WorldWideScience

Sample records for cortical oscillatory networks

  1. Decomposing neural synchrony: toward an explanation for near-zero phase-lag in cortical oscillatory networks.

    Directory of Open Access Journals (Sweden)

    Rajasimhan Rajagovindan

    Full Text Available BACKGROUND: Synchronized oscillation in cortical networks has been suggested as a mechanism for diverse functions ranging from perceptual binding to memory formation to sensorimotor integration. Concomitant with synchronization is the occurrence of near-zero phase-lag often observed between network components. Recent theories have considered the importance of this phenomenon in establishing an effective communication framework among neuronal ensembles. METHODOLOGY/PRINCIPAL FINDINGS: Two factors, among possibly others, can be hypothesized to contribute to the near-zero phase-lag relationship: (1 positively correlated common input with no significant relative time delay and (2 bidirectional interaction. Thus far, no empirical test of these hypotheses has been possible for lack of means to tease apart the specific causes underlying the observed synchrony. In this work simulation examples were first used to illustrate the ideas. A quantitative method that decomposes the statistical interdependence between two cortical areas into a feed-forward, a feed-back and a common-input component was then introduced and applied to test the hypotheses on multichannel local field potential recordings from two behaving monkeys. CONCLUSION/SIGNIFICANCE: The near-zero phase-lag phenomenon is important in the study of large-scale oscillatory networks. A rigorous mathematical theorem is used for the first time to empirically examine the factors that contribute to this phenomenon. Given the critical role that oscillatory activity is likely to play in the regulation of biological processes at all levels, the significance of the proposed method may extend beyond systems neuroscience, the level at which the present analysis is conceived and performed.

  2. Learning in AN Oscillatory Cortical Model

    Science.gov (United States)

    Scarpetta, Silvia; Li, Zhaoping; Hertz, John

    We study a model of generalized-Hebbian learning in asymmetric oscillatory neural networks modeling cortical areas such as hippocampus and olfactory cortex. The learning rule is based on the synaptic plasticity observed experimentally, in particular long-term potentiation and long-term depression of the synaptic efficacies depending on the relative timing of the pre- and postsynaptic activities during learning. The learned memory or representational states can be encoded by both the amplitude and the phase patterns of the oscillating neural populations, enabling more efficient and robust information coding than in conventional models of associative memory or input representation. Depending on the class of nonlinearity of the activation function, the model can function as an associative memory for oscillatory patterns (nonlinearity of class II) or can generalize from or interpolate between the learned states, appropriate for the function of input representation (nonlinearity of class I). In the former case, simulations of the model exhibits a first order transition between the "disordered state" and the "ordered" memory state.

  3. Oscillatory neuronal activity reflects lexical-semantic feature integration within and across sensory modalities in distributed cortical networks.

    Science.gov (United States)

    van Ackeren, Markus J; Schneider, Till R; Müsch, Kathrin; Rueschemeyer, Shirley-Ann

    2014-10-22

    Research from the previous decade suggests that word meaning is partially stored in distributed modality-specific cortical networks. However, little is known about the mechanisms by which semantic content from multiple modalities is integrated into a coherent multisensory representation. Therefore we aimed to characterize differences between integration of lexical-semantic information from a single modality compared with two sensory modalities. We used magnetoencephalography in humans to investigate changes in oscillatory neuronal activity while participants verified two features for a given target word (e.g., "bus"). Feature pairs consisted of either two features from the same modality (visual: "red," "big") or different modalities (auditory and visual: "red," "loud"). The results suggest that integrating modality-specific features of the target word is associated with enhanced high-frequency power (80-120 Hz), while integrating features from different modalities is associated with a sustained increase in low-frequency power (2-8 Hz). Source reconstruction revealed a peak in the anterior temporal lobe for low-frequency and high-frequency effects. These results suggest that integrating lexical-semantic knowledge at different cortical scales is reflected in frequency-specific oscillatory neuronal activity in unisensory and multisensory association networks. Copyright © 2014 the authors 0270-6474/14/3314318-06$15.00/0.

  4. Oscillations during observations: Dynamic oscillatory networks serving visuospatial attention.

    Science.gov (United States)

    Wiesman, Alex I; Heinrichs-Graham, Elizabeth; Proskovec, Amy L; McDermott, Timothy J; Wilson, Tony W

    2017-10-01

    The dynamic allocation of neural resources to discrete features within a visual scene enables us to react quickly and accurately to salient environmental circumstances. A network of bilateral cortical regions is known to subserve such visuospatial attention functions; however the oscillatory and functional connectivity dynamics of information coding within this network are not fully understood. Particularly, the coding of information within prototypical attention-network hubs and the subsecond functional connections formed between these hubs have not been adequately characterized. Herein, we use the precise temporal resolution of magnetoencephalography (MEG) to define spectrally specific functional nodes and connections that underlie the deployment of attention in visual space. Twenty-three healthy young adults completed a visuospatial discrimination task designed to elicit multispectral activity in visual cortex during MEG, and the resulting data were preprocessed and reconstructed in the time-frequency domain. Oscillatory responses were projected to the cortical surface using a beamformer, and time series were extracted from peak voxels to examine their temporal evolution. Dynamic functional connectivity was then computed between nodes within each frequency band of interest. We find that visual attention network nodes are defined functionally by oscillatory frequency, that the allocation of attention to the visual space dynamically modulates functional connectivity between these regions on a millisecond timescale, and that these modulations significantly correlate with performance on a spatial discrimination task. We conclude that functional hubs underlying visuospatial attention are segregated not only anatomically but also by oscillatory frequency, and importantly that these oscillatory signatures promote dynamic communication between these hubs. Hum Brain Mapp 38:5128-5140, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  5. Methods for parameter identification in oscillatory networks and application to cortical and thalamic 600 Hz activity.

    Science.gov (United States)

    Leistritz, L; Suesse, T; Haueisen, J; Hilgenfeld, B; Witte, H

    2006-01-01

    Directed information transfer in the human brain occurs presumably by oscillations. As of yet, most approaches for the analysis of these oscillations are based on time-frequency or coherence analysis. The present work concerns the modeling of cortical 600 Hz oscillations, localized within the Brodmann Areas 3b and 1 after stimulation of the nervus medianus, by means of coupled differential equations. This approach leads to the so-called parameter identification problem, where based on a given data set, a set of unknown parameters of a system of ordinary differential equations is determined by special optimization procedures. Some suitable algorithms for this task are presented in this paper. Finally an oscillatory network model is optimally fitted to the data taken from ten volunteers.

  6. Functional localization and effective connectivity of cortical theta and alpha oscillatory activity during an attention task

    Directory of Open Access Journals (Sweden)

    Yuichi Kitaura

    Full Text Available Objectives: The aim of this paper is to investigate cortical electric neuronal activity as an indicator of brain function, in a mental arithmetic task that requires sustained attention, as compared to the resting state condition. The two questions of interest are the cortical localization of different oscillatory activities, and the directional effective flow of oscillatory activity between regions of interest, in the task condition compared to resting state. In particular, theta and alpha activity are of interest here, due to their important role in attention processing. Methods: We adapted mental arithmetic as an attention ask in this study. Eyes closed 61-channel EEG was recorded in 14 participants during resting and in a mental arithmetic task (“serial sevens subtraction”. Functional localization and connectivity analyses were based on cortical signals of electric neuronal activity estimated with sLORETA (standardized low resolution electromagnetic tomography. Functional localization was based on the comparison of the cortical distributions of the generators of oscillatory activity between task and resting conditions. Assessment of effective connectivity was based on the iCoh (isolated effective coherence method, which provides an appropriate frequency decomposition of the directional flow of oscillatory activity between brain regions. Nine regions of interest comprising nodes from the dorsal and ventral attention networks were selected for the connectivity analysis. Results: Cortical spectral density distribution comparing task minus rest showed significant activity increase in medial prefrontal areas and decreased activity in left parietal lobe for the theta band, and decreased activity in parietal-occipital regions for the alpha1 band. At a global level, connections among right hemispheric nodes were predominantly decreased during the task condition, while connections among left hemispheric nodes were predominantly increased. At more

  7. Graph properties of synchronized cortical networks during visual working memory maintenance.

    Science.gov (United States)

    Palva, Satu; Monto, Simo; Palva, J Matias

    2010-02-15

    Oscillatory synchronization facilitates communication in neuronal networks and is intimately associated with human cognition. Neuronal activity in the human brain can be non-invasively imaged with magneto- (MEG) and electroencephalography (EEG), but the large-scale structure of synchronized cortical networks supporting cognitive processing has remained uncharacterized. We combined simultaneous MEG and EEG (MEEG) recordings with minimum-norm-estimate-based inverse modeling to investigate the structure of oscillatory phase synchronized networks that were active during visual working memory (VWM) maintenance. Inter-areal phase-synchrony was quantified as a function of time and frequency by single-trial phase-difference estimates of cortical patches covering the entire cortical surfaces. The resulting networks were characterized with a number of network metrics that were then compared between delta/theta- (3-6 Hz), alpha- (7-13 Hz), beta- (16-25 Hz), and gamma- (30-80 Hz) frequency bands. We found several salient differences between frequency bands. Alpha- and beta-band networks were more clustered and small-world like but had smaller global efficiency than the networks in the delta/theta and gamma bands. Alpha- and beta-band networks also had truncated-power-law degree distributions and high k-core numbers. The data converge on showing that during the VWM-retention period, human cortical alpha- and beta-band networks have a memory-load dependent, scale-free small-world structure with densely connected core-like structures. These data further show that synchronized dynamic networks underlying a specific cognitive state can exhibit distinct frequency-dependent network structures that could support distinct functional roles. Copyright 2009 Elsevier Inc. All rights reserved.

  8. Cortical Network Dynamics of Perceptual Decision-Making in the Human Brain

    Directory of Open Access Journals (Sweden)

    Markus eSiegel

    2011-02-01

    Full Text Available Goal-directed behavior requires the flexible transformation of sensory evidence about our environment into motor actions. Studies of perceptual decision-making have shown that this transformation is distributed across several widely separated brain regions. Yet, little is known about how decision-making emerges from the dynamic interactions among these regions. Here, we review a series of studies, in which we characterized the cortical network interactions underlying a perceptual decision process in the human brain. We used magnetoencephalography (MEG to measure the large-scale cortical population dynamics underlying each of the sub-processes involved in this decision: the encoding of sensory evidence and action plan, the mapping between the two, and the attentional selection of task-relevant evidence. We found that these sub-processes are mediated by neuronal oscillations within specific frequency ranges. Localized gamma-band oscillations in sensory and motor cortices reflect the encoding of the sensory evidence and motor plan. Large-scale oscillations across widespread cortical networks mediate the integrative processes connecting these local networks: Gamma- and beta-band oscillations across frontal, parietal and sensory cortices serve the selection of relevant sensory evidence and its flexible mapping onto action plans. In sum, our results suggest that perceptual decisions are mediated by oscillatory interactions within overlapping local and large-scale cortical networks.

  9. Synchronization in oscillatory networks

    CERN Document Server

    Osipov, Grigory V; Zhou, Changsong

    2007-01-01

    The formation of collective behavior in large ensembles or networks of coupled oscillatory elements is one of the oldest and most fundamental aspects of dynamical systems theory. Potential and present applications span a vast spectrum of fields ranging from physics, chemistry, geoscience, through life- and neurosciences to engineering, the economic and the social sciences. This work systematically investigates a large number of oscillatory network configurations that are able to describe many real systems such as electric power grids, lasers or the heart muscle - to name but a few. This book is conceived as an introduction to the field for graduate students in physics and applied mathematics as well as being a compendium for researchers from any field of application interested in quantitative models.

  10. Temporal entrainment of cognitive functions: musical mnemonics induce brain plasticity and oscillatory synchrony in neural networks underlying memory.

    Science.gov (United States)

    Thaut, Michael H; Peterson, David A; McIntosh, Gerald C

    2005-12-01

    In a series of experiments, we have begun to investigate the effect of music as a mnemonic device on learning and memory and the underlying plasticity of oscillatory neural networks. We used verbal learning and memory tests (standardized word lists, AVLT) in conjunction with electroencephalographic analysis to determine differences between verbal learning in either a spoken or musical (verbal materials as song lyrics) modality. In healthy adults, learning in both the spoken and music condition was associated with significant increases in oscillatory synchrony across all frequency bands. A significant difference between the spoken and music condition emerged in the cortical topography of the learning-related synchronization. When using EEG measures as predictors during learning for subsequent successful memory recall, significantly increased coherence (phase-locked synchronization) within and between oscillatory brain networks emerged for music in alpha and gamma bands. In a similar study with multiple sclerosis patients, superior learning and memory was shown in the music condition when controlled for word order recall, and subjects were instructed to sing back the word lists. Also, the music condition was associated with a significant power increase in the low-alpha band in bilateral frontal networks, indicating increased neuronal synchronization. Musical learning may access compensatory pathways for memory functions during compromised PFC functions associated with learning and recall. Music learning may also confer a neurophysiological advantage through the stronger synchronization of the neuronal cell assemblies underlying verbal learning and memory. Collectively our data provide evidence that melodic-rhythmic templates as temporal structures in music may drive internal rhythm formation in recurrent cortical networks involved in learning and memory.

  11. Modulation of Cortical-subcortical Networks in Parkinson’s Disease by Applied Field Effects

    Directory of Open Access Journals (Sweden)

    Christopher William Hess

    2013-09-01

    Full Text Available Studies suggest that endogenous field effects may play a role in neuronal oscillations and communication. Non-invasive transcranial electrical stimulation with low-intensity currents can also have direct effects on the underlying cortex as well as distant network effects. While Parkinson's disease (PD is amenable to invasive neuromodulation in the basal ganglia by deep brain stimulation, techniques of non-invasive neuromodulation like transcranial direct current stimulation (tDCS and transcranial alternating current stimulation (tACS are being investigated as possible therapies. tDCS and tACS have the potential to influence the abnormal cortical-subcortical network activity that occurs in PD through sub-threshold changes in cortical excitability or through entrainment or disruption of ongoing rhythmic cortical activity. This may allow for the targeting of specific features of the disease involving abnormal oscillatory activity, as well as the enhancement of potential cortical compensation for basal ganglia dysfunction and modulation of cortical plasticity in neurorehabilitation. However, little is currently known about how cortical stimulation will affect subcortical structures, the size of any effect, and the factors of stimulation that will influence these effects.

  12. Capacity of oscillatory associative-memory networks with error-free retrieval

    International Nuclear Information System (INIS)

    Nishikawa, Takashi; Lai Yingcheng; Hoppensteadt, Frank C.

    2004-01-01

    Networks of coupled periodic oscillators (similar to the Kuramoto model) have been proposed as models of associative memory. However, error-free retrieval states of such oscillatory networks are typically unstable, resulting in a near zero capacity. This puts the networks at disadvantage as compared with the classical Hopfield network. Here we propose a simple remedy for this undesirable property and show rigorously that the error-free capacity of our oscillatory, associative-memory networks can be made as high as that of the Hopfield network. They can thus not only provide insights into the origin of biological memory, but can also be potentially useful for applications in information science and engineering

  13. Patterns of cortical oscillations organize neural activity into whole-brain functional networks evident in the fMRI BOLD signal

    Directory of Open Access Journals (Sweden)

    Jennifer C Whitman

    2013-03-01

    Full Text Available Recent findings from electrophysiology and multimodal neuroimaging have elucidated the relationship between patterns of cortical oscillations evident in EEG / MEG and the functional brain networks evident in the BOLD signal. Much of the existing literature emphasized how high-frequency cortical oscillations are thought to coordinate neural activity locally, while low-frequency oscillations play a role in coordinating activity between more distant brain regions. However, the assignment of different frequencies to different spatial scales is an oversimplification. A more informative approach is to explore the arrangements by which these low- and high-frequency oscillations work in concert, coordinating neural activity into whole-brain functional networks. When relating such networks to the BOLD signal, we must consider how the patterns of cortical oscillations change at the same speed as cognitive states, which often last less than a second. Consequently, the slower BOLD signal may often reflect the summed neural activity of several transient network configurations. This temporal mismatch can be circumvented if we use spatial maps to assess correspondence between oscillatory networks and BOLD networks.

  14. Acute changes in motor cortical excitability during slow oscillatory and constant anodal transcranial direct current stimulation

    DEFF Research Database (Denmark)

    Bergmann, Til Ole; Groppa, Sergiu; Seeger, Markus

    2009-01-01

    Transcranial oscillatory current stimulation has recently emerged as a noninvasive technique that can interact with ongoing endogenous rhythms of the human brain. Yet, there is still little knowledge on how time-varied exogenous currents acutely modulate cortical excitability. In ten healthy...... individuals we used on-line single-pulse transcranial magnetic stimulation (TMS) to search for systematic shifts in corticospinal excitability during anodal sleeplike 0.8-Hz slow oscillatory transcranial direct current stimulation (so-tDCS). In separate sessions, we repeatedly applied 30-s trials (two blocks...... at 20 min) of either anodal so-tDCS or constant tDCS (c-tDCS) to the primary motor hand area during quiet wakefulness. Simultaneously and time-locked to different phase angles of the slow oscillation, motor-evoked potentials (MEPs) as an index of corticospinal excitability were obtained...

  15. Large Amplitude Oscillatory Extension of Soft Polymeric Networks

    DEFF Research Database (Denmark)

    Bejenariu, Anca Gabriela; Rasmussen, Henrik K.; Skov, Anne Ladegaard

    2010-01-01

    sing a filament stretching rheometer (FSR) surrounded by a thermostatic chamber and equipped with a micrometric laser it is possible to measure large amplitude oscillatory elongation (LAOE) on elastomeric based networks with no base flow as in the LAOE method for polymer melts. Poly(dimethylsilox...

  16. Cortical oscillatory activity during spatial echoic memory.

    Science.gov (United States)

    Kaiser, Jochen; Walker, Florian; Leiberg, Susanne; Lutzenberger, Werner

    2005-01-01

    In human magnetoencephalogram, we have found gamma-band activity (GBA), a putative measure of cortical network synchronization, during both bottom-up and top-down auditory processing. When sound positions had to be retained in short-term memory for 800 ms, enhanced GBA was detected over posterior parietal cortex, possibly reflecting the activation of higher sensory storage systems along the hypothesized auditory dorsal space processing stream. Additional prefrontal GBA increases suggested an involvement of central executive networks in stimulus maintenance. The present study assessed spatial echoic memory with the same stimuli but a shorter memorization interval of 200 ms. Statistical probability mapping revealed posterior parietal GBA increases at 80 Hz near the end of the memory phase and both gamma and theta enhancements in response to the test stimulus. In contrast to the previous short-term memory study, no prefrontal gamma or theta enhancements were detected. This suggests that spatial echoic memory is performed by networks along the putative auditory dorsal stream, without requiring an involvement of prefrontal executive regions.

  17. Synchronization enhancement via an oscillatory bath in a network of ...

    Indian Academy of Sciences (India)

    2015-02-05

    Feb 5, 2015 ... The possibility of using a dynamic environment to achieve and optimize phase synchronization in a network of self-excited cells with free-end boundary conditions is addressed in this paper. The dynamic environment is an oscillatory bath coupled linearly to a network of four cells. The boundaries of the ...

  18. Beta and gamma oscillatory activities associated with olfactory memory tasks: different rhythms for different functional networks?

    Science.gov (United States)

    Martin, Claire; Ravel, Nadine

    2014-01-01

    Olfactory processing in behaving animals, even at early stages, is inextricable from top down influences associated with odor perception. The anatomy of the olfactory network (olfactory bulb, piriform, and entorhinal cortices) and its unique direct access to the limbic system makes it particularly attractive to study how sensory processing could be modulated by learning and memory. Moreover, olfactory structures have been early reported to exhibit oscillatory population activities easy to capture through local field potential recordings. An attractive hypothesis is that neuronal oscillations would serve to "bind" distant structures to reach a unified and coherent perception. In relation to this hypothesis, we will assess the functional relevance of different types of oscillatory activity observed in the olfactory system of behaving animals. This review will focus primarily on two types of oscillatory activities: beta (15-40 Hz) and gamma (60-100 Hz). While gamma oscillations are dominant in the olfactory system in the absence of odorant, both beta and gamma rhythms have been reported to be modulated depending on the nature of the olfactory task. Studies from the authors of the present review and other groups brought evidence for a link between these oscillations and behavioral changes induced by olfactory learning. However, differences in studies led to divergent interpretations concerning the respective role of these oscillations in olfactory processing. Based on a critical reexamination of those data, we propose hypotheses on the functional involvement of beta and gamma oscillations for odor perception and memory.

  19. Beta and gamma oscillatory activities associated with olfactory memory tasks: Different rhythms for different functional networks?

    Directory of Open Access Journals (Sweden)

    Claire eMartin

    2014-06-01

    Full Text Available Olfactory processing in behaving animals, even at early stages, is inextricable from top down influences associated with odor perception. The anatomy of the olfactory network (olfactory bulb, piriform and entorhinal cortices and its unique direct access to the limbic system makes it particularly attractive to study how sensory processing could be modulated by learning and memory. Moreover, olfactory structures have been early reported to exhibit oscillatory population activities easy to capture through local field potential recordings. An attractive hypothesis is that neuronal oscillations would serve to ‘bind’ distant structures to reach a unified and coherent perception. In relation to this hypothesis, we will assess the functional relevance of different types of oscillatory activity observed in the olfactory system of behaving animals. This review will focus primarily on two types of oscillatory activities: beta (15-40 Hz and gamma (60-100 Hz. While gamma oscillations are dominant in the olfactory system in the absence of odorant, both beta and gamma rhythms have been reported to be modulated depending on the nature of the olfactory task. Studies from the authors of the present review and other groups brought evidence for a link between these oscillations and behavioral changes induced by olfactory learning. However, differences in studies led to divergent interpretations concerning the respective role of these oscillations in olfactory processing. Based on a critical reexamination of those data, we propose hypotheses on the functional involvement of beta and gamma oscillations for odor perception and memory.

  20. Mapping cortical mesoscopic networks of single spiking cortical or sub-cortical neurons.

    Science.gov (United States)

    Xiao, Dongsheng; Vanni, Matthieu P; Mitelut, Catalin C; Chan, Allen W; LeDue, Jeffrey M; Xie, Yicheng; Chen, Andrew Cn; Swindale, Nicholas V; Murphy, Timothy H

    2017-02-04

    Understanding the basis of brain function requires knowledge of cortical operations over wide-spatial scales, but also within the context of single neurons. In vivo, wide-field GCaMP imaging and sub-cortical/cortical cellular electrophysiology were used in mice to investigate relationships between spontaneous single neuron spiking and mesoscopic cortical activity. We make use of a rich set of cortical activity motifs that are present in spontaneous activity in anesthetized and awake animals. A mesoscale spike-triggered averaging procedure allowed the identification of motifs that are preferentially linked to individual spiking neurons by employing genetically targeted indicators of neuronal activity. Thalamic neurons predicted and reported specific cycles of wide-scale cortical inhibition/excitation. In contrast, spike-triggered maps derived from single cortical neurons yielded spatio-temporal maps expected for regional cortical consensus function. This approach can define network relationships between any point source of neuronal spiking and mesoscale cortical maps.

  1. Goal-directed control with cortical units that are gated by both top-down feedback and oscillatory coherence

    Science.gov (United States)

    Kerr, Robert R.; Grayden, David B.; Thomas, Doreen A.; Gilson, Matthieu; Burkitt, Anthony N.

    2014-01-01

    The brain is able to flexibly select behaviors that adapt to both its environment and its present goals. This cognitive control is understood to occur within the hierarchy of the cortex and relies strongly on the prefrontal and premotor cortices, which sit at the top of this hierarchy. Pyramidal neurons, the principal neurons in the cortex, have been observed to exhibit much stronger responses when they receive inputs at their soma/basal dendrites that are coincident with inputs at their apical dendrites. This corresponds to inputs from both lower-order regions (feedforward) and higher-order regions (feedback), respectively. In addition to this, coherence between oscillations, such as gamma oscillations, in different neuronal groups has been proposed to modulate and route communication in the brain. In this paper, we develop a simple, but novel, neural mass model in which cortical units (or ensembles) exhibit gamma oscillations when they receive coherent oscillatory inputs from both feedforward and feedback connections. By forming these units into circuits that can perform logic operations, we identify the different ways in which operations can be initiated and manipulated by top-down feedback. We demonstrate that more sophisticated and flexible top-down control is possible when the gain of units is modulated by not only top-down feedback but by coherence between the activities of the oscillating units. With these types of units, it is possible to not only add units to, or remove units from, a higher-level unit's logic operation using top-down feedback, but also to modify the type of role that a unit plays in the operation. Finally, we explore how different network properties affect top-down control and processing in large networks. Based on this, we make predictions about the likely connectivities between certain brain regions that have been experimentally observed to be involved in goal-directed behavior and top-down attention. PMID:25152715

  2. A simple mechanical system for studying adaptive oscillatory neural networks

    DEFF Research Database (Denmark)

    Jouffroy, Guillaume; Jouffroy, Jerome

    Central Pattern Generators (CPG) are oscillatory systems that are responsible for generating rhythmic patterns at the origin of many biological activities such as for example locomotion or digestion. These systems are generally modelled as recurrent neural networks whose parameters are tuned so...... that the network oscillates in a suitable way, this tuning being a non trivial task. It also appears that the link with the physical body that these oscillatory entities control has a fundamental importance, and it seems that most bodies used for experimental validation in the literature (walking robots, lamprey...... a brief description of the Roller-Racer, we present as a preliminary study an RNN-based feed-forward controller whose parameters are obtained through the well-known teacher forcing learning algorithm, extended to learn signals with a continuous component....

  3. Endogenous Cortical Oscillations Constrain Neuromodulation by Weak Electric Fields

    Science.gov (United States)

    Schmidt, Stephen L.; Iyengar, Apoorva K.; Foulser, A. Alban; Boyle, Michael R.; Fröhlich, Flavio

    2014-01-01

    Background Transcranial alternating current stimulation (tACS) is a non-invasive brain stimulation modality that may modulate cognition by enhancing endogenous neocortical oscillations with the application of sine-wave electric fields. Yet, the role of endogenous network activity in enabling and shaping the effects of tACS has remained unclear. Objective We combined optogenetic stimulation and multichannel slice electrophysiology to elucidate how the effect of weak sine-wave electric field depends on the ongoing cortical oscillatory activity. We hypothesized that the structure of the response to stimulation depended on matching the stimulation frequency to the endogenous cortical oscillation. Methods We studied the effect of weak sine-wave electric fields on oscillatory activity in mouse neocortical slices. Optogenetic control of the network activity enabled the generation of in vivo like cortical oscillations for studying the temporal relationship between network activity and sine-wave electric field stimulation. Results Weak electric fields enhanced endogenous oscillations but failed to induce a frequency shift of the ongoing oscillation for stimulation frequencies that were not matched to the endogenous oscillation. This constraint on the effect of electric field stimulation imposed by endogenous network dynamics was limited to the case of weak electric fields targeting in vivo-like network dynamics. Together, these results suggest that the key mechanism of tACS may be enhancing but not overriding of intrinsic network dynamics. Conclusion Our results contribute to understanding the inconsistent tACS results from human studies and propose that stimulation precisely adjusted in frequency to the endogenous oscillations is key to rational design of non-invasive brain stimulation paradigms. PMID:25129402

  4. Spatiotemporal oscillatory dynamics of visual selective attention during a flanker task.

    Science.gov (United States)

    McDermott, Timothy J; Wiesman, Alex I; Proskovec, Amy L; Heinrichs-Graham, Elizabeth; Wilson, Tony W

    2017-08-01

    The flanker task is a test of visual selective attention that has been widely used to probe error monitoring, response conflict, and related constructs. However, to date, few studies have focused on the selective attention component of this task and imaged the underlying oscillatory dynamics serving task performance. In this study, 21 healthy adults successfully completed an arrow-based version of the Eriksen flanker task during magnetoencephalography (MEG). All MEG data were pre-processed and transformed into the time-frequency domain. Significant oscillatory brain responses were imaged using a beamforming approach, and voxel time series were extracted from the peak responses to identify the temporal dynamics. Across both congruent and incongruent flanker conditions, our results indicated robust decreases in alpha (9-12Hz) activity in medial and lateral occipital regions, bilateral parietal cortices, and cerebellar areas during task performance. In parallel, increases in theta (3-7Hz) oscillatory activity were detected in dorsal and ventral frontal regions, and the anterior cingulate. As per conditional effects, stronger alpha responses (i.e., greater desynchronization) were observed in parietal, occipital, and cerebellar cortices during incongruent relative to congruent trials, whereas the opposite pattern emerged for theta responses (i.e., synchronization) in the anterior cingulate, left dorsolateral prefrontal, and ventral prefrontal cortices. Interestingly, the peak latency of theta responses in these latter brain regions was significantly correlated with reaction time, and may partially explain the amplitude difference observed between congruent and incongruent trials. Lastly, whole-brain exploratory analyses implicated the frontal eye fields, right temporoparietal junction, and premotor cortices. These findings suggest that regions of both the dorsal and ventral attention networks contribute to visual selective attention processes during incongruent trials

  5. A learning algorithm for oscillatory cellular neural networks.

    Science.gov (United States)

    Ho, C Y.; Kurokawa, H

    1999-07-01

    We present a cellular type oscillatory neural network for temporal segregation of stationary input patterns. The model comprises an array of locally connected neural oscillators with connections limited to a 4-connected neighborhood. The architecture is reminiscent of the well-known cellular neural network that consists of local connection for feature extraction. By means of a novel learning rule and an initialization scheme, global synchronization can be accomplished without incurring any erroneous synchrony among uncorrelated objects. Each oscillator comprises two mutually coupled neurons, and neurons share a piecewise-linear activation function characteristic. The dynamics of traditional oscillatory models is simplified by using only one plastic synapse, and the overall complexity for hardware implementation is reduced. Based on the connectedness of image segments, it is shown that global synchronization and desynchronization can be achieved by means of locally connected synapses, and this opens up a tremendous application potential for the proposed architecture. Furthermore, by using special grouping synapses it is demonstrated that temporal segregation of overlapping gray-level and color segments can also be achieved. Finally, simulation results show that the learning rule proposed circumvents the problem of component mismatches, and hence facilitates a large-scale integration.

  6. Cortical information flow in Parkinson's disease: a composite network/field model

    Directory of Open Access Journals (Sweden)

    Cliff C. Kerr

    2013-04-01

    Full Text Available The basal ganglia play a crucial role in the execution of movements, as demonstrated by the severe motor deficits that accompany Parkinson's disease (PD. Since motor commands originate in the cortex, an important question is how the basal ganglia influence cortical information flow, and how this influence becomes pathological in PD. To explore this, we developed a composite neuronal network/neural field model. The network model consisted of 4950 spiking neurons, divided into 15 excitatory and inhibitory cell populations in the thalamus and cortex. The field model consisted of the cortex, thalamus, striatum, subthalamic nucleus, and globus pallidus. Both models have been separately validated in previous work. Three field models were used: one with basal ganglia parameters based on data from healthy individuals, one based on data from individuals with PD, and one purely thalamocortical model. Spikes generated by these field models were then used to drive the network model. Compared to the network driven by the healthy model, the PD-driven network had lower firing rates, a shift in spectral power towards lower frequencies, and higher probability of bursting; each of these findings is consistent with empirical data on PD. In the healthy model, we found strong Granger causality in the beta and low gamma bands between cortical layers, but this was largely absent in the PD model. In particular, the reduction in Granger causality from the main "input" layer of the cortex (layer 4 to the main "output" layer (layer 5 was pronounced. This may account for symptoms of PD that seem to reflect deficits in information flow, such as bradykinesia. In general, these results demonstrate that the brain's large-scale oscillatory environment, represented here by the field model, strongly influences the information processing that occurs within its subnetworks. Hence, it may be preferable to drive spiking network models with physiologically realistic inputs rather than

  7. Goal-directed control with cortical units that are gated by both top-down feedback and oscillatory coherence

    Directory of Open Access Journals (Sweden)

    Robert R. Kerr

    2014-08-01

    Full Text Available The brain is able to flexibly select behaviors that adapt to both its environment and its present goals. This cognitive control is understood to occur within the hierarchy of the cortex and relies strongly on the prefrontal and premotor cortices, which sit at the top of this hierarchy. Pyramidal neurons, the principal neurons in the cortex, have been observed to exhibit much stronger responses when they receive inputs at their soma/basal dendrites that are coincident with inputs at their apical dendrites. This corresponds to inputs from both lower-order regions (feedforward and higher-order regions (feedback, respectively. In addition to this, coherence between oscillations, such as gamma oscillations, in different neuronal groups has been proposed to modulate and route communication in the brain. In this paper, we develop a simple, but novel, neural mass model in which cortical units (or ensembles exhibit gamma oscillations when they receive coherent oscillatory inputs from both feedforward and feedback connections. By forming these units into circuits that can perform logic operations, we identify the different ways in which operations can be initiated and manipulated by top-down feedback. We demonstrate that more sophisticated and flexible top-down control is possible when the gain of units is modulated by not only top-down feedback but by coherence between the activities of the oscillating units. With these types of units, it is possible to not only add units to, or remove units from, a higher-level unit's logic operation using top-down feedback, but also to modify the type of role that a unit plays in the operation. Finally, we explore how different network properties affect top-down control and processing in large networks. Based on this, we make predictions about the likely connectivities between certain brain regions that have been experimentally observed to be involved in goal-directed behavior and top-down attention.

  8. Cross-modal integration of lexical-semantic features during word processing: evidence from oscillatory dynamics during EEG.

    Directory of Open Access Journals (Sweden)

    Markus J van Ackeren

    Full Text Available In recent years, numerous studies have provided converging evidence that word meaning is partially stored in modality-specific cortical networks. However, little is known about the mechanisms supporting the integration of this distributed semantic content into coherent conceptual representations. In the current study we aimed to address this issue by using EEG to look at the spatial and temporal dynamics of feature integration during word comprehension. Specifically, participants were presented with two modality-specific features (i.e., visual or auditory features such as silver and loud and asked to verify whether these two features were compatible with a subsequently presented target word (e.g., WHISTLE. Each pair of features described properties from either the same modality (e.g., silver, tiny  =  visual features or different modalities (e.g., silver, loud  =  visual, auditory. Behavioral and EEG data were collected. The results show that verifying features that are putatively represented in the same modality-specific network is faster than verifying features across modalities. At the neural level, integrating features across modalities induces sustained oscillatory activity around the theta range (4-6 Hz in left anterior temporal lobe (ATL, a putative hub for integrating distributed semantic content. In addition, enhanced long-range network interactions in the theta range were seen between left ATL and a widespread cortical network. These results suggest that oscillatory dynamics in the theta range could be involved in integrating multimodal semantic content by creating transient functional networks linking distributed modality-specific networks and multimodal semantic hubs such as left ATL.

  9. Influences of brain development and ageing on cortical interactive networks.

    Science.gov (United States)

    Zhu, Chengyu; Guo, Xiaoli; Jin, Zheng; Sun, Junfeng; Qiu, Yihong; Zhu, Yisheng; Tong, Shanbao

    2011-02-01

    To study the effect of brain development and ageing on the pattern of cortical interactive networks. By causality analysis of multichannel electroencephalograph (EEG) with partial directed coherence (PDC), we investigated the different neural networks involved in the whole cortex as well as the anterior and posterior areas in three age groups, i.e., children (0-10 years), mid-aged adults (26-38 years) and the elderly (56-80 years). By comparing the cortical interactive networks in different age groups, the following findings were concluded: (1) the cortical interactive network in the right hemisphere develops earlier than its left counterpart in the development stage; (2) the cortical interactive network of anterior cortex, especially at C3 and F3, is demonstrated to undergo far more extensive changes, compared with the posterior area during brain development and ageing; (3) the asymmetry of the cortical interactive networks declines during ageing with more loss of connectivity in the left frontal and central areas. The age-related variation of cortical interactive networks from resting EEG provides new insights into brain development and ageing. Our findings demonstrated that the PDC analysis of EEG is a powerful approach for characterizing the cortical functional connectivity during brain development and ageing. Copyright © 2010 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  10. Delay selection by spike-timing-dependent plasticity in recurrent networks of spiking neurons receiving oscillatory inputs.

    Directory of Open Access Journals (Sweden)

    Robert R Kerr

    Full Text Available Learning rules, such as spike-timing-dependent plasticity (STDP, change the structure of networks of neurons based on the firing activity. A network level understanding of these mechanisms can help infer how the brain learns patterns and processes information. Previous studies have shown that STDP selectively potentiates feed-forward connections that have specific axonal delays, and that this underlies behavioral functions such as sound localization in the auditory brainstem of the barn owl. In this study, we investigate how STDP leads to the selective potentiation of recurrent connections with different axonal and dendritic delays during oscillatory activity. We develop analytical models of learning with additive STDP in recurrent networks driven by oscillatory inputs, and support the results using simulations with leaky integrate-and-fire neurons. Our results show selective potentiation of connections with specific axonal delays, which depended on the input frequency. In addition, we demonstrate how this can lead to a network becoming selective in the amplitude of its oscillatory response to this frequency. We extend this model of axonal delay selection within a single recurrent network in two ways. First, we show the selective potentiation of connections with a range of both axonal and dendritic delays. Second, we show axonal delay selection between multiple groups receiving out-of-phase, oscillatory inputs. We discuss the application of these models to the formation and activation of neuronal ensembles or cell assemblies in the cortex, and also to missing fundamental pitch perception in the auditory brainstem.

  11. State-dependent intrinsic predictability of cortical network dynamics.

    Directory of Open Access Journals (Sweden)

    Leila Fakhraei

    Full Text Available The information encoded in cortical circuit dynamics is fleeting, changing from moment to moment as new input arrives and ongoing intracortical interactions progress. A combination of deterministic and stochastic biophysical mechanisms governs how cortical dynamics at one moment evolve from cortical dynamics in recently preceding moments. Such temporal continuity of cortical dynamics is fundamental to many aspects of cortex function but is not well understood. Here we study temporal continuity by attempting to predict cortical population dynamics (multisite local field potential based on its own recent history in somatosensory cortex of anesthetized rats and in a computational network-level model. We found that the intrinsic predictability of cortical dynamics was dependent on multiple factors including cortical state, synaptic inhibition, and how far into the future the prediction extends. By pharmacologically tuning synaptic inhibition, we obtained a continuum of cortical states with asynchronous population activity at one extreme and stronger, spatially extended synchrony at the other extreme. Intermediate between these extremes we observed evidence for a special regime of population dynamics called criticality. Predictability of the near future (10-100 ms increased as the cortical state was tuned from asynchronous to synchronous. Predictability of the more distant future (>1 s was generally poor, but, surprisingly, was higher for asynchronous states compared to synchronous states. These experimental results were confirmed in a computational network model of spiking excitatory and inhibitory neurons. Our findings demonstrate that determinism and predictability of network dynamics depend on cortical state and the time-scale of the dynamics.

  12. Understanding the Generation of Network Bursts by Adaptive Oscillatory Neurons

    Directory of Open Access Journals (Sweden)

    Tanguy Fardet

    2018-02-01

    Full Text Available Experimental and numerical studies have revealed that isolated populations of oscillatory neurons can spontaneously synchronize and generate periodic bursts involving the whole network. Such a behavior has notably been observed for cultured neurons in rodent's cortex or hippocampus. We show here that a sufficient condition for this network bursting is the presence of an excitatory population of oscillatory neurons which displays spike-driven adaptation. We provide an analytic model to analyze network bursts generated by coupled adaptive exponential integrate-and-fire neurons. We show that, for strong synaptic coupling, intrinsically tonic spiking neurons evolve to reach a synchronized intermittent bursting state. The presence of inhibitory neurons or plastic synapses can then modulate this dynamics in many ways but is not necessary for its appearance. Thanks to a simple self-consistent equation, our model gives an intuitive and semi-quantitative tool to understand the bursting behavior. Furthermore, it suggests that after-hyperpolarization currents are sufficient to explain bursting termination. Through a thorough mapping between the theoretical parameters and ion-channel properties, we discuss the biological mechanisms that could be involved and the relevance of the explored parameter-space. Such an insight enables us to propose experimentally-testable predictions regarding how blocking fast, medium or slow after-hyperpolarization channels would affect the firing rate and burst duration, as well as the interburst interval.

  13. Neural synchrony in cortical networks: history, concept and current status

    Directory of Open Access Journals (Sweden)

    Peter Uhlhaas

    2009-07-01

    Full Text Available Following the discovery of context-dependent synchronization of oscillatory neuronal responses in the visual system, the role of neural synchrony in cortical networks has been expanded to provide a general mechanism for the coordination of distributed neural activity patterns. In the current paper, we present an update of the status of this hypothesis through summarizing recent results from our laboratory that suggest important new insights regarding the mechanisms, function and relevance of this phenomenon. In the first part, we present recent results derived from animal experiments and mathematical simulations that provide novel explanations and mechanisms for zero and nero-zero phase lag synchronization. In the second part, we shall discuss the role of neural synchrony for expectancy during perceptual organization and its role in conscious experience. This will be followed by evidence that indicates that in addition to supporting conscious cognition, neural synchrony is abnormal in major brain disorders, such as schizophrenia and autism spectrum disorders. We conclude this paper with suggestions for further research as well as with critical issues that need to be addressed in future studies.

  14. Neuronal oscillations form parietal/frontal networks during contour integration.

    Science.gov (United States)

    Castellano, Marta; Plöchl, Michael; Vicente, Raul; Pipa, Gordon

    2014-01-01

    The ability to integrate visual features into a global coherent percept that can be further categorized and manipulated are fundamental abilities of the neural system. While the processing of visual information involves activation of early visual cortices, the recruitment of parietal and frontal cortices has been shown to be crucial for perceptual processes. Yet is it not clear how both cortical and long-range oscillatory activity leads to the integration of visual features into a coherent percept. Here, we will investigate perceptual grouping through the analysis of a contour categorization task, where the local elements that form contour must be linked into a coherent structure, which is then further processed and manipulated to perform the categorization task. The contour formation in our visual stimulus is a dynamic process where, for the first time, visual perception of contours is disentangled from the onset of visual stimulation or from motor preparation, cognitive processes that until now have been behaviorally attached to perceptual processes. Our main finding is that, while local and long-range synchronization at several frequencies seem to be an ongoing phenomena, categorization of a contour could only be predicted through local oscillatory activity within parietal/frontal sources, which in turn, would synchronize at gamma (>30 Hz) frequency. Simultaneously, fronto-parietal beta (13-30 Hz) phase locking forms a network spanning across neural sources that are not category specific. Both long range networks, i.e., the gamma network that is category specific, and the beta network that is not category specific, are functionally distinct but spatially overlapping. Altogether, we show that a critical mechanism underlying contour categorization involves oscillatory activity within parietal/frontal cortices, as well as its synchronization across distal cortical sites.

  15. Oscillatory activity in neocortical networks during tactile discrimination near the limit of spatial acuity.

    Science.gov (United States)

    Adhikari, Bhim M; Sathian, K; Epstein, Charles M; Lamichhane, Bidhan; Dhamala, Mukesh

    2014-05-01

    Oscillatory interactions within functionally specialized but distributed brain regions are believed to be central to perceptual and cognitive functions. Here, using human scalp electroencephalography (EEG) recordings combined with source reconstruction techniques, we study how oscillatory activity functionally organizes different neocortical regions during a tactile discrimination task near the limit of spatial acuity. While undergoing EEG recordings, blindfolded participants felt a linear three-dot array presented electromechanically, under computer control, and reported whether the central dot was offset to the left or right. The average brain response differed significantly for trials with correct and incorrect perceptual responses in the timeframe approximately between 130 and 175ms. During trials with correct responses, source-level peak activity appeared in the left primary somatosensory cortex (SI) at around 45ms, in the right lateral occipital complex (LOC) at 130ms, in the right posterior intraparietal sulcus (pIPS) at 160ms, and finally in the left dorsolateral prefrontal cortex (dlPFC) at 175ms. Spectral interdependency analysis of activity in these nodes showed two distinct distributed networks, a dominantly feedforward network in the beta band (12-30Hz) that included all four nodes and a recurrent network in the gamma band (30-100Hz) that linked SI, pIPS and dlPFC. Measures of network activity in both bands were correlated with the accuracy of task performance. These findings suggest that beta and gamma band oscillatory networks coordinate activity between neocortical regions mediating sensory and cognitive processing to arrive at tactile perceptual decisions. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Altered cortical anatomical networks in temporal lobe epilepsy

    Science.gov (United States)

    Lv, Bin; He, Huiguang; Lu, Jingjing; Li, Wenjing; Dai, Dai; Li, Meng; Jin, Zhengyu

    2011-03-01

    Temporal lobe epilepsy (TLE) is one of the most common epilepsy syndromes with focal seizures generated in the left or right temporal lobes. With the magnetic resonance imaging (MRI), many evidences have demonstrated that the abnormalities in hippocampal volume and the distributed atrophies in cortical cortex. However, few studies have investigated if TLE patients have the alternation in the structural networks. In the present study, we used the cortical thickness to establish the morphological connectivity networks, and investigated the network properties using the graph theoretical methods. We found that all the morphological networks exhibited the small-world efficiency in left TLE, right TLE and normal groups. And the betweenness centrality analysis revealed that there were statistical inter-group differences in the right uncus region. Since the right uncus located at the right temporal lobe, these preliminary evidences may suggest that there are topological alternations of the cortical anatomical networks in TLE, especially for the right TLE.

  17. Trade-off of cerebello-cortical and cortico-cortical functional networks for planning in 6-year-old children.

    Science.gov (United States)

    Kipping, Judy A; Margulies, Daniel S; Eickhoff, Simon B; Lee, Annie; Qiu, Anqi

    2018-05-03

    Childhood is a critical period for the development of cognitive planning. There is a lack of knowledge on its neural mechanisms in children. This study aimed to examine cerebello-cortical and cortico-cortical functional connectivity in association with planning skills in 6-year-olds (n = 76). We identified the cerebello-cortical and cortico-cortical functional networks related to cognitive planning using activation likelihood estimation (ALE) meta-analysis on existing functional imaging studies on spatial planning, and data-driven independent component analysis (ICA) of children's resting-state functional MRI (rs-fMRI). We investigated associations of cerebello-cortical and cortico-cortical functional connectivity with planning ability in 6-year-olds, as assessed using the Stockings of Cambridge task. Long-range functional connectivity of two cerebellar networks (lobules VI and lateral VIIa) with the prefrontal and premotor cortex were greater in children with poorer planning ability. In contrast, cortico-cortical association networks were not associated with the performance of planning in children. These results highlighted the key contribution of the lateral cerebello-frontal functional connectivity, but not cortico-cortical association functional connectivity, for planning ability in 6-year-olds. Our results suggested that brain adaptation to the acquisition of planning ability during childhood is partially achieved through the engagement of the cerebello-cortical functional connectivity. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Fast oscillations in cortical-striatal networks switch frequency following rewarding events and stimulant drugs.

    Science.gov (United States)

    Berke, J D

    2009-09-01

    Oscillations may organize communication between components of large-scale brain networks. Although gamma-band oscillations have been repeatedly observed in cortical-basal ganglia circuits, their functional roles are not yet clear. Here I show that, in behaving rats, distinct frequencies of ventral striatal local field potential oscillations show coherence with different cortical inputs. The approximately 50 Hz gamma oscillations that normally predominate in awake ventral striatum are coherent with piriform cortex, whereas approximately 80-100 Hz high-gamma oscillations are coherent with frontal cortex. Within striatum, entrainment to gamma rhythms is selective to fast-spiking interneurons, with distinct fast-spiking interneuron populations entrained to different gamma frequencies. Administration of the psychomotor stimulant amphetamine or the dopamine agonist apomorphine causes a prolonged decrease in approximately 50 Hz power and increase in approximately 80-100 Hz power. The same frequency switch is observed for shorter epochs spontaneously in awake, undrugged animals and is consistently provoked for reward receipt. Individual striatal neurons can participate in these brief high-gamma bursts with, or without, substantial changes in firing rate. Switching between discrete oscillatory states may allow different modes of information processing during decision-making and reinforcement-based learning, and may also be an important systems-level process by which stimulant drugs affect cognition and behavior.

  19. Design principles for robust oscillatory behavior.

    Science.gov (United States)

    Castillo-Hair, Sebastian M; Villota, Elizabeth R; Coronado, Alberto M

    2015-09-01

    Oscillatory responses are ubiquitous in regulatory networks of living organisms, a fact that has led to extensive efforts to study and replicate the circuits involved. However, to date, design principles that underlie the robustness of natural oscillators are not completely known. Here we study a three-component enzymatic network model in order to determine the topological requirements for robust oscillation. First, by simulating every possible topological arrangement and varying their parameter values, we demonstrate that robust oscillators can be obtained by augmenting the number of both negative feedback loops and positive autoregulations while maintaining an appropriate balance of positive and negative interactions. We then identify network motifs, whose presence in more complex topologies is a necessary condition for obtaining oscillatory responses. Finally, we pinpoint a series of simple architectural patterns that progressively render more robust oscillators. Together, these findings can help in the design of more reliable synthetic biomolecular networks and may also have implications in the understanding of other oscillatory systems.

  20. Brain Oscillatory Correlates of Altered Executive Functioning in Positive and Negative Symptomatic Schizophrenia Patients and Healthy Controls.

    Science.gov (United States)

    Berger, Barbara; Minarik, Tamas; Griesmayr, Birgit; Stelzig-Schoeler, Renate; Aichhorn, Wolfgang; Sauseng, Paul

    2016-01-01

    Working Memory and executive functioning deficits are core characteristics of patients suffering from schizophrenia. Electrophysiological research indicates that altered patterns of neural oscillatory mechanisms underpinning executive functioning are associated with the psychiatric disorder. Such brain oscillatory changes have been found in local amplitude differences at gamma and theta frequencies in task-specific cortical areas. Moreover, interregional interactions are also disrupted as signified by decreased phase coherence of fronto-posterior theta activity in schizophrenia patients. However, schizophrenia is not a one-dimensional psychiatric disorder but has various forms and expressions. A common distinction is between positive and negative symptomatology but most patients have both negative and positive symptoms to some extent. Here, we examined three groups-healthy controls, predominantly negative, and predominantly positive symptomatic schizophrenia patients-when performing a working memory task with increasing cognitive demand and increasing need for executive control. We analyzed brain oscillatory activity in the three groups separately and investigated how predominant symptomatology might explain differences in brain oscillatory patterns. Our results indicate that differences in task specific fronto-posterior network activity (i.e., executive control network) expressed by interregional phase synchronization are able to account for working memory dysfunctions between groups. Local changes in the theta and gamma frequency range also show differences between patients and healthy controls, and more importantly, between the two patient groups. We conclude that differences in oscillatory brain activation patterns related to executive processing can be an indicator for positive and negative symptomatology in schizophrenia. Furthermore, changes in cognitive and especially executive functioning in patients are expressed by alterations in a task-specific fronto

  1. Role of synchronized oscillatory brain activity for human pain perception.

    Science.gov (United States)

    Hauck, Michael; Lorenz, Jürgen; Engel, Andreas K

    2008-01-01

    The understanding of cortical pain processing in humans has significantly improved since the development of modern neuroimaging techniques. Non-invasive electrophysiological approaches such as electro- and magnetoencephalography have proven to be helpful tools for the real-time investigation of neuronal signals and synchronous communication between cortical areas. In particular, time-frequency decomposition of signals recorded with these techniques seems to be a promising approach because different pain-related oscillatory changes can be observed within different frequency bands, which are likely to be linked to specific sensory and motor functions. In this review we discuss the latest evidence on pain-induced time-frequency signals and propose that changes in oscillatory activity reflect an essential communication mechanism in the brain that is modulated during pain processing. The importance of synchronization processes for normal and pathological pain processing, such as chronic pain states, is discussed.

  2. Anti-correlated cortical networks of intrinsic connectivity in the rat brain.

    Science.gov (United States)

    Schwarz, Adam J; Gass, Natalia; Sartorius, Alexander; Risterucci, Celine; Spedding, Michael; Schenker, Esther; Meyer-Lindenberg, Andreas; Weber-Fahr, Wolfgang

    2013-01-01

    In humans, resting-state blood oxygen level-dependent (BOLD) signals in the default mode network (DMN) are temporally anti-correlated with those from a lateral cortical network involving the frontal eye fields, secondary somatosensory and posterior insular cortices. Here, we demonstrate the existence of an analogous lateral cortical network in the rat brain, extending laterally from anterior secondary sensorimotor regions to the insular cortex and exhibiting low-frequency BOLD fluctuations that are temporally anti-correlated with a midline "DMN-like" network comprising posterior/anterior cingulate and prefrontal cortices. The primary nexus for this anti-correlation relationship was the anterior secondary motor cortex, close to regions that have been identified with frontal eye fields in the rat brain. The anti-correlation relationship was corroborated after global signal removal, underscoring this finding as a robust property of the functional connectivity signature in the rat brain. These anti-correlated networks demonstrate strong anatomical homology to networks identified in human and monkey connectivity studies, extend the known preserved functional connectivity relationships between rodent and primates, and support the use of resting-state functional magnetic resonance imaging as a translational imaging method between rat models and humans.

  3. Development of global cortical networks in early infancy.

    Science.gov (United States)

    Homae, Fumitaka; Watanabe, Hama; Otobe, Takayuki; Nakano, Tamami; Go, Tohshin; Konishi, Yukuo; Taga, Gentaro

    2010-04-07

    Human cognition and behaviors are subserved by global networks of neural mechanisms. Although the organization of the brain is a subject of interest, the process of development of global cortical networks in early infancy has not yet been clarified. In the present study, we explored developmental changes in these networks from several days to 6 months after birth by examining spontaneous fluctuations in brain activity, using multichannel near-infrared spectroscopy. We set up 94 measurement channels over the frontal, temporal, parietal, and occipital regions of the infant brain. The obtained signals showed complex time-series properties, which were characterized as 1/f fluctuations. To reveal the functional connectivity of the cortical networks, we calculated the temporal correlations of continuous signals between all the pairs of measurement channels. We found that the cortical network organization showed regional dependency and dynamic changes in the course of development. In the temporal, parietal, and occipital regions, connectivity increased between homologous regions in the two hemispheres and within hemispheres; in the frontal regions, it decreased progressively. Frontoposterior connectivity changed to a "U-shaped" pattern within 6 months: it decreases from the neonatal period to the age of 3 months and increases from the age of 3 months to the age of 6 months. We applied cluster analyses to the correlation coefficients and showed that the bilateral organization of the networks begins to emerge during the first 3 months of life. Our findings suggest that these developing networks, which form multiple clusters, are precursors of the functional cerebral architecture.

  4. Subcortical substrates of TMS induced modulation of the cortico-cortical connectivity

    DEFF Research Database (Denmark)

    Groppa, Sergiu; Muthuraman, Muthuraman; Otto, Birte

    2013-01-01

    pulse TMS to the primary motor cortex (M1) of healthy subjects to interfere the cortical oscillatory activity recorded by simultaneous EEG and calculated the cortico-cortical coherence and power in the alpha and beta band. To study the structural substrate of the functional connectivity we performed...... diffusion tensor imaging and fractional anisotropy analysis (FA). To capture the pathways involved we applied probabilistic tractography to reconstruct the entire network. RESULTS: Suprathreshold TMS of M1 induced a consistent enhancement of interhemispheric cortico-cortical alpha band coherence that lasted...... ca. 175 ms. after the pulse has been applied. The changes were confined to the interhemispheric central EEG electrodes (i.e. C3-C4). There were no consistent changes in the beta band. Power analysis revealed a longer lasting increase in the beta band after TMS pulses. A cluster in the contralateral...

  5. Grasping hand verbs: oscillatory beta and alpha correlates of action-word processing.

    Directory of Open Access Journals (Sweden)

    Valentina Niccolai

    Full Text Available The grounded cognition framework proposes that sensorimotor brain areas, which are typically involved in perception and action, also play a role in linguistic processing. We assessed oscillatory modulation during visual presentation of single verbs and localized cortical motor regions by means of isometric contraction of hand and foot muscles. Analogously to oscillatory activation patterns accompanying voluntary movements, we expected a somatotopically distributed suppression of beta and alpha frequencies in the motor cortex during processing of body-related action verbs. Magnetoencephalographic data were collected during presentation of verbs that express actions performed using the hands (H or feet (F. Verbs denoting no bodily movement (N were used as a control. Between 150 and 500 msec after visual word onset, beta rhythms were suppressed in H and F in comparison with N in the left hemisphere. Similarly, alpha oscillations showed left-lateralized power suppression in the H-N contrast, although at a later stage. The cortical oscillatory activity that typically occurs during voluntary movements is therefore found to somatotopically accompany the processing of body-related verbs. The combination of a localizer task with the oscillatory investigation applied to verb reading as in the present study provides further methodological possibilities of tracking language processing in the brain.

  6. Response variability in balanced cortical networks

    DEFF Research Database (Denmark)

    Lerchner, Alexander; Ursta, C.; Hertz, J.

    2006-01-01

    We study the spike statistics of neurons in a network with dynamically balanced excitation and inhibition. Our model, intended to represent a generic cortical column, comprises randomly connected excitatory and inhibitory leaky integrate-and-fire neurons, driven by excitatory input from an external...

  7. The maturation of cortical sleep rhythms and networks over early development.

    Science.gov (United States)

    Chu, C J; Leahy, J; Pathmanathan, J; Kramer, M A; Cash, S S

    2014-07-01

    Although neuronal activity drives all aspects of cortical development, how human brain rhythms spontaneously mature remains an active area of research. We sought to systematically evaluate the emergence of human brain rhythms and functional cortical networks over early development. We examined cortical rhythms and coupling patterns from birth through adolescence in a large cohort of healthy children (n=384) using scalp electroencephalogram (EEG) in the sleep state. We found that the emergence of brain rhythms follows a stereotyped sequence over early development. In general, higher frequencies increase in prominence with striking regional specificity throughout development. The coordination of these rhythmic activities across brain regions follows a general pattern of maturation in which broadly distributed networks of low-frequency oscillations increase in density while networks of high frequency oscillations become sparser and more highly clustered. Our results indicate that a predictable program directs the development of key rhythmic components and physiological brain networks over early development. This work expands our knowledge of normal cortical development. The stereotyped neurophysiological processes observed at the level of rhythms and networks may provide a scaffolding to support critical periods of cognitive growth. Furthermore, these conserved patterns could provide a sensitive biomarker for cortical health across development. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  8. Catalyst Initiation in the Oscillatory Carbonylation Reaction

    Directory of Open Access Journals (Sweden)

    Katarina Novakovic

    2011-01-01

    Full Text Available Palladium(II iodide is used as a catalyst in the phenylacetylene oxidative carbonylation reaction that has demonstrated oscillatory behaviour in both pH and heat of reaction. In an attempt to extract the reaction network responsible for the oscillatory nature of this reaction, the system was divided into smaller parts and they were studied. This paper focuses on understanding the reaction network responsible for the initial reactions of palladium(II iodide within this oscillatory reaction. The species researched include methanol, palladium(II iodide, potassium iodide, and carbon monoxide. Several chemical reactions were considered and applied in a modelling study. The study revealed the significant role played by traces of water contained in the standard HPLC grade methanol used.

  9. Mapping human brain networks with cortico-cortical evoked potentials

    Science.gov (United States)

    Keller, Corey J.; Honey, Christopher J.; Mégevand, Pierre; Entz, Laszlo; Ulbert, Istvan; Mehta, Ashesh D.

    2014-01-01

    The cerebral cortex forms a sheet of neurons organized into a network of interconnected modules that is highly expanded in humans and presumably enables our most refined sensory and cognitive abilities. The links of this network form a fundamental aspect of its organization, and a great deal of research is focusing on understanding how information flows within and between different regions. However, an often-overlooked element of this connectivity regards a causal, hierarchical structure of regions, whereby certain nodes of the cortical network may exert greater influence over the others. While this is difficult to ascertain non-invasively, patients undergoing invasive electrode monitoring for epilepsy provide a unique window into this aspect of cortical organization. In this review, we highlight the potential for cortico-cortical evoked potential (CCEP) mapping to directly measure neuronal propagation across large-scale brain networks with spatio-temporal resolution that is superior to traditional neuroimaging methods. We first introduce effective connectivity and discuss the mechanisms underlying CCEP generation. Next, we highlight how CCEP mapping has begun to provide insight into the neural basis of non-invasive imaging signals. Finally, we present a novel approach to perturbing and measuring brain network function during cognitive processing. The direct measurement of CCEPs in response to electrical stimulation represents a potentially powerful clinical and basic science tool for probing the large-scale networks of the human cerebral cortex. PMID:25180306

  10. Inferring oscillatory modulation in neural spike trains.

    Science.gov (United States)

    Arai, Kensuke; Kass, Robert E

    2017-10-01

    Oscillations are observed at various frequency bands in continuous-valued neural recordings like the electroencephalogram (EEG) and local field potential (LFP) in bulk brain matter, and analysis of spike-field coherence reveals that spiking of single neurons often occurs at certain phases of the global oscillation. Oscillatory modulation has been examined in relation to continuous-valued oscillatory signals, and independently from the spike train alone, but behavior or stimulus triggered firing-rate modulation, spiking sparseness, presence of slow modulation not locked to stimuli and irregular oscillations with large variability in oscillatory periods, present challenges to searching for temporal structures present in the spike train. In order to study oscillatory modulation in real data collected under a variety of experimental conditions, we describe a flexible point-process framework we call the Latent Oscillatory Spike Train (LOST) model to decompose the instantaneous firing rate in biologically and behaviorally relevant factors: spiking refractoriness, event-locked firing rate non-stationarity, and trial-to-trial variability accounted for by baseline offset and a stochastic oscillatory modulation. We also extend the LOST model to accommodate changes in the modulatory structure over the duration of the experiment, and thereby discover trial-to-trial variability in the spike-field coherence of a rat primary motor cortical neuron to the LFP theta rhythm. Because LOST incorporates a latent stochastic auto-regressive term, LOST is able to detect oscillations when the firing rate is low, the modulation is weak, and when the modulating oscillation has a broad spectral peak.

  11. Cortical Thinning and Altered Cortico-Cortical Structural Covariance of the Default Mode Network in Patients with Persistent Insomnia Symptoms.

    Science.gov (United States)

    Suh, Sooyeon; Kim, Hosung; Dang-Vu, Thien Thanh; Joo, Eunyeon; Shin, Chol

    2016-01-01

    Recent studies have suggested that structural abnormalities in insomnia may be linked with alterations in the default-mode network (DMN). This study compared cortical thickness and structural connectivity linked to the DMN in patients with persistent insomnia (PI) and good sleepers (GS). The current study used a clinical subsample from the longitudinal community-based Korean Genome and Epidemiology Study (KoGES). Cortical thickness and structural connectivity linked to the DMN in patients with persistent insomnia symptoms (PIS; n = 57) were compared to good sleepers (GS; n = 40). All participants underwent MRI acquisition. Based on literature review, we selected cortical regions corresponding to the DMN. A seed-based structural covariance analysis measured cortical thickness correlation between each seed region of the DMN and other cortical areas. Association of cortical thickness and covariance with sleep quality and neuropsychological assessments were further assessed. Compared to GS, cortical thinning was found in PIS in the anterior cingulate cortex, precentral cortex, and lateral prefrontal cortex. Decreased structural connectivity between anterior and posterior regions of the DMN was observed in the PIS group. Decreased structural covariance within the DMN was associated with higher PSQI scores. Cortical thinning in the lateral frontal lobe was related to poor performance in executive function in PIS. Disrupted structural covariance network in PIS might reflect malfunctioning of antero-posterior disconnection of the DMN during the wake to sleep transition that is commonly found during normal sleep. The observed structural network alteration may further implicate commonly observed sustained sleep difficulties and cognitive impairment in insomnia. © 2016 Associated Professional Sleep Societies, LLC.

  12. Oscillations in the bistable regime of neuronal networks.

    Science.gov (United States)

    Roxin, Alex; Compte, Albert

    2016-07-01

    Bistability between attracting fixed points in neuronal networks has been hypothesized to underlie persistent activity observed in several cortical areas during working memory tasks. In network models this kind of bistability arises due to strong recurrent excitation, sufficient to generate a state of high activity created in a saddle-node (SN) bifurcation. On the other hand, canonical network models of excitatory and inhibitory neurons (E-I networks) robustly produce oscillatory states via a Hopf (H) bifurcation due to the E-I loop. This mechanism for generating oscillations has been invoked to explain the emergence of brain rhythms in the β to γ bands. Although both bistability and oscillatory activity have been intensively studied in network models, there has not been much focus on the coincidence of the two. Here we show that when oscillations emerge in E-I networks in the bistable regime, their phenomenology can be explained to a large extent by considering coincident SN and H bifurcations, known as a codimension two Takens-Bogdanov bifurcation. In particular, we find that such oscillations are not composed of a stable limit cycle, but rather are due to noise-driven oscillatory fluctuations. Furthermore, oscillations in the bistable regime can, in principle, have arbitrarily low frequency.

  13. Network bursts in cortical neuronal cultures: 'noise - versus pacemaker'- driven neural network simulations

    NARCIS (Netherlands)

    Gritsun, T.; Stegenga, J.; le Feber, Jakob; Rutten, Wim

    2009-01-01

    In this paper we address the issue of spontaneous bursting activity in cortical neuronal cultures and explain what might cause this collective behavior using computer simulations of two different neural network models. While the common approach to acivate a passive network is done by introducing

  14. Bidirectional Frontoparietal Oscillatory Systems Support Working Memory.

    Science.gov (United States)

    Johnson, Elizabeth L; Dewar, Callum D; Solbakk, Anne-Kristin; Endestad, Tor; Meling, Torstein R; Knight, Robert T

    2017-06-19

    The ability to represent and select information in working memory provides the neurobiological infrastructure for human cognition. For 80 years, dominant views of working memory have focused on the key role of prefrontal cortex (PFC) [1-8]. However, more recent work has implicated posterior cortical regions [9-12], suggesting that PFC engagement during working memory is dependent on the degree of executive demand. We provide evidence from neurological patients with discrete PFC damage that challenges the dominant models attributing working memory to PFC-dependent systems. We show that neural oscillations, which provide a mechanism for PFC to communicate with posterior cortical regions [13], independently subserve communications both to and from PFC-uncovering parallel oscillatory mechanisms for working memory. Fourteen PFC patients and 20 healthy, age-matched controls performed a working memory task where they encoded, maintained, and actively processed information about pairs of common shapes. In controls, the electroencephalogram (EEG) exhibited oscillatory activity in the low-theta range over PFC and directional connectivity from PFC to parieto-occipital regions commensurate with executive processing demands. Concurrent alpha-beta oscillations were observed over parieto-occipital regions, with directional connectivity from parieto-occipital regions to PFC, regardless of processing demands. Accuracy, PFC low-theta activity, and PFC → parieto-occipital connectivity were attenuated in patients, revealing a PFC-independent, alpha-beta system. The PFC patients still demonstrated task proficiency, which indicates that the posterior alpha-beta system provides sufficient resources for working memory. Taken together, our findings reveal neurologically dissociable PFC and parieto-occipital systems and suggest that parallel, bidirectional oscillatory systems form the basis of working memory. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Computational study of NMDA conductance and cortical oscillations in schizophrenia

    Directory of Open Access Journals (Sweden)

    Kubra eKomek Kirli

    2014-10-01

    Full Text Available N-methyl-D-aspartate (NMDA receptor hypofunction has been implicated in the pathophysiology of schizophrenia. The illness is also characterized by gamma oscillatory disturbances, which can be evaluated with precise frequency specificity employing auditory cortical entrainment paradigms. This computational study investigates how synaptic NMDA hypofunction may give rise to network level oscillatory deficits as indexed by entrainment paradigms. We developed a computational model of a local cortical circuit with pyramidal cells and fast-spiking interneurons (FSI, incorporating NMDA, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic (AMPA, and γ-aminobutyric acid (GABA synaptic kinetics. We evaluated the effects of varying NMDA conductance on FSIs and pyramidal cells, as well as AMPA to NMDA ratio. We also examined the differential effects across a broad range of entrainment frequencies as a function of NMDA conductance. Varying NMDA conductance onto FSIs revealed an inverted-U relation with network gamma whereas NMDA conductance onto the pyramidal cells had a more monotonic relationship. Varying NMDA vs. AMPA conductance onto FSIs demonstrated the necessity of AMPA in the generation of gamma while NMDA receptors had a modulatory role. Finally, reducing NMDA conductance onto FSI and varying the stimulus input frequency reproduced the specific reductions in gamma range (~40 Hz as observed in schizophrenia studies. Our computational study showed that reductions in NMDA conductance onto FSIs can reproduce similar disturbances in entrainment to periodic stimuli within the gamma range as reported in schizophrenia studies. These findings provide a mechanistic account of how specific cellular level disturbances can give rise to circuitry level pathophysiologic disturbance in schizophrenia.

  16. [Schizophrenia and cortical GABA neurotransmission].

    Science.gov (United States)

    Hashimoto, Takanori; Matsubara, Takuro; Lewis, David A

    2010-01-01

    -synaptic GABA-A receptors. Our recent analyses demonstrated that this pattern exists across diverse cortical areas including the prefrontal, anterior cingulate, primary motor, and primary visual cortices. GABA neurotransmission by PV-containing and SST-containing neurons is important for the generation of cortical oscillatory activities in the gamma (30-100 Hz) and theta (4-7 Hz) bands, respectively. These oscillatory activities have been proposed to play critical roles in regulating the efficiency of information transfer between neurons and neuronal networks in the cortex. Altered cortical GABA neurotransmission appears to contribute to disturbances in diverse functions through affecting the generation of cortical oscillations in schizophrenia.

  17. Communication through resonance in spiking neuronal networks.

    Science.gov (United States)

    Hahn, Gerald; Bujan, Alejandro F; Frégnac, Yves; Aertsen, Ad; Kumar, Arvind

    2014-08-01

    The cortex processes stimuli through a distributed network of specialized brain areas. This processing requires mechanisms that can route neuronal activity across weakly connected cortical regions. Routing models proposed thus far are either limited to propagation of spiking activity across strongly connected networks or require distinct mechanisms that create local oscillations and establish their coherence between distant cortical areas. Here, we propose a novel mechanism which explains how synchronous spiking activity propagates across weakly connected brain areas supported by oscillations. In our model, oscillatory activity unleashes network resonance that amplifies feeble synchronous signals and promotes their propagation along weak connections ("communication through resonance"). The emergence of coherent oscillations is a natural consequence of synchronous activity propagation and therefore the assumption of different mechanisms that create oscillations and provide coherence is not necessary. Moreover, the phase-locking of oscillations is a side effect of communication rather than its requirement. Finally, we show how the state of ongoing activity could affect the communication through resonance and propose that modulations of the ongoing activity state could influence information processing in distributed cortical networks.

  18. Cortical morphometry in frontoparietal and default mode networks in math-gifted adolescents.

    Science.gov (United States)

    Navas-Sánchez, Francisco J; Carmona, Susana; Alemán-Gómez, Yasser; Sánchez-González, Javier; Guzmán-de-Villoria, Juan; Franco, Carolina; Robles, Olalla; Arango, Celso; Desco, Manuel

    2016-05-01

    Math-gifted subjects are characterized by above-age performance in intelligence tests, exceptional creativity, and high task commitment. Neuroimaging studies reveal enhanced functional brain organization and white matter microstructure in the frontoparietal executive network of math-gifted individuals. However, the cortical morphometry of these subjects remains largely unknown. The main goal of this study was to compare the cortical morphometry of math-gifted adolescents with that of an age- and IQ-matched control group. We used surface-based methods to perform a vertex-wise analysis of cortical thickness and surface area. Our results show that math-gifted adolescents present a thinner cortex and a larger surface area in key regions of the frontoparietal and default mode networks, which are involved in executive processing and creative thinking, respectively. The combination of reduced cortical thickness and larger surface area suggests above-age neural maturation of these networks in math-gifted individuals. Hum Brain Mapp 37:1893-1902, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. Cortical network during deception detection by functional neuroimaging

    International Nuclear Information System (INIS)

    Saito, Keiichi

    2008-01-01

    We examined the coherence of cortical network during deception detection. First, we performed combined EEG-MRI experiments during the Guilty Knowledge Test (GKT) using number cards which has been used to model deception and 5 right-handed healthy participants performed the experiment. The superior frontal gyrus, the anterior cingulate cortex and the inferior parietal lobule were activated and the P 300 event-related brain potential (300-450 ms) was detected at only 'Lie' card. Secondary, we measured magnetoencephalography (MEG) data during GKT and the other 5 right-handed healthy subjects participated in the next experiment. The coherence between the superior frontal gyrus and the inferior parietal lobule showed significant differences between 'Lie' card and 'truth' cards during P 300 emerging. This results indicates that the coherence of cortical network is useful for GKT. (author)

  20. Longitudinal development of cortical thickness, folding, and fiber density networks in the first 2 years of life.

    Science.gov (United States)

    Nie, Jingxin; Li, Gang; Wang, Li; Shi, Feng; Lin, Weili; Gilmore, John H; Shen, Dinggang

    2014-08-01

    Quantitatively characterizing the development of cortical anatomical networks during the early stage of life plays an important role in revealing the relationship between cortical structural connection and high-level functional development. The development of correlation networks of cortical-thickness, cortical folding, and fiber-density is systematically analyzed in this article to study the relationship between different anatomical properties during the first 2 years of life. Specifically, longitudinal MR images of 73 healthy subjects from birth to 2 year old are used. For each subject at each time point, its measures of cortical thickness, cortical folding, and fiber density are projected to its cortical surface that has been partitioned into 78 cortical regions. Then, the correlation matrices for cortical thickness, cortical folding, and fiber density at each time point can be constructed, respectively, by computing the inter-regional Pearson correlation coefficient (of any pair of ROIs) across all 73 subjects. Finally, the presence/absence pattern (i.e., binary pattern) of the connection network is constructed from each inter-regional correlation matrix, and its statistical and anatomical properties are adopted to analyze the longitudinal development of anatomical networks. The results show that the development of anatomical network could be characterized differently by using different anatomical properties (i.e., using cortical thickness, cortical folding, or fiber density). Copyright © 2013 Wiley Periodicals, Inc.

  1. Altered brain structural networks in attention deficit/hyperactivity disorder children revealed by cortical thickness.

    Science.gov (United States)

    Liu, Tian; Chen, Yanni; Li, Chenxi; Li, Youjun; Wang, Jue

    2017-07-04

    This study investigated the cortical thickness and topological features of human brain anatomical networks related to attention deficit/hyperactivity disorder. Data were collected from 40 attention deficit/hyperactivity disorder children and 40 normal control children. Interregional correlation matrices were established by calculating the correlations of cortical thickness between all pairs of cortical regions (68 regions) of the whole brain. Further thresholds were applied to create binary matrices to construct a series of undirected and unweighted graphs, and global, local, and nodal efficiencies were computed as a function of the network cost. These experimental results revealed abnormal cortical thickness and correlations in attention deficit/hyperactivity disorder, and showed that the brain structural networks of attention deficit/hyperactivity disorder subjects had inefficient small-world topological features. Furthermore, their topological properties were altered abnormally. In particular, decreased global efficiency combined with increased local efficiency in attention deficit/hyperactivity disorder children led to a disorder-related shift of the network topological structure toward regular networks. In addition, nodal efficiency, cortical thickness, and correlation analyses revealed that several brain regions were altered in attention deficit/hyperactivity disorder patients. These findings are in accordance with a hypothesis of dysfunctional integration and segregation of the brain in patients with attention deficit/hyperactivity disorder and provide further evidence of brain dysfunction in attention deficit/hyperactivity disorder patients by observing cortical thickness on magnetic resonance imaging.

  2. Understanding Epileptiform After-Discharges as Rhythmic Oscillatory Transients.

    Science.gov (United States)

    Baier, Gerold; Taylor, Peter N; Wang, Yujiang

    2017-01-01

    Electro-cortical activity in patients with epilepsy may show abnormal rhythmic transients in response to stimulation. Even when using the same stimulation parameters in the same patient, wide variability in the duration of transient response has been reported. These transients have long been considered important for the mapping of the excitability levels in the epileptic brain but their dynamic mechanism is still not well understood. To investigate the occurrence of abnormal transients dynamically, we use a thalamo-cortical neural population model of epileptic spike-wave activity and study the interaction between slow and fast subsystems. In a reduced version of the thalamo-cortical model, slow wave oscillations arise from a fold of cycles (FoC) bifurcation. This marks the onset of a region of bistability between a high amplitude oscillatory rhythm and the background state. In vicinity of the bistability in parameter space, the model has excitable dynamics, showing prolonged rhythmic transients in response to suprathreshold pulse stimulation. We analyse the state space geometry of the bistable and excitable states, and find that the rhythmic transient arises when the impending FoC bifurcation deforms the state space and creates an area of locally reduced attraction to the fixed point. This area essentially allows trajectories to dwell there before escaping to the stable steady state, thus creating rhythmic transients. In the full thalamo-cortical model, we find a similar FoC bifurcation structure. Based on the analysis, we propose an explanation of why stimulation induced epileptiform activity may vary between trials, and predict how the variability could be related to ongoing oscillatory background activity. We compare our dynamic mechanism with other mechanisms (such as a slow parameter change) to generate excitable transients, and we discuss the proposed excitability mechanism in the context of stimulation responses in the epileptic cortex.

  3. The maturation of cortical sleep rhythms and networks over early development

    OpenAIRE

    Chu, Catherine Jean; Leahy, J.; Pathmanathan, Jay Sriram; Kramer, M.A.; Cash, Sydney S.

    2014-01-01

    Objective: Although neuronal activity drives all aspects of cortical development, how human brain rhythms spontaneously mature remains an active area of research. We sought to systematically evaluate the emergence of human brain rhythms and functional cortical networks over early development. Methods: We examined cortical rhythms and coupling patterns from birth through adolescence in a large cohort of healthy children (n=384) using scalp electroencephalogram (EEG) in the sleep state. ...

  4. Qualia could arise from information processing in local cortical networks.

    Science.gov (United States)

    Orpwood, Roger

    2013-01-01

    Re-entrant feedback, either within sensory cortex or arising from prefrontal areas, has been strongly linked to the emergence of consciousness, both in theoretical and experimental work. This idea, together with evidence for local micro-consciousness, suggests the generation of qualia could in some way result from local network activity under re-entrant activation. This paper explores the possibility by examining the processing of information by local cortical networks. It highlights the difference between the information structure (how the information is physically embodied), and the information message (what the information is about). It focuses on the network's ability to recognize information structures amongst its inputs under conditions of extensive local feedback, and to then assign information messages to those structures. It is shown that if the re-entrant feedback enables the network to achieve an attractor state, then the message assigned in any given pass of information through the network is a representation of the message assigned in the previous pass-through of information. Based on this ability the paper argues that as information is repeatedly cycled through the network, the information message that is assigned evolves from a recognition of what the input structure is, to what it is like, to how it appears, to how it seems. It could enable individual networks to be the site of qualia generation. The paper goes on to show networks in cortical layers 2/3 and 5a have the connectivity required for the behavior proposed, and reviews some evidence for a link between such local cortical cyclic activity and conscious percepts. It concludes with some predictions based on the theory discussed.

