.

  5. Discrimination of cortical laminae using MEG.

    Science.gov (United States)

    Troebinger, Luzia; López, José David; Lutti, Antoine; Bestmann, Sven; Barnes, Gareth

    2014-11-15

    Typically MEG source reconstruction is used to estimate the distribution of current flow on a single anatomically derived cortical surface model. In this study we use two such models representing superficial and deep cortical laminae. We establish how well we can discriminate between these two different cortical layer models based on the same MEG data in the presence of different levels of co-registration noise, Signal-to-Noise Ratio (SNR) and cortical patch size. We demonstrate that it is possible to make a distinction between superficial and deep cortical laminae for levels of co-registration noise of less than 2mm translation and 2° rotation at SNR > 11 dB. We also show that an incorrect estimate of cortical patch size will tend to bias layer estimates. We then use a 3D printed head-cast (Troebinger et al., 2014) to achieve comparable levels of co-registration noise, in an auditory evoked response paradigm, and show that it is possible to discriminate between these cortical layer models in real data. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Influenza Virus Induces Inflammatory Response in Mouse Primary Cortical Neurons with Limited Viral Replication

    Directory of Open Access Journals (Sweden)

    Gefei Wang

    2016-01-01

    Full Text Available Unlike stereotypical neurotropic viruses, influenza A viruses have been detected in the brain tissues of human and animal models. To investigate the interaction between neurons and influenza A viruses, mouse cortical neurons were isolated, infected with human H1N1 influenza virus, and then examined for the production of various inflammatory molecules involved in immune response. We found that replication of the influenza virus in neurons was limited, although early viral transcription was not affected. Virus-induced neuron viability decreased at 6 h postinfection (p.i. but increased at 24 h p.i. depending upon the viral strain. Virus-induced apoptosis and cytopathy in primary cortical neurons were not apparent at 24 h p.i. The mRNA levels of inflammatory cytokines, chemokines, and type I interferons were upregulated at 6 h and 24 h p.i. These results indicate that the influenza virus induces inflammatory response in mouse primary cortical neurons with limited viral replication. The cytokines released in viral infection-induced neuroinflammation might play critical roles in influenza encephalopathy, rather than in viral replication-induced cytopathy.

  7. Effect of age at onset on cortical thickness and cognition in posterior cortical atrophy

    Science.gov (United States)

    Suárez-González, Aida; Lehmann, Manja; Shakespeare, Timothy J.; Yong, Keir X.X.; Paterson, Ross W.; Slattery, Catherine F.; Foulkes, Alexander J.M.; Rabinovici, Gil D.; Gil-Néciga, Eulogio; Roldán-Lora, Florinda; Schott, Jonathan M.; Fox, Nick C.; Crutch, Sebastian J.

    2016-01-01

    Age at onset (AAO) has been shown to influence the phenotype of Alzheimer’s disease (AD), but how it affects atypical presentations of AD remains unknown. Posterior cortical atrophy (PCA) is the most common form of atypical AD. In this study, we aimed to investigate the effect of AAO on cortical thickness and cognitive function in 98 PCA patients. We used Freesurfer (v5.3.0) to compare cortical thickness with AAO both as a continuous variable, and by dichotomizing the groups based on median age (58 years). In both the continuous and dichotomized analyses, we found a pattern suggestive of thinner cortex in precuneus and parietal areas in earlier-onset PCA, and lower cortical thickness in anterior cingulate and prefrontal cortex in later-onset PCA. These cortical thickness differences between PCA subgroups were consistent with earlier-onset PCA patients performing worse on cognitive tests involving parietal functions. Our results provide a suggestion that AAO may not only affect the clinico-anatomical characteristics in AD but may also affect atrophy patterns and cognition within atypical AD phenotypes. PMID:27318138

  8. Biomechanical Analysis of Normal Brain Development during the First Year of Life Using Finite Strain Theory.

    Science.gov (United States)

    Kim, Jeong Chul; Wang, Li; Shen, Dinggang; Lin, Weili

    2016-12-02

    The first year of life is the most critical time period for structural and functional development of the human brain. Combining longitudinal MR imaging and finite strain theory, this study aimed to provide new insights into normal brain development through a biomechanical framework. Thirty-three normal infants were longitudinally imaged using MRI from 2 weeks to 1 year of age. Voxel-wise Jacobian determinant was estimated to elucidate volumetric changes while Lagrange strains (both normal and shear strains) were measured to reveal directional growth information every 3 months during the first year of life. Directional normal strain maps revealed that, during the first 6 months, the growth pattern of gray matter is anisotropic and spatially inhomogeneous with higher left-right stretch around the temporal lobe and interhemispheric fissure, anterior-posterior stretch in the frontal and occipital lobes, and superior-inferior stretch in right inferior occipital and right inferior temporal gyri. In contrast, anterior lateral ventricles and insula showed an isotropic stretch pattern. Volumetric and directional growth rates were linearly decreased with age for most of the cortical regions. Our results revealed anisotropic and inhomogeneous brain growth patterns of the human brain during the first year of life using longitudinal MRI and a biomechanical framework.

  9. Increased resistance during jump exercise does not enhance cortical bone formation.

    Science.gov (United States)

    Boudreaux, Ramon D; Swift, Joshua M; Gasier, Heath G; Wiggs, Michael P; Hogan, Harry A; Fluckey, James D; Bloomfield, Susan A

    2014-01-01

    This study sought to elucidate the effects of a low- and high-load jump resistance exercise (RE) training protocol on cortical bone of the tibia and femur mid-diaphyses. Sprague-Dawley rats (male, 6 months old) were randomly assigned to high-load RE (HRE; n = 16), low-load RE (LRE; n = 15), or cage control (CC; n = 11) groups. Animals in the HRE and LRE groups performed 15 sessions of jump RE for 5 wk. Load in the HRE group was progressively increased from 80 g added to a weighted vest (50 repetitions) to 410 g (16 repetitions). The LRE rats completed the same protocol as the HRE group (same number of repetitions), with only a 30-g vest applied. Low- and high-load jump RE resulted in 6%-11% higher cortical bone mineral content and cortical bone area compared with controls, as determined by in vivo peripheral quantitative computed tomography measurements. In the femur, however, only LRE demonstrated improvements in cortical volumetric bone mineral density (+11%) and cross-sectional moment of inertia (+20%) versus the CC group. The three-point bending to failure revealed a marked increase in tibial maximum force (25%-29%), stiffness (19%-22%), and energy to maximum force (35%-55%) and a reduction in elastic modulus (-11% to 14%) in both LRE and HRE compared with controls. Dynamic histomorphometry assessed at the tibia mid-diaphysis determined that both LRE and HRE resulted in 20%-30% higher periosteal mineralizing surface versus the CC group. Mineral apposition rate and bone formation rate were significantly greater in animals in the LRE group (27%, 39%) than those in the HRE group. These data demonstrate that jump training with minimal loading is equally, and sometimes more, effective at augmenting cortical bone integrity compared with overload training in skeletally mature rats.

  10. Determine variation of poisson ratios and thermal creep stresses and strain rates in an isotropic disc

    Directory of Open Access Journals (Sweden)

    Gupta Nishi

    2016-01-01

    Full Text Available Seth's transition theory is applied to the problem of thermal creep transition stresses and strain rates in a thin rotating disc with shaft having variable density by finite deformation. Neither the yield criterion nor the associated flow rule is assumed here. The results obtained here are applicable to compressible materials. If the additional condition of incompressibility is imposed, then the expression for stresses corresponds to those arising from Tresca yield condition. Thermal effect decreased value of radial stress at the internal surface of the rotating isotropic disc made of compressible material as well as incompressible material and this value of radial stress further much increases with the increase in angular speed. With the introduction of thermal effects, the maximum value of strain rates further increases at the internal surface for compressible materials as compare to incompressible material.

  11. Neuropsychology of selective attention and magnetic cortical stimulation.

    Science.gov (United States)

    Sabatino, M; Di Nuovo, S; Sardo, P; Abbate, C S; La Grutta, V

    1996-01-01

    Informed volunteers were asked to perform different neuropsychological tests involving selective attention under control conditions and during transcranial magnetic cortical stimulation. The tests chosen involved the recognition of a specific letter among different letters (verbal test) and the search for three different spatial orientations of an appendage to a square (visuo-spatial test). For each test the total time taken and the error rate were calculated. Results showed that cortical stimulation did not cause a worsening in performance. Moreover, magnetic stimulation of the temporal lobe neither modified completion time in both verbal and visuo-spatial tests nor changed error rate. In contrast, magnetic stimulation of the pre-frontal area induced a significant reduction in the performance time of both the verbal and visuo-spatial tests always without an increase in the number of errors. The experimental findings underline the importance of the pre-frontal area in performing tasks requiring a high level of controlled attention and suggest the need to adopt an interdisciplinary approach towards the study of neurone/mind interface mechanisms.

  12. Trajectories of cortical surface area and cortical volume maturation in normal brain development

    Directory of Open Access Journals (Sweden)

    Simon Ducharme

    2015-12-01

    Full Text Available This is a report of developmental trajectories of cortical surface area and cortical volume in the NIH MRI Study of Normal Brain Development. The quality-controlled sample included 384 individual typically-developing subjects with repeated scanning (1–3 per subject, total scans n=753 from 4.9 to 22.3 years of age. The best-fit model (cubic, quadratic, or first-order linear was identified at each vertex using mixed-effects models, with statistical correction for multiple comparisons using random field theory. Analyses were performed with and without controlling for total brain volume. These data are provided for reference and comparison with other databases. Further discussion and interpretation on cortical developmental trajectories can be found in the associated Ducharme et al.׳s article “Trajectories of cortical thickness maturation in normal brain development – the importance of quality control procedures” (Ducharme et al., 2015 [1].

  13. TRP 9904 - Constitutive Behavior of High Strength Multiphase Sheel Steel Under High Strain Rate Deformation

    Energy Technology Data Exchange (ETDEWEB)

    David Matlock; John Speer

    2005-03-31

    The focus of the research project was to systematically assess the strain rate dependence of strengthening mechanisms in new advanced high strength sheet steels. Data were obtained on specially designed and produced Duel Phase and TRIP steels and compared to the properties of automotive steels currently in use.

  14. Focal cortical dysplasia – review

    International Nuclear Information System (INIS)

    Kabat, Joanna; Król, Przemysław

    2012-01-01

    Focal cortical dysplasia is a malformation of cortical development, which is the most common cause of medically refractory epilepsy in the pediatric population and the second/third most common etiology of medically intractable seizures in adults. Both genetic and acquired factors are involved in the pathogenesis of cortical dysplasia. Numerous classifications of the complex structural abnormalities of focal cortical dysplasia have been proposed – from Taylor et al. in 1971 to the last modification of Palmini classification made by Blumcke in 2011. In general, three types of cortical dysplasia are recognized. Type I focal cortical dysplasia with mild symptomatic expression and late onset, is more often seen in adults, with changes present in the temporal lobe. Clinical symptoms are more severe in type II of cortical dysplasia usually seen in children. In this type, more extensive changes occur outside the temporal lobe with predilection for the frontal lobes. New type III is one of the above dysplasias with associated another principal lesion as hippocampal sclerosis, tumor, vascular malformation or acquired pathology during early life. Brain MRI imaging shows abnormalities in the majority of type II dysplasias and in only some of type I cortical dysplasias. The most common findings on MRI imaging include: focal cortical thickening or thinning, areas of focal brain atrophy, blurring of the gray-white junction, increased signal on T2- and FLAIR-weighted images in the gray and subcortical white matter often tapering toward the ventricle. On the basis of the MRI findings, it is possible to differentiate between type I and type II cortical dysplasia. A complete resection of the epileptogenic zone is required for seizure-free life. MRI imaging is very helpful to identify those patients who are likely to benefit from surgical treatment in a group of patients with drug-resistant epilepsy. However, in type I cortical dysplasia, MR imaging is often normal, and also in both

  15. Weibull analysis of fracture test data on bovine cortical bone: influence of orientation.

    Science.gov (United States)

    Khandaker, Morshed; Ekwaro-Osire, Stephen

    2013-01-01

    The fracture toughness, K IC, of a cortical bone has been experimentally determined by several researchers. The variation of K IC values occurs from the variation of specimen orientation, shape, and size during the experiment. The fracture toughness of a cortical bone is governed by the severest flaw and, hence, may be analyzed using Weibull statistics. To the best of the authors' knowledge, however, no studies of this aspect have been published. The motivation of the study is the evaluation of Weibull parameters at the circumferential-longitudinal (CL) and longitudinal-circumferential (LC) directions. We hypothesized that Weibull parameters vary depending on the bone microstructure. In the present work, a two-parameter Weibull statistical model was applied to calculate the plane-strain fracture toughness of bovine femoral cortical bone obtained using specimens extracted from CL and LC directions of the bone. It was found that the Weibull modulus of fracture toughness was larger for CL specimens compared to LC specimens, but the opposite trend was seen for the characteristic fracture toughness. The reason for these trends is the microstructural and extrinsic toughening mechanism differences between CL and LC directions bone. The Weibull parameters found in this study can be applied to develop a damage-mechanics model for bone.

  16. Effects of Temperature and Strain Rate on Tensile Deformation Behavior of 9Cr-0.5Mo-1.8W-VNb Ferritic Heat-Resistant Steel

    Science.gov (United States)

    Guo, Xiaofeng; Weng, Xiaoxiang; Jiang, Yong; Gong, Jianming

    2017-09-01

    A series of uniaxial tensile tests were carried out at different strain rate and different temperatures to investigate the effects of temperature and strain rate on tensile deformation behavior of P92 steel. In the temperature range of 30-700 °C, the variations of flow stress, average work-hardening rate, tensile strength and ductility with temperature all show three temperature regimes. At intermediate temperature, the material exhibited the serrated flow behavior, the peak in flow stress, the maximum in average work-hardening rate, and the abnormal variations in tensile strength and ductility indicates the occurrence of DSA, whereas the sharp decrease in flow stress, average work-hardening rate as well as strength values, and the remarkable increase in ductility values with increasing temperature from 450 to 700 °C imply that dynamic recovery plays a dominant role in this regime. Additionally, for the temperature ranging from 550 to 650 °C, a significant decrease in flow stress values is observed with decreasing in strain rate. This phenomenon suggests the strain rate has a strong influence on flow stress. Based on the experimental results above, an Arrhenius-type constitutive equation is proposed to predict the flow stress.

  17. Cortical hypermetabolism in MCI subjects: a compensatory mechanism?

    International Nuclear Information System (INIS)

    Ashraf, A.; Fan, Z.; Brooks, D.J.; Edison, P.

    2015-01-01

    Alzheimer's disease (AD) is associated with amyloid accumulation that takes place decades before symptoms appear. Cognitive impairment in AD is associated with reduced glucose metabolism. However, neuronal plasticity/compensatory mechanisms might come into play before the onset of dementia. The aim of this study was to determine whether there is evidence of cortical hypermetabolism as a compensatory mechanism before amyloid deposition takes place in subjects with amnestic mild cognitive impairment (aMCI). Nine AD subjects and ten aMCI subjects had both [ 11 C]PIB and [ 18 F]FDG PET scans with arterial input in order to quantify the amyloid deposition and glucose metabolism in vivo in comparison with healthy control subjects who underwent either [ 11 C]PIB or [ 18 F]FDG PET scans. The [ 11 C]PIB PET scans were quantified using [ 11 C]PIB target region to cerebellum uptake ratio images created by integrating the activity collected from 60 to 90 min, and regional cerebral glucose metabolism was quantified using spectral analysis. In MCI subjects, cortical hypermetabolism was observed in four amyloid-negative subjects and one amyloid-positive subject, while hypometabolism was seen in five other MCI subjects with high amyloid load. Subjects with hypermetabolism and low amyloid did not convert to AD during clinical follow-up for 18 months in contrast to four amyloid-positive hypometabolic subjects who did convert to AD. This preliminary study suggests that compensatory hypermetabolism can occur in aMCI subjects, particularly in those who are amyloid-negative. The increase in metabolic rate in different cortical regions with predominance in the occipital cortex may be a compensatory response to the neuronal damage occurring early in the disease process. It may also reflect recruitment of relatively minimally affected cortical regions to compensate for reduced function in the temporoparietal cortical association areas. (orig.)

  18. Cortical hypermetabolism in MCI subjects: a compensatory mechanism?

    Energy Technology Data Exchange (ETDEWEB)

    Ashraf, A.; Fan, Z.; Brooks, D.J.; Edison, P. [Imperial College London, Neurology Imaging Unit, Division of Brain Sciences, London (United Kingdom)

    2014-09-30

    Alzheimer's disease (AD) is associated with amyloid accumulation that takes place decades before symptoms appear. Cognitive impairment in AD is associated with reduced glucose metabolism. However, neuronal plasticity/compensatory mechanisms might come into play before the onset of dementia. The aim of this study was to determine whether there is evidence of cortical hypermetabolism as a compensatory mechanism before amyloid deposition takes place in subjects with amnestic mild cognitive impairment (aMCI). Nine AD subjects and ten aMCI subjects had both [{sup 11}C]PIB and [{sup 18}F]FDG PET scans with arterial input in order to quantify the amyloid deposition and glucose metabolism in vivo in comparison with healthy control subjects who underwent either [{sup 11}C]PIB or [{sup 18}F]FDG PET scans. The [{sup 11}C]PIB PET scans were quantified using [{sup 11}C]PIB target region to cerebellum uptake ratio images created by integrating the activity collected from 60 to 90 min, and regional cerebral glucose metabolism was quantified using spectral analysis. In MCI subjects, cortical hypermetabolism was observed in four amyloid-negative subjects and one amyloid-positive subject, while hypometabolism was seen in five other MCI subjects with high amyloid load. Subjects with hypermetabolism and low amyloid did not convert to AD during clinical follow-up for 18 months in contrast to four amyloid-positive hypometabolic subjects who did convert to AD. This preliminary study suggests that compensatory hypermetabolism can occur in aMCI subjects, particularly in those who are amyloid-negative. The increase in metabolic rate in different cortical regions with predominance in the occipital cortex may be a compensatory response to the neuronal damage occurring early in the disease process. It may also reflect recruitment of relatively minimally affected cortical regions to compensate for reduced function in the temporoparietal cortical association areas. (orig.)

  19. EXPERIMENTAL TESTS OF VANADIUM STRENGTH MODELS AT HIGH PRESSURES AND STRAIN RATES

    Energy Technology Data Exchange (ETDEWEB)

    Park, H; Barton, N R; Becker, R C; Bernier, J V; Cavallo, R M; Lorenz, K T; Pollaine, S M; Remington, B A; Rudd, R E

    2010-03-02

    Experimental results showing significant reductions from classical in the Rayleigh-Taylor (RT) instability growth rate due to high pressure material strength or effective lattice viscosity in metal foils are presented. On the Omega Laser in the Laboratory for Laser Energetics, University of Rochester, target samples of polycrystalline vanadium are compressed and accelerated quasi-isentropically at {approx}1 Mbar pressures, while maintaining the samples in the solid-state. Comparison of the results with constitutive models for solid state strength under these conditions show that the measured RT growth is substantially lower than predictions using existing models that work well at low pressures and long time scales. High pressure, high strain rate data can be explained by the enhanced strength due to a phonon drag mechanism, creating a high effective lattice viscosity.