  5. The role of propriospinal neuronal network in transmitting the alternating muscular activities of flexor and extensor in parkinsonian tremor.

    Science.gov (United States)

    Hao, M; He, X; Lan, N

    2012-01-01

    It has been shown that normal cyclic movement of human arm and resting limb tremor in Parkinson's disease (PD) are associated with the oscillatory neuronal activities in different cerebral networks, which are transmitted to the antagonistic muscles via the same spinal pathway. There are mono-synaptic and multi-synaptic corticospinal pathways for conveying motor commands. This study investigates the plausible role of propriospinal neuronal (PN) network in the C3-C4 levels in multi-synaptic transmission of cortical commands for oscillatory movements. A PN network model is constructed based on known neurophysiological connections, and is hypothesized to achieve the conversion of cortical oscillations into alternating antagonistic muscle bursts. Simulations performed with a virtual arm (VA) model indicate that without the PN network, the alternating bursts of antagonistic muscle EMG could not be reliably generated, whereas with the PN network, the alternating pattern of bursts were naturally displayed in the three pairs of antagonist muscles. Thus, it is suggested that oscillations in the primary motor cortex (M1) of single and double tremor frequencies are processed at the PN network to compute the alternating burst pattern in the flexor and extensor muscles.

  6. Quantifying Neural Oscillatory Synchronization: A Comparison between Spectral Coherence and Phase-Locking Value Approaches

    Science.gov (United States)

    Lowet, Eric; Roberts, Mark J.; Bonizzi, Pietro; Karel, Joël; De Weerd, Peter

    2016-01-01

    Synchronization or phase-locking between oscillating neuronal groups is considered to be important for coordination of information among cortical networks. Spectral coherence is a commonly used approach to quantify phase locking between neural signals. We systematically explored the validity of spectral coherence measures for quantifying synchronization among neural oscillators. To that aim, we simulated coupled oscillatory signals that exhibited synchronization dynamics using an abstract phase-oscillator model as well as interacting gamma-generating spiking neural networks. We found that, within a large parameter range, the spectral coherence measure deviated substantially from the expected phase-locking. Moreover, spectral coherence did not converge to the expected value with increasing signal-to-noise ratio. We found that spectral coherence particularly failed when oscillators were in the partially (intermittent) synchronized state, which we expect to be the most likely state for neural synchronization. The failure was due to the fast frequency and amplitude changes induced by synchronization forces. We then investigated whether spectral coherence reflected the information flow among networks measured by transfer entropy (TE) of spike trains. We found that spectral coherence failed to robustly reflect changes in synchrony-mediated information flow between neural networks in many instances. As an alternative approach we explored a phase-locking value (PLV) method based on the reconstruction of the instantaneous phase. As one approach for reconstructing instantaneous phase, we used the Hilbert Transform (HT) preceded by Singular Spectrum Decomposition (SSD) of the signal. PLV estimates have broad applicability as they do not rely on stationarity, and, unlike spectral coherence, they enable more accurate estimations of oscillatory synchronization across a wide range of different synchronization regimes, and better tracking of synchronization-mediated information

  7. Quantifying Neural Oscillatory Synchronization: A Comparison between Spectral Coherence and Phase-Locking Value Approaches.

    Directory of Open Access Journals (Sweden)

    Eric Lowet

    Full Text Available Synchronization or phase-locking between oscillating neuronal groups is considered to be important for coordination of information among cortical networks. Spectral coherence is a commonly used approach to quantify phase locking between neural signals. We systematically explored the validity of spectral coherence measures for quantifying synchronization among neural oscillators. To that aim, we simulated coupled oscillatory signals that exhibited synchronization dynamics using an abstract phase-oscillator model as well as interacting gamma-generating spiking neural networks. We found that, within a large parameter range, the spectral coherence measure deviated substantially from the expected phase-locking. Moreover, spectral coherence did not converge to the expected value with increasing signal-to-noise ratio. We found that spectral coherence particularly failed when oscillators were in the partially (intermittent synchronized state, which we expect to be the most likely state for neural synchronization. The failure was due to the fast frequency and amplitude changes induced by synchronization forces. We then investigated whether spectral coherence reflected the information flow among networks measured by transfer entropy (TE of spike trains. We found that spectral coherence failed to robustly reflect changes in synchrony-mediated information flow between neural networks in many instances. As an alternative approach we explored a phase-locking value (PLV method based on the reconstruction of the instantaneous phase. As one approach for reconstructing instantaneous phase, we used the Hilbert Transform (HT preceded by Singular Spectrum Decomposition (SSD of the signal. PLV estimates have broad applicability as they do not rely on stationarity, and, unlike spectral coherence, they enable more accurate estimations of oscillatory synchronization across a wide range of different synchronization regimes, and better tracking of synchronization

  8. Mean field methods for cortical network dynamics

    DEFF Research Database (Denmark)

    Hertz, J.; Lerchner, Alexander; Ahmadi, M.

    2004-01-01

    We review the use of mean field theory for describing the dynamics of dense, randomly connected cortical circuits. For a simple network of excitatory and inhibitory leaky integrate- and-fire neurons, we can show how the firing irregularity, as measured by the Fano factor, increases...... with the strength of the synapses in the network and with the value to which the membrane potential is reset after a spike. Generalizing the model to include conductance-based synapses gives insight into the connection between the firing statistics and the high- conductance state observed experimentally in visual...

  9. Oscillatory Hierarchy Controlling Cortical Excitability and Stimulus Integration

    Science.gov (United States)

    Shah, A. S.; Lakatos, P.; McGinnis, T.; O'Connell, N.; Mills, A.; Knuth, K. H.; Chen, C.; Karmos, G.; Schroeder, C. E.

    2004-01-01

    Cortical gamma band oscillations have been recorded in sensory cortices of cats and monkeys, and are thought to aid in perceptual binding. Gamma activity has also been recorded in the rat hippocampus and entorhinal cortex, where it has been shown, that field gamma power is modulated at theta frequency. Since the power of gamma activity in the sensory cortices is not constant (gamma-bursts). we decided to examine the relationship between gamma power and the phase of low frequency oscillation in the auditory cortex of the awake macaque. Macaque monkeys were surgically prepared for chronic awake electrophysiological recording. During the time of the experiments. linear array multielectrodes were inserted in area AI to obtain laminar current source density (CSD) and multiunit activity profiles. Instantaneous theta and gamma power and phase was extracted by applying the Morlet wavelet transformation to the CSD. Gamma power was averaged for every 1 degree of low frequency oscillations to calculate power-phase relation. Both gamma and theta-delta power are largest in the supragranular layers. Power modulation of gamma activity is phase locked to spontaneous, as well as stimulus-related local theta and delta field oscillations. Our analysis also revealed that the power of theta oscillations is always largest at a certain phase of delta oscillation. Auditory stimuli produce evoked responses in the theta band (Le., there is pre- to post-stimulus addition of theta power), but there is also indication that stimuli may cause partial phase re-setting of spontaneous delta (and thus also theta and gamma) oscillations. We also show that spontaneous oscillations might play a role in the processing of incoming sensory signals by 'preparing' the cortex.

  10. Spatially Nonlinear Interdependence of Alpha-Oscillatory Neural Networks under Chan Meditation

    Directory of Open Access Journals (Sweden)

    Pei-Chen Lo

    2013-01-01

    Full Text Available This paper reports the results of our investigation of the effects of Chan meditation on brain electrophysiological behaviors from the viewpoint of spatially nonlinear interdependence among regional neural networks. Particular emphasis is laid on the alpha-dominated EEG (electroencephalograph. Continuous-time wavelet transform was adopted to detect the epochs containing substantial alpha activities. Nonlinear interdependence quantified by similarity index S(X∣Y, the influence of source signal Y on sink signal X, was applied to the nonlinear dynamical model in phase space reconstructed from multichannel EEG. Experimental group involved ten experienced Chan-Meditation practitioners, while control group included ten healthy subjects within the same age range, yet, without any meditation experience. Nonlinear interdependence among various cortical regions was explored for five local neural-network regions, frontal, posterior, right-temporal, left-temporal, and central regions. In the experimental group, the inter-regional interaction was evaluated for the brain dynamics under three different stages, at rest (stage R, pre-meditation background recording, in Chan meditation (stage M, and the unique Chakra-focusing practice (stage C. Experimental group exhibits stronger interactions among various local neural networks at stages M and C compared with those at stage R. The intergroup comparison demonstrates that Chan-meditation brain possesses better cortical inter-regional interactions than the resting brain of control group.

  11. Nanoscaffold's stiffness affects primary cortical cell network formation

    NARCIS (Netherlands)

    Xie, Sijia; Schurink, Bart; Wolbers, F.; Lüttge, Regina; Hassink, Gerrit Cornelis

    2014-01-01

    Networks of neurons cultured on-chip can provide insights into both normal and disease-state brain function. The ability to guide neuronal growth in specific, artificially designed patterns allows us to study how brain function follows form. Primary cortical cells cultured on nanograting scaffolds,

  12. Forced phase-locked states and information retrieval in a two-layer network of oscillatory neurons with directional connectivity

    International Nuclear Information System (INIS)

    Kazantsev, Victor; Pimashkin, Alexey

    2007-01-01

    We propose two-layer architecture of associative memory oscillatory network with directional interlayer connectivity. The network is capable to store information in the form of phase-locked (in-phase and antiphase) oscillatory patterns. The first (input) layer takes an input pattern to be recognized and their units are unidirectionally connected with all units of the second (control) layer. The connection strengths are weighted using the Hebbian rule. The output (retrieved) patterns appear as forced-phase locked states of the control layer. The conditions are found and analytically expressed for pattern retrieval in response on incoming stimulus. It is shown that the system is capable to recover patterns with a certain level of distortions or noises in their profiles. The architecture is implemented with the Kuramoto phase model and using synaptically coupled neural oscillators with spikes. It is found that the spiking model is capable to retrieve patterns using the spiking phase that translates memorized patterns into the spiking phase shifts at different time scales

  13. Connectivities and synchronous firing in cortical neuronal networks

    International Nuclear Information System (INIS)

    Jia, L.C.; Sano, M.; Lai, P.-Y.; Chan, C.K.

    2004-01-01

    Network connectivities (k-bar) of cortical neural cultures are studied by synchronized firing and determined from measured correlations between fluorescence intensities of firing neurons. The bursting frequency (f) during synchronized firing of the networks is found to be an increasing function of k-bar. With f taken to be proportional to k-bar, a simple random model with a k-bar dependent connection probability p(k-bar) has been constructed to explain our experimental findings successfully

  14. Longitudinal Development of Cortical Thickness, Folding, and Fiber Density Networks in the First 2 Years of Life

    OpenAIRE

    Nie, Jingxin; Li, Gang; Wang, Li; Shi, Feng; Lin, Weili; Gilmore, John H.; Shen, Dinggang

    2013-01-01

    Quantitatively characterizing the development of cortical anatomical networks during the early stage of life plays an important role in revealing the relationship between cortical structural connection and high-level functional development. The development of correlation networks of cortical-thickness, cortical folding, and fiber-density is systematically analyzed in this article to study the relationship between different anatomical properties during the first 2 years of life. Specifically, ...

  15. Repetitive transcranial magnetic stimulation induces oscillatory power changes in chronic tinnitus

    Directory of Open Access Journals (Sweden)

    Martin eSchecklmann

    2015-10-01

    Full Text Available Chronic tinnitus is associated with neuroplastic changes in auditory and non-auditory cortical areas. About ten years ago, repetitive transcranial magnetic stimulation (rTMS of auditory and prefrontal cortex was introduced as potential treatment for tinnitus. The resulting changes in tinnitus loudness are interpreted in the context of rTMS induced activity changes (neuroplasticity. Here, we investigate the effect of single rTMS sessions on oscillatory power to probe the capacity of rTMS to interfere with tinnitus-specific cortical plasticity. We measured 20 patients with bilateral chronic tinnitus and 20 healthy controls comparable for age, sex, handedness, and hearing level with a 63-channel EEG system. Educational level, intelligence, depressivity and hyperacusis were controlled for by analysis of covariance. Different rTMS protocols were tested: Left and right temporal and left and right prefrontal cortices were each stimulated with 200 pulses at 1Hz and with an intensity of 60% stimulator output. Stimulation of central parietal cortex with 6-fold reduced intensity (inverted passive-cooled coil served as sham condition. Before and after each rTMS protocol five minutes of resting state EEG were recorded. The order of rTMS protocols was randomized over two sessions with one week interval in between.Analyses on electrode level showed that people with and without tinnitus differed in their response to left temporal and right frontal stimulation. In tinnitus patients left temporal rTMS decreased frontal theta and delta and increased beta2 power, whereas right frontal rTMS decreased right temporal beta3 and gamma power. No changes or increases were observed in the control group. Only non-systematic changes in tinnitus loudness were induced by single sessions of rTMS.This is the first study to show tinnitus-related alterations of neuroplasticity that were specific to stimulation site and oscillatory frequency. The observed effects can be interpreted

  16. Repetitive transcranial magnetic stimulation induces oscillatory power changes in chronic tinnitus

    Science.gov (United States)

    Schecklmann, Martin; Lehner, Astrid; Gollmitzer, Judith; Schmidt, Eldrid; Schlee, Winfried; Langguth, Berthold

    2015-01-01

    Chronic tinnitus is associated with neuroplastic changes in auditory and non-auditory cortical areas. About 10 years ago, repetitive transcranial magnetic stimulation (rTMS) of auditory and prefrontal cortex was introduced as potential treatment for tinnitus. The resulting changes in tinnitus loudness are interpreted in the context of rTMS induced activity changes (neuroplasticity). Here, we investigate the effect of single rTMS sessions on oscillatory power to probe the capacity of rTMS to interfere with tinnitus-specific cortical plasticity. We measured 20 patients with bilateral chronic tinnitus and 20 healthy controls comparable for age, sex, handedness, and hearing level with a 63-channel electroencephalography (EEG) system. Educational level, intelligence, depressivity and hyperacusis were controlled for by analysis of covariance. Different rTMS protocols were tested: Left and right temporal and left and right prefrontal cortices were each stimulated with 200 pulses at 1 Hz and with an intensity of 60% stimulator output. Stimulation of central parietal cortex with 6-fold reduced intensity (inverted passive-cooled coil) served as sham condition. Before and after each rTMS protocol 5 min of resting state EEG were recorded. The order of rTMS protocols was randomized over two sessions with 1 week interval in between. Analyses on electrode level showed that people with and without tinnitus differed in their response to left temporal and right frontal stimulation. In tinnitus patients left temporal rTMS decreased frontal theta and delta and increased beta2 power, whereas right frontal rTMS decreased right temporal beta3 and gamma power. No changes or increases were observed in the control group. Only non-systematic changes in tinnitus loudness were induced by single sessions of rTMS. This is the first study to show tinnitus-related alterations of neuroplasticity that were specific to stimulation site and oscillatory frequency. The observed effects can be

  17. Corticomuscular transmission of tremor signals by propriospinal neurons in Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Manzhao Hao

    Full Text Available Cortical oscillatory signals of single and double tremor frequencies act together to cause tremor in the peripheral limbs of patients with Parkinson's disease (PD. But the corticospinal pathway that transmits the tremor signals has not been clarified, and how alternating bursts of antagonistic muscle activations are generated from the cortical oscillatory signals is not well understood. This paper investigates the plausible role of propriospinal neurons (PN in C3-C4 in transmitting the cortical oscillatory signals to peripheral muscles. Kinematics data and surface electromyogram (EMG of tremor in forearm were collected from PD patients. A PN network model was constructed based on known neurophysiological connections of PN. The cortical efferent signal of double tremor frequencies were integrated at the PN network, whose outputs drove the muscles of a virtual arm (VA model to simulate tremor behaviors. The cortical efferent signal of single tremor frequency actuated muscle spindles. By comparing tremor data of PD patients and the results of model simulation, we examined two hypotheses regarding the corticospinal transmission of oscillatory signals in Parkinsonian tremor. Hypothesis I stated that the oscillatory cortical signals were transmitted via the mono-synaptic corticospinal pathways bypassing the PN network. The alternative hypothesis II stated that they were transmitted by way of PN multi-synaptic corticospinal pathway. Simulations indicated that without the PN network, the alternating burst patterns of antagonistic muscle EMGs could not be reliably generated, rejecting the first hypothesis. However, with the PN network, the alternating burst patterns of antagonist EMGs were naturally reproduced under all conditions of cortical oscillations. The results suggest that cortical commands of single and double tremor frequencies are further processed at PN to compute the alternating burst patterns in flexor and extensor muscles, and the

  18. Corticomuscular transmission of tremor signals by propriospinal neurons in Parkinson's disease.

    Science.gov (United States)

    Hao, Manzhao; He, Xin; Xiao, Qin; Alstermark, Bror; Lan, Ning

    2013-01-01

    Cortical oscillatory signals of single and double tremor frequencies act together to cause tremor in the peripheral limbs of patients with Parkinson's disease (PD). But the corticospinal pathway that transmits the tremor signals has not been clarified, and how alternating bursts of antagonistic muscle activations are generated from the cortical oscillatory signals is not well understood. This paper investigates the plausible role of propriospinal neurons (PN) in C3-C4 in transmitting the cortical oscillatory signals to peripheral muscles. Kinematics data and surface electromyogram (EMG) of tremor in forearm were collected from PD patients. A PN network model was constructed based on known neurophysiological connections of PN. The cortical efferent signal of double tremor frequencies were integrated at the PN network, whose outputs drove the muscles of a virtual arm (VA) model to simulate tremor behaviors. The cortical efferent signal of single tremor frequency actuated muscle spindles. By comparing tremor data of PD patients and the results of model simulation, we examined two hypotheses regarding the corticospinal transmission of oscillatory signals in Parkinsonian tremor. Hypothesis I stated that the oscillatory cortical signals were transmitted via the mono-synaptic corticospinal pathways bypassing the PN network. The alternative hypothesis II stated that they were transmitted by way of PN multi-synaptic corticospinal pathway. Simulations indicated that without the PN network, the alternating burst patterns of antagonistic muscle EMGs could not be reliably generated, rejecting the first hypothesis. However, with the PN network, the alternating burst patterns of antagonist EMGs were naturally reproduced under all conditions of cortical oscillations. The results suggest that cortical commands of single and double tremor frequencies are further processed at PN to compute the alternating burst patterns in flexor and extensor muscles, and the neuromuscular dynamics

  19. Altered cortical hubs in functional brain networks in amyotrophic lateral sclerosis.

    Science.gov (United States)

    Ma, Xujing; Zhang, Jiuquan; Zhang, Youxue; Chen, Heng; Li, Rong; Wang, Jian; Chen, Huafu

    2015-11-01

    Cortical hubs are highly connected nodes in functional brain networks that play vital roles in the efficient transfer of information across brain regions. Although altered functional connectivity has been found in amyotrophic lateral sclerosis (ALS), the changing pattern in functional network hubs in ALS remains unknown. In this study, we applied a voxel-wise method to investigate the changing pattern of cortical hubs in ALS. Through resting-state fMRI, we constructed whole-brain voxel-wise functional networks by measuring the temporal correlations of each pair of brain voxels and identified hubs using the graph theory method. Specifically, a functional connectivity strength (FCS) map was derived from the data on 20 patients with ALS and 20 healthy controls. The brain regions with high FCS values were regarded as functional network hubs. Functional hubs were found mainly in the bilateral precuneus, parietal cortex, medial prefrontal cortex, and in several visual regions and temporal areas in both groups. Within the hub regions, the ALS patients exhibited higher FCS in the prefrontal cortex compared with the healthy controls. The FCS value in the significantly abnormal hub regions was correlated with clinical variables. Results indicated the presence of altered cortical hubs in the ALS patients and could therefore shed light on the pathophysiology mechanisms underlying ALS.

  20. High-conductance states in a mean-field cortical network model

    CERN Document Server

    Lerchner, A; Hertz, J

    2004-01-01

    Measured responses from visual cortical neurons show that spike times tend to be correlated rather than exactly Poisson distributed. Fano factors vary and are usually greater than 1 due to the tendency of spikes being clustered into bursts. We show that this behavior emerges naturally in a balanced cortical network model with random connectivity and conductance-based synapses. We employ mean field theory with correctly colored noise to describe temporal correlations in the neuronal activity. Our results illuminate the connection between two independent experimental findings: high conductance states of cortical neurons in their natural environment, and variable non-Poissonian spike statistics with Fano factors greater than 1.

  1. Subthalamic stimulation modulates cortical motor network activity and synchronization in Parkinson’s disease

    Science.gov (United States)

    Klotz, Rosa; Govindan, Rathinaswamy B.; Scholten, Marlieke; Naros, Georgios; Ramos-Murguialday, Ander; Bunjes, Friedemann; Meisner, Christoph; Plewnia, Christian; Krüger, Rejko

    2015-01-01

    Dynamic modulations of large-scale network activity and synchronization are inherent to a broad spectrum of cognitive processes and are disturbed in neuropsychiatric conditions including Parkinson’s disease. Here, we set out to address the motor network activity and synchronization in Parkinson’s disease and its modulation with subthalamic stimulation. To this end, 20 patients with idiopathic Parkinson’s disease with subthalamic nucleus stimulation were analysed on externally cued right hand finger movements with 1.5-s interstimulus interval. Simultaneous recordings were obtained from electromyography on antagonistic muscles (right flexor digitorum and extensor digitorum) together with 64-channel electroencephalography. Time-frequency event-related spectral perturbations were assessed to determine cortical and muscular activity. Next, cross-spectra in the time-frequency domain were analysed to explore the cortico-cortical synchronization. The time-frequency modulations enabled us to select a time-frequency range relevant for motor processing. On these time-frequency windows, we developed an extension of the phase synchronization index to quantify the global cortico-cortical synchronization and to obtain topographic differentiations of distinct electrode sites with respect to their contributions to the global phase synchronization index. The spectral measures were used to predict clinical and reaction time outcome using regression analysis. We found that movement-related desynchronization of cortical activity in the upper alpha and beta range was significantly facilitated with ‘stimulation on’ compared to ‘stimulation off’ on electrodes over the bilateral parietal, sensorimotor, premotor, supplementary-motor, and prefrontal areas, including the bilateral inferior prefrontal areas. These spectral modulations enabled us to predict both clinical and reaction time improvement from subthalamic stimulation. With ‘stimulation on’, interhemispheric cortico-cortical

  2. High-conductance states in a mean-field cortical network model

    DEFF Research Database (Denmark)

    Lerchner, Alexander; Ahmadi, Mandana; Hertz, John

    2004-01-01

    cortical network model with random connectivity and conductance-based synapses. We employ mean-field theory with correctly colored noise to describe temporal correlations in the neuronal activity. Our results illuminate the connection between two independent experimental findings: high-conductance states......Measured responses from visual cortical neurons show that spike times tend to be correlated rather than exactly Poisson distributed. Fano factors vary and are usually greater than 1, indicating a tendency toward spikes being clustered. We show that this behavior emerges naturally in a balanced...... of cortical neurons in their natural environment, and variable non-Poissonian spike statistics with Fano factors greater than 1. (C) 2004 Elsevier B.V. All rights reserved....

  3. Modulation of task-related cortical connectivity in the acute and subacute phase after stroke

    DEFF Research Database (Denmark)

    Larsen, Lisbeth H.; Zibrandtsen, Ivan C.; Wienecke, Troels

    2018-01-01

    The functional relevance of cortical reorganization post-stroke is still not well understood. In this study, we investigated task-specific modulation of cortical connectivity between neural oscillations in key motor regions during the early phase after stroke. EEG and EMG recordings were examined...... from 15 patients and 18 controls during a precision grip task using the affected hand. Each patient attended two sessions in the acute and subacute phase (median of 3 and 34 days) post-stroke. Dynamic causal modelling (DCM) for induced responses was used to investigate task-specific modulations...... of oscillatory couplings in a bilateral network comprising supplementary motor area (SMA), dorsal premotor cortex (PMd) and primary motor cortex (M1). Fourteen models were constructed for each subject, and the input induced by the experimental manipulation (task) was set to inferior parietal lobule (IPL...

  4. Alterations in Normal Aging Revealed by Cortical Brain Network Constructed Using IBASPM.

    Science.gov (United States)

    Li, Wan; Yang, Chunlan; Shi, Feng; Wang, Qun; Wu, Shuicai; Lu, Wangsheng; Li, Shaowu; Nie, Yingnan; Zhang, Xin

    2018-04-16

    Normal aging has been linked with the decline of cognitive functions, such as memory and executive skills. One of the prominent approaches to investigate the age-related alterations in the brain is by examining the cortical brain connectome. IBASPM is a toolkit to realize individual atlas-based volume measurement. Hence, this study seeks to determine what further alterations can be revealed by cortical brain networks formed by IBASPM-extracted regional gray matter volumes. We found the reduced strength of connections between the superior temporal pole and middle temporal pole in the right hemisphere, global hubs as the left fusiform gyrus and right Rolandic operculum in the young and aging groups, respectively, and significantly reduced inter-module connection of one module in the aging group. These new findings are consistent with the phenomenon of normal aging mentioned in previous studies and suggest that brain network built with the IBASPM could provide supplementary information to some extent. The individualization of morphometric features extraction deserved to be given more attention in future cortical brain network research.

  5. Early magnetic resonance detection of cortical necrosis and acute network injury associated with neonatal and infantile cerebral infarction.

    Science.gov (United States)

    Okabe, Tetsuhiko; Aida, Noriko; Niwa, Tetsu; Nozawa, Kumiko; Shibasaki, Jun; Osaka, Hitoshi

    2014-05-01

    Knowledge of MRI findings in pediatric cerebral infarction is limited. To determine whether cortical necrosis and network injury appear in the acute phase in post-stroke children and to identify anatomical location of acute network injury and the ages at which these phenomena are seen. Images from 12 children (age range: 0-9 years; neonates [acute middle cerebral artery (MCA) cortical infarction were retrospectively analyzed. Cortical necrosis was defined as hyperintense cortical lesions on T1-weighted imaging that lacked evidence of hemorrhage. Acute network injury was defined as hyperintense lesions on diffusion-weighted imaging that were not in the MCA territory and had fiber connections with the affected cerebral cortex. MRI was performed within the first week after disease onset. Cortical necrosis was only found in three neonates. Acute network injury was seen in the corticospinal tract (CST), thalamus and corpus callosum. Acute network injury along the CST was found in five neonates and one 7-month-old infant. Acute network injury was evident in the thalamus of four neonates and two infants (ages 4 and 7 months) and in the corpus callosum of five neonates and two infants (ages 4 and 7 months). The entire thalamus was involved in three children when infarction of MCA was complete. In acute MCA cortical infarction, MRI findings indicating cortical necrosis or acute network injury was frequently found in neonates and early infants. Response to injury in a developing brain may be faster than that in a mature one.

  6. Cortical Thinning in Network-Associated Regions in Cognitively Normal and Below-Normal Range Schizophrenia

    Directory of Open Access Journals (Sweden)

    R. Walter Heinrichs

    2017-01-01

    Full Text Available This study assessed whether cortical thickness across the brain and regionally in terms of the default mode, salience, and central executive networks differentiates schizophrenia patients and healthy controls with normal range or below-normal range cognitive performance. Cognitive normality was defined using the MATRICS Consensus Cognitive Battery (MCCB composite score (T=50 ± 10 and structural magnetic resonance imaging was used to generate cortical thickness data. Whole brain analysis revealed that cognitively normal range controls (n=39 had greater cortical thickness than both cognitively normal (n=17 and below-normal range (n=49 patients. Cognitively normal controls also demonstrated greater thickness than patients in regions associated with the default mode and salience, but not central executive networks. No differences on any thickness measure were found between cognitively normal range and below-normal range controls (n=24 or between cognitively normal and below-normal range patients. In addition, structural covariance between network regions was high and similar across subgroups. Positive and negative symptom severity did not correlate with thickness values. Cortical thinning across the brain and regionally in relation to the default and salience networks may index shared aspects of the psychotic psychopathology that defines schizophrenia with no relation to cognitive impairment.

  7. Biophysical Model of Cortical Network Activity and the Influence of Electrical Stimulation

    Science.gov (United States)

    2015-11-13

    model, multicompartment model, subdural cortical stimulation, anode, cathode, epilepsy REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S...and axon orientation in respect to the electrode position. 4) A single stimulation pulse causes a sequence of action potentials ectopically generated...Bergey, P.J. Franaszczuk. Phase-dependent stimulation effects on bursting activity in a neural network cortical simulation, Epilepsy Research (07 2008

  8. Early magnetic resonance detection of cortical necrosis and acute network injury associated with neonatal and infantile cerebral infarction

    Energy Technology Data Exchange (ETDEWEB)

    Okabe, Tetsuhiko; Aida, Noriko; Nozawa, Kumiko [Kanagawa Children' s Medical Center, Department of Radiology, Yokohama (Japan); Niwa, Tetsu [Kanagawa Children' s Medical Center, Department of Radiology, Yokohama (Japan); Tokai University School of Medicine, Department of Radiology, Isehara (Japan); Shibasaki, Jun [Kanagawa Children' s Medical Center, Department of Neonatology, Yokohama (Japan); Osaka, Hitoshi [Kanagawa Children' s Medical Center, Department of Neurology, Yokohama (Japan)

    2014-05-15

    Knowledge of MRI findings in pediatric cerebral infarction is limited. To determine whether cortical necrosis and network injury appear in the acute phase in post-stroke children and to identify anatomical location of acute network injury and the ages at which these phenomena are seen. Images from 12 children (age range: 0-9 years; neonates [<1 month], n=5; infants [1 month-12 months], n=3; others [≥1 year], n=4) with acute middle cerebral artery (MCA) cortical infarction were retrospectively analyzed. Cortical necrosis was defined as hyperintense cortical lesions on T1-weighted imaging that lacked evidence of hemorrhage. Acute network injury was defined as hyperintense lesions on diffusion-weighted imaging that were not in the MCA territory and had fiber connections with the affected cerebral cortex. MRI was performed within the first week after disease onset. Cortical necrosis was only found in three neonates. Acute network injury was seen in the corticospinal tract (CST), thalamus and corpus callosum. Acute network injury along the CST was found in five neonates and one 7-month-old infant. Acute network injury was evident in the thalamus of four neonates and two infants (ages 4 and 7 months) and in the corpus callosum of five neonates and two infants (ages 4 and 7 months). The entire thalamus was involved in three children when infarction of MCA was complete. In acute MCA cortical infarction, MRI findings indicating cortical necrosis or acute network injury was frequently found in neonates and early infants. Response to injury in a developing brain may be faster than that in a mature one. (orig.)

  9. Early magnetic resonance detection of cortical necrosis and acute network injury associated with neonatal and infantile cerebral infarction

    International Nuclear Information System (INIS)

    Okabe, Tetsuhiko; Aida, Noriko; Nozawa, Kumiko; Niwa, Tetsu; Shibasaki, Jun; Osaka, Hitoshi

    2014-01-01

    Knowledge of MRI findings in pediatric cerebral infarction is limited. To determine whether cortical necrosis and network injury appear in the acute phase in post-stroke children and to identify anatomical location of acute network injury and the ages at which these phenomena are seen. Images from 12 children (age range: 0-9 years; neonates [<1 month], n=5; infants [1 month-12 months], n=3; others [≥1 year], n=4) with acute middle cerebral artery (MCA) cortical infarction were retrospectively analyzed. Cortical necrosis was defined as hyperintense cortical lesions on T1-weighted imaging that lacked evidence of hemorrhage. Acute network injury was defined as hyperintense lesions on diffusion-weighted imaging that were not in the MCA territory and had fiber connections with the affected cerebral cortex. MRI was performed within the first week after disease onset. Cortical necrosis was only found in three neonates. Acute network injury was seen in the corticospinal tract (CST), thalamus and corpus callosum. Acute network injury along the CST was found in five neonates and one 7-month-old infant. Acute network injury was evident in the thalamus of four neonates and two infants (ages 4 and 7 months) and in the corpus callosum of five neonates and two infants (ages 4 and 7 months). The entire thalamus was involved in three children when infarction of MCA was complete. In acute MCA cortical infarction, MRI findings indicating cortical necrosis or acute network injury was frequently found in neonates and early infants. Response to injury in a developing brain may be faster than that in a mature one. (orig.)

  10. Examining the volume efficiency of the cortical architecture in a multi-processor network model.

    Science.gov (United States)

    Ruppin, E; Schwartz, E L; Yeshurun, Y

    1993-01-01

    The convoluted form of the sheet-like mammalian cortex naturally raises the question whether there is a simple geometrical reason for the prevalence of cortical architecture in the brains of higher vertebrates. Addressing this question, we present a formal analysis of the volume occupied by a massively connected network or processors (neurons) and then consider the pertaining cortical data. Three gross macroscopic features of cortical organization are examined: the segregation of white and gray matter, the circumferential organization of the gray matter around the white matter, and the folded cortical structure. Our results testify to the efficiency of cortical architecture.

  11. Morphometric Changes in the Cortical Microvascular Network in Alzheimer's Disease

    NARCIS (Netherlands)

    Richard, E.; van Gool, W.A.; Hoozemans, J.J.M.; van Haastert, E.S.; Eikelenboom, P.; Rozemuller, A.J.M.; van de Berg, W.D.J.

    2010-01-01

    Alzheimer's disease (AD) pathology is accompanied by abnormalities of the microvasculature. Despite the potential importance of morphometric changes in the cortical capillary network on neuronal dysfunction and cognitive impairment, few autopsy studies have addressed this issue. In the present

  12. Information-geometric measures estimate neural interactions during oscillatory brain states

    Directory of Open Access Journals (Sweden)

    Yimin eNie

    2014-02-01

    Full Text Available The characterization of functional network structures among multiple neurons is essential to understanding neural information processing. Information geometry (IG, a theory developed for investigating a space of probability distributions has recently been applied to spike-train analysis and has provided robust estimations of neural interactions. Although neural firing in the equilibrium state is often assumed in these studies, in reality, neural activity is non-stationary. The brain exhibits various oscillations depending on cognitive demands or when an animal is asleep. Therefore, the investigation of the IG measures during oscillatory network states is important for testing how the IG method can be applied to real neural data. Using model networks of binary neurons or more realistic spiking neurons, we studied how the single- and pairwise-IG measures were influenced by oscillatory neural activity. Two general oscillatory mechanisms, externally driven oscillations and internally induced oscillations, were considered. In both mechanisms, we found that the single-IG measure was linearly related to the magnitude of the external input, and that the pairwise-IG measure was linearly related to the sum of connection strengths between two neurons. We also observed that the pairwise-IG measure was not dependent on the oscillation frequency. These results are consistent with the previous findings that were obtained under the equilibrium conditions. Therefore, we demonstrate that the IG method provides useful insights into neural interactions under the oscillatory condition that can often be observed in the real brain.

  13. Dynamics of human subthalamic neuron phase-locking to motor and sensory cortical oscillations during movement.

    Science.gov (United States)

    Lipski, Witold J; Wozny, Thomas A; Alhourani, Ahmad; Kondylis, Efstathios D; Turner, Robert S; Crammond, Donald J; Richardson, Robert Mark

    2017-09-01

    Coupled oscillatory activity recorded between sensorimotor regions of the basal ganglia-thalamocortical loop is thought to reflect information transfer relevant to movement. A neuronal firing-rate model of basal ganglia-thalamocortical circuitry, however, has dominated thinking about basal ganglia function for the past three decades, without knowledge of the relationship between basal ganglia single neuron firing and cortical population activity during movement itself. We recorded activity from 34 subthalamic nucleus (STN) neurons, simultaneously with cortical local field potentials and motor output, in 11 subjects with Parkinson's disease (PD) undergoing awake deep brain stimulator lead placement. STN firing demonstrated phase synchronization to both low- and high-beta-frequency cortical oscillations, and to the amplitude envelope of gamma oscillations, in motor cortex. We found that during movement, the magnitude of this synchronization was dynamically modulated in a phase-frequency-specific manner. Importantly, we found that phase synchronization was not correlated with changes in neuronal firing rate. Furthermore, we found that these relationships were not exclusive to motor cortex, because STN firing also demonstrated phase synchronization to both premotor and sensory cortex. The data indicate that models of basal ganglia function ultimately will need to account for the activity of populations of STN neurons that are bound in distinct functional networks with both motor and sensory cortices and code for movement parameters independent of changes in firing rate. NEW & NOTEWORTHY Current models of basal ganglia-thalamocortical networks do not adequately explain simple motor functions, let alone dysfunction in movement disorders. Our findings provide data that inform models of human basal ganglia function by demonstrating how movement is encoded by networks of subthalamic nucleus (STN) neurons via dynamic phase synchronization with cortex. The data also

  14. UP-DOWN cortical dynamics reflect state transitions in a bistable network.

    Science.gov (United States)

    Jercog, Daniel; Roxin, Alex; Barthó, Peter; Luczak, Artur; Compte, Albert; de la Rocha, Jaime

    2017-08-04

    In the idling brain, neuronal circuits transition between periods of sustained firing (UP state) and quiescence (DOWN state), a pattern the mechanisms of which remain unclear. Here we analyzed spontaneous cortical population activity from anesthetized rats and found that UP and DOWN durations were highly variable and that population rates showed no significant decay during UP periods. We built a network rate model with excitatory (E) and inhibitory (I) populations exhibiting a novel bistable regime between a quiescent and an inhibition-stabilized state of arbitrarily low rate. Fluctuations triggered state transitions, while adaptation in E cells paradoxically caused a marginal decay of E-rate but a marked decay of I-rate in UP periods, a prediction that we validated experimentally. A spiking network implementation further predicted that DOWN-to-UP transitions must be caused by synchronous high-amplitude events. Our findings provide evidence of bistable cortical networks that exhibit non-rhythmic state transitions when the brain rests.

  15. Molecular Correlates of Cortical Network Modulation by Long-Term Sensory Experience in the Adult Rat Barrel Cortex

    Science.gov (United States)

    Vallès, Astrid; Granic, Ivica; De Weerd, Peter; Martens, Gerard J. M.

    2014-01-01

    Modulation of cortical network connectivity is crucial for an adaptive response to experience. In the rat barrel cortex, long-term sensory stimulation induces cortical network modifications and neuronal response changes of which the molecular basis is unknown. Here, we show that long-term somatosensory stimulation by enriched environment…

  16. Phase-dependent effects of stimuli locked to oscillatory activity in cultured cortical networks

    NARCIS (Netherlands)

    Stegenga, J.; le Feber, Jakob; Marani, Enrico; Rutten, Wim

    The archetypal activity pattern in cultures of dissociated neurons is spontaneous network-wide bursting. Bursts may interfere with controlled activation of synaptic plasticity, but can be suppressed by the application of stimuli at a sufficient rate. We sinusoidally modulated (4 Hz) the pulse rate

  17. Depth-dependent flow and pressure characteristics in cortical microvascular networks.

    Directory of Open Access Journals (Sweden)

    Franca Schmid

    2017-02-01

    Full Text Available A better knowledge of the flow and pressure distribution in realistic microvascular networks is needed for improving our understanding of neurovascular coupling mechanisms and the related measurement techniques. Here, numerical simulations with discrete tracking of red blood cells (RBCs are performed in three realistic microvascular networks from the mouse cerebral cortex. Our analysis is based on trajectories of individual RBCs and focuses on layer-specific flow phenomena until a cortical depth of 1 mm. The individual RBC trajectories reveal that in the capillary bed RBCs preferentially move in plane. Hence, the capillary flow field shows laminar patterns and a layer-specific analysis is valid. We demonstrate that for RBCs entering the capillary bed close to the cortical surface (< 400 μm the largest pressure drop takes place in the capillaries (37%, while for deeper regions arterioles are responsible for 61% of the total pressure drop. Further flow characteristics, such as capillary transit time or RBC velocity, also vary significantly over cortical depth. Comparison of purely topological characteristics with flow-based ones shows that a combined interpretation of topology and flow is indispensable. Our results provide evidence that it is crucial to consider layer-specific differences for all investigations related to the flow and pressure distribution in the cortical vasculature. These findings support the hypothesis that for an efficient oxygen up-regulation at least two regulation mechanisms must be playing hand in hand, namely cerebral blood flow increase and microvascular flow homogenization. However, the contribution of both regulation mechanisms to oxygen up-regulation likely varies over depth.

  18. Functional networks in parallel with cortical development associate with executive functions in children.

    Science.gov (United States)

    Zhong, Jidan; Rifkin-Graboi, Anne; Ta, Anh Tuan; Yap, Kar Lai; Chuang, Kai-Hsiang; Meaney, Michael J; Qiu, Anqi

    2014-07-01

    Children begin performing similarly to adults on tasks requiring executive functions in late childhood, a transition that is probably due to neuroanatomical fine-tuning processes, including myelination and synaptic pruning. In parallel to such structural changes in neuroanatomical organization, development of functional organization may also be associated with cognitive behaviors in children. We examined 6- to 10-year-old children's cortical thickness, functional organization, and cognitive performance. We used structural magnetic resonance imaging (MRI) to identify areas with cortical thinning, resting-state fMRI to identify functional organization in parallel to cortical development, and working memory/response inhibition tasks to assess executive functioning. We found that neuroanatomical changes in the form of cortical thinning spread over bilateral frontal, parietal, and occipital regions. These regions were engaged in 3 functional networks: sensorimotor and auditory, executive control, and default mode network. Furthermore, we found that working memory and response inhibition only associated with regional functional connectivity, but not topological organization (i.e., local and global efficiency of information transfer) of these functional networks. Interestingly, functional connections associated with "bottom-up" as opposed to "top-down" processing were more clearly related to children's performance on working memory and response inhibition, implying an important role for brain systems involved in late childhood. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Growth of cortical neuronal network in vitro: Modeling and analysis

    International Nuclear Information System (INIS)

    Lai, P.-Y.; Jia, L. C.; Chan, C. K.

    2006-01-01

    We present a detailed analysis and theoretical growth models to account for recent experimental data on the growth of cortical neuronal networks in vitro [Phys. Rev. Lett. 93, 088101 (2004)]. The experimentally observed synchronized firing frequency of a well-connected neuronal network is shown to be proportional to the mean network connectivity. The growth of the network is consistent with the model of an early enhanced growth of connection, but followed by a retarded growth once the synchronized cluster is formed. Microscopic models with dominant excluded volume interactions are consistent with the observed exponential decay of the mean connection probability as a function of the mean network connectivity. The biological implications of the growth model are also discussed

  20. Alterations of cortical GABA neurons and network oscillations in schizophrenia.

    Science.gov (United States)

    Gonzalez-Burgos, Guillermo; Hashimoto, Takanori; Lewis, David A

    2010-08-01

    The hypothesis that alterations of cortical inhibitory gamma-aminobutyric acid (GABA) neurons are a central element in the pathology of schizophrenia has emerged from a series of postmortem studies. How such abnormalities may contribute to the clinical features of schizophrenia has been substantially informed by a convergence with basic neuroscience studies revealing complex details of GABA neuron function in the healthy brain. Importantly, activity of the parvalbumin-containing class of GABA neurons has been linked to the production of cortical network oscillations. Furthermore, growing knowledge supports the concept that gamma band oscillations (30-80 Hz) are an essential mechanism for cortical information transmission and processing. Herein we review recent studies further indicating that inhibition from parvalbumin-positive GABA neurons is necessary to produce gamma oscillations in cortical circuits; provide an update on postmortem studies documenting that deficits in the expression of glutamic acid decarboxylase67, which accounts for most GABA synthesis in the cortex, are widely observed in schizophrenia; and describe studies using novel, noninvasive approaches directly assessing potential relations between alterations in GABA, oscillations, and cognitive function in schizophrenia.

  1. Changes of spontaneous oscillatory activity to tonic heat pain.

    Science.gov (United States)

    Peng, Weiwei; Hu, Li; Zhang, Zhiguo; Hu, Yong

    2014-01-01

    Transient painful stimuli could induce suppression of alpha oscillatory activities and enhancement of gamma oscillatory activities that also could be greatly modulated by attention. Here, we attempted to characterize changes in cortical activities during tonic heat pain perception and investigated the influence of directed/distracted attention on these responses. We collected 5-minute long continuous Electroencephalography (EEG) data from 38 healthy volunteers during four conditions presented in a counterbalanced order: (A) resting condition; (B) innoxious-distracted condition; (C) noxious-distracted condition; (D) noxious-attended condition. The effects of tonic heat pain stimulation and selective attention on oscillatory activities were investigated by comparing the EEG power spectra among the four experimental conditions and assessing the relationship between spectral power difference and subjective pain intensity. The change of oscillatory activities in condition D was characterized by stable and persistent decrease of alpha oscillation power over contralateral-central electrodes and widespread increase of gamma oscillation power, which were even significantly correlated with subjective pain intensity. Since EEG responses in the alpha and gamma frequency band were affected by attention in different manners, they are likely related to different aspects of the multidimensional sensory experience of pain. The observed contralateral-central alpha suppression (conditions D vs. B and D vs. C) may reflect primarily a top-down cognitive process such as attention, while the widespread gamma enhancement (conditions D vs. A) may partly reflect tonic pain processing, representing the summary effects of bottom-up stimulus-related and top-down subject-driven cognitive processes.

  2. Changes of spontaneous oscillatory activity to tonic heat pain.

    Directory of Open Access Journals (Sweden)

    Weiwei Peng

    Full Text Available Transient painful stimuli could induce suppression of alpha oscillatory activities and enhancement of gamma oscillatory activities that also could be greatly modulated by attention. Here, we attempted to characterize changes in cortical activities during tonic heat pain perception and investigated the influence of directed/distracted attention on these responses. We collected 5-minute long continuous Electroencephalography (EEG data from 38 healthy volunteers during four conditions presented in a counterbalanced order: (A resting condition; (B innoxious-distracted condition; (C noxious-distracted condition; (D noxious-attended condition. The effects of tonic heat pain stimulation and selective attention on oscillatory activities were investigated by comparing the EEG power spectra among the four experimental conditions and assessing the relationship between spectral power difference and subjective pain intensity. The change of oscillatory activities in condition D was characterized by stable and persistent decrease of alpha oscillation power over contralateral-central electrodes and widespread increase of gamma oscillation power, which were even significantly correlated with subjective pain intensity. Since EEG responses in the alpha and gamma frequency band were affected by attention in different manners, they are likely related to different aspects of the multidimensional sensory experience of pain. The observed contralateral-central alpha suppression (conditions D vs. B and D vs. C may reflect primarily a top-down cognitive process such as attention, while the widespread gamma enhancement (conditions D vs. A may partly reflect tonic pain processing, representing the summary effects of bottom-up stimulus-related and top-down subject-driven cognitive processes.

  3. Development and function of human cerebral cortex neural networks from pluripotent stem cells in vitro.

    Science.gov (United States)

    Kirwan, Peter; Turner-Bridger, Benita; Peter, Manuel; Momoh, Ayiba; Arambepola, Devika; Robinson, Hugh P C; Livesey, Frederick J

    2015-09-15

    A key aspect of nervous system development, including that of the cerebral cortex, is the formation of higher-order neural networks. Developing neural networks undergo several phases with distinct activity patterns in vivo, which are thought to prune and fine-tune network connectivity. We report here that human pluripotent stem cell (hPSC)-derived cerebral cortex neurons form large-scale networks that reflect those found in the developing cerebral cortex in vivo. Synchronised oscillatory networks develop in a highly stereotyped pattern over several weeks in culture. An initial phase of increasing frequency of oscillations is followed by a phase of decreasing frequency, before giving rise to non-synchronous, ordered activity patterns. hPSC-derived cortical neural networks are excitatory, driven by activation of AMPA- and NMDA-type glutamate receptors, and can undergo NMDA-receptor-mediated plasticity. Investigating single neuron connectivity within PSC-derived cultures, using rabies-based trans-synaptic tracing, we found two broad classes of neuronal connectivity: most neurons have small numbers (40). These data demonstrate that the formation of hPSC-derived cortical networks mimics in vivo cortical network development and function, demonstrating the utility of in vitro systems for mechanistic studies of human forebrain neural network biology. © 2015. Published by The Company of Biologists Ltd.

  4. Dynamic behavior of dual cross-linked nanoparticle networks under oscillatory shear

    International Nuclear Information System (INIS)

    Iyer, Balaji V S; Yashin, Victor V; Balazs, Anna C

    2014-01-01

    Via computer simulations, we investigate the linear and nonlinear viscoelastic response of polymer grafted nanoparticle networks subject to oscillatory shear at different amplitudes and frequencies. The individual nanoparticles are composed of a rigid spherical core and a corona of grafted polymers that encompass reactive end groups. With the overlap of the coronas on adjacent particles, the reactive end groups form permanent or labile bonds, and thus form a ‘dual cross-linked’ network. The existing labile bonds between particles can break and reform depending on the bond rupture rate, extent of deformation and the frequency of oscillation. We study how the viscoelastic behavior of the material depends on the energy of the labile bonds and identify the network characteristics that give rise to the observed viscoelastic response. We observe that with an increase in labile bond energy, the storage modulus increases while the loss modulus shows a more complex response depending on the labile bond energy. Specifically, in the case of the samples with the weaker labile bonds, the loss modulus increases monotonically, while for the samples with the stronger labile bonds, the loss modulus exhibits a minimum with an increase in frequency. We show that an increase in the storage modulus corresponds to an enhancement in the average number of bonds in the samples and the characteristics of the loss modulus depend on both the bond kinetics and the mobility of the particles in the network. Furthermore, we determine that the effective contribution of the bonds to the storage modulus decreases with increase in strain amplitude. In particular, while bond formation at small amplitude drives an increase in storage modulus, at large amplitudes it promotes clustering and formation of voids leading to strain softening. Our simulations provide a mesoscopic picture of how the nature of labile bonds affects the performance of cross-linked polymer-grafted nanoparticle networks. (paper)

  5. Altered modular organization of structural cortical networks in children with autism.

    Directory of Open Access Journals (Sweden)

    Feng Shi

    Full Text Available Autism is a complex developmental disability that characterized by deficits in social interaction, language skills, repetitive stereotyped behaviors and restricted interests. Although great heterogeneity exists, previous findings suggest that autism has atypical brain connectivity patterns and disrupted small-world network properties. However, the organizational alterations in the autistic brain network are still poorly understood. We explored possible organizational alterations of 49 autistic children and 51 typically developing controls, by investigating their brain network metrics that are constructed upon cortical thickness correlations. Three modules were identified in controls, including cortical regions associated with brain functions of executive strategic, spatial/auditory/visual, and self-reference/episodic memory. There are also three modules found in autistic children with similar patterns. Compared with controls, autism demonstrates significantly reduced gross network modularity, and a larger number of inter-module connections. However, the autistic brain network demonstrates increased intra- and inter-module connectivity in brain regions including middle frontal gyrus, inferior parietal gyrus, and cingulate, suggesting one underlying compensatory mechanism associated with brain functions of self-reference and episodic memory. Results also show that there is increased correlation strength between regions inside frontal lobe, as well as impaired correlation strength between frontotemporal and frontoparietal regions. This alteration of correlation strength may contribute to the organization alteration of network structures in autistic brains.

  6. Detecting a cortical fingerprint of Parkinson’s disease for closed-loop neuromodulation

    Directory of Open Access Journals (Sweden)

    Kevin eKern

    2016-03-01

    Full Text Available Recent evidence suggests that deep brain stimulation (DBS of the subthalamic nucleus (STN in Parkinson’s disease (PD mediates its clinical effects by modulating cortical oscillatory activity, presumably via a direct cortico-subthalamic connection. This observation might pave the way for novel closed-loop approaches comprising a cortical sensor. Enhanced beta oscillations (13-35 Hz have been linked to the pathophysiology of PD and may serve as such a candidate marker to localize a cortical area reliably modulated by DBS. However, beta-oscillations are widely distributed over the cortical surface, necessitating an additional signal source for spotting the cortical area linked to the pathologically synchronized cortico-subcortical motor network.In this context, both cortico-subthalamic coherence and cortico-muscular coherence (CMC have been studied in PD patients. Whereas the former requires invasive recordings, the latter allows for non-invasive detection, but displays a rather distributed cortical synchronization pattern in motor tasks. This distributed cortical representation may conflict with the goal of detecting a cortical localization with robust biomarker properties which is detectable on a single subject basis. We propose that this limitation could be overcome when recording CMC at rest. We hypothesized that – unlike healthy subjects – PD would show CMC at rest owing to the enhanced beta oscillations observed in PD. By performing source space analysis of beta CMC recorded during resting-state magnetoencephalography, we provide preliminary evidence in one patient for a cortical hot spot that is modulated most strongly by subthalamic DBS. Such a spot would provide a prominent target region either for direct neuromodulation or for placing a potential sensor in closed-loop DBS approaches, a proposal that requires investigation in a larger cohort of PD patients.

  7. Dissociable influences of auditory object vs. spatial attention on visual system oscillatory activity.

    Directory of Open Access Journals (Sweden)

    Jyrki Ahveninen

    Full Text Available Given that both auditory and visual systems have anatomically separate object identification ("what" and spatial ("where" pathways, it is of interest whether attention-driven cross-sensory modulations occur separately within these feature domains. Here, we investigated how auditory "what" vs. "where" attention tasks modulate activity in visual pathways using cortically constrained source estimates of magnetoencephalograpic (MEG oscillatory activity. In the absence of visual stimuli or tasks, subjects were presented with a sequence of auditory-stimulus pairs and instructed to selectively attend to phonetic ("what" vs. spatial ("where" aspects of these sounds, or to listen passively. To investigate sustained modulatory effects, oscillatory power was estimated from time periods between sound-pair presentations. In comparison to attention to sound locations, phonetic auditory attention was associated with stronger alpha (7-13 Hz power in several visual areas (primary visual cortex; lingual, fusiform, and inferior temporal gyri, lateral occipital cortex, as well as in higher-order visual/multisensory areas including lateral/medial parietal and retrosplenial cortices. Region-of-interest (ROI analyses of dynamic changes, from which the sustained effects had been removed, suggested further power increases during Attend Phoneme vs. Location centered at the alpha range 400-600 ms after the onset of second sound of each stimulus pair. These results suggest distinct modulations of visual system oscillatory activity during auditory attention to sound object identity ("what" vs. sound location ("where". The alpha modulations could be interpreted to reflect enhanced crossmodal inhibition of feature-specific visual pathways and adjacent audiovisual association areas during "what" vs. "where" auditory attention.

  8. Characterization of Early Cortical Neural Network ...

    Science.gov (United States)

    We examined the development of neural network activity using microelectrode array (MEA) recordings made in multi-well MEA plates (mwMEAs) over the first 12 days in vitro (DIV). In primary cortical cultures made from postnatal rats, action potential spiking activity was essentially absent on DIV 2 and developed rapidly between DIV 5 and 12. Spiking activity was primarily sporadic and unorganized at early DIV, and became progressively more organized with time in culture, with bursting parameters, synchrony and network bursting increasing between DIV 5 and 12. We selected 12 features to describe network activity and principal components analysis using these features demonstrated a general segregation of data by age at both the well and plate levels. Using a combination of random forest classifiers and Support Vector Machines, we demonstrated that 4 features (CV of within burst ISI, CV of IBI, network spike rate and burst rate) were sufficient to predict the age (either DIV 5, 7, 9 or 12) of each well recording with >65% accuracy. When restricting the classification problem to a binary decision, we found that classification improved dramatically, e.g. 95% accuracy for discriminating DIV 5 vs DIV 12 wells. Further, we present a novel resampling approach to determine the number of wells that might be needed for conducting comparisons of different treatments using mwMEA plates. Overall, these results demonstrate that network development on mwMEA plates is similar to

  9. Functional Cortical Network in Alpha Band Correlates with Social Bargaining

    Science.gov (United States)

    Billeke, Pablo; Zamorano, Francisco; Chavez, Mario; Cosmelli, Diego; Aboitiz, Francisco

    2014-01-01

    Solving demanding tasks requires fast and flexible coordination among different brain areas. Everyday examples of this are the social dilemmas in which goals tend to clash, requiring one to weigh alternative courses of action in limited time. In spite of this fact, there are few studies that directly address the dynamics of flexible brain network integration during social interaction. To study the preceding, we carried out EEG recordings while subjects played a repeated version of the Ultimatum Game in both human (social) and computer (non-social) conditions. We found phase synchrony (inter-site-phase-clustering) modulation in alpha band that was specific to the human condition and independent of power modulation. The strength and patterns of the inter-site-phase-clustering of the cortical networks were also modulated, and these modulations were mainly in frontal and parietal regions. Moreover, changes in the individuals’ alpha network structure correlated with the risk of the offers made only in social conditions. This correlation was independent of changes in power and inter-site-phase-clustering strength. Our results indicate that, when subjects believe they are participating in a social interaction, a specific modulation of functional cortical networks in alpha band takes place, suggesting that phase synchrony of alpha oscillations could serve as a mechanism by which different brain areas flexibly interact in order to adapt ongoing behavior in socially demanding contexts. PMID:25286240

  10. Math anxiety: Brain cortical network changes in anticipation of doing mathematics.

    Science.gov (United States)

    Klados, Manousos A; Pandria, Niki; Micheloyannis, Sifis; Margulies, Daniel; Bamidis, Panagiotis D

    2017-12-01

    Following our previous work regarding the involvement of math anxiety (MA) in math-oriented tasks, this study tries to explore the differences in the cerebral networks' topology between self-reported low math-anxious (LMA) and high math-anxious (HMA) individuals, during the anticipation phase prior to a mathematical related experiment. For this reason, multichannel EEG recordings were adopted, while the solution of the inverse problem was applied in a generic head model, in order to obtain the cortical signals. The cortical networks have been computed for each band separately, using the magnitude square coherence metric. The main graph theoretical parameters, showed differences in segregation and integration in almost all EEG bands of the HMAs in comparison to LMAs, indicative of a great influence of the anticipatory anxiety prior to mathematical performance. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Extensive video-game experience alters cortical networks for complex visuomotor transformations.

    Science.gov (United States)

    Granek, Joshua A; Gorbet, Diana J; Sergio, Lauren E

    2010-10-01

    Using event-related functional magnetic resonance imaging (fMRI), we examined the effect of video-game experience on the neural control of increasingly complex visuomotor tasks. Previously, skilled individuals have demonstrated the use of a more efficient movement control brain network, including the prefrontal, premotor, primary sensorimotor and parietal cortices. Our results extend and generalize this finding by documenting additional prefrontal cortex activity in experienced video gamers planning for complex eye-hand coordination tasks that are distinct from actual video-game play. These changes in activation between non-gamers and extensive gamers are putatively related to the increased online control and spatial attention required for complex visually guided reaching. These data suggest that the basic cortical network for processing complex visually guided reaching is altered by extensive video-game play. Crown Copyright © 2009. Published by Elsevier Srl. All rights reserved.

  12. A nonlinear oscillatory problem

    International Nuclear Information System (INIS)

    Zhou Qingqing.

    1991-10-01

    We have studied the nonlinear oscillatory problem of orthotropic cylindrical shell, we have analyzed the character of the oscillatory system. The stable condition of the oscillatory system has been given. (author). 6 refs

  13. Anti-correlated cortical networks arise from spontaneous neuronal dynamics at slow timescales.

    Science.gov (United States)

    Kodama, Nathan X; Feng, Tianyi; Ullett, James J; Chiel, Hillel J; Sivakumar, Siddharth S; Galán, Roberto F

    2018-01-12

    In the highly interconnected architectures of the cerebral cortex, recurrent intracortical loops disproportionately outnumber thalamo-cortical inputs. These networks are also capable of generating neuronal activity without feedforward sensory drive. It is unknown, however, what spatiotemporal patterns may be solely attributed to intrinsic connections of the local cortical network. Using high-density microelectrode arrays, here we show that in the isolated, primary somatosensory cortex of mice, neuronal firing fluctuates on timescales from milliseconds to tens of seconds. Slower firing fluctuations reveal two spatially distinct neuronal ensembles, which correspond to superficial and deeper layers. These ensembles are anti-correlated: when one fires more, the other fires less and vice versa. This interplay is clearest at timescales of several seconds and is therefore consistent with shifts between active sensing and anticipatory behavioral states in mice.

  14. Electrocorticography reveals beta desynchronization in the basal ganglia-cortical loop during rest tremor in Parkinson's disease.

    Science.gov (United States)

    Qasim, Salman E; de Hemptinne, Coralie; Swann, Nicole C; Miocinovic, Svjetlana; Ostrem, Jill L; Starr, Philip A

    2016-02-01

    The pathophysiology of rest tremor in Parkinson's disease (PD) is not well understood, and its severity does not correlate with the severity of other cardinal signs of PD. We hypothesized that tremor-related oscillatory activity in the basal-ganglia-thalamocortical loop might serve as a compensatory mechanism for the excessive beta band synchronization associated with the parkinsonian state. We recorded electrocorticography (ECoG) from the sensorimotor cortex and local field potentials (LFP) from the subthalamic nucleus (STN) in patients undergoing lead implantation for deep brain stimulation (DBS). We analyzed differences in measures of network synchronization during epochs of spontaneous rest tremor, versus epochs without rest tremor, occurring in the same subjects. The presence of tremor was associated with reduced beta power in the cortex and STN. Cortico-cortical coherence and phase-amplitude coupling (PAC) decreased during rest tremor, as did basal ganglia-cortical coherence in the same frequency band. Cortical broadband gamma power was not increased by tremor onset, in contrast to the movement-related gamma increase typically observed at the onset of voluntary movement. These findings suggest that the cortical representation of rest tremor is distinct from that of voluntary movement, and support a model in which tremor acts to decrease beta band synchronization within the basal ganglia-cortical loop. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Synchronization enhancement via an oscillatory bath in a network of ...

    Indian Academy of Sciences (India)

    2015-02-05

    Feb 5, 2015 ... 2Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104, USA ... The robustness of synchronization strategy is tested using a local and global ..... enhancement effect that the oscillatory bath has in the ...

  16. Cortical hubs form a module for multisensory integration on top of the hierarchy of cortical networks

    Directory of Open Access Journals (Sweden)

    Gorka Zamora-López

    2010-03-01

    Full Text Available Sensory stimuli entering the nervous system follow particular paths of processing, typically separated (segregated from the paths of other modal information. However, sensory perception, awareness and cognition emerge from the combination of information (integration. The corticocortical networks of cats and macaque monkeys display three prominent characteristics: (i modular organisation (facilitating the segregation, (ii abundant alternative processing paths and (iii the presence of highly connected hubs. Here, we study in detail the organisation and potential function of the cortical hubs by graph analysis and information theoretical methods. We find that the cortical hubs form a spatially delocalised, but topologically central module with the capacity to integrate multisensory information in a collaborative manner. With this, we resolve the underlying anatomical substrate that supports the simultaneous capacity of the cortex to segregate and to integrate multisensory information.

  17. Network Supervision of Adult Experience and Learning Dependent Sensory Cortical Plasticity.

    Science.gov (United States)

    Blake, David T

    2017-06-18

    The brain is capable of remodeling throughout life. The sensory cortices provide a useful preparation for studying neuroplasticity both during development and thereafter. In adulthood, sensory cortices change in the cortical area activated by behaviorally relevant stimuli, by the strength of response within that activated area, and by the temporal profiles of those responses. Evidence supports forms of unsupervised, reinforcement, and fully supervised network learning rules. Studies on experience-dependent plasticity have mostly not controlled for learning, and they find support for unsupervised learning mechanisms. Changes occur with greatest ease in neurons containing α-CamKII, which are pyramidal neurons in layers II/III and layers V/VI. These changes use synaptic mechanisms including long term depression. Synaptic strengthening at NMDA-containing synapses does occur, but its weak association with activity suggests other factors also initiate changes. Studies that control learning find support of reinforcement learning rules and limited evidence of other forms of supervised learning. Behaviorally associating a stimulus with reinforcement leads to a strengthening of cortical response strength and enlarging of response area with poor selectivity. Associating a stimulus with omission of reinforcement leads to a selective weakening of responses. In some preparations in which these associations are not as clearly made, neurons with the most informative discharges are relatively stronger after training. Studies analyzing the temporal profile of responses associated with omission of reward, or of plasticity in studies with different discriminanda but statistically matched stimuli, support the existence of limited supervised network learning. © 2017 American Physiological Society. Compr Physiol 7:977-1008, 2017. Copyright © 2017 John Wiley & Sons, Inc.

  18. Harnessing functional segregation across brain rhythms as a means to detect EEG oscillatory multiplexing during music listening.

    Science.gov (United States)

    Adamos, Dimitrios A; Laskaris, Nikolaos A; Micheloyannis, Sifis

    2018-06-01

    Music, being a multifaceted stimulus evolving at multiple timescales, modulates brain function in a manifold way that encompasses not only the distinct stages of auditory perception, but also higher cognitive processes like memory and appraisal. Network theory is apparently a promising approach to describe the functional reorganization of brain oscillatory dynamics during music listening. However, the music induced changes have so far been examined within the functional boundaries of isolated brain rhythms. Using naturalistic music, we detected the functional segregation patterns associated with different cortical rhythms, as these were reflected in the surface electroencephalography (EEG) measurements. The emerged structure was compared across frequency bands to quantify the interplay among rhythms. It was also contrasted against the structure from the rest and noise listening conditions to reveal the specific components stemming from music listening. Our methodology includes an efficient graph-partitioning algorithm, which is further utilized for mining prototypical modular patterns, and a novel algorithmic procedure for identifying 'switching nodes' (i.e. recording sites) that consistently change module during music listening. Our results suggest the multiplex character of the music-induced functional reorganization and particularly indicate the dependence between the networks reconstructed from the δ and β H rhythms. This dependence is further justified within the framework of nested neural oscillations and fits perfectly within the context of recently introduced cortical entrainment to music. Complying with the contemporary trends towards a multi-scale examination of the brain network organization, our approach specifies the form of neural coordination among rhythms during music listening. Considering its computational efficiency, and in conjunction with the flexibility of in situ electroencephalography, it may lead to novel assistive tools for real

  19. Cortical networks for encoding near and far space in the non-human primate.

    Science.gov (United States)

    Cléry, Justine; Guipponi, Olivier; Odouard, Soline; Wardak, Claire; Ben Hamed, Suliann

    2018-04-19

    While extra-personal space is often erroneously considered as a unique entity, early neuropsychological studies report a dissociation between near and far space processing both in humans and in monkeys. Here, we use functional MRI in a naturalistic 3D environment to describe the non-human primate near and far space cortical networks. We describe the co-occurrence of two extended functional networks respectively dedicated to near and far space processing. Specifically, far space processing involves occipital, temporal, parietal, posterior cingulate as well as orbitofrontal regions not activated by near space, possibly subserving the processing of the shape and identity of objects. In contrast, near space processing involves temporal, parietal, prefrontal and premotor regions not activated by far space, possibly subserving the preparation of an arm/hand mediated action in this proximal space. Interestingly, this network also involves somatosensory regions, suggesting a cross-modal anticipation of touch by a nearby object. Last, we also describe cortical regions that process both far and near space with a preference for one or the other. This suggests a continuous encoding of relative distance to the body, in the form of a far-to-near gradient. We propose that these cortical gradients in space representation subserve the physically delineable peripersonal spaces described in numerous psychology and psychophysics studies. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Traumatic Brain Injury Increases Cortical Glutamate Network Activity by Compromising GABAergic Control.

    Science.gov (United States)

    Cantu, David; Walker, Kendall; Andresen, Lauren; Taylor-Weiner, Amaro; Hampton, David; Tesco, Giuseppina; Dulla, Chris G

    2015-08-01

    Traumatic brain injury (TBI) is a major risk factor for developing pharmaco-resistant epilepsy. Although disruptions in brain circuitry are associated with TBI, the precise mechanisms by which brain injury leads to epileptiform network activity is unknown. Using controlled cortical impact (CCI) as a model of TBI, we examined how cortical excitability and glutamatergic signaling was altered following injury. We optically mapped cortical glutamate signaling using FRET-based glutamate biosensors, while simultaneously recording cortical field potentials in acute brain slices 2-4 weeks following CCI. Cortical electrical stimulation evoked polyphasic, epileptiform field potentials and disrupted the input-output relationship in deep layers of CCI-injured cortex. High-speed glutamate biosensor imaging showed that glutamate signaling was significantly increased in the injured cortex. Elevated glutamate responses correlated with epileptiform activity, were highest directly adjacent to the injury, and spread via deep cortical layers. Immunoreactivity for markers of GABAergic interneurons were significantly decreased throughout CCI cortex. Lastly, spontaneous inhibitory postsynaptic current frequency decreased and spontaneous excitatory postsynaptic current increased after CCI injury. Our results suggest that specific cortical neuronal microcircuits may initiate and facilitate the spread of epileptiform activity following TBI. Increased glutamatergic signaling due to loss of GABAergic control may provide a mechanism by which TBI can give rise to post-traumatic epilepsy. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. Cortical networks dynamically emerge with the interplay of slow and fast oscillations for memory of a natural scene.

    Science.gov (United States)

    Mizuhara, Hiroaki; Sato, Naoyuki; Yamaguchi, Yoko

    2015-05-01

    Neural oscillations are crucial for revealing dynamic cortical networks and for serving as a possible mechanism of inter-cortical communication, especially in association with mnemonic function. The interplay of the slow and fast oscillations might dynamically coordinate the mnemonic cortical circuits to rehearse stored items during working memory retention. We recorded simultaneous EEG-fMRI during a working memory task involving a natural scene to verify whether the cortical networks emerge with the neural oscillations for memory of the natural scene. The slow EEG power was enhanced in association with the better accuracy of working memory retention, and accompanied cortical activities in the mnemonic circuits for the natural scene. Fast oscillation showed a phase-amplitude coupling to the slow oscillation, and its power was tightly coupled with the cortical activities for representing the visual images of natural scenes. The mnemonic cortical circuit with the slow neural oscillations would rehearse the distributed natural scene representations with the fast oscillation for working memory retention. The coincidence of the natural scene representations could be obtained by the slow oscillation phase to create a coherent whole of the natural scene in the working memory. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Characterization of Early Cortical Neural Network Development in Multiwell Microelectrode Array Plates

    Science.gov (United States)

    We examined the development of neural network activity using microelectrode array (MEA) recordings made in multi-well MEA plates (mwMEAs) over the first 12 days in vitro (DIV). In primary cortical cultures made from postnatal rats, action potential spiking activity was essentiall...

  3. Reconfiguration of Cortical Networks in MDD Uncovered by Multiscale Community Detection with fMRI.

    Science.gov (United States)

    He, Ye; Lim, Sol; Fortunato, Santo; Sporns, Olaf; Zhang, Lei; Qiu, Jiang; Xie, Peng; Zuo, Xi-Nian

    2018-04-01

    Major depressive disorder (MDD) is known to be associated with altered interactions between distributed brain regions. How these regional changes relate to the reorganization of cortical functional systems, and their modulation by antidepressant medication, is relatively unexplored. To identify changes in the community structure of cortical functional networks in MDD, we performed a multiscale community detection algorithm on resting-state functional connectivity networks of unmedicated MDD (uMDD) patients (n = 46), medicated MDD (mMDD) patients (n = 38), and healthy controls (n = 50), which yielded a spectrum of multiscale community partitions. we selected an optimal resolution level by identifying the most stable community partition for each group. uMDD and mMDD groups exhibited a similar reconfiguration of the community structure of the visual association and the default mode systems but showed different reconfiguration profiles in the frontoparietal control (FPC) subsystems. Furthermore, the central system (somatomotor/salience) and 3 frontoparietal subsystems showed strengthened connectivity with other communities in uMDD but, with the exception of 1 frontoparietal subsystem, returned to control levels in mMDD. These findings provide evidence for reconfiguration of specific cortical functional systems associated with MDD, as well as potential effects of medication in restoring disease-related network alterations, especially those of the FPC system.

  4. Visual cortical areas of the mouse: comparison of parcellation and network structure with primates

    Directory of Open Access Journals (Sweden)

    Marie-Eve eLaramée

    2015-01-01

    Full Text Available Brains have evolved to optimize sensory processing. In primates, complex cognitive tasks must be executed and evolution led to the development of large brains with many cortical areas. Rodents do not accomplish cognitive tasks of the same level of complexity as primates and remain with small brains both in relative and absolute terms. But is a small brain necessarily a simple brain? In this review, several aspects of the visual cortical networks have been compared between rodents and primates. The visual system has been used as a model to evaluate the level of complexity of the cortical circuits at the anatomical and functional levels. The evolutionary constraints are first presented in order to appreciate the rules for the development of the brain and its underlying circuits. The organization of sensory pathways, with their parallel and cross-modal circuits, is also examined. Other features of brain networks, often considered as imposing constraints on the development of underlying circuitry, are also discussed and their effect on the complexity of the mouse and primate brain are inspected. In this review, we discuss the common features of cortical circuits in mice and primates and see how these can be useful in understanding visual processing in these animals.

  5. Visual cortical areas of the mouse: comparison of parcellation and network structure with primates

    Science.gov (United States)

    Laramée, Marie-Eve; Boire, Denis

    2015-01-01

    Brains have evolved to optimize sensory processing. In primates, complex cognitive tasks must be executed and evolution led to the development of large brains with many cortical areas. Rodents do not accomplish cognitive tasks of the same level of complexity as primates and remain with small brains both in relative and absolute terms. But is a small brain necessarily a simple brain? In this review, several aspects of the visual cortical networks have been compared between rodents and primates. The visual system has been used as a model to evaluate the level of complexity of the cortical circuits at the anatomical and functional levels. The evolutionary constraints are first presented in order to appreciate the rules for the development of the brain and its underlying circuits. The organization of sensory pathways, with their parallel and cross-modal circuits, is also examined. Other features of brain networks, often considered as imposing constraints on the development of underlying circuitry, are also discussed and their effect on the complexity of the mouse and primate brain are inspected. In this review, we discuss the common features of cortical circuits in mice and primates and see how these can be useful in understanding visual processing in these animals. PMID:25620914

  6. Visual cortical areas of the mouse: comparison of parcellation and network structure with primates.

    Science.gov (United States)

    Laramée, Marie-Eve; Boire, Denis

    2014-01-01

    Brains have evolved to optimize sensory processing. In primates, complex cognitive tasks must be executed and evolution led to the development of large brains with many cortical areas. Rodents do not accomplish cognitive tasks of the same level of complexity as primates and remain with small brains both in relative and absolute terms. But is a small brain necessarily a simple brain? In this review, several aspects of the visual cortical networks have been compared between rodents and primates. The visual system has been used as a model to evaluate the level of complexity of the cortical circuits at the anatomical and functional levels. The evolutionary constraints are first presented in order to appreciate the rules for the development of the brain and its underlying circuits. The organization of sensory pathways, with their parallel and cross-modal circuits, is also examined. Other features of brain networks, often considered as imposing constraints on the development of underlying circuitry, are also discussed and their effect on the complexity of the mouse and primate brain are inspected. In this review, we discuss the common features of cortical circuits in mice and primates and see how these can be useful in understanding visual processing in these animals.

  7. Deep Residual Network Predicts Cortical Representation and Organization of Visual Features for Rapid Categorization.

    Science.gov (United States)

    Wen, Haiguang; Shi, Junxing; Chen, Wei; Liu, Zhongming

    2018-02-28

    The brain represents visual objects with topographic cortical patterns. To address how distributed visual representations enable object categorization, we established predictive encoding models based on a deep residual network, and trained them to predict cortical responses to natural movies. Using this predictive model, we mapped human cortical representations to 64,000 visual objects from 80 categories with high throughput and accuracy. Such representations covered both the ventral and dorsal pathways, reflected multiple levels of object features, and preserved semantic relationships between categories. In the entire visual cortex, object representations were organized into three clusters of categories: biological objects, non-biological objects, and background scenes. In a finer scale specific to each cluster, object representations revealed sub-clusters for further categorization. Such hierarchical clustering of category representations was mostly contributed by cortical representations of object features from middle to high levels. In summary, this study demonstrates a useful computational strategy to characterize the cortical organization and representations of visual features for rapid categorization.

  8. SynGAP regulates protein synthesis and homeostatic synaptic plasticity in developing cortical networks.

    Directory of Open Access Journals (Sweden)

    Chih-Chieh Wang

    Full Text Available Disrupting the balance between excitatory and inhibitory neurotransmission in the developing brain has been causally linked with intellectual disability (ID and autism spectrum disorders (ASD. Excitatory synapse strength is regulated in the central nervous system by controlling the number of postsynaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs. De novo genetic mutations of the synaptic GTPase-activating protein (SynGAP are associated with ID and ASD. SynGAP is enriched at excitatory synapses and genetic suppression of SynGAP increases excitatory synaptic strength. However, exactly how SynGAP acts to maintain synaptic AMPAR content is unclear. We show here that SynGAP limits excitatory synaptic strength, in part, by suppressing protein synthesis in cortical neurons. The data presented here from in vitro, rat and mouse cortical networks, demonstrate that regulation of translation by SynGAP involves ERK, mTOR, and the small GTP-binding protein Rheb. Furthermore, these data show that GluN2B-containing NMDARs and the cognitive kinase CaMKII act upstream of SynGAP and that this signaling cascade is required for proper translation-dependent homeostatic synaptic plasticity of excitatory synapses in developing cortical networks.

  9. Effects of Increasing Neuromuscular Electrical Stimulation Current Intensity on Cortical Sensorimotor Network Activation: A Time Domain fNIRS Study.

    Directory of Open Access Journals (Sweden)

    Makii Muthalib

    Full Text Available Neuroimaging studies have shown neuromuscular electrical stimulation (NMES-evoked movements activate regions of the cortical sensorimotor network, including the primary sensorimotor cortex (SMC, premotor cortex (PMC, supplementary motor area (SMA, and secondary somatosensory area (S2, as well as regions of the prefrontal cortex (PFC known to be involved in pain processing. The aim of this study, on nine healthy subjects, was to compare the cortical network activation profile and pain ratings during NMES of the right forearm wrist extensor muscles at increasing current intensities up to and slightly over the individual maximal tolerated intensity (MTI, and with reference to voluntary (VOL wrist extension movements. By exploiting the capability of the multi-channel time domain functional near-infrared spectroscopy technique to relate depth information to the photon time-of-flight, the cortical and superficial oxygenated (O2Hb and deoxygenated (HHb hemoglobin concentrations were estimated. The O2Hb and HHb maps obtained using the General Linear Model (NIRS-SPM analysis method, showed that the VOL and NMES-evoked movements significantly increased activation (i.e., increase in O2Hb and corresponding decrease in HHb in the cortical layer of the contralateral sensorimotor network (SMC, PMC/SMA, and S2. However, the level and area of contralateral sensorimotor network (including PFC activation was significantly greater for NMES than VOL. Furthermore, there was greater bilateral sensorimotor network activation with the high NMES current intensities which corresponded with increased pain ratings. In conclusion, our findings suggest that greater bilateral sensorimotor network activation profile with high NMES current intensities could be in part attributable to increased attentional/pain processing and to increased bilateral sensorimotor integration in these cortical regions.