  20. Cortical bone drilling: An experimental and numerical study.

    Science.gov (United States)

    Alam, Khurshid; Bahadur, Issam M; Ahmed, Naseer

    2014-12-16

    Bone drilling is a common surgical procedure in orthopedics, dental and neurosurgeries. In conventional bone drilling process, the surgeon exerts a considerable amount of pressure to penetrate the drill into the bone tissue. Controlled penetration of drill in the bone is necessary for safe and efficient drilling. Development of a validated Finite Element (FE) model of cortical bone drilling. Drilling experiments were conducted on bovine cortical bone. The FE model of the bone drilling was based on mechanical properties obtained from literature data and additionally conducted microindentation tests on the cortical bone. The magnitude of stress in bone was found to decrease exponentially away from the lips of the drill in simulations. Feed rate was found to be the main influential factor affecting the force and torque in the numerical simulations and experiments. The drilling thrust force and torque were found to be unaffected by the drilling speed in numerical simulations. Simulated forces and torques were compared with experimental results for similar drilling conditions and were found in good agreement.CONCLUSIONS: FE schemes may be successfully applied to model complex kinematics of bone drilling process.

  1. Mouse embryonic retina delivers information controlling cortical neurogenesis.

    Directory of Open Access Journals (Sweden)

    Ciro Bonetti

    2010-12-01

    Full Text Available The relative contribution of extrinsic and intrinsic mechanisms to cortical development is an intensely debated issue and an outstanding question in neurobiology. Currently, the emerging view is that interplay between intrinsic genetic mechanisms and extrinsic information shape different stages of cortical development. Yet, whereas the intrinsic program of early neocortical developmental events has been at least in part decoded, the exact nature and impact of extrinsic signaling are still elusive and controversial. We found that in the mouse developing visual system, acute pharmacological inhibition of spontaneous retinal activity (retinal waves-RWs during embryonic stages increase the rate of corticogenesis (cell cycle withdrawal. Furthermore, early perturbation of retinal spontaneous activity leads to changes of cortical layer structure at a later time point. These data suggest that mouse embryonic retina delivers long-distance information capable of modulating cell genesis in the developing visual cortex and that spontaneous activity is the candidate long-distance acting extrinsic cue mediating this process. In addition, these data may support spontaneous activity to be a general signal coordinating neurogenesis in other developing sensory pathways or areas of the central nervous system.

  2. A Summary of Fault Recurrence and Strain Rates in the Vicinity of the Hanford Site--Topical Report

    Energy Technology Data Exchange (ETDEWEB)

    Bjornstad, Bruce N.; Winsor, Kelsey; Unwin, Stephen D.

    2012-08-01

    This document is one in a series of topical reports compiled by the Pacific Northwest National Laboratory to summarize technical information on selected topics important to the performance of a probabilistic seismic hazard analysis of the Hanford Site. The purpose of this report is to summarize available data and analyses relevant to fault recurrence and strain rates within the Yakima Fold Belt. Strain rates have met with contention in the expert community and may have a significant potential for impact on the seismic hazard estimate at the Hanford Site. This report identifies the alternative conceptual models relevant to this technical issue and the arguments and data that support those models. It provides a brief description of the technical issue and principal uncertainties; a general overview on the nature of the technical issue, along with alternative conceptual models, supporting arguments and information, and uncertainties; and finally, suggests some prospective approaches to reducing uncertainties about earthquake recurrence rates for the Yakima Fold Belt.

  3. Communication and Wiring in the Cortical Connectome

    Directory of Open Access Journals (Sweden)

    Julian eBudd

    2012-10-01

    Full Text Available In cerebral cortex, the huge mass of axonal wiring that carries information between near and distant neurons is thought to provide the neural substrate for cognitive and perceptual function. The goal of mapping the connectivity of cortical axons at different spatial scales, the cortical connectome, is to trace the paths of information flow in cerebral cortex. To appreciate the relationship between the connectome and cortical function, we need to discover the nature and purpose of the wiring principles underlying cortical connectivity. A popular explanation has been that axonal length is strictly minimized both within and between cortical regions. In contrast, we have hypothesized the existence of a multi-scale principle of cortical wiring where to optimise communication there is a trade-off between spatial (construction and temporal (routing costs. Here, using recent evidence concerning cortical spatial networks we critically evaluate this hypothesis at neuron, local circuit, and pathway scales. We report three main conclusions. First, the axonal and dendritic arbor morphology of single neocortical neurons may be governed by a similar wiring principle, one that balances the conservation of cellular material and conduction delay. Second, the same principle may be observed for fibre tracts connecting cortical regions. Third, the absence of sufficient local circuit data currently prohibits any meaningful assessment of the hypothesis at this scale of cortical organization. To avoid neglecting neuron and microcircuit levels of cortical organization, the connectome framework should incorporate more morphological description. In addition, structural analyses of temporal cost for cortical circuits should take account of both axonal conduction and neuronal integration delays, which appear mostly of the same order of magnitude. We conclude the hypothesized trade-off between spatial and temporal costs may potentially offer a powerful explanation for

  4. Perceptual learning and adult cortical plasticity.

    Science.gov (United States)

    Gilbert, Charles D; Li, Wu; Piech, Valentin

    2009-06-15

    The visual cortex retains the capacity for experience-dependent changes, or plasticity, of cortical function and cortical circuitry, throughout life. These changes constitute the mechanism of perceptual learning in normal visual experience and in recovery of function after CNS damage. Such plasticity can be seen at multiple stages in the visual pathway, including primary visual cortex. The manifestation of the functional changes associated with perceptual learning involve both long term modification of cortical circuits during the course of learning, and short term dynamics in the functional properties of cortical neurons. These dynamics are subject to top-down influences of attention, expectation and perceptual task. As a consequence, each cortical area is an adaptive processor, altering its function in accordance to immediate perceptual demands.

  5. Basic visual function and cortical thickness patterns in posterior cortical atrophy.

    Science.gov (United States)

    Lehmann, Manja; Barnes, Josephine; Ridgway, Gerard R; Wattam-Bell, John; Warrington, Elizabeth K; Fox, Nick C; Crutch, Sebastian J

    2011-09-01

    Posterior cortical atrophy (PCA) is characterized by a progressive decline in higher-visual object and space processing, but the extent to which these deficits are underpinned by basic visual impairments is unknown. This study aimed to assess basic and higher-order visual deficits in 21 PCA patients. Basic visual skills including form detection and discrimination, color discrimination, motion coherence, and point localization were measured, and associations and dissociations between specific basic visual functions and measures of higher-order object and space perception were identified. All participants showed impairment in at least one aspect of basic visual processing. However, a number of dissociations between basic visual skills indicated a heterogeneous pattern of visual impairment among the PCA patients. Furthermore, basic visual impairments were associated with particular higher-order object and space perception deficits, but not with nonvisual parietal tasks, suggesting the specific involvement of visual networks in PCA. Cortical thickness analysis revealed trends toward lower cortical thickness in occipitotemporal (ventral) and occipitoparietal (dorsal) regions in patients with visuoperceptual and visuospatial deficits, respectively. However, there was also a lot of overlap in their patterns of cortical thinning. These findings suggest that different presentations of PCA represent points in a continuum of phenotypical variation.

  6. Phenomenological approach to precise creep life prediction by means of quantitative evaluation of strain rate acceleration in secondary creep

    International Nuclear Information System (INIS)

    Sato, Hiroyuki; Miyano, Takaya

    2010-01-01

    A method of creep life prediction by means of Strain-Acceleration-Parameter (SAP), α, is presented. The authors show that the shape of creep curve can be characterized by SAP that reflects magnitude of strain-rate change in secondary creep. The SAP-values, α are evaluated on magnesium-aluminium solution hardened alloys. Reconstruction of creep curves by combinations of SAP and minimum-creep rates are successfully performed, and the curves reasonably agree with experiments. The advantage of the proposed method is that the required parameters evaluated from individual creep curves are directly connected with the minimum creep rate. The predicted times-to-failure agree well with that obtained by experiments, and possibility of precise life time prediction by SAP is pronounced.

  7. Effect of strain rate and temperature on mechanical properties of selected building Polish steels

    Directory of Open Access Journals (Sweden)

    Moćko Wojciech

    2015-01-01

    Full Text Available Currently, the computer programs of CAD type are basic tool for designing of various structures under impact loading. Application of the numerical calculations allows to substantially reduce amount of time required for the design stage of such projects. However, the proper use of computer aided designing technique requires input data for numerical software including elastic-plastic models of structural materials. This work deals with the constitutive model developed by Rusinek and Klepaczko (RK applied for the modelling of mechanical behaviour of selected grades structural St0S, St3SX, 18GS and 34GS steels and presents here results of experimental and empirical analyses to describe dynamic elastic-plastic behaviours of tested materials at wide range of temperature. In order to calibrate the RK constitutive model, series of compression tests at wide range of strain rates, including static, quasi-static and dynamic investigations at lowered, room and elevated temperatures, were carried out using two testing stands: servo-hydraulic machine and split Hopkinson bar. The results were analysed to determine influence of temperature and strain rate on visco-plastic response of tested steels, and show good correlation with experimental data.

  8. Effect of age at onset on cortical thickness and cognition in posterior cortical atrophy.

    Science.gov (United States)

    Suárez-González, Aida; Lehmann, Manja; Shakespeare, Timothy J; Yong, Keir X X; Paterson, Ross W; Slattery, Catherine F; Foulkes, Alexander J M; Rabinovici, Gil D; Gil-Néciga, Eulogio; Roldán-Lora, Florinda; Schott, Jonathan M; Fox, Nick C; Crutch, Sebastian J

    2016-08-01

    Age at onset (AAO) has been shown to influence the phenotype of Alzheimer's disease (AD), but how it affects atypical presentations of AD remains unknown. Posterior cortical atrophy (PCA) is the most common form of atypical AD. In this study, we aimed to investigate the effect of AAO on cortical thickness and cognitive function in 98 PCA patients. We used Freesurfer (v5.3.0) to compare cortical thickness with AAO both as a continuous variable, and by dichotomizing the groups based on median age (58 years). In both the continuous and dichotomized analyses, we found a pattern suggestive of thinner cortex in precuneus and parietal areas in earlier-onset PCA, and lower cortical thickness in anterior cingulate and prefrontal cortex in later-onset PCA. These cortical thickness differences between PCA subgroups were consistent with earlier-onset PCA patients performing worse on cognitive tests involving parietal functions. Our results provide a suggestion that AAO may not only affect the clinico-anatomical characteristics in AD but may also affect atrophy patterns and cognition within atypical AD phenotypes. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Structural and functional evaluation of cortical motor areas in Amyotrophic Lateral Sclerosis.

    Science.gov (United States)

    Cosottini, Mirco; Pesaresi, Ilaria; Piazza, Selina; Diciotti, Stefano; Cecchi, Paolo; Fabbri, Serena; Carlesi, Cecilia; Mascalchi, Mario; Siciliano, Gabriele

    2012-03-01

    The structural and functional data gathered with Magnetic Resonance Imaging (MRI) techniques about the brain cortical motor damage in Amyotrophic Lateral Sclerosis (ALS) are controversial. In fact some structural MRI studies showed foci of gray matter (GM) atrophy in the precentral gyrus, even in the early stage, while others did not. Most functional MRI (fMRI) studies in ALS reported hyperactivation of extra-primary motor cortices, while contradictory results were obtained on the activation of the primary motor cortex. We aimed to investigate the cortical motor circuitries in ALS patients by a combined structural and functional approach. Twenty patients with definite ALS and 16 healthy subjects underwent a structural examination with acquisition of a 3D T1-weighted sequence and fMRI examination during a maximal force handgrip task executed with the right-hand, the left-hand and with both hands simultaneously. The T1-weighted images were analyzed with Voxel-Based Morphometry (VBM) that showed several clusters of reduced cortical GM in ALS patients compared to controls including the pre and postcentral gyri, the superior, middle and inferior frontal gyri, the supplementary motor area, the superior and inferior parietal cortices and the temporal lobe, bilaterally but more extensive on the right side. In ALS patients a significant hypoactivation of the primary sensory motor cortex and frontal dorsal premotor areas as compared to controls was observed. The hypoactivated areas matched with foci of cortical atrophy demonstrated by VBM. The fMRI analysis also showed an enhanced activation in the ventral premotor frontal areas and in the parietal cortex pertaining to the fronto-parietal motor circuit which paralleled with disease progression rate and matched with cortical regions of atrophy. The hyperactivation of the fronto-parietal circuit was asymmetric and prevalent in the left hemisphere. VBM and fMRI identified structural and functional markers of an extended

  10. Friction stir processing: a new grain refinement technique to achieve high strain rate superplasticity in commercial alloys

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, R.S. [Missouri Univ., Rolla, MO (United States). Dept. of Metallurgical Engineering; Mahoney, M.W. [Rockwell International Corp., Thousand Oaks, CA (United States). Science Center

    2001-07-01

    Friction stir processing is a new thermo-mechanical processing technique that leads to a microstructure amenable for high strain rate superplasticity in commercial aluminum alloys. Friction stirring produces a combination of very fine grain size and high grain boundary misorientation angles. Preliminary results on a 7075 Al demonstrate high strain rate superplasticity in the temperature range of 430-510 C. For example, an elongation of >1000% was observed at 490 C and 1 x 10{sup -2} s{sup -1}. This demonstrates a new possibility to economically obtain a superplastic microstructure in commercial aluminum alloys. Based on these results, a three-step manufacturing process to fabricate complex shaped components can be envisaged: cast sheet or hot-pressed powder metallurgy sheet + friction stir processing + superplastic forging or forming. (orig.)

  11. Behavior, cortical ectopias, and autoimmunity in BXSB-Yaa and BXSB-Yaa+ mice.

    Science.gov (United States)

    Schrott, L M; Waters, N S; Boehm, G W; Sherman, G F; Morrison, L; Rosen, G D; Behan, P O; Galaburda, A M; Denenberg, V H

    1993-09-01

    The BXSB-Yaa recombinant inbred strain was created by crossing a male SB/Le with a female C57BL/6J. A Y chromosome factor derived from the SB/Le male, known as the autoimmune accelerator (Yaa), leads to an earlier onset and greater severity of autoimmune disease in males. In contrast, male BXSB mice, which lack the Yaa gene (called BXSB-Yaa+) because their Y chromosome is derived from the C57BL/6J, do not develop an autoimmune condition. To examine the influence of the Y chromosome on behavior, cortical ectopia incidence, and immune functioning, males and females of these two strains were compared. Significant strain differences (for both sexes) were found for behavioral measures including discrimination, spatial and avoidance learning, and activity. For immunological parameters, a sex difference was seen in the BXSB-Yaa (males more autoimmune), but not in the BXSB-Yaa+ strain. As expected, male BXSB-Yaas were more autoimmune than male BXSB-Yaa+s. However, there was also a strain difference for IgG in the females (BXSB-Yaa+ greater). No strain difference was found for the presence of ectopias. However, there was a sex difference across both strains, with males having a higher incidence. BXSB-Yaa and BXSB-Yaa+ mice have behavioral and immunological differences greater than would be predicted by their known genetic differences. The significant differences between the two female groups suggest that the two strains differ with respect to autosomal genes, in addition to the Y chromosome. The incidence of ectopias is independent of this genetic difference and is influenced by the subject's sex.

  12. The effect of strain rate and temperature on the elevated temperature tensile flow behavior of service-exposed 2.25Cr-1Mo steel

    International Nuclear Information System (INIS)

    Girish Shastry, C.; Parameswaran, P.; Mathew, M.D.; Bhanu Sankara Rao, K.; Mannan, S.L.

    2007-01-01

    The elevated temperature tensile flow behavior of service-exposed 2.25Cr-1Mo steel has been critically examined with respect to strain rate sensitivity (m) and apparent activation energy (Q) for tensile deformation. The predominant role of forest dislocations in determining the relative flow response at true plastic strains greater than 0.01 is inferred from the profile of 'm' against flow stress. The variation of 'm' with temperature and strain is discussed based on the kinetics of dislocation generation and recovery. The decrease in Q with the increase in strain rate or temperature is attributed to the increase in recovery processes like dislocation annihilation and subcell/subgrain formation. This suggestion has been supported by transmission electron microscopy

  13. Evidence for increased glutamatergic cortical facilitation in children and adolescents with major depressive disorder.

    Science.gov (United States)

    Croarkin, Paul E; Nakonezny, Paul A; Husain, Mustafa M; Melton, Tabatha; Buyukdura, Jeylan S; Kennard, Betsy D; Emslie, Graham J; Kozel, F Andrew; Daskalakis, Zafiris J

    2013-03-01

    Converging lines of evidence implicate the glutamate and γ-aminobutyric acid neurotransmitter systems in the pathophysiology of major depressive disorder. Transcranial magnetic stimulation cortical excitability and inhibition paradigms have been used to assess cortical glutamatergic and γ-aminobutyric acid-mediated tone in adults with major depressive disorder, but not in children and adolescents. To compare measures of cortical excitability and inhibition with 4 different paradigms in a group of children and adolescents with major depressive disorder vs healthy controls. Cross-sectional study examining medication-free children and adolescents (aged 9-17 years) with major depressive disorder compared with healthy controls. Cortical excitability was assessed with motor threshold and intracortical facilitation measures. Cortical inhibition was measured with cortical silent period and intracortical inhibition paradigms. University-based child and adolescent psychiatry clinic and neurostimulation laboratory. Twenty-four participants with major depressive disorder and 22 healthy controls matched for age and sex. Patients with major depressive disorder were medication naive and had moderate to severe symptoms based on an evaluation with a child and adolescent psychiatrist and scores on the Children's Depression Rating Scale-Revised. Motor threshold, intracortical facilitation, cortical silent period, and intracortical inhibition. Compared with healthy controls, depressed patients had significantly increased intracortical facilitation at interstimulus intervals of 10 and 15 milliseconds bilaterally. There were no significant group differences in cortical inhibition measures. These findings suggest that major depressive disorder in children and adolescents is associated with increased intracortical facilitation and excessive glutamatergic activity.