  10. Effects of Increasing Neuromuscular Electrical Stimulation Current Intensity on Cortical Sensorimotor Network Activation: A Time Domain fNIRS Study.

    Science.gov (United States)

    Muthalib, Makii; Re, Rebecca; Zucchelli, Lucia; Perrey, Stephane; Contini, Davide; Caffini, Matteo; Spinelli, Lorenzo; Kerr, Graham; Quaresima, Valentina; Ferrari, Marco; Torricelli, Alessandro

    2015-01-01

    Neuroimaging studies have shown neuromuscular electrical stimulation (NMES)-evoked movements activate regions of the cortical sensorimotor network, including the primary sensorimotor cortex (SMC), premotor cortex (PMC), supplementary motor area (SMA), and secondary somatosensory area (S2), as well as regions of the prefrontal cortex (PFC) known to be involved in pain processing. The aim of this study, on nine healthy subjects, was to compare the cortical network activation profile and pain ratings during NMES of the right forearm wrist extensor muscles at increasing current intensities up to and slightly over the individual maximal tolerated intensity (MTI), and with reference to voluntary (VOL) wrist extension movements. By exploiting the capability of the multi-channel time domain functional near-infrared spectroscopy technique to relate depth information to the photon time-of-flight, the cortical and superficial oxygenated (O2Hb) and deoxygenated (HHb) hemoglobin concentrations were estimated. The O2Hb and HHb maps obtained using the General Linear Model (NIRS-SPM) analysis method, showed that the VOL and NMES-evoked movements significantly increased activation (i.e., increase in O2Hb and corresponding decrease in HHb) in the cortical layer of the contralateral sensorimotor network (SMC, PMC/SMA, and S2). However, the level and area of contralateral sensorimotor network (including PFC) activation was significantly greater for NMES than VOL. Furthermore, there was greater bilateral sensorimotor network activation with the high NMES current intensities which corresponded with increased pain ratings. In conclusion, our findings suggest that greater bilateral sensorimotor network activation profile with high NMES current intensities could be in part attributable to increased attentional/pain processing and to increased bilateral sensorimotor integration in these cortical regions.

  11. Increased parietal circuit-breaker activity in delta frequency band and abnormal delta/theta band connectivity in salience network in hyperacusis subjects.

    Directory of Open Access Journals (Sweden)

    Jae Joon Han

    Full Text Available Recent studies have suggested that hyperacusis, an abnormal hypersensitivity to ordinary environmental sounds, may be characterized by certain resting-state cortical oscillatory patterns, even with no sound stimulus. However, previous studies are limited in that most studied subjects with other comorbidities that may have affected cortical activity. In this regard, to assess ongoing cortical oscillatory activity in idiopathic hyperacusis patients with no comorbidities, we compared differences in resting-state cortical oscillatory patterns between five idiopathic hyperacusis subjects and five normal controls. The hyperacusis group demonstrated significantly higher electrical activity in the right auditory-related cortex for the gamma frequency band and left superior parietal lobule (SPL for the delta frequency band versus the control group. The hyperacusis group also showed significantly decreased functional connectivity between the left auditory cortex (AC and left orbitofrontal cortex (OFC, between the left AC and left subgenual anterior cingulate cortex (sgACC for the gamma band, and between the right insula and bilateral dorsal anterior cingulate cortex (dACC and between the left AC and left sgACC for the theta band versus the control group. The higher electrical activity in the SPL may indicate a readiness of "circuit-breaker" activity to shift attention to forthcoming sound stimuli. Also, because of the disrupted salience network, consisting of the dACC and insula, abnormally increased salience to all sound stimuli may emerge, as a consequence of decreased top-down control of the AC by the dACC and dysfunctional emotional weight attached to auditory stimuli by the OFC. Taken together, abnormally enhanced attention and salience to forthcoming sound stimuli may render hyperacusis subjects hyperresponsive to non-noxious auditory stimuli.

  12. Order-based representation in random networks of cortical neurons.

    Directory of Open Access Journals (Sweden)

    Goded Shahaf

    2008-11-01

    Full Text Available The wide range of time scales involved in neural excitability and synaptic transmission might lead to ongoing change in the temporal structure of responses to recurring stimulus presentations on a trial-to-trial basis. This is probably the most severe biophysical constraint on putative time-based primitives of stimulus representation in neuronal networks. Here we show that in spontaneously developing large-scale random networks of cortical neurons in vitro the order in which neurons are recruited following each stimulus is a naturally emerging representation primitive that is invariant to significant temporal changes in spike times. With a relatively small number of randomly sampled neurons, the information about stimulus position is fully retrievable from the recruitment order. The effective connectivity that makes order-based representation invariant to time warping is characterized by the existence of stations through which activity is required to pass in order to propagate further into the network. This study uncovers a simple invariant in a noisy biological network in vitro; its applicability under in vivo constraints remains to be seen.

  13. Network dynamics and its relationships to topology and coupling structure in excitable complex networks

    International Nuclear Information System (INIS)

    Zhang Li-Sheng; Mi Yuan-Yuan; Gu Wei-Feng; Hu Gang

    2014-01-01

    All dynamic complex networks have two important aspects, pattern dynamics and network topology. Discovering different types of pattern dynamics and exploring how these dynamics depend on network topologies are tasks of both great theoretical importance and broad practical significance. In this paper we study the oscillatory behaviors of excitable complex networks (ECNs) and find some interesting dynamic behaviors of ECNs in oscillatory probability, the multiplicity of oscillatory attractors, period distribution, and different types of oscillatory patterns (e.g., periodic, quasiperiodic, and chaotic). In these aspects, we further explore strikingly sharp differences among network dynamics induced by different topologies (random or scale-free topologies) and different interaction structures (symmetric or asymmetric couplings). The mechanisms behind these differences are explained physically. (interdisciplinary physics and related areas of science and technology)

  14. Resting-state EEG oscillatory dynamics in fragile X syndrome: abnormal functional connectivity and brain network organization.

    Directory of Open Access Journals (Sweden)

    Melle J W van der Molen

    Full Text Available Disruptions in functional connectivity and dysfunctional brain networks are considered to be a neurological hallmark of neurodevelopmental disorders. Despite the vast literature on functional brain connectivity in typical brain development, surprisingly few attempts have been made to characterize brain network integrity in neurodevelopmental disorders. Here we used resting-state EEG to characterize functional brain connectivity and brain network organization in eight males with fragile X syndrome (FXS and 12 healthy male controls. Functional connectivity was calculated based on the phase lag index (PLI, a non-linear synchronization index that is less sensitive to the effects of volume conduction. Brain network organization was assessed with graph theoretical analysis. A decrease in global functional connectivity was observed in FXS males for upper alpha and beta frequency bands. For theta oscillations, we found increased connectivity in long-range (fronto-posterior and short-range (frontal-frontal and posterior-posterior clusters. Graph theoretical analysis yielded evidence of increased path length in the theta band, suggesting that information transfer between brain regions is particularly impaired for theta oscillations in FXS. These findings are discussed in terms of aberrant maturation of neuronal oscillatory dynamics, resulting in an imbalance in excitatory and inhibitory neuronal circuit activity.

  15. Harnessing functional segregation across brain rhythms as a means to detect EEG oscillatory multiplexing during music listening

    Science.gov (United States)

    Adamos, Dimitrios A.; Laskaris, Nikolaos A.; Micheloyannis, Sifis

    2018-06-01

    Objective. Music, being a multifaceted stimulus evolving at multiple timescales, modulates brain function in a manifold way that encompasses not only the distinct stages of auditory perception, but also higher cognitive processes like memory and appraisal. Network theory is apparently a promising approach to describe the functional reorganization of brain oscillatory dynamics during music listening. However, the music induced changes have so far been examined within the functional boundaries of isolated brain rhythms. Approach. Using naturalistic music, we detected the functional segregation patterns associated with different cortical rhythms, as these were reflected in the surface electroencephalography (EEG) measurements. The emerged structure was compared across frequency bands to quantify the interplay among rhythms. It was also contrasted against the structure from the rest and noise listening conditions to reveal the specific components stemming from music listening. Our methodology includes an efficient graph-partitioning algorithm, which is further utilized for mining prototypical modular patterns, and a novel algorithmic procedure for identifying ‘switching nodes’ (i.e. recording sites) that consistently change module during music listening. Main results. Our results suggest the multiplex character of the music-induced functional reorganization and particularly indicate the dependence between the networks reconstructed from the δ and β H rhythms. This dependence is further justified within the framework of nested neural oscillations and fits perfectly within the context of recently introduced cortical entrainment to music. Significance. Complying with the contemporary trends towards a multi-scale examination of the brain network organization, our approach specifies the form of neural coordination among rhythms during music listening. Considering its computational efficiency, and in conjunction with the flexibility of in situ electroencephalography

  16. Cerebello-thalamo-cortical networks predict positive symptom progression in individuals at ultra-high risk for psychosis

    Directory of Open Access Journals (Sweden)

    Jessica A. Bernard

    2017-01-01

    Full Text Available Prospective longitudinal evaluation of adolescents at ultra-high-risk (UHR for the development of psychosis enables an enriched neurodevelopmental perspective of disease progression in the absence of many of the factors that typically confound research with formally psychotic patients (antipsychotic medications, drug/alcohol dependence. The cerebellum has been linked to cognitive dysfunction and symptom severity in schizophrenia and recent work from our team suggests that it is a promising target for investigation in UHR individuals as well. However, the cerebellum and cerebello-thalamo-cortical networks have not been investigated developmentally or with respect to disease progression in this critical population. Further, to date, the types of longitudinal multimodal connectivity studies that would substantially inform our understanding of this area have not yet been conducted. In the present investigation 26 UHR and 24 healthy control adolescents were administered structured clinical interviews and scanned at baseline and then again at 12-month time points to investigate both functional and structural connectivity development of cerebello-thalamo-cortical networks in conjunction with symptom progression. Our results provide evidence of abnormal functional and structural cerebellar network development in the UHR group. Crucially, we also found that cerebello-thalamo-cortical network development and connectivity at baseline are associated with positive symptom course, suggesting that cerebellar networks may be a biomarker of disease progression. Together, these findings provide support for neurodevelopmental models of psychotic disorders and suggest that the cerebellum and respective networks with the cortex may be especially important for elucidating the pathophysiology of psychosis and highlighting novel treatment targets.

  17. Human brain networks function in connectome-specific harmonic waves.

    Science.gov (United States)

    Atasoy, Selen; Donnelly, Isaac; Pearson, Joel

    2016-01-21

    A key characteristic of human brain activity is coherent, spatially distributed oscillations forming behaviour-dependent brain networks. However, a fundamental principle underlying these networks remains unknown. Here we report that functional networks of the human brain are predicted by harmonic patterns, ubiquitous throughout nature, steered by the anatomy of the human cerebral cortex, the human connectome. We introduce a new technique extending the Fourier basis to the human connectome. In this new frequency-specific representation of cortical activity, that we call 'connectome harmonics', oscillatory networks of the human brain at rest match harmonic wave patterns of certain frequencies. We demonstrate a neural mechanism behind the self-organization of connectome harmonics with a continuous neural field model of excitatory-inhibitory interactions on the connectome. Remarkably, the critical relation between the neural field patterns and the delicate excitation-inhibition balance fits the neurophysiological changes observed during the loss and recovery of consciousness.

  18. Spatially structured oscillations in a two-dimensional excitatory neuronal network with synaptic depression

    KAUST Repository

    Kilpatrick, Zachary P.

    2009-10-29

    We study the spatiotemporal dynamics of a two-dimensional excitatory neuronal network with synaptic depression. Coupling between populations of neurons is taken to be nonlocal, while depression is taken to be local and presynaptic. We show that the network supports a wide range of spatially structured oscillations, which are suggestive of phenomena seen in cortical slice experiments and in vivo. The particular form of the oscillations depends on initial conditions and the level of background noise. Given an initial, spatially localized stimulus, activity evolves to a spatially localized oscillating core that periodically emits target waves. Low levels of noise can spontaneously generate several pockets of oscillatory activity that interact via their target patterns. Periodic activity in space can also organize into spiral waves, provided that there is some source of rotational symmetry breaking due to external stimuli or noise. In the high gain limit, no oscillatory behavior exists, but a transient stimulus can lead to a single, outward propagating target wave. © Springer Science + Business Media, LLC 2009.

  19. Spatially structured oscillations in a two-dimensional excitatory neuronal network with synaptic depression

    KAUST Repository

    Kilpatrick, Zachary P.; Bressloff, Paul C.

    2009-01-01

    We study the spatiotemporal dynamics of a two-dimensional excitatory neuronal network with synaptic depression. Coupling between populations of neurons is taken to be nonlocal, while depression is taken to be local and presynaptic. We show that the network supports a wide range of spatially structured oscillations, which are suggestive of phenomena seen in cortical slice experiments and in vivo. The particular form of the oscillations depends on initial conditions and the level of background noise. Given an initial, spatially localized stimulus, activity evolves to a spatially localized oscillating core that periodically emits target waves. Low levels of noise can spontaneously generate several pockets of oscillatory activity that interact via their target patterns. Periodic activity in space can also organize into spiral waves, provided that there is some source of rotational symmetry breaking due to external stimuli or noise. In the high gain limit, no oscillatory behavior exists, but a transient stimulus can lead to a single, outward propagating target wave. © Springer Science + Business Media, LLC 2009.

  20. Population spikes in cortical networks during different functional states.

    Directory of Open Access Journals (Sweden)

    Shirley eMark

    2012-07-01

    Full Text Available Brain computational challenges vary between behavioral states. Engaged animals react according to incoming sensory information, while in relaxed and sleeping states consolidation of the learned information is believed to take place. Different states are characterized by different forms of cortical activity. We study a possible neuronal mechanism for generating these diverse dynamics and suggest their possible functional significance. Previous studies demonstrated that brief synchronized increase in a neural firing (Population Spikes can be generated in homogenous recurrent neural networks with short-term synaptic depression. Here we consider more realistic networks with clustered architecture. We show that the level of synchronization in neural activity can be controlled smoothly by network parameters. The network shifts from asynchronous activity to a regime in which clusters synchronized separately, then, the synchronization between the clusters increases gradually to fully synchronized state. We examine the effects of different synchrony levels on the transmission of information by the network. We find that the regime of intermediate synchronization is preferential for the flow of information between sparsely connected areas. Based on these results, we suggest that the regime of intermediate synchronization corresponds to engaged behavioral state of the animal, while global synchronization is exhibited during relaxed and sleeping states.

  1. microRNA as a potential vector for the propagation of robustness in protein expression and oscillatory dynamics within a ceRNA network.

    Directory of Open Access Journals (Sweden)

    Claude Gérard

    Full Text Available microRNAs (miRNAs are small noncoding RNAs that are important post-transcriptional regulators of gene expression. miRNAs can induce thresholds in protein synthesis. Such thresholds in protein output can be also achieved by oligomerization of transcription factors (TF for the control of gene expression. First, we propose a minimal model for protein expression regulated by miRNA and by oligomerization of TF. We show that miRNA and oligomerization of TF generate a buffer, which increases the robustness of protein output towards molecular noise as well as towards random variation of kinetics parameters. Next, we extend the model by considering that the same miRNA can bind to multiple messenger RNAs, which accounts for the dynamics of a minimal competing endogenous RNAs (ceRNAs network. The model shows that, through common miRNA regulation, TF can control the expression of all proteins formed by the ceRNA network, even if it drives the expression of only one gene in the network. The model further suggests that the threshold in protein synthesis mediated by the oligomerization of TF can be propagated to the other genes, which can increase the robustness of the expression of all genes in such ceRNA network. Furthermore, we show that a miRNA could increase the time delay of a "Goodwin-like" oscillator model, which may favor the occurrence of oscillations of large amplitude. This result predicts important roles of miRNAs in the control of the molecular mechanisms leading to the emergence of biological rhythms. Moreover, a model for the latter oscillator embedded in a ceRNA network indicates that the oscillatory behavior can be propagated, via the shared miRNA, to all proteins formed by such ceRNA network. Thus, by means of computational models, we show that miRNAs could act as vectors allowing the propagation of robustness in protein synthesis as well as oscillatory behaviors within ceRNA networks.

  2. Basal ganglia and cortical networks for sequential ordering and rhythm of complex movements

    Directory of Open Access Journals (Sweden)

    Jeffery G. Bednark

    2015-07-01

    Full Text Available Voluntary actions require the concurrent engagement and coordinated control of complex temporal (e.g. rhythm and ordinal motor processes. Using high-resolution functional magnetic resonance imaging (fMRI and multi-voxel pattern analysis (MVPA, we sought to determine the degree to which these complex motor processes are dissociable in basal ganglia and cortical networks. We employed three different finger-tapping tasks that differed in the demand on the sequential temporal rhythm or sequential ordering of submovements. Our results demonstrate that sequential rhythm and sequential order tasks were partially dissociable based on activation differences. The sequential rhythm task activated a widespread network centered around the SMA and basal-ganglia regions including the dorsomedial putamen and caudate nucleus, while the sequential order task preferentially activated a fronto-parietal network. There was also extensive overlap between sequential rhythm and sequential order tasks, with both tasks commonly activating bilateral premotor, supplementary motor, and superior/inferior parietal cortical regions, as well as regions of the caudate/putamen of the basal ganglia and the ventro-lateral thalamus. Importantly, within the cortical regions that were active for both complex movements, MVPA could accurately classify different patterns of activation for the sequential rhythm and sequential order tasks. In the basal ganglia, however, overlapping activation for the sequential rhythm and sequential order tasks, which was found in classic motor circuits of the putamen and ventro-lateral thalamus, could not be accurately differentiated by MVPA. Overall, our results highlight the convergent architecture of the motor system, where complex motor information that is spatially distributed in the cortex converges into a more compact representation in the basal ganglia.

  3. Increased cortical-limbic anatomical network connectivity in major depression revealed by diffusion tensor imaging.

    Directory of Open Access Journals (Sweden)

    Peng Fang

    Full Text Available Magnetic resonance imaging studies have reported significant functional and structural differences between depressed patients and controls. Little attention has been given, however, to the abnormalities in anatomical connectivity in depressed patients. In the present study, we aim to investigate the alterations in connectivity of whole-brain anatomical networks in those suffering from major depression by using machine learning approaches. Brain anatomical networks were extracted from diffusion magnetic resonance images obtained from both 22 first-episode, treatment-naive adults with major depressive disorder and 26 matched healthy controls. Using machine learning approaches, we differentiated depressed patients from healthy controls based on their whole-brain anatomical connectivity patterns and identified the most discriminating features that represent between-group differences. Classification results showed that 91.7% (patients=86.4%, controls=96.2%; permutation test, p<0.0001 of subjects were correctly classified via leave-one-out cross-validation. Moreover, the strengths of all the most discriminating connections were increased in depressed patients relative to the controls, and these connections were primarily located within the cortical-limbic network, especially the frontal-limbic network. These results not only provide initial steps toward the development of neurobiological diagnostic markers for major depressive disorder, but also suggest that abnormal cortical-limbic anatomical networks may contribute to the anatomical basis of emotional dysregulation and cognitive impairments associated with this disease.

  4. Oscillatory Dynamics in the Frontoparietal Attention Network during Sustained Attention in the Ferret

    Directory of Open Access Journals (Sweden)

    Kristin K. Sellers

    2016-09-01

    Full Text Available Sustained attention requires the coordination of neural activity across multiple cortical areas in the frontoparietal network, in particular the prefrontal cortex (PFC and posterior parietal cortex (PPC. Previous work has demonstrated that activity in these brain regions is coordinated by neuronal oscillations of the local field potential (LFP. However, the underlying coordination of activity in terms of organization of single unit (SU spiking activity has remained poorly understood, particularly in the freely moving animal. We found that long-range functional connectivity between anatomically connected PFC and PPC was mediated by oscillations in the theta frequency band. SU activity in PFC was phase locked to theta oscillations in PPC, and spiking activity in PFC and PPC was locked to local high-gamma activity. Together, our results support a model in which frequency-specific synchronization mediates functional connectivity between and within PFC and PPC of the frontoparietal attention network in the freely moving animal.

  5. A biophysical model of the cortex-basal ganglia-thalamus network in the 6-OHDA lesioned rat model of Parkinson's disease.

    Science.gov (United States)

    Kumaravelu, Karthik; Brocker, David T; Grill, Warren M

    2016-04-01

    Electrical stimulation of sub-cortical brain regions (the basal ganglia), known as deep brain stimulation (DBS), is an effective treatment for Parkinson's disease (PD). Chronic high frequency (HF) DBS in the subthalamic nucleus (STN) or globus pallidus interna (GPi) reduces motor symptoms including bradykinesia and tremor in patients with PD, but the therapeutic mechanisms of DBS are not fully understood. We developed a biophysical network model comprising of the closed loop cortical-basal ganglia-thalamus circuit representing the healthy and parkinsonian rat brain. The network properties of the model were validated by comparing responses evoked in basal ganglia (BG) nuclei by cortical (CTX) stimulation to published experimental results. A key emergent property of the model was generation of low-frequency network oscillations. Consistent with their putative pathological role, low-frequency oscillations in model BG neurons were exaggerated in the parkinsonian state compared to the healthy condition. We used the model to quantify the effectiveness of STN DBS at different frequencies in suppressing low-frequency oscillatory activity in GPi. Frequencies less than 40 Hz were ineffective, low-frequency oscillatory power decreased gradually for frequencies between 50 Hz and 130 Hz, and saturated at frequencies higher than 150 Hz. HF STN DBS suppressed pathological oscillations in GPe/GPi both by exciting and inhibiting the firing in GPe/GPi neurons, and the number of GPe/GPi neurons influenced was greater for HF stimulation than low-frequency stimulation. Similar to the frequency dependent suppression of pathological oscillations, STN DBS also normalized the abnormal GPi spiking activity evoked by CTX stimulation in a frequency dependent fashion with HF being the most effective. Therefore, therapeutic HF STN DBS effectively suppresses pathological activity by influencing the activity of a greater proportion of neurons in the output nucleus of the BG.

  6. Selective Reduction of AMPA Currents onto Hippocampal Interneurons Impairs Network Oscillatory Activity

    Science.gov (United States)

    Le Magueresse, Corentin; Monyer, Hannah

    2012-01-01

    Reduction of excitatory currents onto GABAergic interneurons in the forebrain results in impaired spatial working memory and altered oscillatory network patterns in the hippocampus. Whether this phenotype is caused by an alteration in hippocampal interneurons is not known because most studies employed genetic manipulations affecting several brain regions. Here we performed viral injections in genetically modified mice to ablate the GluA4 subunit of the AMPA receptor in the hippocampus (GluA4HC−/− mice), thereby selectively reducing AMPA receptor-mediated currents onto a subgroup of hippocampal interneurons expressing GluA4. This regionally selective manipulation led to a strong spatial working memory deficit while leaving reference memory unaffected. Ripples (125–250 Hz) in the CA1 region of GluA4HC−/− mice had larger amplitude, slower frequency and reduced rate of occurrence. These changes were associated with an increased firing rate of pyramidal cells during ripples. The spatial selectivity of hippocampal pyramidal cells was comparable to that of controls in many respects when assessed during open field exploration and zigzag maze running. However, GluA4 ablation caused altered modulation of firing rate by theta oscillations in both interneurons and pyramidal cells. Moreover, the correlation between the theta firing phase of pyramidal cells and position was weaker in GluA4HC−/− mice. These results establish the involvement of AMPA receptor-mediated currents onto hippocampal interneurons for ripples and theta oscillations, and highlight potential cellular and network alterations that could account for the altered working memory performance. PMID:22675480

  7. Directed cortical information flow during human object recognition: analyzing induced EEG gamma-band responses in brain's source space.

    Directory of Open Access Journals (Sweden)

    Gernot G Supp

    Full Text Available The increase of induced gamma-band responses (iGBRs; oscillations >30 Hz elicited by familiar (meaningful objects is well established in electroencephalogram (EEG research. This frequency-specific change at distinct locations is thought to indicate the dynamic formation of local neuronal assemblies during the activation of cortical object representations. As analytically power increase is just a property of a single location, phase-synchrony was introduced to investigate the formation of large-scale networks between spatially distant brain sites. However, classical phase-synchrony reveals symmetric, pair-wise correlations and is not suited to uncover the directionality of interactions. Here, we investigated the neural mechanism of visual object processing by means of directional coupling analysis going beyond recording sites, but rather assessing the directionality of oscillatory interactions between brain areas directly. This study is the first to identify the directionality of oscillatory brain interactions in source space during human object recognition and suggests that familiar, but not unfamiliar, objects engage widespread reciprocal information flow. Directionality of cortical information-flow was calculated based upon an established Granger-Causality coupling-measure (partial-directed coherence; PDC using autoregressive modeling. To enable comparison with previous coupling studies lacking directional information, phase-locking analysis was applied, using wavelet-based signal decompositions. Both, autoregressive modeling and wavelet analysis, revealed an augmentation of iGBRs during the presentation of familiar objects relative to unfamiliar controls, which was localized to inferior-temporal, superior-parietal and frontal brain areas by means of distributed source reconstruction. The multivariate analysis of PDC evaluated each possible direction of brain interaction and revealed widespread reciprocal information-transfer during familiar

  8. The role of high-frequency oscillatory activity in reward processing and learning.

    Science.gov (United States)

    Marco-Pallarés, Josep; Münte, Thomas F; Rodríguez-Fornells, Antoni

    2015-02-01

    Oscillatory activity has been proposed as a key mechanism in the integration of brain activity of distant structures. Particularly, high frequency brain oscillatory activity in the beta and gamma range has received increasing interest in the domains of attention and memory. In addition, a number of recent studies have revealed an increase of beta-gamma activity (20-35 Hz) after unexpected or relevant positive reward outcomes. In the present manuscript we review the literature on this phenomenon and we propose that this activity is a brain signature elicited by unexpected positive outcomes in order to transmit a fast motivational value signal to the reward network. In addition, we hypothesize that beta-gamma oscillatory activity indexes the interaction between attentional and emotional systems, and that it directly reflects the appearance of unexpected positive rewards in learning-related contexts. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Functional characterization of GABAA receptor-mediated modulation of cortical neuron network activity in microelectrode array recordings

    DEFF Research Database (Denmark)

    Bader, Benjamin M; Steder, Anne; Klein, Anders Bue

    2017-01-01

    The numerous γ-aminobutyric acid type A receptor (GABAAR) subtypes are differentially expressed and mediate distinct functions at neuronal level. In this study we have investigated GABAAR-mediated modulation of the spontaneous activity patterns of primary neuronal networks from murine frontal...... of the information extractable from the MEA recordings offers interesting insights into the contributions of various GABAAR subtypes/subgroups to cortical network activity and the putative functional interplay between these receptors in these neurons....... cortex by characterizing the effects induced by a wide selection of pharmacological tools at a plethora of activity parameters in microelectrode array (MEA) recordings. The basic characteristics of the primary cortical neurons used in the recordings were studied in some detail, and the expression levels...

  10. Dynamic Causal Modeling of the Cortical Responses to Wrist Perturbations

    Directory of Open Access Journals (Sweden)

    Yuan Yang

    2017-09-01

    Full Text Available Mechanical perturbations applied to the wrist joint typically evoke a stereotypical sequence of cortical and muscle responses. The early cortical responses (<100 ms are thought be involved in the “rapid” transcortical reaction to the perturbation while the late cortical responses (>100 ms are related to the “slow” transcortical reaction. Although previous studies indicated that both responses involve the primary motor cortex, it remains unclear if both responses are engaged by the same effective connectivity in the cortical network. To answer this question, we investigated the effective connectivity cortical network after a “ramp-and-hold” mechanical perturbation, in both the early (<100 ms and late (>100 ms periods, using dynamic causal modeling. Ramp-and-hold perturbations were applied to the wrist joint while the subject maintained an isometric wrist flexion. Cortical activity was recorded using a 128-channel electroencephalogram (EEG. We investigated how the perturbation modulated the effective connectivity for the early and late periods. Bayesian model comparisons suggested that different effective connectivity networks are engaged in these two periods. For the early period, we found that only a few cortico-cortical connections were modulated, while more complicated connectivity was identified in the cortical network during the late period with multiple modulated cortico-cortical connections. The limited early cortical network likely allows for a rapid muscle response without involving high-level cognitive processes, while the complexity of the late network may facilitate coordinated responses.

  11. Reducing a cortical network to a Potts model yields storage capacity estimates

    Science.gov (United States)

    Naim, Michelangelo; Boboeva, Vezha; Kang, Chol Jun; Treves, Alessandro

    2018-04-01

    An autoassociative network of Potts units, coupled via tensor connections, has been proposed and analysed as an effective model of an extensive cortical network with distinct short- and long-range synaptic connections, but it has not been clarified in what sense it can be regarded as an effective model. We draw here the correspondence between the two, which indicates the need to introduce a local feedback term in the reduced model, i.e. in the Potts network. An effective model allows the study of phase transitions. As an example, we study the storage capacity of the Potts network with this additional term, the local feedback w, which contributes to drive the activity of the network towards one of the stored patterns. The storage capacity calculation, performed using replica tools, is limited to fully connected networks, for which a Hamiltonian can be defined. To extend the results to the case of intermediate partial connectivity, we also derive the self-consistent signal-to-noise analysis for the Potts network; and finally we discuss the implications for semantic memory in humans.

  12. Structural Covariance Network of Cortical Gyrification in Benign Childhood Epilepsy with Centrotemporal Spikes

    Directory of Open Access Journals (Sweden)

    Lin Jiang

    2018-02-01

    Full Text Available Benign childhood epilepsy with centrotemporal spikes (BECTS is associated with cognitive and language problems. According to recent studies, disruptions in brain structure and function in children with BECTS are beyond a Rolandic focus, suggesting atypical cortical development. However, previous studies utilizing surface-based metrics (e.g., cortical gyrification and their structural covariance networks at high resolution in children with BECTS are limited. Twenty-six children with BECTS (15 males/11 females; 10.35 ± 2.91 years and 26 demographically matched controls (15 males/11 females; 11.35 ± 2.51 years were included in this study and subjected to high-resolution structural brain MRI scans. The gyrification index was calculated, and structural brain networks were reconstructed based on the covariance of the cortical folding. In the BECTS group, significantly increased gyrification was observed in the bilateral Sylvain fissures and the left pars triangularis, temporal, rostral middle frontal, lateral orbitofrontal, and supramarginal areas (cluster-corrected p < 0.05. Global brain network measures were not significantly different between the groups; however, the nodal alterations were most pronounced in the insular, frontal, temporal, and occipital lobes (FDR corrected, p < 0.05. In children with BECTS, brain hubs increased in number and tended to shift to sensorimotor and temporal areas. Furthermore, we observed significantly positive relationships between the gyrification index and age (vertex p < 0.001, cluster-level correction as well as duration of epilepsy (vertex p < 0.001, cluster-level correction. Our results suggest that BECTS may be a condition that features abnormal over-folding of the Sylvian fissures and uncoordinated development of structural wiring, disrupted nodal profiles of centrality, and shifted hub distribution, which potentially represents a neuroanatomical hallmark of BECTS in the

  13. Differential Motor and Prefrontal Cerebello-Cortical Network Development: Evidence from Multimodal Neuroimaging

    Science.gov (United States)

    Bernard, Jessica A.; Orr, Joseph M.; Mittal, Vijay A.

    2015-01-01

    While our understanding of cerebellar structural development through adolescence and young adulthood has expanded, we still lack knowledge of the developmental patterns of cerebellar networks during this critical portion of the lifespan. Volume in lateral posterior cerebellar regions associated with cognition and the prefrontal cortex develops more slowly, reaching their peak volume in adulthood, particularly as compared to motor Lobule V. We predicted that resting state functional connectivity of the lateral posterior regions would show a similar pattern of development during adolescence and young adulthood. That is, we expected to see changes over time in Crus I and Crus II connectivity with the cortex, but no changes in Lobule V connectivity. Additionally, we were interested in how structural connectivity changes in cerebello-thalamo-cortical white matter are related to changes in functional connectivity. A sample of 23 individuals between 12 and 21 years old underwent neuroimaging scans at baseline and 12-months later. Functional networks of Crus I and Crus II showed significant connectivity decreases over 12-months, though there were no differences in Lobule V. Furthermore, these functional connectivity changes were correlated with increases in white matter structural integrity in the corresponding cerebello-thalamo-cortical white matter tract. We suggest that these functional network changes are due to both later pruning in the prefrontal cortex as well as further development of the white matter tracts linking these brain regions. PMID:26391125

  14. Cortical entrainment to music and its modulation by expertise.

    Science.gov (United States)

    Doelling, Keith B; Poeppel, David

    2015-11-10

    Recent studies establish that cortical oscillations track naturalistic speech in a remarkably faithful way. Here, we test whether such neural activity, particularly low-frequency (music and whether experience modifies such a cortical phenomenon. Music of varying tempi was used to test entrainment at different rates. In three magnetoencephalography experiments, we recorded from nonmusicians, as well as musicians with varying years of experience. Recordings from nonmusicians demonstrate cortical entrainment that tracks musical stimuli over a typical range of tempi, but not at tempi below 1 note per second. Importantly, the observed entrainment correlates with performance on a concurrent pitch-related behavioral task. In contrast, the data from musicians show that entrainment is enhanced by years of musical training, at all presented tempi. This suggests a bidirectional relationship between behavior and cortical entrainment, a phenomenon that has not previously been reported. Additional analyses focus on responses in the beta range (∼15-30 Hz)-often linked to delta activity in the context of temporal predictions. Our findings provide evidence that the role of beta in temporal predictions scales to the complex hierarchical rhythms in natural music and enhances processing of musical content. This study builds on important findings on brainstem plasticity and represents a compelling demonstration that cortical neural entrainment is tightly coupled to both musical training and task performance, further supporting a role for cortical oscillatory activity in music perception and cognition.

  15. Oscillatory mechanisms of process binding in memory.

    Science.gov (United States)

    Klimesch, Wolfgang; Freunberger, Roman; Sauseng, Paul

    2010-06-01

    A central topic in cognitive neuroscience is the question, which processes underlie large scale communication within and between different neural networks. The basic assumption is that oscillatory phase synchronization plays an important role for process binding--the transient linking of different cognitive processes--which may be considered a special type of large scale communication. We investigate this question for memory processes on the basis of different types of oscillatory synchronization mechanisms. The reviewed findings suggest that theta and alpha phase coupling (and phase reorganization) reflect control processes in two large memory systems, a working memory and a complex knowledge system that comprises semantic long-term memory. It is suggested that alpha phase synchronization may be interpreted in terms of processes that coordinate top-down control (a process guided by expectancy to focus on relevant search areas) and access to memory traces (a process leading to the activation of a memory trace). An analogous interpretation is suggested for theta oscillations and the controlled access to episodic memories. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  16. Stability switches, oscillatory multistability, and spatio-temporal patterns of nonlinear oscillations in recurrently delay coupled neural networks.

    Science.gov (United States)

    Song, Yongli; Makarov, Valeri A; Velarde, Manuel G

    2009-08-01

    A model of time-delay recurrently coupled spatially segregated neural assemblies is here proposed. We show that it operates like some of the hierarchical architectures of the brain. Each assembly is a neural network with no delay in the local couplings between the units. The delay appears in the long range feedforward and feedback inter-assemblies communications. Bifurcation analysis of a simple four-units system in the autonomous case shows the richness of the dynamical behaviors in a biophysically plausible parameter region. We find oscillatory multistability, hysteresis, and stability switches of the rest state provoked by the time delay. Then we investigate the spatio-temporal patterns of bifurcating periodic solutions by using the symmetric local Hopf bifurcation theory of delay differential equations and derive the equation describing the flow on the center manifold that enables us determining the direction of Hopf bifurcations and stability of the bifurcating periodic orbits. We also discuss computational properties of the system due to the delay when an external drive of the network mimicks external sensory input.

  17. Network Events on Multiple Space and Time Scales in Cultured Neural Networks and in a Stochastic Rate Model.

    Directory of Open Access Journals (Sweden)

    Guido Gigante

    2015-11-01

    Full Text Available Cortical networks, in-vitro as well as in-vivo, can spontaneously generate a variety of collective dynamical events such as network spikes, UP and DOWN states, global oscillations, and avalanches. Though each of them has been variously recognized in previous works as expression of the excitability of the cortical tissue and the associated nonlinear dynamics, a unified picture of the determinant factors (dynamical and architectural is desirable and not yet available. Progress has also been partially hindered by the use of a variety of statistical measures to define the network events of interest. We propose here a common probabilistic definition of network events that, applied to the firing activity of cultured neural networks, highlights the co-occurrence of network spikes, power-law distributed avalanches, and exponentially distributed 'quasi-orbits', which offer a third type of collective behavior. A rate model, including synaptic excitation and inhibition with no imposed topology, synaptic short-term depression, and finite-size noise, accounts for all these different, coexisting phenomena. We find that their emergence is largely regulated by the proximity to an oscillatory instability of the dynamics, where the non-linear excitable behavior leads to a self-amplification of activity fluctuations over a wide range of scales in space and time. In this sense, the cultured network dynamics is compatible with an excitation-inhibition balance corresponding to a slightly sub-critical regime. Finally, we propose and test a method to infer the characteristic time of the fatigue process, from the observed time course of the network's firing rate. Unlike the model, possessing a single fatigue mechanism, the cultured network appears to show multiple time scales, signalling the possible coexistence of different fatigue mechanisms.

  18. Magnetoencephalography from signals to dynamic cortical networks

    CERN Document Server

    Aine, Cheryl

    2014-01-01

    "Magnetoencephalography (MEG) provides a time-accurate view into human brain function. The concerted action of neurons generates minute magnetic fields that can be detected---totally noninvasively---by sensitive multichannel magnetometers. The obtained millisecond accuracycomplements information obtained by other modern brain-imaging tools. Accurate timing is quintessential in normal brain function, often distorted in brain disorders. The noninvasiveness and time-sensitivityof MEG are great assets to developmental studies, as well. This multiauthored book covers an ambitiously wide range of MEG research from introductory to advanced level, from sensors to signals, and from focal sources to the dynamics of cortical networks. Written by active practioners of this multidisciplinary field, the book contains tutorials for newcomers and chapters of new challenging methods and emerging technologies to advanced MEG users. The reader will obtain a firm grasp of the possibilities of MEG in the study of audition, vision...

  19. Cortical Network Models of Firing Rates in the Resting and Active States Predict BOLD Responses.

    Directory of Open Access Journals (Sweden)

    Maxwell R Bennett

    Full Text Available Measurements of blood oxygenation level dependent (BOLD signals have produced some surprising observations. One is that their amplitude is proportional to the entire activity in a region of interest and not just the fluctuations in this activity. Another is that during sleep and anesthesia the average BOLD correlations between regions of interest decline as the activity declines. Mechanistic explanations of these phenomena are described here using a cortical network model consisting of modules with excitatory and inhibitory neurons, taken as regions of cortical interest, each receiving excitatory inputs from outside the network, taken as subcortical driving inputs in addition to extrinsic (intermodular connections, such as provided by associational fibers. The model shows that the standard deviation of the firing rate is proportional to the mean frequency of the firing when the extrinsic connections are decreased, so that the mean BOLD signal is proportional to both as is observed experimentally. The model also shows that if these extrinsic connections are decreased or the frequency of firing reaching the network from the subcortical driving inputs is decreased, or both decline, there is a decrease in the mean firing rate in the modules accompanied by decreases in the mean BOLD correlations between the modules, consistent with the observed changes during NREM sleep and under anesthesia. Finally, the model explains why a transient increase in the BOLD signal in a cortical area, due to a transient subcortical input, gives rises to responses throughout the cortex as observed, with these responses mediated by the extrinsic (intermodular connections.

  20. Brain Oscillatory and Hemodynamic Activity in a Bimanual Coordination Task Following Transcranial Alternating Current Stimulation (tACS: A Combined EEG-fNIRS Study

    Directory of Open Access Journals (Sweden)

    Alisa Berger

    2018-04-01

    Full Text Available Motor control is associated with synchronized oscillatory activity at alpha (8–12 Hz and beta (12–30 Hz frequencies in a cerebello-thalamo-cortical network. Previous studies demonstrated that transcranial alternating current stimulation (tACS is capable of entraining ongoing oscillatory activity while also modulating motor control. However, the modulatory effects of tACS on both motor control and its underlying electro- and neurophysiological mechanisms remain ambiguous. Thus, the purpose of this study was to contribute to gathering neurophysiological knowledge regarding tACS effects by investigating the after-effects of 10 Hz tACS and 20 Hz tACS at parietal brain areas on bimanual coordination and its concurrent oscillatory and hemodynamic activity. Twenty-four right-handed healthy volunteers (12 females aged between 18 and 30 (M = 22.35 ± 3.62 participated in the study and performed a coordination task requiring bimanual movements. Concurrent to bimanual motor training, participants received either 10 Hz tACS, 20 Hz tACS or a sham stimulation over the parietal cortex (at P3/P4 electrode positions for 20 min via small gel electrodes (3,14 cm2 Ag/AgCl, amperage = 1 mA. Before and three time-points after tACS (immediately, 30 min and 1 day, bimanual coordination performance was assessed. Oscillatory activities were measured by electroencephalography (EEG and hemodynamic changes were examined using functional near-infrared spectroscopy (fNIRS. Improvements of bimanual coordination performance were not differently between groups, thus, no tACS-specific effect on bimanual coordination performance emerged. However, physiological measures during the task revealed significant increases in parietal alpha activity immediately following 10 Hz tACS and 20 Hz tACS which were accompanied by significant decreases of Hboxy concentration in the right hemispheric motor cortex compared to the sham group. Based on the physiological responses, we conclude that

  1. Brain Oscillatory and Hemodynamic Activity in a Bimanual Coordination Task Following Transcranial Alternating Current Stimulation (tACS): A Combined EEG-fNIRS Study.

    Science.gov (United States)

    Berger, Alisa; Pixa, Nils H; Steinberg, Fabian; Doppelmayr, Michael

    2018-01-01

    Motor control is associated with synchronized oscillatory activity at alpha (8-12 Hz) and beta (12-30 Hz) frequencies in a cerebello-thalamo-cortical network. Previous studies demonstrated that transcranial alternating current stimulation (tACS) is capable of entraining ongoing oscillatory activity while also modulating motor control. However, the modulatory effects of tACS on both motor control and its underlying electro- and neurophysiological mechanisms remain ambiguous. Thus, the purpose of this study was to contribute to gathering neurophysiological knowledge regarding tACS effects by investigating the after-effects of 10 Hz tACS and 20 Hz tACS at parietal brain areas on bimanual coordination and its concurrent oscillatory and hemodynamic activity. Twenty-four right-handed healthy volunteers (12 females) aged between 18 and 30 ( M = 22.35 ± 3.62) participated in the study and performed a coordination task requiring bimanual movements. Concurrent to bimanual motor training, participants received either 10 Hz tACS, 20 Hz tACS or a sham stimulation over the parietal cortex (at P3/P4 electrode positions) for 20 min via small gel electrodes (3,14 cm 2 Ag/AgCl, amperage = 1 mA). Before and three time-points after tACS (immediately, 30 min and 1 day), bimanual coordination performance was assessed. Oscillatory activities were measured by electroencephalography (EEG) and hemodynamic changes were examined using functional near-infrared spectroscopy (fNIRS). Improvements of bimanual coordination performance were not differently between groups, thus, no tACS-specific effect on bimanual coordination performance emerged. However, physiological measures during the task revealed significant increases in parietal alpha activity immediately following 10 Hz tACS and 20 Hz tACS which were accompanied by significant decreases of Hboxy concentration in the right hemispheric motor cortex compared to the sham group. Based on the physiological responses, we conclude that t

  2. Modeling oscillatory dynamics in brain microcircuits as a way to help uncover neurological disease mechanisms: A proposal

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, F. K. [Toronto Western Research Institute, University Health Network, Krembil Discovery Tower, Toronto Western Hospital, 60 Leonard Street, 7th floor, 7KD411, Toronto, Ontario M5T 2S8 (Canada); Department of Medicine (Neurology), University of Toronto, 200 Elizabeth Street, Toronto, Ontario M5G 2C4 (Canada); Department of Physiology, University of Toronto Medical Sciences Building, 3rd Floor, 1 King' s College Circle, Toronto, Ontario M5S 1A8 (Canada); Ferguson, K. A. [Toronto Western Research Institute, University Health Network, Krembil Discovery Tower, Toronto Western Hospital, 60 Leonard Street, 7th floor, 7KD411, Toronto, Ontario M5T 2S8 (Canada); Department of Physiology, University of Toronto Medical Sciences Building, 3rd Floor, 1 King' s College Circle, Toronto, Ontario M5S 1A8 (Canada)

    2013-12-15

    There is an undisputed need and requirement for theoretical and computational studies in Neuroscience today. Furthermore, it is clear that oscillatory dynamical output from brain networks is representative of various behavioural states, and it is becoming clear that one could consider these outputs as measures of normal and pathological brain states. Although mathematical modeling of oscillatory dynamics in the context of neurological disease exists, it is a highly challenging endeavour because of the many levels of organization in the nervous system. This challenge is coupled with the increasing knowledge of cellular specificity and network dysfunction that is associated with disease. Recently, whole hippocampus in vitro preparations from control animals have been shown to spontaneously express oscillatory activities. In addition, when using preparations derived from animal models of disease, these activities show particular alterations. These preparations present an opportunity to address challenges involved with using models to gain insight because of easier access to simultaneous cellular and network measurements, and pharmacological modulations. We propose that by developing and using models with direct links to experiment at multiple levels, which at least include cellular and microcircuit, a cycling can be set up and used to help us determine critical mechanisms underlying neurological disease. We illustrate our proposal using our previously developed inhibitory network models in the context of these whole hippocampus preparations and show the importance of having direct links at multiple levels.

  3. The emergence of two anti-phase oscillatory neural populations in a computational model of the Parkinsonian globus pallidus

    Directory of Open Access Journals (Sweden)

    Robert John Merrison-Hort

    2013-12-01

    Full Text Available Experiments in rodent models of Parkinson's Disease have demonstrated a prominent increase of oscillatory firing patterns in neurons within the Parkinsonian globus pallidus (GP which may underlie some of the motor symptoms of the disease. There are two main pathways from the cortex to GP: via the striatum and via the subthalamic nucleus (STN, but it is not known how these inputs sculpt the pathological pallidal firing patterns. To study this we developed a novel neural network model of conductance-based spiking pallidal neurons with cortex-modulated input from STN neurons. Our results support the hypothesis that entrainment occurs primarily via the subthalamic pathway. We find that as a result of the interplay between excitatory input from the STN and mutual inhibitory coupling between GP neurons, a homogeneous population of GP neurons demonstrates a self-organising dynamical behaviour where two groups of neurons emerge: one spiking in-phase with the cortical rhythm and the other in anti-phase. This finding mirrors what is seen in recordings from the GP of rodents that have had Parkinsonism induced via brain lesions. Our model also includes downregulation of Hyperpolarization-activated Cyclic Nucleotide-gated (HCN channels in response to burst firing of GP neurons, since this has been suggested as a possible mechanism for the emergence of Parkinsonian activity. We found that the downregulation of HCN channels provides even better correspondence with experimental data but that it is not essential in order for the two groups of oscillatory neurons to appear. We discuss how the influence of inhibitory striatal input will strengthen our results.

  4. Synaptic integration of transplanted interneuron progenitor cells into native cortical networks.

    Science.gov (United States)

    Howard, MacKenzie A; Baraban, Scott C

    2016-08-01

    Interneuron-based cell transplantation is a powerful method to modify network function in a variety of neurological disorders, including epilepsy. Whether new interneurons integrate into native neural networks in a subtype-specific manner is not well understood, and the therapeutic mechanisms underlying interneuron-based cell therapy, including the role of synaptic inhibition, are debated. In this study, we tested subtype-specific integration of transplanted interneurons using acute cortical brain slices and visualized patch-clamp recordings to measure excitatory synaptic inputs, intrinsic properties, and inhibitory synaptic outputs. Fluorescently labeled progenitor cells from the embryonic medial ganglionic eminence (MGE) were used for transplantation. At 5 wk after transplantation, MGE-derived parvalbumin-positive (PV+) interneurons received excitatory synaptic inputs, exhibited mature interneuron firing properties, and made functional synaptic inhibitory connections to native pyramidal cells that were comparable to those of native PV+ interneurons. These findings demonstrate that MGE-derived PV+ interneurons functionally integrate into subtype-appropriate physiological niches within host networks following transplantation. Copyright © 2016 the American Physiological Society.

  5. Dynamics of myosin II organization into cortical contractile networks and fibers

    Science.gov (United States)

    Nie, Wei; Wei, Ming-Tzo; Ou-Yang, Daniel; Jedlicka, Sabrina; Vavylonis, Dimitrios

    2014-03-01

    The morphology of adhered cells critically depends on the formation of a contractile meshwork of parallel and cross-linked stress fibers along the contacting surface. The motor activity and mini-filament assembly of non-muscle myosin II is an important component of cell-level cytoskeletal remodeling during mechanosensing. To monitor the dynamics of myosin II, we used confocal microscopy to image cultured HeLa cells that stably express myosin regulatory light chain tagged with GFP (MRLC-GFP). MRLC-GFP was monitored in time-lapse movies at steady state and during the response of cells to varying concentrations of blebbistatin which disrupts actomyosin stress fibers. Using image correlation spectroscopy analysis, we quantified the kinetics of disassembly and reassembly of actomyosin networks and compared them to studies by other groups. This analysis suggested that the following processes contribute to the assembly of cortical actomyosin into fibers: random myosin mini-filament assembly and disassembly along the cortex; myosin mini-filament aligning and contraction; stabilization of cortical myosin upon increasing contractile tension. We developed simple numerical simulations that include those processes. The results of simulations of cells at steady state and in response to blebbistatin capture some of the main features observed in the experiments. This study provides a framework to help interpret how different cortical myosin remodeling kinetics may contribute to different cell shape and rigidity depending on substrate stiffness.

  6. Cortical Networks for Visual Self-Recognition

    Science.gov (United States)

    Sugiura, Motoaki

    This paper briefly reviews recent developments regarding the brain mechanisms of visual self-recognition. A special cognitive mechanism for visual self-recognition has been postulated based on behavioral and neuropsychological evidence, but its neural substrate remains controversial. Recent functional imaging studies suggest that multiple cortical mechanisms play self-specific roles during visual self-recognition, reconciling the existing controversy. Respective roles for the left occipitotemporal, right parietal, and frontal cortices in symbolic, visuospatial, and conceptual aspects of self-representation have been proposed.

  7. Cortical networks for visual self-recognition

    International Nuclear Information System (INIS)

    Sugiura, Motoaki

    2007-01-01

    This paper briefly reviews recent developments regarding the brain mechanisms of visual self-recognition. A special cognitive mechanism for visual self-recognition has been postulated based on behavioral and neuropsychological evidence, but its neural substrate remains controversial. Recent functional imaging studies suggest that multiple cortical mechanisms play self-specific roles during visual self-recognition, reconciling the existing controversy. Respective roles for the left occipitotemporal, right parietal, and frontal cortices in symbolic, visuospatial, and conceptual aspects of self-representation have been proposed. (author)

  8. Modulation of Network Oscillatory Activity and GABAergic Synaptic Transmission by CB1 Cannabinoid Receptors in the Rat Medial Entorhinal Cortex

    Directory of Open Access Journals (Sweden)

    Nicola H. Morgan

    2008-01-01

    Full Text Available Cannabinoids modulate inhibitory GABAergic neurotransmission in many brain regions. Within the temporal lobe, cannabinoid receptors are highly expressed, and are located presynaptically at inhibitory terminals. Here, we have explored the role of type-1 cannabinoid receptors (CB1Rs at the level of inhibitory synaptic currents and field-recorded network oscillations. We report that arachidonylcyclopropylamide (ACPA; 10 M, an agonist at CB1R, inhibits GABAergic synaptic transmission onto both superficial and deep medial entorhinal (mEC neurones, but this has little effect on network oscillations in beta/gamma frequency bands. By contrast, the CB1R antagonist/inverse agonist LY320135 (500 nM, increased GABAergic synaptic activity and beta/gamma oscillatory activity in superficial mEC, was suppressed, whilst that in deep mEC was enhanced. These data indicate that cannabinoid-mediated effects on inhibitory synaptic activity may be constitutively active in vitro, and that modulation of CB1R activation using inverse agonists unmasks complex effects of CBR function on network activity.

  9. A cortical attractor network with Martinotti cells driven by facilitating synapses.

    Directory of Open Access Journals (Sweden)

    Pradeep Krishnamurthy

    Full Text Available The population of pyramidal cells significantly outnumbers the inhibitory interneurons in the neocortex, while at the same time the diversity of interneuron types is much more pronounced. One acknowledged key role of inhibition is to control the rate and patterning of pyramidal cell firing via negative feedback, but most likely the diversity of inhibitory pathways is matched by a corresponding diversity of functional roles. An important distinguishing feature of cortical interneurons is the variability of the short-term plasticity properties of synapses received from pyramidal cells. The Martinotti cell type has recently come under scrutiny due to the distinctly facilitating nature of the synapses they receive from pyramidal cells. This distinguishes these neurons from basket cells and other inhibitory interneurons typically targeted by depressing synapses. A key aspect of the work reported here has been to pinpoint the role of this variability. We first set out to reproduce quantitatively based on in vitro data the di-synaptic inhibitory microcircuit connecting two pyramidal cells via one or a few Martinotti cells. In a second step, we embedded this microcircuit in a previously developed attractor memory network model of neocortical layers 2/3. This model network demonstrated that basket cells with their characteristic depressing synapses are the first to discharge when the network enters an attractor state and that Martinotti cells respond with a delay, thereby shifting the excitation-inhibition balance and acting to terminate the attractor state. A parameter sensitivity analysis suggested that Martinotti cells might, in fact, play a dominant role in setting the attractor dwell time and thus cortical speed of processing, with cellular adaptation and synaptic depression having a less prominent role than previously thought.

  10. Evidence for a cerebral cortical thickness network anti-correlated with amygdalar volume in healthy youths: implications for the neural substrates of emotion regulation.

    Science.gov (United States)

    Albaugh, Matthew D; Ducharme, Simon; Collins, D Louis; Botteron, Kelly N; Althoff, Robert R; Evans, Alan C; Karama, Sherif; Hudziak, James J

    2013-05-01

    Recent functional connectivity studies have demonstrated that, in resting humans, activity in a dorsally-situated neocortical network is inversely associated with activity in the amygdalae. Similarly, in human neuroimaging studies, aspects of emotion regulation have been associated with increased activity in dorsolateral, dorsomedial, orbital and ventromedial prefrontal regions, as well as concomitant decreases in amygdalar activity. These findings indicate the presence of two countervailing systems in the human brain that are reciprocally related: a dorsally-situated cognitive control network, and a ventrally-situated limbic network. We investigated the extent to which this functional reciprocity between limbic and dorsal neocortical regions is recapitulated from a purely structural standpoint. Specifically, we hypothesized that amygdalar volume would be related to cerebral cortical thickness in cortical regions implicated in aspects of emotion regulation. In 297 typically developing youths (162 females, 135 males; 572 MRIs), the relationship between cortical thickness and amygdalar volume was characterized. Amygdalar volume was found to be inversely associated with thickness in bilateral dorsolateral and dorsomedial prefrontal, inferior parietal, as well as bilateral orbital and ventromedial prefrontal cortices. Our findings are in line with previous work demonstrating that a predominantly dorsally-centered neocortical network is reciprocally related to core limbic structures such as the amygdalae. Future research may benefit from investigating the extent to which such cortical-limbic morphometric relations are qualified by the presence of mood and anxiety psychopathology. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Low and High-Frequency Field Potentials of Cortical Networks ...

    Science.gov (United States)

    Neural networks grown on microelectrode arrays (MEAs) have become an important, high content in vitro assay for assessing neuronal function. MEA experiments typically examine high- frequency (HF) (>200 Hz) spikes, and bursts which can be used to discriminate between different pharmacological agents/chemicals. However, normal brain activity is additionally composed of integrated low-frequency (0.5-100 Hz) field potentials (LFPs) which are filtered out of MEA recordings. The objective of this study was to characterize the relationship between HF and LFP neural network signals, and to assess the relative sensitivity of LFPs to selected neurotoxicants. Rat primary cortical cultures were grown on glass, single-well MEA chips. Spontaneous activity was sampled at 25 kHz and recorded (5 min) (Multi-Channel Systems) from mature networks (14 days in vitro). HF (spike, mean firing rate, MFR) and LF (power spectrum, amplitude) components were extracted from each network and served as its baseline (BL). Next, each chip was treated with either 1) a positive control, bicuculline (BIC, 25μM) or domoic acid (DA, 0.3μM), 2) or a negative control, acetaminophen (ACE, 100μM) or glyphosate (GLY, 100μM), 3) a solvent control (H2O or DMSO:EtOH), or 4) a neurotoxicant, (carbaryl, CAR 5, 30μM ; lindane, LIN 1, 10μM; permethrin, PERM 25, 50μM; triadimefon, TRI 5, 65μM). Post treatment, 5 mins of spontaneous activity was recorded and analyzed. As expected posit

  12. Oscillatory systems in mitochondria

    Energy Technology Data Exchange (ETDEWEB)

    Gooch, V D; Packer, L

    1974-01-01

    Comparison of known mitochondrial oscillatory systems suggest that they all have a common mechanism. Investigation of the requirements of these various systems reveals a common set of basic features that indicate ion-transport processes to be the key components mediating oscillatory behavior. These ion-transport processes include (a) a diffusional transport of a cation and a H/sup +/, (b) a diffusional, non-ionic, coupled transport of a H/sup +/ with a weak acid anion, and (c) an energy-linked H/sup +/ transport. To adequately describe the oscillatory phenomenon, however, it is necessary to consider also the presence of (a) nonlinear concentration profiles of one or more ions within the membrane and its unstirred layers, and (b) feedback loops developed as a result of molecular conformational changes or membrane structural changes affecting ionic flows, each having a major influence on the other.

  13. Abnormal language-related oscillatory responses in primary progressive aphasia

    Directory of Open Access Journals (Sweden)

    A. Kielar

    Full Text Available Patients with Primary Progressive Aphasia (PPA may react to linguistic stimuli differently than healthy controls, reflecting degeneration of language networks and engagement of compensatory mechanisms. We used magnetoencephalography (MEG to evaluate oscillatory neural responses in sentence comprehension, in patients with PPA and age-matched controls. Participants viewed sentences containing semantically and syntactically anomalous words that evoke distinct oscillatory responses. For age-matched controls, semantic anomalies elicited left-lateralized 8–30 Hz power decreases distributed along ventral brain regions, whereas syntactic anomalies elicited bilateral power decreases in both ventral and dorsal regions. In comparison to controls, patients with PPA showed altered patterns of induced oscillations, characterized by delayed latencies and attenuated amplitude, which were correlated with linguistic impairment measured offline. The recruitment of right hemisphere temporo-parietal areas (also found in controls was correlated with preserved semantic processing abilities, indicating that preserved neural activity in these regions was able to support successful semantic processing. In contrast, syntactic processing was more consistently impaired in PPA, regardless of neural activity patterns, suggesting that this domain of language is particularly vulnerable to the neuronal loss. In addition, we found that delayed peak latencies of oscillatory responses were associated with lower accuracy for detecting semantic anomalies, suggesting that language deficits observed in PPA may be linked to delayed or slowed information processing. Keywords: MEG oscillations, Primary progressive aphasia (PPA, Sentence comprehension

  14. Oscillatory behaviors and hierarchical assembly of contractile structures in intercalating cells

    International Nuclear Information System (INIS)

    Fernandez-Gonzalez, Rodrigo; Zallen, Jennifer A

    2011-01-01

    Fluctuations in the size of the apical cell surface have been associated with apical constriction and tissue invagination. However, it is currently not known if apical oscillatory behaviors are a unique property of constricting cells or if they constitute a universal feature of the force balance between cells in multicellular tissues. Here, we set out to determine whether oscillatory cell behaviors occur in parallel with cell intercalation during the morphogenetic process of axis elongation in the Drosophila embryo. We applied multi-color, time-lapse imaging of living embryos and SIESTA, an integrated tool for automated and semi-automated cell segmentation, tracking, and analysis of image sequences. Using SIESTA, we identified cycles of contraction and expansion of the apical surface in intercalating cells and characterized them at the molecular, cellular, and tissue scales. We demonstrate that apical oscillations are anisotropic, and this anisotropy depends on the presence of intact cell–cell junctions and spatial cues provided by the anterior–posterior patterning system. Oscillatory cell behaviors during axis elongation are associated with the hierarchical assembly and disassembly of contractile actomyosin structures at the medial cortex of the cell, with actin localization preceding myosin II and with the localization of both proteins preceding changes in cell shape. We discuss models to explain how the architecture of cytoskeletal networks regulates their contractile behavior and the mechanisms that give rise to oscillatory cell behaviors in intercalating cells

  15. Functional specialisation within the cortical language network: effects of cortical dysfunction.

    Science.gov (United States)

    Vandenberghe, R

    2007-01-01

    In the 1990's neuroanatomical models of language and semantic memory have been mainly based on functional neuroimaging studies of brain activity in healthy volunteers and correlational studies between structural lesions in patients and behavioral deficits. In this paper we present a novel approach where we test models that have been developed in healthy volunteers by means of functional imaging in patients in combination with behavioral studies. Study populations consist of patients with focal cortical stroke (n = 2), amnestic mild cognitive impairment (n = 14) and primary progressive aphasia (n = 18). The experiments provide converging evidence that 1. the integrity of the right mid- and anterior fusiform gyrus is required for full and detailed retrieval of knowledge of visual attributes of concrete entities 2. the left posterior superior temporal sulcus is critically involved in lexical-semantic retrieval 3. the anterior temporal pole to the left functions as an associative structure that links the representations of meaning that are distribured over the cortical brain surface. Our experiments also provide us with new insight into the degradation and re-organisation of the language system in cortical neurodegenerative disease.

  16. Oscillatory magneto-convection under magnetic field modulation

    Directory of Open Access Journals (Sweden)

    Palle Kiran

    2018-03-01

    Full Text Available In this paper we investigate an oscillatory mode of nonlinear magneto-convection under time dependant magnetic field. The time dependant magnetic field consists steady and oscillatory parts. The oscillatory part of the imposed magnetic field is assumed to be of third order. An externally imposed vertical magnetic field in an electrically conducting horizontal fluid layer is considered. The finite amplitude analysis is discussed while perturbing the system. The complex Ginzburg-Landau model is used to derive an amplitude of oscillatory convection for weakly nonlinear mode. Heat transfer is quantified in terms of the Nusselt number, which is governed by the Landau equation. The variation of the modulation excitation of the magnetic field alternates heat transfer in the layer. The modulation excitation of the magnetic field is used either to enhance or diminish the heat transfer in the system. Further, it is found that, oscillatory mode of convection enhances the heat transfer and than stationary convection. The results have possible technological applications in magnetic fluid based systems involving energy transmission. Keywords: Weakly nonlinear theory, Oscillatory convection, Complex Ginzburg Landau model, Magnetic modulation

  17. Initiation of electrographic seizures by neuronal networks in entorhinal and perirhinal cortices in vitro.

    Science.gov (United States)

    de Guzman, P; D'Antuono, M; Avoli, M

    2004-01-01

    The hippocampus is often considered to play a major role in the pathophysiology of mesial temporal lobe epilepsy. However, emerging clinical and experimental evidence suggests that parahippocampal areas may contribute to a greater extent to limbic seizure initiation, and perhaps epileptogenesis. To date, little is known about the participation of entorhinal and perirhinal networks to epileptiform synchronization. Here, we addressed this issue by using simultaneous field potential recordings in horizontal rat brain slices containing interconnected limbic structures that included the hippocampus proper. Epileptiform discharges were disclosed by bath applying the convulsant drug 4-aminopyridine (50 microM) or by superfusing Mg(2+)-free medium. In the presence of 4-aminopyridine, slow interictal- (duration=2.34+/-0.29 s; interval of occurrence=25.75+/-2.11 s, n=16) and ictal-like (duration=31.25+/-3.34 s; interval of occurrence=196.96+/-21.56 s, n=17) discharges were recorded in entorhinal and perirhinal cortices after abating the propagation of CA3-driven interictal activity to these areas following extended hippocampal knife cuts. Simultaneous recordings obtained from the medial and lateral entorhinal cortex, and from the perirhinal cortex revealed that interictal and ictal discharges could initiate from any of these areas and propagate to the neighboring structure with delays of 8-66 ms. However, slow interictal- and ictal-like events more often originated in the medial entorhinal cortex and perirhinal cortex, respectively. Cutting the connections between entorhinal and perirhinal cortices (n=10), or functional inactivation of cortical areas by local application of a glutamatergic receptor antagonist (n=11) made independent epileptiform activity occur in all areas. These procedures also shortened ictal discharge duration in the entorhinal cortices, but not in the perirhinal area. Similar results could be obtained by applying Mg(2+)-free medium (n=7). These findings

  18. Distinct Oscillatory Frequencies Underlie Excitability of Human Occipital and Parietal Cortex.

    Science.gov (United States)

    Samaha, Jason; Gosseries, Olivia; Postle, Bradley R

    2017-03-15

    Transcranial magnetic stimulation (TMS) of human occipital and posterior parietal cortex can give rise to visual sensations called phosphenes. We used near-threshold TMS with concurrent EEG recordings to measure how oscillatory brain dynamics covary, on single trials, with the perception of phosphenes after occipital and parietal TMS. Prestimulus power and phase, predominantly in the alpha band (8-13 Hz), predicted occipital TMS phosphenes, whereas higher-frequency beta-band (13-20 Hz) power (but not phase) predicted parietal TMS phosphenes. TMS-evoked responses related to phosphene perception were similar across stimulation sites and were characterized by an early (200 ms) posterior negativity and a later (>300 ms) parietal positivity in the time domain and an increase in low-frequency (∼5-7 Hz) power followed by a broadband decrease in alpha/beta power in the time-frequency domain. These correlates of phosphene perception closely resemble known electrophysiological correlates of conscious perception of near-threshold visual stimuli. The regionally differential pattern of prestimulus predictors of phosphene perception suggests that distinct frequencies may reflect cortical excitability in occipital versus posterior parietal cortex, calling into question the broader assumption that the alpha rhythm may serve as a general index of cortical excitability. SIGNIFICANCE STATEMENT Alpha-band oscillations are thought to reflect cortical excitability and are therefore ascribed an important role in gating information transmission across cortex. We probed cortical excitability directly in human occipital and parietal cortex and observed that, whereas alpha-band dynamics indeed reflect excitability of occipital areas, beta-band activity was most predictive of parietal cortex excitability. Differences in the state of cortical excitability predicted perceptual outcomes (phosphenes), which were manifest in both early and late patterns of evoked activity, revealing the time

  19. Self-sustained oscillations of complex genomic regulatory networks

    International Nuclear Information System (INIS)

    Ye Weiming; Huang Xiaodong; Huang Xuhui; Li Pengfei; Xia Qinzhi; Hu Gang

    2010-01-01

    Recently, self-sustained oscillations in complex networks consisting of non-oscillatory nodes have attracted great interest in diverse natural and social fields. Oscillatory genomic regulatory networks are one of the most typical examples of this kind. Given an oscillatory genomic network, it is important to reveal the central structure generating the oscillation. However, if the network consists of large numbers of genes and interactions, the oscillation generator is deeply hidden in the complicated interactions. We apply the dominant phase-advanced driving path method proposed in Qian et al. (2010) to reduce complex genomic regulatory networks to one-dimensional and unidirectionally linked network graphs where negative regulatory loops are explored to play as the central generators of the oscillations, and oscillation propagation pathways in the complex networks are clearly shown by tree branches radiating from the loops. Based on the above understanding we can control oscillations of genomic networks with high efficiency.

  20. Oscillatory corticospinal activity during static contraction of ankle muscles is reduced in healthy old versus young adults

    DEFF Research Database (Denmark)

    Spedden, Meaghan Elizabeth; Nielsen, Jens Bo; Geertsen, Svend Sparre

    2018-01-01

    Aging is accompanied by impaired motor function, but age-related changes in neural networks responsible for generating movement are not well understood. We aimed to investigate the functional oscillatory coupling between activity in the sensorimotor cortex and ankle muscles during static contract......Aging is accompanied by impaired motor function, but age-related changes in neural networks responsible for generating movement are not well understood. We aimed to investigate the functional oscillatory coupling between activity in the sensorimotor cortex and ankle muscles during static...... contraction. Fifteen young (20–26 yr) and fifteen older (65–73 yr) subjects were instructed to match a target force by performing static ankle dorsi- or plantar flexion, while electroencephalographic (EEG) activity was recorded from the cortex and electromyographic (EMG) activity was recorded from dorsi...

  1. Vision first? The development of primary visual cortical networks is more rapid than the development of primary motor networks in humans.

    Directory of Open Access Journals (Sweden)

    Patricia Gervan

    Full Text Available The development of cortical functions and the capacity of the mature brain to learn are largely determined by the establishment and maintenance of neocortical networks. Here we address the human development of long-range connectivity in primary visual and motor cortices, using well-established behavioral measures--a Contour Integration test and a Finger-tapping task--that have been shown to be related to these specific primary areas, and the long-range neural connectivity within those. Possible confounding factors, such as different task requirements (complexity, cognitive load are eliminated by using these tasks in a learning paradigm. We find that there is a temporal lag between the developmental timing of primary sensory vs. motor areas with an advantage of visual development; we also confirm that human development is very slow in both cases, and that there is a retained capacity for practice induced plastic changes in adults. This pattern of results seems to point to human-specific development of the "canonical circuits" of primary sensory and motor cortices, probably reflecting the ecological requirements of human life.

  2. Oscillatory magneto-convection under magnetic field modulation

    OpenAIRE

    Kiran, Palle; Bhadauria, B.S.; Narasimhulu, Y.

    2017-01-01

    In this paper we investigate an oscillatory mode of nonlinear magneto-convection under time dependant magnetic field. The time dependant magnetic field consists steady and oscillatory parts. The oscillatory part of the imposed magnetic field is assumed to be of third order. An externally imposed vertical magnetic field in an electrically conducting horizontal fluid layer is considered. The finite amplitude analysis is discussed while perturbing the system. The complex Ginzburg-Landau model is...

  3. Short-term memory in networks of dissociated cortical neurons.

    Science.gov (United States)

    Dranias, Mark R; Ju, Han; Rajaram, Ezhilarasan; VanDongen, Antonius M J

    2013-01-30

    Short-term memory refers to the ability to store small amounts of stimulus-specific information for a short period of time. It is supported by both fading and hidden memory processes. Fading memory relies on recurrent activity patterns in a neuronal network, whereas hidden memory is encoded using synaptic mechanisms, such as facilitation, which persist even when neurons fall silent. We have used a novel computational and optogenetic approach to investigate whether these same memory processes hypothesized to support pattern recognition and short-term memory in vivo, exist in vitro. Electrophysiological activity was recorded from primary cultures of dissociated rat cortical neurons plated on multielectrode arrays. Cultures were transfected with ChannelRhodopsin-2 and optically stimulated using random dot stimuli. The pattern of neuronal activity resulting from this stimulation was analyzed using classification algorithms that enabled the identification of stimulus-specific memories. Fading memories for different stimuli, encoded in ongoing neural activity, persisted and could be distinguished from each other for as long as 1 s after stimulation was terminated. Hidden memories were detected by altered responses of neurons to additional stimulation, and this effect persisted longer than 1 s. Interestingly, network bursts seem to eliminate hidden memories. These results are similar to those that have been reported from similar experiments in vivo and demonstrate that mechanisms of information processing and short-term memory can be studied using cultured neuronal networks, thereby setting the stage for therapeutic applications using this platform.

  4. Spatial Topography of Individual-Specific Cortical Networks Predicts Human Cognition, Personality, and Emotion.

    Science.gov (United States)

    Kong, Ru; Li, Jingwei; Orban, Csaba; Sabuncu, Mert R; Liu, Hesheng; Schaefer, Alexander; Sun, Nanbo; Zuo, Xi-Nian; Holmes, Avram J; Eickhoff, Simon B; Yeo, B T Thomas

    2018-06-06

    Resting-state functional magnetic resonance imaging (rs-fMRI) offers the opportunity to delineate individual-specific brain networks. A major question is whether individual-specific network topography (i.e., location and spatial arrangement) is behaviorally relevant. Here, we propose a multi-session hierarchical Bayesian model (MS-HBM) for estimating individual-specific cortical networks and investigate whether individual-specific network topography can predict human behavior. The multiple layers of the MS-HBM explicitly differentiate intra-subject (within-subject) from inter-subject (between-subject) network variability. By ignoring intra-subject variability, previous network mappings might confuse intra-subject variability for inter-subject differences. Compared with other approaches, MS-HBM parcellations generalized better to new rs-fMRI and task-fMRI data from the same subjects. More specifically, MS-HBM parcellations estimated from a single rs-fMRI session (10 min) showed comparable generalizability as parcellations estimated by 2 state-of-the-art methods using 5 sessions (50 min). We also showed that behavioral phenotypes across cognition, personality, and emotion could be predicted by individual-specific network topography with modest accuracy, comparable to previous reports predicting phenotypes based on connectivity strength. Network topography estimated by MS-HBM was more effective for behavioral prediction than network size, as well as network topography estimated by other parcellation approaches. Thus, similar to connectivity strength, individual-specific network topography might also serve as a fingerprint of human behavior.

  5. Oscillatory frontal theta responses are increased upon bisensory stimulation.

    Science.gov (United States)

    Sakowitz, O W; Schürmann, M; Başar, E

    2000-05-01

    To investigate the functional correlation of oscillatory EEG components with the interaction of sensory modalities following simultaneous audio-visual stimulation. In an experimental study (15 subjects) we compared auditory evoked potentials (AEPs) and visual evoked potentials (VEPs) to bimodal evoked potentials (BEPs; simultaneous auditory and visual stimulation). BEPs were assumed to be brain responses to complex stimuli as a marker for intermodal associative functioning. Frequency domain analysis of these EPs showed marked theta-range components in response to bimodal stimulation. These theta components could not be explained by linear addition of the unimodal responses in the time domain. Considering topography the increased theta-response showed a remarkable frontality in proximity to multimodal association cortices. Referring to methodology we try to demonstrate that, even if various behavioral correlates of brain oscillations exist, common patterns can be extracted by means of a systems-theoretical approach. Serving as an example of functionally relevant brain oscillations, theta responses could be interpreted as an indicator of associative information processing.

  6. Saccadic reaction times to audiovisual stimuli show effects of oscillatory phase reset.

    Directory of Open Access Journals (Sweden)

    Adele Diederich

    Full Text Available Initiating an eye movement towards a suddenly appearing visual target is faster when an accessory auditory stimulus occurs in close spatiotemporal vicinity. Such facilitation of saccadic reaction time (SRT is well-documented, but the exact neural mechanisms underlying the crossmodal effect remain to be elucidated. From EEG/MEG studies it has been hypothesized that coupled oscillatory activity in primary sensory cortices regulates multisensory processing. Specifically, it is assumed that the phase of an ongoing neural oscillation is shifted due to the occurrence of a sensory stimulus so that, across trials, phase values become highly consistent (phase reset. If one can identify the phase an oscillation is reset to, it is possible to predict when temporal windows of high and low excitability will occur. However, in behavioral experiments the pre-stimulus phase will be different on successive repetitions of the experimental trial, and average performance over many trials will show no signs of the modulation. Here we circumvent this problem by repeatedly presenting an auditory accessory stimulus followed by a visual target stimulus with a temporal delay varied in steps of 2 ms. Performing a discrete time series analysis on SRT as a function of the delay, we provide statistical evidence for the existence of distinct peak spectral components in the power spectrum. These frequencies, although varying across participants, fall within the beta and gamma range (20 to 40 Hz of neural oscillatory activity observed in neurophysiological studies of multisensory integration. Some evidence for high-theta/alpha activity was found as well. Our results are consistent with the phase reset hypothesis and demonstrate that it is amenable to testing by purely psychophysical methods. Thus, any theory of multisensory processes that connects specific brain states with patterns of saccadic responses should be able to account for traces of oscillatory activity in observable

  7. Slicing, sampling, and distance-dependent effects affect network measures in simulated cortical circuit structures.

    Science.gov (United States)

    Miner, Daniel C; Triesch, Jochen

    2014-01-01

    The neuroanatomical connectivity of cortical circuits is believed to follow certain rules, the exact origins of which are still poorly understood. In particular, numerous nonrandom features, such as common neighbor clustering, overrepresentation of reciprocal connectivity, and overrepresentation of certain triadic graph motifs have been experimentally observed in cortical slice data. Some of these data, particularly regarding bidirectional connectivity are seemingly contradictory, and the reasons for this are unclear. Here we present a simple static geometric network model with distance-dependent connectivity on a realistic scale that naturally gives rise to certain elements of these observed behaviors, and may provide plausible explanations for some of the conflicting findings. Specifically, investigation of the model shows that experimentally measured nonrandom effects, especially bidirectional connectivity, may depend sensitively on experimental parameters such as slice thickness and sampling area, suggesting potential explanations for the seemingly conflicting experimental results.

  8. Regional vulnerability of longitudinal cortical association connectivity: Associated with structural network topology alterations in preterm children with cerebral palsy.