  14. Towards the determination of deformation rates - pinch-and-swell structures as a natural and simulated paleo-strain rate gage

    Science.gov (United States)

    Peters, Max; Poulet, Thomas; Karrech, Ali; Regenauer-Lieb, Klaus; Herwegh, Marco

    2014-05-01

    Layered rocks deformed under viscous deformation conditions frequently show boudinage, a phenomenon that results from differences in effective viscosity between the involved layers. In the case of continuous necking of a mechanically stiffer layer embedded in a weaker matrix, symmetric boudins are interpreted as the result of dominant visco-plastic deformation (Goscombe et al., 2004). However, information on the physical conditions, material properties and deformation processes are yet unknown. Natural samples deformed under low-grade (TAustin and Evans (2007) combined with the thermodynamic approach of Regenauer-Lieb and Yuen (2004). Depending on the dissipated energy, grain sizes in these domains vary substantially in space and time. While low strain rates (low stresses) in the swells favor grain growth and GSI dominated deformation, high strain rates in the pinches provoke dramatic grain size reduction with an increasing contribution of GSS as a function of decreasing grain size. The development of symmetric necks observed in nature thus seems to coincide with the transition from dislocation to diffusion creep dominated flow with continuous grain size reduction and growth from swell to neck at relatively high extensional strains. REFERENCES Austin, N. and Evans, B. (2007). Paleowattmeters: A scaling relation for dynamically recrystallized grain size. Geology, 35. Goscombe, B.D., Passchier, C.W. and Hand, M. (2004). Boudinage classification: End-member boudin types and modified boudin structures, Journal of Structural Geology, 26. Herwegh, M., Poulet, T., Karrech, A. and Regenauer-Lieb, K. (in press). From transient to steady state deformation and grain size: A thermodynamic approach using elasto-visco-plastic numerical modeling. Journal of Geophysical Research. Karrech, A., Regenauer-Lieb, K. and Poulet, T. (2011a). A Damaged visco-plasticity model for pressure and temperature sensitive geomaterials. Journal of Engineering Science 49. Regenauer-Lieb, K. and Yuen

  15. The mechanical response of a PBX and binder: combining results across the strain-rate and frequency domains

    International Nuclear Information System (INIS)

    Drodge, D R; Williamson, D M; Palmer, S J P; Proud, W G; Govier, R K

    2010-01-01

    The mechanical response of a polymer bonded explosive (PBX) has been measured using a Split Hopkinson Pressure Bar at a strain-rate of 2000 s -1 , across a range of temperatures from 173 to 333 K, with the aim of observing its behaviour in the glassy regime. The yield stresses increased monotonically with decreasing temperature and no plateau was found. The failure mechanism was found to transition from shear-banding with crystal debonding fracture to brittle failure with some evidence of crystal fracture. Similar experiments were performed on samples of its nitrocellulose-based binder material, at a strain-rate of 3000 s -1 across a temperature range 173-273 K. The failure stresses of the binder approach that of the composite at temperatures near -70 0 C. The elastic moduli were estimated from post-equilibrium regions of the stress-strain curves, and compared with those obtained for the composite using 5 MHz ultrasonic sound-speed measurement, and powder dynamic mechanical analysis measurements and quasi-static behaviour reported in a previous paper. The moduli were plotted on a common frequency axis: a temperature shift was applied to collapse the curves, which agreed with the Cox-Merz rule.

  16. Integrated experimental and computational studies of deformation of single crystal copper at high strain rates

    Science.gov (United States)

    Rawat, S.; Chandra, S.; Chavan, V. M.; Sharma, S.; Warrier, M.; Chaturvedi, S.; Patel, R. J.

    2014-12-01

    Quasi-static (0.0033 s-1) and dynamic (103 s-1) compression experiments were performed on single crystal copper along ⟨100⟩ and ⟨110⟩ directions and best-fit parameters for the Johnson-Cook (JC) material model, which is an important input to hydrodynamic simulations for shock induced fracture, have been obtained. The deformation of single crystal copper along the ⟨110⟩ direction showed high yield strength, more strain hardening, and less strain rate sensitivity as compared to the ⟨100⟩ direction. Although the JC model at the macro-scale is easy to apply and describes a general response of material deformation, it lacks physical mechanisms that describe the influence of texture and initial orientation on the material response. Hence, a crystal plasticity model based on the theory of thermally activated motion of dislocations was used at the meso-scale, in which the evolution equations permit one to study and quantify the influence of initial orientation on the material response. Hardening parameters of the crystal plasticity model show less strain rate sensitivity along the ⟨110⟩ orientation as compared to the ⟨100⟩ orientation, as also shown by the JC model. Since the deformation process is inherently multiscale in nature, the shape changes observed in the experiments due to loading along ⟨100⟩ and ⟨110⟩ directions are also validated by molecular dynamics simulations at the nano-scale.

  17. BOLD responses in somatosensory cortices better reflect heat sensation than pain.

    Science.gov (United States)

    Moulton, Eric A; Pendse, Gautam; Becerra, Lino R; Borsook, David

    2012-04-25

    The discovery of cortical networks that participate in pain processing has led to the common generalization that blood oxygen level-dependent (BOLD) responses in these areas indicate the processing of pain. Physical stimuli have fundamental properties that elicit sensations distinguishable from pain, such as heat. We hypothesized that pain intensity coding may reflect the intensity coding of heat sensation during the presentation of thermal stimuli during fMRI. Six 3T fMRI heat scans were collected for 16 healthy subjects, corresponding to perceptual levels of "low innocuous heat," "moderate innocuous heat," "high innocuous heat," "low painful heat," "moderate painful heat," and "high painful heat" delivered by a contact thermode to the face. Subjects rated pain and heat intensity separately after each scan. A general linear model analysis detected different patterns of brain activation for the different phases of the biphasic response to heat. During high painful heat, the early phase was associated with significant anterior insula and anterior cingulate cortex activation. Persistent responses were detected in the right dorsolateral prefrontal cortex and inferior parietal lobule. Only the late phase showed significant correlations with perceptual ratings. Significant heat intensity correlated activation was identified in contralateral primary and secondary somatosensory cortices, motor cortex, and superior temporal lobe. These areas were significantly more related to heat ratings than pain. These results indicate that heat intensity is encoded by the somatosensory cortices, and that pain evaluation may either arise from multimodal evaluative processes, or is a distributed process.

  18. Concentration dependence of fluorine impurity spin-lattice relaxation rate in bone mineral

    International Nuclear Information System (INIS)

    Code, R.F.; Armstrong, R.L.; Cheng, P.-T.

    1992-01-01

    The concentration dependence of the fluoride ion spin-lattice relaxation rate has been observed by nuclear magnetic resonance experiments on samples of defatted and dried bone. The 19 F spin-lattice relaxation rates increased linearly with bone fluoride concentration. Different results were obtained from trabecular than from cortical bone. For the same macroscopic fluoride content per gram of bone calcium, relaxation rate is significantly faster in cortical bone. Relaxation rates in cortical bone samples prepared from rats and dogs were apparently controlled by the same species-independent processes. For samples from beagle dogs, bulk fluoride concentrations measured by neutron activation analysis were 3.1±0.3 times greater in trabecular bone than in corresponding cortical bone. The beagle spin-lattice relaxation data suggest that microscopic fluoride concentrations in bone mineral were 1.8±0.4 times greater in trabecular bone than in cortical bone. It is concluded that accumulation of fluoride impurities in bone mineral is non-uniform. (author)

  19. High strain rate characterization of soft materials: past, present and possible futures

    Science.gov (United States)

    Siviour, Clive

    2015-06-01

    The high strain rate properties of low impedance materials have long been of interest to the community: the very first paper by Kolsky on his eponymous bars included data from man-made polymers and natural rubber. However, it has also long been recognized that characterizing soft or low impedance specimens under dynamic loading presents a number of challenges, mainly owing to the low sound speed in, and low stresses supported by, these materials. Over the past 20 years, significant progress has been made in high rate testing techniques, including better experimental design, more sensitive data acquisition and better understanding of specimen behavior. Further, a new generation of techniques, in which materials are characterized using travelling waves, rather than in a state of static equilibrium, promise to turn those properties that were previously a drawback into an advantage. This paper will give an overview of the history of high rate characterization, the current state of the art after an exciting couple of decades and some of the techniques currently being developed that have the potential to offer increased quality data in the future.

  20. Further study on the wheel-rail impact response induced by a single wheel flat: the coupling effect of strain rate and thermal stress

    Science.gov (United States)

    Jing, Lin; Han, Liangliang

    2017-12-01

    A comprehensive dynamic finite-element simulation method was proposed to study the wheel-rail impact response induced by a single wheel flat based on a 3-D rolling contact model, where the influences of the structural inertia, strain rate effect of wheel-rail materials and thermal stress due to the wheel-rail sliding friction were considered. Four different initial conditions (i.e. pure mechanical loading plus rate-independent, pure mechanical loading plus rate-dependent, thermo-mechanical loading plus rate-independent, and thermo-mechanical loading plus rate-dependent) were involved into explore the corresponding impact responses in term of the vertical impact force, von-Mises equivalent stress, equivalent plastic strain and shear stress. Influences of train speed, flat length and axle load on the flat-induced wheel-rail impact response were discussed, respectively. The results indicate that the maximum thermal stresses are occurred on the tread of the wheel and on the top surface of the middle rail; the strain rate hardening effect contributes to elevate the von-Mises equivalent stress and restrain the plastic deformation; and the initial thermal stress due to the sliding friction will aggravate the plastic deformation of wheel and rail. Besides, the wheel-rail impact responses (i.e. impact force, von-Mises equivalent stress, equivalent plastic strain, and XY shear stress) induced by a flat are sensitive to the train speed, flat length and axle load.

  1. Cortical feedback control of olfactory bulb circuits.

    Science.gov (United States)

    Boyd, Alison M; Sturgill, James F; Poo, Cindy; Isaacson, Jeffry S

    2012-12-20

    Olfactory cortex pyramidal cells integrate sensory input from olfactory bulb mitral and tufted (M/T) cells and project axons back to the bulb. However, the impact of cortical feedback projections on olfactory bulb circuits is unclear. Here, we selectively express channelrhodopsin-2 in olfactory cortex pyramidal cells and show that cortical feedback projections excite diverse populations of bulb interneurons. Activation of cortical fibers directly excites GABAergic granule cells, which in turn inhibit M/T cells. However, we show that cortical inputs preferentially target short axon cells that drive feedforward inhibition of granule cells. In vivo, activation of olfactory cortex that only weakly affects spontaneous M/T cell firing strongly gates odor-evoked M/T cell responses: cortical activity suppresses odor-evoked excitation and enhances odor-evoked inhibition. Together, these results indicate that although cortical projections have diverse actions on olfactory bulb microcircuits, the net effect of cortical feedback on M/T cells is an amplification of odor-evoked inhibition. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Cortical myoclonus and cerebellar pathology

    NARCIS (Netherlands)

    Tijssen, MAJ; Thom, M; Ellison, DW; Wilkins, P; Barnes, D; Thompson, PD; Brown, P

    2000-01-01

    Objective To study the electrophysiologic and pathologic findings in three patients with cortical myoclonus. In two patients the myoclonic ataxic syndrome was associated with proven celiac disease. Background: The pathologic findings in conditions associated with cortical myoclonus commonly involve

  3. Cortical myoclonus and cerebellar pathology

    NARCIS (Netherlands)

    Tijssen, M. A.; Thom, M.; Ellison, D. W.; Wilkins, P.; Barnes, D.; Thompson, P. D.; Brown, P.

    2000-01-01

    OBJECTIVE: To study the electrophysiologic and pathologic findings in three patients with cortical myoclonus. In two patients the myoclonic ataxic syndrome was associated with proven celiac disease. BACKGROUND: The pathologic findings in conditions associated with cortical myoclonus commonly involve

  4. Correlation between the tissue Doppler, strain rate, strain imaging during the dobutamine infusion and coronary fractional flow reserve during catheterization: a comparative study.

    Science.gov (United States)

    Dagdelen, Sinan; Yuce, Murat; Emiroglu, Yunus; Ergelen, Mehmet; Pala, Selcuk; Tanalp, Ali Cevat; Izgi, Akin; Kirma, Cevat

    2005-06-22

    Coronary fractional flow reserve (FFR) as an invasive, and dobutamine stress echocardiography (DSE) as a noninvasive technique were used to detect critical coronary stenosis. This study was undertaken to assess correlation between these two techniques by using tissue Doppler, strain rate (SR), and strain imaging (S). In 17 patients (aged 54.9+/-12.6, 4 F), a total of 22 vessels were studied. On dobutamine stress echocardiography, baseline and peak systolic (Sm), early (Em) and late (Am) diastolic myocardial velocities, SR and S were recorded from parasternal view (mid-posterior segment) for radial and apical view (mid-septum) for longitudinal deformation. Then coronary FFR was performed by using intracoronary adenosine infusion, and the value of system were analyzed for longitudinal SR and S values, it had a mild correlation with SR (r = 0.47, p = 0.044) and a good correlation with S (r = 0.66, p = 0.002). The quantification of regional myocardial deformation by using DSE rather than the motion would be more appropriate in detecting the ischemic dysfunctional segment supplied by the critical coronary stenosis. Strain measurement during the dobutamine infusion may provide an information on the FFR results of the culprit vessel.

  5. Dynamic testing at high strain rates of an ultrafine-grained magnesium alloy processed by ECAP

    International Nuclear Information System (INIS)

    Li, B.; Joshi, S.; Azevedo, K.; Ma, E.; Ramesh, K.T.; Figueiredo, R.B.; Langdon, T.G.

    2009-01-01

    A ZK60 magnesium alloy was processed by equal-channel angular pressing (ECAP) at 473 K to produce a grain size of ∼0.8 μm and it was then tested under dynamic conditions at strain rates up to 4.0 x 10 3 s -1 using a split-Hopkinson bar. The stress-strain curves in dynamic testing exhibited upwards concave curvature suggesting the occurrence of twinning. Examination by transmission electron microscopy showed that dislocation slip played a major role in the flow behavior with dislocation accumulation as the main source of work hardening. An identification of Burgers vectors revealed the extensive presence of prismatic dislocations. Rod-shaped Mg 1 (Zn,Zr) 1 precipitates present in the as-received alloy become fragmented and overaged during ECAP.

  6. Interference with the quorum sensing systems in a Vibrio harveyi strain alters the growth rate of gnotobiotically cultured rotifer Brachionus plicatilis.

    Science.gov (United States)

    Tinh, N T N; Linh, N D; Wood, T K; Dierckens, K; Sorgeloos, P; Bossier, P

    2007-07-01

    To evaluate the effect of Vibrio harveyi strains on the growth rate of the gnotobiotically cultured rotifer Brachionus plicatilis, and to establish whether quorum sensing is involved in the observed phenomena. Gnotobiotic B. plicatilis sensu strictu, obtained by hatching glutaraldehyde-treated amictic eggs, were used as test organisms. Challenge tests were performed with 11 V. harveyi strains and different quorum sensing mutants derived from the V. harveyi BB120 strain. Brominated furanone [(5Z)-4-bromo-5-(bromomethylene)-3-butyl-2(5H)-furanone] as a quorum sensing inhibitor was tested in Brachionus challenge tests. Some V. harveyi strains, such as strain BB120, had a significantly negative effect on the Brachionus growth rate. In the challenge test with MM77, an isogenic strain of BB120 in which the two autoinducers (HAI-1 and AI-2) are both inactivated, no negative effect was observed. The effect of single mutants was the same as that observed in the BB120 strain. This indicates that both systems are responsible for the growth-retarding (GR) effect of the BB120 strain towards Brachionus. Moreover, the addition of an exogenous source of HAI-1 or AI-2 could restore the GR effect in the HAI-1 and AI-2 nonproducing mutant MM77. The addition of brominated furanone at a concentration of 2.5 mg l(-1) could neutralize the GR effect of some strains such as BB120 and VH-014. Two quorum sensing systems in V. harveyi strain BB120 (namely HAI-1 and AI-2-mediated) are necessary for its GR effect on B. plicatilis. With some other V. harveyi strains, however, growth inhibition towards Brachionus does not seem to be related to quorum sensing. Interference with the quorum sensing system might help to counteract the GR effect of some V. harveyi strains on Brachionus. However, further studies are needed to demonstrate the positive effect of halogenated furanone in nongnotobiotic Brachionus cultures and eventually, in other segments of the aquaculture industry.

  7. The use of slow strain rate technique for studying stress corrosion cracking of an advanced silver-bearing aluminum-lithium alloy

    International Nuclear Information System (INIS)

    Frefer, Abdulbaset Ali; Raddad, Bashir S.; Abosdell, Alajale M.

    2013-01-01

    In the present study, stress corrosion cracking (SCC) behavior of naturally aged advanced silver-bearing Al-Li alloy in NaCl solution was investigated using slow strain rate test (SSRT) method. The SSRT’s were conducted at different strain rates and applied potentials at room temperature. The results were discussed based on percent reductions in tensile elongation in a SCC-causing environment over those in air tended to express the SCC susceptbility of the alloy under study at T3. The SCC behavior of the alloy was also discussed based on the microstructural and fractographic examinations

  8. Tissue strain rate estimator using ultrafast IQ complex data

    OpenAIRE

    TERNIFI , Redouane; Elkateb Hachemi , Melouka; Remenieras , Jean-Pierre

    2012-01-01

    International audience; Pulsatile motion of brain parenchyma results from cardiac and breathing cycles. In this study, transient motion of brain tissue was estimated using an Aixplorer® imaging system allowing an ultrafast 2D acquisition mode. The strain was computed directly from the ultrafast IQ complex data using the extended autocorrelation strain estimator (EASE), which provides great SNRs regardless of depth. The EASE first evaluates the autocorrelation function at each depth over a set...

  9. Dynamics of human subthalamic neuron phase-locking to motor and sensory cortical oscillations during movement.

    Science.gov (United States)

    Lipski, Witold J; Wozny, Thomas A; Alhourani, Ahmad; Kondylis, Efstathios D; Turner, Robert S; Crammond, Donald J; Richardson, Robert Mark

    2017-09-01

    Coupled oscillatory activity recorded between sensorimotor regions of the basal ganglia-thalamocortical loop is thought to reflect information transfer relevant to movement. A neuronal firing-rate model of basal ganglia-thalamocortical circuitry, however, has dominated thinking about basal ganglia function for the past three decades, without knowledge of the relationship between basal ganglia single neuron firing and cortical population activity during movement itself. We recorded activity from 34 subthalamic nucleus (STN) neurons, simultaneously with cortical local field potentials and motor output, in 11 subjects with Parkinson's disease (PD) undergoing awake deep brain stimulator lead placement. STN firing demonstrated phase synchronization to both low- and high-beta-frequency cortical oscillations, and to the amplitude envelope of gamma oscillations, in motor cortex. We found that during movement, the magnitude of this synchronization was dynamically modulated in a phase-frequency-specific manner. Importantly, we found that phase synchronization was not correlated with changes in neuronal firing rate. Furthermore, we found that these relationships were not exclusive to motor cortex, because STN firing also demonstrated phase synchronization to both premotor and sensory cortex. The data indicate that models of basal ganglia function ultimately will need to account for the activity of populations of STN neurons that are bound in distinct functional networks with both motor and sensory cortices and code for movement parameters independent of changes in firing rate. NEW & NOTEWORTHY Current models of basal ganglia-thalamocortical networks do not adequately explain simple motor functions, let alone dysfunction in movement disorders. Our findings provide data that inform models of human basal ganglia function by demonstrating how movement is encoded by networks of subthalamic nucleus (STN) neurons via dynamic phase synchronization with cortex. The data also

  10. Dynamic behavior and microstructural evolution during moderate to high strain rate hot deformation of a Fe–Ni–Cr alloy (alloy 800H)

    International Nuclear Information System (INIS)

    Cao, Yu; Di, Hongshuang; Zhang, Jiecen; Yang, Yaohua

    2015-01-01

    The objective of the study is to fundamentally understand the dynamic behavior of alloy 800H at moderate to high strain rate using hot compression tests and propose nucleation mechanism associated with dynamic crystallization (DRX). We firstly investigated the dynamic behavior of alloy 800H with industrial scale strain rates using hot compression tests and adiabatic correction was performed to correct as-measured flow curves. Secondly, a Johnson–Cook model was established by using the corrected data and could give a precise prediction of elevated temperature flow stress for the studied alloy. Finally, the nucleation mechanism of DRX grains at high strain rates was studied. The results showed that the predominant nucleation mechanism for DRX is the formation of “bulge” at parent grain boundary. Additionally, the fragmentation of original grain at low deformation temperatures and the twinning near the bulged regions at high deformation temperatures also accelerate the DRX process

  11. Dynamic behavior and microstructural evolution during moderate to high strain rate hot deformation of a Fe-Ni-Cr alloy (alloy 800H)

    Science.gov (United States)

    Cao, Yu; Di, Hongshuang; Zhang, Jiecen; Yang, Yaohua

    2015-01-01

    The objective of the study is to fundamentally understand the dynamic behavior of alloy 800H at moderate to high strain rate using hot compression tests and propose nucleation mechanism associated with dynamic crystallization (DRX). We firstly investigated the dynamic behavior of alloy 800H with industrial scale strain rates using hot compression tests and adiabatic correction was performed to correct as-measured flow curves. Secondly, a Johnson-Cook model was established by using the corrected data and could give a precise prediction of elevated temperature flow stress for the studied alloy. Finally, the nucleation mechanism of DRX grains at high strain rates was studied. The results showed that the predominant nucleation mechanism for DRX is the formation of "bulge" at parent grain boundary. Additionally, the fragmentation of original grain at low deformation temperatures and the twinning near the bulged regions at high deformation temperatures also accelerate the DRX process.

  12. Thermomechanical response of 3D laser-deposited Ti–6Al–4V alloy over a wide range of strain rates and temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Li, Peng-Hui [School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072 (China); Guo, Wei-Guo, E-mail: weiguo@nwpu.edu.cn [School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072 (China); Huang, Wei-Dong [The State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072 (China); Su, Yu [Department of Mechanics, School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081 (China); Lin, Xin [The State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072 (China); Yuan, Kang-Bo [School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072 (China)

    2015-10-28

    To understand and evaluate the thermomechanical property of Ti–6Al–4V alloy prepared by the 3D laser deposition technology, an uniaxial compression test was performed on cylindrical samples using an electronic universal testing machine and enhanced Hopkinson technique, over the range of strain rate from 0.001/s to 5000/s, and at initial temperatures from the room temperature to 1173 K. The microstructure of the undeformed and deformed samples was examined through optical microscopy and the use of scanning electron microscope (SEM). The experimental results show the followings: (1) the anisotropy of the mechanical property of this alloy is not significant despite the visible stratification at the exterior surfaces; (2) initial defects, such as the initial voids and lack of fusion, are found in the microstructure and in the crack surfaces of the deformed samples, and they are considered as a major source of crack initiation and propagation; (3) adiabatic shear bands and shearing can easily develop at all selected temperatures for samples under compression; (4) the yield and ultimate strengths of this laser-deposited Ti–6Al–4V alloy are both lower than those of the Ti–6Al–4V alloy prepared by forging and electron beam melting, whereas both of its strengths are higher than those of a conventional grade Ti–6Al–4V alloy at high strain rate only. In addition to compression tests we also conducted tensile loading tests on the laser-deposited alloy at both low and high strain rates (0.1/s and 1000/s). There is significant tension/compression asymmetry in the mechanical response under high-strain-rate loading. It was found that the quasi-static tensile fracturing exhibits typical composite fracture characteristic with quasi-cleavages and dimples, while the high-strain-rate fracturing is characterized by ductile fracture behavior.

  13. High strain rate deformation and fracture of the magnesium alloy Ma2-1 under shock wave loading

    Science.gov (United States)

    Garkushin, G. V.; Kanel', G. I.; Razorenov, S. V.

    2012-05-01

    This paper presents the results of measurements of the dynamic elastic limit and spall strength under shock wave loading of specimens of the magnesium alloy Ma2-1 with a thickness ranging from 0.25 to 10 mm at normal and elevated (to 550°C) temperatures. From the results of measurements of the decay of the elastic precursor of a shock compression wave, it has been found that the plastic strain rate behind the front of the elastic precursor decreases from 2 × 105 s-1 at a distance of 0.25 mm to 103 s-1 at a distance of 10 mm. The plastic strain rate in a shock wave is one order of magnitude higher than that in the elastic precursor at the same value of the shear stress. The spall strength of the alloy decreases as the solidus temperature is approached.

  14. Survey of strain-rate effects for some common structural materials used in radioactive material packaging and transportation systems

    International Nuclear Information System (INIS)

    Robinson, R.A.; Zielenbach, W.J.; Lawrence, A.A.

    1976-08-01

    In safety evaluation of radioactive material packaging and transport systems during accidents mechanical property data for the structural materials under impact conditions are needed in order to assess the damage and consequences of the accident. This document reviews the status of dynamic material property data for the following common structural materials: lead, uranium, stainless steels, steels, aluminum, copper, and brass. The strain rate data reviewed were limited to the range from static to dynamic impact velocities of 50 ft/s or strain rates of 10 2 /second; temperature conditions were limited to the range -40 to 1000 0 F. Purpose of this document is to explain the test methods, present some of the relevant data, and identify some of the needs for additional data. 7 tables, 14 figures, 77 references

  15. Effects that different types of sports have on the hearts of children and adolescents and the value of two-dimensional strain-strain-rate echocardiography.

    Science.gov (United States)

    Binnetoğlu, Fatih Köksal; Babaoğlu, Kadir; Altun, Gürkan; Kayabey, Özlem

    2014-01-01

    Whether the hypertrophy found in the hearts of athletes is physiologic or a risk factor for the progression of pathologic hypertrophy remains controversial. The diastolic and systolic functions of athletes with left ventricular (LV) hypertrophy usually are normal when measured by conventional methods. More precise assessment of global and regional myocardial function may be possible using a newly developed two-dimensional (2D) strain echocardiographic method. This study evaluated the effects that different types of sports have on the hearts of children and adolescents and compared the results of 2D strain and strain-rate echocardiographic techniques with conventional methods. Athletes from clubs for five different sports (basketball, swimming, football, wrestling, and tennis) who had practiced regularly at least 3 h per week during at least the previous 2 years were included in the study. The control group consisted of sedentary children and adolescents with no known cardiac or systemic diseases (n = 25). The athletes were grouped according to the type of exercise: dynamic (football, tennis), static (wrestling), or static and dynamic (basketball, swimming). Shortening fraction and ejection fraction values were within normal limits for the athletes in all the sports disciplines. Across all 140 athletes, LV geometry was normal in 58 athletes (41.4 %), whereas 22 athletes (15.7 %) had concentric remodeling, 20 (14.3 %) had concentric hypertrophy, and 40 (28.6 %) had eccentric hypertrophy. Global LV longitudinal strain values obtained from the average of apical four-, two-, and three-chamber global strain values were significantly lower for the basketball players than for all the other groups (p < 0.001).

  16. Nanocrystallization in Al85Ce8Ni5Co2 amorphous alloy obtained by different strain rate during high pressure torsion

    International Nuclear Information System (INIS)

    Henits, P.; Kovacs, Zs.; Schafler, E.; Varga, L.K.; Labar, J.L.; Revesz, A.

    2010-01-01

    In order to elucidate the role of total strain and strain rate during high pressure torsion of Al 85 Ce 8 Ni 5 Co 2 metallic glass, different deformation conditions were applied to devitrify the as-quenched alloy. The disk-shaped specimens were characterized by X-ray diffraction, transmission electron microscopy and thermal analysis.

  17. Influence of strain-rate on the flow stress and ductility of copper and tantalum

    International Nuclear Information System (INIS)

    Regazzoni, G.; Montheillet, F.; Dormeval, R.; Stelly, M.

    1981-09-01

    Tensile experiments were carried out at strain-rates in a range from epsilon = 6.10 -5 to 3.10 3 s -1 at 293 K and 673 K or 773 K. Two types of copper (FCC) and pure tantalum (BCC) were tested. The variations of ductility have been investigated in relation with the σ - epsilon equations of the materials and the examinations of fracture surfaces. They can be explained in terms of stability and intrinsic ductility

  18. Interatrial septum pacing decreases atrial dyssynchrony on strain rate imaging compared with right atrial appendage pacing.

    Science.gov (United States)

    Yasuoka, Yoshinori; Abe, Haruhiko; Umekawa, Seiko; Katsuki, Keiko; Tanaka, Norio; Araki, Ryo; Imanaka, Takahiro; Matsutera, Ryo; Morisawa, Daisuke; Kitada, Hirokazu; Hattori, Susumu; Noda, Yoshiki; Adachi, Hidenori; Sasaki, Tatsuya; Miyatake, Kunio

    2011-03-01

    Interatrial septum pacing (IAS-P) decreases atrial conduction delay compared with right atrial appendage pacing (RAA-P). We evaluate the atrial contraction with strain rate of tissue Doppler imaging (TDI) during sinus activation or with IAS-P or RAA-P. Fifty-two patients with permanent pacemaker for sinus node disease were enrolled in the study. Twenty-three subjects were with IAS-P and 29 with RAA-P. The time from end-diastole to peak end-diastolic strain rate was measured and corrected with RR interval on electrocardiogram. It was defined as the time from end-diastole to peak end-diastolic strain rate (TSRc), and the balance between maximum and minimum TSRc at three sites (ΔTSRc) was compared during sinus activation and with pacing rhythm in each group. There were no significant differences observed in general characteristics and standard echocardiographic parameters except the duration of pacing P wave between the two groups. The duration was significantly shorter in the IAS-P group compared with the RAA-P group (95 ± 34 vs 138 ± 41; P = 0.001). TSRc was significantly different between sinus activation and pacing rhythm (36.3 ± 35.7 vs 61.6 ± 36.3; P = 0.003) in the RAA-P group, whereas no significant differences were observed in the IAS-P group (25.4 ± 12.1 vs 27.7 ± 14.7; NS). During the follow-up (mean 2.4 ± 0.7 years), the incidence of paroxysmal atrial fibrillation (AF) conversion to permanent AF was not significantly different between the two groups. IAS-P decreased the contraction delay on atrial TDI compared to RAA-P; however, it did not contribute to the reduction of AF incidence in the present study. ©2010, The Authors. Journal compilation ©2010 Wiley Periodicals, Inc.

  19. Grain growth behavior and high-temperature high-strain-rate tensile ductility of iridium alloy DOP-26

    International Nuclear Information System (INIS)

    McKamey, C.G.; Gubbi, A.N.; Lin, Y.; Cohron, J.W.; Lee, E.H.; George, E.P.

    1998-04-01

    This report summarizes results of studies conducted to date under the Iridium Alloy Characterization and Development subtask of the Radioisotope Power System Materials Production and Technology Program to characterize the properties of the new-process iridium-based DOP-26 alloy used for the Cassini space mission. This alloy was developed at Oak Ridge National Laboratory (ORNL) in the early 1980's and is currently used by NASA for cladding and post-impact containment of the radioactive fuel in radioisotope thermoelectric generator (RTG) heat sources which provide electric power for interplanetary spacecraft. Included within this report are data generated on grain growth in vacuum or low-pressure oxygen environments; a comparison of grain growth in vacuum of the clad vent set cup material with sheet material; effect of grain size, test temperature, and oxygen exposure on high-temperature high-strain-rate tensile ductility; and grain growth in vacuum and high-temperature high-strain-rate tensile ductility of welded DOP-26. The data for the new-process material is compared to available old-process data

  20. Intra-cortical excitability in healthy human subjects after tongue training

    DEFF Research Database (Denmark)

    Baad-Hansen, Lene; Blicher, Jakob; Lapitskaya, Natallia

    2009-01-01

    Training of specific muscles causes plastic changes in corticomotor pathways which may underlie the effect of various clinical rehabilitation procedures. The paired pulse transcranial magnetic stimulation (ppTMS) technique can be used to assess short interval intra-cortical inhibitory (SICI...... tongue muscles. In tongue motor cortex, bilateral SICI (P training. There were no significant effects of training on single MEPs or SICI/ICF (P > 0.063). The success rate improved during training (P ...) and intra-cortical facilitatory (ICF) networks. This study examined changes in SICI and ICF in tongue motor cortex after tongue training in 11 healthy volunteers using ppTMS. Paired pulse TMS was applied to the 'hot-spot' for the tongue motor cortex and motor-evoked potentials (MEPs) were recorded from...

  1. A study on microstructure and strain-hardening rate of friction stir welded Al-Mg-Si alloys using a weak beam technique

    International Nuclear Information System (INIS)

    Sukedai, E; Yokoyama, T

    2012-01-01

    Mechanical properties of a friction stir welded Al-Mg-Si (6061-T6Al) alloy are evaluated by a tensile test. It is found that the strain-hardening rate is higher than that of a base material. In order to investigate the origin, TEM observations have been performed about 4 kinds of materials; base- and friction stir welded-materials, and both materials deformed to 5 % strain by tension. There are not so large differences about dislocation density, size and density of precipitates and crystal defects between the base material and the friction stir welded-materials, but a significant decrease of grain-size in the friction stir welded-materials is recognized. These results suggest a dynamic recovery occurs during FSW process, and it is speculated that the recovery leads to the differences of yield stress and strain-hardening rate between both materials.

  2. State-dependent intrinsic predictability of cortical network dynamics.

    Directory of Open Access Journals (Sweden)

    Leila Fakhraei

    Full Text Available The information encoded in cortical circuit dynamics is fleeting, changing from moment to moment as new input arrives and ongoing intracortical interactions progress. A combination of deterministic and stochastic biophysical mechanisms governs how cortical dynamics at one moment evolve from cortical dynamics in recently preceding moments. Such temporal continuity of cortical dynamics is fundamental to many aspects of cortex function but is not well understood. Here we study temporal continuity by attempting to predict cortical population dynamics (multisite local field potential based on its own recent history in somatosensory cortex of anesthetized rats and in a computational network-level model. We found that the intrinsic predictability of cortical dynamics was dependent on multiple factors including cortical state, synaptic inhibition, and how far into the future the prediction extends. By pharmacologically tuning synaptic inhibition, we obtained a continuum of cortical states with asynchronous population activity at one extreme and stronger, spatially extended synchrony at the other extreme. Intermediate between these extremes we observed evidence for a special regime of population dynamics called criticality. Predictability of the near future (10-100 ms increased as the cortical state was tuned from asynchronous to synchronous. Predictability of the more distant future (>1 s was generally poor, but, surprisingly, was higher for asynchronous states compared to synchronous states. These experimental results were confirmed in a computational network model of spiking excitatory and inhibitory neurons. Our findings demonstrate that determinism and predictability of network dynamics depend on cortical state and the time-scale of the dynamics.

  3. Stress strain flow curves for Cu-OFP

    International Nuclear Information System (INIS)

    Sandstroem, Rolf; Hallgren, Josefin

    2009-04-01

    Stress strain curves of oxygen free copper alloyed with phosphorus Cu-OFP have been determined in compression and tension. The compression tests were performed at room temperature for strain rates between 10 -5 and 10 -3 1/s. The tests in tension covered the temperature range 20 to 175 deg C for strain rates between 10 -7 and 5x10 -3 1/s. The results in compression and tension were close for similar strain rates. A model for stress strain curves has been formulated using basic dislocation mechanisms. The model has been set up in such a way that fitting of parameters to the curves is avoided. By using a fundamental creep model as a basis a direct relation to creep data has been established. The maximum engineering flow stress in tension is related to the creep stress giving the same strain rate. The model reproduces the measured flow curves as function of temperature and strain rate in the investigated interval. The model is suitable to use in finite-element computations of structures in Cu-OFP

  4. Numerical Simulation of the Dynamic Performance of the Ceramic Material Affected by Different Strain Rate and Porosity

    International Nuclear Information System (INIS)

    Wang Zhen; Mei, H; Lai, X; Liu, L S; Zhai, P C; Cao, D F

    2013-01-01

    Ceramic materials are frequently used in protective armor applications for its low-density, high elastic modulus and high strength. It may be subject to different ballistic impacts in many situations, thus many studies have been carried out to explore the approach to improve the mechanical properties of the ceramic material. However, the materials manufactured in real world are full of defects, which would involve in variable fractures or damage. Therefore, the defects should be taken into account while the simulations are performed. In this paper, the dynamic properties of ceramic materials (Al 2 O 3 ) affected by different strain rate (500–5000) and porosity (below 5%) are investigated. Foremost, the effect of strain rate was studied by using different load velocities. Then, compression simulations are performed by setting different porosities and random distribution of pores size and location in ceramic materials. Crack extensions and failure modes are observed to describe the dynamic mechanical behavior.

  5. LTS and FS inhibitory interneurons, short-term synaptic plasticity, and cortical circuit dynamics.

    Directory of Open Access Journals (Sweden)

    Itai Hayut

    2011-10-01

    Full Text Available Somatostatin-expressing, low threshold-spiking (LTS cells and fast-spiking (FS cells are two common subtypes of inhibitory neocortical interneuron. Excitatory synapses from regular-spiking (RS pyramidal neurons to LTS cells strongly facilitate when activated repetitively, whereas RS-to-FS synapses depress. This suggests that LTS neurons may be especially relevant at high rate regimes and protect cortical circuits against over-excitation and seizures. However, the inhibitory synapses from LTS cells usually depress, which may reduce their effectiveness at high rates. We ask: by which mechanisms and at what firing rates do LTS neurons control the activity of cortical circuits responding to thalamic input, and how is control by LTS neurons different from that of FS neurons? We study rate models of circuits that include RS cells and LTS and FS inhibitory cells with short-term synaptic plasticity. LTS neurons shift the RS firing-rate vs. current curve to the right at high rates and reduce its slope at low rates; the LTS effect is delayed and prolonged. FS neurons always shift the curve to the right and affect RS firing transiently. In an RS-LTS-FS network, FS neurons reach a quiescent state if they receive weak input, LTS neurons are quiescent if RS neurons receive weak input, and both FS and RS populations are active if they both receive large inputs. In general, FS neurons tend to follow the spiking of RS neurons much more closely than LTS neurons. A novel type of facilitation-induced slow oscillations is observed above the LTS firing threshold with a frequency determined by the time scale of recovery from facilitation. To conclude, contrary to earlier proposals, LTS neurons affect the transient and steady state responses of cortical circuits over a range of firing rates, not only during the high rate regime; LTS neurons protect against over-activation about as well as FS neurons.

  6. Individual-specific multi-scale finite element simulation of cortical bone of human proximal femur

    International Nuclear Information System (INIS)

    Ascenzi, Maria-Grazia; Kawas, Neal P.; Lutz, Andre; Kardas, Dieter; Nackenhorst, Udo; Keyak, Joyce H.