    Science.gov (United States)

    Ceschin, Rafael; Lee, Vince K; Schmithorst, Vince; Panigrahy, Ashok

    2015-01-01

    Preterm born children with spastic diplegia type of cerebral palsy and white matter injury or periventricular leukomalacia (PVL), are known to have motor, visual and cognitive impairments. Most diffusion tensor imaging (DTI) studies performed in this group have demonstrated widespread abnormalities using averaged deterministic tractography and voxel-based DTI measurements. Little is known about structural network correlates of white matter topography and reorganization in preterm cerebral palsy, despite the availability of new therapies and the need for brain imaging biomarkers. Here, we combined novel post-processing methodology of probabilistic tractography data in this preterm cohort to improve spatial and regional delineation of longitudinal cortical association tract abnormalities using an along-tract approach, and compared these data to structural DTI cortical network topology analysis. DTI images were acquired on 16 preterm children with cerebral palsy (mean age 5.6 ± 4) and 75 healthy controls (mean age 5.7 ± 3.4). Despite mean tract analysis, Tract-Based Spatial Statistics (TBSS) and voxel-based morphometry (VBM) demonstrating diffusely reduced fractional anisotropy (FA) reduction in all white matter tracts, the along-tract analysis improved the detection of regional tract vulnerability. The along-tract map-structural network topology correlates revealed two associations: (1) reduced regional posterior-anterior gradient in FA of the longitudinal visual cortical association tracts (inferior fronto-occipital fasciculus, inferior longitudinal fasciculus, optic radiation, posterior thalamic radiation) correlated with reduced posterior-anterior gradient of intra-regional (nodal efficiency) metrics with relative sparing of frontal and temporal regions; and (2) reduced regional FA within frontal-thalamic-striatal white matter pathways (anterior limb/anterior thalamic radiation, superior longitudinal fasciculus and cortical spinal tract) correlated with

  9. Identifying the Oscillatory Mechanism of the Glucose Oxidase-Catalase Coupled Enzyme System.

    Science.gov (United States)

    Muzika, František; Jurašek, Radovan; Schreiberová, Lenka; Radojković, Vuk; Schreiber, Igor

    2017-10-12

    We provide experimental evidence of periodic and aperiodic oscillations in an enzymatic system of glucose oxidase-catalase in a continuous-flow stirred reactor coupled by a membrane with a continuous-flow reservoir supplied with hydrogen peroxide. To describe such dynamics, we formulate a detailed mechanism based on partial results in the literature. Finally, we introduce a novel method for estimation of unknown kinetic parameters. The method is based on matching experimental data at an oscillatory instability with stoichiometric constraints of the mechanism formulated by applying the stability theory of reaction networks. This approach has been used to estimate rate coefficients in the catalase part of the mechanism. Remarkably, model simulations show good agreement with the observed oscillatory dynamics, including apparently chaotic intermittent behavior. Our method can be applied to any reaction system with an experimentally observable dynamical instability.

  10. The cortical signature of impaired gesturing: Findings from schizophrenia

    Directory of Open Access Journals (Sweden)

    Petra Verena Viher

    2018-01-01

    Full Text Available Schizophrenia is characterized by deficits in gesturing that is important for nonverbal communication. Research in healthy participants and brain-damaged patients revealed a left-lateralized fronto-parieto-temporal network underlying gesture performance. First evidence from structural imaging studies in schizophrenia corroborates these results. However, as of yet, it is unclear if cortical thickness abnormalities contribute to impairments in gesture performance. We hypothesized that patients with deficits in gesture production show cortical thinning in 12 regions of interest (ROIs of a gesture network relevant for gesture performance and recognition. Forty patients with schizophrenia and 41 healthy controls performed hand and finger gestures as either imitation or pantomime. Group differences in cortical thickness between patients with deficits, patients without deficits, and controls were explored using a multivariate analysis of covariance. In addition, the relationship between gesture recognition and cortical thickness was investigated. Patients with deficits in gesture production had reduced cortical thickness in eight ROIs, including the pars opercularis of the inferior frontal gyrus, the superior and inferior parietal lobes, and the superior and middle temporal gyri. Gesture recognition correlated with cortical thickness in fewer, but mainly the same, ROIs within the patient sample. In conclusion, our results show that impaired gesture production and recognition in schizophrenia is associated with cortical thinning in distinct areas of the gesture network.

  11. Cortical Amyloid Beta in Cognitively Normal Elderly Adults is Associated with Decreased Network Efficiency within the Cerebro-Cerebellar System.

    Science.gov (United States)

    Steininger, Stefanie C; Liu, Xinyang; Gietl, Anton; Wyss, Michael; Schreiner, Simon; Gruber, Esmeralda; Treyer, Valerie; Kälin, Andrea; Leh, Sandra; Buck, Alfred; Nitsch, Roger M; Prüssmann, Klaas P; Hock, Christoph; Unschuld, Paul G

    2014-01-01

    Deposition of cortical amyloid beta (Aβ) is a correlate of aging and a risk factor for Alzheimer disease (AD). While several higher order cognitive processes involve functional interactions between cortex and cerebellum, this study aims to investigate effects of cortical Aβ deposition on coupling within the cerebro-cerebellar system. We included 15 healthy elderly subjects with normal cognitive performance as assessed by neuropsychological testing. Cortical Aβ was quantified using (11)carbon-labeled Pittsburgh compound B positron-emission-tomography late frame signals. Volumes of brain structures were assessed by applying an automated parcelation algorithm to three dimensional magnetization-prepared rapid gradient-echo T1-weighted images. Basal functional network activity within the cerebro-cerebellar system was assessed using blood-oxygen-level dependent resting state functional magnetic resonance imaging at the high field strength of 7 T for measuring coupling between cerebellar seeds and cerebral gray matter. A bivariate regression approach was applied for identification of brain regions with significant effects of individual cortical Aβ load on coupling. Consistent with earlier reports, a significant degree of positive and negative coupling could be observed between cerebellar seeds and cerebral voxels. Significant positive effects of cortical Aβ load on cerebro-cerebellar coupling resulted for cerebral brain regions located in inferior temporal lobe, prefrontal cortex, hippocampus, parahippocampal gyrus, and thalamus. Our findings indicate that brain amyloidosis in cognitively normal elderly subjects is associated with decreased network efficiency within the cerebro-cerebellar system. While the identified cerebral regions are consistent with established patterns of increased sensitivity for Aβ-associated neurodegeneration, additional studies are needed to elucidate the relationship between dysfunction of the cerebro-cerebellar system and risk for AD.

  12. Processing oscillatory signals by incoherent feedforward loops

    Science.gov (United States)

    Zhang, Carolyn; Wu, Feilun; Tsoi, Ryan; Shats, Igor; You, Lingchong

    From the timing of amoeba development to the maintenance of stem cell pluripotency,many biological signaling pathways exhibit the ability to differentiate between pulsatile and sustained signals in the regulation of downstream gene expression.While networks underlying this signal decoding are diverse,many are built around a common motif, the incoherent feedforward loop (IFFL),where an input simultaneously activates an output and an inhibitor of the output.With appropriate parameters,this motif can generate temporal adaptation,where the system is desensitized to a sustained input.This property serves as the foundation for distinguishing signals with varying temporal profiles.Here,we use quantitative modeling to examine another property of IFFLs,the ability to process oscillatory signals.Our results indicate that the system's ability to translate pulsatile dynamics is limited by two constraints.The kinetics of IFFL components dictate the input range for which the network can decode pulsatile dynamics.In addition,a match between the network parameters and signal characteristics is required for optimal ``counting''.We elucidate one potential mechanism by which information processing occurs in natural networks with implications in the design of synthetic gene circuits for this purpose. This work was partially supported by the National Science Foundation Graduate Research Fellowship (CZ).

  13. Self-sustained firing activities of the cortical network with plastic rules in weak AC electrical fields

    International Nuclear Information System (INIS)

    Qin Ying-Mei; Wang Jiang; Men Cong; Zhao Jia; Wei Xi-Le; Deng Bin

    2012-01-01

    Both external and endogenous electrical fields widely exist in the environment of cortical neurons. The effects of a weak alternating current (AC) field on a neural network model with synaptic plasticity are studied. It is found that self-sustained rhythmic firing patterns, which are closely correlated with the cognitive functions, are significantly modified due to the self-organizing of the network in the weak AC field. The activities of the neural networks are affected by the synaptic connection strength, the external stimuli, and so on. In the presence of learning rules, the synaptic connections can be modulated by the external stimuli, which will further enhance the sensitivity of the network to the external signal. The properties of the external AC stimuli can serve as control parameters in modulating the evolution of the neural network. (interdisciplinary physics and related areas of science and technology)

  14. Microfluidic mixing through oscillatory transverse perturbations

    Science.gov (United States)

    Wu, J. W.; Xia, H. M.; Zhang, Y. Y.; Zhu, P.

    2018-05-01

    Fluid mixing in miniaturized fluidic devices is a challenging task. In this work, the mixing enhancement through oscillatory transverse perturbations coupling with divergent circular chambers is studied. To simplify the design, an autonomous microfluidic oscillator is used to produce the oscillatory flow. It is then applied to four side-channels that intersect with a central channel of constant flow. The mixing performance is tested at high fluid viscosities of up to 16 cP. Results show that the oscillatory flow can cause strong transverse perturbations which effectively enhance the mixing. The influence of a fluidic capacitor in the central channel is also examined, which at low viscosities can intensify the perturbations and further improve the mixing.

  15. Horizontal integration and cortical dynamics.

    Science.gov (United States)

    Gilbert, C D

    1992-07-01

    We have discussed several results that lead to a view that cells in the visual system are endowed with dynamic properties, influenced by context, expectation, and long-term modifications of the cortical network. These observations will be important for understanding how neuronal ensembles produce a system that perceives, remembers, and adapts to injury. The advantage to being able to observe changes at early stages in a sensory pathway is that one may be able to understand the way in which neuronal ensembles encode and represent images at the level of their receptive field properties, of cortical topographies, and of the patterns of connections between cells participating in a network.

  16. Slicing, sampling, and distance-dependent effects affect network measures in simulated cortical circuit structures

    Directory of Open Access Journals (Sweden)

    Daniel Carl Miner

    2014-11-01

    Full Text Available The neuroanatomical connectivity of cortical circuits is believed to follow certain rules, the exact origins of which are still poorly understood. In particular, numerous nonrandom features, such as common neighbor clustering, overrepresentation of reciprocal connectivity, and overrepresentation of certain triadic graph motifs have been experimentally observed in cortical slice data. Some of these data, particularly regarding bidirectional connectivity are seemingly contradictory, and the reasons for this are unclear. Here we present a simple static geometric network model with distance-dependent connectivity on a realistic scale that naturally gives rise to certain elements of these observed behaviors, and may provide plausible explanations for some of the conflicting findings. Specifically, investigation of the model shows that experimentally measured nonrandom effects, especially bidirectional connectivity, may depend sensitively on experimental parameters such as slice thickness and sampling area, suggesting potential explanations for the seemingly conflicting experimental results.

  17. Large-scale network dynamics of beta-band oscillations underlie auditory perceptual decision-making

    Directory of Open Access Journals (Sweden)

    Mohsen Alavash

    2017-06-01

    Full Text Available Perceptual decisions vary in the speed at which we make them. Evidence suggests that translating sensory information into perceptual decisions relies on distributed interacting neural populations, with decision speed hinging on power modulations of the neural oscillations. Yet the dependence of perceptual decisions on the large-scale network organization of coupled neural oscillations has remained elusive. We measured magnetoencephalographic signals in human listeners who judged acoustic stimuli composed of carefully titrated clouds of tone sweeps. These stimuli were used in two task contexts, in which the participants judged the overall pitch or direction of the tone sweeps. We traced the large-scale network dynamics of the source-projected neural oscillations on a trial-by-trial basis using power-envelope correlations and graph-theoretical network discovery. In both tasks, faster decisions were predicted by higher segregation and lower integration of coupled beta-band (∼16–28 Hz oscillations. We also uncovered the brain network states that promoted faster decisions in either lower-order auditory or higher-order control brain areas. Specifically, decision speed in judging the tone sweep direction critically relied on the nodal network configurations of anterior temporal, cingulate, and middle frontal cortices. Our findings suggest that global network communication during perceptual decision-making is implemented in the human brain by large-scale couplings between beta-band neural oscillations. The speed at which we make perceptual decisions varies. This translation of sensory information into perceptual decisions hinges on dynamic changes in neural oscillatory activity. However, the large-scale neural-network embodiment supporting perceptual decision-making is unclear. We addressed this question by experimenting two auditory perceptual decision-making situations. Using graph-theoretical network discovery, we traced the large-scale network

  18. Effects of Stress and Task Difficulty on Working Memory and Cortical Networking.

    Science.gov (United States)

    Kim, Yujin; Woo, Jihwan; Woo, Minjung

    2017-12-01

    This study investigated interactive effects of stress and task difficulty on working memory and cortico-cortical communication during memory encoding. Thirty-eight adolescent participants (mean age of 15.7 ± 1.5 years) completed easy and hard working memory tasks under low- and high-stress conditions. We analyzed the accuracy and reaction time (RT) of working memory performance and inter- and intrahemispheric electroencephalogram coherences during memory encoding. Working memory accuracy was higher, and RT shorter, in the easy versus the hard task. RT was shorter under the high-stress (TENS) versus low-stress (no-TENS) condition, while there was no difference in memory accuracy between the two stress conditions. For electroencephalogram coherence, we found higher interhemispheric coherence in all bands but only at frontal electrode sites in the easy versus the hard task. On the other hand, intrahemispheric coherence was higher in the left hemisphere in the easy (versus hard task) and higher in the right hemisphere (with one exception) in the hard (versus easy task). Inter- and intracoherences were higher in the low- versus high-stress condition. Significant interactions between task difficulty and stress condition were observed in coherences of the beta frequency band. The difference in coherence between low- and high-stress conditions was greater in the hard compared with the easy task, with lower coherence under the high-stress condition relative to the low-stress condition. Stress seemed to cause a decrease in cortical network communications between memory-relevant cortical areas as task difficulty increased.

  19. Fetal brain extracellular matrix boosts neuronal network formation in 3D bioengineered model of cortical brain tissue.

    Science.gov (United States)

    Sood, Disha; Chwalek, Karolina; Stuntz, Emily; Pouli, Dimitra; Du, Chuang; Tang-Schomer, Min; Georgakoudi, Irene; Black, Lauren D; Kaplan, David L

    2016-01-01

    The extracellular matrix (ECM) constituting up to 20% of the organ volume is a significant component of the brain due to its instructive role in the compartmentalization of functional microdomains in every brain structure. The composition, quantity and structure of ECM changes dramatically during the development of an organism greatly contributing to the remarkably sophisticated architecture and function of the brain. Since fetal brain is highly plastic, we hypothesize that the fetal brain ECM may contain cues promoting neural growth and differentiation, highly desired in regenerative medicine. Thus, we studied the effect of brain-derived fetal and adult ECM complemented with matricellular proteins on cortical neurons using in vitro 3D bioengineered model of cortical brain tissue. The tested parameters included neuronal network density, cell viability, calcium signaling and electrophysiology. Both, adult and fetal brain ECM as well as matricellular proteins significantly improved neural network formation as compared to single component, collagen I matrix. Additionally, the brain ECM improved cell viability and lowered glutamate release. The fetal brain ECM induced superior neural network formation, calcium signaling and spontaneous spiking activity over adult brain ECM. This study highlights the difference in the neuroinductive properties of fetal and adult brain ECM and suggests that delineating the basis for this divergence may have implications for regenerative medicine.

  20. Oscillatory Cortical Network Involved in Auditory Verbal Hallucinations in Schizophrenia

    NARCIS (Netherlands)

    van Lutterveld, R.; Hillebrand, A.; Diederen, K.M.J.; Daalman, K.; Kahn, R.S.; Stam, C.J.; Sommer, I.E.C.

    2012-01-01

    Background: Auditory verbal hallucinations (AVH), a prominent symptom of schizophrenia, are often highly distressing for patients. Better understanding of the pathogenesis of hallucinations could increase therapeutic options. Magnetoencephalography (MEG) provides direct measures of neuronal activity

  1. Oscillatory cortical network involved in auditory verbal hallucinations in schizophrenia.

    Directory of Open Access Journals (Sweden)

    Remko van Lutterveld

    Full Text Available Auditory verbal hallucinations (AVH, a prominent symptom of schizophrenia, are often highly distressing for patients. Better understanding of the pathogenesis of hallucinations could increase therapeutic options. Magnetoencephalography (MEG provides direct measures of neuronal activity and has an excellent temporal resolution, offering a unique opportunity to study AVH pathophysiology.Twelve patients (10 paranoid schizophrenia, 2 psychosis not otherwise specified indicated the presence of AVH by button-press while lying in a MEG scanner. As a control condition, patients performed a self-paced button-press task. AVH-state and non-AVH state were contrasted in a region-of-interest (ROI approach. In addition, the two seconds before AVH onset were contrasted with the two seconds after AVH onset to elucidate a possible triggering mechanism.AVH correlated with a decrease in beta-band power in the left temporal cortex. A decrease in alpha-band power was observed in the right inferior frontal gyrus. AVH onset was related to a decrease in theta-band power in the right hippocampus.These results suggest that AVH are triggered by a short aberration in the theta band in a memory-related structure, followed by activity in language areas accompanying the experience of AVH itself.

  2. Oscillatory integration windows in neurons

    Science.gov (United States)

    Gupta, Nitin; Singh, Swikriti Saran; Stopfer, Mark

    2016-01-01

    Oscillatory synchrony among neurons occurs in many species and brain areas, and has been proposed to help neural circuits process information. One hypothesis states that oscillatory input creates cyclic integration windows: specific times in each oscillatory cycle when postsynaptic neurons become especially responsive to inputs. With paired local field potential (LFP) and intracellular recordings and controlled stimulus manipulations we directly test this idea in the locust olfactory system. We find that inputs arriving in Kenyon cells (KCs) sum most effectively in a preferred window of the oscillation cycle. With a computational model, we show that the non-uniform structure of noise in the membrane potential helps mediate this process. Further experiments performed in vivo demonstrate that integration windows can form in the absence of inhibition and at a broad range of oscillation frequencies. Our results reveal how a fundamental coincidence-detection mechanism in a neural circuit functions to decode temporally organized spiking. PMID:27976720

  3. A design method of oscillatory De-Qing circuit

    International Nuclear Information System (INIS)

    Feng Wenquan

    1988-01-01

    With some particular advantages the oscillatory De-Qing circuit now is widely used. However its design is very complex. By means of a quantitative analysis for this circuit a group of design formulas is obtained. According to these design formulas the maximum allowable charging inductance L c , the De-Qing network resistance R and capacitance C can easily be determined, if the PFN capacitance C N , the maximum pulse frequency F max , and percentage regulation η are given. Simple and direct formulas for specific situation are listed. Finally, a design example is given and a comparison with experimental result is made, which shows that the design method is feasible and reliable

  4. EEG-guided transcranial magnetic stimulation reveals rapid shifts in motor cortical excitability during the human sleep slow oscillation

    DEFF Research Database (Denmark)

    Bergmann, Til O; Mölle, Matthias; Schmidt, Marlit A

    2012-01-01

    Evoked cortical responses do not follow a rigid input–output function but are dynamically shaped by intrinsic neural properties at the time of stimulation. Recent research has emphasized the role of oscillatory activity in determining cortical excitability. Here we employed EEG-guided transcranial......, closely resembling a spontaneous SO. However, both MEPs and TEPs were consistently larger when evoked during SO up-states than during down-states, and ampliudes within each SO state depended on the actual EEG potential at the time and site of stimulation. These results provide first-time evidence...... magnetic stimulation (TMS) during non-rapid eye movement sleep to examine whether the spontaneous

  5. Working memory load related modulations of the oscillatory brain activity. N-back ERD/ERS study

    International Nuclear Information System (INIS)

    Nakao, Yoshiaki; Tamura, Toshiyo; Kodabashi, Atsushi; Fujimoto, Toshiro; Yarita, Masaru

    2011-01-01

    In recent cognitive neuroscience, a lot of studies of the human working memory were examined, and electroencephalography (EEG) measurements during n-back task were often used. However, they were almost studied by event related potentials (ERP) analysis. In the ERP study, time-locked components can be elicited, but non time-locked components such as the modulated brain oscillatory activity might be lost by an averaging procedure. To elucidate the contribution of the modulations of the brain oscillatory activity to the human working memory, we examined event related desynchronization (ERD)/event related synchronization (ERS) analysis on the source waveforms during n-back task. Source waveforms were calculated from a source model which was constructed with the sources seeded from fMRI meta-analysis of n-back task and additional sources in the orbitofrontal cortex and the visual cortex estimated with P100 and P360 components in the n-back ERP. Our results suggested the network which included the prefrontal cortex and the parietal lobe had a contribution to human working memory process, and it was mediated by theta oscillatory activity. (author)

  6. Altered Gradients of Glutamate and Gamma-Aminobutyric Acid Transcripts in the Cortical Visuospatial Working Memory Network in Schizophrenia.

    Science.gov (United States)

    Hoftman, Gil D; Dienel, Samuel J; Bazmi, Holly H; Zhang, Yun; Chen, Kehui; Lewis, David A

    2018-04-15

    Visuospatial working memory (vsWM), which is impaired in schizophrenia, requires information transfer across multiple nodes in the cerebral cortex, including visual, posterior parietal, and dorsolateral prefrontal regions. Information is conveyed across these regions via the excitatory projections of glutamatergic pyramidal neurons located in layer 3, whose activity is modulated by local inhibitory gamma-aminobutyric acidergic (GABAergic) neurons. Key properties of these neurons differ across these cortical regions. Consequently, in schizophrenia, alterations in the expression of gene products regulating these properties could disrupt vsWM function in different ways, depending on the region(s) affected. Here, we quantified the expression of markers of glutamate and GABA neurotransmission selectively in layer 3 of four cortical regions in the vsWM network from 20 matched pairs of schizophrenia and unaffected comparison subjects. In comparison subjects, levels of glutamate transcripts tended to increase, whereas GABA transcript levels tended to decrease, from caudal to rostral, across cortical regions of the vsWM network. Composite measures across all transcripts revealed a significant effect of region, with the glutamate measure lowest in the primary visual cortex and highest in the dorsolateral prefrontal cortex, whereas the GABA measure showed the opposite pattern. In schizophrenia subjects, the expression levels of many of these transcripts were altered. However, this disease effect differed across regions, such that the caudal-to-rostral increase in the glutamate measure was blunted and the caudal-to-rostral decline in the GABA measure was enhanced in the illness. Differential alterations in layer 3 glutamate and GABA neurotransmission across cortical regions may contribute to vsWM deficits in schizophrenia. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  7. Compensating for Thalamocortical Synaptic Loss in Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Kamal eAbuhassan

    2014-06-01

    Full Text Available The study presents a thalamocortical network model which oscillates within the alpha frequency band (8-13 Hz as recorded in the wakeful relaxed state with closed eyes to study the neural causes of abnormal oscillatory activity in Alzheimer’s disease (AD. Incorporated within the model are various types of cortical excitatory and inhibitory neurons, recurrently connected to thalamic and reticular thalamic regions with the ratios and distances derived from the mammalian thalamocortical system. The model is utilized to study the impacts of four types of connectivity loss on the model’s spectral dynamics. The study focuses on investigating degeneration of corticocortical, thalamocortical, corticothalamic and corticoreticular couplings, with an emphasis on the influence of each modelled case on the spectral output of the model. Synaptic compensation has been included in each model to examine the interplay between synaptic deletion and compensation mechanisms, and the oscillatory activity of the network. The results of power spectra and event related desynchronisation/synchronisation (ERD/S analyses show that the dynamics of the thalamic and cortical oscillations are significantly influenced by corticocortical synaptic loss. Interestingly, the patterns of changes in thalamic spectral activity are correlated with those in the cortical model. Similarly, the thalamic oscillatory activity is diminished after partial corticothalamic denervation. The results suggest that thalamic atrophy is a secondary pathology to cortical shrinkage in Alzheimer’s disease. In addition, this study finds that the inhibition from neurons in the thalamic reticular nucleus (RTN to thalamic relay (TCR neurons plays a key role in regulating thalamic oscillations; disinhibition disrupts thalamic oscillatory activity even though TCR neurons are more depolarized after being released from RTN inhibition. This study provides information that can be explored experimentally to

  8. Cortical networks involved in visual awareness independent of visual attention.

    Science.gov (United States)

    Webb, Taylor W; Igelström, Kajsa M; Schurger, Aaron; Graziano, Michael S A

    2016-11-29

    It is now well established that visual attention, as measured with standard spatial attention tasks, and visual awareness, as measured by report, can be dissociated. It is possible to attend to a stimulus with no reported awareness of the stimulus. We used a behavioral paradigm in which people were aware of a stimulus in one condition and unaware of it in another condition, but the stimulus drew a similar amount of spatial attention in both conditions. The paradigm allowed us to test for brain regions active in association with awareness independent of level of attention. Participants performed the task in an MRI scanner. We looked for brain regions that were more active in the aware than the unaware trials. The largest cluster of activity was obtained in the temporoparietal junction (TPJ) bilaterally. Local independent component analysis (ICA) revealed that this activity contained three distinct, but overlapping, components: a bilateral, anterior component; a left dorsal component; and a right dorsal component. These components had brain-wide functional connectivity that partially overlapped the ventral attention network and the frontoparietal control network. In contrast, no significant activity in association with awareness was found in the banks of the intraparietal sulcus, a region connected to the dorsal attention network and traditionally associated with attention control. These results show the importance of separating awareness and attention when testing for cortical substrates. They are also consistent with a recent proposal that awareness is associated with ventral attention areas, especially in the TPJ.

  9. Oscillatory decoupling differentiates auditory encoding deficits in children with listening problems.

    Science.gov (United States)

    Gilley, Phillip M; Sharma, Mridula; Purdy, Suzanne C

    2016-02-01

    We sought to examine whether oscillatory EEG responses to a speech stimulus in both quiet and noise were different in children with listening problems than in children with normal hearing. We employed a high-resolution spectral-temporal analysis of the cortical auditory evoked potential in response to a 150 ms speech sound /da/ in quiet and 3 dB SNR in 21 typically developing children (mean age=10.7 years, standard deviation=1.7) and 44 children with reported listening problems (LP) with absence of hearing loss (mean age=10.3 years, standard deviation=1.6). Children with LP were assessed for auditory processing disorder (APD) by which 24 children had APD, and 20 children did not. Peak latencies, magnitudes, and frequencies were compared between these groups. Children with LP had frequency shifts in the theta, and alpha bands (plistening problems in this population of children. Published by Elsevier Ireland Ltd.

  10. Role of altered cerebello-thalamo-cortical network in the neurobiology of essential tremor

    Energy Technology Data Exchange (ETDEWEB)

    Lenka, Abhishek; Bhalsing, Ketaki Swapnil; Jhunjhunwala, Ketan [National Institute of Mental Health and Neurosciences, Department of Neurology, Bangalore, Karnataka (India); National Institute of Mental Health and Neurosciences, Department of Clinical Neurosciences, Bangalore, Karnataka (India); Panda, Rajanikant; Saini, Jitender; Bharath, Rose Dawn [National Institute of Mental Health and Neurosciences, Department of Neuroimaging and Interventional Radiology, Bangalore, Karnataka (India); Naduthota, Rajini M.; Yadav, Ravi; Pal, Pramod Kumar [National Institute of Mental Health and Neurosciences, Department of Neurology, Bangalore, Karnataka (India)

    2017-02-15

    Essential tremor (ET) is the most common movement disorder among adults. Although ET has been recognized as a mono-symptomatic benign illness, reports of non-motor symptoms and non-tremor motor symptoms have increased its clinical heterogeneity. The neural correlates of ET are not clearly understood. The aim of this study was to understand the neurobiology of ET using resting state fMRI. Resting state functional MR images of 30 patients with ET and 30 age- and gender-matched healthy controls were obtained. The functional connectivity of the two groups was compared using whole-brain seed-to-voxel-based analysis. The ET group had decreased connectivity of several cortical regions especially of the primary motor cortex and the primary somatosensory cortex with several right cerebellar lobules compared to the controls. The thalamus on both hemispheres had increased connectivity with multiple posterior cerebellar lobules and vermis. Connectivity of several right cerebellar seeds with the cortical and thalamic seeds had significant correlation with an overall score of Fahn-Tolosa-Marin tremor rating scale (FTM-TRS) as well as the subscores for head tremor and limb tremor. Seed-to-voxel resting state connectivity analysis revealed significant alterations in the cerebello-thalamo-cortical network in patients with ET. These alterations correlated with the overall FTM scores as well as the subscores for limb tremor and head tremor in patients with ET. These results further support the previous evidence of cerebellar pathology in ET. (orig.)

  11. Role of altered cerebello-thalamo-cortical network in the neurobiology of essential tremor

    International Nuclear Information System (INIS)

    Lenka, Abhishek; Bhalsing, Ketaki Swapnil; Jhunjhunwala, Ketan; Panda, Rajanikant; Saini, Jitender; Bharath, Rose Dawn; Naduthota, Rajini M.; Yadav, Ravi; Pal, Pramod Kumar

    2017-01-01

    Essential tremor (ET) is the most common movement disorder among adults. Although ET has been recognized as a mono-symptomatic benign illness, reports of non-motor symptoms and non-tremor motor symptoms have increased its clinical heterogeneity. The neural correlates of ET are not clearly understood. The aim of this study was to understand the neurobiology of ET using resting state fMRI. Resting state functional MR images of 30 patients with ET and 30 age- and gender-matched healthy controls were obtained. The functional connectivity of the two groups was compared using whole-brain seed-to-voxel-based analysis. The ET group had decreased connectivity of several cortical regions especially of the primary motor cortex and the primary somatosensory cortex with several right cerebellar lobules compared to the controls. The thalamus on both hemispheres had increased connectivity with multiple posterior cerebellar lobules and vermis. Connectivity of several right cerebellar seeds with the cortical and thalamic seeds had significant correlation with an overall score of Fahn-Tolosa-Marin tremor rating scale (FTM-TRS) as well as the subscores for head tremor and limb tremor. Seed-to-voxel resting state connectivity analysis revealed significant alterations in the cerebello-thalamo-cortical network in patients with ET. These alterations correlated with the overall FTM scores as well as the subscores for limb tremor and head tremor in patients with ET. These results further support the previous evidence of cerebellar pathology in ET. (orig.)

  12. Cortical gamma activity during auditory tone omission provides evidence for the involvement of oscillatory activity in top-down processing.

    Science.gov (United States)

    Gurtubay, I G; Alegre, M; Valencia, M; Artieda, J

    2006-11-01

    Perception is an active process in which our brains use top-down influences to modulate afferent information. To determine whether this modulation might be based on oscillatory activity, we asked seven subjects to detect a silence that appeared randomly in a rhythmic auditory sequence, counting the number of omissions ("count" task), or responding to each omission with a right index finger extension ("move" task). Despite the absence of physical stimuli, these tasks induced a 'non-phase-locked' gamma oscillation in temporal-parietal areas, providing evidence of intrinsically generated oscillatory activity during top-down processing. This oscillation is probably related to the local neural activation that takes place during the process of stimulus detection, involving the functional comparison between the tones and the absence of stimuli as well as the auditory echoic memory processes. The amplitude of the gamma oscillations was reduced with the repetition of the tasks. Moreover, it correlated positively with the number of correctly detected omissions and negatively with the reaction time. These findings indicate that these oscillations, like others described, may be modulated by attentional processes. In summary, our findings support the active and adaptive concept of brain function that has emerged over recent years, suggesting that the match of sensory information with memory contents generates gamma oscillations.

  13. Dopamine replacement modulates oscillatory coupling between premotor and motor cortical areas in Parkinson's disease

    DEFF Research Database (Denmark)

    Herz, Damian Marc; Florin, Esther; Christensen, Mark Schram

    2014-01-01

    PM to SMA and significantly strengthened coupling in the feedback connection from M1 to lPM expressed as β-β as well as θ-β coupling. Enhancement in cross-frequency θ-β coupling from M1 to lPM was correlated with levodopa-induced improvement in motor function. The results show that PD is associated...... with an altered neural communication between premotor and motor cortical areas, which can be modulated by dopamine replacement....

  14. Brain oscillatory subsequent memory effects differ in power and long-range synchronization between semantic and survival processing.

    Science.gov (United States)

    Fellner, Marie-Christin; Bäuml, Karl-Heinz T; Hanslmayr, Simon

    2013-10-01

    Memory crucially depends on the way information is processed during encoding. Differences in processes during encoding not only lead to differences in memory performance but also rely on different brain networks. Although these assumptions are corroborated by several previous fMRI and ERP studies, little is known about how brain oscillations dissociate between different memory encoding tasks. The present study therefore compared encoding related brain oscillatory activity elicited by two very efficient encoding tasks: a typical deep semantic item feature judgment task and a more elaborative survival encoding task. Subjects were asked to judge words either for survival relevance or for animacy, as indicated by a cue presented prior to the item. This allowed dissociating pre-item activity from item-related activity for both tasks. Replicating prior studies, survival processing led to higher recognition performance than semantic processing. Successful encoding in the semantic condition was reflected by a strong decrease in alpha and beta power, whereas successful encoding in the survival condition was related to increased alpha and beta long-range phase synchrony. Moreover, a pre-item subsequent memory effect in theta power was found which did not vary with encoding condition. These results show that measures of local synchrony (power) and global long range-synchrony (phase synchronization) dissociate between memory encoding processes. Whereas semantic encoding was reflected in decreases in local synchrony, increases in global long range synchrony were related to elaborative survival encoding, presumably reflecting the involvement of a more widespread cortical network in this task. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. The effect of binaural beats on verbal working memory and cortical connectivity.

    Science.gov (United States)

    Beauchene, Christine; Abaid, Nicole; Moran, Rosalyn; Diana, Rachel A; Leonessa, Alexander

    2017-04-01

    Synchronization in activated regions of cortical networks affect the brain's frequency response, which has been associated with a wide range of states and abilities, including memory. A non-invasive method for manipulating cortical synchronization is binaural beats. Binaural beats take advantage of the brain's response to two pure tones, delivered independently to each ear, when those tones have a small frequency mismatch. The mismatch between the tones is interpreted as a beat frequency, which may act to synchronize cortical oscillations. Neural synchrony is particularly important for working memory processes, the system controlling online organization and retention of information for successful goal-directed behavior. Therefore, manipulation of synchrony via binaural beats provides a unique window into working memory and associated connectivity of cortical networks. In this study, we examined the effects of different acoustic stimulation conditions during an N-back working memory task, and we measured participant response accuracy and cortical network topology via EEG recordings. Six acoustic stimulation conditions were used: None, Pure Tone, Classical Music, 5 Hz binaural beats, 10 Hz binaural beats, and 15 Hz binaural beats. We determined that listening to 15 Hz binaural beats during an N-Back working memory task increased the individual participant's accuracy, modulated the cortical frequency response, and changed the cortical network connection strengths during the task. Only the 15 Hz binaural beats produced significant change in relative accuracy compared to the None condition. Listening to 15 Hz binaural beats during the N-back task activated salient frequency bands and produced networks characterized by higher information transfer as compared to other auditory stimulation conditions.

  16. From cognitive networks to seizures: Stimulus evoked dynamics in a coupled cortical network

    Science.gov (United States)

    Lee, Jaejin; Ermentrout, Bard; Bodner, Mark

    2013-12-01

    Epilepsy is one of the most common neuropathologies worldwide. Seizures arising in epilepsy or in seizure disorders are characterized generally by uncontrolled spread of excitation and electrical activity to a limited region or even over the entire cortex. While it is generally accepted that abnormal excessive firing and synchronization of neuron populations lead to seizures, little is known about the precise mechanisms underlying human epileptic seizures, the mechanisms of transitions from normal to paroxysmal activity, or about how seizures spread. Further complication arises in that seizures do not occur with a single type of dynamics but as many different phenotypes and genotypes with a range of patterns, synchronous oscillations, and time courses. The concept of preventing, terminating, or modulating seizures and/or paroxysmal activity through stimulation of brain has also received considerable attention. The ability of such stimulation to prevent or modulate such pathological activity may depend on identifiable parameters. In this work, firing rate networks with inhibitory and excitatory populations were modeled. Network parameters were chosen to model normal working memory behaviors. Two different models of cognitive activity were developed. The first model consists of a single network corresponding to a local area of the brain. The second incorporates two networks connected through sparser recurrent excitatory connectivity with transmission delays ranging from approximately 3 ms within local populations to 15 ms between populations residing in different cortical areas. The effect of excitatory stimulation to activate working memory behavior through selective persistent activation of populations is examined in the models, and the conditions and transition mechanisms through which that selective activation breaks down producing spreading paroxysmal activity and seizure states are characterized. Specifically, we determine critical parameters and architectural

  17. Human brain networks in physiological aging: a graph theoretical analysis of cortical connectivity from EEG data.

    Science.gov (United States)

    Vecchio, Fabrizio; Miraglia, Francesca; Bramanti, Placido; Rossini, Paolo Maria

    2014-01-01

    Modern analysis of electroencephalographic (EEG) rhythms provides information on dynamic brain connectivity. To test the hypothesis that aging processes modulate the brain connectivity network, EEG recording was conducted on 113 healthy volunteers. They were divided into three groups in accordance with their ages: 36 Young (15-45 years), 46 Adult (50-70 years), and 31 Elderly (>70 years). To evaluate the stability of the investigated parameters, a subgroup of 10 subjects underwent a second EEG recording two weeks later. Graph theory functions were applied to the undirected and weighted networks obtained by the lagged linear coherence evaluated by eLORETA on cortical sources. EEG frequency bands of interest were: delta (2-4 Hz), theta (4-8 Hz), alpha1 (8-10.5 Hz), alpha2 (10.5-13 Hz), beta1 (13-20 Hz), beta2 (20-30 Hz), and gamma (30-40 Hz). The spectral connectivity analysis of cortical sources showed that the normalized Characteristic Path Length (λ) presented the pattern Young > Adult>Elderly in the higher alpha band. Elderly also showed a greater increase in delta and theta bands than Young. The correlation between age and λ showed that higher ages corresponded to higher λ in delta and theta and lower in the alpha2 band; this pattern reflects the age-related modulation of higher (alpha) and decreased (delta) connectivity. The Normalized Clustering coefficient (γ) and small-world network modeling (σ) showed non-significant age-modulation. Evidence from the present study suggests that graph theory can aid in the analysis of connectivity patterns estimated from EEG and can facilitate the study of the physiological and pathological brain aging features of functional connectivity networks.

  18. Analysis of Oscillatory Neural Activity in Series Network Models of Parkinson's Disease During Deep Brain Stimulation.

    Science.gov (United States)

    Davidson, Clare M; de Paor, Annraoi M; Cagnan, Hayriye; Lowery, Madeleine M

    2016-01-01

    Parkinson's disease is a progressive, neurodegenerative disorder, characterized by hallmark motor symptoms. It is associated with pathological, oscillatory neural activity in the basal ganglia. Deep brain stimulation (DBS) is often successfully used to treat medically refractive Parkinson's disease. However, the selection of stimulation parameters is based on qualitative assessment of the patient, which can result in a lengthy tuning period and a suboptimal choice of parameters. This study explores fourth-order, control theory-based models of oscillatory activity in the basal ganglia. Describing function analysis is applied to examine possible mechanisms for the generation of oscillations in interacting nuclei and to investigate the suppression of oscillations with high-frequency stimulation. The theoretical results for the suppression of the oscillatory activity obtained using both the fourth-order model, and a previously described second-order model, are optimized to fit clinically recorded local field potential data obtained from Parkinsonian patients with implanted DBS. Close agreement between the power of oscillations recorded for a range of stimulation amplitudes is observed ( R(2)=0.69-0.99 ). The results suggest that the behavior of the system and the suppression of pathological neural oscillations with DBS is well described by the macroscopic models presented. The results also demonstrate that in this instance, a second-order model is sufficient to model the clinical data, without the need for added complexity. Describing the system behavior with computationally efficient models could aid in the identification of optimal stimulation parameters for patients in a clinical environment.

  19. Oscillatory serotonin function in depression.

    Science.gov (United States)

    Salomon, Ronald M; Cowan, Ronald L

    2013-11-01

    Oscillations in brain activities with periods of minutes to hours may be critical for normal mood behaviors. Ultradian (faster than circadian) rhythms of mood behaviors and associated central nervous system activities are altered in depression. Recent data suggest that ultradian rhythms in serotonin (5HT) function also change in depression. In two separate studies, 5HT metabolites in cerebrospinal fluid (CSF) were measured every 10 min for 24 h before and after chronic antidepressant treatment. Antidepressant treatments were associated with enhanced ultradian amplitudes of CSF metabolite levels. Another study used resting-state functional magnetic resonance imaging (fMRI) to measure amplitudes of dorsal raphé activation cycles following sham or active dietary depletions of the 5HT precursor (tryptophan). During depletion, amplitudes of dorsal raphé activation cycles increased with rapid 6 s periods (about 0.18 Hz) while functional connectivity weakened between dorsal raphé and thalamus at slower periods of 20 s (0.05 Hz). A third approach studied MDMA (ecstasy, 3,4-methylenedioxy-N-methylamphetamine) users because of their chronically diminished 5HT function compared with non-MDMA polysubstance users (Karageorgiou et al., 2009). Compared with a non-MDMA using cohort, MDMA users showed diminished fMRI intra-regional coherence in motor regions along with altered functional connectivity, again suggesting effects of altered 5HT oscillatory function. These data support a hypothesis that qualities of ultradian oscillations in 5HT function may critically influence moods and behaviors. Dysfunctional 5HT rhythms in depression may be a common endpoint and biomarker for depression, linking dysfunction of slow brain network oscillators to 5HT mechanisms affected by commonly available treatments. 5HT oscillatory dysfunction may define illness subtypes and predict responses to serotonergic agents. Further studies of 5HT oscillations in depression are indicated. Copyright

  20. Evoked potentials in large-scale cortical networks elicited by TMS of the visual cortex

    Science.gov (United States)

    Grossman, Emily D.; Srinivasan, Ramesh

    2011-01-01

    Single pulses of transcranial magnetic stimulation (TMS) result in distal and long-lasting oscillations, a finding directly challenging the virtual lesion hypothesis. Previous research supporting this finding has primarily come from stimulation of the motor cortex. We have used single-pulse TMS with simultaneous EEG to target seven brain regions, six of which belong to the visual system [left and right primary visual area V1, motion-sensitive human middle temporal cortex, and a ventral temporal region], as determined with functional MRI-guided neuronavigation, and a vertex “control” site to measure the network effects of the TMS pulse. We found the TMS-evoked potential (TMS-EP) over visual cortex consists mostly of site-dependent theta- and alphaband oscillations. These site-dependent oscillations extended beyond the stimulation site to functionally connected cortical regions and correspond to time windows where the EEG responses maximally diverge (40, 200, and 385 ms). Correlations revealed two site-independent oscillations ∼350 ms after the TMS pulse: a theta-band oscillation carried by the frontal cortex, and an alpha-band oscillation over parietal and frontal cortical regions. A manipulation of stimulation intensity at one stimulation site (right hemisphere V1-V3) revealed sensitivity to the stimulation intensity at different regions of cortex, evidence of intensity tuning in regions distal to the site of stimulation. Together these results suggest that a TMS pulse applied to the visual cortex has a complex effect on brain function, engaging multiple brain networks functionally connected to the visual system with both invariant and site-specific spatiotemporal dynamics. With this characterization of TMS, we propose an alternative to the virtual lesion hypothesis. Rather than a technique that simulates lesions, we propose TMS generates natural brain signals and engages functional networks. PMID:21715670

  1. Spectral fingerprints of large-scale cortical dynamics during ambiguous motion perception.

    Science.gov (United States)

    Helfrich, Randolph F; Knepper, Hannah; Nolte, Guido; Sengelmann, Malte; König, Peter; Schneider, Till R; Engel, Andreas K

    2016-11-01

    Ambiguous stimuli have been widely used to study the neuronal correlates of consciousness. Recently, it has been suggested that conscious perception might arise from the dynamic interplay of functionally specialized but widely distributed cortical areas. While previous research mainly focused on phase coupling as a correlate of cortical communication, more recent findings indicated that additional coupling modes might coexist and possibly subserve distinct cortical functions. Here, we studied two coupling modes, namely phase and envelope coupling, which might differ in their origins, putative functions and dynamics. Therefore, we recorded 128-channel EEG while participants performed a bistable motion task and utilized state-of-the-art source-space connectivity analysis techniques to study the functional relevance of different coupling modes for cortical communication. Our results indicate that gamma-band phase coupling in extrastriate visual cortex might mediate the integration of visual tokens into a moving stimulus during ambiguous visual stimulation. Furthermore, our results suggest that long-range fronto-occipital gamma-band envelope coupling sustains the horizontal percept during ambiguous motion perception. Additionally, our results support the idea that local parieto-occipital alpha-band phase coupling controls the inter-hemispheric information transfer. These findings provide correlative evidence for the notion that synchronized oscillatory brain activity reflects the processing of sensory input as well as the information integration across several spatiotemporal scales. The results indicate that distinct coupling modes are involved in different cortical computations and that the rich spatiotemporal correlation structure of the brain might constitute the functional architecture for cortical processing and specific multi-site communication. Hum Brain Mapp 37:4099-4111, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. Analysis of Amygdalar-Cortical Network Covariance During Pre- versus Post-menopausal Estrogen Levels: Potential Relevance to Resting State Networks, Mood, and Cognition

    Science.gov (United States)

    Ottowitz, William E.; Derro, David; Dougherty, Darin D.; Lindquist, Martin A.; Fischman, Alan J.; Hall, Janet E.

    2014-01-01

    Objectives 1.) Expand the scope of neuroendocrine applications of functional neuroimaging techniques. 2.) Compare the covariance of amygdalar activity with that of the rest of the brain during pre- and post-menopausal levels of estrogen (E2). Based on the distribution of cortical E2 receptors and the neocortical regions where E2 has been shown to preferentially accumulate, we predict that E2 infusion will increase covariance of amygdalar activity with that of the temporal and frontal cortices. Design This basic physiology study employed a within-subject design. All participants were post-menopausal women (n =7). Analysis of covariance between whole brain and amygdalar regional cerebral glucose consumption (CMRglc) was conducted in a voxel-wise manner by means of the basic regression option in SPM2 and was applied to FDG-PET scans acquired at baseline and after a 24 hour graded E2 infusion. Setting an academic medical center; Massachusetts General Hospital, Boston, Massachusetts. Results E2 levels (mean ± sem) were significantly greater at 24 hours (257.9 pg/mL ± 29.7) than at 0 hours (28.1 pg/mL ± 3.4). Right amygdalar CMRglc showed a significant covariance with activity of three different regions of the temporal cortex during E2 infusion, but none at baseline. In addition, right amygdalar CMRglc covaried with that of the right medial and superior frontal gyri only during E2 infusion. Conclusions In addition to suggesting changes in amygdalar-cortical network connectivity as a result of short-term E2 exposure, these analyses provide evidence that basic neuroendocrine research may benefit from further use of FDG-PET and other functional neuroimaging modalities for network level analyses. PMID:18766152

  3. The effect of binaural beats on verbal working memory and cortical connectivity

    Science.gov (United States)

    Beauchene, Christine; Abaid, Nicole; Moran, Rosalyn; Diana, Rachel A.; Leonessa, Alexander

    2017-04-01

    Objective. Synchronization in activated regions of cortical networks affect the brain’s frequency response, which has been associated with a wide range of states and abilities, including memory. A non-invasive method for manipulating cortical synchronization is binaural beats. Binaural beats take advantage of the brain’s response to two pure tones, delivered independently to each ear, when those tones have a small frequency mismatch. The mismatch between the tones is interpreted as a beat frequency, which may act to synchronize cortical oscillations. Neural synchrony is particularly important for working memory processes, the system controlling online organization and retention of information for successful goal-directed behavior. Therefore, manipulation of synchrony via binaural beats provides a unique window into working memory and associated connectivity of cortical networks. Approach. In this study, we examined the effects of different acoustic stimulation conditions during an N-back working memory task, and we measured participant response accuracy and cortical network topology via EEG recordings. Six acoustic stimulation conditions were used: None, Pure Tone, Classical Music, 5 Hz binaural beats, 10 Hz binaural beats, and 15 Hz binaural beats. Main results. We determined that listening to 15 Hz binaural beats during an N-Back working memory task increased the individual participant’s accuracy, modulated the cortical frequency response, and changed the cortical network connection strengths during the task. Only the 15 Hz binaural beats produced significant change in relative accuracy compared to the None condition. Significance. Listening to 15 Hz binaural beats during the N-back task activated salient frequency bands and produced networks characterized by higher information transfer as compared to other auditory stimulation conditions.

  4. Study on boiling heat transfer of subcooled flow under oscillatory flow condition

    International Nuclear Information System (INIS)

    Ohtake, Hiroyasu; Yamazaki, Satoshi; Koizumi, Yasuo

    2004-01-01

    The Onset of Nucleate Boiling, the point of Net Vapor Generation and Critical Heat Flux on subcooled flow boiling under oscillatory flow, focusing on liquid velocity, amplitude and frequency of oscillatory flow were investigated experimentally and analytically. Experiments were conducted using a copper thin-film and subcooled water in a range of the liquid velocity from 0.27 to 4.07 m/s at 0.10MPa. The liquid subcooling was 20K. Frequency of oscillatory flow was 2 and 4 Hz, respectively; amplitude of oscillatory flow was 25 and 50% in a ratio of main flow rate, respectively. Temperatures at Onset of Nuclear Boiling and Critical Heat Flux obtained in the experiments decreased with the oscillatory flow. The decrease of liquid velocity by oscillatory flow caused the ONB and the CHF to decrease. On the other hand, heat flux at Net Vapor Generation decreased with oscillatory flow; the increase of liquid velocity by oscillatory flow caused the NVG to decrease. (author)

  5. Neuroanatomical phenotypes in mental illness: identifying convergent and divergent cortical phenotypes across autism, ADHD and schizophrenia.

    Science.gov (United States)

    Park, Min Tae M; Raznahan, Armin; Shaw, Philip; Gogtay, Nitin; Lerch, Jason P; Chakravarty, M Mallar

    2018-05-01

    There is evidence suggesting neuropsychiatric disorders share genomic, cognitive and clinical features. Here, we ask if autism-spectrum disorders (ASD), attention-deficit/hyperactivity disorder (ADHD) and schizophrenia share neuroanatomical variations. First, we used measures of cortical anatomy to estimate spatial overlap of neuroanatomical variation using univariate methods. Next, we developed a novel methodology to determine whether cortical deficits specifically target or are "enriched" within functional resting-state networks. We found cortical anomalies were preferentially enriched across functional networks rather than clustering spatially. Specifically, cortical thickness showed significant enrichment between patients with ASD and those with ADHD in the default mode network, between patients with ASD and those with schizophrenia in the frontoparietal and limbic networks, and between patients with ADHD and those with schizophrenia in the ventral attention network. Networks enriched in cortical thickness anomalies were also strongly represented in functional MRI results (Neurosynth; r = 0.64, p = 0.032). We did not account for variable symptom dimensions and severity in patient populations, and our cross-sectional design prevented longitudinal analyses of developmental trajectories. These findings suggest that common deficits across neuropsychiatric disorders cannot simply be characterized as arising out of local changes in cortical grey matter, but rather as entities of both local and systemic alterations targeting brain networks.

  6. Transcranial Direct Current Stimulation Targeting Primary Motor Versus Dorsolateral Prefrontal Cortices: Proof-of-Concept Study Investigating Functional Connectivity of Thalamocortical Networks Specific to Sensory-Affective Information Processing.

    Science.gov (United States)

    Sankarasubramanian, Vishwanath; Cunningham, David A; Potter-Baker, Kelsey A; Beall, Erik B; Roelle, Sarah M; Varnerin, Nicole M; Machado, Andre G; Jones, Stephen E; Lowe, Mark J; Plow, Ela B

    2017-04-01

    The pain matrix is comprised of an extensive network of brain structures involved in sensory and/or affective information processing. The thalamus is a key structure constituting the pain matrix. The thalamus serves as a relay center receiving information from multiple ascending pathways and relating information to and from multiple cortical areas. However, it is unknown how thalamocortical networks specific to sensory-affective information processing are functionally integrated. Here, in a proof-of-concept study in healthy humans, we aimed to understand this connectivity using transcranial direct current stimulation (tDCS) targeting primary motor (M1) or dorsolateral prefrontal cortices (DLPFC). We compared changes in functional connectivity (FC) with DLPFC tDCS to changes in FC with M1 tDCS. FC changes were also compared to further investigate its relation with individual's baseline experience of pain. We hypothesized that resting-state FC would change based on tDCS location and would represent known thalamocortical networks. Ten right-handed individuals received a single application of anodal tDCS (1 mA, 20 min) to right M1 and DLPFC in a single-blind, sham-controlled crossover study. FC changes were studied between ventroposterolateral (VPL), the sensory nucleus of thalamus, and cortical areas involved in sensory information processing and between medial dorsal (MD), the affective nucleus, and cortical areas involved in affective information processing. Individual's perception of pain at baseline was assessed using cutaneous heat pain stimuli. We found that anodal M1 tDCS and anodal DLPFC tDCS both increased FC between VPL and sensorimotor cortices, although FC effects were greater with M1 tDCS. Similarly, anodal M1 tDCS and anodal DLPFC tDCS both increased FC between MD and motor cortices, but only DLPFC tDCS modulated FC between MD and affective cortices, like DLPFC. Our findings suggest that M1 stimulation primarily modulates FC of sensory networks

  7. Cortical oscillations and entrainment in speech processing during working memory load.

    Science.gov (United States)

    Hjortkjaer, Jens; Märcher-Rørsted, Jonatan; Fuglsang, Søren A; Dau, Torsten

    2018-02-02

    Neuronal oscillations are thought to play an important role in working memory (WM) and speech processing. Listening to speech in real-life situations is often cognitively demanding but it is unknown whether WM load influences how auditory cortical activity synchronizes to speech features. Here, we developed an auditory n-back paradigm to investigate cortical entrainment to speech envelope fluctuations under different degrees of WM load. We measured the electroencephalogram, pupil dilations and behavioural performance from 22 subjects listening to continuous speech with an embedded n-back task. The speech stimuli consisted of long spoken number sequences created to match natural speech in terms of sentence intonation, syllabic rate and phonetic content. To burden different WM functions during speech processing, listeners performed an n-back task on the speech sequences in different levels of background noise. Increasing WM load at higher n-back levels was associated with a decrease in posterior alpha power as well as increased pupil dilations. Frontal theta power increased at the start of the trial and increased additionally with higher n-back level. The observed alpha-theta power changes are consistent with visual n-back paradigms suggesting general oscillatory correlates of WM processing load. Speech entrainment was measured as a linear mapping between the envelope of the speech signal and low-frequency cortical activity (level) decreased cortical speech envelope entrainment. Although entrainment persisted under high load, our results suggest a top-down influence of WM processing on cortical speech entrainment. © 2018 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  8. Visual-induced expectations modulate auditory cortical responses

    Directory of Open Access Journals (Sweden)

    Virginie evan Wassenhove

    2015-02-01

    Full Text Available Active sensing has important consequences on multisensory processing (Schroeder et al. 2010. Here, we asked whether in the absence of saccades, the position of the eyes and the timing of transient colour changes of visual stimuli could selectively affect the excitability of auditory cortex by predicting the where and the when of a sound, respectively. Human participants were recorded with magnetoencephalography (MEG while maintaining the position of their eyes on the left, right, or centre of the screen. Participants counted colour changes of the fixation cross while neglecting sounds which could be presented to the left, right or both ears. First, clear alpha power increases were observed in auditory cortices, consistent with participants’ attention directed to visual inputs. Second, colour changes elicited robust modulations of auditory cortex responses (when prediction seen as ramping activity, early alpha phase-locked responses, and enhanced high-gamma band responses in the contralateral side of sound presentation. Third, no modulations of auditory evoked or oscillatory activity were found to be specific to eye position. Altogether, our results suggest that visual transience can automatically elicit a prediction of when a sound will occur by changing the excitability of auditory cortices irrespective of the attended modality, eye position or spatial congruency of auditory and visual events. To the contrary, auditory cortical responses were not significantly affected by eye position suggesting that where predictions may require active sensing or saccadic reset to modulate auditory cortex responses, notably in the absence of spatial orientation to sounds.

  9. Cortical electrophysiological network dynamics of feedback learning

    NARCIS (Netherlands)

    Cohen, M.X.; Wilmes, K.A.; van de Vijver, I.

    2011-01-01

    Understanding the neurophysiological mechanisms of learning is important for both fundamental and clinical neuroscience. We present a neurophysiologically inspired framework for understanding cortical mechanisms of feedback-guided learning. This framework is based on dynamic changes in systems-level

  10. Pragmatics in action: indirect requests engage theory of mind areas and the cortical motor network.

    Science.gov (United States)

    van Ackeren, Markus J; Casasanto, Daniel; Bekkering, Harold; Hagoort, Peter; Rueschemeyer, Shirley-Ann

    2012-11-01

    Research from the past decade has shown that understanding the meaning of words and utterances (i.e., abstracted symbols) engages the same systems we used to perceive and interact with the physical world in a content-specific manner. For example, understanding the word "grasp" elicits activation in the cortical motor network, that is, part of the neural substrate involved in planned and executing a grasping action. In the embodied literature, cortical motor activation during language comprehension is thought to reflect motor simulation underlying conceptual knowledge [note that outside the embodied framework, other explanations for the link between action and language are offered, e.g., Mahon, B. Z., & Caramazza, A. A critical look at the embodied cognition hypothesis and a new proposal for grouding conceptual content. Journal of Physiology, 102, 59-70, 2008; Hagoort, P. On Broca, brain, and binding: A new framework. Trends in Cognitive Sciences, 9, 416-423, 2005]. Previous research has supported the view that the coupling between language and action is flexible, and reading an action-related word form is not sufficient for cortical motor activation [Van Dam, W. O., van Dijk, M., Bekkering, H., & Rueschemeyer, S.-A. Flexibility in embodied lexical-semantic representations. Human Brain Mapping, doi: 10.1002/hbm.21365, 2011]. The current study goes one step further by addressing the necessity of action-related word forms for motor activation during language comprehension. Subjects listened to indirect requests (IRs) for action during an fMRI session. IRs for action are speech acts in which access to an action concept is required, although it is not explicitly encoded in the language. For example, the utterance "It is hot here!" in a room with a window is likely to be interpreted as a request to open the window. However, the same utterance in a desert will be interpreted as a statement. The results indicate (1) that comprehension of IR sentences activates cortical

  11. Network-induced oscillatory behavior in material flow networks and irregular business cycles

    Science.gov (United States)

    Helbing, Dirk; Lämmer, Stefen; Witt, Ulrich; Brenner, Thomas

    2004-11-01

    Network theory is rapidly changing our understanding of complex systems, but the relevance of topological features for the dynamic behavior of metabolic networks, food webs, production systems, information networks, or cascade failures of power grids remains to be explored. Based on a simple model of supply networks, we offer an interpretation of instabilities and oscillations observed in biological, ecological, economic, and engineering systems. We find that most supply networks display damped oscillations, even when their units—and linear chains of these units—behave in a nonoscillatory way. Moreover, networks of damped oscillators tend to produce growing oscillations. This surprising behavior offers, for example, a different interpretation of business cycles and of oscillating or pulsating processes. The network structure of material flows itself turns out to be a source of instability, and cyclical variations are an inherent feature of decentralized adjustments.

  12. Cortical atrophy and language network reorganization associated with a novel progranulin mutation.

    Science.gov (United States)

    Cruchaga, Carlos; Fernández-Seara, Maria A; Seijo-Martínez, Manuel; Samaranch, Lluis; Lorenzo, Elena; Hinrichs, Anthony; Irigoyen, Jaione; Maestro, Cristina; Prieto, Elena; Martí-Climent, Josep M; Arbizu, Javier; Pastor, Maria A; Pastor, Pau

    2009-08-01

    Progressive nonfluent aphasia (PNFA) is an early stage of frontotemporal degeneration. We identified a novel Cys521Tyr progranulin gene variant in a PNFA family that potentially disrupts disulphide bridging causing protein misfolding. To identify early neurodegeneration changes, we performed neuropsychological and neuroimaging studies in 6 family members (MRI [magnetic resonance imaging], fMRI [functional MRI], and 18f-fluorodeoxygenlucose positron emission tomography, including 4 mutation carriers, and in 9 unrelated controls. Voxel-based morphometry (VBM) of the carriers compared with controls showed significant cortical atrophy in language areas. Grey matter loss was distributed mainly in frontal lobes, being more prominent on the left. Clusters were located in the superior frontal gyri, left inferior frontal gyrus, left middle frontal gyrus, left middle temporal gyri and left posterior parietal areas, concordant with (18)FDG-PET hypometabolic areas. fMRI during semantic and phonemic covert word generation (CWGTs) and word listening tasks (WLTs) showed recruitment of attentional and working memory networks in the carriers indicative of functional reorganization. During CWGTs, activation in left prefrontal cortex and bilateral anterior insulae was present whereas WLT recruited mesial prefrontal and anterior temporal cortex. These findings suggest that Cys521Tyr could be associated with early brain impairment not limited to language areas and compensated by recruitment of bilateral auxiliary cortical areas.

  13. Pattern formation and firing synchronization in networks of map neurons

    International Nuclear Information System (INIS)

    Wang Qingyun; Duan Zhisheng; Huang Lin; Chen Guanrong; Lu Qishao

    2007-01-01

    Patterns and collective phenomena such as firing synchronization are studied in networks of nonhomogeneous oscillatory neurons and mixtures of oscillatory and excitable neurons, with dynamics of each neuron described by a two-dimensional (2D) Rulkov map neuron. It is shown that as the coupling strength is increased, typical patterns emerge spatially, which propagate through the networks in the form of beautiful target waves or parallel ones depending on the size of networks. Furthermore, we investigate the transitions of firing synchronization characterized by the rate of firing when the coupling strength is increased. It is found that there exists an intermediate coupling strength; firing synchronization is minimal simultaneously irrespective of the size of networks. For further increasing the coupling strength, synchronization is enhanced. Since noise is inevitable in real neurons, we also investigate the effects of white noise on firing synchronization for different networks. For the networks of oscillatory neurons, it is shown that firing synchronization decreases when the noise level increases. For the missed networks, firing synchronization is robust under the noise conditions considered in this paper. Results presented in this paper should prove to be valuable for understanding the properties of collective dynamics in real neuronal networks

  14. Measuring alterations in oscillatory brain networks in schizophrenia with resting-state MEG: State-of-the-art and methodological challenges.

    Science.gov (United States)

    Alamian, Golnoush; Hincapié, Ana-Sofía; Pascarella, Annalisa; Thiery, Thomas; Combrisson, Etienne; Saive, Anne-Lise; Martel, Véronique; Althukov, Dmitrii; Haesebaert, Frédéric; Jerbi, Karim

    2017-09-01

    Neuroimaging studies provide evidence of disturbed resting-state brain networks in Schizophrenia (SZ). However, untangling the neuronal mechanisms that subserve these baseline alterations requires measurement of their electrophysiological underpinnings. This systematic review specifically investigates the contributions of resting-state Magnetoencephalography (MEG) in elucidating abnormal neural organization in SZ patients. A systematic literature review of resting-state MEG studies in SZ was conducted. This literature is discussed in relation to findings from resting-state fMRI and EEG, as well as to task-based MEG research in SZ population. Importantly, methodological limitations are considered and recommendations to overcome current limitations are proposed. Resting-state MEG literature in SZ points towards altered local and long-range oscillatory network dynamics in various frequency bands. Critical methodological challenges with respect to experiment design, and data collection and analysis need to be taken into consideration. Spontaneous MEG data show that local and global neural organization is altered in SZ patients. MEG is a highly promising tool to fill in knowledge gaps about the neurophysiology of SZ. However, to reach its fullest potential, basic methodological challenges need to be overcome. MEG-based resting-state power and connectivity findings could be great assets to clinical and translational research in psychiatry, and SZ in particular. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  15. Basic visual function and cortical thickness patterns in posterior cortical atrophy.

    Science.gov (United States)

    Lehmann, Manja; Barnes, Josephine; Ridgway, Gerard R; Wattam-Bell, John; Warrington, Elizabeth K; Fox, Nick C; Crutch, Sebastian J

    2011-09-01

    Posterior cortical atrophy (PCA) is characterized by a progressive decline in higher-visual object and space processing, but the extent to which these deficits are underpinned by basic visual impairments is unknown. This study aimed to assess basic and higher-order visual deficits in 21 PCA patients. Basic visual skills including form detection and discrimination, color discrimination, motion coherence, and point localization were measured, and associations and dissociations between specific basic visual functions and measures of higher-order object and space perception were identified. All participants showed impairment in at least one aspect of basic visual processing. However, a number of dissociations between basic visual skills indicated a heterogeneous pattern of visual impairment among the PCA patients. Furthermore, basic visual impairments were associated with particular higher-order object and space perception deficits, but not with nonvisual parietal tasks, suggesting the specific involvement of visual networks in PCA. Cortical thickness analysis revealed trends toward lower cortical thickness in occipitotemporal (ventral) and occipitoparietal (dorsal) regions in patients with visuoperceptual and visuospatial deficits, respectively. However, there was also a lot of overlap in their patterns of cortical thinning. These findings suggest that different presentations of PCA represent points in a continuum of phenotypical variation.

  16. Dynamic brain glucose metabolism identifies anti-correlated cortical-cerebellar networks at rest.

    Science.gov (United States)

    Tomasi, Dardo G; Shokri-Kojori, Ehsan; Wiers, Corinde E; Kim, Sunny W; Demiral, Şukru B; Cabrera, Elizabeth A; Lindgren, Elsa; Miller, Gregg; Wang, Gene-Jack; Volkow, Nora D

    2017-12-01

    It remains unclear whether resting state functional magnetic resonance imaging (rfMRI) networks are associated with underlying synchrony in energy demand, as measured by dynamic 2-deoxy-2-[ 18 F]fluoroglucose (FDG) positron emission tomography (PET). We measured absolute glucose metabolism, temporal metabolic connectivity (t-MC) and rfMRI patterns in 53 healthy participants at rest. Twenty-two rfMRI networks emerged from group independent component analysis (gICA). In contrast, only two anti-correlated t-MC emerged from FDG-PET time series using gICA or seed-voxel correlations; one included frontal, parietal and temporal cortices, the other included the cerebellum and medial temporal regions. Whereas cerebellum, thalamus, globus pallidus and calcarine cortex arose as the strongest t-MC hubs, the precuneus and visual cortex arose as the strongest rfMRI hubs. The strength of the t-MC linearly increased with the metabolic rate of glucose suggesting that t-MC measures are strongly associated with the energy demand of the brain tissue, and could reflect regional differences in glucose metabolism, counterbalanced metabolic network demand, and/or differential time-varying delivery of FDG. The mismatch between metabolic and functional connectivity patterns computed as a function of time could reflect differences in the temporal characteristics of glucose metabolism as measured with PET-FDG and brain activation as measured with rfMRI.

  17. Noise measurements during high-frequency oscillatory and conventional mechanical ventilation.

    Science.gov (United States)

    Berens, R J; Weigle, C G

    1995-10-01

    To evaluate the noise levels with high-frequency oscillatory ventilation and conventional mechanical ventilation. An observational, prospective study. Pediatric intensive care unit. The caretakers and environment of the pediatric intensive care unit. High-frequency oscillatory and conventional mechanical ventilation. Caretakers evaluated noise using a visual analog scale. Noise was measured with a decibel meter and an octave band frequency filter. There was twice as much noise perceived by the caretakers and as measured on the decibel A scale. All measures showed significantly greater noise, especially at low frequencies, with high-frequency oscillatory ventilation. High-frequency oscillatory ventilation exposes the patient to twice as much noise as does the use of conventional mechanical ventilation.

  18. Strobes: An oscillatory combustion

    NARCIS (Netherlands)

    Corbel, J.M.L.; Lingen, J.N.J. van; Zevenbergen, J.F.; Gijzeman, O.L.J.; Meijerink, A.

    2012-01-01

    Strobe compositions belong to the class of solid combustions. They are mixtures of powdered ingredients. When ignited, the combustion front evolves in an oscillatory fashion, and flashes of light are produced by intermittence. They have fascinated many scientists since their discovery at the

  19. The slow oscillation in cortical and thalamic networks: mechanisms and functions

    Directory of Open Access Journals (Sweden)

    Garrett T. Neske

    2016-01-01

    Full Text Available During even the most quiescent behavioral periods, the cortex and thalamus express rich spontaneous activity in the form of slow (<1 Hz, synchronous network state transitions. Throughout this so-called slow oscillation, cortical and thalamic neurons fluctuate between periods of intense synaptic activity (Up states and almost complete silence (Down states. The two decades since the original characterization of the slow oscillation in the cortex and thalamus have seen considerable advances in deciphering the cellular and network mechanisms associated with this pervasive phenomenon. There are, nevertheless, many questions regarding the slow oscillation that await more thorough illumination, particularly the mechanisms by which Up states initiate and terminate, the functional role of the rhythmic activity cycles in unconscious or minimally conscious states, and the precise relation between Up states and the activated states associated with waking behavior. Given the substantial advances in multineuronal recording and imaging methods in both in vivo and in vitro preparations, the time is ripe to take stock of our current understanding of the slow oscillation and pave the way for future investigations of its mechanisms and functions. My aim in this Review is to provide a comprehensive account of the mechanisms and functions of the slow oscillation, and to suggest avenues for further exploration.

  20. Estimating confidence intervals in predicted responses for oscillatory biological models.

    Science.gov (United States)

    St John, Peter C; Doyle, Francis J

    2013-07-29

    The dynamics of gene regulation play a crucial role in a cellular control: allowing the cell to express the right proteins to meet changing needs. Some needs, such as correctly anticipating the day-night cycle, require complicated oscillatory features. In the analysis of gene regulatory networks, mathematical models are frequently used to understand how a network's structure enables it to respond appropriately to external inputs. These models typically consist of a set of ordinary differential equations, describing a network of biochemical reactions, and unknown kinetic parameters, chosen such that the model best captures experimental data. However, since a model's parameter values are uncertain, and since dynamic responses to inputs are highly parameter-dependent, it is difficult to assess the confidence associated with these in silico predictions. In particular, models with complex dynamics - such as oscillations - must be fit with computationally expensive global optimization routines, and cannot take advantage of existing measures of identifiability. Despite their difficulty to model mathematically, limit cycle oscillations play a key role in many biological processes, including cell cycling, metabolism, neuron firing, and circadian rhythms. In this study, we employ an efficient parameter estimation technique to enable a bootstrap uncertainty analysis for limit cycle models. Since the primary role of systems biology models is the insight they provide on responses to rate perturbations, we extend our uncertainty analysis to include first order sensitivity coefficients. Using a literature model of circadian rhythms, we show how predictive precision is degraded with decreasing sample points and increasing relative error. Additionally, we show how this method can be used for model discrimination by comparing the output identifiability of two candidate model structures to published literature data. Our method permits modellers of oscillatory systems to confidently

  1. The Dynamics of a Periodically Forced Cortical Microcircuit, With an Application to Schizophrenia

    Science.gov (United States)

    Vierling-Claassen, Dorea; Kopell, Nancy

    2009-01-01

    Synchronous neural activity in the brain in the gamma and beta frequency bands (50-70 Hz)is thought to be important for sensory processing and is altered in schizophrenia. In a previous study, gamma/beta click-train auditory stimuli were used to probe cortical oscillatory activity in control and schizophrenic subjects. We found that control subjects exhibited preferential 40 Hz responses to both 20 and 40 Hz stimulations, while schizophrenic subjects had enhanced 20 Hz responses to the same stimuli [D. Vierling-Claassen, P. Siekmeier, S. Stufflebeam, and N. Kopell, J. Neurophysiol., 99 (2008), p. 2656]. High-dimensional computational network models constructed previously, which were based on evidence of altered inhibition in schizophrenia, numerically generated the entrainment behaviors observed experimentally. However, questions regarding the dynamic origin of model behaviors remained. It was not clear that the 20 Hz response to 40 Hz drive in the schizophrenic network was robust to parameter changes, which would be necessary for the predicted mechanism to explain data from a heterogeneous subject population. In the schizophrenic network we observed 30 Hz drive responses with a frequency component below 30 Hz, for which no analogue appeared in experimental data, and wondered if these were dynamically distinct from the modeled 20 Hz response to 40 Hz drive. We also wished to explore the role of background noise in model behavior. To address these questions, we consider a system of two mutually coupled oscillators representative of neural cells, driven periodically in the gamma/beta frequency band. We show that there is a one-parameter family of discontinuous discrete maps, whose dynamics clarifies issues of robustness, classifies entrainment patterns, and provides insight into the role of excitatory noise.

  2. Disk partition function and oscillatory rolling tachyons

    International Nuclear Information System (INIS)

    Jokela, Niko; Jaervinen, Matti; Keski-Vakkuri, Esko; Majumder, Jaydeep

    2008-01-01

    An exact cubic open string field theory rolling tachyon solution was recently found by Kiermaier et al and Schnabl. This oscillatory solution has been argued to be related by a field redefinition to the simple exponential rolling tachyon deformation of boundary conformal theory. In the latter approach, the disk partition function takes a simple form. Out of curiosity, we compute the disk partition function for an oscillatory tachyon profile, and find that the result is nevertheless almost the same

  3. Characterization of Oscillatory Lift in MFC Airfoils

    OpenAIRE

    Lang Jr, Joseph Reagle

    2014-01-01

    The purpose of this research is to characterize the response of an airfoil with an oscillatory morphing, Macro-fiber composite (MFC) trailing edge. Correlation of the airfoil lift with the oscillatory input is presented. Modal analysis of the test airfoil and apparatus is used to determine the frequency response function. The effects of static MFC inputs on the FRF are presented and compared to the unactuated airfoil. The transfer function is then used to determine the lift component du...

  4. Rich-Club Organization in Effective Connectivity among Cortical Neurons

    Science.gov (United States)

    Shimono, Masanori; Ito, Shinya; Yeh, Fang-Chin; Timme, Nicholas; Myroshnychenko, Maxym; Lapish, Christopher C.; Tosi, Zachary; Hottowy, Pawel; Smith, Wesley C.; Masmanidis, Sotiris C.; Litke, Alan M.; Sporns, Olaf; Beggs, John M.

    2016-01-01

    The performance of complex networks, like the brain, depends on how effectively their elements communicate. Despite the importance of communication, it is virtually unknown how information is transferred in local cortical networks, consisting of hundreds of closely spaced neurons. To address this, it is important to record simultaneously from hundreds of neurons at a spacing that matches typical axonal connection distances, and at a temporal resolution that matches synaptic delays. We used a 512-electrode array (60 μm spacing) to record spontaneous activity at 20 kHz from up to 500 neurons simultaneously in slice cultures of mouse somatosensory cortex for 1 h at a time. We applied a previously validated version of transfer entropy to quantify information transfer. Similar to in vivo reports, we found an approximately lognormal distribution of firing rates. Pairwise information transfer strengths also were nearly lognormally distributed, similar to reports of synaptic strengths. Some neurons transferred and received much more information than others, which is consistent with previous predictions. Neurons with the highest outgoing and incoming information transfer were more strongly connected to each other than chance, thus forming a “rich club.” We found similar results in networks recorded in vivo from rodent cortex, suggesting the generality of these findings. A rich-club structure has been found previously in large-scale human brain networks and is thought to facilitate communication between cortical regions. The discovery of a small, but information-rich, subset of neurons within cortical regions suggests that this population will play a vital role in communication, learning, and memory. SIGNIFICANCE STATEMENT Many studies have focused on communication networks between cortical brain regions. In contrast, very few studies have examined communication networks within a cortical region. This is the first study to combine such a large number of neurons (several

  5. Rich-Club Organization in Effective Connectivity among Cortical Neurons.

    Science.gov (United States)

    Nigam, Sunny; Shimono, Masanori; Ito, Shinya; Yeh, Fang-Chin; Timme, Nicholas; Myroshnychenko, Maxym; Lapish, Christopher C; Tosi, Zachary; Hottowy, Pawel; Smith, Wesley C; Masmanidis, Sotiris C; Litke, Alan M; Sporns, Olaf; Beggs, John M

    2016-01-20

    The performance of complex networks, like the brain, depends on how effectively their elements communicate. Despite the importance of communication, it is virtually unknown how information is transferred in local cortical networks, consisting of hundreds of closely spaced neurons. To address this, it is important to record simultaneously from hundreds of neurons at a spacing that matches typical axonal connection distances, and at a temporal resolution that matches synaptic delays. We used a 512-electrode array (60 μm spacing) to record spontaneous activity at 20 kHz from up to 500 neurons simultaneously in slice cultures of mouse somatosensory cortex for 1 h at a time. We applied a previously validated version of transfer entropy to quantify information transfer. Similar to in vivo reports, we found an approximately lognormal distribution of firing rates. Pairwise information transfer strengths also were nearly lognormally distributed, similar to reports of synaptic strengths. Some neurons transferred and received much more information than others, which is consistent with previous predictions. Neurons with the highest outgoing and incoming information transfer were more strongly connected to each other than chance, thus forming a "rich club." We found similar results in networks recorded in vivo from rodent cortex, suggesting the generality of these findings. A rich-club structure has been found previously in large-scale human brain networks and is thought to facilitate communication between cortical regions. The discovery of a small, but information-rich, subset of neurons within cortical regions suggests that this population will play a vital role in communication, learning, and memory. Significance statement: Many studies have focused on communication networks between cortical brain regions. In contrast, very few studies have examined communication networks within a cortical region. This is the first study to combine such a large number of neurons (several

  6. Emergence of Oscillatory Dynamics

    DEFF Research Database (Denmark)

    Laugesen, Jakob Lund; Mosekilde, Erik

    2012-01-01

    Besides their systems nature, as described in the preceding chapters, the single most characteristic feature of a living organism is the self-sustained activity it displays in the form of a wide variety of different oscillatory processes [25, 9, 22, 23]. The respiratory cycle and the beating...