    2013-01-01

    We present an innovative method to perform multi-scale finite element analyses of the cortical component of the femur using the individual’s (1) computed tomography scan; and (2) a bone specimen obtained in conjunction with orthopedic surgery. The method enables study of micro-structural characteristics regulating strains and stresses under physiological loading conditions. The analysis of the micro-structural scenarios that cause variation of strain and stress is the first step in understanding the elevated strains and stresses in bone tissue, which are indicative of higher likelihood of micro-crack formation in bone, implicated in consequent remodeling or macroscopic bone fracture. Evidence that micro-structure varies with clinical history and contributes in significant, but poorly understood, ways to bone function, motivates the method’s development, as does need for software tools to investigate relationships between macroscopic loading and micro-structure. Three applications – varying region of interest, bone mineral density, and orientation of collagen type I, illustrate the method. We show, in comparison between physiological loading and simple compression of a patient’s femur, that strains computed at the multi-scale model’s micro-level: (i) differ; and (ii) depend on local collagen-apatite orientation and degree of calcification. Our findings confirm the strain concentration role of osteocyte lacunae, important for mechano-transduction. We hypothesize occurrence of micro-crack formation, leading either to remodeling or macroscopic fracture, when the computed strains exceed the elastic range observed in micro-structural testing

  7. Individual-specific multi-scale finite element simulation of cortical bone of human proximal femur

    Energy Technology Data Exchange (ETDEWEB)

    Ascenzi, Maria-Grazia, E-mail: mgascenzi@mednet.ucla.edu [UCLA/Orthopaedic Hospital, Department of Orthopaedic Surgery, Rehabilitation Bldg, Room 22-69, 1000 Veteran Avenue, University of California, Los Angeles, CA 90095 (United States); Kawas, Neal P., E-mail: nealkawas@ucla.edu [UCLA/Orthopaedic Hospital, Department of Orthopaedic Surgery, Rehabilitation Bldg, Room 22-69, 1000 Veteran Avenue, University of California, Los Angeles, CA 90095 (United States); Lutz, Andre, E-mail: andre.lutz@hotmail.de [Institute of Biomechanics and Numerical Mechanics, Leibniz University Hannover, 30167 Hannover (Germany); Kardas, Dieter, E-mail: kardas@ibnm.uni-hannover.de [ContiTech Vibration Control, Jaedekamp 30 None, 30419 Hannover (Germany); Nackenhorst, Udo, E-mail: nackenhorst@ibnm.uni-hannover.de [Institute of Biomechanics and Numerical Mechanics, Leibniz University Hannover, 30167 Hannover (Germany); Keyak, Joyce H., E-mail: jhkeyak@uci.edu [Department of Radiological Sciences, Medical Sciences I, Bldg 811, Room B140, University of California, Irvine, CA 92697-5000 (United States)

    2013-07-01

    We present an innovative method to perform multi-scale finite element analyses of the cortical component of the femur using the individual’s (1) computed tomography scan; and (2) a bone specimen obtained in conjunction with orthopedic surgery. The method enables study of micro-structural characteristics regulating strains and stresses under physiological loading conditions. The analysis of the micro-structural scenarios that cause variation of strain and stress is the first step in understanding the elevated strains and stresses in bone tissue, which are indicative of higher likelihood of micro-crack formation in bone, implicated in consequent remodeling or macroscopic bone fracture. Evidence that micro-structure varies with clinical history and contributes in significant, but poorly understood, ways to bone function, motivates the method’s development, as does need for software tools to investigate relationships between macroscopic loading and micro-structure. Three applications – varying region of interest, bone mineral density, and orientation of collagen type I, illustrate the method. We show, in comparison between physiological loading and simple compression of a patient’s femur, that strains computed at the multi-scale model’s micro-level: (i) differ; and (ii) depend on local collagen-apatite orientation and degree of calcification. Our findings confirm the strain concentration role of osteocyte lacunae, important for mechano-transduction. We hypothesize occurrence of micro-crack formation, leading either to remodeling or macroscopic fracture, when the computed strains exceed the elastic range observed in micro-structural testing.

  8. Automatic Strain-Rate Controller,

    Science.gov (United States)

    1976-12-01

    D—AO37 9~e2 ROME AIR DEVELOPMENT CENTER GRIFFISS AFB N 1’ FIG 13/ 6AUTOMATIC STRAIN—RATE CONTROLLER, (U) DEC 76 R L HUNTSINGER. J A ADAMSK I...goes to zero. CONTROLLER, Leeds and Northrup Series 80 CAT with proportional band , rate , reset, and approach controls . Input from deviation output...8) through ( 16) . (8) Move the set-point slowl y up to 3 or 4. (9) If the recorder po inter hunts , adjust the func t ion controls on tine Ser

  9. Cortical oscillations and entrainment in speech processing during working memory load.

    Science.gov (United States)

    Hjortkjaer, Jens; Märcher-Rørsted, Jonatan; Fuglsang, Søren A; Dau, Torsten

    2018-02-02

    Neuronal oscillations are thought to play an important role in working memory (WM) and speech processing. Listening to speech in real-life situations is often cognitively demanding but it is unknown whether WM load influences how auditory cortical activity synchronizes to speech features. Here, we developed an auditory n-back paradigm to investigate cortical entrainment to speech envelope fluctuations under different degrees of WM load. We measured the electroencephalogram, pupil dilations and behavioural performance from 22 subjects listening to continuous speech with an embedded n-back task. The speech stimuli consisted of long spoken number sequences created to match natural speech in terms of sentence intonation, syllabic rate and phonetic content. To burden different WM functions during speech processing, listeners performed an n-back task on the speech sequences in different levels of background noise. Increasing WM load at higher n-back levels was associated with a decrease in posterior alpha power as well as increased pupil dilations. Frontal theta power increased at the start of the trial and increased additionally with higher n-back level. The observed alpha-theta power changes are consistent with visual n-back paradigms suggesting general oscillatory correlates of WM processing load. Speech entrainment was measured as a linear mapping between the envelope of the speech signal and low-frequency cortical activity (level) decreased cortical speech envelope entrainment. Although entrainment persisted under high load, our results suggest a top-down influence of WM processing on cortical speech entrainment. © 2018 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  10. Numerical simulation of the mechanical behavior of ultrafine- and coarse-grained Zr-Nb alloys over a wide range of strain rates

    Science.gov (United States)

    Serbenta, V. A.; Skripnyak, N. V.; Skripnyak, V. A.; Skripnyak, E. G.

    2017-12-01

    This paper presents the results on the development of theoretical methods of evaluation and prediction of mechanical properties of Zr-Nb alloys over a range of strain rates from 10-3 to 103 s-1. The mechanical behavior of coarse- and ultrafine-grained Zr-1Nb (E110) was investigated numerically. The ranges of strain rates and temperatures in which the mechanical behavior of Zr-1Nb alloy can be described using modified models of Johnson-Cook and Zerilli-Armstrong were defined. The results can be used in engineering analysis of designed technical systems for nuclear reactors.

  11. Borders and Comparative Cytoarchitecture of the Perirhinal and Postrhinal Cortices in an F1 Hybrid Mouse

    Science.gov (United States)

    Beaudin, Stephane A.; Singh, Teghpal; Agster, Kara L.

    2013-01-01

    We examined the cytoarchitectonic and chemoarchitectonic organization of the cortical regions associated with the posterior rhinal fissure in the mouse brain, within the framework of what is known about these regions in the rat. Primary observations were in a first-generation hybrid mouse line, B6129PF/J1. The F1 hybrid was chosen because of the many advantages afforded in the study of the molecular and cellular bases of learning and memory. Comparisons with the parent strains, the C57BL6/J and 129P3/J are also reported. Mouse brain tissue was processed for visualization of Nissl material, myelin, acetyl cholinesterase, parvalbumin, and heavy metals. Tissue stained for heavy metals by the Timm’s method was particularly useful in the assignment of borders and in the comparative analyses because the patterns of staining were similar across species and strains. As in the rat, the areas examined were parcellated into 2 regions, the perirhinal and the postrhinal cortices. The perirhinal cortex was divided into areas 35 and 36, and the postrhinal cortex was divided into dorsal (PORd) and ventral (PORv) subregions. In addition to identifying the borders of the perirhinal cortex, we were able to identify a region in the mouse brain that shares signature features with the rat postrhinal cortex. PMID:22368084

  12. Influence of dynamic strain ageing on tensile strain energy of type 316L(N) austenitic stainless steel

    International Nuclear Information System (INIS)

    Isaac Samuel, B.; Choudhary, B.K.; Bhanu Sankara Rao, K.

    2010-01-01

    Tensile tests were conducted on type 316 L(N) stainless steel over a wide temperature range of 300-1123 K employing strain rates ranging from 3.16 X 10 -5 to 3.16 X 10 -3/s . The variation of strain energy in terms of modulus of resilience and modulus of toughness over the wide range of temperatures and strain rates were examined. The variation in modulus of resilience with temperature and strain rate did not show the signatures of dynamic strain ageing (DSA). However, the modulus of toughness exhibited a plateau at the intermediate temperatures of 523-1023 K. Further, the distribution of energy absorbed till necking and energy absorbed from necking till fracture were found to characterise the deformation and damage processes, respectively, and exhibited anomalous variations in the temperature range 523-823 K and 823-1023 K, respectively. In addition to the observed manifestations of DSA such as serrated load-elongation curve, peaks/plateaus in flow stress, ultimate tensile strength and work hardening rate, negative strain rate sensitivity and ductility minima, the observed anomalous variations in modulus of toughness at intermediate temperatures (523-1023 K) can be regarded as yet another key manifestation of DSA. At temperatures above 1023 K, a sharp decrease in the modulus of toughness and also in the strain energies up to necking and from necking to fracture observed, with increasing temperature and decreasing strain rate, reveal the onset of dynamic recovery leading to early cross slip and climb processes. (author)

  13. Analysis of the Temperature and Strain-Rate Dependences of Strain Hardening

    Science.gov (United States)

    Kreyca, Johannes; Kozeschnik, Ernst

    2018-01-01

    A classical constitutive modeling-based Ansatz for the impact of thermal activation on the stress-strain response of metallic materials is compared with the state parameter-based Kocks-Mecking model. The predicted functional dependencies suggest that, in the first approach, only the dislocation storage mechanism is a thermally activated process, whereas, in the second approach, only the mechanism of dynamic recovery is. In contradiction to each of these individual approaches, our analysis and comparison with experimental evidence shows that thermal activation contributes both to dislocation generation and annihilation.

  14. Cortical Thinning and Altered Cortico-Cortical Structural Covariance of the Default Mode Network in Patients with Persistent Insomnia Symptoms.

    Science.gov (United States)

    Suh, Sooyeon; Kim, Hosung; Dang-Vu, Thien Thanh; Joo, Eunyeon; Shin, Chol

    2016-01-01

    Recent studies have suggested that structural abnormalities in insomnia may be linked with alterations in the default-mode network (DMN). This study compared cortical thickness and structural connectivity linked to the DMN in patients with persistent insomnia (PI) and good sleepers (GS). The current study used a clinical subsample from the longitudinal community-based Korean Genome and Epidemiology Study (KoGES). Cortical thickness and structural connectivity linked to the DMN in patients with persistent insomnia symptoms (PIS; n = 57) were compared to good sleepers (GS; n = 40). All participants underwent MRI acquisition. Based on literature review, we selected cortical regions corresponding to the DMN. A seed-based structural covariance analysis measured cortical thickness correlation between each seed region of the DMN and other cortical areas. Association of cortical thickness and covariance with sleep quality and neuropsychological assessments were further assessed. Compared to GS, cortical thinning was found in PIS in the anterior cingulate cortex, precentral cortex, and lateral prefrontal cortex. Decreased structural connectivity between anterior and posterior regions of the DMN was observed in the PIS group. Decreased structural covariance within the DMN was associated with higher PSQI scores. Cortical thinning in the lateral frontal lobe was related to poor performance in executive function in PIS. Disrupted structural covariance network in PIS might reflect malfunctioning of antero-posterior disconnection of the DMN during the wake to sleep transition that is commonly found during normal sleep. The observed structural network alteration may further implicate commonly observed sustained sleep difficulties and cognitive impairment in insomnia. © 2016 Associated Professional Sleep Societies, LLC.

  15. The biology and dynamics of mammalian cortical granules

    Directory of Open Access Journals (Sweden)

    Liu Min

    2011-11-01

    Full Text Available Abstract Cortical granules are membrane bound organelles located in the cortex of unfertilized oocytes. Following fertilization, cortical granules undergo exocytosis to release their contents into the perivitelline space. This secretory process, which is calcium dependent and SNARE protein-mediated pathway, is known as the cortical reaction. After exocytosis, the released cortical granule proteins are responsible for blocking polyspermy by modifying the oocytes' extracellular matrices, such as the zona pellucida in mammals. Mammalian cortical granules range in size from 0.2 um to 0.6 um in diameter and different from most other regulatory secretory organelles in that they are not renewed once released. These granules are only synthesized in female germ cells and transform an egg upon sperm entry; therefore, this unique cellular structure has inherent interest for our understanding of the biology of fertilization. Cortical granules are long thought to be static and awaiting in the cortex of unfertilized oocytes to be stimulated undergoing exocytosis upon gamete fusion. Not till recently, the dynamic nature of cortical granules is appreciated and understood. The latest studies of mammalian cortical granules document that this organelle is not only biochemically heterogeneous, but also displays complex distribution during oocyte development. Interestingly, some cortical granules undergo exocytosis prior to fertilization; and a number of granule components function beyond the time of fertilization in regulating embryonic cleavage and preimplantation development, demonstrating their functional significance in fertilization as well as early embryonic development. The following review will present studies that investigate the biology of cortical granules and will also discuss new findings that uncover the dynamic aspect of this organelle in mammals.

  16. Cortical hypometabolism and its recovery following nucleus basalis lesions in baboons: a PET study

    International Nuclear Information System (INIS)

    Kiyosawa, M.; Pappata, S.; Duverger, D.

    1987-01-01

    The cerebral metabolic rate for glucose was measured serially with positron emission tomography and [ 18 F]fluorodeoxyglucose in five baboons with stereotactic electrocoagulation of the left nucleus basalis of Meynert (NbM). Four days after lesion, a significant metabolic depression was present in the ipsilateral cerebral cortex, most marked in the frontotemporal region, and which recovered progressively within 6-13 weeks. These data demonstrate that adaptive mechanisms efficiently compensate for the cortical metabolic effects of NbM-lesion-induced cholinergic deafferentation. Moreover, unilateral NbM lesions also induced a transient reduction in contralateral cortical metabolic rate, the mechanisms of which are discussed. Explanation of these effects of cholinergic deafferentation in the primate could further our understanding of the metabolic deficits observed in dementia of the Alzheimer's type

  17. Cortical modulation of short-latency TMS-evoked potentials

    Directory of Open Access Journals (Sweden)

    Domenica eVeniero

    2013-01-01

    Full Text Available Transcranial magnetic stimulation - electroencephalogram (TMS-EEG co-registration offers the opportunity to test reactivity of brain areas across distinct conditions through TMS-evoked potentials (TEPs. Several TEPs have been described, their functional meaning being largely unknown. In particular, short-latency potentials peaking at 5 (P5 and 8 (N8 ms after the TMS pulse have been recently described, but because of their huge amplitude, the problem of whether their origin is cortical or not has been opened. To gain information about these components, we employed a protocol that modulates primary motor cortex excitability (MI through an exclusively cortical phenomena: low frequency stimulation of premotor area (PMC. TMS was applied simultaneously with EEG recording from 70 electrodes. Amplitude of TEPs evoked by 200 single-pulses TMS delivered over MI at 110% of resting motor threshold was measured before and after applying 900 TMS conditioning stimuli to left premotor cortex with 1 Hz repetition rate. Single subject analyses showed reduction in TEPs amplitude after PMC conditioning in a sample of participants and increase in TEPs amplitude in two subjects. No effects were found on corticospinal excitability as recorded by motor evoked potentials (MEPs. Furthermore, correlation analysis showed an inverse relation between the effects of the conditioning protocol on P5-N8 complex amplitude and MEPs amplitude. Because the effects of the used protocol have been ascribed to a cortical interaction between premotor area and MI, we suggest that despite the sign of P5-N8 amplitude modulation is not consistent across participant, this modulation could indicate, at least in part, their cortical origin. We conclude that with an accurate experimental procedure early-latency components can be used to evaluate the reactivity of the stimulated cortex.

  18. Functional specialisation within the cortical language network: effects of cortical dysfunction.

    Science.gov (United States)

    Vandenberghe, R

    2007-01-01

    In the 1990's neuroanatomical models of language and semantic memory have been mainly based on functional neuroimaging studies of brain activity in healthy volunteers and correlational studies between structural lesions in patients and behavioral deficits. In this paper we present a novel approach where we test models that have been developed in healthy volunteers by means of functional imaging in patients in combination with behavioral studies. Study populations consist of patients with focal cortical stroke (n = 2), amnestic mild cognitive impairment (n = 14) and primary progressive aphasia (n = 18). The experiments provide converging evidence that 1. the integrity of the right mid- and anterior fusiform gyrus is required for full and detailed retrieval of knowledge of visual attributes of concrete entities 2. the left posterior superior temporal sulcus is critically involved in lexical-semantic retrieval 3. the anterior temporal pole to the left functions as an associative structure that links the representations of meaning that are distribured over the cortical brain surface. Our experiments also provide us with new insight into the degradation and re-organisation of the language system in cortical neurodegenerative disease.

  19. Direct cortical hemodynamic mapping of somatotopy of pig nostril sensation by functional near-infrared cortical imaging (fNCI).

    Science.gov (United States)

    Uga, Minako; Saito, Toshiyuki; Sano, Toshifumi; Yokota, Hidenori; Oguro, Keiji; Rizki, Edmi Edison; Mizutani, Tsutomu; Katura, Takusige; Dan, Ippeita; Watanabe, Eiju

    2014-05-01

    Functional near-infrared spectroscopy (fNIRS) is a neuroimaging technique for the noninvasive monitoring of human brain activation states utilizing the coupling between neural activity and regional cerebral hemodynamics. Illuminators and detectors, together constituting optodes, are placed on the scalp, but due to the presence of head tissues, an inter-optode distance of more than 2.5cm is necessary to detect cortical signals. Although direct cortical monitoring with fNIRS has been pursued, a high-resolution visualization of hemodynamic changes associated with sensory, motor and cognitive neural responses directly from the cortical surface has yet to be realized. To acquire robust information on the hemodynamics of the cortex, devoid of signal complications in transcranial measurement, we devised a functional near-infrared cortical imaging (fNCI) technique. Here we demonstrate the first direct functional measurement of temporal and spatial patterns of cortical hemodynamics using the fNCI technique. For fNCI, inter-optode distance was set at 5mm, and light leakage from illuminators was prevented by a special optode holder made of a light-shielding rubber sheet. fNCI successfully detected the somatotopy of pig nostril sensation, as assessed in comparison with concurrent and sequential somatosensory-evoked potential (SEP) measurements on the same stimulation sites. Accordingly, the fNCI system realized a direct cortical hemodynamic measurement with a spatial resolution comparable to that of SEP mapping on the rostral region of the pig brain. This study provides an important initial step toward realizing functional cortical hemodynamic monitoring during neurosurgery of human brains. Copyright © 2014. Published by Elsevier Inc.

  20. Strain-rate dependence for Ni/Al hybrid foams

    Directory of Open Access Journals (Sweden)

    Jung Anne

    2015-01-01

    Full Text Available Shock absorption often needs stiff but lightweight materials that exhibit a large kinetic energy absorption capability. Open-cell metal foams are artificial structures, which due to their plateau stress, including a strong hysteresis, can in principle absorb large amounts of energy. However, their plateau stress is too low for many applications. In this study, we use highly novel and promising Ni/Al hybrid foams which consist of standard, open-cell aluminium foams, where nanocrystalline nickel is deposited by electrodeposition as coating on the strut surface. The mechanical behaviour of cellular materials, including their behaviour under higher strain-rates, is governed by their microstructure due to the properties of the strut material, pore/strut geometry and mass distribution over the struts. Micro-inertia effects are strongly related to the microstructure. For a conclusive model, the exact real microstructure is needed. In this study a micro-focus computer tomography (μCT system has been used for the analysis of the microstructure of the foam samples and for the development of a microstructural Finite Element (micro-FE mesh. The microstructural FE models have been used to model the mechanical behaviour of the Ni/Al hybrid foams under dynamic loading conditions. The simulations are validated by quasi-static compression tests and dynamic split Hopkinson pressure bar tests.

  1. Cerebellar cortical infarct cavities and vertebral artery disease

    Energy Technology Data Exchange (ETDEWEB)

    Cocker, Laurens J.L. de [University Medical Center Utrecht, Department of Radiology, Utrecht (Netherlands); Kliniek Sint-Jan Radiologie, Brussels (Belgium); Compter, A.; Kappelle, L.J.; Worp, H.B. van der [University Medical Center Utrecht, Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, Utrecht (Netherlands); Luijten, P.R.; Hendrikse, J. [University Medical Center Utrecht, Department of Radiology, Utrecht (Netherlands)

    2016-09-15

    Cerebellar cortical infarct cavities are a newly recognised entity associated with atherothromboembolic cerebrovascular disease and worse physical functioning. We aimed to investigate the relationship of cerebellar cortical infarct cavities with symptomatic vertebrobasilar ischaemia and with vascular risk factors. We evaluated the MR images of 46 patients with a recent vertebrobasilar TIA or stroke and a symptomatic vertebral artery stenosis ≥50 % from the Vertebral Artery Stenting Trial (VAST) for the presence of cerebellar cortical infarct cavities ≤1.5 cm. At inclusion in VAST, data were obtained on age, sex, history of vertebrobasilar TIA or stroke, and vascular risk factors. Adjusted risk ratios were calculated with Poisson regression analyses for the relation between cerebellar cortical infarct cavities and vascular risk factors. Sixteen out of 46 (35 %) patients showed cerebellar cortical infarct cavities on the initial MRI, and only one of these 16 patients was known with a previous vertebrobasilar TIA or stroke. In patients with symptomatic vertebrobasilar ischaemia, risk factor profiles of patients with cerebellar cortical infarct cavities were not different from patients without these cavities. Cerebellar cortical infarct cavities are seen on MRI in as much as one third of patients with recently symptomatic vertebral artery stenosis. Since patients usually have no prior history of vertebrobasilar TIA or stroke, cerebellar cortical infarct cavities should be added to the spectrum of common incidental brain infarcts visible on routine MRI. (orig.)

  2. Reduced short interval cortical inhibition correlates with atomoxetine response in children with attention-deficit hyperactivity disorder (ADHD).

    Science.gov (United States)

    Chen, Tina H; Wu, Steve W; Welge, Jeffrey A; Dixon, Stephan G; Shahana, Nasrin; Huddleston, David A; Sarvis, Adam R; Sallee, Floyd R; Gilbert, Donald L

    2014-12-01

    Clinical trials in children with attention-deficit hyperactivity disorder (ADHD) show variability in behavioral responses to the selective norepinephrine reuptake inhibitor atomoxetine. The objective of this study was to determine whether transcranial magnetic stimulation-evoked short interval cortical inhibition might be a biomarker predicting, or correlating with, clinical atomoxetine response. At baseline and after 4 weeks of atomoxetine treatment in 7- to 12-year-old children with ADHD, transcranial magnetic stimulation short interval cortical inhibition was measured, blinded to clinical improvement. Primary analysis was by multivariate analysis of covariance. Baseline short interval cortical inhibition did not predict clinical responses. However, paradoxically, after 4 weeks of atomoxetine, mean short interval cortical inhibition was reduced 31.9% in responders and increased 6.1% in nonresponders (analysis of covariance t 41 = 2.88; P = .0063). Percentage reductions in short interval cortical inhibition correlated with reductions in the ADHD Rating Scale (r = 0.50; P = .0005). In children ages 7 to 12 years with ADHD treated with atomoxetine, improvements in clinical symptoms are correlated with reductions in motor cortex short interval cortical inhibition. © The Author(s) 2014.

  3. Spatial variation in deposition rate coefficients of an adhesion-deficient bacterial strain in quartz sand.

    Science.gov (United States)

    Tong, Meiping; Camesano, Terri A; Johnson, William P

    2005-05-15

    The transport of bacterial strain DA001 was examined in packed quartz sand under a variety of environmentally relevant ionic strength and flow conditions. Under all conditions, the retained bacterial concentrations decreased with distance from the column inlet at a rate that was faster than loglinear, indicating that the deposition rate coefficient decreased with increasing transport distance. The hyperexponential retained profile contrasted againstthe nonmonotonic retained profiles that had been previously observed for this same bacterial strain in glass bead porous media, demonstrating that the form of deviation from log-linear behavior is highly sensitive to system conditions. The deposition rate constants in quartz sand were orders of magnitude below those expected from filtration theory, even in the absence of electrostatic energy barriers. The degree of hyperexponential deviation of the retained profiles from loglinear behavior did not decrease with increasing ionic strength in quartz sand. These observations demonstrate thatthe observed low adhesion and deviation from log-linear behavior was not driven by electrostatic repulsion. Measurements of the interaction forces between DA001 cells and the silicon nitride tip of an atomic force microscope (AFM) showed that the bacterium possesses surface polymers with an average equilibrium length of 59.8 nm. AFM adhesion force measurements revealed low adhesion affinities between silicon nitride and DA001 polymers with approximately 95% of adhesion forces having magnitudes responsible for the low adhesion to silicon nitride, indicating that steric interactions from extracellular polymers controlled DA001 adhesion deficiency and deviation from log-linear behavior on quartz sand.

  4. Effects of Habitual Physical Activity and Fitness on Tibial Cortical Bone Mass, Structure and Mass Distribution in Pre-pubertal Boys and Girls: The Look Study.

    Science.gov (United States)

    Duckham, Rachel L; Rantalainen, Timo; Ducher, Gaele; Hill, Briony; Telford, Richard D; Telford, Rohan M; Daly, Robin M

    2016-07-01

    Targeted weight-bearing activities during the pre-pubertal years can improve cortical bone mass, structure and distribution, but less is known about the influence of habitual physical activity (PA) and fitness. This study examined the effects of contrasting habitual PA and fitness levels on cortical bone density, geometry and mass distribution in pre-pubertal children. Boys (n = 241) and girls (n = 245) aged 7-9 years had a pQCT scan to measure tibial mid-shaft total, cortical and medullary area, cortical thickness, density, polar strength strain index (SSIpolar) and the mass/density distribution through the bone cortex (radial distribution divided into endo-, mid- and pericortical regions) and around the centre of mass (polar distribution). Four contrasting PA and fitness groups (inactive-unfit, inactive-fit, active-unfit, active-fit) were generated based on daily step counts (pedometer, 7-days) and fitness levels (20-m shuttle test and vertical jump) for boys and girls separately. Active-fit boys had 7.3-7.7 % greater cortical area and thickness compared to inactive-unfit boys (P girls, but active-fit girls had 6.1 % (P girls, which was likely due to their 6.7 % (P active-fit girls. Higher levels of habitual PA-fitness were associated with small regional-specific gains in 66 % tibial cortical bone mass in pre-pubertal children, particularly boys.

  5. Hydrostatic Pressurization of Lung Surfactant Microbubbles: Observation of a Strain-Rate Dependent Elasticity.

    Science.gov (United States)

    Thomas, Alec N; Borden, Mark A

    2017-11-28

    The microbubble offers a unique platform to study lung surfactant mechanics at physiologically relevant geometry and length scale. In this study, we compared the response of microbubbles (∼15 μm initial radius) coated with pure dipalmitoyl-phosphatidylcholine (DPPC) versus naturally derived lung surfactant (SURVANTA) when subjected to linearly increasing hydrostatic pressure at different rates (0.5-2.3 kPa/s) at room temperature. The microbubbles contained perfluorobutane gas and were submerged in buffered saline saturated with perfluorobutane at atmospheric pressure. Bright-field microscopy showed that DPPC microbubbles compressed spherically and smoothly, whereas SURVANTA microbubbles exhibited wrinkling and smoothing cycles associated with buckling and collapse. Seismograph analysis showed that the SURVANTA collapse amplitude was constant, but the collapse rate increased with the pressurization rate. An analysis of the pressure-volume curves indicated that the dilatational elasticity increased during compression for both shell types. The initial dilatational elasticity for SURVANTA was nearly twice that of DPPC at higher pressurization rates (>1.5 kPa/s), producing a pressure drop of up to 60 kPa across the film prior to condensation of the perfluorobutane core. The strain-rate dependent stiffening of SURVANTA shells likely arises from their composition and microstructure, which provide enhanced in-plane monolayer rigidity and lateral repulsion from surface-associated collapse structures. Overall, these results provide new insights into lung surfactant mechanics and collapse behavior during compression.

  6. Can regional strain and strain rate measurement be performed during both dobutamine and exercise echocardiography, and do regional deformation responses differ with different forms of stress testing?

    Science.gov (United States)

    Davidavicius, Giedrius; Kowalski, Miroslaw; Williams, R Ian; D'hooge, Jan; Di Salvo, Giovanni; Pierre-Justin, Gilbert; Claus, Piet; Rademakers, Frank; Herregods, Marie-Christine; Fraser, Alan G; Pierard, Luc A; Bijnens, Bart; Sutherland, George R

    2003-04-01

    Regional strain (epsilon) and strain rate (SR) measurement could be the optimal approach to quantifying stress echocardiography images. However, signal noise could preclude their use. Study aims Our aim was to compare the feasibility of regional peak systolic (p) velocity (Vel), pSR/epsilon measurement, and their normal responses during upright (group 1, n = 10) and supine (group 2, n = 10) bicycle exercise and (group 3, n = 10) dobutamine stress. For each type of stress study, pVel/pSR/epsilon data were acquired at baseline, low (100-120 bpm), and peak (140-160 bpm) heart rate (HR); and during recovery. During dobutamine pVel/pSR/epsilon were interpretable in >95% of segments at every stress stage, whereas in groups 1 and 2 pSR/epsilon responses were noninterpretable in >36% of segments (P pVel and SR values increased linearly and reached maximal value at peak HR (P pVel increased linearly, whereas pepsilon response was biphasic as a result of the reduced filling at higher HRs.

  7. Microstructural evolution in adiabatic shear bands of copper at high strain rates: Electron backscatter diffraction characterization

    International Nuclear Information System (INIS)

    Tang Lin; Chen Zhiyong; Zhan Congkun; Yang Xuyue; Liu Chuming; Cai Hongnian

    2012-01-01

    The microstructural evolution of adiabatic shear bands in annealed copper with different large strains at high strain rates has been investigated by electron backscatter diffraction. The results show that mechanical twinning can occur with minimal contribution to shear localization under dynamic loading. Elongated ultrafine grains with widths of 100–300 nm are observed during the evolution of the adiabatic shear bands. A rotational dynamic recrystallization mechanism is proposed to explain the formation of the elongated ultrafine grains. - Highlights: ► The microstructural evolution of ASB is studied by electron backscatter diffraction. ► Twinning can occur in ASB while the contribution to shear localization is slight. ► Elongated ultrafine grains are observed during the evolution process of ASB. ► A possible mechanism is proposed to explain the microstructure evolution of ASB.

  8. Cortical thickness patterns as state biomarker of anorexia nervosa.

    Science.gov (United States)

    Lavagnino, Luca; Mwangi, Benson; Cao, Bo; Shott, Megan E; Soares, Jair C; Frank, Guido K W

    2018-03-01

    Only few studies have investigated cortical thickness in anorexia nervosa (AN), and it is unclear whether patterns of altered cortical thickness can be identified as biomarkers for AN. Cortical thickness was measured in 19 adult women with restricting-type AN, 24 individuals recovered from restricting-type AN (REC-AN) and 24 healthy controls. Those individuals with current or recovered from AN had previously shown altered regional cortical volumes across orbitofrontal cortex and insula. A linear relevance vector machine-learning algorithm estimated patterns of regional thickness across 24 subdivisions of those regions. Region-based analysis showed higher cortical thickness in AN and REC-AN, compared to controls, in the right medial orbital (olfactory) sulcus, and greater cortical thickness for short insular gyri in REC-AN versus controls bilaterally. The machine-learning algorithm identified a pattern of relatively higher right orbital, right insular and left middle frontal cortical thickness, but lower left orbital, right middle and inferior frontal, and bilateral superior frontal cortical thickness specific to AN versus controls (74% specificity and 74% sensitivity, χ 2 p < .004); predicted probabilities differed significantly between AN and controls (p < .023). No pattern significantly distinguished the REC-AN group from controls. Higher cortical thickness in medial orbitofrontal cortex and insula probably contributes to higher gray matter volume in AN in those regions. The machine-learning algorithm identified a mixed pattern of mostly higher orbital and insular, but relatively lower superior frontal cortical thickness in individuals with current AN. These novel results suggest that regional cortical thickness patterns could be state markers for AN. © 2018 Wiley Periodicals, Inc.

  9. Stereopsis and 3D surface perception by spiking neurons in laminar cortical circuits: a method for converting neural rate models into spiking models.

    Science.gov (United States)

    Cao, Yongqiang; Grossberg, Stephen

    2012-02-01

    A laminar cortical model of stereopsis and 3D surface perception is developed and simulated. The model shows how spiking neurons that interact in hierarchically organized laminar circuits of the visual cortex can generate analog properties of 3D visual percepts. The model describes how monocular and binocular oriented filtering interact with later stages of 3D boundary formation and surface filling-in in the LGN and cortical areas V1, V2, and V4. It proposes how interactions between layers 4, 3B, and 2/3 in V1 and V2 contribute to stereopsis, and how binocular and monocular information combine to form 3D boundary and surface representations. The model suggests how surface-to-boundary feedback from V2 thin stripes to pale stripes helps to explain how computationally complementary boundary and surface formation properties lead to a single consistent percept, eliminate redundant 3D boundaries, and trigger figure-ground perception. The model also shows how false binocular boundary matches may be eliminated by Gestalt grouping properties. In particular, the disparity filter, which helps to solve the correspondence problem by eliminating false matches, is realized using inhibitory interneurons as part of the perceptual grouping process by horizontal connections in layer 2/3 of cortical area V2. The 3D sLAMINART model simulates 3D surface percepts that are consciously seen in 18 psychophysical experiments. These percepts include contrast variations of dichoptic masking and the correspondence problem, the effect of interocular contrast differences on stereoacuity, Panum's limiting case, the Venetian blind illusion, stereopsis with polarity-reversed stereograms, da Vinci stereopsis, and perceptual closure. The model hereby illustrates a general method of unlumping rate-based models that use the membrane equations of neurophysiology into models that use spiking neurons, and which may be embodied in VLSI chips that use spiking neurons to minimize heat production. Copyright

  10. Widespread cortical thinning in patients with neuromyelitis optica spectrum disorder.

    Science.gov (United States)

    Kim, S-H; Kwak, K; Hyun, J-W; Jeong, I H; Jo, H-J; Joung, A; Kim, J-H; Lee, S H; Yun, S; Joo, J; Lee, J-M; Kim, H J

    2016-07-01

    Studies on cortical involvement and its relationship with cognitive function in patients with neuromyelitis optica spectrum disorder (NMOSD) remain scarce. The objective of this study was to compare cortical thickness on magnetic resonance imaging (MRI) between patients with NMOSD and multiple sclerosis (MS) and to investigate its relationship with clinical features and cognitive function. This observational clinical imaging study of 91 patients with NMOSD, 52 patients with MS and 44 healthy controls was conducted from 1 December 2013 to 30 April 2015 at the institutional referral center. Three tesla MRI of the brain and neuropsychological tests were performed. Cortical thickness was measured using three-dimensional surface-based analysis. Both sets of patients exhibited cortical thinning throughout the entire brain cortex. Patients with MS showed a significantly greater reduction in cortical thickness over broad regions of the bilateral frontal and parieto-temporal cortices and the left precuneus compared to those with NMOSD. Memory functions in patients with MS were correlated with broad regional cortical thinning, whereas no significant associations were observed between cortical thickness and cognitive function in patients with NMOSD. Widespread cortical thinning was observed in patients with NMOSD and MS, but the extent of cortical thinning was greater in patients with MS. The more severe cortical atrophy may contribute to memory impairment in patients with MS but not in those with NMOSD. These results provide in vivo evidence that the severity and clinical relevance of cortical thinning differ between NMOSD and MS. © 2016 EAN.

  11. Determining the cortical target of transcranial magnetic stimulation.

    Science.gov (United States)

    Thielscher, A; Wichmann, F A

    2009-10-01

    Determining the cortical region that is effectively targeted by TMS to induce a reproducible behavioral effect is a non-trivial problem. In mapping experiments, a grid of coil positions is used to systematically assess the TMS effect on, e.g. muscle responses or error rates. The center-of-mass (CoM) of the response distribution is projected onto the cortex to determine the likely target site, implicitly assuming the existence of a single, contiguous target. The mapping results, however, often contain several local maxima. These could either stem from measurement noise, or hint towards a distributed target region. Critically, the calculation of a CoM, by design, treats multiple maxima as if they were noise. Here, a stringent hierarchical sigmoidal model fitting approach is developed that determines the cortical target(s) from TMS mapping based on electric field calculations. Monte-Carlo simulations are used to assess the significance and the goodness-of-fit of the sigmoidal fits, and to obtain confidence regions around the calculated targets. The approach was applied to mapping data on visual suppression (N=7). In all subjects, we reliably identified two or three neighboring targets commonly contributing to the suppression effect (average distance+/-SD: 7.7+/-2.3 mm). This demonstrates that (i) the assumption of a single CoM is not generally valid and (ii) the combination of TMS mapping with the fitting approach has a cortical resolution of TMS.

  12. A review on the strain rate dependency of the dynamic viscoplastic response of FCC metals

    OpenAIRE

    Salvado, F.C.; Teixeira-Dias, Filipe; Walley, S.; Lea, L.J.; Cardoso, J.B.