  7. One central oscillatory drive is compatible with experimental motor unit behaviour in essential and Parkinsonian tremor

    Science.gov (United States)

    Dideriksen, Jakob L.; Gallego, Juan A.; Holobar, Ales; Rocon, Eduardo; Pons, Jose L.; Farina, Dario

    2015-08-01

    Objective. Pathological tremors are symptomatic to several neurological disorders that are difficult to differentiate and the way by which central oscillatory networks entrain tremorogenic contractions is unknown. We considered the alternative hypotheses that tremor arises from one oscillator (at the tremor frequency) or, as suggested by recent findings from the superimposition of two separate inputs (at the tremor frequency and twice that frequency). Approach. Assuming one central oscillatory network we estimated analytically the relative amplitude of the harmonics of the tremor frequency in the motor neuron output for different temporal behaviors of the oscillator. Next, we analyzed the bias in the relative harmonics amplitude introduced by superimposing oscillations at twice the tremor frequency. These findings were validated using experimental measurements of wrist angular velocity and surface electromyography (EMG) from 22 patients (11 essential tremor, 11 Parkinson’s disease). The ensemble motor unit action potential trains identified from the EMG represented the neural drive to the muscles. Main results. The analytical results showed that the relative power of the tremor harmonics in the analytical models of the neural drive was determined by the variability and duration of the tremor bursts and the presence of the second oscillator biased this power towards higher values. The experimental findings accurately matched the analytical model assuming one oscillator, indicating a negligible functional role of secondary oscillatory inputs. Furthermore, a significant difference in the relative power of harmonics in the neural drive was found across the patient groups, suggesting a diagnostic value of this measure (classification accuracy: 86%). This diagnostic power decreased substantially when estimated from limb acceleration or the EMG. Signficance. The results indicate that the neural drive in pathological tremor is compatible with one central network

  8. Early and phasic cortical metabolic changes in vestibular neuritis onset.

    Directory of Open Access Journals (Sweden)

    Marco Alessandrini

    Full Text Available Functional brain activation studies described the presence of separate cortical areas responsible for central processing of peripheral vestibular information and reported their activation and interactions with other sensory modalities and the changes of this network associated to strategic peripheral or central vestibular lesions. It is already known that cortical changes induced by acute unilateral vestibular failure (UVF are various and undergo variations over time, revealing different cortical involved areas at the onset and recovery from symptoms. The present study aimed at reporting the earliest change in cortical metabolic activity during a paradigmatic form of UVF such as vestibular neuritis (VN, that is, a purely peripheral lesion of the vestibular system, that offers the opportunity to study the cortical response to altered vestibular processing. This research reports [(18F]fluorodeoxyglucose positron emission tomography brain scan data concerning the early cortical metabolic activity associated to symptoms onset in a group of eight patients suffering from VN. VN patients' cortical metabolic activity during the first two days from symptoms onset was compared to that recorded one month later and to a control healthy group. Beside the known cortical response in the sensorimotor network associated to vestibular deafferentation, we show for the first time the involvement of Entorhinal (BAs 28, 34 and Temporal (BA 38 cortices in early phases of symptomatology onset. We interpret these findings as the cortical counterparts of the attempt to reorient oneself in space counteracting the vertigo symptom (Bas 28, 34 and of the emotional response to the new pathologic condition (BA 38 respectively. These interpretations were further supported by changes in patients' subjective ratings in balance, anxiety, and depersonalization/derealization scores when tested at illness onset and one month later. The present findings contribute in expanding

  9. Spontaneous high-frequency (10-80 Hz) oscillations during up states in the cerebral cortex in vitro.

    Science.gov (United States)

    Compte, Albert; Reig, Ramon; Descalzo, Vanessa F; Harvey, Michael A; Puccini, Gabriel D; Sanchez-Vives, Maria V

    2008-12-17

    High-frequency oscillations in cortical networks have been linked to a variety of cognitive and perceptual processes. They have also been recorded in small cortical slices in vitro, indicating that neuronal synchronization at these frequencies is generated in the local cortical circuit. However, in vitro experiments have hitherto necessitated exogenous pharmacological or electrical stimulation to generate robust synchronized activity in the beta/gamma range. Here, we demonstrate that the isolated cortical microcircuitry generates beta and gamma oscillations spontaneously in the absence of externally applied neuromodulators or synaptic agonists. We show this in a spontaneously active slice preparation that engages in slow oscillatory activity similar to activity during slow-wave sleep. beta and gamma synchronization appeared during the up states of the slow oscillation. Simultaneous intracellular and extracellular recordings revealed synchronization between the timing of incoming synaptic events and population activity. This rhythm was mechanistically similar to pharmacologically induced gamma rhythms, as it also included sparse, irregular firing of neurons within the population oscillation, predominant involvement of inhibitory neurons, and a decrease of oscillation frequency after barbiturate application. Finally, we show in a computer model how a synaptic loop between excitatory and inhibitory neurons can explain the emergence of both the slow (network. We therefore conclude that oscillations in the beta/gamma range that share mechanisms with activity reported in vivo or in pharmacologically activated in vitro preparations can be generated during slow oscillatory activity in the local cortical circuit, even without exogenous pharmacological or electrical stimulation.

  10. Thalamo–cortical network underlying deep brain stimulation of centromedian thalamic nuclei in intractable epilepsy: a multimodal imaging analysis

    Directory of Open Access Journals (Sweden)

    Kim SH

    2017-10-01

    Full Text Available Seong Hoon Kim,1 Sung Chul Lim,1 Dong Won Yang,1 Jeong Hee Cho,1 Byung-Chul Son,2 Jiyeon Kim,3 Seung Bong Hong,4 Young-Min Shon4 1Department of Neurology, 2Department of Neurosurgery, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul, 3Department of Neurology, Korea University Ansan Hospital, College of Medicine, Korea University, Ansan, 4Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea Objective: Deep brain stimulation (DBS of the centromedian thalamic nucleus (CM can be an alternative treatment option for intractable epilepsy patients. Since CM may be involved in widespread cortico-subcortical networks, identification of the cortical sub-networks specific to the target stimuli may provide further understanding on the underlying mechanisms of CM DBS. Several brain structures have distinguishing brain connections that may be related to the pivotal propagation and subsequent clinical effect of DBS.Methods: To explore core structures and their connections relevant to CM DBS, we applied electroencephalogram (EEG and diffusion tensor imaging (DTI to 10 medically intractable patients – three generalized epilepsy (GE and seven multifocal epilepsy (MFE patients unsuitable for resective surgery. Spatiotemporal activation pattern was mapped from scalp EEG by delivering low-frequency stimuli (5 Hz. Structural connections between the CM and the cortical activation spots were assessed using DTI.Results: We confirmed an average 72% seizure reduction after CM DBS and its clinical efficiency remained consistent during the observation period (mean 21 months. EEG data revealed sequential source propagation from the anterior cingulate, followed by the frontotemporal regions bilaterally. In addition, maximal activation was found in the left cingulate gyrus and the right medial frontal cortex during the right and left CM stimulation, respectively

  11. Dense neuron clustering explains connectivity statistics in cortical microcircuits.

    Directory of Open Access Journals (Sweden)

    Vladimir V Klinshov

    Full Text Available Local cortical circuits appear highly non-random, but the underlying connectivity rule remains elusive. Here, we analyze experimental data observed in layer 5 of rat neocortex and suggest a model for connectivity from which emerge essential observed non-random features of both wiring and weighting. These features include lognormal distributions of synaptic connection strength, anatomical clustering, and strong correlations between clustering and connection strength. Our model predicts that cortical microcircuits contain large groups of densely connected neurons which we call clusters. We show that such a cluster contains about one fifth of all excitatory neurons of a circuit which are very densely connected with stronger than average synapses. We demonstrate that such clustering plays an important role in the network dynamics, namely, it creates bistable neural spiking in small cortical circuits. Furthermore, introducing local clustering in large-scale networks leads to the emergence of various patterns of persistent local activity in an ongoing network activity. Thus, our results may bridge a gap between anatomical structure and persistent activity observed during working memory and other cognitive processes.

  12. Low frequency oscillatory flow in a rotating curved pipe

    Institute of Scientific and Technical Information of China (English)

    陈华军; 章本照; 苏霄燕

    2003-01-01

    The low frequency oscillatory flow in a rotating curved pipe was studied by using the method of bi-parameter perturbation. Perturbation solutions up to the second order were obtained and the effects of rotationon the low frequency oscillatory flow were examined in detail, The results indicated that there exists evident difference between the low frequency oscillatory flow in a rotating curved pipe and in a curved pipe without ro-tation. During a period, four secondary vortexes may exist on the circular cross-section and the distribution of axial velocity and wall shear stress are related to the ratio of the Coriolis foree to centrifugal foree and the axial pressure gradient.

  13. Low frequency oscillatory flow in a rotating curved pipe

    Institute of Scientific and Technical Information of China (English)

    陈华军; 章本照; 苏霄燕

    2003-01-01

    The low frequency oscillatory flow in a rotating curved pipe was studied by using the method of bi-parameter perturbation. Perturbation solutions up to the second order were obtained and the effects of rotation on the low frequency oscillatory flow were examined in detail. The results indicated that there exists evident difference between the low frequency oscillatory flow in a rotating curved pipe and in a curved pipe without rotation. During a period, four secondary vortexes may exist on the circular cross-section and the distribution of axial velocity and wall shear stress are related to the ratio of the Coriolis force to centrifugal force and the axial pressure gradient.

  14. A network of networks model to study phase synchronization using structural connection matrix of human brain

    Science.gov (United States)

    Ferrari, F. A. S.; Viana, R. L.; Reis, A. S.; Iarosz, K. C.; Caldas, I. L.; Batista, A. M.

    2018-04-01

    The cerebral cortex plays a key role in complex cortical functions. It can be divided into areas according to their function (motor, sensory and association areas). In this paper, the cerebral cortex is described as a network of networks (cortex network), we consider that each cortical area is composed of a network with small-world property (cortical network). The neurons are assumed to have bursting properties with the dynamics described by the Rulkov model. We study the phase synchronization of the cortex network and the cortical networks. In our simulations, we verify that synchronization in cortex network is not homogeneous. Besides, we focus on the suppression of neural phase synchronization. Synchronization can be related to undesired and pathological abnormal rhythms in the brain. For this reason, we consider the delayed feedback control to suppress the synchronization. We show that delayed feedback control is efficient to suppress synchronous behavior in our network model when an appropriate signal intensity and time delay are defined.

  15. K -shell decomposition reveals hierarchical cortical organization of the human brain

    International Nuclear Information System (INIS)

    Lahav, Nir; Ksherim, Baruch; Havlin, Shlomo; Ben-Simon, Eti; Maron-Katz, Adi; Cohen, Reuven

    2016-01-01

    In recent years numerous attempts to understand the human brain were undertaken from a network point of view. A network framework takes into account the relationships between the different parts of the system and enables to examine how global and complex functions might emerge from network topology. Previous work revealed that the human brain features ‘small world’ characteristics and that cortical hubs tend to interconnect among themselves. However, in order to fully understand the topological structure of hubs, and how their profile reflect the brain’s global functional organization, one needs to go beyond the properties of a specific hub and examine the various structural layers that make up the network. To address this topic further, we applied an analysis known in statistical physics and network theory as k-shell decomposition analysis. The analysis was applied on a human cortical network, derived from MRI/DSI data of six participants. Such analysis enables us to portray a detailed account of cortical connectivity focusing on different neighborhoods of inter-connected layers across the cortex. Our findings reveal that the human cortex is highly connected and efficient, and unlike the internet network contains no isolated nodes. The cortical network is comprised of a nucleus alongside shells of increasing connectivity that formed one connected giant component, revealing the human brain’s global functional organization. All these components were further categorized into three hierarchies in accordance with their connectivity profile, with each hierarchy reflecting different functional roles. Such a model may explain an efficient flow of information from the lowest hierarchy to the highest one, with each step enabling increased data integration. At the top, the highest hierarchy (the nucleus) serves as a global interconnected collective and demonstrates high correlation with consciousness related regions, suggesting that the nucleus might serve as a

  16. Excito-oscillatory dynamics as a mechanism of ventricular fibrillation.

    Science.gov (United States)

    Gray, Richard A; Huelsing, Delilah J

    2008-04-01

    The instabilities associated with reentrant spiral waves are of paramount importance to the initiation and maintenance of tachyarrhythmias, especially ventricular fibrillation (VF). In addition to tissue heterogeneities, there are only a few basic purported mechanisms of spiral wave breakup, most notably restitution. We test the hypothesis that oscillatory membrane properties act to destabilize spiral waves. We recorded transmembrane potential (V(m)) from isolated rabbit myocytes using a constant current stimulation protocol. We developed a mathematical model that included both the stable excitable equilibrium point at resting V(m) (-80 mV) and the unstable oscillatory equilibrium point at elevated V(m) (-10 mV). Spiral wave dynamics were studied in 2-dimensional grids using variants of the model. All models showed restitution and reproduced the experimental values of transmembrane resistance at rest and during the action potential plateau. Stable spiral waves were observed when the model showed only 1 equilibrium point. However, spatio-temporal complexity was observed if the model showed both excitable and oscillatory equilibrium points (i.e., excito-oscillatory models). The initial wave breaks resulted from oscillatory waves expanding in all directions; after a few beats, the patterns were characterized by a combination of unstable spiral waves and target patterns consistent with the patterns observed on the heart surface during VF. In our model, this VF-like activity only occurred when the single cell period of V(m) oscillations was within a specific range. The VF-like patterns observed in our excito-oscillatory models could not be explained by the existing proposed instability mechanisms. Our results introduce the important suggestion that membrane dynamics responsible for V(m) oscillations at elevated V(m) levels can destabilize spiral waves and thus may be a novel therapeutic target for preventing VF.

  17. Early-life exposure to caffeine affects the construction and activity of cortical networks in mice.

    Science.gov (United States)

    Fazeli, Walid; Zappettini, Stefania; Marguet, Stephan Lawrence; Grendel, Jasper; Esclapez, Monique; Bernard, Christophe; Isbrandt, Dirk

    2017-09-01

    The consumption of psychoactive drugs during pregnancy can have deleterious effects on newborns. It remains unclear whether early-life exposure to caffeine, the most widely consumed psychoactive substance, alters brain development. We hypothesized that maternal caffeine ingestion during pregnancy and the early postnatal period in mice affects the construction and activity of cortical networks in offspring. To test this hypothesis, we focused on primary visual cortex (V1) as a model neocortical region. In a study design mimicking the daily consumption of approximately three cups of coffee during pregnancy in humans, caffeine was added to the drinking water of female mice and their offspring were compared to control offspring. Caffeine altered the construction of GABAergic neuronal networks in V1, as reflected by a reduced number of somatostatin-containing GABA neurons at postnatal days 6-7, with the remaining ones showing poorly developed dendritic arbors. These findings were accompanied by increased synaptic activity in vitro and elevated network activity in vivo in V1. Similarly, in vivo hippocampal network activity was altered from the neonatal period until adulthood. Finally, caffeine-exposed offspring showed increased seizure susceptibility in a hyperthermia-induced seizure model. In summary, our results indicate detrimental effects of developmental caffeine exposure on mouse brain development. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Early development of synchrony in cortical activations in the human.

    Science.gov (United States)

    Koolen, N; Dereymaeker, A; Räsänen, O; Jansen, K; Vervisch, J; Matic, V; Naulaers, G; De Vos, M; Van Huffel, S; Vanhatalo, S

    2016-05-13

    Early intermittent cortical activity is thought to play a crucial role in the growth of neuronal network development, and large scale brain networks are known to provide the basis for higher brain functions. Yet, the early development of the large scale synchrony in cortical activations is unknown. Here, we tested the hypothesis that the early intermittent cortical activations seen in the human scalp EEG show a clear developmental course during the last trimester of pregnancy, the period of intensive growth of cortico-cortical connections. We recorded scalp EEG from altogether 22 premature infants at post-menstrual age between 30 and 44 weeks, and the early cortical synchrony was quantified using recently introduced activation synchrony index (ASI). The developmental correlations of ASI were computed for individual EEG signals as well as anatomically and mathematically defined spatial subgroups. We report two main findings. First, we observed a robust and statistically significant increase in ASI in all cortical areas. Second, there were significant spatial gradients in the synchrony in fronto-occipital and left-to-right directions. These findings provide evidence that early cortical activity is increasingly synchronized across the neocortex. The ASI-based metrics introduced in our work allow direct translational comparison to in vivo animal models, as well as hold promise for implementation as a functional developmental biomarker in future research on human neonates. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Assessment of oscillatory stability constrained available transfer capability

    International Nuclear Information System (INIS)

    Jain, T.; Singh, S.N.; Srivastava, S.C.

    2009-01-01

    This paper utilizes a bifurcation approach to compute oscillatory stability constrained available transfer capability (ATC) in an electricity market having bilateral as well as multilateral transactions. Oscillatory instability in non-linear systems can be related to Hopf bifurcation. At the Hopf bifurcation, one pair of the critical eigenvalues of the system Jacobian reaches imaginary axis. A new optimization formulation, including Hopf bifurcation conditions, has been developed in this paper to obtain the dynamic ATC. An oscillatory stability based contingency screening index, which takes into account the impact of transactions on severity of contingency, has been utilized to identify critical contingencies to be considered in determining ATC. The proposed method has been applied for dynamic ATC determination on a 39-bus New England system and a practical 75-bus Indian system considering composite static load as well as dynamic load models. (author)

  20. Cortical neurons and networks are dormant but fully responsive during isoelectric brain state.

    Science.gov (United States)

    Altwegg-Boussac, Tristan; Schramm, Adrien E; Ballestero, Jimena; Grosselin, Fanny; Chavez, Mario; Lecas, Sarah; Baulac, Michel; Naccache, Lionel; Demeret, Sophie; Navarro, Vincent; Mahon, Séverine; Charpier, Stéphane

    2017-09-01

    A continuous isoelectric electroencephalogram reflects an interruption of endogenously-generated activity in cortical networks and systematically results in a complete dissolution of conscious processes. This electro-cerebral inactivity occurs during various brain disorders, including hypothermia, drug intoxication, long-lasting anoxia and brain trauma. It can also be induced in a therapeutic context, following the administration of high doses of barbiturate-derived compounds, to interrupt a hyper-refractory status epilepticus. Although altered sensory responses can be occasionally observed on an isoelectric electroencephalogram, the electrical membrane properties and synaptic responses of individual neurons during this cerebral state remain largely unknown. The aim of the present study was to characterize the intracellular correlates of a barbiturate-induced isoelectric electroencephalogram and to analyse the sensory-evoked synaptic responses that can emerge from a brain deprived of spontaneous electrical activity. We first examined the sensory responsiveness from patients suffering from intractable status epilepticus and treated by administration of thiopental. Multimodal sensory responses could be evoked on the flat electroencephalogram, including visually-evoked potentials that were significantly amplified and delayed, with a high trial-to-trial reproducibility compared to awake healthy subjects. Using an analogous pharmacological procedure to induce prolonged electro-cerebral inactivity in the rat, we could describe its cortical and subcortical intracellular counterparts. Neocortical, hippocampal and thalamo-cortical neurons were all silent during the isoelectric state and displayed a flat membrane potential significantly hyperpolarized compared with spontaneously active control states. Nonetheless, all recorded neurons could fire action potentials in response to intracellularly injected depolarizing current pulses and their specific intrinsic

  1. Simultaneous recordings from the primary visual cortex and lateral geniculate nucleus reveal rhythmic interactions and a cortical source for γ-band oscillations.

    Science.gov (United States)

    Bastos, Andre M; Briggs, Farran; Alitto, Henry J; Mangun, George R; Usrey, W Martin

    2014-05-28

    Oscillatory synchronization of neuronal activity has been proposed as a mechanism to modulate effective connectivity between interacting neuronal populations. In the visual system, oscillations in the gamma-frequency range (30-100 Hz) are thought to subserve corticocortical communication. To test whether a similar mechanism might influence subcortical-cortical communication, we recorded local field potential activity from retinotopically aligned regions in the lateral geniculate nucleus (LGN) and primary visual cortex (V1) of alert macaque monkeys viewing stimuli known to produce strong cortical gamma-band oscillations. As predicted, we found robust gamma-band power in V1. In contrast, visual stimulation did not evoke gamma-band activity in the LGN. Interestingly, an analysis of oscillatory phase synchronization of LGN and V1 activity identified synchronization in the alpha (8-14 Hz) and beta (15-30 Hz) frequency bands. Further analysis of directed connectivity revealed that alpha-band interactions mediated corticogeniculate feedback processing, whereas beta-band interactions mediated geniculocortical feedforward processing. These results demonstrate that although the LGN and V1 display functional interactions in the lower frequency bands, gamma-band activity in the alert monkey is largely an emergent property of cortex. Copyright © 2014 the authors 0270-6474/14/347639-06$15.00/0.

  2. Oscillatory Convection in Rotating Liquid Metals

    Science.gov (United States)

    Bertin, Vincent; Grannan, Alex; Aurnou, Jonathan

    2016-11-01

    We have performed laboratory experiments in a aspect ratio Γ = 2 cylinder using liquid gallium (Pr = 0 . 023) as the working fluid. The Ekman number varies from E = 4 ×10-5 to 4 ×10-6 and the Rayleigh number varies from Ra = 3 ×105 to 2 ×107 . Using heat transfer and temperature measurements within the fluid, we characterize the different styles of low Pr rotating convective flow. The convection threshold is first overcome in the form of a container scale inertial oscillatory mode. At stronger forcing, wall-localized modes develop, coexisting with the inertial oscillatory modes in the bulk. When the strength of the buoyancy increases further, the bulk flow becomes turbulent while the wall modes remain. Our results imply that rotating convective flows in liquid metals do not develop in the form of quasi-steady columns, as in Pr = 1 planetary and stellar dynamo models, but in the form of oscillatory motions. Therefore, convection driven dynamo action in low Pr fluids can differ substantively than that occurring in typical Pr = 1 numerical models. Our results also suggest that low wavenumber, wall modes may be dynamically and observationally important in liquid metal dynamo systems. We thank the NSF Geophysics Program for support of this project.

  3. Externally induced frontoparietal synchronization modulates network dynamics and enhances working memory performance.

    Science.gov (United States)

    Violante, Ines R; Li, Lucia M; Carmichael, David W; Lorenz, Romy; Leech, Robert; Hampshire, Adam; Rothwell, John C; Sharp, David J

    2017-03-14

    Cognitive functions such as working memory (WM) are emergent properties of large-scale network interactions. Synchronisation of oscillatory activity might contribute to WM by enabling the coordination of long-range processes. However, causal evidence for the way oscillatory activity shapes network dynamics and behavior in humans is limited. Here we applied transcranial alternating current stimulation (tACS) to exogenously modulate oscillatory activity in a right frontoparietal network that supports WM. Externally induced synchronization improved performance when cognitive demands were high. Simultaneously collected fMRI data reveals tACS effects dependent on the relative phase of the stimulation and the internal cognitive processing state. Specifically, synchronous tACS during the verbal WM task increased parietal activity, which correlated with behavioral performance. Furthermore, functional connectivity results indicate that the relative phase of frontoparietal stimulation influences information flow within the WM network. Overall, our findings demonstrate a link between behavioral performance in a demanding WM task and large-scale brain synchronization.

  4. Oscillatory solutions of the Cauchy problem for linear differential equations

    Directory of Open Access Journals (Sweden)

    Gro Hovhannisyan

    2015-06-01

    Full Text Available We consider the Cauchy problem for second and third order linear differential equations with constant complex coefficients. We describe necessary and sufficient conditions on the data for the existence of oscillatory solutions. It is known that in the case of real coefficients the oscillatory behavior of solutions does not depend on initial values, but we show that this is no longer true in the complex case: hence in practice it is possible to control oscillatory behavior by varying the initial conditions. Our Proofs are based on asymptotic analysis of the zeros of solutions, represented as linear combinations of exponential functions.

  5. Communication and Wiring in the Cortical Connectome

    Directory of Open Access Journals (Sweden)

    Julian eBudd

    2012-10-01

    Full Text Available In cerebral cortex, the huge mass of axonal wiring that carries information between near and distant neurons is thought to provide the neural substrate for cognitive and perceptual function. The goal of mapping the connectivity of cortical axons at different spatial scales, the cortical connectome, is to trace the paths of information flow in cerebral cortex. To appreciate the relationship between the connectome and cortical function, we need to discover the nature and purpose of the wiring principles underlying cortical connectivity. A popular explanation has been that axonal length is strictly minimized both within and between cortical regions. In contrast, we have hypothesized the existence of a multi-scale principle of cortical wiring where to optimise communication there is a trade-off between spatial (construction and temporal (routing costs. Here, using recent evidence concerning cortical spatial networks we critically evaluate this hypothesis at neuron, local circuit, and pathway scales. We report three main conclusions. First, the axonal and dendritic arbor morphology of single neocortical neurons may be governed by a similar wiring principle, one that balances the conservation of cellular material and conduction delay. Second, the same principle may be observed for fibre tracts connecting cortical regions. Third, the absence of sufficient local circuit data currently prohibits any meaningful assessment of the hypothesis at this scale of cortical organization. To avoid neglecting neuron and microcircuit levels of cortical organization, the connectome framework should incorporate more morphological description. In addition, structural analyses of temporal cost for cortical circuits should take account of both axonal conduction and neuronal integration delays, which appear mostly of the same order of magnitude. We conclude the hypothesized trade-off between spatial and temporal costs may potentially offer a powerful explanation for

  6. Network-state modulation of power-law frequency-scaling in visual cortical neurons.

    Science.gov (United States)

    El Boustani, Sami; Marre, Olivier; Béhuret, Sébastien; Baudot, Pierre; Yger, Pierre; Bal, Thierry; Destexhe, Alain; Frégnac, Yves

    2009-09-01

    Various types of neural-based signals, such as EEG, local field potentials and intracellular synaptic potentials, integrate multiple sources of activity distributed across large assemblies. They have in common a power-law frequency-scaling structure at high frequencies, but it is still unclear whether this scaling property is dominated by intrinsic neuronal properties or by network activity. The latter case is particularly interesting because if frequency-scaling reflects the network state it could be used to characterize the functional impact of the connectivity. In intracellularly recorded neurons of cat primary visual cortex in vivo, the power spectral density of V(m) activity displays a power-law structure at high frequencies with a fractional scaling exponent. We show that this exponent is not constant, but depends on the visual statistics used to drive the network. To investigate the determinants of this frequency-scaling, we considered a generic recurrent model of cortex receiving a retinotopically organized external input. Similarly to the in vivo case, our in computo simulations show that the scaling exponent reflects the correlation level imposed in the input. This systematic dependence was also replicated at the single cell level, by controlling independently, in a parametric way, the strength and the temporal decay of the pairwise correlation between presynaptic inputs. This last model was implemented in vitro by imposing the correlation control in artificial presynaptic spike trains through dynamic-clamp techniques. These in vitro manipulations induced a modulation of the scaling exponent, similar to that observed in vivo and predicted in computo. We conclude that the frequency-scaling exponent of the V(m) reflects stimulus-driven correlations in the cortical network activity. Therefore, we propose that the scaling exponent could be used to read-out the "effective" connectivity responsible for the dynamical signature of the population signals measured

  7. Regional vulnerability of longitudinal cortical association connectivity

    Directory of Open Access Journals (Sweden)

    Rafael Ceschin

    2015-01-01

    Full Text Available Preterm born children with spastic diplegia type of cerebral palsy and white matter injury or periventricular leukomalacia (PVL, are known to have motor, visual and cognitive impairments. Most diffusion tensor imaging (DTI studies performed in this group have demonstrated widespread abnormalities using averaged deterministic tractography and voxel-based DTI measurements. Little is known about structural network correlates of white matter topography and reorganization in preterm cerebral palsy, despite the availability of new therapies and the need for brain imaging biomarkers. Here, we combined novel post-processing methodology of probabilistic tractography data in this preterm cohort to improve spatial and regional delineation of longitudinal cortical association tract abnormalities using an along-tract approach, and compared these data to structural DTI cortical network topology analysis. DTI images were acquired on 16 preterm children with cerebral palsy (mean age 5.6 ± 4 and 75 healthy controls (mean age 5.7 ± 3.4. Despite mean tract analysis, Tract-Based Spatial Statistics (TBSS and voxel-based morphometry (VBM demonstrating diffusely reduced fractional anisotropy (FA reduction in all white matter tracts, the along-tract analysis improved the detection of regional tract vulnerability. The along-tract map-structural network topology correlates revealed two associations: (1 reduced regional posterior–anterior gradient in FA of the longitudinal visual cortical association tracts (inferior fronto-occipital fasciculus, inferior longitudinal fasciculus, optic radiation, posterior thalamic radiation correlated with reduced posterior–anterior gradient of intra-regional (nodal efficiency metrics with relative sparing of frontal and temporal regions; and (2 reduced regional FA within frontal–thalamic–striatal white matter pathways (anterior limb/anterior thalamic radiation, superior longitudinal fasciculus and cortical spinal tract

  8. On oscillatory microstructure during cellular growth of directionally solidified Sn–36at.%Ni peritectic alloy

    Science.gov (United States)

    Peng, Peng; Li, Xinzhong; Li, Jiangong; Su, Yanqing; Guo, Jingjie

    2016-01-01

    An oscillatory microstructure has been observed during deep-cellular growth of directionally solidified Sn–36at.%Ni hyperperitectic alloy containing intermetallic compounds with narrow solubility range. This oscillatory microstructure with a dimension of tens of micrometers has been observed for the first time. The morphology of this wave-like oscillatory structure is similar to secondary dendrite arms, and can be observed only in some local positions of the sample. Through analysis such as successive sectioning of the sample, it can be concluded that this oscillatory microstructure is caused by oscillatory convection of the mushy zone during solidification. And the influence of convection on this oscillatory microstructure was characterized through comparison between experimental and calculations results on the wavelength. Besides, the change in morphology of this oscillatory microstructure has been proved to be caused by peritectic transformation during solidification. Furthermore, the melt concentration increases continuously during solidification of intermetallic compounds with narrow solubility range, which helps formation of this oscillatory microstructure. PMID:27066761

  9. On oscillatory microstructure during cellular growth of directionally solidified Sn-36at.%Ni peritectic alloy.

    Science.gov (United States)

    Peng, Peng; Li, Xinzhong; Li, Jiangong; Su, Yanqing; Guo, Jingjie

    2016-04-12

    An oscillatory microstructure has been observed during deep-cellular growth of directionally solidified Sn-36at.%Ni hyperperitectic alloy containing intermetallic compounds with narrow solubility range. This oscillatory microstructure with a dimension of tens of micrometers has been observed for the first time. The morphology of this wave-like oscillatory structure is similar to secondary dendrite arms, and can be observed only in some local positions of the sample. Through analysis such as successive sectioning of the sample, it can be concluded that this oscillatory microstructure is caused by oscillatory convection of the mushy zone during solidification. And the influence of convection on this oscillatory microstructure was characterized through comparison between experimental and calculations results on the wavelength. Besides, the change in morphology of this oscillatory microstructure has been proved to be caused by peritectic transformation during solidification. Furthermore, the melt concentration increases continuously during solidification of intermetallic compounds with narrow solubility range, which helps formation of this oscillatory microstructure.

  10. Histological analysis of the alterations on cortical bone channels network after radiotherapy: A rabbit study.

    Science.gov (United States)

    Rabelo, Gustavo Davi; Beletti, Marcelo Emílio; Dechichi, Paula

    2010-10-01

    The aim of this study was to evaluate the effects of radiotherapy in cortical bone channels network. Fourteen rabbits were divided in two groups and test group received single dose of 15 Gy cobalt-60 radiation in tibia, bilaterally. The animals were sacrificed and a segment of tibia was removed and histologically processed. Histological images were taken and had their bone channels segmented and called regions of interest (ROI). Images were analyzed through developed algorithms using the SCILAB mathematical environment, getting percentage of bone matrix, ROI areas, ROI perimeters, their standard deviations and Lacunarity. The osteocytes and empty lacunae were also counted. Data were evaluated using Kolmogorov-Smirnov, Mann Whitney, and Student's t test (P < 0.05). Significant differences in bone matrix percentage, area and perimeters of the channels, their respective standard deviations and lacunarity were found between groups. In conclusion, the radiotherapy causes reduction of bone matrix and modifies the morphology of bone channels network. © 2010 Wiley-Liss, Inc.

  11. Visuotactile motion congruence enhances gamma-band activity in visual and somatosensory cortices.

    Science.gov (United States)

    Krebber, Martin; Harwood, James; Spitzer, Bernhard; Keil, Julian; Senkowski, Daniel

    2015-08-15

    When touching and viewing a moving surface our visual and somatosensory systems receive congruent spatiotemporal input. Behavioral studies have shown that motion congruence facilitates interplay between visual and tactile stimuli, but the neural mechanisms underlying this interplay are not well understood. Neural oscillations play a role in motion processing and multisensory integration. They may also be crucial for visuotactile motion processing. In this electroencephalography study, we applied linear beamforming to examine the impact of visuotactile motion congruence on beta and gamma band activity (GBA) in visual and somatosensory cortices. Visual and tactile inputs comprised of gratings that moved either in the same or different directions. Participants performed a target detection task that was unrelated to motion congruence. While there were no effects in the beta band (13-21Hz), the power of GBA (50-80Hz) in visual and somatosensory cortices was larger for congruent compared with incongruent motion stimuli. This suggests enhanced bottom-up multisensory processing when visual and tactile gratings moved in the same direction. Supporting its behavioral relevance, GBA was correlated with shorter reaction times in the target detection task. We conclude that motion congruence plays an important role for the integrative processing of visuotactile stimuli in sensory cortices, as reflected by oscillatory responses in the gamma band. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Integrating microRNA and mRNA expression profiles of neuronal progenitors to identify regulatory networks underlying the onset of cortical neurogenesis

    Directory of Open Access Journals (Sweden)

    Barker Jeffery L

    2009-08-01

    Full Text Available Abstract Background Cortical development is a complex process that includes sequential generation of neuronal progenitors, which proliferate and migrate to form the stratified layers of the developing cortex. To identify the individual microRNAs (miRNAs and mRNAs that may regulate the genetic network guiding the earliest phase of cortical development, the expression profiles of rat neuronal progenitors obtained at embryonic day 11 (E11, E12 and E13 were analyzed. Results Neuronal progenitors were purified from telencephalic dissociates by a positive-selection strategy featuring surface labeling with tetanus-toxin and cholera-toxin followed by fluorescence-activated cell sorting. Microarray analyses revealed the fractions of miRNAs and mRNAs that were up-regulated or down-regulated in these neuronal progenitors at the beginning of cortical development. Nearly half of the dynamically expressed miRNAs were negatively correlated with the expression of their predicted target mRNAs. Conclusion These data support a regulatory role for miRNAs during the transition from neuronal progenitors into the earliest differentiating cortical neurons. In addition, by supplying a robust data set in which miRNA and mRNA profiles originate from the same purified cell type, this empirical study may facilitate the development of new algorithms to integrate various "-omics" data sets.

  13. Self-Referential Processing, Rumination, and Cortical Midline Structures in Major Depression

    Science.gov (United States)

    Nejad, Ayna Baladi; Fossati, Philippe; Lemogne, Cédric

    2013-01-01

    Major depression is associated with a bias toward negative emotional processing and increased self-focus, i.e., the process by which one engages in self-referential processing. The increased self-focus in depression is suggested to be of a persistent, repetitive and self-critical nature, and is conceptualized as ruminative brooding. The role of the medial prefrontal cortex in self-referential processing has been previously emphasized in acute major depression. There is increasing evidence that self-referential processing as well as the cortical midline structures play a major role in the development, course, and treatment response of major depressive disorder. However, the links between self-referential processing, rumination, and the cortical midline structures in depression are still poorly understood. Here, we reviewed brain imaging studies in depressed patients and healthy subjects that have examined these links. Self-referential processing in major depression seems associated with abnormally increased activity of the anterior cortical midline structures. Abnormal interactions between the lateralized task-positive network, and the midline cortical structures of the default mode network, as well as the emotional response network, may underlie the pervasiveness of ruminative brooding. Furthermore, targeting this maladaptive form of rumination and its underlying neural correlates may be key for effective treatment. PMID:24124416

  14. Self-referential processing, rumination, and cortical midline structures in major depression

    Directory of Open Access Journals (Sweden)

    Ayna Baladi Nejad

    2013-10-01

    Full Text Available Major depression is associated with a bias towards negative emotional processing and increased self-focus, i.e. the process by which one engages in self-referential processing. The increased self-focus in depression is suggested to be of a persistent, repetitive and self-critical nature and is conceptualised as ruminative brooding. The role of the medial prefrontal cortex in self-referential processing has been previously emphasised in acute major depression. There is increasing evidence that self-referential processing as well as the cortical midline structures play a major role in the development, course and treatment response of major depressive disorder. However, the links between self-referential processing, rumination, and the cortical midline structures in depression are still poorly understood. Here, we reviewed brain imaging studies in depressed patients and healthy subjects that have examined these links. The literature suggests that self-referential processing in major depression is associated with increased activity of the anterior cortical midline structures. Abnormal interactions between the lateralised task-positive network, and the midline cortical structures of the default mode network, as well as the emotional response network, may underlie the pervasiveness of ruminative brooding. Furthermore, targeting this maladaptive form of rumination and its underlying neural correlates may be key for effective treatment.

  15. Partial synchronization in diffusively time-delay coupled oscillator networks

    NARCIS (Netherlands)

    Steur, E.; Oguchi, T.; Leeuwen, van C.; Nijmeijer, H.

    2012-01-01

    We study networks of diffusively time-delay coupled oscillatory units and we show that networks with certain symmetries can exhibit a form of incomplete synchronization called partial synchronization. We present conditions for the existence and stability of partial synchronization modes in networks

  16. Two-scale approach to oscillatory singularly perturbed transport equations

    CERN Document Server

    Frénod, Emmanuel

    2017-01-01

    This book presents the classical results of the two-scale convergence theory and explains – using several figures – why it works. It then shows how to use this theory to homogenize ordinary differential equations with oscillating coefficients as well as oscillatory singularly perturbed ordinary differential equations. In addition, it explores the homogenization of hyperbolic partial differential equations with oscillating coefficients and linear oscillatory singularly perturbed hyperbolic partial differential equations. Further, it introduces readers to the two-scale numerical methods that can be built from the previous approaches to solve oscillatory singularly perturbed transport equations (ODE and hyperbolic PDE) and demonstrates how they can be used efficiently. This book appeals to master’s and PhD students interested in homogenization and numerics, as well as to the Iter community.

  17. Task-dependent changes in cross-level coupling between single neurons and oscillatory activity in multiscale networks.

    Directory of Open Access Journals (Sweden)

    Ryan T Canolty

    Full Text Available Understanding the principles governing the dynamic coordination of functional brain networks remains an important unmet goal within neuroscience. How do distributed ensembles of neurons transiently coordinate their activity across a variety of spatial and temporal scales? While a complete mechanistic account of this process remains elusive, evidence suggests that neuronal oscillations may play a key role in this process, with different rhythms influencing both local computation and long-range communication. To investigate this question, we recorded multiple single unit and local field potential (LFP activity from microelectrode arrays implanted bilaterally in macaque motor areas. Monkeys performed a delayed center-out reach task either manually using their natural arm (Manual Control, MC or under direct neural control through a brain-machine interface (Brain Control, BC. In accord with prior work, we found that the spiking activity of individual neurons is coupled to multiple aspects of the ongoing motor beta rhythm (10-45 Hz during both MC and BC, with neurons exhibiting a diversity of coupling preferences. However, here we show that for identified single neurons, this beta-to-rate mapping can change in a reversible and task-dependent way. For example, as beta power increases, a given neuron may increase spiking during MC but decrease spiking during BC, or exhibit a reversible shift in the preferred phase of firing. The within-task stability of coupling, combined with the reversible cross-task changes in coupling, suggest that task-dependent changes in the beta-to-rate mapping play a role in the transient functional reorganization of neural ensembles. We characterize the range of task-dependent changes in the mapping from beta amplitude, phase, and inter-hemispheric phase differences to the spike rates of an ensemble of simultaneously-recorded neurons, and discuss the potential implications that dynamic remapping from oscillatory activity to

  18. Three-dimensional Oscillatory Magnetic Reconnection

    Energy Technology Data Exchange (ETDEWEB)

    Thurgood, Jonathan O.; McLaughlin, James A. [Department of Mathematics, Physics and Electrical Engineering, Northumbria University, Newcastle upon Tyne, NE1 1ST (United Kingdom); Pontin, David I., E-mail: jonathan.thurgood@northumbria.ac.uk [Division of Mathematics, University of Dundee, Dundee, DD1 4HN (United Kingdom)

    2017-07-20

    Here we detail the dynamic evolution of localized reconnection regions about 3D magnetic null points using numerical simulation. We demonstrate for the first time that reconnection triggered by the localized collapse of a 3D null point that is due to an external magnetohydrodynamic (MHD) wave involves a self-generated oscillation, whereby the current sheet and outflow jets undergo a reconnection reversal process during which back-pressure formation at the jet heads acts to prise open the collapsed field before overshooting the equilibrium into an opposite-polarity configuration. The discovery that reconnection at fully 3D nulls can proceed naturally in a time-dependent and periodic fashion suggests that oscillatory reconnection mechanisms may play a role in explaining periodicity in astrophysical phenomena associated with magnetic reconnection, such as the observed quasi-periodicity of solar and stellar flare emission. Furthermore, we find that a consequence of oscillatory reconnection is the generation of a plethora of freely propagating MHD waves that escape the vicinity of the reconnection region.

  19. Three-dimensional Oscillatory Magnetic Reconnection

    International Nuclear Information System (INIS)

    Thurgood, Jonathan O.; McLaughlin, James A.; Pontin, David I.

    2017-01-01

    Here we detail the dynamic evolution of localized reconnection regions about 3D magnetic null points using numerical simulation. We demonstrate for the first time that reconnection triggered by the localized collapse of a 3D null point that is due to an external magnetohydrodynamic (MHD) wave involves a self-generated oscillation, whereby the current sheet and outflow jets undergo a reconnection reversal process during which back-pressure formation at the jet heads acts to prise open the collapsed field before overshooting the equilibrium into an opposite-polarity configuration. The discovery that reconnection at fully 3D nulls can proceed naturally in a time-dependent and periodic fashion suggests that oscillatory reconnection mechanisms may play a role in explaining periodicity in astrophysical phenomena associated with magnetic reconnection, such as the observed quasi-periodicity of solar and stellar flare emission. Furthermore, we find that a consequence of oscillatory reconnection is the generation of a plethora of freely propagating MHD waves that escape the vicinity of the reconnection region.

  20. Functional neural substrates of posterior cortical atrophy patients.

    Science.gov (United States)

    Shames, H; Raz, N; Levin, Netta

    2015-07-01

    Posterior cortical atrophy (PCA) is a neurodegenerative syndrome in which the most pronounced pathologic involvement is in the occipito-parietal visual regions. Herein, we aimed to better define the cortical reflection of this unique syndrome using a thorough battery of behavioral and functional MRI (fMRI) tests. Eight PCA patients underwent extensive testing to map their visual deficits. Assessments included visual functions associated with lower and higher components of the cortical hierarchy, as well as dorsal- and ventral-related cortical functions. fMRI was performed on five patients to examine the neuronal substrate of their visual functions. The PCA patient cohort exhibited stereopsis, saccadic eye movements and higher dorsal stream-related functional impairments, including simultant perception, image orientation, figure-from-ground segregation, closure and spatial orientation. In accordance with the behavioral findings, fMRI revealed intact activation in the ventral visual regions of face and object perception while more dorsal aspects of perception, including motion and gestalt perception, revealed impaired patterns of activity. In most of the patients, there was a lack of activity in the word form area, which is known to be linked to reading disorders. Finally, there was evidence of reduced cortical representation of the peripheral visual field, corresponding to the behaviorally assessed peripheral visual deficit. The findings are discussed in the context of networks extending from parietal regions, which mediate navigationally related processing, visually guided actions, eye movement control and working memory, suggesting that damage to these networks might explain the wide range of deficits in PCA patients.

  1. Oscillatory fluid flow influences primary cilia and microtubule mechanics.

    Science.gov (United States)

    Espinha, Lina C; Hoey, David A; Fernandes, Paulo R; Rodrigues, Hélder C; Jacobs, Christopher R

    2014-07-01

    Many tissues are sensitive to mechanical stimuli; however, the mechanotransduction mechanism used by cells remains unknown in many cases. The primary cilium is a solitary, immotile microtubule-based extension present on nearly every mammalian cell which extends from the basal body. The cilium is a mechanosensitive organelle and has been shown to transduce fluid flow-induced shear stress in tissues, such as the kidney and bone. The majority of microtubules assemble from the mother centriole (basal body), contributing significantly to the anchoring of the primary cilium. Several studies have attempted to quantify the number of microtubules emanating from the basal body and the results vary depending on the cell type. It has also been shown that cellular response to shear stress depends on microtubular integrity. This study hypothesizes that changing the microtubule attachment of primary cilia in response to a mechanical stimulus could change primary cilia mechanics and, possibly, mechanosensitivity. Oscillatory fluid flow was applied to two different cell types and the microtubule attachment to the ciliary base was quantified. For the first time, an increase in microtubules around primary cilia both with time and shear rate in response to oscillatory fluid flow stimulation was demonstrated. Moreover, it is presented that the primary cilium is required for this loading-induced cellular response. This study has demonstrated a new role for the cilium in regulating alterations in the cytoplasmic microtubule network in response to mechanical stimulation, and therefore provides a new insight into how cilia may regulate its mechanics and thus the cells mechanosensitivity. Copyright © 2014 Wiley Periodicals, Inc.

  2. Dopamine D1 signaling organizes network dynamics underlying working memory.

    Science.gov (United States)

    Roffman, Joshua L; Tanner, Alexandra S; Eryilmaz, Hamdi; Rodriguez-Thompson, Anais; Silverstein, Noah J; Ho, New Fei; Nitenson, Adam Z; Chonde, Daniel B; Greve, Douglas N; Abi-Dargham, Anissa; Buckner, Randy L; Manoach, Dara S; Rosen, Bruce R; Hooker, Jacob M; Catana, Ciprian

    2016-06-01

    Local prefrontal dopamine signaling supports working memory by tuning pyramidal neurons to task-relevant stimuli. Enabled by simultaneous positron emission tomography-magnetic resonance imaging (PET-MRI), we determined whether neuromodulatory effects of dopamine scale to the level of cortical networks and coordinate their interplay during working memory. Among network territories, mean cortical D1 receptor densities differed substantially but were strongly interrelated, suggesting cross-network regulation. Indeed, mean cortical D1 density predicted working memory-emergent decoupling of the frontoparietal and default networks, which respectively manage task-related and internal stimuli. In contrast, striatal D1 predicted opposing effects within these two networks but no between-network effects. These findings specifically link cortical dopamine signaling to network crosstalk that redirects cognitive resources to working memory, echoing neuromodulatory effects of D1 signaling on the level of cortical microcircuits.

  3. Distinction between perceptual and attentional processing in working memory tasks: a study of phase-locked and induced oscillatory brain dynamics.

    Science.gov (United States)

    Deiber, Marie-Pierre; Missonnier, Pascal; Bertrand, Olivier; Gold, Gabriel; Fazio-Costa, Lara; Ibañez, Vicente; Giannakopoulos, Panteleimon

    2007-01-01

    Working memory involves the short-term storage and manipulation of information necessary for cognitive performance, including comprehension, learning, reasoning and planning. Although electroencephalogram (EEG) rhythms are modulated during working memory, the temporal relationship of EEG oscillations with the eliciting event has not been well studied. In particular, the dynamics of the neural network supporting memory processes may be best captured in induced oscillations, characterized by a loose temporal link with the stimulus. In order to differentiate induced from evoked functional processes, the present study proposes a time-frequency analysis of the 3 to 30 Hz EEG oscillatory activity in a verbal n-back working memory paradigm. Control tasks were designed to identify oscillatory activity related to stimulus presentation (passive task) and focused attention to the stimulus (detection task). Evoked theta activity (4-8 Hz) phase-locked to the visual stimulus was evidenced in the parieto-occipital region for all tasks. In parallel, induced theta activity was recorded in the frontal region for detection and n-back memory tasks, but not for the passive task, suggesting its dependency on focused attention to the stimulus. Sustained induced oscillatory activity was identified in relation to working memory in the theta and beta (15-25 Hz) frequency bands, larger for the highest memory load. Its late occurrence limited to nonmatched items suggests that it could be related to item retention and active maintenance for further task requirements. Induced theta and beta activities displayed respectively a frontal and parietal topographical distribution, providing further functional information on the fronto-posterior network supporting working memory.

  4. Cortical and Subcortical Coordination of Visual Spatial Attention Revealed by Simultaneous EEG-fMRI Recording.

    Science.gov (United States)

    Green, Jessica J; Boehler, Carsten N; Roberts, Kenneth C; Chen, Ling-Chia; Krebs, Ruth M; Song, Allen W; Woldorff, Marty G

    2017-08-16

    Visual spatial attention has been studied in humans with both electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) individually. However, due to the intrinsic limitations of each of these methods used alone, our understanding of the systems-level mechanisms underlying attentional control remains limited. Here, we examined trial-to-trial covariations of concurrently recorded EEG and fMRI in a cued visual spatial attention task in humans, which allowed delineation of both the generators and modulators of the cue-triggered event-related oscillatory brain activity underlying attentional control function. The fMRI activity in visual cortical regions contralateral to the cued direction of attention covaried positively with occipital gamma-band EEG, consistent with activation of cortical regions representing attended locations in space. In contrast, fMRI activity in ipsilateral visual cortical regions covaried inversely with occipital alpha-band oscillations, consistent with attention-related suppression of the irrelevant hemispace. Moreover, the pulvinar nucleus of the thalamus covaried with both of these spatially specific, attention-related, oscillatory EEG modulations. Because the pulvinar's neuroanatomical geometry makes it unlikely to be a direct generator of the scalp-recorded EEG, these covariational patterns appear to reflect the pulvinar's role as a regulatory control structure, sending spatially specific signals to modulate visual cortex excitability proactively. Together, these combined EEG/fMRI results illuminate the dynamically interacting cortical and subcortical processes underlying spatial attention, providing important insight not realizable using either method alone. SIGNIFICANCE STATEMENT Noninvasive recordings of changes in the brain's blood flow using functional magnetic resonance imaging and electrical activity using electroencephalography in humans have individually shown that shifting attention to a location in space

  5. Motor cortical plasticity in Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    Kaviraja eUdupa

    2013-09-01

    Full Text Available In Parkinson’s disease (PD, there are alterations of the basal ganglia (BG thalamo-cortical networks, primarily due to degeneration of nigrostrial dopaminergic neurons. These changes in subcortical networks lead to plastic changes in primary motor cortex (M1, which mediates cortical motor output and is a potential target for treatment of PD. Studies investigating the motor cortical plasticity using non-invasive transcranial magnetic stimulation (TMS have found altered plasticity in PD, but there are inconsistencies among these studies. This is likely because plasticity depends on many factors such as the extent of dopaminergic loss and disease severity, response to dopaminergic replacement therapies, development of L-dopa-induced dyskinesias (LID, the plasticity protocol used, medication and stimulation status in patients treated with deep brain stimulation (DBS. The influences of LID and DBS on BG and M1 plasticity have been explored in animal models and in PD patients. In addition, many other factors such age, genetic factors (e.g. brain derived neurotropic factor and other neurotransmitters or receptors polymorphism, emotional state, time of the day, physical fitness have been documented to play role in the extent of plasticity induced by TMS in human studies. In this review, we summarize the studies that investigated M1 plasticity in PD and demonstrate how these afore-mentioned factors affect motor cortical plasticity in PD. We conclude that it is important to consider the clinical, demographic and technical factors that influence various plasticity protocols while developing these protocols as diagnostic or prognostic tools in PD. We also discuss how the modulation of cortical excitability and the plasticity with these non-invasive brain stimulation techniques facilitate the understanding of the pathophysiology of PD and help design potential therapeutic possibilities in this disorder.

  6. Acupuncture analgesia involves modulation of pain-induced gamma oscillations and cortical network connectivity.

    Science.gov (United States)

    Hauck, Michael; Schröder, Sven; Meyer-Hamme, Gesa; Lorenz, Jürgen; Friedrichs, Sunja; Nolte, Guido; Gerloff, Christian; Engel, Andreas K

    2017-11-24

    Recent studies support the view that cortical sensory, limbic and executive networks and the autonomic nervous system might interact in distinct manners under the influence of acupuncture to modulate pain. We performed a double-blind crossover design study to investigate subjective ratings, EEG and ECG following experimental laser pain under the influence of sham and verum acupuncture in 26 healthy volunteers. We analyzed neuronal oscillations and inter-regional coherence in the gamma band of 128-channel-EEG recordings as well as heart rate variability (HRV) on two experimental days. Pain ratings and pain-induced gamma oscillations together with vagally-mediated power in the high-frequency bandwidth (vmHF) of HRV decreased significantly stronger during verum than sham acupuncture. Gamma oscillations were localized in the prefrontal cortex (PFC), mid-cingulate cortex (MCC), primary somatosensory cortex and insula. Reductions of pain ratings and vmHF-power were significantly correlated with increase of connectivity between the insula and MCC. In contrast, connectivity between left and right PFC and between PFC and insula correlated positively with vmHF-power without a relationship to acupuncture analgesia. Overall, these findings highlight the influence of the insula in integrating activity in limbic-saliency networks with vagally mediated homeostatic control to mediate antinociception under the influence of acupuncture.

  7. Auditory Tones and Foot-Shock Recapitulate Spontaneous Sub-Threshold Activity in Basolateral Amygdala Principal Neurons and Interneurons.

    Directory of Open Access Journals (Sweden)

    François Windels

    Full Text Available In quiescent states such as anesthesia and slow wave sleep, cortical networks show slow rhythmic synchronized activity. In sensory cortices this rhythmic activity shows a stereotypical pattern that is recapitulated by stimulation of the appropriate sensory modality. The amygdala receives sensory input from a variety of sources, and in anesthetized animals, neurons in the basolateral amygdala (BLA show slow rhythmic synchronized activity. Extracellular field potential recordings show that these oscillations are synchronized with sensory cortex and the thalamus, with both the thalamus and cortex leading the BLA. Using whole-cell recording in vivo we show that the membrane potential of principal neurons spontaneously oscillates between up- and down-states. Footshock and auditory stimulation delivered during down-states evokes an up-state that fully recapitulates those occurring spontaneously. These results suggest that neurons in the BLA receive convergent input from networks of cortical neurons with slow oscillatory activity and that somatosensory and auditory stimulation can trigger activity in these same networks.

  8. Integrated mechanisms of anticipation and rate-of-change computations in cortical circuits.

    Directory of Open Access Journals (Sweden)

    Gabriel D Puccini

    2007-05-01

    Full Text Available Local neocortical circuits are characterized by stereotypical physiological and structural features that subserve generic computational operations. These basic computations of the cortical microcircuit emerge through the interplay of neuronal connectivity, cellular intrinsic properties, and synaptic plasticity dynamics. How these interacting mechanisms generate specific computational operations in the cortical circuit remains largely unknown. Here, we identify the neurophysiological basis of both the rate of change and anticipation computations on synaptic inputs in a cortical circuit. Through biophysically realistic computer simulations and neuronal recordings, we show that the rate-of-change computation is operated robustly in cortical networks through the combination of two ubiquitous brain mechanisms: short-term synaptic depression and spike-frequency adaptation. We then show how this rate-of-change circuit can be embedded in a convergently connected network to anticipate temporally incoming synaptic inputs, in quantitative agreement with experimental findings on anticipatory responses to moving stimuli in the primary visual cortex. Given the robustness of the mechanism and the widespread nature of the physiological machinery involved, we suggest that rate-of-change computation and temporal anticipation are principal, hard-wired functions of neural information processing in the cortical microcircuit.

  9. The simplest problem in the collective dynamics of neural networks: is synchrony stable?

    International Nuclear Information System (INIS)

    Timme, Marc; Wolf, Fred

    2008-01-01

    For spiking neural networks we consider the stability problem of global synchrony, arguably the simplest non-trivial collective dynamics in such networks. We find that even this simplest dynamical problem—local stability of synchrony—is non-trivial to solve and requires novel methods for its solution. In particular, the discrete mode of pulsed communication together with the complicated connectivity of neural interaction networks requires a non-standard approach. The dynamics in the vicinity of the synchronous state is determined by a multitude of linear operators, in contrast to a single stability matrix in conventional linear stability theory. This unusual property qualitatively depends on network topology and may be neglected for globally coupled homogeneous networks. For generic networks, however, the number of operators increases exponentially with the size of the network. We present methods to treat this multi-operator problem exactly. First, based on the Gershgorin and Perron–Frobenius theorems, we derive bounds on the eigenvalues that provide important information about the synchronization process but are not sufficient to establish the asymptotic stability or instability of the synchronous state. We then present a complete analysis of asymptotic stability for topologically strongly connected networks using simple graph-theoretical considerations. For inhibitory interactions between dissipative (leaky) oscillatory neurons the synchronous state is stable, independent of the parameters and the network connectivity. These results indicate that pulse-like interactions play a profound role in network dynamical systems, and in particular in the dynamics of biological synchronization, unless the coupling is homogeneous and all-to-all. The concepts introduced here are expected to also facilitate the exact analysis of more complicated dynamical network states, for instance the irregular balanced activity in cortical neural networks

  10. Familiarity Detection is an Intrinsic Property of Cortical Microcircuits with Bidirectional Synaptic Plasticity.

    Science.gov (United States)

    Zhang, Xiaoyu; Ju, Han; Penney, Trevor B; VanDongen, Antonius M J

    2017-01-01

    Humans instantly recognize a previously seen face as "familiar." To deepen our understanding of familiarity-novelty detection, we simulated biologically plausible neural network models of generic cortical microcircuits consisting of spiking neurons with random recurrent synaptic connections. NMDA receptor (NMDAR)-dependent synaptic plasticity was implemented to allow for unsupervised learning and bidirectional modifications. Network spiking activity evoked by sensory inputs consisting of face images altered synaptic efficacy, which resulted in the network responding more strongly to a previously seen face than a novel face. Network size determined how many faces could be accurately recognized as familiar. When the simulated model became sufficiently complex in structure, multiple familiarity traces could be retained in the same network by forming partially-overlapping subnetworks that differ slightly from each other, thereby resulting in a high storage capacity. Fisher's discriminant analysis was applied to identify critical neurons whose spiking activity predicted familiar input patterns. Intriguingly, as sensory exposure was prolonged, the selected critical neurons tended to appear at deeper layers of the network model, suggesting recruitment of additional circuits in the network for incremental information storage. We conclude that generic cortical microcircuits with bidirectional synaptic plasticity have an intrinsic ability to detect familiar inputs. This ability does not require a specialized wiring diagram or supervision and can therefore be expected to emerge naturally in developing cortical circuits.

  11. Age-related decline in functional connectivity of the vestibular cortical network.

    Science.gov (United States)

    Cyran, Carolin Anna Maria; Boegle, Rainer; Stephan, Thomas; Dieterich, Marianne; Glasauer, Stefan

    2016-04-01

    In the elderly, major complaints include dizziness and an increasing number of falls, possibly related to an altered processing of vestibular sensory input. In this study, we therefore investigate age-related changes induced by processing of vestibular sensory stimulation. While previous functional imaging studies of healthy aging have investigated brain function during task performance or at rest, we used galvanic vestibular stimulation during functional MRI in a task-free sensory stimulation paradigm to study the effect of healthy aging on central vestibular processing, which might only become apparent during stimulation processing. Since aging may affect signatures of brain function beyond the BOLD-signal amplitude-such as functional connectivity or temporal signal variability--we employed independent component analysis and partial least squares analysis of temporal signal variability. We tested for age-associated changes unrelated to vestibular processing, using a motor paradigm, voxel-based morphometry and diffusion tensor imaging. This allows us to control for general age-related modifications, possibly originating from vascular, atrophic or structural connectivity changes. Age-correlated decreases of functional connectivity and increases of BOLD--signal variability were associated with multisensory vestibular networks. In contrast, no age-related functional connectivity changes were detected in somatosensory networks or during the motor paradigm. The functional connectivity decrease was not due to structural changes but to a decrease in response amplitude. In synopsis, our data suggest that both the age-dependent functional connectivity decrease and the variability increase may be due to deteriorating reciprocal cortico-cortical inhibition with age and related to multimodal vestibular integration of sensory inputs.

  12. Effective Connectivity of Cortical Sensorimotor Networks During Finger Movement Tasks: A Simultaneous fNIRS, fMRI, EEG Study.

    Science.gov (United States)

    Anwar, A R; Muthalib, M; Perrey, S; Galka, A; Granert, O; Wolff, S; Heute, U; Deuschl, G; Raethjen, J; Muthuraman, Muthuraman

    2016-09-01

    Recently, interest has been growing to understand the underlying dynamic directional relationship between simultaneously activated regions of the brain during motor task performance. Such directionality analysis (or effective connectivity analysis), based on non-invasive electrophysiological (electroencephalography-EEG) and hemodynamic (functional near infrared spectroscopy-fNIRS; and functional magnetic resonance imaging-fMRI) neuroimaging modalities can provide an estimate of the motor task-related information flow from one brain region to another. Since EEG, fNIRS and fMRI modalities achieve different spatial and temporal resolutions of motor-task related activation in the brain, the aim of this study was to determine the effective connectivity of cortico-cortical sensorimotor networks during finger movement tasks measured by each neuroimaging modality. Nine healthy subjects performed right hand finger movement tasks of different complexity (simple finger tapping-FT, simple finger sequence-SFS, and complex finger sequence-CFS). We focused our observations on three cortical regions of interest (ROIs), namely the contralateral sensorimotor cortex (SMC), the contralateral premotor cortex (PMC) and the contralateral dorsolateral prefrontal cortex (DLPFC). We estimated the effective connectivity between these ROIs using conditional Granger causality (GC) analysis determined from the time series signals measured by fMRI (blood oxygenation level-dependent-BOLD), fNIRS (oxygenated-O2Hb and deoxygenated-HHb hemoglobin), and EEG (scalp and source level analysis) neuroimaging modalities. The effective connectivity analysis showed significant bi-directional information flow between the SMC, PMC, and DLPFC as determined by the EEG (scalp and source), fMRI (BOLD) and fNIRS (O2Hb and HHb) modalities for all three motor tasks. However the source level EEG GC values were significantly greater than the other modalities. In addition, only the source level EEG showed a

  13. Spiking in auditory cortex following thalamic stimulation is dominated by cortical network activity

    Science.gov (United States)

    Krause, Bryan M.; Raz, Aeyal; Uhlrich, Daniel J.; Smith, Philip H.; Banks, Matthew I.

    2014-01-01

    The state of the sensory cortical network can have a profound impact on neural responses and perception. In rodent auditory cortex, sensory responses are reported to occur in the context of network events, similar to brief UP states, that produce “packets” of spikes and are associated with synchronized synaptic input (Bathellier et al., 2012; Hromadka et al., 2013; Luczak et al., 2013). However, traditional models based on data from visual and somatosensory cortex predict that ascending sensory thalamocortical (TC) pathways sequentially activate cells in layers 4 (L4), L2/3, and L5. The relationship between these two spatio-temporal activity patterns is unclear. Here, we used calcium imaging and electrophysiological recordings in murine auditory TC brain slices to investigate the laminar response pattern to stimulation of TC afferents. We show that although monosynaptically driven spiking in response to TC afferents occurs, the vast majority of spikes fired following TC stimulation occurs during brief UP states and outside the context of the L4>L2/3>L5 activation sequence. Specifically, monosynaptic subthreshold TC responses with similar latencies were observed throughout layers 2–6, presumably via synapses onto dendritic processes located in L3 and L4. However, monosynaptic spiking was rare, and occurred primarily in L4 and L5 non-pyramidal cells. By contrast, during brief, TC-induced UP states, spiking was dense and occurred primarily in pyramidal cells. These network events always involved infragranular layers, whereas involvement of supragranular layers was variable. During UP states, spike latencies were comparable between infragranular and supragranular cells. These data are consistent with a model in which activation of auditory cortex, especially supragranular layers, depends on internally generated network events that represent a non-linear amplification process, are initiated by infragranular cells and tightly regulated by feed-forward inhibitory

  14. Network-state modulation of power-law frequency-scaling in visual cortical neurons.

    Directory of Open Access Journals (Sweden)

    Sami El Boustani

    2009-09-01

    Full Text Available Various types of neural-based signals, such as EEG, local field potentials and intracellular synaptic potentials, integrate multiple sources of activity distributed across large assemblies. They have in common a power-law frequency-scaling structure at high frequencies, but it is still unclear whether this scaling property is dominated by intrinsic neuronal properties or by network activity. The latter case is particularly interesting because if frequency-scaling reflects the network state it could be used to characterize the functional impact of the connectivity. In intracellularly recorded neurons of cat primary visual cortex in vivo, the power spectral density of V(m activity displays a power-law structure at high frequencies with a fractional scaling exponent. We show that this exponent is not constant, but depends on the visual statistics used to drive the network. To investigate the determinants of this frequency-scaling, we considered a generic recurrent model of cortex receiving a retinotopically organized external input. Similarly to the in vivo case, our in computo simulations show that the scaling exponent reflects the correlation level imposed in the input. This systematic dependence was also replicated at the single cell level, by controlling independently, in a parametric way, the strength and the temporal decay of the pairwise correlation between presynaptic inputs. This last model was implemented in vitro by imposing the correlation control in artificial presynaptic spike trains through dynamic-clamp techniques. These in vitro manipulations induced a modulation of the scaling exponent, similar to that observed in vivo and predicted in computo. We conclude that the frequency-scaling exponent of the V(m reflects stimulus-driven correlations in the cortical network activity. Therefore, we propose that the scaling exponent could be used to read-out the "effective" connectivity responsible for the dynamical signature of the population

  15. Changes of motor-cortical oscillations associated with motor learning.

    Science.gov (United States)

    Pollok, B; Latz, D; Krause, V; Butz, M; Schnitzler, A

    2014-09-05

    Motor learning results from practice but also between practice sessions. After skill acquisition early consolidation results in less interference with other motor tasks and even improved performance of the newly learned skill. A specific significance of the primary motor cortex (M1) for early consolidation has been suggested. Since synchronized oscillatory activity is assumed to facilitate neuronal plasticity, we here investigate alterations of motor-cortical oscillations by means of event-related desynchronization (ERD) at alpha (8-12 Hz) and beta (13-30 Hz) frequencies in healthy humans. Neuromagnetic activity was recorded using a 306-channel whole-head magnetoencephalography (MEG) system. ERD was investigated in 15 subjects during training on a serial reaction time task and 10 min after initial training. The data were compared with performance during a randomly varying sequence serving as control condition. The data reveal a stepwise decline of alpha-band ERD associated with faster reaction times replicating previous findings. The amount of beta-band suppression was significantly correlated with reduction of reaction times. While changes of alpha power have been related to lower cognitive control after initial skill acquisition, the present data suggest that the amount of beta suppression represents a neurophysiological marker of early cortical reorganization associated with motor learning. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. Top-down feedback in an HMAX-like cortical model of object perception based on hierarchical Bayesian networks and belief propagation.

    Directory of Open Access Journals (Sweden)

    Salvador Dura-Bernal

    Full Text Available Hierarchical generative models, such as Bayesian networks, and belief propagation have been shown to provide a theoretical framework that can account for perceptual processes, including feedforward recognition and feedback modulation. The framework explains both psychophysical and physiological experimental data and maps well onto the hierarchical distributed cortical anatomy. However, the complexity required to model cortical processes makes inference, even using approximate methods, very computationally expensive. Thus, existing object perception models based on this approach are typically limited to tree-structured networks with no loops, use small toy examples or fail to account for certain perceptual aspects such as invariance to transformations or feedback reconstruction. In this study we develop a Bayesian network with an architecture similar to that of HMAX, a biologically-inspired hierarchical model of object recognition, and use loopy belief propagation to approximate the model operations (selectivity and invariance. Crucially, the resulting Bayesian network extends the functionality of HMAX by including top-down recursive feedback. Thus, the proposed model not only achieves successful feedforward recognition invariant to noise, occlusions, and changes in position and size, but is also able to reproduce modulatory effects such as illusory contour completion and attention. Our novel and rigorous methodology covers key aspects such as learning using a layerwise greedy algorithm, combining feedback information from multiple parents and reducing the number of operations required. Overall, this work extends an established model of object recognition to include high-level feedback modulation, based on state-of-the-art probabilistic approaches. The methodology employed, consistent with evidence from the visual cortex, can be potentially generalized to build models of hierarchical perceptual organization that include top-down and bottom

  17. Reduction in Cortical Gamma Synchrony during Depolarized State of Slow Wave Activity in Mice

    Directory of Open Access Journals (Sweden)

    EUNJIN eHWANG

    2013-12-01

    Full Text Available EEG gamma band oscillations have been proposed to account for the neural synchronization crucial for perceptual integration. While increased gamma power and synchronization is generally observed during cognitive tasks performed during wake, several studies have additionally reported increased gamma power during sleep or anesthesia, raising questions about the characteristics of gamma oscillation during impaired consciousness and its role in conscious processing. Phase-amplitude modulation has been observed between slow wave activity (SWA, 0.5–4 Hz and gamma oscillations during ketamine/xylazine anesthesia or sleep, showing increased gamma activity corresponding to the depolarized (ON state of SWA. Here we divided gamma activity into its ON and OFF (hyperpolarized state components based on the phase of SWA induced by ketamine/xylazine anesthesia and compared their power and synchrony with wake state levels in mice. We further investigated the state-dependent changes in both gamma power and synchrony across primary motor and primary somatosensory cortical regions and their interconnected thalamic regions throughout anesthesia and recovery. As observed previously, gamma power was as high as during wake specifically during the ON state of SWA. However, the synchrony of this gamma activity between somatosensory-motor cortical regions was significantly reduced compared to the baseline wake state. In addition, the somatosensory-motor cortical synchrony of gamma oscillations was reduced and restored in an anesthetic state-dependent manner, reflecting the changing depth of anesthesia. Our results provide evidence that during anesthesia changes in long-range information integration between cortical regions might be more critical for changes in consciousness than changes in local gamma oscillatory power.

  18. Temporal Genetic Modifications after Controlled Cortical Impact—Understanding Traumatic Brain Injury through a Systematic Network Approach

    Directory of Open Access Journals (Sweden)

    Yung-Hao Wong

    2016-02-01

    Full Text Available Traumatic brain injury (TBI is a primary injury caused by external physical force and also a secondary injury caused by biological processes such as metabolic, cellular, and other molecular events that eventually lead to brain cell death, tissue and nerve damage, and atrophy. It is a common disease process (as opposed to an event that causes disabilities and high death rates. In order to treat all the repercussions of this injury, treatment becomes increasingly complex and difficult throughout the evolution of a TBI. Using high-throughput microarray data, we developed a systems biology approach to explore potential molecular mechanisms at four time points post-TBI (4, 8, 24, and 72 h, using a controlled cortical impact (CCI model. We identified 27, 50, 48, and 59 significant proteins as network biomarkers at these four time points, respectively. We present their network structures to illustrate the protein–protein interactions (PPIs. We also identified UBC (Ubiquitin C, SUMO1, CDKN1A (cyclindependent kinase inhibitor 1A, and MYC as the core network biomarkers at the four time points, respectively. Using the functional analytical tool MetaCore™, we explored regulatory mechanisms and biological processes and conducted a statistical analysis of the four networks. The analytical results support some recent findings regarding TBI and provide additional guidance and directions for future research.

  19. Motor cortical plasticity in Parkinson's disease.

    Science.gov (United States)

    Udupa, Kaviraja; Chen, Robert

    2013-09-04

    In Parkinson's disease (PD), there are alterations of the basal ganglia (BG) thalamocortical networks, primarily due to degeneration of nigrostriatal dopaminergic neurons. These changes in subcortical networks lead to plastic changes in primary motor cortex (M1), which mediates cortical motor output and is a potential target for treatment of PD. Studies investigating the motor cortical plasticity using non-invasive transcranial magnetic stimulation (TMS) have found altered plasticity in PD, but there are inconsistencies among these studies. This is likely because plasticity depends on many factors such as the extent of dopaminergic loss and disease severity, response to dopaminergic replacement therapies, development of l-DOPA-induced dyskinesias (LID), the plasticity protocol used, medication, and stimulation status in patients treated with deep brain stimulation (DBS). The influences of LID and DBS on BG and M1 plasticity have been explored in animal models and in PD patients. In addition, many other factors such age, genetic factors (e.g., brain derived neurotropic factor and other neurotransmitters or receptors polymorphism), emotional state, time of the day, physical fitness have been documented to play role in the extent of plasticity induced by TMS in human studies. In this review, we summarize the studies that investigated M1 plasticity in PD and demonstrate how these afore-mentioned factors affect motor cortical plasticity in PD. We conclude that it is important to consider the clinical, demographic, and technical factors that influence various plasticity protocols while developing these protocols as diagnostic or prognostic tools in PD. We also discuss how the modulation of cortical excitability and the plasticity with these non-invasive brain stimulation techniques facilitate the understanding of the pathophysiology of PD and help design potential therapeutic possibilities in this disorder.

  20. Characterization of early cortical population response to thalamocortical input in vitro

    Directory of Open Access Journals (Sweden)

    Michael Raymond Heliodor Hill

    2014-01-01

    Full Text Available The in vitro thalamocortical slice preparation of mouse barrel cortex allows for stimulation of the cortex through its natural afferent thalamocortical pathway. This preparation was used here to investigate the first stage of cortical processing in the large postsynaptic dendritic networks as revealed by voltage sensitive dye imaging. We identified the precise location and dimensions of two clearly distinguishable dendritic networks, one in the granular layer IV and one in the infragranular layer V and VI and showed that they have different physiological properties. DiI fluorescent staining further revealed that thalamocortical axons project on to these two networks in the typical barrel like form, not only in the granular but also in the infragranular layer. Finally we investigated the short term dynamics of both the voltage sensitive dye imaging signal and the local field potential in response to a train of eight-pulses at various frequencies in both these layers. We found evidence of differences in the plasticity between the first two response peaks compared to the remaining six peaks as well as differences in short term plasticity between the voltage sensitive dye imaging response and the local field potential. Our findings suggest, that at least early cortical processing takes place in two separate dendritic networks that may stand at the beginning of further parallel computation. The detailed characterization of the parameters of these networks may provide tools for further research into the complex dynamics of large dendritic networks and their role in cortical computation.

  1. Lifespan anxiety is reflected in human amygdala cortical connectivity

    Science.gov (United States)

    He, Ye; Xu, Ting; Zhang, Wei

    2016-01-01

    Abstract The amygdala plays a pivotal role in processing anxiety and connects to large‐scale brain networks. However, intrinsic functional connectivity (iFC) between amygdala and these networks has rarely been examined in relation to anxiety, especially across the lifespan. We employed resting‐state functional MRI data from 280 healthy adults (18–83.5 yrs) to elucidate the relationship between anxiety and amygdala iFC with common cortical networks including the visual network, somatomotor network, dorsal attention network, ventral attention network, limbic network, frontoparietal network, and default network. Global and network‐specific iFC were separately computed as mean iFC of amygdala with the entire cerebral cortex and each cortical network. We detected negative correlation between global positive amygdala iFC and trait anxiety. Network‐specific associations between amygdala iFC and anxiety were also detectable. Specifically, the higher iFC strength between the left amygdala and the limbic network predicted lower state anxiety. For the trait anxiety, left amygdala anxiety–connectivity correlation was observed in both somatomotor and dorsal attention networks, whereas the right amygdala anxiety–connectivity correlation was primarily distributed in the frontoparietal and ventral attention networks. Ventral attention network exhibited significant anxiety–gender interactions on its iFC with amygdala. Together with findings from additional vertex‐wise analysis, these data clearly indicated that both low‐level sensory networks and high‐level associative networks could contribute to detectable predictions of anxiety behaviors by their iFC profiles with the amygdala. This set of systems neuroscience findings could lead to novel functional network models on neural correlates of human anxiety and provide targets for novel treatment strategies on anxiety disorders. Hum Brain Mapp 37:1178–1193, 2016. © 2015 The Authors Human Brain Mapping

  2. Experimental study of the turbulent boundary layer in acceleration-skewed oscillatory flow

    NARCIS (Netherlands)

    van der A, D.A.; O' Donoghue, T.; Davies, A.G; Ribberink, Jan S.

    2011-01-01

    Experiments have been conducted in a large oscillatory flow tunnel to investigate the effects of acceleration skewness on oscillatory boundary layer flow over fixed beds. As well as enabling experimental investigation of the effects of acceleration skewness, the new experiments add substantially to

  3. Inter-individual variability in cortical excitability and motor network connectivity following multiple blocks of rTMS.

    Science.gov (United States)

    Nettekoven, Charlotte; Volz, Lukas J; Leimbach, Martha; Pool, Eva-Maria; Rehme, Anne K; Eickhoff, Simon B; Fink, Gereon R; Grefkes, Christian

    2015-09-01

    The responsiveness to non-invasive neuromodulation protocols shows high inter-individual variability, the reasons of which remain poorly understood. We here tested whether the response to intermittent theta-burst stimulation (iTBS) - an effective repetitive transcranial magnetic stimulation (rTMS) protocol for increasing cortical excitability - depends on network properties of the cortical motor system. We furthermore investigated whether the responsiveness to iTBS is dose-dependent. To this end, we used a sham-stimulation controlled, single-blinded within-subject design testing for the relationship between iTBS aftereffects and (i) motor-evoked potentials (MEPs) as well as (ii) resting-state functional connectivity (rsFC) in 16 healthy subjects. In each session, three blocks of iTBS were applied, separated by 15min. We found that non-responders (subjects not showing an MEP increase of ≥10% after one iTBS block) featured stronger rsFC between the stimulated primary motor cortex (M1) and premotor areas before stimulation compared to responders. However, only the group of responders showed increases in rsFC and MEPs, while most non-responders remained close to baseline levels after all three blocks of iTBS. Importantly, there was still a large amount of variability in both groups. Our data suggest that responsiveness to iTBS at the local level (i.e., M1 excitability) depends upon the pre-interventional network connectivity of the stimulated region. Of note, increasing iTBS dose did not turn non-responders into responders. The finding that higher levels of pre-interventional connectivity precluded a response to iTBS could reflect a ceiling effect underlying non-responsiveness to iTBS at the systems level. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Microstructural Origins of Nonlinear Response in Associating Polymers under Oscillatory Shear

    Directory of Open Access Journals (Sweden)

    Mark A. Wilson

    2017-10-01

    Full Text Available The response of associating polymers with oscillatory shear is studied through large-scale simulations. A hybrid molecular dynamics (MD, Monte Carlo (MC algorithm is employed. Polymer chains are modeled as a coarse-grained bead-spring system. Functionalized end groups, at both ends of the polymer chains, can form reversible bonds according to MC rules. Stress-strain curves show nonlinearities indicated by a non-ellipsoidal shape. We consider two types of nonlinearities. Type I occurs at a strain amplitude much larger than one, type II at a frequency at which the elastic storage modulus dominates the viscous loss modulus. In this last case, the network topology resembles that of the system at rest. The reversible bonds are broken and chains stretch when the system moves away from the zero-strain position. For type I, the chains relax and the number of reversible bonds peaks when the system is near an extreme of the motion. During the movement to the other extreme of the cycle, first a stress overshoot occurs, then a yield accompanied by shear-banding. Finally, the network restructures. Interestingly, the system periodically restores bonds between the same associating groups. Even though major restructuring occurs, the system remembers previous network topologies.

  5. An extended discrete gradient formula for oscillatory Hamiltonian systems

    International Nuclear Information System (INIS)

    Liu Kai; Shi Wei; Wu Xinyuan

    2013-01-01

    In this paper, incorporating the idea of the discrete gradient method into the extended Runge–Kutta–Nyström integrator, we derive and analyze an extended discrete gradient formula for the oscillatory Hamiltonian system with the Hamiltonian H(p,q)= 1/2 p T p+ 1/2 q T Mq+U(q), where q:R→R d represents generalized positions, p:R→R d represents generalized momenta and M is an element of R dxd is a symmetric and positive semi-definite matrix. The solution of this system is a nonlinear oscillator. Basically, many nonlinear oscillatory mechanical systems with a partitioned Hamiltonian function lend themselves to this approach. The extended discrete gradient formula presented in this paper exactly preserves the energy H(p, q). We derive some properties of the new formula. The convergence is analyzed for the implicit schemes based on the discrete gradient formula, and it turns out that the convergence of the implicit schemes based on the extended discrete gradient formula is independent of ‖M‖, which is a significant property for the oscillatory Hamiltonian system. Thus, it transpires that a larger step size can be chosen for the new energy-preserving schemes than that for the traditional discrete gradient methods when applied to the oscillatory Hamiltonian system. Illustrative examples show the competence and efficiency of the new schemes in comparison with the traditional discrete gradient methods in the scientific literature. (paper)

  6. Flow of cortical activity underlying a tactile decision in mice

    OpenAIRE

    Guo, Zengcai V.; Li, Nuo; Huber, Daniel; Ophir, Eran; Gutnisky, Diego; Ting, Jonathan T.; Feng, Guoping; Svoboda, Karel

    2013-01-01

    Perceptual decisions involve distributed cortical activity. Does information flow sequentially from one cortical area to another, or do networks of interconnected areas contribute at the same time? Here we delineate when and how activity in specific areas drives a whisker-based decision in mice. A short-term memory component temporally separated tactile “sensation” and “action” (licking). Using optogenetic inhibition (spatial resolution, 2 mm; temporal resolution, 100 ms), we surveyed the neo...

  7. Enhanced Gamma Oscillatory Activity in Rats with Chronic Inflammatory Pain

    OpenAIRE

    Wang, Jing; Wang, Jing; Xing, Guo-Gang; Li, Xiaoli; Wan, You

    2016-01-01

    It has been reported that oscillatory gamma activity participates in brief acute pain and tonic ongoing pain. It is of great interest to determine whether the gamma activity is involved in chronic pain since chronic pain is a more severe pathological condition characterized by pain persistency. To investigate the oscillatory gamma activity in chronic pain, in the present study, we recorded spontaneous electrocorticogram (ECoG) signals during chronic pain development in rats with chronic infla...

  8. Functional connectivity of motor cortical network in patients with brachial plexus avulsion injury after contralateral cervical nerve transfer: a resting-state fMRI study

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Aihong; Cheng, Xiaoguang; Liang, Wei; Bai, Rongjie [The 4th Medical College of Peking University, Department of Radiology, Beijing Jishuitan Hospital, Xicheng Qu, Beijing (China); Wang, Shufeng; Xue, Yunhao; Li, Wenjun [The 4th Medical College of Peking University, Department of Hand Surgery, Beijing Jishuitan Hospital, Beijing (China)

    2017-03-15

    The purpose of this study is to assess the functional connectivity of the motor cortical network in patients with brachial plexus avulsion injury (BPAI) after contralateral C7 nerve transfer, using resting-state functional magnetic resonance imaging (RS-fMRI). Twelve patients with total brachial plexus root avulsion underwent RS-fMRI after contralateral C7 nerve transfer. Seventeen healthy volunteers were also included in this fMRI study as controls. The hand motor seed regions were defined as region of interests in the bilateral hemispheres. The seed-based functional connectivity was calculated in all the subjects. Differences in functional connectivity of the motor cortical network between patients and healthy controls were compared. The inter-hemispheric functional connectivity of the M1 areas was increased in patients with BPAI compared with the controls. The inter-hemispheric functional connectivity between the supplementary motor areas was reduced bilaterally. The resting-state inter-hemispheric functional connectivity of the bilateral M1 areas is altered in patients after contralateral C7 nerve transfer, suggesting a functional reorganization of cerebral cortex. (orig.)

  9. Functional connectivity of motor cortical network in patients with brachial plexus avulsion injury after contralateral cervical nerve transfer: a resting-state fMRI study

    International Nuclear Information System (INIS)

    Yu, Aihong; Cheng, Xiaoguang; Liang, Wei; Bai, Rongjie; Wang, Shufeng; Xue, Yunhao; Li, Wenjun

    2017-01-01

    The purpose of this study is to assess the functional connectivity of the motor cortical network in patients with brachial plexus avulsion injury (BPAI) after contralateral C7 nerve transfer, using resting-state functional magnetic resonance imaging (RS-fMRI). Twelve patients with total brachial plexus root avulsion underwent RS-fMRI after contralateral C7 nerve transfer. Seventeen healthy volunteers were also included in this fMRI study as controls. The hand motor seed regions were defined as region of interests in the bilateral hemispheres. The seed-based functional connectivity was calculated in all the subjects. Differences in functional connectivity of the motor cortical network between patients and healthy controls were compared. The inter-hemispheric functional connectivity of the M1 areas was increased in patients with BPAI compared with the controls. The inter-hemispheric functional connectivity between the supplementary motor areas was reduced bilaterally. The resting-state inter-hemispheric functional connectivity of the bilateral M1 areas is altered in patients after contralateral C7 nerve transfer, suggesting a functional reorganization of cerebral cortex. (orig.)

  10. Oscillatory processes in plasma

    International Nuclear Information System (INIS)

    Gallin, E.

    1980-01-01

    The oscillatory process play an important part in plasma evolution, In hot plasma in particular, the interactions between the oscillation modes are preponderant in relation to the binary collisions between particles. The nonlineary interactions between collective plasma oscillations can generate, in this case, a non-balanced steady state of plasma (steady turbulence). The paper elucidates some aspects of the oscillatory phenomena which contribute to the plasma state evolution, especially of hot plasma. A major part of the paper is devoted to the study of parametric instabilities in plasma and their role in increasing the temperature of plasma components (electrons, ions). Both parametric instabilities in plasma in the vicinity of thermodynamic balance and parametric processes is steady turbulent plasma are analysed - in relation to additional heating of hot plasma. An important result of the thesis refers to the drowing-up of a non-lineary interaction model between the oscillation modes in turbulent plasma, being responsible for the electromagnetic radiation in hot plasma. On the basis of the model suggested in the paper the existence of a low frequency radiative mode in hot plasma in a turbulent state, can be demonstrated. Its frequency could be even lower than plasma frequency in the field of long waves be even lower than plasma frequency in the field of long waves. Such a radiative mode was detected experimentally in focussed plasma installations. (author)

  11. Novel recurrent neural network for modelling biological networks: oscillatory p53 interaction dynamics.

    Science.gov (United States)

    Ling, Hong; Samarasinghe, Sandhya; Kulasiri, Don

    2013-12-01

    Understanding the control of cellular networks consisting of gene and protein interactions and their emergent properties is a central activity of Systems Biology research. For this, continuous, discrete, hybrid, and stochastic methods have been proposed. Currently, the most common approach to modelling accurate temporal dynamics of networks is ordinary differential equations (ODE). However, critical limitations of ODE models are difficulty in kinetic parameter estimation and numerical solution of a large number of equations, making them more suited to smaller systems. In this article, we introduce a novel recurrent artificial neural network (RNN) that addresses above limitations and produces a continuous model that easily estimates parameters from data, can handle a large number of molecular interactions and quantifies temporal dynamics and emergent systems properties. This RNN is based on a system of ODEs representing molecular interactions in a signalling network. Each neuron represents concentration change of one molecule represented by an ODE. Weights of the RNN correspond to kinetic parameters in the system and can be adjusted incrementally during network training. The method is applied to the p53-Mdm2 oscillation system - a crucial component of the DNA damage response pathways activated by a damage signal. Simulation results indicate that the proposed RNN can successfully represent the behaviour of the p53-Mdm2 oscillation system and solve the parameter estimation problem with high accuracy. Furthermore, we presented a modified form of the RNN that estimates parameters and captures systems dynamics from sparse data collected over relatively large time steps. We also investigate the robustness of the p53-Mdm2 system using the trained RNN under various levels of parameter perturbation to gain a greater understanding of the control of the p53-Mdm2 system. Its outcomes on robustness are consistent with the current biological knowledge of this system. As more

  12. Separation of transient and oscillatory cerebral activities using over-complete rational dilation wavelet transforms

    International Nuclear Information System (INIS)

    Chaibi, S.; Lajnef, T.; Samet, M.; Kachouri, A.

    2011-01-01

    Many natural signals EEG are comprised frequency overlapping of oscillatory and transient components. In our study the intracranial EEG signals of epilepsy are composed of the superposition of oscillatory signals (HFOs: High Frequency oscillations) and a transient signals (spikes and sharp waves, etc.). The oscillatory components (HFOs) exist in the frequency band 80-500Hz. The transient components comes from nonrhythmic brain activities (spikes, sharp waves and vertex waves of varying amplitude, shape and duration) and cover a continuous wide bandwidth from low to high frequencies and resemble an HFOs events when filtered using a band pass classical filter. The classical filtering methods based on FIR filters, Wavelet transforms and the Matching Pursuit cannot separate the oscillatory from transient activities. This paper describes an approach for decomposing an iEEG signals of epilepsy into the sum of oscillatory components and a transient components based on overcomplete rational dilation wavelet transforms (overcomplete RADWT) in conjunction with morphological component analysis (MCA).

  13. The cortical structure of consolidated memory: a hypothesis on the role of the cingulate-entorhinal cortical connection.

    Science.gov (United States)

    Insel, Nathan; Takehara-Nishiuchi, Kaori

    2013-11-01

    Daily experiences are represented by networks of neurons distributed across the neocortex, bound together for rapid storage and later retrieval by the hippocampus. While the hippocampus is necessary for retrieving recent episode-based memory associations, over time, consolidation processes take place that enable many of these associations to be expressed independent of the hippocampus. It is generally thought that mechanisms of consolidation involve synaptic weight changes between cortical regions; or, in other words, the formation of "horizontal" cortico-cortical connections. Here, we review anatomical, behavioral, and physiological data which suggest that the connections in and between the entorhinal and cingulate cortices may be uniquely important for the long-term storage of memories that initially depend on the hippocampus. We propose that current theories of consolidation that divide memory into dual systems of hippocampus and neocortex might be improved by introducing a third, middle layer of entorhinal and cingulate allocortex, the synaptic weights within which are necessary and potentially sufficient for maintaining initially hippocampus-dependent associations over long time periods. This hypothesis makes a number of still untested predictions, and future experiments designed to address these will help to fill gaps in the current understanding of the cortical structure of consolidated memory. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Abnormalities in Structural Covariance of Cortical Gyrification in Parkinson's Disease.

    Science.gov (United States)

    Xu, Jinping; Zhang, Jiuquan; Zhang, Jinlei; Wang, Yue; Zhang, Yanling; Wang, Jian; Li, Guanglin; Hu, Qingmao; Zhang, Yuanchao

    2017-01-01

    Although abnormal cortical morphology and connectivity between brain regions (structural covariance) have been reported in Parkinson's disease (PD), the topological organizations of large-scale structural brain networks are still poorly understood. In this study, we investigated large-scale structural brain networks in a sample of 37 PD patients and 34 healthy controls (HC) by assessing the structural covariance of cortical gyrification with local gyrification index (lGI). We demonstrated prominent small-world properties of the structural brain networks for both groups. Compared with the HC group, PD patients showed significantly increased integrated characteristic path length and integrated clustering coefficient, as well as decreased integrated global efficiency in structural brain networks. Distinct distributions of hub regions were identified between the two groups, showing more hub regions in the frontal cortex in PD patients. Moreover, the modular analyses revealed significantly decreased integrated regional efficiency in lateral Fronto-Insula-Temporal module, and increased integrated regional efficiency in Parieto-Temporal module in the PD group as compared to the HC group. In summary, our study demonstrated altered topological properties of structural networks at a global, regional and modular level in PD patients. These findings suggests that the structural networks of PD patients have a suboptimal topological organization, resulting in less effective integration of information between brain regions.

  15. Bray–Liebhafsky oscillatory reaction in the radiofrequency electromagnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Stanisavljev, Dragomir R., E-mail: dragisa@ffh.bg.ac.rs [Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, P.O. Box 473, 11001 Belgrade (Serbia); Velikić, Zoran [Institute of Physics, University of Belgrade, Pregrevica 118, Zemun (Serbia); Veselinović, Dragan S.; Jacić, Nevena V.; Milenković, Maja C. [Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, P.O. Box 473, 11001 Belgrade (Serbia)

    2014-09-30

    Highlights: • Oscillatory Bray–Liebhafsky reaction is coupled with the radiofrequency radiation. • The effects of radiofrequency field on oscillatory parameters are investigated. • Radiofrequency power of up to the 0.2 W did not produced observable changes. • The explanation related with dissipative and capacitive effects is given. • Open the possibility of investigations of reactive effects on biological systems. - Abstract: Oscillatory Bray–Liebhafsky (BL) reaction is capacitively coupled with the electromagnetic radiation in the frequency range 60–110 MHz. Because of the specific reaction dynamics characterized by several characteristic parameters (induction period, period between chemical oscillations and their amplitude) it served as a good model system for the investigation of the effects of radiofrequent (RF) radiation. RF power of up to 0.2 W did not produce observable changes of the BL reaction parameters in the limit of the experiment reproductivity. Results indicate that, under the given experimental conditions, both dissipative and reactive properties of the solution are not considerably coupled with the RF electrical field.

  16. Stroke rehabilitation using noninvasive cortical stimulation: aphasia.

    Science.gov (United States)

    Mylius, Veit; Zouari, Hela G; Ayache, Samar S; Farhat, Wassim H; Lefaucheur, Jean-Pascal

    2012-08-01

    Poststroke aphasia results from the lesion of cortical areas involved in the motor production of speech (Broca's aphasia) or in the semantic aspects of language comprehension (Wernicke's aphasia). Such lesions produce an important reorganization of speech/language-specific brain networks due to an imbalance between cortical facilitation and inhibition. In fact, functional recovery is associated with changes in the excitability of the damaged neural structures and their connections. Two main mechanisms are involved in poststroke aphasia recovery: the recruitment of perilesional regions of the left hemisphere in case of small lesion and the acquisition of language processing ability in homotopic areas of the nondominant right hemisphere when left hemispheric language abilities are permanently lost. There is some evidence that noninvasive cortical stimulation, especially when combined with language therapy or other therapeutic approaches, can promote aphasia recovery. Cortical stimulation was mainly used to either increase perilesional excitability or reduce contralesional activity based on the concept of reciprocal inhibition and maladaptive plasticity. However, recent studies also showed some positive effects of the reinforcement of neural activities in the contralateral right hemisphere, based on the potential compensatory role of the nondominant hemisphere in stroke recovery.

  17. MicroRNA-338 Attenuates Cortical Neuronal Outgrowth by Modulating the Expression of Axon Guidance Genes.

    Science.gov (United States)

    Kos, Aron; Klein-Gunnewiek, Teun; Meinhardt, Julia; Loohuis, Nikkie F M Olde; van Bokhoven, Hans; Kaplan, Barry B; Martens, Gerard J; Kolk, Sharon M; Aschrafi, Armaz

    2017-07-01

    MicroRNAs (miRs) are small non-coding RNAs that confer robustness to gene networks through post-transcriptional gene regulation. Previously, we identified miR-338 as a modulator of axonal outgrowth in sympathetic neurons. In the current study, we examined the role of miR-338 in the development of cortical neurons and uncovered its downstream mRNA targets. Long-term inhibition of miR-338 during neuronal differentiation resulted in reduced dendritic complexity and altered dendritic spine morphology. Furthermore, monitoring axon outgrowth in cortical cells revealed that miR-338 overexpression decreased, whereas inhibition of miR-338 increased axonal length. To identify gene targets mediating the observed phenotype, we inhibited miR-338 in cortical neurons and performed whole-transcriptome analysis. Pathway analysis revealed that miR-338 modulates a subset of transcripts involved in the axonal guidance machinery by means of direct and indirect gene targeting. Collectively, our results implicate miR-338 as a novel regulator of cortical neuronal maturation by fine-tuning the expression of gene networks governing cortical outgrowth.

  18. The Nonlinear Distortions in the Oscillatory System of Generator on CFOA

    Directory of Open Access Journals (Sweden)

    Yuriy Konstantinovich Rybin

    2012-01-01

    Full Text Available In recent years, many articles came out where one could find the analysis of oscillatory systems of electric sinusoid signals generators with amplifiers called CFOA—current feedback operational amplifiers. As a rule, the analysis of such systems is made by applying mathematical modeling methods on the basis of the amplifier linear model, which does not allow estimating advantages and disadvantages of the systems realized with those amplifiers in comparison with classical systems. A nonlinear model of a current feedback operational amplifier (CFOA is introduced in the paper; nonlinearity of “current mirror” is reflected in the form of current double limiting. The analysis of two known oscillatory systems has been carried out with the use of this non-linear model. Dependence between current limiting level, output voltage amplitude, and maximum oscillation frequency has been obtained. The paper shows that output current limiting under current output connection of capacitive load reduces frequency range and output voltage amplitude considerably and increases harmonic distortions in comparison with classical oscillatory systems. The research done has found that the application of new amplifiers does not give considerable advantages to the oscillatory systems with CFOA.

  19. Oscillatory wake potential with exchange-correlation in plasmas

    Science.gov (United States)

    Khan, Arroj A.; Zeba, I.; Jamil, M.; Asif, M.

    2017-12-01

    The oscillatory wake potential of a moving test charge is studied in quantum dusty plasmas. The plasma system consisting of electrons, ions and negatively charged dust species is embedded in an ambient magnetic field. The modified equation of dispersion is derived using a Quantum Hydrodynamic Model for magnetized plasmas. The quantum effects are inculcated through Fermi degenerate pressure, the tunneling effect and exchange-correlation effects. The study of oscillatory wake is important to know the existence of silence zones in space and astrophysical objects as well as for crystal formation. The graphical description of the potential depicts the significance of the exchange and correlation effects arising through spin and other variables on the wake potential.

  20. Unimodal primary sensory cortices are directly connected by long-range horizontal projections in the rat sensory cortex

    Directory of Open Access Journals (Sweden)

    Jimmy eStehberg

    2014-09-01

    Full Text Available Research based on functional imaging and neuronal recordings in the barrel cortex subdivision of primary somatosensory cortex (SI of the adult rat has revealed novel aspects of structure-function relationships in this cortex. Specifically, it has demonstrated that single whisker stimulation evokes subthreshold neuronal activity that spreads symmetrically within gray matter from the appropriate barrel area, crosses cytoarchitectural borders of SI and reaches deeply into other unimodal primary cortices such as primary auditory (AI and primary visual (VI. It was further demonstrated that this spread is supported by a spatially matching underlying diffuse network of border-crossing, long-range projections that could also reach deeply into AI and VI. Here we seek to determine whether such a network of border-crossing, long-range projections is unique to barrel cortex or characterizes also other primary, unimodal sensory cortices and therefore could directly connect them. Using anterograde (BDA and retrograde (CTb tract-tracing techniques, we demonstrate that such diffuse horizontal networks directly and mutually connect VI, AI and SI. These findings suggest that diffuse, border-crossing axonal projections connecting directly primary cortices are an important organizational motif common to all major primary sensory cortices in the rat. Potential implications of these findings for topics including cortical structure-function relationships, multisensory integration, functional imaging and cortical parcellation are discussed.

  1. Representing where along with what information in a model of a cortical patch.

    Directory of Open Access Journals (Sweden)

    Yasser Roudi

    2008-03-01

    Full Text Available Behaving in the real world requires flexibly combining and maintaining information about both continuous and discrete variables. In the visual domain, several lines of evidence show that neurons in some cortical networks can simultaneously represent information about the position and identity of objects, and maintain this combined representation when the object is no longer present. The underlying network mechanism for this combined representation is, however, unknown. In this paper, we approach this issue through a theoretical analysis of recurrent networks. We present a model of a cortical network that can retrieve information about the identity of objects from incomplete transient cues, while simultaneously representing their spatial position. Our results show that two factors are important in making this possible: A a metric organisation of the recurrent connections, and B a spatially localised change in the linear gain of neurons. Metric connectivity enables a localised retrieval of information about object identity, while gain modulation ensures localisation in the correct position. Importantly, we find that the amount of information that the network can retrieve and retain about identity is strongly affected by the amount of information it maintains about position. This balance can be controlled by global signals that change the neuronal gain. These results show that anatomical and physiological properties, which have long been known to characterise cortical networks, naturally endow them with the ability to maintain a conjunctive representation of the identity and location of objects.

  2. Mechanisms of zero-lag synchronization in cortical motifs.

    Directory of Open Access Journals (Sweden)

    Leonardo L Gollo

    2014-04-01

    Full Text Available Zero-lag synchronization between distant cortical areas has been observed in a diversity of experimental data sets and between many different regions of the brain. Several computational mechanisms have been proposed to account for such isochronous synchronization in the presence of long conduction delays: Of these, the phenomenon of "dynamical relaying"--a mechanism that relies on a specific network motif--has proven to be the most robust with respect to parameter mismatch and system noise. Surprisingly, despite a contrary belief in the community, the common driving motif is an unreliable means of establishing zero-lag synchrony. Although dynamical relaying has been validated in empirical and computational studies, the deeper dynamical mechanisms and comparison to dynamics on other motifs is lacking. By systematically comparing synchronization on a variety of small motifs, we establish that the presence of a single reciprocally connected pair--a "resonance pair"--plays a crucial role in disambiguating those motifs that foster zero-lag synchrony in the presence of conduction delays (such as dynamical relaying from those that do not (such as the common driving triad. Remarkably, minor structural changes to the common driving motif that incorporate a reciprocal pair recover robust zero-lag synchrony. The findings are observed in computational models of spiking neurons, populations of spiking neurons and neural mass models, and arise whether the oscillatory systems are periodic, chaotic, noise-free or driven by stochastic inputs. The influence of the resonance pair is also robust to parameter mismatch and asymmetrical time delays amongst the elements of the motif. We call this manner of facilitating zero-lag synchrony resonance-induced synchronization, outline the conditions for its occurrence, and propose that it may be a general mechanism to promote zero-lag synchrony in the brain.

  3. Slow-oscillatory transcranial direct current stimulation can induce bidirectional shifts in motor cortical excitability in awake humans

    DEFF Research Database (Denmark)

    Groppa, S; Bergmann, T O; Siems, C

    2010-01-01

    Constant transcranial direct stimulation (c-tDCS) of the primary motor hand area (M1(HAND)) can induce bidirectional shifts in motor cortical excitability depending on the polarity of tDCS. Recently, anodal slow oscillation stimulation at a frequency of 0.75 Hz has been shown to augment intrinsic...... slow oscillations during sleep and theta oscillations during wakefulness. To embed this new type of stimulation into the existing tDCS literature, we aimed to characterize the after effects of slowly oscillating stimulation (so-tDCS) on M1(HAND) excitability and to compare them to those of c-tDCS. Here...

  4. Cerebral oscillatory activity during simulated driving using MEG

    Directory of Open Access Journals (Sweden)

    Kotoe eSakihara

    2014-12-01

    Full Text Available We aimed to examine cerebral oscillatory differences associated with psychological processes during simulated car driving. We recorded neuromagnetic signals in 14 healthy volunteers using magnetoencephalography (MEG during simulated driving. MEG data were analyzed using synthetic aperture magnetometry to detect the spatial distribution of cerebral oscillations. Group effects between subjects were analyzed statistically using a nonparametric permutation test. Oscillatory differences were calculated by comparison between passive viewing and active driving. Passive viewing was the baseline, and oscillatory differences during active driving showed an increase or decrease in comparison with a baseline. Power increase in the theta band was detected in the superior frontal gyrus (SFG during active driving. Power decreases in the alpha, beta, and low gamma bands were detected in the right inferior parietal lobe (IPL, left postcentral gyrus (PoCG, middle temporal gyrus (MTG, and posterior cingulate gyrus (PCiG during active driving. Power increase in the theta band in the SFG may play a role in attention. Power decrease in the right IPL may reflect selectively divided attention and visuospatial processing, whereas that in the left PoCG reflects sensorimotor activation related to driving manipulation. Power decreases in the MTG and PCiG may be associated with object recognition.

  5. Pacemaker neuron and network oscillations depend on a neuromodulator-regulated linear current

    Directory of Open Access Journals (Sweden)

    Shunbing Zhao

    2010-05-01

    Full Text Available Linear leak currents have been implicated in the regulation of neuronal excitability, generation of neuronal and network oscillations, and network state transitions. Yet, few studies have directly tested the dependence of network oscillations on leak currents or explored the role of leak currents on network activity. In the oscillatory pyloric network of decapod crustaceans neuromodulatory inputs are necessary for pacemaker activity. A large subset of neuromodulators is known to activate a single voltage-gated inward current IMI, which has been shown to regulate the rhythmic activity of the network and its pacemaker neurons. Using the dynamic clamp technique, we show that the crucial component of IMI for the generation of oscillatory activity is only a close-to-linear portion of the current-voltage relationship. The nature of this conductance is such that the presence or the absence of neuromodulators effectively regulates the amount of leak current and the input resistance in the pacemaker neurons. When deprived of neuromodulatory inputs, pyloric oscillations are disrupted; yet, a linear reduction of the total conductance in a single neuron within the pacemaker group recovers not only the pacemaker activity in that neuron, but also leads to a recovery of oscillations in the entire pyloric network. The recovered activity produces proper frequency and phasing that is similar to that induced by neuromodulators. These results show that the passive properties of pacemaker neurons can significantly affect their capacity to generate and regulate the oscillatory activity of an entire network, and that this feature is exploited by neuromodulatory inputs.

  6. Pronounced prefronto-temporal cortical thinning in schizophrenia: Neuroanatomical correlate of suicidal behavior?

    Science.gov (United States)

    Besteher, Bianca; Wagner, Gerd; Koch, Kathrin; Schachtzabel, Claudia; Reichenbach, Jürgen R; Schlösser, Ralf; Sauer, Heinrich; Schultz, C Christoph

    2016-10-01

    Schizophrenia is characterized by increased mortality for which suicidality is the decisive factor. An analysis of cortical thickness and folding to further elucidate neuroanatomical correlates of suicidality in schizophrenia has not yet been performed. We searched for relevant brain regions with such differences between patients with suicide-attempts, patients without any suicidal thoughts and healthy controls. 37 schizophrenia patients (14 suicide-attempters and 23 non-suicidal) and 50 age- and gender-matched healthy controls were included. Suicidality was documented through clinical interview and chart review. All participants underwent T1-weighted MRI scans. Whole brain node-by-node cortical thickness and folding were estimated (FreeSurfer Software) and compared. Additionally a three group comparison for prefrontal regions-of-interest was performed in SPSS using a multifactorial GLM. Compared with the healthy controls patients showed a typical pattern of cortical thinning in prefronto-temporal regions and altered cortical folding in the right medial temporal cortex. Patients with suicidal behavior compared with non-suicidal patients demonstrated pronounced (psuicidal patients with non-suicidal patients significant (psuicidal behaviour in schizophrenia. We identified cortical thinning in a network strongly involved in regulation of impulsivity, emotions and planning of behaviour in suicide attempters, which might lead to neuronal dysregulation in this network and consequently to a higher risk of suicidal behavior. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. A cortical network model of cognitive and emotional influences in human decision making.

    Science.gov (United States)

    Nazir, Azadeh Hassannejad; Liljenström, Hans

    2015-10-01

    Decision making (DM)(2) is a complex process that appears to involve several brain structures. In particular, amygdala, orbitofrontal cortex (OFC) and lateral prefrontal cortex (LPFC) seem to be essential in human decision making, where both emotional and cognitive aspects are taken into account. In this paper, we present a computational network model representing the neural information processing of DM, from perception to behavior. We model the population dynamics of the three neural structures (amygdala, OFC and LPFC), as well as their interaction. In our model, the neurodynamic activity of amygdala and OFC represents the neural correlates of secondary emotion, while the activity of certain neural populations in OFC alone represents the outcome expectancy of different options. The cognitive/rational aspect of DM is associated with LPFC. Our model is intended to give insights on the emotional and cognitive processes involved in DM under various internal and external contexts. Different options for actions are represented by the oscillatory activity of cell assemblies, which may change due to experience and learning. Knowledge and experience of the outcome of our decisions and actions can eventually result in changes in our neural structures, attitudes and behaviors. Simulation results may have implications for how we make decisions for our individual actions, as well as for societal choices, where we take examples from transport and its impact on CO2 emissions and climate change. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. On the Structure of Cortical Microcircuits Inferred from Small Sample Sizes.

    Science.gov (United States)

    Vegué, Marina; Perin, Rodrigo; Roxin, Alex

    2017-08-30

    The structure in cortical microcircuits deviates from what would be expected in a purely random network, which has been seen as evidence of clustering. To address this issue, we sought to reproduce the nonrandom features of cortical circuits by considering several distinct classes of network topology, including clustered networks, networks with distance-dependent connectivity, and those with broad degree distributions. To our surprise, we found that all of these qualitatively distinct topologies could account equally well for all reported nonrandom features despite being easily distinguishable from one another at the network level. This apparent paradox was a consequence of estimating network properties given only small sample sizes. In other words, networks that differ markedly in their global structure can look quite similar locally. This makes inferring network structure from small sample sizes, a necessity given the technical difficulty inherent in simultaneous intracellular recordings, problematic. We found that a network statistic called the sample degree correlation (SDC) overcomes this difficulty. The SDC depends only on parameters that can be estimated reliably given small sample sizes and is an accurate fingerprint of every topological family. We applied the SDC criterion to data from rat visual and somatosensory cortex and discovered that the connectivity was not consistent with any of these main topological classes. However, we were able to fit the experimental data with a more general network class, of which all previous topologies were special cases. The resulting network topology could be interpreted as a combination of physical spatial dependence and nonspatial, hierarchical clustering. SIGNIFICANCE STATEMENT The connectivity of cortical microcircuits exhibits features that are inconsistent with a simple random network. Here, we show that several classes of network models can account for this nonrandom structure despite qualitative differences in

  9. Impairment of GABA transporter GAT-1 terminates cortical recurrent network activity via enhanced phasic inhibition

    Directory of Open Access Journals (Sweden)

    Daniel Simon Razik

    2013-09-01

    Full Text Available In the central nervous system, GABA transporters (GATs very efficiently clear synaptically released GABA from the extracellular space, and thus exert a tight control on GABAergic inhibition. In neocortex, GABAergic inhibition is heavily recruited during recurrent phases of spontaneous action potential activity which alternate with neuronally quiet periods. Therefore, such activity should be quite sensitive to minute alterations of GAT function. Here, we explored the effects of a gradual impairment of GAT-1 and GAT-2/3 on spontaneous recurrent network activity – termed network bursts and silent periods – in organotypic slice cultures of rat neocortex. The GAT-1 specific antagonist NO-711 depressed activity already at nanomolar concentrations (IC50 for depression of spontaneous multiunit firing rate of 42 nM, reaching a level of 80% at 500-1000 nM. By contrast, the GAT-2/3 preferring antagonist SNAP-5114 had weaker and less consistent effects. Several lines of evidence pointed towards an enhancement of phasic GABAergic inhibition as the dominant activity-depressing mechanism: network bursts were drastically shortened, phasic GABAergic currents decayed slower, and neuronal excitability during ongoing activity was diminished. In silent periods, NO-711 had little effect on neuronal excitability or membrane resistance, quite in contrast to the effects of muscimol, a GABA mimetic which activates GABAA receptors tonically. Our results suggest that an enhancement of phasic GABAergic inhibition efficiently curtails cortical recurrent activity and may mediate antiepileptic effects of therapeutically relevant concentrations of GAT-1 antagonists.

  10. Spatiotemporal alterations of cortical network activity by selective loss of NOS-expressing interneurons .

    Directory of Open Access Journals (Sweden)

    Dan eShlosberg

    2012-02-01

    Full Text Available Deciphering the role of GABAergic neurons in large neuronal networks such as the neocortex forms a particularly complex task as they comprise a highly diverse population. The neuronal isoform of the enzyme nitric oxide synthase (nNOS is expressed in the neocortex by specific subsets of GABAergic neurons. These neurons can be identified in live brain slices by the nitric oxide (NO fluorescent indicator DAF-2DA. However, this indicator was found to be highly toxic to the stained neurons. We used this feature to induce acute phototoxic damage to NO-producing neurons in cortical slices, and measured subsequent alterations in parameters of cellular and network activity.Neocortical slices were briefly incubated in DAF-2DA and then illuminated through the 4X objective. Histochemistry for NADPH diaphorase, a marker for nNOS activity, revealed elimination of staining in the illuminated areas following treatment. Whole cell recordings from several neuronal types before, during and after illumination confirmed the selective damage to non fast-spiking interneurons. Treated slices displayed mild disinhibition. The reversal potential of compound synaptic events on pyramidal neurons became more positive, and their decay time constant was elongated, substantiating the removal of an inhibitory conductance. The horizontal decay of local field potentials (LFPs was significantly reduced at distances of 300-400 m from the stimulation, but not when inhibition was non-selectively weakened with the GABAA blocker picrotoxin. Finally, whereas the depression of LFPs along short trains of 40 Hz stimuli was linearly reduced with distance or initial amplitude in control slices, this ordered relationship was disrupted in DAF-treated slices. These results reveal that NO-producing interneurons in the neocortex convey lateral inhibition to neighboring columns, and shape the spatiotemporal dynamics of the network's activity.

  11. Spatiotemporal alterations of cortical network activity by selective loss of NOS-expressing interneurons.

    Science.gov (United States)

    Shlosberg, Dan; Buskila, Yossi; Abu-Ghanem, Yasmin; Amitai, Yael

    2012-01-01

    Deciphering the role of GABAergic neurons in large neuronal networks such as the neocortex forms a particularly complex task as they comprise a highly diverse population. The neuronal isoform of the enzyme nitric oxide synthase (nNOS) is expressed in the neocortex by specific subsets of GABAergic neurons. These neurons can be identified in live brain slices by the nitric oxide (NO) fluorescent indicator diaminofluorescein-2 diacetate (DAF-2DA). However, this indicator was found to be highly toxic to the stained neurons. We used this feature to induce acute phototoxic damage to NO-producing neurons in cortical slices, and measured subsequent alterations in parameters of cellular and network activity. Neocortical slices were briefly incubated in DAF-2DA and then illuminated through the 4× objective. Histochemistry for NADPH-diaphorase (NADPH-d), a marker for nNOS activity, revealed elimination of staining in the illuminated areas following treatment. Whole cell recordings from several neuronal types before, during, and after illumination confirmed the selective damage to non-fast-spiking (FS) interneurons. Treated slices displayed mild disinhibition. The reversal potential of compound synaptic events on pyramidal neurons became more positive, and their decay time constant was elongated, substantiating the removal of an inhibitory conductance. The horizontal decay of local field potentials (LFPs) was significantly reduced at distances of 300-400 μm from the stimulation, but not when inhibition was non-selectively weakened with the GABA(A) blocker picrotoxin. Finally, whereas the depression of LFPs along short trains of 40 Hz stimuli was linearly reduced with distance or initial amplitude in control slices, this ordered relationship was disrupted in DAF-treated slices. These results reveal that NO-producing interneurons in the neocortex convey lateral inhibition to neighboring columns, and shape the spatiotemporal dynamics of the network's activity.

  12. Effects of Aging on Cortical Neural Dynamics and Local Sleep Homeostasis in Mice.

    Science.gov (United States)

    McKillop, Laura E; Fisher, Simon P; Cui, Nanyi; Peirson, Stuart N; Foster, Russell G; Wafford, Keith A; Vyazovskiy, Vladyslav V

    2018-04-18

    Healthy aging is associated with marked effects on sleep, including its daily amount and architecture, as well as the specific EEG oscillations. Neither the neurophysiological underpinnings nor the biological significance of these changes are understood, and crucially the question remains whether aging is associated with reduced sleep need or a diminished capacity to generate sufficient sleep. Here we tested the hypothesis that aging may affect local cortical networks, disrupting the capacity to generate and sustain sleep oscillations, and with it the local homeostatic response to sleep loss. We performed chronic recordings of cortical neural activity and local field potentials from the motor cortex in young and older male C57BL/6J mice, during spontaneous waking and sleep, as well as during sleep after sleep deprivation. In older animals, we observed an increase in the incidence of non-rapid eye movement sleep local field potential slow waves and their associated neuronal silent (OFF) periods, whereas the overall pattern of state-dependent cortical neuronal firing was generally similar between ages. Furthermore, we observed that the response to sleep deprivation at the level of local cortical network activity was not affected by aging. Our data thus suggest that the local cortical neural dynamics and local sleep homeostatic mechanisms, at least in the motor cortex, are not impaired during healthy senescence in mice. This indicates that powerful protective or compensatory mechanisms may exist to maintain neuronal function stable across the life span, counteracting global changes in sleep amount and architecture. SIGNIFICANCE STATEMENT The biological significance of age-dependent changes in sleep is unknown but may reflect either a diminished sleep need or a reduced capacity to generate deep sleep stages. As aging has been linked to profound disruptions in cortical sleep oscillations and because sleep need is reflected in specific patterns of cortical activity, we

  13. Structural covariance networks in the mouse brain.

    Science.gov (United States)

    Pagani, Marco; Bifone, Angelo; Gozzi, Alessandro

    2016-04-01

    The presence of networks of correlation between regional gray matter volume as measured across subjects in a group of individuals has been consistently described in several human studies, an approach termed structural covariance MRI (scMRI). Complementary to prevalent brain mapping modalities like functional and diffusion-weighted imaging, the approach can provide precious insights into the mutual influence of trophic and plastic processes in health and pathological states. To investigate whether analogous scMRI networks are present in lower mammal species amenable to genetic and experimental manipulation such as the laboratory mouse, we employed high resolution morphoanatomical MRI in a large cohort of genetically-homogeneous wild-type mice (C57Bl6/J) and mapped scMRI networks using a seed-based approach. We show that the mouse brain exhibits robust homotopic scMRI networks in both primary and associative cortices, a finding corroborated by independent component analyses of cortical volumes. Subcortical structures also showed highly symmetric inter-hemispheric correlations, with evidence of distributed antero-posterior networks in diencephalic regions of the thalamus and hypothalamus. Hierarchical cluster analysis revealed six identifiable clusters of cortical and sub-cortical regions corresponding to previously described neuroanatomical systems. Our work documents the presence of homotopic cortical and subcortical scMRI networks in the mouse brain, thus supporting the use of this species to investigate the elusive biological and neuroanatomical underpinnings of scMRI network development and its derangement in neuropathological states. The identification of scMRI networks in genetically homogeneous inbred mice is consistent with the emerging view of a key role of environmental factors in shaping these correlational networks. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Resting-state functional under-connectivity within and between large-scale cortical networks across three low-frequency bands in adolescents with autism.

    Science.gov (United States)

    Duan, Xujun; Chen, Heng; He, Changchun; Long, Zhiliang; Guo, Xiaonan; Zhou, Yuanyue; Uddin, Lucina Q; Chen, Huafu

    2017-10-03

    Although evidence is accumulating that autism spectrum disorder (ASD) is associated with disruption of functional connections between and within brain networks, it remains largely unknown whether these abnormalities are related to specific frequency bands. To address this question, network contingency analysis was performed on brain functional connectomes obtained from 213 adolescent participants across nine sites in the Autism Brain Imaging Data Exchange (ABIDE) multisite sample, to determine the disrupted connections between and within seven major cortical networks in adolescents with ASD at Slow-5, Slow-4 and Slow-3 frequency bands and further assess whether the aberrant intra- and inter-network connectivity varied as a function of ASD symptoms. Overall under-connectivity within and between large-scale intrinsic networks in ASD was revealed across the three frequency bands. Specifically, decreased connectivity strength within the default mode network (DMN), between DMN and visual network (VN), ventral attention network (VAN), and between dorsal attention network (DAN) and VAN was observed in the lower frequency band (slow-5, slow-4), while decreased connectivity between limbic network (LN) and frontal-parietal network (FPN) was observed in the higher frequency band (slow-3). Furthermore, weaker connectivity within and between specific networks correlated with poorer communication and social interaction skills in the slow-5 band, uniquely. These results demonstrate intrinsic under-connectivity within and between multiple brain networks within predefined frequency bands in ASD, suggesting that frequency-related properties underlie abnormal brain network organization in the disorder. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Oscillatory ripples, evaluation of ancient wave climates and ...

    African Journals Online (AJOL)

    Oscillatory ripples, evaluation of ancient wave climates and epierogeny in the Anambra ... conditions, epierogenic patterns and paleogeographic history of the basins. ... shallow and marked by low to moderate hydrodynamic energy conditions.

  16. Brainlab: A Python Toolkit to Aid in the Design, Simulation, and Analysis of Spiking Neural Networks with the NeoCortical Simulator.

    Science.gov (United States)

    Drewes, Rich; Zou, Quan; Goodman, Philip H

    2009-01-01

    Neuroscience modeling experiments often involve multiple complex neural network and cell model variants, complex input stimuli and input protocols, followed by complex data analysis. Coordinating all this complexity becomes a central difficulty for the experimenter. The Python programming language, along with its extensive library packages, has emerged as a leading "glue" tool for managing all sorts of complex programmatic tasks. This paper describes a toolkit called Brainlab, written in Python, that leverages Python's strengths for the task of managing the general complexity of neuroscience modeling experiments. Brainlab was also designed to overcome the major difficulties of working with the NCS (NeoCortical Simulator) environment in particular. Brainlab is an integrated model-building, experimentation, and data analysis environment for the powerful parallel spiking neural network simulator system NCS.

  17. Oscillatory patterns in the light curves of five long-term monitored type 1 active galactic nuclei

    Science.gov (United States)

    Kovačević, Andjelka B.; Pérez-Hernández, Ernesto; Popović, Luka Č.; Shapovalova, Alla I.; Kollatschny, Wolfram; Ilić, Dragana

    2018-04-01

    New combined data of five well-known type 1 active galactic nuclei (AGNs) are probed with a novel hybrid method in a search for oscillatory behaviour. Additional analysis of artificial light curves obtained from the coupled oscillatory models gives confirmation for detected periods that could have a physical background. We find periodic variations in the long-term light curves of 3C 390.3, NGC 4151 and NGC 5548, and E1821 + 643, with correlation coefficients larger than 0.6. We show that the oscillatory patterns of two binary black hole candidates, NGC 5548 and E1821 + 643, correspond to qualitatively different dynamical regimes of chaos and stability, respectively. We demonstrate that the absence of oscillatory patterns in Arp 102B could be the result of a weak coupling between oscillatory mechanisms. This is the first good evidence that 3C 390.3 and Arp 102B, categorized as double-peaked Balmer line objects, have qualitative different dynamics. Our analysis shows a novelty in the oscillatory dynamical patterns of the light curves of these type 1 AGNs.

  18. Effects from Unsaturated Zone Flow during Oscillatory Hydraulic Testing

    Science.gov (United States)

    Lim, D.; Zhou, Y.; Cardiff, M. A.; Barrash, W.

    2014-12-01

    In analyzing pumping tests on unconfined aquifers, the impact of the unsaturated zone is often neglected. Instead, desaturation at the water table is often treated as a free-surface boundary, which is simple and allows for relatively fast computation. Richards' equation models, which account for unsaturated flow, can be compared with saturated flow models to validate the use of Darcy's Law. In this presentation, we examine the appropriateness of using fast linear steady-periodic models based on linearized water table conditions in order to simulate oscillatory pumping tests in phreatic aquifers. We compare oscillatory pumping test models including: 1) a 2-D radially-symmetric phreatic aquifer model with a partially penetrating well, simulated using both Darcy's Law and Richards' Equation in COMSOL; and 2) a linear phase-domain numerical model developed in MATLAB. Both COMSOL and MATLAB models are calibrated to match oscillatory pumping test data collected in the summer of 2013 at the Boise Hydrogeophysical Research Site (BHRS), and we examine the effect of model type on the associated parameter estimates. The results of this research will aid unconfined aquifer characterization efforts and help to constrain the impact of the simplifying physical assumptions often employed during test analysis.

  19. iTBS-induced LTP-like plasticity parallels oscillatory activity changes in the primary sensory and motor areas of macaque monkeys.

    Science.gov (United States)

    Papazachariadis, Odysseas; Dante, Vittorio; Verschure, Paul F M J; Del Giudice, Paolo; Ferraina, Stefano

    2014-01-01

    Recently, neuromodulation techniques based on the use of repetitive transcranial magnetic stimulation (rTMS) have been proposed as a non-invasive and efficient method to induce in vivo long-term potentiation (LTP)-like aftereffects. However, the exact impact of rTMS-induced perturbations on the dynamics of neuronal population activity is not well understood. Here, in two monkeys, we examine changes in the oscillatory activity of the sensorimotor cortex following an intermittent theta burst stimulation (iTBS) protocol. We first probed iTBS modulatory effects by testing the iTBS-induced facilitation of somatosensory evoked potentials (SEP). Then, we examined the frequency information of the electrocorticographic signal, obtained using a custom-made miniaturised multi-electrode array for electrocorticography, after real or sham iTBS. We observed that iTBS induced facilitation of SEPs and influenced spectral components of the signal, in both animals. The latter effect was more prominent on the θ band (4-8 Hz) and the high γ band (55-90 Hz), de-potentiated and potentiated respectively. We additionally found that the multi-electrode array uniformity of β (13-26 Hz) and high γ bands were also afflicted by iTBS. Our study suggests that enhanced cortical excitability promoted by iTBS parallels a dynamic reorganisation of the interested neural network. The effect in the γ band suggests a transient local modulation, possibly at the level of synaptic strength in interneurons. The effect in the θ band suggests the disruption of temporal coordination on larger spatial scales.

  20. iTBS-induced LTP-like plasticity parallels oscillatory activity changes in the primary sensory and motor areas of macaque monkeys.

    Directory of Open Access Journals (Sweden)

    Odysseas Papazachariadis

    Full Text Available Recently, neuromodulation techniques based on the use of repetitive transcranial magnetic stimulation (rTMS have been proposed as a non-invasive and efficient method to induce in vivo long-term potentiation (LTP-like aftereffects. However, the exact impact of rTMS-induced perturbations on the dynamics of neuronal population activity is not well understood. Here, in two monkeys, we examine changes in the oscillatory activity of the sensorimotor cortex following an intermittent theta burst stimulation (iTBS protocol. We first probed iTBS modulatory effects by testing the iTBS-induced facilitation of somatosensory evoked potentials (SEP. Then, we examined the frequency information of the electrocorticographic signal, obtained using a custom-made miniaturised multi-electrode array for electrocorticography, after real or sham iTBS. We observed that iTBS induced facilitation of SEPs and influenced spectral components of the signal, in both animals. The latter effect was more prominent on the θ band (4-8 Hz and the high γ band (55-90 Hz, de-potentiated and potentiated respectively. We additionally found that the multi-electrode array uniformity of β (13-26 Hz and high γ bands were also afflicted by iTBS. Our study suggests that enhanced cortical excitability promoted by iTBS parallels a dynamic reorganisation of the interested neural network. The effect in the γ band suggests a transient local modulation, possibly at the level of synaptic strength in interneurons. The effect in the θ band suggests the disruption of temporal coordination on larger spatial scales.

  1. Activation energies as the validity criterion of a model for complex reactions that can be in oscillatory states

    Directory of Open Access Journals (Sweden)

    Anić S.

    2007-01-01

    Full Text Available Modeling of any complex reaction system is a difficult task. If the system under examination can be in various oscillatory dynamic states, the apparent activation energies corresponding to different pathways may be of crucial importance for this purpose. In that case the activation energies can be determined by means of the main characteristics of an oscillatory process such as pre-oscillatory period, duration of the oscillatory period, the period from the beginning of the process to the end of the last oscillation, number of oscillations and others. All is illustrated on the Bray-Liebhafsky oscillatory reaction.

  2. Basal Forebrain Gating by Somatostatin Neurons Drives Prefrontal Cortical Activity.

    Science.gov (United States)

    Espinosa, Nelson; Alonso, Alejandra; Morales, Cristian; Espinosa, Pedro; Chávez, Andrés E; Fuentealba, Pablo

    2017-11-17

    The basal forebrain provides modulatory input to the cortex regulating brain states and cognitive processing. Somatostatin-expressing neurons constitute a heterogeneous GABAergic population known to functionally inhibit basal forebrain cortically projecting cells thus favoring sleep and cortical synchronization. However, it remains unclear if somatostatin cells can regulate population activity patterns in the basal forebrain and modulate cortical dynamics. Here, we demonstrate that somatostatin neurons regulate the corticopetal synaptic output of the basal forebrain impinging on cortical activity and behavior. Optogenetic inactivation of somatostatin neurons in vivo rapidly modified neural activity in the basal forebrain, with the consequent enhancement and desynchronization of activity in the prefrontal cortex, reflected in both neuronal spiking and network oscillations. Cortical activation was partially dependent on cholinergic transmission, suppressing slow waves and potentiating gamma oscillations. In addition, recruitment dynamics was cell type-specific, with interneurons showing similar temporal profiles, but stronger responses than pyramidal cells. Finally, optogenetic stimulation of quiescent animals during resting periods prompted locomotor activity, suggesting generalized cortical activation and increased arousal. Altogether, we provide physiological and behavioral evidence indicating that somatostatin neurons are pivotal in gating the synaptic output of the basal forebrain, thus indirectly controlling cortical operations via both cholinergic and non-cholinergic mechanisms. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. Psychoacoustic Tinnitus Loudness and Tinnitus-Related Distress Show Different Associations with Oscillatory Brain Activity

    Science.gov (United States)

    Balkenhol, Tobias; Wallhäusser-Franke, Elisabeth; Delb, Wolfgang

    2013-01-01

    Background The phantom auditory perception of subjective tinnitus is associated with aberrant brain activity as evidenced by magneto- and electroencephalographic studies. We tested the hypotheses (1) that psychoacoustically measured tinnitus loudness is related to gamma oscillatory band power, and (2) that tinnitus loudness and tinnitus-related distress are related to distinct brain activity patterns as suggested by the distinction between loudness and distress experienced by tinnitus patients. Furthermore, we explored (3) how hearing impairment, minimum masking level, and (4) psychological comorbidities are related to spontaneous oscillatory brain activity in tinnitus patients. Methods and Findings Resting state oscillatory brain activity recorded electroencephalographically from 46 male tinnitus patients showed a positive correlation between gamma band oscillations and psychoacoustic tinnitus loudness determined with the reconstructed tinnitus sound, but not with the other psychoacoustic loudness measures that were used. Tinnitus-related distress did also correlate with delta band activity, but at electrode positions different from those associated with tinnitus loudness. Furthermore, highly distressed tinnitus patients exhibited a higher level of theta band activity. Moreover, mean hearing loss between 0.125 kHz and 16 kHz was associated with a decrease in gamma activity, whereas minimum masking levels correlated positively with delta band power. In contrast, psychological comorbidities did not express significant correlations with oscillatory brain activity. Conclusion Different clinically relevant tinnitus characteristics show distinctive associations with spontaneous brain oscillatory power. Results support hypothesis (1), but exclusively for the tinnitus loudness derived from matching to the reconstructed tinnitus sound. This suggests to preferably use the reconstructed tinnitus spectrum to determine psychoacoustic tinnitus loudness. Results also support

  4. Impact of network topology on synchrony of oscillatory power grids

    Energy Technology Data Exchange (ETDEWEB)

    Rohden, Martin; Sorge, Andreas; Witthaut, Dirk [Network Dynamics, Max Planck Institute for Dynamics and Self-Organization (MPIDS), 37077 Göttingen (Germany); Timme, Marc [Network Dynamics, Max Planck Institute for Dynamics and Self-Organization (MPIDS), 37077 Göttingen (Germany); Faculty of Physics, Georg August Universität Göttingen, Göttingen (Germany)

    2014-03-15

    Replacing conventional power sources by renewable sources in current power grids drastically alters their structure and functionality. In particular, power generation in the resulting grid will be far more decentralized, with a distinctly different topology. Here, we analyze the impact of grid topologies on spontaneous synchronization, considering regular, random, and small-world topologies and focusing on the influence of decentralization. We model the consumers and sources of the power grid as second order oscillators. First, we analyze the global dynamics of the simplest non-trivial (two-node) network that exhibit a synchronous (normal operation) state, a limit cycle (power outage), and coexistence of both. Second, we estimate stability thresholds for the collective dynamics of small network motifs, in particular, star-like networks and regular grid motifs. For larger networks, we numerically investigate decentralization scenarios finding that decentralization itself may support power grids in exhibiting a stable state for lower transmission line capacities. Decentralization may thus be beneficial for power grids, regardless of the details of their resulting topology. Regular grids show a specific sharper transition not found for random or small-world grids.

  5. Oscillatory signatures of crossmodal congruence effects: An EEG investigation employing a visuotactile pattern matching paradigm.

    Science.gov (United States)

    Göschl, Florian; Friese, Uwe; Daume, Jonathan; König, Peter; Engel, Andreas K

    2015-08-01

    Coherent percepts emerge from the accurate combination of inputs from the different sensory systems. There is an ongoing debate about the neurophysiological mechanisms of crossmodal interactions in the brain, and it has been proposed that transient synchronization of neurons might be of central importance. Oscillatory activity in lower frequency ranges (congruence. Analysis of the behavioral data showed benefits for congruent visuotactile stimulus combinations. Differences in oscillatory dynamics related to crossmodal congruence within the two tasks were observed in the beta-band for crossmodal target detection, as well as in the theta-band for congruence evaluation. Contrasting ongoing activity preceding visuotactile stimulation between the two tasks revealed differences in the alpha- and beta-bands. Source reconstruction of between-task differences showed prominent involvement of premotor cortex, supplementary motor area, somatosensory association cortex and the supramarginal gyrus. These areas not only exhibited more involvement in the pre-stimulus interval for target detection compared to congruence evaluation, but were also crucially involved in post-stimulus differences related to crossmodal stimulus congruence within the detection task. These results add to the increasing evidence that low frequency oscillations are functionally relevant for integration in distributed brain networks, as demonstrated for crossmodal interactions in visuotactile pattern matching in the current study. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Amygdala Volume and Social Network Size in Humans

    OpenAIRE

    Bickart, Kevin C.; Wright, Christopher I.; Dautoff, Rebecca J.; Dickerson, Bradford C.; Barrett, Lisa Feldman

    2010-01-01

    We demonstrated that amygdala volume (corrected for total intracranial volume) positively correlated with the size and complexity of social networks in adult humans ranging in age from 19 to 83 years. This relationship was specific to the amygdala as compared to other subcortical structures. An exploratory analysis of the entire cortical mantle also revealed an association between social network variables and cortical thickness in three cortical areas, two of which share dense connectivity wi...

  7. The changing roles of neurons in the cortical subplate

    Directory of Open Access Journals (Sweden)

    Michael J Friedlander

    2009-08-01

    Full Text Available Neurons may serve different functions over the course of an organism’s life. Recent evidence suggests that cortical subplate neurons including those that reside in the white matter may perform longitudinal multi-tasking at different stages of development. These cells play a key role in early cortical development in coordinating thalamocortical reciprocal innervation. At later stages of development, they become integrated within the cortical microcircuitry. This type of longitudinal multi-tasking can enhance the capacity for information processing by populations of cells serving different functions over the lifespan. Subplate cells are initially derived when cells from the ventricular zone underlying the cortex migrate to the cortical preplate that is subsequently split by the differentiating neurons of the cortical plate with some neurons locating in the marginal zone and others settling below in the subplate (SP. While the cortical plate neurons form most of the cortical layers (layers 2-6, the marginal zone neurons form layer 1 and the SP neurons become interstitial cells of the white matter as well as forming a compact sublayer along the bottom of layer 6. After serving as transient innervation targets for thalamocortical axons, most of these cells die and layer 4 neurons become innervated by thalamic axons. However, 10-20% survives, remaining into adulthood along the bottom of layer 6 and as a scattered population of interstitial neurons in the white matter. Surviving subplate cells’ axons project throughout the overlying laminae, reaching layer 1 and issuing axon collaterals within white matter and in lower layer 6. This suggests that they participate in local synaptic networks, as well. Moreover, they receive excitatory and inhibitory synaptic inputs, potentially monitoring outputs from axon collaterals of cortical efferents, from cortical afferents and/or from each other. We explore our understanding of the functional connectivity of

  8. Dynamic Control of Synchronous Activity in Networks of Spiking Neurons.

    Directory of Open Access Journals (Sweden)

    Axel Hutt

    Full Text Available Oscillatory brain activity is believed to play a central role in neural coding. Accumulating evidence shows that features of these oscillations are highly dynamic: power, frequency and phase fluctuate alongside changes in behavior and task demands. The role and mechanism supporting this variability is however poorly understood. We here analyze a network of recurrently connected spiking neurons with time delay displaying stable synchronous dynamics. Using mean-field and stability analyses, we investigate the influence of dynamic inputs on the frequency of firing rate oscillations. We show that afferent noise, mimicking inputs to the neurons, causes smoothing of the system's response function, displacing equilibria and altering the stability of oscillatory states. Our analysis further shows that these noise-induced changes cause a shift of the peak frequency of synchronous oscillations that scales with input intensity, leading the network towards critical states. We lastly discuss the extension of these principles to periodic stimulation, in which externally applied driving signals can trigger analogous phenomena. Our results reveal one possible mechanism involved in shaping oscillatory activity in the brain and associated control principles.

  9. Dynamic Control of Synchronous Activity in Networks of Spiking Neurons.

    Science.gov (United States)

    Hutt, Axel; Mierau, Andreas; Lefebvre, Jérémie

    Oscillatory brain activity is believed to play a central role in neural coding. Accumulating evidence shows that features of these oscillations are highly dynamic: power, frequency and phase fluctuate alongside changes in behavior and task demands. The role and mechanism supporting this variability is however poorly understood. We here analyze a network of recurrently connected spiking neurons with time delay displaying stable synchronous dynamics. Using mean-field and stability analyses, we investigate the influence of dynamic inputs on the frequency of firing rate oscillations. We show that afferent noise, mimicking inputs to the neurons, causes smoothing of the system's response function, displacing equilibria and altering the stability of oscillatory states. Our analysis further shows that these noise-induced changes cause a shift of the peak frequency of synchronous oscillations that scales with input intensity, leading the network towards critical states. We lastly discuss the extension of these principles to periodic stimulation, in which externally applied driving signals can trigger analogous phenomena. Our results reveal one possible mechanism involved in shaping oscillatory activity in the brain and associated control principles.

  10. Oscillatory integrals on Hilbert spaces and Schroedinger equation with magnetic fields

    International Nuclear Information System (INIS)

    Albeverio, S.; Brzezniak, Z.

    1994-01-01

    We extend the theory of oscillatory integrals on Hilbert spaces (the mathematical version of ''Feynman path integrals'') to cover more general integrable functions, preserving the property of the integrals to have converging finite dimensional approximations. We give an application to the representation of solutions of the time dependent Schroedinger equation with a scalar and a magnetic potential by oscillatory integrals on Hilbert spaces. A relation with Ramer's functional in the corresponding probabilistic setting is found. (orig.)

  11. State-dependent spike and local field synchronization between motor cortex and substantia nigra in hemiparkinsonian rats.

    Science.gov (United States)

    Brazhnik, Elena; Cruz, Ana V; Avila, Irene; Wahba, Marian I; Novikov, Nikolay; Ilieva, Neda M; McCoy, Alex J; Gerber, Colin; Walters, Judith R

    2012-06-06

    Excessive beta frequency oscillatory and synchronized activity has been reported in the basal ganglia of parkinsonian patients and animal models of the disease. To gain insight into processes underlying this activity, this study explores relationships between oscillatory activity in motor cortex and basal ganglia output in behaving rats after dopamine cell lesion. During inattentive rest, 7 d after lesion, increases in motor cortex-substantia nigra pars reticulata (SNpr) coherence emerged in the 8-25 Hz range, with significant increases in local field potential (LFP) power in SNpr but not motor cortex. In contrast, during treadmill walking, marked increases in both motor cortex and SNpr LFP power, as well as coherence, emerged in the 25-40 Hz band with a peak frequency at 30-35 Hz. Spike-triggered waveform averages showed that 77% of SNpr neurons, 77% of putative cortical interneurons, and 44% of putative pyramidal neurons were significantly phase-locked to the increased cortical LFP activity in the 25-40 Hz range. Although the mean lag between cortical and SNpr LFPs fluctuated around zero, SNpr neurons phase-locked to cortical LFP oscillations fired, on average, 17 ms after synchronized spiking in motor cortex. High coherence between LFP oscillations in cortex and SNpr supports the view that cortical activity facilitates entrainment and synchronization of activity in basal ganglia after loss of dopamine. However, the dramatic increases in cortical power and relative timing of phase-locked spiking in these areas suggest that additional processes help shape the frequency-specific tuning of the basal ganglia-thalamocortical network during ongoing motor activity.

  12. Oscillatory regime of avalanche particle detectors

    International Nuclear Information System (INIS)

    Lukin, K.A.; Cerdeira, H.A.; Colavita, A.A.

    1995-06-01

    We describe the model of an avalanche high energy particle detector consisting of two pn-junctions, connected through an intrinsic semiconductor with a reverse biased voltage applied. We show that this detector is able to generate the oscillatory response on the single particle passage through the structure. The possibility of oscillations leading to chaotic behaviour is pointed out. (author). 15 refs, 7 figs

  13. The Effect of Binaural Beats on Visuospatial Working Memory and Cortical Connectivity.

    Directory of Open Access Journals (Sweden)

    Christine Beauchene

    Full Text Available Binaural beats utilize a phenomenon that occurs within the cortex when two different frequencies are presented separately to each ear. This procedure produces a third phantom binaural beat, whose frequency is equal to the difference of the two presented tones and which can be manipulated for non-invasive brain stimulation. The effects of binaural beats on working memory, the system in control of temporary retention and online organization of thoughts for successful goal directed behavior, have not been well studied. Furthermore, no studies have evaluated the effects of binaural beats on brain connectivity during working memory tasks. In this study, we determined the effects of different acoustic stimulation conditions on participant response accuracy and cortical network topology, as measured by EEG recordings, during a visuospatial working memory task. Three acoustic stimulation control conditions and three binaural beat stimulation conditions were used: None, Pure Tone, Classical Music, 5Hz binaural beats, 10Hz binaural beats, and 15Hz binaural beats. We found that listening to 15Hz binaural beats during a visuospatial working memory task not only increased the response accuracy, but also modified the strengths of the cortical networks during the task. The three auditory control conditions and the 5Hz and 10Hz binaural beats all decreased accuracy. Based on graphical network analyses, the cortical activity during 15Hz binaural beats produced networks characteristic of high information transfer with consistent connection strengths throughout the visuospatial working memory task.

  14. The Effect of Binaural Beats on Visuospatial Working Memory and Cortical Connectivity.

    Science.gov (United States)

    Beauchene, Christine; Abaid, Nicole; Moran, Rosalyn; Diana, Rachel A; Leonessa, Alexander

    2016-01-01

    Binaural beats utilize a phenomenon that occurs within the cortex when two different frequencies are presented separately to each ear. This procedure produces a third phantom binaural beat, whose frequency is equal to the difference of the two presented tones and which can be manipulated for non-invasive brain stimulation. The effects of binaural beats on working memory, the system in control of temporary retention and online organization of thoughts for successful goal directed behavior, have not been well studied. Furthermore, no studies have evaluated the effects of binaural beats on brain connectivity during working memory tasks. In this study, we determined the effects of different acoustic stimulation conditions on participant response accuracy and cortical network topology, as measured by EEG recordings, during a visuospatial working memory task. Three acoustic stimulation control conditions and three binaural beat stimulation conditions were used: None, Pure Tone, Classical Music, 5Hz binaural beats, 10Hz binaural beats, and 15Hz binaural beats. We found that listening to 15Hz binaural beats during a visuospatial working memory task not only increased the response accuracy, but also modified the strengths of the cortical networks during the task. The three auditory control conditions and the 5Hz and 10Hz binaural beats all decreased accuracy. Based on graphical network analyses, the cortical activity during 15Hz binaural beats produced networks characteristic of high information transfer with consistent connection strengths throughout the visuospatial working memory task.

  15. Oscillatory phase dynamics in neural entrainment underpin illusory percepts of time.

    Science.gov (United States)

    Herrmann, Björn; Henry, Molly J; Grigutsch, Maren; Obleser, Jonas

    2013-10-02

    Neural oscillatory dynamics are a candidate mechanism to steer perception of time and temporal rate change. While oscillator models of time perception are strongly supported by behavioral evidence, a direct link to neural oscillations and oscillatory entrainment has not yet been provided. In addition, it has thus far remained unaddressed how context-induced illusory percepts of time are coded for in oscillator models of time perception. To investigate these questions, we used magnetoencephalography and examined the neural oscillatory dynamics that underpin pitch-induced illusory percepts of temporal rate change. Human participants listened to frequency-modulated sounds that varied over time in both modulation rate and pitch, and judged the direction of rate change (decrease vs increase). Our results demonstrate distinct neural mechanisms of rate perception: Modulation rate changes directly affected listeners' rate percept as well as the exact frequency of the neural oscillation. However, pitch-induced illusory rate changes were unrelated to the exact frequency of the neural responses. The rate change illusion was instead linked to changes in neural phase patterns, which allowed for single-trial decoding of percepts. That is, illusory underestimations or overestimations of perceived rate change were tightly coupled to increased intertrial phase coherence and changes in cerebro-acoustic phase lag. The results provide insight on how illusory percepts of time are coded for by neural oscillatory dynamics.

  16. Modelling and measurements of sand transport processes over full-scale ripples in oscillatory flow

    NARCIS (Netherlands)

    van der Werf, Jebbe J.; Ribberink, Jan S.; O'Donoghue, Tom; Doucette, Jeffrey C.

    2006-01-01

    A new series of laboratory experiments was performed in the Aberdeen Oscillatory Flow Tunnel (AOFT) and the Large Oscillating Water Tunnel (LOWT) to investigate time-averaged suspended sand concentrations and transport rates over rippled beds in regular and irregular oscillatory flow. The

  17. Effects of network resolution on topological properties of human neocortex

    DEFF Research Database (Denmark)

    Romero-Garcia, Rafael; Atienza, Mercedes; Clemmensen, Line Katrine Harder

    2012-01-01

    Graph theoretical analyses applied to neuroimaging datasets have provided valuable insights into the large-scale anatomical organization of the human neocortex. Most of these studies were performed with different cortical scales leading to cortical networks with different levels of small-world or......Graph theoretical analyses applied to neuroimaging datasets have provided valuable insights into the large-scale anatomical organization of the human neocortex. Most of these studies were performed with different cortical scales leading to cortical networks with different levels of small...

  18. Bias-dependent oscillatory electron transport of monatomic sulfur chains

    KAUST Repository

    Yu, Jing-Xin; Cheng, Yan; Sanvito, Stefano; Chen, Xiang-Rong

    2012-01-01

    The bias-dependent oscillatory electron transport of monatomic sulfur chains sandwiched between gold electrodes is investigated with density functional theory and non-equilibrium Green's function method. At zero bias, in contrast to the typical odd-even oscillations observed in most metallic chains, we find that the conductance oscillates with a period of four atoms. However, as the bias voltage is increased the current displays a two-atom periodicity. This emerges gradually, first for the longer chains and then, at voltages larger than 0.7 V, for lengths. The oscillatory behaviors are analyzed by the density of states and the energy-dependent and bias-dependent transmission coefficients. © 2012 American Institute of Physics.

  19. Bias-dependent oscillatory electron transport of monatomic sulfur chains

    KAUST Repository

    Yu, Jing-Xin

    2012-01-01

    The bias-dependent oscillatory electron transport of monatomic sulfur chains sandwiched between gold electrodes is investigated with density functional theory and non-equilibrium Green\\'s function method. At zero bias, in contrast to the typical odd-even oscillations observed in most metallic chains, we find that the conductance oscillates with a period of four atoms. However, as the bias voltage is increased the current displays a two-atom periodicity. This emerges gradually, first for the longer chains and then, at voltages larger than 0.7 V, for lengths. The oscillatory behaviors are analyzed by the density of states and the energy-dependent and bias-dependent transmission coefficients. © 2012 American Institute of Physics.

  20. Brainlab: a Python toolkit to aid in the design, simulation, and analysis of spiking neural networks with the NeoCortical Simulator

    Directory of Open Access Journals (Sweden)

    Richard P Drewes

    2009-05-01

    Full Text Available Neuroscience modeling experiments often involve multiple complex neural network and cell model variants, complex input stimuli and input protocols, followed by complex data analysis. Coordinating all this complexity becomes a central difficulty for the experimenter. The Python programming language, along with its extensive library packages, has emerged as a leading ``glue'' tool for managing all sorts of complex programmatictasks. This paper describes a toolkit called Brainlab, written in Python, that leverages Python's strengths for the task of managing the general complexity of neuroscience modeling experiments. Brainlab was also designed to overcome the major difficulties of working with the NCS environment in particular. Brainlab is an integrated model building, experimentation, and data analysis environment for the powerful parallel spiking neural network simulator system NCS (the NeoCortical Simulator.

  1. Spatiotemporal Propagation of the Cortical Atrophy: Population and Individual Patterns

    Directory of Open Access Journals (Sweden)

    Igor Koval

    2018-05-01

    Full Text Available Repeated failures in clinical trials for Alzheimer’s disease (AD have raised a strong interest for the prodromal phase of the disease. A better understanding of the brain alterations during this early phase is crucial to diagnose patients sooner, to estimate an accurate disease stage, and to give a reliable prognosis. According to recent evidence, structural alterations in the brain are likely to be sensitive markers of the disease progression. Neuronal loss translates in specific spatiotemporal patterns of cortical atrophy, starting in the enthorinal cortex and spreading over other cortical regions according to specific propagation pathways. We developed a digital model of the cortical atrophy in the left hemisphere from prodromal to diseased phases, which is built on the temporal alignment and combination of several short-term observation data to reconstruct the long-term history of the disease. The model not only provides a description of the spatiotemporal patterns of cortical atrophy at the group level but also shows the variability of these patterns at the individual level in terms of difference in propagation pathways, speed of propagation, and age at propagation onset. Longitudinal MRI datasets of patients with mild cognitive impairments who converted to AD are used to reconstruct the cortical atrophy propagation across all disease stages. Each observation is considered as a signal spatially distributed on a network, such as the cortical mesh, each cortex location being associated to a node. We consider how the temporal profile of the signal varies across the network nodes. We introduce a statistical mixed-effect model to describe the evolution of the cortex alterations. To ensure a spatiotemporal smooth propagation of the alterations, we introduce a constrain on the propagation signal in the model such that neighboring nodes have similar profiles of the signal changes. Our generative model enables the reconstruction of personalized

  2. Biophysical network modeling of the dLGN circuit: Effects of cortical feedback on spatial response properties of relay cells.

    Directory of Open Access Journals (Sweden)

    Pablo Martínez-Cañada

    2018-01-01

    Full Text Available Despite half-a-century of research since the seminal work of Hubel and Wiesel, the role of the dorsal lateral geniculate nucleus (dLGN in shaping the visual signals is not properly understood. Placed on route from retina to primary visual cortex in the early visual pathway, a striking feature of the dLGN circuit is that both the relay cells (RCs and interneurons (INs not only receive feedforward input from retinal ganglion cells, but also a prominent feedback from cells in layer 6 of visual cortex. This feedback has been proposed to affect synchronicity and other temporal properties of the RC firing. It has also been seen to affect spatial properties such as the center-surround antagonism of thalamic receptive fields, i.e., the suppression of the response to very large stimuli compared to smaller, more optimal stimuli. Here we explore the spatial effects of cortical feedback on the RC response by means of a a comprehensive network model with biophysically detailed, single-compartment and multicompartment neuron models of RCs, INs and a population of orientation-selective layer 6 simple cells, consisting of pyramidal cells (PY. We have considered two different arrangements of synaptic feedback from the ON and OFF zones in the visual cortex to the dLGN: phase-reversed ('push-pull' and phase-matched ('push-push', as well as different spatial extents of the corticothalamic projection pattern. Our simulation results support that a phase-reversed arrangement provides a more effective way for cortical feedback to provide the increased center-surround antagonism seen in experiments both for flashing spots and, even more prominently, for patch gratings. This implies that ON-center RCs receive direct excitation from OFF-dominated cortical cells and indirect inhibitory feedback from ON-dominated cortical cells. The increased center-surround antagonism in the model is accompanied by spatial focusing, i.e., the maximum RC response occurs for smaller stimuli

  3. Biophysical network modeling of the dLGN circuit: Effects of cortical feedback on spatial response properties of relay cells

    Science.gov (United States)

    Martínez-Cañada, Pablo; Halnes, Geir; Fyhn, Marianne

    2018-01-01

    Despite half-a-century of research since the seminal work of Hubel and Wiesel, the role of the dorsal lateral geniculate nucleus (dLGN) in shaping the visual signals is not properly understood. Placed on route from retina to primary visual cortex in the early visual pathway, a striking feature of the dLGN circuit is that both the relay cells (RCs) and interneurons (INs) not only receive feedforward input from retinal ganglion cells, but also a prominent feedback from cells in layer 6 of visual cortex. This feedback has been proposed to affect synchronicity and other temporal properties of the RC firing. It has also been seen to affect spatial properties such as the center-surround antagonism of thalamic receptive fields, i.e., the suppression of the response to very large stimuli compared to smaller, more optimal stimuli. Here we explore the spatial effects of cortical feedback on the RC response by means of a a comprehensive network model with biophysically detailed, single-compartment and multicompartment neuron models of RCs, INs and a population of orientation-selective layer 6 simple cells, consisting of pyramidal cells (PY). We have considered two different arrangements of synaptic feedback from the ON and OFF zones in the visual cortex to the dLGN: phase-reversed (‘push-pull’) and phase-matched (‘push-push’), as well as different spatial extents of the corticothalamic projection pattern. Our simulation results support that a phase-reversed arrangement provides a more effective way for cortical feedback to provide the increased center-surround antagonism seen in experiments both for flashing spots and, even more prominently, for patch gratings. This implies that ON-center RCs receive direct excitation from OFF-dominated cortical cells and indirect inhibitory feedback from ON-dominated cortical cells. The increased center-surround antagonism in the model is accompanied by spatial focusing, i.e., the maximum RC response occurs for smaller stimuli when

  4. [Recent results in research on oscillatory chemical reactions].

    Science.gov (United States)

    Poros, Eszter; Kurin-Csörgei, Krisztina

    2014-01-01

    The mechanisms of the complicated periodical phenomenas in the nature (e.g. hearth beat, sleep cycle, circadian rhythms, etc) could be understood with using the laws of nonlinear chemical systems. In this article the newest result in the research of the subfield of nonlinear chemical dynamics aimed at constructing oscillatory chemical reactions, which are novel either in composition or in configuration, are presented. In the introductory part the concept of chemical periodicity is defined, then the forms as it can appear in time and space and the methods of their study are discussed. Detailed description of the experimental work that has resulted in two significant discoveries is provided. A method was developed to design pH-oscillators which are capable of operating under close conditions. The batch pH-oscillators are more convenient to use in some proposed applications than the equivalent CSTR variant. A redox oscillator that is new in composition was found. The permanganate oxidation of some amino acids was shown to take place according to oscillatory kinetics in a narrow range of the experimental parameters. The KMnO4 - glycine - Na2HPO4 system represents the first example in the family of manganese based oscillators where amino acids is involved. In the conclusion formal analogies between the simple chemical and some more complicated biological oscillatory phenomena are mentioned and the possibility of modeling periodic processes with the use of information gained from the studies of chemical oscillations is pointed out.

  5. Cortical thickness abnormalities associated with dyslexia, independent of remediation status

    Science.gov (United States)

    Ma, Yizhou; Koyama, Maki S.; Milham, Michael P.; Castellanos, F. Xavier; Quinn, Brian T.; Pardoe, Heath; Wang, Xiuyuan; Kuzniecky, Ruben; Devinsky, Orrin; Thesen, Thomas; Blackmon, Karen

    2014-01-01

    Abnormalities in cortical structure are commonly observed in children with dyslexia in key regions of the “reading network.” Whether alteration in cortical features reflects pathology inherent to dyslexia or environmental influence (e.g., impoverished reading experience) remains unclear. To address this question, we compared MRI-derived metrics of cortical thickness (CT), surface area (SA), gray matter volume (GMV), and their lateralization across three different groups of children with a historical diagnosis of dyslexia, who varied in current reading level. We compared three dyslexia subgroups with: (1) persistent reading and spelling impairment; (2) remediated reading impairment (normal reading scores), and (3) remediated reading and spelling impairments (normal reading and spelling scores); and a control group of (4) typically developing children. All groups were matched for age, gender, handedness, and IQ. We hypothesized that the dyslexia group would show cortical abnormalities in regions of the reading network relative to controls, irrespective of remediation status. Such a finding would support that cortical abnormalities are inherent to dyslexia and are not a consequence of abnormal reading experience. Results revealed increased CT of the left fusiform gyrus in the dyslexia group relative to controls. Similarly, the dyslexia group showed CT increase of the right superior temporal gyrus, extending into the planum temporale, which resulted in a rightward CT asymmetry on lateralization indices. There were no group differences in SA, GMV, or their lateralization. These findings held true regardless of remediation status. Each reading level group showed the same “double hit” of atypically increased left fusiform CT and rightward superior temporal CT asymmetry. Thus, findings provide evidence that a developmental history of dyslexia is associated with CT abnormalities, independent of remediation status. PMID:25610779

  6. Resting-state oscillatory brain dynamics in Alzheimer disease

    NARCIS (Netherlands)

    de Haan, W.; Stam, C.J.; Jones, B.F.; Zuiderwijk, I.M.; van Dijk, B.W.; Scheltens, P.

    2008-01-01

    Altered oscillatory brain activity in Alzheimer disease (AD) may reflect underlying neuropathological changes, and its characterization might lead to new diagnostic possibilities. The present study using quantitative magnetoencephalography was set up to examine power spectrum changes in AD patients,

  7. Deep brain stimulation modulates synchrony within spatially and spectrally distinct resting state networks in Parkinson's disease.

    Science.gov (United States)

    Oswal, Ashwini; Beudel, Martijn; Zrinzo, Ludvic; Limousin, Patricia; Hariz, Marwan; Foltynie, Tom; Litvak, Vladimir; Brown, Peter

    2016-05-01

    Chronic dopamine depletion in Parkinson's disease leads to progressive motor and cognitive impairment, which is associated with the emergence of characteristic patterns of synchronous oscillatory activity within cortico-basal-ganglia circuits. Deep brain stimulation of the subthalamic nucleus is an effective treatment for Parkinson's disease, but its influence on synchronous activity in cortico-basal-ganglia loops remains to be fully characterized. Here, we demonstrate that deep brain stimulation selectively suppresses certain spatially and spectrally segregated resting state subthalamic nucleus-cortical networks. To this end we used a validated and novel approach for performing simultaneous recordings of the subthalamic nucleus and cortex using magnetoencephalography (during concurrent subthalamic nucleus deep brain stimulation). Our results highlight that clinically effective subthalamic nucleus deep brain stimulation suppresses synchrony locally within the subthalamic nucleus in the low beta oscillatory range and furthermore that the degree of this suppression correlates with clinical motor improvement. Moreover, deep brain stimulation relatively selectively suppressed synchronization of activity between the subthalamic nucleus and mesial premotor regions, including the supplementary motor areas. These mesial premotor regions were predominantly coupled to the subthalamic nucleus in the high beta frequency range, but the degree of deep brain stimulation-associated suppression in their coupling to the subthalamic nucleus was not found to correlate with motor improvement. Beta band coupling between the subthalamic nucleus and lateral motor areas was not influenced by deep brain stimulation. Motor cortical coupling with subthalamic nucleus predominantly involved driving of the subthalamic nucleus, with those drives in the higher beta frequency band having much shorter net delays to subthalamic nucleus than those in the lower beta band. These observations raise the

  8. Oscillatory magnetoconductance of quantum double-well channels

    International Nuclear Information System (INIS)

    Rojo, A.G.; Kumar, N.; Balseiro, C.A.