    2017-01-01

    The response of structures and materials subject to ballistic impacts or blast loads remains a field of intense research. In a blast or impact load a sharp pressure wave travelling at supersonic speed impinges on the structure surface where deformation will develop at very high strain rates and stress waves may form and travel through the continuum solid. Both the dynamic loading and the temperature increase will significantly affect the mechanical and failure response of the material. This r...

  13. Altered Cortical Swallowing Processing in Patients with Functional Dysphagia: A Preliminary Study

    Science.gov (United States)

    Wollbrink, Andreas; Warnecke, Tobias; Winkels, Martin; Pantev, Christo; Dziewas, Rainer

    2014-01-01

    Objective Current neuroimaging research on functional disturbances provides growing evidence for objective neuronal correlates of allegedly psychogenic symptoms, thereby shifting the disease concept from a psychological towards a neurobiological model. Functional dysphagia is such a rare condition, whose pathogenetic mechanism is largely unknown. In the absence of any organic reason for a patient's persistent swallowing complaints, sensorimotor processing abnormalities involving central neural pathways constitute a potential etiology. Methods In this pilot study we measured cortical swallow-related activation in 5 patients diagnosed with functional dysphagia and a matched group of healthy subjects applying magnetoencephalography. Source localization of cortical activation was done with synthetic aperture magnetometry. To test for significant differences in cortical swallowing processing between groups, a non-parametric permutation test was afterwards performed on individual source localization maps. Results Swallowing task performance was comparable between groups. In relation to control subjects, in whom activation was symmetrically distributed in rostro-medial parts of the sensorimotor cortices of both hemispheres, patients showed prominent activation of the right insula, dorsolateral prefrontal cortex and lateral premotor, motor as well as inferolateral parietal cortex. Furthermore, activation was markedly reduced in the left medial primary sensory cortex as well as right medial sensorimotor cortex and adjacent supplementary motor area (pdysphagia - a condition with assumed normal brain function - seems to be associated with distinctive changes of the swallow-related cortical activation pattern. Alterations may reflect exaggerated activation of a widely distributed vigilance, self-monitoring and salience rating network that interferes with down-stream deglutition sensorimotor control. PMID:24586948

  14. Standard practice for slow strain rate testing to evaluate the susceptibility of metallic materials to environmentally assisted cracking

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2000-01-01

    1.1 This practice covers procedures for the design, preparation, and use of axially loaded, tension test specimens and fatigue pre-cracked (fracture mechanics) specimens for use in slow strain rate (SSR) tests to investigate the resistance of metallic materials to environmentally assisted cracking (EAC). While some investigators utilize SSR test techniques in combination with cyclic or fatigue loading, no attempt has been made to incorporate such techniques into this practice. 1.2 Slow strain rate testing is applicable to the evaluation of a wide variety of metallic materials in test environments which simulate aqueous, nonaqueous, and gaseous service environments over a wide range of temperatures and pressures that may cause EAC of susceptible materials. 1.3 The primary use of this practice is to furnish accepted procedures for the accelerated testing of the resistance of metallic materials to EAC under various environmental conditions. In many cases, the initiation of EAC is accelerated through the applic...

  15. The Diversity of Cortical Inhibitory Synapses

    Directory of Open Access Journals (Sweden)

    Yoshiyuki eKubota

    2016-04-01

    Full Text Available The most typical and well known inhibitory action in the cortical microcircuit is a strong inhibition on the target neuron by axo-somatic synapses. However, it has become clear that synaptic inhibition in the cortex is much more diverse and complicated. Firstly, at least ten or more inhibitory non-pyramidal cell subtypes engage in diverse inhibitory functions to produce the elaborate activity characteristic of the different cortical states. Each distinct non-pyramidal cell subtype has its own independent inhibitory function. Secondly, the inhibitory synapses innervate different neuronal domains, such as axons, spines, dendrites and soma, and their IPSP size is not uniform. Thus cortical inhibition is highly complex, with a wide variety of anatomical and physiological modes. Moreover, the functional significance of the various inhibitory synapse innervation styles and their unique structural dynamic behaviors differ from those of excitatory synapses. In this review, we summarize our current understanding of the inhibitory mechanisms of the cortical microcircuit.

  16. Cortical Plasticity Induction by Pairing Subthalamic Nucleus Deep-Brain Stimulation and Primary Motor Cortical Transcranial Magnetic Stimulation in Parkinson's Disease.

    Science.gov (United States)

    Udupa, Kaviraja; Bahl, Nina; Ni, Zhen; Gunraj, Carolyn; Mazzella, Filomena; Moro, Elena; Hodaie, Mojgan; Lozano, Andres M; Lang, Anthony E; Chen, Robert

    2016-01-13

    Noninvasive brain stimulation studies have shown abnormal motor cortical plasticity in Parkinson's disease (PD). These studies used peripheral nerve stimulation paired with transcranial magnetic stimulation (TMS) to primary motor cortex (M1) at specific intervals to induce plasticity. Induction of cortical plasticity through stimulation of the basal ganglia (BG)-M1 connections has not been studied. In the present study, we used a novel technique of plasticity induction by repeated pairing of deep-brain stimulation (DBS) of the BG with M1 stimulation using TMS. We hypothesize that repeated pairing of subthalamic nucleus (STN)-DBS and M1-TMS at specific time intervals will lead to plasticity in the M1. Ten PD human patients with STN-DBS were studied in the on-medication state with DBS set to 3 Hz. The interstimulus intervals (ISIs) between STN-DBS and TMS that produced cortical facilitation were determined individually for each patient. Three plasticity induction conditions with repeated pairings (180 times) at specific ISIs (∼ 3 and ∼ 23 ms) that produced cortical facilitation and a control ISI of 167 ms were tested in random order. Repeated pairing of STN-DBS and M1-TMS at short (∼ 3 ms) and medium (∼ 23 ms) latencies increased M1 excitability that lasted for at least 45 min, whereas the control condition (fixed ISI of 167 ms) had no effect. There were no specific changes in motor thresholds, intracortical circuits, or recruitment curves. Our results indicate that paired-associative cortical plasticity can be induced by repeated STN and M1 stimulation at specific intervals. These results show that STN-DBS can modulate cortical plasticity. We introduced a new experimental paradigm to test the hypothesis that pairing subthalamic nucleus deep-brain stimulation (STN-DBS) with motor cortical transcranial magnetic stimulation (M1-TMS) at specific times can induce cortical plasticity in patients with Parkinson's disease (PD). We found that repeated pairing of STN

  17. Dynamics of Ionic Shifts in Cortical Spreading Depression.

    Science.gov (United States)

    Enger, Rune; Tang, Wannan; Vindedal, Gry Fluge; Jensen, Vidar; Johannes Helm, P; Sprengel, Rolf; Looger, Loren L; Nagelhus, Erlend A

    2015-11-01

    Cortical spreading depression is a slowly propagating wave of near-complete depolarization of brain cells followed by temporary suppression of neuronal activity. Accumulating evidence indicates that cortical spreading depression underlies the migraine aura and that similar waves promote tissue damage in stroke, trauma, and hemorrhage. Cortical spreading depression is characterized by neuronal swelling, profound elevation of extracellular potassium and glutamate, multiphasic blood flow changes, and drop in tissue oxygen tension. The slow speed of the cortical spreading depression wave implies that it is mediated by diffusion of a chemical substance, yet the identity of this substance and the pathway it follows are unknown. Intercellular spread between gap junction-coupled neurons or glial cells and interstitial diffusion of K(+) or glutamate have been proposed. Here we use extracellular direct current potential recordings, K(+)-sensitive microelectrodes, and 2-photon imaging with ultrasensitive Ca(2+) and glutamate fluorescent probes to elucidate the spatiotemporal dynamics of ionic shifts associated with the propagation of cortical spreading depression in the visual cortex of adult living mice. Our data argue against intercellular spread of Ca(2+) carrying the cortical spreading depression wavefront and are in favor of interstitial K(+) diffusion, rather than glutamate diffusion, as the leading event in cortical spreading depression. © The Author 2015. Published by Oxford University Press.

  18. Effects of Exercise in Immersive Virtual Environments on Cortical Neural Oscillations and Mental State

    Directory of Open Access Journals (Sweden)

    Tobias Vogt

    2015-01-01

    Full Text Available Virtual reality environments are increasingly being used to encourage individuals to exercise more regularly, including as part of treatment those with mental health or neurological disorders. The success of virtual environments likely depends on whether a sense of presence can be established, where participants become fully immersed in the virtual environment. Exposure to virtual environments is associated with physiological responses, including cortical activation changes. Whether the addition of a real exercise within a virtual environment alters sense of presence perception, or the accompanying physiological changes, is not known. In a randomized and controlled study design, moderate-intensity Exercise (i.e., self-paced cycling and No-Exercise (i.e., automatic propulsion trials were performed within three levels of virtual environment exposure. Each trial was 5 minutes in duration and was followed by posttrial assessments of heart rate, perceived sense of presence, EEG, and mental state. Changes in psychological strain and physical state were generally mirrored by neural activation patterns. Furthermore, these changes indicated that exercise augments the demands of virtual environment exposures and this likely contributed to an enhanced sense of presence.

  19. Maturation of cortical mismatch responses to occasional pitch change in early infancy: effects of presentation rate and magnitude of change.

    Science.gov (United States)

    He, Chao; Hotson, Lisa; Trainor, Laurel J

    2009-01-01

    Previous studies have reported two types of event-related potential (ERP) mismatch responses in infants to infrequent auditory changes: a broad discriminative positivity in younger infants and a negativity resembling adult mismatch negativity (MMN) in older infants. In the present study, we investigated whether the positive discriminative slow wave and the adult-like MMN are functionally distinct by examining how they are affected by presentation rate and magnitude of change. We measured ERPs from adults, 2-month-olds, and 4-month-olds to a repeating piano tone (standard) that occasionally changed in pitch (deviant). The pitch changes between standards and deviants were either small (1/12 octave) or large (1/2 octave) in magnitude, and the stimulus presentation rate was either slow (800 ms SOA) or fast (400 ms SOA). As the presentation rate increased, both adults and 4-month-olds showed an MMN response that decreased in latency, but was unaffected in amplitude. As the magnitude of the pitch change increased, MMN increased in amplitude. On the other hand, only a broad positive mismatch response was seen in 2-month-olds. As the presentation rate increased, 2-month-olds' responses to standard tones decreased in amplitude while their responses to deviant tones were unaffected. The magnitude of the pitch change did not affect 2-month-olds' responses. These results suggest that pitch is processed differently in auditory cortex by 2-month-olds and 4-month-olds, and that a cortical change-detection mechanism for pitch discrimination similar to that of adults emerges between 2 and 4 months of age.

  20. Noninvasive characterization of carotid plaque strain.

    Science.gov (United States)

    Khan, Amir A; Sikdar, Siddhartha; Hatsukami, Thomas; Cebral, Juan; Jones, Michael; Huston, John; Howard, George; Lal, Brajesh K

    2017-06-01

    Current risk stratification of internal carotid artery plaques based on diameter-reducing percentage stenosis may be unreliable because ischemic stroke results from plaque disruption with atheroembolization. Biomechanical forces acting on the plaque may render it vulnerable to rupture. The feasibility of ultrasound-based quantification of plaque displacement and strain induced by hemodynamic forces and their relationship to high-risk plaques have not been determined. We studied the feasibility and reliability of carotid plaque strain measurement from clinical B-mode ultrasound images and the relationship of strain to high-risk plaque morphology. We analyzed carotid ultrasound B-mode cine loops obtained in patients with asymptomatic ≥50% stenosis during routine clinical scanning. Optical flow methods were used to quantify plaque motion and shear strain during the cardiac cycle. The magnitude (maximum absolute shear strain rate [MASSR]) and variability (entropy of shear strain rate [ESSR] and variance of shear strain rate [VSSR]) of strain were combined into a composite shear strain index (SSI), which was assessed for interscan repeatability and correlated with plaque echolucency. Nineteen patients (mean age, 70 years) constituting 36 plaques underwent imaging; 37% of patients (n = 7) showed high strain (SSI ≥0.5; MASSR, 2.2; ESSR, 39.7; VSSR, 0.03) in their plaques; the remaining clustered into a low-strain group (SSI routine B-mode imaging using clinical ultrasound machines. High plaque strain correlates with known high-risk echolucent morphology. Strain measurement can complement identification of patients at high risk for plaque disruption and stroke. Copyright © 2017 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  1. Age Effects on Cortical Thickness in Cognitively Normal Elderly Individuals

    Directory of Open Access Journals (Sweden)

    Sona Hurtz

    2014-07-01

    Full Text Available Background/Aims: Atrophy in both grey and white matter is found in normal aging. The prefrontal cortex and the frontal lobe white matter are thought to be the most affected regions. Our aim was to examine the effects of normal aging on cortical grey matter using a 3D quantitative cortical mapping method. Methods: We analyzed 1.5-tesla brain magnetic resonance imaging data from 44 cognitively normal elderly subjects using cortical pattern matching and cortical thickness analyses. Linear regression analysis was used to study the effect of age on cortical thickness. 3D map-wide correction for multiple comparisons was conducted with permutation analyses using a threshold of p Results: We found a significant negative association between age and cortical thickness in the right hemisphere (pcorrected = 0.009 and a trend level association in the left hemisphere (pcorrected = 0.081. Age-related changes were greatest in the sensorimotor, bilateral dorsal anterior cingulate and supplementary motor cortices, and the right posterior middle and inferior frontal gyri. Age effects greater in the medial than lateral visual association cortices were also seen bilaterally. Conclusion: Our novel method further validates that normal aging results in diffuse cortical thinning that is most pronounced in the frontal and visual association cortices.

  2. Microstructure and Strain Rate Effects on the Mechanical Behavior of Particle Reinforced Epoxy-Based Reactive Materials

    Science.gov (United States)

    2011-12-01

    particles using positron annihilation lifetime spectroscopy (PALS). They found that the free volume of the matrix was dependent on the volume fraction...mechanical analysis and positron annihilation lifetime spectroscopy ,” Polymer International, vol. 51, pp. 1277–1284, 2002. [35] G. W. Brassell and K. B...use as structural materials in applications at high rates of strain. These types of com- posites are very complex due to their heterogeneous

  3. Cortical changes in cerebral small vessel diseases: a 3D MRI study of cortical morphology in CADASIL

    International Nuclear Information System (INIS)

    Jouvent, E.; Bousser, M.G.; Chabriat, H.; Jouvent, E.; Bousser, M.G.; Chabriat, H.; Porcher, R.; Viswanathan, A.; Viswanathan, A.; Viswanathan, A.; O'Sullivan, M.; Dichgans, M.; Guichard, J.P.

    2008-01-01

    Brain atrophy represents a key marker of disease progression in cerebrovascular disorders. The 3D changes of cortex morphology occurring during the course of small vessel diseases of the brain (SVDB) remain poorly understood. The objective of this study was to assess the changes affecting depth and surface area of cortical sulci and their clinical and radiological correlates in a cohort of patients with cerebral autosomal dominant arteriolopathy with subcortical infarcts and leukoencephalopathy (CADASIL), a genetic SVDB. Data were obtained from a series of 69 CADASIL patients. Validated methods were used to determine depth and surface area of four cortical sulci. The ratio of brain to intracranial cavity volumes (brain parenchymal fraction-BPF), volume of lacunar lesions (LL) and of white matter hyper-intensities, number of cerebral micro-haemorrhages, and mean apparent diffusion coefficient were also measured. Association between depth and surface area of the cortical sulci and BPF, clinical status and subcortical MRI lesions were tested. Depth and surface area of cortical sulci obtained in 54 patients were strongly correlated with both cognitive score and disability scales. Depth was related to the extent of subcortical lesions, surface area was related only to age. In additional analyses, the depth of the cingular sulcus was independently associated with the volume of LL (P 0.001), and that of the superior frontal sulcus with the mean apparent diffusion coefficient (P 0.003). In CADASIL, important morphological changes of cortical sulci occur in association with clinical worsening,extension of subcortical tissue damage and progression of global cerebral atrophy. These results suggest that the examination of cortical morphology may be of high clinical relevance in SVDB. (authors)

  4. Prominent microglial activation in cortical white matter is selectively associated with cortical atrophy in primary progressive aphasia.

    Science.gov (United States)

    Ohm, Daniel T; Kim, Garam; Gefen, Tamar; Rademaker, Alfred; Weintraub, Sandra; Bigio, Eileen; Mesulam, M-Marsel; Rogalski, Emily; Geula, Changiz

    2018-04-21

    Primary progressive aphasia (PPA) is a clinical syndrome characterized by selective language impairments associated with focal cortical atrophy favouring the language dominant hemisphere. PPA is associated with Alzheimer's disease (AD), frontotemporal lobar degeneration (FTLD), and significant accumulation of activated microglia. Activated microglia can initiate an inflammatory cascade that may contribute to neurodegeneration, but their quantitative distribution in cortical white matter and their relationship with cortical atrophy are unknown. We investigated white matter activated microglia and their association with grey matter atrophy in 10 PPA cases with either AD or FTLD-TDP pathology. Activated microglia were quantified with optical density measures of HLA-DR immunoreactivity in two regions with peak cortical atrophy, and one non-atrophied region within the language dominant hemisphere of each PPA case. Non-atrophied contralateral homologues of the language dominant regions were examined for hemispheric asymmetry. Qualitatively, greater densities of activated microglia were observed in cortical white matter when compared to grey matter. Quantitative analyses revealed significantly greater densities of activated microglia in the white matter of atrophied regions compared to non-atrophied regions in the language dominant hemisphere (p<0.05). Atrophied regions of the language dominant hemisphere also showed significantly more activated microglia compared to contralateral homologues (p<0.05). White matter activated microglia accumulate more in atrophied regions in the language dominant hemisphere of PPA. While microglial activation may constitute a response to neurodegenerative processes in white matter, the resultant inflammatory processes may also exacerbate disease progression and contribute to cortical atrophy. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  5. Acute hepatic encephalopathy with diffuse cortical lesions

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, S.M.; Spreer, J.; Schumacher, M. [Section of Neuroradiology, Univ. of Freiburg (Germany); Els, T. [Dept. of Neurology, University of Freiburg (Germany)

    2001-07-01

    Acute hepatic encephalopathy is a poorly defined syndrome of heterogeneous aetiology. We report a 49-year-old woman with alcoholic cirrhosis and hereditary haemorrhagic telangiectasia who developed acute hepatic coma induced by severe gastrointestinal bleeding. Laboratory analysis revealed excessively elevated blood ammonia. MRI showed lesions compatible with chronic hepatic encephalopathy and widespread cortical signal change sparing the perirolandic and occipital cortex. The cortical lesions resembled those of hypoxic brain damage and were interpreted as acute toxic cortical laminar necrosis. (orig.)

  6. Acute hepatic encephalopathy with diffuse cortical lesions

    International Nuclear Information System (INIS)

    Arnold, S.M.; Spreer, J.; Schumacher, M.; Els, T.