    1988-07-01

    The recently observed flux-periodic interference effect between parallel quantum double-well channels is theoretically studied in a discrete model that takes into account tunneling between channels. We obtain oscillatory magnetoconductance with small modulations which is attributable to the tunneling. Our treatment includes the effect of evanescent modes. (author). 7 refs, 2 figs

  9. Background noise exerts diverse effects on the cortical encoding of foreground sounds.

    Science.gov (United States)

    Malone, B J; Heiser, Marc A; Beitel, Ralph E; Schreiner, Christoph E

    2017-08-01

    In natural listening conditions, many sounds must be detected and identified in the context of competing sound sources, which function as background noise. Traditionally, noise is thought to degrade the cortical representation of sounds by suppressing responses and increasing response variability. However, recent studies of neural network models and brain slices have shown that background synaptic noise can improve the detection of signals. Because acoustic noise affects the synaptic background activity of cortical networks, it may improve the cortical responses to signals. We used spike train decoding techniques to determine the functional effects of a continuous white noise background on the responses of clusters of neurons in auditory cortex to foreground signals, specifically frequency-modulated sweeps (FMs) of different velocities, directions, and amplitudes. Whereas the addition of noise progressively suppressed the FM responses of some cortical sites in the core fields with decreasing signal-to-noise ratios (SNRs), the stimulus representation remained robust or was even significantly enhanced at specific SNRs in many others. Even though the background noise level was typically not explicitly encoded in cortical responses, significant information about noise context could be decoded from cortical responses on the basis of how the neural representation of the foreground sweeps was affected. These findings demonstrate significant diversity in signal in noise processing even within the core auditory fields that could support noise-robust hearing across a wide range of listening conditions. NEW & NOTEWORTHY The ability to detect and discriminate sounds in background noise is critical for our ability to communicate. The neural basis of robust perceptual performance in noise is not well understood. We identified neuronal populations in core auditory cortex of squirrel monkeys that differ in how they process foreground signals in background noise and that may

  10. Cortical visual impairment

    OpenAIRE

    Koželj, Urša

    2013-01-01

    In this thesis we discuss cortical visual impairment, diagnosis that is in the developed world in first place, since 20 percent of children with blindness or low vision are diagnosed with it. The objectives of the thesis are to define cortical visual impairment and the definition of characters suggestive of the cortical visual impairment as well as to search for causes that affect the growing diagnosis of cortical visual impairment. There are a lot of signs of cortical visual impairment. ...

  11. Approximate damped oscillatory solutions and error estimates for the perturbed Klein–Gordon equation

    International Nuclear Information System (INIS)

    Ye, Caier; Zhang, Weiguo

    2015-01-01

    Highlights: • Analyze the dynamical behavior of the planar dynamical system corresponding to the perturbed Klein–Gordon equation. • Present the relations between the properties of traveling wave solutions and the perturbation coefficient. • Obtain all explicit expressions of approximate damped oscillatory solutions. • Investigate error estimates between exact damped oscillatory solutions and the approximate solutions and give some numerical simulations. - Abstract: The influence of perturbation on traveling wave solutions of the perturbed Klein–Gordon equation is studied by applying the bifurcation method and qualitative theory of dynamical systems. All possible approximate damped oscillatory solutions for this equation are obtained by using undetermined coefficient method. Error estimates indicate that the approximate solutions are meaningful. The results of numerical simulations also establish our analysis

  12. Memory in cultured cortical networks

    NARCIS (Netherlands)

    le Feber, Jakob; Witteveen, T.; Stoyanova, Irina; Rutten, Wim

    2012-01-01

    Tetanic stimulation was applied to affect network connectivity, as assessed by conditional firing probabilities. We showed that the first period(s) of titanic stimulation at a certain electrode significantly alters functional connectivity, but subsequent, identical stimuli do not. These findings

  13. Parametric Sensitivity Analysis of Oscillatory Delay Systems with an Application to Gene Regulation.

    Science.gov (United States)

    Ingalls, Brian; Mincheva, Maya; Roussel, Marc R

    2017-07-01

    A parametric sensitivity analysis for periodic solutions of delay-differential equations is developed. Because phase shifts cause the sensitivity coefficients of a periodic orbit to diverge, we focus on sensitivities of the extrema, from which amplitude sensitivities are computed, and of the period. Delay-differential equations are often used to model gene expression networks. In these models, the parametric sensitivities of a particular genotype define the local geometry of the evolutionary landscape. Thus, sensitivities can be used to investigate directions of gradual evolutionary change. An oscillatory protein synthesis model whose properties are modulated by RNA interference is used as an example. This model consists of a set of coupled delay-differential equations involving three delays. Sensitivity analyses are carried out at several operating points. Comments on the evolutionary implications of the results are offered.

  14. Solvent Fermentation From Palm Oil Mill Effluent Using Clostridium acetobutylicum In Oscillatory Flow Bioreactor

    International Nuclear Information System (INIS)

    Takriff, M.S.; Masngut, N.; Kadhum, A.A.H.; Kalil, M.S.; Mohammad, A.W.

    2009-01-01

    Acetone-butanol-ethanol (ABE) fermentation from Palm Oil Mill Effluent (POME) by C. acetobutylicum NCIMB 13357 in an oscillatory flow bioreactor was investigated. Experimental works were conducted in a U-shaped stainless steel oscillatory flow bioreactor at oscillation frequency between 0.45-0.78 Hz and a constant amplitude of 12.5 mm. Fermentations were carried out for 72 hr at 35 degree Celsius using palm oil mill effluent and reinforced clostridia medium as a growth medium in batch culture. Result of this investigation showed that POME is a viable media for ABE fermentation and oscillatory flow bioreactor has an excellent potential as an alternative fermentation device. (author)

  15. Improved diagnostic accuracy of Alzheimer's disease by combining regional cortical thickness and default mode network functional connectivity: Validated in the Alzheimer's disease neuroimaging initiative set

    International Nuclear Information System (INIS)

    Park, Ji Eun; Park, Bum Woo; Kim, Sang Joon; Kim, Ho Sung; Choi, Choong Gon; Jung, Seung Jung; Oh, Joo Young; Shim, Woo Hyun; Lee, Jae Hong; Roh, Jee Hoon

    2017-01-01

    To identify potential imaging biomarkers of Alzheimer's disease by combining brain cortical thickness (CThk) and functional connectivity and to validate this model's diagnostic accuracy in a validation set. Data from 98 subjects was retrospectively reviewed, including a study set (n = 63) and a validation set from the Alzheimer's Disease Neuroimaging Initiative (n = 35). From each subject, data for CThk and functional connectivity of the default mode network was extracted from structural T1-weighted and resting-state functional magnetic resonance imaging. Cortical regions with significant differences between patients and healthy controls in the correlation of CThk and functional connectivity were identified in the study set. The diagnostic accuracy of functional connectivity measures combined with CThk in the identified regions was evaluated against that in the medial temporal lobes using the validation set and application of a support vector machine. Group-wise differences in the correlation of CThk and default mode network functional connectivity were identified in the superior temporal (p < 0.001) and supramarginal gyrus (p = 0.007) of the left cerebral hemisphere. Default mode network functional connectivity combined with the CThk of those two regions were more accurate than that combined with the CThk of both medial temporal lobes (91.7% vs. 75%). Combining functional information with CThk of the superior temporal and supramarginal gyri in the left cerebral hemisphere improves diagnostic accuracy, making it a potential imaging biomarker for Alzheimer's disease

  16. A Laminar Organization for Selective Cortico-Cortical Communication

    Directory of Open Access Journals (Sweden)

    Rinaldo D. D’Souza

    2017-08-01

    Full Text Available The neocortex is central to mammalian cognitive ability, playing critical roles in sensory perception, motor skills and executive function. This thin, layered structure comprises distinct, functionally specialized areas that communicate with each other through the axons of pyramidal neurons. For the hundreds of such cortico-cortical pathways to underlie diverse functions, their cellular and synaptic architectures must differ so that they result in distinct computations at the target projection neurons. In what ways do these pathways differ? By originating and terminating in different laminae, and by selectively targeting specific populations of excitatory and inhibitory neurons, these “interareal” pathways can differentially control the timing and strength of synaptic inputs onto individual neurons, resulting in layer-specific computations. Due to the rapid development in transgenic techniques, the mouse has emerged as a powerful mammalian model for understanding the rules by which cortical circuits organize and function. Here we review our understanding of how cortical lamination constrains long-range communication in the mammalian brain, with an emphasis on the mouse visual cortical network. We discuss the laminar architecture underlying interareal communication, the role of neocortical layers in organizing the balance of excitatory and inhibitory actions, and highlight the structure and function of layer 1 in mouse visual cortex.

  17. GABA neurons and the mechanisms of network oscillations: implications for understanding cortical dysfunction in schizophrenia.

    Science.gov (United States)

    Gonzalez-Burgos, Guillermo; Lewis, David A

    2008-09-01

    Synchronization of neuronal activity in the neocortex may underlie the coordination of neural representations and thus is critical for optimal cognitive function. Because cognitive deficits are the major determinant of functional outcome in schizophrenia, identifying their neural basis is important for the development of new therapeutic interventions. Here we review the data suggesting that phasic synaptic inhibition mediated by specific subtypes of cortical gamma-aminobutyric acid (GABA) neurons is essential for the production of synchronized network oscillations. We also discuss evidence indicating that GABA neurotransmission is altered in schizophrenia and propose mechanisms by which such alterations can decrease the strength of inhibitory connections in a cell-type-specific manner. We suggest that some alterations observed in the neocortex of schizophrenia subjects may be compensatory responses that partially restore inhibitory synaptic efficacy. The findings of altered neural synchrony and impaired cognitive function in schizophrenia suggest that such compensatory responses are insufficient and that interventions aimed at augmenting the efficacy of GABA neurotransmission might be of therapeutic value.

  18. Stochastic synchronization in finite size spiking networks

    Science.gov (United States)

    Doiron, Brent; Rinzel, John; Reyes, Alex

    2006-09-01

    We study a stochastic synchronization of spiking activity in feedforward networks of integrate-and-fire model neurons. A stochastic mean field analysis shows that synchronization occurs only when the network size is sufficiently small. This gives evidence that the dynamics, and hence processing, of finite size populations can be drastically different from that observed in the infinite size limit. Our results agree with experimentally observed synchrony in cortical networks, and further strengthen the link between synchrony and propagation in cortical systems.

  19. Coherent oscillatory networks supporting short-term memory retention.

    Science.gov (United States)

    Payne, Lisa; Kounios, John

    2009-01-09

    Accumulating evidence suggests that top-down processes, reflected by frontal-midline theta-band (4-8 Hz) electroencephalogram (EEG) oscillations, strengthen the activation of a memory set during short-term memory (STM) retention. In addition, the amplitude of posterior alpha-band (8-13 Hz) oscillations during STM retention is thought to reflect a mechanism that protects fragile STM activations from interference by gating bottom-up sensory inputs. The present study addressed two important questions about these phenomena. First, why have previous studies not consistently found memory set-size effects on frontal-midline theta? Second, how does posterior alpha participate in STM retention? To answer these questions, large-scale network connectivity during STM retention was examined by computing EEG wavelet coherence during the retention period of a modified Sternberg task using visually-presented letters as stimuli. The results showed (a) increasing theta-band coherence between frontal-midline and left temporal-parietal sites with increasing memory load, and (b) increasing alpha-band coherence between midline parietal and left temporal/parietal sites with increasing memory load. These findings support the view that theta-band coherence, rather than amplitude, is the key factor in selective top-down strengthening of the memory set and demonstrate that posterior alpha-band oscillations associated with sensory gating are involved in STM retention by participating in the STM network.

  20. The application of large amplitude oscillatory stress in a study of fully formed fibrin clots

    Science.gov (United States)

    Lamer, T. F.; Thomas, B. R.; Curtis, D. J.; Badiei, N.; Williams, P. R.; Hawkins, K.

    2017-12-01

    The suitability of controlled stress large amplitude oscillatory shear (LAOStress) for the characterisation of the nonlinear viscoelastic properties of fully formed fibrin clots is investigated. Capturing the rich nonlinear viscoelastic behaviour of the fibrin network is important for understanding the structural behaviour of clots formed in blood vessels which are exposed to a wide range of shear stresses. We report, for the first time, that artefacts due to ringing exist in both the sample stress and strain waveforms of a LAOStress measurement which will lead to errors in the calculation of nonlinear viscoelastic properties. The process of smoothing the waveforms eliminates these artefacts whilst retaining essential rheological information. Furthermore, we demonstrate the potential of LAOStress for characterising the nonlinear viscoelastic properties of fibrin clots in response to incremental increases of applied stress up to the point of fracture. Alternating LAOStress and small amplitude oscillatory shear measurements provide detailed information of reversible and irreversible structural changes of the fibrin clot as a consequence of elevated levels of stress. We relate these findings to previous studies involving large scale deformations of fibrin clots. The LAOStress technique may provide useful information to help understand why some blood clots formed in vessels are stable (such as in deep vein thrombosis) and others break off (leading to a life threatening pulmonary embolism).

  1. Oscillatory and electrohydrodynamic instabilities in flow over a ...

    Indian Academy of Sciences (India)

    of fluid flow past flexible surfaces is qualitatively different from the flow over rigid .... work. Oscillatory flows are unsteady, and it is important to precisely define the ..... from 5 to 16, though there is less variation in the critical stress for a steady ...

  2. Cracking the code of oscillatory activity.

    Directory of Open Access Journals (Sweden)

    Philippe G Schyns

    2011-05-01

    Full Text Available Neural oscillations are ubiquitous measurements of cognitive processes and dynamic routing and gating of information. The fundamental and so far unresolved problem for neuroscience remains to understand how oscillatory activity in the brain codes information for human cognition. In a biologically relevant cognitive task, we instructed six human observers to categorize facial expressions of emotion while we measured the observers' EEG. We combined state-of-the-art stimulus control with statistical information theory analysis to quantify how the three parameters of oscillations (i.e., power, phase, and frequency code the visual information relevant for behavior in a cognitive task. We make three points: First, we demonstrate that phase codes considerably more information (2.4 times relating to the cognitive task than power. Second, we show that the conjunction of power and phase coding reflects detailed visual features relevant for behavioral response--that is, features of facial expressions predicted by behavior. Third, we demonstrate, in analogy to communication technology, that oscillatory frequencies in the brain multiplex the coding of visual features, increasing coding capacity. Together, our findings about the fundamental coding properties of neural oscillations will redirect the research agenda in neuroscience by establishing the differential role of frequency, phase, and amplitude in coding behaviorally relevant information in the brain.

  3. Interactions between neural networks: a mechanism for tuning chaos and oscillations.

    Science.gov (United States)

    Wang, Lipo

    2007-06-01

    We show that chaos and oscillations in a higher-order binary neural network can be tuned effectively using interactions between neural networks. Our results suggest that network interactions may be useful as a means of adjusting the level of dynamic activities in systems that employ chaos and oscillations for information processing, or as a means of suppressing oscillatory behaviors in systems that require stability.

  4. Shear and loading in channels: Oscillatory shearing and edge currents of superconducting vortices

    Science.gov (United States)

    Wambaugh, J. F.; Marchesoni, F.; Nori, Franco

    2003-04-01

    Via computer simulations we study the motion of quantized magnetic flux-lines, or vortices, confined to a straight pin-free channel in a strong-pinning superconducting sample. We find that, when a constant current is applied across this system, a very unusual oscillatory shearing appears, in which the vortices moving at the edges of the channel periodically trail behind and then suddenly leapfrog past the vortices moving in the inner rows. For small enough driving forces, this oscillatory shearing dynamic phase is replaced by a continuous shearing phase in which the distance between initially-nearby vortices grows in time, quickly destroying the order of the lattice. An animation of this novel “oscillatory leapfrogging shear” effect of the vortex edge currents appears in http://www-personal.engin.umich.edu/˜nori/channel/

  5. Cortical correlates of susceptibility to upper limb freezing in Parkinson's disease

    NARCIS (Netherlands)

    Scholten, M.; Govindan, R.B.; Braun, C.; Bloem, B.R.; Plewnia, C.; Kruger, R.; Gharabaghi, A.; Weiss, D.

    2016-01-01

    OBJECTIVE: Freezing behavior is an unmet symptom in Parkinson's disease (PD), which reflects its complex pathophysiology. Freezing behavior can emerge when attentional capacity is reduced, i.e. under dual task interference. In this study, we characterized the cortical network signatures underlying

  6. Canonical cortical circuits: current evidence and theoretical implications

    Directory of Open Access Journals (Sweden)

    Capone F

    2016-04-01

    Full Text Available Fioravante Capone,1,2 Matteo Paolucci,1,2 Federica Assenza,1,2 Nicoletta Brunelli,1,2 Lorenzo Ricci,1,2 Lucia Florio,1,2 Vincenzo Di Lazzaro1,2 1Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy; 2Fondazione Alberto Sordi – Research Institute for Aging, Rome, ItalyAbstract: Neurophysiological and neuroanatomical studies have found that the same basic structural and functional organization of neuronal circuits exists throughout the cortex. This kind of cortical organization, termed canonical circuit, has been functionally demonstrated primarily by studies involving visual striate cortex, and then, the concept has been extended to different cortical areas. In brief, the canonical circuit is composed of superficial pyramidal neurons of layers II/III receiving different inputs and deep pyramidal neurons of layer V that are responsible for cortex output. Superficial and deep pyramidal neurons are reciprocally connected, and inhibitory interneurons participate in modulating the activity of the circuit. The main intuition of this model is that the entire cortical network could be modeled as the repetition of relatively simple modules composed of relatively few types of excitatory and inhibitory, highly interconnected neurons. We will review the origin and the application of the canonical cortical circuit model in the six sections of this paper. The first section (The origins of the concept of canonical circuit: the cat visual cortex reviews the experiments performed in the cat visual cortex, from the origin of the concept of canonical circuit to the most recent developments in the modelization of cortex. The second (The canonical circuit in neocortex and third (Toward a canonical circuit in agranular cortex sections try to extend the concept of canonical circuit to other cortical areas, providing some significant examples of circuit functioning in different cytoarchitectonic

  7. Towards a mathematical theory of cortical micro-circuits.

    Directory of Open Access Journals (Sweden)

    Dileep George

    2009-10-01

    Full Text Available The theoretical setting of hierarchical Bayesian inference is gaining acceptance as a framework for understanding cortical computation. In this paper, we describe how Bayesian belief propagation in a spatio-temporal hierarchical model, called Hierarchical Temporal Memory (HTM, can lead to a mathematical model for cortical circuits. An HTM node is abstracted using a coincidence detector and a mixture of Markov chains. Bayesian belief propagation equations for such an HTM node define a set of functional constraints for a neuronal implementation. Anatomical data provide a contrasting set of organizational constraints. The combination of these two constraints suggests a theoretically derived interpretation for many anatomical and physiological features and predicts several others. We describe the pattern recognition capabilities of HTM networks and demonstrate the application of the derived circuits for modeling the subjective contour effect. We also discuss how the theory and the circuit can be extended to explain cortical features that are not explained by the current model and describe testable predictions that can be derived from the model.

  8. Oscillatory flow chemical reactors

    Directory of Open Access Journals (Sweden)

    Slavnić Danijela S.

    2014-01-01

    Full Text Available Global market competition, increase in energy and other production costs, demands for high quality products and reduction of waste are forcing pharmaceutical, fine chemicals and biochemical industries, to search for radical solutions. One of the most effective ways to improve the overall production (cost reduction and better control of reactions is a transition from batch to continuous processes. However, the reactions of interests for the mentioned industry sectors are often slow, thus continuous tubular reactors would be impractically long for flow regimes which provide sufficient heat and mass transfer and narrow residence time distribution. The oscillatory flow reactors (OFR are newer type of tube reactors which can offer solution by providing continuous operation with approximately plug flow pattern, low shear stress rates and enhanced mass and heat transfer. These benefits are the result of very good mixing in OFR achieved by vortex generation. OFR consists of cylindrical tube containing equally spaced orifice baffles. Fluid oscillations are superimposed on a net (laminar flow. Eddies are generated when oscillating fluid collides with baffles and passes through orifices. Generation and propagation of vortices create uniform mixing in each reactor cavity (between baffles, providing an overall flow pattern which is close to plug flow. Oscillations can be created by direct action of a piston or a diaphragm on fluid (or alternatively on baffles. This article provides an overview of oscillatory flow reactor technology, its operating principles and basic design and scale - up characteristics. Further, the article reviews the key research findings in heat and mass transfer, shear stress, residence time distribution in OFR, presenting their advantages over the conventional reactors. Finally, relevant process intensification examples from pharmaceutical, polymer and biofuels industries are presented.

  9. Hidden long evolutionary memory in a model biochemical network

    Science.gov (United States)

    Ali, Md. Zulfikar; Wingreen, Ned S.; Mukhopadhyay, Ranjan

    2018-04-01

    We introduce a minimal model for the evolution of functional protein-interaction networks using a sequence-based mutational algorithm, and apply the model to study neutral drift in networks that yield oscillatory dynamics. Starting with a functional core module, random evolutionary drift increases network complexity even in the absence of specific selective pressures. Surprisingly, we uncover a hidden order in sequence space that gives rise to long-term evolutionary memory, implying strong constraints on network evolution due to the topology of accessible sequence space.

  10. Bifurcations of propellant burning rate at oscillatory pressure

    Energy Technology Data Exchange (ETDEWEB)

    Novozhilov, Boris V. [N. N. Semenov Institute of Chemical Physics, Russian Academy of Science, 4 Kosygina St., Moscow 119991 (Russian Federation)

    2006-06-15

    A new phenomenon, the disparity between pressure and propellant burning rate frequencies, has revealed in numerical studies of propellant burning rate response to oscillatory pressure. As is clear from the linear approximation, under small pressure amplitudes, h, pressure and propellant burning rate oscillations occur with equal period T (T-solution). In the paper, however, it is shown that at a certain critical value of the parameter h the system in hand undergoes a bifurcation so that the T-solution converts to oscillations with period 2T (2T-solution). When the bifurcation parameter h increases, the subsequent behavior of the system becomes complicated. It is obtained a sequence of period doubling to 4T-solution and 8T-solution. Beyond a certain value of the bifurcation parameter h an apparently fully chaotic solution is found. These effects undoubtedly should be taken into account in studies of oscillatory processes in combustion chambers. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  11. Vestibulo-cortical Hemispheric Dominance: the link between Anxiety and the Vestibular System?

    Science.gov (United States)

    Bednarczuk, Nadja F; Casanovas Ortega, Marta; Fluri, Anne-Sophie; Arshad, Qadeer

    2018-05-16

    Vestibular processing and anxiety networks are functionally intertwined, as demonstrated by reports of reciprocal influences upon each other. Yet whether there is an underlying link between these two systems remains unknown Previous findings have highlighted the involvement of hemispheric lateralisation in processing of both anxiety and vestibular signals. Accordingly, we explored the interaction between vestibular cortical processing and anxiety by assessing the relationship between anxiety levels and the degree of hemispheric lateralisation of vestibulo-cortical processing in 64 right-handed, healthy individuals. Vestibulo-cortical hemispheric lateralisation was determined by gaging the degree of caloric-induced nystagmus suppression following modulation of cortical excitability using trans-cranial direct current stimulation targeted over the posterior parietal cortex, an area implicated in the processing of vestibular signals. The degree of nystagmus suppression yields an objective biomarker, allowing the quantification of the degree of right vestibulo-cortical hemisphere dominance. Anxiety levels were quantified using the Trait component of the Spielberger State-Trait Anxiety Questionnaire. Our findings demonstrate that the degree of an individual's vestibulo-cortical hemispheric dominance correlates with their anxiety levels. That is, those individuals with greater right hemispheric vestibulo-cortical dominance exhibited lower levels of anxiety. By extension, our results support the notion that hemispheric lateralisation determines an individual's emotional processing, thereby linking cortical circuits involved in processing anxiety and vestibular signals respectively. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  12. Electrophysiological Evidences of Organization of Cortical Motor Information in the Basal Ganglia

    Directory of Open Access Journals (Sweden)

    Hirokazu Iwamuro

    2011-05-01

    Full Text Available During the last two decades, the many developments in the treatment of movement disorders such as Parkinson disease and dystonia have enhanced our understanding on organization of the basal ganglia, and this knowledge has led to other advances in the field. According to many electrophysiological and anatomical findings, it is considered that motor information from different cortical areas is processed through several cortico-basal ganglia loops principally in a parallel fashion and somatotopy from each cortical area is also well preserved in each loop. Moreover, recent studies suggest that not only the parallel processing but also some convergence of information occur through the basal ganglia. Information from cortical areas whose functions are close to each other tends to converge in the basal ganglia. The cortico-basal ganglia loops should be comprehended more as a network rather than as separated subdivisions. However, the functions of this convergence still remain unknown. It is important even for clinical doctors to be well informed about this kind of current knowledge because some symptoms of movement disorders may be explained by disorganization of the information network in the basal ganglia.

  13. 3D LDV Measurements in Oscillatory Boundary Layers

    Science.gov (United States)

    Mier, J. M.; Garcia, M. H.

    2012-12-01

    The oscillatory boundary layer represents a particular case of unsteady wall-bounded flows in which fluid particles follow a periodic sinusoidal motion. Unlike steady boundary layer flows, the oscillatory flow regime and bed roughness character change in time along the period for every cycle, a characteristic that introduces a high degree of complexity in the analysis of these flows. Governing equations can be derived from the general Navier-Stokes equations for the motion of fluids, from which the exact solution for the laminar oscillatory boundary layer is obtained (also known as the 2nd Stokes problem). No exact solution exists for the turbulent case, thus, understanding of the main flow characteristics comes from experimental work. Several researchers have reported experimental work in oscillatory boundary layers since the 1960's; however, larger scale facilities and the development of newer measurement techniques with improved temporal and spatial resolution in recent years provides a unique opportunity to achieve a better understanding about this type of flows. Several experiments were performed in the Large Oscillatory Water and Sediment Tunnel (LOWST) facility at the Ven Te Chow Hydrosystems Laboratory, for a range of Reynolds wave numbers between 6x10^4 3D Laser Doppler Velocimetry (LDV) system was used to measure instantaneous flow velocities with a temporal resolution up to ~ 1,000 Hz. It was mounted on a 3-axis traverse with a spatial resolution of 0.01 mm in all three directions. The closest point to the bottom was measured at z = 0.2 mm (z+ ≈ 4), which allowed to capture boundary layer features with great detail. In order to achieve true 3D measurements, 2 probes were used on a perpendicular configuration, such that u and w components were measured from a probe on the side of the flume and v component was measured from a probe pointing down through and access window on top of the flume. The top probe was submerged in a water container, such that the

  14. Resting-State Oscillatory Activity in Autism Spectrum Disorders

    Science.gov (United States)

    Cornew, Lauren; Roberts, Timothy P. L.; Blaskey, Lisa; Edgar, J. Christopher

    2012-01-01

    Neural oscillatory anomalies in autism spectrum disorders (ASD) suggest an excitatory/inhibitory imbalance; however, the nature and clinical relevance of these anomalies are unclear. Whole-cortex magnetoencephalography data were collected while 50 children (27 with ASD, 23 controls) underwent an eyes-closed resting-state exam. A Fast Fourier…

  15. Linking Essential Tremor to the Cerebellum: Physiological Evidence.

    Science.gov (United States)

    Filip, Pavel; Lungu, Ovidiu V; Manto, Mario-Ubaldo; Bareš, Martin

    2016-12-01

    Essential tremor (ET), clinically characterized by postural and kinetic tremors, predominantly in the upper extremities, originates from pathological activity in the dynamic oscillatory network comprising the majority of nodes in the central motor network. Evidence indicates dysfunction in the thalamus, the olivocerebellar loops, and intermittent cortical engagement. Pathology of the cerebellum, a structure with architecture intrinsically predisposed to oscillatory activity, has also been implicated in ET as shown by clinical, neuroimaging, and pathological studies. Despite electrophysiological studies assessing cerebellar impairment in ET being scarce, their impact is tangible, as summarized in this review. The electromyography-magnetoencephalography combination provided the first direct evidence of pathological alteration in cortico-subcortical communication, with a significant emphasis on the cerebellum. Furthermore, complex electromyography studies showed disruptions in the timing of agonist and antagonist muscle activation, a process generally attributed to the cerebellum. Evidence pointing to cerebellar engagement in ET has also been found in electrooculography measurements, cerebellar repetitive transcranial magnetic stimulation studies, and, indirectly, in complex analyses of the activity of the ventral intermediate thalamic nucleus (an area primarily receiving inputs from the cerebellum), which is also used in the advanced treatment of ET. In summary, further progress in therapy will require comprehensive electrophysiological and physiological analyses to elucidate the precise mechanisms leading to disease symptoms. The cerebellum, as a major node of this dynamic oscillatory network, requires further study to aid this endeavor.

  16. Multiscale approach including microfibril scale to assess elastic constants of cortical bone based on neural network computation and homogenization method.

    Science.gov (United States)

    Barkaoui, Abdelwahed; Chamekh, Abdessalem; Merzouki, Tarek; Hambli, Ridha; Mkaddem, Ali

    2014-03-01

    The complexity and heterogeneity of bone tissue require a multiscale modeling to understand its mechanical behavior and its remodeling mechanisms. In this paper, a novel multiscale hierarchical approach including microfibril scale based on hybrid neural network (NN) computation and homogenization equations was developed to link nanoscopic and macroscopic scales to estimate the elastic properties of human cortical bone. The multiscale model is divided into three main phases: (i) in step 0, the elastic constants of collagen-water and mineral-water composites are calculated by averaging the upper and lower Hill bounds; (ii) in step 1, the elastic properties of the collagen microfibril are computed using a trained NN simulation. Finite element calculation is performed at nanoscopic levels to provide a database to train an in-house NN program; and (iii) in steps 2-10 from fibril to continuum cortical bone tissue, homogenization equations are used to perform the computation at the higher scales. The NN outputs (elastic properties of the microfibril) are used as inputs for the homogenization computation to determine the properties of mineralized collagen fibril. The mechanical and geometrical properties of bone constituents (mineral, collagen, and cross-links) as well as the porosity were taken in consideration. This paper aims to predict analytically the effective elastic constants of cortical bone by modeling its elastic response at these different scales, ranging from the nanostructural to mesostructural levels. Our findings of the lowest scale's output were well integrated with the other higher levels and serve as inputs for the next higher scale modeling. Good agreement was obtained between our predicted results and literature data. Copyright © 2013 John Wiley & Sons, Ltd.

  17. Disturbed oscillatory brain dynamics in subcortical ischemic vascular dementia

    Directory of Open Access Journals (Sweden)

    van Straaten Elisabeth CW

    2012-07-01

    Full Text Available Abstract Background White matter hyperintensities (WMH can lead to dementia but the underlying physiological mechanisms are unclear. We compared relative oscillatory power from electroencephalographic studies (EEGs of 17 patients with subcortical ischemic vascular dementia, based on extensive white matter hyperintensities (SIVD-WMH with 17 controls to investigate physiological changes underlying this diagnosis. Results Differences between the groups were large, with a decrease of relative power of fast activity in patients (alpha power 0.25 ± 0.12 versus 0.38 ± 0.13, p = 0.01; beta power 0.08 ± 0.04 versus 0.19 ± 0.07; p Conclusions This pattern of disturbance in oscillatory brain activity indicate loss of connections between neurons, providing a first step in the understanding of cognitive dysfunction in SIVD-WMH.

  18. The evolution of a horizontal scale for oscillatory magnetoconvection

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, J O [Monash Univ., Clayton (Australia). Dept. of Mathematics; Lopez, J M [Aeronautical Research Labs., Port Melbourne (Australia). Aerodynamics Div.

    1989-01-01

    Oscillatory convective motions have been observed in the umbrae of sunspots and, in the past, the linear theory of overstability has been used for sunspot models. Here a non-linear model for oscillatory convection has been used to investigate the possibility of a preferred horizontal cell size for these motions, in the presence of a magnetic field. The integration forward in time, from the conductive state, of the non-linear multimode equations governing magnetoconvection when the magnetic Prandtl number is less than one portrays a complex interaction between the evolving magnetic and vertical velocity horizontal scales. Preferred horizontal scales for the convective cells have been established by identifying the modes that substantially contribute to the overall convective heat transport. All other modes, although initially perturbed, in time essentially decay to zero through self interaction. 8 refs., 5 figs.

  19. Relating normalization to neuronal populations across cortical areas.

    Science.gov (United States)

    Ruff, Douglas A; Alberts, Joshua J; Cohen, Marlene R

    2016-09-01

    Normalization, which divisively scales neuronal responses to multiple stimuli, is thought to underlie many sensory, motor, and cognitive processes. In every study where it has been investigated, neurons measured in the same brain area under identical conditions exhibit a range of normalization, ranging from suppression by nonpreferred stimuli (strong normalization) to additive responses to combinations of stimuli (no normalization). Normalization has been hypothesized to arise from interactions between neuronal populations, either in the same or different brain areas, but current models of normalization are not mechanistic and focus on trial-averaged responses. To gain insight into the mechanisms underlying normalization, we examined interactions between neurons that exhibit different degrees of normalization. We recorded from multiple neurons in three cortical areas while rhesus monkeys viewed superimposed drifting gratings. We found that neurons showing strong normalization shared less trial-to-trial variability with other neurons in the same cortical area and more variability with neurons in other cortical areas than did units with weak normalization. Furthermore, the cortical organization of normalization was not random: neurons recorded on nearby electrodes tended to exhibit similar amounts of normalization. Together, our results suggest that normalization reflects a neuron's role in its local network and that modulatory factors like normalization share the topographic organization typical of sensory tuning properties. Copyright © 2016 the American Physiological Society.

  20. Neonatal pain-related stress, functional cortical activity and visual-perceptual abilities in school-age children born at extremely low gestational age.

    Science.gov (United States)

    Doesburg, Sam M; Chau, Cecil M; Cheung, Teresa P L; Moiseev, Alexander; Ribary, Urs; Herdman, Anthony T; Miller, Steven P; Cepeda, Ivan L; Synnes, Anne; Grunau, Ruth E

    2013-10-01

    Children born very prematurely (pain-related stress during neonatal intensive care has been proposed to contribute to altered neurocognitive development in these children. Due to critical periods in the development of thalamocortical systems, the immature brain of infants born at extremely low gestational age (ELGA; pain. In a cohort of school-age children followed since birth we assessed relations between functional brain activity measured using magnetoencephalogragy (MEG), visual-perceptual abilities and cumulative neonatal pain. We demonstrated alterations in the spectral structure of spontaneous cortical oscillatory activity in ELGA children at school-age. Cumulative neonatal pain-related stress was associated with changes in background cortical rhythmicity in these children, and these alterations in spontaneous brain oscillations were negatively correlated with visual-perceptual abilities at school-age, and were not driven by potentially confounding neonatal variables. These findings provide the first evidence linking neonatal pain-related stress, the development of functional brain activity, and school-age cognitive outcome in these vulnerable children. Copyright © 2013 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  1. Spike-timing-dependent plasticity in the human dorso-lateral prefrontal cortex.

    Science.gov (United States)

    Casula, Elias Paolo; Pellicciari, Maria Concetta; Picazio, Silvia; Caltagirone, Carlo; Koch, Giacomo

    2016-12-01

    Changes in the synaptic strength of neural connections are induced by repeated coupling of activity of interconnected neurons with precise timing, a phenomenon known as spike-timing-dependent plasticity (STDP). It is debated if this mechanism exists in large-scale cortical networks in humans. We combined transcranial magnetic stimulation (TMS) with concurrent electroencephalography (EEG) to directly investigate the effects of two paired associative stimulation (PAS) protocols (fronto-parietal and parieto-frontal) of pre and post-synaptic inputs within the human fronto-parietal network. We found evidence that the dorsolateral prefrontal cortex (DLPFC) has the potential to form robust STDP. Long-term potentiation/depression of TMS-evoked cortical activity is prompted after that DLPFC stimulation is followed/preceded by posterior parietal stimulation. Such bidirectional changes are paralleled by sustained increase/decrease of high-frequency oscillatory activity, likely reflecting STDP responsivity. The current findings could be important to drive plasticity of damaged cortical circuits in patients with cognitive or psychiatric disorders. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Unstable oscillatory Pierce modes of neutralized electron beams

    International Nuclear Information System (INIS)

    Cary, J.R.; Lemons, D.S.

    1982-01-01

    Oscillatory modes of the Pierce system have been calculated. These modes are found to have growth rates comparable to the previously investigated purely growing modes. When these modes are included, it is found that the Pierce system is unstable for most values of ω/sub p/ L/V 0 >π

  3. Spectrotemporal dynamics of auditory cortical synaptic receptive field plasticity.

    Science.gov (United States)

    Froemke, Robert C; Martins, Ana Raquel O

    2011-09-01

    The nervous system must dynamically represent sensory information in order for animals to perceive and operate within a complex, changing environment. Receptive field plasticity in the auditory cortex allows cortical networks to organize around salient features of the sensory environment during postnatal development, and then subsequently refine these representations depending on behavioral context later in life. Here we review the major features of auditory cortical receptive field plasticity in young and adult animals, focusing on modifications to frequency tuning of synaptic inputs. Alteration in the patterns of acoustic input, including sensory deprivation and tonal exposure, leads to rapid adjustments of excitatory and inhibitory strengths that collectively determine the suprathreshold tuning curves of cortical neurons. Long-term cortical plasticity also requires co-activation of subcortical neuromodulatory control nuclei such as the cholinergic nucleus basalis, particularly in adults. Regardless of developmental stage, regulation of inhibition seems to be a general mechanism by which changes in sensory experience and neuromodulatory state can remodel cortical receptive fields. We discuss recent findings suggesting that the microdynamics of synaptic receptive field plasticity unfold as a multi-phase set of distinct phenomena, initiated by disrupting the balance between excitation and inhibition, and eventually leading to wide-scale changes to many synapses throughout the cortex. These changes are coordinated to enhance the representations of newly-significant stimuli, possibly for improved signal processing and language learning in humans. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Single-subject structural networks with closed-form rotation invariant matching mprove power in developmental studies of the cortex.

    Science.gov (United States)

    Kandel, Benjamin M; Wang, Danny J J; Gee, James C; Avants, Brian B

    2014-01-01

    Although much attention has recently been focused on single-subject functional networks, using methods such as resting-state functional MRI, methods for constructing single-subject structural networks are in their infancy. Single-subject cortical networks aim to describe the self-similarity across the cortical structure, possibly signifying convergent developmental pathways. Previous methods for constructing single-subject cortical networks have used patch-based correlations and distance metrics based on curvature and thickness. We present here a method for constructing similarity-based cortical structural networks that utilizes a rotation-invariant representation of structure. The resulting graph metrics are closely linked to age and indicate an increasing degree of closeness throughout development in nearly all brain regions, perhaps corresponding to a more regular structure as the brain matures. The derived graph metrics demonstrate a four-fold increase in power for detecting age as compared to cortical thickness. This proof of concept study indicates that the proposed metric may be useful in identifying biologically relevant cortical patterns.

  5. Is an absolute level of cortical beta suppression required for proper movement? Magnetoencephalographic evidence from healthy aging.

    Science.gov (United States)

    Heinrichs-Graham, Elizabeth; Wilson, Tony W

    2016-07-01

    Previous research has connected a specific pattern of beta oscillatory activity to proper motor execution, but no study to date has directly examined how resting beta levels affect motor-related beta oscillatory activity in the motor cortex. Understanding this relationship is imperative to determining the basic mechanisms of motor control, as well as the impact of pathological beta oscillations on movement execution. In the current study, we used magnetoencephalography (MEG) and a complex movement paradigm to quantify resting beta activity and movement-related beta oscillations in the context of healthy aging. We chose healthy aging as a model because preliminary evidence suggests that beta activity is elevated in older adults, and thus by examining older and younger adults we were able to naturally vary resting beta levels. To this end, healthy younger and older participants were recorded during motor performance and at rest. Using beamforming, we imaged the peri-movement beta event-related desynchronization (ERD) and extracted virtual sensors from the peak voxels, which enabled absolute and relative beta power to be assessed. Interestingly, absolute beta power during the pre-movement baseline was much stronger in older relative to younger adults, and older adults also exhibited proportionally large beta desynchronization (ERD) responses during motor planning and execution compared to younger adults. Crucially, we found a significant relationship between spontaneous (resting) beta power and beta ERD magnitude in both primary motor cortices, above and beyond the effects of age. A similar link was found between beta ERD magnitude and movement duration. These findings suggest a direct linkage between beta reduction during movement and spontaneous activity in the motor cortex, such that as spontaneous beta power increases, a greater reduction in beta activity is required to execute movement. We propose that, on an individual level, the primary motor cortices have an

  6. LES-based characterization of a suction and oscillatory blowing fluidic actuator

    Science.gov (United States)

    Kim, Jeonglae; Moin, Parviz

    2015-11-01

    Recently, a novel fluidic actuator using steady suction and oscillatory blowing was developed for control of turbulent flows. The suction and oscillatory blowing (SaOB) actuator combines steady suction and pulsed oscillatory blowing into a single device. The actuation is based upon a self-sustained mechanism of confined jets and does not require any moving parts. The control output is determined by a pressure source and the geometric details, and no additional input is needed. While its basic mechanisms have been investigated to some extent, detailed characteristics of internal turbulent flows are not well understood. In this study, internal flows of the SaOB actuator are simulated using large-eddy simulation (LES). Flow characteristics within the actuator are described in detail for a better understanding of the physical mechanisms and improving the actuator design. LES predicts the self-sustained oscillations of the turbulent jet. Switching frequency, maximum velocity at the actuator outlets, and wall pressure distribution are in good agreement with the experimental measurements. The computational results are used to develop simplified boundary conditions for numerical experiments of active flow control. Supported by the Boeing company.

  7. Role of network dynamics in shaping spike timing reliability

    International Nuclear Information System (INIS)

    Bazhenov, Maxim; Rulkov, Nikolai F.; Fellous, Jean-Marc; Timofeev, Igor

    2005-01-01

    We study the reliability of cortical neuron responses to periodically modulated synaptic stimuli. Simple map-based models of two different types of cortical neurons are constructed to replicate the intrinsic resonances of reliability found in experimental data and to explore the effects of those resonance properties on collective behavior in a cortical network model containing excitatory and inhibitory cells. We show that network interactions can enhance the frequency range of reliable responses and that the latter can be controlled by the strength of synaptic connections. The underlying dynamical mechanisms of reliability enhancement are discussed

  8. Effects of Cortical Spreading Depression on Synaptic Activity, Blood Flow and Oxygen Consumption in Rat Cerebral Cortex

    DEFF Research Database (Denmark)

    Hansen, Henning Piilgaard

    2010-01-01

    As the title of this thesis indicates I have during my PhD studied the effects of cortical spreading depression (CSD) on synaptic activity, blood flow and oxygen consumption in rat cerebral cortex. This was performed in vivo using an open cranial window approach in anesthetized rats. I applied...... parameters of the whisker/infraorbital nerve etwork (IO) targeting the same cortical area. We tested the hypothesis that the relation between increases in CBF and CMRO2 evoked by stimulation and synaptic activity differed for the two activated networks and that activation of two distinct networks activate...

  9. Establishing a Statistical Link between Network Oscillations and Neural Synchrony.

    Directory of Open Access Journals (Sweden)

    Pengcheng Zhou

    2015-10-01

    Full Text Available Pairs of active neurons frequently fire action potentials or "spikes" nearly synchronously (i.e., within 5 ms of each other. This spike synchrony may occur by chance, based solely on the neurons' fluctuating firing patterns, or it may occur too frequently to be explicable by chance alone. When spike synchrony above chances levels is present, it may subserve computation for a specific cognitive process, or it could be an irrelevant byproduct of such computation. Either way, spike synchrony is a feature of neural data that should be explained. A point process regression framework has been developed previously for this purpose, using generalized linear models (GLMs. In this framework, the observed number of synchronous spikes is compared to the number predicted by chance under varying assumptions about the factors that affect each of the individual neuron's firing-rate functions. An important possible source of spike synchrony is network-wide oscillations, which may provide an essential mechanism of network information flow. To establish the statistical link between spike synchrony and network-wide oscillations, we have integrated oscillatory field potentials into our point process regression framework. We first extended a previously-published model of spike-field association and showed that we could recover phase relationships between oscillatory field potentials and firing rates. We then used this new framework to demonstrate the statistical relationship between oscillatory field potentials and spike synchrony in: 1 simulated neurons, 2 in vitro recordings of hippocampal CA1 pyramidal cells, and 3 in vivo recordings of neocortical V4 neurons. Our results provide a rigorous method for establishing a statistical link between network oscillations and neural synchrony.

  10. Oscillatory behaviour of solutions of linear neutral differential ...

    African Journals Online (AJOL)

    The paper considers the contribution of space-time noise to the oscillatory behaviour of solutions of a linear neutral stochastic delay differential equation. It was established that under certain conditions on the time lags and their speed of adjustments, the presence of noise generates oscillation in the solution of the equation ...

  11. Non-Steady Oscillatory Flow in Coarse Granular Materials

    DEFF Research Database (Denmark)

    Andersen, O. H.; Gent, M. R. A. van; Meer, J. W. van der

    1992-01-01

    Stationary and oscillatory flow through coarse granular materials have been investigated experimentally at Delft Hydraulics in their oscillating water tunnel with the objective of determining the coefficients of the extended Forchheimer equation. Cylinders, spheres and different types of rock have....... Further, for the non-stationary term, the virtual mass coefficient will be derived....

  12. Longitudinal data on cortical thickness before and after working memory training

    Directory of Open Access Journals (Sweden)

    Claudia Metzler-Baddeley

    2016-06-01

    Full Text Available The data and supplementary information provided in this article relate to our research article “Task complexity and location specific changes of cortical thickness in executive and salience networks after working memory training” (Metzler-Baddeley et al., 2016 [1]. We provide cortical thickness and subcortical volume data derived from parieto-frontal cortical regions and the basal ganglia with the FreeSurfer longitudinal analyses stream (http://surfer.nmr.mgh.harvard.edu [2] before and after Cogmed working memory training (Cogmed and Cogmed Working Memory Training, 2012 [3]. This article also provides supplementary information to the research article, i.e., within-group comparisons between baseline and outcome cortical thickness and subcortical volume measures, between-group tests of performance changes in cognitive benchmark tests (www.cambridgebrainsciences.com [4], correlation analyses between performance changes in benchmark tests and training-related structural changes, correlation analyses between the time spent training and structural changes, a scatterplot of the relationship between cortical thickness measures derived from the occipital lobe as control region and the chronological order of the MRI sessions to assess potential scanner drift effects and a post-hoc vertex-wise whole brain analysis with FreeSurfer Qdec (https://surfer.nmr.mgh.harvard.edu/fswiki/Qdec [5].

  13. Longitudinal data on cortical thickness before and after working memory training.

    Science.gov (United States)

    Metzler-Baddeley, Claudia; Caeyenberghs, Karen; Foley, Sonya; Jones, Derek K

    2016-06-01

    The data and supplementary information provided in this article relate to our research article "Task complexity and location specific changes of cortical thickness in executive and salience networks after working memory training" (Metzler-Baddeley et al., 2016) [1]. We provide cortical thickness and subcortical volume data derived from parieto-frontal cortical regions and the basal ganglia with the FreeSurfer longitudinal analyses stream (http://surfer.nmr.mgh.harvard.edu [2]) before and after Cogmed working memory training (Cogmed and Cogmed Working Memory Training, 2012) [3]. This article also provides supplementary information to the research article, i.e., within-group comparisons between baseline and outcome cortical thickness and subcortical volume measures, between-group tests of performance changes in cognitive benchmark tests (www.cambridgebrainsciences.com [4]), correlation analyses between performance changes in benchmark tests and training-related structural changes, correlation analyses between the time spent training and structural changes, a scatterplot of the relationship between cortical thickness measures derived from the occipital lobe as control region and the chronological order of the MRI sessions to assess potential scanner drift effects and a post-hoc vertex-wise whole brain analysis with FreeSurfer Qdec (https://surfer.nmr.mgh.harvard.edu/fswiki/Qdec [5]).

  14. Cortical surface area and cortical thickness in the precuneus of adult humans.

    Science.gov (United States)

    Bruner, E; Román, F J; de la Cuétara, J M; Martin-Loeches, M; Colom, R

    2015-02-12

    The precuneus has received considerable attention in the last decade, because of its cognitive functions, its role as a central node of the brain networks, and its involvement in neurodegenerative processes. Paleoneurological studies suggested that form changes in the deep parietal areas represent a major character associated with the origin of the modern human brain morphology. A recent neuroanatomical survey based on shape analysis suggests that the proportions of the precuneus are also a determinant source of overall brain geometrical differences among adult individuals, influencing the brain spatial organization. Here, we evaluate the variation of cortical thickness and cortical surface area of the precuneus in a sample of adult humans, and their relation with geometry and cognition. Precuneal thickness and surface area are not correlated. There is a marked individual variation. The right precuneus is thinner and larger than the left one, but there are relevant fluctuating asymmetries, with only a modest correlation between the hemispheres. Males have a thicker cortex but differences in cortical area are not significant between sexes. The surface area of the precuneus shows a positive allometry with the brain surface area, although the correlation is modest. The dilation/contraction of the precuneus, described as a major factor of variability within adult humans, is associated with absolute increase/decrease of its surface, but not with variation in thickness. Precuneal thickness, precuneal surface area and precuneal morphology are not correlated with psychological factors such as intelligence, working memory, attention control, and processing speed, stressing further possible roles of this area in supporting default mode functions. Beyond gross morphology, the processes underlying the large phenotypic variation of the precuneus must be further investigated through specific cellular analyses, aimed at considering differences in cellular size, density

  15. High Frequency Oscillatory Ventilation

    Directory of Open Access Journals (Sweden)

    AC Bryan

    1996-01-01

    Full Text Available High frequency oscillatory (HFO ventilation using low tidal volume and peak airway pressures is extremely efficient at eliminating carbon dioxide and raising pH in the newborn infant with acute respiratory failure. Improvement in oxygenation requires a strategy of sustained or repetitive inflations to 25 to 30 cm H2O in order to place the lung on the deflation limb of the pressure-volume curve. This strategy has also been shown to decrease the amount of secondary lung injury in animal models. Experience of the use of HFO ventilation as a rescue therapy as well as several published controlled trials have shown improved outcomes and a decrease in the use of extracorporeal membrane oxygenation when it has been used in newborns.

  16. Signal transfer within a cultured asymmetric cortical neuron circuit.

    Science.gov (United States)

    Isomura, Takuya; Shimba, Kenta; Takayama, Yuzo; Takeuchi, Akimasa; Kotani, Kiyoshi; Jimbo, Yasuhiko

    2015-12-01

    Simplified neuronal circuits are required for investigating information representation in nervous systems and for validating theoretical neural network models. Here, we developed patterned neuronal circuits using micro fabricated devices, comprising a micro-well array bonded to a microelectrode-array substrate. The micro-well array consisted of micrometre-scale wells connected by tunnels, all contained within a silicone slab called a micro-chamber. The design of the micro-chamber confined somata to the wells and allowed axons to grow through the tunnels bidirectionally but with a designed, unidirectional bias. We guided axons into the point of the arrow structure where one of the two tunnel entrances is located, making that the preferred direction. When rat cortical neurons were cultured in the wells, their axons grew through the tunnels and connected to neurons in adjoining wells. Unidirectional burst transfers and other asymmetric signal-propagation phenomena were observed via the substrate-embedded electrodes. Seventy-nine percent of burst transfers were in the forward direction. We also observed rapid propagation of activity from sites of local electrical stimulation, and significant effects of inhibitory synapse blockade on bursting activity. These results suggest that this simple, substrate-controlled neuronal circuit can be applied to develop in vitro models of the function of cortical microcircuits or deep neural networks, better to elucidate the laws governing the dynamics of neuronal networks.

  17. Signal transfer within a cultured asymmetric cortical neuron circuit

    Science.gov (United States)

    Isomura, Takuya; Shimba, Kenta; Takayama, Yuzo; Takeuchi, Akimasa; Kotani, Kiyoshi; Jimbo, Yasuhiko

    2015-12-01

    Objective. Simplified neuronal circuits are required for investigating information representation in nervous systems and for validating theoretical neural network models. Here, we developed patterned neuronal circuits using micro fabricated devices, comprising a micro-well array bonded to a microelectrode-array substrate. Approach. The micro-well array consisted of micrometre-scale wells connected by tunnels, all contained within a silicone slab called a micro-chamber. The design of the micro-chamber confined somata to the wells and allowed axons to grow through the tunnels bidirectionally but with a designed, unidirectional bias. We guided axons into the point of the arrow structure where one of the two tunnel entrances is located, making that the preferred direction. Main results. When rat cortical neurons were cultured in the wells, their axons grew through the tunnels and connected to neurons in adjoining wells. Unidirectional burst transfers and other asymmetric signal-propagation phenomena were observed via the substrate-embedded electrodes. Seventy-nine percent of burst transfers were in the forward direction. We also observed rapid propagation of activity from sites of local electrical stimulation, and significant effects of inhibitory synapse blockade on bursting activity. Significance. These results suggest that this simple, substrate-controlled neuronal circuit can be applied to develop in vitro models of the function of cortical microcircuits or deep neural networks, better to elucidate the laws governing the dynamics of neuronal networks.

  18. Characterization of vertical mixing in oscillatory vegetated flows

    Science.gov (United States)

    Abdolahpour, M.; Ghisalberti, M.; Lavery, P.; McMahon, K.

    2016-02-01

    Seagrass meadows are primary producers that provide important ecosystem services, such as improved water quality, sediment stabilisation and trapping and recycling of nutrients. Most of these ecological services are strongly influenced by the vertical exchange of water across the canopy-water interface. That is, vertical mixing is the main hydrodynamic process governing the large-scale ecological and environmental impact of seagrass meadows. The majority of studies into mixing in vegetated flows have focused on steady flow environments whereas many coastal canopies are subjected to oscillatory flows driven by surface waves. It is known that the rate of mass transfer will vary greatly between unidirectional and oscillatory flows, necessitating a specific investigation of mixing in oscillatory canopy flows. In this study, we conducted an extensive laboratory investigation to characterise the rate of vertical mixing through a vertical turbulent diffusivity (Dt,z). This has been done through gauging the evolution of vertical profiles of concentration (C) of a dye sheet injected into a wave-canopy flow. Instantaneous measurement of the variance of the vertical concentration distribution ( allowed the estimation of a vertical turbulent diffusivity (). Two types of model canopies, rigid and flexible, with identical heights and frontal areas, were subjected to a wide and realistic range of wave height and period. The results showed two important mechanisms that dominate vertical mixing under different conditions: a shear layer that forms at the top of the canopy and wake turbulence generated by the stems. By allowing a coupled contribution of wake and shear layer mixing, we present a relationship that can be used to predict the rate of vertical mixing in coastal canopies. The results further showed that the rate of vertical mixing within flexible vegetation was always lower than the corresponding rigid canopy, confirming the impact of plant flexibility on canopy

  19. Cellular and oscillatory substrates of fear extinction learning.

    Science.gov (United States)

    Davis, Patrick; Zaki, Yosif; Maguire, Jamie; Reijmers, Leon G

    2017-11-01

    The mammalian brain contains dedicated circuits for both the learned expression and suppression of fear. These circuits require precise coordination to facilitate the appropriate expression of fear behavior, but the mechanisms underlying this coordination remain unclear. Using a combination of chemogenetics, activity-based neuronal-ensemble labeling and in vivo electrophysiology, we found that fear extinction learning confers on parvalbumin-expressing (PV) interneurons in the basolateral amygdala (BLA) a dedicated role in the selective suppression of a previously encoded fear memory and BLA fear-encoding neurons. In addition, following extinction learning, PV interneurons enable a competing interaction between a 6-12 Hz oscillation and a fear-associated 3-6 Hz oscillation within the BLA. Loss of this competition increases a 3-6 Hz oscillatory signature, with BLA→medial prefrontal cortex directionality signaling the recurrence of fear expression. The discovery of cellular and oscillatory substrates of fear extinction learning that critically depend on BLA PV interneurons could inform therapies aimed at preventing the pathological recurrence of fear following extinction learning.

  20. Using an Artificial Neural Bypass to Restore Cortical Control of Rhythmic Movements in a Human with Quadriplegia

    Science.gov (United States)

    Sharma, Gaurav; Friedenberg, David A.; Annetta, Nicholas; Glenn, Bradley; Bockbrader, Marcie; Majstorovic, Connor; Domas, Stephanie; Mysiw, W. Jerry; Rezai, Ali; Bouton, Chad

    2016-09-01

    Neuroprosthetic technology has been used to restore cortical control of discrete (non-rhythmic) hand movements in a paralyzed person. However, cortical control of rhythmic movements which originate in the brain but are coordinated by Central Pattern Generator (CPG) neural networks in the spinal cord has not been demonstrated previously. Here we show a demonstration of an artificial neural bypass technology that decodes cortical activity and emulates spinal cord CPG function allowing volitional rhythmic hand movement. The technology uses a combination of signals recorded from the brain, machine-learning algorithms to decode the signals, a numerical model of CPG network, and a neuromuscular electrical stimulation system to evoke rhythmic movements. Using the neural bypass, a quadriplegic participant was able to initiate, sustain, and switch between rhythmic and discrete finger movements, using his thoughts alone. These results have implications in advancing neuroprosthetic technology to restore complex movements in people living with paralysis.

  1. Stability of Armour Units in Oscillatory Flow

    DEFF Research Database (Denmark)

    Burcharth, Hans F.; Thompson, A. C.

    Despite numerous breakwater model tests very little is known today about the various phenomena and parameters that determine the hydraulic stability characteristics of different types of armour. This is because separation of parameters is extremely difficult in traditional tests.With the object...... of separating some of the factors a deterministic test, in which horizontal beds of armour units were exposed to oscillatory flow, was performed in a pulsating water tunnel....

  2. Efficient estimation of the robustness region of biological models with oscillatory behavior.

    Directory of Open Access Journals (Sweden)

    Mochamad Apri

    Full Text Available Robustness is an essential feature of biological systems, and any mathematical model that describes such a system should reflect this feature. Especially, persistence of oscillatory behavior is an important issue. A benchmark model for this phenomenon is the Laub-Loomis model, a nonlinear model for cAMP oscillations in Dictyostelium discoideum. This model captures the most important features of biomolecular networks oscillating at constant frequencies. Nevertheless, the robustness of its oscillatory behavior is not yet fully understood. Given a system that exhibits oscillating behavior for some set of parameters, the central question of robustness is how far the parameters may be changed, such that the qualitative behavior does not change. The determination of such a "robustness region" in parameter space is an intricate task. If the number of parameters is high, it may be also time consuming. In the literature, several methods are proposed that partially tackle this problem. For example, some methods only detect particular bifurcations, or only find a relatively small box-shaped estimate for an irregularly shaped robustness region. Here, we present an approach that is much more general, and is especially designed to be efficient for systems with a large number of parameters. As an illustration, we apply the method first to a well understood low-dimensional system, the Rosenzweig-MacArthur model. This is a predator-prey model featuring satiation of the predator. It has only two parameters and its bifurcation diagram is available in the literature. We find a good agreement with the existing knowledge about this model. When we apply the new method to the high dimensional Laub-Loomis model, we obtain a much larger robustness region than reported earlier in the literature. This clearly demonstrates the power of our method. From the results, we conclude that the biological system underlying is much more robust than was realized until now.

  3. Dark chocolate’s compositional effects revealed by oscillatory rheology

    NARCIS (Netherlands)

    van der Vaart, K.; Depypere, F.; De Graef, V.; Schall, P.; Fall, A.; Bonn, D.; Dewettinck, K.

    2013-01-01

    In this study, two types of oscillatory shear rheology are applied on dark chocolate with varying volume fraction, particle size distribution, and soy lecithin concentration. The first, a conventional strain sweep, allows for the separation of the elastic and viscous properties during the yielding.

  4. Cortical tremor: a variant of cortical reflex myoclonus.

    Science.gov (United States)

    Ikeda, A; Kakigi, R; Funai, N; Neshige, R; Kuroda, Y; Shibasaki, H

    1990-10-01

    Two patients with action tremor that was thought to originate in the cerebral cortex showed fine shivering-like finger twitching provoked mainly by action and posture. Surface EMG showed relatively rhythmic discharge at a rate of about 9 Hz, which resembled essential tremor. However, electrophysiologic studies revealed giant somatosensory evoked potentials (SEPs) with enhanced long-loop reflex and premovement cortical spike by the jerk-locked averaging method. Treatment with beta-blocker showed no effect, but anticonvulsants such as clonazepam, valproate, and primidone were effective to suppress the tremor and the amplitude of SEPs. We call this involuntary movement "cortical tremor," which is in fact a variant of cortical reflex myoclonus.

  5. Abnormalities in structural covariance of cortical gyrification in schizophrenia.

    Science.gov (United States)

    Palaniyappan, Lena; Park, Bert; Balain, Vijender; Dangi, Raj; Liddle, Peter

    2015-07-01

    The highly convoluted shape of the adult human brain results from several well-coordinated maturational events that start from embryonic development and extend through the adult life span. Disturbances in these maturational events can result in various neurological and psychiatric disorders, resulting in abnormal patterns of morphological relationship among cortical structures (structural covariance). Structural covariance can be studied using graph theory-based approaches that evaluate topological properties of brain networks. Covariance-based graph metrics allow cross-sectional study of coordinated maturational relationship among brain regions. Disrupted gyrification of focal brain regions is a consistent feature of schizophrenia. However, it is unclear if these localized disturbances result from a failure of coordinated development of brain regions in schizophrenia. We studied the structural covariance of gyrification in a sample of 41 patients with schizophrenia and 40 healthy controls by constructing gyrification-based networks using a 3-dimensional index. We found that several key regions including anterior insula and dorsolateral prefrontal cortex show increased segregation in schizophrenia, alongside reduced segregation in somato-sensory and occipital regions. Patients also showed a lack of prominence of the distributed covariance (hubness) of cingulate cortex. The abnormal segregated folding pattern in the right peri-sylvian regions (insula and fronto-temporal cortex) was associated with greater severity of illness. The study of structural covariance in cortical folding supports the presence of subtle deviation in the coordinated development of cortical convolutions in schizophrenia. The heterogeneity in the severity of schizophrenia could be explained in part by aberrant trajectories of neurodevelopment.

  6. Differences in hemispherical thalamo-cortical causality analysis during resting-state fMRI.

    Science.gov (United States)

    Anwar, Abdul Rauf; Muthalib, Makii; Perrey, Stephane; Wolff, Stephan; Deuschl, Guunther; Heute, Ulrich; Muthuraman, Muthuraman

    2014-01-01

    Thalamus is a very important part of the human brain. It has been reported to act as a relay for the messaging taking place between the cortical and sub-cortical regions of the brain. In the present study, we analyze the functional network between both hemispheres of the brain with the focus on thalamus. We used conditional Granger causality (CGC) and time-resolved partial directed coherence (tPDC) to investigate the functional connectivity. Results of CGC analysis revealed the asymmetry between connection strengths of the bilateral thalamus. Upon testing the functional connectivity of the default-mode network (DMN) at low-frequency fluctuations (LFF) and comparing coherence vectors using Spearman's rank correlation, we found that thalamus is a better source for the signals directed towards the contralateral regions of the brain, however, when thalamus acts as sink, it is a better sink for signals generated from ipsilateral regions of the brain.

  7. Sustained Activity in Hierarchical Modular Neural Networks: Self-Organized Criticality and Oscillations

    Science.gov (United States)

    Wang, Sheng-Jun; Hilgetag, Claus C.; Zhou, Changsong

    2010-01-01

    Cerebral cortical brain networks possess a number of conspicuous features of structure and dynamics. First, these networks have an intricate, non-random organization. In particular, they are structured in a hierarchical modular fashion, from large-scale regions of the whole brain, via cortical areas and area subcompartments organized as structural and functional maps to cortical columns, and finally circuits made up of individual neurons. Second, the networks display self-organized sustained activity, which is persistent in the absence of external stimuli. At the systems level, such activity is characterized by complex rhythmical oscillations over a broadband background, while at the cellular level, neuronal discharges have been observed to display avalanches, indicating that cortical networks are at the state of self-organized criticality (SOC). We explored the relationship between hierarchical neural network organization and sustained dynamics using large-scale network modeling. Previously, it was shown that sparse random networks with balanced excitation and inhibition can sustain neural activity without external stimulation. We found that a hierarchical modular architecture can generate sustained activity better than random networks. Moreover, the system can simultaneously support rhythmical oscillations and SOC, which are not present in the respective random networks. The mechanism underlying the sustained activity is that each dense module cannot sustain activity on its own, but displays SOC in the presence of weak perturbations. Therefore, the hierarchical modular networks provide the coupling among subsystems with SOC. These results imply that the hierarchical modular architecture of cortical networks plays an important role in shaping the ongoing spontaneous activity of the brain, potentially allowing the system to take advantage of both the sensitivity of critical states and the predictability and timing of oscillations for efficient information

  8. Sustained activity in hierarchical modular neural networks: self-organized criticality and oscillations

    Directory of Open Access Journals (Sweden)

    Sheng-Jun Wang

    2011-06-01

    Full Text Available Cerebral cortical brain networks possess a number of conspicuous features of structure and dynamics. First, these networks have an intricate, non-random organization. They are structured in a hierarchical modular fashion, from large-scale regions of the whole brain, via cortical areas and area subcompartments organized as structural and functional maps to cortical columns, and finally circuits made up of individual neurons. Second, the networks display self-organized sustained activity, which is persistent in the absence of external stimuli. At the systems level, such activity is characterized by complex rhythmical oscillations over a broadband background, while at the cellular level, neuronal discharges have been observed to display avalanches, indicating that cortical networks are at the state of self-organized criticality. We explored the relationship between hierarchical neural network organization and sustained dynamics using large-scale network modeling. It was shown that sparse random networks with balanced excitation and inhibition can sustain neural activity without external stimulation. We find that a hierarchical modular architecture can generate sustained activity better than random networks. Moreover, the system can simultaneously support rhythmical oscillations and self-organized criticality, which are not present in the respective random networks. The underlying mechanism is that each dense module cannot sustain activity on its own, but displays self-organized criticality in the presence of weak perturbations. The hierarchical modular networks provide the coupling among subsystems with self-organized criticality. These results imply that the hierarchical modular architecture of cortical networks plays an important role in shaping the ongoing spontaneous activity of the brain, potentially allowing the system to take advantage of both the sensitivityof critical state and predictability and timing of oscillations for efficient

  9. Unified thalamic model generates multiple distinct oscillations with state-dependent entrainment by stimulation.

    Directory of Open Access Journals (Sweden)

    Guoshi Li

    2017-10-01

    Full Text Available The thalamus plays a critical role in the genesis of thalamocortical oscillations, yet the underlying mechanisms remain elusive. To understand whether the isolated thalamus can generate multiple distinct oscillations, we developed a biophysical thalamic model to test the hypothesis that generation of and transition between distinct thalamic oscillations can be explained as a function of neuromodulation by acetylcholine (ACh and norepinephrine (NE and afferent synaptic excitation. Indeed, the model exhibited four distinct thalamic rhythms (delta, sleep spindle, alpha and gamma oscillations that span the physiological states corresponding to different arousal levels from deep sleep to focused attention. Our simulation results indicate that generation of these distinct thalamic oscillations is a result of both intrinsic oscillatory cellular properties and specific network connectivity patterns. We then systematically varied the ACh/NE and input levels to generate a complete map of the different oscillatory states and their transitions. Lastly, we applied periodic stimulation to the thalamic network and found that entrainment of thalamic oscillations is highly state-dependent. Our results support the hypothesis that ACh/NE modulation and afferent excitation define thalamic oscillatory states and their response to brain stimulation. Our model proposes a broader and more central role of the thalamus in the genesis of multiple distinct thalamo-cortical rhythms than previously assumed.

  10. Cortical sensorimotor alterations classify clinical phenotype and putative genotype of spasmodic dysphonia.

    Science.gov (United States)

    Battistella, G; Fuertinger, S; Fleysher, L; Ozelius, L J; Simonyan, K

    2016-10-01

    Spasmodic dysphonia (SD), or laryngeal dystonia, is a task-specific isolated focal dystonia of unknown causes and pathophysiology. Although functional and structural abnormalities have been described in this disorder, the influence of its different clinical phenotypes and genotypes remains scant, making it difficult to explain SD pathophysiology and to identify potential biomarkers. We used a combination of independent component analysis and linear discriminant analysis of resting-state functional magnetic resonance imaging data to investigate brain organization in different SD phenotypes (abductor versus adductor type) and putative genotypes (familial versus sporadic cases) and to characterize neural markers for genotype/phenotype categorization. We found abnormal functional connectivity within sensorimotor and frontoparietal networks in patients with SD compared with healthy individuals as well as phenotype- and genotype-distinct alterations of these networks, involving primary somatosensory, premotor and parietal cortices. The linear discriminant analysis achieved 71% accuracy classifying SD and healthy individuals using connectivity measures in the left inferior parietal and sensorimotor cortices. When categorizing between different forms of SD, the combination of measures from the left inferior parietal, premotor and right sensorimotor cortices achieved 81% discriminatory power between familial and sporadic SD cases, whereas the combination of measures from the right superior parietal, primary somatosensory and premotor cortices led to 71% accuracy in the classification of adductor and abductor SD forms. Our findings present the first effort to identify and categorize isolated focal dystonia based on its brain functional connectivity profile, which may have a potential impact on the future development of biomarkers for this rare disorder. © 2016 EAN.

  11. Distinct roles of SOM and VIP interneurons during cortical Up states

    Directory of Open Access Journals (Sweden)

    Garrett T. Neske

    2016-07-01

    Full Text Available During cortical network activity, recurrent synaptic excitation among pyramidal neurons is approximately balanced by synaptic inhibition, which is provided by a vast diversity of inhibitory interneurons. The relative contributions of different interneuron subtypes to inhibitory tone during cortical network activity is not well understood. We previously showed that many of the major interneuron subtypes in mouse barrel cortex are highly active during Up states (Neske et al., 2015; while fast-spiking (FS, parvalbumin (PV-positive cells were the most active interneuron subtype, many non-fast-spiking (NFS, PV-negative interneurons were as active or more active than neighboring pyramidal cells. This suggests that the NFS cells could play a role in maintaining or modulating Up states. Here, using optogenetic techniques, we further dissected the functional roles during Up states of two major NFS, PV-negative interneuron subtypes: somatostatin (SOM-positive cells and vasoactive intestinal peptide (VIP-positive cells. We found that while pyramidal cell excitability during Up states significantly increased when SOM cells were optogenetically silenced, VIP cells did not influence pyramidal cell excitability either upon optogenetic silencing or activation. VIP cells failed to contribute to Up states despite their ability to inhibit SOM cells strongly. We suggest that the contribution of VIP cells to the excitability of pyramidal cells may vary with cortical state.

  12. Regulation of the fear network by mediators of stress: Norepinephrine alters the balance between Cortical and Subcortical afferent excitation of the Lateral Amygdala

    Directory of Open Access Journals (Sweden)

    Luke R Johnson

    2011-05-01

    Full Text Available Pavlovian auditory fear conditioning crucially involves the integration of information about and acoustic conditioned stimulus (CS and an aversive unconditioned stimulus (US in the lateral nucleus of the amygdala (LA. The auditory CS reaches the LA subcortically via a direct connection from the auditory thalamus and also from the auditory association cortex itself. How neural modulators, especially those activated during stress, such as norepinephrine (NE, regulate synaptic transmission and plasticity in this network is poorly understood. Here we show that NE inhibits synaptic transmission in both the subcortical and cortical input pathway but that sensory processing is biased towards the subcortical pathway. In addition binding of NE to β-adrenergic receptors further dissociates sensory processing in the LA. These findings suggest a network mechanism that shifts sensory balance towards the faster but more primitive subcortical input.

  13. Effect of sp3-hybridized defects on the oscillatory behavior of carbon nanotube oscillators

    International Nuclear Information System (INIS)

    Guo, Taiyu; Ding, Tony Weixi; Pei, Qing-Xiang; Zhang, Yong-Wei

    2011-01-01

    Using molecular dynamics simulations, we investigate the oscillatory behaviors of carbon nanotube oscillators containing sp 3 -hybridized defects formed by hydrogen chemisorption. It is found that the presence of these defects significantly affects the kinetic and potential energies of the nanotube systems, which in turn affects their oscillation periods and frequencies. We have also studied the oscillatory characteristics of the oscillators containing sp 3 -hybridized Stone-Wales defects. Our results show that it is possible to control the motion of the inner nanotube by introducing sp 3 -hybridized defects on the outer nanotube, which provides a potential way to tune the oscillatory behavior of nanotube oscillators. -- Highlights: → sp 3 -hybridized defects increase energy dissipation. → sp 3 -hybridized defects arranged in a row have stronger effect than that in a ring. → sp 3 -hybridized defects reduces the effect of SW defects.

  14. Comparison of stationary and oscillatory dynamics described by differential equations and Boolean maps in transcriptional regulatory circuits

    Science.gov (United States)

    Ye, Weiming; Li, Pengfei; Huang, Xuhui; Xia, Qinzhi; Mi, Yuanyuan; Chen, Runsheng; Hu, Gang

    2010-10-01

    Exploring the principle and relationship of gene transcriptional regulations (TR) has been becoming a generally researched issue. So far, two major mathematical methods, ordinary differential equation (ODE) method and Boolean map (BM) method have been widely used for these purposes. It is commonly believed that simplified BMs are reasonable approximations of more realistic ODEs, and both methods may reveal qualitatively the same essential features though the dynamical details of both systems may show some differences. In this Letter we exhaustively enumerated all the 3-gene networks and many autonomous randomly constructed TR networks with more genes by using both the ODE and BM methods. In comparison we found that both methods provide practically identical results in most of cases of steady solutions. However, to our great surprise, most of network structures showing periodic cycles with the BM method possess only stationary states in ODE descriptions. These observations strongly suggest that many periodic oscillations and other complicated oscillatory states revealed by the BM rule may be related to the computational errors of variable and time discretizations and rarely have correspondence in realistic biology transcriptional regulatory circuits.

  15. Radiation synthesis and characterisation of the network structure of natural/synthetic double-network superabsorbent polymers

    International Nuclear Information System (INIS)

    Şen, Murat; Hayrabolulu, Hande

    2012-01-01

    In this study radiation synthesis and characterisation of the network structure of acrylic acid sodium salt/locust bean gum, (AAcNa/LBG) natural/synthetic double-network super absorbent polymers were investigated. Quartet systems composed of acrylic acid sodium salt/locust bean gum/N,N methylene bis acrylamide/water (AAcNa/LBG/MBAAm/water) were prepared at varying degree of neutralisations (DN) by controlling the DN value of AAc and irradiated with gamma rays at ambient temperature at a very low dose rate. The influences of the DN on the swelling and network properties were examined. It was observed that the DN strongly affected the gelation and super absorption properties of the gels. Molecular weight between crosslinks (M ¯ c ), effective crosslink density (ν e ) and mesh size (ξ) of SAPs were calculated from swelling and shear modules data obtained from compression and oscillatory frequency sweep tests. M ¯ c values obtained from the uniaxial deformation experiments were very close to those obtained from the oscillatory shear experiments excluding the completely neutralised gel system. It was concluded that the uniaxial compression technique could be used for the characterisation of the network structure of a hydrogel as along with the rheological analyses; however, a very precise control of the gel size was also needed. - Highlights: ► Radiation synthesis and characterisation of AAcNa/LBG super absorbent polymers described. ► Influences of the DN on the swelling and network properties were examined. ► Molecular weight between crosslinks and effective crosslink density of SAPs were calculated. ► Suitability of rheology technique for the characterisation of hydrogels were demonstrated.

  16. Oscillatory regime in the multidimensional homogeneous cosmological models induced by a vector field

    International Nuclear Information System (INIS)

    Benini, R; Kirillov, A A; Montani, Giovanni

    2005-01-01

    We show that in multidimensional gravity, vector fields completely determine the structure and properties of singularity. It turns out that in the presence of a vector field the oscillatory regime exists in all spatial dimensions and for all homogeneous models. By analysing the Hamiltonian equations we derive the Poincare return map associated with the Kasner indexes and fix the rules according to which the Kasner vectors rotate. In correspondence to a four-dimensional spacetime, the oscillatory regime here constructed overlaps the usual Belinski-Khalatnikov-Liftshitz one

  17. Frequency-dependent oscillatory neural profiles during imitation.

    Science.gov (United States)

    Sugata, Hisato; Hirata, Masayuki; Tamura, Yuichi; Onishi, Hisao; Goto, Tetsu; Araki, Toshihiko; Yorifuji, Shiro

    2017-04-10

    Imitation is a complex process that includes higher-order cognitive and motor function. This process requires an observation-execution matching system that transforms an observed action into an identical movement. Although the low-gamma band is thought to reflect higher cognitive processes, no studies have focused on it. Here, we used magnetoencephalography (MEG) to examine the neural oscillatory changes including the low-gamma band during imitation. Twelve healthy, right-handed participants performed a finger task consisting of four conditions (imitation, execution, observation, and rest). During the imitation and execution conditions, significant event-related desynchronizations (ERDs) were observed at the left frontal, central, and parietal MEG sensors in the alpha, beta, and low-gamma bands. Functional connectivity analysis at the sensor level revealed an imitation-related connectivity between a group of frontal sensors and a group of parietal sensors in the low-gamma band. Furthermore, source reconstruction with synthetic aperture magnetometry showed significant ERDs in the low-gamma band in the left sensorimotor area and the middle frontal gyrus (MFG) during the imitation condition when compared with the other three conditions. Our results suggest that the oscillatory neural activities of the low-gamma band at the sensorimotor area and MFG play an important role in the observation-execution matching system related to imitation.