    2001-01-01

    Acute hepatic encephalopathy is a poorly defined syndrome of heterogeneous aetiology. We report a 49-year-old woman with alcoholic cirrhosis and hereditary haemorrhagic telangiectasia who developed acute hepatic coma induced by severe gastrointestinal bleeding. Laboratory analysis revealed excessively elevated blood ammonia. MRI showed lesions compatible with chronic hepatic encephalopathy and widespread cortical signal change sparing the perirolandic and occipital cortex. The cortical lesions resembled those of hypoxic brain damage and were interpreted as acute toxic cortical laminar necrosis. (orig.)

  7. Post-adolescent developmental changes in cortical complexity.

    Science.gov (United States)

    Sandu, Anca-Larisa; Izard, Edouard; Specht, Karsten; Beneventi, Harald; Lundervold, Arvid; Ystad, Martin

    2014-11-27

    Post-adolescence is known to be a period of general maturation and development in the human brain. In brain imaging, volumetric and morphologic cortical grey-matter changes can easily be assessed, but the analysis of cortical complexity seems to have been broadly neglected for this age interval. Magnetic resonance imaging (MRI) was used to acquire structural brain images. The study involved 17 adolescents (mean age 14.1 ± 0.27, 11 girls) who were compared with 14 young adults (mean age 24.24 ± 2.76, 7 women) for measures of brain complexity (fractal dimension--FD), grey matter (GM) volume and surface-area of cortical ribbon. FD was calculated using box-counting and Minkowski-Bouligand methods; FD and GM volume were measured for the whole brain, each hemisphere and lobes: frontal, occipital, parietal and temporal. The results show that the adults have a lower cortical complexity than the adolescents, which was significant for whole brain, left and right hemisphere, frontal and parietal lobes for both genders; and only for males in left temporal lobe. The GM volume was smaller in men than in boys for almost all measurements, and smaller in women than in girls just for right parietal lobe. A significant Pearson correlation was found between FD and GM volume for whole brain and each hemisphere in both genders. The decrease of the GM surface-area was significant in post-adolescence for males, not for females. During post-adolescence there are common changes in cortical complexity in the same regions for both genders, but there are also gender specific changes in some cortical areas. The sex differences from different cortical measurements (FD, GM volume and surface-area of cortical ribbon) could suggest a maturation delay in specific brain regions for each gender in relation to the other and might be explained through the functional role of the corresponding regions reflected in gender difference of developed abilities.

  8. Cardiac biplane strain imaging: initial in vivo experience

    Science.gov (United States)

    Lopata, R. G. P.; Nillesen, M. M.; Verrijp, C. N.; Singh, S. K.; Lammens, M. M. Y.; van der Laak, J. A. W. M.; van Wetten, H. B.; Thijssen, J. M.; Kapusta, L.; de Korte, C. L.

    2010-02-01

    In this study, first we propose a biplane strain imaging method using a commercial ultrasound system, yielding estimation of the strain in three orthogonal directions. Secondly, an animal model of a child's heart was introduced that is suitable to simulate congenital heart disease and was used to test the method in vivo. The proposed approach can serve as a framework to monitor the development of cardiac hypertrophy and fibrosis. A 2D strain estimation technique using radio frequency (RF) ultrasound data was applied. Biplane image acquisition was performed at a relatively low frame rate (dogs with an aortic stenosis. Initial results reveal the feasibility of measuring large radial, circumferential and longitudinal cumulative strain (up to 70%) at a frame rate of 100 Hz. Mean radial strain curves of a manually segmented region-of-interest in the infero-lateral wall show excellent correlation between the measured strain curves acquired in two perpendicular planes. Furthermore, the results show the feasibility and reproducibility of assessing radial, circumferential and longitudinal strains simultaneously. In this preliminary study, three beagles developed an elevated pressure gradient over the aortic valve (Δp: 100-200 mmHg) and myocardial hypertrophy. One dog did not develop any sign of hypertrophy (Δp = 20 mmHg). Initial strain (rate) results showed that the maximum strain (rate) decreased with increasing valvular stenosis (-50%), which is in accordance with previous studies. Histological findings corroborated these results and showed an increase in fibrotic tissue for the hearts with larger pressure gradients (100, 200 mmHg), as well as lower strain and strain rate values.

  9. Muscarinic contribution to the acute cortical effects of vagus nerve stimulation

    Science.gov (United States)

    Nichols, Justin A.

    2011-12-01

    Electrical stimulation of the vagus nerve (VNS) has been used to treat more than 60,000 patients with drug-resistant epilepsy and is under investigation as a treatment for several other neurological disorders and conditions. Among these, VNS increases memory performance and enhances recovery of motor and cognitive function in animal models of traumatic brain injury. Recent research indicates that pairing brief VNS with tones multiple-times a day for several weeks induces long-term, input specific cortical plasticity, which can be used to re-normalize the pathological cortical reorganization and eliminate a behavioral correlate of chronic tinnitus in noise exposed rats. Despite the therapeutic potential, the mechanisms of action of VNS remain speculative. In chapter 2 of this dissertation, the acute effects of VNS on cortical synchrony, excitability, and temporal processing are examined. In anesthetized rats implanted with multi-electrode arrays, VNS increased and decorrelated spontaneous multi-unit activity, and suppressed entrainment to repetitive noise burst stimulation at 6 to 8 Hz, but not after systemic administration of the muscarinic antagonist scopolamine. Chapter 3 focuses on VNS-tone pairing induced cortical plasticity. Pairing VNS with a tone one hundred times in anesthetized rats resulted in frequency specific plasticity in 31% of the auditory cortex sites. Half of these sites exhibited a frequency specific increase in firing rate and half exhibited a frequency specific decrease. Muscarinic receptor blockade with scopolamine almost entirely prevented the frequency specific increases, but not decreases. Collectively, these experiments demonstrate the capacity for VNS to not only acutely influence cortical synchrony, and excitability, but to also influence temporal and spectral tuning via muscarinic receptor activation. These results strengthen the hypothesis that acetylcholine and muscarinic receptors are involved in the mechanisms of action of VNS and

  10. Cortical areas involved in Arabic number reading.

    Science.gov (United States)

    Roux, F-E; Lubrano, V; Lauwers-Cances, V; Giussani, C; Démonet, J-F

    2008-01-15

    Distinct functional pathways for processing words and numbers have been hypothesized from the observation of dissociated impairments of these categories in brain-damaged patients. We aimed to identify the cortical areas involved in Arabic number reading process in patients operated on for various brain lesions. Direct cortical electrostimulation was prospectively used in 60 brain mappings. We used object naming and two reading tasks: alphabetic script (sentences and number words) and Arabic number reading. Cortical areas involved in Arabic number reading were identified according to location, type of interference, and distinctness from areas associated with other language tasks. Arabic number reading was sustained by small cortical areas, often extremely well localized (area (Brodmann area 45), the anterior part of the dominant supramarginal gyrus (Brodmann area 40; p area (Brodmann area 37; p areas.

  11. Evaluation of varying ductile fracture criteria for 42CrMo steel by compressions at different temperatures and strain rates.

    Science.gov (United States)

    Quan, Guo-zheng; Luo, Gui-chang; Mao, An; Liang, Jian-ting; Wu, Dong-sen

    2014-01-01

    Fracturing by ductile damage occurs quite naturally in metal forming processes, and ductile fracture of strain-softening alloy, here 42CrMo steel, cannot be evaluated through simple procedures such as tension testing. Under these circumstances, it is very significant and economical to find a way to evaluate the ductile fracture criteria (DFC) and identify the relationships between damage evolution and deformation conditions. Under the guidance of the Cockcroft-Latham fracture criteria, an innovative approach involving hot compression tests, numerical simulations, and mathematic computations provides mutual support to evaluate ductile damage cumulating process and DFC diagram along with deformation conditions, which has not been expounded by Cockcroft and Latham. The results show that the maximum damage value appears in the region of upsetting drum, while the minimal value appears in the middle region. Furthermore, DFC of 42CrMo steel at temperature range of 1123~1348 K and strain rate of 0.01~10 s(-1) are not constant but change in a range of 0.160~0.226; thus, they have been defined as varying ductile fracture criteria (VDFC) and characterized by a function of temperature and strain rate. In bulk forming operations, VDFC help technicians to choose suitable process parameters and avoid the occurrence of fracture.

  12. Evaluation of Varying Ductile Fracture Criteria for 42CrMo Steel by Compressions at Different Temperatures and Strain Rates

    Directory of Open Access Journals (Sweden)

    Guo-zheng Quan

    2014-01-01

    Full Text Available Fracturing by ductile damage occurs quite naturally in metal forming processes, and ductile fracture of strain-softening alloy, here 42CrMo steel, cannot be evaluated through simple procedures such as tension testing. Under these circumstances, it is very significant and economical to find a way to evaluate the ductile fracture criteria (DFC and identify the relationships between damage evolution and deformation conditions. Under the guidance of the Cockcroft-Latham fracture criteria, an innovative approach involving hot compression tests, numerical simulations, and mathematic computations provides mutual support to evaluate ductile damage cumulating process and DFC diagram along with deformation conditions, which has not been expounded by Cockcroft and Latham. The results show that the maximum damage value appears in the region of upsetting drum, while the minimal value appears in the middle region. Furthermore, DFC of 42CrMo steel at temperature range of 1123~1348 K and strain rate of 0.01~10 s-1 are not constant but change in a range of 0.160~0.226; thus, they have been defined as varying ductile fracture criteria (VDFC and characterized by a function of temperature and strain rate. In bulk forming operations, VDFC help technicians to choose suitable process parameters and avoid the occurrence of fracture.

  13. Modelling of Mechanical Behavior at High Strain Rate of Ti-6al-4v Manufactured By Means of Direct Metal Laser Sintering Technique

    Science.gov (United States)

    Iannitti, Gianluca; Bonora, Nicola; Gentile, Domenico; Ruggiero, Andrew; Testa, Gabriel; Gubbioni, Simone

    2017-06-01

    In this work, the mechanical behavior of Ti-6Al-4V obtained by additive manufacturing technique was investigated, also considering the build direction. Dog-bone shaped specimens and Taylor cylinders were machined from rods manufactured by means of the EOSSINT M2 80 machine, based on Direct Metal Laser Sintering technique. Tensile tests were performed at strain rate ranging from 5E-4 s-1 to 1000 s-1 using an Instron electromechanical machine for quasistatic tests and a Direct-Tension Split Hopkinson Bar for dynamic tests. The mechanical strength of the material was described by a Johnson-Cook model modified to account for stress saturation occurring at high strain. Taylor cylinder tests and their corresponding numerical simulations were carried out in order to validate the constitutive model under a complex deformation path, high strain rates, and high temperatures.

  14. Reduced modulation of scanpaths in response to task demands in posterior cortical atrophy.

    Science.gov (United States)

    Shakespeare, Timothy J; Pertzov, Yoni; Yong, Keir X X; Nicholas, Jennifer; Crutch, Sebastian J

    2015-02-01

    A difficulty in perceiving visual scenes is one of the most striking impairments experienced by patients with the clinico-radiological syndrome posterior cortical atrophy (PCA). However whilst a number of studies have investigated perception of relatively simple experimental stimuli in these individuals, little is known about multiple object and complex scene perception and the role of eye movements in posterior cortical atrophy. We embrace the distinction between high-level (top-down) and low-level (bottom-up) influences upon scanning eye movements when looking at scenes. This distinction was inspired by Yarbus (1967), who demonstrated how the location of our fixations is affected by task instructions and not only the stimulus' low level properties. We therefore examined how scanning patterns are influenced by task instructions and low-level visual properties in 7 patients with posterior cortical atrophy, 8 patients with typical Alzheimer's disease, and 19 healthy age-matched controls. Each participant viewed 10 scenes under four task conditions (encoding, recognition, search and description) whilst eye movements were recorded. The results reveal significant differences between groups in the impact of test instructions upon scanpaths. Across tasks without a search component, posterior cortical atrophy patients were significantly less consistent than typical Alzheimer's disease patients and controls in where they were looking. By contrast, when comparing search and non-search tasks, it was controls who exhibited lowest between-task similarity ratings, suggesting they were better able than posterior cortical atrophy or typical Alzheimer's disease patients to respond appropriately to high-level needs by looking at task-relevant regions of a scene. Posterior cortical atrophy patients had a significant tendency to fixate upon more low-level salient parts of the scenes than controls irrespective of the viewing task. The study provides a detailed characterisation of

  15. Cortical oscillations and entrainment in speech processing during working memory load

    DEFF Research Database (Denmark)

    Hjortkjær, Jens; Märcher-Rørsted, Jonatan; Fuglsang, Søren A

    2018-01-01

    Neuronal oscillations are thought to play an important role in working memory (WM) and speech processing. Listening to speech in real-life situations is often cognitively demanding but it is unknown whether WM load influences how auditory cortical activity synchronizes to speech features. Here, we...... developed an auditory n-back paradigm to investigate cortical entrainment to speech envelope fluctuations under different degrees of WM load. We measured the electroencephalogram, pupil dilations and behavioural performance from 22 subjects listening to continuous speech with an embedded n-back task....... The speech stimuli consisted of long spoken number sequences created to match natural speech in terms of sentence intonation, syllabic rate and phonetic content. To burden different WM functions during speech processing, listeners performed an n-back task on the speech sequences in different levels...

  16. The effect of strain rate on the viscoplastic behavior of isotactic polypropylene at finite strains

    DEFF Research Database (Denmark)

    Drozdov, Aleksey D.; Christiansen, Jesper de Claville

    2002-01-01

    prior to testing. A constitutive model is developed for the viscoplastic behavior of isotactic polypropylene at finite strains. A semicrystalline polymer is treated as equivalent heterogeneous network of chains bridged by permanent junctions (physical cross-links and entanglements). The network...... is thought of as an ensemble of meso-regions connected with each other by links (lamellar blocks). In the sub-yield region of deformations, junctions between chains in meso-domains slide with respect to their reference positions (which reflects sliding of nodes in the amorphous phase and fine slip...... responses of non-annealed and annealed specimens: (i) necking of samples not subjected to thermal treatment precedes coarse slip and fragmentation of lamellar blocks, whereas cold-drawing of annealed specimens up to a longitudinal strain of 80% does not induce spatial heterogeneity of their deformation; (ii...

  17. CONDITIONAL FLOW STATISTICS AND ALIGNMENT OF PRINCIPAL STRAIN RATES, VORTICITY, AND SCALAR GRADIENTS IN A TURBULENT NONPREMIXED JET FLAME

    KAUST Repository

    Attili, Antonio

    2015-06-30

    The alignment of vorticity and gradients of conserved and reactive scalars with the eigenvectors of the strain rate tensor (i.e., the principal strains) is investigated in a direct numerical simulation of a turbulent nonpremixed flame achieving a Taylor’s scale Reynolds number in the range 100≤Reλ≤150 (Attili et al. Comb. Flame, 161, 2014). The vorticity vector displays a pronounced tendency to align with the direction of the intermediate strain. These alignment statistics are in almost perfect agreement with those in homogeneous isotropic turbulence (Ashurst et al. Physics of Fluids 30, 1987) and differ significantly from the results obtained in other nonpremixed flames in which vorticity alignment with the most extensive strain was observed (Boratavet al. Physics of Fluids 8, 1996). The gradients of conserved and reactive scalars align with the most compressive strain. It is worth noting that conditioning on the local values of the mixture fraction, or equivalently conditioning on the distance from the flame sheet, does not affect the statistics. Our results suggest that turbulence overshadows the effects of heat release and chemical reactions. This may be due to the larger Reynolds number achieved in the present study compared to that in previous works.

  18. CONDITIONAL FLOW STATISTICS AND ALIGNMENT OF PRINCIPAL STRAIN RATES, VORTICITY, AND SCALAR GRADIENTS IN A TURBULENT NONPREMIXED JET FLAME

    KAUST Repository

    Attili, Antonio; Bisetti, Fabrizio

    2015-01-01

    The alignment of vorticity and gradients of conserved and reactive scalars with the eigenvectors of the strain rate tensor (i.e., the principal strains) is investigated in a direct numerical simulation of a turbulent nonpremixed flame achieving a Taylor’s scale Reynolds number in the range 100≤Reλ≤150 (Attili et al. Comb. Flame, 161, 2014). The vorticity vector displays a pronounced tendency to align with the direction of the intermediate strain. These alignment statistics are in almost perfect agreement with those in homogeneous isotropic turbulence (Ashurst et al. Physics of Fluids 30, 1987) and differ significantly from the results obtained in other nonpremixed flames in which vorticity alignment with the most extensive strain was observed (Boratavet al. Physics of Fluids 8, 1996). The gradients of conserved and reactive scalars align with the most compressive strain. It is worth noting that conditioning on the local values of the mixture fraction, or equivalently conditioning on the distance from the flame sheet, does not affect the statistics. Our results suggest that turbulence overshadows the effects of heat release and chemical reactions. This may be due to the larger Reynolds number achieved in the present study compared to that in previous works.

  19. Cortical enhancement in chronic subdural hematoma

    International Nuclear Information System (INIS)

    Taguchi, Yoshio; Sato, Jun; Makita, Tadatoshi; Hayashi, Shigetoshi; Nakamura, Norio.

    1981-01-01

    In the CT findings of chronic subdural hematoma, brain enhancement adjacent to a subdural hematoma was seen occasionally after the injection of a contrast material. The authors called this finding ''cortical enhancement'', and 35 cases of chronic subdural hematoma were studied concerning cortical enhancement in relation to age, clinical signs and symptoms, hematoma density, and volume of the hematoma. Eight cases out of the 35 were subjected to measurements of the regional cerebral blood flow preoperatively by the method of the carotid injection of Xe-133. Cortical enhancement was apt to be seen in the cases which revealed intracranial hypertension or disturbance of consciousness, in isodensity or mixed-density hematomas, and in huge subdural hematomas. There was no specific correlation with age distribution. The pathogenesis of cortical enhancement seemed to be the result of cerebral compression with an increase in the contrast material per unit of volume and a prolonged venous outflow from the hemisphere, but no characteristic feature was detected in the average regional cerebral blood flow in our cases. (author)

  20. Bone Morphology in 46 BXD Recombinant Inbred Strains and Femur-Tibia Correlation

    Directory of Open Access Journals (Sweden)

    Yueying Zhang

    2015-01-01

    Full Text Available We examined the bone properties of BXD recombinant inbred (RI mice by analyzing femur and tibia and compared their phenotypes of different compartments. 46 BXD RI mouse strains were analyzed including progenitor C57BL/6J (n=16 and DBA/2J (n=15 and two first filial generations (D2B6F1 and B6D2F1. Strain differences were observed in bone quality and structural properties (P<0.05 in each bone profile (whole bone, cortical bone, or trabecular bone. It is well known that skeletal phenotypes are largely affected by genetic determinants and genders, such as bone mineral density (BMD. While genetics and gender appear expectedly as the major determinants of bone mass and structure, significant correlations were also observed between femur and tibia. More importantly, positive and negative femur-tibia associations indicated that genetic makeup had an influence on skeletal integrity. We conclude that (a femur-tibia association in bone morphological properties significantly varies from strain to strain, which may be caused by genetic differences among strains, and (b strainwise variations were seen in bone mass, bone morphology, and bone microarchitecture along with bone structural property.