  18. Frequency-dependent oscillatory neural profiles during imitation

    Science.gov (United States)

    Sugata, Hisato; Hirata, Masayuki; Tamura, Yuichi; Onishi, Hisao; Goto, Tetsu; Araki, Toshihiko; Yorifuji, Shiro

    2017-01-01

    Imitation is a complex process that includes higher-order cognitive and motor function. This process requires an observation-execution matching system that transforms an observed action into an identical movement. Although the low-gamma band is thought to reflect higher cognitive processes, no studies have focused on it. Here, we used magnetoencephalography (MEG) to examine the neural oscillatory changes including the low-gamma band during imitation. Twelve healthy, right-handed participants performed a finger task consisting of four conditions (imitation, execution, observation, and rest). During the imitation and execution conditions, significant event-related desynchronizations (ERDs) were observed at the left frontal, central, and parietal MEG sensors in the alpha, beta, and low-gamma bands. Functional connectivity analysis at the sensor level revealed an imitation-related connectivity between a group of frontal sensors and a group of parietal sensors in the low-gamma band. Furthermore, source reconstruction with synthetic aperture magnetometry showed significant ERDs in the low-gamma band in the left sensorimotor area and the middle frontal gyrus (MFG) during the imitation condition when compared with the other three conditions. Our results suggest that the oscillatory neural activities of the low-gamma band at the sensorimotor area and MFG play an important role in the observation-execution matching system related to imitation. PMID:28393878

  19. Osteocyte lacunar properties in rat cortical bone

    DEFF Research Database (Denmark)

    Bach-Gansmo, Fiona Linnea; Weaver, James C.; Jensen, Mads Hartmann

    2015-01-01

    Recently, the roles of osteocytes in bone maintenance have gained increasing attention. Osteocytes reside in lacunae that are interconnected by canaliculi resulting in a vast cellular network within the mineralized bone matrix. As the structure of the lacuno-canalicular network is highly connected......-species but also inter-site variation in lacunar properties. Here, osteocyte lacunae in rat cortical bone have been studied using synchrotron radiation micro computed tomography (SR μCT) and backscattered electron (BE) microscopy. Quantitative lacunar geometric characteristics are reported based on the synchrotron...... radiation data, differentiating between circumferential lamellar bone and a central, more disordered bone type. From these studies, no significant differences were found in lacunar volumes between lamellar and central bone, whereas significant differences in lacunar orientation, shape and density values...

  20. Patterns of coordinated cortical remodeling during adolescence and their associations with functional specialization and evolutionary expansion.

    Science.gov (United States)

    Sotiras, Aristeidis; Toledo, Jon B; Gur, Raquel E; Gur, Ruben C; Satterthwaite, Theodore D; Davatzikos, Christos

    2017-03-28

    During adolescence, the human cortex undergoes substantial remodeling to support a rapid expansion of behavioral repertoire. Accurately quantifying these changes is a prerequisite for understanding normal brain development, as well as the neuropsychiatric disorders that emerge in this vulnerable period. Past accounts have demonstrated substantial regional heterogeneity in patterns of brain development, but frequently have been limited by small samples and analytics that do not evaluate complex multivariate imaging patterns. Capitalizing on recent advances in multivariate analysis methods, we used nonnegative matrix factorization (NMF) to uncover coordinated patterns of cortical development in a sample of 934 youths ages 8-20, who completed structural neuroimaging as part of the Philadelphia Neurodevelopmental Cohort. Patterns of structural covariance (PSCs) derived by NMF were highly reproducible over a range of resolutions, and differed markedly from common gyral-based structural atlases. Moreover, PSCs were largely symmetric and showed correspondence to specific large-scale functional networks. The level of correspondence was ordered according to their functional role and position in the evolutionary hierarchy, being high in lower-order visual and somatomotor networks and diminishing in higher-order association cortex. Furthermore, PSCs showed divergent developmental associations, with PSCs in higher-order association cortex networks showing greater changes with age than primary somatomotor and visual networks. Critically, such developmental changes within PSCs were significantly associated with the degree of evolutionary cortical expansion. Together, our findings delineate a set of structural brain networks that undergo coordinated cortical thinning during adolescence, which is in part governed by evolutionary novelty and functional specialization.

  1. Oscillatory Critical Amplitudes in Hierarchical Models and the Harris Function of Branching Processes

    Science.gov (United States)

    Costin, Ovidiu; Giacomin, Giambattista

    2013-02-01

    Oscillatory critical amplitudes have been repeatedly observed in hierarchical models and, in the cases that have been taken into consideration, these oscillations are so small to be hardly detectable. Hierarchical models are tightly related to iteration of maps and, in fact, very similar phenomena have been repeatedly reported in many fields of mathematics, like combinatorial evaluations and discrete branching processes. It is precisely in the context of branching processes with bounded off-spring that T. Harris, in 1948, first set forth the possibility that the logarithm of the moment generating function of the rescaled population size, in the super-critical regime, does not grow near infinity as a power, but it has an oscillatory prefactor (the Harris function). These oscillations have been observed numerically only much later and, while the origin is clearly tied to the discrete character of the iteration, the amplitude size is not so well understood. The purpose of this note is to reconsider the issue for hierarchical models and in what is arguably the most elementary setting—the pinning model—that actually just boils down to iteration of polynomial maps (and, notably, quadratic maps). In this note we show that the oscillatory critical amplitude for pinning models and the Harris function coincide. Moreover we make explicit the link between these oscillatory functions and the geometry of the Julia set of the map, making thus rigorous and quantitative some ideas set forth in Derrida et al. (Commun. Math. Phys. 94:115-132, 1984).

  2. Is my network module preserved and reproducible?

    Directory of Open Access Journals (Sweden)

    Peter Langfelder

    2011-01-01

    Full Text Available In many applications, one is interested in determining which of the properties of a network module change across conditions. For example, to validate the existence of a module, it is desirable to show that it is reproducible (or preserved in an independent test network. Here we study several types of network preservation statistics that do not require a module assignment in the test network. We distinguish network preservation statistics by the type of the underlying network. Some preservation statistics are defined for a general network (defined by an adjacency matrix while others are only defined for a correlation network (constructed on the basis of pairwise correlations between numeric variables. Our applications show that the correlation structure facilitates the definition of particularly powerful module preservation statistics. We illustrate that evaluating module preservation is in general different from evaluating cluster preservation. We find that it is advantageous to aggregate multiple preservation statistics into summary preservation statistics. We illustrate the use of these methods in six gene co-expression network applications including 1 preservation of cholesterol biosynthesis pathway in mouse tissues, 2 comparison of human and chimpanzee brain networks, 3 preservation of selected KEGG pathways between human and chimpanzee brain networks, 4 sex differences in human cortical networks, 5 sex differences in mouse liver networks. While we find no evidence for sex specific modules in human cortical networks, we find that several human cortical modules are less preserved in chimpanzees. In particular, apoptosis genes are differentially co-expressed between humans and chimpanzees. Our simulation studies and applications show that module preservation statistics are useful for studying differences between the modular structure of networks. Data, R software and accompanying tutorials can be downloaded from the following webpage: http://www.genetics.ucla.edu/labs/horvath/CoexpressionNetwork/ModulePreservation.

  3. The relationship between neuropsychological tests of visuospatial function and lobar cortical thickness.

    Science.gov (United States)

    Zink, Davor N; Miller, Justin B; Caldwell, Jessica Z K; Bird, Christopher; Banks, Sarah J

    2018-06-01

    Tests of visuospatial function are often administered in comprehensive neuropsychological evaluations. These tests are generally considered assays of parietal lobe function; however, the neural correlates of these tests, using modern imaging techniques, are not well understood. In the current study we investigated the relationship between three commonly used tests of visuospatial function and lobar cortical thickness in each hemisphere. Data from 374 patients who underwent a neuropsychological evaluation and MRI scans in an outpatient dementia clinic were included in the analysis. We examined the relationships between cortical thickness, as assessed with Freesurfer, and performance on three tests: Judgment of Line Orientation (JoLO), Block Design (BD) from the Fourth edition of the Wechsler Adult Intelligence Scale, and Brief Visuospatial Memory Test-Revised Copy Trial (BVMT-R-C) in patients who showed overall average performance on these tasks. Using a series of multiple regression models, we assessed which lobe's overall cortical thickness best predicted test performance. Among the individual lobes, JoLO performance was best predicted by cortical thickness in the right temporal lobe. BD performance was best predicted by cortical thickness in the right parietal lobe, and BVMT-R-C performance was best predicted by cortical thickness in the left parietal lobe. Performance on constructional tests of visuospatial function appears to correspond best with underlying cortical thickness of the parietal lobes, while performance on visuospatial judgment tests appears to correspond best to temporal lobe thickness. Future research using voxel-wise and connectivity techniques and including more diverse samples will help further understanding of the regions and networks involved in visuospatial tests.

  4. Sensory Cortical Plasticity Participates in the Epigenetic Regulation of Robust Memory Formation

    Science.gov (United States)

    Phan, Mimi L.; Bieszczad, Kasia M.

    2016-01-01

    Neuroplasticity remodels sensory cortex across the lifespan. A function of adult sensory cortical plasticity may be capturing available information during perception for memory formation. The degree of experience-dependent remodeling in sensory cortex appears to determine memory strength and specificity for important sensory signals. A key open question is how plasticity is engaged to induce different degrees of sensory cortical remodeling. Neural plasticity for long-term memory requires the expression of genes underlying stable changes in neuronal function, structure, connectivity, and, ultimately, behavior. Lasting changes in transcriptional activity may depend on epigenetic mechanisms; some of the best studied in behavioral neuroscience are DNA methylation and histone acetylation and deacetylation, which, respectively, promote and repress gene expression. One purpose of this review is to propose epigenetic regulation of sensory cortical remodeling as a mechanism enabling the transformation of significant information from experiences into content-rich memories of those experiences. Recent evidence suggests how epigenetic mechanisms regulate highly specific reorganization of sensory cortical representations that establish a widespread network for memory. Thus, epigenetic mechanisms could initiate events to establish exceptionally persistent and robust memories at a systems-wide level by engaging sensory cortical plasticity for gating what and how much information becomes encoded. PMID:26881129

  5. Sensory Cortical Plasticity Participates in the Epigenetic Regulation of Robust Memory Formation.

    Science.gov (United States)

    Phan, Mimi L; Bieszczad, Kasia M

    2016-01-01

    Neuroplasticity remodels sensory cortex across the lifespan. A function of adult sensory cortical plasticity may be capturing available information during perception for memory formation. The degree of experience-dependent remodeling in sensory cortex appears to determine memory strength and specificity for important sensory signals. A key open question is how plasticity is engaged to induce different degrees of sensory cortical remodeling. Neural plasticity for long-term memory requires the expression of genes underlying stable changes in neuronal function, structure, connectivity, and, ultimately, behavior. Lasting changes in transcriptional activity may depend on epigenetic mechanisms; some of the best studied in behavioral neuroscience are DNA methylation and histone acetylation and deacetylation, which, respectively, promote and repress gene expression. One purpose of this review is to propose epigenetic regulation of sensory cortical remodeling as a mechanism enabling the transformation of significant information from experiences into content-rich memories of those experiences. Recent evidence suggests how epigenetic mechanisms regulate highly specific reorganization of sensory cortical representations that establish a widespread network for memory. Thus, epigenetic mechanisms could initiate events to establish exceptionally persistent and robust memories at a systems-wide level by engaging sensory cortical plasticity for gating what and how much information becomes encoded.

  6. Sensory Cortical Plasticity Participates in the Epigenetic Regulation of Robust Memory Formation

    Directory of Open Access Journals (Sweden)

    Mimi L. Phan

    2016-01-01

    Full Text Available Neuroplasticity remodels sensory cortex across the lifespan. A function of adult sensory cortical plasticity may be capturing available information during perception for memory formation. The degree of experience-dependent remodeling in sensory cortex appears to determine memory strength and specificity for important sensory signals. A key open question is how plasticity is engaged to induce different degrees of sensory cortical remodeling. Neural plasticity for long-term memory requires the expression of genes underlying stable changes in neuronal function, structure, connectivity, and, ultimately, behavior. Lasting changes in transcriptional activity may depend on epigenetic mechanisms; some of the best studied in behavioral neuroscience are DNA methylation and histone acetylation and deacetylation, which, respectively, promote and repress gene expression. One purpose of this review is to propose epigenetic regulation of sensory cortical remodeling as a mechanism enabling the transformation of significant information from experiences into content-rich memories of those experiences. Recent evidence suggests how epigenetic mechanisms regulate highly specific reorganization of sensory cortical representations that establish a widespread network for memory. Thus, epigenetic mechanisms could initiate events to establish exceptionally persistent and robust memories at a systems-wide level by engaging sensory cortical plasticity for gating what and how much information becomes encoded.

  7. PROGRANULIN MUTATIONS AFFECTS BRAIN OSCILLATORY ACTIVITY IN FRONTO-TEMPORAL DEMENTIA

    Directory of Open Access Journals (Sweden)

    Davide Vito Moretti

    2016-02-01

    Full Text Available Background: mild cognitive impairment (MCI is a clinical stage indicating a prodromal phase of dementia. This practical concept could be used also for fronto-temporal dementia (FTD. Progranulin (PGRN has been recently recognized as a useful diagnostic biomarker for fronto-temporal lobe degeneration (FTLD due to GRN null mutations. Electroencephalography (EEG is a reliable tool in detecting brain networks changes. The working hypothesis of the present study is that EEG oscillations could detect different modifications among FTLD stages (FTD-MCI versus overt FTD as well as differences between GRN mutation carriers versus non carriers in patients with overt FTD. Methods: EEG in all patients and PGRN dosage in patients with a clear FTD were detected. The cognitive state has been investigated through mini mental state examination (MMSE. Results: MCI-FTD showed a significant lower spectral power in both alpha and theta oscillations as compared to overt FTD. GRN mutations carriers affected by FTLD show an increase in high alpha and decrease in theta oscillations as compared to non-carriers.Conclusion: EEG frequency rhythms are sensible to different stage of FTD and could detect changes in brain oscillatory activity affected by GRN mutations

  8. Periodic oscillatory solution in delayed competitive-cooperative neural networks: A decomposition approach

    International Nuclear Information System (INIS)

    Yuan Kun; Cao Jinde

    2006-01-01

    In this paper, the problems of exponential convergence and the exponential stability of the periodic solution for a general class of non-autonomous competitive-cooperative neural networks are analyzed via the decomposition approach. The idea is to divide the connection weights into inhibitory or excitatory types and thereby to embed a competitive-cooperative delayed neural network into an augmented cooperative delay system through a symmetric transformation. Some simple necessary and sufficient conditions are derived to ensure the componentwise exponential convergence and the exponential stability of the periodic solution of the considered neural networks. These results generalize and improve the previous works, and they are easy to check and apply in practice

  9. Oscillatory lower body negative pressure impairs working memory task-related functional hyperemia in healthy volunteers.

    Science.gov (United States)

    Merchant, Sana; Medow, Marvin S; Visintainer, Paul; Terilli, Courtney; Stewart, Julian M

    2017-04-01

    Neurovascular coupling (NVC) describes the link between an increase in task-related neural activity and increased cerebral blood flow denoted "functional hyperemia." We previously showed induced cerebral blood flow oscillations suppressed functional hyperemia; conversely functional hyperemia also suppressed cerebral blood flow oscillations. We used lower body negative pressure (OLBNP) oscillations to force oscillations in middle cerebral artery cerebral blood flow velocity (CBFv). Here, we used N-back testing, an intellectual memory challenge as a neural activation task, to test the hypothesis that OLBNP-induced oscillatory cerebral blood flow can reduce functional hyperemia and NVC produced by a working memory task and can interfere with working memory. We used OLBNP (-30 mmHg) at 0.03, 0.05, and 0.10 Hz and measured spectral power of CBFv at all frequencies. Neither OLBNP nor N-back, alone or combined, affected hemodynamic parameters. 2-Back power and OLBNP individually were compared with 2-back power during OLBNP. 2-Back alone produced a narrow band increase in oscillatory arterial pressure (OAP) and oscillatory cerebral blood flow power centered at 0.0083 Hz. Functional hyperemia in response to 2-back was reduced to near baseline and 2-back memory performance was decreased by 0.03-, 0.05-, and 0.10-Hz OLBNP. OLBNP alone produced increased oscillatory power at frequencies of oscillation not suppressed by added 2-back. However, 2-back preceding OLBNP suppressed OLBNP power. OLBNP-driven oscillatory CBFv blunts NVC and memory performance, while memory task reciprocally interfered with forced CBFv oscillations. This shows that induced cerebral blood flow oscillations suppress functional hyperemia and functional hyperemia suppresses cerebral blood flow oscillations. NEW & NOTEWORTHY We show that induced cerebral blood flow oscillations suppress functional hyperemia produced by a working memory task as well as memory task performance. We conclude that oscillatory

  10. Recent developments in structure-preserving algorithms for oscillatory differential equations

    CERN Document Server

    Wu, Xinyuan

    2018-01-01

    The main theme of this book is recent progress in structure-preserving algorithms for solving initial value problems of oscillatory differential equations arising in a variety of research areas, such as astronomy, theoretical physics, electronics, quantum mechanics and engineering. It systematically describes the latest advances in the development of structure-preserving integrators for oscillatory differential equations, such as structure-preserving exponential integrators, functionally fitted energy-preserving integrators, exponential Fourier collocation methods, trigonometric collocation methods, and symmetric and arbitrarily high-order time-stepping methods. Most of the material presented here is drawn from the recent literature. Theoretical analysis of the newly developed schemes shows their advantages in the context of structure preservation. All the new methods introduced in this book are proven to be highly effective compared with the well-known codes in the scientific literature. This book also addre...

  11. Global competition and local cooperation in a network of neural oscillators

    Science.gov (United States)

    Terman, David; Wang, DeLiang

    An architecture of locally excitatory, globally inhibitory oscillator networks is proposed and investigated both analytically and by computer simulation. The model for each oscillator corresponds to a standard relaxation oscillator with two time scales. Oscillators are locally coupled by a scheme that resembles excitatory synaptic coupling, and each oscillator also inhibits other oscillators through a common inhibitor. Oscillators are driven to be oscillatory by external stimulation. The network exhibits a mechanism of selective gating, whereby an oscillator jumping up to its active phase rapidly recruits the oscillators stimulated by the same pattern, while preventing the other oscillators from jumping up. We show analytically that with the selective gating mechanism, the network rapidly achieves both synchronization within blocks of oscillators that are stimulated by connected regions and desynchronization between different blocks. Computer simulations demonstrate the model's promising ability for segmenting multiple input patterns in real time. This model lays a physical foundation for the oscillatory correlation theory of feature binding and may provide an effective computational framework for scene segmentation and figure/ ground segregation.

  12. The effect of a laser beam displacement on parametric oscillatory instabilities for Advanced LIGO

    International Nuclear Information System (INIS)

    Heinert, D.; Strigin, S.E.

    2011-01-01

    The arm cavities of real gravitational wave detectors can show small deviations like a tilt or a spatial shift between the cavity mirrors. These deviations lead to a separation of the optical mode centres with respect to the mirror's centre. In this Letter we perform the computation of parametric instable modes considering the described displacement. We further analyse the possibility of parametric oscillatory instability in the Advanced LIGO interferometer for the case of a displaced arm cavity. Our results reveal an additional number of optical and elastic mode combinations due to a displacement that can give rise to the undesirable effect of parametric oscillatory instability. -- Highlights: → We analyse the possibility of parametric oscillatory instability in the Advanced LIGO interferometer. → We perform the computation of parametric instable modes considering the mirror displacement. → Our results reveal an additional number of optical and elastic mode unstable combinations.

  13. Structural state diagram of concentrated suspensions of jammed soft particles in oscillatory shear flow

    Science.gov (United States)

    Khabaz, Fardin; Cloitre, Michel; Bonnecaze, Roger T.

    2018-03-01

    In a recent study [Khabaz et al., Phys. Rev. Fluids 2, 093301 (2017), 10.1103/PhysRevFluids.2.093301], we showed that jammed soft particle glasses (SPGs) crystallize and order in steady shear flow. Here we investigate the rheology and microstructures of these suspensions in oscillatory shear flow using particle-dynamics simulations. The microstructures in both types of flows are similar, but their evolutions are very different. In both cases the monodisperse and polydisperse suspensions form crystalline and layered structures, respectively, at high shear rates. The crystals obtained in the oscillatory shear flow show fewer defects compared to those in the steady shear. SPGs remain glassy for maximum oscillatory strains less than about the yield strain of the material. For maximum strains greater than the yield strain, microstructural and rheological transitions occur for SPGs. Polydisperse SPGs rearrange into a layered structure parallel to the flow-vorticity plane for sufficiently high maximum shear rates and maximum strains about 10 times greater than the yield strain. Monodisperse suspensions form a face-centered cubic (FCC) structure when the maximum shear rate is low and hexagonal close-packed (HCP) structure when the maximum shear rate is high. In steady shear, the transition from a glassy state to a layered one for polydisperse suspensions included a significant induction strain before the transformation. In oscillatory shear, the transformation begins to occur immediately and with different microstructural changes. A state diagram for suspensions in large amplitude oscillatory shear flow is found to be in close but not exact agreement with the state diagram for steady shear flow. For more modest amplitudes of around one to five times the yield strain, there is a transition from a glassy structure to FCC and HCP crystals, at low and high frequencies, respectively, for monodisperse suspensions. At moderate frequencies, the transition is from glassy to HCP via

  14. Conceptualising Lennox-Gastaut Syndrome as a secondary network epilepsy

    Directory of Open Access Journals (Sweden)

    John S ARCHER

    2014-10-01

    Full Text Available Lennox-Gastaut Syndrome (LGS is a category of severe, disabling epilepsy, characterised by frequent, treatment-resistant seizures and cognitive impairment. EEG (electroencephalography shows characteristic generalised epileptic activity that is similar in those with lesional, genetic or unknown causes, suggesting a common underlying mechanism. The condition typically begins in young children, leaving many severely disabled with recurring seizures throughout their adult life.Scalp EEG of the tonic seizures of LGS is characterised by a diffuse high voltage slow transient evolving into generalised low voltage fast activity, likely reflecting sustained fast neuronal firing over a wide cortical area. The typical interictal discharges (runs of slow spike-and-wave (SSW and bursts of generalised paroxysmal fast activity (GPFA also have a ‘generalised’ electrical field, suggesting widespread cortical involvement. Recent brain mapping studies have begun to reveal which cortical and subcortical regions are active during these ‘generalised’ discharges.In this critical review we examine findings from neuroimaging studies of LGS and place these in the context of the electrical and clinical features of the syndrome. We suggest that LGS can be conceptualised as a ‘secondary network epilepsy’, where the epileptic activity is expressed through large-scale brain networks, particularly the attention and default-mode networks. Cortical lesions, when present, appear to chronically interact with these networks to produce network instability rather than triggering each individual epileptic discharge. LGS can be considered a ‘secondary’ network epilepsy because the epileptic manifestations of the disorder reflect the networks being driven, rather than the specific initiating process.

  15. Extent of cortical involvement in amyotrophic lateral sclerosis--an analysis based on cortical thickness.

    Science.gov (United States)

    Thorns, Johannes; Jansma, Henk; Peschel, Thomas; Grosskreutz, Julian; Mohammadi, Bahram; Dengler, Reinhard; Münte, Thomas F

    2013-10-18

    Besides the defining involvement of upper and lower motor neurons, the involvement of extramotor structures has been increasingly acknowledged in amyotrophic lateral sclerosis (ALS). Here we investigated a group of 14 mildly to moderately affected ALS patients and 14 age-matched healthy control participants using cortical thickness analysis. Cortical thickness was determined from high resolution 3D T1 magnetic resonance images and involved semiautomatic segmentation in grey and white matter, cortical alignment and determination of thickness using the Laplace method. In addition to a whole-cortex analysis a region of interest approach was applied. ALS patients showed regions of significant cortical thinning in the pre- and postcentral gyri bilaterally. Further regions of cortical thinning included superior and inferior parietal lobule, angular and supramarginal gyrus, insula, superior frontal, temporal and occipital regions, thus further substantiating extramotor involvement in ALS. A relationship between cortical thickness of the right superior frontal cortex and clinical severity (assessed by the ALS functional rating scale) was also demonstrated. Cortical thickness is reduced in ALS not only in motor areas but in widespread non-motor cortical areas. Cortical thickness is related to clinical severity.

  16. Automatic Detection of Cortical Bones Haversian Osteonal Boundaries

    Directory of Open Access Journals (Sweden)

    Ilige Hage

    2015-10-01

    Full Text Available This work aims to automatically detect cement lines in decalcified cortical bone sections stained with H&E. Employed is a methodology developed previously by the authors and proven to successfully count and disambiguate the micro-architectural features (namely Haversian canals, canaliculi, and osteocyte lacunae present in the secondary osteons/Haversian system (osteon of cortical bone. This methodology combines methods typically considered separately, namely pulse coupled neural networks (PCNN, particle swarm optimization (PSO, and adaptive threshold (AT. In lieu of human bone, slides (at 20× magnification from bovid cortical bone are used in this study as proxy of human bone. Having been characterized, features with same orientation are used to detect the cement line viewed as the next coaxial layer adjacent to the outermost lamella of the osteon. Employed for this purpose are three attributes for each and every micro-sized feature identified in the osteon lamellar system: (1 orientation, (2 size (ellipse perimeter and (3 Euler number (a topological measure. From a training image, automated parameters for the PCNN network are obtained by forming fitness functions extracted from these attributes. It is found that a 3-way combination of these features attributes yields good representations of the overall osteon boundary (cement line. Near-unity values of classical metrics of quality (precision, sensitivity, specificity, accuracy, and dice suggest that the segments obtained automatically by the optimized artificial intelligent methodology are of high fidelity as compared with manual tracing. For bench marking, cement lines segmented by k-means did not fare as well. An analysis based on the modified Hausdorff distance (MHD of the segmented cement lines also testified to the quality of the detected cement lines vis-a-vis the k-means method.

  17. Population coding in sparsely connected networks of noisy neurons

    OpenAIRE

    Tripp, Bryan P.; Orchard, Jeff

    2012-01-01

    This study examines the relationship between population coding and spatial connection statistics in networks of noisy neurons. Encoding of sensory information in the neocortex is thought to require coordinated neural populations, because individual cortical neurons respond to a wide range of stimuli, and exhibit highly variable spiking in response to repeated stimuli. Population coding is rooted in network structure, because cortical neurons receive information only from other neurons, and be...

  18. Theoretical analysis of oscillatory terms in lattice heat-current time correlation functions and their contributions to thermal conductivity

    Science.gov (United States)

    Pereverzev, Andrey; Sewell, Tommy

    2018-03-01

    Lattice heat-current time correlation functions for insulators and semiconductors obtained using molecular dynamics (MD) simulations exhibit features of both pure exponential decay and oscillatory-exponential decay. For some materials the oscillatory terms contribute significantly to the lattice heat conductivity calculated from the correlation functions. However, the origin of the oscillatory terms is not well understood, and their contribution to the heat conductivity is accounted for by fitting them to empirical functions. Here, a translationally invariant expression for the heat current in terms of creation and annihilation operators is derived. By using this full phonon-picture definition of the heat current and applying the relaxation-time approximation we explain, at least in part, the origin of the oscillatory terms in the lattice heat-current correlation function. We discuss the relationship between the crystal Hamiltonian and the magnitude of the oscillatory terms. A solvable one-dimensional model is used to illustrate the potential importance of terms that are omitted in the commonly used phonon-picture expression for the heat current. While the derivations are fully quantum mechanical, classical-limit expressions are provided that enable direct contact with classical quantities obtainable from MD.

  19. Oscillatory Reinstatement Enhances Declarative Memory.

    Science.gov (United States)

    Javadi, Amir-Homayoun; Glen, James C; Halkiopoulos, Sara; Schulz, Mei; Spiers, Hugo J

    2017-10-11

    Declarative memory recall is thought to involve the reinstatement of neural activity patterns that occurred previously during encoding. Consistent with this view, greater similarity between patterns of activity recorded during encoding and retrieval has been found to predict better memory performance in a number of studies. Recent models have argued that neural oscillations may be crucial to reinstatement for successful memory retrieval. However, to date, no causal evidence has been provided to support this theory, nor has the impact of oscillatory electrical brain stimulation during encoding and retrieval been assessed. To explore this we used transcranial alternating current stimulation over the left dorsolateral prefrontal cortex of human participants [ n = 70, 45 females; age mean (SD) = 22.12 (2.16)] during a declarative memory task. Participants received either the same frequency during encoding and retrieval (60-60 or 90-90 Hz) or different frequencies (60-90 or 90-60 Hz). When frequencies matched there was a significant memory improvement (at both 60 and 90 Hz) relative to sham stimulation. No improvement occurred when frequencies mismatched. Our results provide support for the role of oscillatory reinstatement in memory retrieval. SIGNIFICANCE STATEMENT Recent neurobiological models of memory have argued that large-scale neural oscillations are reinstated to support successful memory retrieval. Here we used transcranial alternating current stimulation (tACS) to test these models. tACS has recently been shown to induce neural oscillations at the frequency stimulated. We stimulated over the left dorsolateral prefrontal cortex during a declarative memory task involving learning a set of words. We found that tACS applied at the same frequency during encoding and retrieval enhances memory. We also find no difference between the two applied frequencies. Thus our results are consistent with the proposal that reinstatement of neural oscillations during retrieval

  20. On the effect of a longitudinal magnetic field on oscillatory ...

    Indian Academy of Sciences (India)

    . The frequency, ... dinal magnetic field on the oscillatory characteristics of a subnormal region it is proposed to study the variation of ... earth to provide a signal to the oscilloscope (60 MHz digital storage, PM 3350, Phillips). A current meter ...

  1. Population coding in sparsely connected networks of noisy neurons.

    Science.gov (United States)

    Tripp, Bryan P; Orchard, Jeff

    2012-01-01

    This study examines the relationship between population coding and spatial connection statistics in networks of noisy neurons. Encoding of sensory information in the neocortex is thought to require coordinated neural populations, because individual cortical neurons respond to a wide range of stimuli, and exhibit highly variable spiking in response to repeated stimuli. Population coding is rooted in network structure, because cortical neurons receive information only from other neurons, and because the information they encode must be decoded by other neurons, if it is to affect behavior. However, population coding theory has often ignored network structure, or assumed discrete, fully connected populations (in contrast with the sparsely connected, continuous sheet of the cortex). In this study, we modeled a sheet of cortical neurons with sparse, primarily local connections, and found that a network with this structure could encode multiple internal state variables with high signal-to-noise ratio. However, we were unable to create high-fidelity networks by instantiating connections at random according to spatial connection probabilities. In our models, high-fidelity networks required additional structure, with higher cluster factors and correlations between the inputs to nearby neurons.

  2. Intra-cortical excitability in healthy human subjects after tongue training

    DEFF Research Database (Denmark)

    Baad-Hansen, Lene; Blicher, Jakob; Lapitskaya, Natallia

    2009-01-01

    Training of specific muscles causes plastic changes in corticomotor pathways which may underlie the effect of various clinical rehabilitation procedures. The paired pulse transcranial magnetic stimulation (ppTMS) technique can be used to assess short interval intra-cortical inhibitory (SICI...... tongue muscles. In tongue motor cortex, bilateral SICI (P training. There were no significant effects of training on single MEPs or SICI/ICF (P > 0.063). The success rate improved during training (P ...) and intra-cortical facilitatory (ICF) networks. This study examined changes in SICI and ICF in tongue motor cortex after tongue training in 11 healthy volunteers using ppTMS. Paired pulse TMS was applied to the 'hot-spot' for the tongue motor cortex and motor-evoked potentials (MEPs) were recorded from...

  3. Reflood modeling under oscillatory flow conditions with Cathare

    International Nuclear Information System (INIS)

    Kelly, J.M.; Bartak, J.; Janicot, A.

    1993-01-01

    The problems and the current status in oscillatory reflood modelling with the CATHARE code are presented. The physical models used in CATHARE for reflood modelling predicted globally very well the forced reflood experiments. Significant drawbacks existed in predicting experiments with oscillatory flow (both forced and gravity driven). First, the more simple case of forced flow oscillations was analyzed. Modelling improvements within the reflooding package resolved the problem of quench front blockages and unphysical oscillations. Good agreements with experiment for the ERSEC forced oscillations reflood tests is now obtained. For gravity driven reflood, CATHARE predicted sustained flow oscillations during 100-150 s after the start of the reflood, whereas in the experiment flow oscillations were observed only during 25-30 s. Possible areas of modeling improvements are identified and several new correlations are suggested. The first test calculations of the BETHSY test 6.7A4 have shown that the oscillations are mostly sensitive to heat flux modeling downstream of the quench front. A much better agreement between CATHARE results and the experiment was obtained. However, further effort is necessary to obtain globally satisfactory predictions of gravity driven system reflood tests. (authors) 6 figs., 35 refs

  4. Reflood modeling under oscillatory flow conditions with Cathare

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, J M; Bartak, J; Janicot, A

    1994-12-31

    The problems and the current status in oscillatory reflood modelling with the CATHARE code are presented. The physical models used in CATHARE for reflood modelling predicted globally very well the forced reflood experiments. Significant drawbacks existed in predicting experiments with oscillatory flow (both forced and gravity driven). First, the more simple case of forced flow oscillations was analyzed. Modelling improvements within the reflooding package resolved the problem of quench front blockages and unphysical oscillations. Good agreements with experiment for the ERSEC forced oscillations reflood tests is now obtained. For gravity driven reflood, CATHARE predicted sustained flow oscillations during 100-150 s after the start of the reflood, whereas in the experiment flow oscillations were observed only during 25-30 s. Possible areas of modeling improvements are identified and several new correlations are suggested. The first test calculations of the BETHSY test 6.7A4 have shown that the oscillations are mostly sensitive to heat flux modeling downstream of the quench front. A much better agreement between CATHARE results and the experiment was obtained. However, further effort is necessary to obtain globally satisfactory predictions of gravity driven system reflood tests. (authors) 6 figs., 35 refs.

  5. Core regulatory network motif underlies the ocellar complex patterning in Drosophila melanogaster

    Science.gov (United States)

    Aguilar-Hidalgo, D.; Lemos, M. C.; Córdoba, A.

    2015-03-01

    During organogenesis, developmental programs governed by Gene Regulatory Networks (GRN) define the functionality, size and shape of the different constituents of living organisms. Robustness, thus, is an essential characteristic that GRNs need to fulfill in order to maintain viability and reproducibility in a species. In the present work we analyze the robustness of the patterning for the ocellar complex formation in Drosophila melanogaster fly. We have systematically pruned the GRN that drives the development of this visual system to obtain the minimum pathway able to satisfy this pattern. We found that the mechanism underlying the patterning obeys to the dynamics of a 3-nodes network motif with a double negative feedback loop fed by a morphogenetic gradient that triggers the inhibition in a French flag problem fashion. A Boolean modeling of the GRN confirms robustness in the patterning mechanism showing the same result for different network complexity levels. Interestingly, the network provides a steady state solution in the interocellar part of the patterning and an oscillatory regime in the ocelli. This theoretical result predicts that the ocellar pattern may underlie oscillatory dynamics in its genetic regulation.

  6. Cortico-cortical communication dynamics

    Directory of Open Access Journals (Sweden)

    Per E Roland

    2014-05-01

    Full Text Available IIn principle, cortico-cortical communication dynamics is simple: neurons in one cortical area communicate by sending action potentials that release glutamate and excite their target neurons in other cortical areas. In practice, knowledge about cortico-cortical communication dynamics is minute. One reason is that no current technique can capture the fast spatio-temporal cortico-cortical evolution of action potential transmission and membrane conductances with sufficient spatial resolution. A combination of optogenetics and monosynaptic tracing with virus can reveal the spatio-temporal cortico-cortical dynamics of specific neurons and their targets, but does not reveal how the dynamics evolves under natural conditions. Spontaneous ongoing action potentials also spread across cortical areas and are difficult to separate from structured evoked and intrinsic brain activity such as thinking. At a certain state of evolution, the dynamics may engage larger populations of neurons to drive the brain to decisions, percepts and behaviors. For example, successfully evolving dynamics to sensory transients can appear at the mesoscopic scale revealing how the transient is perceived. As a consequence of these methodological and conceptual difficulties, studies in this field comprise a wide range of computational models, large-scale measurements (e.g., by MEG, EEG, and a combination of invasive measurements in animal experiments. Further obstacles and challenges of studying cortico-cortical communication dynamics are outlined in this critical review.

  7. Oscillatory correlates of autobiographical memory.

    Science.gov (United States)

    Knyazev, Gennady G; Savostyanov, Alexander N; Bocharov, Andrey V; Dorosheva, Elena A; Tamozhnikov, Sergey S; Saprigyn, Alexander E

    2015-03-01

    Recollection of events from one's own life is referred to as autobiographical memory. Autobiographical memory is an important part of our self. Neuroimaging findings link self-referential processes with the default mode network (DMN). Much evidence coming primarily from functional magnetic resonance imaging studies shows that autobiographical memory and DMN have a common neural base. In this study, electroencephalographic data collected in 47 participants during recollection of autobiographical episodes were analyzed using temporal and spatial independent component analyses in combination with source localization. Autobiographical remembering was associated with an increase of spectral power in alpha and beta and a decrease in delta band. The increase of alpha power, as estimated by sLORETA, was most prominent in the posterior DMN, but was also observed in visual and motor cortices, prompting an assumption that it is associated with activation of DMN and inhibition of irrelevant sensory and motor areas. In line with data linking delta oscillations with aversive states, decrease of delta power was more pronounced in episodes associated with positive emotions, whereas episodes associated with negative emotions were accompanied by an increase of delta power. Vividness of recollection correlated positively with theta oscillations. These results highlight the leading role of alpha oscillations and the DMN in the processes accompanying autobiographical remembering. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. On stellar collapse: continual or oscillatory. A short comment

    International Nuclear Information System (INIS)

    Leung, P.T.

    1980-01-01

    We comment on a previously published paper on the oscillatory dynamics of stellar collapse and conclude that the Schwarzschild interior solution applied to the 'inflection points' can never give rise to a 'turning back' motion, in spite of the fact that the geodesic equation really does not always describe an attractive gravitational acceleration

  9. Cortical drive of low-frequency oscillations in the human nucleus accumbens during action selection.

    Science.gov (United States)

    Stenner, Max-Philipp; Litvak, Vladimir; Rutledge, Robb B; Zaehle, Tino; Schmitt, Friedhelm C; Voges, Jürgen; Heinze, Hans-Jochen; Dolan, Raymond J

    2015-07-01

    The nucleus accumbens is thought to contribute to action selection by integrating behaviorally relevant information from multiple regions, including prefrontal cortex. Studies in rodents suggest that information flow to the nucleus accumbens may be regulated via task-dependent oscillatory coupling between regions. During instrumental behavior, local field potentials (LFP) in the rat nucleus accumbens and prefrontal cortex are coupled at delta frequencies (Gruber AJ, Hussain RJ, O'Donnell P. PLoS One 4: e5062, 2009), possibly mediating suppression of afferent input from other areas and thereby supporting cortical control (Calhoon GG, O'Donnell P. Neuron 78: 181-190, 2013). In this report, we demonstrate low-frequency cortico-accumbens coupling in humans, both at rest and during a decision-making task. We recorded LFP from the nucleus accumbens in six epilepsy patients who underwent implantation of deep brain stimulation electrodes. All patients showed significant coherence and phase-synchronization between LFP and surface EEG at delta and low theta frequencies. Although the direction of this coupling as indexed by Granger causality varied between subjects in the resting-state data, all patients showed a cortical drive of the nucleus accumbens during action selection in a decision-making task. In three patients this was accompanied by a significant coherence increase over baseline. Our results suggest that low-frequency cortico-accumbens coupling represents a highly conserved regulatory mechanism for action selection. Copyright © 2015 the American Physiological Society.

  10. New insights into strobe reactions: An intriguing oscillatory combustion phenomenon

    NARCIS (Netherlands)

    Corbel, J.M.L.

    2013-01-01

    Strobes are self-sustained oscillatory combustions that have various applications in the fireworks industry and also in the military area (signaling, missile decoys and crowd control). However, most of the strobe compositions were discovered using trial and error methods. The fundamentals mechanisms

  11. Comparing the influence of crestal cortical bone and sinus floor cortical bone in posterior maxilla bi-cortical dental implantation: a three-dimensional finite element analysis.

    Science.gov (United States)

    Yan, Xu; Zhang, Xinwen; Chi, Weichao; Ai, Hongjun; Wu, Lin

    2015-05-01

    This study aimed to compare the influence of alveolar ridge cortical bone and sinus floor cortical bone in sinus areabi-cortical dental implantation by means of 3D finite element analysis. Three-dimensional finite element (FE) models in a posterior maxillary region with sinus membrane and the same height of alveolar ridge of 10 mm were generated according to the anatomical data of the sinus area. They were either with fixed thickness of crestal cortical bone and variable thickness of sinus floor cortical bone or vice versa. Ten models were assumed to be under immediate loading or conventional loading. The standard implant model based on the Nobel Biocare implant system was created via computer-aided design software. All materials were assumed to be isotropic and linearly elastic. An inclined force of 129 N was applied. Von Mises stress mainly concentrated on the surface of crestal cortical bone around the implant neck. For all the models, both the axial and buccolingual resonance frequencies of conventional loading were higher than those of immediate loading; however, the difference is less than 5%. The results showed that bi-cortical implant in sinus area increased the stability of the implant, especially for immediately loading implantation. The thickness of both crestal cortical bone and sinus floor cortical bone influenced implant micromotion and stress distribution; however, crestal cortical bone may be more important than sinus floor cortical bone.

  12. Improved diagnostic accuracy of Alzheimer's disease by combining regional cortical thickness and default mode network functional connectivity: Validated in the Alzheimer's disease neuroimaging initiative set

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ji Eun; Park, Bum Woo; Kim, Sang Joon; Kim, Ho Sung; Choi, Choong Gon; Jung, Seung Jung; Oh, Joo Young; Shim, Woo Hyun [Dept. of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul (Korea, Republic of); Lee, Jae Hong; Roh, Jee Hoon [University of Ulsan College of Medicine, Asan Medical Center, Seoul (Korea, Republic of)

    2017-11-15

    To identify potential imaging biomarkers of Alzheimer's disease by combining brain cortical thickness (CThk) and functional connectivity and to validate this model's diagnostic accuracy in a validation set. Data from 98 subjects was retrospectively reviewed, including a study set (n = 63) and a validation set from the Alzheimer's Disease Neuroimaging Initiative (n = 35). From each subject, data for CThk and functional connectivity of the default mode network was extracted from structural T1-weighted and resting-state functional magnetic resonance imaging. Cortical regions with significant differences between patients and healthy controls in the correlation of CThk and functional connectivity were identified in the study set. The diagnostic accuracy of functional connectivity measures combined with CThk in the identified regions was evaluated against that in the medial temporal lobes using the validation set and application of a support vector machine. Group-wise differences in the correlation of CThk and default mode network functional connectivity were identified in the superior temporal (p < 0.001) and supramarginal gyrus (p = 0.007) of the left cerebral hemisphere. Default mode network functional connectivity combined with the CThk of those two regions were more accurate than that combined with the CThk of both medial temporal lobes (91.7% vs. 75%). Combining functional information with CThk of the superior temporal and supramarginal gyri in the left cerebral hemisphere improves diagnostic accuracy, making it a potential imaging biomarker for Alzheimer's disease.

  13. Effects of Preweaning Polysensorial Enrichment upon Development of the Parietal Cortical Plate of Undernourished Rats: A Stereological Study

    OpenAIRE

    González, Héctor; Adaro, Luis; Hernández, Alejandro; Fernández, Víctor

    2014-01-01

    This investigation was undertaken in order to quantify the effects of early polysensorial enrichment on the development of cortical pyramids, located in the parietal cortex of rats simultaneously submitted to protein-energy undernutrition. A short period of stimulation during suckling significantly decreases the cellular density in the cortical plate (phylogenetic-ontogenetic evolutionary index). Results suggest that the cerebral cortex develops according to a sophisticated neuronal network, ...

  14. How adaptation shapes spike rate oscillations in recurrent neuronal networks

    Directory of Open Access Journals (Sweden)

    Moritz eAugustin

    2013-02-01

    Full Text Available Neural mass signals from in-vivo recordings often show oscillations with frequencies ranging from <1 Hz to 100 Hz. Fast rhythmic activity in the beta and gamma range can be generated by network based mechanisms such as recurrent synaptic excitation-inhibition loops. Slower oscillations might instead depend on neuronal adaptation currents whose timescales range from tens of milliseconds to seconds. Here we investigate how the dynamics of such adaptation currents contribute to spike rate oscillations and resonance properties in recurrent networks of excitatory and inhibitory neurons. Based on a network of sparsely coupled spiking model neurons with two types of adaptation current and conductance based synapses with heterogeneous strengths and delays we use a mean-field approach to analyze oscillatory network activity. For constant external input, we find that spike-triggered adaptation currents provide a mechanism to generate slow oscillations over a wide range of adaptation timescales as long as recurrent synaptic excitation is sufficiently strong. Faster rhythms occur when recurrent inhibition is slower than excitation and oscillation frequency increases with the strength of inhibition. Adaptation facilitates such network based oscillations for fast synaptic inhibition and leads to decreased frequencies. For oscillatory external input, adaptation currents amplify a narrow band of frequencies and cause phase advances for low frequencies in addition to phase delays at higher frequencies. Our results therefore identify the different key roles of neuronal adaptation dynamics for rhythmogenesis and selective signal propagation in recurrent networks.

  15. Enhancing Rotational Diffusion Using Oscillatory Shear

    KAUST Repository

    Leahy, Brian D.

    2013-05-29

    Taylor dispersion - shear-induced enhancement of translational diffusion - is an important phenomenon with applications ranging from pharmacology to geology. Through experiments and simulations, we show that rotational diffusion is also enhanced for anisotropic particles in oscillatory shear. This enhancement arises from variations in the particle\\'s rotation (Jeffery orbit) and depends on the strain amplitude, rate, and particle aspect ratio in a manner that is distinct from the translational diffusion. This separate tunability of translational and rotational diffusion opens the door to new techniques for controlling positions and orientations of suspended anisotropic colloids. © 2013 American Physical Society.

  16. Structural and functional evaluation of cortical motor areas in Amyotrophic Lateral Sclerosis.

    Science.gov (United States)

    Cosottini, Mirco; Pesaresi, Ilaria; Piazza, Selina; Diciotti, Stefano; Cecchi, Paolo; Fabbri, Serena; Carlesi, Cecilia; Mascalchi, Mario; Siciliano, Gabriele

    2012-03-01

    cortical damage within the motor circuit of ALS patients. The functional changes in non-primary motor cortices pertaining to fronto-parietal circuit suggest an over-recruitment of a pre-existing physiological sensory-motor network. However, the concomitant fronto-parietal cortical atrophy arises the possibility that such a hyper-activation reflects cortical hyper-excitability due to loss of inhibitory inter-neurons. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Abnormal Task Modulation of Oscillatory Neural Activity in Schizophrenia

    Directory of Open Access Journals (Sweden)

    Elisa C Dias

    2013-08-01

    Full Text Available Schizophrenia patients have deficits in cognitive function that are a core feature of the disorder. AX-CPT is commonly used to study cognition in schizophrenia, and patients have characteristic pattern of behavioral and ERP response. In AX-CPT subjects respond when a flashed cue A is followed by a target X, ignoring other letter combinations. Patients show reduced hit rate to go trials, and increased false alarms to sequences that require inhibition of a prepotent response. EEG recordings show reduced sensory (P1/N1, as well as later cognitive components (N2, P3, CNV. Behavioral deficits correlate most strongly with sensory dysfunction. Oscillatory analyses provide critical information regarding sensory/cognitive processing over and above standard ERP analyses. Recent analyses of induced oscillatory activity in single trials during AX-CPT in healthy volunteers showed characteristic response patterns in theta, alpha and beta frequencies tied to specific sensory and cognitive processes. Alpha and beta modulated during the trials and beta modulation over the frontal cortex correlated with reaction time. In this study, EEG data was obtained from 18 schizophrenia patients and 13 controls during AX-CPT performance, and single trial decomposition of the signal yielded power in the target wavelengths.Significant task-related event-related desynchronization (ERD was observed in both alpha and beta frequency bands over parieto-occipital cortex related to sensory encoding of the cue. This modulation was reduced in patients for beta, but not for alpha. In addition, significant beta ERD was observed over motor cortex, related to motor preparation for the response, and was also reduced in patients. These findings demonstrate impaired dynamic modulation of beta frequency rhythms in schizophrenia, and suggest that failures of oscillatory activity may underlie impaired sensory information processing in schizophrenia that in turn contributes to cognitive deficits.

  18. The Oscillatory Nature of Rotating Convection in Liquid Metal

    Science.gov (United States)

    Aurnou, J. M.; Bertin, V. L.; Grannan, A. M.

    2016-12-01

    Earth's magnetic field is assumed to be generated by fluid motions in its liquid metal core. In this fluid, the heat diffuses significantly more than momentum and thus, the ratio of these two diffusivities, the Prandtl number Pr=ν/Κ, is well below unity. The convective flow dynamics of liquid metal is very different from Pr ≈ 1 fluids like water and those used in current dynamo simulations. In order to characterize rapidly rotating thermal convection in low Pr number fluids, we have performed laboratory experiments in a cylinder using liquid gallium (Pr ≈ 0.023) as the working fluid. The Ekman number, which characterizes the effect of rotation, varies from E = 4 10-5 to 4 10-6 and the dimensionless buoyancy forcing (Rayleigh number, Ra) varies from Ra =3 105 to 2 107. Using heat transfer measurements (Nusselt number, Nu) as well as temperature measurements within the fluid, we characterize the different styles of low Pr rotating convective flow. The convection threshold is first overcome in the form of a container scale inertial oscillatory mode. At stronger forcing, wall-localized modes are identified for the first time in liquid metal laboratory experiments. These wall modes coexist with the bulk inertial oscillatory modes. When the strengh of the buoyancy increases, the bulk flow becomes turbulent while the wall modes remain. Our results imply that rotating convective flows in liquid metals do not develop in the form of quasi-steady columns, as in Pr ≈ 1 dynamo models, but in the form of oscillatory motions. Therefore, the flows that drive thermally-driven dynamo action in low Pr geophysical and astrophysical fluids can differ substantively than those occuring in current-day Pr ≈ 1 numerical models. In addition, our results suggest that relatively low wavenumber, wall-attached modes may be dynamically important in rapidly-rotating convection in liquid metals.

  19. Calcium dynamics of cortical astrocytic networks in vivo.

    Directory of Open Access Journals (Sweden)

    Hajime Hirase

    2004-04-01

    Full Text Available Large and long-lasting cytosolic calcium surges in astrocytes have been described in cultured cells and acute slice preparations. The mechanisms that give rise to these calcium events have been extensively studied in vitro. However, their existence and functions in the intact brain are unknown. We have topically applied Fluo-4 AM on the cerebral cortex of anesthetized rats, and imaged cytosolic calcium fluctuation in astrocyte populations of superficial cortical layers in vivo, using two-photon laser scanning microscopy. Spontaneous [Ca(2+](i events in individual astrocytes were similar to those observed in vitro. Coordination of [Ca(2+](i events among astrocytes was indicated by the broad cross-correlograms. Increased neuronal discharge was associated with increased astrocytic [Ca(2+](i activity in individual cells and a robust coordination of [Ca(2+](i signals in neighboring astrocytes. These findings indicate potential neuron-glia communication in the intact brain.

  20. Two-photon NADH imaging exposes boundaries of oxygen diffusion in cortical vascular supply regions.

    Science.gov (United States)

    Kasischke, Karl A; Lambert, Elton M; Panepento, Ben; Sun, Anita; Gelbard, Harris A; Burgess, Robert W; Foster, Thomas H; Nedergaard, Maiken

    2011-01-01

    Oxygen transport imposes a possible constraint on the brain's ability to sustain variable metabolic demands, but oxygen diffusion in the cerebral cortex has not yet been observed directly. We show that concurrent two-photon fluorescence imaging of endogenous nicotinamide adenine dinucleotide (NADH) and the cortical microcirculation exposes well-defined boundaries of tissue oxygen diffusion in the mouse cortex. The NADH fluorescence increases rapidly over a narrow, very low pO(2) range with a p(50) of 3.4 ± 0.6 mm Hg, thereby establishing a nearly binary reporter of significant, metabolically limiting hypoxia. The transient cortical tissue boundaries of NADH fluorescence exhibit remarkably delineated geometrical patterns, which define the limits of tissue oxygen diffusion from the cortical microcirculation and bear a striking resemblance to the ideal Krogh tissue cylinder. The visualization of microvessels and their regional contribution to oxygen delivery establishes penetrating arterioles as major oxygen sources in addition to the capillary network and confirms the existence of cortical oxygen fields with steep microregional oxygen gradients. Thus, two-photon NADH imaging can be applied to expose vascular supply regions and to localize functionally relevant microregional cortical hypoxia with micrometer spatial resolution.

  1. Oscillatory device for use with linear tribometer, for tribological evaluation of biomaterials

    Science.gov (United States)

    Athayde, J. N.; Siqueira, C. J. M.; Kuromoto, N. K.; Cambraia, H. N.

    2017-07-01

    Orthopedic implants still have limitations regarding their durability, despite being in use for over fifty years. Particles arising from wear due to the relative motion of their surfaces remain responsible for aseptic failure. This paper presents a device to be coupled with a reciprocal linear tribometer to reproduce the ex vivo wear of biomaterials, allowing the measurement of force and coefficient of friction. The device consists of a structure connected to the tribometer that transforms its reciprocal linear motion into one that is oscillatory for the mechanical assembly that contains the samples to test the desired biomaterials. The tribological pair used for testing consisted of Ultra High Molecular Weight Polyethylene (UHMWPE) in conjunction with the austenitic stainless steel AISI 316L in dry lubrication. The results showed that the values of the coefficient of friction in the linear mode and oscillatory mode and the UHMWPE life curve in the oscillatory mode were consistent with those cited in the literature for tests in a dry lubrication environment. Moreover, the UHMWPE sample life curve showed a reduction in the wear rate that can be explained by the preponderance of a wear mechanism over the others. The volumetric wear showed an increase with the number of cycles.

  2. Rab3A, a possible marker of cortical granules, participates in cortical granule exocytosis in mouse eggs

    Energy Technology Data Exchange (ETDEWEB)

    Bello, Oscar Daniel; Cappa, Andrea Isabel; Paola, Matilde de; Zanetti, María Natalia [Instituto de Histología y Embriología, CONICET – Universidad Nacional de Cuyo, Av. Libertador 80, 5500 Mendoza (Argentina); Fukuda, Mitsunori [Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578 (Japan); Fissore, Rafael A. [Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, 661 North Pleasant Street, Amherst, MA 01003 (United States); Mayorga, Luis S. [Instituto de Histología y Embriología, CONICET – Universidad Nacional de Cuyo, Av. Libertador 80, 5500 Mendoza (Argentina); Michaut, Marcela A., E-mail: mmichaut@gmail.com [Instituto de Histología y Embriología, CONICET – Universidad Nacional de Cuyo, Av. Libertador 80, 5500 Mendoza (Argentina); Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo (Argentina)

    2016-09-10

    Fusion of cortical granules with the oocyte plasma membrane is the most significant event to prevent polyspermy. This particular exocytosis, also known as cortical reaction, is regulated by calcium and its molecular mechanism is still not known. Rab3A, a member of the small GTP-binding protein superfamily, has been implicated in calcium-dependent exocytosis and is not yet clear whether Rab3A participates in cortical granules exocytosis. Here, we examine the involvement of Rab3A in the physiology of cortical granules, particularly, in their distribution during oocyte maturation and activation, and their participation in membrane fusion during cortical granule exocytosis. Immunofluorescence and Western blot analysis showed that Rab3A and cortical granules have a similar migration pattern during oocyte maturation, and that Rab3A is no longer detected after cortical granule exocytosis. These results suggested that Rab3A might be a marker of cortical granules. Overexpression of EGFP-Rab3A colocalized with cortical granules with a Pearson correlation coefficient of +0.967, indicating that Rab3A and cortical granules have almost a perfect colocalization in the egg cortical region. Using a functional assay, we demonstrated that microinjection of recombinant, prenylated and active GST-Rab3A triggered cortical granule exocytosis, indicating that Rab3A has an active role in this secretory pathway. To confirm this active role, we inhibited the function of endogenous Rab3A by microinjecting a polyclonal antibody raised against Rab3A prior to parthenogenetic activation. Our results showed that Rab3A antibody microinjection abolished cortical granule exocytosis in parthenogenetically activated oocytes. Altogether, our findings confirm that Rab3A might function as a marker of cortical granules and participates in cortical granule exocytosis in mouse eggs. - Highlights: • Rab3A has a similar migration pattern to cortical granules in mouse oocytes. • Rab3A can be a marker of

  3. Collagen and mineral deposition in rabbit cortical bone during maturation and growth: effects on tissue properties.

    Science.gov (United States)

    Isaksson, Hanna; Harjula, Terhi; Koistinen, Arto; Iivarinen, Jarkko; Seppänen, Kari; Arokoski, Jari P A; Brama, Pieter A; Jurvelin, Jukka S; Helminen, Heikki J

    2010-12-01

    We characterized the composition and mechanical properties of cortical bone during maturation and growth and in adult life in the rabbit. We hypothesized that the collagen network develops earlier than the mineralized matrix. Growth was monitored, and the rabbits were euthanized at birth (newborn), and at 1, 3, 6, 9, and 18 months of age. The collagen network was assessed biochemically (collagen content, enzymatic and non-enzymatic cross-links) in specimens from the mid-diaphysis of the tibia and femur and biomechanically (tensile testing) from decalcified whole tibia specimens. The mineralized matrix was analyzed using pQCT and 3-point bend tests from intact femur specimens. The collagen content and the Young's modulus of the collagen matrix increased significantly until the rabbits were 3 months old, and thereafter remained stable. The amount of HP and LP collagen cross-links increased continuously from newborn to 18 months of age, whereas PEN cross-links increased after 6 months of age. Bone mineral density and the Young's modulus of the mineralized bone increased until the rabbits were at least 6 months old. We concluded that substantial changes take place during the normal process of development in both the biochemical and biomechanical properties of rabbit cortical bone. In cortical bone, the collagen network reaches its mature composition and mechanical strength prior to the mineralized matrix. © 2010 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  4. Persistence and storage of activity patterns in spiking recurrent cortical networks: modulation of sigmoid signals by after-hyperpolarization currents and acetylcholine.

    Science.gov (United States)

    Palma, Jesse; Grossberg, Stephen; Versace, Massimiliano

    2012-01-01

    Many cortical networks contain recurrent architectures that transform input patterns before storing them in short-term memory (STM). Theorems in the 1970's showed how feedback signal functions in rate-based recurrent on-center off-surround networks control this process. A sigmoid signal function induces a quenching threshold below which inputs are suppressed as noise and above which they are contrast-enhanced before pattern storage. This article describes how changes in feedback signaling, neuromodulation, and recurrent connectivity may alter pattern processing in recurrent on-center off-surround networks of spiking neurons. In spiking neurons, fast, medium, and slow after-hyperpolarization (AHP) currents control sigmoid signal threshold and slope. Modulation of AHP currents by acetylcholine (ACh) can change sigmoid shape and, with it, network dynamics. For example, decreasing signal function threshold and increasing slope can lengthen the persistence of a partially contrast-enhanced pattern, increase the number of active cells stored in STM, or, if connectivity is distance-dependent, cause cell activities to cluster. These results clarify how cholinergic modulation by the basal forebrain may alter the vigilance of category learning circuits, and thus their sensitivity to predictive mismatches, thereby controlling whether learned categories code concrete or abstract features, as predicted by Adaptive Resonance Theory. The analysis includes global, distance-dependent, and interneuron-mediated circuits. With an appropriate degree of recurrent excitation and inhibition, spiking networks maintain a partially contrast-enhanced pattern for 800 ms or longer after stimuli offset, then resolve to no stored pattern, or to winner-take-all (WTA) stored patterns with one or multiple winners. Strengthening inhibition prolongs a partially contrast-enhanced pattern by slowing the transition to stability, while strengthening excitation causes more winners when the network

  5. Persistence and storage of activity patterns in spiking recurrent cortical networks:Modulation of sigmoid signals by after-hyperpolarization currents and acetylcholine

    Directory of Open Access Journals (Sweden)

    Jesse ePalma

    2012-06-01

    Full Text Available Many cortical networks contain recurrent architectures that transform input patterns before storing them in short-term memory (STM. Theorems in the 1970’s showed how feedback signal functions in rate-based recurrent on-center off-surround networks control this process. A sigmoid signal function induces a quenching threshold below which inputs are suppressed as noise and above which they are contrast-enhanced before pattern storage. This article describes how changes in feedback signaling, neuromodulation, and recurrent connectivity may alter pattern processing in recurrent on-center off-surround networks of spiking neurons. In spiking neurons, fast, medium, and slow after-hyperpolarization (AHP currents control sigmoid signal threshold and slope. Modulation of AHP currents by acetylcholine (ACh can change sigmoid shape and, with it, network dynamics. For example, decreasing signal function threshold and increasing slope can lengthen the persistence of a partially contrast-enhanced pattern, increase the number of active cells stored in STM, or, if connectivity is distance-dependent, cause cell activities to cluster. These results clarify how cholinergic modulation by the basal forebrain may alter the vigilance of category learning circuits, and thus their sensitivity to predictive mismatches, thereby controlling whether learned categories code concrete or abstract features, as predicted by Adaptive Resonance Theory. The analysis includes global, distance-dependent, and interneuron-mediated circuits. With an appropriate degree of recurrent excitation and inhibition, spiking networks maintain a partially contrast-enhanced pattern for 800 milliseconds or longer after stimuli offset, then resolve to no stored pattern, or to winner-take-all stored patterns with one or multiple winners. Strengthening inhibition prolongs a partially contrast-enhanced pattern by slowing the transition to stability, while strengthening excitation causes more winners

  6. Synapse-centric mapping of cortical models to the SpiNNaker neuromorphic architecture

    Directory of Open Access Journals (Sweden)

    James Courtney Knight

    2016-09-01

    Full Text Available While the adult human brain has approximately 8.8x10^10 neurons, this number is dwarfed by its 1x10^15 synapses. From the point of view of neuromorphic engineering and neural simulation in general this makes the simulation of these synapses a particularly complex problem. SpiNNaker is a digital, neuromorphic architecture designed for simulating large-scale spiking neural networks at speeds close to biological real-time. Current solutions for simulating spiking neural networks on SpiNNaker are heavily inspired by work on distributed high-performance computing. However, while SpiNNaker shares many characteristics with such distributed systems, its component nodes have much more limited resources and, as the system lacks global synchronization, the computation performed on each node must complete within a fixed time step. We first analyze the performance of the current SpiNNaker neural simulation software and identify several problems that occur when it is used to simulate networks of the type often used to model the cortex which contain large numbers of sparsely connected synapses. We then present a new, more flexible approach for mapping the simulation of such networks to SpiNNaker which solves many of these problems. Finally we analyze the performance of our new approach using both benchmarks, designed to represent cortical connectivity, and larger, functional cortical models. In a benchmark network where neurons receive input from 8000 STDP synapses, our new approach allows more neurons to be simulated on each SpiNNaker core than has been previously possible. We also demonstrate that the largest plastic neural network previously simulated on neuromorphic hardware can be run in real time using our new approach: double the speed that was previously achieved. Additionally this network contains two types of plastic synapse which previously had to be trained separately but, using our new approach, can be trained simultaneously.

  7. Cortical Visual Impairment

    Science.gov (United States)

    ... resolves by one year of life. Is “cortical blindness” the same thing as CVI? Cortical blindness is ... What visual characteristics are associated with CVI? • Distinct color preferences • Variable level of vision loss, often demonstrating ...

  8. Optimized gamma synchronization enhances functional binding of fronto-parietal cortices in mathematically gifted adolescents during deductive reasoning

    Directory of Open Access Journals (Sweden)

    Li eZhang

    2014-06-01

    Full Text Available As enhanced fronto-parietal network has been suggested to support reasoning ability of math-gifted adolescents, the main goal of this EEG source analysis is to investigate the temporal binding of the gamma-band (30-60Hz synchronization between frontal and parietal cortices in adolescents with exceptional mathematical ability, including the functional connectivity of gamma neurocognitive network, the temporal dynamics of fronto-parietal network (phase-locking durations and network lability in time domain, and the self-organized criticality of synchronizing oscillation. Compared with the average-ability subjects, the math-gifted adolescents show a highly integrated fronto-parietal network due to distant gamma phase-locking oscillations, which is indicated by lower modularity of the global network topology, more connector bridges between the frontal and parietal cortices and less connector hubs in the sensorimotor cortex. The time-domain analysis finds that, while maintaining more stable phase dynamics of the fronto-parietal coupling, the math-gifted adolescents are characterized by more extensive fronto-parietal connection reconfiguration. The results from sample fitting in the power-law model further find that the phase-locking durations in the math-gifted brain abides by a wider interval of the power-law distribution. This phase-lock distribution mechanism could represent a relatively optimized pattern for the functional binding of frontal-parietal network, which underlies stable fronto-parietal connectivity and increases flexibility of timely network reconfiguration.

  9. Convergent dysregulation of frontal cortical cognitive and reward systems in eating disorders.

    Science.gov (United States)

    Stefano, George B; Ptáček, Radek; Kuželová, Hana; Mantione, Kirk J; Raboch, Jiří; Papezova, Hana; Kream, Richard M

    2013-05-10

    A substantive literature has drawn a compelling case for the functional involvement of mesolimbic/prefrontal cortical neural reward systems in normative control of eating and in the etiology and persistence of severe eating disorders that affect diverse human populations. Presently, we provide a short review that develops an equally compelling case for the importance of dysregulated frontal cortical cognitive neural networks acting in concert with regional reward systems in the regulation of complex eating behaviors and in the presentation of complex pathophysiological symptoms associated with major eating disorders. Our goal is to highlight working models of major eating disorders that incorporate complementary approaches to elucidate functionally interactive neural circuits defined by their regulatory neurochemical phenotypes. Importantly, we also review evidence-based linkages between widely studied psychiatric and neurodegenerative syndromes (e.g., autism spectrum disorders and Parkinson's disease) and co-morbid eating disorders to elucidate basic mechanisms involving dopaminergic transmission and its regulation by endogenously expressed morphine in these same cortical regions.

  10. Complex brain networks: From topological communities to clustered

    Indian Academy of Sciences (India)

    Complex brain networks: From topological communities to clustered dynamics ... Recent research has revealed a rich and complicated network topology in the cortical connectivity of mammalian brains. ... Pramana – Journal of Physics | News.

  11. Reduced frontal cortex thickness and cortical volume associated with pathological narcissism.

    Science.gov (United States)

    Mao, Yu; Sang, Na; Wang, Yongchao; Hou, Xin; Huang, Hui; Wei, Dongtao; Zhang, Jinfu; Qiu, Jiang

    2016-07-22

    Pathological narcissism is often characterized by arrogant behavior, a lack of empathy, and willingness to exploit other individuals. Generally, individuals with high levels of narcissism are more likely to suffer mental disorders. However, the brain structural basis of individual pathological narcissism trait among healthy people has not yet been investigated with surface-based morphometry. Thus, in this study, we investigated the relationship between cortical thickness (CT), cortical volume (CV), and individual pathological narcissism in a large healthy sample of 176 college students. Multiple regression was used to analyze the correlation between regional CT, CV, and the total Pathological Narcissism Inventory (PNI) score, adjusting for age, sex, and total intracranial volume. The results showed that the PNI score was significantly negatively associated with CT and CV in the right dorsolateral prefrontal cortex (DLPFC, key region of the central executive network, CEN), which might be associated with impaired emotion regulation processes. Furthermore, the PNI score showed significant negative associations with CV in the right postcentral gyrus, left medial prefrontal cortex (MPFC), and the CT in the right inferior frontal cortex (IFG, overlap with social brain network), which may be related to impairments in social cognition. Together, these findings suggest a unique structural basis for individual differences in pathological narcissism, distributed across different gray matter regions of the social brain network and CEN. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  12. Kinetic insights over a PEMFC operating on stationary and oscillatory states.

    Science.gov (United States)

    Mota, Andressa; Gonzalez, Ernesto R; Eiswirth, Markus

    2011-12-01

    Kinetic investigations in the oscillatory state have been carried out in order to shed light on the interplay between the complex kinetics exhibited by a proton exchange membrane fuel cell fed with poisoned H(2) (108 ppm of CO) and the other in serie process. The apparent activation energy (E(a)) in the stationary state was investigated in order to clarify the E(a) observed in the oscillatory state. The apparent activation energy in the stationary state, under potentiostatic control, rendered (a) E(a) ≈ 50-60 kJ mol(-1) over 0.8 V < E < 0.6 V and (b) E(a) ≈ 10 kJ mol(-1) at E = 0.3 V. The former is related to the H(2) adsorption in the vacancies of the surface poisoned by CO and the latter is correlated to the process of proton conductivity in the membrane. The dependence of the period-one oscillations on the temperature yielded a genuine Arrhenius dependence with two E(a) values: (a) E(a) around 70 kJ mol(-1), at high temperatures, and (b) E(a) around 10-15 kJ mol(-1), at lower temperatures. The latter E(a) indicates the presence of protonic mass transport coupled to the essential oscillatory mechanism. These insights point in the right direction to predict spatial couplings between anode and cathode as having the highest strength as well as to speculate the most likely candidates to promote spatial inhomogeneities. © 2011 American Chemical Society

  13. Bistable flapping of flexible flyers in oscillatory flow

    Science.gov (United States)

    Huang, Yangyang; Kanso, Eva

    2016-11-01

    Biological and bio-inspired flyers move by shape actuation. The direct control of shape variables for locomotory purposes is well studied. Less is known about indirect shape actuation via the fluid medium. Here, we consider a flexible Λ-flyer in oscillatory flow that is free to flap and rotate around its fixed apex. We study its motion in the context of the inviscid vortex sheet model. We first analyze symmetric flapping about the vertical axis of gravity. We find that there is a finite value of the flexibility that maximizes both the flapping amplitude and elastic energy storage. Our results show that rather than resonance, the flyer relies on fluidic effects to optimize these two quantities. We then perturb the flyer away from the vertical and analyze its stability. Four distinct types of rolling behavior are identified: mono-stable, bistable, bistable oscillatory rotations and chaotic dynamics. We categorize these types of behavior in terms of the flyer's and flow parameters. In particular, the transition from mono-stable to bistable behavior occurs at a constant value of the product of the flow amplitude and acceleration. This product can be interpreted as the ratio of fluidic drag to gravity, confirming the fluid role in this transition.

  14. Predicting workload profiles of brain-robot interface and electromygraphic neurofeedback with cortical resting-state networks: personal trait or task-specific challenge?

    Science.gov (United States)

    Fels, Meike; Bauer, Robert; Gharabaghi, Alireza

    2015-08-01

    Objective. Novel rehabilitation strategies apply robot-assisted exercises and neurofeedback tasks to facilitate intensive motor training. We aimed to disentangle task-specific and subject-related contributions to the perceived workload of these interventions and the related cortical activation patterns. Approach. We assessed the perceived workload with the NASA Task Load Index in twenty-one subjects who were exposed to two different feedback tasks in a cross-over design: (i) brain-robot interface (BRI) with haptic/proprioceptive feedback of sensorimotor oscillations related to motor imagery, and (ii) control of neuromuscular activity with feedback of the electromyography (EMG) of the same hand. We also used electroencephalography to examine the cortical activation patterns beforehand in resting state and during the training session of each task. Main results. The workload profile of BRI feedback differed from EMG feedback and was particularly characterized by the experience of frustration. The frustration level was highly correlated across tasks, suggesting subject-related relevance of this workload component. Those subjects who were specifically challenged by the respective tasks could be detected by an interhemispheric alpha-band network in resting state before the training and by their sensorimotor theta-band activation pattern during the exercise. Significance. Neurophysiological profiles in resting state and during the exercise may provide task-independent workload markers for monitoring and matching participants’ ability and task difficulty of neurofeedback interventions.

  15. Abnormal-induced theta activity supports early directed-attention network deficits in progressive MCI.

    Science.gov (United States)

    Deiber, Marie-Pierre; Ibañez, Vicente; Missonnier, Pascal; Herrmann, François; Fazio-Costa, Lara; Gold, Gabriel; Giannakopoulos, Panteleimon

    2009-09-01

    The electroencephalography (EEG) theta frequency band reacts to memory and selective attention paradigms. Global theta oscillatory activity includes a posterior phase-locked component related to stimulus processing and a frontal-induced component modulated by directed attention. To investigate the presence of early deficits in the directed attention-related network in elderly individuals with mild cognitive impairment (MCI), time-frequency analysis at baseline was used to assess global and induced theta oscillatory activity (4-6Hz) during n-back working memory tasks in 29 individuals with MCI and 24 elderly controls (EC). At 1-year follow-up, 13 MCI patients were still stable and 16 had progressed. Baseline task performance was similar in stable and progressive MCI cases. Induced theta activity at baseline was significantly reduced in progressive MCI as compared to EC and stable MCI in all n-back tasks, which were similar in terms of directed attention requirements. While performance is maintained, the decrease of induced theta activity suggests early deficits in the directed-attention network in progressive MCI, whereas this network is functionally preserved in stable MCI.

  16. Switching auditory attention using spatial and non-spatial features recruits different cortical networks.

    Science.gov (United States)

    Larson, Eric; Lee, Adrian K C

    2014-01-01

    Switching attention between different stimuli of interest based on particular task demands is important in many everyday settings. In audition in particular, switching attention between different speakers of interest that are talking concurrently is often necessary for effective communication. Recently, it has been shown by multiple studies that auditory selective attention suppresses the representation of unwanted streams in auditory cortical areas in favor of the target stream of interest. However, the neural processing that guides this selective attention process is not well understood. Here we investigated the cortical mechanisms involved in switching attention based on two different types of auditory features. By combining magneto- and electro-encephalography (M-EEG) with an anatomical MRI constraint, we examined the cortical dynamics involved in switching auditory attention based on either spatial or pitch features. We designed a paradigm where listeners were cued in the beginning of each trial to switch or maintain attention halfway through the presentation of concurrent target and masker streams. By allowing listeners time to switch during a gap in the continuous target and masker stimuli, we were able to isolate the mechanisms involved in endogenous, top-down attention switching. Our results show a double dissociation between the involvement of right temporoparietal junction (RTPJ) and the left inferior parietal supramarginal part (LIPSP) in tasks requiring listeners to switch attention based on space and pitch features, respectively, suggesting that switching attention based on these features involves at least partially separate processes or behavioral strategies. © 2013 Elsevier Inc. All rights reserved.

  17. Frequency-Dependent Enhancement of Fluid Intelligence Induced by Transcranial Oscillatory Potentials

    Energy Technology Data Exchange (ETDEWEB)

    Santarnecchi, Emiliano [Univ. of Siena (Italy). Dept. of Medicine, Surgery and Neuroscience; Polizzotto, Nicola Riccardo [Univ. of Pittsburgh, PA (United States). Dept. of Psychiatry; Godone, Marco [Univ. of Siena (Italy). Dept. of Medicine, Surgery and Neuroscience; Giovannelli, Fabio [San Giovanni di Dio Hospital, Florence (Italy). Complex Unit of Neurology; Feurra, Matteo [Univ. of Siena (Italy). Dept. of Medicine, Surgery and Neuroscience; Matzen, Laura [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rossi, Alessandro [Univ. of Siena (Italy). Dept. of Medicine, Surgery and Neuroscience; Rossi, Simone [Univ. of Siena (Italy). Dept. of Medicine, Surgery and Neuroscience

    2013-08-05

    Everyday problem solving requires the ability to go beyond experience by efficiently encoding and manipulating new information, i.e., fluid intelligence (Gf) [1]. Performance in tasks involving Gf, such as logical and abstract reasoning, has been shown to rely on distributed neural networks, with a crucial role played by prefrontal regions [2]. Synchronization of neuronal activity in the gamma band is a ubiquitous phenomenon within the brain; however, no evidence of its causal involvement in cognition exists to date [3]. Here, we show an enhancement of Gf ability in a cognitive task induced by exogenous rhythmic stimulation within the gamma band. Imperceptible alternating current [4] delivered through the scalp over the left middle frontal gyrus resulted in a frequency-specific shortening of the time required to find the correct solution in a visuospatial abstract reasoning task classically employed to measure Gf abilities (i.e., Raven’s matrices) [5]. Crucially, gamma-band stimulation (γ-tACS) selectively enhanced performance only on more complex trials involving conditional/logical reasoning. The finding presented here supports a direct involvement of gamma oscillatory activity in the mechanisms underlying higher-order human cognition.

  18. Simulations of oscillatory systems with award-winning software, physics of oscillations

    CERN Document Server

    Butikov, Eugene I

    2015-01-01

    Deepen Your Students' Understanding of Oscillations through Interactive Experiments Simulations of Oscillatory Systems: with Award-Winning Software, Physics of Oscillations provides a hands-on way of visualizing and understanding the fundamental concepts of the physics of oscillations. Both the textbook and software are designed as exploration-oriented supplements for courses in general physics and the theory of oscillations. The book is conveniently structured according to mathematical complexity. Each chapter in Part I contains activities, questions, exercises, and problems of varying levels of difficulty, from straightforward to quite challenging. Part II presents more sophisticated, highly mathematical material that delves into the serious theoretical background for the computer-aided study of oscillations. The software package allows students to observe the motion of linear and nonlinear mechanical oscillatory systems and to obtain plots of the variables that describe the systems along with phase diagram...

  19. Dynamic imaging of coherent sources reveals different network connectivity underlying the generation and perpetuation of epileptic seizures.

    Directory of Open Access Journals (Sweden)

    Lydia Elshoff

    Full Text Available The concept of focal epilepsies includes a seizure origin in brain regions with hyper synchronous activity (epileptogenic zone and seizure onset zone and a complex epileptic network of different brain areas involved in the generation, propagation, and modulation of seizures. The purpose of this work was to study functional and effective connectivity between regions involved in networks of epileptic seizures. The beginning and middle part of focal seizures from ictal surface EEG data were analyzed using dynamic imaging of coherent sources (DICS, an inverse solution in the frequency domain which describes neuronal networks and coherences of oscillatory brain activities. The information flow (effective connectivity between coherent sources was investigated using the renormalized partial directed coherence (RPDC method. In 8/11 patients, the first and second source of epileptic activity as found by DICS were concordant with the operative resection site; these patients became seizure free after epilepsy surgery. In the remaining 3 patients, the results of DICS / RPDC calculations and the resection site were discordant; these patients had a poorer post-operative outcome. The first sources as found by DICS were located predominantly in cortical structures; subsequent sources included some subcortical structures: thalamus, Nucl. Subthalamicus and cerebellum. DICS seems to be a powerful tool to define the seizure onset zone and the epileptic networks involved. Seizure generation seems to be related to the propagation of epileptic activity from the primary source in the seizure onset zone, and maintenance of seizures is attributed to the perpetuation of epileptic activity between nodes in the epileptic network. Despite of these promising results, this proof of principle study needs further confirmation prior to the use of the described methods in the clinical praxis.

  20. Dynamic causal modeling revealed dysfunctional effective connectivity in both, the cortico-basal-ganglia and the cerebello-cortical motor network in writers' cramp

    Directory of Open Access Journals (Sweden)

    Inken Rothkirch

    demonstrates abnormal reciprocal excitatory connectivity in the cortico-cerebellar circuitry. These results highlight the dysfunctional cerebello-cortical as well as basalganglio-cortical interaction in WC. Keywords: Dynamic causal modeling, Focal hand dystonia, Writer's cramp, Network disorder, Cerebellum